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Abstract

This thesis introduces a novel method for system model identification, specifically for
state estimation. The method uses a 2 or 3 layer neural network developed and trained
with the methods of the Neural Engineering Framework (NEF). Using the NEF allows
for direct control of what the different layers represent with white-box modelling of the
layers. NEF networks also have the added benefit of being compilable onto neuromorphic
hardware, which can run on an order of magnitude or more less power than conventional
computing hardware. The first layer of the network is optional and uses a Legendre Delay
Network (LDN). The LDN implements a linear operation that performs a mathematically
optimal compression of a time series of data, which in this context is the input signal
to the network. This allows for temporal information to be encoded and passed into the
network. The LDN frames the problem of memory as delaying a signal by some length
θ seconds. Using the linear transfer function for a continuous-time delay, F (s) = e−θs,
the LDN compression is considered optimal as it uses Padé approximants to represent
the delay, which has been proven optimal for this purpose. The LDN has been shown
to outperform other memory cells, such as long short-term memory (LSTM) and gated
recurrent units (GRU), by several orders of magnitude, and is capable of representing over
1,000,000 timesteps of data. The LDN forms a polynomial representation of a sliding
window of length θ, allowing for a continuous representation of the time series. The second
layer uses the Learned Legendre Predictor (LLP) to make predictions of how a subset of
the input signal to this layer will evolve over a future window of time. In the case of
model estimation, using the system states and control signal (at minimum), the LLP layer
predicts how the system states will evolve over a continuous window into the future. The
LLP uses a similar time series compression as the LDN, but of the representation of the
layer prediction into the future. The weights for the LLP layer can be trained online or
offline. The third layer of the network performs the transformation out of the Legendre
domain into the units of the input signal to be predicted. Since the second layer outputs a
polynomial representation of the state prediction, the state at any time in the prediction
window can be extracted with a linear operation. Combined, the three layer network
is referred to as the Learned Legendre Predictive State Estimator (LLPSE). The 2 layer
version, without LDN context encoding, is tested online on a single link inverted pendulum
and is able to predict the angle of the arm 30 timesteps into the future while learning the
system dynamics online. The 3 layer LLPSE is trained offline to predict the future position
of a simulated quadrotor over a continuous window of 1 second in length. The training,
validation, and test data is generated in AirSim with Unreal Engine 4. The LLPSE is able
to predict the future second of a simulated quadrotor’s position with an average RMSE
of 0.0067 on the network’s normalized representation space of position (normalized from a
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30x30x15 meter volume). Future work is discussed, with initial steps provided for using the
LLPSE for model predictive control (MPC). A controller, the Learned Legendre Predictive
Controller (LLPC), is designed and tested for state estimation across the control space.
The design and future steps of the LLPC are discussed in the final chapter. A preliminary
LLPC is designed and was integrated into the test suite, and is available along with all
of the code for simulator interfacing, controllers, path planning, the LLP systems, and
various utility functions at https://github.com/p3jawors/masters thesis.
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Chapter 1

Introduction

The human brain is the most complex organ in the human body. It is the orchestrator
behind everything that humans are able to do. This 3lb organ is capable of simultaneously
interpreting the sensory data throughout the body, driving force based motion through
control of muscle contraction, calculating multi-joint real-time path planning, and much
more. In addition to the immense computational abilities of the human brain, it also acts
as a storage for short and long term memories. In contrast, robots cannot compare to the
capabilities of the human brain. There is significantly less sensory data available to robots,
typically limited to sensors on actuators or cameras. Even with multiple high definition
cameras, and dozens of sensors on every actuator, the amount of data available does not
compare to the 10 million sensory neurons throughout the human body [19]. One of the
key factors that limits the ability of robots is the amount of compute available. Simply
modelling the amount of spiking neurons in the brain would take an estimated 1018 CPU
FLOPS and 104 TB of memory [22]. As of June 2022, the Frontier super computer is
the fastest super computer in the world and is capable of performing 1.12 × 1018 FLOPS
[1]. However, Frontier does so by using a staggering 21 MW of power. In contrast, the
human brain is capable of running off of 20W of power [4]. It quickly becomes evident
that building large scale dymanical systems on conventional hardware does not begin to
compare to the capabilities of the human brain.

Machine learning is the field of study of how systems can learn tasks by leveraging large
amounts of data. Engineers use the methods of machine learning to build neural networks
that loosely mimic how human brains function. Artificial neural networks (ANNs) are
collections of interconnected nodes that are trained to learn a weighted association between
a set of input data and expected system outputs. Numerical values are passed along
connections to nodes, where they are summed and passed through the neuron’s nonlinear
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function. By adjusting the weighting of the many connections, neural networks can learn
large dimensional mappings between a defined input-output space. In recent years, neural
networks have had great success in several fields, including model discovery of dynamical
systems [5] and model predictive control [14]. Many methods use a heavily data driven,
black-box approach, to try and model system dynamics. Although ANNs try to mimic
the function mapping of the brain through a process of training, they are still designed
to run on conventional hardware. Even if an ANN was designed to perfectly mimic the
human brain, it would still be limited by the power budget of modern computers. Part of
the reason brains are so efficient is that the billions of neurons performing computations
function asynchronously. In contrast, central and graphical processing units (CPUs and
GPUs) run on a set clock and use digital logic. To work towards brain level power efficiency
and compute, foundational changes need to be made in both the hardware and software
used for simulating neural networks.

The question then remains, how does one run programs, or even perform simple compu-
tations, using spiking, asynchronous, neural networks? The Neural Engineering Framework
(NEF) [10] introduces methods for using spiking neurons to perform mathematical oper-
ations, and even model dynamical systems such as oscillators, integrators, and Kalman
filters. The NEF is not limited to spiking neurons, as it can be extended to many neu-
ron types, including the ones used in ANNs. It is also capable of constructing white-box
systems that perform a predefined function, in addition to the black-box systems that are
commonly built with machine learning. By designing systems with the underlying princi-
ples of the NEF, networks can be compiled not only onto conventional hardware (CPUs
and GPUs), but onto neuromorphic hardware.

CPUs and GPUs use the von Neumann architecture where separate processing and
memory units work in tandem, where the processing is aligned on a synchronous clock with
a sequential instruction set. In contrast, neuromorphic hardware aims to function more
like the human brain, with massively parallel, asynchronous processing where memory and
processing are collocated [23]. Early hybrid digital-neuromorphic chips, such as the Loihi
2, have been shown to consume an order of magnitude less power than non-neuromorphic
hardware. The Loihi 2 has been claimed to have a 16x improvement in power efficiency[21].
With continual development and the advent of memristor technology [7][17] where memory
and compute are collocated in a single node, the power requirements will continue to
improve past the order of magnitude already possible with early chips.

In this thesis I consider methods that allow NEF networks to be built and run on
neuromorphic hardware. In the long term, theses methods should allow us to more closely
approach the efficiencies of the biological brain. In particular, I focus on applying these
techniques to the problems in motor control. Since the early 1950’s researchers began
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thinking about how to build artificial brains to control aritificial bodies. Development in
the field of robotics has never been held back by the creativity of humans, but by the
limitations of the technology at the time. Robotics typically require efficient processing,
as sensory feedback needs to be processed, and a control action decided upon, in real-time.
As computational limits have increased, so have the abilities of robots over the past ten
years. With limited hardware, simple linear controllers can be used to drive the measured
states of a robot to a target reference by making control actions that aim to reduce the
current error in the system. However, a robotic system would ideally be able to make
predictions about the trajectory of its motion, as humans do. This would allow the system
to adjust its trajectory to minimize an expected error, instead of making adjustments to
control actions only after an error is observed. This would require a dynamical model of the
system that would be able to make predictions of how the system states will evolve based
on sensory input. Model Predictive Control (MPC) aims to do this, by using a dynamical
model to predict the trajectory of its states, and optimizing its control action based on the
predictions. However, dynamical models can become computationally taxing, and are also
limited by the decisions the modeler makes.

As the world is infinitely complex, and the abilities of hardware are limited, decisions
have to be made as to what forces are important to model to sufficiently capture the
dynamics of a system. Ideally a system model would be updated online to account for
changes in the system or environment. MPC typically begins with a known system model
and does not change it while the system is running. In this thesis I develop recent methods
in order to allow adaptaton of the system model in an online fashion. Specifically, I extend
the Learned Legendre Predictor (LLP), which is a single layer neural network with a novel
learning rule [12]. The LLP makes predictions in the Legendre domain, where the outputs
are the coefficients of q Legendre polynomials. By using a polynomial representation, the
output of the network represents the continuous values of a window of time of length θ.
This encoding and decoding is a slight alteration of the Legendre Delay Network (LDN)
[30]. The LDN is a mathematically optimal method for continuous time compression of
discrete or continuous signals. It has been shown to outperform current methods like
transformers and LSTMs by an order of magnitude [6]. The LDN takes any arbitrary
signal s as input and creates a sliding window Legendre domain encoding that represents
the past θ seconds of s. The LLP alters this encoding, instead learning to output a
Legendre domain encoding that represents the future θ seconds of a signal. As the purpose
of using a dynamical model is to make temporal predictions of a system’s states, temporal
information about the context provided to the model helps improve the predictions.

The purpose of this thesis is to use the methods of the NEF, LDN, and LLP to design
a system capable of predicting the future states of a quadrotor. Beginning with the frame-
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work of the NEF allows for the designed system to have the ability of being compiled onto
neuromorphic hardware. Building upon the LLP system, LDN encoding of context is added
to provide temporal information, and the LLP output is decoded to provide predictions
of state. The system proposed here, with the addition of LDN encoding and decoding,
is referred to as the Learned Legendre Predictive State Estimator (LLPSE). Due to the
added complexity of online learning, the LLP (no temporal encoding of context) is tested
online on a simpler dynamical model, a single link inverted pendulum. Using the LLPSE,
the dynamics of a simulated quadrotor were learned offline, using the methods of the NEF.
Finally, multiple instantiations of the trained LLPSE were tested online on a simulated
quadrotor, with a distribution of control context used among them. The multiple instan-
tiations of the LLPSE with varying control context is referred to as the Learned Legendre
Predictive Controller (LLPC). The LLPC contains an additional node that uses the predic-
tions of the various LLPSEs and the planned reference to select the control action that was
used as context for the predictor with the lowest expected error. Due to time constraints,
the LLPC was not used in the task of selecting a control action, but rather only for making
multiple predictions of state. This was done to test if the dynamical model learned was
capable of reproducing the input-output mapping between rotor actions and the expected
directions of motion.

In the remainder of this thesis, I describe the background, design, and results of these
algorithms. The second chapter begins with an overview of the control methods covered
in this thesis. An overview of how quadrotors move is given to provide an intuition for the
mapping between control actions and direction of motion. A summary of the dynamical
equations of motion and MPC are covered to show the complexity of modelling system
dynamics in contrast to the proposed method. As neural networks require data to train,
a summary of the linear controller used in simulation to generate the control actions used
for training is covered. Chapter 3 describes the details of the neural methods used for
the LLPSE, and an overview of neural networks. Chapter 4 introduces the simulation
environment and the system designed for generating training data. Chapter 5 explains the
details in the design of the LLP, LLPSE, and the alterations to the LDN encoding required
for generating the ground truth for offline training. Results are shown in chapter 6, covering
the online learning of the LLP on the inverted pendulum, a scan of the representational
error of the various LDN encodings used, the results from the trained LLPSE, and the
state estimations of the trained LLPC running online with a simulated quadrotor in the
loop. Details of the LLPC and next steps are covered in chapter 7 on Future Work.

4



Chapter 2

Control Methods

With the goal of learning the underlying system dynamics of a quadrotor, how quadrotors
move through space is covered first. Having an intuition of how a drone’s rotors movement
lead to movement through the world helps in understanding the underlying control me-
chanics. A simple feedback control method is discussed to show how a basic control loop
can is designed by reacting to system error. This kind of feedback controller is used to
generate training data for the LLPSE and LLPC in Section 4.2. To qualitatively compare
to the complexity of current predictive control methods, an explanation of drone dynamics
is also provided. The forces and torques that act upon the drone are discussed in relation
to how they cause linear and angular translation. The Newton-Euler equations of motion
are then used to describe how the system dynamics are derived. The chapter ends with
an explanation of how Model Predictive Control (MPC) uses the dynamical model, in
conjunction with an optimizer to select optimal control strategies.

2.1 Quadrotor Motion

When defining the motion of a system, the number of directions it can move in are referred
to as the degrees of freedom (DOF). For a multirotor this includes three translational
directions (x, y, z in cartesian coordinates), and three rotational directions (α, β, γ in
euler angles). To control all 6 DOF individually, a drone would require 6 actuators, one
for each DOF. Multirotors can have any number of actuators [34], but are most commonly
found with 4. Quadrotors, having only 4 rotors, are under-actuated systems. They have
more DOF of motion than actuators to control them. A way around this control limitation
is to couple the motion between DOF. This way one actuator can be used to control the
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motion of multiple DOF. However, only one of the two coupled dimensions can be controlled
at any one time. Additionally, without external forces, motion in one coupled DOF will
always result in the motion in the other. Defined in the body frame, motion forward and
back (x) is accomplished by pitching (β) the front of the drone up and down. Motion right
and left (y) is accomplished by rolling (α) right and left. By coupling x and β, and y and
α, quadcopters can still fly in all 6 DOF with 4 actuators, but can only maintain control
of 4 at any one time. Adjustments to the controllable DOF (pitch, roll, yaw, and thrust)
is accomplished by adjusting the rotor speeds.

The force required for motion is obtained through the resulting downward thrust from
the spinning rotors. Similarly to how the shape of a wing creates lift in airplanes, the
shape of a rotor creates a volume of high pressure below it as it spins. As the rotor speed
increases, so does the amount of air mass being moved, resulting in more downward thrust.
If all four rotors are rotated at the same rate and slowly increased, the drone will eventually
take off when the downward thrust counteracts the force of gravity. To prevent the drone
from spinning due to inertial effects, rotors are placed in opposing rotational directions as
in figure 2.1.

Figure 2.1: The rotor pairs and relative rotation speed used to achieve motion along x, y,
z, and γ. The direction of rotation does not change, but the relative speed of rotor pairs
does.

By varying the rotor speeds in pairs, thrust can be applied in different directions with
respect to the world frame. With respect to the body frame, the thrust vector is always
perpendicular to the quadrotor’s body. When controlling aerospace systems, coordinates
are typically given in the body frame, with the origin at the center of mass of the craft.
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Called the north-east-down (NED) coordinate system, and often referred to as the body
frame, this coordinate frame makes control more intuitive from the reference point of a
pilot. Following the right-hand rule, it defines positive x as being in the aircraft’s forward
direction, positive y the right direction, and positive z pointing down towards the ground.
Despite the peculiarity of defining +z as down towards the ground, it allows for a more
intuitive way to adjust the controllable DOF. By transforming from the world to the body
coordinate system, increasing the roll dimension results in a clockwise rotation, increasing
pitch brings the craft’s nose up, and increasing yaw turn towards the right, all with respect
to center of mass.

Although controlling pitch, roll, yaw, and thrust is more intuitive in the body frame,
it becomes difficult to define target directions of motion. Figure 2.1 shows how pairing
certain rotors can result in motion between the coupled DOF. This allows quadrotors to
move forward/backward, right/left, up/down, and rotate clockwise/counterclockwise by
adjusting the pitch, roll, yaw, and thrust. Using the rotor velocities required to hover as
a baseline, a quadrotor’s direction of motion can be shifted by speeding up and slowing
down rotor pairs as in figure 2.1. The directions of rotation do not change, but the speed
of rotor pairs does relative to an equilibrium point, usually the hover point. Rotors with a
positive offset spin faster, resulting in the application of a larger force compared to rotors
with a negative offset. This imbalanced force causes the thrust vector to have components
along x and y, causing the drone to pitch and roll accordingly. Controlling the rotor
velocities themselves to result in the desired roll, pitch, yaw, and thrust requires some
form of feedback control. Comparing the measurable drone states (x(t)) to the desired
target reference (r(t)), a feedback controller can modulate the rotor velocities to drive the
system towards the reference.

2.2 Feedback Control

Through the use of feedback, a controller can be designed to bring the measured states
towards a target reference by reacting to a calculated error. The error e(t) is calculated by
comparing the measured states x(t) to the reference r(t), typically by taking the difference
to preserve the sign of the error. The sign of e(t) signifies in which direction the error is.
The larger the calculated error is, the larger the control signal response will be. With the
goal of bringing e(t) to zero, a feedback controller can drive the system’s states towards
the reference without the need for a complicated dynamical model. The block diagram of a
generic feedback controller (figure 2.2) shows the flow of information between the controller
and the system.
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Figure 2.2: The block diagram of a feedback control loop. The control signal, u, is shifted
based on the error, e, between system feedback, x, and a target reference, r.

Very commonly used, a Proportional-Integral-Derivative (PID) controller modulates
the control signal u(t) by scaling various errors with gain terms. The gain terms add
additional scaling to the control response. By varying the relative size of gains, errors in
certain states can be weighed more or less heavily depending on their importance.

u(t) = kpe(t) + ki

∫
e(t) dt + kd

de(t)

dt
(2.1)

Equation 2.1 shows the generic form of a PID controller. e(t) is the error vector between
the measured states and the target reference states, and kp, ki, and kd are the proportional,
integral, and derivative gain constants, respectively. To allow for a finer tuning of the
controller, unique gain values can be used for each measured state. Determining the value
of the gain terms takes careful tuning to create a feedback loop that will bring the system
to its target state. For example, if the proportional gain is made too large then the system
will overshoot the target. Pushed too far the system response will begin oscillating about
the reference, possibly to the point of instability. If the gain is too low the system response
will be slow, and unresponsive to disturbances.

Although written together in equation 2.1, any combination of P, I, and D can be used
depending on the control scenario. P control aims to minimize the absolute error to the
reference. The larger the absolute error the larger the system response will be. I control
accumulates system error by taking the integral of e(t). This allows I control to account
for steady-state errors. D control uses the derivative of e(t) to try to compensate for the
system momentum. A Proportional controller alone is capable of bringing a system towards
its target reference, but will have issues accounting for system momentum. Combining
P and D terms to form a Proportional-Derivative (PD) controller will help to minimize
overshooting the reference. PD control is very common and performs well when there are
no external forces acting upon the system. However, if there are any steady state errors
due to unmodelled disturbances, a PD controller would not be able reach its target state.
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Gains are typically held constant while a system is running under any combination of
P, I, or D control. The gains are tuned ahead of time and kept constant at run time. If an
external force was introduced causing an unmodelled perturbation, such as an additional
mass added to a quadrotor, it would start undershooting its target state along the direction
of error. In the case of additional mass on a quadrotor, this would result in it undershooting
its target along the direction of gravity. The PD gains could be adjusted to compensate
for this new mass, but any change to the system dynamics would require a retuning of
gains. Alternatively, an Integral controller can be added to account for these constant
errors, making a PID controller. The integral term works by applying the gain term to a
running sum of the state error. The P and D portions work to drive the system towards a
steady state near the target. Given enough time, the error accumulating in the I term will
drive the system the remainder of the way to the target state.

Through the use of feedback control, any combination of P, I, or D control can drive
a system’s states towards a reference in a reactive way. It does so based on the amount
of error between the system states and the reference. The system response can be tuned
by adjusting P, I, and D gains. In simpler scenarios where there are no external forces
acting upon the system, or where a higher tolerance of error is acceptable, the additional
complexity of tuning an Integral term can be omitted. Regardless of the combination of P,
I, or D control, the controller designed will inherently be reactive as it only makes changes
based on the current error. In an ideal case a controller would be able to make some
form of prediction about its future states. In this way, a proactive controller could be
designed with the aim of accounting for errors before they occur. For this control design,
a dynamical model of how the system evolves over time would be required. Given some
input of system states and a control signal, the system model could be used to predict how
the system states would evolve over time. Comparing the predicted states to the planned
future reference, the controller could begin making control changes proactively to mitigate
the future predicted error.

2.3 Quadrotor System Dynamics

A model of system dynamics allows for a more robust form of control. A model allows for
predictions to be made based on the system starting conditions and any additional external
forces. Feedback control alone cannot adapt to unknown perturbations, or make predictions
to proactively adjust control signals. In [14] a nonlinear model of drone dynamics was
capable of adapting to unknown winds and payloads, while maintaining nimble flight of
70km/h. In [8] a nonlinear model of a robot arm was capable of quickly adapting to
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unmodelled short term perturbations like additional mass, as well as long term effects like
years of simulated wear and tear. When discussing drone dynamics, it helps to use both
the body and world frame, as used in section 2.1. However, a way to transform between
the two coordinate systems becomes necessary.

R =

C(γ)C(β) C(γ)S(β)S(α)− S(γ)C(α) C(γ)S(β)C(α) + S(γ)S(α)
S(γ)C(β) S(γ)S(β)S(α) + C(γ)C(α) S(γ)S(β)C(α)− C(γ)S(α)
−S(β) C(β)S(α) C(β)C(α)

 (2.2)

R is the rotation matrix to shift from the body frame to the world frame, where C and S
are the cosine and sine functions. To transform from the world frame to the body frame,
the inverse of R is used. However, since R is an orthogonal matrix R−1 = RT . The angles
α, β, and γ are the rotation angles about the x, y, and z axes, respectively. In the body
frame this is rotation about the body locked coordinate system, where rotation about x
is referred to as roll, rotation about y pitch, and rotation about z yaw. When deriving
the dynamics, shifting the body frame’s forward direction to be aligned with one of the
drone arms, as in figure 2.3, creates a symmetry that simplifies the equations. With the
transform between reference frames, the forces of the system can be examined next.

Figure 2.3: The body frame of a quadrotor. The body frame can be defined in many ways,
but aligning the cardinal axes with the drone arms leads to a symmetry that simplifies the
derivation of control dynamics.

Following a similar derivation of drone dynamics as shown in [16] [18] [20], the defini-
tion of the system begins from defining the net forces and torques acting on the system.
Beginning with the controllable forces, as described in section 2.1, the spinning actuators
of a drone apply a torque that spins the rotors. As they spin, the shape of the rotors causes
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a downward displacement of air, resulting in the reactive upward force acting on the body
of the drone. Figure 2.3 shows the directions of the forces and torques relative to the body
frame. Assuming a symmetrical quadrotor with equally spaced actuators, the force and
torque at each rotor, i, can be defined as

fi = kω2
i (2.3)

τMi
= bω2

i + IM ω̇i (2.4)

where fi is the force at rotor i, τMi
is the motor torque applied to the rotor, and k and

b are the lift and drag constants, respectively. The constants are determined from the
drone’s mass and properties of the rotors themselves. ω is the angular velocity vector of
the rotors and contains the controllable variables in the system, the rotor speeds. Usually
the effects of ω̇ are considered to be small and can be ignored [18]. Due to the symmetry
of the system in the body frame, the moment of inertia tensor, IM , becomes diagonal and
can be written as

IM =

Ixx 0 0
0 Iyy 0
0 0 Izz

 (2.5)

The moment of inertia tensor describes how the angular momentum of the system body
changes about the center of mass. The diagonal components Ixx, Iyy, and Izz are the
moments of inertia about the x, y, and z axes, respectively. The off-axis components are
the product of moments between axes. Due to the symmetry of the system, all-off axis
components are equal to zero. The net force and torque on the system resultant from the
spinning rotors can then be defined as

fB =

0
0
T

 ;T =
4∑

i=1

fi = k

4∑
i=1

w2
i (2.6)

τB =

τατβ
τγ

 =

kl(−w2
2 + w2

4)
kl(−w2

1 + w2
3)∑4

i=1 τMi

 (2.7)

The sum of the four rotor forces is the total system thrust T . In the body frame the
thrust is along the z axis only, so the force vector fB has zero x and y components. The
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system torque in the body frame is defined by τα, τβ, and τγ, which are the torques along
the roll, pitch, and yaw directions. With the body frame defined as in 2.3, a torque in the
roll direction is obtained by increasing ω4 and decreasing ω2. Similarly, torque about the
pitch axis is obtained by increasing ω3 and decreasing ω1. Torque along roll and pitch are
also governed by the moment arm, l, which is the length between the center of mass and
any of the four evenly spaced rotors. The axis about which yaw rotation occurs is parallel
to the rotation axes of the rotors. Torque about the yaw axis is therefor governed by the
sum torque of the four rotors, τM . Since the drone body does not contain any flexible
components, the Newton-Euler equations can be used to derive the system dynamical
equations.

The Newton-Euler equations are the combined translational and rotational dynamics
for rigid bodied systems. They combine Euler’s two Laws of motion:

1. A change in linear momentum of a rigid body is equal to the sum of all external
forces acting on the body.

mv̇ =
N∑
i=1

fi (2.8)

where the linear velocity vector v = [ẋ, ẏ, ż], m is the system mass, and fi are the
forces acting on the system.

2. A change in angular momentum about a fixed point in the world frame is the sum
of all external torques acting on the body.

IM ω̇B + ωB × (IMωB) = τB (2.9)

where ωB are the angular velocities in the body frame.

Using Euler’s first law, the translational dynamics are obtained by substituting the rotor
forces (equation 2.6) and any external forces acting upon the drone into equation 2.8. A
trade-off can be made between model accuracy and complexity. Modelling more forces
provides a more accurate description of the system, but at higher computational cost.
Some forces can also be difficult to model, such as blade flapping and turbulent air flow.
Limiting external forces to gravity and drag, as in [18], and dividing the system mass
through yields
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ẍÿ
z̈

 =
1

m
fBR− 1

m
Dẋ− g (2.10)

where fB is the sum force of the rotors in the body frame. The transformation matrix R is
used to transform this into the world frame. D is the diagonal drag matrix. The diagonal
components dx, dy, and dz are the drag force coefficients in the corresponding world frame
directions. The values of the coefficients are determined empirically as in [18]. The drag
coefficients tell how much the system resists motion given the linear velocity, ẋ. g is the
acceleration vector due to gravity and on earth is [0, 0, 9.81]m/s2, in the world frame.

The rotational dynamics are defined using Euler’s second law of motion. Substituting
equation 2.7 into 2.9, rearranging for angular acceleration, and expanding the cross product
yields

α̈β̈
γ̈

 =

τα/Ixxτβ/Iyy
τγ/Izz

+

 (Iyy − Izz)β̇γ̇/Ixx
(Izz − Ixx)α̇γ̇/Iyy
(Ixx − Iyyt)α̇β̇/Izz

 (2.11)

Provided with an initial condition [x, y, z, α, β, γ], the linear and angular dynamical
equations can be used to predict how the system’s states will change. With the underlying
knowledge of how the physical forces and torques act on the system, solutions can be
found analytically. Leveraging the ability to estimate the evolution of a system’s motion
over time, a dynamical model can be used to develop a predictive control scheme.

2.4 Model Predictive Control

One problem with feedback control, including PD and PID control, is that it is inherently
reactive. The control law moves the system towards a target state by reacting to the
current level of error. An alternative to Feedback control, is Model Predictive Control
(MPC). MPC covers an advanced set of control methods that base their control law on
predictions of how the system will behave in the near future. Using the dynamical model of
the system, a simulation is run making predictions of how the system’s states will change.
The predictions are then used to make a proactive controller where control decisions are
made not just by the current error, but with the predicted future error. However, solving
these higher order differential equations is computationally taxing.
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For real-time robotics, it is not always feasible to solve for the complex system dynam-
ics at a rate fast enough for reliable control. The purpose of the dynamical equations is to
step through time to see how the system states evolve. As the step size between system
measurements gets smaller, the changes in the system’s response begin to look linear. With
the assumption that measurements can be made at a fast rate relative to the system dy-
namics, a linear approximation can be formed. Through a process of variable substitutions
the higher order differential equations can be repackaged into a set of first order differential
equations. A full derivation of the linear system is out of scope with regards to the focus
of this thesis, but an example can be found in [27]. In control theory this representation is
called the state space representation of a system. Although state space equations can be
nonlinear, the state space representation given in equation 2.12 is in the linear form:

ẋ = Ax+Bu (2.12)

where x is a vector of the system states and u is a vector of the control signals. The
way the system’s states change relative to one another is encompassed in the dynamics
matrix A. A is calculated by taking the derivatives of the system of first order equations
with respect to the system states x. Similarly, B is the input matrix that encompasses the
derivatives of how the states change relative to the manipulable control variables u. With
a linearized system model, it becomes less computationally taxing to perform predictions
for use in generating control actions.

Since equation 2.12 has the change in control u as an input, different system trajectories
can be calculated depending on the change in u. In an ideal scenario predictions would
be made across the entire possible control space. With all the possible control actions
simulated, an optimal one can be selected given some criteria of optimality. MPC does
so by introducing an optimizer and model block into its control loop as shown in figure
2.4. The combination of predictions and optimizations is what separates MPC from other
control methods, in contrast to methods where the control laws are pre-calculated, such as
PD or PID control where gains are left constant at run-time.

There are many methods for implementing MPC. Model Predictive Path Integrals
(MPPI) are based on the stochastic sampling of all possible trajectories. By transforming
the optimization problem with the Feynman-Kac lemma, the optimizaton can be solved
for across a control window [33]. For the simplicity of illustration, the greedy approach
will be used in explaining the key principles of MPC. Using the feedback of system states
x(t), the MPC model block makes a prediction of where x(t+∆t) will be. By comparing
the range of possible trajectories against the r(t +∆t) the optimization block selects the
best control action u(t + ∆t). The selected control action and state predictions are then
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Figure 2.4: The MPC control loop. The MPC block contains the system model generating
the predictions of the system dynamics, and an optimizer block that selects a control
strategy given the constraints of the optimizer.

fed back into the model. This model simulation and optimization is performed iteratively
over the prediction horizon, tp, as shown in figure 2.5.

Once the predictions over tp are complete, the MPC block only uses the first optimal
control action u(t + ∆t) to control the system. The prediction and optimization process
is rerun over the entire prediction window for every control step. This is why MPC is also
referred to as receding horizon control [24]. The main premise of MPC is that these short
term optimizations will lead to long-term optimality. By introducing optimality into the
controller, MPC also allows for the use of cost functions. The optimizer block of MPC
works by trying to minimize a quadratic cost function, J , towards a predefined criterion.
Consider the cost function:

J(t) =
N∑
j=1

δ(j)(x(t+ j∆t)− r(t+ j∆t))2 +
N−1∑
j=0

λ(j)u(t+ j∆t)2 +
N−1∑
j=0

ψ(j)∆u(t+ j∆t)2

(2.13)

By introducing cost functions MPC can set hard constraints, which becomes useful for
real systems with limitations in energy and system response. Where a feedback controller
can output physically impossible control actions, MPC can set limitations on how quickly
a control signal can change, or how large it can become. The cost function in equation 2.13
can be broken down into three terms. The first summation works to drive the system’s
states towards the reference. δ(j) is a scaling factor for weighing the importance of how
quickly the system converges to its reference relative to the prediction step, j. The second
summation works towards minimizing total energy expenditure. By minimizing the control
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Figure 2.5: The prediction horizon of MPC. The past states and control actions, as well as
the past and future reference trajectories are known. Using the known system parameters,
the model runs iteratively making a prediction of where the system will move given various
control actions. The control actions are typically chosen from a distribution, with the
optimal strategy used for the next time step.

action, the amount of energy the system uses can be optimized. Similarly, λ(j) is a scaling
factor for the relative importance of this term. The final summation limits the step size
of the control action, with ψ being the weighting factor. N is the number of discrete
steps to make predictions for. The control sections in the cost function therefore go from
j = [0, N − 1] as the last control action is not used for state prediction. The state section
of the cost function goes from j = [1, N ] since the 0th state is provided through the system
feedback.

With MPC, control actions can be made with some underlying measure of optimality.
With the addition of constraints and state prediction, MPC separates itself from simple
feedback control. However, due to the added complexity, fast simulations are vital as
predictions over the entire predicition horizon are recalculated during every time step.
Linearizing the dynamical equations helps in speeding up the model predictions. The
process of defining the system dynamics can also be difficult and requires knowledge of
the environment ahead of time. Additionally, the modeler has to decide between model
complexity and resource requirements. If a force is omitted from the model, the control
law would have no way to compensate for it in its prediction. Ideally, the system dynamics
could be learned and then used for prediction and control. Additionally, the state prediction
only uses the state and control for a single moment in time. Ideally, a history of context
could be used to improve the prediction. Having some representation of state and control
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history would also inherently have some information of the respective derivatives due to
the nature of being a signal over time. This would include important information such as
system momentum and previous directions of motion and control. In this thesis, the use
of the Neural Engineering Framework (NEF) for training, Legendre Delay Network (LDN)
for temporal context encoding, and Learned Legendre Predictor (LLP) for prediction of
state over a time horizon, are explored to address the limitations of traditional methods.
In contrast to the methods covered, the NEF allows for low power models to be run
on neuromorphic hardware, increasing the limits of what systems can be modelled. The
LDN provides temporal context to be used as feedback with an optimally compressed
representation. Finally, the LLP learns, and can adapt, system models online, removing
the need for detailed models.
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Chapter 3

Neural Methods

This chapter covers an overview of the neural methods used in designing and developing a
state predictor. Starting with artificial neural networks (ANN) and how they are used to
learn complex dynamical equations, the underlying princples of ANNs are covered. Neural
networks have been used for system identfication [5] and control [3], but do so with train-
ing data generated from a baseline controller. Ideally these controllers would have their
dynamics directly mapped onto neural networks, instead of the network learning a model
of best fit to the training data. The subsequent chapter covers how the Neural Engineering
Framework (NEF) can be used to map such models directly onto neural networks. With
the goal of also embedding temporal context into the input data, the Legendre Memory
Unit (LMU), is discussed. The LMU provides an optimal compression of a signal, and out-
performs other memory units, such as long short term memory (LSTM) or gated recurrent
units (GRU) by orders of magnitude [29]. Building off the principles of the NEF and LMU,
the Learned Legendre Predictor (LLP) provides an online learning method for predicting
the future window of a (sub)set of network input. With the training methods of the NEF,
the optimal time compression of the LDN, and the LLP’s ability to predict future context,
the base elements of the LLPSE and LLPC designed in this thesis are covered.

3.1 Neural Networks

Researchers have had great success in recent years building neural network systems capable
of beating some of the world’s best human players in various games. IBM’s Watson won
in Jeopardy in 2011, beating two players who were considered the best at the time. The
rate of progress only continued to increase as DeepMind began creating neural networks
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that could play various Atari games in 2013, beating the World’s greatest Go player in
2017 with AlphaGo, leading to AlphaStar in 2019, which learned to play the real-time
strategy game StarCraft, earning a ranking in the top 0.2% of human players. Despite the
complexity of the tasks these networks can perform, the underlying computational unit is
a fairly intuitive approximation of a neuron, as shown in figure 3.1.

Figure 3.1: Input and output flow of data for a single neuron. Connected neurons pass their
output value xi, each of which gets scaled by their respective connection weight wij, where
i is the neuron index in a layer, and j is the layer index. A bias b is added to the weighted
summation of inputs before being sent into the neuron non-linear transfer function, G.
This signal propagation continues down the network chain to subsequent neural layers.

Each neuron is treated as a nonlinear function that receives inputs from other neurons,
similarly to how neurons are connected in the brain and send surges of voltage down their
axons. In artificial neural networks (ANN) the input to each neuron is a numerical value
on which the neuron performs a nonlinear operation. The particular nonlinear operation,
often called the ‘transfer function’, can vary, and is chosen by the modeler. For neurons
at the input layer of the network, the input values are provided by the modeler. For
neurons not in the input layer, the input values are calculated by weighting and summing
the outputs of all of the neurons connected to the given neuron, and then adding a bias,
as given by

y = G(x ·w + b) (3.1)

where G is the nonlinear transfer function of the neuron, x is the vector of input values,
w is the vector of connection weights, and b the bias, typically randomly selected. y is
the output of a neuron, and is the value that is passed to the neurons it is connected to.
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By changing the values of the connection weights, networks can approximate any function
given enough neurons [15].

Networks are typically organized with groups of neurons stacked in layers. If the number
of layers exceeds 2 it is considered a deep network. The output of each neuron in a layer
can be connected to subsequent layers sparsely (i.e., to only a few neurons), densely (i.e., to
most or all of the neurons), or in a recurrent manner (i.e., to other neurons in the same layer,
or earlier in the hierarchy). The majority of neural networks are trained through a process
of error backpropogation through the network. With the connection weights initialized
randomly, or to zeros, the network is provided with some task inputs, outputs an answer,
and is then evaluated. Based on this evaluation, the error is then backpropagated through
the network and used to adjust the connection weights. The weights are altered through
gradient descent until a desired level of error is met. Because this kind of supervised
training does not provide an understanding of what each individual layer is doing, the
resulting neural network can be classified as a black-box system. This makes training the
layers in a network and determining their various hyperparameters a laborious process,
typically requiring a sweep across a parameter space using a search algorithm such as grid
search, Tree-structured Parzen Estimator (TPE), etc.

The training of such a network is typically broken into a training, validation and test
phase. The data collected is broken up between the three categories. Training data is
used during the backpropagation phase where connection weights are adjusted. Validation
data is used to evaluate how well the network is performing on new data that was not
used for adjusting weights. Based on the validation results, the parameters of the training
regime can be adjusted. During the test phase, it is important that the data used has
never been shown to the network during training or validation. The performance of neural
networks heavily depends on the quality of the data used for training. When training
in a supervised manner, data consists of system inputs, and expected outputs, which are
commonly referred to as the ‘ground truth’. The data used for training should cover as
much of the input space as possible. Backpropagation tries to obtain a best fit between
input data and the corresponding ground truth. What the network ultimately learns is a
mapping between its input and output space. Although networks can interpolate, if the
data used to train the network omits an area of input space that varies from the space
trained on, the network typically begins to quickly make errors as inputs become ‘out of
sample’ compared to the training data, having never seen statistically similar examples of
the mapping. Additionally, the training data should not be biased. For example, a network
could be tasked with learning to identify noses. If all of the training data consisted of images
with faces centered in the frame, the network may seem to perform well initially. However,
once new data is used where faces are no longer centered, it may be realized that the
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network just learned to identify the center of images instead.

Through this method of training, control systems can be approximated by providing a
network with large amounts of training data and an offline training regime. The final system
then performs an inference task when running online. For a controller neural network, it
would minimally take system states and a reference as input, and output a resulting control
signal, akin to a feedback controller. When training a neural network to learn the dynamics
of a system, some baseline system is usually required to create the training data. The data
can be recorded from real systems, or simulated ones. In either case, this usually requires a
controller to already be established to move the system through its input space while data
is collected. Although other training regimes are also used [3][13], this thesis will focus on
the use of supervised and online learning. Unlike supervised learning, online learning aims
to minimize an error signal by adjusting network weights at run time. This is in contrast
to supervised learning where the weights are adjusted with backpropagation during the
training phase, and kept frozen during inference. Online learning usually works by using
the Delta rule, and will be discussed section 3.4.

In many scenarios it is known how to develop a good controller. It may then seem
strange to design a controller only to sample its inputs and outputs to train a neural
network. The network is ultimately trained using a black box method to learn those
dynamical equations. It may also underperform when compared to the original controller
if the training data did not cover the complete state space. It would be much better to
directly embed the original controller into a neural network. One set of methods for doing
that is the Neural Engineering Framework (NEF).

3.2 Neural Engineering Framework

The Neural Engineering Framework (NEF) [10] provides a set of tools for developing cog-
nitive and control systems that can be black-box, white-box, or a hybrid. Where typical
deep networks have many stacked layers and use an iterative optimization process like gra-
dient descent, the NEF allows for modelling specific functions in each of the layers. From
a high level view, the NEF characterizes layers of neurons as a resource for representing
numerical values with connections used to compute functions on their represented value.
Functions can be mapped onto these connections through a least-squares regression using
closed form functions, or using a provided set of evaluation and target points. However,
the method is not limited to simple feed-forward connections, as it can also be extended
to recurrent connections. Unlike typical ANNs, when developed with the NEF, connec-
tions between neurons model the signal propagation over time with a synaptic filter. The
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synaptic filter acts as a low pass filter to smooth out neural spikes, and additionally allows
for the modelling of dynamical systems such as Kalman filters, oscillators, and integrators.

Inspired by the brain and developed by theoretical neuroscientists, the NEF takes many
design cues from how the human brain works. Neurons in the brain fire at differing rates
depending on the type of inputs they receive. Similarly, the NEF allows for a similarity
measure between the inputs a neuron receives and the inputs that cause it to spike most.
In contrast to equation 3.1 for ANNs, the NEF defines a neuron’s computation as

ai = G(αi · ei · x+ bi) (3.2)

Similarly to ANNs, G is the neural nonlinearity, x is the input vector, and bi is the bias
for neuron i. The encoding vector ei defines the ‘preferred’ direction of the neuron. The
more closely the input vector matches the preferred direction of the neuron, the faster
it spikes. ai is the resulting spike rate. Additionally, the NEF also has a gain term αi

that scales the similarity metric. Figure 3.2 shows the neural response, a, of a group of
leaky-integrate-and-fire (LIF) neurons over the 1D input space, x. Although x can be of
arbitrary length, the single dimensional case is easier to visualize.

Figure 3.2: The response of various LIF neurons in the NEF to a range of input values.

It helps to visualize the encoding vector with a 3 dimensional example. Assuming a
normalized input for simplicity, the input would be a vector that would point from the
origin to somewhere on the surface of the unit sphere. The encoding vector can then be
thought of as a preferred direction along the sphere. As the input vector approaches the
direction of the encoding vector, the dot product between the two approaches 1. The dot
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product between the input and encoding vectors is then scaled by a gain α and shifted by
a bias b, before being passed in to the neuron’s function G. Adjusting the gains and biases
of neurons changes the level of similarity that neurons begin to spike and the speed with
which the firing rate changes. The encoders of neurons can also have positive or negative
values, allowing for ‘on’ and ‘off’ neurons, whose output values rise or fall as the input
signal rises, respectively. Gains and biases are usually randomly sampled to give a diverse
response between neurons, although they can be specified. By selectively setting encoding
vectors, the NEF allows for a whitebox tuning of neural responses to an input space. The
encoding vectors can be uniformly sampled from a random distribution to cover the entire
input space evenly, or more selectively tuned as needed. This allows for a way to encode
incoming data into neuron spike trains, but these values need to be able to represent a
numerical value that can be used for computation.

The NEF distinguishes between the neural activity in a group from the value the group
represents. Unlike traditional neural networks where a single value is used in a connection
between neurons, the NEF uses both input encoding weights, and output decoding weights,
although these can be combined to form a standard weight matrix. The decoding weights
are used to extract the represented value from the neuron group, or ‘ensemble’ in NEF
terminology. Decoders can be solved for with a least squares minimization, given the
input value to be represented and the neural activities. The represented value can then be
extracted as

x̂ = ΣN
i ai · di (3.3)

where di is a decoding vector for neuron i, ai the respective activity, and x̂ the value the
ensemble represented after summing over the N neurons in the ensemble. In practice, the
differentiation between encoders and decoders is only made during the initial setup of the
network, as the two weights get combined during the time of compilation as shown in figure
3.3.

At run time the encoders and decoders function similarly to a traditional ANN connection
weight computationally, but with the benefits of being able to set neuron affinities to
different input signals, while also decoding for a predefined function. On the left half of
figure 3.3 the separated NEF encoders and decoders are shown with the ideal value of x in
the center. For demonstration purposes, an artificial ‘ideal’ representation is shown in the
center, as if the ideal value was decoded from layer A providing x, then encoded into layer
B. Since the operation of encoding and decoding is linear, the weights can be combined to
form the network on the right, but with the benefits of the NEF encoding and decoding
process.
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Figure 3.3: On the left, separated NEF encoders and decoders, and on the right the linearly
combined weight matrix.

In the context of spiking neural networks (SNNs), working directly with spike trains
can be difficult due to the discontinuous nature of the signal. Taking inspiration from
biology again, the NEF smooths out the discontinuous spike trains by applying a synaptic
filter over connections, as is done in the brain. The synaptic filters act as a low pass
filter to smooth out the otherwise discontinuous spike raster output from neurons. This
introduces a new set of dynamics into the network, with connections propogating signals
over time, instead of instantly passing values between neurons as in ANNs. The previous
method for solving decoders allowed for a group of neurons to simulate a function in the
form of y = f(x). However, this can be extended to linear dynamical systems. When used
in recurrent connections, the synaptic dynamics can be used to model other dynamical
systems. Treating the feedback connection like a pseudo memory of state x and incoming
connections as control signals u, the NEF can directly solve for other dynamical systems
that can be written in a linear state space equation as in 2.12, as well as for nonlinear
dynamical systems. A and B are arbitrary matrices that describe the system dynamics
and input. Although a full derivation is out of scope, it has been shown [10] that the
system function can be computed by solving for connection weights the same way as in the
feed-forward case, using least squares. The feedback connection weights are optimized to
represent τA(x) + x, and the input connection weights are optimized to represent τB(u),
where τ is the time constant of the connection filter. These methods have been used for
controlling real-time robotic systems [9], visual classification and localization models [8],
natural language processing [6], and the world’s largest functional brain model, Spaun[11],
capable of complex tasks like reasoning, recall, motor control, and perception.

Using the methods of the NEF allows for a more direct approach to modelling dynamical
systems with neural networks when compared to ANNs. This is done by treating neurons
as a resource for representing numerical values with connections used to compute functions
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on their represented value. Through a least squares minimization, decoding weights can
be solved for directly to allow for the modelling of linear or nonlinear functions in the form
of y = f(x). Extending this with recurrent connections then allows for the modelling of
linear or nonlinear dynamical equations. Following the work of the NEF, and similarly
inspired by biology, the LMU derives a novel memory unit that outperforms the current
state-of-the-art, and opens the door for optimal temporal encoding to be used in neural
networks.

3.3 Legendre Memory Unit

Many neural networks work by performing an inference on the instantaneous network in-
put. This yields systems that can perform well for tasks that do not have heavily dynamical
properties, such as object detection in images. As the input/output mapping that the net-
work is tasked to learn becomes more dynamical, knowledge of how the input context varies
over time becomes relevant. As the linear and angular motion of a system is inherently
dynamic, predictions made with a single time step can lack the relevant information that
describes the system motion. For example, knowing the instantaneous position of a system
is not enough to know how it is moving. Given even the last two known positions, estimates
can be made of the direction of motion and the size of the step. The longer the window
of context history is, the more information is available to describe the past motion of a
system. Neural networks often use recurrent connections to capture history, feeding out-
puts back into a group of neurons, to form a memory of inputs. Through backpropagation
the network learns to form a representation of the time history of data over some window.
These recurrent networks use many tricks to optimize how much data can be remembered,
but are limited due to the vanishing gradient problem inherent with backpropagation over
time.

The LMU is a novel recurrent network composed of a linear encoding layer, and a
nonlinear layer for function learning, and greatly outperforms other commonly used recur-
rent and feedforward units [29]. Positional encoding, as in LSTMs and GRUs, is prone to
saturation effects and unstable gradients when tasked with sequence lengths greater than
2000-5000 steps[29]. The linear portion of the LMU, the LDN, is mathematically proven to
be an optimal compression for sequences, and can efficiently handle temporal dependencies
spanning a million time steps [29]. LMUs have also been shown to have a 10x improvement
in data efficiency on language modelling when compared to the previous state of the art
transformer networks [6]. This means that, depending on the parameters set, a network
with an LMU can be trained on 10x less data while achieving the same when compared to
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a transformer network.

The LDN approaches the problem of memory as one of delaying a signal by some
length of time. This can be modelled with the linear transfer function for a continuous
time delay, F (s) = e−θs, where θ is the length of the delay. With the goal of implementing
the algorithm with the NEF, the LDN approximates this by d coupled ordinary differential
equations (ODEs).

θṁ(t) = Am(t) +Bu(t) (3.4)

where m(t) ∈ Rq is the q dimensional state vector, u is a 1D state, and A and B are the
ideal state-space matrices. The rational polynomial representation of the ideal time delay
leads to a system with infinite order. To overcome this [30] used Padé approximants to
represent the A and B matrices as

A = [a]ij ∈ Rqxq, aij = (2i+ 1)

{
−1, i < j

(−1)i−j+1, i ≥ j
(3.5)

B = [b]i ∈ Rqx1, bi = (2i+ 1)(−1)i, where i, j ∈ [0, q − 1] (3.6)

Padé approximants are similar to a Taylor series expansion, but extended to rational
polynomials. The key property of the LDN is that m is a polynomial representation of
the time history of a 1D state u. By representing the coefficients of a set of polynomials,
an approximation can be made of a temporal signal. Specifically, the LDN uses shifted
Legendre polynomials as its function basis, as shown in figure 3.4.

By projecting the input signal into the Legendre domain, the LDN orthogonalizes
a sliding window of context history u(t) ∈ R of length θ onto q legendre polynomials.
The LDN continuously updates the weighting of the q coefficients to maintain a sliding
window representation of u. Using a polynomial representation also allows for a continuous
representation of input data. As such, any time within the window, 0 ≤ θ′ ≤ θ, can be
decoded with

u(t− θ′) ≈
q−1∑
i=1

Pi

(θ′
θ

)
mi(t), 0 ≤ θ′ ≤ θ (3.7)

Pi(r) = (−1)i
i∑

j=0

(
i
j

)(
i+ j
j

)
(−r)j (3.8)
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Figure 3.4: The first 12 shifted Legendre Polynomials with coefficients set to 1. The LDN
uses linear combinations of the scale invariant Legendre Polynomials to represent the θ
length window. Increasing the number of polynomials allows for the storage of higher
frequency data.

where i is the index from 1 to q of the ith shifted Legendre polynomial, Pi. r is the ratio
of θ′/θ, where θ′ is the number of seconds in the past relative to t to decode the value of
u. Legendre polynomials can also be used to represent data regardless of time scale. As
the frequency of input data increases relative to the time scale, increasing the number of
Legendre Polynomials q improves the LDN’s ability to represent the higher frequency data.
Decoding is also a linear operation and since Pi is only defined by the constant r it can be
calculated outside a control loop and held constant.

The LMU is then defined by feeding this optimally compressed memory signal u into the
transfer function of a layer of neurons. The non-linearity can be used to learn functions
of the time history of a signal. This introduces a highly efficient way to train neural
networks with memory that has an underlying representation of time. Dynamical systems
are inherently built upon the transition between states over time. In the same spirit,
both the LMU and the NEF were developed for modelling neural networks as dynamical
systems. The LDN allows for an optimal way to represent the past history of a context
signal. Building upon the framework of the LDN, the Learned Legendre Predictor (LLP)
uses online learning to learn a compressed representation of the future time window of a
(sub)set of the input signal.
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3.4 The Learned Legendre Predictor

The LLP, [12], is a system that uses LDN representations and a modified delta learning
rule to make predictions with a single ensemble of neurons. By leveraging the ability of the
LDN to represent time histories of data, the LLP uses the compressed time representations
of neural activities and past network outputs to make predictions of the future trajectory
of states z. Notably, the prediction is made in the legendre domain, such that a continuous
representation is formed. A diagram of the entire LLP system shows the flow of information
in figure 3.5.

Figure 3.5: The network diagram of the LLP system. See text for more details.

The boxes with Legendre polynomials signify an LDN encoding. The context, c, is
passed into an ensemble of neurons. The neural activities, a, are dotted with decoding
weights, D, to make a prediction, Z. The prediction is an LDN representation of the future
θ length time window of states z. z can be the same as c, a subset of it, or an entirely
different value. c is the context signal that the modeler selects as relevant in predicting
the evolution of states z. By providing the network output, activities, and current value of
z, the learning rule outputs a change in decoding weights, ∆D, to improve the network’s
prediction. The box in 3.5 contains the learning rule, which is a modified delta rule. The
delta rule is a specific case of gradient descent used for a single layer of neurons. It can be
formulated as

∆D(t) = −κa(t)× (ẑ(t)− z(t)) (3.9)

28



where ∆D is the weight matrix update, κ is the learning rate, a(t) are the activities of
neurons in the layer at time t, and ẑ(t) and z(t) are the layer predictions and ground
truth at time t. By adjusting the learning rate for stability, similar to gain tuning in PID
controller, the weights of a layer of neurons can be slowly adjusted to better approximate
a function. The main differentiator of the LLP is that the network learns to output a
polynomial representation of the future θ seconds length window of z through a similar
encoding as in the Legendre Delay Network. Similarly to the Prescribed Error Sensitivity
(PES) [31] learning rule derived with the methods of the NEF and built upon the delta
rule, the LLP can be run offline or online, despite the ground truth not being available at
the time of prediction.

This type of prediction of future states can be done without the LLP by training neural
networks to directly predict the future state of a system, given some context. However,
there are a few limitations with current approaches. A neural network trained with back-
propagation could learn to make this type of prediction, but only at discrete times in the
future. By predicting the output in the Legendre domain, the prediction can be decoded
at any continuous time between t and t + θ. Another issue arises in that the delta rule
uses a known ground truth to update the decoders. Since the prediction is being made of
the unknown, future state, a history of activities and predictions needs to be held for θ
seconds to be able to make a comparison to the ground truth when it becomes available.
With a conventional approach, this would require a secondary network [12]. One network
would learn to output a prediction of the future states given the current context, while the
secondary network would be given temporal histories and learn to make better predictions.
Through weight sharing, the two networks could learn to make a prediction of the future
state, but still in a discretized manner. The issue also remains of how to represent the
temporal context that needs to be stored for θ seconds.

Through the use of the LDN to compress the time histories of neural activities and
the network predictions, the LLP derives a learning rule that can make use of the LDN
optimality to make continuous time and space predictions of future states online. Starting
with the delta learning rule in equation 3.9, making a prediction of the future at a single
time (not continuous) requires the error to be aligned in time with the activities of the
neurons that made the prediction which led to the error. This can be accomplished by
shifting the network outputs by the delay τ . Equation 3.11 shows equation 3.10 in Einstein
notation 1, and represents the delta rule for a time shifted weight update.

1The remainder of the section is written in Einstein notation where the subscripts and superscripts
define the dimensionality of the tensor, and as such bold font will be omitted as the tensor dimensionality
will be noted.
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∆D(t) = −κa(t− τ)(ẑ(t− τ)− z(t)) (3.10)

∆D(t)Nm(t) = −κaN(t− τ)(ẑm(t− τ)− zm(t)) (3.11)

N defines the number of neurons in the layer, and m is the dimensionality of the
network output. Since the goal of the network is to learn the LDN representation of the
future window of zm, the value of ẑm is not directly output. Instead, the network outputs
the prediction in the legendre domain as Zq

m, where q is the number of legendre polynomials
used to represent the temporal prediction. To make the comparison to previous network
states and outputs as the delayed ground truth becomes available, LDNs are used to
store the time histories of network predictions, Zq

m, and neuron activities aN . The time
shifted values of predictions and activites can be decoded from their LDN representations
M

qp
mq and AN

qa , respectively. The same linear operation as in equation 3.8 is used for
decoding. Since Zq

m is itself an LDN representation, M
qp
mq is an LDN representation of an

LDN representation. M
qp
mq therefore needs to be decoded twice to extract the predicted

value ẑm(t− τ). With this substitution equation 3.11 becomes

∆D(t)Nqem = −κA(t)NqaP (τ)
qa
(
P (τ)qpM(t)qpmqP (τ)

q − zm(t)
)
P (τ)qeS

qe
qe (3.12)

where the network weights, ∆D(t)Nqem, are in the Legendre domain. Equation 3.12 can
be broken up into three terms. The first term, A(t)NqaP (τ)

qa , decodes the delayed neural
activity that resulted in the prediction. P (τ)qpM(t)

qp
mqP (τ)q is the value of the network

prediction, ẑm, of what zm will be τ seconds into the future, made τ seconds ago. This delay
allows for a comparison to the delayed ground truth zm(t). Since the network weights are
in the Legendre domain, the difference between ẑm and zm needs to be shifted back into the
Legendre domain as well. This is done with P (τ)qe since the error being learned is in the
Legendre domain. This introduces the index qe, which will always equal q, and represents
the LDN dimensionality of the resulting error term. However, LDN representations of the
activity history and prediction history can have a different Legendre dimensionality, qa
and qp, than used for the network prediction q. Lastly, Sqe

qe is a scaling factor to normalize
the Legendre polynomials, as they are othogonal, but not orthonormal. Sqe

qe is a constant
diagonal matrix with S[i, i] = 2i+ 1, and can therefore be precomputed.

Using equation 3.12 allows for predictions to be made for a particular value of τ . To
get the value across the continuous window θ for every value of τ , the integral needs to be
taken.
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∆D(t)Nqem = −κAN
qa(t)

(
M(t)qpmq

∫ 1

0

P(τ)qaP(τ)qpP(τ)qP(τ)qeS
qe
qedτ − zm(t)

∫ 1

0

P(τ)qaP(τ)qeS
qe
qedτ

)
(3.13)

Since A(t)Nqa and M
qp
mq are independent of τ they can be pulled out of the integral. τ is

bound between [0, 1] since θ′ <= θ. With some rearranging and simplification [12], the
integrals can be simplified as

∆D(t)Nqem(t) = −κAN
qa(t)

(
M qp

mq(t)Q
qaq
qpqeS

qe
qe − zm(t)δ

qa
qe

)
(3.14)

The second integral of 3.13 simply becomes an identity matrix, δqaqe . The first integral
becomes the 4D tensor Qqaq

qpqe . However, Qqaq
qpqe is independant of any observations and can

be precomputed. This results in the final LLP learning rule. Using the LLP system then
allows for a neural network to be developed to make predictions of the future evolution
of system states over a continuous window. Adding in the ability to represent inputs
with LDNs extends the ability of the LLP by providing temporal context to learn system
dynamics. The python code for calculating Sqe

qe , δ
qa
qe , and Q

qaq
qpqe is shown in A.2.
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Chapter 4

Experimental Methods

This chapter includes the methods used to develop the training system that was used to
train and test the novel contributions covered in chapter 5. The training system encom-
passed the experimental setup and simulation environment. Simulations, as opposed to
real-world experiments, allow for a faster turn around when running many experiments,
and do so at a much lower cost. The training data for the LLPSE and LLPC was generated
with a PD controlled quadrotor. Details on the state transformations and gains determined
for the PD controller are covered in this chapter, in addition to the generation of the refer-
ence trajectory. A PD controller was chosen as no external perturbing forces were added to
the simulation, so the added complexity of tuning an integral term was omitted. With the
goal of capturing the underlying dynamics of the system, and not recreating the controller
used to generate the training data, there was also a larger tolerance for error in the baseline
controller used.

4.1 Experimental Setup

All the experiments in this thesis were run using a simulated quadrotor in Unreal Engine
4 (UE4). The flight physics were simulated using the AirSim [25] plugin. In addition to
providing many tools for data collection, at its core the AirSim plugin provides a quadrotor
model with a fast physics simulation of flight dynamics. Leveraging the high customiz-
ability of UE4, this allowed for near real-time simulation in photo-realistic environments.
With the underlying Unreal Engine framework, the combination provides for a rich, and
extendable simulation environment, as shown in figure 4.1. The specifications of the com-
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puter used for simulations are: Ubuntu 20.04.2 LTS Operating System, AMD Ryzen 9
3950x CPU, Nvidia GeForce RTX 2080 Ti GPU, and 64GB of memory.

Figure 4.1: An example scenario with Unreal Engine and the AirSim quadrotor. AirSim
also provides many methods for collecting data, including cameras such as RGB, Depth,
Segmentation, Spiking, and more.

The AirSim plugin has a wide array of sensory feedback available for quadrotor sim-
ulations. Many visual sensors are available, as noted in figure 4.1. Although the LLPSE
can include any of the sensors available in AirSim as part of its context, discussion in
this thesis will be limited to using the drone position, orientation, and linear and angular
velocities. The lowest level of control available through the AirSim API is through a pulse-
width-modulated control signal, between 0 and 1, for the four rotors. The neural networks
designed in this thesis were written in Python 3.8, using the Nengo software package.

Nengo is a neural network simulator and hardware compiler built with the NEF prin-
ciples at its core. The core of Nengo is built from 5 objects: Networks, Ensembles, Nodes,
Connections, and Simulators. Neural networks are contained in a Network object. The
networks themselves are built up from Ensembles of neurons, Nodes, and Connections.
A Node is a generic block in Nengo to contain arbitrary Python code to be interfaced
with ensembles of neurons. The connection object passes information between ensembles
and nodes, in addition to performing the synaptic filtering and applying network weights.
Once compiled, the Network object is then simulated in a Simulator object. Additionally,
Nengo has Probe objects that can be used to record values in the network during simula-
tion. In addition to Nengo, multiple packages are available to extend the abilities of the
core objects. Nengo GUI allows for visualization of networks with live plotting of Probe
values. Nengo DL allows for the development of DNNs using traditional backpropogation.
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Various backends are available for compiling networks to run on CPUs, GPUs, FPGAs,
and Neuromorphic hardware. The Nengo Interfaces package allows for Nengo networks to
be interfaced with various simulators such as Mujoco and CoppeliaSim. In this thesis it
was used to interface between the Nengo networks and the AirSim simulator, running in
Unreal Engine 4. The communication between interfaces is outlined in figure 4.2.

Figure 4.2: The communication between the various simulators and control modules.

The drone feedback from Airsim included translational states (position and velocity)
in the world frame, in units of meters and meters per second, respectively. The rotational
states were provided as a quaternion. The Nengo Interface’s AirSim wrapper converts the
quaternion feedback into Euler angles. The Euler angles were provided in the z−x−y Tait-
Bryan convention, commonly used for flight, as it aligns with the body frame as discussed in
Section 2.1. The target angles from the path planner were calculated in the x−y−z order
and required an additional transform in the controller to align with the Tait-Bryan angles
returned from Nengo Interfaces. The Python code for converting the Euler angle order can
be found in Appendix A.1. Nengo Interfaces also converts control signals as rotor speeds

in
(
radians
second

)2
to the equivalent pwm signal expected by AirSim, given the drone constants.

The path planner was encapsulated in a Node and provided the reference, r, to the Nengo
networks and the PD controller. With the simulation environment in place, the first step
was to generate the training data for the LLPSE to use to learn the system dynamics.

4.2 Dataset Generation

System identification typically falls into one of two categories, model-based or model-free
[28]. A PD controller was selected for generating the training data to simplify the problem
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of identifying the system dynamics. Although a model-free approach could theoretically
work, by starting with an underlying controller, the modeler has more control over the
state space covered during data collection. As there were no external perturbing forces
added to the simulation, a PD controller was chosen over PID to simplify the tuning of
gains. The modified form of the PID equation (2.1) used to control the quadrotor included
the gravity term, and removed the integral gains and errors, and is given as:

u(t) = T ·K · e(t) + g (4.1)

where, g is the gravity vector containing the four rotor velocities required to hover in

units of
(
radians
second

)2
, and acted as a baseline for the control signal. The value was determined

empirically to be approximately [6800, 6800, 6800, 6800]T
(
radians
second

)2
, or [82.5, 82.5, 82.5, 82.5]T

in
(
radians
second

)
. The point was selected where the drone would just begin to take off. The

remainder of equation 4.1 adds the offset about the hover point, given the current body
frame error, e(t), to the reference trajectory, r(t), where

e(t) =
[
ex ey ez eẋ eẏ eż eα eβ eγ eα̇ eβ̇ eγ̇

]
(4.2)

e(t) is the 12 dimensional vector of the position, linear velocity, orientation, and an-
gular velocity errors. The error was calculated by taking the difference between x and
r. The errors were then transformed into the body frame by rotating positions and linear
velocities to align with the body frame of the drone. This was done by rotating the x and
y components of position and velocity by the system yaw, γ. This positioned errors along
x in the drone forward direction, as discussed in Section 2.1. The yaw error was rolled
over to use the shortest angle between the state and target, yielding the final error term
used. The error was dotted with K, the gain matrix formed by stacking the individual
gain vectors of the four controllable states: thrust, pitch, roll, and yaw, where pitch and
roll were coupled with x and y motion, respectively, giving

K =

 0 0 kz 0 0 kż 0 0 0 0 0 0
kxy 0 0 kẋẏ 0 0 0 −kαβ 0 0 −kα̇β̇ 0
0 kxy 0 0 kẋẏ 0 kαβ 0 0 kα̇β̇ 0 0
0 0 0 0 0 0 0 0 kγ 0 0 kγ̇

 (4.3)

The rows of K represent the gain for scaling the importance of error along z, pitch, roll,
and yaw axes. The columns signify the error with respect to the 12 measurable drone
states, as ordered in equation 4.2. This way the gain matrix also acts as a transform from
the measureable states to the controllable states. Note that the x and y, and α and β gains
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are coupled to maintain a balanced control as there should not be a significant difference in
motion along the xy plane, nor in the roll and pitch axes. The gains for linear and angular
velocity were similarly coupled. Errors along z and ż were used to adjust the thrust. Due
to the coupling as a result of the under-actuated system, as discussed in section 2.1, pitch
was adjusted based on errors along x, ẋ, β, and β̇. Similarly, roll was adjusted based
on errors along y, ẏ, α, and α̇. Lastly, yaw was adjusted based on errors along γ and
γ̇. With the errors scaled by their respective gains and transformed into z, pitch, roll,
and yaw commands, the final step was to transform from the controllable states to the
corresponding rotors to elicit the desired motion using

T =


−1 −1 −1 1
−1 1 1 1
−1 −1 1 −1
−1 1 −1 −1

 (4.4)

The matrix T transforms from the controllable states to rotor space. Here, rotor space

is defined as rotor commands in
(
radians
second

)2
, in the order front right, rear left, front left, and

rear right (i.e., u(t) = [uFR, uRL, uFL, uRR]
T ). The rows of T represent the rotor space,

with the first row controlling the front right rotor, the second row the rear left rotor, etc.
The columns represent motion along the z, pitch, roll, and yaw axis. With g providing
the baseline of the control signal, T then takes the errors along the controllable axes, and
transforms them to the corresponding rotor direction offsets about the hover speed. T
follows the same pairings as shown in figure 2.1. As an example, a positive error along the
roll axis (column 2) signifies that the drone needs to increase rotor velocities for the rear
left and front left rotors (rows 2 and 4), and decrease the velocities of the rear right and
front right rotors (rows 1 and 3). This would increase the roll in the positive direction,
resulting in a larger thrust component along y, lowering the error to reference yr. In this
manner, the transform would set the direction of the rotor offsets, and the gain and error
terms would determine the magnitude of the offset with respect to the hover point.

The reference path, r, is generated using the path planner avalailable in the Github
open source repository, ABR Control. An example 12D path is show in figure 4.3. r is
planned in the velocity space to create a path that maintains some physical constraints
of motion. This includes avoiding large discrete steps in velocity, and unattainable speeds
or accelerations. Given the timestep of the simulation to be run, a path is planned where
a position, orientation, and their derivatives are updated each step, and they lay out the
target trajectory for the drone to follow over time. For simplicity, the trajectories between
targets are kept linear in position, with start and target velocities set to 0m/s. However,
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Figure 4.3: An example generated reference trajectory, with the same constraints used
for data collection. The target positions are chosen from a uniform distribution between
[−15, 15]m for x and y, and [−1.−30]m for z. The start and target velocities at each target
position are 0m/s, with a maximum acceleration of 1m/s2, and a maximum velocity of
6m/s. The orientation path is planned using quaternion spherical linear interpolation
(SLERP), and is set to have a matching velocity profile to the planned position path to
maintain a synchronized convergence to translational and rotational targets.
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the velocity profile follows a Gaussian curve up to a maximum velocity of 6m/s, provided
there is enough time given an acceleration of 1m/s2. The path accelerates to the maximum
possible velocity, within the limit, before needing to decelerate to converge to the target
position while moving at the target velocity. If the maximum velocity is reached before
needing to slow down, the velocity is held constant at the maximum. The orientation is
calculated using quaternion spherical linear interpolation (SLERP), and converted to euler
angles. The quaternion SLERP algorithm takes in a normalized value, and returns the
angle between the start and target that is that proportion along the way. A value of 0 is
the start angle, 1 the target, and 0.5 the angle between the two. However, the step size
used for quaternion SLERP is set to match the normalized step size in the position path.
This allows for a synchronized convergence to targets between position and orientation
paths. Target roll and pitch angles are held constant at 0 radians.

With a reference available, the controller gains can be tuned. The gain vector is

k = [kxy, kz, kαβ, kγ, kẋẏ, kż, kα̇β̇, kγ̇] (4.5)

The controller gains are tuned using Neural Network Intelligence (NNI) with the Tree-
structured Parzen Estimator (TPE) to trace the trajectory outlined in r. NNI is an open
source resource for running optimizations over a search space given an error metric from
a loss function. The loss function is a running sum of error e, with some additional
heuristics. Early stop metrics are used to stop simulations early that exhibit clear failure
markers, such as extremely high angular velocities, or large distances in positional error.
For simulations that are stopped early, the error at the cutoff is used for the remaining
steps that are omitted. This allows for poorly performing gains to still be ranked in the
optimization. Additional scaling is applied to orientation errors to improve convergence in
target yaw values. The specific gain values found that are used in the experiments in this
thesis are: [9483, 4157, 2974, 11013, 14788, 9378, 334, 6736]. Using the gains from the NNI
optimization, shown in equation 4.5, an average 2norm error of 2cm over time is obtained.
To use the training data for training neural networks, some preprocessing is required to
remove outliers and normalize the data.
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4.3 Preprocessing

The context signal given as network input data is a stacked combination of x, r, and u.
The training data generated in Section 4.2 is preprocessed before any training. A mean
shifting and scaling is applied to ensure normalized input vectors. This is common practice
in training neural networks as it helps during the training process. The scale between the
various dimensions of the three groups varies by several orders of magnitude. To speed
up the training process, and to start with a similar weighting between input dimensions,
the data is commonly normalized. Due to the unconstrained nature of PD control, the
output of the controller occasionally leads to physically impossible control actions. These
result in large spikes in the output of the controller. The spikes in control actions can be
observed in Appendix B.1. To increase the resolution of the lower amplitude control signal
with physically feasible control actions, the control data is first clipped to a range of [6400-

7400]
(
radians
second

)2
, or [57.27-107.65] in radians

second
. The default AirSim drone has a maximum

rotor velocity 107.65 radians/sec and sets the upper limit. With the gravity compensation
selected as the mean, the difference to the maximum speed is subtracted to get the lower
limit. The signal is shifted by the mean (gravity compensation) and scaled by the clipped
max. A portion of the preprocessed control signal data is show in figure 4.4.
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Figure 4.4: The normalized control signals used for training, validation, and testing. The
spikes in the control action occur when a new target is set in the path planner. As the PD
controller is reactive, it takes some time to overcome the system momentum, resulting in
a delayed control response. This delayed response leads to an accumulation of error. The
error feeds back into the control law, leading to a feedback loop that causes the spikes in
the control action observed. As the control law begins to overcome the system momentum,
the error begins to drop and the control action drops back into a feasible range for the
drone.
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Figure 4.5: The normalized world frame states used for training, validation, and testing.
The rows from top to bottom are: position, linear velocity, orientation, and angular veloc-
ity. The columns show the 3 dimensions of the sub-state in the row (i.e., x, y, and z, for
row 1). The states shown are the resulting feedback from using a PD controller (equation
4.1) to control a simulated quadrotor in AirSim to follow the target path, r.
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Figure 4.6: The normalized world frame reference used for training, validation, and testing.
The target positions are chosen from a uniform distribution between [−15, 15]m for x and
y, and [−1.− 30]m for z. The start and target velocities at each target position are 0m/s,
with a maximum acceleration of 1m/s2, and a maximum velocity of 6m/s.
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The state data, x, and reference, r, are similarly normalized. Each individual state
dimension of the 12D signals are mean shifted and normalized by the absolute maximum
value. r has large discrete jumps in angular velocity as the yaw rolls over from −π to π.
This is caused by the way the angular velocity is calculated through differentiating the
yaw path in the path planner. This is corrected by clipping the angular velocity of r at
2 radians

second
. This is the maximum observed rotational velocity of the drone in x. A portion

of the state and reference used as context for the LLPSE is shown in figures 4.5 and 4.6.
The quadrotor dataset is used for offline training of the LLPSE.

To test the LLP online learning, a secondary and smaller dataset is generated. The
smaller dataset contains the control signal and 2D state of an inverted pendulum dynam-
ical system. The state contains the pendulum angle and angular velocity. The control
signal contains the torque applied by a motor at the pivot of the pendulum. A similar
preprocessing method is used, scaling the angle, velocity, and control signal by 1.57, 60,
100, respectively, to normalize the data. The inverted pendulum is controlled by a P con-
troller (I and D gains of zero), with the goal of maintaining the upright position. Every 5
seconds a 5Nm force is applied to perturb the system states, with the simulation running
for 30 seconds. The dynamical model, controller, and simulation were obtained from [2]
and modified for saving data and adding the perturbing force. With the training data
prepared, it is now possible to train the LLP.
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Chapter 5

Design of the LLP System

This chapter covers the novel contributions of the thesis, including the implementation of
the LLP learning algorithm and the LLPSE. All algorithms are implemented in Python
using the Nengo software package. The LLP learning algorithm is developed to test the
ability of the LLP to learn system dynamics online. The purpose of the state estimator
is to encapsulate the LDN encoding of input context, and decode the network predictions
out of the Legendre domain. The state estimator is also developed to allow for offline
and online learning. The goal of the state estimator is to learn the drone dynamics by
learning the input-output mapping from system context, c, to the future trajectory of a
subset of the context, z. The context selected is the same information made available
for MPC, including the system feedback, x, the reference trajectory, r, and the incoming
control signal, u. z is selected to be the world frame position, [x, y, z]. The goal of the
LLPSE is to use multiple instantiations of the estimator with varying control context to
make predictions across the control space, with the ultimate goal of using the predictions
to select the control action for the simulated quadrotor.

5.1 Design of the LLP and LLPSE

The LLP system description in this section is written in Einstein notation to simplify the
notation of tensor dimensionality. The subscript and superscript q will be used to define the
LDN dimensionality, with an additional subscript used to differentiate between the input
data being encoded. With system context available from x12, r12, and u4, the subscript
and superscript n is used to identify the number of dimensions selected from the available
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context dimensions (12 for x and r, and 4 for u). An additional subscript x, r, and u is
used to differentiate between the state, reference, and control.

The LLP system is written as a Python class and designed using the Nengo package.
The Nengo network can be visualized in the Nengo GUI, as shown in figure 5.1. A single
ensemble of N neurons is used with the learning rule encapsulated in a Node. A Node
object is opted for over a Connection object as it simplifies the integration into the Nengo
network. The raw ensemble activities, aN , are passed into a node, labelled ‘ldn activities’
in figure 5.1, to perform the LDN encoding into Aqa

N . Similarly to the activity, the LDN
encoding of Zq

m, M
qp
mq, is encapsulated in a Nengo Node, labelled ‘ldn Z’. Aqa

N , M qp
mq, aN ,

and znz are fed into the learning node. Given a non-zero learning rate upon instantiation
of the LLP class, the learning node calculates ∆DNqe

m using equation 3.14. The numpy
einsum function simplifies keeping track of which dimensions are being summed across
in the various dot products of the learning rule. The learning node also performs the dot
product between aN and DNqe

m +∆DNqe
m , yielding the LDN representation of the predicted

future window of znz , Z
q
m. The values of δqa

qe , S
qe
qe , and Qqaq

qpqe are precalculated using the
Python code in Appendix A.2.

Figure 5.1: A screenshot from the Nengo GUI. The LLP system implemented in Nengo,
learning to predict a sine wave online. Within 1sec it is able to begin predicting the future
window of the signal, given the current value and its derivative.

Figure 5.1 shows a view from the Nengo GUI of the LLP learning to predict the future
second of a sine wave. With the task of predicting drone position, the available context
space grows significantly. At the core there are 28 dimensions of context from the drone’s
translational and rotational states, x, in the world frame, the corresponding 12 dimensional
trajectory reference, r, and most importantly for the context of predictive control, the 4
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dimensional control signal, u. With the additional option of LDN encoding parts or all of c,
the full context signal’s dimensionality scales based on the number of Legendre polynomials
used, qx, qr, and qu, to represent x, r, and u, respectively. A diagram of the LLPSE with
context encoding and decoding is shown in figure 5.2.

Figure 5.2: A single LLP state estimator module with additional LDN encoding of context
and decoding of network output. The boxes with polynomials represent an LDN encoding,
with the inverted (black box) version signifying an LDN decoding.

In figure 5.2, the six dark circles encompassed by a single larger circle represent an
ensemble of neurons. White boxes with polynomials represent an LDN encoding, and black
boxes with the inverse colours represent an LDN decoding process. The LLP context, c,
is formed by LDN encoding xnx , rnr , and unu into Xqx

nx
, Rqx

nr
, and U qu

nu
, and stacking

them into a 1 × (nx × qx × nr × qr × nu × qu) vector. The quadrotor’s position in world
coordinates, [x, y, z], is selected as the subcontext to predict, z3 (with m = 3). The LLP
module generates the prediction in both the Legendre domain, Z

qp
3 (with m = 3), as

well as the decoded value, ẑ3. Multiple predictions can be decoded along the continuous
prediction horizon, for any θ′ value in the domain of [0, θ]. Using the NEF and Nengo, the
LLP module can be trained to make these predictions in both an online, or offline manner.

5.2 LLP State Estimator Offline Training

Despite being able to learn online, the LLPSE was trained offline because it simplifies
the hyperparameter tuning. This is done in Nengo, using the NEF methods outlined in
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Section 3.2. The NEF allows for testing the feasibility of the network’s ability to learn the
system dynamics. In addition to the vast number of combinations of possible dimensions
of context available, there are also many more hyperparameters, including: the length of
time (θ) to encode each portion of LDN context, the number of points (θ′) to evaluate the
prediction, the number of Legendre polynomials to use for the LDN encodings, the learning
rate, the number of neurons in the ensemble, and various neuron parameters. Where the
LLP receives input data sequentially, the NEF method for weight solving can run a least
squares optimization on the entire training dataset. With NEF weight solving, it can be
determined whether a set of weights can be solved for to provide the input-output mapping
from c to Z. This removes certain parameters from the search space, such as learning rate,
qa, and qp, in addition to speeding up the process of testing various context combinations.

As mentioned in Chapter 3.2, the NEF least-squares method requires a set of evaluation
points and target points. During offline training the future θ seconds of subcontext z is
available, so a ground truth LDN encoding can be generated. The goal of the system is
to predict the Legendre coefficients that represent the future θ length window of time. A
slightly modified LDN method is used for the encoding. First, the ground truth zm is
encoded into an LDN representation, with the first θ seconds truncated from the recorded
data. This aligns the ground truth so that at time t, the ground truth is the encoded state
from time t+ θ. This LDN encoded state from θ seconds in the future represents zm from
time t to t+ θ. Values can be decoded using equation 3.7.

However, with a naive implementation of the LDN encoding, decoding the value at
θ′

θ
= 1 on the time shifted data aligns with the current state, not the future one. The

coefficients of the LDN encoding process are set such that decoding with θ′

θ
from 0 → 1

decodes values in reverse chronological order. This results in θ′

θ
= 0 aligning with the

current time, t, and θ′

θ
= 1 decoding from time t − θ. To keep a similar symmetry where

θ′

θ
= 0 aligns with ‘now’, the LLP defines decoding at θ′

θ
= 1 to decode at time t + θ.

However, with the naive reimplementation the decoding remains in reverse chronological
order. Since the Legendre basis is symmetric, this is circumvented by flipping the signs of
the odd coefficients with a simple transform. Note that the equation in 5.1 counts from
base zero, resulting in even counter numbers, i, being flipped. The transformation can be
written as

TPLDN→PLLP
= [T ]ii ∈ Rqxq

{
−1, i%2 = 0

1, i%2! = 0
(5.1)

Using the controller from Chapter 4.2, a simulation was run in Unreal Engine 4 with
the AirSim plugin, flying the drone to 10, 000 different targets. The targets are randomly

47



generated from a normal distribution, ranging from -15m to +15m about the drone start
in x and y, and a range of -1m to -31m in z. The reference path outlining the ideal
trajectory is generated with start and target velocities of 0m/s, a maximum velocity of
6m/s, and an acceleration of 1m/s2. The flight data is recorded for the 10,000 target
flights at a frequency of 200Hz. With a 5ms time step this equates to a total of over 5
million timesteps of data available for training, validating, and testing. This provided more
data than was ultimately needed, with the final system using 80,000 steps for training, and
20,000 for validating.
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Chapter 6

Experimental Results

The LDN temporal encoding is an integral part in the LLP learning rule and context en-
coding. This chapter begins with results of the accuracy in the LDN encoding of the state,
reference, control signal, neural activities, and Legendre domain network prediction. The
results are used to guide the search space in testing the LLP learning algorithm and state
estimator. The learning rule is tested online on an inverted pendulum dynamical system.
Due to the increased complexity of the quadrotor dynamics, the LLPSE is trained offline
on the quadrotor dataset using the NEF weight solving method. The learned weights are
used to test the LLPSE online with the simulated quadrotor. Multiple parallel instantia-
tions of the trained estimator are tested with a distribution of control signals. This is done
to explore the input-output mapping the estimator learned with respect to the control
space. The error used to evaluate performance in this chapter is the RMSE between the
normalized decoded prediction ẑ, and normalized ground truth, z, shifted by θ′ to align
with the prediction in time. The ground truth is normalized using the same preprocessing
discussed in section 4.3. As the network is using the normalized value of z as context, the
decoded output, ẑ, is also in the same normalized range. As such, all references to RMSE
are of either an LDN or LLP decoded prediction and the normalized, world frame, time
shifted, ground truth.
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6.1 LDN Representation Error

Due to the size of the input space of the quadrotor dataset, some preliminary tests are run
to minimize the search space of the hyper-parameter sweep with the open source Neural
Network Intelligence (NNI) software package. The ability of the LDN to represent the
preprocessed values of x, r, and u is tested by calculating the RMSE between the decoded
value and the time shifted ground truth. This narrows the search space of the various q
values. Due to the similarity in magnitude and frequency between x and r, the results of
the parameter sweep for r are omitted.

Figure 6.1: RMSE in LDN representation of state position, which is the first three dimen-
sions of x. RMSE is taken between ẑ decoded at θ, and the time shifted ground truth.

As the length of θ increases, so does the representation error. With larger windows
to represent, the LDN requires more Legendre polynomials to maintain a similar level of
error compared to shorter length windows with the same q value. This is a result of the
increase in frequency of the represented data with respect to the length of the window.
With a window length of 1-2 seconds, the LDN has an RMSE less than 0.1 with only 2
Legendre polynomials. The error from the LDN decoding in figure 6.1 is used to guide the
search space for q, the dimensionality of the LDN encoded output of the state estimator.
Since the network is predicting the system position, it was assumed that it is be of similar
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frequency. The quadrotor position contains mostly low frequency data due to the linear
paths taken between targets and the smoothly changing reference. This allows for the
LDN encoding to obtain low errors with few Legendre polynomials. A similar encoding is
observed with r due to the similarity in signals. The RMSE of the LDN representation of
u is shown in figure 6.2.

Figure 6.2: RMSE error in LDN representation of the control signal, u. RMSE is taken
between û decoded at θ, and the time shifted ground truth.

A similar pattern is observed in the control signal encoding with respect to the length
of the prediction window and the q value. However, a lower error is obtained with a similar
LDN when compared to the encoding of position. Most of the control signal consists of
small variations about the hover point. The scaling used for normalization increases the
range of the control space to the maximum capabilities of the simulated drone. This scales
down the amplitude of the variations about the hover relative to the normalized range,
lowering the amplitude of the higher frequency terms of the signal. This lower amplitude
in the high frequency terms results in less error compared to the state encoding, 0.055
RMSE vs 0.1 RMSE when q = 2 for u and x, respectively..

In addition to the encoding of input context, the encodings within the learning rule (a
and Z) are also explored in the same way. To determine a reasonable range for qp, the
encoding error of the ground truth Z is tested. Figure 6.3 shows the RMSE error for the
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representation of Z, encoded with qp = 8. The value for qp is selected to be larger than
required, as figure 6.1 shows, to obtain an accurate representation (less than 0.01 RMSE
for θ=1-6). The higher frequency polynomial terms move toward zero if there is not enough
high frequency variation in z. This allows for the LDN encoding of any higher frequency
terms present in the state data.

Figure 6.3: RMSE error in LDN representation of the network prediction, Z. RMSE is
taken between Ẑ decoded at θ, and the time shifted ground truth.

The errors of the LDN encoding of Z are an order of magnitude lower than the errors
in the context encoding. The small errors in all θ values tested signify that the Legendre
polynomials of Z change slowly. As Z is an LDN encoding and uses a polynomial repre-
sentation of its data, it does not change as quickly as the discrete, stepwise, state would.
This allows for a low dimensionality LDN to be used to encode the θ length memory of Z.

52



The last encoding tested is the encoding of the activity of 10 randomly selected LIF
neurons. As the signal contains much higher frequency data, a larger value is required
for qa to get comparable errors to the previous LDN representations. Figure 6.4a shows
the prediction across the same q and θ range as previous figures. The search of qa values
is expanded to 200 (figures 6.4b-c), where the number of Legendre polynomials equals
the number of discrete steps being represented in the network prediction when θ = 1sec
and dt = 0.005sec. The high frequency data in the neural activity leads to much larger
error in representation when compared to the previous LDN encodings with the same q
dimensionality. These results determine which parameters are explored for the LLP online
and offline learning tasks.
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(a) (b)

(c)

Figure 6.4: RMSE error in the LDN representation of neural activities of ten randomly
selected LIF neurons. Subfigure a) shows the same θ and q range as previous tests. Subfgure
b) shows the results of expanding the range of q to equal to number of discrete points being
represented for θ = 1 (dt = 5ms). Subfigure c) is of the same data as b), but zooms into
the higher order Legendre representation errors for the expanded q search.
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6.2 LLP Online Learning

To demonstrate that the basic implementation is working as expected, the online LLP
learning rule is tested with a simpler dynamical system, a single link pendulum. The
pendulum is controlled with a P controller (no I or D gains) and given a constant reference
of the inverted position. Every 5 seconds a 5Nm perturbing force is added. The LLP is
tasked with predicting the angle of the pendulum, without LDN encoding of context. The
current pendulum angle and angular velocity, along with the 1D control signal torque, are
stacked to form c. The Nengo simulation is run with a 1ms timestep. Figures 6.5, 6.6, and
6.7 show the online predictions for θ values of 10ms, 20ms, and 30ms, respectively, with a
simulation step of 1ms.

Figure 6.5: The LLP prediction (red) of what the pendulum angle (black) will be θ seconds
in the future (blue). From top to bottom: the predictions over the 30 second simulation,
the first 2 seconds of predictions, and the predictions during the last application of the
perturbing force. The prediction is made for 10 timesteps into the future.
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Figure 6.6: The LLP prediction (red) of what the pendulum angle (black) will be θ seconds
in the future (blue). From top to bottom: the predictions over the 30 second simulation,
the first 2 seconds of predictions, and the prediction during the last application of the
perturbing force. The prediction is made for 20 timesteps into the future.
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Figure 6.7: The LLP prediction (red) of what the pendulum angle (black) will be θ seconds
in the future (blue). From top to bottom: the predictions over the 30 second simulation,
the first 2 seconds of predictions, and the prediction during the last application of the
perturbing force. The prediction is made for 30 timesteps into the future.

The LLP is set with parameters q = qa = qp = 10, and 1000 neurons. The learning
rates between the 10ms, 20ms and 30ms windows are 1e-3, 5e-4, and 3e-4, respectively. In
all cases the LLP stabilizes its prediction about the ground truth within the first second of
simulation. The LLP is also able to quickly adapt after the unexpected perturbing forces.
Due to the higher frequency of the state data with respect to the timestep compared to the
drone state, a higher qp value is required to maintain a good prediction than that noted
in section 6.1. Conversely, a significantly lower value is required for qa, signifying that
the exact activity is not required for learning. The network is able to learn the system
dynamics without the need for the higher frequency information in the neural activity.
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6.3 LLPSE Offline Training and Testing

Due to the increased complexity of the quadrotor dynamics compared to the 1D inverted
pendulum, the ability of an ensemble to learn the input-output mapping is tested with
offline training for the quadrotor dataset. The State Estimator is trained with 80,000
consecutive steps of the quadrotor dataset run at a 5ms timestep. The first four figures
in this section show the results from running inference on the 20,000 steps following the
80,000 steps that are used for training. Similarly to section 6.1, a preliminary scan across
the contextual search space is performed manually. This is used to guide the decision
making process of the search space to use for the NNI sweep. Section 6.1 looked into the
number of Legendre polynomials required to represent the different parts of the context.
The purpose of the preliminary scan in this section is to uncover, approximately, what
state pairings of x and r (figures 4.5 and 4.6) provide the lowest RMSE in the prediction
of position. The effect of changing θ is also explored to see if the underlying system
dynamics have different temporal dependencies between x, r, and u. Finally, the effects
of the size of the neural ensemble on the RMSE are tested to explore the trade off between
model size and performance.

The following figures list the parameters that were kept constant between tests to the
right of the figure, with varying parameters and their corresponding values listed in the leg-
end. Only combinations of x and r are tested in the state estimation task. All dimensions
of u are used to allow for prediction across the control space of all four rotors. The state
and reference dimensions listed in the legends follow the order [x, y, z, ẋ, ẏ, ż, α, β, γ, α̇, β̇, γ̇].
The RMSE is calculated across ten evenly spaced θ′/θ values in the range of [0.1, 1], where
values of 1 correspond to the decoding of the prediction of the world frame position θ
seconds in the future. The RMSE is calculated on the normalized state and ground truth
data.

Figure 6.8 shows the error that results while only varying the dimensions of x used
as context. To search across a single parameter at a time, the LLP State Estimator is
set to use the position from r, the full control signal, u, and encode x, r, and u with
a θx = θr = θu = 1 and qx = qr = qu = 6. The prediction is made with q = 6 and
3000 neurons in the ensemble. Using the position dimensions of x provides the lowest
error at 1 second, with the position and linear velocity performing slightly worse. At first
glance it seems odd that the addition of velocity context results in a worse prediction.
Knowledge of the velocity signifies the direction of motion, and the magnitude of the
next step. However, as the LDN encoding stores the temporal context of its input, it
innately has some underlying representation of how the signal changes over time. At
least in the quadrotor dataset with a 1 second prediction horizon, the addition of velocity
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Figure 6.8: RMSE averaged over time for 10 decoded values along the prediction horizon.
The dimensions of the state context, x, vary between tests. The x-axis shows how far
into the prediction horizon an output is decoded, and is defined by θ′/θ. A value of 0 is a
prediction of the current time. A value of 1 is a prediction θ seconds into the future.

context leads to a slightly higher prediction error (0.019 vs 0.021 RMSE). One notable
point for every curve in figure 6.8 is how the prediction accuracy improves further along the
prediction horizon. It is expected that smaller θ′ values yield more accurate predictions as
the uncertainty in the prediction increases over time. By providing the planned reference θ
seconds in the future, the network may use that as an anchoring point to base its prediction
around. As the PD controller follows the reference rather closely, this could lead to better
predictions when they are made closer in time to the provided reference.
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Figure 6.9: RMSE averaged over time for 10 decoded values along the prediction horizon.
The dimensions of the reference context, r, vary between tests. The x-axis shows how far
into the prediction horizon an output is decoded, and is defined by θ′/θ. A value of 0 is a
prediction of the current time. A value of 1 is a prediction θ seconds into the future.

Using the position from x, the dimensions of r are explored in figure 6.9. Maintaining
the same constant values as in figure 6.8, the prediction with the lowest error is the one that
has position and linear velocity context of r. Conversely to the state context, the addition
of linear velocity context from r improves the RMSE over position alone from 0.019 to
0.007. Using the best performing parameters, a small scan of θ values is performed, with
results shown in figure 6.10a. Figure 6.10b shows the last section of the prediction window
to better differentiate between θ values.
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(a)

(b)

Figure 6.10: RMSE averaged over time for 10 decoded values along the prediction horizon.
The values of θx, θr, and θu vary between tests. The prediction towards the end of the θ
window is shown in b) to better differentiate between results.
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As can be seen from figure 6.10, the best performing LLPSE used a θx = θr = 1 and a
θu = 3. This may signify an increased importance in control context history in the state
prediction. However, the difference between errors is quite small (0.0058 and 0.0061 RMSE
between θu = 3 and θu=1) so requires further analysis.

Although the LLPSE predictions may continue to improve in performance by increas-
ing the number of neurons, the LDN encoding dimensionality, or the amount of context
provided, the cost of running more complex simulations has to be taken into account. With
the ultimate goal of running many predictions across the control space in real-time, low
cost simulations become increasingly important. To explore the tradeoff in accuracy versus
neuron count, the size of the ensemble used is explored next. For consistency, a constant
θ of 1 second between the three types of context is used to explore the effects of ensemble
size on the prediction accuracy. The number of neurons is also explored to see how small
the network can be made while maintaining accurate predictions.

Figure 6.11: RMSE averaged over time for 10 decoded values along the prediction horizon.
The number of neurons between tests varies, as noted in the legend. The x-axis shows how
far into the prediction horizon an output is decoded, and is defined by θ′/θ. A value of 0
is a prediction of the current time. A value of 1 is a prediction θ seconds into the future.
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As shown in figure 6.11, the network is able to maintain predictions with an RMSE less
than 0.01 using 1500 neurons. A network with 500 neurons is still capable of making
predictions with an RMSE of approximately 0.02. This provides a single parameter that
can be used to adjust the network accuracy at the cost of computation. This allows the
predictor to be adapted to different control needs and hardware limitations.

Using the results from figures 6.8 to 6.11, and from section 6.1, a parameter sweep is
performed using NNI. In all tests, the LLPSE predicts the normalized, world state position.
The same RMSE error is used to evaluate the performance of the predictor, taking the error
between the normalized, decoded state prediction, and the normalized, time shifted ground
truth. The RMSE is summed across the x, y, and z dimensions, and across time for the
simulation. No additional weighting is added, with each dimension having an equal weight.
The summed RMSE is used as the cost in the NNI optimization (using TPE as in the PD
gain sweep). A θ value of 1 second is selected for the prediction horizon. The scan is
performed across the search space listed in table 6.1. The final selected parameters are
listed in the ‘Selected Parameters’ column. The NNI parameter sweep resulted in a q value
of 11, but it provided a minor improvement compared to using qc = q = 5. To speed up
simulations and lower the number of parameters, the value of q is set to 5. The prediction
of the LLP State Estimator is shown in figure 6.12, trained on the same 80,000 steps of the
quadrotor dataset, and validated on timesteps 80,000-100,000. The RMSE of predictions
along x, y, and z, along with the average across dimensions, are shown in figure 6.13. The
RMSE across the prediction horizon with a 95% confidence interval is shown in figure 6.14.
In this figure, the weights from training on steps 0-80,000 are used in 19 tests. The tests
are run on different sections of the dataset, covering the entire 865,896 points. Each test
has an RMSE calculated for each decoded prediction, averaged over time. The confidence
interval is calculated over the 19 tests and is shown in the translucent filled area of figure
6.14.
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(c)

(d)

Figure 6.12: The LLP prediction (red) of what the x, y, and z normalized world reference
frame position (black) will be 1 second in the future (blue). Subfigure a) shows the predic-
tions over the entire 20,000 steps. Subfigures b-d show different slices to better differentiate
between the ground truth and predictions.
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Figure 6.13: The error between the normalized, decoded prediction and ground truth.
From top to bottom, the RMSE of the prediction along x, y, z, and the average RMSE of
the 3D position [x, y, z]. The mean of each error over time is listed in the legend.
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Figure 6.14: The error between the normalized, decoded prediction and ground truth. The
filled in translucent sections signify the 95% confidence interval calculated over 19 tests.
The 19 tests span the drone dataset from time steps 100,000 to 865,896, and use weights
from training on steps 0 to 80,000. The x-axis shows how far into the prediction horizon
an output is decoded, and is defined by θ′/θ. A value of 0 is a prediction of the current
time. A value of 1 is a prediction θ seconds into the future.
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Table 6.1: Search space for LLP State Predictor offline training.

Parameter Distribution Value Selected Parameters
N Random Int [1000, 3000] 3000
xdims Choice [[position], [position + orientation],

[position + yaw], [position + veloc-
ity], [position + velocity + orienta-
tion]]

[position +
velocity]

rdims Choice [[position], [position + orientation],
[position + yaw], [position + veloc-
ity], [position + velocity + orienta-
tion]]

[position +
velocity]

q Random Int [1, 16] 5
qx Random Int [1, 16] 5
qr Random Int [1, 16] 5
qu Random Int [1, 16] 8
θx Random Uniform [0.1, 10] 4.86
θr Random Uniform [0.1, 10] 1.28
θu Random Uniform [0.1, 10] 2.45

The final LLP State Estimator has an average RMSE over the position dimensions of
0.0067. The context of x has the longest θ value of 4.86 seconds. Additionally, despite the
results of the initial manual scan, a higher q is required for the control signal compared to
state. This suggests that the higher frequency terms in the control signal are important
in the state prediction. When optimizing across the search space of table 6.1, the position
and velocity context for both x and r lead to the best performing predictor. The 19 tests
run over the span of the dataset show that the LLPSE generalizes well, as is evident in
the tight bounds of the 95% confidence interval in figure 6.14. The weights from offline
learning are used to test the state estimator with the quadrotor and AirSim in the loop in
the next section.
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6.4 Online State Estimation of the Trained LLPSE

With the goal of using the LLPSE for control, the estimator is tested with a live AirSim
simulation of quadrotor flight. The same PD controller is used to fly the drone, while the
LLPSE makes predictions of the drone position. To be used for model predictive control,
the state estimator would have to make predictions across the control space. Multiple
versions of the LLPSE are used with weights trained from the previous section. While
a full controller was not developed (see chapter 7.2 on future work), the various state
estimators were connected as shown in figure 7.1 in order to test their estimation abilities.
The PD controller serves as the baseline control for the context of every estimator. A
visualization from AirSim is shown in figure 6.15 of ten decoded predictions within the
prediction horizon from a single LLPSE.

Figure 6.15: The predictions of quadrotor position decoded at 10 points in the prediction
horizon. The white dots show the predictions decoded with θ′ values from 0.1 - 1 second
at 0.1 intervals. The blue box shows the current reference, and the green sphere shows the
location of the final target point the reference is converging to.

The various state estimators differ in the control signal used for context. All begin with
the same underlying normalized 4D control signal from the PD controller, but differ in the
bias applied to it. Here, bias, is defined as a constant vector added to the underlying control
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signal. For every bias value there are 8 instantiations of the LLPSE. An instantiation refers
to an ensemble of neurons making predictions, ẑ. The 8 instantiations cover the 8 directions
of motions: forward, backward, left, right, up, down, clockwise, and counter-clockwise.
Each instantiation has its bias arranged in accordance with the rotor pairs that align with
its direction of motion (as in figure 2.1). With the exception of one unbiased estimator,
a bias is added to the control signal before LDN encoding for the other estimators. The
distribution of biases is selected by looking at the range of δu

δt
from the PD controller.

The hypothesis is that given the appropriate bias offset, the estimator can predict the
corresponding motion. As an example, if a positive bias was added to all four rotors, the
state estimator should predict the position to be higher than in the unbiased estimator. By
comparing the errors in the predicted state to the planned reference, the control context of
the estimator with the lowest error could potentially be used in selecting the control action
for the next time step. For the following figures, the state estimators are used exclusively
to predict state, with no consequence on the resulting control action.
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Figure 6.16: The difference in decoded outputs of biased state estimators compared to
the unbiased estimator, comparing the biased estimators with up and down rotor pairings.
The absolute value of the bias is listed in the legend. Although the actual bias added is
normalized, the legend shows the equivalent offset converted to radians/second.
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Figure 6.17: The difference in decoded outputs of biased state estimators compared to
the unbiased estimator, comparing the biased estimators with forward and backward rotor
pairings. The absolute value of the bias is listed in the legend. Although the actual bias
added is normalized, the legend shows the equivalent offset converted to radians/second.
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Figure 6.18: The difference in decoded outputs of biased state estimators compared to the
unbiased estimator, comparing the biased estimators with right and left rotor pairings.
The absolute value of the bias is listed in the legend. Although the actual bias added is
normalized, the legend shows the equivalent offset converted to radians/second.
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Figure 6.19: The difference in decoded outputs of biased state estimators compared to
the unbiased estimator, comparing the biased estimators with clockwise and counterclock-
wise rotor pairings. The absolute value of the bias is listed in the legend. Although the
actual bias added is normalized, the legend shows the equivalent offset converted to radi-
ans/second.
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Figures 6.16 to 6.19 show the difference between the unbiased and biased state estimator
decoded outputs. The drone reference is set to move to 3 targets, moving up 5m, forward
5m, and finally 5m to the right. The yaw is kept constant at 0 rad. The simple reference is
chosen to try and isolate the motion along a single controllable DOF at a time. Predictions
with like bias types, but larger magnitudes have a larger offset with respect to the unbiased
predictor, as expected. The position is transformed into the body frame as the rotor
pairings define motion along the body frame. The LLP state estimator is able to learn
a mapping between the positive and negative directions of the bias pairing. Predictions
with a positive bias (solid lines) are opposite of predictions with an equal, but opposite
signed bias (dotted lines). This shows some underlying differentiation between up-down,
right-left, forward-backward, and clockwise-counterclockwise. However, it appears that
some of the dynamics are not learned successfully. Similar predictions are made along all
3 dimensions, instead of being isolated to the expected dimensions of motion, given the
bias rotor pairing. A clearer, uncoupled, mapping between rotor pairings and predicted
direction of motion is necessary to use the predictor for selecting the control action.

75



Chapter 7

Conclusion and Future Work

7.1 Discussion

The LDN provides highly compressed temporal representations for the LLP and LLPSE.
With the exception of neural activity, the majority of context and internal learning rule
states are well represented with q values less than 6. Interestingly, the LLP is able to
predict the inverted pendulum dynamics without a highly accurate neural representation.
This signifies that the learning rule can sometimes function successfully with only a running
average of the neural activity, as the high frequency data is lost in the LDN compression.
The LDN is able to maintain errors below an RMSE of 0.1 for x, r, u, and Z for a
prediction window of 1 second, with only 2 Legendre polynomials. With a timestep of
5ms, the 200 discrete data points are compressed to 2 Legendre polynomial coefficients.
Even with higher order LDNs, the LDN provides a significant decrease in parameter count
compared to memorizing the time history of data.

With the simpler dynamical system, the LLP is able to learn to predict the single link
pendulum’s state online. The predictions are accurate up to a prediction horizon of 30x
the timestep. With the added complexity of learning online versus offline, and due to
time constraints, further optimization and longer prediction horizons are not tested, as the
accuracy begins dropping with manual parameter tuning of larger θ values.

The offline training on the quadrotor dataset yields highly accurate predictions of posi-
tions over a prediction horizon of 1 second as well. The first notable point from figures 6.8
to 6.11 is how the prediction accuracy improves further along the prediction horizon. It is
expected that smaller θ′ values will yield more accurate predictions. The results may be a
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side effect of how the network is evaluated during testing. θ′ = θ was used for calculating
the error, and may have pushed the optimization to find parameter sets that better rep-
resent the future window than the near window. The NNI optimization selected larger θx,
θr, and θu values, which help with predictions made further along the prediction horizon.
Alternatively, the network may have learned to more heavily weigh the r subcontext. As
the drone position closely follows the reference, using the future reference provides a good
baseline to make predictions about.

Despite the highly accurate state predictions made during offline testing, the control
biased estimators are not able to make the expected state predictions. The PD controller
used to generate the training data, and to drive the system during the online prediction,
uses the rotor pairings defined in figure 2.1. With the underlying rotor pairings driving
the control actions, it was hypothesized that the LLP state estimator can learn the input-
output mapping between the control signal with respect to the pairing between rotors, and
the direction along one of the four controllable DOF. This is partially observed with op-
posite signed biases making predictions in opposite directions with respect to the unbiased
predictor. Larger biases also make larger steps in their predictions. However, there is a
coupling between predictions along the x, y, and z dimensions. Some coupling is expected
due to the underactuated nature of the system. With a non-zero pitch, an increase in
control along the ‘up’ bias type will lead to an increase along both z and x, due to the
tilt of the drone causing a component of the thrust to point along x. However, it is ex-
pected that the direction of motion with the largest predicted change will align with the
corresponding bias type. This is not observed in figures 6.16 to 6.19. Although coupling is
expected between x and z, or y and z, similar magnitude predictions are made along both
x and y. This signifies that some the underlying control dynamics are not learned during
the weight solving process, given the current network parameters.

7.2 Future Work

The LLP State Estimator is able to very accurately predict states when used in tandem
with the underlying PD controller driving the system control actions. With an accurate
state estimator, a predictive controller can be designed to select control actions based on
state estimates. An LLP Controller (LLPC) was designed around the LLPSE, with some
preliminary tests run on the state predictions shown in section 6.4. As the estimator,
shown in figure 5.2, is designed to use a control signal as part of its context, c, when
making predictions, multiple state estimators with varying control context can be used
to determine which control action will lead to the lowest predicted error. This allows for
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state predictions across a range of the control space. The LLPC design is shown in figure
7.1. The LLPC was tested with weights determined from offline training, although it is
capable of updating network weights online with the LLP learning rule. Due to the poor
mapping between rotor pairing control actions and the direction along the controllable
DOF, the LLPC was unsuccessful in driving the system towards its reference. Due to time
constraints, the LLPC was not further tested or optimized. This section outlines the design
of the LLPC, and the flow of information.

Figure 7.1: Network connections of the LLPC. x and r are passed to every state estimator,
and every uij is passed to the corresponding estimator. The 8 biased estimators are
repeated for every bias value. See text for details.
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Using the system states, planned path from θ seconds in the future, and a biased control
signal, the various LLP State Estimators produce the decoded prediction ẑij, where i notes
the index of the bias value in the list of nb biases, b, and j is the type of bias offset. The
various state estimators differ in the control signal used for context. All begin with the
same underlying control signal, but differ in the bias applied to it. Here bias is referred to
as a constant vector added to the underlying control signal. For every bias value there are
8 instantiations of the LLPSE. An instantiation refers to an ensemble of neurons making
predictions, ẑ. The 8 instantiations cover the 8 directions of motions: forward, backward,
left, right, up, down, clockwise, and counter-clockwise. Each instantiation has its bias
arranged in accordance with the rotor pairs that align with its direction of motion. With
the exception of one unbiased estimator, a bias, bi, is applied to the four rotors following the
rotor pairings described in figure 2.1, where rotors labelled ‘high speed’ receive a positive
offset, and rotors labelled ‘normal speed’ receive a negative offset. The control signal
biasing is contained in a Nengo Node, labelled ‘Control Biasing’ in figure 7.1.

The control biasing node contains a stacked vector of the 1+8×nb LLPSE normalized
control signal inputs, before the LDN encoding. The baseline control that the biases are
added to for the various state estimators is the control signal that is used to control the
quadrotor on the previous timestep. The predictions, ẑij, are compared to the planned
trajectory, r, to get the 2-norm error of position. The errors from the various state esti-
mators are passed on to a selector node. The selector node outputs the index of the state
estimator that has the lowest predicted error θ seconds into the future. Depending on the
index of the LLP state estimator with the lowest predicted error, the control biasing node
outputs the corresponding biased control signal, u(t). The control signal is ‘denormalized’
by applying a scaling and a mean shift, before being passed on to the AirSim wrapper code
contained in Nengo Interfaces. The normalized output, u(t), is passed with the appropriate
biasing for the ij LLP state estimators to be used as part of the input context in making
the state prediction for the next time step.

The biases are added to the control signal that is last sent to control the quadrotor.
However, the control biasing node needs to be seeded with some starting control signal.
Instead of seeding the biasing node to begin with a base control signal of all zeros, the mean
shifted and scaled control signal for maintaining a hover is used. For the first θ seconds of
simulation time, the control biasing node outputs the hover control signal as the baseline
to make predictions on. This allows the state estimators to stabilize in their predictions.
As the input context is encoded with LDNs, it requries approximately θ seconds to begin
making stable predictions θ seconds into the future. After the first θ seconds of simula-
tion time, the control is governed by the control signal determined by the selector node.
Further work can be done by exploring the mapping between the control biasing and the

79



corresponding directions of motion. A deeper statistical analysis with correlation measures
would provide insight towards the relative importance between context dimensions. With
improved accuracy in the mapping of the control space to the expected motion, the LLPC
can make better decisions in selecting the control action.

7.3 Contributions

The main contribution of this thesis is a state predictor for dynamical systems using the
NEF, LLP, and LDN. This is a proof-of-concept that an ensemble of neurons can make
predictions in the Legendre domain about the future trajectory of a dynamical system.
The state predictor also does so by using temporal representations of its context, encoded
by LDNs. The second contribution is the Python implementation of the LLP learning
algorithm. This is done using the Numpy einsum function due to the high dimensionality
of the tensors involved in the learning rule. The LLP network is developed in Nengo for easy
integration into larger networks. This allows for simple integration and expansion of the
predictor. The third contribution is the design and implementation of a model predictive
controller using the LLP state estimator. This lays the ground work for how a predictive
controller can be designed to make continuous, temporal predictions, using a similarly
encoded context as input. Similar to the many branches of MPC, various alternative MPC
methods can be used to take advantage of the temporal context, and LLP predictions. The
fourth contribution is a test suite developed to integrate the predictor and controller with
Unreal Engine 4 and AirSim. Additionally, a dataset logger was developed to store, search,
and compare across parameter sets and results. Combined, this system allows for fast and
simple testing of different context and alternative control networks. Developing in AirSim
allows for a simple expansion into a much broader range of sensory input, including various
cameras, that can be used to expand the context available to train the LLPSE and LLPC.

7.4 Conclusion

The implementation of the LLP is capable of learning the dynamics of simple systems
online. The angle of an inverted pendulum driven by a PD controller is accurately predicted
online for prediction horizons up to 30x the timestep. Due to the extra complexity and size
of context space for the quadrotor dynamics, the LLP state estimator is trained offline.
With offline training the state estimator is capable of making predictions of where the
quadrotor’s position in world space will be 1 second into the future, with an average RMSE
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of 0.0067. The RMSE is calculated on the normalized ground truth and predictions, and
thus provides an error relative to the range of the ground truth. The LLPSE bases the
predictions off temporal encodings of the drone state, reference, and control context signals.
A preliminary LLPC is designed for future work, and is integrated into the test suite. All
of the code for simulator interfacing, controllers, path planning, the LLP systems, and
various utility functions are available at https://github.com/p3jawors/masters thesis.
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Appendix A

Python functions

A.1 Converting Euler angles into Tait-Bryan form

From [16].

1 def convert_angles(ang):

2 """Converts Euler angles from x-y-z to z-x-y convention"""

3

4 def b(num):

5 """forces magnitude to be 1 or less"""

6 if abs(num) > 1.0:

7 return math.copysign(1.0, num)

8 else:

9 return num

10

11 s1 = math.sin(ang[0])

12 s2 = math.sin(ang[1])

13 s3 = math.sin(ang[2])

14 c1 = math.cos(ang[0])

15 c3 = math.cos(ang[2])

16

17 pitch = math.asin(b(c1 * c3 * s2 - s1 * s3))

18 cp = math.cos(pitch)

19 # just in case

20 if cp == 0:

87



21 cp = 0.000001

22

23 yaw = math.asin(b((c1 * s3 + c3 * s1 * s2) / cp)) # flipped

24 # Fix for getting the quadrants right

25 if c3 < 0 and yaw > 0:

26 yaw = math.pi - yaw

27 elif c3 < 0 and yaw < 0:

28 yaw = -math.pi - yaw

A.2 Functions for calculating LLP Constants

Function for calculating Qqaq
qpqe , δ

qa
qe , and S

qe
qe .

1 def generate_quad_integrals(self, q_a, q, q_p, q_r):

2 def quad(i, j, m, n):

3 li, lj, lm, ln = (Legendre([0] * k + [1]) for k in (i, j, m,

n))↪→

4 L = (li * lj * lm * ln).integ()

5 # the desired result is (L(1) - L(-1)) / 2 (as this is for

non-shifted Legendre)↪→

6 # but since L(1) == -L(-1), this is just L(1)

7 return L(1)

8 qs = [q, q_a, q_p, q_r]

9 w = np.zeros((qs[0], qs[1], qs[2], qs[3]))

10 for i in range(qs[0]):

11 for j in range(i, qs[1]):

12 for m in range(j, qs[2]):

13 for n in range(m, qs[3]):

14 # skip indices guranteed to be 0

15 if (i+j+m-n >= 0) and ((i+j+m-n) % 2 == 0):

16 v = quad(i, j, m, n)

17 for index in itertools.permutations([i, j, m,

n]):↪→

18 # TODO catch these properly with something

like filter()↪→

19 try:
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20 w[index] = v

21 except Exception as e:

22 pass

23 return w

24

25 def generate_delta_identity(self, q_a, q_p):

26 i = min(q_a, q_p)

27 d = np.zeros((q_a, q_p))

28 for ii in range(0, i):

29 d[ii, ii] = 1

30 return d

31

32 def generate_scaling_diagonal(self, q):

33 S = np.zeros((q, q))

34 for i in range(0, q):

35 S[i, i] = 2*i + 1

36 return S
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Appendix B

Additional Figures
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B.1 Training Data Control Signal

Figure B.1: A portion of the clipped control signal from the PD controller, before normal-
izing
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Figure B.2: A portion of the normalized PD control signal used for training data.
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B.2 Training Data State

Figure B.3: The quadrotor state data before normalization. From top to bottom, the top
row shows the 3 dimensions of position in meters, the second row the velocities in m/s, the
third orientations in radians, and the fourth angular velocities in rad/sec.

93



B.3 Training Data Reference

Figure B.4: The reference data before clipping and normalization. From top to bottom,
the top row shows the 3 dimensions of position in meters, the second row the velocities in
m/s, the third orientations in radians, and the fourth angular velocities in rad/sec.
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