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Abstract: 

The present thesis argues for a philosophy of mathematics, herein dubbed Actualism, which is 

contrasted with several existing views on the philosophy of mathematics. It begins with a brief 

introduction to the classical (Platonist) view on the philosophy of mathematics and examines 

some of the major problems with the account. Thereafter, two alternative philosophies of 

mathematics (mathematical Constructivism and mathematical Finitism) are examined. 

Constructivism is detailed in the first chapter through the work of Brouwer and Dummett and, in 

the second chapter, a description of Finitism is provided through the work of Dantzig and 

Mayberry. In the final chapter of the thesis, the underpinnings of mathematical Actualism are 

articulated. The central motivation behind Actualism as an alternative philosophy of mathematics 

arises from the desire to restore a realist thesis to mathematics that is consistent with the 

semantics of our modern scientific discourse, or else, with a naturalistic worldview.  
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MATHEMATICAL ACTUALISM: AN ALTERATIVE REALIST PHILOSPHY OF 

MATHEMATICS 

INTRODUCTION: 

 In this thesis I argue for a particular view on the nature of mathematics that I have 

dubbed Actualism. The details of this preliminary account itself will be spelled out in Chapter 3. 

Actualism offers an account of the nature of mathematical truth and the ontological basis of 

mathematical claims for which I will claim certain philosophical advantages. While I do not 

want the Hegelian architecture of my argument to be taken too seriously, I think it is convenient 

and efficient to take mathematical Platonism as a starting “thesis,” present some well-established 

but more recent anti-realist views as “antithesis,” then offer Actualism as a kind of synthesis 

which preserves the important advantages of both views. 

While of course there have always been philosophical alternatives to it (Aristotelian 

accounts, nominalism, Kant, J.S. Mill, to name just some well-known examples), a Platonist 

conception of mathematics has served as the standard philosophy of mathematics throughout 

much of the history of thought. Around the turn of the 20th Century, however, the variety of 

alternative philosophies of mathematics expanded considerably into developments internal to 

mathematics itself and in response to the serious issues which have always been present within 

mathematical Platonism. For present purposes, it will be useful to focus on two alternatives to 

mathematical Platonism, namely Constructivism and Finitism. Both differ dramatically from 

their Platonic predecessor in that they are inherently anti-realist positions.  

The present thesis begins with the assumption that the rudiments of Platonism are well-

known and so, instead of a detailed presentation, offers, by way of an introduction, a brief 
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detailing of the flaws which are inherent in mathematical Platonism. Thereafter, the alternative 

philosophies of mathematics (Constructivism and Finitism) will each be considered and broadly 

detailed in their own respective chapters. With respect to Constructivism, the present thesis 

examines Brouwer’s Intuitionism and Dummett’s Constructivism as two examples of what 

Constructivist mathematics look like. Concerning the second alternative to mathematical 

Platonism, Finitism, the present thesis provides an illustration of the central tenets, features, and 

elements of mathematical Finitism by examining the work of Dantzig and Mayberry. 

Both of these alternatives to mathematical Platonism, as will be seen, offer an anti-realist 

antithesis to mathematical Platonism’s realist thesis. However, and notwithstanding the 

dilapidated state and philosophical disrepute of mathematical Platonism, the realist thesis 

provided by mathematical Platonism contains a number of very important and desirable 

elements. Consequently, there is more than a little intuitive appeal to mathematical Platonism’s 

realist thesis today since, even in spite of the difficulties encountered within the account, it 

satisfies certain desiderata that are not fulfilled by the Constructivist anti-realist antithesis. The 

aim of the present thesis is to offer an alternative philosophy of mathematics to all of these, 

occurring in the final chapter, which forfeits neither the claim to a realist thesis nor a defensible 

epistemology. The alternative philosophy of mathematics that is articulated in this thesis, 

mathematical Actualism, differs from the other alternatives to mathematical Platonism in that it 

offers an alternative realist philosophy of mathematics. In this way, Actualism offers a synthesis 

of the Platonist thesis and Constructivist anti-thesis.  

It is useful to frame the advantages and disadvantages of Platonism and its rivals by 

employing the framing offered in Benacerraf’s paper “Mathematical Truth”. Within this paper, 

Benacerraf describes two desiderata for any account of mathematical truth. The first of these he 
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takes to be “the concern for having a homogeneous semantical theory in which semantics for the 

propositions of mathematics parallel the semantics for the rest of the language” (Benacerraf, 2, 

1973). The second of these is “the concern that the account of mathematical truth mesh with a 

reasonable epistemology” (Benacerraf, 2, 1973). Benacerraf offers the observation that nearly all 

conceptions of mathematical truth appear to serve one of these motivations to the detriment of 

the other (Benacerraf, 2, 1973). Mathematical Platonism is seen to be an example of an account 

that sacrifices the second of these motivations since, as will be seen shortly, it entails a number 

of untenable epistemic and metaphysical consequences. On the other hand, Constructivist 

philosophies of mathematics, resting upon an anti-realist thesis, while avoiding the epistemic 

problems of mathematical Platonism, do not, Benacerraf suggests, satisfy the first desideratum, 

as these anti-realist views are based on constructivist semantics for mathematical claims, which 

differs from the Tarskian, referential semantics Benacerraf takes to be correct for “the rest of 

language”. In contrast to these, Actualism as a philosophy of mathematics aims to synthesize 

both of these motivations insofar as it aims to offer an account that synthesizes a theory of 

mathematical truth that allows for a referential semantics and a reasonable account of knowledge 

that is homogenous with the rest of our language. The great advantage which Actualism will 

offer is that, because of its commitment to a kind of realism, it is compatible with a referential 

semantics that directly parallels that of our empirical scientific discourse, and which further is 

able to offer an epistemic explanation of how we both come to mathematical knowledge and how 

this knowledge causally connects to our cognitive faculties.   

Before moving into the specific chapters and details of Constructivism and Finitism as 

alternative philosophies of mathematics, it is first necessary to broadly examine the nature of 

mathematical Platonism. Initially, it is important to disentangle mathematical Platonism from 
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Plato’s general philosophy – as the two are not synonymous. In this respect, the nature of 

mathematical Platonism has been identified with the following three central theses: a) that there 

exist mathematical objects, b) that these mathematical objects are abstract, and c) that these 

mathematical objects are independent of our conception of them (Linnebo, 1, 2009). 

Mathematical Platonism, in its contemporary articulations, is said to entail no more and no less 

than is contained in these three theses and, in this respect, it is said to be attached to Plato’s 

metaphysics but not his epistemology1. In this sense, mathematical Platonism is understood to be 

a metaphysical but not an epistemic position. Two important consequences of mathematical 

Platonism should immediately be recognized: a) that it entails the notion that reality, being more 

than the physical, also includes the abstract, and b) the notion that there are objects which are not 

part of the physical causal chain. There is another methodological view of mathematical 

Platonism, dubbed working realism, which maintains that we ought to practice mathematics as 

though Platonism were true (Linnebo, 1.5, 2009). This methodological view is pragmatically 

beneficial (insofar as it allows mathematicians to go about their work without worrying about the 

underlying philosophical issue), however, were it to be taken up by the philosopher it would 

amount to a neglecting of the underlying metaphysical question if not to a kind of Platonic 

‘faith’. Consequently, and insofar as one is in the manner of a philosopher concerned with the 

deeper philosophical question and foundations of mathematics, as opposed to solely being 

concerned for the practice of mathematics, it is not sufficient to take mathematical Platonism in 

the sense of working realism without examining the underlying truth of the matter. Moreover, the 

unacceptability of neglecting the question of whether or not Platonism is true (which is 

 
1 This is to say that it is attached to the notion that mathematical objects exist in an independent and abstract sense 

(like the forms) but not to the more clearly absurd epistemology of ‘recollection’ whereby an immortal soul 

remembers its knowledge about the pure forms which it previously encountered, such as occurs in Plato’s Meno.  
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tantamount to taking mathematical Platonism on faith) is made readily apparent by the presence 

of very serious philosophical problems within the account.  

Just one of these serious problems concerns the epistemology, or lack of it, which is 

entailed by mathematical Platonism. For, although contemporary mathematical Platonism has 

distanced itself from Plato’s epistemology (from the notion of ‘recollection’), it has been left 

with the non-benign problem that it renders the abstract objects of mathematics epistemically 

inaccessible to us. This is because, through its combination of theses, it maintains that 

mathematical objects exist as abstract objects which are independent of our conception of them. 

Because of this, it entails the notion that mathematical objects are things beyond the 

material/physical world that exist in an abstract sense akin to Plato’s forms. However, because 

we – so far as concerns our cognitive faculties – are at least in part most definitely physical, the 

question emerges: how it is that we come to knowledge about these abstract mathematical 

objects? But this was just the problem identified by Benacerraf in “Mathematical Truth” and is 

why he maintained that mathematical Platonism failed because it was unable to offer an account 

of mathematical truth that was able to mesh well with a reasonable epistemology (Benacerraf, 

1973). Insofar as mathematical Platonism maintains that mathematical objects are abstract, a 

notion which is essential to the account, then mathematical objects cannot reasonably be said to 

be causally connected to the physical world. It then becomes a dubious posit if not a Quixotian 

fantasy to maintain that our clearly physical2 minds/brains interact with and come to knowledge 

about these non-physical form-like mathematical objects. Consequently, mathematical Platonism 

runs into both the problem of interaction and the serious epistemic question of how it is our 

 
2 This is not to presume the presence of a clear and definitive answer to the theory of mind as a mind-brain identity 

theory, only, that it is incontrovertible that at least some (and almost certainly most) of out cognitive capacities are 

in fact physical if not directly related to our physical faculties.  
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physical brains/organisms can ever be said to access or come to knowledge about abstract 

mathematical objects. 

While the epistemic problems associated with the account are in themselves sufficient to 

render mathematical Platonism dubious, there are other metaphysical difficulties that further 

problematize the account. We began by noting that there are philosophical benefits to Platonism 

that explain why people have accepted it for centuries. There are, of course, also the challenges 

that motivated its critics for centuries, including the challenges that have motivated nominalists. 

One such difficulty concerns the number of problematic metaphysical consequences that result 

from mathematical Platonism. Chief among these is that, owing to its extension of existence to 

abstracta, mathematical Platonism is an inherently dualist metaphysical position. Because of this, 

mathematical Platonism requires a defense for a number of highly dubious metaphysical notions 

including but not limited to: a) the problem of interaction between abstractly existing things and 

physically existing things, b) the question of the origin of these abstract mathematical objects in 

the first place, and c) where it is that these abstract objects exist. Although these problems are 

related to the epistemic issue raised above, they are prior to the epistemic question - how we can 

come to know about mathematical objects which are rendered epistemically inaccessible – since 

they instead question the initial metaphysical intelligibility of positing that such abstract objects 

‘exist’ in the first place.  

For reasons such as these and many more (for there is no shortage of arguments against 

mathematical Platonism), alternative philosophies of mathematics have proliferated, each 

attempting to circumvent the epistemic and metaphysical difficulties of the Platonic conception. 

The alternative philosophies of mathematics we turn to next (Intuitionism, Constructivism in the 

broader sense, and Finitism) generally have the shared feature of offering an anti-realist thesis. 
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Because of this anti-realism, these alternative philosophies of mathematics are able to sidestep 

the philosophical issues facing mathematical Platonism. However, while these alternatives are 

successful in this aim, rejecting the robust, Platonic commitment to the real ontological status of 

mathematical objects, this comes at the cost of a realist referential semantics. It is for this reason 

that the present thesis proposes an alternative philosophy of mathematics, mathematical 

Actualism, which aims to offer the kind of account that Benacerraf suggested has hitherto not 

been achieved. In the following two chapters, a general description of mathematical 

Constructivism and Finitism will be given and, in the final chapter, a preliminary articulation of 

mathematical Actualism as an alternative realist philosophy of mathematics will be given.  
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CHAPTER ONE: CONSTRUCTIVISM 

An Introduction to Constructivism: 

The first variety of anti-Platonist (or non-classical) philosophy of mathematics which will 

here be considered is Constructivism. It is immediately critical to recognize that, although what 

follows is a broad survey of Constructivist positions, there are a great number of different kinds 

of Constructivism in the philosophy of mathematics. In fact, this variance and disparity (not 

uncommon across general philosophical ‘isms’) is so pronounced in the case of Constructivism 

that it has been asserted that “Constructivism in mathematics is generally a business of practice 

rather than principle: there are no significant mathematical axioms or attitudes characteristic of 

Constructivism and statable succinctly that absolutely all constructivists, across the spectrum, 

endorse” (McCarty, 105, 2009). Consequently, it should be recognized that the account of 

Constructivism as it occurs in this chapter, while indicative of Constructivism as a philosophy of 

mathematics generally, is not exhaustive of the philosophical position as a whole.  

Notwithstanding this variance, there is one general principle to be declared which 

differentiates Constructivist philosophies of mathematics from their classical counterparts. This 

principle is the translation of the phrase ‘there exists some X’ into the form ‘we can construct 

some X’. In contrast to classical mathematics’ inherently realist orientation, Constructivism 

instead is an inherently anti-realist position. Where Platonic Realism sees its mathematical 

objects as unchanging, mind-independent entities (alike the forms), Constructivism instead is 

concerned with mind-dependent constructions. This move has critical philosophical 

consequences and implications since, insofar as the constructivists offer a reinterpretation of 

what it means to say that X exists. According to Constructivism, mathematical objects exist in 

the same way as obviously mind-dependent entities like humour or dollars, and commitment to 
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their existence does not involve the same sort of ontological commitments that Platonic realism 

does. In other words, the Constructivist position does not have the ontological commitment of 

maintaining that mathematical objects possess a mind-independent existence – that they are 

‘real’ objects out in the world.  

With this defining principle in mind, this chapter will provide an overview of 

Constructivism as a philosophy of mathematics by examining both Brouwer’s Intuitionism and 

Dummett’s Constructivist position. This examination will be structured around the following 

questions: a) what are Constructivist proofs, practice, and methods comprised of, i.e., what do 

they take mathematical proofs to be, b) in what do Constructivists take mathematical truth to 

consist (how does their conception of mathematical truth relate to mathematical proof), c) what 

do different varieties of Constructivism take mathematical objects to be, and d) where do various 

Constructivists lay the foundations of mathematics? Through an exegesis of Brouwer’s and 

Dummett’s answers to these questions, this chapter will provide a general illustration of 

Constructivism as a philosophy of mathematics and will outline the epistemic and ontological 

commitments of the philosophy by clarifying how it differs from the classical Platonic realist 

position.  

Constructivist Proofs, Practices, and Methods:  

 The philosophical underpinnings of both Brouwer’s Intuitionism and Dummett’s 

Constructivism are intricately bound to their technical foundations within intuitionistic 

mathematics and intuitionistic logic respectively. Nonetheless, it will be the goal of this 

subsection to provide a general description of the philosophy behind the more technical proofs 

and methods of Brouwer’s Intuitionism and Dummett’s Constructivism.  
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 The foundations of Brouwer’s philosophical Intuitionism are rooted within his conception 

of intuitionistic mathematics. Brouwer’s intuitionistic mathematics mark one of the first 

alternatives to classical mathematical Platonism (at least in the modern period, i.e., setting aside 

details of Aristotelian or Kantian mathematics, for instance) and serve as an origin of 

contemporary Constructivist mathematics broadly construed. Moreover, Brouwer’s intuitionistic 

mathematics differs so dramatically from classical mathematics that not all the propositions 

which are held to be true within classical mathematics remain so within Brouwer’s intuitionism3.  

Atten gives the following statement as a general characterization of the intuitionistic approach to 

mathematics: “Intuitionistic mathematics consists primarily in the act of effecting mental 

constructions of a certain kind; its objects, relations, and proofs exist only in so far as they have 

been constructed in these acts” (Atten, 37, 2018).  

 Further, Brouwer’s intuitionistic mathematics features a division between ‘separable 

mathematics’ and his theory of the continuum (Posy, 4, 2007). These separable mathematics 

concern finite mathematics in the sense that all the mathematical objects involved are finite. 

Specifically, they concern the natural number sequence, basic arithmetical operations, integers, 

and rational numbers (Posy, 5, 2007). Of course, it is tempting to notice that there are infinitely 

many natural numbers, integers, or rational numbers; however, the point of referring to 

mathematics as finite is that no operations are carried out on these collections (because such 

complete collections cannot be constructed), and each individual natural/integer/rational number 

is, considered as an individual, finite. Brouwer’s operation for deriving (or constructing) these 

aspects of mathematics occurs through the sequential formulation of ordered pairs and the 

 
3 One example of this concerns the ‘trichotomy’ – the technical treatment of which occurs in Posy’s (2007) 

“Intuitionism and Philosophy”. 
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repetition of this process (Posy, 5, 2007). In contrast, Brouwer’s method for generating infinite 

mathematical objects and the continuum comes from the reiterative application of a law to some 

finite sequence - otherwise referred to as a ‘choice sequence’ (Posy, 5, 2007). The clear 

difference here for Brouwer is that, while one may generate/construct an infinite object or 

sequence through the process of an infinitely reflexive repetition of a law or operator, they will 

not arrive at any stop point where the sequence can be said to be ‘completed’. Consequently, 

Brouwer’s infinite sequences never reach an ‘end point’ or final ordinal at which the series ends 

– thus we do not arrive at a completed infinity.  

Another important way in which these choice sequences of Brouwer differ from pre-

intuitionistic mathematics is that they are not fully deterministic, which is to say, they at times 

allow for multiple possible values to be ‘chosen’ for a given place along a sequence (Posy, 5, 

2007). Although the notion that we at some point along a sequence ‘chose’ what value belongs 

there may appear arbitrary if not fantastical at first glance, if we are charitable to Brouwer’s 

intuitionistic project this very idea will be seen to emerge as both a necessary and desired 

consequence of his position. The reason for this is that the disinclination to follow Brouwer to 

this point results from the Platonic temptation to think that as of yet undetermined sequences, 

even before we have conceived of them, are endowed with some ‘matter of fact’ or ‘already 

determined’ status. In other words, the thought that all sequences run off into some already 

determined point, such that all their values are already necessitated, relates to the Platonic 

temptation to think of these things as already ‘existing’. However since, for Brouwer, these 

sequences can not be said to exist until they have been constructed by us, their values are not 

‘determinate’ or ‘written’ (which is to say they allow for multiple values at a given place) until 

they have been constructed by us. It should further be recognized that Brouwer’s intuitionistic 
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mathematics features other technical idiosyncrasies, particularly concerning sets, or ‘species’ as 

he refers to them, the most prominent of which are spreads, fans, and refinement4; however, 

details about these are not essential to the purposes of the present paper.  

 Perhaps the most distinctive, and almost certainly the most controversial, aspect of 

Brouwer’s intuitionism is his conception of the ‘creating subject’, which is understood to be an 

idealized mathematician. The defining characteristic of this creating subject is that it is able to 

perform (successfully) whatever mathematics can be done in principle (Atten, 2018). For the 

creating subject to be able to do so it is envisioned as having several traits such as: a) an 

indefinitely long-life span, b) a perfect memory, and c) being infallible in the sense of not 

making mistakes (Atten, 39, 2018). However, idealized as this creating subject may be, Brouwer 

does not conceive of it as being able to do anything that the classical mathematician regards as 

being “in principle possible,” but rather, just as being able to do substantially more than a human 

can do – owing to its properties just described. For example, while it is in principle possible to do 

things such as: a) forming a set containing all the subsets of the set of natural numbers (the so-

called Powerset of N), or b) collecting a member of each non-empty subset of P(N), even 

Brouwer’s creating subject would not be able to do so. The reason for this is that, despite its 

indefinitely long lifespan, it is not able to work infinitely quickly so as to create a completed 

infinite collection. This highlights an area of great disagreement between Brouwer and classical 

mathematicians as, while the later think that certain sorts of mathematics (such as either of the 

two procedures above described) make sense, because even the creating subject cannot perform 

them Brouwer instead thinks it is nonsense to talk about the powerset of N or of performing a 

 
4 For the technical description of these aspects of Brouwer’s intuitionistic mathematics see “Intuitionism and 

Philosophy” (2007) by Posy.  
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choice function on N. A nuance in this way emerges between what the classical mathematician 

regards as being “in principle possible” and what mathematics can be in principle done. Here it 

will be seen that Brouwer’s creating subject relates closely to his conception of choice sequences 

and plays an essential role in constructing the infinite or non-deterministic sequences previously 

mentioned — having no limits on its lifespan, it can construct finite sequences or arbitrary 

length, but it cannot complete an infinite collection. Further, it is important to recognize the 

essential role which the creating subject plays within Brouwer’s intuitionistic mathematics. This 

is because, as opposed to serving as a hypothetical thought experiment as is often the case in 

philosophy, Brouwer’s creating subject plays a critical role in his very method - so much so in 

fact that Brouwer’s usage of it has since been referred to as ‘the method of the creating subject’ 

(Niekus, 1987; Atten, 2018; Posy, 2007).  

 With his conception of the creating subject, and his use of it as a method for establishing 

proofs5, Brouwer’s Intuitionism has rightly been understood as accepting provability in principle 

as a legitimate means of mathematical argumentation. This is because, through demonstrating 

that the creating subject, which does not suffer some of the limitations of organisms like us, is 

able to arrive at a proof of x we are also able to conclude that x is provable. Consequently, even 

if we are not ourselves able to perform some operation, we are able to show that a creating 

subject that has fewer physical/practical impediments could. Moreover, because Brouwer equates 

truth to provability, the claim that x is provable is tantamount to its being true. We can take a toy 

example to illustrate this. While no human is able to count to 100,000,000 in their lifetime, the 

claim that 100,000,001 is the next number to occur in the natural number sequence can be said to 

 
5 For several examples of Brouwer’s usage of the creating subject within formal arguments see “The Creating 

Subject, the Brouwer-Kripke Schema, and infinite proofs” (2018) by Mark Atten.  
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be true since the creating subject, endowed with an indefinitely long lifespan, could count this 

high. Therefore, while we may not personally have the direct experience or ‘proof’ of the claim 

that 100,000,001 is the successor of 100,000,000, seeing as we cannot personally count to this 

magnitude, the claim is provable in principle and can be said to be true. Brouwer’s 

legitimatization and acceptance of provability in principle is also carried into other forms of 

Constructivism to such a degree that, as will later be seen, whether or not a mathematician 

accepts provability in principle as opposed to in practice serves as a diagnostic criterion for 

differentiating Finitist and Constructivist philosophies of mathematics.  

This acceptance of proof in principle is also present in Dummett’s Constructivism, 

particularly, in his consideration of disjunctions and existential quantification (Dummett, 1975). 

With respect to a logical disjunction, this similarly is seen through Dummett’s recognition that a 

construction of the proposition A ˅ B can be asserted even without an actual proof of which part 

of the disjunction obtains (Dummett, 31, 1975). Dummett explains this point with a division 

between canonical (actual) proofs and demonstrations. One way to illustrate this division is to 

consider the question, “Is the number 𝜈 (here defined as a number larger than anything which has 

hitherto been discovered by any human or advanced computer), a prime number (p)?” While we 

know all numbers must either be a prime number or not be a prime number, and while we can 

assert that: ∀𝑛 (𝑃𝑛 ˅ ¬ 𝑃𝑛) is true, no actual proof can be provided to say which side of the 

disjunction in this case obtains (at least that is until 𝜈 has been constructed/discovered by an 

advanced computer). In other words, while it is not currently feasible to arrive at a canonical 

proof of whether ν is a prime number or not, we can demonstrate that such a proof is in principle 

possible – and even necessary in this case, insofar as 𝜈 will either be prime or not be prime. For 

Dummett, a canonical proof of a disjunction A ˅ B is a proof of A or a proof of B, followed by 
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an application of disjunction introduction. Since, by hypothesis, 𝜈 is a number larger than any 

hitherto discovered, neither "𝜈 is prime" nor "𝜈 is not prime" has been proved, so we do not have 

a canonical proof of "𝜈 is prime or 𝜈 is not prime." Nevertheless, Dummett allows for another 

sense in which we do know that to be true. This is because we can still offer the following 

demonstration of the claim that "for any 𝑛, 𝑛 is prime or 𝑛 is not prime" - ∀𝑛 (𝑃𝑛 ˅ ¬ 𝑃𝑛). Let 

us now reconsider our number 𝜈 . Initially, regardless of the value of 𝜈 it will be easy to test if 𝜈 

is even. Next, we are able to check whether "𝜈 is divisible by 3 – and we may further continue in 

this way until either the answer is 'yes', after which, 𝜈 will be seen not to be prime, or until 𝜈/2 - 

0.5 is tested. If our answer is always no, then 𝜈 is prime. This is a finite procedure that might be 

undertaken for any number, and, from it, we are able to infer the overall truth of the claim that 

∀𝑛 (𝑃𝑛 ˅ ¬ 𝑃𝑛). For Dummett, this allows us to prove in principle that for any number it will 

either be prime or not be prime insofar as we have a demonstration of this claim. However, 

Dummett maintains a more strenuous criterion for what suffices as a canonical proof wherein a 

canonical proof, in the case of 𝜈, would further need to contain a proof about which side of the 

disjunction obtains, a proof of whether 𝜈 is prime or is not prime. It is important to not here 

misconstrue Dummett’s usage of the words ‘canonical’ or ‘actual’ proofs as delegitimizing their 

contrary (demonstrations), which instead as we have seen provide proofs in principle as he states 

“A demonstration is just as cogent a ground for the assertion of its conclusion as is a canonical 

proof, and is related to it in this way: that a demonstration of a proposition provides an effective 

means for finding a canonical proof” (Dummett, 32, 1975).  

Notwithstanding their shared acceptance of propositions that are in principle provable, 

and notwithstanding that the classes of statements and patterns of inference Brouwer and 

Dummett are willing to accept as correct are in the final analysis quite similar, the philosophical 
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differences between the two are nonetheless profound. Brouwer's intuitionistic mathematics 

implies that certain principles of classical logic are not valid and, in this sense, the logical 

changes are seen to follow from mathematical principles. On the other hand, at least in some 

presentations of his view, Dummett starts with the changes in logic and from there the 

differences from classical mathematics follow. Moreover, where Brouwer fundamentally 

maintains that mathematics is characteristically non-linguistic and exhibits a thoroughly anti-

linguistic tendency in his Intuitionism, language, meaning, and use play a key explanatory role 

within Dummett’s Constructivism which is itself grounded in ideas taken from the philosophy of 

language. This dramatic linguistic turn in Dummett’s Constructivism is characteristically 

Wittgensteinian and is epitomized by his statement that “Any justification for adopting one logic 

rather than another as the logic for mathematics must turn on questions of meaning” (Dummett, 

5, 1975).  

The manifest difference between Brouwer’s practice of intuitionistic mathematics and 

Dummett’s Constructivism can be best exhibited by juxtaposing what they take mathematical 

proofs to be. While, on the one hand, Brouwer conceives of mathematical proofs as being both 

private and non-linguistic, on the other Dummett conceives of mathematical proofs both as being 

essentially linguistic and publicly constructed. As is to be expected, such differing conceptions 

of mathematical proof as are had by Brouwer and Dummett culminate in their proofs, regardless 

of how similar some of their conclusions are, looking rather different from one another. This 

difference can be further illustrated by looking at the means by which Brouwer and Dummett 

object to the classical methods. For one thing, Brouwer’s arguments against classical 

mathematics are inherently formal in nature – they centre around the construction of formal 

symbolic proofs (Posy, 2007; Atten, 2018). In contrast, Dummett’s arguments are inherently 
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linguistic and feature ideas from the philosophy of language – especially the notion that publicly 

constructed meaning and use play a key role in our understanding of language.  

For example, Dummett maintains, following Wittgenstein, that because the meaning of a 

statement is exhaustively determined by its use, and because this use is observable through a 

person's behavior, “a grasp of the meaning of a mathematical statement must, in general, consist 

of a capacity to use that statement in a certain way, or to respond in a certain way to its use by 

others” (Dummett, 7, 1975). Dummett takes this as being problematic for classical mathematical 

reasoning since it typically rests upon a kind of ‘verbalizable knowledge’ which is here 

understood as “knowledge which consists in the ability to state the rules in accordance with 

which the expression or symbol is used or the way in which it may be replaced by an equivalent 

expression or sequence of symbols” (Dummett, 7, 1975). Dummett argues that this results in an 

infinite regress since if we maintain that knowledge of the meaning of something is found in the 

ability to verbalize or state the meaning of it, then it would be impossible to learn a language 

unless someone already possessed enough of an understanding of the language so as to be able to 

verbally formulate its meaning. Here we have arrived at the notion that mathematical knowledge 

and meaning are not acquired but rather are ‘implicit’ or ‘innate’ (a notion that is not unfamiliar 

to Platonic philosophy). However Dummett, operating within a Wittgensteinian framework, 

takes this to be problematic in a way that is greatly reminiscent of Wittgenstein’s private 

language argument. He maintains that in order to meaningfully ascribe implicit knowledge to a 

person, there must be an observable mark in the behavior of a person possessing this knowledge 

that is not seen in a person who is lacking it – the implicature being that without an observable 

mark the ascription of implicit knowledge would be meaningless and unfounded (Dummett, 7, 

1975). Consequently, Dummett argues that classical logics relate to a Platonic notion of truth and 
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the ascription of implicit knowledge that is inaccessible to us (involving something hidden or 

ineffable which cannot be observed) and which is also in conflict with the notion that use 

exhaustively determines meaning (Dummett, 10, 1975).  

Despite the differences between Brouwer and Dummett, differences which generally 

revolve around the role that language plays in mathematics, both remain characteristically 

Constructivist – though they differ in their views about the nature of constructing proofs in 

mathematics. Brouwer’s Intuitionism utilizes the method of the creating subject to construct 

proofs and views proofs as private mental phenomena while, in contrast, Dummett’s 

Constructivism views proofs as publicly constructed, determined, or else constituted by the 

human practitioner’s use of language. Notwithstanding these differences, both Brouwer’s 

Intuitionism and Dummett’s Constructivism share the key characteristic of identifying the truth 

of a mathematical proposition with its provability.  

Mathematical Truth in Constructivism: 

 Concerning the question of what constitutes as mathematical truth among the 

Constructivists, the answer to this, at least on Brouwer’s part, is well evinced from his reason for 

rejecting the law of the excluded middle and from his corollary rejection of Hilbert’s formalist 

mathematical project. Nevertheless, and before detailing this, it is necessary to establish a few 

general remarks regarding Brouwer’s conception of mathematical proofs and truth. Both the 

most important and the most descriptive of which is the idea that proof is the criterion of truth 

for Brouwer (Posy, 2007; Hansen, 2016)6. In other words, in order for us to know that something 

 
6 Brouwer’s philosophy is on this point particularly difficult to interpret and may not lend to a single interpretation 

or conclusion. Nonetheless, the common sense is found in both Posy 2007 and Hansen 2016 that proof is certainly 

constitutive, at least to some degree, of truth for Brouwer. For a greater elaboration on both the technical and 

conceptual intricacies of this point see Hansen 2016.  
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is true, we must have a constructed proof (or demonstration) of it. Moreover, it would further be 

accurate to extend this claim in the form: in order for something to be true it must be provable – 

and it is in this extension that Constructivism is differentiated from other philosophies of 

mathematics. When taken in this stronger sense, it is seen that Brouwer maintains that truth 

presupposes provability (Posy, 2007). Here, however, the question comes – what kind of 

provability is here presupposed? As we have seen in the last section, the answer is that at the 

least proof in principle is presupposed by Brouwer as a necessary criterion of mathematical truth 

(and that Brouwer seems to accept proof in principle as legitimate).  

Brouwer’s reason for maintaining this proof criterion of truth falls analytically out of his 

general Intuitionist project. Because of his staunch rejection of the Platonic mathematical 

assumption (the assumption that mathematical objects exist in a sense that is akin to the Platonic 

forms), mathematical truths as much as mathematical proofs, for Brouwer, are only said to 

‘exist’ insofar as they have been mentally constructed by us7. Without recourse to a Platonic 

sense of a mathematical object as existing independently of the mind, a mathematical proof that 

purports to appeal to something that is not mentally constructed is plainly nonsense for Brouwer. 

The reason for this is that, once one has supplanted existence with mental constructability, it is 

no longer sensible to appeal to anything beyond that which we have or, at the very least, which 

we could construct8.  

 It is with this sense that Brouwer’s rejection of the law of the excluded middle is made 

sensible. According to the law, it is true, for every proposition A, that  A ˅ ~A. For a particular 

instance of the law, a canonical proof would be a proof of one of the disjuncts, but, even for 

 
7 And it is this which further serves as the general escutcheon of the Constructivist camp.  
8 Here again the parallel occurs that that which we have constructed corresponds to the idea of provability in practice 

and that which we could construct corresponds to the idea of somethings being provable in principle.  
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Brouwer, a proof of the law needn’t involve a proof of one of the disjuncts for every instance: 

the truth of the law would be established if we knew each instance was true, so could therefore 

be established by showing (i.e., by describing a method) that for any given instance we could 

prove one of the disjuncts. But this is not something which we have at present. Although we can 

certainly imagine cases where this is not problematic, cases where we can construct a proof of 

which side of the disjunction obtains (consider, for instance, the example given when discussing 

Dummett above, but in fact for any proposition B that we can prove we have a known instance of 

B ˅ ~B by disjunction introduction), the law of the excluded middle becomes greatly 

problematic in cases where which side of the operator obtains is undecidable. To take the ready-

at-hand example, we can imagine the question of whether or not γ, defined as the proposition that 

some specific sequence of digits appears in the decimal expansion of π, is provable or refutable. 

Moreover, for our present purpose, let us further define γ as involving a sequence of digits that is 

not as of yet determined to be found in the decimal expansion of π. In order to better understand 

Brouwer’s position, we can then ask the question: what are we to make of the claim γ is true or 

not, i.e. that γ ˅ ~γ?  

 While it certainly appears prima facie that it is true that γ ˅ ~γ, from within Brouwer’s 

Intuitionism, the truth of γ is indeterminate insofar as the decimal expansion of π has only been 

constructed up to a given point. In order to appreciate Brouwer’s point, it is essential to 

recognize that the decimal expansion of π only ‘exists’ insofar as it has been mentally 

constructed by us. In order to positively conclude that ~γ is true one would need to have a proof 

that γ does not occur in the decimal expansion of π. From Brouwer’s perspective,  we cannot  

refute γ on the basis of such a small fragment of the total evidence (the sequence of π we have 

currently constructed, a sequence which since we know (i.e., have proven) the decimal expansion 
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to be potentially infinite and non-repeating is an infinitesimal part of the whole of the decimal 

expansion) and have not been able to derive a contradiction from the assumption that ~γ, and nor 

can it be said that we have evidence that γ is true. Consequently, we can neither refute nor assert 

the truth of γ and so we lack sufficient knowledge to say that the disjunction obtains one way or 

the other. Even worse yet, “Assuming that it [in this case γ] is true or false in the absence of such 

knowledge amounts to assuming that the decimal expansion of π has extra-mental existence” 

(Hansen, 1, 2016). Therefore, in the case of γ as it has been afore defined (as asserting the 

occurrence of a sequence the decisional expansion of π that has not as of yet been definitively 

found/constructed) the ‘truth’ of  not γ does in fact appear in π is undecided, and for all we know 

at present a proof cannot even be in principle constructed one way or the other. On the other 

hand, for all we know at present ~γ might be proved or refuted tomorrow. Thus, it is critical here 

to recognize that this reasoning is not unique to the specific example (γ).  There are many 

examples of instances of LEM that are at present neither refuted nor proven, and presumably 

always will be as long as mathematics is a discipline worth pursuing.  In other words, Brouwer’s 

Intuitionism maintains in a general sense that we can neither reject nor affirm the law of the 

excluded middle as there are a number of given cases for which we do not know whether either 

side of the disjunction is provable. Despite the possibility of our discovering a proof of any  

specific given instance of the law of the excluded middle in the future, there will  still be a 

number of cases that such that  we would not know whether either side of the disjunction is 

provable. And it is for this reason that we must, at least in cases where this fine point might be 

relevant, recognize that while Brouwer rejects LEM, he does not deny it in the sense of being 

willing to assert its negation: we cannot assert LEM because we do not know it to be true; but 
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we cannot deny it, because we have not refuted it by, for instance, presenting a counter-example 

that we know could never be decided.  

In contrast with Brouwer, much of Dummett’s conception of mathematical truth takes on 

a characteristically linguistic aspect and may be understood in relation to his ‘case’ against 

realism. One author has described this case as occurring in four stages, where in the first stage 

Dummett identifies disputes over realism with disputes over the principle of bivalence (Rosen, 

600, 1995). Moreover, it is said that: “Dummett holds that to be a realist is to accept bivalence, to 

reject it to be some sort of anti-realist (p. 230)” (Rosen, 600, 1995). According to this principle, 

all statements (otherwise also referred to as declarative sentences or judgments) are maintained 

to be either true or false. Rosen identifies the second stage of Dummett’s case as maintaining that 

the principle of bivalence only holds in those cases where the meanings of our sentences allow us 

to, at least in principle, ascertain their truth value (Rosen, 600, 1995).  

However here, with the notion of meaning, what Rosen identifies as the ‘destructive part’ 

of Dummett’s case is introduced. In this destructive third part of the case, Dummett’s 

characteristically Wittgensteinian aspect appears as he, maintaining that meaning is use, is said 

to hold that “whatever it is to understand a sentence as possessing certain truth-conditions, this 

state must be “exhaustively manifestable”: it must be the sort of thing that can (and frequently 

does) show up in one's overt behavior, otherwise languages would be unlearnable and 

communication impossible” (Rosen, 601, 1995). Although this criterion of understanding as 

being observably manifestable is benign in clear-cut cases where the given truth conditions are 

easily evaluable through one’s behavior, it becomes greatly problematic in those cases where the 

truth conditions cannot be made manifest in someone’s observable behavior. By Rosen’s 

characterization, this stage concludes in the notion that “since there is no way for a speaker to 
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manifest his assignment of this or that verification transcendent truth-condition to a sentence, no 

sentence can possess such a truth-condition; hence we are never entitled in the interesting cases 

to accept the principle of bivalence, and realism must therefore be abandoned” (Rosen, 601, 

1995). It should be noted that this conclusion is an especial concern for mathematics since, 

owing to its highly abstract subject matter and the complicated nature of mathematical proofs, 

the truth conditions, which must be exhaustively manifestable if the proposition is properly 

understood, are often not manifestable at all.  

In the fourth stage of the case, by Rosen’s recapitulation, Dummett offers an alternative 

theory (based upon an intuitionistic semantics) to redress this problem concerning our 

understanding of the truth conditions of mathematical language. According to this picture, 

whether or not someone understands a mathematical sentence can be manifested by their 

acceptance or rejection of proposed proofs (Rosen, 601, 1995). On this point, it is said that “The 

statements of such a language do have truth-conditions; but the notions of truth and falsity play 

no central role in an explanation of their meanings, this function having been shifted to the 

notions of proof and refutation” (Rosen, 601, 1995). Here Dummett displays a characteristically 

Constructivist orientation as he is more concerned with whether or not one can manifest an 

understanding of the meaning of constructed mathematical statements (through the acceptance or 

refutation of them) than with whether or not the statements themselves obtain as true. Dummett’s 

position can be better illustrated by reconsidering his treatment of the law of the excluded 

middle, a treatment that parallels Brouwer’s rather closely, which was touched upon earlier in 

relation to canonical proofs. According to this, one may make clear that they understand the 

meaning of the law of the excluded middle by the proposition A ˅ ¬ A (through affirming that 

the overall proposition is true), even without a canonical proof of which side of the disjunction 
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obtains. And with carefully selected examples like “n is prime” there will be such a non-

canonical demonstration available. But for γ as discussed above, we possess no such 

demonstration, so we cannot accept γ v ¬γ. Consequently, for Dummett, as much as for 

Brouwer, the value of the law of the excluded middle is in this way to be rejected (though not 

denied).  

Constructivism and Mathematical Objects: 

The definitive feature of Constructivism – the replacement of the idea that ∃xPx with the 

idea that ‘we can construct an x that has the property P’– in itself already contains a great 

number of ontological consequences. Chief among these is that the only mathematical objects 

which enter into our ontology are those which we have either already constructed or which are 

constructible. Brouwer’s Intuitionism serves as the quintessential exemplar of this notion as he 

explicitly maintained that the only legitimate mathematical objects are constructed, and 

consequently, that only those objects which have been constructed exist. This carries the rather 

strong consequence that, with respect to mathematical objects, a great number of ‘objects’ that 

are taken to be legitimate under classical mathematics lose their positive ontological status 

within Brouwer’s Intuitionism. The foremost example of these is completed infinities which, as 

was seen earlier in this chapter, Brouwer’s Intuitionism does not admit. Much of the reason for 

this ontological variation between the objects which are classically and intuitionistically accepted 

is that, being devoid of the Platonic posit of an independent form-like existence, Intuitionism 

only accepts mathematical objects in a mind-dependent sense and only qualifies them as 

‘existing’ insofar as they are constructible. In discussing the construction of mathematical 

objects, Brouwer speaks of these constructions as occurring through ‘generative acts’ after which 

an object may be said to exist (Posy, 2007).  
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What he takes a construction to be, and so what distinguishes him from the classical 

mathematician, can be better evidenced by considering what does not satisfy Brouwer as a 

legitimate mathematical proof of existence. In this respect, we can revisit Brouwer’s repudiation 

of the law of the excluded middle with a greater focus on why he rejects proofs of existence that 

are founded upon this law. An earlier means of rejecting the law of the excluded middle took 

issue outright with the fact that it does not ‘prove’ either A ˅ ¬ A since, instead of indicating 

which side of the disjunction obtains, it instead just indicates that one side must obtain, and for 

some examples of A we do not know that one or the other disjunct is provable. However here, 

concerning proofs for the existence of mathematical objects, Brouwer’s repudiation of the law of 

the excluded middle takes on a more distinctly ontological accent. Proofs of this sort take on the 

form: if A ˅ ¬ A; then¬ ¬ A → A; and A → ¬ ¬ A. These proofs generally function by showing 

that, so long as we can show that one side of the disjunction does not obtain, it would be absurd 

not to suppose that the opposite side does obtain. In other words, one can prove the truth of ¬ A 

by disproving A, or vice versa, since according to the law one side of the general disjunction 

must obtain. Consequently, this law allows for the proof of A ˅ ¬ A through the negation of the 

opposite side of the disjunction. For example, one could theoretically offer a proof for the 

existence of a completed infinity, within a classical framework, by proving that it is absurd to 

maintain that there is not a completed infinity (η) by proving ¬ (¬ η) through a double negation 

elimination.   

Brouwer objects to existence proofs of this sort outright since they do not ‘construct’ a 

mathematical object. He maintains that such proofs cannot culminate in a proof of the existence 

of a mathematical object - since such an existence is only endowed by a generative act of 

construction. In the above case, Brouwer would respond that a proof demonstrating ¬ (¬ η) does 
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not entail that η exists because such a proof does not contain a construction of η – and moreover, 

Brouwer would further object to the idea that a construction of η is possible since not even the 

creating subject can collect/construct a completed infinity. A similar sentiment to this has also 

been identified in how Brouwer handles Cantor’s diagonal argument (Posy, 2007). Here it is said 

that Brouwer “happily accepts Cantor's diagonal argument as a proof that the real unit interval is 

uncountable” (Posy, 13, 2007); however, he does not accept the conclusion that an uncountable 

cardinal number exists since no construction of such a mathematical object is present therein. 

This carries a consequence for Brouwer’s Intuitionism, relating to the notion of a ‘generative 

act’, which is that the construction of an object is inherently an explicit act for Brouwer. In other 

words, not only do indirect existence proofs not satisfy Brouwer, but further, the construction of 

a mathematical object is seen as an explicit process whereby a mathematician – through a 

generative act – constructs an object which can then be said to ‘exist’. It is for this reason that 

Brouwer refuses to accept not just LEM, but also Double-negation elimination (or, as it is 

sometimes called, indirect proof.) 

Before moving on to Dummett, one final qualification of Brouwer’s conception of 

mathematical objects should be made. This qualification is that Brouwer maintains that an object 

may be considered to have been legitimately constructed even if all of its possible properties are 

not completely determined (Posy, 13, 2007)9. The benefits afforded by this qualification of 

Brouwer are borne out by the following example. We can consider (or ‘generate’) a right triangle 

as an example of a mathematical object which may be constructed in the form: ‘a three-sided 

polygon whose interior angle sum equals 180 degrees where one angle is equal to 90 degrees’. 

 
9 Another interesting consideration found in this article is that Brouwer does not require that legitimate mathematical 

objects are distinguishable from each other (Posy, 13, 2007).  
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By Brouwer’s account, we can recognize this as being a legitimate construction of a right 

triangle despite the fact that this construction does not include the Pythagorean theorem. 

Moreover, if we were to maintain the opposite position (that a construction is only legitimate 

when it completely determines all of the potential properties of an object), then we would have to 

similarly maintain that no one before Pythagoras had constructed a ‘right triangle’ and that, 

before him, there was no such object (a notion which Pythagoras himself would surely find 

heretical)10. 

In contrast with Brouwer, Dummett’s treatment and discussion of mathematical objects 

displays more of a philosophical, as opposed to a formal, orientation. Dummett’s treatment of 

mathematical objects as it is here recapitulated is that which he articulates in the article “What is 

Mathematics About?” - though it should be noted that he had also discussed the subject earlier in 

other writings11. Dummett’s perspective, as it is here contained, is both charitable and partial to 

the logicist project of Frege, Russell, and Whitehead. This partiality is revealed when Dummett 

satisfies himself with the logicists’ answer to the question: ‘what is mathematics about’ in the 

statement that “the logicist answer, if not the exact truth of the matter, is closer to the truth than 

any other than has been put forward” (Dummett, 21, 1993). Moreover, Dummett reaffirms this 

partiality in his conclusion to this article with the further statement that “I have argued that it is 

useless to cast around for new answers to the question what mathematics is about: the logicists 

already had essentially the correct answer” (Dummett, 29, 1993).  

 
10 Another example to the same effect of this occurs in Posy 2007 and concerns the indiscernibility of the real 

numbers. 
11 The earlier conception of Dummett occurred in his 1973 book Frege: Philosophy of Language and has been 

critiqued by Noonan in his article “Dummett on Abstract Objects”. It is in part due to this critique, but is more so 

due to the development of Dummett’s thought on the subject which occurs in the more recent book, that I am here 

concerned with Dummett’s position as it occurs in the 1993 “What is Mathematics About?”.  
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Dummett identifies the logicist's answer to this question as maintaining that mathematics 

is concerned with generalities - as opposed to anything particular (Dummett, 21, 1993). This 

notion, that logicism is the view that mathematics is a part of logic dealing with general claims, 

was well articulated by Frege’s persuasive argument that logical principles can be differentiated 

from those of the particular empirical sciences in the sense that they apply across all domains 

without restriction. It is in this sense that Dummett suggests that the logicists essentially had the 

right answer in identifying mathematics with generalities – since a key aspect of mathematical 

truths and principles is that they apply in a general sense regardless of what specific objects one 

is concerned with. This position is greatly appealing as it services an explanation for why it is 

mathematical truths apply generally across all domains (why 2 + 2 of any four given things 

equals 4). Moreover, this explanation also serves to distinguish claims which are true in some but 

not all domains, such as empirical claims like ‘all things are affected by some gravitational 

force’, from claims like 2 + 2 = 4 which remain true across all domains – such as within the 

hypothetical domain of abstract and non-physical objects. The logicists' answer, as Dummett 

maintains, is therefore the ‘right’ way of thinking about what mathematics is about because their 

conception accounts for the generality of mathematical claims whose formal truth/structure both 

underlies and is independent of the particular objects concerned. However, while Dummett gives 

logicism credit for having provided the best available answer to the question of what 

mathematics is about, he also holds that the logicist project falters when trying to address the 

problem of whether or not mathematical objects exist (Dummett, 21-22, 1993). 

The general concern regarding the existence of mathematical objects (that which 

Dummett finds the logicists’ faltering upon), is how we are to make sense of references to 

abstract mathematical objects. In this regard, Dummett suggests that one must either justify or 
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explain away how it is we refer to abstract objects (Dummett, 23, 1993). For his own part, 

Dummett seems to be amendable to Frege’s defence of abstract objects and vehemently opposed 

to a strict nominalism. He makes this rather explicit in the statement, “Once we have abandoned 

the superstitious nominalist horror of abstract object in general, there would be nothing 

problematic about the existence of real numbers in the context of some empirical theory 

involving quantities of one or another kind” (Dummett, 24, 1993). Dummett’s move here, the 

idea that we should understand the ‘existence’ of real numbers within the context of an empirical 

theory, incites the question: does this then entail that the real numbers possess an object status in 

the context of the empirical theory and, if so, does this not just reintroduce the Platonic problem 

of how/where it is the real numbers exist as abstract objects?  

Dummett, however, anticipates this concern and answers it by suggesting that we can rid 

ourselves of ‘the superstitious nominalist horror’ which refuses to admit any kind of existence 

whatsoever to abstract objects by considering contingent abstract objects which serve a role in an 

empirical theory. To support this point, Dummett makes recourse to Frege’s example that the 

equator is an abstract object whose existence is contingent upon other concrete objects or ‘the 

relations between them’ (Dummett, 24, 1993).  Moreover, he repudiates the orthodox distinction 

that is made between abstract and concrete objects (where mathematical objects are taken to be 

nearly synonymous with abstract objects) and argues that we should instead be drawing a 

distinction between mathematical objects and all other objects (Dummett, 21, 1993). Dummett 

uses Frege’s example of the equator to make sensible the notion that the existence of certain 

abstract objects depends upon concrete objects and their relations within an empirical theory; 

however, he nonetheless recognizes that “By contrast, the existence of mathematical objects is 

assumed to be independent of what concrete objects the world contains” (Dummett, 24, 1993). 
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The difference for Dummett then, in this case, between mathematical objects and other abstract 

objects like the equator is that mathematical objects are independent of what concrete objects 

there are, whereas the equators existence is dependent upon concrete objects within a given 

domain. Nevertheless, the question remains – what is the object status and similarly, the claim to 

an ontological status which is granted to mathematical objects within Dummett’s 

Constructivism? A difficulty is encountered here since (as we have seen) if we view 

mathematical objects as abstract objects which, like the equator, are contingent on an empirical 

theory, then they would cease to be logical objects that are generally applicable across every 

domain. While there is no issue with making something like the earth's equator contingent upon 

an empirical domain, there is an issue with making mathematical objects (which are supposed to 

be logical objects that generalize across any and all domains) contingent upon an empirical 

theory.  

Although some difficulty can be said to remain around this point, Dummett is able to 

relieve some of the tension by offering a distinction between mathematical objects and other 

objects on the basis of what ‘domain’ is relevant. For concrete objects and abstract objects which 

have an existence contingent upon the concrete objects and their relations (like the equator), the 

external reality is the relevant domain (Dummett, 25, 1993). In contrast, Dummett treats 

mathematical objects differently since the question of “what mathematical objects there are 

within a fundamental domain of quantification is supposed to be independent of how things 

happen in the world, and so, if it is to be determinate, we must determine it” (Dummett, 25, 

1993). This differing treatment of mathematical and of other objects is both similar to Brouwer 

as well as generally representative of the Constructivist position since, at least as far as the 
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former is concerned, Dummett takes the existence of mathematical objects in the anti-realist 

sense of being said to exist insofar as they have been constructed or else determined by us.  

In summary, while Brouwer and Dummett differ in what exactly they take mathematical 

objects to be, with the former viewing them as private mental constructions and the latter 

viewing them as public constructions, they arrive at the same place of qualifying mathematical 

objects as existing insofar as they either have been, or can be, constructed. Consequently, for 

both Brouwer and Dummett the mathematical objects which are said to exist are those which can 

be constructed or proven. This reflects the general Constructivist tendency to avoid all 

metaphysical speculation and complication by replacing the idea that ‘x exists’ with the idea that 

‘we can construct x’.  

The Constructivist Foundations of Mathematics:  

While earlier, in the first section of this chapter, we examined how Brouwer’s 

intuitionistic mathematics related to his conception of mathematical proof, here I will aim to 

describe the philosophical foundations of Brouwer’s Intuitionism. In order to do so, it will be 

essential to understand what Brouwer takes intuitionistic mathematics (and consequently 

mathematics as a whole) to be founded upon. It is also, however, equally important to understand 

what Brouwer explicitly takes the foundations of mathematics not to be, namely, either logic or 

language. Brouwer’s avowed anti-linguism is evident as early as his doctoral thesis, and he 

explicitly maintains that mathematics is prior to both language and logic – both of which he 

maintains are dependent upon mathematics. In addition to this negative characterization, 

Brouwer follows Kant in positively grounding mathematics in a priori mathematical intuition 

insofar as he takes this mathematical intuition to be both temporal and abstract (Posy, 12, 2007). 
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Consequently, it is beneficial to discuss some of Kant’s philosophy in order to better situate the 

philosophical foundations (as well as the intuitive appeal) of Brouwer’s Intuitionism. 

Brouwer’s understanding of mathematical intuition, as being inherently temporal and 

abstract, relates to Kant’s conception of the Pure Intuition of Time (conceived there as the inner 

sense), which Kant argues is intrinsically related to our understanding of simultaneity and 

succession (Kant, 67, 1781)12. Moreover, Kant strongly maintains that it is only through this 

inner sense of Time that alteration is made possible (Kant, 68, 1781). How Kant’s conception 

relates to mathematics, inasmuch as why it was appealing to Brouwer as a philosophical 

foundation for his Intuitionism, is made immediately apparent by considering the series of 

natural numbers. The reason for this is that the very conception of the natural numbers as a 

sequence or ordered series already implies the conception of succession – the series begins at one 

and successively increases at a fixed rate. Moreover, Kant provided a philosophical foundation, 

and legitimacy, to Brouwer’s inclusion of temporal dimensions to mathematics in the form of 

past, present, and future times which he controversially takes to play a positive explanatory role 

in proofs involving the ‘creating subject’ (Atten, 2018).  

Notwithstanding the (perhaps) questionable status of Brouwer’s extrapolation of Kant’s 

conception of the Pure Intuition of Time, his utilization of Kant’s notion of a priority appears to 

be less contentious. It is said that Brouwer took mathematics to be a priori in the same sense that 

Kant did, namely, that it was independent and prior to our sensory experience (Posy, 13, 2007). 

Brouwer’s reason for maintaining that mathematics is independent of sensory experience derives 

 
12 Although this relation is explicit in Brouwer, it is important to recognize that Brouwer understands the Intuition 

very differently from the way that Kant does. The staunch difference between the two is made apparent insofar as 

Brouwer understands both arithmetic and geometry as coming from the Pure Intuition of Time, whereas, Kant 

notoriously related geometry to the Pure Intuition of Space.  
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from the means by which we go about justifying mathematical judgements. Unlike a posteriori 

judgements (which are justified in light of empirical experience), mathematical judgements do 

not require empirical experience to justify them, but rather, their proofs are taken, titularly, to be 

knowable prior to sensory experience. Moreover, Brouwer is further attributed with maintaining 

that mathematics underlies, and is thus primordial to, the empirical sciences (Posy, 13, 2007). In 

this sense, Brouwer remains faithful to Kant’s conception - as Kant similarly maintained that the 

Pure Intuitions of Time and Space were presupposed, and thus primordial, to the very possibility 

of having empirical experience.  

In contrast to Brouwer, Dummett views mathematics as a fundamentally linguistic 

enterprise whose proofs and objects are, as opposed to being the private mental constructions of 

a mathematician, public linguistic objects. Consequently, for Dummett, the truth or correctness 

of a proof is subject to rules within a public language game, and more, a mathematician's 

understanding is also manifested in a public sense as has been seen. Although this linguistic 

focus of Dummett would be anathema to Brouwer, who vitriolically maintained that mathematics 

was not dependent on either logic or language, their positions nonetheless remain greatly similar 

across a number of varying respects. The most important of these similarities is that both 

Brouwer’s Intuitionism and Dummett’s Constructivism are inherently anti-realist theses that aim 

to correct the Platonic proliferation of abstract objects which clutter up one’s ontology. 

Moreover, while they might differ in what they take the constructive process to entail, they both 

share the characteristic Constructivist tendency of supplanting the notion that x exists with the 

idea that x can be constructed and see the truth of a claim in a way that relates to its provability.  
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CHAPTER TWO: FINITISM 

An Introduction to Finitism:  

Within this chapter, I will provide a short exegesis of the general principles which 

underlay the philosophy behind Mathematical Finitism. In doing so, I will explore two examples 

or ‘kinds’ of Mathematical Finitism as they occur in the literature. The first of these concerns 

Dantzig’s article “Is 10^10^10 a Finite Number?” which, while by no means offering a 

systematic Finitist account of mathematics, illustrates a number of important Finitist principles. 

In contrast, the second example of Finitism explored in this chapter is Mayberry’s Euclidean 

Finitism which offers a bona fide Finitist system of mathematics. This chapter's analysis will 

take the form of assessing both the benefits which Mathematical Finitism offers as a foundation 

of mathematics, as well as the philosophical cost of maintaining the position. Furthermore, it 

should be noted that, although the dialogue concerning Mathematical Finitism is well developed 

within the literature, two initial problems present themselves for anyone attempting to treat of the 

subject. The first, and greatest, of these problems, is the mosaic of varying Finitist positions 

(some examples of which include Classical Finitism, Strict Finitism, and Ultrafinitism); and the 

second, recognized in Mawby 2005, is the relative rarity of Finitism’s proponents. Consequently, 

it is important to recognize that the subset of Finitist positions which are considered within this 

chapter – while representative of Mathematical Finitism generally – are not intended to suffice as 

an exhaustive treatment of all Finitist positions.  

Notwithstanding this, some sufficient criteria for identifying those philosophies of 

mathematics that are examples of Mathematical Finitism may be identified. One such criterion 

takes the form of a ‘family resemblance’ by which Mathematical Finitist positions are all related 

in their shared desire/principle of only accepting finite and ‘concrete’ mathematical objects as 
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legitimate, or rather, their shared principle of not accepting infinite mathematical objects as 

legitimate (however much their reasons for this differ). Furthermore, the extent to which a 

Mathematical Finitist philosophy remains inflexible around the illegitimacy of infinite 

mathematical objects also serves as a useful means of broadly differentiating the various kinds of 

Finitism. In this respect, Classical Finitist positions can be classified as those softer forms of 

Finitism which, despite opposing the existence of actual mathematical infinities, are willing to 

admit of potential mathematical infinities to some extent13. Contrarily, Strict or Ultrafinitist 

positions generally repudiate the legitimacy of infinite mathematical objects outright and thereby 

reject any predication of even a potential (or formal) construction of infinity from the natural 

numbers14. This distinction has been supported by others in the literature who make similar 

classifications between the different forms of Mathematical Finitism (Tiles, 1989; Mawby, 

2005). 

Before beginning this chapter’s analysis of specific formulations of Mathematical 

Finitism, it is essential to first situate Finitism generally in relation to both Platonism and 

Constructivism. Mathematical Finitism, much like Constructivism, offers an alternative to 

Mathematical Platonism’s ontology regarding the mind-independent existence of the numbers. In 

this capacity, Finitistic philosophies of mathematics are generally aligned with an anti-realist 

ontology though, as will be seen, some Finitist positions such as Mayberry’s are softer on this 

point. However, this alignment is even further pronounced in the stronger example of Finitism, 

such as in Strict Finitism, which is recognized to be “fundamentally committed to an anti-realist 

 
13 Hilbert’s position of trying to ‘found’ Cantor’s work within “finitary” arithmetic and his classical declaration that 

‘no one shall remove us from the paradise which Cantor created’ has led many to place him here as a kind of 

Finitist. See “Varieties of Finitism” by Manuel Bremer for one such example.  
14 These positions are also sometimes referred to as Actualism or Ultra-intuitionism and are generally associated 

with Alexander Yessenin-Volpin.  

https://medium.com/cantors-paradise/the-beautiful-consistency-of-mathematics-alexander-yessenin-volpin-b3c672f8ce96
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position with respect to mathematics. That is to say that the numbers, statements, and proofs of 

mathematics are mind-dependent” (Mawby, 9, 2005). In this way, Finitism is similar to 

Constructivism, and more, this similarity is further demonstrated by certain Finitists utilizing 

Constructivist methods (as occurs in Mayberry 2000) and is even made declaratively explicit in 

others stating “Indeed, it [Strict Finitism] is a Constructivist theory - it stems from the idea that 

mathematics is constructed by the mathematician, and hence numbers (for example) are only 

'real' if they are constructible. This is a key motivation behind strict finitism” (Mawby, 9). 

However, other Finitists – most notably Mayberry – appear as a pendulum shift back towards 

mathematical realism insofar as they defend a sense in which (finite) numbers are said to exist in 

even a mind-independent sense.  

Dantzig’s Finitism: 

Dantzig’s Limitations on Mathematical Considerations:  

 For the purposes of this paper, I will consider Dantzig’s Finitist position as it occurs 

within his essay “Is 10^10^10  a Finite Number?”. Dantzig’s position within this essay differs 

from that of Mayberry’s which will be next considered in that, instead of offering a systematic 

framework for doing mathematics, Dantzig instead centres his inquiry around the question of 

whether considerably large numbers can be said to be finite or natural numbers. It is very 

important to first recognize the framework from which Dantzig is here operating, namely, that he 

does not want to admit of “fictitious superior minds like Laplace’s intelligence, Maxwell’s 

demon or Brouwer’s creating subject [ideal mathematician]” (Dantzig, 1, 1955). What these 

‘fictitious superior minds’ all share in common is their unbounded or else omniscient 

intelligence. Consequently, Dantzig argues that it is necessary to consider mathematics with 

respect to the limitation of the human mind and those machinations which assist it (Dantzig, 1, 
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1955). This notion I will refer to as Dantzig’s cognitivist thesis and it may be summarized in the 

form: ‘we ought only to concern ourselves with mathematics as they are able to occur within our 

limited (finite) cognitive capacities’. 

 Furthermore, Dantzig lays out another foundational limitation on the notion of a natural 

number. He argues that, regardless of the definition of number with which one is operating, it is a 

requirement of any ‘sequence of printed signs’ that it be uniquely identifiable – i.e., that for any 

number it is necessary that said number is distinguished from the other numbers (Dantzig, 1, 

1955). This requirement is not unique to Dantzig, as it is a general requirement of ‘identity’ to 

maintain that, for any given thing to be a given thing, it needs be distinguishable from other 

things. Another example of this requirement within mathematics also comes from Mayberry who 

spends a great deal of time treating of how to establish the unique identity of an arithmos15.  

 In addition to Dantzig’s cognitivist thesis, and his identity requirement of numbers, he 

articulates a third limitation on mathematical considerations – the requirement of actual 

constructability (Dantzig, 1, 1955). In this regard, Dantzig argues against the possibility of 

constructing certain prodigiously large numbers (such as 10^10^10) which outstrip the physical 

limitations of the universe. Ultimately, he argues against mathematicians who imagine the 

construction of ‘arbitrarily large natural numbers’ because “this would imply the rejection of at 

least one of the fundamental statements of modern physics (quantum theory, finiteness of the 

universe, necessity of at least one quantum jump for every mental act). Modern physics implies 

an upper limit, by far surpassed by 10^10^10 for numbers which actually can be constructed in 

this way” (Dantzig, 1, 1955). This third limitation shares a similar spirit to Dantzig’s cognitivist 

 
15 For one example of this within Mayberry’s work see section 3.1 “Objects and Identity” of The Foundations of 

Mathematics in the Theory of Sets, though this point will be greatly detailed in the next subsection of this chapter.  
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thesis insofar as both centre around the idea that our mathematical considerations must consider 

the real or practical limitations which are afforded by circumstance, i.e., our own cognitive 

limitations or the limitations imposed by the physical universe.  

Dantzig on Discerning Between Finite and Infinite Numbers:  

 Dantzig’s general argument within this paper centres around the notion that arbitrarily 

large numbers like 10^10^10 only appear to be natural numbers when one has “unconsciously 

changed the meaning of the term “natural number” (Dantzig, 2, 1955). In order to demonstrate 

this point, Dantzig provides a number of constructions in which he compares numbers/sets that 

have been constructed up to a definite point (dubbed n1 and s1) to numbers/sets that are 

constructed in a second purely formal sense (dubbed n2 and s2 respectively) (Dantzig, 2, 1955). 

Dantzig refers to numbers/sets of this second sense as ‘fictitious’ and considers proofs regarding 

their properties as ‘postulates’ (Dantzig, 2, 1955). Further, he recognizes that this first set will 

not contain all of the fictitious natural numbers of the second, but rather, that it will only contain 

those “for which sufficiently simple abbreviations have been introduced” (Dantzig, 2, 1955). In 

other words, the first set will only contain those natural numbers which have been definitely 

constructed – those which are surveyable.  

 Concerning the application of mathematical operations to fictitious numbers, Dantzig 

argues that “the statement that 10^10^10 + 10^20^20 = 10^20^20 + 10^10^10  can not be said to 

have been proved, but is only a formal rule for handling formally the symbols” (Dantzig, 3, 

1955). With this, Dantzig objects to the legitimacy of formally extending arithmetical operations 

beyond the bounds of numbers that have been definitely constructed - n1 or s1 (Dantzig, 3, 1955). 

Consequently, he rejects Poincare’s notion that complete induction is the creative principle of 

mathematics. His reason for this rejection is that complete induction beyond the definitely 
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constructed numbers n1 and s1 does not afford us any proof, but rather, results only in postulates 

which could be true but have not yet been proven.  

Furthermore, Dantzig argues that our differentiation between the finite and transfinite 

numbers may not be operationally defined. In order to demonstrate this point, he imagines two 

mathematicians, A and B, where A is understood to be a Transfinitist and B is a Finitist. Dantzig 

notes that it is possible that whenever mathematician A refers to a transfinite number (ω), 

mathematician B instead interprets the number as a finite number (Ω). Moreover, he states that 

when mathematician B interprets mathematician A’s transfinite ω as the finite Ω, he may do so 

without coming to an inconsistency (Dantzig, 3, 1955). However, the matter is more complicated 

in light of Dantzig’s recognition that mathematician B, in interpreting mathematician A’s 

transfinite number as a finite number, will not always interpret it as the same one (Dantzig, 3, 

1955). This possibility poses a serious problem for the transfinitist, since this example seems to 

illustrate that transfinite numbers are not uniquely identifiable, allowing for a hidden 

indeterminacy to slip into mathematics. This hidden indeterminacy takes the form of an 

equivocation possibly entering into our mathematical discourse. While it may certainly appear 

that, in both mathematician A and B’s usages of Ω and ω, no outward inconsistency results in 

how the mathematicians operate upon the symbols, a semantic indeterminacy can be said to 

result insofar as when B operates upon ω (reinterpreting it as the finite number Ω) they may, and 

at times will, be referring to an entirely distinct number. The critical point in this case is that 

while mathematician B may engage in discourse about the number Ω/ω with mathematician A, 

and while mathematician B may possess an operationally sufficient translation of ω as Ω such 

that no direct inconsistency is apparent, there is a hidden indeterminacy in their dialogue insofar 

as the two are unable to determine if they are referring to entirely separate numbers. However, 
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because transfinite numbers are so large, or, as Dantzig is getting at, because numbers so 

prodigious as 10^10^10 are so large, neither Ω nor ω are uniquely identifiable as numbers in the 

same way that clearly finite numbers are. This inconsistency is tantamount to an imperfect 

translation, whereby something of the original sense and meaning is lost (in this case the sense of 

the number being ‘transfinite’) but in such a way that this loss is not noticed because the 

translation is operationally functional. These considerations help to illustrate the sense behind 

Dantzig’s notion that finite and transfinite numbers may not be operationally defined since, at a 

certain point (beyond the limits of numbers that are surveyable to us), it is possible for 

mathematicians A and B to suffer from an equivocation in referring to fundamentally different 

numbers without any inconsistency being apparent to them.  

The possibility that gives rise to this issue results from the fact that, in the case of 

transfinite numbers, we are not dealing with definite or surveyable constructions that allow for us 

to clearly identify or define a precise number/object to which we are referring. Dantzig makes 

another suggestion that if mathematician B were to use transfinite symbols such as ω or ℵ0 he 

would do so only with the sense of referring to “numbers surpassing everything I can ever obtain 

but not as anything essentially different from those he can obtain” (Dantzig, 4, 1955). 

Consequently, Dantzig’s ultimate argument is that “The difference between finite and infinite 

numbers is not an essential, but a gradual one” (Dantzig, 4, 1955). This conclusion is based on 

the recognition that, as we approach increasingly prodigious numbers, our ability to understand 

them wanes and, at a certain point, we begin to deal with numbers that are no longer uniquely 

identifiable.  
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Mayberry’s Euclidean Finitism: 

An Introduction to Mayberry’s Position: 

 The Finitist system of mathematics which will be here considered, dubbed Euclidean 

Finitism, is derived from Mayberry’s The Foundations of Mathematics in the Theory of Sets. 

Whereas in the previous chapter, Constructivism was seen to be a through and through anti-

realist alternative to mathematical Platonism which did not provide a positive answer to the 

ontological question, Mayberry’s system at times begins to again reintroduce the ontological 

questions. Notwithstanding this, it would be inaccurate to characterize Mayberry as a realist 

since, while he does raise and address the ontological question in a limited extent, he both: a) 

does not himself adopt a realist title, and b) explicitly distances himself from the ontological 

question, and most importantly c) even the ‘realist’ elements of his account (the arithmoi) are 

themselves fundamentally derived from Euclid’s constructed definition of them as ‘finite 

pluralities’. Moreover, the primary contribution and merits of Mayberry’s system is syntactical in 

nature and concerns his reinterpretation of Cantor’s set theory along Finitist grounds. 

Mayberry’s conception of Euclidean Finitism is peculiar among Finitist accounts in that it 

simultaneously rejects conceptions of the transfinite (conceptions which are most ubiquitously 

associated with the work of Cantor) while simultaneously offering an animated defense of the 

theory of sets which Cantor founded. While Mayberry comes to the defense of set theory, and 

even at times speaks from a Cantorian viewpoint, he argues against Cantor’s ‘non-Euclideanism’ 

and maintains that the central principles of set theory “are really finiteness principles” 

(Mayberry, xv, 2000). In this respect, Mayberry goes so far as to reinterpret Cantor and the 

axiom of infinity along finite grounds. Nonetheless, and as the title of the book suggests, while 

Mayberry sees set theory as playing a critical role in our mathematical foundations,  he further 
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contends that the notion of a set itself is founded within the classical Greek conception of the 

arithmoi as finite totalities (a notion which is in dramatic contrast with the prevalent tendency of 

founding set theory on axiomatic grounds). In summary, Mayberry’s position offers Euclidean 

set theory as an alternative to Cantorian set theory – a position which is ultimately founded in the 

notion of the arithmoi as being the primary presupposition on which mathematics rests.  

Mayberry on the Foundations of Mathematics:  

The first chapter of The Foundations of Mathematics in the Theory of Sets concerns 

Mayberry’s argument that all attempts to establish the foundations of mathematics must meet 

certain criteria. Moreover, Mayberry argues that the criteria from which the foundations of 

mathematics are built centre around a distinction between the nature of the finite and infinite. 

The most explicit articulation of Mayberry’s position occurs in his identification of the ‘two 

central tasks which must be fulfilled in the foundations of mathematics which he argues are: 

1. To determine what it is to be finite, that is to say, to discover what basic principles 

apply to finite pluralities by virtue of their being finite. 

2. To determine what logical principles should govern our reasoning about infinite 

and indefinite pluralities, pluralities that are not finite in size. (Mayberry, xix, 

2000).   

On this point, Mayberry makes the strong claim that “all disputes about the proper foundations 

for mathematics arise out of differing solutions to these two central problems” (Mayberry, xix, 

2000).   

While these central problems and criteria serve to frame Mayberry’s discussion of the 

foundations of mathematics, it is also essential to answer the question: what would constitute as a 
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foundation for mathematics by his account? A potential answer to this question may be found in 

the following suggestion of Mayberry, “If we were to carry out such a complete analysis on all 

mathematical proofs, the totality of ultimate presuppositions we should then arrive at would 

obviously constitute the foundations upon which mathematics rests” (Mayberry, 5, 2000). While 

Mayberry does not himself take up this task (and while it may be either in practice or in 

principle impossible to fully implement) its suggestion entails a certain philosophical orientation 

concerning the nature of mathematics’ foundations. Despite the fact that what would constitute 

as a ‘complete analysis’ is unclear, the statement displays a philosophical sentiment that at the 

bottom mathematics will be founded upon the ‘totality of its ultimate presuppositions’, or, in 

other words, mathematics ultimately rests upon the totality of its presuppositions. From this, the 

inquiry into the foundations of mathematics, as Mayberry conceives of them, will take the form 

of an inquiry into what things are presupposed by mathematics. Furthermore, while an explicit 

definition of what counts as an ultimate presupposition is not given by Mayberry, he does 

suggest that these mathematical presuppositions are ‘unproven assertions or else undefined 

concepts’ (Mayberry, 5, 2000). Much of Mayberry’s Finitist system can be understood through 

precisely this notion (that mathematics is founded upon certain presuppositions), insofar as his 

general project, as will be seen, is to articulate the concept of the arithmoi – for it is these 

arithmoi which he takes to be the central presupposition of mathematics.  

In this respect Mayberry’s position has something in common with ‘orthodox’ set 

theorists, however, the two positions differ dramatically in what they take these ultimate 

presuppositions to be. The principal difference between the two is that where Mayberry 

ultimately lays the foundations of mathematics in the arithmoi (a concept to be further unpacked 

in the next subsection), the ‘orthodox’ set theorists rest the foundations of mathematics upon 
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specified axioms. This difference runs deeper than a mere preference of some methods over 

others, as Mayberry further makes the strong claim that “we cannot use the modern axiomatic 

method to establish the theory of sets” (Mayberry, 7, 2000). Mayberry’s argument centres around 

the notion that the current axiomatizations of set theory are circular insofar as they presuppose 

that set theory is already in place in order to establish their account16. This statement may be 

made more comprehensible in light of Mayberry’s identification that the modern axiomatic set 

theory is ultimately ‘a matter of logic’ – taken in the sense of its consisting in a defined system 

of set principles (axioms). Mayberry here means to say that the axiomatizations themselves 

presuppose the theory of sets to first be in place17 and, therefore, an axiomatic method cannot 

establish set theory. Why Mayberry takes the axiomatic theory to already presuppose a theory of 

sets can be made apparent by considering the question: what are the axioms of set theory taken to 

apply to and, if they were taken entirely on their own would they have a subject matter? The 

essential point in this case is that, taken on their own, the axioms of set theory merely lay out 

rules for what can be done by, or said about, sets but, critically, Mayberry is here pointing out 

that these axiomatic ‘rules’ for sets presuppose these sets in the first place. Consequently, in 

much the same way that the rules for how a chess piece may move first presupposes that there is 

a chess piece, Mayberry argues that the modern axiomatic method first requires sets (the theory 

of sets) to be in place.  

 
16 Mayberry’s phrasing of this point includes the statement that the axioms of set theory “are fundamental truths 

expressed in a language whose fundamental vocabulary must be understood prior to the laying down of the axioms” 

(pg, 8). In some sense then, this critique of circularity seems to entail the (seemingly Kantian) notion that a thing 

which presupposes something else cannot serve as the ultimate bedrock or foundation. Furthermore, it is interesting 

to consider this point apropos Wittgenstein’s notion that we need already ‘have in place’ an understanding of a 

language game or concept before we ‘make moves’ in, or with, it; i.e., that we must already understand something 

before we can learn how the king chess piece moves, or what it is called. 
17 Here Mayberry’s implicature is that a theoretical understanding (a ‘theory’ taken in a less formal sense) is 

presupposed as already being in place by the axioms of set theory.  
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Having seen what Mayberry does not take the foundations of mathematics to rest in 

(namely the modern axioms of set theory), we are now well situated to better understand what he 

does take them to consist in. In this regard, Mayberry states, “the foundations of mathematics 

comprise those ideas, principles, and techniques that make rigorous proof and rigorous definition 

possible” (Mayberry, 8, 2000). Moreover, Mayberry argues that a systematic foundation of 

mathematics must provide an account of the following three things: a) the elements of 

mathematics, b) the principles of mathematics, and c) the methods of mathematics (Mayberry, 8, 

2000). He then proceeds to define these three things. Mayberry takes the ‘elements’ of 

mathematics to be “the fundamental concepts of mathematics, the objects that fall under those 

concepts, and the fundamental relations and operations that apply to them” (Mayberry, 8, 2000). 

Furthermore, Mayberry maintains that propositions about these objects have an objective truth 

value - that the truth or falsity of basic mathematical propositions will be a question of objective 

fact (Mayberry, 8, 2000). In contrast, Mayberry takes the ‘principles’ of mathematics to be 

fundamental propositions or ‘axioms’ which, while true, do not ‘require or admit of proof’ and 

instead act as the primary assumptions on which mathematics rests (Mayberry, 8, 2000). Finally, 

Mayberry states that the ‘methods’ of mathematics are “given by laying down the canons of 

definition and of argument that govern the introduction of new concepts and the construction of 

proofs” (Mayberry, 9, 2000). In other words, the ‘methods’ of mathematics can be understood 

like the ‘rules’ of the mathematical language game.  

Now that we have detailed Mayberry’s positive conception of what the foundations of 

mathematics must include, it is essential to the project of this paper to also analyze Mayberry’s 

negative classification of what the foundations of mathematics need not include (for he devotes 

an entire subsection to this point). What Mayberry generally wants to exclude from the 
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foundations of mathematics is philosophy. He states, “we should make every effort to avoid 

incorporating purely speculative philosophical ideas into mathematical foundations, properly so 

called” (Mayberry, 11, 2000). Nonetheless, it is here important not to misconstrue Mayberry’s 

position as dogmatic, for he does recognize the inevitability of philosophical questions 

occurring; however, he favours a position of resting mathematics on what ‘minimal 

philosophical presuppositions’ are required (Mayberry, 11, 2000). While Mayberry’s view does 

not appear as dogmatic, it is doubtlessly restrictive as he makes clear, “I take the view that the 

foundations of mathematics do not require, and therefore should not include, a general theory of 

the meaning of mathematical propositions, or a general theory of mathematical truth, or a general 

theory about how mathematical knowledge is acquired” (Mayberry, 11, 2000).  

While there is some veracity in Mayberry’s point here, insofar as a foundation of 

mathematics should not be expected to include a full-fledged account of the meaning, truth, or 

epistemology of mathematical propositions, there is good reason to suppose that a proper 

foundation of mathematics should nonetheless be able to provide a general framework and 

account of these things. Moreover, and with respect to the ontological question, a philosophically 

defensible general ontology should certainly be taken as a requirement for a proper foundation of 

mathematics – for it was just here, with its highly problematic metaphysics and epistemology, 

that the critical flaws of mathematical Platonism emerged. Although the failings of mathematical 

Platonism were far from unbeknownst to Mayberry, he maintains that his Euclidean Finitism is 

able to avoid the issues which arose within the Platonic account. He does so through attempting 

to ‘dodge’ the ontological question as to what the nature of mathematical ‘objects’ are by instead 

redefining these objects as ‘structures’ which he argues “do not give rise to the [same] 

ontological and epistemic difficulties” (Mayberry, 12, 2000).  
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Regardless of whether or not this semantic redefinition is satisfactory (and despite the 

fact that Mayberry himself seems to indicate in a footnote that he knows it is not), it should be 

recognized that avoiding the ‘traditional’ ontological and epistemic problems concerning 

mathematical objects would not render these mathematical ‘structures’ impervious to new, and 

perhaps even similar, philosophical problems. While the ontological and epistemic problems 

facing Mayberry’s account will be discussed fully in a later subsection, it is sufficient to state in 

the conclusion of this one that an inquiry into what constitutes a “genuine” or “real” foundation 

for mathematics is as intrinsically bound to ontological considerations as a concern for 

“objectively determined truth values” is to epistemological considerations.  

The Arithmoi:  

With Mayberry’s account of what would constitute as a proper foundation of 

mathematics now in place, let us examine where Mayberry lays the roots of mathematics – the 

concept of the arithmos. The arithmoi are utterly essential to Mayberry’s position as he makes 

explicit in the statement, “the point of view embodied in this book [is that] all of mathematics is 

rooted in arithmetic, for the central concept in mathematics is the concept of a plurality limited, 

or bounded, or determinate, or definite—in short, finite—in size, the ancient concept of number 

(arithmos)” (Mayberry, xix, 2000). Mayberry’s conception of the arithmos is based upon Klein’s 

scholarship surrounding the Greek conceptions of arithmoi as finite pluralities and Euclid’s 

seventh book in which it is asserted “A number (arithmos) is a multitude composed of units” 

(Mayberry, 18, 2000). He maintains that this Greek conception of number (arithmos) is what we 
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today refer to as a set and that the ‘units’ composing an arithmos correspond to what we refer to 

as a set's ‘members’ or ‘individuals’18.  

Despite Mayberry’s extended analogy between the arithmoi and sets, he draws some key 

differences between the two – namely, that not everything which is a set is an arithmos 

(Mayberry, 70, 2000). The reason for this follows directly from the aforementioned conception 

of an arithmos as a ‘finite plurality’ since, according to this definition, neither the null set nor 

singleton sets will be counted among the arithmoi. Mayberry notes that this position is reflected 

in the fact that the Greeks did not view either one or zero as ‘numbers’ (Mayberry, 70, 2000). 

Furthermore, he argues that because the arithmoi do not include the empty set, they avoid certain 

ontological difficulties associated with empty or singular sets (pluralities). In a (perhaps) 

provocative passage, Mayberry charges modern set theory with building up the universe of sets 

from a kind of creation ex nihilo since it is ‘balanced’ upon the null set (Mayberry, 71, 2000). 

The basis of this charge follows from the fact that, notwithstanding infinite totalities, the empty 

set axiom is the only axiom within the finitary part of modern set theory that makes an 

unconditional existence claim (while all the others are conditional form: If X is a set, then f(X) is 

also a set). It is in this sense that modern set theory can be said to build its ‘universe’ upon a 

creatio ex nihlo since it follows from but one single existence claim which asserts the existence 

of the empty set/object that, definitionally, has nothing in it (no members). Consequently, 

Mayberry instead argues that we take the notion of the arithmos as fundamental and instead 

define sets in accordance with these arithmoi. Mayberry contends that once this is done, “the 

fundamental assumption upon which set theory, and with it all of mathematics, rests comes to 

 
18 This thesis is dispersed all throughout Mayberry’s work but for one specific articulation of it one may see page 70 

at the start of subsection 3.2.  
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this: whatever objects there are, there are also finite pluralities composed of those objects, 

namely, arithmoi; moreover, these arithmoi are themselves objects in their turn and, as such, can 

serve as units in further arithmoi” (Mayberry, 71-71, 2000).  

The position expressed in this quote is analogous to set theory insofar as sets (here 

understood as arithmoi) may serve as members (or units) in other sets. Additionally, another 

more implicit consequence (but a consequence which is nonetheless as important as it is 

contentious) slips into Mayberry’s position here, namely, that no ‘infinite’ sets are here permitted 

as legitimate arithmoi. The reason for this follows from the redefinition of sets into the concept 

of arithmoi, but critically, because an arithmos is understood to be a ‘finite plurality’ infinite sets 

go the way of the null and singleton sets within this account. This is because Mayberry’s 

redefinition takes on an even stronger sense of a reidentification19 of what sets are with the 

arithmoi (which are understood to be inherently finite objects). Consequently, Mayberry’s 

position is most clearly Finitist in nature, and more, it is best understood as a form of Strict 

Finitism insofar as it appears to strip all legitimacy from even the idea of an ‘infinite set’ (seeing 

as these are excluded from counting as arithmoi by their very definition).  

In tandem with this reidentification of sets with the arithmoi, Mayberry also (rather 

contentiously) reinterprets Cantor’s infinities through a finite lens – a sizable part of his project 

is to offer a Finitist interpretation of Cantor. He maintains that the critical aspect of Cantor’s 

work was that he extended the domain of the finite in a way that includes totalities that were 

otherwise thought to be infinite as a part of it (Mayberry, 47, 2000). Mayberry calls these infinite 

totalities ‘non-finite pluralities’ (or infinite species) which he interprets in an idealized or else 

 
19 It should be noted that the very specific wording that Mayberry is re-defining and re-identifying sets and the 

theory of sets with the arithmoi highlights a critical aspect of his project – since he maintains that the arithmoi is 

both the conceptually presupposed and historically precedented ‘original face’ of what sets are.  
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potential sense (Mayberry, 265, 2000). Moreover, while Mayberry does not go so far as to reject 

Cantorian set theory, or the axiom of infinity in particular, he does suggest that there is a ‘serpent 

in Cantor's paradise’. This serpent he takes to be the fact that infinite collections are barred from 

nature/reality as they are “phantasms corresponding to nothing in reality” (Mayberry, 269, 2000). 

Consequently, the view that emerges from Mayberry’s account is that ‘non-finite pluralities’ 

(infinities), while being possible in a potential or ideal sense, are both: a) not accepted if they are 

taken in the sense of being actual infinities, and b) barred from being included among the 

arithmoi.  

Mayberry’s treatment of infinite totalities seems to, generally, amount to a dialogue 

between Mayberry’s Euclidean Finitism and classical mathematics. However, Constructivists 

could push back on Mayberry with the notion that, even if we were to accept Mayberry’s point 

that infinite collections do not qualify as legitimate arithmoi, this does not mean that they cannot 

be understood as collections in a different sense. Moreover, set theorists may argue that the 

notion that infinite collections do not meet the criteria of the arithmoi does not entail that they 

cannot be understood or described by the same logical principles and reasoning which apply to 

the arithmoi.  In other words, even if we grant that Mayberry has, definitionally, barred infinite 

collections from set theory (insofar as sets have been redefined as ‘finite pluralities’), this does 

not render infinite collections as conceptually illegitimate in themselves, but rather, this just 

signifies that they are something else other than arithmoi. Something of this idea was pre-

emptively addressed by Mayberry’s acceptance of non-finite pluralities as potential phantasms, 

however, insofar as our logical reasonings and principles which describe the arithmoi are taken 

to be general in nature (in the sense of being applicable across any and all domains as was 

discussed in the previous chapter), then any legitimate reasonings about them should be in 
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principle equally applicable to infinite collections, regardless of whether or not those infinite 

collections qualify as arithmoi by Mayberry’s account. Consequently, while Mayberry’s 

treatment of non-finite collections may have something to say against classical mathematicians, 

it does not necessarily speak against Constructivists who were not concerned with asserting the 

existence of infinite collections, beyond their potentially being mind-dependent constructions, in 

the first place.  

Moreover, insofar as one wants to object to the conceptual legitimacy of ‘completed 

infinities’, it is useful to contrast the way that Mayberry’s system handles infinities to 

Constructivists like Brouwer. Where Mayberry’s definitional barring of infinite collections from 

the arithmoi does not directly concern the formulation of a completed infinite collection, 

Brouwer’s repudiation of completed infinities, as we have seen, instead directly attacks the very 

possibility of legitimately forming a completed infinite collection. This discrepancy should be 

borne in mind as it suggests that, if one takes issue with the notion of completed infinite 

collections, a better means of rejecting them will likely come from taking issue with the very 

legitimacy of forming them in the first place. On the other hand, because it has been seen that 

Mayberry’s account allows for the same principles of reasoning and classical logic to be applied 

to ‘phantasms’ that are applied to the arithmoi, it may be seen as a virtue of Mayberry’s account 

that it is also consistent with the practices of most mathematicians (relatively few of whom are 

Constructivists).  

The Ontology of the Arithmoi:  

We may further unpack the nature of the arithmoi, as Mayberry conceives of them, 

through considering the following question: notwithstanding the formal definition of the 

arithmoi, what does Mayberry take them to ‘be’? Within his book, Mayberry provides an 
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extensive answer to this question through his ontological treatment of how the arithmoi are said 

to exist. The beginning of Mayberry’s answer to this question takes the form of an extended 

analogy concerning a herd of twenty-five horses from which we can pick out a ‘number’ of 

triples (2300) from this herd20. He gives an example of one such triple composed of the 

particular horses ‘Trigger, Champion, and Red Rum’ and argues that by the mere fact of their 

being the particular horses that they are they compose the number of horses that they are 

(Mayberry, 22, 2000). Within this example, Mayberry makes the point that the horses, inasmuch 

as the various triples from within the herd, already are there or ‘composed’ before anyone 

conceives of them. This leads Mayberry to the assertion that “A number of horses is no more a 

creature of the mind than are the individual horses that compose it. Since we can count such 

numbers, it is natural that we “count” them as things (Mayberry, 22, 2000). However, critically, 

Mayberry likewise maintains the same position towards the arithmos of the 2300 horse triples 

which are also contained in the herd (Mayberry, 22, 2000). In this essay’s later considerations, it 

will be seen that this position is ontologically fraught.  

As a consequence of Mayberry’s conception of the arithmoi, he argues that we should 

understand ‘number words’ not as naming abstract ‘objects’, but rather, as standing for what he 

calls ‘species’ of number (Mayberry, 24, 2000). In this respect, Mayberry takes number words 

not as referring to any specific abstract objects so much as he takes them as referring, in the more 

general sense, to all sets/arithmoi of their given numbers. According to this, and following Frege, 

Mayberry argues that by the ‘original’ conception of number we should express number 

statements in the form “There is a five of horses in the field” or, “The number of horses in the 

field is a five” (Mayberry, 24, 2000). By this conception, the ‘number words’ which enter into 

 
20 This example begins on page 21 of Mayberry’s The Foundations of Mathematics in the Theory of Sets.  
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our propositions refer to numerical species – and it is this procedure that contributes to the 

referential semantics of Mayberry’s account. However, concerning the nature of these ‘numerical 

species’ which are picked out by the ascriptions of our number words, Mayberry explicitly 

leaves the door open to Platonism and attempts to avoid the ontological question when he states: 

“you may still be tempted to take each such species itself to be an abstract object, just as you 

may be tempted to take  species words in the category of substance (e.g. “horse” or “man”) as 

standing for particular abstract objects – “universals”, or “Platonic Ideas” … But such 

ontological extravagance (if it be extravagance) is not forced upon you” (Mayberry, 29, 2000).  

Part of Mayberry’s impetus for wanting to avoid ontological questions regarding the 

arithmoi is illuminated in light of his later identification of the following two problems. The first 

of these problems concerns the semantics of mathematical discourse, and Mayberry frames it in 

the form of a question: “what conditions must we place upon the things referred to in 

mathematical discourse, what features must we suppose them to possess, in order for 

mathematical definition and proofs to work; and how can we formulate those conditions in a 

mathematically usable way?” (Mayberry, 68, 2000). This semantic problem of mathematics, 

therefore, is seen to concern the question of what mathematical discourse is about and, in 

particular, it concerns the question of what conditions are required of the things referred to in 

mathematical discourse for them to work and function within proofs. For Mayberry’s part, he 

takes definiteness and identity to be the minimum necessary conditions required by the things 

referred to in mathematical discourse (Mayberry, 68, 2000). In addition to this semantic problem, 

Mayberry identifies a second ontological problem which he also frames in the form of a 

question: “what kinds of things, if any, satisfy those [the semantic] conditions?” (Mayberry, 68, 

2000). Whereas the former semantic question concerned the formal and operational functionality 
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of the things referred to in mathematics, this second ontological question concerns whether or 

not any ‘real’ things can be said to satisfy the question. This signifies a shift in Mayberry’s work 

towards realism. For the Constructivist, their positive inquiry stops at the semantic question, 

however, much of Mayberry’s account (notwithstanding his declared desire to avoid the 

ontological question) is interwoven with an ontological thesis through his prioritization of the 

arithmoi. Consequently, while Mayberry states that it is ‘vital’ to keep these problems separate 

for the reason that, while the semantic problem can be solved, the ontological problem remains 

‘open-ended’, he, unlike the Constructivist, does entertain a positive answer to the ontological 

question (Mayberry, 69, 2000). Concerning Mayberry’s positive account, he takes the arithmoi 

as the kind of things that satisfy those earlier semantic conditions and makes the further assertion 

that the arithmoi exist in even a mind-independent sense21. 

In light of these considerations, and insofar as he offers a direct treatment of the 

ontological question, it is important to evaluate the ontology contained within Mayberry’s 

account. Much of Mayberry’s ontology ultimately rests upon Aristotle’s statement that “Things 

are said to be in many ways” (Aristotle, Metaphysics, Ζ) – a notion which appears, at times, as a 

kind of Catechism or assumed dogma within Mayberry’s ontology. Notwithstanding this, 

Mayberry does not take his position to be an absolute answer, but rather, he asserts that he is 

personally contented with a ‘relative’ answer to the ontological question (Mayberry, 31, 2000). 

His positive conception offers a distinction between the two ‘essences’ of a number where the 

first is its ‘material aspect’ and the second is its ‘formal’ or ‘arithmetical’ aspect (Mayberry, 32, 

2000). The material aspect of a number he relates to the ‘units’ which compose the number, and 

 
21 Some central places where these ideas occur in Mayberry are: 2.4 “Number words and ascriptions of number”; 2.5 

“The existence of numbers”; as well as parts 3.1; 3.2; 3.3; 3.4; 3.5; 3.6; and 3.7 composing the section “Semantics, 

Ontology, and Logic” within Mayberry’s The Foundations of Mathematics in the Theory of Sets.  
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the formal or arithmetical aspect he relates to ‘how many’ of said units there are (Mayberry, 32, 

2000). Mayberry offers a summary of his ontological position in the claim that “The view that 

emerges from these considerations is that a number composed of things of a certain kind has the 

same kind of claim to existence as have individual things of that kind – its units, for example” 

(Mayberry, 34, 2000). Moreover, a further ontological commitment of Mayberry’s account is 

here made visible, that being that numbers are said to possess the same kind of existence as the 

individual units that compose them do. That this commitment may be fairly charged to 

Mayberry’s account is demonstrated through his subsequent statement that “Whatever kinds of 

things there are, and in whatever sense things of those kinds are said to exist, there are numbers 

whose units are things of those kinds, and those numbers may be said to exist in a way analogous 

to the way in which the things that are their units exist” (Mayberry, 35, 2000). There is a nuance 

here within Mayberry’s account which should be noted, namely, that the numbers exist in the 

same kind of way to their units. Consequently, if the units are themselves abstract – or if the 

units are said to possess a weak or contentious claim to existence – then their ‘number’ exists in 

a similarly abstract way. It is this nuance that Mayberry has in mind when he recognizes that a 

number of colors is abstract in a way that a herd of horses is not (Mayberry, 35, 2000). However, 

if we return to the aforementioned example of a herd of horses, Mayberry is committed to 

maintaining that the number species ‘25’ is existent in the same kind of way as the individual 

twenty-five horses that compose it are. It is this commitment that I will later argue is highly 

problematic.  

A final aspect of Mayberry’s ontology should be considered before moving on, namely, 

what does Mayberry take to be an ‘object’? Here he adopts Frege’s account. He states “What I 

am proposing to call “objects” is that propositions asserting the identity of objects must always 
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have deterministic truth values” (Mayberry, 69, 2000). According to this Fregean sense of 

objects, x counts as an object if and only if for any y, x=y is determinately true or false. This 

conception of what constitutes an object, while stated in formal terms, has an intuitive basis, as it 

amounts to the insistence that definite things/objects are objectively distinct from all other 

things/objects. Consequently, Mayberry understands objects, in the Fregean sense, to be definite 

things whose identity may be objectively and uniquely determined in the sense that they are 

distinguished from other objects. For Mayberry, this treatment satisfies the problem of 

articulating a clear referential semantics of objects, however, we have seen that Mayberry 

understands there to still be the further ontological problem of whether or not any things can be 

said to fulfill the semantic criteria.  

Notwithstanding Mayberry’s bifurcation between the semantic and ontological problems 

and subsequent suggestion that the ontological problem may be insoluble, he does offer a 

positive ontological account of the arithmoi in which he explicitly asserts that they exist 

(Mayberry, 72, 2000). Moreover, he makes the further claim that “they [the arithmoi] have the 

same kind of claim to real existence as definite, independent entities as have the objects that 

make them up. But this then becomes the sum total of the mathematician’s “ontological 

commitment”. The only “mathematical objects” he need acknowledge are arithmoi” (Mayberry, 

72, 2000)22. It should here be recognized that Mayberry’s account entails a commitment to the 

idea that the arithmoi have a real existence as objects - critically, they are accounted as 

 
22 The reader should recall that Mayberry is consistent on this point, as this claim is identical to that he makes 

concerning the ‘species of numbers’ in section 2.5 on “The existence of numbers”. However, and as will be taken up 

in later sections of this paper, Mayberry is incorrect to state that the only ontological commitment of the 

mathematician is to the existence of the arithmoi. Another such commitment has already been pointed out, which is, 

that Mayberry is further committed to the arithmoi possessing “the same kind” of existence as their units. Moreover, 

in the same way that being committed to the existence of Plato’s forms entails a great number of other ontological 

commitments, so too does Mayberry’s commitment to the arithmoi entail further ontological consequences.   
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possessing a bona fide ontological status within Mayberry’s account. This quote reveals a stark 

difference between Mayberry and Constructivists, since the former makes the further assertion 

that the arithmoi exist (so long as their members exist) independent to our 

consideration/construction of them. Consequently, Mayberry’s essential position is not captured 

by the Constructivist statement ‘we can construct some arithmoi’, as rather he contends that 

‘there independently exists some arithmoi’ and, in this way, Mayberry’s Finitism differs 

dramatically from Constructivism. And although it is true that the only ontological commitment 

in Mayberry is to the arithmoi, any ontological commitment whatsoever entails a host of 

ontological consequences which Mayberry then is similarly committed to addressing.  

Before detailing one of these consequences, one final quality of the arithmoi within 

Mayberry’s account should be clarified. Mayberry maintains that the ‘principle of unity’ for the 

arithmoi is found in their ‘finitude’ (Mayberry, 73, 2000). With this point, Mayberry pre-

emptively addresses the question of how an arithmos can be said to be an ‘object’ in the singular 

sense when it is by its very definition a plurality. The answer he gives is that following from the 

principle of unity in finitude of an arithmos, “simply by being objects, and therefore, by 

hypothesis, having, severally, claim to real, independent existence, and by being, conjointly, 

finite in multitude, the units of an arithmos together and collectively constitute a single well-

defined thing, viz. an object” (Mayberry, 73, 2000). This notion relates to Mayberry’s 

implementation of the Fregean sense of object as he is here concerned with defending the 

legitimacy of treating an arithmos as a singular and well-defined thing despite the fact that it is, 

definitionally, a manifold. Given his commitment to the Fregean account of what constitutes an 

object, we can see why: the arithmos X, including Trigger, Champion and Red Rum, will have 

determinate answers for any c, whether c = X (assuming that Trigger, Champion, and Red Rum 
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are objects). If c is not an arithmoi, the answer is no. If c is an arithmoi, then the answer is yes 

exactly when c has three members and they are the three horses in question, and the question 

“are they the same three horses?” will have a definite answer. For example, one might ask the 

question: ‘in what sense can the number/arithmoi of Mayberry’s herd of 25 horses be held to be 

a singular and existent ‘object’ when it is essentially a plurality/multitude’? According to 

Mayberry’s conception, it is perfectly legitimate to take the units (horses) of the herd together in 

a singular sense such that they constitute a single thing (in this case a number of horses). It 

would be uncharitable not to grant Mayberry this point, as he is not maintaining any more 

contentious a claim than we do when we commonly view composite things as well-defined 

unities – such as how we view treating a horse’s tail as singular and perfectly legitimate despite 

its being composed of a multitude of hairs.  

There are two central problems that emerge from Mayberry’s ontology – the first of 

which relates to how it is he extends claims of kinds of existence to the arithmoi. It is an explicit 

aspect of Mayberry's account that the arithmoi have a real claim to existence for he states that 

“we must accept that a set [arithmos] has just as legitimate a claim to existence as have the 

objects that compose it” (Mayberry, 70, 2000). However, the way that Mayberry goes about 

extending an independent existence to the arithmoi, at times, sounds dubiously similar to a 

fallacy of composition which infers that something (in this case the kind of existence) is true of 

the whole (arithmos/set) on the basis that it is true of its parts (units/members). This problem 

becomes apparent in light of Mayberry’s further statement that: “Whatever kinds of things there 

are, and in whatever sense things of those kinds are said to exist, there are numbers whose units 

are things of those kinds, and those numbers may be said to exist in a way analogous to the way 

in which the things that are their units exist” (Mayberry, 35, 2000). Mayberry infers what kind of 
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existence a given arithmoi has from the kind of existence that its members have. If we recall his 

earlier treatment of abstract colours, he only qualifies ‘numbers/arithmoi’ of colours as existing 

in an abstract way because the units composing them only exist in an abstract way, whereas, in 

the case of horses, he extends a stronger claim to existence. But here Mayberry appears to be 

inferring a property, in this case a kind of existence, is had by the whole (for a number/arithmoi) 

because it is had by its parts (members). In other words, Mayberry infers the kind of existence 

that an arithmoi from the kind of existence that its members have – but this is just a fallacy of 

composition. The problem here results from the fact that, even within Mayberry’s account, a 

set/arithmos only has a claim to existence through its units/members (that is unless one returns to 

Platonically asserting it exists as a form or thing in itself).  

Mayberry could here offer the counter objection, which admittedly is somewhat 

intuitively appealing, that the property of existence/being is unique in that the kind of existence 

had by all of the members/parts of a whole does imply the same kind of existence is had by the 

whole. However, we can imagine a whole (collection) like ‘all of the kings of France who were 

at one time the present king of France’ and, despite the fact that all of the members/units of this 

collection have existed in a physical kind of way, this does not entail that this set/arithmoi itself 

physically exists. Importantly, the issue of this present case can not be alleviated in the same way 

that Mayberry handled the abstract existence of numbers of colours. This is because, unlike with 

the case of colours, the members of the collection ‘all of the kings of France who were at one 

time the present king of France’ are physical, as opposed to abstract, members.  

The second central problem of Mayberry’s ontology also relates to his statement that 

“The view that emerges from these considerations is that a number composed of things of a 

certain kind has the same kind of claim to existence as have individual things of that kind – its 
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units, for example” (Mayberry, 34, 2000), The primary reason why this claim is problematic is 

that, in many cases, such as is apparent even within Mayberry’s own example of a herd of 

horses, the units/members exist in an actual and physical way – their claim to existence is a 

physical one. A problem therefore results from the fact that nothing actual/physical is either lost 

or gained by the horses ‘togetherness’ when in a herd as opposed to their being dispersed in the 

way that Mayberry describes (Mayberry, 35, 2000). Moreover, the idea that something 

actual/physical is lost or gained by the horses ‘togetherness’ appears prima facie to violate the 

law of the conservation of matter – for it would be an odd universe where something 

actual/physical came into existence when the horses got together and that this something was lost 

when they dispersed. Although these considerations do not cause an issue for the formal 

definition of objects that Mayberry borrows from Frege, for these may be constructed in an anti-

realist sense, Mayberry’s ontology is itself highly problematic because he makes the further 

claim that the number/arithmos exists in the same way as the individual members which 

compose it. 

Mayberry’s Anti-Operationalism:   

 In addition to Mayberry’s positive account, centred around the notion of the arithmos, he 

also offers a negative critique of operationalism in mathematics. Mayberry’s critique of 

operationalism may be characterized by his rejection of the idea that “the foundations of 

mathematics are to be discovered in the activities (actual or idealized) of mathematicians when 

they count, calculate, write down proofs, invent symbols, draw diagrams and so on” (Mayberry, 

15, 2000). The central notion of Mayberry’s anti-operationalism is the idea that, as opposed to 

rooting the foundations of mathematics in the operations or activities associated with 

mathematics, we should seek to root mathematics on the fundamental presuppositions which are 
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themselves presupposed by mathematical operations.  This notion relates to Mayberry’s criticism 

of axiomatic set theory which, as was seen earlier, was based on the fact that the axioms of set 

theory presuppose that there are sets in the first place. Similarly, Mayberry does not see the 

mathematical operations as primary for the same reason – as these too can be said to presuppose 

the ‘things’ (the arithmoi as Mayberry maintains) which are operated upon.  

 Basser has succinctly categorized Mayberry’s anti-operationalism into the following 

three theses: 

Thesis 1 “If . . . we see the notion of natural number as a secondary growth on the 

more fundamental notion of arithmos . . . then the principles of proof by induction 

and definition by recursion are no longer just ‘given’ as part of the raw data, so to 

speak, but must be established from more fundamental, set-theoretical principles.” 

(pp. xvi–xvii) 

Thesis 2 “Nor are the operations of counting out or calculating to be taken as 

primary data: they too must be analysed in terms of more fundamental notions.” 

(p. xvii) 

Thesis 3 “[The] operationalist conception of natural number is the central fallacy 

that underlies all our thinking in the foundations of mathematics.” (p. xvii). (Basser, 10, 2005). 

Taken together, these three theses help to contextualize why Mayberry takes the arithmos to be 

so central and fundamental to mathematics. The reason for this, as Mayberry maintains, is that 

the operations of mathematics, and the natural number sequence as a consequence, only emerge 
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after the arithmoi are already in place. Consequently, it is a fallacy by Mayberry’s account to lay 

the foundation of mathematics on operations that are not themselves fundamental, but which 

instead are founded upon the more fundamental notions of the arithmoi which are presupposed 

by the operations.  

 Notwithstanding Mayberry’s thoroughgoing critique of the operationalist fallacy with 

respect to the foundations of mathematics, it is important to recognize that Mayberry is 

(obviously) not opposed to the use of operators in mathematical practice. While operations 

clearly play a central role when it comes to our doing mathematics, Mayberry’s anti-

operationalist point is just that these operations are not the primary data of mathematics – they 

are not the ultimate presuppositions that constitute the foundation on which mathematics is built. 

The ‘operationalist fallacy’ which is so opposed by Mayberry consists in the tendency to view 

the mathematical operators as the foundation on which mathematics is built. This point may be 

better drawn out through considering the specific example of ‘counting’. Even before the 

possibility of counting is made available, it is necessary to first have ‘objects’ that one could 

count, since counting presupposes things to be counted. These ‘objects’, as we have seen, 

Mayberry contends are the arithmoi.  

 Having now provided a description of mathematical Finitism through the work of 

Dantzig and Mayberry, a clear narrative will be seen to emerge in the progression from 

mathematical Platonism to Constructivism to Finitism. Whereas standard Constructivist 

accounts, such as those of Brouwer and Dummett, are thoroughgoingly anti-realist, it has been 

seen that certain realist tendencies begin to be reincorporated at the fringes of Finitism such as 

occurs in Mayberry’s Euclidean Finitism. Notwithstanding the fact that the central issues within 

Mayberry’s account came precisely from his pseudo-realist ontology, this pendulum swing back 
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towards a pseudo-realist thesis can be seen as an important step in recapturing the desiderata 

which mathematical Platonism captured (albeit in a problematic way).  
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CHAPTER THREE: ACTUALISM 

An Introduction to Actualism: 

 In the previous chapters, through an examination of several key authors, I have broadly 

detailed the Constructivist and Finitist alternatives to mathematical Platonism. The aim of this 

final chapter will be to provide an alternative philosophy of mathematics (Actualist 

Mathematics) to all of these. Where both Constructivism and Finitism (generally) offer anti-

realist alternatives to Platonism, Actualist Mathematics differs in that it explicitly endorses a 

realist alternative to mathematical Platonism which is also founded upon a referential semantics. 

In this respect, the greatest benefit of the present account is that Actualism is able to conjoin the 

important and desirable elements from both the realist and anti-realist camps – that it is able to 

synthesize the two and meet Benacerraf’s challenge of simultaneously offering a referential 

semantics which parallels the rest of language while allowing for a satisfactory epistemology. 

Actualism does this by avoiding Platonism’s metaphysical and epistemological issues while 

simultaneously avoiding Constructivism’s need for an alternative non-referential semantic 

theory.  

Narratively speaking, Finitism – by moving away from the unfettered idealistic 

constructions of Brouwer’s creating subject – appears already as a step towards a synthesis 

between the Realist and Constructivist theses. The foremost indication of this was seen to be the 

pseudo-realism of Mayberry’s Euclidean Finitism, wherein the realism occurs through 

Mayberry’s implicitly if not explicitly endowing the arithmoi with a mind-independent 

ontological status. Notwithstanding this, Finitism is generally still understood as being as strictly 

an anti-realist philosophy of mathematics as Constructivism is although, as we have seen, some 

Finitists like Mayberry wax more towards realism than others and begin to reincorporate some 
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realist elements (Mawby, 2005). Still, even in the case of Mayberry, his Euclidean Finitism can 

be seen to carry the same anti-realist tendencies of Constructivism insofar as the central notion 

within his account – the arithmoi – is based upon Euclid’s constructed definition of them as 

‘finite pluralities’. Consequently, a lacuna remains in the shape of a missing realist alternative to 

mathematical Platonism.  

The impetus for providing such an alternative arises from the joint recognition that 

Platonism is an ontologically untenable position, which nonetheless fulfills a number of  

desiderata to mathematics, and that the anti-realist alternatives are themselves fraught. In other 

words, mathematical Platonism offers a desirable semantics, which promises a reality behind the 

reference, but whose reference is founded upon Plato’s ontologically untenable idealization of 

the forms. In contrast, Constructivism and Finitism alike instead ignore the issue of providing a 

semantics that attaches well to a realist ontology all together and, at the cost of offering a rather 

ontologically bankrupt account, avoid the ontological errors of mathematical Platonism by 

adopting an anti-realist thesis. While a realist ontology is not a necessary requirement for 

mathematics (seen singularly from the fact that Constructivism does not cease to be mathematics 

without it), having a semantics which is attached, or which can attach, to a sensible realist 

ontology has the benefit of fitting well within the semantics of our empirical scientific discourse. 

This reflects Benacerraf’s recognition that realist theses do offer something important – even if 

those which are based in Platonism are clearly flawed. The motivation to come to an alternative 

semantics, one which is amenable to scientific discourse, is itself an attempt to meet the 

following imperative: let us not throw the material out with the aether, the realist out with the 

Platonic. 
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The central argument of the present chapter is that we do not need to abandon the 

mathematical realist thesis outright because of the fraught Platonic account – and that neither 

should we grant Platonism the monopoly on realist mathematical theses; instead, we can restore 

a mathematical realism, restore a reality behind the reference, by rooting our mathematical 

reference in the actual physical/material universe as is treated by science. By way of arguing for 

this alternative, I will begin this chapter by detailing the beginning foundations and primary 

principles of Actualist Mathematics. I will then address several initial challenges which come to 

the position and, thereafter, I will argue for the viability and benefits of Actualist Mathematics 

(and recognize some limitations on the claims for its advantages with respect to Benacerraf’s 

challenge) as an alternative realist thesis to mathematical Platonism. By the end of the chapter, it 

will be seen that the central aspect of Actualism’s account is its realist referential semantics; 

however, it will also be seen that – most unlike mathematical Platonism – Actualism’s realist 

semantics do not extend to the entirety of mathematics. Instead of this, Actualism maintains that 

only the basic core aspects of mathematics are accounted for in realist terms, whereas it views 

the more complex aspects of mathematics as anti-real constructions which are built upon the 

more basic realist foundations.   

Towards an Actualist Mathematics:  

Actualism and Alternative Foundations of Mathematics: 

 The defining characteristic of Actualist Mathematics is the prioritization of the actual 

(here understood as the physical) and the subsequent notion that claims of being real or existent 

(a positive ontological status) can therefore only be extended to mathematical referents which are 

actual/physical. In this way, Actualism as a philosophy of mathematics, unlike Constructivism, is 

far more concerned with actual ontology insofar as it aims to provide both a realist referential 
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semantics as well as a positive answer to the ontological question. On the other hand, like 

Constructivism, the Actualistic thesis is also entirely opposed to Platonism’s posit of 

immaterially existent and mind-independent forms; though it rejects them without having to hold 

that mathematical objects exist only in the attenuated sense appropriate to mentally constructed 

‘objects’. Contrary to these, an Actualistic philosophy of mathematics insists on a stricter sense 

of ‘existence’ and only extends the positive ontological status of ‘existing’ to that which is 

actual/physical. Notwithstanding the ontological question, the Actualistic thesis is sympathetic to 

Constructivism regarding the more complex aspects of mathematics, such as set theory, which 

are seen to be constructed extensions of that which is physically/actually given. In other words, 

Actualism as an ontological thesis does not take issue with the syntax, methods, or proofs of 

either set theory or Constructivism (it does not attack them from within), but rather, it is ancillary 

to these and instead aims to offer an ontologically realist foundation of mathematics which is 

based upon the actual/physical world, which the more complex mathematics are built upon. We 

will return to the question of what to say about the ontological status of apparently referring 

terms in more complex mathematical discourse below, when a bit of development of the 

Actualist account will provide better tools to make the answer clear. 

 One immediate question which confronts such an aim is: What is meant here by the 

‘foundation of mathematics’ and what does Actualism take this foundation to be? Corollary to 

Actualism’s general emphasis on ontology, its treatment of the foundations of mathematics takes 

on a similarly ontological aspect. I admit to using this terminology in a non-standard sense. 

Generally, “mathematical foundations” are taken to refer to the logical or philosophical basis that 

underlies mathematics, and many courses in “foundations of mathematics” quickly devolve into 

courses in set theory demonstrating the extent to which other branches of mathematics can be 
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reconstructed as part of set theory — arguing, in effect, that the logical and philosophical basis of 

all practical mathematics is set theory, i.e., its axiomatic principles and, though this second part 

usually receives less attention, whatever ontology is presumed by set theory. I am therefore 

focusing on one part of the more standard version of the question ‘what are the foundations of 

mathematics’ by focusing on the question ‘upon what (things) is mathematics founded/based’; it 

is part of the Actualist answer to reformulate this question as ‘what physical/actual things give 

rise to mathematics’? As noted, there is a sense in which the Actualist answer applies directly to 

the basic areas of mathematics. But, as an answer about the foundations of mathematics in the 

sense just described, Actualism serves as the general foundation of mathematics — where the 

more complex areas of mathematics are themselves seen to be constructed upon these more basic 

areas, and so share the same foundations. Aphoristically, the Actualistic thesis is contained in the 

statement that the ultimate foundation of mathematics – inasmuch as anything else – needs to be 

laid upon something which can itself bear weight, which is to say, upon something 

actual/physical.  

 Working within this conception of the foundation of mathematics, a number of different 

‘foundations of mathematics’ appear depending upon which conceptual system one is 

considering. For Constructivists and Finitists, the foundations of mathematics are generally taken 

to be mind-dependent; consequently, anti-realists about mathematics lay the foundations of 

mathematics upon that which we have ourselves constructed. However, Actualism as a 

philosophy of mathematics operates with the prior ontological concern of asking the question: 

upon what, if anything, are these anti-real foundations themselves founded23? Unless one here 

 
23 Here I do not mean to dismiss the Constructivist project/Syntax, rather, my intention is more essentially to provide 

the ontology/semantics that it is lacking. 
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resorts to a Berkeleyan idealism, two distinct answers present themselves to this question. In the 

anti-realist sense (which is to say the mind-dependent sense), the foundations of mathematics, 

insofar as we have constructed/defined them (as is the case in set theory for example), are 

themselves founded upon the evolved cognitive capacities of our organism/brain. Furthermore, 

in the realist sense, a mind-independent foundation of mathematics may be derived/substantiated 

insofar as we are able to relate the content of our mathematical propositions to the 

actual/physical world. In other words, we may endow some of mathematics with the unique 

claim of being about mind-independent objects (of possessing a reality behind their reference), 

insofar as they can be externally substantiated as describing the actual/physical world. It will be 

the aim of that which proceeds in this chapter to outline and defend some principles for 

substantiating the claim that at least a certain subset of mathematics rests upon mind-independent 

and realist foundations.  

Intellectual Instincts as Inherited a Priori Judgements: 

There is one common notion that unifies the realist sense behind the idea that both the 

mind-dependent and the mind-independent aspects of mathematics can be founded upon the 

actual/physical. This common notion is found in rejecting the ‘primary dogma of rationalism’ -

that being the distinction between a priori and a posteriori judgement24. By which I mean to say 

that the distinction between a priori and a posteriori judgement is an illegitimate one, seeing as 

all a priori judgements are at the bottom ultimately just a posteriori judgements. In other words, 

ontologically speaking there is no such ‘thing’ as a judgement that is made/known prior to 

experience. This is because, although certain judgements may appear as a priori to us, unless one 

 
24 It is imperative to recognize that the distinction between a priori and a posteriori judgements which is discussed 

in the present thesis is limited to those stringent characterizations which maintain a very strong sense in which a 

priori judgements must be independent of any and all experience.  
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is to ascribe to the scientifically disparaged notion of Wallace that evolution ‘ends at the head’, 

what are taken to be a priori judgements (insofar as one wants to entertain of such things) can 

instead be seen as the culmination of thousands of years of inherited evolutionary experience. 

Consequently, it is empirically false to say that any judgment is made a priori to all experience, 

as rather, a priori claims are made at best a priori to one's own experience. In other words, a 

priori judgements (insofar as we posit them at all) are really just a posteriori judgements 

inherited from our evolutionary ancestors.  

When a priori judgements are conceived of in this way they appear in the form of what 

we should instead call ‘intellectual instincts’ - a phrasing which itself relates to the Intuitionism 

of Brouwer and the Pure Intuitions of Kant. However, there is a great difference between the 

Actualistic posit of inherited ‘intellectual instincts’ and Kant’s Pure Intuitions; this being that the 

according to Actualism these judgements are based upon the empirical world (upon the 

actual/physical) and not upon idealistic abstractions. From this perspective, there is a certain 

truth within Kant’s conception of Pure Intuitions and the notion that certain ‘intuitions’ must first 

be in place before we can either have sensations or form the judgments of reason. However, the 

Actualistic thesis maintains that Kant was wrong to posit this de abstracta when they are (at least 

today) able to be seen as the result of an inherited evolutionary history and are thus better 

understood as biologically inherited intellectual instincts. Contrary to Kant’s conception, 

Actualism instead views these intellectual instincts as physical parts of our cognitive structure 

which, owing to the selective pressures of evolution, over time have ensured that our intellectual 

instincts offer a (generally) veridical representation of the world in which we live.  

This conception is also different from a related view of the Logical Positivists who 

maintained, in a more strictly pluralistic sense, that there are many possible conceptual 
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frameworks within which we might do science and that we adopt one as a matter of convention. 

Actualism varies from this in that it instead maintains that we possess one physical conceptual 

framework, our cognitive structure, which is not conventional but evolutionarily endowed as a 

part of our physical organism (in the form of what have here been called intellectual instincts). 

However, Actualism shares the sentiment of the Logical Positivists that there are conceptual 

features to the conceptual frameworks within which we do science and so remains pluralistic, 

albeit in a softer sense — it holds that the conventional portion of our conceptual frameworks are 

additional formal constructions that are built on top of our basic, physically endowed conceptual 

framework. That is, Actualism is pluralistic regarding our conceptual frameworks but features a 

bifurcation between what may be called our ‘first-order’ conceptual framework, which is the 

innate physical endowment of our conceptual structure, and what may be called ‘second-order’ 

conceptual frameworks which are constructed upon it  

When the present reconceptualization of Kant’s Pure Intuitions in the form of inherited 

intellectual instincts is applied to the nature of our mathematical judgments, it has the 

consequence of entailing that the ultimate foundation of mathematics lies in both our inherited 

evolutionary experience and in the external world which shaped/selected them (through the 

application of adaptive pressures). In a heuristic sense, this Actualistic thesis has a conceptual 

similarity to Chomsky’s notion of a universal grammar; however, as opposed to positing an 

inborn syntax/grammar, it instead posits an inborn/inherited mathematical/logical ability in the 

form of what has here been called the ‘intellectual instincts’. Although the idea that 

mathematical/logical judgments such as that 2 + 2 = 4 or that geometric judgements, such as 

Kant treats of in relation to the Pure Intuition of Space, are biologically heritable judgements 

might prima facie appear fantastical, not only does the evolutionary literature provide a 
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multitude of examples of inherited instinctual behaviors or ‘judgements’ which appear equally if 

not even more fantastical than these, but more, it even presents us with clear empirical 

indications that the rudiments of mathematical judgements, such as numerosity and even a basic 

geometric understanding of shapes, are found in a surprising number of other species both within 

and beyond the great apes25. Consequently, not only is the assertion that the foundations of our 

mathematical/logical a priori judgments arise from the inheritance of ‘intellectual instincts’ 

theoretically plausible, it is already an empirically supported/substantiated hypothesis within the 

psychological/ecological literature. 

Notwithstanding the scientifically secure claim that the ultimate foundations of our 

intellectual capacities are biologically inherited26, this claim does not include the fallacious 

overstatement that all of our intellectual judgements are inherited. In other words, one can 

recognize that we are endowed with certain a priori judgements27, in the form of intellectual 

instincts, without taking this idea to the dogmatic point of asserting that all of our judgements are 

inherited. On the contrary, and with respect to mathematics, it would be speculative if not absurd 

to state that all mathematical judgements, especially those of a more complex nature, are 

evolutionarily endowed. Consequently, it is neither the intention nor the conclusion of the 

present thesis to assert that all of mathematics reduces to the actual/physical, but rather, it is the 

aim of the present thesis to provide an ontologically realist foundation from which the more 

 
25 What exactly these judgements look like, as well as the empirical support for hypothesizing them, will be 

discussed in greater detail later in this subsection.  
26 In addition to the empirical support as to why we should suppose that this, a more directly philosophical case 

comes from considering what it would mean to maintain otherwise. If we did not maintain that the ultimate 

foundations of our intellectual capacities were based in our physically inherited cognitive structure, where else 

would we imagine them to come from? Here it appears that someone would need to recourse to some Platonic idea 

about a non-physical intellect or nous.  
27 The only sense in which these judgements are here said to be a priori is that they occur prior to our own 

individual experience but, critically, they are still acquired from our inherited evolutionary experience.  
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complicated mathematical constructions arise. It is in this sense that the Actualistic thesis is 

sympathetic to Constructivism (and is even maintainable alongside it), insofar as it offers an 

ontological account which the latter is lacking. And although the Constructivist can define 

‘objects’ and consistently manipulate symbols within an axiomatized syntax in an a-ontological 

language game (for one may surely speak in this way if they wish), it is explanatorily beneficial 

to found this practice within a consistent ontology that itself connects to the actual/physical 

world. The perspective that emerges from these considerations is that the more complex aspects 

of mathematics (things like the Axiom of infinity, Powersets, and other Pure Mathematical 

constructions like Lie group E8) have their foundations in the more basic and immediate 

judgements which are a part of our cognitive structure. These more complex aspects of 

mathematics, according to Actualism, are seen to occur within ‘second-order’ formal conceptual 

frameworks which are themselves grounded and built upon the more basic physical conceptual 

framework which was evolutionarily inherited. To take an example, Actualism maintains that our 

judgements about the more complex algebraic constructions studied in group theory, like Lie 

group E8, that deal with abstract dimensionalities are built off of our more basic and immediate 

judgements about simple physical spaces. Moreover, because we know that these more basic and 

immediate judgements are the result of our evolutionarily inherited cognitive structure, it is in 

this sense that Actualism includes an account of the foundation of our more complex ‘second-

order’ conceptual frameworks.  

One very important question here arises in the form: what does the present account take 

these more basic evolutionarily endowed ‘a priori’ judgements (intellectual instincts) to be and 

what might one look like? These intellectual instincts are here taken in the sense of being basic 

judgements that are inborn parts of our core cognitive system which have been acquired through 

https://en.wikipedia.org/wiki/Lie_group
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evolution. One such basic system (which under the present system is to be classified as a ‘first-

order’ or physical conceptual framework), is numerosity, which concerns judgements about the 

size of groups28 of objects. The judgements which result from this cognitive system, for example, 

are those which differentiate between the number of objects in groups. Critically, the fact that 

these most basic mathematical judgements (such as the ability to discriminate between the 

numbers 2 and 4, or the ability to ordinally sequence the numerals 1-9) have been found in a 

plethora of other animal species, albeit in the great apes most consistently, is what provides the 

indication that the most basic elements of mathematics are an evolutionary endowment29. In 

addition to this first physical conceptual framework, which shares a conceptual similarity to 

Kant’s conception of the Pure Intuition of Time, there is a further indication of a second physical 

conceptual framework - that of a core geometric sense. This additional ‘first-order’ conceptual 

system, which similarly shares a conceptual resemblance to Kant’s conception of a Pure Intuition 

of Space, has also been found in a myriad of other animal species30. Specifically, the judgements 

which are endowed by this core cognitive system have been related to “the three fundamental 

 
28 Here I am using ‘group’ as another way of referring to collections of individuals so that I do not call to mind 

unwanted associations (e.g. with Cantor, or even with Mayberry’s arithmoi). I do not intend to suggest a group in 

the modern mathematical sense, i.e. I do not presume the presence of an associative, symmetric relation nor an 

inverse on the members of the collection. 
29 Some good papers which demonstrate this in the literature include: a) Inoue, Sana, and Tetsuro Matsuzawa. 

"Working memory of numerals in chimpanzees." Current Biology 17.23 (2007): R1004-R1005. Piantadosi, Steven 

T., and Jessica F. Cantlon. "True numerical cognition in the wild." Psychological science 28.4 (2017): 462-469; b) 

Tomonaga, Masaki. "Relative numerosity discrimination by chimpanzees (Pan troglodytes): evidence for 

approximate numerical representations." Animal cognition 11.1 (2008): 43-57; c) Nieder, Andreas. "Neuroethology 

of number sense across the animal kingdom." Journal of Experimental Biology 224.6 (2021): jeb218289; and d) 

Lorenzi, Elena, Matilde Perrino, and Giorgio Vallortigara. "Numerosities and other magnitudes in the brains: a 

comparative view." Frontiers in psychology (2021): 1104. 
30 Two good indications of this come from: a) Spelke, Elizabeth S., and Sang Ah Lee. "Core systems of geometry in 

animal minds." Philosophical Transactions of the Royal Society B: Biological Sciences 367.1603 (2012): 2784-

2793; and b) Spelke, Elizabeth, Sang Ah Lee, and Véronique Izard. "Beyond core knowledge: Natural 

geometry." Cognitive science 34.5 (2010): 863-884. 
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Euclidean relationships of distance (or length), angle, and direction (or sense)” (Spelke, Lee, and 

Izard, 2010). Moreover, there is a clear empirical indication that these ‘first order’ or physical 

conceptual frameworks are, even in the case of other animals, not the result of an organism's own 

experience and learning, but rather, that they are innate evolutionarily endowments (Chiandetti 

and Vallortigara, 2008; Vallortigara, Sovrano, and Chiandetti, 2009). The view which emerges 

from these considerations is that our most basic and fundamental understanding of mathematics, 

which is to say our most basic judgements and core conceptual mathematical systems, are 

evolutionarily acquired at the most basic level as ‘first-order’ or physical conceptual 

frameworks.  

Notwithstanding this, it is very important to recognize that, in the case of our more 

complex and higher order mathematics, not all of our judgements are directly reducible to these 

most basic and core cognitive systems. In the case of more complex mathematical constructions, 

such as branches of Pure Mathematics that deal with judgements concerning things as high as 11 

dimensions, it would be clearly absurd to reduce our judgements and understanding of higher 

dimensionalities to the evolutionary endowment of a basic geometric sense. Actualism does not 

maintain this over-reductionist assertion, but rather, maintains that these more complicated 

constructions, inasmuch as our more complex judgements and understanding about them, relate 

to ‘second-order’ or formal conceptual frameworks which are essentially constructed or 

‘chosen’. However, with respect to the foundation of mathematics, Actualism maintains that 

these ‘second-order’ formal conceptual frameworks are themselves ultimately built upon our 

more basic and core ‘first-order’ physical conceptual frameworks, and so share their 

https://www.researchgate.net/profile/Giorgio-Vallortigara-2
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foundations31. In other words, the most basic building blocks of mathematics (of our 

mathematical understanding) is founded upon our evolved cognitive structure, and our more 

complex mathematical systems, while distinct and not reducible to this core structure, are 

founded upon it32. This is to say, our judgements and understandings about higher 

dimensionalities so abstract as an 11th dimension are founded upon our evolved cognitive 

structure, upon our more basic judgements and understandings about the 3 physical dimensions 

which are evolutionarily acquired. It should here be noted that the justification for viewing the 

more basic claims of math as inherited judgements has not yet been provided, as the justification 

for this assertion occurs below.   

The Semantic Question - Retaining a Realism of Reference:   

 The theory of reference which I mean to here employ is generally derived from Frege’s 

“Sense and Reference” and Russell’s “On Denoting”. In much that same way that, as was seen 

earlier, Dummett remarked that the logicist's answer to the question ‘what is mathematics about’ 

generally had the right idea, I mean here to similarily affirm that the theory of reference 

employed by the logicists “if not the exact truth of the matter, is closer to the truth than any other 

than has been put forward” (Dummett, 21, 1993). This theory entailed that the criterion for being 

an object is having a determinate truth value (stated briefly in the form: x is an object if and only 

if a = x for all values of a). While I accept this formal construction of objecthood, it allows as 

objects both actual things and other abstract ‘things’ that an Actualist will not qualify as actual 

(such as some of the clearly non-physical constructions of higher mathematics). In other words, 

 
31 It needs to be recognized, both here and in what follows throughout the rest of the thesis, that the account at 

present remains metaphorical. What exactly constitutes this relation (the relation between the first-order and second-

order frameworks), as well as the specific metaphysical status of how it is that the second-order frameworks are said 

to be built/founded upon the first-order frameworks, is a subject which requires further elaboration. 
32 It is here, in this passage, that the metaphorical nature of this relation as it is presented in the current thesis is the 

most pronounced. The explication of what this relation precisely consists in is a complex matter for a future paper.  



 

 

77 
 

while this account of objecthood is formally acceptable, it is not sensitive enough to distinguish 

between actual objects and fictitious objects. Consequently, the Actualist makes a further 

distinction between actual referents and referents of convenience. According to this distinction, 

actual referents are physical objects which are independent of the mind and extended in the 

world, whereas referents of convenience are abstract mind-dependent concepts/constructions 

which are not physically substantiated. For example, the referent Venus, the morning/evening 

star, is here taken to be an actual referent whereas Venus, the Roman goddess of love and beauty, 

is instead taken to be a referent of convenience (that is, if one is to grant that the goddess is a 

genuinely constructed object at all). Consequently, the proposition ‘Venus is the second planet 

from the Sun when Earth is taken as the frame of reference’ describes a fact of the Universe 

whereas the proposition ‘Venus is a more beautiful love goddess than Aphrodite’ refers to an 

abstract idea/sentiment.  

With respect to mathematics, the Actualistic thesis maintains that a form of realism may 

be maintained for those mathematical claims which similarly refer to actual referents. Moreover, 

a realist theory of reference is entirely essential to Actualism insofar that it serves as a 

‘loadstone’ in the sense that, without a referential realism, Actualism would possess neither an 

ontological nor an explanatory claim of connecting or describing the actual/physical world33. 

However, in the case of mathematical propositions, the case is not as clear insofar as 

mathematical ‘objects/numbers’ are not immediately seen to be actual in the way that physical 

objects such as the planet Venus are. Because of this, it is necessary to first defend the claim that 

it is sensible to treat certain mathematical ‘objects/numbers’ as actual referents as opposed to 

mind-dependent referents of convenience. The difficulty, in this case, results from the fact that 

 
33 Just what this claim entails (Actualism’s account of truth), will be detailed in the next subsection.  
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mathematical ‘objects/numbers’ such as ‘Two’ are not encountered as objects in the world in the 

way that planets, tables, or readers are. Consequently, in what sense can it be said that 

mathematical propositions ever refer to actual referents when they appear to reference abstract 

‘objects/numbers’ as opposed to any individually existent physical thing?  

Although the point must be granted that mathematical ‘objects/numbers’ are in important 

ways different from physical things such as planets or desks, a sense of realism can be restored 

by maintaining that mathematical propositions can be said to refer to physical things insofar as 

both: a) their referents are reducible to physical objects, and b) they truly describe a given state 

of affairs of actual referents34. In other words, insofar as the content of a mathematical 

proposition describes an actual state of affairs that is itself substantiated in the world, then that 

proposition may be said to possess a claim of referring to the actual/physical world. For example, 

if we take the claim ‘two trees plus two other trees equals four trees’, Actualism maintains that it 

can be taken to describe a physically substantiated state of affairs since the referents, in this case, 

can be taken to refer to any four actual objects (four trees). Concerning the more abstract and 

general claim that 2 + 2 = 4, Actualism also maintains that this can be substantiated in a realist 

sense insofar as such abstract truths can be seen as generalizations of the truths recognized in the 

mixed mathematical/empirical claims about individual objects. In this way, Actualism’s 

metaphysical view on the generalizability of number has a great affinity to Aristotle’s theory of 

abstractions (Aristotle, De Anima 429; Metaphysics, 1084b-1087a). Here Aristotle articulates the 

idea that it is a mistake to separate the universal from the individual and, most directly 

concerning mathematics, he reasons that numbers cannot exist apart from things (Aristotle, 

 
34 A full explanation of how Actualism’s referential semantics relate to the truth of mathematical propositions will 

occur in the next section.  
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Metaphysics, 1084b-1087a). With respect to the present thesis, a great affinity may be observed 

between this account of Aristotle and Actualism’s notion that the more abstract (or universal) 

generalizations about numbers are preceded by empirical claims about individual sensible things.  

One way to account for the generalizability of mathematical claims according to this 

picture may be given as follows: one begins with the more specific conception of ‘a set of two 

trees’ and observes the property of ‘twoness’. We further observe that the union of two disjoint 

sets of two trees amounts to a set of four trees and the property of ‘fourness’ – and a similar story 

may be told for the other numbers. Thereafter we can be said to arrive at the generalization that 

for all sorts of X of countable individuals, two X plus two X equals 4 X. However, speaking of 

generalizations in this way should not be taken to signify that this process is deliberative or 

conscious within the Actualistic account, for, these generalizations are understood as having 

been formed throughout the course of the evolutionary process. Within this account, the ‘reason’ 

as to why we formed these specific generalizations is said to result from evolutionary pressures. 

Actualism maintains that reliable beliefs and generalizations about at least the basic 

mathematical truths conferred a selective advantage insofar as these general beliefs offered a 

reliable reflection of the actual world. It is from this notion, the notion that the basic core of our 

mathematical judgements and intuitions are evolutionarily inherited, that Actualism’s realist 

thesis emerges since here mathematics is said to ‘connect’ to veridical claims about the external 

world.  

From this may be derived the central principle which underlies Actualism’s referential 

semantics, that being, the method of aiming to establish a reductio ad materiam. It is through this 

that certain mathematical propositions such as 2 + 2 = 4 may be said to possess a realism of 
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reference insofar as its contents can be reduced and related to a veridical state of physical affairs. 

The application of a reductio ad materiam takes the form of attempting to reduce/relate the 

referents of a mathematical proposition to actual referents which are veridically instantiated in a 

state of affairs within the external world. The role that the reductio ad materiam plays within 

Actualism is to provide a means of identifying what mathematical propositions can be said to 

take actual referents and, consequently, which propositions can be said to possess a realist 

sense/meaning. When a reductio ad materiam is able to be established in this way (i.e., when a 

mathematical proposition can be said to physically obtain) it can be said to be true in a mind-

independent sense as it truly describes a physical state of affairs in the world. It is in this sense of 

reference that Actualistic Mathematics offers an alternative realist thesis to mathematical 

Platonism since, as opposed to the ontologically dubious posit of the existence of things like the 

actual or completed infinities, the realist sense in Actualism is instead derived from the 

actual/physical world. Although this sense of realism does not endow mathematical 

‘objects/numbers’ with a mind-independent existence in the same way that a planet or a rock 

exists, it does offer a sense in which a certain subset of mathematical claims (those which can be 

said to be physical veridical and instantiated through a reductio ad materiam), can be said to be 

empirical, a posteriori, and mind-independently true.  

It is useful, for the purposes of explicating this distinction, to juxtapose cases of 

mathematical propositions which take referents of convenience and those which, through a 

reductio ad materiam, can be said to take actual/physical referents. A case of the former are 

mathematical propositions that refer to completed infinities as, while completed infinities may be 

axiomatically defined and we can derive true claims about them within mathematical theories, an 

actual or completed infinity cannot be said to physically exist in a finite universe. Consequently, 
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although for the sake of the smooth functioning of the semantics of our language, and in order to 

facilitate the application of higher mathematics in our descriptions of the world, we may grant 

that one can refer to a completed infinity, it has no real reference, only a  “referent of 

convenience.”, Had we never invented language games like Cantorian set theory, the referent in 

question would not have existed in any sense at all. . On the other hand, in the case of 

mathematical propositions whose referents can be reduced to claims true in the physical world 

(including generalizations about that world) the states of affairs described are independent of 

whether we had ever conceived of them35.  

Moreover, our ability to extend a claim of independent reality to those areas of 

mathematics that are reducible, through a reductio ad materiam, to actual/physical states of 

affairs is not impeded by the idea that the syntax/concepts themselves are mind-dependent. In 

other words, the fact the natural numbers and the basic arithmetical operators can be or have 

been constructed does not diminish the fact that these constructions can be empirically observed 

as offering veridical descriptions of the world. We can defend the sense that a certain subset of 

mathematics is actual/physical (we can defend a realism about a certain subset of mathematics) 

even if we grant that the idea of ‘numbers/functions/operators’ are constructed within our mind-

dependent system and syntax provided that those constructed concepts refer to (or can be 

reduced/related to) actual/physical referents which are instantiated in the world. To deny this 

would, of course, be tantamount to denying that realism about anything is viable because the 

claims about which one hopes to be a realist are articulated in a human language. 

 
35 This statement is of course disputable if one wants to maintain, alongside Berkley, the notion that esse est percepi 

and the subsequent denial of the physical/external world.  
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One initial question that emerges is: according to Actualism, how much of mathematics 

should we be realists about, and what do we say about the rest of mathematics? Concerning the 

first of these questions, the answer is at this provisional point indeterminate but, as will be seen 

later, there is reason to suppose that a not insignificant portion of mathematics may be 

interpretable in realist terms. However, a large portion of mathematics likely will not be 

reducible to accurate descriptions of the physical world through their correspondence to a 

physically instantiated state of affairs, but this does not mean that they must be given up. Rather, 

Actualism maintains that these instead take mentally constructed concepts as referents of 

convenience within their propositions. Moreover, this only becomes problematic without the 

earlier distinction between actual referents and referents of convenience. In the case of the 

Constructivist language game, where a reference to actual objects is not a concern, recognizing 

the entirely mind-dependent nature of much of mathematics, particularly its more complicated 

branches such as occurs in set theory, appears as a desired consequence. The referents of the 

terms in these realms have the status that the logical positivists attributed to all mathematical 

terms: and here it appears as a kind of philosophical confusion to ask after their referents at all. It 

is merely an efficient and useful way to talk using names like "Aleph Null", to talk as if that 

name has a referent. However, what the Actualistic orientation and the method of a reductio ad 

materiam offers (that being the claim that a certain subset of mathematics are true in a realist and 

mind-independent sense insofar as they offer veridical descriptions of actual referents in the 

world) fits together well with a referential semantics which permits an ontologically realist 

foundation for mathematics which is both scientifically and philosophically defensible.   
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Truth Apropos Actualism:  

  As was indicated earlier in this chapter, the truth of basic mathematical claims can be 

reduced to true descriptions, often in the form of generalizations, which correspond to facts about 

the actual world. For Actualism, however, there is another residual problem that is: in what sense 

are the claims of more complex mathematical realms, those which are not directly reducible to 

the actual world, true? In order to account for the truths of our ‘second-order’ abstract conceptual 

schemas, Actualism asserts a composite theory of truth whereby it maintains that there are two 

different ‘kinds’ of mathematical truth. The first of these, actual truth, is said to occur in cases 

where a proposition corresponds to a physically instantiated state of affairs by describing it - 

when a proposition gives us some information or knowledge about the external world in the way 

earlier described. The second of these, formal truth, is said to occur through the 

correct/consistent application of the rules, axioms, or syntax of a formal symbolic system to 

referents of convenience. Whereas formal truths do not require a realist account of 

correspondence (since they do not purport to refer to the external physical world), actual truths 

will be seen to require an articulation and defence of just how it is that the sense of a 

mathematical proposition can be said to correspond to some actual/physical state of affairs.  

Within Actualism, correspondence is understood to consist solely in the fact that certain 

mathematical propositions offer veridical descriptions of some state of affairs36 in the external 

world which is physically instantiated and empirically verifiable. The sense of correspondence 

here meant is therefore taken to consist entirely in a proposition conveying some true 

information about the external world - in their offering a veridical description of something 

 
36 A state of affairs is here taken in the somewhat nonstandard sense of including generalizations about the actual 

world.  
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actual/physical. With respect to the earlier example: ‘two trees plus two other trees equal four 

trees’, this statement is said to correspond to the extended world insofar as they convey true 

information about it37. However, this is not to say that they latch onto or connect to an 

actual/physical referent or state of affairs in any necessary, definite, or essential way; but rather, 

that they offer some accurate approximation of an actual referent or physical state of affairs. In 

other words, Actualism does not maintain that the correspondence between a proposition and 

reality is itself actual/physical, but rather, that there is some correspondence to the actual when a 

proposition offers an accurate description of some external state of affairs that is physically 

embodied (and it is in this sense that a mathematical proposition is said to be ‘realist’ when it 

conveys an actual truth). In contrast, propositions whose referents do not concern the actual, 

propositions which are essentially abstract/ideal, their truth is context dependent on the system in 

which they occur and is understood to consist in their correctly applying the rules/axioms of that 

system. This is to be starkly contrasted from those propositions which, through a reductio ad 

materiam, may be said to refer to actual things and whose truth consists in their accurately 

describing (corresponding to) a physically instantiated state of affairs. It is the fact that certain 

mathematical claims can be reduced to actual truths about the physical world that stands behind 

Actualism’s claim that we are correct to be realists with respect to these claims. 

The residual problem (of how it is that Actualism accounts for the sense in which claims 

of more complex mathematical realms, those which are not directly reducible to the actual world, 

are true) nonetheless remains. According to Actualism, such claims are formally true in an anti-

realist sense – which is to say, they are said to be formal truths about referents of convenience. 

 
37 While closely related, the sense in which a proposition may as a whole be related to the actual (in the form of 

offering a veridical description of a physically instantiated state of affairs) should be consciously differentiated from 

the sense in which its referents may be taken to refer to actual/physical things.  
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As was earlier seen, Actualism accepted Frege’s conception of objecthood and identifiability. 

Consequently, the more complex claims of mathematics are just seen to pertain to well 

constructed objects which take referents of convenience. Concerning these more complex 

mathematical realms, Actualism likewise outright accepts the Constructivist project for, once we 

have left the world of referents that are reducible to actual objects, the Actualist’s project has 

ended.  

Actual Admissibility:  

 In order to further clarify the Actualist position, it is useful to have recourse to the notion 

of ‘actual admissibility’ which is where Actualism’s conception of physical possibility arises. By 

the term actual admissibility, I mean something which could be physically instantiated – 

something which could exist be a spatio-temporal (actual) object. Within the present account, 

actual admissibility is a notion predicated of referents that, regardless of whether or not they 

presently exist, could possibly exist as actual objects. In this way, what it means for something to 

be actually admissible is just that it is physically possible – that it could be physically 

instantiated as an occurrent state of affairs or as an object within a physically instantiated state of 

affairs. On the other hand, what it means to say that some thing is not actually admissible is that 

it could not physically exist in the material universe. For example, a square circle is not actually 

admissible insofar as no such object could be physically instantiated (such an object could not 

exist). However, neither is a square circle abstractly admissible – for it is also a conceptual 

contradiction. However, actual admissibility can be seen to be a more restrictive criterion than 

abstract or conceptual admissibility when we consider examples like completed infinities which, 

despite being abstractly admissible (which we know because they are referents of convenience in 

consistent systems), are not actually admissible. It is here, when we consider things that are 
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abstractly admissible while not simultaneously being actually admissible, that a great similarity 

between Actualism and Finitism emerges – for the primary examples of such things are actual or 

completed infinities or of unnaturally large finite numbers like 10^10^1038.  

 While Actualism reupdates these numbers alongside Finitism, the Actualistic reason for 

rejecting things like the actually infinite, completed infinities, or of numbers like 10^10^10 

dramatically differs from the Finitist’s. As has been seen, Finitists reject such numbers because 

of the impossibility of creatures sufficiently like us being able to construct them, whereas an 

Actualist rejects such constructions for ontological reasons. Where Finitists object for reasons 

such as: a) the lack of a unique identifiability of such constructions, b) the lack of suveyabiltiy or 

provability of such constructions, or c) the lack of a definite/concrete construction in these cases, 

Actualism instead repudiates these constructions on the ontological basis that they are not 

actually admissible (that they could not be physically instantiated).  

How dramatically the two positions differ, despite the likeness of their conclusion, can be 

evinced if we consider a case where a construction that is not actually admissible is imagined to 

have been definitely/concretely constructed in such a way that it is surveyable. From the Finitist 

perspective, it is legitimate to imagine that tomorrow a mathematician might be born who works 

exponentially faster than any who have come before and, while not having the prodigious powers 

of Brouwer’s idealized mathematician, is capable of arriving at a construction of 10^10^10 over 

a few weeks. Since the limitations for the Finitist have to do with our limitations, it seems that 

there are imaginable circumstances in which he would have to grant the existence of this number, 

 
38 While it is important to recognize that future science may always discover something about the universe which 

could render these specific examples false, in which case new examples could be derived, at least in the case of 

completed/actual infinities the point is well substantiated. This is because if, as our current sciences indicate, the universe 

is finite then collections/objects cannot be infinite in any real sense – no actual infinite collections or objects are physically 

admissible within a finite space (though potential infinities are abstractly admissible).  
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what with it having been successfully constructed. On the other hand, from the Actualistic 

perspective, even if we could definitely construct a number so large as 10^10^10, these 

constructions would still fail to meet the criterion of actual admissibility – they would not be 

physically instantiated insofar as we exist in a finite, physical universe. Consequently, even if we 

should grant the possibility of a definite construction of an actually unadmissible ‘thing’, it 

would be in principle excluded from entering positively into our ontology insofar as no reductio 

ad materiam can be made for a construction that is not actually admissible.  

 The notion of actual admissibility further offers a heuristic means of determining if the 

reference of a mathematical proposition is to an actual referent as opposed to a referent of 

convenience. The reason for this is that, if the referent of a mathematical proposition is to 

something which is not actually admissible, then it is necessarily made to a referent of 

convenience. For example, if we assume that we exist within a finite universe, then all 

mathematical propositions which make reference to the infinite (actual, potential, completed, or 

otherwise) take as their referent an abstract referent of convenience. Consequently, within an 

Actualistic language game, such propositions cannot be said to describe anything with a positive 

ontological status since they are not reducible to any actual/physical referent or state of affairs. 

And although one may choose to define/extend existence to that which has been constructed in 

only an anti-realist sense, the case that it is either sensible or meaningful to predicate the 

existence of things that are not actual/physical (and the case that this use of existence does not 

culminate in a kind of ontological dualism), is outstanding.  
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Some Initial Challenges and Objections to the Actualistic Thesis: 

What Criterion Marks the Physically Actual: 

One initial challenge which confronts the Actualistic account is whether or not a 

sufficient criterion can be identified by which something can be qualified as being physically or 

materially ‘real’. In other words, Actualism requires a defensible case as to why it is justified in 

identifying certain referents as being actual/physical and others as ideal/abstract constructions of 

convenience. Moreover, it is also important that this criterion serves a genuine explanatory value 

– otherwise it should appear as nothing more than an empty division. Concerning the nature of 

these referents, it is also important to distinguish between the ontological status of the referents 

themselves and our epistemic ability to discern or understand them. For the purposes of the 

present thesis, the criterion desired is of the first kind and seeks to identify an ontological, as 

opposed to an epistemological, criterion for justifying the bifurcation of actual referents and 

referents of convenience. Consequently, the central question at present is whether or not there is 

a sufficient justification for asserting that some referents possess the positive ontological status 

of being actually/physically instantiated and not the secondary question of whether or not we 

have a complete epistemological understanding or awareness of the referents themselves. 

Notwithstanding this, a certain degree of epistemic understanding should be expected of 

the present account insofar as we have already critiqued Platonism for positing the existence of 

referents to which we have no access. Although Actualism is similar to Platonism in the sense 

that both offer a realist thesis, the reality behind the Actualistic reference is made to 

actual/physical objects in the external world as opposed to Platonic forms with which we have no 

explicable sort of interaction given our cognitive apparatus. Therefore, so long as one does not, 

with Berkeley, object to the existence of material things, and so long as one does not outwardly 
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disavow all of the empirical observations made by the physical sciences, then the claim that we 

are able to access the actual/physical referents in at least some capacity is a peremptory claim. 

Because of this, the Actualistic thesis avoids some very serious flaws found within the Platonic 

account – particularly the posit of forms to which we have no access – since the only entities 

which are here asserted to be mind-independent are the objects of the external world itself. It is 

in this way that Actualism’s assertion of a mind-independent reality and reference grounded in 

the external world avoids the problems associated with recollection and remembrance of forms 

(or thoughts, in Frege’s case) which trouble mathematical Platonism.  

The question nonetheless remains, what is the criterion that qualifies something as 

actual/physical in the present account? A number of possible answers could be given at this 

point, such as: a) that it is a substance, b) that it has causal physical properties, c) that it is 

materially extended, d) that it exerts a gravitational force, or even e) that it has mass and is able 

to hold weight. However, what is here being taken as a criterion of physicality should be taken as 

a first approximation as it is implausible to claim that a perfect or exhaustive criterion can be 

identified and be expected to hold for all time, and also, because this criterion could itself be 

further developed as the central topic of another inquiry. Notwithstanding these limitations, a 

present general criterion can be offered which maintains that something is said to be 

actual/physical when the empirical observations of our best physical sciences substantiate the 

claim that the thing is, at least in some veridical sense, embodied in the external and extended 

world.  

Moreover, such a criterion may be made more intelligible by contrasting it to Quine’s 

notion that “To be is to be the value of a variable,” i.e. that the things that exist are the things that 

our best scientific theories quantify over. Whereas Quine’s is primarily theory-driven, and thus, 
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whereas his criterion concerns ontology primarily for the relation that objects have to theories, 

the Actualistic criterion is more directly concerned with ontology. In contrast to the Quinean 

slogan, the Actualistic reinterpretation of the slogan would instead run – to be the value of a 

variable, in a veridical scientific theory, is a good indication that something really is. However, 

Actualism does not endow ‘being’ to something because it is quantified over by a scientific 

theory, but rather, it views this as an epistemic reason and justification for supposing that 

something really is. In other words, Actualism takes a thing featuring within a good scientific 

theory or model as providing good evidence that the thing we are positing really exists in the 

way we suppose, but the actual existence and ontology of the thing occurs irrespective of our 

theories and models for the Actualist. And although the Actualistic criterion does seem, at least 

to some extent, to introduce a temporal dimension into Actualism’s account (insofar as the 

postulates of our best sciences will change over time) it does so in a much more benign sense 

than Brouwer does through his method of the ‘creating subject’. It is worthwhile to note that a 

criterion such as this, one which is able to justify such a heavy reliance on the postulates of its 

present science, is a contemporary privilege afforded only by the developments that science has 

attained up to the present point. However, in light of the scientific body of knowledge upon 

which we stand – built veritably as it were on the shoulders of those such as Ymir – we are 

contemporarily justified in staking our criterion of what qualifies something as being an 

actual/physical referent in the empirical observations of our present science.  

It is with this sense that the reductio ad materiam method is applied, whereby the 

reference of a proposition can be said to reduce, relate, or else to correspond to some 

actual/physical referent when it offers a veridical description of a physical state of affairs in the 

external world. In this sense, propositions like 2 + 2 = 4 can be said to have an actual/physical 
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correspondence, or reference, insofar as the referents of the proposition are reducible to objects 

in a state of observable affairs in the external world. Moreover, the claim is said to be ‘true’ 

according to Actualism insofar as it offers a description of a veridical state of affairs in the world 

that may be empirically tested and verified. Therefore, the claim that 2 + 2 = 4 can be said to be 

true in a mind-independent sense insofar as any two actual/physical things added to another two 

actual/physical things will result in four things. Should one question what the words two and four 

denote within the above statement, we can instead qualify, to whatever degree of detail that is 

desired, that they denote the sizes of groups of actual/physical objects to which we have 

arbitrarily assigned these words as descriptions of39. In contrast, constructions such as a ‘square 

circle’, or else of ‘a number larger than anything or any set of things in the physical universe’, 

are not physically admissible and can neither be said to, through a reductio ad materiam, denote 

any actual/physical object or state of affairs.  

What Does Actualism ‘Do’ with Constructions not Meeting This Criterion: 

 Concerning the Actualistic prioritization of actual/physical referents the following 

questions arise, how does Actualism explain references which are made to referents of 

convenience, and also, how does it account for the proofs resulting from the anti-realist branches 

of mathematics? The first of these questions relates to the problem that the logicists faced 

regarding cases of negative quantification, and references to non-existent entities like a Pegasus, 

some of which take the form ‘there is not some X’, or otherwise, ‘some X does not exist’. 

However, the treatment employed by Russell in “On Denoting” which centred around an analysis 

of definite descriptions will fail to satisfy the present question for two reasons: a) we are not at 

 
39 The case that it is sensible to speak about denotation in this way (that being in the sense of eventually arriving at a 

definite description that denote some object which may be expressed in the form of the existential quantifier), is 

made sufficiently in Russell’s paper “On Denoting” and is therefore assumed for the present purpose. 
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present solely concerned with singularly definite descriptions (seeing as the claims of 

mathematics are general in nature), and b) we have already granted the syntactical legitimacy of 

referents of convenience (it would therefore be contradictory to now be as dismissive of them as 

Russell is of Meinongian entities). The potential problem thus comes to a head at the question: 

what is the ontological status of legitimately constructed referents of convenience which, despite 

not satisfying a reductio ad materiam, feature meaningfully in mathematical proofs?  

 Unlike existential claims which assert the existence or non-existence of physical 

impossibilities, such as square circles, there are a number of references to mathematical referents 

of convenience, such as the empty set, which can feature meaningfully in our proofs and 

propositions. It is in these cases that the sentiment of one such as Meinong may seem more 

appealing – seeing as we do certainly seem to be referring to something (or at the least some 

idea) when we discuss the empty set or an infinite set. Moreover, although Actualism is able to 

account for referents that are blatantly contradictory, such as a square circle (in the sense that 

they are said to be ‘nothings’ owing to the fact that they are neither actually nor conceptually 

admissible), it is a different matter to explain the meaningfulness of proofs that make reference 

to abstract constructions of convenience which are nonetheless not reducible to actual objects. 

While Platonism may shamelessly presuppose the form-like existence of such things, and while 

Constructivism, resting upon an anti-realist thesis, can with all good intellectual conscience 

disregard the question, Actualism – insofar as it is interested in offering a realist thesis – does 

require an answer to this question.  

 One way of answering this question is that the Actualistic notion that we are able to 

reduce a certain subset of mathematical claims, through a reductio ad materiam, as offering 

veridical descriptions of physical states of affairs, does not preclude us from also maintaining 
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that the rest of the mathematical claims, as well as the formal syntax itself, are merely a human 

construction. However, insofar as these constructions do not feature actual referents, it does not 

make sense to endow them with a positive ontological status by way of maintaining that they 

exist. Moreover, it is possible to maintain the claim that the mathematical syntax and notation (at 

least insofar as it is formalized contemporarily) is itself anti-real (and thus not interpreted in 

realist terms) while also maintaining that it is able to play a role in veridical descriptions of the 

extended world. A good example of this comes from the pragmatic utility that infinitesimals 

afford to calculus which itself is part of a veridical description of how continuous change 

operates in physically extended states of affairs. In this way, although calculus may incorporate 

non-actual referents and concepts in order to function (infinitesimals as a referent of 

convenience, or completed infinite sequences or equivalence classes of Dedekind cuts, 

depending on your tastes), it still serves as a tool that when paired with some additional content 

allows the formulation of physical principles that culminate in a truthful description of the world. 

Moreover, it is likely that nearly all of the actual aspects of mathematics also rely in some sense 

on referents of convenience or ‘second-order’ conceptual frameworks which possess an anti-real 

aspect. Although it is important to recognize that the case will likely become more complicated 

with respect to mathematical propositions owing to the earlier bifurcation between those which 

take actual referents as opposed to those which take referents of convenience. For mathematical 

propositions which take actual referents, we have seen that they may be said to be true insofar as 

they describe a state of affairs that corresponds to an instantiated state of affairs in the external 

world. In contrast, for those mathematical claims that only take referents of convenience, it has 

been seen that Actualism maintains that their reference is to non-actual, empty, or else ‘ideal’ 

constructions which do not exist.  
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While it may initially confound to maintain that constructions that act as meaningful 

referents within mathematical proofs do not exist, this conclusion is seen to be required when we 

instead consider what it would mean were this not the case. If we instead maintained that, despite 

not being actual/physical, these constructions existed in any real sense (such as is the case with 

mathematical Platonism), then we would be forced into the ontologically dubious position of 

substance dualism. This position requires the posit of a non-actual kind of existence, such as 

subsistence as it was formulated by Meinong, whereby things are said to exist in a non-actual but 

possible sense. Instead of this, Actualism maintains that our mind-dependent linguistic 

constructions which are not reducible to any actual/physical referents do not exist in any real 

sense, and it is a mistake to endow them with an ontological status at all. If pressed, the Actualist 

will say that their apparent referents do not exist.   

Although it may sound unintuitive to describe any referent as a ‘nothing’, this description 

is defensible insofar that it is preferable to calling referents that do not exist as ‘somethings’ (the 

latter phrasing being that which lends jointly to Meinong and Plato’s ontological confusions). 

Moreover, the intelligibility of this description can be made more readily available by 

considering obviously non-existent entities such as the Pegasus, Zeus, or Fenrir. Despite the fact 

that one might ‘construct’ such a referent as ‘the immortal god son of the titan Cronus who lives 

atop mount Ida and who is the cause of lightning’, the construction can not be defensibly said to 

refer to any existent thing/object. While one could here say that the construction instead refers to 

a concept or a non-existent thing, it is precisely this way of speaking which lead to the errors of 

Meinong or, in the case of less clearly absurd constructions, the Platonic posit of form-like 

otherworldly entities. Actualism, in contrast, is unwilling to extend a positive ontological status 

of existence or ‘thinghood’ to any non-actual referents. Consequently, references which refer to 



 

 

95 
 

an anti-real construction, as opposed to an actual/physical thing, are here said to refer to 

‘nothings’.  

While traditionally this problem has often been handled by suggesting that terms which 

do not refer to anything simply do not have a referent, for many there will likely remain a strong 

intuitive appeal to the notion that statements which feature the names of fictitious entities such as 

Zeus are really referring to something. Part of the impetus behind this intuitive appeal derives 

from the fact that, for those at all familiar with the relevant mythology, statements like “Zeus the 

dread son of Cronus is king of the Olympians” or “Zeus the dread son of Cronus defeated his 

father” both make sense to us and worse they (putatively) appear to be true. Consequently, the 

Russellian account, in rendering all substantive claims that seem to refer to non-existent entities 

false, is greatly at odds with the intuitive sense that such propositions appear to be true. Although 

there are many virtues to the traditional manner of handling the problem (and although Russell’s 

treatment in “On Denoting” is cogent), Actualism, in lieu of engaging in the more technical 

question of what constitutes as a bona fide referent, instead grants the reference while noting that 

the statements referents are ‘nothings’. It is here that the Actualist, if they are pressed, will 

recognize the oddity of referring to ‘nothings’ and say that the referents do not exist.  

With respect to the second question, how does Actualism account for the proofs resulting 

from the anti-realist branches of mathematics, it does so through its demarcation of a secondary 

(anti-realist) sense in which mathematical propositions that refer to referents of convenience can 

be said to be true. This secondary sense of truth is derived from the formal consistency of a 

syntactical or logical system, that is, in the correct application of a constructed system's rules for 

symbolic manipulation. In this way, Actualism is seen to be highly sympathetic to 

Constructivism – it takes nothing away from it insofar as Constructivism did not aspire to mind-
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independent truths in the first place. However, it has still more in common with Positivism, since 

it does not take Constructivism to be the only possible formally consistent system extending the 

core of mathematics that comes as standard equipment for humans, and indeed it recognizes that 

for most purposes we have chosen other options. With Carnap, we see the truths of higher 

mathematics as (in the suitably hedged sense Carnap and others spent considerable effort trying 

to clarify) conventional. But Actualism differs from Carnap and the Construtivists by re-

endowing a certain subset of mathematics with realism, showing how they are true in a mind-

independent and external sense.  

How Much of Modern Mathematics Qualifies as Actualistic:  

 The concern that, through its prioritization of the actual and physical, Actualism leaves 

out a substantial portion of modern mathematics, such as the highly axiomatized systems of set 

theory, may appear as initially troubling. This is a concern that can be relieved. This concern 

would be particularly problematic for a more dogmatic form of Actualism which, as opposed to 

ontologically prioritizing the actual and physical, instead outwardly rejected any sense in purely 

mind-dependent constructions. However, insofar as the present Actualistic thesis only highlights 

an ontological priority (in the form of entering positively into our ontology) for those things 

which are actual/physical, it does not ‘take away’ or object to the internal consistency of any 

standing formalized mathematical systems or constructions. Consequently, Actualism can be said 

to leave all of modern mathematics standing. It does not object to the internally consistent 

structure of ‘Cantor’s paradise’; only, it offers the ontological stipulation that such abstract 

constructions are no more real actual/physical things than Eden or the Elysian fields are.  

 Notwithstanding this, or perhaps as a consequence of this, one may ask the question: are 

‘enough’ of mathematics reducible to the actual/physical to either be of explanatory value or to 
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be interesting enough in their own right?  This question is likely the most concerning for the 

Actualistic account since, if a rather insubstantial portion of mathematics meets the standards of 

Actualism, then Actualistic mathematics may appear as trite if not entirely unimportant. 

Although this concern, should it be borne out, would be entirely devastating to Actualism; the 

present preponderance of applied mathematics within the hard sciences is sufficient in and of 

itself to address this concern. The applied branches of mathematics, most particularly in the case 

of their use in physics, can defensibly be said to relate to actual/physical referents or states of 

affairs in the external world, and thus, being no small part of mathematics, they are sufficient to 

defend the notion that a substantial portion of mathematics meets the Actualistic criterion. 

Moreover, even those more ideal aspects and abstract constructions of Pure Mathematics are 

incorporated into Actualism’s account insofar as these more complex ‘second-order’ conceptual 

systems are seen to be built upon the more basic ‘first-order’ core mathematical systems which 

are inherent to our cognitive structure.  

Another way of expressing this concern may take the form of asking: how are the 

physically-based mathematical truths and the “ideal” mathematical truths related, or, in what way 

is it accurate to call both of these mathematics? When expressed in this form Actualism may 

answer this concern by first making the recognition that the more complicated and abstract 

branches of Pure mathematics take the more basic ‘first-order’ or physical mathematics as a 

common core. Consequently, a unified sense of mathematics may be provided as being that 

language game that is both founded upon and which operates within that core cognitive 

conceptual framework (the intellectual instincts) that deal with judgements of numerical or 

geometrical things.  
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 It is further possible to defend a sense in which even a certain subset of pure and abstract 

mathematics can be said to meet the Actualistic standards. Significantly, one can through the 

reductio ad materiam method defend the notion that the natural number sequence (at least to 

some indeterminate point), as well as the basic arithmetic operations, are ‘real’ and true in a 

mind-independent sense. Even more interestingly, one may defend a sense in which propositions 

referring to the empty said to express a mind-independent truth via a reductio ad materiam. One 

reasoning for supposing this may arise from the recognition of how the concept of a void, zero, 

or nihil may offer a veridical description of a given material state of affairs. For example, this 

notion can be taken as offering a true description of an actual world state in the case of 

temperatures reaching absolute zero (zero kelvin or −273.15 °C). Another indication of this also 

arises from certain empirical studies in numerosity which indicate that other species have at least 

a rudimentary conception of an empty set (Kirschhock, Ditz, and Nieder, 2021). Within the 

present account, this finding indicates that the empty set is an evolutionarily endowed intellectual 

instinct that is, therefore, to be understood as a part of our ‘first order’ and core cognitive 

conceptual system. Although these things may not be said to ‘exist’ as Platonic objects in their 

own right, propositions about them may be said to be true insofar as their senses express true 

information/facts about the way that things or groups of things will be. Consequently, we are 

justified in asserting that ‘nature gave us the natural numbers all else is the work of man’, and in 

maintaining that a rather substantial portion of mathematics expresses mind-independent truths 

about the external world. Furthermore, Actualistic mathematics is in this way able to avoid all of 

the complications which arise from attempting to formalize/axiomatize a consistent foundational 

system of mathematics - since their foundations are manifestly true and substantiated by their 

already obtaining within the extended world. Most importantly, Actualism’s foundation of 
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mathematics has the unique quality of not being compromised by Gödel's incompleteness 

theorems – owing to the fact that its foundations obtain manifestly in the external world itself 

and have no need for a complete or consistent formal axiomatization.  
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