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Abstract

With the Covid-19 outbreak happening worldwide, clinically vulnerable people should

be of concern, as they are more likely to be exposed to the virus. Cancer patients with

weak immune systems are a group of aforementioned people that often have to undergo

radiotherapy treatment sessions every day for several weeks. Therefore, special measures

are to take place for more protection. During the treatment process, they will be assigned

to Linear Accelerator (LINAC) machines that are located in separate rooms of the ra-

diotherapy center. During each visit, they are in close contact with other patients that

are assigned to the same LINAC, but for different time slots. Our research focuses on

scheduling radiotherapy patients, using two mixed-integer linear programming models, to

minimize the total number of potential interactions between patients. A secondary ob-

jective is then proposed to choose among the set of optimal solutions, and the models’

complexity growth is discussed. Then, we introduce a heuristic algorithm to increase the

efficiency of the proposed model for large instances and use a visual step-by-step example

to further elaborate the algorithm details. Finally, small numerical examples are used to

demonstrate the effectiveness of the models, followed by larger instances from our partner

clinic, the Grand River Regional Cancer Center (GRRCC). The results show that imple-

menting the proposed model and the heuristic will decrease the number of interactions up

to 75%, compared to the center’s original schedule.
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Chapter 1

Introduction

Radiation is the energy of a stream of particles that is directed to the DNA of cancer cells

in a specific area of the body to prevent them from growing, which leads to the death of

such cells over time. The type of radiation and the cell growth speed affect the time needed

to stop cancer cells from dividing. The total amount of radiation needed for a specific type

of cancer is divided into fractions that might take up to several weeks. According to the

guidelines of the American Cancer Society, treatments are often given 5 days a week, for

about 5 to 8 weeks.

Radiation therapy can be delivered in several ways, but external beam radiation is the

most widely used around the world. It can be given in a treatment center so that the

patient does not have to stay in the hospital. It can also be used in treating more than

1



one area, such as the lymph nodes nearby the main tumor. In the most common form of

radiotherapy, the high-energy photon beams are delivered by a linear accelerator machine

(LINAC).

Treatment planning for external beam radiation therapy is the first step in the process.

The radiation team will be designing a personalized treatment for each patient, deciding on

the dose of radiation, and generating a care path. The care path starts with a simulation

session, in which the patient is asked to lie on a bed so that the staff members decide on

the most efficient treatment position, and the exact place on the body for the radiation to

be aimed will be marked. In all the remaining sessions, the patient will have to stay still

during their treatment to ensure that the right amount of radiation is directed to the right

cells.

With the growing number of cancer patients, there will be an average of 16% increase in

demand for radiotherapy until 2025 [Lievens et al., 2015]. Therefore, radiotherapy centers

have to manage their limited resources most efficiently. With the COVID-19 outbreak,

given the increasing number of people undergoing treatments in radiotherapy centers, and

the weak immune system of radiotherapy patients, the problem has become even more

challenging. There must be special measures in place to ensure the safety of cancer patients

during their visit to a radiotherapy center.

According to the World Health Organization (WHO) guidelines, the risk of transmission
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is higher in closed spaces where people are in contact for a while. Consequently, a crucial

measure that was vastly practiced, avoiding close contact, had an important role in con-

trolling the pandemic. This measure resulted in a reduced capacity in most public places,

and longer wait times to get service. For a radiation therapy center, the same measure

would not be ideal. It has been shown that longer wait times for treatment sessions will

result in psychological distress in patients undergoing radiotherapy treatment [Mackillop,

2007], hence, it has to be ensured that the capacity is not decreased so that the patients

receive their treatment timely.

Recent findings in [Johansson et al., 2021] have shown that more than 50% of new

COVID-19 infections arise from exposure to asymptomatic patients, which indicates that

a regular COVID-19 symptom screening strategy would not be an ideal solution to minimize

transmission as well. An alternative approach to decrease transmission in a radiotherapy

center is to decrease the number of close contacts between patients when they are present

in the radiotherapy center. Interaction is going to happen between a patient leaving a

specific treatment room, and another patient who is booked for the same room right after

the previous patient. They will be present in the same waiting area, which is a closed

space, in between their sessions.

In this thesis, we study the radiotherapy scheduling problem (RTSP), which consists

of finding the treatment schedule for a set of patients over a given horizon, discretized in
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time slots, given a set of LINACs, considering side constraints and preferences. The main

goal of this research is to schedule radiotherapy patients and to reduce the transmission of

airborne diseases, by minimizing the number of interactions between radiotherapy patients.

The problem specifications are going to be elaborated in detail in Chapter 3.

The remainder of this thesis is organized as follows: Chapter 2 reviews similar studies in

this field in three different categories. Chapter 3 defines the radiotherapy patient scheduling

and the problem specifications, and introducing mixed-integer linear programming models,

followed by the heuristic method proposed in Chapter 4. The results obtained from various

instances are discussed in Chapter 5, and finally, Chapter 6 includes the conclusions.
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Chapter 2

Literature Review

Scheduling is an extensively studied topic in various fields. Schmidt [2000] reviews papers

that address the scheduling problem, from operating systems to healthcare applications.

However, among the vast literature on scheduling, we focus on the most related papers

to this study. With the increasing global longevity, healthcare scheduling problems have

attracted more interest [Rais and Viana, 2010]. It has been considered a challenging prob-

lem, given the resource limitations and several constraints and preferences. Nevertheless,

optimizing the scheduling of healthcare resources results in improving service quality pro-

vided for patients, as well as increasing benefits of hospitals [Gupta and Denton, 2008].

Analyzing about 200 articles in healthcare scheduling, Abdalkareem et al. [2021] reports

that patient scheduling, nurse scheduling, and operation room scheduling problems are the
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most common studies in the literature.

Over the past years, the number of cancer patients has been continuously increasing, re-

sulting in a growing demand for Radiotherapy (RT). Expensive resources, limited capacity,

and the restricted time availability of specialists make the planning for RT centers com-

plex. Vieira et al. [2016] reviews studies where operations research has been implemented

to help decision-making in RT. But, with surging COVID-19 cases around the world, the

infrastructure of the healthcare systems has been challenged. It has affected scheduling,

staffing, and surgical procedures, and resulted in emerging studies on its impact [Soltany

et al., 2020a]. In this chapter, first, we review papers that discuss different aspects of the

patient scheduling problem, followed by the sub-problem of radiotherapy patient scheduling

studies with different objectives, and will conclude with recent studies in response to the

COVID-19 pandemic. Lastly, the contributions of this study are going to be highlighted.

2.1 Patient Scheduling

The patient scheduling problem is an optimization problem, in which the assignment of

patients to rooms in the healthcare organization, over a given time horizon is studied. It

supports decision-makers at strategic, tactical, and operational level [Lusby et al., 2016].

Although receiving immediate service in a healthcare organization plays a vital role in
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patient satisfaction [Naidu, 2009], not all studies in the literature are aiming to maximize

patient satisfaction by minimizing the completion time. Another objective function type is

becoming more cost-efficient and maximizing profit by minimizing the idle time in resources

or maximizing the number of scheduled patients. Both groups are valid, and it is up to

the healthcare organization to decide which objective group is preferred. Marynissen and

Demeulemeester [2019] proposed a classification of patient scheduling research papers based

on the objective function that is being optimized. The most popular group of goals and

the respective literature are discussed in the following sections.

2.1.1 Minimizing Total Completion Time

Patients often complain about the long delays within the treatment process. Zhao et al.

[2018] aims to enhance the service quality by reducing waiting time for the rehabilita-

tion scheduling problem, using a heuristic genetic problem. Suss et al. [2018] propose

and test a novel simulation-based novel algorithm to reduce waiting times in an oncology

clinic. Saadani et al. [2014] study the problem of assigning patients to different hospital

resources during their stay. They propose a mixed integer model to minimize the total

duration of stay of all patients, and the experiments have shown that with the growing size

of the instances, the run-time rises exponentially. Munavalli et al. [2020] proposed a patient

scheduling model for scheduling walk-in patients in outpatient clinics. Their main focus
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is to find the optimal pathways to direct patients, decreasing waiting time and cycle time

for them using a hybrid ant agent algorithm. Hachicha and Mansour [2018] propose two

Mixed Integer Linear Programs (MILP) to model the surgery scheduling problem, mini-

mizing both the average length of stay and the number of overnight stays. The models are

then evaluated by real-world data of a private clinic.

2.1.2 Maximizing Number of Scheduled Patients

To restrict cost increases in healthcare organizations, they need to operate efficiently with

the resources already available. Burdett and Kozan [2018] schedule an entire hospital us-

ing a flexible job-shop scheduling model, and solve the problem using a meta-heuristic

algorithm. Conforti et al. [2011] tackle the problem of scheduling Week Hospital patients,

using an innovative integer programming model to maximize the patient flow. Week Hos-

pital is a healthcare organization, in which services are planned in advance and delivered

weekly. Kortbeek et al. [2017] proposed an integer linear program for a children’s medical

center, which is then used as an input to a simulation study, followed by a queuing model

to maximize the number of scheduled patients.
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2.1.3 Minimizing Wait Time

The waiting time to start treatment plays a vital role in patients’ satisfaction in healthcare

organizations, hence, optimization methods are used to minimize the wait times for patients

and improve services. Mahmoudzadeh et al. [2020] schedule patients using an optimization

approach considering the wait time target for the acuity level of each patient. The study

presents a MILP, followed by the numerical results to show that the proposed approach

increases solution qualities in terms of service levels and wait times. Daldoul et al. [2018]

addresses the waiting time problem in the emergency department (ED), focusing on the

staff members and beds available in the ED. Proposing a mixed-integer programming

model, followed by the experimental study, it is shown that the average total waiting

time can be improved up to 23.24%. The impact of operations, resource allocation, and

scheduling on wait times have been addressed in various studies, but Santibáñez et al.

[2009] analyzes their simultaneous impact using simulation in a cancer agency. It points

out that the best outcomes heavily rely on the on-time clinic start and the need for effective

patient scheduling in radiotherapy centers.

Various other objectives have been studied in the literature as well. Ruiz-Hernández

et al. [2020] aim to maximize the health center’s revenue, using the estimated probability

of no-show for each appointment and associating the socio-demographic characteristics of
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each patient with behavioral issues that affect the probability. The proposed model results

in about a 5% increase in revenue and a 13% decrease in waiting list length, compared

to a first-come-first-serve approach. However, the objective of minimizing the number of

interactions between patients has not been addressed to the best of our knowledge. As men-

tioned, the general patient scheduling problem has been studied for different healthcare

organizations, including radiotherapy patient scheduling. However, the main difference

between radiotherapy patient scheduling and general patient scheduling is that the radio-

therapy treatments are often divided into fractions, which are delivered once a day until

the planned dosage is reached. Therefore it has been extensively studied separately as well.

2.2 Radiotherapy Patient Scheduling

Radiotherapy patient scheduling is the problem of assigning cancer patients to the re-

sources available in a radiotherapy center. Radiotherapy is considered to be at least as

cost-effective as other cancer treatments, justifying the continuous growth of demand in

radiotherapy centers [Shukla et al., 2015]. The radiotherapy process can be affected by

technological constraints, like a limited number of staff members that are trained to oper-

ate a subset of linear accelerator machines, or medical constraints, like when the treatment

depends on the surgery. The variety of these constraints leads to the development of ad-hoc
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approaches with specific characteristics [Vieira et al., 2016]. While different problem types

have been tackled in this field, including strategic decision making, patient prioritizing,

resource planning, and scheduling, we will focus on the scheduling models, which are both

the most studied, according to Vieira et al. [2016], and the most relevant to this thesis.

2.2.1 Mathematical Programming Approach

Mathematical programming techniques have been the most common approaches in the

radiotherapy patient scheduling studies that have been reviewed in Vieira et al. [2016].

Frimodig and Schulte [2019] introduce and compare two Constraint Programming (CP)

and one Integer Programming (IP) models for the radiotherapy patient scheduling problem.

They consider various scenarios based on the patient arrival rate and backlog, as well as

LINAC availability and the number of time windows in a day. Although the IP model

finds the optimal solution faster, the CP models perform better in finding feasible solutions.

Similarly, Pham et al. [2022] introduces a two-phase method for the radiotherapy scheduling

problem. First, an Integer Linear Programming (IP) model is used to assign the sessions

to LINACs and days. In the second phase, a Constraint Programming (CP) model and

a Mixed Integer Linear Programming (MILP) model are used for sequencing patients on

each LINAC and time. Comparing the CP and MILP using a real-world dataset, it has

been shown that although CP is faster in finding good solutions, MILP outperforms CP
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in reaching optimality with more run time. In another study, Conforti et al. [2010] aims

to minimize the mean waiting time or maximize the number of scheduled new patients,

using an integer linear optimization model. The effectiveness of the proposed model is then

demonstrated by conducting numerical experiments with some use-case scenarios.

2.2.2 Heuristic Approach

The next most common approaches are heuristic and metaheuristic algorithms in the ra-

diotherapy scheduling literature. Vogl et al. [2019] aims to minimize both the penalties

corresponding to the violation of given time window constraints and the operation time of

the particle beam as the bottleneck resource in Ion beam radiotherapy. A local search and a

genetic algorithm are introduced as meta-heuristic solution approaches, and for real-world

instances, a combination of both algorithms is shown to have the best results. Braune et al.

[2021] addresses the problem of appointment planning with uncertain treatment duration

and a single device. First, they propose a model, introducing a buffer based on duration

distributions, and a procedure to adapt a pre-determined schedule to the patient flow. A

real-world dataset is used to compare the experimental results of the different versions of

the problem, implementing a heuristic based on a combination of Monte Carlo simulation

and Genetic Algorithm. Petrovic et al. [2011] present an optimization model for catego-

rized cancer patients, to minimize both the average length of breaches of wait times and
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the average of waiting time for patients. Three genetic algorithms are implemented and

compared using statistical analysis. Vieira et al. [2020] propose a MILP considering time

window preferences given by patients to solve the scheduling and sequencing problems for

radiotherapy sessions. Although the proposed model can solve small instances in a reason-

able time, for larger instances a heuristic method is proposed, which first assigns patients

to LINACs and then solves the sub-problem for sequential clusters of LINACs.

2.2.3 Other Approaches

Although mathematical programming and (meta)heuristics are the most popular approaches,

other approaches have been used as well. Sauré et al. [2012] seek to find policies for as-

signing incoming patients to the available radiotherapy units, while minimizing wait times,

by solving a discounted infinite-horizon Markov decision process. Then, an approximate

optimal policy is found by using column generation for solving the equivalent LP model.

Finally, the performance of the proposed method is evaluated, using data from a cancer

agency.

The literature is mainly focused on the objective of improving efficiency for radiotherapy

centers, using mathematical programming and (meta)heuristics. With that being said, it

is important to note that the objective of this research has not been addressed in the

literature, but the used method is a combination of the two most common approaches in
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this field.

2.3 Scheduling During Pandemics

With the rising number of infected patients during the COVID-19 pandemic, the medical

priority was redirected towards COVID-19 patients, challenging the healthcare systems’

infrastructure. Several studies have been in progress since then, to adapt the healthcare

organizations to the new guidelines recommended by authorities. Soltany et al. [2020b]

have reviewed the impact of the COVID-19 pandemic on staffing, scheduling, and almost

all aspects of surgical practices, including cancer surgeries, highlighting the precautions to

take and the new treatment modalities. Neethirajan and Manickam [2020] have mentioned

strategies to overcome the challenges during the pandemic in surgery facilities, including

minimizing the chance of exposure. To reduce the risk of transmission, the mandatory

wearing of masks, designated areas for infected patients, and social distancing for staff and

patients should be in place. However, these studies heavily rely on delaying services until

the pandemic is controlled, which will have a negative impact on cancer patients’ treatment

outcomes.

Liu et al. [2022] model the weekly physician scheduling problem during COVID-19.

The waiting patients’ queue has been increasing, due to special measures during COVID-
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19. A mathematical model is proposed, which is challenging to solve for the real-world

instances, provided by the collaborating hospitals. Therefore, a two-phase approach is

introduced, including a staffing model, and a branch-and-price algorithm to solve the

problem. The performance of the proposed model and the two-phase approach is also

discussed. Moosavi et al. [2022] aims to minimize the total cost of part-time staff members’

salaries, the violation of service over time, and the waiting time for residential care. In order

to adapt the basic problem to the COVID-19 conditions, a new objective is introduced to

minimize the number of distinct cohorts assigned to each staff member, and the number

of staff members assigned to each room. A population-based heuristic approach is then

introduced to solve the problem, which is shown to outperform two benchmark solution

approaches. Zucchi et al. [2021] conduct a study on the personnel scheduling problem during

the COVID-19 pandemic. The proposed MILP aims to minimize the risk of contagion by

grouping employees mutually exclusive. Experiments using an open-source solver indicate

that the solution improves using the proposed model. Ghatnekar et al. [2021] use simulation

modeling to find out how to vary resources at the Department of Dermatology, to minimize

patient contact times during the pandemic. They measured average wait time (AWT)

and the percentage of patients in contact with 1 or more patients in the waiting area

(PTPC), aiming to decrease AWT from 29 minutes to less than 15 minutes, based on the

guidelines. The best outcome was achieved with 5 rooms, 2 residents per physician, and
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2 medical assistants. However, this approach can not be implemented in a radiotherapy

center. In addition to various constraints for radiotherapy scheduling, there are specific

LINACs in each room that are used for a specific subset of cancer types, each being

booked for a specific group of patients. Furthermore, LINACs are expensive resources and

the number of LINACs in radiotherapy centers can not be easily increased. In this thesis,

we consider operational constraints for a radiotherapy center, as well as assigning patients

to the available resources.

2.4 Contributions

Radiotherapy patient scheduling and scheduling during the COVID-19 pandemic in health-

care centers have been extensively studied in the past years. In the radiotherapy patient

scheduling literature, the impact of the COVID-19 pandemic has been studied, focusing

only on the staff scheduling problem, whereas cancer patients also need special attention

to be protected from infection. On the other hand, in the studies addressing the chal-

lenges arising from the COVID-19 pandemic, the main focus is on increasing the quality

of service, and just a few studies have addressed the minimization of transmission within

this context. This thesis is aiming to bridge the gap between the two fields, by scheduling

radiotherapy patients and minimizing the chance of transmission in radiotherapy centers
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between cancer patients. Our contributions are as follows:

• Proposing a Mixed-Integer Linear Programming model for radiotherapy patient schedul-

ing to minimize the number of patient-patient interactions

• Developing a heuristic algorithm to improve efficiency

• Evaluating the model and the heuristic using real-world data obtained from the

Grand River Regional Cancer Center (GRRCC)
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Chapter 3

Methodology

In Radiation Therapy Patient Scheduling (RTPS), the main goal is to schedule recurring

sessions for different patients over the time horizon. Consider a set of treatment sessions

for a set of patients P over a planning horizon D discretized down to a set of time slots

T of the same length. Each patient p ∈ P will need to undergo a total of rp radiotherapy

sessions, using linear accelerator (LINAC) machines located in one of the rooms of the

set F . All the required sessions for patient p should take place on consecutive days to

maximize effectiveness. In this setting, each room only has one LINAC operating, which is

usually used for a specific type of treatment and a specific set of staff members are assigned

to each LINAC for specific shifts. Therefore, patients will be assigned to the same LINAC

throughout their treatment. Also, there is a deadline assigned to each patient, mp which
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indicates the due date to start the treatment for each patient.

3.1 Problem Definition

The goal of this study is to reduce airborne disease transmission during a pandemic, in

a radiotherapy center by reducing interactions or contacts between patients. In order to

reach this goal, we minimize the number of interactions between patients as the objective

of the optimization model. Each patient will be in contact with the same staff members,

and there can not be any improvements in the number of interactions between patients

and staff members. However, the interaction between patients may happen in different

scenarios, including the interaction between patients in common areas, or between the

patients entering and leaving the treatment room at the same time. Given the fact that

special measures and specific guidelines are considered to clean entirely and disinfect the

rooms thoroughly after each treatment session, the possibility of transmission while inside

the treatment room is very low, hence the aforementioned scenario is not considered in the

optimization model.

At Grand River Regional Cancer Center (GRRCC), the duration of treatment sessions

is always multiples of 15 minutes, so we discretize T into time slots of 15 minutes. For

instance, the first radiotherapy session for brain cancer is always 60 minutes, so it will be
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represented as 4 time slots. The length of treatment for each patient p in terms of the

number of time slots is denoted by np. To calculate the number of interactions between

patients, xij is introduced as in Table 3.1, which is calculated for each pair of distinct

patients, i and j. It will be equal to 1 if patient j is assigned to the time slot right after

patient i on the same day d and in the same room f . Minimizing the sum of xij over all

pairs of patients will result in the minimum number of interactions.

To ensure that each patient will start their treatment before the indicated deadline,

vdp is introduced as indicated in Table 3.1 to represent the first day of treatment for each

patient p. The first day of treatment for patient p is the first day d that the patient is

booked for a treatment session, but because all the sessions are on consecutive days for

each patient, there will not be a session for patient p in the previous day, i.e. d− 1.

In this study, we consider the preference of the GRRCC to find a weekly schedule

for patients, which can be updated regularly with incoming new patients. This way the

optimization model can be running right after the end of a working week, to have the next

week’s schedule ready on time. Therefore, the planning horizon is set to be equal to 5 days,

from Monday to Friday each week. Moving forward in this study, we will be referring to

the planning horizon as 1 week, instead of 1 working week, for simplicity.

Usually, radiotherapy patients need several treatment sessions and after scheduling

patients for the planning horizon of one week, there will be remaining sessions for some
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patients. From a patient perspective, it is more desirable to be booked on the same day of

the week and the same time slot, so that they can work with their schedules with maximum

consistency. Furthermore, it is a requierement for GRRCC to have the same time slots of

each day booked for the same patient, until their treatment is completed. Therefore, we

aim to book the remaining sessions on the same day of the week, in the same room, and in

the same time slot of the day. In order to calculate the remaining sessions, we will deduct

the number of treatment sessions that patient p has had during the planning horizon (1

week) from the total sessions needed at the beginning of the horizon and update rp, the

remaining number of sessions for patient p, at the end of each planning horizon.

To keep track of the number of sessions that patient p has had during the planning

horizon, the assignment variable, ωdt
pf , is going to be used. As mentioned in Table 3.1, ωdt

pf

is going to be equal to 1 if patient p is assigned to a session on day d, time slot t, and in

room f , hence, the sum of ωdt
pf over the days in the planning horizon will be equal to the

number of treatment sessions for patient p. Then, using the updated rp, we will pre-book

the same days and time slots of the same room for patient p, as the first rp sessions of the

previous planning horizon, marking them as unavailable. Availability of room f on day d

and in time slot t is given at the start of each planning horizon, using adtf as shown in Table

3.1. To pre-book the remaining sessions for patient p, setting adtf to be 1 for the same d, t,

and f of the first rp sessions of the previous horizon will be enough.
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As an example, assume that the patient p needs 10 sessions in total, and is booked on

the first time slot of each day for a week in the room f . At the end of the first planning

horizon, the remaining number of sessions, rp, will be equal to 3 and the first time slot of

days 1, 2, and 3 in the room f will be marked as unavailable, setting the respective adtf

equal to 1.

In the next sections, we will propose MILP models for the RTPS problem with the

objective of minimizing the number of interactions between patients, for specific problem

settings. These settings require including multiple binary variables, which will be a chal-

lenge when solving the models using a solver. Based on the main objective, a heuristic

approach is going to be proposed, in order to overcome the complexity of the models, and

will be assessed during the computational experiments.

Figure 3.1: Example of a 4-day schedule
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Sets Description

P Set of Patients

D Set of days available for booking

T Set of Time slots

F Set of Rooms

Parameters

rp Remaining number of days for patient p ∈ P

mp Deadline to start the treatment for patient p ∈ P

np The length of treatment for patient p ∈ P

adtf 1 if room f ∈ F is not available on day d ∈ D and time slot t ∈ T , 0 otherwise

Variables

xij 1 if patients i, j ∈ P interact, 0 otherwise

ωdt
pf 1 if patient p ∈ P has a session on day d ∈ D and time slot t ∈ T in room f ∈ F ,

0 otherwise

vdp 1 if patient p ∈ P starts the first session of treatment on day d ∈ D, 0 otherwise

zdtp 1 if the treatment session for patient p ∈ P on day d ∈ D, starts in time slot t ∈ T ,

0 otherwise

Table 3.1: Notations used in this study
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We propose two different models, based on the length of the treatment sessions for

each patient. In the first version shown in (3.1), we assume that all the sessions have a

fixed treatment duration (FTD) of 1 time slot, whereas in the second version shown in

(3.2) it is assumed that sessions have various treatment duration (VTD), denoted by np

time slots. The FTD model is a simplified method that has fewer variables and constraints

and is easier to solve. According to GRRCC documents, more than 75% of treatments

take 1 time slot to complete, therefore, FTD will be adequate to schedule these sessions.

Using FTD, multiple optimal schedules might be generated, especially if the problem size

is small. To choose the most desired solution among the set of all candidate solutions, we

introduced a secondary objective function in (3.3), which aims to choose the solution that

starts the treatments as soon as possible, decreasing the patients’ wait times.

Although the FTD model is useful for most treatment scenarios, there can be different

types of cancer treatments that are assigned to the same machine while having different

treatment duration per session. These treatments are not necessarily of the same length,

but they should be assigned to the same room f . To schedule the patients that have

to undergo these types of treatments a more complex model that can incorporate vari-

able treatment duration is needed, therefore, we introduce VTD. All the notations used

throughout the mathematical models are listed in Table 3.1.
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3.2 Fixed Treatment Duration Model

The fixed Treatment Duration (FTD) model is a radiotherapy patient scheduling problem

in which patient i interacts with patient j if they are assigned to consecutive time slots on

the same day and room. There is 1 specific LINAC operating in each room and 1 particular

team of staff members working with each LINAC. Assigning patient p to the room f means

that the patient is going to have all their treatment sessions in the same room and with

the same LINAC throughout their treatment duration. Some LINAC machines are being

used for a specific type of cancer, and all the sessions booked with them are of the same

length. This specification allows us to reduce the overall complexity of the model, by setting

sessions to be of the same length (1 time slot). Although this model is a simplified method,

it does not eliminate crucial constraints of the patient scheduling problem. Therefore, it

can be used for similar types of cancer treatment that have the same duration.

3.2.1 Mathematical Model

(FTD) : Min
∑

i,j∈P,i ̸=j

xij (3.1a)

s.t. xij ≥ ωdt
if + ω

d(t+1)
jf − 1 ∀d ∈ D,∀t ∈ T ,∀f ∈ F ,∀i, j ∈ P , i ̸= j

(3.1b)
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vdp = ωdt
pf ∀p ∈ P ,∀t ∈ T ,∀f ∈ F ,∀d ∈ D, d = 1 (3.1c)

1 + vdp ≥ ωdt
pf + (1− ω

(d−1)t
pf )

∀p ∈ P ,∀t ∈ T ,∀f ∈ F ,∀d ∈ D, d ≥ 2

(3.1d)

vdp ≤ ωdt
pf + (1− ω

(d−1)t
pf ) ∀p ∈ P ,∀t ∈ T ,∀f ∈ F ,∀d ∈ D, d ≥ 2

(3.1e)∑
d∈D

vdp = 1 ∀p ∈ P (3.1f)

vdp = 0 ∀p ∈ P ,∀d ∈ D, d > mp (3.1g)

ωdt
pf + adtf ≤ 1 ∀p ∈ P , ∀t ∈ T ,∀f ∈ F ,∀d ∈ D (3.1h)∑

t∈T

∑
d∈D

∑
f∈F

ωdt
pf = min[|D|, rp] ∀p ∈ P (3.1i)

∑
p∈P

ωdt
pf ≤ 1 ∀t ∈ T ,∀f ∈ F ,∀d ∈ D (3.1j)

∑
t∈T

∑
f∈F

ωdt
pf ≤ 1 ∀p ∈ P ,∀d ∈ D (3.1k)

Constraint (3.1b) indicates that patient i has an interaction with patient j if they are in

consecutive sessions in the same room and day. Constraints (3.1c), (3.1d) and (3.1e) define

and set the starting day of treatments, vdp , for each patient. If day d is the first session

for patient p, there should be at least 1 treatment session booked on that day for that

patient. Also, if day d is the first session for patient p, there should be no sessions booked
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on the day d − 1. Constraint (3.1f) indicates that each patient must have exactly one

start day. Constraint (3.1g) prevents booking the first treatment after mp, the deadline.

Constraint (3.1h) is used to make sure that a new session for patient p is booked, only if

the corresponding room f is available on day d and time slot t. Constraint (3.1i) limits

the total booked sessions for each patient to the total remaining sessions for them, or the

end of the planning horizon, whichever comes first. Constraint (3.1j) ensures that at most

one patient is assigned to a specific day, time slot, and room. Similarly, constraint (3.1k)

ensures that each patient is scheduled at most once a day.

In order to consider different lengths for time slots, we need to introduce the second

model which is more general than the first one but has an additional set of binary variables

that represent the first time slot of the day on which patient p is booked for a treatment

session. Introducing this new variable results in more complexity, hence being harder to

solve.

3.3 Variable Treatment Duration Model

For the variable Treatment Duration (VTD) model, the definition of the patient-patient

interaction stays the same. There is 1 specific LINAC operating in each room and 1

particular team of staff members working with each LINAC. Assigning patient p to the
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room f means that the patient is going to have all their treatment sessions in the same

room and with the same LINAC throughout their treatment duration. As previously

mentioned, some LINAC machines can be used for different types of cancer treatments,

with various session duration. The corresponding model must allow the sessions to be of

different lengths, i.e. np time slots. In order to allow different treatment duration, a new

set of variables are introduced in addition to all the variables used in FTD, to help make

sure that the desired treatment duration has been met.

3.3.1 Mathematical Model

(VTD) : Min
∑

i,j∈P,i ̸=j

xij (3.2a)

s.t. (3.1b)− (3.1h) (3.2b)

1 + zdtp ≥ ωdt
pf + (1− ω

d(t−1)
pf ) ∀p ∈ P ,∀f ∈ F ,∀d ∈ D, ∀t ∈ T , t ≥ 2

(3.2c)

zdtp ≤ ωdt
pf + (1− ω

d(t−1)
pf ) ∀p ∈ P ,∀f ∈ F ,∀d ∈ D, ∀t ∈ T , t ≥ 2

(3.2d)

zdtp = ωdt
pf ∀p ∈ P ,∀f ∈ F ,∀d ∈ D,∀t ∈ T , t = 1 (3.2e)∑

t∈T

∑
d∈D

zdtp = min[|D|, rp] ∀p ∈ P (3.2f)
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∑
t∈T

∑
f∈F

ωdt
pf ≤ np ∀p ∈ P ,∀d ∈ D (3.2g)

∑
t∈T

∑
d∈D

∑
f∈F

ωdt
pf = np ×min[|D|, rp] ∀p ∈ P (3.2h)

Constraints (3.1b)-(3.1h) are included in this model as well, as they capture the ba-

sic specifications of the problem. As mentioned in table (3.1), zdtp is defined as the first

time slot booked in day d for patient p. Constraints (3.2c), (3.2d), (3.2e) ensure that z

is equal to 1, if and only if no prior time slots are booked for patient p on day d. Con-

straint (3.2f) limits the number of treatments for each patient to rp, the total remaining

sessions for them, or the end of the planning horizon, whichever comes first. Constraint

(3.2g) prevents the session duration on day d for patient p from exceeding np, the in-

tended treatment duration for patient p. Constraint (3.2h) limits the number of time slots

for each patient to total remaining sessions (rp) times the duration of each session (np), or

the length of the planning horizon times the duration of each session, whichever comes first.

3.4 Secondary Objective

There can be multiple optimal schedules for RTPS problem, especially when the schedule is

not packed with patients, therefore, it can be beneficial to introduce a secondary objective
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that can help us select the most appropriate solution among the set of multiple optimal

solutions. From a radiotherapy center’s perspective, it is desirable to schedule sessions as

soon as possible and to avoid unnecessary empty time slots during a work day. As an

example, Figure 5.1 demonstrates an optimal solution generated by the FTD model. It

can be seen that the FTD solution waits until day 2 to start the treatment for patient 11,

which is the latest day to start the treatment for that patient, as indicated in Table 5.1.

This leaves the first time slot of the first day of the planning horizon in Room 3 empty,

while it could have been avoided.

In order to prevent this from happening, we propose a secondary objective to start

booking sessions as soon as possible, and not wait until the deadline approaches to start the

treatment sessions for patients. The secondary objective function shown in equation (3.3a)

aims to minimize the difference between the first day of treatment for patient p (i.e., when

vdp = 1) and the deadline for patient p (i.e., mp). Furthermore, we need an additional

constraint as in (3.3c) to force the first objective function value to be equal to the optimal

value obtained from FTD, denoted by x∗
ij, to make sure that we are searching among all

the optimal solutions for the original problem. All other constraints are going to be the

same as in (3.1).
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Min
∑
p∈P

∑
d∈D,vdp=1

d−mp (3.3a)

s.t. (3.1b)− (3.1k) (3.3b)∑
i,j∈P,i ̸=j

xij = x∗
ij (3.3c)

3.5 Model complexity

To discuss the complexity levels of FTD and VTD models, we are going to compare the

number of variables and the number of constraints for these two. In FTD, three variables

are used, ωdt
pf , v

d
p , and xij, the first having 4 indices for the number of the day, the number

of the time slot, the number of the patient, and the number of the room, the second having

2 indices for the number of the day and the number of the patient, and the last one having

2 indices for the number of patients. The total number of ωdt
pf variables will be equal to

|D| × |T | × |P| × |F|. Likewise, the total number of vdp will be equal to |D| × |P|. For xij,

the total number will be equal to |P|!, because it will be distinguishing between patients

when calculating the objective value, and not when making the variables. For example, if

there are 3 patients, 7 days, 1 room, and 1 time slot, there will be 21 variables generated

by ωdt
pf , 21 variables generated by vdp , and 6 variables by xij, summing up to 46 variables
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in total.

In VTD, a new set of binary variables are introduced, zdtp , which generates |D|×|T |×|P|

new variables, similar to the other variables discussed. Therefore, with increasing the size

of the input, VTD will be growing quicker than FTD, in terms of the number of variables.

However, the formula to calculate the number of constraints is not as straightforward as

the number of variables, but it is important to note that all constraints for both problem

types are binary constraints, and there are no integer or continuous constraints. In the

next chapter, we will demonstrate the trend for complexity growth in terms of the number

of constraints and the number of variables, expressing the need for a heuristic method for

solving larger instances. As previously discussed, the heuristic proposed and the real-world

large instances are going to be based on VTD, as it considers all types of treatment styles.
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Chapter 4

Heuristic Solution Algorithm

In this section, we discuss the need for a heuristic approach for the proposed model,

introduce a heuristic approach to generate a feasible solution for the problem of minimizing

the number of interactions when scheduling radiotherapy patients and conclude with a

visual step-by-step example.

4.1 Growth Rates

Optimization problems can take much time to solve, especially when the size of the input

increases. The model introduced in section 3 is a mixed-integer linear programming model,

and the complexity of the model increases with increasing the size of the input. Figure
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4.1 illustrates the growth rate for both the number of binary variables and the number of

constraints, with respect to increasing the number of patients, while all other parameters

are fixed as 5 days, 5 time slots, and 1 room. As shown, the complexity of the model grows

quickly, especially due to the growth of the number of constraints. Similarly, figure 4.2

illustrates the growth rate for the number of binary variables and the number of constraints,

with respect to increasing the number of time slots, while all other parameters are fixed as

5 days, 10 patients, and 1 room. As shown, the number of constraints grows exponentially,

resulting in quick growth in the complexity of the model. Therefore, the model is going

to be hard to solve for real-world instances, where there are plenty of incoming patients

waiting to be scheduled, and the run-time is going to increase exponentially. The solver

will take a very long time to search the solution space and reach a feasible solution for the

problem, hence, a good way to reduce the run-time is to help the algorithm find a feasible

solution faster.

Initial solutions are always feasible, and ideally near-optimal solutions. They can be

used to cut the feasible space for a complex model by providing an upper bound or a

lower bound on the objective, as well as creating a warm start for a MILP model. They

can be obtained by solving another mathematical model problem, or by using a heuristic

approach.

In scheduling problems, one strategy that is often used by hospitals, clinics, or radio-
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Figure 4.1: Complexity growth rate with respect to the number of patients

therapy centers is the first-come first-serve (FCFS) approach. They assign patients to the

first available day and time slot as they come, to reduce their waiting times, but this ap-

proach would not always produce the best results, because it does not consider any other

constraints. However, it can easily be used to obtain a feasible solution as an initial solu-

tion. The usual FCFS algorithms assign patients to the first available day and time slot,

but they do not take consecutive sessions into account. Therefore, there can be unexpected
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Figure 4.2: Complexity growth rate with respect to the number of time slots

delays between sessions of a patient, which will have a negative impact on their treatment

effectiveness. Furthermore, it does not consider patient interactions as they just select the

first available session, which will result in a higher number of interactions between patients.

This would increase airborne disease transmission among patients, including COVID-19.
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4.2 Proposed Algorithm

In this study, we introduce a heuristic to generate a feasible solution but consider the num-

ber of interactions and more constraints than a FCFS approach. The goal is to minimize

the number of interactions between patients, which happens when patients are booked in

consecutive time slots on a specific day in a specific room. A good feasible solution for this

objective will have to ensure that the same patients are booked with each other so that they

don’t interact with many other patients during their treatment. To find such a solution, it

is helpful to start booking patients with the most number of sessions in consecutive time

slots to ensure that they will interact with as few patients as possible. Therefore, we start

by sorting patients based on their remaining number of treatments in decreasing order and

start assigning them based on the new order. It starts from the first available room and

calculates the number of time slots that are not available or busy for each day and stores

it as bd. Then it continues with the least busy day with the most available time slots and

chooses the first available time slot. Then it checks to see if the next rp days are available,

and whether we reach the end of the planning horizon or not. It does the same process

with t to see if the next np time slots are available and whether we reach the end of the day.

If so, it books those sessions for the patient and marks them as unavailable, and updates

the number of busy time slots, but if one of the conditions is not met, then it moves to the
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next available time slot or the next available day and repeats the process until it books all

the patients. The pseudo-code of the heuristic used can be found in Algorithm 1.

Patients Total Sessions Duration

Patient 1 2 3

Patient 2 1 2

Patient 3 4 1

Patient 4 5 1

Patient 5 3 1

Table 4.1: The set of patients for the heuristic example

4.3 Visual Example

To further elaborate the steps of the algorithm, a small visual example is used. The input

used for this example is shown in Table 4.1. Assume that there are 5 days on the planning

horizon and there are 5 time slots on each day.
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Algorithm 1 Pseudo-code of the heuristic used to generate the initial feasible solution for

VTD
Sort patients based on rp in decreasing order

for p ∈ P do

for f ∈ F do

bd ←
∑

t∈T adtf ∀d ∈ D

Choose d∗ such that bd∗ = min{bd|d ∈ D}

Choose t∗ such that t∗ = min{t|t ∈ T , ad∗t∗f = 0}

if d∗ + rp ≤ |D| and a
(d∗+rp)t∗

f = 0 then

if t∗ + np ≤ |T | and a
d∗(t∗+np)
f = 0 then

bd∗ ← bd∗ + rp

ad
∗t∗

f , ..., a
(d∗+rp)t∗

f ← 1

ad
∗t∗

f , ..., a
d∗(t∗+np)
f ← 1

else t∗ ← next available time slot

end if

else d∗ ← next least busy day

end if
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4.3.1 Step 1

Sorting the patients in the decreasing order of total sessions, the first patient to be scheduled

is patient 4, which needs 5 sessions with the duration of 1 time slot. At first, the schedule

is empty and all time slots are available, therefore we choose the first available time slot of

the first day, and book needed sessions for patient 4, updating the availability parameters

a111 ,...,a511 to 1. Values of b1,...,b5 are changed from 0 to 1 as well. Figure 4.3 shows the

schedule at the end of this step.

Figure 4.3: The schedule after Step 1
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4.3.2 Step 2

The next patient in the order is patient 3 that needs 4 sessions of 1 time slot. As all the

bd values are equal, again we choose the first available t in the first available d, and update

a121 ,...,a421 to 1. The value of b5 remains unchanged, but b1,...b4 increase from 1 to 2. Figure

4.4 shows the schedule at the end of this step.

Figure 4.4: The schedule after Step 2
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4.3.3 Step 3

The next patient in line is patient 5 with 3 sessions, 1 time slot each. b5 is the smallest,

therefore, the second time slot of day 5 will be chosen. However, it will reach the end of the

planning horizon before booking all sessions for this patient, hence, it moves to the next

least busy day. All the other days are equally busy, so it again chooses the first available

sessions and update a131 , a141 , a151 to 1. b5 and b4 remain unchanged, but b1, b2 and b3

increase to 3. Figure 4.5 shows the schedule at the end of this step.

Figure 4.5: The schedule after Step 3

42



4.3.4 Step 4

To schedule patient 1, the algorithm first chooses day 5, because it is the least busy day,

but it can not schedule all the sessions needed for patient 1 starting from day 5. Hence,

the next least busy day will be chosen, which is day 4. For all the booked time slots, the

availability parameter will be changed to 1, i.e. a431 ,...,a551 . The updated values for b1, b2

and b3 equal 2, whereas b4 is equal to 0, and b5 is equal to 1. Figure 4.6 shows the schedule

at the end of this step.

Figure 4.6: The schedule after Step 4
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4.3.5 Step 5

In the final step, the last patient will be scheduled. Day 1, 2, and 3 are the least busy

days, therefore patient 2 will be assigned to the last 2 time slots of day 1, and will result

in a change in the values of a141 and a151 . The final schedule is shown in Figure 4.7.

Figure 4.7: The schedule after Step 5
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Chapter 5

Results

In this chapter, illustrative small instances are used to evaluate the effectiveness of the

proposed models, followed by a case study, using real-world larger instances obtained from

Grand River Regional Cancer Center (GRRCC). The solution quality and the computa-

tional experiments are discussed, and the results have been compared using the proposed

heuristic. Finally, some insights will be provided in the discussion section.
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5.1 Illustrative Numerical Examples

5.1.1 FTD Numerical Example

In this experiment, a small instance is used to compare the results for a first-come first-

serve (FCFS) approach with the proposed model. The instance used consists of 12 patients

that need to be scheduled over a 7 days horizon, and there are 3 rooms available, each

operating for 3 time slots each day. The number of sessions needed for each patient and

the deadline to start the treatment are shown in Table 5.1. The solution for this set of

entries with the first-come first-serve approach, and with the proposed model is shown

in Figures 5.2 and 5.1, respectively. In the first-come first-serve solution, as the name

indicates, each patient is scheduled in the first available time slot of the first available

room, and waits to start the treatment until the given deadline if it is possible i.e. if it

can schedule all the needed sessions within the given horizon. For example, patient 2 has

a deadline of 3, which means their treatment has to start before or on the third day of the

horizon. Therefore, in the first-come first-serve schedule the first session for this patient

is scheduled on day 3. They need 4 sessions in total which can be scheduled within the

horizon, as well as meeting the indicated deadline. On the other hand, patient 4 cannot be

starting their treatment on the deadline which is day 4, because in that case, they would

not be undergoing all their treatment sessions within the 7 days horizon. Hence, they start
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the treatment on day 2, which is the latest they can wait to start their treatment and

still meet the requirements. In this approach, there are 10 interactions between patients,

4 happening in room 1, 4 happening in room 2, and 2 happening in room 3. Solving the

same problem with the proposed model will result in the schedule shown in Figure 5.1,

where the number of interactions is 4, 2 interactions happening in room 1 between patient

10 and 9, and between patient 9 and 3, and 2 interactions happening in room 2 between

patient 1 and 4, and between patient 4 and 7.

Figure 5.1: FCFS Solution Example for FTD

47



Patients Total Sessions Deadline

Patient 1 7 2

Patient 2 4 3

Patient 3 5 1

Patient 4 6 4

Patient 5 2 6

Patient 6 3 5

Patient 7 7 7

Patient 8 1 7

Patient 9 5 5

Patient 10 6 2

Patient 11 4 2

Patient 12 2 6

Table 5.1: The set of patients for the FTD experiment
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Figure 5.2: Proposed Solution Example for FTD

5.1.2 VTD Numerical Example

In this experiment, another small instance is used to compare the results for a first-come

first-serve approach with the proposed model. The instance used consists of 10 patients

that need to be scheduled over a 7 days horizon, and there are 2 rooms available, each

operating for 5 time slots a day. The number of sessions needed for each patient and

the deadline to start the treatment, as well as the treatment duration for each patient

is shown in Table 5.2. The solution for this set of entries with the first-come first-serve

approach, and with the proposed model is shown in Figures 5.3 and 5.4, respectively. In

the first-come first-serve solution, as previously mentioned, each patient is scheduled in

the first available time slot of the first available room, and waits to start the treatment
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until the given deadline if it is possible. In this approach, there are 7 interactions between

patients, 2 happening in room 1, and 5 happening in room 2. Solving the same problem

with the proposed model will result in the schedule shown in Figure 5.4, where the number

of interactions is 3, 1 interaction happening in room 1 between patient 1 and 4, and 2

interactions happening in room 2 between patient 2 and 3, and between patient 9 and 6.

Figure 5.3: FCFS Solution Example for VTD

5.1.3 Secondary Objective Numerical Example

This example is to demonstrate the result of using the secondary objective on an optimal

solution found by the proposed MILP in Chapter 3. To compare the outcome before

and after using this objective function, we will use the same input as in the numerical

example used for the FTD model for simplicity, shown in Table 5.1. An optimal solution
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Patients Total Sessions Deadline Duration

Patient 1 2 5 3

Patient 2 2 3 3

Patient 3 4 2 1

Patient 4 3 1 2

Patient 5 1 4 3

Patient 6 7 1 1

Patient 7 2 6 2

Patient 8 3 7 5

Patient 9 3 5 6

Patient 10 1 6 7

Table 5.2: The set of patients for the VTD experiment
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Figure 5.4: Proposed Solution Example for VTD

for this input without including the secondary objective is presented in Figure 5.1. The

other optimal solution after using the secondary objective is presented in Figure 5.5. The

number of interactions is the same for both solutions as they both are optimal solutions,

but in Figure 5.1, the solver waits until day 2 to start the treatment for patient 11, which

is the deadline to start their treatment. On the other hand, in Figure 5.5, the solver starts

the treatment for the same patient as soon as possible and does not necessarily wait until

the deadline. Therefore, the same patient starts the treatment on the first day of the

horizon.
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Figure 5.5: Proposed Solution Example for the secondary objective

5.2 GRRCC Case Study

5.2.1 Real-life Data

According to the patient clinical path documents provided by our collaborators from the

Grand River Regional Cancer Centre (GRRCC), cancer patients that are going to start

their radiation therapy treatment have to undergo a few initial sessions. The initial sessions

differ based on the cancer type and severity they are dealing with and include Consultation,

Teaching, Injection, Surgery, and Planning sessions. Each pre-treatment session varies for

different patients based on characteristics of patients e.g. age, sex, diagnosis stage, etc.

Therefore, it is not computationally efficient to model these types of sessions. Moreover,
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these sessions usually need specific accommodations, and there are not many options to

decide from. Another point to mention is that they are not recurring sessions, and happen

only once during the pre-treatment period, which is after diagnosis and before radiotherapy

sessions start. Hence, we will be using real-life data for radiotherapy treatment sessions,

collected from Grand River Regional Cancer Center (GRRCC). There are 5 different ra-

diotherapy rooms, and there is only 1 LINAC in each room. The time frame for the data

extracted is the start of January to the end of April 2020, and around 700 patients did

undergo their radiotherapy treatment in this period. The operating hours of LINACs are

from 8:00 AM to 4:30 PM. However, these times may vary to accommodate the patient

load, staff schedules, and other unexpected incidentals. It is also important to mention that

all appointments provided are booked sessions for treatment, and may have been changed

due to unforeseen circumstances in the actual schedule.

5.2.2 Computational Experiments

In this section, we start with solving the problem for the GRRCC data. As discussed in

Chapter 3, the planning horizon is set to be 1 work week (5 days) from Monday to Friday.

Given the fact that each room has a LINAC which is used for a specific type of cancer, the

test data will include patients undergoing treatment using a pre-determined LINAC, which

means the problem will be solved for each room f separately. Therefore, the number of
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rooms and the number of days are going to be fixed for all the experiments with GRRCC

instances. The CPLEX solver is used throughout the experiments, with 32 GB of memory

and 4 CPUs, using the Graham cluster located at the University of Waterloo, and all

instances are extracted from the original data set provided by GRRCC.

Table 5.3 includes 5 instances that were used to conduct experiments, as well as the

specifications of each instance, i.e. the number of patients, the number of time slots, and

the number of binary variables and linear constraints.

Instance Num. #Patients #Time slots #Binary var. #Constraints

1 11 10 1276 7673

2 18 18 3654 33930

3 21 20 4746 50143

4 34 34 12886 213146

5 38 34 14554 263282

Table 5.3: Model specification for various input sizes

As shown in Table 5.3, increasing the size of input will result in an increasing number

of variables and constraints, hence the run time grows rapidly. All the instances in Table

5.3 except for the first two instances originally require more than 2 days to find an optimal

solution, which is not efficient for a radiotherapy center, as they need to be able to solve
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the problem in the weekend for the upcoming week. The complexity level of the model for

instances 4 and 5 results in failure in even finding an incumbent solution in this period,

therefore there is a need to include a warm start using an incumbent solution, which will

be providing an upper bound for the objective value. In order to do so, we will use the

heuristic approach proposed in Chapter 4.

5.2.3 Heuristic Solution

Instances FCFS Solution Heuristic Solution

Decrease

Compared

to FCFS

MILP

+

Heuristic Solution

Decrease

Compared

to FCFS

Optimal Solution

1 11 11 0% 3 73% 3

2 19 18 5% 7 63% 7

3 42 21 50% 11 75% -

4 62 34 45% 17 73% -

5 64 37 42% 18 72% -

Table 5.4: Model results for various input sizes

Table 5.4 includes the results for the same set of instances as Table 5.3. The original

number of interactions in the GRRCC schedule using the first-come first-serve approach and

the incumbent solution provided by the heuristic approach for each instance are mentioned.

The solution provided by the heuristic results in up to 50% decrease in the number of
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interactions. The time limit for all the instances is set to be 48 hours, and the best

objective value found in this period using the proposed MILP and heuristic is included, as

well as the optimal solution if the model was solved to optimality within 48 hours.

For the first instance in Table 5.4, the heuristic provides an incumbent solution with

the objective value of 11, and the model is able to reach the objective value of 3 within less

than 15 minutes. To test the quality of the incumbent solution provided by the heuristic

approach and to compare it with the original number of interactions in GRRCC schedule,

we can use the optimality gap measure as well. Optimality gap measures the gap between

the objective of the incumbent solution and the optimal value, if the optimal solution is

available. It is calculated as follows:

|incumbent solution− optimal solution|
|optimal solution|+ 1e− 10

In this case, the incumbent solution is equal to the original number of interactions, hence

they both have the same optimality gap of 260%. The optimality gap decreases in every

iteration until it reaches the optimal solution, where the optimality gap is 0. The trend of

the objective values for each iteration is shown in Figure 5.6.

For the second instance, the incumbent objective value is 18, whereas the original

number of interactions is 19. The model was able to reach the objective value of 7 within
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Figure 5.6: Objective value trend for Instance 1

48 hours, starting from 18, with an optimality gap of 157%, whereas the optimality gap

using the FCFS approach is 171%. The trend of the objective values for solutions found

at each step is shown in Figure 5.7.

For the third instance, the objective value of the incumbent solution has a meaningful

difference from the original number of interactions, even before solving the optimization

model. Starting from the objective of 21 as the warm start, the trend of the objective

values for each iteration is shown in Figure 5.8.
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Figure 5.7: Objective value trend for Instance 2

Similarly, the objective values trends for instances 4 and 5 are shown in 5.9 and 5.10

respectively.

5.2.4 Solution Quality

With the increasing size of the instances, the difference between the objective of the in-

cumbent solution and the original objective increases, and the heuristic approach provides

solutions that are of higher quality. Table 5.4 compares the quality of the incumbent solu-
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Figure 5.8: Objective value trend for Instance 3

tion with the original schedule, showing that using the heuristic approach provides a better

warm start solution for this optimization problem, instead of using the original schedule

as an incumbent solution.

5.3 Discussions

It has been demonstrated that the proposed heuristic provides high-quality incumbent

solutions that can help the proposed model to find good solutions faster when the size
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Figure 5.9: Objective value trend for Instance 4

of input increases. The combination of these approaches results in up to 75% decrease

in the number of patient-patient interactions in GRRCC schedule. This goal has been

achieved, considering the operational constraints of a radiotherapy center and the time-

liness of the treatment process. Unlike most studies on overcoming the challenges of the

COVID-19 pandemic, treatments have not been postponed or delayed to reduce the risk

of transmission.

The proposed methodology can be easily implemented in the radiotherapy admissions
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Figure 5.10: Objective value trend for Instance 5

department. At the end of each week, patients that are going to be under treatment for the

next week can be assigned to specific rooms with specific LINACs based on their cancer

type. When the list of upcoming patients is complete, the proposed model combined with

the heuristic will generate the schedule for the next week during the weekend. However,

if the radiotherapy center decides to consider a longer planning horizon, it will take more

time to generate the desired solution.

It is important to note that assigning patients to the same room and the same time
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slot during their treatment process plays an important role in reducing the number of

interactions, and it helps patients to better organize their personal schedules. However,

if it is not a requirement for a radiotherapy center, the problem will be considered a

bin-packing problem and the proposed MILP will be less complex and easier to solve.

Furthermore, the outcome of this approach enables radiotherapy clinics to have organized

and consecutive free time slots, so that they can admit new urgent patients that need to

start their treatment immediately and can not wait until the beginning of the next planning

horizon.
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Chapter 6

Conclusions

The present study draws attention to the importance of implementing special measures in

scheduling cancer patients in radiotherapy centers during the outbreak of airborne diseases,

like COVID-19. Due to their weaker immune system, cancer patients are more likely to be

easily affected by COVID-19 and similar diseases. In order to prevent that from happening,

we aim to minimize the interaction between patients, using MILP models for scheduling

radiotherapy patients. The first proposed model, FTD, is a simplified version of the RTPS

problem, assuming that all sessions are of the same length, but the second proposed model,

VTD, is a more complicated version, assuming that sessions are of different lengths. A

secondary objective function is then proposed to choose a more suitable optimal solution

from the set of multiple optimal solutions generated by two models.

64



The performance of the proposed models is first evaluated using small instances, but

it is shown that as the instances are growing, the model is quickly getting more complex.

This makes the rest of the experiments challenging, as the run time starts to become

inefficient for real-world and larger instances. Hence, a heuristic solution algorithm is

introduced, which helps the solver by providing an initial solution to use as a warm start

for the main MILP model. The results have demonstrated both the performance of the

heuristic approach in providing high-quality incumbent solutions, compared to the original

schedule provided by GRRCC, and the effectiveness of the proposed models in terms of the

number of interactions, resulting in up to 75% decrease in the number of patient-patient

interactions.

65



References

Zahraa A. Abdalkareem, Amiza Amir, Mohammed Azmi Al-Betar, Phaklen Ekhan, and

Abdelaziz I. Hammouri. Healthcare scheduling in optimization context: a review. Health

and Technology, 11:445–469, 2021.

Zuraida Alwadood, Norlenda Mohd Noor, and Nurul Ainaa Mainor. An optimization model

for hotel housekeeping personnel scheduling in pandemic outbreak. Menemui Matematik

(Discovering Mathematics), 43(2):83–92, 2021.

Roland Braune, Walter J. Gutjahr, and Petra Vogl. Stochastic radiotherapy appointment

scheduling. Central European Journal of Operations Research, 2021.

Robert L. Burdett and Erhan Kozan. An integrated approach for scheduling health care

activities in a hospital. European Journal of Operational Research, 264(2):756–773, 2018.

D. Conforti, F. Guerriero, and R. Guido. Non-block scheduling with priority for radiother-

apy treatments. European Journal of Operational Research, 201:289–296, 2010.

66



Domenico Conforti, Francesca Guerriero, Rosita Guido, Marco Matucci Cerinic, and

Maria Letizia Conforti. An optimal decision making model for supporting week hos-

pital management. Health Care Management Sciences, 14:74–88, 2011.

Dorsaf Daldoul, Issam Nouaouri, Hanen Bouchriha, and Hamid Allaoui. A stochastic model

to minimize patient waiting time in an emergency department. Operations Research for

Health Care, 18:16–25, 2018.

Adam Diamant, Joseph Milner, and Fayez Quereshy. Dynamic patient scheduling for

multi-appointment health care programs. Production and Operations Management, 27

(1):58–79, 2018.

Sara Frimodig and Christian Schulte. Models for Radiation Therapy Patient Scheduling.

Springer International Publishing, 2019.

Shilpa Ghatnekar, Nurul M. Suhaimi, Jacqueline Griffin, David Rosmarin, Rebecca

Yanovsky, Priyank Sharma, and F. Clarissa Yang. Using simulation modeling to mini-

mize patient-to-patient contact time while optimizing clinical operations during a pan-

demic. Journal of the American Academy of Dermatology, 85(6):1662–1664, 2021.

Diwakar Gupta and Brian Denton. Appointment scheduling in health care: Challenges

and opportunities. IIE transactions, 40(9):800–819, 2008.

67



Hejer Khlif Hachicha and Farah Zeghal Mansour. Two-milp models for scheduling elective

surgeries within a private healthcare facility. Health Care Management Science, 21:

376–392, 2018.

Michael A. Johansson, Talia M. Quandelacy, Sarah Kada, Pragati Venkata Prasad, Molly

Steele, John T. Brooks, Rachel B. Slayton, Matthew Biggerstaff, and Jay C. Butler.

Sars-cov-2 transmission from people without covid-19 symptoms. JAMA Network Open,

4(1):e2035057–e2035057, 2021.

Nikky Kortbeek, M. F. van der Velde, and N. Litvak. Organizing multidisciplinary care

for children with neuromuscular diseases at the academic medical center, amsterdam.

Health Systems, 6:209–225, 2017.

Y. Lievens, P. Denscombe, N. Defourny, C. Gasparotto, J.M. Borras, and C. Grau. Hero

(health economics in radiation oncology): A pan-european project on radiotherapy re-

sources and needs. Clinical Oncology, 27(2):115–124, 2015.

Ran Liu, Xiaoyu Fan, Zerui Wu, Bowen Pang, and Xiaolei Xie. The physician scheduling

of fever clinic in the covid-19 pandemic. IEEE Transactions on Automation Science and

Engineering, 19(2):709–723, 2022.

Richard Martin Lusby, Martin Schwierz, Troels Martin Range, and Jesper Larsen. An

68



adaptive large neighborhood search procedure applied to the dynamic patient admission

scheduling problem. Artificial Intelligence in Medicine, 74:21–31, 2016.

William J. Mackillop. Killing time: the consequences of delays in radiotherapy. Radiother-

apy and Oncology, 84(1):1–4, 2007.

Houra Mahmoudzadeh, Akram Mirahmadi Shalamzari, and Hossein Abouee-Mehrizi. Ro-

bust multi-class multi-period patient scheduling with wait time targets. Operations

Research for Health Care, 25, 2020.

Joren Marynissen and Erik Demeulemeester. Literature review on multi-appointment

scheduling problems in hospitals. European Journal of Operational Research, 272(2):

407–419, 2019.

Amirhossein Moosavi, Onur Ozturk, and Jonathan Patrick. Staff scheduling for residential

care under pandemic conditions: The case of covid-19. Omega, 112:102671, 2022.

J. R. Munavalli, Shyam Vasudeva Rao, Aravind Srinivasan, and GG van Merode. Integral

patient scheduling in outpatient clinics under demand uncertainty to minimize patient

waiting times. Health Informatics Journal, 26(1):435–448, 2020.

Aditi Naidu. Factors affecting patient satisfaction and healthcare quality. International

Journal of Health Care Quality Assurance, 22(4):366–381, 2009.

69



Soma Ganesh Raja Neethirajan and Akilandeswari Manickam. Scheduling elective surgeries

following covid-19: Challenges ahead. Journal of Anaesthesiology Clinical Pharmacology,

36(3):291–296, 2020.

Dobrila Petrovic, Mohammad Morshed, and Sanja Petrovic. Multi-objective genetic algo-

rithms for scheduling of radiotherapy treatments for categorised cancer patients. Expert

Systems with Applications, 38(6):6994–7002, 2011.

Tu-San Pham, Louis-Martin Rousseau, and Patrick De Causmaecker. A two-phase ap-

proach for the radiotherapy scheduling problem. Health Care Management Science, 25:

191–207, 2022.

Abdur Rais and Ana Viana. Operations research in healthcare: a survey. International

Transactions in Operational Research, 18:1–31, 2010.
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Antoine Sauré, Jonathan Patrick, Scott Tyldesley, and Martin L. Puterman. Dynamic

multi-appointment patient scheduling for radiation therapy. European Journal of Oper-

ational Research, 223:573–584, 2012.
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