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Abstract

Multi party quantum computation (MPQC) is any quantum cryptographic protocol
where multiple untrusted users collaborate to perform calculations on their combined
data without revealing their private information. MPQC is not guaranteed information-
theoretically secure by the laws of quantum mechanics, and thus finding schemes for MPQC
that ensure a high degree of security is an ongoing research task. In this thesis, we examine
an approach for MPQC protocols that employs a circular structure. The circular structure
minimizes the amount of information transmitted from user to user, increasing efficiency
and security. This makes it a good structure for MPQC.

We address three main topics related to circular MPQC. First, we build a quantum
circuit to practically implement an existing circular MPQC protocol. We demonstrate
feasibility and reasonable efficiency in the circuit model. Second, we examine the security
of circular MPQC. We consider the protocol’s vulnerabilities to outside and inside attacks.
After identifying weaknesses in the scheme, we suggest two improvements to increase se-
curity. The first involves inserting random data values into the protocol, and the second
involves the help of a semi-trusted third party. Finally, given that quantum computers are
not currently commercially available, we explore options for multiparty computation using
classical resources and cloud-based quantum computing. We modify the circular MPQC
protocol to function for fully classical clients using blind quantum computing. Our method
proposes a semi-trusted intermediate server to use post-selection to simulate entanglement
between two quantum servers.
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Chapter 1

Introduction

Cryptography is the process of securing private data against attacks. Quantum cryptogra-
phy applies the principles of quantum mechanics to this process in order to further improve
the security of the data. An early notable quantum cryptographic protocol is quantum key
distribution (QKD), which can be compared with the classical Diffie-Hellmann key ex-
change [10]. The principles of quantum mechanics render QKD information-theoretically
guaranteed secure [6, 21]; mathematically there is no way for a QKD protocol to be
hacked when run on perfect devices over perfect channels. This represents an ideal degree
of security, and a theoretical improvement over the classical version of key distribution.
Unfortunately other quantum cryptographic protocols cannot be guaranteed information-
theoretically secure. One specific example is that of multi-party quantum computation
(MPQC), which includes any cryptographic protocol that allows multiple users to perform
calculations on their combined data without revealing their individual private information.
It is known that MPQC cannot be guaranteed secure by the principles of quantum me-
chanics, due to the fact that MPQC is a specific form of bit commitment, which is not
information theoretically secure [18, 20]. An important field of study is therefore develop-
ing methods of MPQC that have the highest degree of security possible in order to protect
the individual privacies of members of a group.

Because there is no one single way to guarantee security for a multiparty computation
scheme, there are many different possible forms such a scheme can take. This thesis
examines three questions related to usage of a circular structure for MPQC. In the next
section we introduce circular structure in the context of key agreement.
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1.1 Key Agreement and Circular Structure

Key agreement is a cryptographic structure in which multiple parties agree on a key in
such a way that each one of them equally affects the generation of the key [17]. In other
words, if Alice has a key k1, Bob has a key k2, and Charlie has a key k3, the three of them
collaborate to create a key f(k1, k2, k3) which they share [26]. Each party participates
equally in the key generation process in order to ensure fairness. There are four necessary
principles for a key agreement protocol to function successfully [27, 13]:

1. Security – the data must be secure against outside attacks.

2. Privacy – the personal data of each user must not be accessible to other users.

3. Fairness – all users should contribute equally to the generation of the shared key.

4. Correctness – the final shared key should be accurate and function for all users.

There are three main types of structures a key agreement protocol can have [16]. Firstly,
there is the complete graph structure, where each user sends every other user a sequence
containing the information of their personal secret key. Secondly, there is the tree structure,
in which one single user sends data to every other user. Lastly, there is the circular
structure, where each user sends a sequence in turn to the next user. The circular structure
is of the most interest, as it is efficient (each user only has to send/receive a communication
to/from one other user) [16]. Though the tree structure also involves the same number
of transmissions, tree structure is vulnerable to a specific type of attack, the detection
bits chosen attack. Circular structure is not vulnerable to this type of attack, and is also
more fair as each user is sending and receiving and equal amount of information. Circular
structure is thus preferable to tree structure.

In a circular QKA protocol, each user must first generate and encode their own sub-key.
Each user then sends this sub-key to the next user, who will then perform some sort of
function or process on the sub-key, creating a new evolved sequence that the user will then
send to the next user. In this way the data passes around the “circle” of users, changing
and evolving with each user, until it returns to the first user, closing the circle and resulting
in the final evolved key [3, 16].

The circular structure is of interest as the amount of information transmitted from
user to user is small when compared to the other structures, as each user communicates
with just one other user. This keeps circularly structured protocols efficient and easier to
protect against attacks. Circular protocols are therefore a natural fit for MPQC as the
flow of information in these structures is well suited to group computation.
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1.2 Privacy-Preserving Quantum Multi-Party Com-

putation based on Circular Structure

Here we present an example of MPQC based on circular structure. The goal is to focus on
the preservation of the users’ privacy, while still ensuring accurate computational results.
[9]. The protocol is probabilistic; only a subset of the full results is available at the end of
each iteration of the protocol.

1.2.1 Circular MPQC Protocol Steps

In this scenario, there are n users who wish to compute some sort of statistical function f
on their data. Each of the n users holds m statistical data items, indexed as i = 0...m− 1.
Step 1 User 1 has the data set {x1[i]}. Based on this data set they prepare the state

m−1∑
i=1

|i⟩|x1[i]⟩ = |0⟩|x1[0]⟩+ |1⟩|x1[1]⟩+ ...+ |m− 1⟩|x1[m− 1]⟩ (1.1)

which they then send to User 2.
Step 2 User 2 has their personal data set {x2[i]}, which they combine with what they
received from User 1, performing the function f and resulting in the state

m−1∑
i=1

|i⟩|x1[i]⟩|f(x1[i], x2[i])⟩ = |0⟩|x1[0]⟩|f(x1[0], x2[0])⟩+ ...+

|m− 1⟩|x1[m− 1]⟩|f(x1[m− 1], x2[m− 1])⟩
(1.2)

Because User 2 does not know {x1[i]}, they cannot remove it from the state; this protects
both User 1’s private data and the results of the function f . User 2 send this state to User
3.
Steps 3...n-1 Each user repeats these steps in turn; receiving a state from the user before
them, performing the function f , and sending the resulting state to the next user.
Step n User n has the data set {xn[i]}. They perform f on their data and the state they
received from User n− 1, resulting in the state

m−1∑
i=1

|i⟩|x1[i]⟩|f(x1[i], ..., xn[i])⟩ = |0⟩|x1[0]⟩|f(x1[0], ..., xn[0])⟩+ ...+

|m− 1⟩|x1[m− 1]⟩|f(x1[m− 1], ..., xn[m− 1])⟩
(1.3)

3



which they send to User 1.
Step n+1 User 1 receives the state from User n. User 1 can then delete the |x1[i]⟩
information because they know the values, and measure to get the result of the sum for
one of the i = 1...m indices. Figure 1.1 illustrates the form of the protocol and the flow of
information.

1.2.2 Notes on Circular MPQC and Classical MPC

Some restrictions must be placed upon the function f , chiefly that the function must be
a linear one. This may seem strict, but considering the possible uses of this protocol, it
should not prove too burdensome a restriction. For example, in a healthcare situation
perhaps a hospital wishes to know the average/greatest/least/median height and weight of
newborns born in the hospital. Perhaps in a banking scenario the bank wishes to determine
the average/greatest/least/median value stored in chequing and savings accounts. From
these examples we can see that restricting f to be linear should not affect the desired
functionality of the protocol. A further restriction on the protocol, introduced in chapter
3, will be reversibility; we wish for f to be a reversible function.

The probabilistic nature of this protocol means that there is no way to pick which of the
indices is selected for measurement. If User 1 wishes to receive statistics for all m indices,
the protocol must run multiple times. The protocol requires at minimum m iterations to
provide User 1 with the full results.

In general, due to the circular structure, later users have no way of knowing what the
individual personal data of previous users is, protecting all users’ privacy. As previously
mentioned, the circular structure requires a relatively small amount of information to be
transmitted which also improves the security of the scheme.

While multi-party computation can be achieved classically, the quantum process has
some advantages. These advantages come from the nature of quantum states themselves.
The superposition of states that is sent from user to user prevents all the information
being sent from being accessed at the same time. Measuring one data item destroys the
information about the other data items, thus protecting the information from malicious
parties. This cannot be achieved classically, and is thus a quantum tool for data protection.
Quantum superposition is integral to the successfully preserving privacy and forms the
heart of the protocol. In this case, quantum is not being used to make the calculation
faster, as with the quantum speedups seen with Grover’s search or Shor’s algorithm. Here
its used to keep the calculation private.
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Figure 1.1: An example of circular structure, reproduced from [9]. The |x1⟩ between User1
and User2 is analogous to equation 1.1. The |x1⟩|x1 ◦ x2⟩ between User2 and User3 is
analogous to equation 1.2. Finally, the |x1⟩|(x1 ◦x2 ◦ ... ◦xn)⟩ is analogous to equation 1.3.

1.3 Overview of Thesis

This thesis addresses three questions related to circular MPQC.

In chapter 2, we build a quantum circuit to implement circular MPQC. We provide a

5



review of the circuit model for quantum computing, and introduce the software used to
build the circuit. We note that this protocol will require a different circuit depending on
the desired statistical function f ; our circuit executes binary addition. We first build the
circuit for a test case of n = 3 users, m = 2 indices, and p = 1 qubit of data for each user.
We then discuss qubit and gate scaling, and construct a larger circuit of n = 4, m = 3,
and p = 2 to demonstrate the scaling. We assess the feasibility and reasonable efficiency
of this scheme when executed as a circuit.

Chapter 3 addresses security questions related to MPQC. We first examine the security
analysis presented in [9] and note the vulnerabilities already identified there. We then
propose a simple change to the protocol that eliminates these vulnerabilities. We next
examine the security analysis presented in [4] and note that the protocol is still vulnerable
to both malicious action by an eavesdropper and collusive attacks by multiple dishonest
users. We then propose an update to the improvements presented in [4]. Our version adds
authentication, allowing a greater degree of security as users can now verify each other.
This prevents imposters from joining the circle and impersonating valid users.

Finally, Chapter 4 examines how circular MPQC can be adjusted for fully classical
clients and an untrusted quantum server. We introduce blind quantum computing (BQC)
and provide a brief review of some important schemes for BQC. BQC for fully classical
clients is often performed using entangled quantum servers; we note that server entan-
glement is impractical given near-term hardware constraints. We examine a method for
BQC that uses the post-selection loophole to simulate entanglement, and identify inefficien-
cies within this method. We then propose an amendment to the simulated entanglement
method that eliminates the inefficiency.
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Chapter 2

The Quantum Circuit Model and
Circular MPQC

While there are numerous models for quantum computing, the circuit model is a primary
model among them because it is a “universal language for describing sophisticated quan-
tum computations.” [22] Classically, circuits are made up of bits that encode information,
gates that perform operations on the bits, and measurements that extract information
from the bits. Similarly, quantum circuits are made up of qubits that encode quantum
information, quantum gates that perform operations upon the qubits, and measurements
that extract information from the qubits [1, 22]. The circuit model is a useful tool for illus-
trating the performance of a specific protocol and demonstrating the protocol’s feasibility
and efficiency. It allows for quantification of resources necessary to execute a protocol
(through number of gates used or circuit depth) [22]. Thus it is useful to translate from
the theoretical language of a protocol to the more practical language of the circuit model,
as it allows easier visualization of the processes.

Though quantum computers are not yet commercially available, cloud-based software
options allow the construction of virtual quantum circuits. These services can either simu-
late the circuit or delegate it to an actual quantum processor for execution. In this chapter,
we will use such a system to build a quantum circuit for circular MPQC in the specific case
that the statistical function f is binary addition. First we will provide a review of qubits
and quantum gates.
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2.1 Qubits and the Bloch Sphere

As mentioned above, the qubit is analogous to the classical bit. The qubit has two possible
states which can be represented as state vectors:

|0⟩ =
[
1
0

]
|1⟩ =

[
0
1

]
(2.1)

The qubit q can also be in a superposition of these two states, expressed as |q⟩ = α|0⟩+β|1⟩,
where |α|2 represents the probability that the qubit is in state |0⟩ and |β|2 represents the
probability that the qubit is in state |1⟩. α and β can be complex numbers, and |α|2+ |β|2
must be equal to 1, as the total probability of measuring a |0⟩ or a |1⟩ must be 1 [22].
Upon measurement, the superposition collapses and the qubit is either measured as |0⟩ or
|1⟩ [9, 1].

One common qubit representation is the Bloch sphere as it allows graphical visualization
of the single qubit state. In order to use the Bloch sphere we express our qubit in spherical
coordinates. We restrict α and β to the set of real numbers, and establish a term ϕ to
represent the phase between α and β [1]. This gives us

|q⟩ = α|0⟩+ eiϕβ|1⟩ (2.2)

Because |α|2 + |β|2 = 1, we can write α = cos θ
2
and β = sin θ

2
, which allows us to write

|q⟩ = cos
θ

2
|0⟩+ eiϕ sin

θ

2
|1⟩ (2.3)

We can then use spherical coordinates (r, θ, ϕ) to plot the qubit on a graph (as the mag-
nitude of the qubit is 1, we set r = 1). Any single qubit state can thus be plotted on the
surface of a sphere of r = 1 centered around the origin. This sphere is called the Bloch
sphere [1]. A visual representation of the Bloch sphere is presented in Figure 2.1.

2.2 Quantum Gates

A single-qubit quantum gate can be thought of as performing a rotation of the qubit
upon the Bloch sphere. Because these gates represent rotations, they are always reversible
[1]. Single-qubit quantum gates can be represented as 2x2 matrices that act upon the
two-dimensional qubit state vectors. All gates, single- or multi-qubit, must be unitary,

8



Figure 2.1: Representation of a qubit |ψ⟩ on the Bloch sphere. Reproduced from [2]

indicating that their matrices must also be unitary. This means that a matrix U represent-
ing a quantum gate must satisfy the requirement U †U = I, where I is the identity matrix
and U † indicates the adjoint of U found by taking the transpose and then the complex
conjugate of U . Gates must be unitary in order to preserve the normalization of the qubit
or qubits upon which they act [22].

Any 2x2 unitary matrix can represent a valid single-qubit gate; we will present four
commonly used examples here. These are the three Pauli gates (Pauli-X, Pauli-Y, and
Pauli-Z), and the Hadamard gate. The Pauli gates are interesting because they each
represent a rotation around one of the axes of the Bloch sphere, and the Hadamard gate
is interesting because it creates an equal superposition of |0⟩ and |1⟩.

Below is the Pauli-X matrix: [
0 1
1 0

]
The resulting quantum gate that performs this matrix upon a qubit is often called the
NOT gate, as it performs analogously to a classical NOT or bit-flip gate. If we have a
qubit |q⟩ = α|0⟩+ β|1⟩, and perform the operation X|q⟩, the result is X|q⟩ = β|0⟩+ α|1⟩.
In terms of the Bloch sphere, this gate performs a rotation about the x-axis.

Below is the Pauli-Y matrix: [
0 −i
i 0

]
9



The effect of the Y gate is to perform a rotation of the qubit around the y-axis. If we have a
qubit |q⟩ = α|0⟩+β|1⟩, and perform the operation Y |q⟩, the result is Y |q⟩ = −βi|0⟩+αi|1⟩.

Below is the Pauli-Z matrix: [
1 0
0 −1

]
The effect of the Z gate is to perform a rotation of the qubit around the z-axis. If we have
a qubit |q⟩ = α|0⟩+β|1⟩, and perform the operation Z|q⟩, the result is Z|q⟩ = α|0⟩−β|1⟩.

Below is the Hadamard matrix:

1√
2

[
1 1
1 −1

]
The effect of the Hadamard gate upon a qubit is to produce an equal superposition of
computational basis states (in this case |0⟩ and |1⟩). If we have a qubit |q⟩ = α|0⟩+ β|1⟩,
and perform the operation H|q⟩, the result is

H|q⟩ = 1√
2
((α + β)|0⟩+ (α− β)|1⟩) (2.4)

We will now introduce multi-qubit gates. An important two-qubit gate is the controlled-
NOT or CNOT gate. As it acts upon two qubits instead of just one, it is represented by
a 4x4 matrix as opposed to the smaller 2x2 matrices that represent single-qubit gates:

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


The effect of this gate is to perform a NOT gate upon a target qubit if the state of

the control qubit is |1⟩, and to do nothing if the state of the control qubit is |0⟩. This is
analogous to the classical XOR gate. Table 2.1 is the truth table of the CNOT gate.

Finally, a useful three qubit gate is the Toffoli gate, which will be necessary for our
circuit. This gate functions as the CNOT gate except it requires two control qubits. In
this case, a NOT gate is performed on a target qubit if the state of BOTH control qubits
is |1⟩. In all other cases, nothing happens. This gate is represented by a 6x6 matrix, as it
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Input Output
Control Target Control Target

0 0 0 0
0 1 0 1
1 0 1 1
1 1 1 0

Table 2.1: CNOT truth table

acts upon 3 qubits: 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0


Table 2.2 is the truth table for the Toffoli gate:

Input Output
Control Target Control Target

00 0 00 0
00 1 00 1
01 0 01 0
01 1 01 1
10 0 10 0
10 1 10 1
11 0 11 1
11 1 11 0

Table 2.2: Toffoli gate truth table

The above single- and multi-qubit gates will prove more than sufficient to construct
a circuit to demonstrate circular MPQC. Our circuit will only use the Hadamard, NOT,
CNOT, and Toffoli gates.
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2.3 Circuit Construction

Our quantum circuit will be built using IBMQ. This is a cloud-based software that allows
users to construct virtual quantum circuits. These circuits can then be run on a quantum
simulator or (depending on the size of the circuit) delegated to a quantum processor. The
circuit will demonstrate circular MPQC as proposed in [9], where the statistical function
f is binary addition.

2.3.1 Preliminaries

In preparation to construct the circuit we will divide the protocol into three sections.
Breaking down the protocol in this manner allows us to construct the circuit section by
section, simplifying the process. The three sections are as follows:
1. Qubit preparation
2. Computation
3. Results extraction

The computation section is the core of the protocol. This circular MPQC scheme can,
in general, be used to execute any statistical function between multiple users. However in
order to build a circuit, we must pick a specific function to execute. Different statistical
functions will require different circuits. The function used as an example in [9] is binary
addition; this is the function we have chosen to perform as well. The computation portion
will therefore compute the sum of the users’ data values.

2.3.2 Methods of Addition

The 2015 review of existing quantum adders by Orts et al [23] provides an excellent sum-
mary of different methods for quantum addition. Basic addition is carried out by the
half-adder, which sums two binary digits, and the full-adder, which sums three binary dig-
its. A full-adder can be constructed out of three half-adders, though this is not the optimal
method. Some examples of more efficient full-adder circuits are presented in [8, 25].

Ripple-carry and carry-look-ahead adders are the two main ways used to add two (or
more) n-bit numbers together. In terms of computational cost, ripple-carry adders are the
most efficient way to add n-bit numbers together, and can be constructed using a series of
full adders [23].
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Reviewing the different principles for quantum addition give an overview of how the
computation in our circuit will function. The requirements of the protocol necessitate some
ingenuity in regards to how these principles are applied. The protocol necessitates a rolling
sum where each user applies the function individually. We are thus not implementing a
single large adder that finds the total in one step. Instead each user will require their own
small adder to add their own qubits of data to the cumulative total.

2.3.3 Base Case Circuit Construction

We first wish to construct a circuit to illustrate the base case of the protocol. The protocol
as described in section 1.2.1 has three main variables that will affect the size of the circuit.
These are the number of users n, number of indices m, and size of data p. n = 3 is the
minimum n that allows proper execution of the circular structure. We will call our three
users Alice, Bob, and Charlie. The minimum m required to illustrate the probabilistic
nature of the protocol is two. The index i will thus range from 0 − (m − 1). We will call
the index i = 0 “height” and the index i = 1 “weight”. Finally the minimum data size
p is one qubit. Therefore each user will have two total qubits of data, one corresponding
to i = 0, or height, and one corresponding to i = 1, or weight. Figure 2.2 displays the
circuit. Outlined in blue is qubit preparation. Outlined in orange is the second section,
computation. Finally, outlined in green is the final section, results extraction.

2.3.4 Explanation of Qubits and Gates

Each qubit in the circuit has a specific role. Q[0] is the index or label qubit; when q[0] = 0
this indicates i = 0 or height and when q[0] = 1 this indicates i = 1 or weight. Q[11] and
q[12] are the measurement qubits, used to extract the results associated with either i = 0
or i = 1. The roles of the other qubits are detailed in Table 2.3.

The gates outlined in blue initialize the qubits. A Hadamard gate is applied to the
label qubit. This creates an equal superposition of |0⟩ and |1⟩, resulting in an equal chance
of measuring i = 0 or i = 1. The X or NOT gates initialize the values of the data qubits.
In this case, the values for Alice’s height, Alice’s weight, and Charlie’s weight are equal
to 1. The other data values are all 0. The series of CNOT and Toffoli gates outlined
in orange form the adder and store the height results in q[7]-q[8] and the weight results
in q[9]-q[10]. Finally, the gates outlined in green extract the results. In order to obtain
a result corresponding to a random index data type, the label qubit is measured. If the
result is |0⟩, indicating height, the data from q[7] and q[8] is transferred to q[11] and q[12],
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Figure 2.2: Base case circuit when n = 3, m = 2, p = 1 and the function f is binary
addition

which are then measured. If the data qubit is |1⟩, indicating weight, the data from q[9]
and q[10] is transferred to q[11] and q[12] for measurement.
The expected performance will return index i = 0 and index i = 1 with equal probability.
In the example circuit above, the result for i = 0 or height should be |01⟩, and the result
for i = 1 or weight should be |10⟩.

Results for these data values can be found in Figure 2.3. The least significant bit (LSB)
is the result of the label qubit’s measurement, and the middle bit and most significant bit
(MSB) is the result of the calculation. The left bar represents i = 0 or height, and the
right bar represents i = 1 or weight. We can see that the left column has a result of 01
in its middle and MSB, and the right column has a result of 10. Thus the circuit has
performed the addition calculation as expected. We also wish to ensure that the circuit is
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Qubit Roles

Index or
Category

Data
Results

Alice Bob Charlie

0 q[1] q[3] q[5] q[7], q[8]

1 q[2] q[4] q[6] q[9], q[10]

Table 2.3: Qubit Roles in Base Circuit

Figure 2.3: Results from example circuit

properly returning results for i = 0 and i = 1 with equal probability. It should return a
measurement of LSB = i = 0 half the time and a measurement of LSB = i = 1 half the
time. We observe that the probability of measuring i = 0 is 49.231% and the probability
of measuring i = 1 is 50.769%, which corresponds to the desired result.

Further results for this circuit can be found in Appendix B.

2.3.5 Flow of Information

The qubits that must be transmitted from user to user as part of the computation are
q[1]-q[2] and q[7]-q[10]. q[3] and q[4] remain in Bob’s possession, q[5] and q[6] remain in
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Charlie’s possession. Alice retains the label q[0], and the measurement qubits q[11] and
q[12].

Alice begins the protocol in possession of q[0] (label), q[1]-q[2] (her personal data), q[7]-
q[8] (height result qubits), q[9]-q[10] (weight result qubits), and q[11]-q[12] (measurement
qubits). She initializes her data as necessary using CNOT gates. She then performs the
Hadamard gate on q[0] to initialize the label qubit. She then performs two CNOT gates,
with her data qubits as the controls and q[7] and q[9] as the targets. This adds her data
to the result qubits. Alice then sends q[7]-q[10] to Bob.

Upon receipt of q[7]-q[10], Bob performs a series of CNOT and Toffoli gates that add
the information from his qubits (q[3] and q[4]) to q[7]-q[10]. He thereafter sends q[7]-q[10]
to Charlie, who also performs a series of CNOT and Toffoli gates to add the information
from his qubits (q[5] and q[6]) to q[7]-q[10]. Finally, Charlie sends q[7]-q[10] back to Alice.

Alice then measures the label qubit. If the measurement returns a 0, Alice uses CNOT
gates to transfer the information from q[7]-q[8] to q[11]-q[12] for measurement. Similarly,
if the measurement of the label qubit returns a 1, she uses CNOT gates to transfer the
information from q[9]-q[10] to q[11]-q[12] for measurement. In the former case, she now
has the results of the calculation for label 0, or height, and in the latter case she has the
results of the calculation for label 1, or weight.

If working with a software that allows conditional measurements, the final step could be
simplified. It would be more efficient to measure q[0] and based on the result subsequently
measure the appropriate results qubits directly. However, the method as described above
accommodates the case where direct conditional measurements are not possible.

2.4 Scaling

There are three main variables that influence the number of gates and qubits needed. These
are number of users n, number of indices m, and size of data p qubits.

2.4.1 Qubit scaling

There are four different roles a qubit can fulfill in this circuit. The label qubits differentiate
between them indices. Data qubits encode each user’s individual data values. Result qubits
contain the rolling results of the statistical function f (in our circuit, binary addition).
Measurement qubits receive the result from one index when the calculation is finished and
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are then measured. Each of these types scales differently with the three variables mentioned
above.

Label qubits are used as a binary representation of the number of data categories. The
number of users n and the data size p do not affect the number of label qubits necessary.

The amount of label qubits depends entirely on m, the number of indices, and is equal
to log2(m)+ 1, rounded down to the nearest integer. This represents the number of qubits
necessary to represent the total value of m in binary.

Note that depending on the number of indices, some values of the label qubit produce
an invalid result. For example, for m = 3 one requires two label qubits, q0 and q1. The
values q0q1 = 00, 01, 10 indicate valid results, and q0q1 = 11 indicates an invalid result
because this value of m does not exist. This does not impact the efficiency of the circuit
because there is no data associated with the invalid result of m, and thus no gates or
computations associated with it either. Qubit scaling is positively affected because it takes
fewer qubits to represent a number in binary than it would to represent the same number
in decimal.

Data qubits are the binary representation of each user’s data values, and thus the
total number of data qubits required depends on all three variables. The circuit requires
n ·m · p data qubits; the number of users times the number of indices times the size of the
data.

Result qubits encode the rolling result of the calculation and are passed from user
to user. In the base case circuit, we simply require enough result qubits to store the total
sum of all data values for a particular index. However for any larger case we will also
require ancillary qubits to act as “carries” to aid in the binary addition calculation. This
will become apparent in section 2.5 when we introduce a scaled up version of the circuit.

Because the maximum value of a qubit is 1, we require enough results qubits to be able
to represent n ·m · p in binary, or m · (log2(n · p) + 1) rounded down to the nearest integer.

We also require (log2(n · p) − 1) ancillary qubits. For efficiency, the carry qubits are
reset to 0 after each use and are then reused multiple times throughout the circuit.

Measurement qubits encode the final result of the sum of one data category. Thus
we require (log2(n · p) + 1) rounded down to the nearest integer measurement qubits.

Having considered all four types of qubits, we now combine the results to create an
equation for the total number of qubits necessary for n users, m indices, and p data size:

(log2(m) + 1) + n ·m · p+m · (log2(n · p) + 1) + (log2(n · p)− 1) + (log2(n · p) + 1) (2.5)

17



with all logarithmic terms rounded down to the next integer. Note that m is the only term
to appear twice outside of a logarithm; p and n only appear outside of a logarithm once
each. This indicates that the number of indices has the greatest effect on the number of
qubits necessary. This is a polynomial growth model (as opposed to undesirable exponential
growth) indicating reasonable qubit efficiency.

2.4.2 Gate Scaling

The number of gates necessary depends upon the number of qubits. Let l be the number
of label qubits, d the number of data qubits, r1 the number of result qubits and r2 the
number of ancillary qubits, and s the number of measurement qubits. Let n remain the
number of users, m remain the number of indices, and p remain the size of the data in
qubits.

In the initialization portion of the circuit, each label qubit requires a Hadamard gate,
and each data qubit potentially needs a NOT gate in order to represent the correct data
values. Thus the initialization section requires l + d gates at maximum.

The addition section requires a CNOT or Toffoli gate from each data qubit to each
possible result qubit. We thus require at maximum

n · p · r1 (2.6)

gates for binary addition. Note that this is an upper bound, not the actual number of
gates required. The true number of gates required will be less than this as users early in
the circle require fewer gates than users later in the circle. This equation assumes users
require gates to connect their data qubits for an index to all the results qubits for that
index. However, users early in the circle do not need to be connected to all the results
qubits. The maximum sum early in the circle does not require the whole amount of results
qubits to represent the result of the sum in binary and thus fewer gates will be required
for User 1 than for User 2, for example. As the base case circuit does not require ancillary
qubits and thus does not require ancillary gates for the computation, we leave a discussion
of ancillary gates to section 2.5.

For the results portion, each result qubit needs a CNOT gate to the corresponding
measurement qubit, meaning we require m · s gates to extract the result (note that only s
of those gates are ever used per pass). Finally, we require l + s measurements.

The total number of gates apparently necessary at maximum is thus

(l + d) + (n · p · r1) + (m · s) + (l + s) (2.7)
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Figure 2.4: Scaled up circuit when n = 4, m = 3, p = 2, and the function f is binary
addition

This remains a polynomial gate scaling model. In the next section, we present a scaled up
circuit illustrating qubit and gate scaling. We will also discuss the scaling of the ancillary
gates required for the computation.

2.5 Scaled Up Circuit

To illustrate these principles of gate and qubit scaling, we built a larger circuit, with each
variable increased by one. The circuit can be seen in Figure 2.4. This version is constructed
for n = 4 users (Alice, Bob, Charlie, and David), m = 3 indices (category 0, category 1,
and category 2), and p = 2 qubits. Results for this circuit are presented in Appendix B.

We now require two label qubits, a total of twelve result qubits, four measurement
qubits, and twenty-four total data qubits (six data qubits per user). We also now require
two ancilla qubits to carry out the computation. Q[0] and q[1] are the label qubits, q[38]-
q[39] are the ancilla qubits, and q[40]-q[43] are the measurement qubits. The roles of the
other qubits are detailed in Table 2.4. In total we require 44 qubits, which can be confirmed
by evaluating Equation 2.5 for m = 3, q = 2, and n = 4.
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(log2(m) + 1) + n ·m · p+m · (log2(n · p) + 1) + (log2(n · p)− 1) + (log2(n · p) + 1)

= (log2(3) + 1) + 4 · 3 · 2 + 3 · (log2(4 · 2) + 1) + (log2(4 · 2)− 1) + (log2(4 · 2) + 1)

= 2 + 24 + 12 + 2 + 4

= 44

(2.8)

Qubit Roles

Category
Data

Results
Alice Bob Charlie David

0 q[2], q[3] q[8], q[9] q[14], q[15] q[20], q[21] q[26]-q[29]

1 q[4], q[5] q[10], q[11] q[16], q[17] q[22], q[23] q[30]-q[33]

2 q[6], q[7] q[12], q[13] q[18], q[19] q[24], q[25] q[34]-q[37]

Table 2.4: Qubit Roles in Expanded Circuit

We must now address the gate scaling for the ancillary qubits. The number of gates
required increases with each results qubit. Requiring a third result qubit necessitates one
ancilla gate each time the third result qubit is used; the fourth result qubit requires two
ancilla gates each time it is used, and so on. The gates necessary at maximum to properly
carry digits are equal to

m · n · (r1
m

− 2) (2.9)

This is again an upper bound and not an exact amount, for the same reason as was
discussed in section 2.4.2.

The newly corrected gate scaling equation is thus

(l + d) + (n · p · r1) + (m · s) + (l + s) +m · n · (r1
m

− 2) (2.10)

We can confirm this gate upper-bound equation by calculating the upper bound for the
expanded circuit. We use l = 2, d = 18, s = 4 and r1 = 12, with m = 3, p = 2, and n = 4.
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(2 + 18) + (4 · 2 · 12) + (3 · 4) + (2 + 4) + 3 · 4 · (12
3

− 2)

= 20 + 96 + 12 + 6 + 24

= 158

(2.11)

Counting the gates of the expanded circuit (when all data qubits are set to 1, requiring
the maximum number of initialization gates) reveals 119 gates. Thus the upper bound
holds.

This remains a polynomial growth model, indicating that this method can be used to
execute circular MPQC with relative efficiency when the function f is binary addition.

2.6 Conclusions

In this chapter, we have built a circuit to illustrate the execution of circular MPQC, when
the computation in question is binary addition as in [9]. We have reviewed the circuit
model and outlined the steps taken to construct the circuit. We have first presented a
base case circuit for the minimum number of users, indices, and data values. We then
discussed the qubit and gate scaling of the scheme as related to the base case. To further
demonstrate the scaling, we constructed a circuit for increased numbers of users, indices,
and data values. We then re-evaluated our scaling and determined that the overall scaling
for both number of qubits and number of gates follows a polynomial growth model. We
leave a more complete efficiency analysis and possible improvements to future work. Also
left for future work is determining whether or not this method of addition is optimal.

As previously mentioned, this circular MPQC protocol could be used for other statis-
tical functions. Some examples of possible alternative applications are finding the mean,
finding the maximum value, or finding the minimum value. However, the protocol requires
a different circuit for each different statistical function. Thus our circuit presented here
is useful solely for calculating binary addition. Future work is necessary to extend the
circuit representation to alternate statistical functions. Though the computation section
represents the largest section of the circuit, the overall structure of the circuit (initializa-
tion, computation, results extraction) will remain the same no matter what function is
being calculated. Thus we are able to replace the computation portion of the circuit with
whatever series of gates necessary to compute any desired function, without necessitating
rebuilding the whole circuit from the beginning.
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Chapter 3

Security Model

The security analysis of a quantum cryptographic protocol is incredibly important. The
security analysis demonstrates the strengths and weaknesses of a protocol. The process of
creating the security analysis can also assist in identifying security loopholes that may be
present in the protocol.

A complete security analysis considers as many different types of attacks as possible.
Broadly these attacks can be split into two types: inside attacks and outside attacks.
Inside attacks are those actions performed by one or more malicious users of the protocol.
Outside attacks are actions performed by malicious outside parties (eavesdroppers).

The first step to proving the security of a protocol is to consider its behaviour when
performed on ideal devices and channels. This is what we will examine in this chapter. We
will start with the security analysis of circular PQMC provided in [9]. After identifying
the loopholes specified in their analysis, we suggest a possible improvement to close those
loopholes. We note that our improvement does not serve to eliminate the possibility of
collusive attack as described in [4]. We then build upon the work presented in [4] to further
improve the security of the protocol.

3.1 Original Security Analysis

The analysis provided in [9] only considers one type of attack from a single malicious user.
The authors present two theorems:

Theorem 1.If User 2 is malicious, he/she can only get max logi |x1[i]| bits of User 1’s
data at most. [9]
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Theorem 2.If User i is malicious, he/she can only get max logi |x1[i]| bits of User 1’s
data and log |f | bits about the function f(x1[r], x2[r], ..., xi−1[r]) at most, where |f | means
the domain size of the function f . [9]

These theorems are proven using the Holevo bound, which gives an upper bound on
the accessible information [22]. For the full proof the reader is directed to [9].

There are two main problems with this analysis. The first problem is that the analysis
is too limited in scope. This analysis only considers one type of inside attack from a single
malicious user. In order to complete the analysis we will consider collusive attacks between
multiple malicious users. We will also consider the effect of outside attacks on the protocol.
The second problem is identified in the analysis itself. The two theorems indicate that it is
possible for a malicious user to steal logi |x1[i]| bits of User 1’s data and log |f | bits of data
regarding the result of the statistical function f . This is a major vulnerability. Despite
the limits placed on how much data can be stolen, it is still undesirable for any amount of
data to be leaked to a malicious party.

In the following section we address this second problem.

3.2 MPQC with Random Data

A very simple way to eliminate the vulnerability of User 1’s data is for User 1 to send
random data values to User 2 to start the protocol. User 1 can then remove the random
data at the end of the protocol and replace it with their own genuine data to obtain the
correct result. This small change also provides greater protection against eavesdroppers.

3.2.1 Example

We assume n = 3, Alice, Bob, and Charlie, and m = 2 indices. Users want to keep their
personal data private, but they wish to compute a statistical function f on their data. In
this example they wish to compute the binary sum of their data items.
Step 1 Alice has data xa[i] but she starts the protocol by generating random values xr[i]

m−1∑
i=1

|i⟩|xr[i]⟩ = |0⟩|xr[0]⟩+ |1⟩|xr[1]⟩ (3.1)

She sends this state to Bob.
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Step 2 Upon receipt of this state, Bob adds his own data xb[i], resulting in the state

m−1∑
i=1

|i⟩|xr[i]⟩|xr[i] + xb[i]⟩ = |0⟩|xr[0]⟩|xr[0] + xb[0]⟩+ |1⟩|xr[1]⟩|xr[1] + xb[1]⟩ (3.2)

Bob sends this state to Charlie.

Step 3 Charlie adds in his data xc[i], resulting in the state

m−1∑
i=1

|i⟩|xr[i]⟩|xr[i] + xb[i] + xc[i]⟩ =

|0⟩|xr[0]⟩|xr[0] + xb[0] + xc[0]⟩+ |1⟩|xr[1]⟩|xr[1] + xb[1] + xc[1]⟩
(3.3)

Charlie sends this state to Alice, completing the circle.

Step 4 Alice now has the final state. She measures to receive the total sum of data
corresponding to either index 0 or index 1. The result of the measurement will be xr[i] +
xb[i] + xc[i]. However, she knows that this sum is incorrect because it contains the xr[i]
value instead of her true xa[i] data. Alice can subtract xr[i] from the result, and replace it
with xa[i], giving her the correct sum of xa[i] + xb[i] + xc[i].

3.2.2 General Case

Suppose there are n users (n=1, 2, 3,...,n), each with m indices ranging from i = 0...m−1.
They wish to compute a statistical function f upon their data without compromising their
individual privacy.

Step 1 User 1 has their own data values x1[i] but prepares random data values xr[i]
instead, and then forms the state

m−1∑
i=1

|i⟩|xr[i]⟩ = |0⟩|xr[0]⟩+ |1⟩|xr[1]⟩+ ...+ |m− 1⟩|xr[m− 1]⟩ (3.4)

User 1 sends this state to User 2

Step 2 User 2 adds their data x2[i] into the state and performs the function f , resulting
in the state

m−1∑
i=1

|i⟩|xr[i]⟩|f(xr[i], x2[i])⟩ (3.5)
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User 2 sends this state to User 3.

Step 3 User 3 performs the same steps as User 2, sending the state on to User 4 when
finished.

Steps 4-n In general, User j receives this state from User j − 1:

m−1∑
i=1

|i⟩|xr[i]⟩|f(xr[i], x2[i], ..., xj−1[i])⟩ (3.6)

User j adds their data xj[i] and sends the state to User j + 1:

m−1∑
i=1

|i⟩|xr[i]⟩|f(xr[i], x2[i], ..., xj−1[i], xj[i])⟩ (3.7)

This process continues for each user until User n receives the state from User n− 1:

m−1∑
i=1

|i⟩|xr[i]⟩|f(xr[i], x2[i], ..., xn−1[i])⟩ (3.8)

User n adds their data xn[i] and sends the resulting state back to User 1.

m−1∑
i=1

|i⟩|xr[i]⟩|f(xr[i], x2[i], ..., xn[i])⟩ (3.9)

Step n+1 Upon receipt of the state, User 1 measures a random index to get the
associated result of the function f . However, User 1 knows that the result is not correct
because it contains xr[i] instead of x1[i]. As long as f is a reversible function, User 1 can
remove xr[i] and replace it with x1[i], giving them the correct result.

3.2.3 Discussion

In the original protocol presented in section 1.2.1, User 1 would encode their true private
data as part of the state. A malicious user could measure and obtain User 1’s private infor-
mation. In our updated protocol, if a malicious user measures they only obtain whatever
random data User 1 has sent. This protects User 1’s privacy.

Also in the original protocol, a malicious user could also measure and receive the result
of the function f up to that point in the circle. In our updated protocol, measuring a
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random data index will give a malicious user, and an incorrect result for f because it
contains the random data inserted by User 1.

It should be noted that when a malicious user measures a random index it destroys the
state. This destroys the information about the data categories that were not measured. In
order for the malicious user’s actions to remain undetected they must recreate the state
they received before sending it on to the next user. The malicious user can estimate what
the maximum value of the function f to that point should be and then prepare a new state
that is less than that value. However it is possible that they will recreate a state that
is visibly too large. This will be a sign to User 1 at the end of the protocol that a user
behaved maliciously. If this is the case, User 1 must declare the result invalid and restart
the protocol.

We now establish a theorem in comparison to the theorems presented in [9]. We as-
sume that a malicious user desires to access any private data of individual user(s) and/or
information about the results of the function f . Malicious users have the same capabili-
ties of honest users; they can send/receive qubits, perform single/double qubit operations,
perform qubit measurements, and store qubits.

Theorem 1: If User i is malicious, they can get no information about User 1’s data,
and whatever result they measure for f will be incorrect up to a factor determined by the
size of data p.
Proof: No information can be gained about User 1’s data since it is never shared. For the
second part, if a malicious user measures the result of f , this result is incorrect because it
contains random data, not User 1’s correct data values. The amount by which the result
will differ from the correct result depends on the number of qubits p and the function f .
The number of qubits p necessary to represent User 1’s data (in other words, the maximum
value of User 1’s random data), will relate to the maximum amount by which the function
f can be incorrect, depending on the nature of the function. For example, if the function
f is binary addition, the maximum amount that the function will be incorrect is ±(2p−1).

It is evident that this change has closed the previously identified loophole that caused
User 1’s data to be vulnerable. Depending on the size of the random data User 1 inserts,
malicious users that are later in the circle could have more ability to determine the correct
value for f . As the circle progresses, the random data takes up a proportionally smaller role
in the result of f , giving later users more information about the overall result. This problem
can be mitigated by User 1 generating a larger random data value that is comparable in
size to the final result.

We now return to the other problem we identified with the original security analysis;
there are more kinds of attack that have not been considered. What if the malicious party
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is an outside third party; an eavesdropper? There are no protections in this protocol
against eavesdropping, so an outside party can perform actions such as the intercept-and-
resend attack, entangle-and-measure attack, or measure-resend attack. The improvement
prevents the outside attacker from gaining any information about User 1’s data or about
the correct result of the function. However, an outside attacker can still attack by, for
example, inserting incorrect information into the messages being shared between users.
Even though the outside attacker is unable to gain valid information, they can still tamper
with the results. The protocol has no eavesdropping checks, meaning there is no way for
valid users to discover an eavesdropper. This causes the protocol to still be vulnerable to
outside attack.

We have also not considered collusive attacks. An example of a collusive attack is given
in the 2021 work by Abulkasim et al [4]. For example, assume that User 2 and User 4
are malicious, while User 3 is honest. User 2 prepares a “fake” quantum state and sends
it to User 3 instead of sending the true state. User 2 also shares the fake quantum state
with User 4. User 3 honestly performs the calculation as expected, and sends the evolved
quantum state to User 3. The malicious User 4 now possesses the “fake” state and the
state that User 3 performed an honest computation upon. User 4 can easily recover User
3’s private information by comparing the states they received from User 2 and User 3 and
extrapolating User 3’s information from the difference.

This collusive attack is still possible in the new protocol; the addition of random data
for User 1 does nothing to prevent such an attack. It should be noted that this collusive
attack only works when the multiple malicious users are in the proper positions in the
circle. It requires there be a single honest user between the malicious users. For example,
if user 2 and 5 are malicious, and users 3 and 4 are honest, this attack only gives the
malicious users at best information about the f of user 3 and 4’s data; not the actual
private data of either user. However if user 2 and 4 are malicious and user 3 is honest, the
attack can successfully identify user 3’s private data to the malicious parties.

3.3 MPQC with Third Party

The above discussion demonstrates that though the improvement we made closed the orig-
inal loopholes, it still does not fully protect against outside attacks or collusive inside
attacks. A further improvement to the protocol is suggested in the next section. This
improvement builds upon the work done in [4], making use of a semi-trusted third party
to eliminate the possibility of collusive attacks. The presence of the third party allows all
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data to be encrypted, thus rendering any information gained by malicious parties function-
ally useless. Furthermore, the suggested improvement below also authenticates all parties
involved in the protocol, allowing an even greater level of security.

3.3.1 Two Party Case

Assume two users, Alice and Bob, with two private data sets x[i] and y[i], respectively,
where i = 0, 1, ...,m − 1 and m refers to the data categories. The two users want to
execute some secure computation (e.g., summation) on their private data x[i] and y[i]
using a quantum function f . A semi-honest third party (STP) is used to help participants
complete computation on the private data successfully. The STP pre-shares two encryption
keys, ka[i] and kb[i], with Alice and Bob, respectively, using QKD [6, 14]. The STP also
pre-shares kauth with both Alice and Bob. kauth will be used to determine the initial and
measurement bases of the decoy qubits with sufficient length. The STP uses a quantum
direct secure communication protocol [19] to pre-share kauth, which will also be employed
in the authentication process.

A robust quantum private secure computation protocol should satisfy the following
requirements:

· Security: the private inputs of participants cannot be leaked out to eavesdroppers
without being caught.

· Privacy: the private information of participants must be protected.

· Correctness: the proposed protocol must guarantee the correctness of the computa-
tional result.

Assumptions:

· The third party is semi-honest, which means that they can execute the steps of the
protocol correctly but wants to acquire the private data of the participants. The STP is
not allowed to conspire with any dishonest participants.

· The final result of the computation can be publicly announced.

· The quantum channels are optimal.

The detailed steps of the proposed protocol can be described as follows:

Step 1 STP generates a random data set z[i], and from that data set generates the
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quantum state |z[i]⟩ where

|z[i]⟩ =
m∑
i=0

|0⟩|z[0]⟩+ |1⟩|z[1]⟩+ ...+ |m− 1⟩|z[m− 1]⟩ (3.10)

STP then generates m decoy states selected randomly from one of the four quantum states
|0⟩, |1⟩, |+⟩ = 1√

2
(|0⟩+ |1⟩), and |−⟩ = 1√

2
(|0⟩ − |1⟩). STP inserts the decoys into |z[i]⟩ at

random positions, creating the set of states |zd[i]⟩. STP then sends |zd[i]⟩ to Alice.

Step 2 Checking eavesdropping and authentication After receiving the quantum
states from STP, Alice sends a confirmation to STP and asks him to announce the posi-
tions of the decoy qubits. Alice measures the decoys according to the measurement bases
indicated in the authentication key (kauth) she received from STP. She publicly announces
the measurement outcomes of decoy qubits to STP. STP and Alice compare the measure-
ment outcomes with the initial bases to compute the error ratio. If the error ratio exceeds
a predefined threshold value they end the protocol and try again. If the error ratio is small
enough, STP and Alice believe that the quantum channel is secure against eavesdroppers.
Since only legitimate users have kauth, STP authenticates Alice after making sure that the
error rate is less than a predefined value. Finally, Alice discards the decoys and continues
with the protocol.

Step 3 Alice uses the random key TP sent her (ka[i]) to encrypt her data by summing
each component of ka[i] with her data x[i], getting the data set xka [i]. Once her data is
encrypted, she generates the state

|xka [i]⟩ =
m∑
i=0

|0⟩|xka [0]⟩+ |1⟩|xka [1]⟩+ ...+ |m− 1⟩|xka [m− 1]⟩ (3.11)

She then performs the function f on |xka [i]⟩ and the state |z[i]⟩ she received from STP,
getting the state

|f(xka [i], z[i])⟩ =
m∑
i=0

|0⟩|f(xka [0], z[0)]⟩+|1⟩|f(xka [1], z[1])⟩+...+|m−1⟩|f(xka [m−1], z[m−1])⟩

(3.12)
Just as STP did, Alice generates m decoy states and inserts them into |f(xka [i], z[i])⟩ at
random positions, resulting in the state |fd(xka [i], z[i])⟩. She then sends this state to Bob.

Step 4 Bob and Alice repeats step 2 with the state Alice sent to Bob. After they make
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sure that the communication channel is secure, Bob authenticates Alice and discards the
decoy qubits getting |f(xka [i], z[i])⟩

Step 5 Bob encrypts his data in the same way that Alice did, resulting in the state

|ykb [i]⟩ =
m∑
i=0

|0⟩||ykb [0]⟩+ |1⟩||ykb [1]⟩+ ...+ |m− 1⟩||ykb [m− 1]⟩ (3.13)

He performs the function f on his data and the data he received from Alice, resulting in
the set of states

f(xka [i], ykb [i], z[i])⟩ =
m∑
i=0

|0⟩|f(xka [0], ykb [0], z[0)]⟩+ |1⟩|f(xka [1], ykb [1], z[1])⟩+ ...+

|m− 1⟩|f(xka [m− 1], ykb [m− 1], z[m− 1])⟩
(3.14)

He generates m decoy states and inserts them at random positions, resulting in the state
|fd(xka [i], ykb [i], z[i])⟩, which he then sends to the STP.

Step 6 STP repeats step 2 with the state they received from Bob. After they make
sure that the communication channel is secure,STP authenticates Bob and discards the
decoy qubits getting |f(xka [i], ykb [i], z[i])⟩

Step 7 STP now has the final set of states, |f(xka [i], ykb [i], z[i])⟩. STP measures to get the
final result. These values are of course not the correct solution to the function f because
Alice and Bob’s data values were encrypted, and STP included random data values at
the beginning.. TP must remove the encryption by subtracting ka[i], kb[i], and z[i] from
f(xka [i], ykb [i], z[i]), resulting in

f(x[i], y[i]) = f(x[0], y[0]), f(x[1], y[1]), ..., f(x[m− 1], y[m− 1]) (3.15)

which is the desired result. STP can then announce the result to Alice and Bob.

3.3.2 General Multi-Party Case

Assume n users with data sets x1[i], x2[i], ..., xn[i], where i ranges from 0 to m − 1 and
indicates the number of items in each data set. The users wish to execute some secure
computation using a quantum function f . A semi-honest third party (STP) is used to help
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participants complete computation on the private data successfully. The STP pre-shares n
encryption keys kx1 [i], kx2 [i], ..., kxn [i] with each user respectively, using QKD [6, 14]. The
STP also pre-shares kauth with all n users. kauth will be used to determine the initial and
measurement bases of the decoy qubits with sufficient length. The STP uses a quantum
direct secure communication protocol [19] to pre-share kauth, which will also be employed
in the authentication process.

Step 1 STP generates a random data set z[i], and from that data set generates the
quantum state |z[i]⟩ where

z[i]⟩ =
m∑
i=0

|0⟩|z[0]⟩+ |1⟩|z[1]⟩+ ...+ |m− 1⟩|z[m− 1]⟩ (3.16)

STP then generates m decoy states selected randomly from one of the four quantum states
|0⟩, |1⟩, |+⟩ = 1√

2
(|0⟩+ |1⟩), and |−⟩ = 1√

2
(|0⟩ − |1⟩). STP inserts the decoys into |z[i]⟩ at

random positions, creating the set of states |zd[i]⟩. STP then sends |zd[i]⟩ to User 1.

Step 2 Checking eavesdropping and authentication After receiving the quantum
states from STP, User 1 sends a confirmation to STP and asks them to announce the
positions of the decoy qubits. User 1 measures the decoys according to the measurement
bases indicated in the authentication key kauth she received from STP. They publicly an-
nounce the measurement outcomes of the decoy qubits to STP. STP and User 1 compare
the measurement outcomes with the initial bases to compute the error ratio. If the error
ratio exceeds a predefined threshold value they end the protocol and try again. If the error
ratio is small enough, STP and User 1 believe that the quantum channel is secure against
eavesdroppers. Since only legitimate users have kauth, STP is able to authenticate User 1
after making sure that the error rate is less than the threshold value. User 1 discards the
decoys, and continues with the protocol.
Step 3 User 1 uses the random key TP sent them (kx1 [i]) to encrypt their data by summing
each component of kx1 [i] with their data x1[i], getting the data set xk1 [i]. Once their data
is encrypted, they generate the quantum state

|xk1 [i]⟩ =
m∑
i=0

|0⟩|xk1 [0]⟩+ |1⟩|xk1 [1]⟩+ ...+ |m− 1⟩|xk1 [m− 1]⟩ (3.17)
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They then perform the function f on |xk1 [i]⟩ and the state |z[i]⟩ they received from STP,
getting the state

|f(xk1 [i], z[i])⟩ =
m∑
i=0

|0⟩|f(xk1 [0], z[0)]⟩+|1⟩|f(xk1 [1], z[1])⟩+...+|m−1⟩|f(xk1 [m−1], z[m−1])⟩

(3.18)
User 1 generates m decoy states and inserts them into |f(xk1 [i], z[i])⟩ at random positions,
resulting in the state |fd(xk1 [i], z[i])⟩. They then send this set of states to User 2.

Step 4 User 2 repeats step 2 with the state they received from User 1. After ensur-
ing that the communication channel is secure, User 2 authenticates User 1 and discards
the decoy qubits, getting |f(xk1 [i], z[i])⟩

Step 5 User 2 encrypts their data in the same way that User 1 did, resulting in the
state |xk2 [i]⟩. They performs the function f on their data and the data they received from
User 1, resulting in the state

f(xka [i], xk2 [i], z[i])⟩ =
m∑
i=0

|0⟩|f(xk1 [0], xk2 [0], z[0)]⟩+ |1⟩|f(xk1 [1], xk2 [1], z[1])⟩+ ...+

|m− 1⟩|f(xk1 [m− 1], xk2 [m− 1], z[m− 1])⟩
(3.19)

They generate m decoy states and insert them at random positions, resulting in the state
|fd(xk1 [i], xk2 [i], z[i])⟩, which they then send to User 3.
Steps 6...2n+1 Each user repeats steps 2 and 3, ensuring the communication channel
is secure, authenticating the user before them, encrypting their data, performing function
f on their own encrypted data and the state they just received, generating and inserting
decoys, then sending the new set of states to the next user, with User n sending the final
set to STP.

Step 2n+2 STP repeats step 2 with the set of states they received from User n. Af-
ter ensuring that the communication channel is secure, STP authenticates User n and
discards the decoy qubits, getting |f(xk1 [i], xk2 [i], ..., xkn [i], z[i])⟩
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Step 2n+3 STP now has the state

|f(xk1 [i], xk2 [i], ..., xkn [i], z[i])⟩ =
m∑
i=0

|0⟩|f(xk1 [0], xk2 [0], ..., xkn [0], z[0)]⟩+

|1⟩|f(xk1 [1], xk2 [1], ..., xkn [1], z[1])⟩+ ...+

|m− 1⟩|f(xk1 [m− 1], xk2 [m− 1], ..., xkn [m− 1], z[m− 1])⟩

(3.20)

STP measures to receive the result of the calculation, f(xk1 [i], xk2 [i], ..., xkn [i], z[i]). These
values are of course not the correct solution to the function f because the users’ data
values were encrypted, and STP included random data values at the beginning. STP must
remove the encryption by subtracting all kn[i] and z[i] with the set of states, resulting in

f(x1[i], x2[i], ..., xn[i]) = f(x1[0], x2[0], ..., xn[0]), f(x1[1], x2[1], ..., xn[1]), ...,

f(x1[m− 1], x2[m− 1], ..., xn[m− 1])
(3.21)

which is the desired result. STP can then announce the result to the users.

3.3.3 Illustrative Example

Consider three users, Alice, Bob, and Charlie, as well as a semi-trusted third party STP.
Let m = 2 and let Alice, Bob, and Charlie have data a[i], b[i], and c[i]. The STP shares
encryption keys ka[i], kb[i], and kc[i] with each user respectively. The STP also shares kauth
with each user.

User Data kn[i] kauth

Alice |01⟩, |11⟩ |11⟩, |10⟩ |1001⟩

Bob |00⟩, |10⟩ |01⟩, |11⟩ |1001⟩

Charlie |11⟩, |01⟩ |00⟩, |01⟩ |1001⟩

Table 3.1: Data values and keys

The STP begins the protocol by inserting four decoy qubits randomly into their data set.
They then send the state to Alice, announcing the positions of the decoys, allowing Alice
to measure the decoys according to the measurement bases indicated in the authentication
key (kauth). She publicly announces the measurement outcomes of decoy qubits to STP
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and they compare the measurement outcomes with the initial bases to compute the error
ratio. Since only legitimate users have kauth, STP authenticates Alice after making sure
that the error rate is less than the predefined threshold value. Finally, Alice discards the
decoys and continues with the protocol.

Alice now encrypts her data by adding ka[i] to a[i], resulting in aka = |100⟩, |101⟩. She
adds this to the z[i] she received from STP, resulting in |110⟩, |110⟩. She generates four
decoy qubits; for ease of illustration let them all be |0⟩. Alice inserts the four decoy qubits
randomly into |110⟩, |110⟩, resulting in the state |10100⟩, |00110⟩, and sends this result
to Bob. Once Bob has received the protocol, Alice announces the positions of the decoy
qubits, and Bob measures them according to the bases specified in kauth. Once the channel
is deemed secure and Bob has been authenticated by Alice, Bob discards the decoy qubits
and continues.

Bob now encrypts his data by summing kb[i] and b[i], resulting in bkb = |01⟩, |101⟩.
Bob adds this to the |f(aka [i], z[i])⟩ that he received from Alice, resulting in |111⟩, |1001⟩.
He inserts four decoy qubits randomly into this result, and sends the state to Charlie, an-
nouncing the positions of the decoys once Charlie has received the communication. Charlie
then measures based on kauth, and Bob authenticates Charlie. Once the channel is deemed
secure, Charlie discards the decoys and continues.

Charlie encrypts his data in the same way, resulting in ckc = |11⟩, |10⟩. He adds this to
|f(aka [i], bkb [i], z[i])⟩, resulting in |1010⟩, |1011⟩. He inserts four decoy qubits randomly into
this result and sends the state to STP, who repeats the authentication and eavesdropping
check. Once the channel is deemed secure and authentication has been performed, STP
discards the decoys.

STP now measures to get the result of the calculation:

f(aka [i], bkb [i], ckc [i], z[i]) = aka [i] + bkb [i] + ckc [i] + z[i] = 1010, 1011 (3.22)

However, STP knows that this is not the correct result, because the encryption keys and
their own z[i] data should not be included. STP then subtracts z[i], ka[i], kb[i], and kc[i]
from the result, to get the correct answer of

f(a[i], b[i], c[i]) = a[i] + b[i] + c[i] = 101, 110 (3.23)

3.3.4 Security Analysis

We will first examine the protocol’s vulnerability to external attacks. There are four
main types of external attack that a malicious party (Eve) can perform. These are the
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Trojan-horse attack, the measure-resend attack, the intercept-resend attack, and entangle-
and-measure attack. Each type of attack will be discussed in the following section.

Trojan-horse Attack

The Trojan-horse attack exploits the vulnerability of a two-way communication channel
by shining a bright light on the channel’s detectors and analyzing the back-reflections.
Because we only allow one-way communication in this protocol, the Trojan-horse attack
cannot be used, and thus the protocol is secure against this type of attack.

Measure-Resend Attack

In a measure-resend attack, Eve intercepts the communication coming from Alice, measures
the qubits in a random basis, and then sends the measurement results on to Bob. Doing
so, however, changes the original states of the decoy qubits. When Bob performs the
eavesdropping check in step 2, the presence of Eve will thus be identified, and the protocol
can be scrapped and restarted. Eve’s presence will be detected with a probability of 1−(3

4
)d,

where d is the number of decoy qubits.

Intercept-Resend Attack

For an intercept-resend attack, Eve steals the message sent from Alice and sends a forged
message on to Bob. Because of the authentication step however, it will become immediately
apparent that the decoy qubits were not initialized in the correct measurement bases or
inserted into the correct positions when Bob does the eavesdropping check. As in the
measure-resend attack, when Eve’s position is revealed, the legitimate users scrap the
protocol and restart. Eve’s position will be revealed with a probability of 1− 1

2d
, where d

is the number of decoy qubits.

Entangle and Measure Attack

In the entangle and measure attack, Eve attempts to entangle an ancillary qubit in her
possession with the qubits that make up the legitimate communication between Alice and
Bob. Eve then attempts to gather information about the communication by measuring her
ancillary qubit, which will give her information about the legitimate qubit she entangled
the ancilla with.
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Eve can accomplish this by applying a unitary operation U to entangle her ancillary
system |a⟩ as follows:

U |0⟩|a⟩ = α|0⟩|a00⟩+ β|1⟩|a01⟩ (3.24)

U |1⟩|a⟩ = γ|0⟩|a10⟩+ δ|1⟩|a11⟩ (3.25)

U |+⟩|a⟩ = 1√
2
(α|0⟩|a00⟩+ β|1⟩|a01⟩+ γ|0⟩|a01⟩+ δ|1⟩|a11⟩)

=
1

2
[|+⟩((α|a00⟩+ β|a01⟩+ γ|a01⟩+ δ|a11⟩) + |−⟩((α|a00⟩ − β|a01⟩+ γ|a01⟩ − δ|a11⟩)]

(3.26)

U |−⟩|a⟩ = 1√
2
(α|0⟩|a00⟩+ β|1⟩|a01⟩ − γ|0⟩|a01⟩ − δ|1⟩|a11⟩

=
1

2
[|+⟩((α|a00⟩+ β|a01⟩ − γ|a01⟩ − δ|a11⟩) + |−⟩((α|a00⟩ − β|a01⟩ − γ|a01⟩+ δ|a11⟩)]

(3.27)

where |α|2+|β|2 = |γ|2+|δ|2 = 1 and |a00⟩, |a01⟩, |a10⟩, |a11⟩ are the ancilla states selected
by Eve. The problem with this attack is that Eve obviously wishes to go undetected by the
eavesdropping check. In order to do this, she sets β = γ = 0 if the target legitimate qubit is
|0⟩ or |1⟩, and sets (α|a00⟩−β|a01⟩−γ|a10⟩+δ|a11⟩) = (α|a00⟩−β|a01⟩+γ|a10⟩−δ|a11⟩) = 0
when the target legitimate qubit is |+⟩ or |−⟩.

However, this strategy will be unsuccessful, because setting β = γ = 0 means that
|α|2 = |δ|2 = 1, indicating that α|a00⟩ = δ|a11⟩. This means that Eve will not be able
to distinguish between α|a00 and δ|a11⟩, and will subsequently not be able to determine
any information about the target legitimate qubit. The protocol is thus safe against the
entangle and measure attack.

Collusive Attack

Two dishonest participants may try to adopt the collusive attack strategy in [3]. For
example, assume that User 1 and User 3 are malicious, while User 2 is honest. User 1
prepares fake quantum states |ff (xka [i]])⟩ withm decoy states and sends it to User 2 instead
of sending the true states |fd(xka [i], z[i])⟩. User 1 also shares the fake quantum states with
User 3. User 2 honestly encodes their private information, and sends the evolved quantum
states to User 3. The malicious User 3 now possesses the original fake states and the
evolved quantum states after User 2 encoded their private information. User 3 can easily
recover User 2’s private information by applying the subtracting function. However, this
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attack strategy will not succeed in disclosing the private information of User 2. Because
each user encrypts their private information before encoding it, User 2’s information is
protected. Similarly, if n − 1 dishonest users tried to steal the private information of the
honest one, they would not succeed due to the encryption process. Thus, we can say that
the proposed scheme is secure against collusive attacks.

3.4 Conclusion

Circular protocols are an excellent method for secure multiparty quantum computation,
as their structure allows for efficient communication and enables the least amount of data
to be sent from user to user, thus ensuring the least possible vulnerabilities to attack.

In this chapter we have examined the security of the circular MPQC protocol originally
presented in section 1.2.1. We noted that the security analysis provided in [9] already
identified vulnerabilities in the protocol. We then proposed a small change to the protocol
that eliminated those vulnerabilities.

We also noted that the security analysis in [9] did not consider outside attacks or
collusive attacks between multiple dishonest users. We have subsequently build on the work
done in [4], by suggesting a circular MPQC protocol that functions with the help of a third
party. The addition of the semi-trusted third party allows for data encryption to protect
the individual users and also allows for an eavesdropping check and an authentication step.
The eavesdropping check protects the protocol against outside attack. The authentication
step allows the users to verify that there are no imposters participating in the protocol,
adding an extra layer of security.

Future work can look to adding more features to the protocol, such as results verifi-
cation. However, adding features comes at the cost of greater efficiency. Already in this
chapter we have added decoy qubits for an eavesdropping check. This negatively affects the
qubit scaling equation presented in chapter 2; requiring more qubits makes the circuit less
efficient. Qubit scaling will depend on how many decoy qubits are desired; at minimum
the number of results qubits should be doubled to have at least an equal number of decoy
and non-decoy qubits being sent from user to user. The more decoys sent, the higher the
security, but the worse the efficiency. A balance must thus be struck between maintaining
efficiency while improving function and security.
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Chapter 4

Blind QC

The work presented in previous chapters dealt with clients who had quantum capabilities.
In the near term, assuming that clients have quantum capabilities is unrealistic, as quan-
tum computers are not commercially available. Currently most clients have no quantum
capability. However, classical clients (those with absolutely no quantum capabilities what-
soever) may still wish to make use of quantum computers through cloud based softwares.
Our circuits in Chapter 2 were built using one such software. However, it cannot be as-
sumed that these cloud based quantum servers are trustworthy. Classical clients no longer
need to protect their information just from each other, but also from the quantum server
itself. This necessitates Blind Quantum Computing (BQC). BQC schemes are designed to
hide private data and the computation itself from a third party quantum server. In this
chapter, we will examine how a circular MPQC protocol can be adapted to run blindly.
First we will review some existing BQC schemes.

4.1 Background

4.1.1 Early Work

One of the earliest schemes for BQC was proposed by Broadbent et al. in 2009 [7]. This
work deals primarily with a semi-classical user, which is a classical user augmented with
the power of qubit preparation.

The scheme uses distributed measurement based quantum computation (MBQC). The
user (Alice) prepares the qubits, the server performs entanglement and measurements,
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and Alice then computes the classical feedforward mechanism [7]. Normally, MBQC uses
a family of graph states (the initial entangled states required for MBQC) called cluster
states, which are universal for MBQC. However, the initialization of a cluster state involves
some computational basis measurements, which would cause Alice to reveal information
about the underlying graph state. This information leakage is undesirable, so the paper
introduces a class of states called brickwork states. These states are universal for X − Y
plane measurements and therefore do not require initial computational basis measurements.
Computations in this protocol are carried out then as a pattern of measurements on a
brickwork state. Figure 4.1 illustrates the form of the brickwork state.

Figure 4.1: Figure detailing the brickwork state. Reproduced from [7]

The structure of the protocol includes two phases; preparation, and computation. In the
preparation phase, Alice prepares her qubits, and sends them to the server, who entangles
them. In the computation phase, for each qubit in each layer of the brickwork state, Alice
sends a classical message to the server to indicate which basis of the X − Y plane should
be used for measurement. The server then performs the measurement and communicates
the result to Alice. The computation is finished either when all qubits are measured, or
when the server returns the qubits to Alice, depending on Alice’s own needs. The only
information leaked is the dimensions of the brickwork state, which is not information that
is useful to the server [7].

A number of modifications to the general protocol are also suggested. These include
modifications to allow for quantum inputs and outputs, a modification to include authen-
tication and fault tolerance, and a modification to function for a fully classical client. This
modification uses two entangled quantum servers to perform BQC for the fully classical
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client. In this proposal, the BQC is performed as follows: a classical Alice delegates the
qubit preparation step to server 1 and the computation step to server 2. This structure
of a classical client delegating to two entangled servers is of interest, as future works build
upon this foundation.

4.1.2 BQC with Entangled servers

A 2017 work from Huang et al [15] builds on the original concept from [7]. They propose
a method for BQC with fully classical clients, using two entangled quantum servers. This
protocol uses two quantum servers that share Einstein-Podolsky-Rosen (EPR) pairs but
are separated in space so they cannot communicate. The client separates the algorithm
they wish to execute into two parts, Computation A and Computation B, and delegates
Computation A to the first server and Computation B to the second server. The two
servers then execute their respective computations independently upon their EPR pairs,
and return the measurement results to the client. Since the servers cannot communicate,
they cannot combine the measurement results to get the total result of the algorithm and
thus the computation is blind [24].

In order to test and ensure the honesty of the servers, the user also requires the servers
to execute “dummy” protocols. There are three possible dummy protocols. The first is
a simple a CHSH test. The second is a state tomography task that consists of asking
server one to implement their portion of the legitimate protocol while server two performs
a CHSH test. This certifies whether or not server one is performing the legitimate protocol
correctly. The third is a process tomography task that consists of server two performing
their portion of the legitimate protocol while server one performs the CHSH test. This
certifies whether or not server two is running their legitimate protocol correctly. The user
runs the legitimate protocol with a small probability η and the three dummy protocols
with respective probabilities 1−η

3
so that the servers cannot distinguish between the dummy

protocols and the legitimate protocol. If the dummy protocols are executed correctly the
client can determine whether or not the servers are also executing the legitimate protocol
correctly [15].

This is an elegant solution for performing BQC with fully classical clients. The protocol
is secure and efficient, as discussed in the supplemental material to [15]. However there
are some complications, which are identified in the next section.
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4.1.3 BQC with Simulated Entanglement

Practically, entangling quantum servers is not currently a realistic proposition. This type
of entanglement will continually need to be “refreshed”, as it will irrevocably collapse at
the end of each computation. The quantum devices currently being built and developed
may also not support this kind of server entanglement. Many quantum computers use
highly isolated single-chip graphs of superconducting Transmon qubits. To entangle a pair
of these qubits, there must be a physical channel embedded between each qubit. [11]. This
would require highly specific device construction. There are thus practical considerations
that make BQC using entangled servers less feasible.

A 2019 proposal [11] uses simulated entanglement to circumvent the problems encoun-
tered when using truly entangled servers. Quantum phenomena such as entanglement can
be described by a local hidden-variable model, if the observers of said phenomena perform
post-selection as part of their computations of correlation functions [5]. Thus the post-
selection loophole can be used to simulate entanglement. An intermediate classical server
is necessary in this method to delegate the algorithm to the two servers and to perform
the steps of post-selection. The intermediate server splits up the algorithm between the
two servers as in [15], and carries out the steps of the calculation. Once the protocol has
been executed, the intermediate server instructs the servers to carry out the steps of the
algorithm in reverse. In order to match the initial states of the quantum servers to an
outcome observed during the forward-execution stage, state preparation using single qubit
gates is performed first. Once the reversed execution is complete, the intermediate server
applies a correlation function to match the results from the two servers. When the func-
tion is satisfied, entanglement is simulated between the two servers. The outcomes which
satisfy the correlation function are kept, and others are discarded.

The presence of the intermediate server, however, creates a new problem. If the inter-
mediate classical server is not trusted, we wish to hide the algorithm not only from the
quantum servers but from the intermediate classical server as well. This is accomplished
through an obfuscation algorithm that hides the gates of the algorithm in blocks of “noise”
gates. However this method is extremely inefficient, with extra qubits and many gates
necessary to execute even the simplest of algorithms, as demonstrated in [12]. This work
seeks to provide a proof of concept for the simulated entanglement BQC method. Figure
4.2 shows the algorithm that is to be implemented. Figure 4.3 shows the obfuscated al-
gorithm, run in the forwards direction. To further explain this figure, note that each of
the two servers has computational and non-computational qubits, to aid in the obfusca-
tion. The computational qubits of processor 1, mapped to the computational qubits of the
algorithm in figure 4.2 are q0 = q0, q1 = q3, and q2 = q2. The computational qubits of
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processor 2 are q0 = q4, q1 = q1, and q2 = q5. Any noise gates applied to these qubits (such
as the first Y gate applied to q0 of processor 1) must be cancelled by applying the same
gate again in order to preserve the correct results of the computation. Noise gates applied
to the non-computational qubits are not required to be cancelled, but some should be in
order to aid in the obfuscation. These two circuits demonstrate the large number of gates
necessary to implement even a small algorithm. Note that in order to complete the com-
putation these circuits would then have to be run in reverse, doubling the computational
size.

Figure 4.2: The desired algorithm, consisting of four algorithmic gates and three measure-
ments. Reproduced from [12]

It is evident that neither of the two schemes discussed above are ideal. We now seek
to combine these two methods in order to eliminate the inefficiencies in [11] while also
eliminating true server entanglement. First we will discuss simulated entanglement in
more detail.

4.1.4 Simulated Entanglement

We will use the above example from [12]. In this case, we have an algorithm with four
gates and three qubits that we wish to execute blindly. The intermediate classical processor
will split the algorithm between two quantum co-processors, named QC1 and QC2, each
with six qubits. Both processors have three computational qubits and three decoy qubits.
Qubit roles are assigned randomly. QC1’s computational qubits are q[0], q[2], and q[3],
while QC2’s computational qubits are q[1], q[4], and q[5]. Next, the three qubits of the
desired algorithm are mapped to the computational qubits of the two processors. This
mapping is also created randomly, and is presented in table 4.1.
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Figure 4.3: The circuits for obfuscated execution of the algorithm in Figure 4.2, distributed
between two quantum servers. Note that the four algorithmic gates (highlighted in orange)
are now hidden within more than sixty noise gates. Reproduced from [12]

Now that the computational qubits and their mappings have been established, the
blind execution of the algorithm in Figure 4.2 can begin. As seen in Figure 4.3, all qubits
are initialized to the maximally superimposed state. Next the algorithmic gates (outlined
in orange in Figure 4.3) are buried within blocks of obfuscating gates. All qubits are
measured, and the results of the measurements are returned to the intermediate classical
server.

Next the obfuscated algorithms must be run in reverse, conditioned upon the results
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Original QC1 QC2
q[0] q[0] q[4]
q[1] q[3] q[1]
q[2] q[2] q[5]

Table 4.1: Mapping of original algorithmic qubits to the quantum co-processors’ algorith-
mic qubits.

of the forward algorithm. For example, the results from QC1 were (0,1,0,0,0,1) and the
results from QC2 were (0,0,0,0,1,1). The intermediate server first saves the results of the
computational qubits ((0,0,0) and (1,0,1) from QC1 and QC2 respectively) then initializes
the qubits for reverse execution according to the results of the forward execution. Once
QC1 and QC2 have performed the process in reverse, the intermediate server will perform
postselection.

In this case, the intermediate server will only select results where the QC1 computa-
tional qubits are all 0, because the initial state of the algorithmic qubits was 0. Other cases
will be discarded and the protocol will repeat. Suppose the results are (0,1,0,0,0,1) and
(0,0,1,1,0,0) for QC1 and QC2 respectively. Note that the results for the computational
qubits (qubits 0, 3, and 2 on QC1 and qubits 4, 1, and 5 on QC2) are pairwise identi-
cal. This indicates that entanglement has successfully been simulated. The result of the
calculation is thus (1,0,1), or the result of the forward execution of QC2.

4.2 Proposed Scheme

While it is true that entanglement of quantum servers is impractical, the simulated en-
tanglement solution presented in [11] is inefficient, requiring an incredible amount of gates
to execute simple algorithms. In order to retain the benefits of simulated entanglement
while not encountering inefficiency, we propose making the intermediate server in [11]
semi-trusted. We still wish to hide the private data of users from the intermediate server.
However, the semi-trusted server is allowed knowledge of the algorithm or computation to
be executed. Thus the intermediate server can delegate the steps of the algorithm to the
two servers without obfuscation. This eliminates the inefficiency in [11].

The users individually generate keys to encrypt their own data. They then send their
encrypted data to the intermediate classical server. The intermediate classical server then
splits the computation in half and delegates it to the two quantum servers. The inter-
mediate server processes the computation using the post-selection loophole to simulate
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entanglement as in [11]. When the intermediate extracts the result of the computation, it
sends the result to User 1. User 1 removes their encryption key from the result and sends
it to User 2. User 2 then removes their key and sends the result to User 3. This process
continues around the circle until User n. User n removes the final encryption key and sends
the result back to the intermediate server, who then announces the correct result to all
users.

4.3 Protocol Steps

Assume n users with data sets x1[i], x2[i], ..., xn[i], where i ranges from 0 to m − 1 and
indicates the number of items in each data set. The users wish to execute some secure
computation using a quantum function f . However, the users are fully classical and have
no quantum capabilities. They will make use of an intermediate semi-trusted classical
server, and two cloud-based quantum servers, to carry out said computation.

The two cloud-based quantum servers cannot communicate and do not share entan-
glement. The role of the intermediate server is to delegate the computation to the two
quantum servers, and to use post-selection on the results to simulate entanglement.

Each classical user generates an encryption key (kx1 [i], kx2 [i], ..., kxn [i] respectively), and
encrypts their data by summing their key and their data. Each user then submits their
encrypted data (xk1 [i], xk2 [i], ..., xkn [i]) to the intermediate server.

We use the basic form of the circuit from chapter 2 to describe the execution

Step 1 The qubits of each quantum server start in the maximally superimposed state.
The intermediate server then instructs the quantum servers to initialize the data qubits
to the correct values xk1 [i], xk2 [i], ..., xkn [i]. Results qubits and measurement qubits are
initialized to |0⟩.

Step 2 The intermediate server then splits up the steps of the computation and ran-
domly delegates half of the computational and results extraction gates to the first quantum
server and half to the second.

Step 3 After the quantum servers have performed their portions of the computation
and reported the measurement results back to the intermediate server, the intermediate
server again prepares the quantum servers in the maximally superimposed state, and then
intializes them according to the observed results.

Step 4 The same algorithm is now executed in reverse, with the quantum servers again
sending their measurement results to the intermediate server.
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Step 5 If the measurement outcomes from the two different quantum servers satisfy
a previously established correlation function, then those results simulate the effect that
the quantum co-processors are working with shared entangled memories. These results are
recorded and all other results are discarded. This is the post selection step which simulates
the entanglement.

Step 6 Now the intermediate server holds the result of the computation that was
performed with the users’ encrypted data, meaning this result is not the correct sum. In
order to get the correct result, the intermediate server sends the result to User 1, who
subtracts their encryption key kx1 [i] to remove it from the result.

Step 7 User 1 now sends the result to User 2, who subtracts their encryption key kx2 [i]
to remove it from the result. This continues around all of the users, with User n removing
their encryption key and returning the result to the intermediate server.

Step 8 The intermediate server now is in possession of the correct result of the calcu-
lation, and can announce said result to all users.

4.4 Discussion

This method eliminates the need for truly entangled servers, and eliminates the need for
an obfuscation algorithm and a large number of extra gates.

This method is incomplete, however, as it does not include any honesty check or
“dummy” algorithms as in [15]. In order to insert dummy algorithms, we add more qubits,
differentiating between “algorithmic” and “non-algorithmic” qubits. The non-algorithmic
qubits can be used to perform the three tests as suggested in [15] (CHSH, state tomog-
raphy, and process tomography) to test the honesty of the servers, while the algorithmic
qubits are used to carry out the actual algorithm. The results from the non-algorithmic
qubits will then be used to determine whether or not the servers have performed the true
algorithm correctly.

4.4.1 Inclusion of dummy protocols and non-algorithmic qubits

The preparatory steps for the protocol remain the same as in section 4.3. The adjustments
to include the non-algorithmic processes begin with the intermediate server.

Step 1 The qubits of each quantum server start in the maximally superimposed state.
The intermediate server requires that there be n algorithmic and n non-algorithmic qubits;
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the algorithmic qubits will be used for the true protocol and the non-algorithmic qubits
will be used to check the honesty of the servers.

Step 2 The intermediate server splits up the steps of the algorithm and randomly
delegates half of the gates to the algorithmic qubits of the first quantum server and half
to the algorithmic qubits of the second server. Simultaneously, the intermediate server
also randomly delegates the three dummy protocols (CHSH, state tomography, process
tomography) to the non-algorithmic qubits of the appropriate servers.

Step 3 The quantum servers perform their portions of the algorithm and the required
dummy protocols, and return the measurement results back to the intermediate server.
The intermediate server then prepares the servers in the maximally superimposed state
again, and initializes both the algorithmic and non-algorithmic qubits according to the
observed results.

Step 4 The same algorithm is now executed in reverse, with the algorithmic qubits
performing the true algorithm backwards and the non-algorithmic qubits performing the
reverse of whatever dummy protocols they were originally delegated. The measurement
results are again sent to the intermediate server.

Step 5 If the measurement results from the two servers satisfy the expected corre-
lation function, entanglement has been successfully simulated. If the results from the
non-algorithmic qubits are correct, the quantum servers have behaved honestly and the
results from the algorithmic qubits are assumed to be correct as well.

From here on the steps are the same as in the general case described in section 4.3.
The intermediate server can discard the results from the non-algorithmic qubits, and then
proceeds to send the results to the users who remove their encryption one by one to achieve
the correct result of the calculation.

4.5 Conclusion

Blind quantum computing is a vitally important facet of quantum cryptography. Because
quantum computers are not universally available for commercial use, most clients do not
have quantum capabilities. Those wishing to make use of the power of quantum computing
must delegate their tasks to cloud-based quantum servers. These third party servers are not
trusted, and the users wish to protect their data and their calculations from them. BQC
allows fully classical users to protect their information when using untrusted quantum
servers.
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Many schemes for BQC for fully classical clients involve two entangled quantum servers.
However, producing and maintaining entanglement of this kind is difficult and impractical.
Using post-selection to simulate entanglement can eliminate this problem. However this
method requires an intermediate server to perform post-selection. If the intermediate server
is also not trusted with the data and steps of the protocol the obfuscation process requires
an immense number of gates. This method thus is inefficient.

We have suggested a compromise. We trust the intermediate server with the steps of
the algorithm but not the private data of the users. The users encrypt their own data,
and the intermediate server delegates the algorithm to the two quantum servers. We thus
have the benefits of truly entangled servers (ease of execution) combined with the benefits
of simulated entanglement (no impractical true server entanglement). We also allow the
intermediate server to delegate “dummy” algorithms to the two quantum servers. The
dummy algorithms serve to test the quantum servers’ honesty. As the quantum servers
cannot differentiate between the dummy algorithms and the true calculation, if the dummy
algorithms are performed correctly this indicates that the servers are behaving honestly
and the true computation is also being performed correctly. Future work is necessary to
determine whether this method is practical in terms of execution. The concept must be
further explored to determine its efficacy. It is not proven whether this method will be
able to fully eradicate the inefficiencies of the obfuscation method while still maintaining
privacy. It is similarly unclear whether or not any quantum advantage is gained through
using this method; would it not be simpler to allow the semi-trusted intermediate classical
server to perform the computation? These questions are left to future exploration.
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Chapter 5

Summary

This thesis has examined multi party quantum computation (MPQC), which is any pro-
tocol where multiple users perform calculations on their combined data without revealing
individual private information. As MPQC is not guaranteed information theoretically se-
cure [18, 20], it is necessary to find schemes that allow as high a level of security as possible
in order to protect users’ privacy. We have specifically explored using circular structure,
which is a natural fit for MPQC. Each user must communicate with only one other user,
making the circular method efficient. Because the number of communications is minimal,
the amount of vulnerable transmitted information is also minimized. In this thesis, we
have considered three questions related to circular MPQC.

In chapter 2, we built a quantum circuit to execute circular MPQC. The quantum
circuit model is important to quantum computation for a number of reasons. It allows
quantification of the computational cost of a protocol (through number of qubits and/or
gates) [22]. Translating from a theoretical protocol to the language of quantum circuits
also allows the protocol to then be tested on a quantum computer or simulator to ensure it
functions correctly. We used IBM’s virtual circuit builder for construction and simulation.
The circular protocol can be used to perform any statistical calculation. However, a specific
circuit is required to correspond with specific statistical functions; every statistical function
requires its own quantum circuit. We chose binary addition for our statistical function,
aligning with the example in [9]. We first built the circuit for the base case of n = 3 users,
m = 2 indices, and p = 1 qubit of data each. We then examined scaling of both qubits
and gates in our circuit, and built a circuit for n = 4, m = 3, and p = 2 to demonstrate
our scaling arguments. We determined that the function can be executed with reasonable
efficiency as the qubits and gates scale with a polynomial growth model (as opposed to
undesirable exponential growth).
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The circular nature of the protocol means that the computation must be carried out
sequentially. We do not sum all of the data points at once; each user adds their data to the
rolling sum individually. This means that existing methods for statistical computation may
have to be adjusted slightly to fit this protocol. We examined existing methods for addition,
and used them as a foundation for our method of sequential addition. Existing methods
of addition function on the assumption that we start our calculation with knowledge of
all the inputs. This is unsuitable to our protocol as that would compromise the privacy
of the users. Thus we have constructed an adder that compiles a rolling sum of multiple
inputs, in order to allow each user to add their data themselves sequentially. Further
work is necessary in order to determine whether or not our method of addition is optimal.
Future work will also examine building circuits to execute other statistical functions such
as finding the minimum or maximum value. Though the computation will change, the
principles we used to build our circuits can be used to simplify circuit construction for
other statistical functions.

In chapter 3, we examined the vulnerabilities of the circular MPQC protocol presented
in [9]. The security assessment presented therein only considered the threat posed by in-
side attacks from a single malicious user. That security analysis also already identifies
weaknesses in the protocol. We presented an update to the protocol that closes the orig-
inal loopholes by having User 1 insert random data into the calculation which they can
then remove at the end of the protocol to ensure they still find the correct result. We then
considered the updated protocol’s vulnerability to external attack (eavesdroppers) and col-
lusive attacks by multiple malicious users. The protocol did not contain an eavesdropping
check and was thus vulnerable to outside attack. It was also still vulnerable to collusive
attack. We then present a method to eliminate the possibility for collusive attack by use
of a third party, building on the work in [4]. The third party generates keys for the users
to encrypt their data. This encryption step allows the users to prevent collusive attack.
Our method allows authentication to ensure that all users are legitimate. Furthermore,
this method also includes an eavesdropping check in the authentication step which pro-
tects against the action of malicious outsiders. Overall we have significantly increased the
security of the circular MPQC protocol, making it safe against multiple types of attack.
Future work will include a verification step that allows the users to determine whether or
not the calculated result is true and accurate. Future work should also investigate how to
carry out statistical functions other than binary addition using this method. The method
of encryption we used would not be suitable for a task such as finding the maximum or
minimum data value. Our work was also carried out under the assumption of perfect device
behaviour and perfect channels. This is obviously not a practical consideration, because
no actual device for quantum computation behaves perfectly. Future work should also thus
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consider actual device behaviour to determine what new vulnerabilities device performance
will introduce to the protocol, and also how to mitigate those vulnerabilities.

In chapter 4, we acknowledge that commercial availability of quantum computers has
not yet been achieved. Thus most clients do not have quantum capabilities. However,
classical users may still want to make use of the power of quantum computing. To do
so, they must delegate their computations to cloud-based quantum servers. These third
party servers may not be trusted. Therefore the users will wish to hide their private data
and the details of the algorithm they wish to carry out. This can be accomplished using
blind quantum computing (BQC). We briefly introduce BQC and discuss some of the
possible methods. The most popular method for BQC with fully classical clients involves
delegation of the computation to multiple entangled quantum servers. However this method
is impractical because entanglement of servers is difficult to achieve and maintain [11]. A
work from 2019 [11] suggests using post-selection to simulate entanglement. Eliminating
the need for fragile server entanglement is a more practical method. This scheme requires
the introduction of an intermediate server to delegate the algorithm and perform the post-
selection. Because the intermediate server is not trusted, obfuscation is required to hide
the data and steps of the algorithm from the intermediate server. Obfuscation requires
a huge number of “noise” gates, which makes this method inefficient, as demonstrated in
[12].

We wish to eliminate the need for true server entanglement, while also improving effi-
ciency. We therefore wish to execute BQC using post-selection to simulate entanglement
while no longer requiring the inefficient noise gates. We subsequently suggest a combina-
tion of methods. If the intermediate server is semi-trusted, we can allow it to know the
steps of the algorithm. This eliminates the need to hide the algorithmic gates in blocks
of noise gates, reducing the inefficiency. We do not trust the intermediate server with
the users’ private data however. Users can encrypt their own data to protect it from the
intermediate server. Users then send their encrypted data to the intermediate server, who
delegates the algorithm to the two quantum servers and uses post-selection to simulate
entanglement. The encryption can be removed after the intermediate server has sent the
results back to the users to generate the correct result of the calculation. We also suggest
using “dummy” algorithms to verify that the servers are behaving honestly, as in [15]. The
intermediate server can establish algorithmic qubits, which carry out the true protocol, and
non-algorithmic qubits, which carry out the “dummy” protocols. If the dummy protocols
are executed correctly it can be assumed that the true algorithm is also being executed
correctly. In future, circuits should be constructed to execute this method as a proof of
concept, similar to what was done in [12]. This method also could allow for MPQC with
quantum clients on encrypted data without the use of a third party. Future work should
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explore this idea further to determine whether it is feasible and secure. The removal of en-
cryption as described here may also prove problematic. As mentioned above, this method
of encryption is based on binary addition as the desired calculation, and is not suitable for
other statistical calculations such as finding the minimum or maximum value. Future work
must then also find new ways to remove the encryption in the final step of the protocol to
ensure receipt of a correct result.

Quantum cryptography is overall a fascinating subfield of quantum computing and
quantum information. The extra security guaranteed for some protocols by the principles
of quantum mechanics is an exciting step forward for information security. Because multi
party quantum computation cannot be guaranteed information theoretically secure, finding
ways to protect multiple users’ privacy is an engrossing puzzle that is sure to occupy
researchers for some time to come, and using the circular structure is sure to remain an
important part of this puzzle.
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Appendix A

Qiskit Circuit Code

All code is for when all data qubits are 0. The users’ data should be initialized to the
correct values using NOT gates at the start of each circuit depending on the data values.

A.1 Base Circuit Code

OPENQASM 2.0;

include "qelib1.inc";

qreg q[13];

creg c[3];

cx q[1], q[7];

h q[0];

ccx q[3], q[7], q[8];

cx q[2], q[9];

cx q[3], q[7];

ccx q[4], q[9], q[10];

cx q[4], q[9];

ccx q[5], q[7], q[8];

cx q[5], q[7];

ccx q[6], q[9], q[10];

cx q[6], q[9];

57



if (c == 0) cx q[7], q[11];

if (c == 0) cx q[8], q[12];

if (c == 1) cx q[9], q[11];

if (c == 1) cx q[10], q[12];

measure q[0] -> c[0];

measure q[11] -> c[1];

measure q[12] -> c[2];

A.2 Scaled Up Circuit Code

OPENQASM 2.0;

include "qelib1.inc";

qreg q[44];

creg c[6];

h q[0];

h q[1];

cx q[2],q[26];

ccx q[3],q[26],q[27];

cx q[3],q[26];

cx q[4],q[30];

ccx q[5],q[30],q[31];

cx q[5],q[30];

cx q[6],q[34];

ccx q[7],q[34],q[35];

cx q[7],q[34];

ccx q[8],q[26],q[27];

cx q[8],q[26];

ccx q[26],q[27],q[38];

ccx q[9],q[38],q[28];

ccx q[9],q[26],q[27];

reset q[38];

cx q[9],q[26];

ccx q[10],q[30],q[31];
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cx q[10],q[30];

ccx q[30],q[31],q[38];

ccx q[11],q[38],q[32];

ccx q[11],q[30],q[31];

reset q[38];

cx q[11],q[30];

ccx q[12],q[34],q[35];

cx q[12],q[34];

ccx q[34],q[35],q[38];

ccx q[13],q[38],q[36];

ccx q[13],q[34],q[35];

reset q[38];

cx q[13],q[34];

ccx q[26],q[27],q[38];

ccx q[14],q[38],q[28];

ccx q[14],q[26],q[27];

reset q[38];

cx q[14],q[26];

ccx q[26],q[27],q[38];

ccx q[15],q[38],q[28];

ccx q[15],q[26],q[27];

reset q[38];

cx q[15],q[26];

ccx q[30],q[31],q[38];

ccx q[16],q[38],q[32];

ccx q[16],q[30],q[31];

reset q[38];

cx q[16],q[30];

ccx q[30],q[31],q[38];

ccx q[17],q[38],q[32];

ccx q[17],q[30],q[31];

reset q[38];

cx q[17],q[30];

ccx q[34],q[35],q[38];

ccx q[18],q[38],q[36];

ccx q[18],q[34],q[35];

reset q[38];

cx q[18],q[34];
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ccx q[34],q[35],q[38];

ccx q[19],q[38],q[36];

ccx q[19],q[34],q[35];

reset q[38];

cx q[19],q[34];

ccx q[26],q[27],q[38];

ccx q[20],q[38],q[28];

ccx q[20],q[26],q[27];

reset q[38];

cx q[20],q[26];

ccx q[26],q[27],q[38];

ccx q[28],q[38],q[39];

ccx q[21],q[39],q[29];

reset q[39];

ccx q[21],q[38],q[28];

ccx q[21],q[26],q[27];

reset q[38];

cx q[21],q[26];

ccx q[30],q[31],q[38];

ccx q[22],q[38],q[32];

reset q[38];

ccx q[22],q[30],q[31];

cx q[22],q[30];

ccx q[30],q[31],q[38];

ccx q[32],q[38],q[39];

ccx q[23],q[39],q[33];

ccx q[23],q[38],q[32];

ccx q[23],q[30],q[31];

reset q[38];

reset q[39];

cx q[23],q[30];

ccx q[34],q[35],q[38];

ccx q[24],q[38],q[36];

60



ccx q[24],q[34],q[35];

reset q[38];

cx q[24],q[34];

ccx q[34],q[35],q[38];

ccx q[36],q[38],q[39];

ccx q[25],q[39],q[37];

ccx q[25],q[38],q[36];

ccx q[25],q[34],q[35];

cx q[25],q[34];

reset q[38];

reset q[39];

measure q[0] -> c[0];

measure q[1] -> c[1];

if (c==0) cx q[26],q[40];

if (c==0) cx q[27],q[41];

if (c==0) cx q[28],q[42];

if (c==0) cx q[29],q[43];

if (c==1) cx q[30],q[40];

if (c==1) cx q[31],q[41];

if (c==1) cx q[32],q[42];

if (c==1) cx q[33],q[43];

if (c==2) cx q[34],q[40];

if (c==2) cx q[35],q[41];

if (c==2) cx q[36],q[42];

if (c==2) cx q[37],q[43];

measure q[40] -> c[2];

measure q[41] -> c[3];

measure q[42] -> c[4];

measure q[43] -> c[5];
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Appendix B

Circuit Results

B.1 Base Case

Because there are three users each with one qubit per index, the sum result values will
range from 0 to 3 (or 00 to 11 in binary). The index should have a roughly even split
between 0 and 1. The least significant bit (LSB) is the label, the other two are the sum
results.

B.2 Scaled Up Case

Because there are four users each with two qubits per index, the sum result values will
range from 0 to 8 (or 0000 to 1000 in binary). Since there are only three valid index values,
the result associated with an index of q[0]q[1]=11 will always return 0000 and be discarded
as it is invalid. As in the previous example, the two LSBs are the label qubits; with 00, 01,
and 10 representing valid labels. In every case the circuit was run on IBMQ’s simulator
with 8192 shots. As expected, the 8192 shots are roughly evenly distributed between the
four existing label values, although there is a consistent small bias towards the q[0]q[1]=11
result because that index has no data values associated with it so the system prefers to
choose that path as it is the most efficient.

Figures A.1 through A.6 provide a selection of results for the base circuit, and figures
A.7 through A.12 provide a selection of results for the scaled up circuit. These demonstrate
the correct addition results as well as the correct correlation with the label qubits.
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Figure B.1: Results when all input data is |0⟩

Figure B.2: Results when q[3] is |1⟩
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Figure B.3: Results when q[1] and q[3] are |1⟩

Figure B.4: Results when q[1], q[3], and q[5] are |1⟩
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Figure B.5: Results when all data qubits are |1⟩

Figure B.6: Results when all input data is |0⟩
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Figure B.7: Results when data qubits 2, 4, 10, 14, 18 and 24 are |1⟩

Figure B.8: Results when data qubits 2, 4, 8, 10, 14, 18, 20 and 24 are |1⟩
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Figure B.9: Results when data qubits 2, 3, 4, 8, 9, 10, 14, 15, 18, 20, 21 and 24 are |1⟩

Figure B.10: Results when all data qubits except 25 are |1⟩
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Figure B.11: Results when all data qubits are |1⟩
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