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Statement of Contributions

Chapters 2 and 4 are wholly my own work. The main result in Chapter

2 is a complete description of graphs with a vertex whose lifting graph

has a connected complement. This is a central result in the thesis that is

applied in Chapters 3 and 4.

Chapter 4 proves that a 4k-edge-connected, locally finite, 1-ended,

infinite graph has an orientation that is k-arc-connected. In this spe-

cial case, this improves Thomassen’s result that every 8k-edge-connected

graph has such an orientation.

Chapter 3 is almost completely my own work. The exception is Lemma

3.2.10 and the proof of Proposition 3.2.11, which were proved by Bruce

Richter. I had formulated Proposition 3.2.11 and conversations between

us led to Professor Richter’s proof.

The main result of Chapter 3 is an application of the results of Chapter

2 to show that Huck’s Theorem (for odd k, every k + 1-edge-connected

graph is weakly k-linkable) holds for infinite graphs. This improves the

result of Ok, Richter, and Thomassen that k + 2-edge-connected, locally

finite, 1-ended infinite graph is weakly k-linkable.
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Abstract

The main subject of this thesis is the infinite graph version of the weak

linkage conjecture by Thomassen [24]. We first prove results about the

structure of the lifting graph; Theorems 2.2.8, 2.2.24, and 2.3.1. As

an application, we improve the weak-linkage result of Ok, Richter, and

Thomassen [18]. We show that an edge-connectivity of (k + 1) is enough

to have a weak k-linkage in infinite graphs in case k is odd, Theorem 3.3.6.

Thus proving that Huck’s theorem holds for infinite graphs. This is only

one step far away from the conjecture, which has an edge-connectivity

condition of only k in case k is odd. As another application, in Theo-

rem 4.2.7 we improve a result of Thomassen about strongly connected

orientations of infinite graphs [25], in the case when the infinite graph is

1-ended. This brings us closer to proving the orientation conjecture of

Nash-Williams for infinite graphs [15].
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Chapter 1

Introduction

Finding disjoint paths in a graph (network) is a natural problem that

is seen in many real life problems as well as in graph theoretic and dis-

crete optimization problems. It has connections to the problems of multi-

commodity network flows [8], degree bounded designs with metric costs

[2], the graph homeomorphism problem [3], and VLSI designs [11], [17].

One particular version we are interested in is when we have stations

s1, · · · , sk and destinations t1, · · · , tk in a given network, and we wish

to find k disjoint paths, one for each i connecting si to ti. An obvious

condition for the existence of such paths is that the network itself in

general contains many disjoint paths between any two parts of it, or

in other words the network is highly connected. Does it have to be too

highly connected? Or is a connectivity of strength almost k enough? This

is what Thomassen conjectured four decades ago, for edge-disjoint paths,

and is the main question this thesis revolves around. On the other hand

a vertex-connectivity of k is very low to have a vertex-disjoint linkage.

However, it was proved by Thomas and Wollan that a vertex-connectivity

of 10k is sufficient for a graph to be k-linked [23].

In 1980 Thomassen conjectured [24] that for each odd integer k, any

k-edge-connected graph is weakly k-linked, and for each even integer k,

any (k + 1)-edge-connected graph is weakly k-linked. Where a graph G

is weakly k-linked if, given any set of k pairs of terminals, not necessarily
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distinct, si and ti, i = 1, · · · , k, then there is in G, for each i ∈ {1, · · · , k},
a path between si and ti such that this collection of k paths is edge-

disjoint.

This conjecture aims to extend the famous Menger’s Theorem, which

is the special case when all of s1, . . . , sk are equal and all of t1, . . . , tk

are equal (in this special case the parity of k does not matter; k-edge-

connectivity is enough). In other words, the edge version of Menger’s

theorem is that a graph is k-edge-connected if and only if there are k

edge-disjoint paths between any two vertices in it.

The simple case of k = 2 was obtained independently by Thomassen

[24] and Seymour [22]. The case k = 3 was proved by Okamura [19],

and k = 4 was proved by Enomoto and Saito [5]. A harder conjecture

based on local connectivites between the pairs of terminals was proved by

Okamura for k = 6 in 1987 [20].

After that, in 1988, Okamura proved that every 3k-edge-connected

graph is weakly (2k+1)-linked, and every (3k− 1)-edge-connected graph

is weakly 2k-linked [21].

In 1991, Huck [9] had come within 1 of proving Thomassen’s conjec-

ture. He proved that for a graph to be weakly k-linked, (k + 1)-edge-

connectivity is enough in the case of odd k, and (k+2)-edge connectivity

is enough in the case of even k.

Ok, Richter, and Thomassen [18] considered the question for infinite

graphs, and in 2016 they proved for odd k that if G is a (k + 2)-edge-

connected, 1-ended, locally finite graph, thenG is weakly k-linked. Where

locally finite means that the number of edges incident with each vertex

is finite, and 1-ended means deleting any finite set of vertices leaves only

one infinite component.

To prove their result, Ok, Richter, and Thomassen first proved a the-

orem about lifting graphs. The lifting graph is an auxiliary graph fre-

quently used in edge-connectivity proofs. In addition to the lifting graph,

they have a connected graph on the same vertices. The fact that the com-

plement of their lifting graph is known to be disconnected - in a special
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case - implies that the connected graph has an edge that is also in the

lifting graph. This is central to our applications of the lifting graph.

In the thesis we have the following:

(i) Chapter 2 presents an extension of the theorem of Ok, Richter, and

Thomassen characterizing the lifting graph for finite graphs. For

the four possibilities of the parity of deg(s) with the parity of the

edge-connectivity k of the graph, we give a detailed description of

the lifting graphs that can occur.

(ii) In particular, the interesting case of a connected complement of

the lifting graph is completely described: the maximal independent

sets of the lifting graph form either a path or a cycle via intersec-

tions. The same (path or cycle) structure is displayed in the graph,

with blobs corresponding to the intersections. Consecutive blobs

are joined by precisely (k − 1)/2 edges except in the case of when

the structure is a path of length 1 (two maximal independent sets

with a nonempty intersection).

(iii) The case when deg(s) is 3 is problematic as the lifting graph might

consist of three isolated vertices. Section 2.3.1 is dedicated to study-

ing that case.

(iv) In Chapter 3, we improve the linkage result of Ok, Richter, and

Thomassen by reducing the connectivity condition from k + 2 to

k + 1, and generalizing it to the case of arbitrarily many ends. In

other words, we prove that Huck’s theorem holds for all infinite

graphs. Huck’s Theorem is different from the conjecture only in

that it has the connectivity requirement of (k + 1) instead of k for

odd k.

(v) The reduction from general infinite graphs to 1-ended locally finite

graphs is done using two theorems of Thomassen, proved in 2016 in

[25], together with our lifting graph results for finite graphs referred

3



to in (i).

The new lifting graph results are used to deal with odd cuts, which

posed a problem in the proof technique of Ok, Richter, and Thomassen.

(vi) Recall that a directed graph is k-arc-connected if between any two

vertices v and w in the graph there are k edge-disjoint directed

paths from v to w and also that many paths from w to v. Nash-

Williams proved that every 2k-edge-connected finite graph has a k-

arc-connected orientation [16]. He conjectured that the result also

holds for infinite graphs [15]. In his paper [13], Mader proved the

existence of a feasible lifting at a vertex and used it to give a simpler

proof of Nash-Williams’ orientation theorem for finite graphs.

In Chapter 4 we present another application of our lifting graph

results. We prove that for a 1-ended infinite graph, and edge-

connectivity of 4k suffices to have a k-arc-connected orientation.

The proof involves finding in such a graph an immersion of a highly

connected graph on a given finite set of vertices. This improves

a result of Thomassen in [25] and brings us closer to proving the

conjecture of Nash-Williams.

(vii) In Chapter 5, the Future Work chapter, we present in Section 5.1 our

steps trying to prove that, assuming the truth of the conjecture for

finite graphs, then it is true for locally-finite 1-ended infinite graphs,

and hence also for general infinite graphs. We use the path/cycle

structure found in (ii) in our proofs. The main obstacle is when the

degree of the vertex s at which the lifting is performed is 3. In the

remaining sections of Chapter 5 we discuss other problems related

to weak linkages.

The thesis relies heavily on, and extends the results in, a paper by

Ok, Richter, and Thomassen about the lifting graph and weak-linkage

[18], and a paper by Thomassen about orientations in infinite graphs

[25]. We developed the following new ideas.
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New ideas in the thesis:

(1) Studying the structure of the lifting graph through its maximal

independent sets. This appears throughout Chapter 2.

(2) The following fact, which is stated as Proposition 3.2.11. In a locally

finite infinite graph, given a set of edges F of size at most the

assumed edge-connectivity, in a finite edge-cut, with one side infinite

and the other finite, there is a vertex on the infinite side with edge-

disjoint paths contained in the infinite side from that vertex to the

different edges of F . This is crucial to the proof of one of the main

results of the thesis, Theorem 3.2.13.
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Chapter 2

The Lifting Graph

Throughout this chapter a graph is a finite multigraph, that is parallel

edges possibly exist.

In this chapter we prove results analysing the structure of the lifting

graph, and we also show that we can infer a specific structure of the

graph when the complement of its lifting graph is connected.

2.1 Background

In this section we present the basic definitions and theorems regarding

edge-connectivity and the lifting graph, as well as the results of Ok,

Richter, and Thomassen we are going to build upon.

2.1.1 Definitions

In this subsection we display some of the definitions. In the following

subsections more of the classic definitions will be presented when needed.

Most of the hypotheses of the theorems we have here involve a condition

on the edge-connectivity of the graph, so we begin with the definition of

edge-connectivity and other related definitions.
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Definition 2.1.1. (k-edge-connected) A graph G - finite or infinite - is

k-edge-connected if |G| > 1 and for every F ⊆ E(G) with |F | < k, G−F

is connected.

Definition 2.1.2. (edge-disjoint) Two paths in a graph G edge-disjoint

if the edge sets of the two paths are disjoint.

We use the lifting graph frequently in our proofs. Here we present the

definitions of a lift and the lifting graph.

Definition 2.1.3. (lift) Let s be a vertex of a graph G and let sv and sw

be two edges incident with s such that v ̸= w. To lift the pair of edges

sv and sw is to delete them and add the edge vw and the resulting graph

Gv,w is the lift of G at sv and sw, or simply a lift at s.

Definition 2.1.4. (feasible lift) A lift of G at s is feasible if the number

of edge-disjoint paths between any two vertices other than s stays the

same after the lift.

In this thesis we only need the local edge-connectivity between any

two vertices - other than a certain fixed vertex s - not to fall below a

certain target connectivity k. The vertex s is the vertex at which the

lifting is performed. Ideally, we want to have all the edges incident with

s lifted, except for possibly one edge in case deg(s) is odd, so that the

resulting final graph is k-edge-connected in the usual sense. Then we can

apply theorems that hold for k-edge-connected graphs to that final graph.

This is why we need the following definition, in which the graph G is not

necessarily k-edge-connected.

Definition 2.1.5. A triple (G, s, k) is a connectivity triple if G is a graph

on at least three vertices, s is a vertex of G, and k is an integer such that

k ⩾ 2 and any two vertices in G both different from s are joined by k

pairwise edge-disjoint paths in G (that may go through s).

Note that since k ⩾ 2 in a connectivity triple, if deg(s) > 1, then s is

not incident with a cut-edge.
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Definition 2.1.6. (k-liftable) Let (G, s, k) be a connectivity triple. The

edges sv and sw are k-liftable, or they form a k-liftable pair, if (Gv,w, s, k)

is a connectivity triple.

Definition 2.1.7. (lifting graph) Let G be a graph, s vertex in G, and

k ⩾ 2 an integer. The k-lifting graph L(G, s, k) has as its vertices the

edges of G incident with s and two vertices are adjacent in L(G, s, k) if

they form a k-liftable pair.

One thing lifting is helpful in but that we will not use here in the

thesis is inductive proofs. Either induction on the number of edges in the

graph or on the degree of the vertex at which lifting takes place. Unlike

contraction, a set of n edge-disjoint paths in a graph that resulted from a

sequence of lifting operations can be returned to a set of n edge-disjoint

paths in the original graph.

2.1.2 Basic Theorems

As mentioned in Chapter 1, Thomassen’s weak linkage conjecture is a gen-

eralization of Menger’s Theorem for edge-connectivity. Here we present

Menger’s Theorem, and also the theorems of Mader and Frank about fea-

sible lifts. Mader’s theorem says that at any vertex s there is at least one

feasible lift if deg(s) ̸= 3 and s is not incident with a cut-edge. Frank’s

theorem implies that there are at least ⌊deg(s)/2⌋ such lifts. We are going

to make use of these three theorems.

Theorem 2.1.8. (Menger’s Theorem)[14] A graph G is k-edge-connected

if and only if there are k edge-disjoint paths between any two vertices in

G.

Menger’s theorem is true in infinite graphs as well [7], [1].

In 1976 Lovász proved that for any vertex s in an Eulerian graph G a

feasible lift exists of G at s [12]. After that Mader proved the following

for any graph G, not necessarily Eulerian.

8



Theorem 2.1.9. [13] (Mader 1978) Let G be a graph containing a vertex

s not incident with a cut-edge such that deg(s) ̸= 3. Then there exists a

feasible lift of G at s.

Frank also proved that, under the same conditions of Mader’s theorem,

not only one pair lifts, but also any independent set in L(G, s, k) has size

at most ⌈deg(s)/2⌉.

Theorem 2.1.10. [6] (Frank 1992) Let G be a graph containing a vertex

s not incident with a cut-edge such that deg(s) ̸= 3. Then there are

⌊deg(s)/2⌋ pairwise disjoint pairs of edges incident with s each of which

defining a feasible lift.

In 2016 Thomassen showed that the k-lifting graph of an Eulerian

graph has a disconnected complement [25]. Later in the same year, Ok,

Richter, and Thomassen showed that when both deg(s) ⩾ 4 and k are

even, the lifting graph is a complete multipartite graph that is not a star

(hence its complement is disconnected) [18]. They also characterised the

structure of the lifting graph in the case when it is disconnected. The

results of Ok, Richter, and Thomassen about the lifting graph are listed

in Theorem 2.1.11 below.

Theorem 2.1.11. [18] (Ok, Richter, and Thomassen 2016) Let (G, s, k)

be a connectivity triple such that deg(s) ⩾ 4. Then:

(1) The k-lifting graph L(G, s, k) has at most two components;

(2) If deg(s) is odd and L(G, s, k) has two components, then one has

only one vertex and the other component is complete multipartite;

(3) If deg(s) is even and L(G, s, k) has two components, then each com-

ponent is complete multipartite with an even number of vertices and;

(4) If deg(s) and k are both even, then L(G, s, k) is a connected, com-

plete, multipartite graph (in particular, it has a disconnected com-

plement).

9



If either L(G, s, k) is not connected or both deg(s) and k are even, then

any component of L(G, s, k) with at least 4 vertices is not a star K1,r.

This theorem was proved by induction on deg(s), and the proof of the

base cases, as will the proof of our extension of this theorem, relied on the

concept of a dangerous set, to be defined soon in Definition 2.1.13, and

the following standard equation 2.1.1 about two intersecting cuts. We

will be dealing a lot with edge-cuts, or simply cuts.

Definition 2.1.12. (cut) A cut in a graph G consists of, for some par-

tition (A,B) of V (G), the set δ(A) of all edges having one end in A and

one end in B.

Note that G− δ(A) is disconnected.

A1 \ A2A1 ∩ A2

A1 ∪ A2A2 \ A1

δ(A2 \ A1 : A1 ∪ A2)

δ(A1 \ A2 : A1 ∪ A2)

δ(A1 ∩ A2 : A1 \ A2)

δ(A1 ∩ A2 : A2 \ A1)

δ(A1 \ A2 : A2 \ A1)

δ(A1 ∩ A2 : A1 ∪ A2)

Figure 2.1: Two intersecting cuts.

The following equation is very helpful, which is about two intersecting

cuts δ(A1) and δ(A2). For a vertex set A, let A := V (G) \ A. If B is

another set of vertices, then the set of edges with one end in A and one

end in B is denoted by δ(A : B). Rudimentary counting, with the help

10



of Figure 2.1, gives the equation.

2

[∣∣δ(A1)
∣∣+ ∣∣δ(A2)

∣∣− (∣∣δ(A1 ∩ A2 : A1 ∪ A2)
∣∣+ ∣∣δ(A2 \ A1 : A1 \ A2)

∣∣)]
=

∣∣δ(A1 ∩ A2)
∣∣+ ∣∣δ(A2 \ A1)

∣∣+ ∣∣δ(A1 \ A2)
∣∣+ ∣∣δ(A1 ∪ A2)

∣∣.
(2.1.1)

Definition 2.1.13. (dangerous set) Let (G, s, k) be a connectivity triple.

A subset A of V (G) \ {s} is k-dangerous, or simply dangerous, if A ̸= ∅,
V (G) \ (A ∪ {s}) ̸= ∅, and |δG(A)| ⩽ k + 1.

Dangerous sets were also used in [2] to prove results about degree

bounded network designs with metric costs. For that purpose, some

propositions about dangerous sets were proved in [2] that were later devel-

oped and used by Ok, Richter, and Thomassen. The following proposition

is a special case of Theorem 1.1 in their paper [18].

Proposition 2.1.14. [18] Let G be a graph and let s be a vertex of G

that does not have degree 3 and is not incident with a cut-edge. Let F be

any set of at least two edges, all incident with s. Then no pair of edges

in F yields a k-feasible lift if and only if there is a k-dangerous set A so

that, for every sv ∈ F , v ∈ A.

The core idea in this proposition can be seen more easily in the special

case when |F | = 2. Simply, if a pair is not liftable, this means that lifting

it results in a small cut.

Lemma 2.1.15. Let (G, s, k) be a connectivity triple, and let su and sv

be edges in G. If su and sv are not k-liftable, then there is a dangerous

set A in G containing u and v.

Proof. If su and sv are not liftable, then there is a cut δ(A) in Gu,v of

size at most k − 1 that separates two vertices of Gu,v − s and such that

s /∈ A. Otherwise δ(A) is a cut in G of size k − 1 that is not δ({s}),
contradicting that (G, s, k) is a connectivity triple. Both u and v have

to be on the side of the cut that does not contain s, otherwise there is a
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cut in G of size k − 1 that is not δ({s}), contradicting that (G, s, k) is a

connectivity triple. That side of the cut containing u and v but not s is

the desired dangerous set.

Definition 2.1.16. (independent set) A set X of vertices in a graph G

is independent if no two vertices of X are adjacent in G.

Note that a set F of edges incident with s in G such that no pair of

edges in F is k-liftable corresponds to an independent set of vertices in

the lifting graph L(G, s, k). The following is Lemma 3.2 in [18].

Definition 2.1.17. Let (G, s, k) be a connectivity triple, and let F be

an independent set of edges in L(G, s, k). A dangerous set A as given by

Proposition 2.1.14 is a dangerous set corresponding to F .

Such a dangerous set is not necessarily unique. Consider for example

a graph G that consists of a vertex s and three sets of vertices A1, A, and

A2, where s has neighbours in both A1 and A2, but no neighbours in A,

and there are k+1 edges between A1 and A, and between A2 and A, but

no edges between A1 and A2. Let F1 be the set of edges incident with s

whose other end-vertices are in A1. Then A1 and A∪A1 are two different

dangerous sets corresponding to F1.

Lemma 2.1.18. Let (G, s, k) be a connectivity triple such that deg(s) =

3. Any set of vertices in G containing all the three neighbours of s is not

dangerous.

Proof. If A is a dangerous set, then |δ(A)| ⩽ k + 1. By definition, A′ =

V (G) \ (A ∪ {s}) is not empty. If all neighbours of s are in A, then

|δ(A′)| = |δ(A ∪ {s})| ⩽ (k + 1)− 3 = k − 2, contradicting the fact that

(G, s, k) is a connectivity triple.

Lemma 2.1.19. [18] Let (G, s, k) be a connectivity triple. For i = 1, 2,

let Fi be an independent set in L(G, s, k) of size ri and suppose there is a

dangerous set Ai so that Fi = δ({s})∩ δ(Ai). Set α = |F1∩F2|. If α > 0,

r1 > α, r2 > α, and A1 ∪ A2 ∪ {s} ≠ ∅, then r1 + r2 ⩽ ⌊deg(s)/2⌋+ 2.

We will also need Lemma 3.3 from [18],

12



Lemma 2.1.20. [18] Let (G, s, k) be a connectivity triple.

(i) If deg(s) is at least 4, then every independent set in L(G, s, k) has

size at most ⌈deg(s)/2⌉ and;

(ii) If deg(s) is even and at least 6, then any two distinct independent

sets in L(G, s, k) of size 1
2
deg(s) are disjoint.

2.2 Structure of the lifting graph

In this section we extend Theorem 2.1.11 of Ok, Richter, and Thomassen,

about the structure of the lifting graph. That theorem was proved by

induction on the degree of the vertex whose edges are lifted, or in other

words the number of vertices of the lifting graph at that vertex. Not all

the properties Ok, Richter, and Thomassen showed at the base cases of

degrees 4 and 5 were carried over in the induction. We show - without

induction - that all the specific structures they found in the base cases of

their inductive proof hold in general. We present this mainly in Theorem

2.2.8, Corollary 2.2.24, and Proposition 2.2.26. We also show that the

structure of the lifting graph has an implication on the structure of the

graph, Theorem 2.3.1.

Proposition 2.2.1. Let (G, s, k) be a connectivity triple. Assume that

L(G, s, k) contains an independent set of size ⌈deg(s)/2⌉. If deg(s) is odd
and at least 5, then L(G, s, k) is either (see Figure 2.2)

(i) a complete bipartite graph with one side of size ⌈deg(s)/2⌉ and the

other of size ⌊deg(s)/2⌋ or

(ii) an isolated vertex plus a complete bipartite graph with both sides of

size (deg(s)−1)
2

.

Proof. This is the same as the proof of Case 1 in Proposition 3.5 of [18].

Let F be a set of edges incident with s of size ⌈deg(s)/2⌉ such that no two

edges in F form a feasible pair, i.e. F is independent in L(G, s, k). By

13



Proposition 2.1.14 there is a dangerous set A1 containing the non-s ends

of the edges in F . By definition of a dangerous set, |δG(A1)| ⩽ k + 1.

Note that the disjoint unions of δ(A1 : A1 ∪ {s}) with δ({s} : A1)

and with δ({s} : A1 ∪ {s}) respectively give δ(A1) and δ(A1 ∪ {s}). By

Lemma 2.1.20, F has the maximum possible size of an independent set

in L(G, s, k), therefore, |δ({s} : A1)| = |F | = deg(s)+1
2

, |δ(A1 ∪ {s})| =
|δ(A1)| − 1 ⩽ k. Thus A1 ∪ {s} is dangerous, and by Proposition 2.2.1,

δ({s}) \ F is an independent set in L(G, s, k). Now we will show that

(i) either every edge in F lifts with every edge in δ({s}) \F (this gives

the complete bipartite possibility) or

(ii) there is a unique edge in F that does not lift with any edge in

δ({s}), but any other edge of F lifts with each edge of δ({s}) \ F .

This gives the isolated vertex plus complete bipartite case.

In particular we will show that if an edge e1 ∈ F does not lift with

an edge e2 ∈ δ({s}) \F , then e1 does not lift with any edge, and then by

Frank’s Theorem 2.1.10 it is the only such edge. We present this in the

following claim.

Claim 2.2.2. Let e1 ∈ F and e2 ∈ δ({s}) \ F be a pair of edges that

is not k-liftable. Then e1 is not k-liftable with any edge in δ({s}) \ {e1}.
Moreover, any edge f ∈ F \{e1} is k-liftable with every edge in δ({s})\F .

Proof. Suppose e1 ∈ F and e2 ∈ δ({s}) \ F do not form a k-liftable

pair and let A2 be a dangerous set that witnesses this (such a set exists

by Lemma 2.1.15), so the non-s ends of e1 and e2 are in A2. By Lemma

2.1.20 the maximum size of an independent set in L(G, s, k) is ⌈deg(s)/2⌉;
consequently, at most ⌈deg(s)/2⌉ of the edges incident with s have their

non-s ends in A2. Therefore, at least ⌊deg(s)/2⌋ of the edges incident

with s have their non-s ends in A2 ∪ {s}. Now since e2 is in δ({s}) \ F
but has its non-s end in A2 and |δ({s})\F | = ⌊deg(s)/2⌋, the set of edges
incident with s whose non-s ends are in A2 ∪ {s} contains an edge e from

F . Also since e1 ∈ F has its non-s end in A2, e is in F \ {e1}.

14



For i = 1, 2, set Fi = δ(Ai) ∩ δ(s); in particular F1 = F . Three of the

hypotheses of Lemma 2.1.19 are satisfied: e1 ∈ F1∩F2 (α > 0), e2 ∈ F2\F1

(|F2| > α), and e ∈ F1\F2 (|F1| > α). If the other hypothesis of the lemma

A1 ∪ A2 ∪ {s} ≠ ∅ is also satisfied, then |F1|+ |F2| ⩽ ⌊deg(s)/2⌋+ 2, i.e.

⌈deg(s)/2⌉ + |F2| ⩽ ⌊deg(s)/2⌋ + 2. Since deg(s) is odd, this means

that |F2| ⩽ 1, a contradiction since F2 contains both e1 and e2. Thus,

A1 ∪ A2 ∪ {s} = ∅, so all the edges of δ({s}) \F have their non-s ends in

A2 \ A1.

Now since, |δ({s}) \ F | = ⌊deg(s)/2⌋ and there is an edge from s to

A1 ∩ A2, |δ(A2) ∩ δ({s})| ⩾ ⌈deg(s)/2⌉. By Lemma 2.1.20 this is the

maximum possible size of an independent set in L(G, s, k), and since A2

is dangerous, |δ(A2) ∩ δ({s})| = ⌈deg(s)/2⌉.
Consequently, |δ({s} : (A1 ∩ A2))| = 1, and all the non-s ends of the

edges of F other than e1 are in A1 \ A2. Since all the non-s ends of the

edges incident with s other than e1 are either in A1 \ A2 or A2 \ A1, and

e1 has its non-s end in A1 ∩ A2, e1 does not lift with any other edge and

it is the only such edge by Frank’s Theorem.

If f is an edge in F \ {e1} and e2 is an edge in δ({s}) \F , then by the

uniqueness of e1, f and e2 is a k-liftable pair. Thus every edge in F \{e1}
lifts with every edge in δ({s}) \ F .

This claim gives the structure of an isolated vertex (e1) plus a complete

bipartite graph for the lifting graph.

Proposition 2.2.1 dealt with the case when deg(s) is odd and L(G, s, k)

contains an independent set of the maximum possible size ⌈deg(s)/2⌉,
Figure 2.2. There it was proved that the maximal independent sets are

either disjoint or intersect in exactly one vertex. Point (4) in Theorem

2.1.11 showed that if both deg(s) is even and k is even, then the maximal

independent sets of L(G, s, k) are disjoint (complete multipartite). The

case of an isolated vertex plus complete bipartite means two maximal

independent sets of L(G, s, k) intersecting in exactly one vertex. Now we

consider the other cases.

The new idea here is that we focus on the maximal independent sets
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L(G, s, k) is an isolated vertex plus K3,3

Figure 2.2: Examples with deg(s) = 7 and an independent sets of size
⌈deg(s)/2⌉ in L(G, s, k).

of the lifting graph. In the following lemmas and theorem we will only

see how they intersect. After that we will use this to find out what kind

of structure they are arranged into, a path, a cycle, pairwise disjoint, or

otherwise.

Lemma 2.2.3. Let (G, s, k) be a connectivity triple such that deg(s) ⩾ 4.

Suppose that I1 and I2 are two maximal independent sets in L(G, s, k)

and let A1 and A2 be two dangerous sets in G corresponding to I1 and I2

respectively.

(1) Then |I1 ∩ I2| ⩽ 1.

(2) If |I1 ∩ I2| = 1 and I1 ∪ I2 ̸= V (L(G, s, k)), then k is odd, and

(a) |δG(A1)| = |δG(A2)| = k + 1;

(b) |δG(A2 \ A1 : A1 \ A2)| = 0;

(c) |δG−s(A1 ∩ A2 : A1 ∪ A2)| = 0; and

(d) |δG(A2 \ A1 : A1 ∩ A2)| = |δG(A1 ∩ A2 : A1 \ A2)| = k−1
2
.
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Proof. We follow a generalized version of the proof of Case 2 in Propo-

sition 3.5 of [18]. Let k1 = |δ({s} : A1 \ A2)|, k2 = |δ({s} : A2 \ A1)|,
k3 = |δ({s} : A1 ∩ A2)|, and assume that k3 ̸= 0.

SinceA1 andA2 are dangerous, we have |δG(A1)| ⩽ k+1 and |δG(A2)| ⩽
k + 1. In particular, |δG−s(A1)| ⩽ (k + 1) − (k1 + k3), and |δG−s(A2)| ⩽
(k + 1)− (k2 + k3).

Since I1 and I2 are maximal independent sets in L(G, s, k), I1 ∪ I2

is not independent, consequently, by Proposition 2.1.14, A1 ∪ A2 is not

dangerous.

Also because Ii is a maximal independent set of L(G, s, k) for i ∈
{1, 2}, each Ai does not contain neighbours of s other than those that are

end-vertices of edges in Ii.

This and the assumption that I1 ∪ I2 ̸= V (L(G, s, k)) imply that at

least one edge incident with s has its non-s end in the set A1 ∪ A2 ∪ {s}.
Thus, A1∪A2 is separating in G−s in the sense that V (G−s)\ (A1∪A2)

and A1 ∪ A2 are both non-empty. By the definition of a dangerous set,

the only way for A1 ∪A2 to not be dangerous is if |δG(A1 ∪A2)| ⩾ k + 2.

This means that |δG−s(A1 ∪A2)| ⩾ (k + 2)− (k1 + k2 + k3). Note that in

G− s, s is not in A1 ∪ A2.

Also since (G, s, k) is a connectivity triple, and A1∩A2 ̸= ∅ (as k3 ̸= 0),

|δG−s(A1 ∩A2)| ⩾ k− k3, |δG−s(A1 \A2)| ⩾ k− k1, and |δG−s(A2 \A1)| ⩾
k − k2. Observe that in G− s:

2

[∣∣δ(A1)
∣∣+ ∣∣δ(A2)

∣∣− (∣∣δ(A1 ∩ A2 : A1 ∪ A2)|+
∣∣δ(A2 \ A1 : A1 \ A2)

∣∣)]
⩽ 2

[
(k + 1)− (k1 + k3) + (k + 1)− (k2 + k3)

]
= 4k − 2(k1 + k2 + k3) + 2 + (2− 2k3)

and∣∣δ(A1 ∩ A2)
∣∣+ ∣∣δ(A2 \ A1)

∣∣+ ∣∣δ(A1 \ A2)
∣∣+ ∣∣δ(A1 ∪ A2)

∣∣ ⩾
(k − k3) + (k − k2) + (k − k1) + (k + 2)− (k1 + k2 + k3)

= 4k − 2(k1 + k2 + k3) + 2
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By Equation 2.1.1, it follows that 2− 2k3 ⩾ 0, i.e. k3 ⩽ 1 as desired.

If k3 = 1, then inequalities throughout have to be equalities. More

precisely,

(1) |δG−s(A1)| = |δG−s(A1 \ A2)| = k − k1, so |δG(A1 \ A2)| = k and

|δG(A1)| = k + 1;

(2) |δG−s(A2)| = |δG−s(A2 \ A1)| = k − k2, so |δG(A2 \ A1)| = k and

|δG(A2)| = k + 1;

(3) |δG−s(A1 ∩ A2)| = k − 1;

(4) |δG−s(A1 ∪ A2)| = (k + 2)− (k1 + k2 + k3) = k + 1− k1 − k2;

(5) |δG−s(A1 ∩ A2 : A1 ∪ A2)| = |δG−s(A2 \ A1 : A1 \ A2)| = 0.

Together, (1) and (2) give (a), and (5) gives (b) and (c). To prove (d)

note that (5) also gives (cf. Figure 2.1),

|δG−s(A2)| = |δG−s(A2 \ A1 : A1 ∪ A2)|+ |δG−s(A1 ∩ A2 : A1 \ A2)|, and
|δG−s(A2 \ A1)| = |δG−s(A2 \ A1 : A1 ∪ A2)| + |δG−s(A2 \ A1 : A1 ∩ A2)|.
From (2) we have |δG−s(A2)| = |δG−s(A2 \ A1)|. Cancelling the common

|δG−s(A2 \ A1 : A1 ∪ A2)| on both sides yields

|δG−s(A2 \ A1 : A1 ∩ A2)| = |δG−s(A1 ∩ A2 : A1 \ A2)|.

Now this last equality, (3), and (5) imply that,

k−1 = |δG−s(A1∩A2)| = |δG−s(A1∩A2, A1\A2)|+|δG−s(A1∩A2, A2\A1)|
=2|δG−s(A1 ∩ A2, A2 \ A1)|. Thus k has to be odd and,

|δG−s(A1 ∩ A2, A1 \ A2)| = |δG−s(A2 \ A1, A1 ∩ A2)| =
k − 1

2
.

Since deg(s) > 3, the maximum size of an independent set is ⌈deg(s)/2⌉
by Frank’s theorem 2.1.10. Therefore if the union of two intersecting max-

imal independent sets is the entire vertex set of L(G, s, k), then they are

both of size ⌈deg(s)/2⌉ and they intersect in exactly one vertex. The

examples in Figure 2.4 show that k can be even as well as odd in that

case.
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k−1
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A2A1
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A1 ∪ A2 ∪ {s}

Figure 2.3: Two intersecting dangerous sets corresponding to maximal
independent sets not both of size ⌈deg(s)/2⌉.

From this Lemma we have as a corollary that when two maximal

independent sets in the lifting graph - not both of the large size ⌈deg(s)/2⌉
- intersect, then k has to be odd. But there is no restriction on the parity

of deg(s) in that case. On the other hand, if two independent of size

⌈deg(s)/2⌉ intersect, then by Lemma 2.1.20 either deg(s) is odd or is

equal to 4.

In case deg(s) is odd, then L(G, s, k) is an isolated vertex plus a complete

bipartite graph as shown in Lemma 2.2.1. The parity of k in that case

can be even as well as odd (examples in Figure 2.4 and the right drawing

of Figure 2.2). In case deg(s) = 4, such an intersection can only happen

if k is odd as shown in the comment after Proposition 3.4 in [18], and the

graph G has a specific structure in that case, illustrated in Figure 2.5.

In Lemma 2.2.3 it was also shown that the dangerous sets A1 and A2

in G corresponding to the two intersecting maximal independent sets of

L(G, s, k) have a fixed number of edges, (k − 1)/2, between A1 ∩ A2 and

A1 \ A2 as well as between A1 ∩ A2 and A2 \ A1, a number depending

only on the connectivity. By the example illustrated in the right drawing

in Figure 2.2 this does not have to be the case when the two intersecting

maximal independent sets are both of size ⌈deg(s)/2⌉. However, in the
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L(G, s, k) is an isolated vertex plus K3,3
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Figure 2.4: Examples with lifting graph an isolated vertex plus complete
bipartite graph for even and odd k.

following lemma we will see that the numbers of edges between A1 ∩ A2

and each of the sets A1 \ A2 still has to be equal, and its sum with the

number of edges between A1 \ A2 and A2 \ A1 is a constant of the graph

depending only on the connectivity and the degree of s.

Lemma 2.2.4. Let (G, s, k) be a connectivity triple. Suppose that deg(s) ⩾

3, deg(s) ̸= 4, and two independent sets of size ⌈deg(s)/2⌉ in L(G, s, k)

have a non-empty intersection. Then deg(s) is odd and if A1 and A2

are dangerous sets in G corresponding to those two independent sets in

L(G, s, k), then

(1) there are no vertices outside A1 ∪ A2 ∪ {s};

(2) |δG(A1 \ A2 : A2 \ A1)| ⩽ (k − deg(s) + 2)/2;

(3) |δG(A2 \ A1 : A1 ∩ A2)| = |δG(A1 ∩ A2 : A1 \ A2)| ⩾ k−1
2
;

(4) |δG(A1)| = |δG(A2)| = k + 1;

(5) |δG(A1 \A2 : A2 \A1)|+ |δG(A1 ∩A2 : A1 \A2)| = (k+1)− deg(s)+1
2

;

and
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(6) deg(s) ⩽ k + 2.

Proof. Suppose that L(G, s, k) contains two independent sets of the size

⌈deg(s)/2⌉ with non-empty intersection, and that deg(s) ̸= 4. By Lemma

2.1.20 deg(s) is odd. By Proposition 2.2.1, if deg(s) ̸= 3, then the two sets

intersect in exactly one vertex and they are the only maximal indepen-

dent sets of L(G, s, k) (this is the isolated vertex plus complete bipartite

case). In case deg(s) = 3 an independent set of size 2 does not have to be

maximal as it is possible that all three edges incident with s form an in-

dependent set of size 3. Figure 2.14 in the next section provides examples

where all three edges at s form an independent set.

By Lemma 2.1.14, in case deg(s) > 4, there are two dangerous sets

A1 and A2 in G corresponding to the two maximal independent sets. For

deg(s) = 3 the existence of such dangerous sets is guaranteed by Lemma

2.1.15, and by Lemma 2.1.18 each one of those dangerous sets contains

exactly two of the neighbours of s (the third neighbour is outside it but in

the other dangerous set). In any case, the union A1∪A2 is not dangerous,

and hence |δG(A1 ∪ A2)| ⩾ k + 2 if A1 ∪ A2 ∪ {s} ≠ ∅.
We again use, in G − s, the same standard equation we used before

2.1.1. We first show that there are no vertices in G− s outside the union

of two dangerous sets corresponding to the two maximal independent sets

of L(G, s, k).

Claim 2.2.5. A1 ∪ A2 = V (G) \ {s}.

Proof. Suppose by way of contradiction that A1 ∪ A2 ∪ {s} ≠ ∅. Then

the right hand side of equation 2.1.1 applied in G− s is at least

(k− 1)+
(
k−

(deg(s)− 1

2

))
+
(
k−

(deg(s)− 1

2

))
+((k+2)−deg(s)).

Note that s has exactly one neighbour in A1 ∩ A2, and this follows from

the last paragraph in the statement of Lemma 2.2.3. This, and the k-

edge-connectivity of G, give the first three terms. The last term follows

from the fact that A1 ∪ A2 is not dangerous.

This is a lower bound of 4k−2 deg(s)+2. On the other hand, the left
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side has the upper bound of 2[(k+1− (deg(s)+1
2

)) + (k+1− (deg(s)+1
2

))] =

4k+ 4− 2(deg(s) + 1) = 4k− 2 deg(s) + 2. Thus, both sides are equal to

4k−2 deg(s)+2, and the individual upper and lower bounds on each term

hold with equality. In particular |δG−s(A1 ∪ A2)| = ((k + 2)− deg(s)).

The set A1 ∪ A2 does not contain any neighbours of s, as A1 and A2

contain all the neighbours of s. Therefore, |δG(A1 ∪ A2)| = |δG−s(A1 ∪ A2)|
= ((k + 2)− deg(s)) < k, a contradiction.

Now, knowing that A1 ∪ A2 ∪ {s} = ∅, then the lower bound on the

right side of equation 2.1.1 is (k− 1)+ (k− (deg(s)−1
2

))+ (k− (deg(s)−1
2

)) =

3k − deg(s).

The upper bound on the left side is 4k−2 deg(s)+2 = (3k−deg(s))+

(k − deg(s) + 2). This means that, cf. equation 2.1.1,

(|δG−s(A1∩A2 : A1 ∪ A2)|+|δG−s(A2\A1 : A1\A2)|) ⩽ (k−deg(s)+2)/2.

We know that |δG−s(A1 ∩ A2 : A1 ∪ A2)| = 0 as A1 ∪ A2 ∪ {s} = ∅.
Thus, |δG−s(A2 \A1 : A1 \A2)| ⩽ (k−deg(s)+2)/2, and this same upper

bound also holds in G.

Since G is k-edge-connected and, for i = 1, 2, Ai is dangerous,|δ(Ai)|
is either k or k + 1.

Claim 2.2.6. For i = 1, 2, |δ(Ai)| = k + 1.

Proof. If, say, |δG(A1)| = k, then,

|δG(A1 \ A2 : A2 \ A1)| + |δG(A1 ∩ A2 : A2 \ A1)| + |δ({s} : A1)| = k.

It follows that |δG(A2 \ A1)| = k − 1, as s has exactly one neighbour in

A1 ∩ A2 (Lemma 2.2.3) and |δG({s} : A2 \ A1)| = |δG({s} : A1 \ A2)| (as
A1 and A2 correspond to maximal independent sets of the same size), a

contradiction. The same argument holds for A2.

The equality |δG(A1)| = |δG(A2)| = k + 1 means that |δG−s(A1)| =

|δG−s(A2)| = k + 1− (deg(s)+1
2

), i.e.

|δG(A1 \ A2 : A2 \ A1)|+ |δG(A1 ∩ A2 : A2 \ A1)| =
|δG(A2 \ A1 : A1 \ A2)|+ |δG(A1 ∩ A2 : A1 \ A2)| = k + 1− (deg(s)+1

2
).

In particular,

|δG(A1 ∩ A2, A2 \ A1)| = |δG(A1 ∩ A2, A1 \ A2)|.
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Now since |δG(A1 ∩ A2)| ⩾ k and s has exactly one neighbour in

A1 ∩ A2, both

|δG(A1 ∩ A2 : A2 \ A1)| and |δG(A1 ∩ A2 : A1 \ A2)| have to be at least

(k − 1)/2.

The lower bound |δG(A2 \ A1 : A1 ∩ A2)| = |δG(A1 ∩ A2 : A1 \ A2)| ⩾
k−1
2
, and the fact that A1 and A2 are both dangerous and each contain

(deg(s) + 1)/2 neighbours of s, imply that (deg(s) + 1)/2 ⩽ (k + 3)/2.

Thus, deg(s) ⩽ k + 2.

Remark 2.2.7. It is possible that k is even in the previous lemma. That

is, it is possible to have the lifting graph of isolated vertex plus complete

bipartite with even k (only deg(s) has to be odd).

In that case |δG(A1 ∩A2 : A2 \A1)| and |δG(A1 ∩A2 : A1 \A2)| will be at
least k/2. See Figure 2.4 and the right drawing of Figure 2.2.

To summarize, we have the following theorem.

Theorem 2.2.8. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4.

(1) Any two maximal independent sets of L(G, s, k) intersect in at most

one vertex.

(2) If deg(s) > 4 and there exists two intersecting maximal indepen-

dent sets of L(G, s, k) of size ⌈deg(s)/2⌉, then L(G, s, k) consists

of an isolated vertex and a balanced complete bipartite graph. In

particular,

(i) these are the only two maximal independent sets of L(G, s, k);

(ii) they intersect in exactly one vertex; and

(iii) deg(s) is odd.

(3) The maximal independent sets of L(G, s, k) are pairwise disjoint

(L(G, s, k) is complete multipartite) if k is even and

(i) deg(s) is even or
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(ii) at most one independent set of L(G, s, k) has size ⌈deg(s)/2⌉.

Moreover, if L(G, s, k) is complete multipartite, then it is not a star.

Proof. From Lemma 2.2.3, we have (1). Suppose that deg(s) > 4 and

there exists two intersecting maximal independent sets of L(G, s, k) of

size ⌈deg(s)/2⌉, then by Lemma 2.2.4 it follows that deg(s) is odd, and

then by Proposition 2.2.1 we have that L(G, s, k) consists of an isolated

vertex and a balanced complete bipartite graph. This completes the proof

of (2).

If k is even and deg(s) is even, then the maximal independent sets of

L(G, s, k) are pairwise disjoint by (4) in Theorem 2.1.11. If at most one

independent set of L(G, s, k) has size ⌈deg(s)/2⌉, then either L(G, s, k)

consists of two disjoint maximal independent sets of sizes ⌈deg(s)/2⌉ and
⌊deg(s)/2⌋, or for any two maximal independent sets I1 and I2, I1 ∪
I2 ̸= V (L(G, s, k)), and by Lemma 2.2.3 it follows that in case k is even,

I1 ∩ I2 = ∅.
Since deg(s) ⩾ 4, then by the theorem of Frank 2.1.10, L(G, s, k) can-

not be a star because a star on n vertices contains a maximal independent

set of size n− 1 > ⌈n
2
⌉.

To be able to talk more neatly about a connected collection of maximal

independent sets in L(G, s, k), we define the independence graph.

Definition 2.2.9. (Independence Graph) For a graph H the indepen-

dence graph I(H) is the graph whose vertex set is the set of maximal

independent sets of H and in which two vertices are adjacent if and only

if the corresponding independent sets have a nonempty intersection.

Note that the complement of H is connected if and only if I(H)

is connected. Note also that when L(G, s, k) is complete multipartite,

I(L(G, s, k)) is a collection of isolated vertices.

Rereading Theorem 2.2.8 we see for example that when L(G, s, k) is an

isolated vertex plus a balanced complete bipartite graph, I(L(G, s, k)) is

a path of length two, and when L(G, s, k) is complete multipartite graph,

I(L(G, s, k)) consists of singletons.
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In Section 3.2 of [18] it was shown that when deg(s) = 4, L(G, s, k)

is either a 4-cycle, a K4, or a perfect matching. It was also proved there

that the matching case does not occur when k is even. Therefore when

k is even any two maximal independent sets are disjoint, otherwise, they

intersect in at most one vertex.

In the matching case, which can happen only when k is odd, I(L(G, s, k))

is a 4-cycle. The maximal independent sets of L(G, s, k) are each of size 2

and they form a 4-cycle in which every two consecutive independent sets

intersect in exactly one vertex. See Figure 2.5.

Lemma 2.2.10. [18] Let (G, s, k) be a connectivity triple. If deg(s) = 4,

then L(G, s, k) is one of: a perfect matching; C4; and K4. If k is even,

then L(G, s, k) is not a perfect matching.

Moreover, if L(G, s, k) is a perfect matching, then G consists of the vertex

s and four sets of vertices Si, 1 ⩽ i ⩽ 4, such that s has exactly one

neighbour in each Si, and |δ(S1 : S2) = δ(S2 : S3) = δ(S3 : S4) = δ(S4 :

S1).

This cyclic structure, for deg(s) = 4, is the basis for the structural re-

sults we prove in the next section. We will generalize this cyclic structure

to arbitrary deg(s) and show that it is one of two possible structures that

happen when the maximal independent sets of the lifting graph form a

connected entity, i.e. when I(L(G, s, k)) is connected.

2.2.1 Maximal independent sets and dangerous sets

In this subsection we will study the arrangement of the maximal indepen-

dent sets of L(G, s, k) and their corresponding dangerous sets in G. This

is the way we will learn the relation between the structure of a graph and

the structure of its lifting graph. In the previous section, we saw that,

from [18], for deg(s) = 4, only in the case L(G, s, k) is a perfect matching

is I(L(G, s, k)) connected: it is a 4-cycle, and this case can happen only

when k is odd. In this section we show that in general there are only

two possibilities for I(L(G, s, k)) to be connected: it is either a path or a

cycle. The latter generalizes the situation for deg(s) = 4. See Figure 2.5.
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A1 ∩ A2

A1 \ A2

A2 \ A1

s

(k − 1)/2 edges

(k − 1)/2 edges(k − 1)/2 edges

(k − 1)/2 edges

Figure 2.5: The graph G has this structure if deg(s) = 4 and two inde-
pendent sets of size 2 in L(G, s, k) have a nonempty intersection.

We will begin by showing that no three maximal independent sets of

L(G, s, k) have a nonempty common intersection. For this, we need first

to prove the following lemma about three intersecting dangerous sets.

Lemma 2.2.11. Let (G, s, k) be a connectivity triple such that k is odd,

and let A1, A2, A3 be three distinct dangerous sets such that, for any dis-

tinct i, j ∈ {1, 2, 3}:

(a) Ai ∩ Aj contains at most one neighbour of s;

(b) |δ(Ai ∩ Aj : Aj \ Ai)| = (k − 1)/2;

(c) |δ(Ai \ Aj : Aj \ Ai)| = 0; and

(d) |δG−s(Ai ∩ Aj : Ai ∪ Aj)| = 0.

Then A1 ∩ A2 ∩ A3 = ∅.

Proof. By way of contradiction, assume that A1 ∩ A2 ∩ A3 ̸= ∅.

Claim 2.2.12. At least one of the sets (A1 ∩ A2) \ A3, (A1 ∩ A3) \ A2,

and (A2 ∩ A3) \ A1 is empty.

Proof. Assume that all of these sets are non-empty. Let

• a = δ((A2 ∩ A3) \ A1 : A2 \ (A1 ∪ A3)),
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Figure 2.6: Intersection of three dangerous sets.

• b = δ((A1 ∩ A2) \ A3 : A2 \ (A1 ∪ A3)),

• c = δ((A1 ∩ A2) \ A3 : A1 \ (A2 ∪ A3)),

• d = δ((A1 ∩ A3) \ A2 : A1 \ (A2 ∪ A3)),

• e = δ((A1 ∩ A3) \ A2 : A3 \ (A1 ∪ A2)),

• f = δ((A2 ∩ A3) \ A1 : A3 \ (A1 ∪ A2)),

• g = δ(A1 ∩ A2 ∩ A3 : (A2 ∩ A3) \ A1),

• h = δ(A1 ∩ A2 ∩ A3 : (A1 ∩ A2) \ A3), and

• i = δ(A1 ∩ A2 ∩ A3 : (A1 ∩ A3) \ A2).

Illustrated in Figure 2.6.

These are all the different edge sets between the different parts of the

intersections of A1, A2, and A3 since we are given |δ(Ai\Aj : Aj\Ai)| = 0,

and |δ(Ai ∩ Aj : Ai ∪ Aj)| = 0.

We will show that each one of g, h, and i is at least (k − 1)/3 and

then show that we have a contradiction, and as a result (A1 ∩ A2) \ A3,

(A1 ∩ A3) \ A2, and (A3 ∩ A2) \ A1 cannot be all nonempty.

If one of g, h, or i is less than (k − 1)/3, then by k-edge-connectivity,

then one of them has to be greater than (k−1)/3 because δ(A1∩A2∩A3)

contains at most one edge incident with s (hypothesis (a)) in addition to
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Figure 2.7: (A3 ∩ A2) \ A1 is empty.

the three sets of edges whose sizes are g, h, and i. Suppose without loss

of generality that g is less than (k−1)/3, and h is greater than (k−1)/3.

By (b), g + b = (k − 1)/2 and h + a = (k − 1)/2, therefore b is greater

than (k − 1)/6 and a is less than (k − 1)/6.

Since (A2 ∩ A3) \ A1 is nonempty by assumption, |δ((A2 ∩ A3) \ A1)|
has to be at least k. We must have f > (k − 1)/2 because g is less than

(k − 1)/3, a is less than (k − 1)/6, and δ((A2 ∩ A3) \ A1) contains at

most one edge incident with s. This is a contradiction to the fact that

f + i = (k − 1)/2 (hypothesis (b)).

Thus each one of g, h, and i is at least (k − 1)/3. Then, by (b),

a, b, c, d, e, f are each at most (k−1)
6

. Again, since (A2∩A3)\A1 is nonempty

by assumption and contains at most one neighbour of s, now g has to be

at least k − (1 + 2(k−1)
6

) = 2(k−1)
3

> (k−1)
2

, a contradiction to (b).

Thus our assumption that A1∩A2∩A3, (A1∩A2)\A3, (A1∩A3)\A2,

and (A3 ∩ A2) \ A1 are all nonempty is false.

Claim 2.2.13. At least two of the sets (A1 ∩ A2) \ A3, (A1 ∩ A3) \ A2,

and (A2 ∩ A3) \ A1 are empty.

Proof. By Claim 2.2.12, we may assume (A2 ∩ A3) \ A1 is empty and by

way of contradiction we assume the other two are not empty. See Figure

2.7.
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Note that there are no edges between A1∩A2∩A3 and A2\A1 because

A2 \ A1 is a subset of A1 ∪ A3 (as (A2 ∩ A3) \ A1 is empty).

As illustrated in Figure 2.7, let

• a = |δ((A1 ∩ A2) \ A3 : A2 \ A1)|,

• b = |δ((A1 ∩ A2) \ A3 : A1 \ (A2 ∪ A3))|,

• c = |δ((A1 ∩ A3) \ A2 : A1 \ (A2 ∪ A3))|,

• d = |δ((A1 ∩ A3) \ A2 : A3 \ (A1 ∪ A2))|,

• e = |δ(A1 ∩ A2 ∩ A3 : (A1 ∩ A2) \ A3)|, and

• f = |δ(A1 ∩ A2 ∩ A3 : (A3 ∩ A1) \ A2)|.

Note that δ(A1∩A2∩A3 : A2 \A3) = δ(A1∩A2∩A3 : (A1∩A2) \A3)

(e in Figure 2.7) because A1 ∩ A2 ∩ A3 ⊆ A1 ∩ A3 and δG−s(A1 ∩ A3 :

A1 ∪ A3) = ∅.
If e < (k−1)/2, then f > (k−1)/2 for |δ(A1∩A2∩A3)| to be at least

k since (A1 ∩ A2 ∩ A3) contains at most one neighbour of s. However,

this is impossible because f + b = (k − 1)/2 (hypothesis (b)). Thus, by

symmetry, each one of e and f is at least (k−1)/2, and so is in fact equal

to (k − 1)/2 and each of b and c is equal to 0.

Since (A3 ∩ A2) \ A1 = ∅, and by hypothesis (d) once applied with

{i, j} = {1, 2} and once with {i, j} = {1, 3}, we have δ(A1∩A3 : A3\A1) =

δ((A1∩A3)\A2 : A3\(A1∪A2)) (d in Figure 2.7) and δ(A1∩A2 : A2\A1) =

δ((A1 ∩A2) \A3 : A2 \ (A1 ∪A3)) (a in Figure 2.7). Thus, by hypothesis

(b), a = d = (k − 1)/2.

Since A1∩A2 contains at most one neighbour of s, either (A1∩A2)\A3

or A1 ∩ A2 ∩ A3 does not contain a neighbour of s. Therefore, either

|δ((A1∩A2)\A3)| ⩽ a+b+e = k−1
2
+0+ k−1

2
= k−1 or |δ(A1∩A2∩A3)| ⩽

e+ f = (k − 1), a contradiction.

Claim 2.2.14. All of (A1 ∩A2) \A3, (A1 ∩A3) \A2, and (A2 ∩A3) \A1

are empty.
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A1 A2

A3

A1 ∩ A2 ∩ A3

A1 A2

A3

⋂
Ai

(A1 ∩ A2) \ A3 �= ∅ (A1 ∩ A2) \ A3 = (A1 ∩ A3) \ A2 = (A3 ∩ A2) \ A1 = ∅

Figure 2.8

Proof. We may assume without loss of generality that only ((A1∩A2)\A3)

is nonempty. This is illustrated in the left drawing of Figure 2.8. There

are no edges between A1∩A2∩A3 and any set of the form Ai \ (Aj ∪Al),

because those will be edges of the sort δG−s(Aj ∩ Al : Aj ∪ Al), and by

(d) this latter set is empty. Thus the only edges we have coming out of

A1∩A2∩A3 are to (A1∩A2)\A3. However, since A1∩A2∩A3 = A2∩A3

in the case we are discussing now, there should be (k − 1)/2 edges from

A1 ∩ A2 ∩ A3 to A3 \ A2, but A3 \ A2 = A3 \ (A1 ∪ A2), a contradiction.

Now, (A1∩A2)\A3, (A1∩A3)\A2, and (A3∩A2)\A1 are all empty (right

drawing in Figure 2.8). By (b) there are (k − 1)/2 edges from A1 ∩A2 =

A1∩A2∩A3 to A2\A1. Those are also edges from A1∩A3 to A1 ∪ A3, and

so we have a contradiction because δG−s(A1 ∩ A3 : A1 ∪ A3) = ∅ (k ⩾ 2

in the definition of a connectivity triple, and so (k − 1)/2 > 0).

Lemma 2.2.15. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. Then no three distinct maximal independent sets of L(G, s, k) have a

nonempty common intersection.

Proof. By way of contradiction, assume that there are three maximal

independent sets I1, I2, and I3 in L(G, s, k) such that I1 ∩ I2 ∩ I3 ̸= ∅,
and let A1, A2, and A3 respectively be corresponding dangerous sets in

G. By Lemma 2.2.3, |I1 ∩ I2 ∩ I3| = 1 , so s has exactly one neighbour in

A1 ∩ A2 ∩ A3.
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At most one of I1, I2, and I3 has size ⌈deg(s)/2⌉: If two intersecting

independent sets have this size, then either deg(s) = 4 and four indepen-

dent sets of size 2 each form a cycle, Lemma 2.2.10, or this is the isolated

vertex plus complete bipartite case and there is no third maximal inde-

pendent set, (2) in Theorem 2.2.8.

By Lemma 2.2.3, k is odd since two independent sets not both of

size ⌈deg(s)/2⌉ have a nonempty intersection, and we have |δ(Ai ∩ Aj :

Ai \ Aj)| = |δ(Ai ∩ Aj : Aj \ Ai)| = (k − 1)/2.

Also from Lemma 2.2.3 we know that for each i and j in {1, 2, 3},
|Ii ∩ Ij| = 1, |δG−s(Ai ∩Aj : Ai ∪ Aj)| = 0, and |δ(Ai \Aj : Aj \Ai)| = 0.

In particular, the only sets of edges between the different parts of the

intersections of A1, A2, and A3 are the ones illustrated in Figure 2.6.

All the conditions of Lemma 2.2.11 are satisfied, therefore,
3⋂

i=1

Ai = ∅.

This is a contradiction since
3⋂

i=1

Ai = ∅ contains the non-s end-vertex of

the common edge between the three maximal independent sets.

The following lemma tells us that for each pair of disjoint maximal

independent sets in L(G, s, k) there exist a pair of disjoint dangerous sets

corresponding to them in G.

Lemma 2.2.16. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. If I1 and I2 are disjoint maximal independent sets in L(G, s, k), and

A1 and A2 are corresponding dangerous sets in G, then either A1 \A2 or

A2 \ A1 is dangerous.

Proof. Consider two disjoint maximal independent sets I1 and I2 of L(G, s, k)

and let A1 and A2 be corresponding dangerous sets in G such that A1 ∩
A2 ̸= ∅. Define k1 to be |δ({s} : A1 \ A2)|, k2 = |δ({s} : A2 \ A1)|, and
k3 = |δ({s} : A1 ∩A2)|. By the assumption of the independent sets being

disjoint, k3 = 0, so k1 and k2 are the sizes of the two independent sets.

Now, in G− s,

(1) |δG−s(A1)| ⩽ (k + 1)− k1,

(2) |δG−s(A2)| ⩽ (k + 1)− k2,
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(3) |δG−s(A1 ∩ A2)| ⩾ k,

(4) |δG−s(A2 \ A1)| ⩾ k − k2,

(5) |δG−s(A1 \ A2)| ⩾ k − k1, and

(6) if A1 ∪ A2 ∪ {s} ̸= ∅, then |δG−s(A1 ∪ A2)| ⩾ (k + 2) − (k1 + k2)

because A1 ∪ A2 is not dangerous.

In the first case, A1 ∪ A2 ∪ {s} = ∅. Then either k1 = k2 = deg(s)/2,

in case deg(s) is even, or one of k1 and k2, say k1, is
(deg(s)+1)

2
and the

other is (deg(s)−1)
2

in case deg(s) is odd (Frank’s theorem 2.1.10). Since

A1 ∪ A2 ∪ {s} = ∅, we have,

|δ(A1)| = k1 + |δ(A1 ∩ A2 : A2 \ A1)|+ |δ(A1 \ A2 : A2 \ A1)|

and

|δ(A2 \ A1)| = k2 + |δ(A1 ∩ A2 : A2 \ A1)|+ |δ(A1 \ A2 : A2 \ A1)|.

Thus, 0 ⩽ |δ(A1)| − |δ(A2 \A1)| ⩽ 1, so A2 \A1 is dangerous, and we

are done.

We will show that, in case A1 ∪ A2 ∪ {s} ≠ ∅, either δG−s(A1 \A2) ⩽

(k+1)− k1 or δG−s(A2 \A1) ⩽ (k+1)− k2, i.e. δG(A1 \A2) ⩽ (k+1) or

δG(A2 \A1) ⩽ (k + 1). That is either (A1 \A2) or (A2 \A1) is dangerous

in G. Then we can replace A1 by A1 \ A2 or replace A2 by A2 \ A1 and

consequently have disjoint dangerous sets.

In the remaining case, A1 ∪ A2 ∪ {s} ≠ ∅. Let εi = |δG−s(Ai \A3−i)|−
(k − ki), for i = 1, 2. Then (1) − (5) applied to the standard equation

2.1.1 in G− s gives,

4k − 2(k1 + k2) + 2 + ε1 + ε2 ⩽ RHS = LHS ⩽ 4k − 2(k1 + k2) + 4

Therefore ε1 + ε2 ⩽ 2, so, for some i ∈ {1, 2}, εi ⩽ 1. For such an i,

Ai \ A3−i is dangerous, as required.
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Figure 2.9: Cycle of three dangerous sets.

Lemma 2.2.17. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. Then for any three maximal independent sets I1, I2, I3 in L(G, s, k)

there exist corresponding dangerous sets A1, A2, A3 in G such that A1 ∩
A2 ∩A3 = ∅. In particular, if I1, I2, I3 form a cycle in I(L(G, s, k)), then

A1, A2, A3 can be chosen such that for {i, j, l} = {1, 2, 3}, Ai intersects

Aj ∪ Al exactly in Aj \ Al and Al \ Aj, see Figure 2.9.

Proof. By Lemma 2.2.15 I1 ∩ I2 ∩ I3 = ∅. Up to symmetry there are four

cases to consider:

(1) I1 ∩ I2 ̸= ∅, I2 ∩ I3 ̸= ∅, but I1 ∩ I3 = ∅, that is I1I2I3 is a path in

I(L(G, s, k)),

(2) I1, I2, and I3 make a cycle in I(L(G, s, k)),

(3) I1 ∩ I2 ̸= ∅ but I3 is disjoint from I1 ∪ I2,

(4) I1, I2, and I3 are pairwise disjoint.

By Lemma 2.1.14 there are dangerous sets A1, A2, and A3 in G cor-

responding to I1, I2, and I3 respectively. By Lemma 2.2.16, in cases (1),

(3), and (4), A1, A2, and A3 can be chosen such that at least two of them

are disjoint. Then A1 ∩ A2 ∩ A3 = ∅.
Now suppose that I1, I2, I3 form a cycle in I(L(G, s, k)), and let A1,

A2, and A3 be corresponding dangerous sets. By Lemma 2.2.3, each Ii

and Ij intersect in exactly one vertex, so s has exactly one neighbour in
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Figure 2.10

Ai ∩ Aj. For distinct i, j ∈ {1, 2, 3}, Ii ∪ Ij ̸= V (L(G, s, k)) because the

only case in which the union of two maximal independent sets of L(G, s, k)

equals V (L(G, s, k)) is the case when L(G, s, k) is an isolated vertex plus

a complete balanced bipartite graph, and there are only two maximal

independent sets in that case, whereas here we have at least three maximal

independent sets. Thus, by Lemma 2.2.3, hypotheses (a)− (d) of Lemma

2.2.11 hold for any distinct i, j ∈ {1, 2, 3}. Therefore, A1 ∩ A2 ∩ A3 = ∅.

Lemma 2.2.18. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. Let A1, A2, A3 be, in order, dangerous sets corresponding to consecutive

vertices I1, I2, I3 in a path in I(L(G, s, k)). Then (see Figure 2.10),

(1) A2 \ (A1 ∪ A3) = ∅;

(2) s has exactly two neighbours in A2;

(3) for i = 1, 3, |δ({s} : Ai ∩ A2)| = 1; and

(4) |δ(A1 ∩ A2 : A2 ∩ A3)| = (k − 1)/2.

It is possible in this statement that I1 is adjacent to I3 in I(L(G, s, k)).

Proof. Let A1, A2, and A3 be three dangerous sets as described above.

The assumption that I(L(G, s, k)) has three vertices, i.e. L(G, s, k) con-

tains three maximal independent sets, means that the union of any two
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maximal independent sets in L(G, s, k) is a proper subset of V (L(G, s, k)).

Thus Lemma 2.2.3 applies to any two of A1, A2, and A3. See Figure 2.10.

In particular, |δ(A1∩A2 : A1\A2)| = |δ(A3∩A2 : A3\A2)| = (k−1)/2,

and |δ({s} : A1 ∩ A2)| = |δ({s} : A3 ∩ A2)| = 1. This is a total of

1 + 1 + (k−1)
2

+ (k−1)
2

= k + 1 edges in δ(A2). There cannot be more since

A2 is dangerous. Therefore, the two edges from s to A1 ∩A2 and A2 ∩A3

are the only edges between s and A2, and |δG−s(A2 : A1 ∪ A2 ∪ A3)| = 0.

Now we show that A2\(A1∪A3) = ∅. By way of contradiction suppose

not. As shown in the previous paragraph, |δ({s} : A2 \ (A1 ∪ A3))| = 0

and |δ(A2 \ (A1 ∪ A3) : A1 ∪ A2 ∪ A3)| = 0. By Lemma 2.2.3,

|δ(A2 \ (A1∪A3) : (A1 \A2)∪ (A3 \A2))| = 0. Thus, |δ(A2 \ (A1∪A3))| =
|δ(A2\(A1∪A3) : A1∩A2)|+|δ(A2\(A1∪A3) : A3∩A2)|. This is less than or

equal to |δ(A2\A1 : A1∩A2)|+|δ(A2\A3 : A3∩A2)| = (k−1)
2

+ (k−1)
2

= k−1,

a contradiction since (G, s, k) is a connectivity triple.

Now, since A2 \ (A1 ∪A3) = ∅, A2 \A1 = A2 ∩A3. Thus from Lemma

2.2.3, part (2)-(d), we have |δ(A1 ∩ A2 : A2 ∩ A3)| = (k − 1)/2.

Lemmas 2.2.15, 2.2.17, and 2.2.18 together give us the following.

Lemma 2.2.19. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. Then every component of I(L(G, s, k)) is either a path (possibly a

singleton) or a cycle. Moreover, there exist corresponding dangerous sets

in G that respectively make a path or a cycle via intersections.

Proof. We will show that I(L(G, s, k)) has no vertex of degree at least

3. Therefore, each component of I(L(G, s, k)) is either a cycle or a path.

Suppose for a contradiction that I(L(G, s, k)) contains a vertex of degree

3. Then there are maximal independent sets I1, I2, I3, I4 in L(G, s, k)

such that I1 intersects each one of I2, I3, and I4. By Lemma 2.2.15, no

three of I2, I3, and I4 have a nonempty common intersection, therefore,

I4 intersects I1 in I1 \ (I2 ∪ I3). Let A1, A2, A3, and A4 be corresponding

dangerous sets. Then the non-s end of the unique edge in I4 ∩ (I1 \ (I2 ∪
I3)) belongs to (A4 ∩ A1) \ (A2 ∪ A3), contradicting Lemma 2.2.18 as

A1 \ (A2 ∪ A3) should be empty.
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We can choose dangerous sets corresponding to non-adjacent vertices of

I(L(G, s, k)) to be disjoint. Therefore, this collection of dangerous sets

corresponding to a component of I(L(G, s, k)) will form either a path or

a cycle via intersections. Each one of those intersections contains exactly

one neighbour of s (but may contain other vertices).

In particular, if a component of I(L(G, s, k)) is a 3-cycle with vertices I1,

I2, and I3, then by Lemma 2.2.17 there are corresponding dangerous sets

A1, A2, and A3 such that A1∩A2∩A3 = ∅, forming a 3-cycle of dangerous

sets.

Lemma 2.2.20. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. If A1 and A2 are minimal dangerous sets in G corresponding to disjoint

maximal independent sets in L(G, s, k), then A1 and A2 are disjoint.

Proof. By Lemma 2.2.16, either A1 \ A2 or A2 \ A1 is dangerous. If

A1 ∩A2 ̸= ∅, then this contradicts the minimality of either A1 or A2.

By choosing dangerous sets corresponding to maximal independent

sets to be minimal, we have the path and cycle structures of the compo-

nents of I(L(G, s, k)) reflected in the arrangement of dangerous sets.

From Lemma 2.2.19 that each component of I(L(G, s, k)) is either a

path or a cycle, thus any spanning tree of any component is a path.

Lemma 2.2.21. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. If A1, · · · , Am are, in order, minimal dangerous sets corresponding to

a spanning path of a component C of I(L(G, s, k)), then

(1) δG−s(A1 ∪ · · · ∪ Am) = ∅ if C is a cycle, and

(2) δG−s(A1∪· · ·∪Am) = δG−s((A1\A2)∪(Am\Am−1) : A1 ∪ · · · ∪ Am)

if C is a path.

Proof. The dangerous sets in a cycle or the interior of a path are satu-

rated. That is we have already identified k + 1 edges incident with each

one of them, as follows. If A2 is between A1 and A3, then there are

(k − 1)/2 edges to A1 \ A2, (k − 1)/2 edges to A3 \ A2, one edge from s

to A2 ∩ A1, and one edge from s to A2 ∩ A3.
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Thus if the component C is a cycle, then the corresponding cycle of

dangerous sets in G does not have any edges to vertices outside their

union except to s. If C is a path, then only the first and last sets A1 and

Am of the corresponding path of dangerous sets in G can have edges to

vertices in A1 ∪ · · · ∪ Am different from s.

Lemma 2.2.22. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. For each maximal independent set of L(G, s, k) fix one minimal corre-

sponding dangerous set in G, and let D be the collection of these dangerous

sets. If every component of I(L(G, s, k)) has at least two vertices, and at

most one component of I(L(G, s, k)) is a path, then there are no vertices

in G− s outside the union of all the sets in D.

Moreover, if exactly one of the components of I(L(G, s, k)) is a path, and

this component is not a singleton, and A1, · · · , Am is the corresponding

path of dangerous sets in G, then

(1) δ(A1 ∪ · · · ∪ Am) ⊆ δ({s}),

(2) δ(A1 : {s} ∪ A2 ∪ Am) = ∅, and

(3) δ(Am : {s} ∪ Am−1 ∪ A1) = ∅.

Proof. Let B = V (G − ({s} ∪
⋃

D)). Suppose by way of contradiction

that at most one component of I(L(G, s, k)) is a path, this component is

not a singleton, and B ̸= ∅. Then since (G, s, k) is a connectivity triple,

|δ(B)| ⩾ k. All the neighbours of s are in
⋃
D, therefore, δ(B : {s}) = ∅,

i.e. δ(B) = δ(B :
⋃

D).

If C is a cycle component of I(L(G, s, k)) and D1, · · · , Dn is a corre-

sponding cycle of dangerous sets, then δG−s(D1 ∪ · · · ∪Dn) = ∅ (Lemma

2.2.21). Thus for any such component δ(B : D1 ∪ · · · ∪ Dn) = ∅, so if

all the components of I(L(G, s, k)) are cycles, there cannot be vertices in

G− s outside
⋃

D.

Now let us consider the case when exactly one of the components is a

path. By hypothesis this component is not a singleton. Let A1, · · · , Am

be the corresponding path of dangerous sets. Then m ⩾ 2 and δ(B) =
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δ(B : A1∪· · ·∪Am). Again by Lemma 2.2.21, ifm ⩾ 3, then δ(B : Ai) = ∅
for any 1 < i < m. Thus, δ(B) = δ(B : A1 ∪ Am).

By Lemma 2.2.3 |δ(Am−1 ∩ Am : Am−1 \ Am)| = (k−1)
2

and also that

|δ(A2 ∩ A1 : A2 \ A1)| = (k−1)
2

. There is one edge from s to Am−1 ∩ Am,

and one edge from s to A2 ∩ A1, and there is at least one edge from s to

A1 \ A2 and at least one edge to Am \ Am−1. By Lemma 2.2.3, (b) and

(c), these are the only edges that leave A1, or Am.

Therefore, since A1 and Am are dangerous, both |δ(A1 : B)| and

|δ(Am : B)| are at most (k+1)− (1+1+ (k−1)
2

) = (k−1)
2

. Thus if there are

any vertices in G− s outside
⋃

D, then |δ(B)| ⩽ k − 1, a contradiction.

Now it can be easily seen that any edges coming out of A1 (or Am)

other than the edges it sends to s or A2 \ A1 (respectively Am−1 \ Am)

have their other ends in Am (respectively A1).

Remark 2.2.23. One needed to exclude the case when a path component

of I(L(G, s, k)) is a singleton because the one maximal independent set

corresponding to that component could possibly be of size 1. In that case,

if A1 is a dangerous set corresponding to that maximal independent set,

then |δ(B : A1)| = k, because there is exactly one edge from s to A1,

and there is no contradiction in that case. However if the singleton set

contains more than one neighbour of s, then the theorem holds for A1,

and B has to be empty.

Now we present one of our main results in the following theorem. It

tells us the structure of the lifting graph when its complement is con-

nected, equivalently when I(L(G, s, k)) is connected (i.e. the maximal

independent sets of the lifting graph form a connected entity). In par-

ticular it lets us know that one possibility is that the complement of the

lifting graph is a Hamilton cycle, hence generalizing what Ok, Richter,

and Thomassen proved at deg(s) = 4.

The other possibility is that the complement is two cliques of the same

size with a path between them (possibly of length 0), hence generalizing

an example of Ok, Richter, and Thomassen found at base case deg(s) = 6,

where the lifting graph was K3,3 minus an edge. Illustrated in Fig. 4 of

[18] it can be seen that the maximal independent sets of the lifting graph
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are of sizes 3, 2, and 3 and they form a path via intersections of size 1.

This means the complement is two cliques of size 3 with a path of length

one (the lost edge of K3,3) between them. See Figures 2.11 and 2.12.

Theorem 2.2.24. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4.

If I(L(G, s, k)) is connected, then:

(a) I(L(G, s, k)) is either a cycle or a path;

(b) any vertex of I(L(G, s, k)) of degree 2 corresponds to a maximal

independent set of size 2;

(c) the complement of L(G, s, k) is either a Hamilton cycle or two

cliques of the same size, at most (k + 3)/2, joined by a path; and

(d) if D is a collection consisting of one minimal dangerous set cor-

responding to each maximal independent set of L(G, s, k), then the

union of the dangerous sets in D is V (G) \ {s}.

Proof. If I(L(G, s, k)) is connected, then by Lemma 2.2.19 it is either a

path or a cycle. This proves (a).

By Lemma 2.2.18, s only has neighbours in the intersections of the

dangerous sets and also in the first and last dangerous sets in the path

case. From this it follows that every maximal independent set in the cycle

case has size 2 and every maximal independent set that is represented by

an interior vertex in the path case is also of size 2. This gives (b).

From this it follows that in case I(L(G, s, k)) is a cycle, L(G, s, k)

consists of a cycle of maximal independent sets of size 2 each. Therefore,

the complement of L(G, s, k) is a cycle in that case (each maximal inde-

pendent set of size 2 gives an edge of the cycle in the complement). Also

it follows that in case I(L(G, s, k)) is a path, then the complement of

L(G, s, k) consists of a path between two cliques (the complements of the

edge-less subgraphs induced by the first and last maximal independent

sets).
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The graph I(L(G, s, k)) consists of one component by assumption.

This component is not a singleton because L(G, s, k) consists of more than

one maximal independent sets by Frank’s theorem 2.1.10 as deg(s) > 3

and (G, s, k) is a connectivity triple. Therefore, by Lemma 2.2.22, there

are no vertices other than s outside the union of the dangerous sets in D.

This proves (d).

If I(L(G, s, k)) is a path, then it is not a singleton as explained above.

If A1, · · · , Am is a path of minimal dangerous sets corresponding to the

maximal independent sets of L(G, s, k), then m ⩾ 2 since I(L(G, s, k))

is not a singleton, and by Lemma 2.2.22 any edges coming out of A1 or

Am, other than the edges that connect them to s, A2, or Am−1, have their

other ends in Am and A1 respectively.

By Lemma 2.2.3,

|δ(A1 ∩ A2 : A2 \ A1)| = |δ(Am−1 ∩ Am : Am−1 \ Am)| = (k − 1)/2,

and

|δG(A1)| = |δG(Am)| = k + 1.

Thus, |δ({s} : A1)| = |δ({s} : Am)| = (k + 1) − (k−1
2
) − |δ(A1 : Am)| =

(k+3
2
)− |δ(A1 : Am)|.

If we denote this number by l, then l ⩽ (k+3
2
) and |δ(A1 : Am)| = (k+3

2
)− l

as desired. This is the size of the first and last maximal independent

sets in the path, or the size of the two cliques in the complement of

L(G, s, k).

Corollary 2.2.25. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4 and assume that I(L(G, s, k)) is connected.

1. If I(L(G, s, k)) is a cycle, then k is odd. This is the case when the

complement of L(G, s, k) is a cycle.

2. If I(L(G, s, k)) is a path and A1, A2, . . . , Am are minimal dangerous

sets corresponding to the vertices of I(L(G, s, k)), then:

(a) if m = 2, then L(G, s, k) is an isolated vertex plus a bal-

anced complete bipartite graph. In this case the complement
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of L(G, s, k) is two cliques of size (deg(s) + 1)/2 intersecting

in a vertex (that is they are joined by a path of length 0);

(b) if m > 2, then the complement of L(G, s, k) is two cliques of

size |δ({s} : A1)| joined by a path of length m−2, in particular:

• k is odd;

• |δ({s} : A1)| = |δ({s} : Am)|;

• |δ({s} : A1)| ⩽ k+3
2
; and

• |δ(A1 : Am)| = k+3
2

− l, where l = |δ({s} : A1)| = |δ({s} :

Am)|.

Proof. If k is even and deg(s) is even, then by Theorem 2.1.11 L(G, s, k)

is complete multipartite, i.e. I(L(G, s, k)) is disconnected.

If k is even, and the size of every independent set of L(G, s, k) is at

most ⌊deg(s)/2⌋, then any two maximal independent sets of L(G, s, k)

are disjoint by (ii) in (3) of Theorem 2.2.8. This means that I(L(G, s, k))

is a collection of singletons, so it is disconnected.

Thus the only case in which I(L(G, s, k)) is connected while k is even is

when deg(s) is odd and there is a maximal independent set in L(G, s, k) of

size ⌈deg(s)/2⌉. Then by Proposition 2.2.1 either L(G, s, k) is a complete

bipartite graph or an isolated vertex plus a balanced complete bipartite

graph. In the first case I(L(G, s, k)) is disconnected, and in the second

case I(L(G, s, k)) is a path of length 1 and the conclusions in 2 − (a)

hold.

If deg(s) = 4, then by Lemma 2.2.10 the only case in which I(L(G, s, k))

is connected is when L(G, s, k) is a perfect matching and its complement

is a 4-cycle [18], i.e. the maximal independent sets of I(L(G, s, k)) make

a 4-cycle of independent sets of size 2 each, and k is odd in that case.

We can now conclude that there is no case in which I(L(G, s, k)) is a

cycle and k is even. Thus proving the first item in this corollary.

The claims in 2− (b) follow from Theorem 2.2.24.

The path and cycle structures are illustrated in Figures 2.11 and 2.12.

Note that each blob in the figures is not a dangerous set but the inter-
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Figure 2.11: Cycle of intersec-
tions of dangerous sets.
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Figure 2.12: Path of intersections
of dangerous sets.

section of two dangerous sets. The first and last blobs in Figure 2.12 are

A1 \ A2 and Am \ Am−1.

Corollary 2.2.26. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

5. The only case in which L(G, s, k) is disconnected, is when it is an

isolated vertex plus a complete balanced bipartite graph.

Proof. If I(L(G, s, k)) is not connected, then the complement of L(G, s, k)

is not connected, and L(G, s, k) is connected in that case.

If I(L(G, s, k)) is connected and L(G, s, k) is not an isolated vertex

plus a complete bipartite graph, then L(G, s, k) contains at least three

maximal independent sets and these sets are arranged in a path or in a

cycle by Theorem 2.2.24. The complement of the lifting graph in those

two cases is either a Hamilton cycle or two cliques of the same size at most

(k + 3)/2 with a path between them of length at least 1 (each maximal

independent set of L(G, s, k) of size 2 gives one edge in the path).

If the complement of L(G, s, k) is a cycle, then L(G, s, k) is connected

(since it contains at least 5 vertices). The other possibility is that the

complement is two cliques with a path between them of length ⩾ 1.

If the path between the two cliques is of length 1, then L(G, s, k) is in

fact a complete bipartite graph minus an edge, which is connected since

the two cliques are of the same size at least 2 as deg(s) ⩾ 5.

If the path is of length at least 2, then first and last maximal indepen-

dent sets in the path (whose complements are the two cliques), induce a
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complete bipartite graph in L(G, s, k). Also any vertex outside the two

cliques is a neighbour to all the vertices in the two cliques except possibly

one vertex from each clique. Thus, L(G, s, k) is connected in that case

too, in fact there is a path of length at most 2 between any two vertices

in it.

2.3 Structure of a graph from the structure

of its lifting graph

The results of the previous subsection about maximal independent sets in

the lifting graph and their corresponding dangerous sets in G give us the

following theorem about the structure of G. See Figures 2.11 and 2.12.

Theorem 2.3.1. Let (G, s, k) be a connectivity triple such that deg(s) ⩾

4. If L(G, s, k) contains at least three maximal independent sets, and

I(L(G, s, k)) is connected, then

(i) Cycle case: in case I(L(G, s, k)) is a cycle, G consists of the vertex

s and disjoint sets of vertices S0, . . . , Sd−1, where d = deg(s), such

that the neighbours s0, . . . , sd−1 of s satisfy si ∈ Si, and there are

(k − 1)/2 edges between Si and Si+1, for every i ∈ Zd, and,

(ii) Path case: in case I(L(G, s, k)) is a path, G consists of the vertex

s and disjoint sets of vertices S1, . . . , Sm that contain the neighbours

of s such that the numbers of the neighbours of s in S1 and Sm are

the same, and s has exactly one neighbour in each Si for i /∈ {1,m}.
If m ⩾ 4, then there are (k − 1)/2 edges between Si and Si+1, for

every i ∈ {1, . . . ,m − 1}, and k+3
2

− l edges between S1 and Sm

where l− 1 is the numbers of neighbours of s in S1. If m = 3, then

L(G, s, k) is an isolated vertex plus a balanced complete bipartite

graph, and the number of edges from S2 to each of S1 and S3 is at

least (k − 1)/2.

Proof. By Theorem 2.2.24 when I(L(G, s, k)) is connected, it is either a

path or a cycle. Let A1, · · · , An be minimal dangerous sets corresponding,
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in order, to the vertices of a spanning path of I(L(G, s, k)). By Lemma

2.2.22, V (G) = {s} ∪ A1 ∪ · · ·An. If I(L(G, s, k)) is a cycle, then by

Lemma 2.2.19, they make a cycle or a path via intersections. By Lemma

2.2.3 there is exactly one neighbour of s in each intersection. Therefore,

in the cycle case, n = d = deg(s). For each i ∈ Zd define Si to be the

intersection Ai ∩ Ai+1.

Note that n ⩾ 2 as L(G, s, k) contains at least two maximal indepen-

dent sets (it is not a collection of singletons) by Frank’s theorem 2.1.10

as deg(s) > 3 and (G, s, k) is a connectivity triple.

In the path case, for i ∈ {2, · · · , n}, define Si to be equal to the

intersection Ai−1 ∩ Ai. Let m = n + 1 and define Sm := An \ An−1, and

S1 := A1 \A2. By Lemma 2.2.3, for every i ∈ {2, · · · ,m− 1}, Si contains

exactly one neighbour of s, and there are (k− 1)/2 edges between Si and

Si+1, for every i ∈ {1, . . . ,m− 1}.
By Corollary 2.2.25, A1 andAn contain the same number of neighbours

l, and if n ⩾ 3, then there are k+3
2

− l edges between them. Since A1 ∩A2

and An−1 ∩ An contain one neighbour of s each, S1 and Sm contain the

same number, l − 1, of neighbours of s. By Lemma 2.2.3 there are no

edges between A1 ∩A2 and {s} ∪ A1 ∪ A2, so there are no edges between

A1 ∩ A2 and An if n ⩾ 3 (equivalently m ⩾ 4), and similarly no edges

between An−1 ∩ An and A1. This means that the k+3
2

− l edges between

A1 and An are in fact between A1 \ A2 and An \ An−1, i.e. between S1

and Sm.

We have a few further remarks on the structures we found.

Remark 2.3.2. Each one of the sets Si in the cycle case, and each of the

middle sets Si in the path case induces a (k+1
2
)-edge-connected subgraph.

The two sets S1 and Sm at the beginning and end in the path case each

induce a (k−1
2
)-edge-connected subgraph. This can be seen by noticing

that of the k edge-disjoint paths between two vertices from such a set at

most (k − 1)/2 or (k + 1)/2 go out if |δ(Si)| = k or k + 1 respectively.

Remark 2.3.3. For each i, in both the cycle and path cases, |δ(Si)| = k

and for every vertex v in Si there are k edge-disjoint paths from v to the
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k edges of δ(Si). To see this, note that for every Si in the cycle case, and

every interior Si in the path case, Si has (k − 1)/2 edges to each of the

two neighbouring blobs, and one edge to s. In the path case, S1 and Sm

satisfy the following:

• |δ({s} : S1)| = |δ({s} : Sm)| = l − 1,

• |δ(Sm−1 : Sm)| = |δ(S1 : S2)| = (k − 1)/2,

• |δ(S1 : Sm)| = k+3
2

− l.

This is a total of exactly k edges incident with each one of S1 and Sm.

Now for any vertex v ∈ Si there are k edge-disjoint paths between it

and every vertex outside Si other than s since (G, s, k) is a connectivity

triple. Thus there are k edge-disjoint paths from v to the k edges of δ(Si)

as they are the only exits out of Si.

Remark 2.3.4. In case deg(s) is odd, successively lifting pairs of edges

in the path case from the inside going out brings us to the isolated vertex

plus complete bipartite case as illustrated in Figure 2.13. More precisely if

for every i ∈ {2, · · · ,m−1}, si is the unique neighbour of s in Si, then suc-

cessively lifting the pairs of edges (ss(m−1)/2, ss(m+3)/2), · · · ,(ss2, ssm−1)

preserves the path structure and at the end leaves a graph whose lifting

graph at s is an isolated vertex plus K(l−1),(l−1).

Remark 2.3.5. Lifting a pair of edges in case the lifting graph is an

isolated vertex plus a complete bipartite graph, results in a graph whose

lifting graph is also an isolated vertex - the same vertex - plus a complete

bipartite graph. Also when the lifting graph is complete multipartite its

structure is kept through lifting. This can be seen from the structure of

the dangerous sets corresponding to the maximal independent sets of the

lifting graph.

Remark 2.3.6. In case deg(s) ⩾ 4, lifting a pair of edges incident with s

in case G has the cyclic structure in (i) of Theorem 2.3.1 that have their

non-s ends in Si−1 and Si+1 for some i (indices modulo deg(s)) gives the

same cyclic structure again on a cycle of length less by 2. The union of
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Si−1, Si, and Si+1 gives one new blob. All the other blobs remain the

same.

s

s

s

Figure 2.13: Successively lifting pairs of edges until we reach a lifting
graph that is an isolated vertex plus a complete bipartite graph.
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2.3.1 Degree Three

Degree three needs a special treatment as it is the excluded case in the

theorems of Mader 2.1.9 and Frank 2.1.10, and also in the dangerous

sets lemma by Ok, Richter, and Thomassen 2.1.14. Here we show that

if deg(s) = 3 and no pair of edges incident with s is liftable, then G has

a specific structure. Figure 2.14 shows the situation arising from (3) of

the following proposition, Par (2) is the deg(s) = 3 case for I(L(G, s, k))

being a cycle.

ss

S S

S
S

s

k − 1

k − 1k − 1

S1 S2 S3

S1 S2

S3

S1 S2

S3

S1 S2
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k−2
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k−2
2
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k − 1

k/2

s

k

6
− 1

k

3
+ 1

(k−2)
2

k

3

2k
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6

Figure 2.14: Examples of graphs with deg(s) = 3 where no pair of edges
incident with s is liftable.

Proposition 2.3.7. Let (G, s, k) be a connectivity triple such that deg(s) =

3. Let s1, s2, and s3 be the neighbours of s. If no pair of edges incident

with s is liftable, then there are sets of vertices S1, S2, and S3 in G − s
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such that:

(1) for each i, Si ∩ {s1, s2, s3} = {si};

(2) if S1 ∪ S2 ∪ S3 ∪ {s} = V (G), then k is odd and for distinct i, j ∈
{1, 2, 3}, |δ(Si : Sj)| = (k − 1)/2; and

(3) if S1∪S2∪S3∪{s} ≠ V (G), then, for each i ∈ {1, 2, 3}, |δG(Si)| = k

(the parity of k is not determined and |δ(Si : Sj)| is not necessarily
(k − 1)/2 for j ̸= i).

Proof. By Lemmas 2.1.18 and 2.1.15 for distinct i, j ∈ {1, 2, 3} there is a

dangerous set Ai,j = Aj,i such that Ai,j contains si and sj but not sl for

l ∈ {1, 2, 3} \ {i, j}.
By Lemma 2.2.4, noting that it is valid for deg(s) = 3, we have the

following for distinct i, j, l ∈ {1, 2, 3},

(a) there are no vertices outside Ai,l ∪ Aj,l other than s;

(b) |δ(Aj,l \ Ai,l : Ai,l \ Aj,l)| ⩽ (k − 1)/2 and

Define S1 = A1,3 \ A2,3, S2 = A1,2 \ A1,3, and S3 = A2,3 \ A1,2. Then

the only neighbour of s contained in Si is si, for 1 ⩽ i ⩽ 3. By (b) |δ(Si :

Sj)| ⩽ (k−1)/2 for any distinct i, j ∈ {1, 2, 3}. If S1∪S2∪S3∪{s} = V (G),

then this has to be an equality for (G, s, k) to be a connectivity triple.

If S1∪S2∪S3∪{s} ≠ V (G), then let S = V (G) \ (S1∪S2∪S3∪{s}).
Note that S is also equal to A1,3 ∩ A2,3 ∩ A1,2. By (a), S ⊆ Ai,l ∪ Aj,l =

(Ai,l \Aj,l)∪ (Ai,l ∩Aj,l)∪ (Aj,l \Ai,l) = Si ∪ (Ai,l ∩Aj,l)∪ Sj. Thus, S ⊆
(Ai,l∩Aj,l) for every distinct i, j, l ∈ {1, 2, 3}. Note that by the definitions

of Si and Sj they are disjoint from (Ai,l∩Aj,l). Thus, (Ai,l∩Aj,l) ⊆ S∪Sl,

so (Ai,l ∩ Aj,l) = S ∪ Sl. Thus, Ai,j = Si ∪ S ∪ Sj.

Thus |δ(Ai,j)| = 2 + |δ(Si : Sl)| + |δ(S : Sl)| + |δ(Sj : Sl)| = 2 +

|δG−s(Sl)|, so |δG−s(Sl)| ⩽ k − 1 since Ai,j is dangerous. Recall that Sl

contains exactly one neighbour of s, and that (G, s, k) is a connectivity

triple. Therefore δ(Sl) = k as desired.
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Figure 2.15: A graph with deg(s) = 5 and lifting graph K2,3 such that
when the dashed pair of edges is lifted no remaining pair of edges incident
with s is liftable.

Note that for distinct i, j ∈ {1, 2, 3} the dangerous set containing si

and sj consists of the union Si ∪ S ∪ Sj, see Figure 2.14.

Remark 2.3.8. Note that when all three edges incident with s are pair-

wise non-liftable it is possible that k is even as well as odd.

Remark 2.3.9. The intersections A1,3 ∩A2,3, A2,3 ∩A1,2, and A1,2 ∩A1,3

each contain a cut of size at most k− 1 in the subgraphs induced by each

one of them. For distinct i, j, l ∈ {1, 2, 3}, a cut of size at most k − 1 in

the subgraph induced by Ai,j ∩Ai,l is the set of edges between S and Si.

See Figure 2.14.

Remark 2.3.10. The lifting graph on three vertices and without any

edges, that is when deg(s) = 3 and no pair of edges incident with it is

liftable, can come from different lifting graph structures for deg(s) = 5 as

illustrated in Figures 2.15 and 2.16.
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Figure 2.16: A graph with deg(s) = 5 and lifting graph isolated vertex
plus K2,2 such that when the dashed pair of edges is lifted no remaining
pair of edges incident with s is liftable.
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Chapter 3

Extending Huck’s theorem to

infinite graphs

Throughout this chapter a graph is infinite unless stated otherwise. We

prove that Huck’s theorem holds for infinite graphs. We start with the

locally finite case, and in later sections reduce the general case to the

locally finite case.

As mentioned earlier in the introduction, Huck’s theorem differs by only 1

in the connectivity condition from Thomassen’s weak linkage conjecture.

Before we present the proof, here are some definitions, and the statement

of the conjecture.

3.1 Preliminaries

Here we introduce the necessary definitions needed to understand the

statement of the Weak Linkage Conjecture, and the related theorems in

finite and infinite graphs.

Definition 3.1.1. (weak linkage) A graph G is weakly k-linked if given

any set of k pairs of terminals (s1, t1), · · · , (sk, tk) in G, not necessarily

distinct, there is a path Pi between si and ti for every i ∈ {1, · · · , k} such

that P1, · · · , Pk are edge-disjoint. Such a set of paths is called a weak

linkage or edge-disjoint linkage.
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Conjecture 3.1.2. (Thomassen 1980 [24]) If k is odd, then every k-edge-

connected graph is weakly k-linked, and if k is even, then every (k + 1)-

edge-connected graph is weakly k-linked.

The conjecture for even numbers follows from the conjecture for odd

numbers. An edge-connectivity of k is not enough for even k as shown

in an example by Thomassen [24] of k/2 cycles on the same set of 2k

vertices in the order s1, · · · , sk, t1, · · · , tk. In this order all the pairs are

overlapping. There is no edge-disjoint linkage in this graph from si to ti

for i ∈ {1, · · · , k}.
For example, a cycle is 2-edge-connected, however two overlapping

pairs of vertices on the cycle cannot be linked by two edge-disjoint paths.

To prove the general case, suppose for a contradiction that a linkage exists,

and let s1, s2, · · · , sk, t1, t2, · · · , tk be the forward direction. If i1 < i2 <

· · · < ir are such that sij tij -paths are forward, then all use the forward

edge from sir . Therefore, i ⩽ k/2. Likewise there are at most k/2 paths

in the reverse direction. Thus, there are k/2 paths in each direction. If

the s1t1-path is in the forward direction, then the edge s1s2 is in this path

and the k/2 reverse direction paths. Otherwise t1t2 is in the s1t1-path and

all the k/2 forward direction paths. In both cases we get a contradiction

as there are exactly k/2 edges between any two consecutive vertices on

the cycle.

The best known result for finite graphs is:

Theorem 3.1.3. (Huck 1991 [9]) Let k be an odd positive integer. If G

is a (k + 1)-edge-connected finite graph, then G is weakly k-linked.

Ok, Richter, and Thomassen [18] used this theorem, with their lifting

graph theorem 2.1.11 to prove a weak linkage result for infinite graphs

under a connectivity condition of (k + 2). Before we state their theorem

some definitions are needed.

Definition 3.1.4. (locally finite) An infinite graph G is locally finite if

the degree of each vertex is finite.

Definition 3.1.5. A ray is one-way infinite path. A ray subgraph of a

ray is a tail of it.
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Definition 3.1.6. (end) An end of a graph G is an equivalence class of

rays within G, where two rays are in the same class (end) if there are

infinitely many vertex disjoint paths between them in G.

Definition 3.1.7. (1-ended) An infinite graph G is 1-ended if for every

finite set of vertices X, only one of the components of G−X is infinite.

2-ended infinite graph 1-way infinite ladder, 1-ended graph

Figure 3.1

For example, a ray is a 1-ended graph, and so is a 1-way ladder. See

Figure 3.1. A double ray, or a two way infinite path, is a two-ended

graph. The binary tree has uncountably many ends. There is a ray cor-

responding to each infinite sequence of 0’s and 1’s, and any two different

such sequences can be separated in the binary tree by deleting the vertex,

which exists in both rays, corresponding to the first digit on which the

two sequences differ.

Other examples: The 1-way infinite ladder has vertex set {0, 1, 2, · · · }×
{0, 1} and an edge joining any two vertices that have one coordinate equal

and other coordinate differing by 1. See Figure 3.1. This is 1-ended as is

the infinite integer grid in the plane (same rule determining the edges).

The 2-way infinite ladder is defined analogously and has two ends.

Theorem 3.1.8. (Ok, Richter, and Thomassen 2016 [18]) Let k be an

odd positive integer. If G is a (k + 2)-edge-connected, 1-ended, locally

finite graph, then G is weakly k-linked.

3.2 1-ended locally finite graphs

In this section we reduce the connectivity condition in the result of Ok,

Richter, and Thomassen 3.1.8 from k + 2 to k + 1. That is we show
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that Huck’s theorem holds for 1-ended locally finite graphs. We follow

the same steps of the proof of Ok, Richter, and Thomassen and change

things where needed.

We will need the same proof idea again in Chapter 4. To be able to

reference the steps of the proof, we break them down into definitions and

lemmas here.

The following is a standard fact about locally-finite 1-ended infinite

graphs. A more general form of it is Theorem 3.3.5 by Thomassen [25], to

be presented in Section 3.3.3. This special case can be proved by finding

a sequence of disjoint cuts of non-decreasing sizes such that any two cuts

in the sequence are not separated by a cut of a smaller size, then joining

each two consecutive cuts in the sequence by edges-disjoint paths such

that each edge of the smaller cut is the first edge of one of those paths.

Together these segments of paths give rays going through the sequence of

cuts.

Lemma 3.2.1. If G is a connected, 1-ended, locally finite graph, then

given any finite set of vertices T , there is a finite set of vertices S con-

taining it such that each edge of δ(S) is the first edge of a ray in an

edge-disjoint collection of rays P.

The finite set of vertices T to which we will apply this lemma, as

in the proof of the linkage result, Theorem 3.1.8, by Ok, Richter, and

Thomassen, is the set of terminals to be linked. The work is in a con-

nected, 1-ended, locally finite graph. In application fix a finite set S ⊇ T

of vertices containing the terminals as described in Lemma 3.2.1, and let

P be the associated set of rays. Then we contract the infinite side of the

cut δ(S) to a single vertex s, and apply the lifting graph results from

Chapter 2 to the finite graph G/(G− S) at the vertex s.

We may assume without loss of generality that G − S consists of

only the unique infinite component of this 1-ended subgraph, any finite

component can be added to S. The size of the cut δ(S) is finite assuming

that G is locally finite. So when we say the infinite side of the cut δ(S),

this means the unique infinite component of G− S.
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Observe that the set S and the vertex s defined as described above

satisfy deg(s) = |δ(S)|. Note also that if G is k-edge-connected, then

G/(G− S) is k-edge-connected as well.

Definition 3.2.2. (The end graph) Let G be a locally finite graph with

a finite set of vertices S such that every edge in δ(S) is the first edge of a

ray in an edge-disjoint collection of rays P from one end. The end graph

EG(P , S), simply E , is the graph with vertex set δ(S) and edge set defined

as follows. Distinct edges e and e′ from δ(S) are adjacent in E if there

are infinitely many vertex-disjoint paths in G− S that:

(i) join the two rays in P containing e and e′, and

(ii) are edge-disjoint from all the other rays in P .

Remark 3.2.3. The end graph E is connected because the rays of P are

in one end.

Note that the definition of EG(P , S) does not require the graph to

be 1-ended as in Lemma 3.2.1. The set S and its associated rays P are

separate from Lemma 3.2.1 even though they satisfy the statements in

it. They, however, come from a more general form of Lemma 3.2.1 for

multiple ends, which was proved by Thomassen in 2016 [25] and is going

to be presented and used in Section 3.3.3.

The following lemma is a cornerstone of the proof of our new linkage

result. It shows that in case the connectivity is even there is a sequence

of lifts of pairs of edges from δ(S) such that these pairs of edges can be

linked by edge-disjoint paths in G − S and the sequence ends by having

all the edges of δ(S) lifted if |δ(S)| is even (proved by Ok, Richter, and

Thomassen in [18]) or having three of them remaining if it is odd. Figure

3.2 illustrates the proof idea. We need the following definition.

Definition 3.2.4. (lifting sequence of graphs) Let G0 be a finite graph,

and assume that (G0, s, k) is a connectivity triple. Let I = {0, 1, · · · , n}
for some positive integer n. A lifting sequence {Gi}i∈I at s is a sequence

of graphs beginning with G0 such that for every i > 0 in I, there is a
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k-liftable pair of edges incident with s in Gi−1, and Gi is obtained from

Gi−1 by lifting such a pair.

In the following lemma, we are going to find a lifting sequence in

G/(G − S), where G − S is the infinite side of a cut δ(S). For each

i > 0, Gi is obtained by lifting a pair of edges ei and e′i incident with

the contraction vertex (that is edges from the cut δ(S)), and a path Pi

is going to be found in G − S between the end-vertices of ei and e′i in

G − S such that the paths Pi are edge-disjoint. These paths are going

to be used in the linkage as follows. The terminals live in S, and they

can be regarded as terminals in the last graph of the lifting sequence GI .

A linkage of the terminals is found in this finite graph using the linkage

theorems for finite graphs. Any path of the linkage that goes through

an edge that resulted from lifting, is not an actual path in G. If it goes

through the lifting edge that resulted from lifting the pair ei and e′i, then

the actual path in G goes through eiPie
′
i. See Figure 3.2.

Lemma 3.2.5. Let G be a k-edge-connected locally finite graph, and sup-

pose that there exists a finite set of vertices S such that every edge of δ(S)

is the first edge of a ray in an edge-disjoint collection of rays P in one end

of G. Let s be the contraction vertex in G/(G−S). If deg(s) > 3 is odd, let

I = {0, · · · , (deg(s)− 3)/2}, and if it is even, let I = {0, · · · , deg(s)/2}.
Then there is a lifting sequence {Gi}i∈I at s such that G0 := G/(G− S),

and one of the following holds.

(1) For every i ∈ I, i > 0, Gi is obtained from Gi−1 by lifting a pair of

edges ei and e′i incident with s such that there is a path Pi joining

ei and e′i in G− S that is edge-disjoint from P1, . . . , Pi−1 and from

all the rays in P containing the edges of δ(S) that are not yet lifted.

(2) There is an i∗ ∈ I such that Gi∗ has one of structures (i) or (ii) in

Theorem 2.3.1, and such that if i∗ > 0, then for every i < i∗, the

sequence G0, · · · , Gi satisfies (1) above. This case can only happen

if k is odd.

Moreover, the lifting sequence, and the paths {Pi}i∈I can be chosen so

that in case deg(s) is odd and for some i the lifting graph L(Gi, s, k) is
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an isolated vertex (e∗) plus a complete balanced bipartite graph, then for

the three edges e, e∗, e′ that remain of δ(S) at the end of the sequence of

lifts, there is a vertex w ∈ G−S and edge-disjoint paths W,W ∗,W ′ from

w to e, e∗, e′ that are also disjoint from {Pj}j∈I .

S

s

S

G/(G− S)

and adjacent in E
and non-adjacent since every

path between them goes through

Red pair and blue pair lifted, and linked by two edge-disjoint paths

in G− S that avoid all the rays of P that are not yet used in linkage.

P1 P2

e2 e′
2

e1 e′
1

Figure 3.2

Proof. Suppose we have the pairs {e1, e′1}, . . . , {ei−1, e
′
i−1} and the paths

P1, . . . , Pi−1. We now show how to find {ei, e′i} and Pi as described above.

Let δi(S) := δ(S) \ {e1, e′1, . . . , ei−1, e
′
i−1}, and let Pi denote the set of

rays in P that do not contain any of the edges in {e1, e′1, . . . , ei−1, e
′
i−1}.
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Definition 3.2.6. The graph Li is the k-lifting graph for s in Gi−1, that

is Li = L(Gi−1, s, k).

On the same vertex set as Li, we have the following end graph.

Definition 3.2.7. Let Ei := EGi−1
(Pi, S) (See Definition 3.2.2).

If degGi−1
(s) > 3, then by Theorem 2.2.24 and Theorem 2.3.1, one of

the following holds.

(a) the complement of Li is disconnected,

(b) Li is an isolated vertex plus a complete balanced bipartite graph,

or

(c) Gi−1 has structure (i) or structure (ii) from Theorem 2.3.1. This

can only happen if k is odd and gives (2) in the statement of this

lemma. Once one of these two structures is reached, the sequence

terminates.

Definition 3.2.8. In case (b), let e∗ be the unique edge not liftable with

any edge in δi(S), and let R∗ be the unique ray in Pi that begins with e∗.

We find a pair of edges ei and e′i to lift and obtain Gi. Where this pair

is chosen as explained in the discussion below. We consider the following

cases.

Case 1. The complement of Li is disconnected,

Because Ei is connected, there is an edge eie
′
i that exists in both Ei

and Li. This is the pair of edges that we lift to get Gi in that case.

Case 2. The lifting graph Li is an isolated vertex e∗ plus a balanced

complete bipartite graph, i.e. Li − e∗ is a balanced complete bipartite

graph (See Proposition 2.2.1).

Note that R∗ is not used yet: It is edge-disjoint from the finite con-

struction consisting of the paths P1, · · ·Pi−1 as it is a ray in Pi.

Subcase (i): All the neighbours of e∗ in Ei are on one side of the bipartite

graph Li − e∗.

The end graph Ei is connected, therefore an edge ei (different from e∗)

on one side of Li − e∗ has to be a neighbour in Ei of an edge e′i on the
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other side. This is the pair of edges we lift in that case, and it is good in

that there are infinitely many disjoint paths avoiding R∗ between the ray

that begins with ei and the ray that begins with e′i.

Subcase (ii): If e∗ has neighbours on both sides of the bipartite graph

Li − e∗,

Let e and e′ be such neighbours and let R and R′ be the rays of Pi

that begin with them. There are infinitely many disjoint paths between

R and R∗ that are edge-disjoint from the other rays in Pi and infinitely

many disjoint paths between R∗ and R′ that are edge-disjoint from the

other rays in Pi. Pick a path P between R and R∗ that is edge-disjoint

from the other rays in Pi and a path P ′ between R∗ and R′ that that

are edge-disjoint from the other rays in Pi such that these two paths are

edge-disjoint from the paths P1, · · · , Pi−1. Let the end-vertex of P on

R∗ be w and the end-vertex on R∗ of P ′ be w′. Assume without loss of

generality that w is closer to S on R∗ from w′, and let Q be the path

contained in R∗ between w′ and w. Let W ∗ be the path contained in the

ray R∗ from w to e∗, let W be the path from w along P and then down

on R to e, and let W ′ be the path from w up along Q to w′ then along

P ′ then down on R′ to e′. Then W , W ∗, and W ′ are edge-disjoint from

the rays in Pi \ {R,R′, R∗} and from the paths P1, · · · , Pi−1

Now consider EGi−1−{e,e∗,e′}(Pi \ {R,R′, R∗}, S). This is a connected

graph, and so there is a pair of edges ei and e′i from two different sides of

the bipartite graph Li−{e, e∗, e′}, in δ(S)\{e1, e′1 · · · , ei−1, e
′
i−1, e, e

∗, e′},
that is separated in EGi−1

(Pi, S) only possibly by e, e∗, e′. This is the pair

of edges to lift in this case. It is liftable as long as deg(s) > 3 since it is

from two different sides of the complete bipartite lifting graph.

Let Q and Q′ be the rays in P containing ei and e′i respectively. There

are infinitely many vertex-disjoint paths in G− S joining Q and Q′ that

are edge-disjoint from the other rays in Pi (or Pi \ {R,R′, R∗}). Choose

one of those paths, P , that is also disjoint from all of the finitely many

finite paths P1, . . . , Pi−1 (and W,W ∗,W ′). Then Q ∪ P ∪ Q′ contains a

path Pi that begins with ei and ends with e′i.

Note that we did not lift the pair e, e′ that is in the rays R and R′
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which are direct neighbour of R∗. If Subcase (ii) recurs, for the m-th time

after i, we lift a pair of edges ejm and e′jm on two different sides of the

bipartite lifting graph that are the first edges of rays Rm and R′
m. The

infinitely many disjoint paths between Rm and R′
m may go through the

edges of the rays Rm−1, · · · , R1, R,R∗, R,R′
1, · · · , Rm−1 (these rays begin

with the edges ejm−1 , · · · , ej1 , e, e∗, e, e′j1 , · · · , ejm−1 respectively). We con-

tinue the lifting process until only e, e∗, e′ are left. We join ejm and e′jm
by a path Qm that is edge-disjoint from the rays of P not yet used, and

also is edge-disjoint from all the paths already used in connecting lifted

pairs of edges, and from {W,W ∗,W ′} (this path may go through the rays

Rm−1, · · · , R1, R,R∗, R,R′
1, · · · , Rm−1 at a higher point than any one of

the previously constructed paths).

By Theorem 2.2.24 only cases (a) and (b) can hold if k is even. If

deg(s) is even and k is even, then the lifting graph is complete multipartite

that is not a star (disconnected complement) by Theorem 2.1.11, and we

can have all the edges of δ(S) paired and lifted. This can be done by

choosing at every step a pair of edges that is adjacent in the connected

graph Ei but not adjacent in the disconnected complement of Li. If deg(s)

is odd, and k is even, we can lift until s has degree 3. Otherwise, if k

is odd, the sequence may stop early if we have structures (i) or (ii) from

Theorem 2.3.1.

Note that we terminate the sequence when we have the path or cycle

structures from Theorem 2.3.1 because in this case the complement of the

lifting graph is either a Hamilton cycle or two cliques with a nontrivial

path between them. If the connected end graph is a subgraph of such a

connected complement of the lifting graph, then there is no appropriate

pair of edges to lift.

Note that when deg(s) is odd, we may not be able to lift all the

edges incident with s. In this case, consider applying Lemma 3.2.5 with

connectivity k+ 1 for odd k. If we continue lifting until deg(s) = 3, then

G|I| is not a (k + 1)-edge-connected graph, so we cannot apply Huck’s

theorem 3.1.3 to it. However, if we stop lifting at deg(s) = k+2, say this

happens at i = n, then Gn is (k + 1)-edge-connected.
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If we find a linkage in Gn using Huck’s theorem, then a path that goes

through s uses exactly two of the edges incident with it. Thus the paths

of the linkage will define a pairing on an even subset of |δ(S)|, but we do
not know this pairing beforehand. Therefore it is not clear if these paths

can be replaced with edge-disjoint paths in G. Unlike the paths that go

through the edges that resulted from lifting, we know exactly which pair

of edges this edge represents and the pairs where chosen such that they

are linkable by edge-disjoint paths in G.

Now note that at most k + 1 (even number) edges of the k + 2 edges

incident with s can be used in a linkage in Gn. If for any subset of such

k+1 edges we could find a vertex inG−S that has k+1 edge-disjoint paths

to these edges that also avoid the finite construction consisting of the

paths P1, · · ·Pn of Lemma 3.2.5, then our problem is solved. This is what

we are going to prove in Proposition 3.2.11. To prove this proposition we

need a couple of lemmas first.

Lemma 3.2.9. (Kőnig’s Lemma 1927 [10], [4]) Let V0, V1, · · · be an in-

finite sequence of disjoint nonempty finite sets, and let G be an infinite

graph whose vertex set is the union of the sets V0, V1, · · · . Assume that

every vertex v in a set Vn with n ⩾ 1 has a neighbour f(v) in Vn−1. Then

G contains a ray v0, v1, · · · with vn ∈ Vn for all n.

Kőnig’s Lemma will be needed to turn path segments into a ray, and

the following lemma will be used in finding disjoint paths between an old

and a new collection of rays such that the path between two rays does not

go through preceding rays. This lemma, and the proof idea of Proposition

3.2.11 are due to Bruce Richter.

Lemma 3.2.10. Let T be a finite tree and let A,B ⊆ V (T ) be disjoint

and |A| = |B|. Then there are paths P1, P2, . . . , P|A| in T such that each

Pi connects a vertex ai in A and a vertex bi in B and,

• the ai and bi are all distinct,

• each ai does not occur in Pi+1, . . . , P|A| and,

• each bi does not occur in Pj for any j < i.
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Proof. The proof is by induction on |V (T )|. Let W = V (T ) \ (A ∪ B).

We may readily contract any edge with both ends in W without affecting

the result, so we may assume W induces an independent set in T .

Let e be any edge of T and let Re, Se denote the vertex sets of the

two components of T − e. Evidently |Re ∩ A| ⩾ |Re ∩ B| if and only if

|Se ∩ A| ⩽ |Se ∩B|.
If there is an edge e of G such that |Re∩A| = |Re∩B|, then inductively

solve the problem separately on the smaller trees induced by Re and Se,

respectively. Therefore, we may assume that there is no such e.

In the remaining case, for each edge e of G, |Re∩A| ≠ |Re∩B|. Orient

e towards the one of Re and Se that has more B vertices than A vertices.

This orients all the edges of T and there is a vertex v of T such that all

the edges incident with v are directed out of v.

We claim that v ∈ A and v is a leaf of T . The orientation rule above

shows that, for every edge e incident with v, there are more B vertices

than A in the component of G− e that does not contain v.

All vertices of (A ∪ B) \ {v} are in these components, so |B \ {v}| >
|A \ {v}|. These two sets differ in size by precisely one, so v ∈ A and

there is only one component in T − v, as claimed.

Let Q be any path in T starting at v and ending at a vertex b in B

such that b is the only vertex of B in Q. Set T ′ = T − v, A′ = A \ {v},
B′ = B \ {b}, and W ′ = W ∪ {v}. Inductively, there is a solution

for (T ′, A′, B′) and addition of Q to this solution yields a solution for

(T,A,B).

The following proposition is for locally finite graphs with possibly

more than one end. However the set of rays in the proposition are all

from the same end. It will therefore be applicable in Section 3.2.

Proposition 3.2.11. Let G be a locally finite k-edge-connected graph.

Let S be a finite set of vertices in G, and let e1, · · · , en be the edges of

δ(S). Suppose that for each i ∈ {1, · · · , n} there is a ray Pi that begins

with ei such that P1, · · · , Pn are edge-disjoint and are all in the same

end. Suppose that m ∈ {1, · · · , n} is such that |{m, · · · , n}| ⩽ k, and let
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α denote |{m, · · · , n}|. If a finite set of edges X ⊇ {ei : i < m} disjoint

from Pm, · · · , Pn is deleted from G, then there is a vertex v in G−S that

has α edge-disjoint paths in G−X to S ending with em, · · · , en.

Proof. Let P = {P1, · · · , Pn}. These rays are from one end, so there is a

sequence of infinitely many vertex-disjoint finite connected subgraphs of

G, L0, L1, · · · , such that for each Li and each j ∈ {1, · · · , n} there is a

vertex from Pj in Li, and such that for each i ∈ N, the vertices of Li+1

are at a bigger distance of S than the vertices of Li.

For each i ∈ N, let vi be a vertex in Li that is on a ray from P , and

let Wi be a collection of α pairwise edge-disjoint paths in the graph G

from vi to the edges em, · · · , en. These paths may go through X. Such

paths exist because the graph is k-edge-connected and α ⩽ k.

For each j ∈ {m, · · · , n} let Wi,j ∈ Wi be the path from vi to ej,

and consider the graph consisting of the union of Wi,j over i ∈ N. Ap-

ply Kőnig’s Lemma 3.2.9 to the distance sets of vertices having distance

exactly i from ej. This gives a ray Wj starting at ej such that infinitely

often the initial segments of Wj are also initial segments of Wi,j, i ∈ N. In
this way, we have a collection {Wj}nj=m of edge-disjoint rays in the same

end as the rays P such that for every i ∈ N, there is an edge-disjoint fan

Fi from vi to {Wj}nj=m. Let I be an infinite subset of N such that for each

i in I, the layer Li intersects all the rays {Wj}nj=m. Then renumber these

layers, and the associated vertices and fans, such that the index i is in N.
Now for each i ∈ N add the fan Fi to the layer Li.

We work with the 2α rays {Wj}nj=m and {Pj}nj=m. For each i ∈ N,
layer Li intersects all the rays in {Wj}nj=m and in P . However, the rays

{Wj}nj=m do not necessarily go straight from a layer to the following like

the rays of P . They may go down to a lower layer then back up.

For every i ∈ N the ith connection graph Ci has as its vertices the

rays {Wj}nj=m and {Pj}nj=m. Distinct vertices Q,Q′ of Ci are connected

by an edge if and only if there is a path Z in Li having one end in Q and

one end in Q′ such that Z is edge-disjoint from every one of the rays of

({Wj}nj=m ∪ {Pj}nj=m) \ {Q,Q′}. Since Li is connected, Ci is connected.

Let Ti be a spanning tree of Ci.
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There is a tree T and an infinite set I of indices, such that, for each

i ∈ I, Ti = T (because there are only finitely many possibilities for a tree

on a fixed finite number of vertices). We apply Lemma 3.2.10 to T with

A = {Wj}nj=m and B = {Pj}nj=m. Then, for each j ∈ {m, · · · , n}, there is
a Wj, Pj-path in T that does not go through Wm, · · · ,Wj−1, nor through

Pj+1, · · · , Pn.

Picking any layer Li0 , such that Ci0 has spanning tree is T , in which

to start, we construct the desired α paths so that the only portions of the

paths below Li0 are in the rays {Pj}nj=m. First we connect Wm and Pm by

a path Zm in Li0 . We want the connections we use to connect Pj and Wj

to be in distinct layers. To formalize this, we prove the following claim.

Claim 3.2.12. Let R be any ray in the same end as the rays of P, and

let v be the unique vertex of degree 1 in R. For any layer Li, there is an

integer J = (i, R) such that, if j ⩾ J and e is an edge of R in Li, then

the shortest path Pe ⊆ R containing v and e is disjoint from Lj.

Proof. The layer Li is finite, so J(i) = i+max{|E(Pe)| : e ∈ E(R ∩ Li)}
is a suitable choice.

We will choose α many layers, Li0 , · · · , Liα−1 , one layer will be used to link

one pair Wj and Pj for j ∈ {m, · · · , n}. For t ∈ {1, · · · , α−1}, we choose
it such that it ⩾ J(it−1,Wj) (Claim 3.2.12) for every j ∈ {m, · · · , n}.
This will guarantee that for each j ∈ {m, · · · , n}, Lit and each layer

beyond is disjoint from the segment of Wj from ej to its last edge in Lit−1

(such last edge exists because Lit−1 is finite). In particular, for every

j ∈ {m, · · · , n}, the tail of Wj beginning at layer Lit is disjoint from

the layers Li0 , · · · , Lit−1 , and so is disjoint from any path in one of those

layers used as a connection between rays as shown below.

In layer Lit , we use the Wt+mPt+m-path in T to connect Wt+m to Pt+m

by a path Zt+m in Lit . The ordering of the paths in T implies that no

edge of Zt+m is in any of Wm, · · · ,Wt+m−1. The choice of it guarantees

that the tail of Wt+m starting at the intersection with Zt+m is disjoint

from all of Zm, · · · , Zm+t−1.
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For each j ∈ {m, · · · , n}, define the ray Sj to be as follows: from the

starting edge ej it is Pj up to the intersection with Zj, then Zj to Wj,

and then the tail of Wj from the intersection with Zj.

Each Sj becomes identical with Wj after a certain layer. We consider

the highest such layer for j ∈ {m, · · · , n}. More precisely, let M be such

that for every l ⩾ M , Ll is disjoint from X, and every Sj∩Ll is contained

in Wj. There is a sufficiently high vertex vi, for some i ⩾ M , such that

the paths {Wi,j}nj=m from vi to {ej}nj=m contain the Wj-portion of Sj

from layer LM up to the last layer where Wi,j and Sj intersect. These

truncations of the Sj yield the desired α paths.

Now we can prove our new result, that Huck’s theorem extends to

1-ended locally finite graphs.

Theorem 3.2.13. Let k be an odd positive integer. If G is a (k + 1)-

edge-connected, 1-ended, locally finite graph, then G is weakly k-linked.

Proof. By Lemma 3.2.1 there is a finite set S of vertices containing the

given finite set of k pairs of terminals in G such that each edge of δ(S)

is the first edge of a ray in an edge disjoint collection of rays P . Then

|δ(S)| ⩾ k + 1 as G is (k + 1)-edge-connected.

The idea is to find a linkage in the finite graph G/(G− S) such that

the paths of the linkage that go through s are replaceable with actual

paths in G.

By successive lifting in G/(G− S) of appropriate pairs of edges from

δ(S) as in Lemma 3.2.5 we will reduce the problem to finite graphs, and

then apply Huck’s Theorem to the resulting (k+1)-edge-connected finite

graph. Since k+1 is even, then by Lemma 3.2.5 applied to (k+1) instead

of k, we can lift all the edges of δ(S) in case deg(s) is even, and if deg(s)

is odd we can lift until deg(s) is 3.

Suppose that deg(s) is odd and that for some i the lifting graph of Gi

is an isolated vertex plus a complete bipartite graph. By (6) of Lemma

2.2.4, degGi
(s) ⩽ (k + 1) + 2 = k + 3. Since degGi

(s) is odd as deg(s) is,

degGi
(s) ⩽ k + 2. Stop lifting at i0 such that degGi0

(s) = k + 2. Any i
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for which Gi is an isolated vertex plus a complete bipartite graph satisfies

i ⩾ i0 (because if i < i0, then degGi
(s) > k + 2, i.e. degGi

(s) ⩾ k + 4,

contradicting (6) of Lemma 2.2.4). At this step, i0, the ray R∗ (See

Definition 3.2.8) is not used yet, it is edge-disjoint from the paths already

found which link edges ei and e′i for i < i0.

The graph Gi0 is (k+1)-edge-connected as the degree of s is k+2, and

because by construction there are (k+1) edge-disjoint paths in it between

any two vertices different from s. There is an edge-disjoint k-linkage in

Gi0 by Huck’s theorem 3.1.3.

A linkage in the final graph in the lifting sequence can be turned into

a linkage in G as follows. If a path in a linkage goes through an edge that

resulted from lifting a pair of edges from δ(S), then in G/G − S it goes

through ei, s, e
′
i for some i, where ei and e′i are edges as in (i) and (ii) of

Lemma 3.2.5. We can replace this by Pi. Thus if all edges of δ(S) are

paired and lifted, then it is clear that any linkage of the final Gj can be

turned into a linkage of G.

The other possibility is that not all the edges are lifted and there are

paths that go through pairs of edges incident with s. This can happen

only if deg(s) is odd and in that case the lifting sequence terminates with

Gi0 as defined above. We will use Proposition 3.2.11. Note that the paths

of the linkage of Gi0 can use at most k + 1 of the edges incident with s

since k+2 is odd. Let F be the subset of δ(S) used in the linkage. Then

|F | ⩽ k + 1.

By Proposition 3.2.11, there is a vertex v in G− S that has |F | edge-
disjoint paths to the distinct edges of F that avoid the paths P1, · · · , Pi0

(X in the proposition is the set of edges of these paths). Now any path

of the linkage that goes through s using a pair of edges from F can be

replaced by a path in G that goes through v.

Note that the ray R∗ can become problematic only after step i0, at

which degGi0
(s) = k + 2. Particularly only after the isolated vertex plus

complete bipartite structure of lifting graph shows up. The paths Pi in

Lemma 3.2.5 defined after the emergence of this structure until deg(s)

becomes 3 may go through the ray R∗ at different levels. It will not be
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possible then to find a path that goes down on R∗ from a higher level.

This is a second reason (the first is keeping the degree of s from going

below k + 2) why we do not continue the constructions of Lemma 3.2.5

here after step i0.

In the proof of their weak-linkage result (Theorem 3.1.8), Ok, Richter,

and Thomassen used point (4) of their lifting graph result Theorem 2.1.11.

They only knew that the complement of the lifting graph is disconnected

when the connectivity is even and deg(s) is even. They did not know this

is also the case when deg(s) is odd if the connectivity is even and at most

one independent set of the lifting graph is of size (deg(s) + 1)/2.

For this reason when deg(s) was odd, they deleted an edge from δ(S),

and hence had the connectivity reduced from k + 2 to k + 1. This is

exactly why they needed connectivity k + 2. This approach - of deleting

an edge - is not helpful if we have more than one end. If we have cuts

∆1, · · · ,∆n such each ∆i is the beginning of a set of rays defining an

end, and we deleted one edge from each such cut, the connectivity is

significantly reduced.

Therefore, when dealing with more than one end, we will again use

the approach we used above in the proof. If a cut has odd size, then we

will stop lifting edges from it when it reaches size k + 2.

3.3 General infinite graphs

In this section we prove that Huck’s theorem extends to general infinite

graphs, with possibly uncountably many ends. The same general steps

we use as exhibited in the coming subsections to reduce the question in

general infinite graphs to locally finite graphs, and to generalize results

from 1-ended graphs to multiple ends, were used by Thomassen in [25].

3.3.1 Reduction to countably infinite graphs

We first show that it is enough to extend Huck’s theorem to countably

infinite graphs in order to extend it to general infinite graphs.
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Given a k-edge-connected infinite graph G, and a finite set of ter-

minals T , we can construct a countable k-edge-connected subgraph Gc

containing T as follows. The proof is straightforward, and was presented

by Thomassen in [25], but we explain it here again. Let G0 := G[T ]. For

each i ⩾ 1, define Gi to be the graph obtained by taking the union of

the subgraphs H{x,y} over all {x, y} ⊆ V (Gi−1), where H{x,y} is a sub-

graph that consists of the union of k edge-disjoint paths between x and

y in G. Now define Gc to be the union of all the graphs Gi. Then Gc is

k-edge-connected, and since Gi is finite for each i, Gc is countable.

This shows that it is enough to consider the question for countably

infinite graphs.

3.3.2 Reduction to locally finite graphs

In the previous subsection we showed that it is enough to consider the

question for countably infinite graphs. Now we show that locally finite is

enough. To go from countably infinite to locally finite, we will need the

following theorem.

Definition 3.3.1. [25] A splitting of a graph G is a graph G′ which

is obtained from G by replacing each vertex v by a set of vertices Vv

such that G′ has no edges joining two vertices in Vv and such that the

identification of all vertices of Vv into a single vertex, for each vertex v in

G, results in G.

Definition 3.3.2. A block of a graph G is a maximal connected subgraph

B of G such that, for every vertex v of B, B − v is connected.

Theorem 3.3.3. [25] Let k be a natural number, and let G be a countably

infinite k-edge-connected graph. Then G has a splitting such that the

resulting graph is k-edge-connected, and each block of the resulting graph

is locally finite.

Let G be a countably infinite k-edge-connected graph. By Theorem

3.3.3, there is a splitting G′ of G that is k-edge-connected, and each block

of it is locally finite.
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A linkage in a splitting of a graph G naturally gives a linkage in G

since identifying the vertices of each one of the independent sets Vv will

keep the paths of the linkage edge-disjoint. If a graph is k-edge-connected,

then so is every block of it. Also given a k-linkage problem on a graph,

it can be solved by solving smaller linkage problems on a finite number

of its blocks. This means that it is enough to consider our question for

locally finite graphs only.

Note that the graph G′ that results from the splitting as found by

this theorem is itself countable, not only its blocks, because the edges

incident with Vv are exactly the edges that were incident with v in G.

There is only countably many of those edges as G is countable. If Vv were

uncountable, then some of its vertices will be isolated in the splitting G′.

The splitting graph G′ is connected (in fact k-edge-connected) according

to the theorem, and so it cannot have isolated vertices.

Now we can assume we are working on a graph that is locally finite

with arbitrarily many ends (possibly uncountably many).

3.3.3 Main Result

We are now working in a locally finite graph with arbitrarily many ends.

To be able to use some of the results about 1-ended graphs in graphs with

arbitrarily many ends, we will need the following theorem.

Definition 3.3.4. (Boundary-linked)[25] A vertex setA - possibly infinite

- in a graph G is boundary-linked if there is a collection P of pairwise edge-

disjoint rays, all in one end, such that the set formed by taking the first

edge of each one of the rays in P is δ(A), and all the other edges of the

rays in P are contained in G[A]. The cut δ(A) is called the boundary of

A.

Theorem 3.3.5. [25] Let G be a connected locally finite graph. If A0 is

a vertex set such that δ(A0) is finite, then V (G) \ A0 can be partitioned

into finitely many pairwise disjoint vertex sets each of which is either a

singleton or a boundary-linked vertex set with finite boundary.
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Now we can prove our main result, that Huck’s theorem is true for

general infinite graphs. We do this by proving it is true for locally finite

graphs with arbitrarily many ends.

Theorem 3.3.6. Let k be an odd positive integer. If G is a (k+1)-edge-

connected infinite graph, then G is weakly k-linked.

Proof. By Sections 3.3.1 and 3.3.2 we may assume that G is locally finite.

Let A be the finite set of terminals. Since G is locally finite, δ(A) is

finite. By Theorem 3.3.5, V (G) \A can be partitioned into finitely many

pairwise disjoint vertex sets that are either singletons or boundary-linked

sets with finite boundary.

Adding the singletons to A, we get a finite set S containing the termi-

nals such that V (G)\S is partitioned into finitely many pairwise disjoint

sets A1, · · · , An such that each one of them is boundary-linked with finite

boundary. Having a finite boundary implies that there are only finitely

many edges between the sets A1, · · · , An. The cuts δ(A1), · · · , δ(An) are

not necessarily disjoint.

Each edge in δ(Ai) is the first edge of a ray in an edge-disjoint collec-

tion of rays Pi that belong to one end Ei of G.

The set δ(S) is partitioned into the δ(S) ∩ δ(Ai), 1 ⩽ i ⩽ n. The set

δ(S)∩ δ(Ai) has the property that each edge of it is the first edge of a ray

in Pi. These sets are not necessarily cuts as there could be edges between

the different sets A1, · · · , An.

First we contract each Ai into a single vertex si. The resulting finite

graph is (k+1)-edge-connected as G is. We then take the ends E1, · · · , En

one after the other and apply the same steps of the proof of Theorem

3.2.13 to it as clarified below. What plays the role of δ(S) for the end

Ei here is the boundary δ(Ai) (although Ai may contain arbitrarily many

ends, but the set of rays fixed for it beginning with the edges of δ(Ai) are

all in Ei).

Let Gi denote the graph obtained by contracting each Aj for j ̸= i

into the vertex sj. This graph is not necessarily 1-ended, but the fixed

collection of rays we work with in Ai is from one end (even if Ai branches

into arbitrarily many ends).
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If δ(Ai) is even, then all of its edges get lifted. If it is odd, then we

stop lifting when the size of δ(Ai) becomes k + 2. In any case the finite

graph we have is (k + 1)-edge-connected. Again we use Huck’s theorem

3.1.3 to find a linkage in the remaining finite graph which could still have

some of the vertices s1, · · · , sn with degree k + 2 each.

Recall that Proposition 3.2.11 is true for graphs with more than one end.

Thus we can find for each i a vertex vi in Gi − (S ∪ {sj : j ̸= i}) such

that some of the paths of the linkage that go through si can be replaced

with paths that go through vi. Note that a path going through si may

be pass from Ai to an Aj with j ̸= i as some of the edges of δ(Ai) could

be edges between Ai and Aj.
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Chapter 4

Strongly connected

orientations

4.1 Introduction

In 1960 Nash-Williams proved that an edge-connectivity of 2k is sufficient

for a finite graph to have a k-arc-connected orientation [16]. He then

conjectured that the same is true for infinite graphs [15]. In his paper

[13], Mader introduced his theorem proving the existence of a feasible

lifting at a vertex and used it to give a simpler proof of Nash-Williams’

orientation theorem for finite graphs.

Conjecture 4.1.1. (Nash-Williams [15]) Every 2k-edge-connected graph

admits a k-arc-connected orientation.

Thomassen proved in 2016 that every 8k-edge-connected infinite graph

has a k-arc-connected orientation [25].

Theorem 4.1.2. (Thomassen [25]) Let k be a natural number, and let G

be an 8k-edge-connected graph. Then G has a k-arc-connected orientation.

In this chapter we present another application of our lifting graph

results of Chapter 2. We prove that in a locally finite 1-ended graph, an

edge-connectivity of 4k is enough for the graph to have a k-arc-connected
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orientation. This is a good new step towards the conjecture of Nash-

Williams 4.1.1.

One can generalize - as done in Chapter 3 in the linkage result - from

locally finite graphs to countable graphs using the splitting theorem of

Thomassen 3.3.1. Then one can also generalize to uncountable graphs.

The method of generalization is explained in Section 8 of Thomassen’s

paper [25].

4.2 k-arc connected orientations in 1-ended

4k-edge-connected graphs

In this section we prove our new orientation result, following the ideas

presented by Thomassen in [25]. To prove his result Thomassen first

proved that for a finite set of vertices V in a 4k-edge-connected graph

G, there is an immersion (defined below in Definition 4.2.1) in G of a

finite Eulerian 2k-edge-connected graph with vertex set A. Again, as in

Chapter 3, the property of being Eulerian (every vertex has even degree)

with the even connectivity was needed to use the fact that the lifting

graph has a disconnected complement in that case. Now we know more

about the lifting graph when the degree of the vertex at which the lifting

takes place is odd, so Eulerian graphs will not show up in our work.

Here we find an immersion inside a 4k-edge-connected graph of a 4k-

edge-connected finite graph. We only do this for 1-ended graphs, unlike

the result of Thomassen, which holds for graphs with multiple ends.

Definition 4.2.1. For a finite graph G, P(G) denotes the set of paths in

G. An immersion of a graph H in G consists of an injection ϕ : V (H) →
V (G) and a function θ : E(H) → P(G) such that, for uv ∈ E(H),

(1) θ(uv) is a ϕ(u)ϕ(v)-path in G,

(2) for every v ∈ V (H), the vertex ϕ(v) is not an interior vertex of a

path in θ(E(H)), and

(3) the paths in θ(E(H)) are pairwise edge-disjoint.
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The graph H is immersed in G and the subgraph (ϕ(V (H)), X) is an

immersion of H in G, where X is the set of all the edges in the paths in

θ(E(H)).

We have the following result about the existence of an immersion.

Theorem 4.2.2. Let G be a 2k-edge-connected locally finite 1-ended graph,

and let A0 be a finite vertex set in G. Then G contains an immersion of

a finite (2k − 1)-edge-connected graph with vertex set S ⊇ A0.

Proof. By Lemma 3.2.1, let S be a finite set containing A0 such that each

edge of δ(S) is the first edge of a ray in an edge-disjoint collection of rays

P , and let s be the vertex that results from identifying all the vertices of

G− S.

Because 2k is even, Lemma 3.2.5 applied with connectivity 2k implies

there is a sequence of lifts of pairs of edges from δ(S) such that these

pairs of edges are linkable in G− S and the sequence ends by having all

the edges of δ(S) lifted if |δ(S)| is even or having three of them remaining

if it is odd.

The last graph in the sequence satisfies that for any two vertices x

and y in it different from s there are 2k edge-disjoint paths between

them. Denote this graph by G∗. Note that in any case, regardless of

whether |δG(S)| is even or odd, degG∗(s) ⩽ 3. Thus for any two vertices

x and y in G∗ − s at most one of the edge-disjoint paths between them

in G∗ goes through s. Thus G∗ − s is a (2k − 1)-edge-connected graph

with vertex set S. Any edge in G∗ − s is either an edge of G or an edge

that resulted from lifting, that is an edge corresponding to a path in G

and this collection of paths is edge-disjoint (the paths {Pi}i∈I of Lemma

3.2.5). This gives the desired immersion.

Recall the example in Figure 2.16, the lifting graph on 5 edges incident

with s is an isolated vertex plus a K2,2. That is there are only 4 liftable

pairs and they are all symmetric. Lifting any one of these liftable pairs

gives a lifting graph on 3 edges incident with s such that no pair of edges

is liftable. This means that in this case we cannot continue lifting until we
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have only one edge incident with s. If we could do so then we would have

the immersion of a 2k-edge-connected graph instead of 2k−1 and will also

be able to do the multiple end case. In other words, connectivity of (2k−1)

is the best one can get out of the proof approach of successive lifting in

case the structure of isolated vertex plus a K2,2 shows up. However, some

discussions Bruce Richter and me had after the defense of this thesis give

hope that we can choose the set S containing A0 such that the edges of

δ(S) can be entirely paired and lifted.

Definition 4.2.3. (a) An edge e is directed if one of its incident vertices

is designated its tail and the other its head and its direction is from

the tail to the head. A directed edge is also call an arc.

(b) An path P is directed if every internal vertex of P is incident with

the head of one edge of P and the tail of another.

(c) A directed cycle is defined similarly.

(d) A directed path P is directed from x to y if x is the end of P that

is the tail of some edge of P and y is the end of P that is the head

of some edge of P .

(e) A path P is mixed if each of its edges is directed.

Definition 4.2.4. A graph is directed if every edge of the graph is di-

rected. An assignment of directions to all the edges of the graph is an

orientation of the graph. It is strongly connected if for any two vertices

x and y it has a directed path from x to y (and also from y to x). A

directed graph is k-arc-connected if the deletion of any set of fewer than

k arcs results in a strongly connected directed graph.

By Menger’s theorem, being k-arc-connected is equivalent to the ex-

istence of k arc-disjoint directed paths from x to y for any two vertices x

and y.

In his paper [25], Thomassen presented the following algorithmic way

for defining a k-arc-connected orientation of a (4k − 2)-edge-connected

finite graph.
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Theorem 4.2.5. [25] Let k be a positive integer, and let G be a finite

(4k−2)-edge-connected graph. Successively perform either of the following

operations:

O1: Select a cycle in which no edge has a direction and make it into a

directed cycle.

O2: Select two vertices u, v joined by 2k−1 pairwise edge-disjoint mixed

paths, and identify u, v into one vertex.

When neither of these operations can be performed the resulting oriented

graph has only one vertex. The edge-orientations of G obtained by O1

result in a k-arc-connected directed graph.

If we cannot perform operation O1, then the set of edges without

direction forms a forest, and so there are at most (n− 1) of them if n ⩾ 2

is the number of vertices in G. If we cannot perform operation O2, then

it can easily be shown that there are at most (2k − 2)(n − 1) directed

edges. Thus if we cannot perform any of the two operations, then G

has at most (2k − 1)(n − 1) edges, contradicting the assumption that it

is (4k − 2)-edge-connected. Therefore, the only case in which none of

the two operations can be performed is when the graph consists of one

vertex.

The directed graph obtained at the end of the algorithm is k-arc-

connected because O1 gives directions to the edges of any cut in a bal-

anced way, and O2 can only be applied to vertices u and v if there are

k-arc-disjoint directed paths from u to v and k-arc-disjoint directed paths

from v to u. To see the latter, note that, since each cut is balanced, then

if a cut has at most (k − 1) edges in one direction, then it has at most

(k − 1) edges in the other direction. By Menger’s theorem, this means

that there are at most (2k− 2) mixed paths between u and v, and so O2

cannot be applied to u and v.

From this it is straightforward to see that the following lemma is also

true.
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Lemma 4.2.6. Let k be a positive integer, and let G be a finite (4k− 2)-

edge-connected graph. Let H be a subgraph of G with an orientation

obtained using operations O1 and O2. Then the orientation of H can be

extended to an orientation of G which is k-arc-connected.

Now we present our new result.

Theorem 4.2.7. Let k be a positive integer, and let G be a 4k-edge-

connected locally finite 1-ended graph. Then G has a k-arc-connected

orientation.

Proof. The proof is very similar to the proof of Theorem 7 in [25]. It

differs only in that it does not use Eulerian subgraphs.

Let e0, e1, · · · be the edges of G. We construct a nested sequence of

finite directed subgraphs {Wn}n∈N using operations O1 and O2 such that

each orientation is an extension of the previous, Wn contains en, and has

the following property: for any two vertices x and y in V (Wn) there are

k arc-disjoint paths from x to y in Wn+1.

The graph G has an edge-connectivity of 4k > 1, therefore it contains

a cycle containing e0. Using O1 give this cycle an orientation and let W0

be this directed cycle. This defines the first subgraph in the sequence.

Note that W0 is not required to be k-arc-connected.

Assume that Wn is defined. To get Wn+1, let A0 be the union of

V (Wn) and the two end-vertices of en+1. By Theorem 4.2.2, G contains

as a subgraph an immersion Hn+1 of a finite (4k − 1)-edge-connected

graph Gn+1 such that A0 ⊆ V (Gn+1) ⊆ V (G). Note that V (Gn+1) ⊆
V (Hn+1) ⊆ V (G) but Gn+1 is not necessarily a subgraph of G.

By construction, V (Wn) ⊆ A0 ⊆ V (Gn+1) ⊆ V (Hn+1). Thus any edge

in Hn+1 between two vertices in V (Wn) is an edge whose end-vertices are

both in ϕ(V (Gn+1)) (cf. Definition 4.2.1). Regarded as a path, by point

(2) in Definition 4.2.1, any edge from Wn in Hn+1 cannot be a part of

a longer path in θ(E(Gn+1)). Thus, such an edge is itself a path in

θ(E(Gn+1)). This means that any such edge is also an edge in Gn+1.

Let G′
n+1 be the graph obtained from Gn+1 by adding the edges of

Wn that are not in Gn+1, and H ′
n+1 be the graph obtained from Hn+1 by
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adding the edges of Wn that are not in Hn+1. Note that, by the previous

paragraph, we have that E(H ′
n+1) \ E(Hn+1) ⊆ E(G′

n+1) \ E(Gn+1).

The graph Wn was oriented using O1 and O2 and is a subgraph of

the (4k − 1)-edge-connected graph G′
n+1. Thus by Lemma 4.2.6 this

orientation can be extended to a k-arc-connected orientation of G′
n+1.

Note that in this extension, the edges of E(G′
n+1) \E(Gn+1) inherit their

orientation from Wn. An orientation of Hn+1 can be naturally obtained

from an orientation of Gn+1 by giving each path of the immersion the

direction of the edge representing it inGn+1. As for the edges of E(H ′
n+1)\

E(Hn+1), they have the same orientation they have in Wn.

We define Wn+1 to be the directed graph H ′
n+1. This graph contains

Wn as we obtained it from Hn+1 by adding the edges of Wn not in Hn+1.

Since Hn+1 and Wn are both subgraphs of G, then so is Wn+1 = H ′
n+1.

Now it only remains to show that for any two vertices x and y in V (Wn)

there are k arc-disjoint paths from x to y in Wn+1. There are such paths

from x to y inG′
n+1. Replacing each edge of these paths that is in E(Gn+1)

with its image under θ (cf. Definition 4.2.1) gives k arc-disjoint paths from

x to y in H ′
n+1, i.e. in Wn+1. To see this, note that the image of any edge

in E(Gn+1) under θ is one of two possibilities. One possibility is that it is

its own image under θ, and in that case arc-disjointness does not change

because nothing was changed. The second possibility is that its image is

a path of length greater than one, and in that case, none of the edges of

this path is in E(Wn) as V (Wn) ⊆ V (Gn+1), so the path is disjoint from

all the edges that were added to Gn+1 to obtain G′
n+1, and particularly

the ones that may appear in the k arc-disjoint paths from x to y in G′
n+1.

Moreover, the paths of θ(E(Gn+1)) are edge-disjoint by definition.

The union of the directed graphs Wn, n ∈ N, defines an orientation of

G. For any two vertices x and y of G, there exists n ⩾ 1 such that x and

y are in Wn. To see this consider any path between x and y in G. For

some sufficiently large n, Wn contains all the edges of this path, and so

also contains x and y. Then there are k arc-disjoint directed paths from

x to y in Wn+1. Since this is true for every x and y in G, the orientation

of G is k-arc-connected.
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Chapter 5

Future Work and Related

Questions

This chapter has several sections. The first and longest describes major

obstacles occurring in our attempt to prove that the Weak Linkage Con-

jecture for finite graphs implies the same conjecture for infinite graphs.

Here, in the first section, we focus on the simplest case: locally-finite 1-

ended graphs. In the remaining sections, we present some open problems

and related questions.

5.1 The weak linkage conjecture for infinite

graphs

In this section we present our steps trying to prove that the weak link-

age conjecture for finite graphs implies the conjecture for infinite graphs.

Throughout the section we assume Conjecture 3.1.2 is true for finite

graphs. We also assume that G is a locally finite 1-ended graph that

is k-edge-connected, and k is odd.

We follow the same steps presented in Section 3.2. Since the connec-

tivity is now odd, Theorem 2.2.24 shows that there are three possible

outcomes when the complement of Li is connected (See Definition 3.2.6

in the proof of Lemma 3.2.5). Reordering those outcomes for convenience
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of dangerous sets.

l − 1l − 1

k−1

2

k−1

2

k−1

2

k−1

2

(k+3)
2 − l

s

Figure 5.2: Path of intersections
of dangerous sets.

here, the complement is one of:

1. a Hamilton cycle;

2. two cliques of the same size with a path of length at least 1 between

them; and

3. two cliques of the same size with a single common vertex.

In case of the third outcome we have a special ray R∗ (See Definition

3.2.8) corresponding to the isolated vertex, and this can be dealt with

as seen in the proof of Lemma 3.2.5 (allowing the paths linking pairs of

rays to go through R∗ until three rays, including R∗, remain). In first

two cases Gi (cf. (2) in Lemma 3.2.5) has one of the structures (i) or

(ii) of Theorem 2.3.1. In both cases, we may assume without loss of

generality that each one of the sets (we called them blobs) Si from the

statement of Theorem 2.3.1 contains terminals as shown in the following

proposition. We add the figures illustrating the two structures here again

for convenience, Figures 5.1 and 5.2.

Proposition 5.1.1. A graph obtained from a graph G, with structure

(i) or (ii) of Theorem 2.3.1, by deleting one of the intermediate blobs Si

(and hence the edge connecting it to s) and replacing it with (k − 1)/2

edges between Si−1 and Si+1 (indices modulo deg(s) in case (i)) is k-edge-

connected as long as the number of edges incident with s stays at least

k.
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Proof. This can be easily seen by noticing that the size of any cut - other

than the cut that has s alone on one side - did not change.

Remark 5.1.2. The main conclusion of the previous proposition is that

we may assume without loss of generality that each blob contains termi-

nals. However, if most of the terminals are centered in a small number of

blobs, then the above procedure of replacing blobs by (k−1)/2 edges may

result in a graph in which s has small degree, but the subgraph obtained

by deleting s is (k − 1)-edge-connected.

Remark 5.1.3. LetG be a graph that has structure (i) or (ii) of Theorem

2.3.1 and suppose that we replaced a blob that does not contain terminals

with (k− 1)/2 edges between its neighbouring blobs. If we have a linkage

in the new graph, then we have a linkage in the original graph because all

we need to do is replace the (k − 1)/2 edges with an edge-disjoint (k−1)
2

-

linkage inside the deleted blob, and such a linkage exists because the blob

is (k+1)
2

-edge-connected as remarked in 2.3.2. Note that the existence of

such a linkage follows from the assumption that the conjecture is true in

finite graphs and not from Huck’s theorem as we do not know the parity

of (k − 1)/2.

The k-terminals do not have to be evenly distributed between the

blobs. They might all be in one blob. Concerns arise if the number of

pairs of terminals inside one blob is more than (k−1)
2

because we can only

link at most (k−1)
2

pairs by going outside and then back inside the blob,

but also we do not know if each of the terminals that will be linked in

this way is incident with an edge that goes outside the blob. So we might

need to have an inner 2( (k−1)
2

)-linkage to go out and back in in this way.

On top of that we need to find a linkage disjoint from this one between

the remaining pairs of terminals not yet linked. In total, this means we

might need the blob to be at least k-edge-connected, or at least more than
(k+1)

2
-edge-connected.

If there are at least k blobs and each one contains terminals, then

each blob contains at most (k + 1) terminals since the total number of

terminals is at most 2k. In that case, if there is a blob that contains (k+1)
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terminals, then it is the only such blob and each other blob contains only

one terminal.

5.1.1 Wall-like structure

Definition 5.1.4. (Wall-like structure) A finite set of edge-disjoint rays

in one end defines a wall-like structure if its end graph is a path or a

cycle.

Recall that two rays (or their first edges) are adjacent in E if there are

infinitely many vertex-disjoint paths between them that do not intersect

in edges any other rays of P .

Now if E is a path P1, P2, P3, . . . , Pd, or a cycle P1, P2, P3, . . . , Pd, P1,

then P1 and P3 being non-adjacent means that there do not exist infinitely

many vertex-disjoint paths between them that are edge-disjoint from

those in P \ {P1, P3}. Thus, if we fix an infinite set P1 of vertex-disjoint

paths that join P1 and P2, which are edge-disjoint from P \ {P1, P2}, and
an infinite set P3 of vertex-disjoint paths that join P2 and P3, which are

edge-disjoint from P \ {P2, P3}, then all but finitely many of the paths of

P1 and P3 have to alternate on P2 in the sense that only finitely many of

the paths of P1 and P3 have a common vertex on P2. If infinitely many

of the paths of P1 and P3 have a common vertex on P2, then they are

infinitely many vertex-disjoint paths between P1 and P3 that are edge-

disjoint from P2 and the other rays, and this contradicts the assumption

that P1 and P2 are not adjacent in the end graph. That is, P1 and P3

result in two infinite (subdivided) ladders between P1 and P2 and between

P2 and P3 and their steps are alternating except for finitely many. This

is why we call it a wall-like structure. Note that it is a cylindrical wall in

the cycle case.

Note also that if the end graph is a path or a cycle, then all but

finitely many of the connections (paths) between the rays have to be

ladder-confined in the following sense. There can only finitely many paths

between two rays Pi and Pk that are edge-disjoint from the other rays if

|i−k| > 1. The infinitely many paths between Pi and Pi+1 do not have to
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give an exact ladder, they only have to alternate with the paths between

Pi−1 and Pi, but they can make big diagonal jumps between the two rays.

Proposition 5.1.5. Let G be a k-edge-connected locally finite graph, S a

finite set of vertices in G, and s the vertex of contraction of G/(G− S).

If:

• every edge in δ(S) is the first edge of a ray in an edge-disjoint col-

lection of rays P from one end;

• the complement of L(G/(G− S), s, k) is connected;

• and E(P , S) is a subgraph of the complement of L(G/(G−S), s, k),

then one of the following holds:

(1) P defines a wall-like structure or,

(2) P is partitioned into three sets P1, P ′, P2 such that P ′ defines a

wall-like structure and separates P1 and P2 in the following sense:

for any rays P1 ∈ P1 and P2 ∈ P2, there does not exist an infinite

collection of vertex-disjoint paths between P1 and P2 that is edge-

disjoint from all the rays in P ′.

Proof. First recall that L(G/(G − S), s, k) and E(P , S) have the same

vertex set, that is δ(S). If the complement of L(G/(G − S), s, k) is con-

nected, then it is a Hamilton cycle, or two cliques with a path between

them. A connected subgraph of a cycle or a path is a cycle or a path.

Therefore, if the complement of L(G/(G − S), s, k) is a Hamilton cycle,

then E(P , S) is a path or a cycle, and hence forms a wall-like structure

(possibly a cylindrical wall on the cycle).

Now suppose that the complement of L(G/(G−S), s, k) consists of two

cliques with a path between them. Recall that the edges of δ(S) are the

vertices of L(G/(G−S), s, k). Let C1 and C2 be the sets of edges in δ(S)

whose corresponding vertices form the two cliques in L(G/(G− S), s, k),

x1 ∈ C1 and x2 ∈ C2 be the two edges of δ(S) whose corresponding

vertices in L(G/(G − S), s, k) are the end-vertices of the path between
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the two cliques, and X = δ(S) \ (C1 ∪C2) the set of edges in δ(S) whose

corresponding vertices in L(G/(G − S), s, k) are the interior vertices of

the path between the two cliques.

Define P ′ to be the set of rays in P whose first edges (from δ(S)) are

the edges in X, and P1 and P2 to be the sets of rays in P whose first

edges are the edges in C1 \ {x1} and C2 \ {x2} respectively.

Since E(P , S) is a subgraph of L(G/(G− S), s, k) on the same vertex

set, the subgraph of E(P , S) induced by X is a path, and so the rays of

P ′ form a wall-like structure. For any rays P1 ∈ P1 and P2 ∈ P2, their

first edges e1 and e2 are not adjacent in E(P , S) because they are not

adjacent in L(G/(G− S), s, k). Moreover, any path between e1 and e2 in

L(G/(G − S), s, k) has to go through the path between the two cliques,

so all but finitely many of the paths between P1 and P2 has to go through

P ′.

The construction done by Ok, Richter, and Thomassen, and which we

also used in Chapters 3 and 4 fails when the end graph is a subgraph of

the complement of the lifting graph. As shown above, in that case, the

rays of P together with the infinitely many vertex disjoint paths between

them give a wall-like structure.

The main reason why things worked in Chapter 3 but are difficult

here is the parity of the connectivity. The connectivity we assumed in

Theorem 3.2.13 is k+1, that is even. Here we work with a connectivity of

k, odd. Thus in the successive lifting procedure we might get stuck when

for some i, Gi has structure (i) or (ii) of Theorem 2.3.1. In this case the

connected end graph may be a subgraph of the connected complement of

the lifting graph (cycle or two cliques with a path between them).

In case the complement of the lifting graph is two cliques with a path

between them, we can - by Remark 2.3.4 - lift pairs of edges from the

inside going out until we reach the isolated vertex plus complete bipartite

case. This is possible even when we have a wall-like structure on the

infinite side as we ignore a central ray (corresponding to the isolated

vertex) by allowing paths to go through it and only lift pairs of edges

that lie on two different sides of it. This is why we focus on the case
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when the complement of the lifting graph is a Hamilton cycle.

There are two ways to go. One way is to find a linkage in G/(G− S)

and then try to extend it into the infinite side of δ(S) to have a linkage in

G. Another way is to contract the blobs and treat them as if they were

the terminals, find a linkage of the blobs, then expand them again and

try to extend the linkage inside them to have a linkage in G.

In the first way it is not guaranteed that the pairs of edges of δ(S)

that the linkage goes through are linkable on the infinite side of the cut

by edge-disjoint paths. In the second way, the (k − 1)/2 edges between

the blobs could be used in the linkage we found of the blobs as terminals,

as well as the edge connecting the blob to s. This means that we may

need to find a weak k-linkage from the actual terminals inside the blob

to the end-vertices in the blob of the edges coming out of it. This is not

guaranteed as each blob is only (k+1
2
)-edge-connected at best. This is only

easy if each blob contains exactly one terminal as there are k-edge-disjoint

paths from any vertex inside the blob to the k edges coming out of it.

Nevertheless, we consider the following linkage problem obtained by

contracting each blob into a vertex in case the blobs form a cycle with

(k − 1)/2 edges between any two consecutive blobs.

5.1.2 Special case of the linkage problem

Here we assume that we have a wall-like structure on the infinite side and

contract each blob into a single vertex and think of them as terminals to

be linked. We may assume without loss of generality that all the pairs of

terminals (contracted blobs) overlap. That is, we assume they are in the

order s1, · · · , sk, t1, · · · , tk. If two pairs (si, ti) and (sj, tj) do not overlap

in their order on the cycle, then we can have a 2-linkage of them on one

cycle, delete that cycle, have the connectivity reduced by 2, and apply

induction on k. This is the worst case for the linkage problem, having a

wall-like structure with all overlapping pairs of terminals.

Description of a Linkage: A particular linkage is illustrated in Figure

5.3 for k = 7. Thanks to Ali Assem Mahmoud for describing this linkage
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in the case k = 3.

s1 t7

s2 s3 s4 s5 s6 s7 t1 t2 t3 t4 t5 t6

Figure 5.3: k = 7, the infinite side has a wall-like structure on P , and the
terminals are all-overlapping on a cycle.

Go directly from s1 to sk through s2, . . . , sk−1, then up and down

one brick to t1. Go directly from sk to tk through t1, . . . , tk−1. For each

i ∈ 2, . . . , (k − 1)/2, connect si directly to ti going through increasing

indices of s then t1 then increasing indices of t.

Now we have linked 2+ (k−3)
2

= (k+1)
2

pairs, and it remains to link the

(k − 1)/2 pairs si to ti for i ∈ { (k+1)
2

, . . . , k − 1}.
The remaining unused (partially parallel) segments are the (k − 3)/2

segments [t2, t3, . . . , tk], [t3, t4, . . . , tk], . . . , [t(k−1)/2, t(k+1)/2, . . . , tk], the
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(k − 3)/2 segments [s1, s2], [s1, s2, s3], . . . , [s1, s2, . . . , s(k−3)/2, s(k−1)/2],

and the (k − 1)/2 parallel edges s1tk.

Now make the (k− 1)/2 nested linkage of si to sk−i in the grid. That

is link s(k−1)/2 to s(k+1)/2 first (through the grid outside the thick cycle),

above it s(k−3)/2 to s(k+3)/2, . . . , above this s2 to sk−2, then finally on the

top s1 to sk−1.

Now to connect sk−1 to tk−1 we take the following path. From sk−1 to

s1 through the grid as described above. Then an edge of the (k − 1)/2

parallel edges s1tk, then up and down a brick to tk−1.

For each i ∈ {2, . . . , (k − 1)/2}, sk−i is linked to si through the grid

as described above, then we can go from si to s1 through the segment

[si, si−1, . . . , s2, s1], then from s1 to tk using one of the (k − 1)/2 parallel

edges s1tk, then from tk to tk−i through [tk, tk−1, . . . , tk−i+1, tk−i].

Note that this linkage only uses a 3-edge-connected grid, and does

not need it to be infinite but only to be of height (k − 1)/2. This looks

promising for both the finite case and the general infinite case, because

all we need to find is such a thin short grid accessible from the collection

of terminals.

5.1.3 Another collection of rays

If the collection of rays P we started with turned out not to be helpful,

for example its end graph gives a wall-like structure, we may try to use

another collection of rays whose end graph has a better connectivity than

a path or a cycle. It is possible that no such collection exists even in a

k-edge-connected graph as illustrated in Figure 5.4. If along each ladder

there are induced C6 subgraphs a little far apart (to avoid small cuts in

one case), then there are no rays parallel to those of P . The growth of

rays is obstructed by those induced C6 as illustrated in Figure 5.4. The

connections between the first and last vertical rays in Figure 5.4 are not

drawn to make the drawing simple, but this is meant to be a cylindrical

wall (this is why the empty boxes at the first and last ladders do not

conflict with k-edge-connectivity).
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Induced C6

Figure 5.4: Induced C6 subgraphs preventing the existence of an alterna-
tive collection of rays whose end graph is better connected.

5.2 One special vertex

As seen in many proofs in the thesis, in case deg(s) was odd, we stopped

lifting at the smallest degree not smaller than the assumed connectivity

k (or k+1). We did not continue lifting until we reached degree 3 or any

other degree smaller than k (or k+1). The reason for this was to be able

to use Huck’s theorem, or the assumption of the truth of the conjecture

for finite graphs, on the resulting finite graph. There is not a weak-linkage
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result on a finite graph with a vertex of small degree that is otherwise

well connected. This motivates us to suggest the following conjecture.

Conjecture 5.2.1. Let k be an odd integer and G a finite graph with a

vertex s such that deg(s) ⩽ k. If there are k+1 edge-disjoint paths between

any two vertices different from s in G, then there is a weak k-linkage in

G between any given k pairs of terminals in G− s.

Note that this conjecture is harder than Huck’s Theorem, and could

be harder than the original conjecture. However, when deg(s) = 3, it is

easier than the original conjecture. At most one of the k+1 edge-disjoint

paths between two vertices can go through s if deg(s) = 3. This means

that G− s is k-edge-connected. Therefore, if the weak-linkage conjecture

is true, then G− s contains a weak k-linkage, and so does G.

Finding an example where the vertex s is necessary for the existence

of a k-linkage, means finding a counterexample to the Weak Linkage Con-

jecture.

One can also consider the following even harder conjecture.

Conjecture 5.2.2. Let k be an odd number and G a graph with a vertex

s such that deg(s) ⩽ k. If there are k edge-disjoint paths between any two

vertices different from s in G, then there is a weak k-linkage in G between

any given k pairs of terminals in G− s.

Remark 5.2.3. In the finite problem, the existence of a vertex such as s

is not guaranteed. It is possible that all the vertices of G are terminals.

Remark 5.2.4. Note that the weak-linkage conjecture for even numbers

could be easier than the same conjecture for odd numbers. If one finds

a counterexample for odd numbers, it is still possible that for even k

every (k + 1)-edge-connected graph is weakly k-linked even if it is not

(k + 1)-linked.
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5.3 Edge-cut structure meets end structure

As seen in Chapter 2, the lifting graph L(G, s, k), which is closely related

to edge-connectivity, imposes a structure on the graph G. This struc-

ture is most clear when the complement of L(G, s, k) is connected. By

Theorem 2.3.1 and Lemma 2.2.4 has a cyclic structure around s. More

precisely, the intersections and differences of the dangerous sets in G, we

call them blobs, corresponding to the maximal independent sets either

form a cycle with (k − 1)/2 edges between any two consecutive blobs,

Figure 2.11, or they form a path, Figure 2.12.

If the blobs form a path, it may be a path of three blobs with exactly

one neighbour of s in the middle blob and (deg(s) − 1)/2 neighbours in

each of the two other blobs, at least (k − 1)/2 edges from the middle

blob to each of the other two blobs, and at most (k−deg(s)+ 2)/2 edges

between the first and last blobs. It may also be a longer path, with exactly

one neighbour of s in each of the interior blobs, and the same number

l of neighbours of s in the first and last blobs, (k − 1)/2 edges between

any two consecutive blobs, except the first and the last blobs which have
(k+3)

2
− l edges between them.

Note that one type of structure happens when the complement of

L(G, s, k) is a cycle, and the other happens when this complement is two

cliques of the same size with a path between them (possibly a single-vertex

path).

If these types of structures can recur as we go higher in the end, then

we expect the end to either have a cylindrical grid-like structure on its

rays or to have a separating grid-like structure in the middle. In both

cases the end is not expected to have a set of rays as used in the proofs

in this thesis for which the end graph is highly connected.

To make this more precise, in a 1-ended locally finite graph there are

vertex sets S1 ⊆ S2 ⊆ · · · whose union is V (G) such that, for each i,

each edge of δ(Si) is the first edge of a ray in an edge-disjoint collection

of rays. If for infinitely many i the complement of the lifting graph of

G/(G− Si) at the contraction vertex is either a cycle or two cliques with
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a path between them, then we expect the rays of G to make a cylindrical

grid-like structure or to contain a separating grid-like structure in the

middle, and is expected to happen if and only if there is not a subset of

the rays of a certain big size that has a highly connected ray graph.

We think that studying the structure of the end in this way can be

helpful for the conjecture in infinite graphs because when we are stuck in a

situation where the end graph, for the rays we have chosen, is a subgraph

of the connected complement of the lifting graph, it may be helpful to

know that the end contains another collection of rays that gives a better

connected end graph that has enough edges not to be a subgraph of the

complement of the lifting graph.

There are also other variations of the edge-disjoint linkage question,

as seen in the following sections.

5.4 Local connectivity

Let T be a set of pairs of vertices in a graph G. Then G is (T, k)-connected

if, for each pair {s, t} in T , there are k pairwise edge-disjoint st-paths in

G. If T is the set of all pairs of vertices in G, then (T, k)-connectivity is

the same as k-edge-connectivity. If G is a graph with a vertex s, and T

is the set of all pairs of vertices in G− s, then G being (T, k)-connected

is equivalent to that (G, s, k) is a connectivity triple.

Okamura considered the case where T is the set of k pairs of terminals

in the weak linkage question. She proved in this case that if the total

number of distinct terminals is at most 6, then (T, k)-connected implies

the existence of a weak-linkage for T .

Note that we can have k pairs with k > 6 if the size of the set of

terminals is 6 since the definition of weak-linkage does not require the

vertices to be distinct.

The question of whether a weak k-linkage of T exists when G is (T, k)-

connected is harder than Thomassen’s weak linkage conjecture.

An interesting question to consider is whether Okamura’s result holds

also for infinite graphs.
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5.5 Number of terminals

The number of terminals instead of the number of pairs was considered

before by Paul Seymour. He proved that the weak-linkage conjecture is

true when the number of terminals is at most 3 [22]. This was proved in-

dependently from Thomassen’s paper where the conjecture was suggested

[24].

Assuming that the number of terminals is bounded by something

smaller than 2k might be an easier problem than the conjecture. One

may consider the bound to be either a constant number or a fraction of

k.

5.6 More on the lifting graph

We would like to know exactly which graphs can or cannot be lifting

graphs. We showed in Chapter 2 that when the complement of the lifting

graph is connected then it is either a Hamilton cycle or two cliques of

the same size with a path between them. We also know that when the

complement is disconnected one possibility for the lifting graph is that it

is a complete multipartite graph. In this case if the degree of the vertex s

at which the lifting takes place is odd, then the multipartite lifting graph

is a complete bipartite graph with one side of size (deg(s) + 1)/2 and the

other of size (deg(s)− 1)/2.

When the connectivity is even and deg(s) is even, we only know that

the lifting graph is complete multipartite. In fact, every complete multi-

partite graph, in which the size of every cluster is at most the minimum

of k and ⌈deg(s)/2⌉, is the k-lifting graph of some graph. For example we

will show how to construct a graph G such that L(G, s, k) = Kk1,··· ,km if

every ki is at most ⌈deg(s)/2⌉. We are going to describe a graph that is

a generalized version of the graph in the left drawing of Figure 2.2. Let

A,A1, · · · , Am be sets of size k (for k ⩾ ki for every i). Let s have ki

distinct neighbours in Ai, and let Ni denote the set of neighbours of s in

Ai. Let the set A have k + 1 − ki edges to distinct vertices in Ai \ Ni.

92



Now add edges such that each Ai forms a clique of size k. The resulting

graph G is such that (G, s, k) is a connectivity triple, and each Ai is a

dangerous set (|δ(Ai)| = k + 1). Thus for each i, δ(s : Ai) is a maximal

independent set in L(G, s, k) of size ki.

We don’t know much about the lifting graph when it is not complete

multipartite but its complement is disconnected. Note that this case can

happen only when the connectivity k is odd. This is a question to be

considered.
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[17] G. Naves and A. Sebő, Multiflow feasibility: an annotated tableau,

Research Trends in Combinatorial Optimization, pp.261-283, Springer,

2009.

[18] S. Ok, B. Richter, C. Thomassen, Liftings in finite graphs and link-

ages in infinite graphs with prescribed edge-connectivity, Graphs and

Combinatorics 32, 2575-2589, 2016.

[19] H. Okamura, Multicommodity flows in graphs II, Japan J. Math. 10,

99-116, 1984.

[20] H. Okamura, Paths and edge-connectivity in graphs III. Six-terminal

k paths, Graphs and Combinatorics 3, 159-189, 1987.

[21] H. Okamura, Paths in k-edge-connected graphs, Journal of Combi-

natorial Theory, Series B 45, 345-355, 1988.

[22] P. Seymour, Disjoint paths in graphs, Discrete Mathematics 29, 293-

309, 1980.

96



[23] R. Thomas, P. Wollan, An improved linear bound for graph linkages,

European Journal of Combinatorics, Volume 26, Issues 3–4, April–May

2005, Pages 309-324.

[24] C. Thomassen, 2-linked graphs, Europ. J. Combinatorics 1, 371-378,

1980.

[25] C. Thomassen, Orientations of infinite graphs with prescribed edge-

connectivity, Combinatorica 36, 601-621, 2016.

97


	List of Figures
	Introduction
	The Lifting Graph
	Background
	Definitions
	Basic Theorems

	Structure of the lifting graph
	Maximal independent sets and dangerous sets

	Structure of a graph from the structure of its lifting graph
	Degree Three


	Extending Huck's theorem to infinite graphs
	Preliminaries
	1-ended locally finite graphs
	General infinite graphs
	Reduction to countably infinite graphs
	Reduction to locally finite graphs
	Main Result


	Strongly connected orientations
	Introduction
	k-arc connected orientations in 1-ended 4k-edge-connected graphs

	Future Work and Related Questions
	The weak linkage conjecture for infinite graphs
	Wall-like structure
	Special case of the linkage problem
	Another collection of rays

	One special vertex
	Edge-cut structure meets end structure
	Local connectivity
	Number of terminals
	More on the lifting graph

	References

