
Turning Open Government Data
Portals into Interactive Databases

by

Chang Liu

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

© Chang Liu 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

The launch of open governmental data portals (OGDPs), such as data.gov, data.gov.in,
and open.canada.ca, have popularized the open data movement of the last decade, which
now includes numerous other portals from other public or private institutions. These
portals publish large numbers of datasets related to a very wide range of topics. Although
the amount of datasets in OGDPs are increasing, the functionalities provided by most
of the OGDPs to the end users are limited to finding the datasets based on the title
and description, and downloading the actual files. This limitation hinders the end users,
especially those without technical skills, to find the open data files and make use of them.

This thesis presents Governor, a web application developed to make open data tables
more accessible to the end users in several ways. First, Governor facilitates searching the
actual records in the original tables in OGDP. Second, Governor allows users to preview the
tables in the web browser directly without downloading them. Third, Governor allows users
to integrate multiple tables to form enriched datasets. A key feature here is automatically
finding and suggesting joinable and unionable tables to users based on the latest state of
their integrated tables. These operations are performed in the web browser interactively
through a few clicks without using a programming language or a spreadsheet software.
Lastly, Governor provides a set of features to summarize the provenance of integrated
tables allowing users and their collaborators to easily trace back the values in integrated
tables to the original tables in the OGDP.

iii

Acknowledgements

First, I would like to thank my supervisor, Prof. Semih Salihoğlu, for his constant
support over the last two years. This thesis would not be possible without his advice
and help. Working with Semih has been a great experience. I am grateful to be part of
his research group and to have the opportunity to continue working with him as a PhD
student.

I also would like to express my appreciation to Prof. Jian Zhao for his contributions to
this project. His valuable insights and feedback played an important role in this project.

Moreover, I would like to thank my colleague Dr. Arif Usta for being part of this
research project and helping with the recruitment of participants for the user study.

Last but not least, I would like to thank my thesis reader, Prof. Jimmy Lin, for spending
time reading my thesis, attending the presentation, and providing valuable feedback.

iv

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Background 6

3 Related Work 8

3.1 Open Data Search Tools . 8

3.2 Systems With Data Integration Capabilities 9

3.3 Techniques for Finding Related Tables . 11

4 Usage Scenarios 13

4.1 Searching Research Grant Amounts . 13

4.2 COVID 19 and Vaccination Analysis . 15

5 Design Goals 19

6 Governor System 22

6.1 Overview . 22

6.2 Search . 24

v

6.3 Original Table Preview . 25

6.4 Data Integration . 28

6.5 Provenance Information . 30

7 User Study 32

7.1 Participants and Apparatus . 32

7.2 Tasks and Design . 33

7.3 Procedure . 34

8 Results 36

8.1 Task Performance . 36

8.2 Questionnaire Ratings . 38

8.3 Qualitative Results . 40

9 Discussion 42

10 Conclusions and Future Work 45

References 47

vi

List of Figures

1.1 An Overview of Governor System . 1

4.1 Search View . 14

4.2 Original Table View . 14

4.3 Working Table View . 16

6.1 Navigation Flow between Different Views of Governor 22

6.2 Governor System Architecture . 23

6.3 Column Statistics Pop-up . 26

6.4 Suggestions for Completing the Working Table 29

8.1 Participants’ ratings on the NASA TLX questionnaire for the Tasks (the
lower the better) . 38

8.2 Participants’ ratings on the exit-questionnaire (the higher the better) . . . 39

vii

List of Tables

6.1 Comparison of the Loading Time (in Seconds) between Governor and Excel 27

viii

Chapter 1

Introduction

Figure 1.1: Governor: an interactive system to help users effectively search, preview, and
integrate open data tables published by OGDPs. The main interface of Governor consists
of: (a) Search view which allows the user to find open data tables by the description of the
dataset or the values stored in the table, (b) Original Table view which provides the user
a preview of the original open data tables, (c) Working Table view which facilitates open
data tables integration through the automatic detection of joinable and unionable tables.

The launch of open governmental data portals (OGDP), such as data.gov, open.canada.ca,

1

data.gov.in, data.gov.uk, have popularized the open data movement of the last decade.
These portals publish large numbers of datasets about many aspects of government in-
stitutions and more broadly the countries these governments govern. The topics of these
datasets are too varied to enumerate, but examples include how governments distribute
research funds, how much meat they export, daily COVID-19 cases, or the CO2 emissions
of different factories. The core goal of opening government datasets to the public is to make
governments more transparent, make governments more accountable, as well as fulfill the
information needs of different members of the society, such as researchers or businesses [9].
In their usage vision, these datasets can be analyzed by policy analysts, journalists, re-
searchers, and engaged citizens to find rooms for improvement in how governments operate
and identify corruption and systematic injustices in a country.

In light of this vision, the potential societal value of making more government datasets
open in the upcoming decades, and making these datasets easier to find, understand, and
analyze by users can be invaluable to countries. Despite their clear societal importance,
existing OGDPs are primarily raw data publishing websites and fall short on delivering
their potential value to their intended users due to several shortcomings:

• Lack of record searching functionality: Open datasets are published as datasets,
where each datasets can encapsulate multiple data files, such as tables published in
CSV or Excel file formats. These datasets have textual descriptions (aka dataset
metadata), describing the datasets. Existing OGDPs, including dataset search en-
gines, such as Google Dataset Search [7], support searching only through these de-
scriptions of the datasets and not the contents of the records in these datasets. Many
simple questions that are of potential interest to users can be answered through a
few records found in the datasets published by governments. Consider for instance
the question: “How much NSERC research money was granted to Yoshua Bengio’s
last Discovery Grant application?” or “How many refugees from Afghanistan did
Canada accept in 2022?”. The answers to both of these questions are found in a
few tables that contain the terms “Yoshua Bengio” or “Afghanistan” but a search
of keywords, such as “NSERC”, or “refugees” in open.canada.ca, return over 100
and 50 tables, respectively. This shortcoming is ubiquitous across all major OGDPs,
such as data.gov, data.gov.in, or data.gov.uk. The ability to do keyword search also
through records would make it easier to answer such questions for users.

• Raw data downloading-oriented data access: Existing OGDPs primarily fulfill
the functionality of publishing the dataset in some raw format, which are download-
able to the host machines of users over the web. They provide very limited forms
of accessing the data through the portal for initial viewing. For example, a user

2

interested in the question about Yoshua Bengio, would need to potentially download
many CSV files from open.canada.ca, e.g., the 2022 NSERC Awards or 2022 NSERC
co-applicants. Then the user would need open and perform a search inside each of
these files in a spreadsheet software. This style of interaction can be very laborious.

• Lack of data integration functionalities: Many of the datasets in OGDPs are
ultimately intended to be be analyzed sometimes directly but often by first integrating
them into larger datasets. Existing OGDPs are solely publishing websites and do not
provide tools to integrate datasets. For example, consider a journalist who would like
to construct a Canada-wide dataset of COVID 19 cases and vaccination rates. In
absence of any support for data integration in OGDPs, this could be accomplished
through a tedious and manual task of finding related tables, downloading them and
putting them together in spreadsheet software. Ideally, a data integration system
could provide these integration functionalities in a common interface to users.

• Lack of provenance information and management: A natural need for users
who have performed data integration and analyses using open government datasets
is to verify the results of these analyses. Consider, as a purely hypothetical example,
that our journalist has constructed a table of vaccination rates and COVID 19 cases in
the Ontario province of Canada. Suppose the journalist finds that although initially
the vaccination rates steadily increased in the province, there was a sharp decline
in September 2021, after which it has remained very low. The journalist speculates
that this may be connected to the beginnings of a strong anti-vaccine movement there
around the same time. Before publishing this article, both the journalist as well as
others, such as editors of the publication, would need to verify the soundness of the
data and fact check the numbers against the raw data published in open.canada.ca.
In absence of tools that can facilitate and manage data integration tasks, providing
these functionalities requires manual and careful documentation by the journalist.
A system that facilitated automatic provenance management could greatly simplify
such usage scenarios.

Many of the above shortcomings would be addressed by the core functionalities of database
management systems (DBMSs). For example, one can ask queries in DBMSs to search
through records in the tables. Similarly, tables that integrate multiple other tables can be
modeled as views [16] over the base tables in DBMS. DBMSs also store information about
how the views have been constructed, which can serve as provenance information of these
views and facilitate fact checking. Indeed several systems in literature [21, 25] provide a
subset of these features by storing the data in data “lakes” in a DBMS or an advanced index

3

and making this data accessible through a general or DBMS programming language, such
as SQL. However, such systems are not accessible to many potential users of OGDPs who
are not programmers. This thesis argues that in order for OGDPs to deliver their potential
value to their users, they should evolve from mere publishing websites into systems with
database capabilities with interactive interfaces that are familiar to non-programmers.

The main contribution of this thesis is a browser-based system that we call Governor
(Figure 1.1), which provides the above capabilities. Governor models an OGDP as a
database of published tables, which are accessed and integrated interactively and non-
programmatically. Governor is designed to be accessible to users with the basic skills for
exploring, integrating and analyzing datasets through spreadsheet software, who are not
necessarily programmers.

Governor uses the open.canada.ca portal as a test-bed and indexes all of the records in
the tabular corpus of open.canada.ca in an index. This lets users to search original records
about specific entities, such as “Yoshua Bengio”, and preview the tables in which these
records appear quickly in a single interface without downloading and browsing them using
separate software. Starting from one of the original tables, users can start data integration
sessions. By interactively performing two core relational operations, unions and joins
of tables, through a few clicks, users can construct a “Working Table” that integrates
multiple tables. These data integration capabilities can be very useful especially when
putting together frequently and periodically published tables, such as monthly or daily
published COVID-19 case datasets. The data integration sessions are generally guided
through the system’s suggestions for tables to union and join with the Working Table,
which respectively allow users to add more rows and columns to their Working Tables.

Governor keeps the full provenance information and provides a set of additional features
to support provenance-related tasks. The system summarizes the integration task through
color-guided provenance summaries that visually show the different tables that have been
integrated, and how they have been integrated (see the top right side of the working table
view in Figure 1.1c). Through a few clicks, users can view the original tables that have
been integrated, as well as go to the original cells (in the original table) that correspond
to the cells in the Working Table. To facilitate these at interactive levels, Governor uses
the DuckDB relational database management system [5] on user’s browser to store and
manage the integrated datasets. The logs of the data integration steps that a user has
taken, which contain the necessary provenance information, can be persisted in Governor’s
back end in MongoDB [8]. By persisting this provenance information, users can share
Working Tables with other users and/or continue their data integration sessions without
losing any information.

4

The rest of this thesis is organized as follows.

• Chapter 2 reviews how the open data tables are currently managed and structured
in OGDPs.

• Chapter 3 discusses related work.

• Chapter 4 demonstrates two usage scenarios which motivate the design goals of Gov-
ernor.

• Chapter 5 describes the main design goals of Governor.

• Chapter 6 discusses in detail the functionalities and implementation of Governor.

• Chapter 7 and Chapter 8 present the user study we conducted to assess the effec-
tiveness of Governor and the result of the study, respectively.

• Chapter 9 covers the limitations of Governor.

• Chapter 10 discusses future work and conclusions.

5

Chapter 2

Background

In this section, we explain structure of OGDPs, in particular, the portals maintained by
governments. Many governments utilize an open-source content management system for
open data named CKAN[3], which follows a certain structure for the collection of data to
be published. The data published in OGDPs are stored under datasets. In other words,
an OGDP is a set of datasets D = {d1, d2, ..., dn}, where di is the ith dataset and n is the
number of datasets. Users search for datasets to find information they seek. An example
dataset is NSERC’s Awards Data1 from the open data portal of Canada.

Each dataset di has two main properties:

• Metadata information about the dataset such as title, publisher organization, publish
date, format, keywords, etc.

• A list of resource files F i = {f i
1, f

i
2, ..., f

i
m}, where f i

j stores the actual data for dataset
di. Each di can have any number of resources, m. Each f i

j can be in different format
such as HTML, PDF, CSV, etc. For instance, for the above example dataset, there
are different resource files storing information for different years or storing different
entities of the same dataset in same year such as Awards, Co-applicants and Partners.

One of the most common resource file formats in OGDPs is comma separated values
(CSV). CSV files are also more preferable by users, especially data scientists, who have
the intention to process these data files programmatically to gain insight. In Governor,
we focus on resource files in CSV format due to their popularity and simple format, which

1https://open.canada.ca/data/en/dataset/c1b0f627-8c29-427c-ab73-33968ad9176e

6

gives us enough data to form a test bed without requiring us to develop a complex file
parsing and data processing pipeline.

We also keep the notion of datasets in Governor. Similar to the OGDPs, we present the
search results by grouping tables from the same dataset together and show the metadata
information stored at dataset level to the users. Additionally, we also use the source dataset
of each table as a heuristic to limit the search space of joinable tables, which will be further
discussed in Chapter 5 and Chapter 6.

7

Chapter 3

Related Work

In this chapter, we review prior work on three areas: (i) open data search systems; (ii)
open data integration systems; and (iii) systems and algorithms for finding related tables.

3.1 Open Data Search Tools

Several systems support capabilities to search through large collections of enterprise or
open data lakes. These include data integration systems that we will cover in Section 3.2.
Here we cover systems whose primary functionalities are searching. These systems support
search through one of two search modes: (i) keyword search; or (ii) by issuing actual
tables as queries, which indicates that the user is searching for tables related to the query
table. We refer to the latter type of search mode as table-as-a-query search. In addition,
some systems let users navigate or browse through tables/datasets by moving from one
table/dataset to another in contrast to an interaction in which the search results take the
user to an external website that contains the dataset. We review the related systems below.

Google Dataset Search (GDS) [13] is a large-scale search engine that indexes both
public and private datasets. GDS crawls webpages that contain special html tags indicating
that the page contains a dataset, and indexes the metadata about the dataset, which can
include the descriptions of these datasets and their tables, their publisher information,
or the type of open data licence the dataset is published under. GDS supports keyword
queries that search over this metadata. Unlike Governor, GDS is solely a search engine and
does not index the contents of the records inside the tables in these datasets, nor supports
data integration.

8

RONIN [20] is a data lake exploration system that supports both types of search modes
we mentioned above. RONIN uses two indexes. First is the faiss index [18], that indexes
one “semantic” vector for each column of each table in the data lake. This vector is used for
keyword search. Second, RONIN uses an LSH Ensemble index [28] (discussed in more detail
in Section 3.3) that also indexes each column, but is used efficiently to find two columns
that have high overlaps in their values and so are joinable. The LSH ensemble index is
used when a user performs a table-as-a-query search. The overall user interaction starts
by a user issuing a keyword query, then getting back a list of tables, and then navigating
the data lake starting from a selected result table, which can be used as a table query to
further get a set of related/joinable tables. Similar to Governor, RONIN shows previews
of the tables but is not designed to integrate tables and provide provenance capabilities.

Auctus [14] is similar to RONIN but contains more indices, including a keyword index
of descriptions in Elastic Search (similar to Governor), an LSH-based index [15] to find
set similarity over categorical data, as well as indexes for temporal and spatial columns.
Auctus uses these indices to support keyword search, temporal or spatial search, or table-as-
a-query search by manually uploading a table into the system. When a user uploads a table
as a query to Auctus, the system also supports a very limited form of integration, where
the table can be joined with one other table in the query results and the final join of these
two tables can be downloaded by the users. Governor instead supports integrating large
numbers of tables and is designed to manage these integrated tables and their provenance.

3.2 Systems With Data Integration Capabilities

Several prior work has developed interactive systems that have direct or indirect capabilities
to support data integration in enterprise or open data lakes. We discussed Auctus [14] and
its (limited) capability to join two tables above. Toronto Open Data Search [29] is similar
to Auctus and allows users to find joinable tables and similarly only allows a single join of
two tables for data integration.

Voyager [12] is a data search and discovery system for data lakes that is designed as
an extension of Jupyter Notebook. As such, Voyager is accessed through a programming
language, such as Python. Voyager supports both keyword queries over indexed tables/-
datasets as well as table-as-a-query searching capabilities. Although not directly targeting
data integration tasks, the results of these searches are returned as tables and can then be
integrated with other tables all in the user’s programming language. Voyager assumes an
interactive user experience, albeit the interaction happens through a (programmer) user

9

writing snippets of programs in a Jupyter Notebook, instead of Governor’s clicking-based
web interface.

Juneau [25] is another system, whose functionalities overlaps with Voyager. Juneau is
also designed as a Jupyter Notebook extension. We refer to these notebooks as Juneau
notebooks. Users can perform table-as-a-query searches against source data lakes, and
the results of these searches can be integrated with other tables in Juneau notebooks.
However, the primary goal of Juneau is to manage data science pipelines. To achieve this,
the Juneau notebooks, which contain both data integration as well as analytical codes, such
as machine learning pipelines, are themselves stored and managed in Juneau’s server. At
a high level, this server stores the computation graph of how the tables in these notebooks
were constructed as provenance of these tables. This provenance information is used to
suggest related tables to other users’ of Juneau notebooks. As a simple example, consider
a user that is working on a Juneau notebook, and is in the middle of a data integration
process that has joined two tables R and S. The user can get a suggestion from Juneau to
further join table T , because a prior Juneau notebook stored in the system has done the
same thing. Similar to Voyager, user interactions with Juneau are through programming
a notebook. Similar to Governor, Juneau stores the provenance information for integrated
tables in Juneau notebooks, but this information is used in suggesting related, e.g., joinable,
tables to the user. Instead, Governor uses the provenance information to facilitate fast
verification/fact-checking in the original tables published in OGDPs.

KGLac [17] is another data discovery system that also supports table-as-a-query search
capabilities. KGLac generates a knowledge graph out of a data lake, whose nodes contain
tables, datasets, and columns and edges contain different relationships such as how similar
different columns are, or whether they represent primary-foreign key relationships. This
knowledge graph is stored in an Resource Description Framework (RDF) database [23],
which is a popular data model to model knowledge graphs. This knowledge graph can then
be queried through the SPARQL query language from any host programming language. In
addition, users can use the KGLac library in Python to perform table-as-a-query searches
and find related tables, which can, similar to Voyager and Juneau, be integrated in Python.

Voyager, Juneau, and KGLac all provide data integration capabilities for users with
programming skills, who are accessing these systems through a programmatic interface. In-
stead, Governor is a web application where data integration happens through a spreadsheet-
like interface that is extended with interfaces showing data integration suggestions. Gov-
ernor’s goal is to make data exploration and integration on OGDPs more accessible to
potential OGDP users, which includes non-programmer users, such as journalists or pol-
icy analysts, or regular engaged citizens, who have basic proficiencies in data analyses on
spreadsheet software. In addition, these systems do not provide features to summarize the

10

integration steps of an integrated table or link the data in these tables with original tables
to facilitate fast data verification. We also note that some of the features provided in these
systems are complementary to Governor. For example, Governor implements indexes and
algorithms to find joinable and unionable tables to the user’s Working Table, which we
discuss more in Section 3.3 and in much more detail in Chapter 6. Each of these systems
also has different ways of finding joinable or unionable tables, each of which could replace
Governor’s current approach. We review some more literature on these techniques below.

DICE [21] is another data discovery system in which users provide example tuples of a
desired table to the system. The goal of DICE is to find SQL queries that could have
generated those tuples and show users additional tuples that these queries would generate.
These SQL queries effectively perform automatic data integration to generate a table that
conforms to the example tuples provided by the user. Therefore, users can optionally issue
these queries to the underlying data lake, generate new tables, and store them back in the
data lake. In contrast, Governor allows users to perform the data integration interactively
in its web interface and manages these integrated tables and their provenance.

3.3 Techniques for Finding Related Tables

There has also been prior research on the foundations of how to find related tables, specif-
ically unionable and joinable tables, in data lakes. This literature assumes a setting in
which a system supports table-as-a-query search. Since Governor also finds unionable and
joinable tables with the users’ Working Table, these techniques are related to our work.
Given a query column c, reference [28] proposes an efficient locality-sensitive hashing based
index to find other columns that have high value overlap with c. This approach is approxi-
mate and can return false positives, which a follow-up work by the same authors addresses
in reference [26]. Reference [19] has proposed a suite of indexing, searching, and ranking
techniques for the problem of finding unionable tables. Some of these techniques are based
on the values in the columns, some are based on ontology mappings of the columns of the
tables (if they exist), and others are based on semantic similarity if the columns contain
strings. Similar to our comment above on similar techniques implemented in Voyager,
Juneau, and KGLac, these techniques are complementary to our work.

In Governor, we have chosen a set overlap-based technique for finding joinable tables.
Governor only searches for joinable tables based on a key (or almost key) columns. Gov-
ernor’s unionability suggestion algorithm searches for pairs of tables that have exactly the
same schema. In our experience developing and using Governor, we realized that both of

11

these approaches were sufficient to find good related tables and accomplish the data inte-
gration scenarios that motivated our work. We therefore opted for simplicity here, since
our focus in Governor is to provide a user-friendly system to make dataset exploration and
integration more accessible to users, instead of developing advanced related table search
functionality.

12

Chapter 4

Usage Scenarios

In this chapter we demonstrate two scenarios to motivate the design goals of Governor,
which we cover in Chapther 5. Our scenarios expand on the Yoshua Bengio and COVID
19 and vaccination correlations examples from Chapter 1.

4.1 Searching Research Grant Amounts

Alma is final year graduate student who has been offered a faculty position from a Canadian
university. She is interested in forming an opinion on the sizes of the research grants she can
obtain from the Canadian government on her research topic of deep neural networks. She is
aware of several faculty in Canadian universities who work on similar topics, one of which
is Yoshua Bengio. She sets out to answer how much research grants has Yoshua Bengio
obtained lately. She thinks this information must be published openly by the government,
so goes to Governor’s landing page, which contains the “Search View”. Here, she types in
“Yoshua Bengio”, and clicks “Search Tuples”, which returns 7 datasets with many tables
(Figure 4.1). For example, she sees that under the NSERC awards dataset, she sees tables
whose titles include years 1991 to 2019. So she infers that Bengio’s latest NSERC award
must be from 2019. The table’s name is 2019-co-applicants. She clicks on this result, which
opens a new tab that is in the Original Table View (Figure 4.2). On the left, she sees a
spreadsheet-like interface with 2 tuples and 2 columns: Cle and CoApplicantName. Both
of the tuples contain “Yoshua Bengio” under the CoapplicantName column. Reading the
dataset description on the right hand-side, she understands that Bengio must be the co-PI
on two grants in 2019.

13

Figure 4.1: Search View

Figure 4.2: Original Table View

14

She then goes to the Hide/Unhide Columns sub-panel the Action Panel on the right side
(Figure 4.2c) and notices that this table does not seem to contain any column that contains
the amount of money given to this grant. She then looks at the spreadsheet again and sees
that the top tuple has an identifier looking value “694993” under the Cle column. Hovering
over the column, she sees a description of the column which says “Unique-identifier”1. She
thinks this might be an identifier for the grant and decides to search for this grant. She
click on the icon to go back to the Search View and types “694993”. This returns
several tables2, one of which is the 2019-co-applicants table she had already opened. Next
to this table is a 2019-applicants table. She opens this table, which takes her back to a new
tab in the Original Table View. Here she sees only a single tuple, the one with Cle value
694993. This is a table with 35 columns and Governor by default shows 5 of these columns,
including Cle, Name (which is the PI’s name), and Application Title but not the amount,
which she is interested in. She goes the to Hide/Unhide Columns (Figure 4.2e) sub-panel
and scrolling down sees the AwardAmount column, which she clicks, and sees the amount
on the table on the left. She repeats a similar process for several few recent grants obtained
by Yoshua Bengio (and several other faculty she is interested in) to estimate the scales of
the government research grants on her topics.

4.2 COVID 19 and Vaccination Analysis

Shufan is a journalist who has been tasked by his newspaper to investigate the latest debate
about the effectiveness of the vaccine rollouts in Canada. Shufan is tasked with a specific
question: Are the vaccinations reducing the COVID-19 cases in Ontario? Shufan thinks he
can answer this question with a thorough analysis of 2 years of COVID-19 hospitalization
cases and correlating this with the vaccination doses administered in Ontario. Shufan
knows that this information is periodically published by the government and he decides
to construct a dataset that consists of COVID 19 and vaccination cases of every day since
April 2020 and decides to use Governor.

He types “COVID-19” on Governor’s landing page and clicks “Search Description”,
which returns back several datasets and tables including a dataset of COVID-19 Vaccine
Data in Ontario with many tables in it, since this information is published quarterly. He

1If datasets have a structured description files, then Governor extracts such column
descriptions and displays them on its interfaces (Figure 4.2f)

2Not surprisingly, numerical identifiers that are incremental and start from 0 and in-
crease, are keys also in tables other than the 2019 NSERC tables in open.canada.ca.

15

Figure 4.3: Working Table View

16

clicks on the Q2-2020 Vaccine Data table, the table with the earliest date, which opens the
table in Original Table View. He notices that this table contains 91 tuples, one for each
day of April, May, and June with a TotalDosesAdministered column storing the number
of vaccines administered in each day of the second quarter 2020.

Shufan decides to enrich this table with data from other quarters and also hospitaliza-
tion cases. To start this data integration task, he clicks on the “Add to Working Table”
button (Figure 4.2d) on the right panel which copies this data to the “Working Table
View” (Figure 4.3a). Next, Shufan wants to add more rows to this table by gathering
vaccination data from other quarters. He inspects the “Add Rows From Other Tables
(Union)” sub-panel in the Actions Panel, where Governor lists its suggestions of other ta-
bles (Figure 4.3b) that have the same schema, i.e., column names. These are the tables in
open.canada.ca that can be integrated with the Working Table through a union operation.
There he sees 7 suggestion, one for each quarter. He clicks on tables Q3-2020 Vaccine Data
and Q4-2020 Vaccine Data and generates a table with hundreds of tuples and two columns,
report date, and total doses administered (Shufan hides several other columns he is not
interested in).

Next, Shufan decides to integrate hospitalization data into the Working Table. Since
this data is in separate files with different schema, Shufan inspects the “Add Columns
From Other Tables (Join)” panel and sees several tables there, including “COVID-19 Hos-
pitalizations”. The tables here all have close to perfect overlaps with a key (or almost key)
column in the Working Table, i.e., that is unique for each tuple in the table. In Shufan’s
current table, this is the report date column. Shufan inspects the columns that he can
gather from the Hospitalization by Vaccine Status table and sees two columns that look
related to his task: icu and nonicu (Figure 4.3c). He infers that these must be reporting
the number of hospitalizations that were in intensive care units (icu) or those that did not
need icus (nonicu). He clicks on these 2 columns, which extends the Working Table with
6 new columns (and no new rows). Unlike the vaccination data, which is published peri-
odically, the hospitalization data is in a single table, so this operation effectively joins the
entire Working Table with a single other table. In another and a more common scenario,
Governor supports separately joining each unioned table (e.g., only the tuples from the
Q2-2020 Vaccine Data table) with another table.

Having integrated a total of 9 tables, Shufan then decides that this information is
enough for him to do his analyses. He downloads the integrated table as a CSV file and
opens it in Excel. He plots a line chart of total doses administered and icu and sees a sharp
decline starting in the fourth quarter 2021, though without a clear effect on hospitalization.
He thinks that it would still be worth raising the question of what has caused of this decline
in vaccinations in an article. He prepares his article that contains the chart and a shareable

17

Governor link that contains the integrated table for the editors to fact-check this observed
trend.

Upon opening the shared Governor link, the editor sees the integrated table and inspects
the Working Table Structure (WTS) panel (Figure 4.3a) to understand the tables that
got integrated. She sees that many tables have been unioned together, and inspecting
the names of these tables on the WTS, understands that these correspond to quarterly
vaccination data. She knows that Shufan’s article mentions a decline in administered
vaccinations in the fourth quarter of 2021, so finds the rectangle for Q4-2021 and clicks on it,
which opens the original table in a new tab. Here she eyeballs the total doses administered
column of the 92 tuples in this table and notices that they are in the few thousands, which
indeed looks very low. She double checks the line chart in the article, and sees that the
chart indeed plots numbers in the few thousands for the fourth quarter 2021. She then
clicks on the Show Dataset Details (Figure 4.2g) and reads the dataset details to verify
that these are COVID 19 vaccination data and published by Ontario’s ministry of health.
She then repeats this fact checking process for a few other quarters and lets Shufan know
that she has verified that the article’s data is sound.

18

Chapter 5

Design Goals

Governor’s design was guided by four goals. Some of these design goals were driven by our
overarching goal of providing database management system capabilities over the datasets
in OGDPs through a non-programming interface. Others were informed by the properties
of the actual tables stored in OGDPs.

G1: Store and index the tuples inside the tables: In order to facilitate searching
through tuples and any data integration task, a system needs to store and index the actual
tuples inside the tables of OGDPs. An important property of the datasets in OGDPs is
that they are relatively small in size. For example, the size of the largest OGDP, data.gov
is 2120 GB in uncompressed raw file size and 434 GB when compressed. open.canada.ca,
which is the OGDP we used is 345 GB in uncompressed raw file size and 128 GB when
compressed. These sizes are in the scale that even for research projects undertaken in
academic groups can have the resources to fully index the tuples in these datasets. Indexing
the tuples was also needed to let users preview the datasets at interactive speeds, By
managing the tables in our own servers, we could compress large tables and send them to
user’s browsers more efficiently.

G2: Support core relational data processing operations interactively: In order
for users to integrate multiple tables and construct larger tables, we needed an interactive
user interface that supported several core relational operations of. Specifically we needed
to support union and join operations for data integration. In addition we needed basic data
cleaning and transformation operations, such as projection (removing columns), filtering
(selection), and ordering. We wanted the interface to be a familiar spreadsheet interfaces
where users clicked on buttons instead of a command line interface where they would type
SQL quefries.

19

G3: Provide suggestions for related tables: Navigating through OGDPs is challeng-
ing for two reasons. First, the entire corpus can contain tens of thousands of tables. Second,
there can be dozens or hundreds of related tables that users may potentially integrate to-
gether. There two common reasons for why the information users need can be spread across
multiple tables: (i) periodic publishing: a common style of publishing a dataset in OGDPs
is to periodically publish a dataset at certain time intervals, e.g., every week, month, or
year; and (ii) normalization [22]: some information is published in a normalized form, i.e.,
partitioned into multiple tables to avoid some data redundancy. Manually finding the ta-
bles to integrate one by one cannot scale, so we needed to intelligently provide suggestions
for tables that can unioned and joined with users’ Working Tables (i.e., the one they are
constructing).

This meant that Governor had to implement algorithms for the table-as-a-query prob-
lem, that we discussed in Chapter 3. Here, we had options from numerous algorithms from
literature for finding and suggesting unionable and joinable tables, which we also covered
in Chapter 3. Here we opted for simple solutions. For unionability, we opted for a schema-
based approach, where we required the schemas of tables to be the same to be considered
unionable, as this is sufficient for capturing the most popular case of detecting periodically
published tables. In order to consider two tables T1 and T2 joinable on columns c1 and c2,
we opted for a technique which required two constraints: (i) the sets of values to overlap
with a very high-percentage; and (ii) that one of c1 and c2 to be a key. All existing work on
joinability [26, 27, 28] is based on set-overlap metrics, and our requirement for high overlap
was to avoid introducing null values for tuples that do not successfully join. Requirement
(ii) was adopted to ensure that Working Tables do not grow in size after the join. If the
join is a non-key-non-key join, then each tuple in the Working Table can join with multiple
tables and produce a much larger table, which we observed in our initial iterations on the
system. This is similar to how join-like functions in spreadsheet software, such as Excel’s
VLOOKUP function, also only joins a tuple t 1 ∈ T1 with the first matching tuple in
t 2 ∈ T2 by default. After adopting these two constraints, we further noticed that the
overwhelming majority of the suggestions Governor makes is limited to pairs of tables that
are both published as part of the same dataset.

G4: Manage integrated datasets and their provenance to support later fact
checking and verification: Recall that an overarching goal of OGDPs is to increase gov-
ernment transparency and accountability, and one important use case is for these datasets
to be used by journalists, policy analysts, or engaged citizens to find problems in the
government. Therefore the outcomes of the analyses performed on these datasets can be
sensitive. Similar to our usage scenario, we envisioned cases where users would construct
an integrated table in Governor and later share these tables along with their analyses with

20

others. Then other people could verify the data in these integrated tables and easily (and
interactively) go back to the original tables and cells in these tables, which is akin to
exploring a database view in a DBMS by navigating into the base tables. This required
Governor to have features to store and manage the provenance of the integrated tables,
i.e., the sequence of operations that formed them.

21

Chapter 6

Governor System

In this section, we describe the functionalities and technical details of the Governor system.
We start in Section 6.1 by providing an overview of the user interface components and the
architecture of the system. Then, in Section 6.2 to Section 6.5, we go over the functionalities
and implementation of each component in detail.

6.1 Overview

Governor is a single-page Vue.js [10] web application with three main functionalities: 1)
searching through the collection of open data tables, 2) previewing the original open data
table, and 3) integrating multiple open data tables together. Each functionalities is associ-
ated with one view of the user interface. The Search View (Figure 4.1) allows the users to

Figure 6.1: Navigation Flow between Different Views of Governor

22

Figure 6.2: Governor System Architecture

23

perform table search by both the values of the table and the metadata description. Original
Table View (Figure 4.2) allows the users to preview the open data tables directly without
downloading and provides basic sorting and filtering functionalities. Finally, the Work-
ing Table View (Figure 4.3) allows the users to integrate data from multiple open data
tables via union and join operations, and provides color-guided provenance summaries
that visually show the different tables that have been integrated, and how they have been
integrated.

A complete workflow of finding an interesting open data table and integrating it with
other open data tables requires users to interact with all three views. Users can navigate
between the three views through different interactions in the system as shown in Figure 6.1.
When the users open the index page of Governor system initially, it will land on searching
page by default, so that the users can immediately start looking for open data tables of
interest. After finding a potential table of interest, users can click on the title of the
table, which will lead to the original table view for previewing. If users are interested in
expanding the original table by integrating with other tables in the collection, they can start
this workflow by adding the original table to the Working Table, which will provide them
with suggestions on unionable and joinable tables automatically. Finally, after the users
are done with creating the Working Table, they can export the Working Table by creating
a shareable link, (discussed in more detail in Section 6.4). When opening Governor system
with a shareable link, the system will land on the Working Table page and automatically
replay the previous operations to create the same Working Table.

To support the diverse functionalities of the web application, the back end of Governor
combines multiple technologies and provides a unified interface for the front end via an
HTTP server. The back end fetches the open datasets from the government data portal
through CKAN[3] API, indexes the dataset with MongoDB [8] and Elasticsearch[6] for
querying, and serves the data files by converting them into a compressed Apache Parquet
[2] format using Apache Arrow [1], as illustrated in Figure 6.2.

6.2 Search

In Governor, the tuples of open data table files under a dataset are indexed by Elasticsearch[6],
while the metadata information of the dataset, such as the name of the table, as well as the
notes, publisher, category, and keywords of the dataset, is indexed by MongoDB. These
two indices in the Governor back end provide two differenet search modes: “Search Tuple”
(Figure 4.1a) and “Search Description” (Fugure 4.1b), respectively.

24

The tuple search feature finds table by matching the actual values in the data table,
which is more suitable for finding information about a specific entity such as human names,
business names, and addresses. For example, in the usage scenario described in Section 4.1,
by using “Yoshua Bengio” as a search keyword to perform a tuple search, as shown in
Figure 4.1, the grants awarded to Yoshua Bengio and the publications submitted by her
are found.

On the other hand, the description search finds the table by matching the metadata
of the dataset that consists of the table. The description search feature acts similarly to
Google Dataset Search and CKAN-based OGDPs, which is more suitable for finding tables
by its domain. For example, by using the keyword “economy” to perform a description
search, the users can find various tables related to the economy of Canada, such as the
transfer payments, tax statistics, and major importers.

Users can perform a search by typing a keyword and selecting the search mode. The
search results returned by the system are grouped by dataset. The users can also read the
notes, subjects, and release date of each dataset directly from the search result page to
determine the usefulness of the dataset.

6.3 Original Table Preview

In Governor, the original table preview consists of a few basic features of a spreadsheet
software, including filtering (Figure 4.2b), sorting (Figure 4.2a), and basic column statistics
(Figure 4.2e). It also provides basic statistics and a histogram visualization for each column
(Figure 6.3). These features can help users look up simple facts without having to download
the table and open it in a spreadsheet software as discussed in Section 4.1.

In the open.canada.ca’s tabular data corpus crawled in November 2021, 50% of the
tables contain more than 11 columns. The large number of columns can be overwhelming
if all of them are displayed by default. To make the user interface cleaner, we use two
strategies to determine whether a column should be shown. If a filter is applied, we show
all columns with at least one match to the filter keywords to make it easier for users to
understand the fields that match the search keyword. If there is not a filter keyword, we
use the uniqueness score to determine the importance of the column. The assumptions is
that the columns with more unique values are more important. By default, we pick the
top-5 columns with the most unique values to show. Optionally, the users can pick up the
columns to show manually by clicking on the column title from “Hide / Unhide Column”
section of the action panel.

25

Figure 6.3: Column Statistics Pop-up

The original table preview feature of Governor is supported by the WebAssembly [11]
version of DuckDB [5], which is a SQL OLAP database management system that runs
inside the browser. When the users preview the original table, the entire table is loaded
into the client-side DuckDB in a compressed Apache Parquet format. When the original
table is sorted or filtered, the system simply issues a new query locally, and renders the
results.

Loading the full tables and processing them at the front end database is a very un-
common practice in web applications today. Most web applications that provide similar
functionalities would run the database at the back end and send the paginated results to
the front end. We think this architecture is suitable for our system due to the following
benefits:

• Reduce Internet Traffic: As discussed in Chapter 5, the open data tables are
usually highly compressible, which is partially due to the large number of repeated
values in data columns like “provinces”. By loading the entire table at once, the
system can send the data in a format with a high compression ratio such as Apache
Parquet, thus reduces the total Internet traffic required to load the table.

• Reduce Server Load: By processing the data at the client side, the server does
not need to evaluate the queries for filtering and sorting. Instead, the server only

26

performs compression when a file is requested. Moreover, compressed files can be
easily cached by load balancers and CDNs. In our deployment for the user study,
we utilize Cloudflare CDN [4] to automatically cache frequently-accessed data files.
According to the dashboard of Cloudflare, over 98% for the traffic in the user study
is handled by the CDN without reaching our server.

One potential drawback of sending the full table to front end for processing is the
slowdown of the initial loading. A system that loads data with server-side pagination can
usually output the first page quickly, as only partial results are required by the front end.
However, despite having to load the full table from a remote server, Governor can still
load large table files at a speed comparable to native desktop spreadsheet software, such
as Excel in many cases.

File
Original

Size
Parquet
Size

of
Rows

of
Cols

Excel
Loading
Time

Governor
Loading
Time

1991
Awards

10 MB 2 MB 18458 34 2 2.1

Historical DriveBC
Events

91 MB 8 MB 201802 25 10.6 7.6

Complete file:
2009 to today

335 MB 31 MB 442690 46 29.7 17.6

Proactive Disclosure -
Grants and Contributions

850 MB 68 MB 590021 37 58.6 39.2

Table 6.1: Comparison of the Loading Time (in Seconds) between Governor and Excel

In Table 6.1, we show a comparison of the loading time between Governor and Excel
(version 16.63.1) for several tables sampled from open.canada.ca. In this comparison, the
files loaded by Governor are pre-compressed and cached by Cloudflare, while the same
original CSV files are loaded by Excel directly from the local file system. The benchmarks
are performed on a Mac Pro computer with a 3.5 GHz 8-Core Intel Xeon W CPU and
32 GB of RAM. The Internet connection is throttled down to 50 Mbps, and the browser
cache is disabled. As shown in Table 6.1, Governor can load all of the listed tables at a
speed similar to or faster than Excel due to the high compression ratio and the near-native
performance of WebAssembly.

27

6.4 Data Integration

In Governor, a key functionality is to automatically provide suggestions for joinable and
unionable tables based on the Working Table, so that users can quickly integrate multiple
related tables together, as discussed in Section 4.2. From the technical perspective, the
key functionalities of the Working Table are: 1) automatically detecting the unionable
and joinable tables, and 2) performing the data integration operations. Since the method
for unionable table detection is covered in Chapter 4 and Chapter 5, in this section we
expand on the method of detecting joinable tables and discuss how the data integration is
performed by the system in detail.

As discussed in Chapter 3 and Chapter 5, Governor utilizes Jaccard set containment
score similar to [26, 29, 28]. The metrics is defined as |Q∩X|

|Q| where Q is the query column for
which the system needs to find joinable columns and X are the other candidate columns
in the corpus. This containment score ranges from 0 to 1 where the closer to one the
containment score is, the more value overlaps between the columns are.

While a high overlapping score between two columns indicates that they are joinable,
it does not ensure that the joins are meaningful, especially for numerical columns. For
example, the Jaccard overlap score between the research area code column from table
“Ontario Research Funding – Summary” and the wind speed column from “Alpine Birds -
Jasper” is greater than 0.7. However, suggesting joins like this would confuse the users, as
joining these two columns together will produce a meaningless table due to the completely
different meanings of the columns. In other systems that utilize a similar metric to find
joinable columns, this issue is usually addressed by removing all the numerical columns
from the search space, as it is much less likely for string values that have completely
different meanings to match each other by coincidence. However, for Governor, a major
motivation for providing the join feature is to handle de-normalized datasets as discussed
in Chapter 5, which requires the system to be able to find joinable columns for integer key
columns similar to the Cle column in Section 4.1. Therefore, instead of limiting the columns
to strings, we limit the search space by only looking for joinable columns within the same
dataset. Since all the tables under a dataset are published by the same government agency
and are related to each other, it is much more likely that the codings and IDs are consistent
between them, thus leading to a meaningful join in most of the cases.

As discussed in Section 4.2, in many use cases, the users need to separately joining each
unioned table with another table to form the final Working Table, due to the periodical
publishing of the tables. While in Governor the joins can be performed easily, it can still
be a tedious process to perform a join for each of the unioned table manually. Instead,

28

Figure 6.4: Suggestions for Completing the Working Table

Governor provides a feature to automatically handle this workflow. After the users adds a
column c1 to one unioned table T1, the system detects if the same columns can be added
to another unioned table T2 by matching the names of the c1 with the schema of the
joinable tables of T2 and suggest these matches to the users. With these suggestions, users
can easily construct a Working Table that involves many joins and unions by manually
performing a join for one of the unioned tables and complete the rest of the Working Table
based on the system’s suggestion. For example, if hospitalization data from Section 4.2
is also published quarterly, the user would only need to add icu and non-icu columns for
Q2-2020, while the system would suggest the joins for all the other quarters, as shown in
Figure 6.4.

Similar to the original table preview feature discussed in Section 6.3, the Working Table
in Governor is implmented with DuckDB at the front end. Specifically, the Working Table
is modeled as a view in DuckDB, which is created by a single SQL command compiled from
all the joining, unioning, and filtering operations that users have performed in the system.
When the users perform a new operation, the system first appends a log for the operation.
Then, the system goes through its catalog to check if all the required tables are loaded
to the local DuckDB and pulls any missing table from the server. After that, the system
compiles all the logs into a single SQL command that first performs join, then unions all
the joined components together, applies the filters, and finally projects the hidden columns
out. Finally, the system drops the current Working Table view from DuckDB and recreates

29

it with the compiled SQL command, and re-renders the user interface based on the new
Working Table view.

The approach of modeling the Working Table as a view simplifies the state management
of the system, because the system does not need to maintain the data for the Working Table.
It also enables the Working Table to be re-created easily, which facilitates the “shareable
link” feature of Governor. When a shareable link is created by the users, the front end of
Governor sends all the logs to the back end, which gets stored in the MongoDB. When the
link is later used to reopen the Working Table, the front end simply retrieves the logs from
the back end by the object id embedded in the shareable link, loads all the required data
tables from the back end, then compiles the SQL query as usual to recreate the DuckDB
view, and finally renders the user interface.

6.5 Provenance Information

The main visual cue provided by Governor to distinguish different tables that have been
integrated is the color coding. When a table is added to the Working Table via a join
or union, the system automatically assigns a color to it and uses the color consistently
throughout the entire user interface. First, when users click the “Toggle Color” button in
the Actions panel (Figure 4.3e), the cells of the working table are colored based on the color
of the table from which it comes from. Moreover, the color coding is used in the Working
Table Structure (WTS) panel (Figure 4.3a), which is a color-guided provenance summaries
that visually show the different tables that have been integrated, and how they have been
integrated as described in Chapter 4 and Chapter 5. The layout of WTS corresponds to
the structure of the Working Table. The joined tables are displayed horizontally next to
the main table it joined with, while the unioned tables are stacked vertically. The WTS
also displays the name of the data table and the dataset it comes from when the users
hover on a colored block.

Addition to WTS which summarizes the Working Table in a structured way, Governor
also provides a history panel (Figure 4.3d) which keeps track of all the operations performed
to construct the current working table in a linear order. The history panel also provides
an “Undo” button for each operation performed, allowing users to recover from operations
performed mistakenly.

Finally, Governor provides several ways for the users to go back to the original table
from the Working Table. First, by clicking on the title of the each column, Governor shows
a “Column Composition” modal, which lists all the orignal tables being unioned to form

30

the selected column. From this modal, the users can click on the title of any original table
to open it . Second, when clicking on a block from WTS, the Working Table Component
Detail modal pops up, which shows the title of the table and the columns under it. The
users can click on the title of the table to open it. Lastly, when the users click on a cell
from the working table, Governor opens the original table and locates the cell from the
original table. If a cell in the Working Table corresponds to multiple cells in an original
table due to joining, a modal will be displayed for the users to pick up which value they
would like to locate.

31

Chapter 7

User Study

We conducted a user study to assess the effectiveness and usefulness of Governor. The
general purpose of this study was to investigate how people use the system to perform ad
hoc search and create an integrated table from multiple original tables that fulfill their
goals and to understand the strengths and weaknesses of the system.

7.1 Participants and Apparatus

We recruited ten participants (five males and five females) via mailing lists at a local uni-
versity and by reaching out to people from the open data community. Five participants
are between age 18–34, four between age 35–54, and one between 55–74. All of the par-
ticipants have a bachelor’s degree or higher (two Bachelor’s, six Master’s, and two PhDs)
whose backgrounds include information technology, electrical engineering, law, public pol-
icy, and social services. Their self-reported familiarity with spreadsheet software (e.g.
Excel, LibreOffice Calc, Numbers, Google Sheet) had a median of 4 and a mode of 4 on a
scale of 1 to 5 (1: no familiarity; 5: advanced user of such software). Their self-reported
familiarity with RDBMS (e.g. Oracle, PostgreSQL, MySQL, SQLite, Db2) had a median
of 3 and a mode of 3 on a scale of 1 to 5 (1: no familiarity; 5: advanced user of such
software). Four participants have prior experience working with open government data.

We conducted the study using remote video conferencing software. The system was
deployed publicly as a web application, and participants accessed it from their personal
computers.

32

7.2 Tasks and Design

As discussed in Chapter 3, two classes of existing tools partially provide Governor functions:
tools that aim to make it easier for users to search and explore open data tables, and tools
for integrating open data tables. A combination of open data search tools with a standard
spreadsheet software such as Excel would enable our use cases and form a baseline, but
switching between tools would require copy-pasting and would not be a fair comparison
to Governor. Also, the tools that require users to write code to perform data integration
[12, 25, 17] would not be comparable to Governor. The closest to our work are Auctus [14]
and Toronto Open Data Search [29]. However, the table integration feature of both tools
is limited to joining two tables and therefore cannot support efficient table integrations
that require multiple joining and unioning operations. Thus, we decided not to include a
baseline in our study design.

To evaluate Governor, we designed four tasks for our study:

T1: Search: Participants needed to find out how much money was granted by the Early
Researcher Awards Program (Ontario province-level award) to the researcher “Ian Gold-
berg” from University of Waterloo. This task requires participants to employ the search
and previewing feature of Governor, including finding and opening the table, adding addi-
tional columns, and applying a filter.

T2: Table Union: Participants needed to create an integrated table about how the
border wait time at the Peace Bridge border office for travelers changed over 2015 and
2016 by unioning eight tables that are published quarterly together and applying a filter
based on the keyword “Peace Bridge”. This task requires participants to interact with the
Working Table view of Governor and utilize the unionable table suggestions feature.

T3.1: Pre-defined Table: Participants were presented with a pre-defined table with four
columns via a shared link about how much funding was spent by charitable organizations
in Canada on political activities in 2019, which was created by joining three tables. Then,
we asked the participants the following questions:

• Can you describe what operations were performed to construct this table?

• From how many different tables does this table contain information? What are these
tables?

• Can you open the original table that contains the “Description” column of charitable
organizations?

• Can you show the following cell in the original table?

33

– “Legal Name: SecondStreet.org” (from one of the joined tables)

– “5030:6000” (from the main table)

This task tests whether participants can understanding a pre-defined table by interacting
with the provenance features of Governor, such as color-coding and working table compo-
nent detail modal. To test whether participants can locate a cell manually, we disable the
“Locate in Original Table” feature in this task.

T3.2: Join + Union: Participants are required to extend the table presented in T3.1
to contain the data from 2017 to 2019. This task requires participants to understand the
structure of table from T3.1, and also interact with both the joining and unioning feature
of Governor.

T1 requires participants to find an answer from the open data table, which allows us to
validate if participants could quickly find the record they are looking for via the table search
and table preview feature of Governor. T2 requires participants to create an integrated
table, which allows us to test if participants could easily integrate multiple tables with
Governor. T3.1 and T3.2 require the participants to work with a pre-defined table, which
allows us to test if the participants can understand the originality of the data with the
provenance features of Governor. By having these four tasks, the study could examine all
the features of the system comprehensively.

7.3 Procedure

We begin the user study using the “CIHR Grants and Awards”1 dataset from open.canada.ca
portal as an example. The structure of this dataset is similar to the NSERC dataset men-
tioned in Chapter 4, but focuses on the grants provided for healthcare research projects.
The experimenter starts the introduction by searching for the keyword “CIHR” from the
open.canada.ca portal, opens the dataset and shows the participant that the dataset con-
sists of data from 20 years, which was published periodically in different data tables. Then
the experimenter downloads the grants and awards table from 2000 and opens it in Excel
to show the participants the columns and values stored in the table. The experimenter
also picks up the value of one cell from the original table and shows the participants that
the search feature of open.canada.ca cannot find the dataset by using this value. Next,
as a contrast, the same search is performed with the tuple search feature in Governor,
which shows the participants that the tuple search feature of Governor can find the table

1https://open.canada.ca/data/en/dataset/49edb1d7-5cb4-4fa7-897c-515d1aad5da3

34

by a value stored in it. The experimenter also opens the table directly in Governor to
demonstrate the table preview feature and shows participants that Governor supports hid-
ing/unhiding columns, filtering, and sorting for the preview of the original table. Then, the
original table is added to the working table and performed a table integration by unioning
it with the table with grants and awards table from 2001 and joining it with the part-
ner tables to add the name of the partner for each main grant application. Finally, the
experimenter demonstrated the provenance features of Governor by showing the working
table structure, color-toggling feature, working table component detail modal, and column
composition modal with a focus on how to navigate to the original table from the working
table. The purpose of the introduction session is to educate the participants about the
background of the project to help them better understand the related concepts such as
dataset and the purposes of Governor.

The participants were then instructed to perform two practice tasks. The first practice
task asks the participants to find the large contracts between Microsoft and the government
of Canada via the search feature, and the second practice task requires the participants
to create a table very similar to that in the introduction session: NSERC Award winners
from the University of Waterloo in 1991 and 1992 with their industrial partners. The
detailed, step-by-step instructions are provided to participants on how to perform these
tasks, and the experimenter can answer any questions raised by the participants. However,
the participants were encouraged to think about how these tasks can be completed without
first looking at the instructions. The above procedure ensured that the participants got
some familiarity with the system and had adequate skills and knowledge to complete the
actual tasks.

The participants were then asked to perform all the actual tasks. We did not give any
direction or hint to complete the task unless the participants get stuck for a long time.
After each task was completed, the participants filled in the NASA TLX questionnaire
based on their experience during the task.

Finally, we conducted a semi-structured interview to collect their feedback. In the end,
participants received $20 Amazon gift card for their time and effort. The whole study
lasted about 90 minutes for each participant. We screen-captured the task sessions and
audio-recorded the interviews.

35

Chapter 8

Results

In this chapter, we report our results from the user study, including both quantitative
measures and qualitative feedback. We refer the participant by number (e.g. P#) in the
following sections.

8.1 Task Performance

T1: Search: On average, participants spent 2 min 57 s (σ = 1 min 9 s) for T1. Of
all participants, eight perfectly completed the task by meeting all requirements, and two
partially met the requirements by incorrectly reporting the total cost of the project as the
government commitment. However, the mistakes due to misinterpretation of the column
name and descriptions were mostly due to the ambiguity in the original open dataset and
less of an indicator of the effectiveness of Governor.

An ideal solution to T1 would be: (1) use “Ian Goldberg” as a keyword to perform
a tuple search, (2) open the table “Early Researcher Awards Program” , (3) unhide the
column “Ontario Commitment”. Of the eight participants who completed the task well,
only two followed a very similar approach, while six searched for “Early Researcher Awards”
via tuple or description search. This reveals the flexibility of Governor, supporting multiple
ways to find the record. Interestingly, two participants added the original table to the
Working Table before applying the filter or unhiding the column. It is encouraging that
the flexibility offered by Governor allows most participants to be effective in completing
the task, even if they sometimes went off the “optimal” path. During the process, two
participants were confused about the difference between the “tuple” and “description”

36

search modes and required clarification. These two search modes can potentially be merged
into one universal search in the future.

T2: Table Union: On average, participants spent 6 min 20 s (σ = 1 min 30 s) for T2.
All participants were able to complete T2 successfully. However, five got stuck a bit trying
to figure out if they had the correct columns and three participants were confused because
the data table for 2015 Q1 also contains the last few hours of data from December 31st of
2014. However, similar to T1, this is largely due to the non-descriptive column names and
the data cleanness issue which existed in the original open dataset.

In this task, the participant can start by adding the data from one of the eight quarterly-
published tables to the Working Table. Then, by expanding the panel “Add Rows from
Other Tables (Union)”, the system can suggest the seven remaining data tables. The
participant needs to click the “Union” button for each of the seven table to add them to
the working table. All participants followed this approach. However, four participants
complained during the process that the table integration requires too many clicks or the
reloading after each click is annoying and asked if we had an alternative way to integrate
all the eight tables at once.

T3.1: Predefined Table: On average, participants spent 8 min 16 s (σ = 2 min 5
s) for T3.1. All participants were able to answer the first two questions of T3.1 with the
information provided by Governor and open the correct table for the third question. Among
the ten participants, five found the required answer with the “Working Table Component
Detail”, three used the color-coding of the table to determine the structure of the table,
while two obtained the required answer from the history panel. This indicates that by
providing the same provenance information in different ways, the system makes it intuitive
for participants to understand the provenance of the data. Even without memorizing all
the features of the system, the participant can still complete the tasks with the subset of
features that they are familiar with.

On the other hand, the locating tasks (Q4) did not go smoothly for most of the par-
ticipants. An optimal way to locate the cell from the original table is to open the original
table and filter the data in it with the unique identifier (“BN”) of the row that contains
the cell and then unhide the required column. However, only two participants followed this
approach. Instead, the other eight participants tried to locate the cell by performing a filter
based on the raw value of the cell. This approach works for the “SecondStreet.org” case,
as there is only one row with this value in the original table. However, for the “6000” case,
due to a large number of table cells that contain the same value, after filtering, the table
still contains 2683 rows. Although in the end, of the eight participants, seven were able
to locate the cell correctly by performing an additional filter, using sorting, or manually

37

matching information in other columns, the performance of the participants in this tasks
indicates that it is not intuitive to locate a cell based on the unique identifier for most
of the users. Being able to locate the cell automatically from the original table is still an
important feature of the system.

Additionally, this task also reveals Governor’s weakness in filtering the data. Since
Governor only features a global filter, participants cannot filter based on the column they
are interested in. If the participant can perform the filter based on the “5030” column,
they will be able to complete the locating task much quicker, as there will only be two
rows remaining in the table after filtering.

T3.2: Join + Union: On average, participants spent 2 min 10 s (σ = 1 min 25 s) for T3.2.
An optimal solution for this task is to first add rows from the “Financial data” table for
2017 and 2018, then use the system’s suggestions to automatically fill the unfilled blocks
and complete the Working Table. Of the ten participants, nine followed this approach,
while one got stuck trying to add more columns due to misunderstanding the instructions.

8.2 Questionnaire Ratings

Figure 8.1: Participants’ ratings on the NASA TLX questionnaire for the Tasks (the lower
the better)

Figure 8.1 shows the participants’ ratings on the NASA TLX questionnaires, respec-
tively. We can see that for T1, most of the participants (at least 7 out of 10) rated 4 or less

38

Figure 8.2: Participants’ ratings on the exit-questionnaire (the higher the better)

on each question, indicating that they were comfortable of using Governor for searching
and felt successful in doing their tasks. All participants indicated that they had successfully
completed the task, while the mental demand and effort involved depend on the search
strategy they used. The results of T2 are similar to those of T1, with a slightly higher
rating for frustration. This is consistent with the complaints that the system does not
offer the bulk operating feature to perform the union, as discussed in Section 8.1. The
results of T3.1 show a high level of effort and mental demand, as most of the participants
were unable to locate the cell of “6000” at first attempt. While most of them are able to
successfully locate the cell in the end, it is not a smooth experience. Finally, the results of
T3.2 are slightly better than those of T1 and T2, which might be because participants got
familiar with the table structure in T3.1 and also became more proficient with the system
after performing the first three tasks.

Moreover, the results of the exit-questionnaire as shown in Figure 8.2, in general, indi-
cate that the participants had a good experience of using Governor. Most of them thought
that the system was easy to learn and use (Q1 and Q2). They thought all the core features
of Governor, including searching (Q3), previewing the original tables (Q4), adding rows
via unioning (Q6), and adding columns via joining (Q8) are useful. Furthermore, they
thought that it was generally easy to perform these operations in Governor (Q7 and Q9).
Participants especially appreciate Governor’s abilities to summarize the provenance of the
integrated table with color-coding and Working Table Structure. They think that it is easy
to understand the origins of values with colored cells (Q10), and the information provided
in the Working Table Structure is useful and easy to understand (Q11 and Q12).

39

8.3 Qualitative Results

Our interview focused on collecting feedback from participants on Governor. In general,
participants, especially those who work with open data as part of daily job, thought that
the capabilities provided by Governor are useful and intuitive. “The app is fantastic and
I can’t wait to use it. Please let me know when it’s available.” - P9. In this chapter, we
report our results based on the design goals in Chapter 5.

G1: Store and index the tuples inside the tables Indexing the tuples of open data
tables for search is a key feature of Governor. In general, participants had a good impression
about the tuple search feature. For example, P1 said: “while I do not work with open data,
I can definitely see it (the tuple search feature) useful.” This is echoed by P3 and P6.
However, the distinction between Tuple Search and Description Search can be confusing
for some users. For example, P5 commented that “I still do not get the difference between
the tuple and description search.” Similarly, P10 said that “The term tuple can be confusing
to people from non-technical background.”. Finally, P4 suggested that we should merge the
two search modes: “What if I want to match both the description and the value? Can it
do that?”

G2: Support core relational data processing operations interactively Governor
supports the core relational data processing operations, including union and join opera-
tions interactively via the front end DuckDB, as discussed in Chapter 6. From the user
interaction perspective, we would like to study whether the key concepts in relational data
processing such as union and join can be understood by the end users. In our study, five
of the participants felt these terminologies easy to understand, while the other five par-
ticipants thought that the terminology can be confusing to the end users and offered us
alternative suggestions. For example, P2 suggested that we “add a description or small
example for joining” in order to make it more understandable to the user. P3 offered a
similar suggestion. P6 suggested that we use different words for “union”, such as “append”
as “‘union’ is a mathematical term”. Similarly, P7 suggested us to replace the wording of
“join” with “combine”. Lastly, P4 suggest us to use visual cues for the join and union:
“You could do something similar to Apple Numbers. I remember that they have a small
‘Add’ button at the last row and column of the table. You can do something similar for the
Working Table Structure.”

G3: Provide suggestions for related tables As discussed in Chapter 5 and Chapter 6,
the system uses the set overlap score to detect unionable and joinable tables from the
corpus. In general, the participants find the recommendation useful. For example, P3
said: “It is amazing that it can do this (recommending joinable tables).” However, one

40

concern raised by several users is the limitation of being able to integrate only the tables
suggested by the system. For example, P7 asked for the feature of joining an arbitrary
table: “Hmm... Do I have to pick up from the list (suggested by the system)? Can I join
the table based on my own choice?” Similar questions are also raised by P4 and P9.

G4: Manage integrated datasets and their provenance to support later fact
checking and verification In Governor, the main visual cue provided by to distinguish
different tables that have been integrated is the color coding. Each integrated table is as-
signed a color automatically by the system automatically and the color is used consistently
across multiple user interface component to help the user understand the provenance of
the integrated tables. This design is favoured by most of the participants. For example,
P2 said: “I really like how you use the colors.”. The same opinion is echoed by P3, P5, P7
and P9. However, P8 complained that she is confused by the colors used by the system:
“There are like ten colors. I cannot remember which color corresponds to which table.”
P10 also brought up an interesting point regarding the accessibility of the system: “There
are more color-blind people than you know. You should think about them (when designing
the system). Maybe you can add some patterns to the blocks.”

41

Chapter 9

Discussion

While the results of the user study indicate the effectiveness of Governor for supporting
participants to find open data tables via search, perform table integration, and understand
the provenance of data in general, the system still has some drawbacks. Our user study has
revealed three broad usability challenges of Governor including table integration process,
spreadsheet functionalities, and searching. In this chapter, we first discuss these challenges
and then discuss other limitations of Governor and our study.

Table Integration Process: Currently, Governor only supports constructing the
working table step by step. After each operation is performed, the working table is reloaded
to reflect the change immediately. For example, for T2, the users have to click the “Union”
button for eight times, and also wait for the working table to be reloaded for eight times
to construct the final table. Four participants requested the support of bulk operations
for table assembling or suggested that reloading the working table after each operation is
inefficient. While the step-by-step table integration may be more straightforward to the
inexperienced users of the system by allowing them to review the results before performing
the next step, it might be annoying and time-consuming for expert users who would like
to integrate a large number of tables together.

Spreadsheet and Data Analytic Functions: Currently, Governor does not support
advanced table or database operations, such as custom data aggregation, range selection,
table pivoting, charts plotting, etc, which were requested or mentioned by several par-
ticipants. For example, three participants requested a column-based table filter during
the study, two mentioned the data aggregation capability in the interview section, and
two requested the functionality of reordering the columns in the tables. While our focus
in Governer is on searching and integrating open data tables, it is also clear that these

42

spreadsheet functionalities are necessary to provide a better experience for users integrat-
ing the tables and summarizing the data using Governor. Such functionalities would also
enable the users to answer some interesting questions directly in Governor without having
to export the data to a spreadsheet software. For example, if users would like to figure out
the total amount of NSERC funds granted to a specific institution within a year using the
current version of Governor, they have to export the data from Governor into a spreadsheet
software in order to perform a sum. However, if the sum aggregation function is provided
by Governor, this could be done within the system directly.

Search Feature: Currently, Governor provides the tuple search and the description
search as separate features. This distinction is partially due to the back end architecture,
which indexes the metadata of the datasets with MongoDB and the values from the original
tables with Elasticsearch separately. Two participants find this distinction confusing and
requested us to merge the tuple search and description search into one universal search.

Other Limitations: Governor is currently implemented with the corpus of CSV files
crawled from open.canada.ca. Governor’s join and union features are also limited to the
tables suggested by the system as discussed in Chapter 6. This did not create much
problems in our user study as we limited the scope of table integration in the tasks for
the user study. However, in a realistic setting, to gather data for certain analytic tasks,
users may need to gather data from multiple open data portals, which is not currently
supported by Governor. For example, to compare how the number of COVID-19 cases and
vaccinations differs across provinces of Canada, the user may need to source the data from
multiple provincial levels OGDPs, such as the Ontario Data Catalogue1 and the BC Data
Catalogue2.

Study Limitations: Our user study has few unavoidable limitations. First, we did
not compare our system with any baseline systems because no prior system we are aware
of provides the full functionality of Governor, though a baseline can be formed by allowing
users to use a mix of systems, e.g., an open data search engine along with a spreadsheet
software or a relational database management system. However, we did not think that is
a fair comparison given that even these combinations could require a lot of copy pasting
or prior experience with the SQL query language. Second, participants did not create
tables based on their own needs; instead, we designed all of the tasks in a restrictive way.
While this allowed us to better control what participants could do and derive consistent
insights, we could miss many other factors about the usability of Governor. Third, our
study was conducted in a lab setting and we did not have a large number of participants.

1https://data.ontario.ca/
2https://www2.gov.bc.ca/gov/content/data/bc-data-catalogue

43

Future evaluation of Governor within a realistic setting would be necessary to reveal more
potential usability issues of the system.

44

Chapter 10

Conclusions and Future Work

We have presented Governor, a web application developed to make open data tables more
accessible to end users. Governor utilizes set overlap algorithms to automatically detect
joinable and unionable tables within the OGDPs and allows users to preview the data
tables and integrate them with each other interactively at the front end by leveraging an
embedded SQL OLAP database at the front end. Additionally, Governor manages the
provenance information of the integrated table and provides a color-guided visualization
for the users to understand how the tables are integrated. A user study was conducted
to assess the strengths and weaknesses of Governor. The results indicate the effectiveness
of Governor in open data table search and integration tasks and the usefulness of the
provenance features.

We would like to continue extending the features of Governor to address the limitations
discussed in Chapter 9, by providing data cleaning, analysing, and visualization features.
These features would allow users to extract more interesting statistics from open data
tables without exporting the table to another software. Also, developing a “professional
mode” which allows the users to perform custom table unioning and joining beyond those
suggested by the system, and construct the final working table by selecting multiple tables
at once without intermediate previews would make the system more flexible and efficient
for expert users.

In this thesis, we focused on open data tables crawled from open.canada.ca. In the
future, we would like to enrich the data corpus of Governor by crawling and maintaining
the open data from multiple OGDPs as well as allowing the users to upload their own
tables into the system. We can also combine the data published by the OGDPs with
knowledge graphs similar to [24], in order to allow the users to find and integrate additional

45

information that is not available in OGDPs about an entity. For example, in the usage
scenario described in Section 4.1, the age of Yoshua Bengio does not exist in any open data
table, but this information can be easily found on DBPedia1. Doing so would also raise
several important challenges, such as knowledge graph management and entity alignment,
which we identify as future research directions.

1https://dbpedia.org/page/Yoshua Bengio

46

References

[1] Apache Arrow https://arrow.apache.org/, 2022.

[2] Apache Parquet https://parquet.apache.org/, 2022.

[3] CKAN https://ckan.org/, 2022.

[4] Cloudflare https://cloudflare.com/, 2022.

[5] DuckDB https://duckdb.org/, 2022.

[6] Elasticsearch https://www.elastic.co/, 2022.

[7] Google Dataset Search https://datasetsearch.research.google.com/, 2022.

[8] MongoDB https://mongodb.com/, 2022.

[9] Open Data Principles https://open.canada.ca/en/open-data-principles, 2022.

[10] Vue.js https://vuejs.org/, 2022.

[11] WebAssembly https://webassembly.org/, 2022.

[12] Alex Bogatu, Norman W. Paton, Mark Douthwaite, and Andre Freitas. Voyager:
Data Discovery and Integration for Data Science. In EDBT, 2022.

[13] Dan Brickley, Matthew Burgess, and Natasha Noy. Google Dataset Search: Building
a Search Engine for Datasets in an Open Web Ecosystem. In WWW, 2019.

[14] Sonia Castelo, Rémi Rampin, Aécio Santos, Aline Bessa, Fernando Chirigati, and Ju-
liana Freire. Auctus: A Dataset Search Engine for Data Discovery and Augmentation.
PVLDB, 14(12), 2021.

47

https://arrow.apache.org/
https://parquet.apache.org/
https://ckan.org/
https://cloudflare.com/
https://duckdb.org/
https://www.elastic.co/
https://datasetsearch.research.google.com/
https://mongodb.com/
https://open.canada.ca/en/open-data-principles
https://vuejs.org/
https://webassembly.org/

[15] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. Lazo: A
Cardinality-Based Method for Coupled Estimation of Jaccard Similarity and Con-
tainment. In ICDE, 2019.

[16] Alon Y. Halevy. Answering Queries Using Views: A Survey. VLDBJ, 10(4), 2001.

[17] Ahmed Helal, Mossad Helali, Khaled Ammar, and Essam Mansour. A Demonstration
of KGLac: A Data Discovery and Enrichment Platform for Data Science. In VLDB,
2021.

[18] Jeff Johnson, Matthijs Douze, and Hervé Jégou. Billion-scale similarity search with
GPUs. IEEE Transactions on Big Data, 7(3):535–547, 2019.

[19] Fatemeh Nargesian, Erkang Zhu, Ken Q. Pu, and Renée J. Miller. Table Union Search
on Open Data. PVLDB, 11(7), 2018.

[20] Ouellette, Paul and Sciortino, Aidan and Nargesian, Fatemeh and Bashardoost, Bahar
Ghadiri and Zhu, Erkang and Pu, Ken Q. and Miller, Renée J. RONIN: Data Lake
Exploration. PVLDB, 14(12), 2021.

[21] El Kindi Rezig, Anshul Bhandari, Anna Fariha, Benjamin Price, Allan Vanterpool, Vi-
jay Gadepally, and Michael Stonebraker. DICE: Data Discovery by Example. PVLDB,
14(12), 2021.

[22] Avi Silberschatz, Henry F. Korth, and S. Sudarshan. Chapter 7: Relational database
design. In Database System Concepts, Seventh Edition, pages 303–360. McGraw-Hill
Book Company, 2020.

[23] Marcin Wylot, Manfred Hauswirth, Philippe Cudré-Mauroux, and Sherif Sakr. Rdf
data storage and query processing schemes: A survey. ACM Comput. Surv., 51(4),
2018.

[24] Siyuan Xia, Nafisa Anzum, Semih Salihoglu, and Jian Zhao. KTabulator: Interactive
Ad Hoc Table Creation Using Knowledge Graphs. In SIGCHI, 2021.

[25] Zhang, Yi and Ives, Zachary G. Finding Related Tables in Data Lakes for Interactive
Data Science. In SIGMOD, 2020.

[26] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. JOSIE: Overlap
Set Similarity Search for Finding Joinable Tables in Data Lakes. In SIGMOD, 2019.

48

[27] Erkang Zhu, Yeye He, and Surajit Chaudhuri. Auto-Join: Joining Tables by Leverag-
ing Transformations. PVLDB, 10(10), 2017.

[28] Erkang Zhu, Fatemeh Nargesian, Ken Q. Pu, and Renée J. Miller. LSH Ensemble:
Internet-Scale Domain Search. PVLDB, 9(12), 2016.

[29] Erkang Zhu, Ken Q. Pu, Fatemeh Nargesian, and Renée J. Miller. Interactive Navi-
gation of Open Data Linkages. PVLDB, 10(12), 2017.

49

	List of Figures
	List of Tables
	Introduction
	Background
	Related Work
	Open Data Search Tools
	Systems With Data Integration Capabilities
	Techniques for Finding Related Tables

	Usage Scenarios
	Searching Research Grant Amounts
	COVID 19 and Vaccination Analysis

	Design Goals
	Governor System
	Overview
	Search
	Original Table Preview
	Data Integration
	Provenance Information

	User Study
	Participants and Apparatus
	Tasks and Design
	Procedure

	Results
	Task Performance
	Questionnaire Ratings
	Qualitative Results

	Discussion
	Conclusions and Future Work
	References

