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Abstract

In quantum gravity, we expect black holes to exist in quantum superpo-
sition. However, the measurable effects of black hole superpositions have not
been studied widely. In this thesis, we study superpositions of different peri-
odically identified Minkowski spacetimes and different Banados-Teitelboim-
Zanelli (BTZ) black hole spacetimes and investigate excited state probabil-
ities of an Unruh-DeWitt particle detector coupling to the superposition of
these spacetimes.

This thesis is based on two consequent articles on the phenomenology
of quantum superpositions of spacetime. The primary research focus is to
superpose the mass of the Banados-Teitelboim-Zanelli (BTZ) black hole and
investigate the quantum-gravitational effects produced by such a spacetime.
We start by investigating a cylindrical spacetime superposition to better un-
derstand the basic framework for superposing spacetimes and the correspond-
ing effects induced on the quantum matter. We achieve this by superposing a
periodically identified Minkowski spacetime (i.e. Minkowski spacetime with a
periodic boundary condition that creates a cylindrical topology), for which we
develop an operational approach for constructing spacetime superpositions
using the notion of nonlocal correlations and automorphic fields in curved
spacetime. We then use this method to superpose a black hole of different
masses for the nonrotating BTZ spacetime.

Following that, we couple quantum matter (which we model using the
Unruh-DeWitt (UDW) particle detector model) to these spacetime superpo-
sitions. Firstly, we couple it to the cylindrical spacetime to demonstrate for
the first time the response of a UDW detector to a scalar field in this super-
posed spacetime, and its dependence on the energy gap Ω, and γ = lA/lB,
where lA and lB are the characteristic lengths of the periodically identified
Minkowski spacetimes in superposition. The detector’s response exhibits
quantum-gravitational “resonances” at rational ratios of the superposed pe-
riodic length scale. Secondly, we couple a UDW particle detector to a scalar
quantum field in the spacetime produced by a mass-superposition of the BTZ
black hole. We show that the detector’s dynamics exhibit similar resonances
to the Minkowski spacetime superposition, now manifesting at rational ra-
tios of the square root of the superposed black hole mass. Such resonances
are genuinely quantum-gravitational effects arising from the black hole mass
superposition that support and extend Bekenstein’s original conjecture con-
cerning the quantization of black holes in quantum gravity [1].
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Chapter 1

Introductory Remarks

1.1 Background

In the absence of a fully-fledged theory of quantum gravity, important ques-
tions about the quantum aspects of spacetime remain. One such question
concerns the phenomenology of “quantum superposition states of spacetime”.
In this thesis, we analyze this problem using a newly developed bottom-up
approach for studying quantum-gravitational effects.

Assuming that a consistent theory of quantum gravity exists, there should
likewise exist solutions in which “semiclassical states of spacetime” may be
placed in quantum superpositions (in analogy with “semiclassical” coherent
states in quantum optics). Examples of such superpositions include a black
hole or dark matter in a superposition of masses or locations [3, 4, 5], or an
expanding spacetime in a superposition of expansion rates [6].

Over the past 50 years, numerous attempts have been made to formally
quantize general relativity. In [7], DeWitt developed one such framework by
considering wavefunctions, clocks, and superpositions of these wavefunctions
[7]. This led to the derivation of the Wheeler-DeWitt (WDW) equation which
is a field equation based on wave functions over geometries, or in other words
a wavefunction of any described gravitational field. The WDW equation al-
lowed for the possibility of quantum superpositions of different spacetimes
[7, 8, 9]. In the late 20th century, loop quantum gravity was formulated
by pioneers like Rovelli and Thiemann [10], a framework that attempts to
treat spacetime distance and volume as fundamentally discrete observables
with associated eigenspectra [11]. It arose out of the formal quantization of
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canonical general relativity, out of which came the above-mentioned quanti-
zation of geometry and the so-called “spin network” description of quantum
geometry [12]. These ideas were consonant with previous work by Beken-
stein and others, who treated (for example) the metric variables (e.g. the
mass and angular momentum) describing objects like black holes as funda-
mentally quantum in nature. Applying his ideas to black holes, Bekenstein
showed that when treating a black hole as possessing a quantized horizon area
(and hence mass) in units of the Planck area its Hawking radiation likewise
possesses a discrete emission spectrum. This quantization of black holes is
called Bekenstein’s conjecture and has potential verification by gravitational
wave astronomy. There are potential imprints of black hole quantization in
gravitational wave signals of merging black holes, with black hole rotation
improving its observability as a quantum effect [13, 14]. Tentative observa-
tional evidence of these echoes were reported for the first time by Abedi et al.
[15]. In the light of gravitational wave echoes, a new promising study on the
spectrum of quantum black holes provides insight into their inner structure,
unlike their classical counterparts [16]. Hence, LQG, a top-down approach
for quantizing black holes gave rise to the active research area investigat-
ing quantum black holes (QBH). Further to these “top-down” approaches to
quantizing spacetime, others in the LQG community have sought to develop
formal frameworks for constructing superpositions of spacetime, see for ex-
ample the review by Gambini et. al. [17, 18]. Other approaches by Arrasmith
et. al. and Demers et. al. study intrinsic decoherence effects of black hole
spatial superpositions via employing toy models [19, 20, 21].

While such “top-down” approaches have yielded numerous advances, re-
cently there has been increasing interest in attacking the problem from the
“bottom-up”. By bottom-up, we mean approaches to studying quantum
gravity problems that do not seek to formally quantize the gravitational field.
Recently, such superpositions have been applied and considered in studies of
indefinite causal order [22], quantum reference frames and the equivalence
principle [23, 24, 25], quantum conformal transformations [26], analog grav-
ity [27] (in which an analog model possibly may build states corresponding
to the putative superposition of spacetime) and implementation of table-top
experiments designed to test the quantumness of gravity [28, 29, 30]. The
study of indefinite causal order investigates the quantum effects that arise
when classical assumptions about the background causal structure are re-
laxed. It is a particularly relevant area of study for quantum gravity, where
it is expected that the dynamical background of GR and the indeterminacy

2



of QM leads to such causal indefiniteness [22]. Recent work in the field of
quantum reference frames has associated a “spacetime quantum reference
frame” to a quantum particle in spacetime with the purpose of discerning
observable quantum gravitational effects in this frame [23]. Reference frames
are also associated with quantum systems in superposition to test quantum
versions of the equivalence principle [25]. In a different work, a unitary trans-
formation of such reference frames is constructed [24]. A very recent article
has attempted to construct, using symmetry principles, a conformal transfor-
mation between a scenario involving a Klein-Gordon field on a background
in a quantum superposition, with that of a field with a superposition of mass
parameters on a classical spacetime [26].

All of these studies seek to develop bottom-up frameworks for the physics
of spacetime superpositions, and how general relativity and quantum me-
chanics may govern such superpositions. The question remains as to the
in-principle measurable, quantitative effects produced by spacetime super-
positions, for example, those produced by black holes in quantum superposi-
tions of masses, locations, or angular momentum. These questions perhaps
require us to develop a newly profound formal approach. Lacking such an
approach at present we can however investigate operationally how quantum
matter and superpositions of spacetime can interact with each other. Using
the tools we know – quantum information and quantum field theory in curved
spacetime (QFT-CS) – we can check if superpositions of spacetime exhibit
any quantum gravitational effects that can be considered as quantum gravity
behavior.

In this thesis, we use an Unruh-DeWitt (UDW) particle detector to ac-
cess the local and nonlocal field correlation functions that arise when the
underlying spacetime is in quantum superposition. Such an approach builds
off recent work by Foo et. al., who originally studied quantum-controlled
detectors in quantum superpositions of trajectories on a single spacetime
background [6, 31, 32, 33]. By using this model, we can compute observables
like the detector transition probability in such spacetimes, to ascertain the
novel, possibly quantum-gravitational effects that emerge. We explore these
transition probabilities for a range of lengths for the quantized circumfer-
ence length of cylindrically quotient Minkowski spacetime, and masses in the
spacetime produced by a mass-superposed BTZ black hole. This allows us
to identify the observable characteristics of the quantum superposition when
applied to the background spacetime itself. It should be noted that our op-
erational approach does not allow us to quantize spacetime itself (ala LQG).
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Instead, it treats spacetime “semiclassically” (in analogy with “semiclassi-
cal coherent states in quantum optics”), upon which correlations functions
for the field on different “spacetime amplitudes” may be computed, which
themselves are used to computing detector observables as mentioned above.
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1.2 Thesis Outline

This thesis is organized as follows. In Chapter 2.1, we introduce the back-
ground spacetimes of interest, followed by the recent model for quantum-
controlled UDW detectors in Chapter 2.2. In the following chapters, we ex-
plicitly present our operational approach of quantum superposition of space-
time, including the calculation of detector observables. We apply our formal-
ism to (3+1)-dimensional Minkowski spacetime in a superposition of periodic
identifications in Chapter 3 and for the nonrotating BTZ black hole in Chap-
ter 4. Finally, we summarize our work and results with final thoughts and
prospects for future research in Chapter 5.
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Chapter 2

Background

2.1 Spacetime Geometries

In this Section, we introduce the relevant geometric details for the spacetimes
of interest for this thesis. In Chapters 3 and 4, we specifically study the
operational effects produced by quantum superpositions of these spacetimes.

We first consider (3+1)-dimensional “cylindrical” Minkowski spacetime,
which is constructed by quotienting Minkowski spacetime with an isome-
try group that generates periodic identifications in one spatial dimension.
The purpose of considering this simple example is to understand the correct
approach to operationally construct spacetime superpositions via field corre-
lation functions, from which more interesting scenarios (e.g. superpositions of
black hole spacetimes) may be studied. Constructing a quantum field theory
on such a background requires the theory of automorphic fields, which we
discuss in Sec. 3.1. Automorphic field theory is also used to study quantum
fields on the Banados-Teitelboim-Zanelli (BTZ) black hole, which is formed
by periodically identifying anti-de Sitter-Rindler (AdS-Rindler) spacetime
[34].

2.1.1 The Cylindrical Quotient Space of Minkowski
Spacetime

The periodically identified quotient space M0 is constructed by imposing
periodic boundary conditions along the z-axis on the (3+1)-dimensional
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Minkowski spacetime coordinates (t, x, y, z) with line element

ds2 = −dt2 + dx2 + dy2 + dz2. (2.1)

Note that we have assumed the metric signature (−,+,+,+). The flat space-
time M0 = M/J0 is built as a quotient of M under the isometry group
Z ≃ Jn0 , where the action of J0 is given by

J0 : (t, x, y, z) 7→ (t, x, y, z + l) (2.2)

and l is a characteristic length that we associate with the circumference
of the cylindrical spacetime [35, 36]. In other words, it is a topological
periodic identification of length l along the z-axis in Minkowski spacetime.
Henceforth we refer to M0 as a cylindrical spacetime. J0 preserves space and
time orientation and acts freely and properly, ensuring that M is a space and
time orientable Lorentzian manifold. M0 is a flat spacetime since J0 does
not affect the Minkowski line element.

2.1.2 AdS-Rindler and the BTZ Black Hole in (2+1)
Dimensions

Anti-de Sitter (AdS) spacetime is a maximally symmetric Lorentzian mani-
fold with constant negative scalar curvature. In AdS spacetime, empty space
itself has negative energy density but positive pressure. In a way similar to
Rindler coordinates in Minkowski spacetime (see Figure 2.1), AdS-Rindler
coordinates in AdS space define “Rindler wedges” of the full manifold that
uniformly accelerated observers are restricted to. The main difference be-
tween the two cases is that in the latter, there exists a threshold value of
the acceleration achievable by such observers, inversely proportional to the
length scale l of the spacetime. As in Minkowski spacetime in Figure 2.1,
AdS-Rindler observers perceive an acceleration horizon beyond which space-
time events remain inaccessible.

The three metrics of interest are as follows.

AdS3 The AdS3 line element is given by

ds2 = −
(
r2

l2
+ 1

)
dt2 +

(
r2

l2
+ 1

)−1

dr2 + r2dθ2 (2.3)
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where θ ∈ [0, 2π) is the angular coordinate, r is the radial coordinate, t is
the time component of spacetime coordinates and l is the curvature of the
spacetime.

AdS3-Rindler The AdS3-Rindler line element is given by [37]

ds2 = −
(
λ2

l2
− 1

)
dη2 +

(
λ2

l2
− 1

)−1

dλ2 + λ2dY 2 (2.4)

The AdS-Rindler spacetime is not compact in the Y coordinate: Y ∈ [−∞,∞].
λ is the transformed radial coordinate from r at the AdS3.

Banados-Teitelboim-Zanelli (BTZ) Black Hole The BTZ black hole
has line element given by

ds2 = −
(
R2

l2
−M

)
dT 2 +

(
R2

l2
−M

)−1

dR2 +R2dϕ2 (2.5)

where −∞ < T <∞ and ϕ ∈ [0, 2π). Here, M parametrizes the mass of the
black hole, while R is a radial coordinate. This metric can be obtained from
the identification Y → Y + 2π

√
M in the AdS-Rindler metric, and setting

η =
√
MT , and λ = R/

√
M , Y =

√
Mϕ.
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Figure 2.1: Minkowski-Rindler accelerated observer light cone coordinate
in (1+1)-dimensions. The accelerated observer is a particle detector on a
trajectory of the black line. The stationary observer is at the origin illustrated
as a smiley face with a light cone that does not intercept the motion of the
particle detector [2].

To understand the relationship between AdS spacetime, AdS-Rindler
spacetime, and the BTZ black hole, let us consider the explicit coordi-
nate transformation between these respective geometries. Three-dimensional
anti-de Sitter space (AdS3) can be obtained from flat R2,2, with coordinates
(X1, X2, T1, T2) and metric

ds2 = dX2
1 + dX2

2 − dT 2
1 − dT 2

2 , (2.6)

by restricting the submanifold on a 3-dimensional hyperboloid

−l2 = X2
1 − T 2

1 +X2
2 − T 2

2 (2.7)

This metric solves the (2 + 1)-dimensional Einstein equations with negative
cosmological constant Λ = −1/l2.

The embedding coordinates for the AdS3-Rindler spacetime are given by

T1 = l

√
r2

l2
coshϕ, X1 = l

√
r2

l2
sinhϕ,

T2 = l

√
r2

l2
− 1 sinh

t

l
, X2 = l

√
r2

l2
− 1 cosh

t

l
, (2.8)
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from which one obtains the AdS-Rindler metric, Eqn. 2.4:

ds2 = −
(
r2

l2
− 1

)
dt2 +

(
r2

l2
− 1

)
dr2 + r2dϕ2 (2.9)

where η = t, λ = r, Y = ϕ, which corresponds to a wedge of AdS3 for a
uniformly accelerated observer. To obtain the BTZ metric from Eq. (2.9),
one defines r = r̃/

√
M , t = t̃

√
M and ϕ = ϕ̃

√
M , which yields

ds2 = −
(
r̃2

l2
−M

)
dt̃2 +

(
r̃2

l2
−M

)−1

dr̃2 + r̃2dϕ̃2 (2.10)

where ϕ̃ is identified with period 2π. Alternatively, one can begin directly
from Eq. (2.6) and utilize the parametrization

T1 = l

√
r2

Ml2
cosh(

√
Mϕ), X1 = l

√
r2

Ml2
sinh(

√
Mϕ),

T2 = l

√
r2

Ml2
− 1 sinh

√
Mt

l
, X2 = l

√
r2

Ml2
− 1 cosh

√
Mt

l
, (2.11)

which yields the same metric [37], provided ϕ in (2.11) is identified with the
period 2π.

Figure 2.2: The Penrose diagrams for the static black hole

A Penrose diagram for the BTZ spacetime is shown in Figure 2.2. For the
UDW detector detection, we consider scalar fields on BTZ black hole space-
time and therefore scalar quantum field theory on curved spacetime. Scalar
fields allow us to evaluate the detector-field interaction with greater ease
than vector fields. Hence, we use this simpler version than the more realistic
interaction with vector fields. There are three proper boundary conditions
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for a scalar field in spatial infinity: Dirichlet, Neumann, and “transparent”
boundary conditions. Here, we consider the “transparent” boundary condi-
tion due to its feasibility in the calculations which we discuss further in 4.
In Figure 2.2, the Penrose diagram is for the static BTZ black hole with the
0 = r− < r+ and we consider the “transparent” boundary condition here as
well and r for the detector distance from black hole origin is considered as
r+ < r <∞.

In Chapters 3 and 4, we will see how to detect a superposition state
(shown in Figure 2.3) that consists of the two periodical identifications of
AdS-Rindler spacetime. In other words, we will see how to superpose two
BTZ black holes of different mass states where mass is one of the parameters
the black hole spacetime metric depends on.

Figure 2.3: Superposition state of 2 BTZ black hole masses system

2.2 Unruh-Dewitt Detector Superposition Mod-

els

2.2.1 “Standard” UDW Detector

QFT−CS investigates the nature of quantum fields on a background of a
classical gravitational field formed by solving the Einstein equations of gen-
eral relativity. It studies the interaction between the quantum field and the
classical gravitational background, neglecting any quantum properties of the
gravitational field itself. It is common to make the simplification to scalar
fields since this captures the essential physics while being mathematically
simpler than the full vector-valued field associated with quantum electrody-
namics.

A widely used tool in QFT−CS is the Unruh-DeWitt (UDW) detector,
which is a simple model of an atom interacting (coupling) with a field on a
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curved spacetime [38, 39, 40, 41, 42, 43, 44, 45]. UDW detectors are two-
level quantum systems (qubits), with the ground and excited states |g⟩ and
|e⟩, separated by an energy gap Ω. For the detector Hilbert space, HD,0 the
orthonormal basis formed by these states is associated with internal degrees
of freedom of the atom (detector) and it is the detector Hamiltonian expres-
sion without any interaction, which can also be interpreted as the atom’s
internal energy. Its free evolution is governed by a Hamiltonian which has Ω
energy gap between its ground and excited states. For example, as a general
description, it can be shown as excited and ground states possessing Ω

2
or

excited having Ω, while the ground state has no energy as in the expressions

HD,0 =
Ω

2
(|e⟩⟨e| − |g⟩⟨g|), HD,0 = Ω|e⟩⟨e|. (2.12)

The UDW detector is commonly considered as coupling linearly to the scalar
field which has its field Hamiltonian in the total Hamiltonian as

Htot = HF,0 +HD,0 +Hint. (2.13)

As mentioned previously scalar fields are only approximations to more real-
istic models of electromagnetic fields, which are vector fields and in general,
more computationally difficult. Fortunately, the UDW model interacting
with a scalar field is a good approximation of the light-matter interaction
[46] under the neglect of angular momentum, which allows us to simplify
the usual dipole coupling to a monopole particle detector interacting with a
scalar field. The simplest form of the UDW interaction Hamiltonian is

Ĥint. = λη(τ)(σ̂+(τ) + σ̂−(τ))⊗ ϕ̂(xD(τ)) (2.14)

where λ is a weak coupling constant, η(τ) a switching function, σ±(τ) ladder
operators between the energy eigenstates |g⟩, |e⟩ of the detector with gap Ω,
and ϕ̂(xD(τ)) the scalar field pulled back to the worldline xD(τ). During the
measurement process, the duration of the interaction between the detector
and the field, the time evolution of the system is described by the unitary
operator formed with the interaction Hamiltonian in Eqn. 2.14.

Û := T exp

(
−i
∫
dτĤint.(τ)

)
where T denotes time-ordering. We can expand the unitary operator out
to some arbitrary order using the Dyson series perturbative expansion. In
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general, the effects we are interested in will manifest in second order in the
coupling constant λ, so

Û := I+ (−i)
∫
dτĤint. +

(−i)2

2

∫
dτdτ ′T Ĥint.(τ)Ĥint.(τ

′) +O(λ3) (2.15)

where the terms are defined as

Û (0) := I (2.16)

Û (1) := (−i)
∫
dτĤint. (2.17)

Û (2) :=
(−i)2

2

∫
dτdτ ′T Ĥint.(τ)Ĥint.(τ

′) (2.18)

and the integration interval is τ ∈ (−∞,∞). The effect of the time-ordering
operator T is given by T A(t)B(t′) := θ(t− t′)A(t)B(t′) + θ(t′ − t)B(t′)A(t).
Typically, before the measurement (τ → −∞), the detector is prepared at
the ground state and the field is in the vacuum state |0⟩. Let us take this
unitary operator to the interaction picture. We should evolve the initial state
operator to a final state operator via

ρ̂f = Û ρ̂iÛ
† (2.19)

where the initial state of the detector field system is

ρ̂i = |g⟩⟨g| ⊗ |0⟩⟨0| (2.20)

Then the final state of the detector, ρD ∈ S(HD) after tracing out the field
degrees of freedom in final state of the detector field system,

ρ̂D := Trϕ[Û(|g⟩⟨g| ⊗ |0⟩⟨0|)Û †] =

(
1− PD 0

0 PD

)
+O(λ4) (2.21)

where the detector density matrix is in the basis {|0⟩D, |1⟩D}. PD is the
transition probability for the detector transitioning its excited state given
below

PD =

∫
dτ

∫
dτ ′χ(τ)χ(τ ′)W

(
x(τ), x(τ ′)

)
(2.22)

where χ(τ) = η(τ)e−iΩτ , while vacuum Wightman function, the scalar field
correlation functions, evaluated with respect to the trajectories x(τ), x(τ ′) is

W
(
x(τ), x(τ ′)

)
:= ⟨0|ϕ̂(x(τ))ϕ̂(x(τ ′))|0⟩ (2.23)
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2.2.2 “Quantum-Controlled” UDW Detector

Having introduced the standard UDW detector model, we are now in a po-
sition to extend this to include superpositions of the detector’s trajectory.
This was first achieved in [31, 32, 33, 47] by introducing a control degree
of freedom for the detector’s semiclassical trajectory. In the original case of
UDW detector with quantum control, the detector interacts with the quan-
tum field on a classical spacetime background in a superposition of two tra-
jectory states. The control system is prepared in the superposition state
|χ⟩ = (|1⟩C + |2⟩C)/

√
2, where the orthogonal states |1⟩C and |2⟩C designate

the two paths that the detector traverses in superposition. Such a system can
be described in the tensor product of the Hilbert spaceH = HT⊗HUDW⊗HF ,
where these Hilbert spaces respectively are associated with the trajectory,
detector and field degrees of freedom. In the next Chapter, we reinterpret
the control governing the quantum-controlled spacetime degrees of freedom.
Upon including the control state |χ⟩, the initial of the combined system be-
comes

|Ψ⟩CFD = |χ⟩ ⊗ |g⟩D ⊗ |0⟩F . (2.24)

The interaction Hamiltonian, with the inclusion of the quantum control,
is now given by [31]

Ĥint.(τ) =
N∑
i=1

Ĥi(τ)⊗ |i⟩⟨i|C (2.25)

for N = 2, where

Ĥi(τ) = λσ̂(τ)ηi(τ)ϕ̂
(
xi(τ)

)
(2.26)

governs the interaction along the worldline xi(τ) of the ith branch of the
superposition.

The time-evolution of the control-field-detector system now occurs in a
superposition of the N paths:

Û =
N∑
i=1

Ûi ⊗ |i⟩⟨i|C (2.27)

where, to leading order in perturbation theory

Ûi = 1− iλ

∫
dτ Ĥi(τ) +O(λ2). (2.28)
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Using Eq. (2.27), after time-evolving the initial state we obtain

Û |Ψ⟩CFD =
1√
N

N∑
i=1

Ûi|i⟩C|0⟩|g⟩. (2.29)

Following [6, 31, 32, 33, 47, 48], the conditional state of the detector given
the control, is measured in some fixed state, which we arbitrarily take to be
its initial state, |χ⟩. This yields the final detector field state

⟨χ|Û |Ψ⟩CFD ≡ |Ψ′⟩FD =
1

N

N∑
i=1

Ûi|0⟩|g⟩. (2.30)

From this, one can obtain the density matrix of the system in the usual way,
by tracing out the field degrees of freedom:

ρ̂D =

(
1− PD 0

0 PD

)
+O(λ4) (2.31)

where

PD =
λ2

N2

N∑
i,j=1

Pij,D =
λ2

N2

{
N∑
i=j

Pij,D +
∑
i ̸=j

Pij,D

}
(2.32)

is the transition probability of the detector (or fraction of excited detectors
within an identically prepared ensemble) conditioned on the measurement
of the control system in the asymptotic future [31, 32, 33]. The individual
contributions take the form

Pij,D =

∫
dτ

∫
dτ ′χi(τ)χj(τ

′)Wji

(
xi(τ), xj(τ

′)
)

(2.33)

where χ(τ) = η(τ)e−iΩτ , while

Wji

(
xi(τ), xj(τ

′)
)
:= ⟨0|ϕ̂(xi(τ))ϕ̂(xj(τ ′))|0⟩ (2.34)

are the field correlation (Wightman) functions evaluated with respect to the
trajectories xi(τ), xj(τ

′) [49], associated with the i-jth amplitude of the su-
perposition.

Unlike a detector traveling along a single, classical trajectory, PD now
features “nonlocal” correlation functions between each respective pair of am-
plitudes in the superposition, i ̸= j. These nonlocal terms are equivalent
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to the off-diagonal terms LAB in the bipartite reduced density matrix for a
system of two detectors interacting locally with the field on classical trajec-
tories, which motivates our choice of nomenclature for these terms in later
chapters.

As usual, we can choose for simplicity a Gaussian switching function,
η(τ) = exp(−τ 2/2σ2), where σ is a characteristic timescale of the interaction.
For stationary trajectories, the Wightman functions only depend on s = τ−τ ′
and the outer integral of Eq. (2.33) can be evaluated, yielding the simplified
expression

PD =
λ2
√
πσ

N2

N∑
i,j=1

∫
ds e−s

2/4σ2

e−iΩsWji(s). (2.35)

In these time-independent scenarios, it is sometimes useful to work with the
normalised transition probability

F(Ω) =
PD

λ2
√
πσ

, (2.36)

which we refer to as the response function. In the infinite-interaction time
limit, σ → ∞, the response function becomes

F(Ω) =
1

N2

N∑
i,j=1

∫ ∞

−∞
ds e−iΩsWji(s). (2.37)

2.2.3 UDWDetector on a “Quantum-Controlled” Space-
time Superposition

In the previous Section, we considered an additional control degree of free-
dom that we assigned to the quantized “trajectory states” of the detector,
traveling on a single, classical spacetime background. This detector superpo-
sition model can be shown to be physically equivalent to that of a detector
traversing a single classical trajectory where the spacetime is in a superpo-
sition of spatial translations [6, 50]. The latter system can be described in
the tensor product Hilbert space H = HS ⊗HUDW ⊗HF, where each Hilbert
space is respectively associated with the spacetime, detector and field degrees
of freedom. In other words, the quantum trajectory degrees of freedom are
replaced with quantum spacetime degrees of freedom. To show the physical
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equivalence of the two cases, let us consider a detector in a superposition of
two trajectories, and express the trajectory states in terms of some worldline
ξ ≡ ξ(τ):

|1⟩C → |ξ⟩ (2.38)

|2⟩C → |ξ + L⟩ (2.39)

as the trajectory states, where L ≡ L(τ) is some possibly time-dependent
function that relates the coordinates of the two worldlines. For simplicity,
let us assume a fixed L, which yields a constant spatial translation. The
global coordinate transformation L can be expressed as some unitary oper-
ator T̂ (L), since it is a symmetry of the dynamics. Importantly T̂ (L) acts
on both the trajectory state and the coordinates of the field operator (since
this depends on the spacetime coordinates), as follows:

|ξ + L⟩ ⊗ |0⟩F = T̂ (L)|ξ⟩ ⊗ |0⟩F
= T̂ξ(L)|ξ⟩ ⊗ T̂ϕ(L)|0⟩F . (2.40)

Note also the action of the translation operator on the field as enacting a
coordinate transformation, expressed in the Heisenberg picture as:

Φ̂(ξ + L) = T̂ϕ(L)†Φ̂(ξ)T̂ϕ(L). (2.41)

Until now, we should understand that |ξ⟩, |ξ +L⟩ are two trajectories states
in a single spacetime. Using the representation Eq. (2.40) however, the com-
bined system describing the trajectory, field, and detector can now be ex-
pressed in terms of a single detector trajectory with modified dynamics:

|Ψ⟩TFD =
1√
2
(|ξ⟩+ |ξ + L⟩)|0⟩F |g⟩

=
1√
2
(I+ T̂ (L))|ξ⟩|0⟩F |g⟩ (2.42)

The time evolution of the state with this “superposition of unitaries” is given
by

Û |Ψ⟩TFD =
1√
2
(Û + Û T̂ (L))|ξ⟩|0⟩F |g⟩. (2.43)
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Let us now consider a “measurement” of the control (i.e. the trajectory state)
in the modified basis |χ⟩ = (I+T̂ (L))|ξ⟩/

√
2, giving the conditional detector-

field state,

|Ψ⟩FD =
1

2

(
⟨ξ|Û |ξ⟩+ ⟨ξ|Û T̂ (L)|ξ⟩

+ ⟨ξ|T̂ (L)†Û |ξ⟩+ ⟨ξ|T̂ (L)†Û T̂ (L)|ξ⟩
)
⊗ |0⟩F ⊗ |g⟩ (2.44)

Now, recall that the time evolution operator, Eq. (2.27), can be expressed as
a sum over the paths of the superposition:

Û =
∑

ξ=paths

Û(ξ)⊗ |ξ⟩⟨ξ| (2.45)

But now there is one trajectory state |ξ⟩

Û = Û(ξ)⊗ |ξ⟩⟨ξ| (2.46)

and from Eq. (2.46) we have

⟨ξ|Û |ξ⟩ = Û(ξ), (2.47)

⟨ξ|T̂ (L)†Û T̂ (L)|ξ⟩) = T̂ϕ(L)†Û(ξ)T̂ϕ(L) (2.48)

yielding

|Ψ⟩FD =
1

2
(Û(ξ) + Û(ξ + L))|0⟩F |g⟩ (2.49)

where the second and third terms in Eq. (2.44) vanish, and the time evolution
operators are functions of the field operators whose coordinates are associated
with the two spatial translations of the original superposition of trajectories.
The physical scenario is that of a detector on a single worldline ξ, interacting
with a field whose coordinates are in a superposition of spatial translations
(i.e. a field quantized on a quantum-controlled spacetime in a superposition
of spatial translations). What Joshua at. al. [6] have demonstrated is that
this is physically equivalent to the scenario in which the detector traverses a
superposition of trajectories on a single classical background.

For completeness, let us show how detector observables are also invariant
between the two perspectives. In general, we have

Û(ξ) = 1− i

∫
dτ Ĥint(ξ) +O(λ2), (2.50)
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Û(ξ + L) = 1− i

∫
dτ Ĥint(ξ + L) +O(λ2), (2.51)

which are the time-evolution operators associated with a field in a superpo-
sition of coordinate transformations ξ and ξ + L.

After computing the reduced density matrix of the detector, Eq. (2.49),
the total transition probability can be shown to be a sum of the same field
i ̸= j correlations at initial and final times and cross-correlations between
Φ̂(ξ) and Φ̂(ξ + L), giving

PD =
λ2

4

{∑
i=j

Pij,D +
∑
i ̸=j

Pij,D

}
, (2.52)

which is identical to Eq. (2.32), where now the transition probabilities consist
of transition amplitudes that are transformed under T̂ϕ at the level of the
Wightman functions,

Pij,D =

∫
dτ

∫
dτ ′χ(τ)χ(τ ′)⟨0|Φ̂(x(i))Φ̂(x(j′))|0⟩F (2.53)

where i = ξ, ξ+L at some time τ and j′ = ξ′, ξ′+L at some later time τ ′. A
schematic diagram of how the correlation functions are computed is shown
in Fig. 2.4.

Figure 2.4: Schematic diagram of how the field correlations between the two
amplitudes of the superposition, at the times τ , τ ′, are calculated.

In summary, the scenario in which a UDW detector travels in a super-
position of trajectories related by a global coordinate transformation (i.e.
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diffeomorphism) is identical to that in which the detector travels on a sin-
gle worldline but interacts with the field in a superposition of equivalent
coordinate transformations. The latter can be interpreted as the spacetime
itself being in a superposition of coordinate transformations (the simplest
case being a constant spatial translation), on which the field is quantized.
All observables, like detector transition probabilities, are invariant between
both perspectives. Applying this argument to a simple conceptual example,
then it demonstrates that a black hole centred at x = 0, with a detector in a
superposition of positions x = 1, 2, is physically equivalent to the same black
hole being in a superposition of “positions” x = −1, 0 with the detector at
a fixed trajectory at x = 1. What this of course emphasizes is that coordi-
nates do not possess absolute meaning and that only relative distances have
physical significance.

In [6], the authors apply these ideas to superpositions of de Sitter space-
time. As above, they show that superposition states of the spacetime, where
the constituent states are related by a diffeomorphism (in particular, rota-
tions in the higher-dimensional embedding space), are physically equivalent
to the scenario in which there is one spacetime and the detector is in a super-
position of angular positions. On the other hand, they also studied the case
where the de Sitter length, proportional to the constant positive cosmologi-
cal constant of the spacetime, was in a quantum superposition of two values.
Such superpositions of curvature do not have a straightforward equivalence
with a superposition of detector trajectories on a classical spacetime (one
unique solution to Einstein’s equation). This is because the two “universes”
represent unique solutions to Einstein’s equations; they are not related by a
mere coordinate transformation.

This latter case is one motivation for the main goal of this thesis, which
is to construct an unambiguously “quantum-gravitational” spacetime con-
structed from individual “spacetime states” not related by a coordinate trans-
formation. Let us give an illustration to compare two different superpositions
in a model where two different spacetime masses of a black hole are super-
posed. A schematic diagram of the field correlations between the two space-
time amplitudes in superposition is illustrated in Fig. 2.5.
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Figure 2.5: Schematic diagram of the field correlations accessed by the de-
tector (modeled as the blue circles) as it couples to the black hole mass
superposition. The black hole is in a superposition of masses denoted by
“A” and “B”. The Wightman functions are computed between the different
amplitudes of the superposition, at the times t, t′, yielding four Wightman
functions.

In Fig. 2.6, we have illustrated the black hole mass superposition with the
detector situated at a fixed radial distance from the origin of the coordinates.
The detector essentially couples to the field which is in a superposition of
amplitudes corresponding to different masses of the black hole. We are inter-
ested in any novel effects induced by the superposition to which the detector
is sensitive to.

Figure 2.6: Schematic diagram of the black hole mass superposition, with a
UDW detector situated at a fixed radial position and fixed angle outside.
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Chapter 3

Quantum Superpositions of
Minkowski Spacetime

Before moving to the mass-superposed BTZ black hole, and developing our
approach for studying the operational effects of spacetime superpositions,
we first consider the problem of superposing different nontrivial topological
deformations of (3+1)-dimensional Minkowski spacetime. Studying quan-
tum superpositions of Minkowski spacetime is perhaps the simplest situa-
tion in which nontrivial effects of spacetime superpositions emerge, offering
considerable insight into this phenomenon. More specifically, we consider
(3+1)-dimensional Minkowski spacetime with a periodic boundary condition
imposed along one spatial dimension, introduced in Chapter 2.1.1. We then
consider the scenario where the characteristic length scale of this periodicity
is in a quantum-controlled superposition of different values.

3.1 Automorphic Field Theory in Topologi-

cally Identified Minkowski Spacetime

It is instructive to derive the flat spacetime Wightman function from the first
principles. Let us consider a massless scalar field ϕ̂, which is a solution to
the Klein-Gordon equation □ϕ̂(x) = 0 (where □ is the usual d’Alembertian
operator) and may be expanded in the plane wave basis

ϕ̂(x) =

∫
d3k

(2π)3/2
1√
2|k|

(
e−i|k|t+ik·xâk + ei|k|t−ik·xâ†k

)
(3.1)
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where k = (kx, ky, kz), x = (x, y, z) are the momentum and position three-

vectors respectively, and âk (â†k) are annihilation (creation) operators of a
single-frequency mode. Letting |0⟩ denote the Minkowski vacuum state an-
nihilated by âk, it can be shown that the Wightman function pulled back to
the worldlines x, x′ is given by [51]

WM(x, x′) =
1

4πi
sgn(t− t′)δ(σ(x, x′))− 1

4π2σ(x, x′)
(3.2)

where W (x, x′) := ⟨0|ϕ̂(x)ϕ̂(x′)|0⟩, sgn(t− t′) = ±1 depending on the sign of
t− t′, and the geodesic distance σ(x, x′) in a given spacetime is

σ(x, x′) = (t− t′)2 − (x− x′)2 − (y − y′)2 − (z − z′)2. (3.3)

As discussed previously, the Wightman function quantifies correlations in
the quantum field at one spacetime event x with the same field at a different
spacetime event x′. The UDW detector is therefore used to probe these
correlations by interacting with the field along its trajectory parametrized
by the coordinates x, x′.

In Chapter 2.1.1, we introduced the quotient space M/J0 (which we refer
to as a cylindrical spacetime) obtained via a nontrivial topological identifi-
cation of one of the spatial dimensions. To construct a quantum field theory
on such a spacetime, we define the automorphic field ψ̂(x) constructed from
the ordinary (massless scalar) field ϕ̂(x) as the sum [52]

ψ̂(x) =
1√
N

∑
n

ηnϕ̂(Jn0 x) (3.4)

where N =
∑

n η
2n is a normalisation factor chosen to ensure that[
ψ̂(x), ˆ̇ψ(x′)

]
= δ(x− x′) + image terms, (3.5)

and η = ±1 denotes an untwisted (twisted) field. For simplicity, we consider
untwisted fields in the following. Although the normalization factor N is
formally divergent, when computing Wightman functions with an infinite
number of terms, the whole expressions are convergent. To perform numerical
computations, we will in general truncate these sums at sufficiently high
number of terms to achieve convergence.
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To obtain the Wightman functions for a single Minkowski spacetime, we
utilize Eq. (3.4) to define the two-point correlator,

W
(D)
J0

(x, x′) = ⟨0M |ψ̂(x)ψ̂(x′)|0M⟩, (3.6)

=
1

N
∑
n,m

ηnηmWM(Jn0Dx, J
m
0D
x′), (3.7)

where the superscript D = A,B denotes the individual amplitudes of the
superposition with lengths lA, lB. Specifically, Jn0A and Jm0B denote the re-
spective isometries

J0A : (t, x, y, z) 7→ (t, x, y, z + lA), (3.8)

J0B : (t, x, y, z) 7→ (t, x, y, z + lB). (3.9)

Eq. 3.6 can be simplified as follows:

W
(D)
J0

(x, x′) =
1

N
∑
n,m

ηn(ηnηm)WM(Jn0Dx, J
n
0D
Jm0Dx

′),

=
1

N
∑
n,m

η2nηmWM(x, Jm0Dx
′),

=
∑
m

ηmWM(x, Jm0Dx
′). (3.10)

To arrive at Eq. (3.10), we have utilized the fact that Jn0D , J
m
0D

belong to
the same group, allowing for the association Jn0D 7→ Jn0DJ

m
0D
. While it is

common to use the simplified form of W
(D)
J0

shown in Eq. (3.10), such treat-
ment is insufficient when considering superpositions of spacetimes. That is,
for superpositions of the characteristic length of the quotient space M/J0,
one must construct correlation functions that are essentially superpositions
of the topological identification J0, which generates two different discrete
isometries on the fields in superposition.

Let us return to Eq. (3.6). It is important to note that the evaluation
of this amplitude occurs with respect to the Minkowski vacuum state. The
identification of the spacetime enforcing periodicity in the z-direction can be
understood as the action of the operator J0D on the coordinates of the field.
For superpositions of two cylindrical spacetimes, the Wightman function is
given by

W
(AB)
J0

(x, x′) =
1

N
∑
n,m

ηnηmWM(Jn0Ax, J
m
0B
x′) (3.11)
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where

WM(Jn0Ax, J
m
0B
x′) = ⟨0|ϕ̂(Jn0Ax)ϕ̂(J

m
0B
x′)|0⟩ (3.12)

is a quantum-mechanical amplitude evaluated with respect to a single vac-
uum state, |0⟩. While one could conceive of a scenario in quantum gravity
where the vacuum state itself is quantum-controlled, this simple case does
not require such an assumption. The construction of superposed quantum
amplitudes of the spacetime superposition occurs through the action of two
different discrete isometries Jn0A , J

m
0B
.

We construct the Wightman functions for the field operators quantized
on the respective amplitudes of the spacetime superposition by effectively
“superposing” the action of two different discrete isometries Jn0A , J

m
0B

acting
on the coordinates. Below, we utilize these Wightman functions to compute
the transition probability of a detector situated on a background Minkowski
spacetime in a superposition of these different periodic identifications.

Returning to the Wightman functions, we have explicitly for both single
and superposed spacetime states

W
(D)
J0

(x, x′) =
1

N
∑
n,m

ηnηm
[
sgn(t− t′)δ(σ(Jn0Dx, J

m
0D
x′))

4πi

− 1

4π2σ(Jn0Dx, J
m
0D
x′)

]
(3.13)

W
(AB)
J0

(x, x′) =
1

N
∑
n,m

ηnηm
[
sgn(t− t′)δ(σ(Jn0Ax, J

m
0B
x′))

4πi

− 1

4π2σ(Jn0Ax, J
m
0B
x′)

]
(3.14)

where we take the superposition of two different lengths lA, lB for the re-
spective discrete isometries. The UDW detector is in the same position (the
origin) of the coordinate system in each spacetime. Therefore the geodesic
distances for a single spacetime and for the superposition of spacetimes are
respectively

σ(Jn0Dx, J
m
0D
x′) = (t− t′)2 − l2D(n−m)2 (3.15)

σ(Jn0Ax, J
m
0B
x′) = (t− t′)2 − (lAn− lBm)2 (3.16)
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where D = A,B in Eq. 3.15, for the isometries (t, x, y, z) 7→ (t, x, y, z + lA)
and (t, x, y, z) 7→ (t, x, y, z + lB).

For a single cylindrical universe (taking η = 1 for simplicity), we further
simplify the Wightman function into seperate image sums as n ̸= m and
n = m as shown below

WJ0(x, x
′) =

1

N
∑
n,m

[
sgn(τ − τ ′)δ((τ − τ ′)2 − l2(n−m)2)

4πi

− 1

4π2((τ − τ ′2 − l2(n−m)2)

]
=

1

N
∑
n,m

[
sgn(s)δ(s2 − l2(n−m)2)

4πi
− 1

4π2(s2 − l2(n−m)2)

]
=

1

N
∑
n=m

[
sgn(s)δ(s2)

4πi
− 1

4π2s2

]
+

1

N
∑
n ̸=m

[
sgn(s)δ(s2 − l2(n−m)2)

4πi

− 1

4π2(s2 − l2(n−m)2)

]
= WM(s) +

1

N
∑
n̸=m

[
sgn(s)δ(s2 − l2(n−m)2)

4πi

− 1

4π2(s2 − l2(n−m)2)

]
(3.17)

where we have defined s = τ − τ ′.
From the form of (3.17), we find that the Wightman function for the cylin-

drical spacetime comprises a contribution from standard Minkowski space
(WM(s)) and another term containing contributions from the topological
identification of the z-coordinate.

For the superposition case (taking η = 1 for simplicity), we group the
image sums in a similar way, splitting up the sum into contributions from
lAn ̸= lBm and lAn = lBm, obtaining

WAB
J0

=
1∑
n η

2n

∞∑
n=−∞

∞∑
m=−∞

[
1

4πi
sgn(t− t′)δ((t− t′)2 − (lAn− lBm)2)

− 1

4π2(t− t′)2 − (lAn− lBm)2

]
,
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=
1∑
n η

2n

∑
lAn=lBm

[
1

4πi
sgn(t− t′)δ((t− t′)2)− 1

4π2(t− t′)2

]
+

1∑
n η

2n

∑
lAn̸=lBm

[
1

4πi
sgn(t− t′)δ((t− t′)2 − (lAn− lBm)2)

− 1

4π2(t− t′)2 − (lAn− lBm)2

]
=

1∑
n η

2n

[ ∑
lAn=lBm

WM +
∑

lAn̸=lBm

[
1

4πi
sgn(t− t′)δ((t− t′)2

− (lAn− lBm)2)− 1

4π2(t− t′)2 − (lAn− lBm)2

]]
(3.18)

3.2 Unruh-DeWitt Detector in Superposed

Minkowski Spacetime

We aim to study the effects induced by the superposed Minkowski spacetime
via a relativistic quantum matter which is coupled to the spacetime through
its interaction with a (massless scalar) quantum field. As usual, we can
describe this system in the Hilbert space H = HS ⊗ HF ⊗ HM which is
a tensor product of the spacetime, quantum field, and matter degrees of
freedom respectively. We shall employ the formalism from Chapter 2.2 for
UDW detectors in superposed spacetime.

As discussed in the previous subsection, we consider the topologically
identifiedM0 spacetime in a superposition of two characteristic identification
lengths lA and lB, and the field in the Minkowski vacuum state. The state
of the combined spacetime-field-detector system is given by,

|ψ(ti)⟩ =
1√
2
(|lA⟩+ |lB⟩)|0⟩|g⟩ (3.19)

where |0⟩ is the vacuum field state and (|lA⟩+ |lB⟩)/
√
2 is the superposition

state of the spacetime with two different characteristic lengths lA and lB.
The coupling between the spacetime superposition, field, and detector is

described by the following interaction Hamiltonian:

Ĥint. = λη(τ)σ̂(τ)
∑
i=A,B

ψ̂(xi(τ))⊗ |li⟩⟨li|. (3.20)
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The projector |li⟩⟨li| acts as a quantum control for the spacetime. The quan-
tum control could be some ancillary system that is entangled with spacetime
and can be ideally time-evolved and measured in a Mach-Zehnder-type inter-
ferometer. For simplicity, we need not posit such an ancilla, since we already
know the cylindrical identifications of Minkowski spacetime put it in a su-
perposition of circumference lengths, and assume, as recent work has, that
a “measurement” can be performed that allows one to witness interference
effects between the spacetime amplitudes in superposition [53].

Formally, the basis states |li⟩ are energy eigenstates of the free Hamilto-
nian where Ĥ0,S|li⟩ = Ei|li⟩ where Ei are the (Casimir) energies associated
with the periodic length li. This will generally introduce a time-dependent
phase into the evolution of the superposition. For simplicity, it is instructive
to consider a rotating frame transformation [54] for which the evolution of
the superposition state is “frozen” to the initial phase relationship. Such
an assumption greatly simplifies the calculations without losing a significant
amount of insight into the problem.

As usual, we evolve the initial state in time with the unitary

Û =
∑
i=A,B

Ûi|li⟩⟨li|, (3.21)

yielding

Û |ψ(ti)⟩ =
1√
2
(ÛA|lA⟩+ ÛB|lB⟩)|0⟩|g⟩ (3.22)

before measuring the control state in the superposition basis |±⟩ = (|lA⟩ ±
|lB⟩)/

√
2 and tracing out the final field states. This leaves the following result

for the joint transition probability of the detector,

ρ̂D =

(
1− P

(±)
G 0

0 P
(±)
E

)
, (3.23)

where the ± signs indicate a measurement in the |±⟩ basis. Note that the
state Eq. (3.23) is not normalized, since we are considering final conditional
states of the detector. The excited state transition probability of the detector
is more specifically given by

P
(±)
E =

λ2

4

(
PA + PB ± 2LAB

)
(3.24)
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where

PD =

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′χ(τ)χ(τ ′)WD

J0
(x, x′) (3.25)

is the transition probability of a single detector in a cylindrical spacetime
with characteristic identification length lD (D = A,B), and

LAB =

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′χ(τ)χ(τ ′)WAB

J0
(x, x′) (3.26)

is a cross-correlation term between the field on the background spacetime in
a superposition of two characteristic identification lengths, lA and lB. We
have also defined

χ(τ) = exp

(
− τ 2

2σ2

)
e−iΩτ (3.27)

as a Gaussian switching function with characteristic width σ. The intro-
duction of a time-dependent switching function is necessary for a particle
detector in flat Minkowski spacetime to detect any field quanta. A detector
eternally interacting with the field will remain in its ground state. The result
is interpreted as a manifestation of the energy-time uncertainty principle, in
which rapidly switched interactions may promote virtual vacuum fluctuations
into the detection of real field quanta (thus exciting the detector).

If one traces out the control qubit rather than measuring it in a superpo-
sition basis, the detector transition probability becomes a classical mixture
of the individual contributions from spacetime amplitudes A and B:

P
(Tr)
E =

λ2

2

(
PA + PB

)
, (3.28)

as expected.
Returning to the conditional transition probability (conditioned on mea-

suring the control/spacetime in the state |±⟩), we can insert the Wightman
functions, (3.13) and (3.14), into (3.25) and (3.26), to obtain the “local” con-
tribution to the transition probability. We have for the “local contributions”
to the transition probability, PD where D = A,B, given by

PD =
1∑
n η

2n

∑
n,m

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′e−

τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)
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[
sgn(τ − τ ′)δ((τ − τ ′)2 − l2(n−m)2)

4πi
− 1

4π2((τ − τ ′)2 − l2(n−m)2)

]
=

1∑
n η

2n

∑
n=m

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′e−

τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)

[
sgn(τ − τ ′)δ((τ − τ ′)2

4πi

− 1

4π2(τ − τ ′)2

]
+

1∑
n η

2n

∑
n̸=m

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′e−

τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)

[
sgn(τ − τ ′)δ((τ − τ ′)2 − l2(n−m)2)

4πi
− 1

4π2((τ − τ ′)2 − l2(n−m)2)

]
= PM − σ

4
√
πlD

∑
n η

2n

[
S1 − S2

]
(3.29)

where

PM =
1

4π

[
e−σ

2Ω2 −
√
πσΩerfc(σΩ)

]
(3.30)

is the transition probability of a single detector in flat Minkowski spacetime
with no identifications, and

S1 = 2
∑

n−m>0

e−
l2D(n−m)2

4σ2

n−m
sin(ΩlD(n−m)), (3.31)

S2 =
∑
n̸=m

e−
l2D(n−m)2

4σ2

(n−m)
Im

[
eilD(n−m)Ωerf

(
ilD(n−m)

2σ
+ σΩ

)]
, (3.32)

which we have derived in the Appendix. Equation (3.29) is formally equiva-
lent to the expression studied in [51] for the single-detector transition prob-
ability in the M0 spacetime. We see that there is both a Minkowski contri-
bution and an image sum contribution that accounts for the possible identi-
fications in the M/J0 space.

Meanwhile, the cross-correlation term LAB has the same form as PD in
(3.29) but with lAn = lBm and lAn ̸= lBm image sum conditions. This cross-
correlation term simplifies to the expression below, as shown in Appendix A.
We find

LAB =
Kγ∑
n η

2n
PM +

σ

4
√
π
∑

n η
2n

[
J1 − J2

]
(3.33)
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where

J1 =
∑

lAn̸=lBm

e−
l2nm
4σ2

lnm
Im

[
eilnmΩerf

[
ilnm
2σ

+ σΩ

] ]
(3.34)

J2 = 2
∑
lnm>0

e−
l2nm
4σ2

lnm
sin(Ωlnm) (3.35)

and lnm = lAn− lBm. Likewise, we have defined

Kγ = coeff

(∑
n,m

f (n− γm) , f(0)

)
(3.36)

where γ = lB/lA is the ratio of the cylindrical spaces in superposition, and
coeff(x(y), y) is the coefficient of y in the function x(y). The appearance
of this function results from the evaluation of the image sum contributions
to LAB. Notice in particular that the Wightman function for the cross-
term, Eq. (3.14), contains multiple singular points whenever n − γm = 0
(see for example the denominator of Eq. (3.34) and (3.35)). These poles
are treated differently in comparison to the single pole, which is presented
in the Minkowski Wightman function given at the beginning of Chapter
3.1. Thus, when summing over the identification variables (n,m), one “pulls
out” a Minkowski contribution to the total expression for LAB, whenever
n − γm = 0. The appearance of these “resonances” whenever n = γm for
rational n and m numbers is something that we shall also encounter when
we consider the BTZ spacetime. In that scenario, we shall see that the
mass ratios for which a “resonance” appeared agree with those predicted by
Bekenstein in his famous quantum black hole conjecture, wherein the black
hole mass is treated as a quantum number.

3.3 Results

We are now able to plot the response of the detector to the field, situated in
this universe that is in a superposition of topologies.
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Figure 3.1: The transition probability of the detector after the control is
measured in the |+⟩ state, as a function of γ. We have marked out a few
values at which resonances in the transition probability are visible. We have
set Ωσ = 1/100 and lA = 1.

In Fig. 3.1, we have plotted the transition probability of the detector
as a function of γ, the ratio of the characteristic lengths of the superposed
spacetimes. There are several physical features of the transition probability
worth noting. Most interestingly, we observe discontinuous resonant peaks
in the transition probability at rational values of γ – some of these values are
marked with vertical dashed lines. In reality, we expect a countably infinite
number of these discrete peaks at every rational value of γ, just by inspect-
ing the discontinuous form of the interference term in Eq. (A.12). Of course,
the magnitude of these peaks may not necessarily be visible; moreover, we
are limited by the finite computational step size of Mathematica. Never-
theless, this effect, as measured by an Unruh-DeWitt-type detector, seems
to be the first of its kind as a prescription for the detection of a quantum-
gravitational effect.
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Figure 3.2: (a) Illustration of the discontinuous behavior of the transition
probability as a function of γ. The continuous yellow line was plotted with
irrational step size, and hence the resonant peaks at values of γ do not appear.
(b) The same dataset is shown with the open circles in (a), but with the data
points connected. We have used the settings Ωσ = 1/100 and lA = 2.

To illustrate this further, we have plotted the transition probability of
the detector as a function of γ using rational and irrational step sizes in
Fig. 3.2. When the step size used to plot PE is irrational, the transition
probability appears to be smooth and continuous. This is in strong contrast
with the discontinuous nature of PE when utilizing rational step sizes in
Mathematica, and thus confirms the source of the resonant effect shown
in Fig. 3.1.
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Figure 3.3: Transition probability of the detector as a function of the en-
ergy gap. The black dashed line represents the transition probability when
the control is measured in |+⟩, while the brown dashed line represents the
transition probability when the control is measured in |−⟩. We have chosen
lA/σ = 0.25, lB/σ = 0.75.

In Fig. 3.3, we have plotted the transition probability as a function of the
energy gap of the detector, for a superposition of two lengths lA, lB. The
individual contributions to the transition probability are shown in different
colors, giving the total result displayed with the dashed lines (the different
colors representing two different measurement bases for the control).

Overall we found our results exhibit the induced resonance for the ratios
of particle’s transition probabilities at the topology superposition of back-
ground spacetimes. Thus, this result legitimizes the use of vacuum state
when studying quantum effects of spacetime superpositions and led us to
continue on superposing spacetimes that can reveal more explicit quantum
gravitational effects as in Chapter 4.
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Chapter 4

Mass Superpositions of the
BTZ Black Hole

In light of the results from the previous research, in which we derived a
novel resonance effect of the Minkowski spacetime superposition, the pur-
pose of this Chapter is to study the operational effects produced by a mass-
superposed black hole, as detected by a static UDW detector situated outside
it.

As in the Minkowski case, to construct a QFT on the BTZ black hole back-
ground, we need the theory of automorphic fields. Instead of periodic iden-
tifications of Minkowski spacetime, the BTZ black hole is now constructed
from periodic identifications of AdS-Rindler spacetime. The method of con-
structing the black hole superposition is similar to that applied to Minkowski
spacetime in the previous Chapter.

We consider the field quantized on a background arising from superpos-
ing BTZ spacetimes with different black hole masses. This can be achieved
by superposing two different identifications ΓA and ΓB of the Y coordinate
in Eq. 2.4. As usual, the black hole–quantum field system can be described
in the tensor product Hilbert space H = HBH ⊗HF, where we consider the
black hole to be (without loss of generality) in a symmetric superposition1

of two mass states |MA⟩, |MB⟩ while the field is in the AdS vacuum |0⟩.
Again, we consider an automorphic field ψ̂(x) that is constructed from an
ordinary (conformally coupled massless scalar) field ϕ̂ in (2+1)-dimensional

1Conceptually, a black hole mass-superposition may be generated by sending a photon
prepared in a wavepacket distribution of frequencies into the black hole. This would in
general create a black hole in a superposition of energy (i.e. mass-energy) eigenstates.
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AdS spacetime (AdS3) via the periodic identification Γ, which enacts the
identification Y → Y + 2πn

√
M coordinate (Henceforth, we use the nomen-

clature ϕ in the place of Y , denoting an angular coordinate in the black hole
spacetime) in AdS-Rindler spacetime, yielding [55]

ψ̂(x) :=
1√
N

∑
n

ηnϕ̂(Γnx) (4.1)

where x = (t, r, ϕ) are spatial coordinates of the black hole spacetime. The
image sum is a result of the periodic identification of AdS-Rindler space
as in Eq. (2.5). As we have done previously, we consider untwisted fields
corresponding to η = +1, and N =

∑
n η

2n is a normalization constant.
As usual, we require Wightman functions evaluated “locally” (on the indi-

vidual amplitudes of the spacetime superposition) and “nonlocally” (between
the spacetime amplitudes in superposition). The local terms (the Wightman
function for a single spacetime) are constructed from the AdS3 Wightman
function,

W
(D)
BTZ(x, x

′) =
1

N
∑
n,m

ηnηm⟨0|ϕ̂(ΓnDx)ϕ̂(ΓmDx′)|0⟩

=
1∑
n η

2n

∑
n

∑
m

ηnηmWAdS(Γ
n
Dx,Γ

m
Dx

′) (4.2)

where ΓDx denotes the action of the identification ϕ→ ϕ+2πn
√
MD on the

spacetime point x. As demonstrated previously, this form of the Wightman
function is equivalent to the more commonly used (and simplified) form in
the literature [56]

W
(D)
BTZ(x, x

′) =
∑
m

ηmWAdS(x,Γ
m
Dx

′). (4.3)

When computing the cross-correlation Wightman functions between black
holes of different masses, we need the more general form Eq. (4.2). Note that
we have assumed that the field state on the right-hand side of Eq. (4.2) is
the AdS Rindler vacuum state |0⟩, analogous to our choice of the Minkowski
vacuum state as the ground state in the cylindrical universe superposition. In
the standard BTZ spacetime (no superposition), the vacuum thermal prop-
erties of the black hole arise from the topological identifications acting on the
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field state |0⟩ (see [57] for details of constructing the BTZWightman function
as an image sum of the vacuum AdS Wightman function and demonstrating
its thermal properties via periodicity in imaginary time).

To derive the relevant BTZ Wightman functions, we begin with the
Wightman function for a massless, conformally coupled scalar field in the
AdS3 vacuum, given by [57, 58]

WAdS(x, x
′) =

1

4πl
√
2

[
1√

σ(x, x′)
− ζ√

σ(x, x′) + 2

]
(4.4)

where

σ(x, x′) =
1

2l2

[
(X1 −X ′

1)
2 − (T1 − T ′

1)
2 + (X2 −X ′

2)
2 − (T2 − T ′

2)
2

]
(4.5)

is the squared geodesic between x and x′ in the embedding space R(2,2) and
(X1, T1, X2, T2) are given by Eq. (2.11). The parameter ζ ∈ [−1, 1] encodes
the boundary condition at infinity for AdS spacetime, while the special values
ζ = {−1, 0, 1} correspond to Neumann, transparent, and Dirichlet boundary
conditions respectively. For simplicity, we consider only transparent bound-
ary conditions (ζ = 0), however, the results are easily extended to generic
boundary conditions.

Returning to our Wightman function Eq. (4.2), we need to calculate
σ(ΓnDx,Γ

m
Dx

′). Inserting the BTZ-scaled AdS3 coordinates (2.8) into Eq. (4.5)
along with the periodic identification of the ϕ coordinate ϕ→ ϕ+2πn

√
MD,

we obtain

σ(Γnx,Γmx′) =
R2
D

l2
cosh

[
2π(m− n)

√
MD

]
− 1−

[
R2
D

l2
− 1

]
cosh

t− t′

l

= γ̃2D

[
R̃2
D

MDγ̃2Dl
2
cosh

[
2π(m− n)

√
MD

]
− 1

γ̃2D
− cosh

t− t′

l

]
,

(4.6)

where γ̃D =
√
R̃2
D/l

2 − 1 and the tildes denote that we have identified the

AdS RD with the scaled BTZ coordinate. Since the time coordinate will
be integrated over when computing the transition probability, we have not
rescaled the time coordinate. The BTZ Wightman function can thus be
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written as

W
(D)
BTZ(x, x

′) =
1∑
n η

2n

1

γ̃D

1

4πl
√
2

∑
n

∑
m

1√
R̃2

D

MD γ̃
2
Dl

2 cosh(2π(m− n)
√
MD)− 1

γ̃2D
− cosh(s/l)

(4.7)

where s = t− t′. For the cross term, the geodesic distance is

σ(ΓnAx,Γ
m
Bx

′) =

√
R2
A

l2

√
R2
B

l2
cosh

[
2π(m

√
MA − n

√
MB)

]
− 1−

√
R2
A

l2
− 1

√
R2
B

l2
− 1 cosh

t− t′

l
(4.8)

= γ̃Aγ̃B

√ R̃2
A

MAγ̃2Al
2

√
R̃2
B

MBγ̃2Bl
2
cosh

[
2π(m

√
MB − n

√
MB)

]
− 1

γ̃Aγ̃B
− cosh

t− t′

l
(4.9)

= γ̃Aγ̃B

[
R̃2
D

γ̃Aγ̃B
√
MAMBl2

cosh
[
2π(m

√
MA − n

√
MB)

]
− 1

γ̃Aγ̃B
− cosh

t− t′

l
(4.10)

In the last line, we have assumed that detector is at a single radial coordinate
RA = RB = RD. The Wightman function is straightforwardly obtained by
substituting Eq. (4.10) into Eq. (4.2). We finally note that W

(AB)
BTZ (x, x′)

straightforwardly reduces to W
(D)
BTZ(x, x

′) when MA →MB =MD.

4.1 Unruh DeWitt Detector Coupling to Su-

perposed BTZ Black Hole Spacetime

Having derived the Wightman functions relevant to the problem (two “local”
amplitudes and two “nonlocal” ones that a UDW will naturally access via its
interaction with the field), we now wish to compute the transition probability
of a detector residing in the mass-superposed BTZ spacetime.
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First, let us recall that in the interaction picture, states evolve as

|ψ(tf )⟩ = e−iĤ0,Stf ÛeiĤ0,Sti |ψ(ti)⟩ (4.11)

where Ĥ = Ĥ0+Ĥint. is the full Hamiltonian, comprised of a free Hamiltonian
and an interaction Hamiltonian. ti and tf are the initial and final times of the
evolution. The detector couples to the field and black hole via the interaction
Hamiltonian,

Ĥint. = λη(τ)σ̂(τ)
∑

D=A,B

ψ̂(xD)⊗ |MD⟩⟨MD| (4.12)

where |MD⟩⟨MD| is a projector on the black hole mass, and ψ̂(xD) is the
field operator for the spacetime associated with amplitude D of the black
hole mass superposition. This interaction means that for each BTZ black hole
massMD, the field is identified accordingly, i.e. (t, r, ϕ) → (t, r, ϕ+2πn

√
MD).

ÛI(tf , ti) is our usual interaction picture time-evolution operator expanded
(for ease of communication) to second order in the coupling constant λ:

ÛI(tf , ti) = I − iλ

∫ tf

ti

dτ Ĥint.(τ)− λ2
∫ tf

ti

∫ τ

ti

dτdτ ′Ĥint.(τ)Ĥint.(τ
′)

(4.13)

In the previous Chapter, we took the integral bounds to be (−∞,∞) instead
of from ti to tf . This was due to our neglect of the free evolution of the
control state associated with the spacetime amplitudes. Here, we wish to
incorporate these free dynamics into our analysis, for which finite time inte-
gral limits are necessary (this is a common technique in atomic physics when
considering superpositions of mass-energy eigenstates). We note also that we
are assuming that the times ti, tf are determined with respect to a faraway
observer at sufficiently large r, whose “clock state” is factorizable from the
rest of the system. Such a choice is justified since for sufficiently large radial
coordinate r, the fractional difference in proper times of the clock between
two spacetimes with mass MA and MB respectively is (MB −MA)l

2/r2. We
note that another choice for the “clock state” is one that is entangled with
the black hole’s mass. It is expected for a theory of quantum gravity de-
scription of spacetime superpositions to permit both of these kinds of states
[59], though for simplicity we have assumed the former. Now, let us take
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our initial state of the black hole to be a superposition of mass (energy)
eigenstates:

|ψS(ti)⟩ =
1√
2
(|M1⟩+ |M2⟩) |0⟩|g⟩ (4.14)

Thus, the full evolution is

|ψ(tf )⟩ = e−iĤ0,Stf eiĤ0,Sti
1√
2
(|MA⟩+ |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (iλ)

∫
dτ Ĥint.(τ)e

iĤ0,Sti
1√
2
(|MA⟩+ |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (λ2)

∫∫
T
dτdτ ′Ĥint.(τ)Ĥint.(τ

′)eiĤ0,Sti
1√
2
(|MA⟩+ |MB⟩)|0⟩|g⟩

(4.15)

After factorization, a relative phase is introduced between the states of the
black hole, yielding the following terms in the final state:

|ψ(tf )⟩(0) =
1√
2
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩ (4.16)

|ψ(tf )⟩(1) = − iλ√
2

∫ tf

ti

dτ η(τ)eiΩτ
[
ψ̂(xA)|MA⟩+ ψ̂(xB)e

−i∆E∆t|MB⟩
]
|0⟩|e⟩

(4.17)

|ψ(tf )⟩(2) = − λ2√
2

∫ tf

ti

∫ tf

ti

dτdτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
ψ̂(xA)ψ̂(x

′
A)|MA⟩

+ ψ̂(xB)ψ̂(x
′
B)e

−i∆E∆t|MB⟩
]
|0⟩|g⟩ (4.18)

where ∆E = EB − EA is the energy gap between the eigenstates and ∆t =
tf−ti. Below, we consider the final conditional detector-field state for various
measurements of the black hole. A detailed evaluation of the final state is
shown in Appendix B.

4.1.1 Measurement in the |±⟩ = (|MA⟩±|MB⟩)/
√
2 Basis

Let us first consider a conditional measurement in the |±⟩ = (|MA⟩ ±
|MB⟩)/

√
2. The terms at zeroth, first, and second order in the coupling
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are given by:

⟨±|ψ(tf )⟩(0) =
(⟨M1| ± ⟨M2|)

2

(
|M1⟩+ e−i∆E∆t|M2⟩

)
|0⟩|g⟩ (4.19)

⟨±|ψ(tf )⟩(1) = −iλ
2

∫
dτ η(τ)eiΩτ

[
ψ̂(xA)± ψ̂(xB)e

−i∆E∆t
]
|0⟩|e⟩ (4.20)

⟨±|ψ(tf )⟩(2) = −λ
2

2

∫∫
T
dτdτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)

[
ψ̂(xA)ψ̂(x

′
A)

± ψ̂(xB)ψ̂(x
′
B)e

−i∆E∆t
]
|0⟩|g⟩ (4.21)

When computing the reduced density matrix (after tracing out the field) we
are left with the following expressions:

Trψ

[
Û (0)ρ̂FDÛ

(0)†
]
=

1

4

[
2± 2 cos∆E∆t

]
|g⟩⟨g| (4.22)

Trψ

[
Û (0)ρ̂FDÛ

(2)†
]
= −λ

2|g⟩⟨g|
4

∫∫
T
dτdτ ′η(τ)η(τ ′)eiΩ(τ−τ ′)

[
W (xA, x

′
A)
(
1± e−i∆E∆t

)
+W (xB, x

′
B)
(
1± ei∆E∆t

)]
(4.23)

Trψ

[
Û (2)ρ̂FDÛ

(0)†
]
= −λ

2|g⟩⟨g|
4

∫∫
T
dτdτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)

[
W (xA, x

′
A)
(
1± ei∆E∆t

)
+W (xB, x

′
B)
(
1± e−i∆E∆t

)]
(4.24)

Trψ

[
Û (1)ρ̂FDÛ

(1)†
]
=
λ2|e⟩⟨e|

4

∫∫
dτdτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)[

W (xA, x
′
A) +W (xB, x

′
B)±W (xA, x

′
B)
(
2 cos∆E∆t

)]
(4.25)

Here, the density matrix amplitudes of the states are the excitation and
ground state probabilities of the detector at the positive and negative super-
position state as a result of coupling to the field:

P
(±)
G = Trψ

[
Û (0)ρ̂FDÛ

(0)† + Û (0)ρ̂FDÛ
(2)† + Û (2)ρ̂FDÛ

(0)†
]
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=
1

2

(
1± cos∆E∆t

)[
1− λ2

2

∫ tf

ti

dτ

∫ tf

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)(
W (xA, x

′
A) +W (xB, x

′
B)
)]

(4.26)

P
(±)
E = Trψ

[
Û (1)ρ̂FDÛ

(1)†
]

=
λ2

4

∫ tf

ti

dτ

∫ tf

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
W (xA, x

′
A) +W (xB, x

′
B)

±W (xA, x
′
B)
(
2 cos∆E∆t

)]
(4.27)

We can write the transition probabilities as

P
(±)
G =

1

2

(
1± cos(∆E∆t)

)[
1− λ2

2

(
PA + PB

)]
(4.28)

P
(±)
E =

λ2

4

(
PA + PB ± 2 cos(∆E∆t)LAB

)
(4.29)

Since we consider the conditional state, we normalise the final detector state
(detector transition probabilities) to satisfy PG

PG+PE
+ PE

PG+PE
= 1 at Appendix

B.0.1.
To summarize, we measured the transition probability in four different

conditions. One is when the detector is at ground state and the black hole
is at positive phase. We also measure when the detector is at excited state
and the black hole is at positive phase. Another case is the negative phase
black hole measurement with the detector at the ground and excited states.
A black hole’s complete state is the sum of the positive and negative phases.
Hence, the total transition probability is

P+
G =

1

2

(
1 + cos∆E∆t

)[
1− λ2

2

(
PA + PB

)]
(4.30)

P−
G =

1

2

(
1− cos∆E∆t

)[
1− λ2

2
(PA + PB)

]
(4.31)

P+
E =

λ2

4

(
PA + PB + 2 cos∆E∆tLAB

)
(4.32)

P−
E =

λ2

4

(
PA + PB − 2 cos∆E∆tLAB

)
(4.33)

where the conditional transition probabilities are unnormalized. Note that
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P+
G + P−

G + P+
E + P−

E = 1. That is,∑
i=g,e

∑
j=+,−

∣∣∣⟨i|⟨j|Û |ψ(ti)⟩∣∣∣2 = 1 (4.34)

4.1.2 Measurement in the | ± i⟩ = (|MA⟩ ± i|MB⟩)/
√
2

basis

Let us condition the black hole state on the | ± i⟩ = (|MA⟩ ± i|MB⟩)/
√
2

superposition basis, giving

⟨±i|ψ(tf )⟩(0) =
1√
2
(1± ie−i∆E∆t)|0⟩|g⟩ (4.35)

⟨±i|ψ(tf )⟩(1) = − iλ√
2

∫ tf

ti

dτ η(τ)eiΩτ
[
ψ̂(xA)± iψ̂(xB)e

−i∆E∆t
]
|0⟩|e⟩ (4.36)

⟨±i|ψ(tf )⟩(2) = − λ2√
2

∫ tf

ti

dτ

∫ tf

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)

×
[
ψ̂(xA)ψ̂(x

′
A)± iψ̂(xB)ψ̂(x

′
B)e

−i∆E∆t
]
|0⟩|g⟩ (4.37)

The contributions to the reduced density matrix are given by

Trψ

[
Û (0)ρ̂FDÛ

(0)†
]
=

1

4

[
2± 2 sin∆E∆t

]
|g⟩⟨g| (4.38)

Trψ

[
Û (0)ρ̂FDÛ

(2)†
]
= −λ

2|g⟩⟨g|
4

∫∫
T
dτdτ ′η(τ)η(τ ′)eiΩ(τ−τ ′)

[
W (xA, x

′
A)
(
1± ie−i∆E∆t

)
+W (xB, x

′
B)
(
1∓ ei∆E∆t

)]
(4.39)

Trψ

[
Û (2)ρ̂FDÛ

(0)†
]
= −λ

2|g⟩⟨g|
4

∫∫
T
dτdτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)

[
W (xA, x

′
A)
(
1∓ ei∆E∆t

)
+W (xB, x

′
B)
(
1± e−i∆E∆t

)]
(4.40)

Trψ

[
Û (1)ρ̂FDÛ

(1)†
]
=
λ2|e⟩⟨e|

4

∫∫
dτdτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)[

W (xA, x
′
A) +W (xB, x

′
B)±W (xA, x

′
B)
(
2 sin∆E∆t

)]
(4.41)
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The out of phase conditional ground and excited transitional probabilities
become

PG =
1

2

(
1± sin∆E∆t

)[
1− λ2

2

∫ tf

ti

dτ

∫ tf

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
(
W (xA, x

′
A)

+W (xB, x
′
B)
)]

(4.42)

PE =
λ2

4

∫ tf

ti

dτ

∫ tf

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
W (xA, x

′
A) +W (xB, x

′
B)

±W (xA, x
′
B)
(
2 sin∆E∆t

)]
(4.43)

in terms of transition probability definitions, the out of phase transition
probability can be written as

PG =
1

2

(
1± sin∆E∆t

)[
1− λ2

2

(
PA + PB

)]
(4.44)

PE =
λ2

4

(
PA + PB ± 2 sin∆E∆tLAB

)
(4.45)

Adding all of the possible outcomes yields a total transition probability of 1.

4.1.3 Transition Probability for Finite Time interac-
tions

In the previous Section, we computed the general form of the detector con-
ditional transition probabilities for measurements of the control in different
superposition states. Now we need to evaluate the transition probability
integrals for PA, PB, and LAB explicitly using the BTZ Wightman functions.

Following our approach in obtaining the BTZ Wightman functions from
the AdS-Rindler coordinates, the quantities RD, γD, γA and γB should hence-
forth be understood as R̃D, γ̃D, γ̃A and γ̃B for simplicity. The contribution
to the total transition probability coming from the individual amplitudes of
the black hole superposition (which is identical to the transition probability
of a detector in a classical spacetime given by one of the masses) is

PD =

∫ tf

−tf
dτ

∫ tf

−tf
dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)W

(D)
BTZ(xD(τD), x

′
D(τ

′
D)) (4.46)
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where D = A,B denotes the associated amplitude, and where we have con-
sidered the symmetric integral bounds ti = −tf for simplicity. Including the
redshifts on the proper time, we obtain

PD = γ2D

∫ tf

−tf
dt

∫ tf

−tf
dt′η(γDt)η(γDt

′)e−iΩγD(t−t′)W
(D)
BTZ(xD(τD), x

′
D(τ

′
D)).

(4.47)

Making the substitution u = t and s = t− t′ yields

PD = γ2D

∫ tf

−tf
du

∫ u+tf

u−tf
ds η(γDu)η(γD(u− s))e−iΩγDsW

(D)
BTZ(s). (4.48)

At this point, we can specialize to a particular profile for the switching func-
tion of the detector. In both cases, we choose the switching functions with
characteristic width σ such that σ ≪ tf i.e. the detector switching is much
narrower than the interaction time of the entire system. In such a regime,
the following condition is satisfied∫ tf

−tf
du

∫ u+tf

u−tf
ds η(γDu)η(γD(u− s)) ≃

∫ tf

−tf
du

∫ tf

−tf
ds η(γDu)η(γD(u− s))

(4.49)

for switching functions strongly localized around u = 0, u−s = 0 (given that
σ ≪ tf > 0). This approximation is demonstrated numerically for Gaussian
switching functions evaluated in the integral (4.49) as ∆I in Fig. 4.1. We
have also shown that for compact switching, we could implement cosine for
our switching function [60]. For simplicity, we focus on Gaussian switching
throughout our calculations.
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Figure 4.1: The difference, ∆I between the exact and approximated evalua-
tion of the integrals in Eq. (4.49), corresponding to the left- and right-hand
sides respectively. We have plotted ∆I as a function of tf for three fixed
values of σ. As tf ≫ σ, the difference between the exact and approximated
integrals vanishes.

This approximation allows us to simplify the integration limits and vari-
ables. Hence, our transition probability takes the following form

PD ≃ λ2γ2D

∫ tf

−tf
du

∫ tf

−tf
ds η(γDu)η(γD(u− s))e−iΩγDsW

(D)
BTZ(s). (4.50)

Such a simplification is justified because the narrow bandwidth Gaussians
in u and u − s only have strong support in the regions u ∈ [−tf , tf ] and
s ∈ [−tf , tf ]. For the cross term, we have

LAB =

∫ tf

−tf
dτ

∫ tf

−tf
dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)W

(AB)
BTZ (xA(τA), x

′
B(τ

′
B)) (4.51)

Including the redshifts and performing the usual change of variables, one
obtains the expression

LAB = γAγB

∫ tf

−tf
du

∫ tf

−tf
ds η(γAu)η(γB(u− s))e−iΩ(γAu−γB(u−s))W

(AB)
BTZ (s)

(4.52)
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Let us consider first a Gaussian switching function of the form η(τ) =
exp(τ 2/2σ2). The transition probability becomes

PD = γ2D

∫ tf

−tf
du

∫ tf

−tf
ds e−

γ2Du2

2σ2 e−
γ2D(u−s)2

2σ2 e−iΩγDsW
(D)
BTZ(s) (4.53)

=

√
πγDσ

2

∫ tf

−tf
ds e−

γ2Ds2

4σ2 e−iΩγDsH0(s)W (s) (4.54)

where H0(s) = erf
[
γD(s+2tf )

2σ

]
− erf

[
γD(s−2tf )

2σ

]
. For the cross term,

LAB = γAγB

∫ tf

−tf
du

∫ tf

−tf
ds e−

γ2Au2

2σ2 e−
γ2B(u−s)2

2σ2 e−iΩ(γAu−γB(u−s))W
(AB)
BTZ (s)

(4.55)

and then performing the integration over u,

LAB =
γAγBσ

√
π√

2
√
γ2A + γ2B

e
− (γA−γB)2σ2Ω2

2(γ2
A

+γ2
B

)

∫ tf

−tf
ds e

− γ2Aγ2Bs2

2(γ2
A

+γ2
B

)σ2
e
− iΩsγAγB(γA+γB)

γ2
A

+γ2
B Q0(s)W

(AB)
BTZ (s)

(4.56)

where

Q0(s) = erf

[
(γ2A + γ2B)tf + i(γA − γB)Ωσ

2 − γ2Bs√
2σ
√
γ2A + γ2B

]

+ erf

[
(γ2A + γ2B)tf − i(γA − γB)Ωσ

2 + γ2Bs√
2σ
√
γ2A + γ2B

]
(4.57)

4.1.4 Integral expressions for PD and LAB with Gaus-
sian switching

Finally, we calculate the transition probability after substituting the Wight-
man function for static detector D.

PD
σ

=

√
πH0(0)

8
− i

8
√
π
PV

∫ tf/2l

−tf/2l

dz X0(2lz)H0(2lz)

sinh(z)

+
1

4
√
2π
∑

n η
2n

∑
n̸=m

Re

∫ tf/l

0

dz X0(lz)H0(lz)√
βnm − cosh(z)

(4.58)
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where X0(z), H0(z) are functions of the detector and spacetime parameters
derived in the Appendix. Likewise, cross-correlation term quantifying the
correlations between the different fields on the spacetime superposition is
given by

LAB
σ

=
Y0∑
n η

2n

∑
n,m

∫ tf/l

0

dz Z0(lz)Q0(lz)√
αnm − cosh(z)

. (4.59)

Y0 and Z0(z) are likewise derived in the Appendix B.0.3. The constants
beneath the roots (also appearing in the compact switching case) take the
form

βnm =
1

γ2D

[
R2
D cosh(2π(n−m)

√
MD)

MDl2
− 1

]
, (4.60)

αnm =
1

γAγB

[
R2
D cosh(2π(m

√
MA − n

√
MB))√

MAMBl2
− 1

]
. (4.61)

4.2 Metric for spacetime superpositions

Before presenting our results for the response of the detector in the mass-
superposed spacetime, we pause to remark about a “conditional metric” that
may be obtained for the spacetime. It is so-called due to our “conditioning”
of the spacetime on a certain measurement basis, yielding a combination of
Wightman functions parametrizing the correlations in the field between the
spacetime amplitudes of interest. This builds off the recent arguments given
by Saravani et. al. and Kempf [61, 62, 63]. Recall that in general relativity,
spacetime is described by a differentiable manifold (M) and Synge world
function (or as we have been calling it, the geodesic distance σ) between two
spacetime events (x, x′). The separation of these two distances is sufficient
to express the metric in terms of this distance [61, 62]

gµν(x) = − lim
x→x′

∂

∂xµ
∂

∂x′ν
σ(x, x′). (4.62)

where the metric is subject to changes from the correlations that decay as the
separation increases. The authors of [61, 62] consider Feynman propagators
in deriving the metric (for a classical background) via correlations in the field.
However, other correlation functions such as the Wightman function are also
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applicable. After applying the Wightman function, the metric (again, for a
classical background) takes the form

gµν = Υ(d) lim
x→x′

∂

∂xµ
∂

∂x′ν
W (x, x′)

2
d−2 (4.63)

where Υ(d) = −(1/2)(Γ(d/2− 1)/(4πd/2))
2

d−2 and d > 2 is the spacetime di-
mension2. In this context, building a spacetime in superposition occurs at the
level of the field operator. By taking ψ̂(x) → ψ̂(x) =

∑
D fDψ̂(xD) (where

x = {xD},
∑

D |fD|2 = 1 and the relative phases between fD are determined
by the state in which the black hole is measured), the Wightman function be-
comes a sum over all two-point correlators between the fields ψ̂(xD), ψ̂(x

′
D′),

defined with respect to the coordinates of the spacetime states in superpo-
sition. Equation (4.63) is then modified as follows, yielding a conditional
metric (i.e. conditioned on a particular measurement of the control) describ-
ing a superposition of spacetimes:

gµν = Λ(d) lim
x→x′

∂

∂xµ
∂

∂x′ν

∑
D,D′

fDf
⋆
D′W (xD, x

′
D′)

2
d−2 . (4.64)

Equation (4.64) involves correlations between the field operators parametrized
with coordinates covering black hole spacetimes associated with different
masses; it represents a “conditional metric” effectively seen by a detector in
the quantum superposition of spacetimes.

4.3 Results

We can analyze the response of the detector outside the mass-superposed
black hole. In Fig. 4.2, we have plotted the response of the detector as a
function of the mass ratio of the black hole superposition,

√
MB/MA.

2A unique expression exists for d = 2
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Figure 4.2: Transition probability of the detector as a function of
√
MB/MA.

The measurement basis corresponding to the relevant plot is indicated by
the legend. In (a), the dashed lines correspond to

√
MB/MA = 1/n where

n = {1, . . . 6}. In (b), the dashed lines correspond to
√
MB/MA = (n− 1)/n

where n = {3, . . . 8}. Moreover, the oscillating cross term in (b) is π/2 out-
of-phase with that for the black hole measured in the (anti)symmetric basis.
In all plots we have also used l/σ = 5, R/σ = 25, tf = 5σ and MAl

2 = 2.

Fig. 4.2(a) shows the conditional transition probabilities for measure-
ments in the symmetric and antisymmetric superposition basis, while Fig.
4.2(b) considers measurements in the |i±⟩ = (|MA⟩±i|MB⟩)/

√
2 basis. There

are recurring behaviors of the transition probabilities with respect to the ra-
tios of the superpositions associated with different masses. These features,
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that translate into resonant peaks, occur at rational values of the square root
ratio of the superposed masses. In Fig. 4.2(a), we have denoted some of these
ratios with dashed lines. The transition probability occurs continuously for
both MB < MA and MB > MA. There are many values of the square root
mass ratio for the effect to occur. We ascribe this behavior to a constructive
interference between the field modes associated with topologically closed AdS
spacetimes, yielding resonances in the detector response at integer values of√
MB/MA.
In Fig. 4.2(a) and (b) respectively, we have highlighted the ratios at

the sharp spikes as
√
MB/MA as 1/n for n = {1, . . . 6} and (n − 1)/n for

n ∈ {3, . . . 8}. The analytical explanation to this is, in our cross term transi-
tion probability 4.59, the variable Eq. (4.61) at the integrand denominator,
the cosh(x) vanishes when m

√
MA = n

√
MB. As we sum over the image

terms n and m, these “coincidences” occur only when
√
MA/MB is a ratio-

nal number. Furthermore, this relation between black hole masses studied by
Bekenstein’s quantum black hole conjecture supports our ratio calculation to
be rational numbers. Specifically, the allowed mass values of the BTZ black
hole, assuming the Bohr-Sommerfeld quantization scheme for the horizon
radius, are given by [64]:

rH =
√
Ml = n, n = 1, 2, . . . (4.65)

We consider all ranges of rational and irrational values for our calculations,
however, the resonances that are significant come from Eq. (4.61). Hence,
the response of the detector to the superposition of black hole masses is
unique for the mass ratios predicted by Bekenstein’s conjecture. While our
construction does not require that the superposed masses are quantized in
integer values, the form of Eq. (4.61) explains the origin of the signatory
resonances. The detector responds uniquely to black hole mass superposi-
tions with mass ratios corresponding to the masses predicted by Bekenstein’s
conjecture. This result is a one of its kind prescription for the detection of
a quantum gravitational effect of a quantum black hole. And it constitutes
a new method for investigating effects implied by Bekenstein’s conjecture
about the quantization of black hole masses.
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Chapter 5

Summary

The objective of this thesis was to use a UDW detector to develop a “su-
perposition of spacetime detection protocol” and explore unique properties
produced by such superpositions. In particular, the kinds of superpositions
we considered were periodic identifications of Minkowski spacetime (yielding
a cylindrical spacetime in a superposition of characteristic lengths) and AdS3

(yielding a mass superposition of the BTZ black hole).
In Chapter 3 (the first containing new research), we utilized the theory of

automorphic fields to calculate the Wightman functions accessible to a de-
tector on a background Minkowski spacetime in a superposition of periodic
identifications. The detector, interacting with a scalar field on this back-
ground, had a response function that exhibited discontinuous resonant peaks
at rational values of the superposed characteristic lengths, γ = lB/lA. In
studying this simple case, we were able to clarify the appropriate choice of
the vacuum state of the field (which we chose to be the Minkowski vacuum,
the ground state of the “embedding space” of the cylindrically identified
spacetimes). This motivated our choice of the AdS3 vacuum in the following
Chapter.

In Chapter 4, we extended our investigation by considering the spacetime
superposition produced by a BTZ black hole in a superposition of masses
(constructed from a superposition of identifications of AdS3). We found sig-
natures of genuine quantum-gravitational phenomena via the same UDW
detector coupling. The response of a UDW detector to these fields in this
spacetime identifies two types of terms as “local” corresponding to individual
mass-energy eigenstates and “cross-correlation” of fields of the mass-energy
eigenstates in superposition originated from BTZ spacetimes with mass iden-
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tifications. We reported that the rational mass ratios of the superpositions
are not only more sensible to the detector but also there are signatory peaks
in rational square root of mass ratios. Finally, the BTZ superposition study
suggested that our operational approach can be used for the detection of
quantum gravitational effects for the first time during the hypothetical su-
perpositions of spacetime and it acts as a new method for investigating ef-
fects implied by Bekenstein’s conjecture. Additionally, for our superposition
of spacetimes, we presented a spacetime metric derived from the correlations
of the fields (as a measure of distance) a notion first proposed by Saravani
et. al. and Kempf [61, 62].

The results of this thesis pave the way for a deeper understanding of
quantum gravity ideas such as quantum black holes and quantum super-
positions of spacetime. Although superpositions of spacetimes have been
considered in the literature, our new approach has the advantage of being
based on operationalism (i.e. giving quantitative predictions based on in-
principle measurements). By tying our work to the spacetime metric, we
have opened the possibility of further research on the dynamics of spacetime
superpositions and what effects that may induce on, for example, low-energy
particles geodesics in quantum gravity. A natural extension to the results of
Chapter 4 includes studying black holes in a superposition of angular mo-
menta. From the perspective of quantum thermodynamics and information,
our work motivates questions about operationally defining phenomena such
as superpositions of Hawking radiation and temperature. This work may
also be considered for entanglement between detectors in various black hole
spacetime superpositions. Finally, it would be interesting to ask “Are there
any superselection rules for spacetime superpositions that we can study via
the UDW detector model?”

Though observational evidence of Hawking radiation is limited, there are
possibilities of experimentally simulating the effects derived in this thesis.
Regarding the topology superposition of Chapter 3, experiments have real-
ized superfluid Helium condensates on toroidal cavities. The fundamental
mode providing the “analog metric” for phonons in the condensate therein
can interact with incident photons, thus suggesting an opportunity to study
“light-controlled” effective quantum-superposed backgrounds [65, 66]. Like-
wise, experimental techniques in atomic Bose-Einstein condensates and fluid
surface waves have realized analog black holes in the lab. Such experiments
commonly treat “sonic” or “fluid” black holes in (1+1)- or (2+1)-dimensions.
Our results may have significant observational consequences for superposed
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UDW detectors in a “sonic” or “fluid” black hole [67] or perhaps even for a
single UDW detector in a mass- superposition of such a black hole.
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[41] Benito A. Juárez-Aubry and Jorma Louko. Quantum kicks near a Cauchy horizon.
AVS Quantum Sci., 4(1):013201, 2022.

57



[42] Diana Mendez-Avalos, Laura J. Henderson, Kensuke Gallock-Yoshimura, and
Robert B. Mann. Entanglement harvesting of three Unruh-DeWitt detectors. 6
2022.

[43] Subhajit Barman, Bibhas Ranjan Majhi, and L. Sriramkumar. Radiative processes
of single and entangled detectors on circular trajectories in (2 + 1) dimensional
Minkowski spacetime. 5 2022.

[44] Dimitris Moustos. Uniformly accelerated Brownian oscillator in (2+1)D:
Temperature-dependent dissipation and frequency shift. Phys. Lett. B, 829:137115,
2022.

[45] Laura J. Henderson, Robie A. Hennigar, Robert B. Mann, Alexander R. H. Smith,
and Jialin Zhang. Entangling detectors in anti-de Sitter space. JHEP, 05:178, 2019.

[46] Eduardo Mart́ın-Mart́ınez and Pablo Rodriguez-Lopez. Relativistic quantum optics:
The relativistic invariance of the light-matter interaction models. Phys. Rev. D,
97(10):105026, 2018.

[47] Luis C. Barbado, Esteban Castro-Ruiz, Luca Apadula, and Časlav Brukner. Unruh
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Appendix A

Transition Probability
Derivation for the
Superposition of (3+1)D
Minkowski spacetime

In this Appendix, we present in detail the calculation for the transition probability
for a detector in a superposition of Minkowski spacetimes with different periodic
identifications. We begin by deriving the expression for the “local contributions”
from the individual spacetime amplitudes:

PD =
1∑
n η

2n

∑
n,m

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′e−

τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)

[
sgn(τ − τ ′)δ((τ − τ ′)2 − l2(n−m)2)

4πi
− 1

4π2((τ − τ ′)2 − l2(n−m)2)

]
=

1∑
n η

2n

∑
n=m

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′e−

τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)

[
sgn(τ − τ ′)δ((τ − τ ′)2

4πi
− 1

4π2(τ − τ ′)2

]
+

1∑
n η

2n

∑
n̸=m

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′e−

τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)

[
sgn(τ − τ ′)δ((τ − τ ′)2 − l2(n−m)2)

4πi
− 1

4π2((τ − τ ′)2 − l2(n−m)2)

]
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=
1

4π

[
e−σ

2Ω2 −
√
πσΩerf(σΩ)

]
+ PI (A.1)

where PI = I1 − I2 is the image sum term. We have

I1 =
1∑
n η

2n

∑
n̸=m

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′e−

τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)

sgn(τ − τ ′)δ((τ − τ ′)2 − l2(n−m)2)

4πi

=
1∑
n η

2n

∑
n̸=m

∫ ∞

−∞
du

∫ ∞

−∞
ds e−

u2

2σ2 e−
(u−s)2

2σ2 e−iΩs
sgn(s)δ(s2 − l2(n−m)2)

4πi

=

√
πσ∑
n η

2n
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∫ ∞

−∞
ds e−

s2

4σ2 e−iΩs
sgn(s)δ(s2 − l2(n−m)2)

4πi

=
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n η
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1

4πi
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∫ ∞
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ds e−

s2

4σ2 e−iΩssgn(s)
1

2|l(n−m)|[
δ(s+ l(n−m)) + δ(s− l(n−m))

]
Integrating over s:

I1 =

√
πσ∑
n η

2n

1

4πi

∑
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e−
l2(n−m)2

4σ2

2|l(n−m)|

[
eiΩl(n−m)sgn(−l(n−m)) + sgn(l(n−m))e−iΩl(n−m)

]
We can split this up into two contributions, n > m and n < m:

=

√
πσ∑
n η
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1
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−
√
πσ∑
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[ ∑
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=

√
πσ∑
n η

2n

1

2πl
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n>m
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l2(n−m)2

4σ2

n−m
sin(Ωl(m− n)) (A.2)

The second part of the image sum term is

I2 = − 1∑
n η

2n

∑
n̸=m

∫ ∞

−∞
dτ

∫ ∞
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∫ ∞
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√
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∫ ∞
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√
πσ

4π2
1∑
n η

2n

∑
n̸=m

∫ ∞
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∫ ∞
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∫ ∞

−∞
ds′
(

1

2π

∫ ∞
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∫ ∞
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(A.3)

yielding

I2 = (
√
πσ)

∑
n̸=m

e−
l2(n−m)2

4σ2

4πl(n−m)
Im

[
eil(n−m)Ωerf

(
il(n−m)

2σ
+ σΩ

)]
(A.4)

This yields the final expression for the transition probability,

PD = PM − σ

4
√
πlD

∑
n η

2n

[
S1 − S2

]
(A.5)

where

S1 = 2
∑
n>m

e−
l2D(n−m)2

4σ2

n−m
sin(ΩlD(n−m)) (A.6)
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S2 =
∑
n̸=m

e−
l2D(n−m)2

4σ2

(n−m)
Im

[
eilD(n−m)Ωerf

(
ilD(n−m)
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+ σΩ

)]
(A.7)

and

PM =
1

4π

[
e−σ

2Ω2 −
√
πσΩerfc(σΩ)

]
(A.8)

is the transition probability of a single detector in flat Minkowski spacetime with
no identifications. We see that there is Minkowski contribution and an image sum
contribution which accounts for the possible identifications in the M/J0 space.

Meanwhile, the cross-correlation term, that is the superposition case, We have

LAB =
1∑
n η

2n

∑
n,m

∫ ∞
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dτ

∫ ∞
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∫ ∞
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(A.9)

Let us look at the image sum integrals:

I1 =
1∑
n η
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∑
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dτ

∫ ∞

−∞
dτ ′e−

τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)

sgn(τ − τ ′)δ((τ − τ ′)2 − (lAn− lBm)2)

4πi
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I1 =
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n η
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∫ ∞
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du
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Integrating over s:
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]
Again, we can split the sum into terms whre lAn > lBm and lAn < lBm:
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This simplifies to
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1

4πi

∑
lAn>lBm

sgn(lAn− lBm)

2|lAn− lBm|
e−

(lAn−lBm)2

4σ2

[
e−iΩ(lAn−lBm) − eiΩ(lAn−lBm)

]

+

√
πσ∑
n η

2n

1

4πi

∑
lBm>lAn

sgn(lBm− lAn)

2|lAn− lBm|
e−

(lAn−lBm)2

4σ2

[
eiΩ(lAn−lBm) − e−iΩ(lAn−lBm)

]

=

√
πσ∑
n η

2n

1

4π

[ ∑
lAn>lBm

e−
(lAn−lBm)2

4σ2

lAn− lBm
sin(Ω(lBm− lAn))

65



−
∑

lBm>lAn

e−
(lAn−lBm)2

4σ2

lBm− lAn
sin(Ω(lBm− lAn))

]

=

√
πσ∑
n η

2n

1

2π

∑
lAn>lBm

e−
(lAn−lBm)2

4σ2

lAn− lBm
sin(Ω(lBm− lAn)) (A.10)

Next,

I2 =
1∑
n η

2n

∑
lAn ̸=lBm

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′

e−
τ2

2σ2 e−
τ ′2
2σ2 e−iΩ(τ−τ ′)

4π2((τ − τ ′)2 − (lAn− lBm)2)

=
1∑
n η

2n

∑
lAn ̸=lBm

∫ ∞

−∞
du

∫ ∞

−∞
ds

e−
u2

2σ2 e−
(u−s)2

2σ2 e−iΩs

4π2(s2 − (lAn− lBm)2)

=

√
πσ∑
n η

2n

1

4π2

∑
lAn̸=lBm

∫ ∞

−∞
ds

e−
s2

4σ2 e−iΩs

s2 − (lAn− lBm)2

=

√
πσ∑
n η

2n

1

4π2

∑
lAn̸=lBm

∫ ∞

−∞
ds

∫ ∞

−∞
ds′δ(s− s′)

e−
s′2
4σ2 e−iΩs

′

s2 − (lAn− lBm)2

=

√
πσ∑
n η

2n

1

4π2

∑
lAn̸=lBm

∫ ∞

−∞
ds

∫ ∞

−∞
ds′
(

1

2π

∫ ∞

−∞
dz eiz(s

′−s)
)

e−
s′2
4σ2 e−iΩs

′

s2 − (lAn− lBm)2

=

√
πσ

8π3
1∑
n η

2n

∑
lAn̸=lBm

∫ ∞

−∞
dz

(∫ ∞

−∞
ds′e−(Ω−z)2s′e−

s′2
4σ2

)(∫ ∞

−∞
ds

e−isz

s2 − (lAn− lBm)2

)

=

√
πσ

8π3
1∑
n η

2n

∑
lAn̸=lBm

∫ ∞

−∞
dz
(
2
√
πσe−(Ω−z)2σ2

)(
−πsgn(z)sin((lAn− lBm)z

lAn− lBm

)

=
σ

4π

1∑
n η

2n

∑
lAn̸=lBm

e−
(lAn−lBm)2

4σ2

(lAn− lBm)
Im

[
ei(lAn−lBm)Ωerf

(
i(lAn− lBm)

2σ
+ σΩ

)]
(A.11)

Finally, we can express the transition probability for cross correlation Wightman
function using the simplified image sum terms at eqn. A.10 and at eqn. A.11 ,

LAB =
Kγ∑
n η

2n
PM +

σ

4
√
π
∑

n η
2n

[
J1 − J2

]
(A.12)
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where

J1 =
∑

lAn ̸=lBm

e−
l2nm
4σ2

lnm
Im

[
eilnmΩerf

[
ilnm
2σ

+ σΩ

] ]
(A.13)

J2 = 2
∑
lnm>0

e−
l2nm
4σ2

lnm
sin(Ωlnm) (A.14)

and lnm = lAn− lBm. Likewise, we have defined

Kγ = coeff

(∑
n,m

f (n− γm) , f(0)

)
(A.15)

as stated in the main text.
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Appendix B

Conditional Transition
Probability Derivation for the
Mass-Superposed BTZ Black
Hole

The dynamical evolution of the BTZ black hole mass superposition is given by:

|ψ(tf )⟩ = e−iĤ0,Stf ÛeiĤ0,Sti |ψ(ti)⟩ (B.1)

= e−iĤ0,Stf

[
I − iλ

∫ tf

ti

dτ Ĥint.(τ)− λ2
∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)

]
eiĤ0,Sti |ψ(ti)⟩

= e−iĤ0,Stf eiĤ0,Sti |ψ(ti)⟩

− e−iĤ0,Stf (iλ)

∫ tf

ti

dτ Ĥint.(τ)e
iĤ0,Sti |ψ(ti)⟩

− e−iĤ0,Stf (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)eiĤ0,Sti |ψ(ti)⟩ (B.2)

= e−iĤ0,Stf eiĤ0,Sti
1√
2
(|MA⟩+ |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (iλ)

∫ tf

ti

dτ Ĥint.(τ)e
iĤ0,Sti

1√
2
(|MA⟩+ |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)eiĤ0,Sti

1√
2
(|MA⟩+ |MB⟩)|0⟩|g⟩

(B.3)
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= e−iĤ0,Stf
1√
2
(eiEAti |MA⟩+ eiEBti |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (iλ)

∫ tf

ti

dτ Ĥint.(τ)
1√
2
(eiEAti |MA⟩+ eiEBti |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)

1√
2
(eiEAti |MA⟩+ eiEBti |MB⟩)|0⟩|g⟩

(B.4)

= e−iĤ0,Stf
1√
2
eiEAti(|MA⟩+ ei(EB−EA)ti |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (iλ)

∫ tf

ti

dτ Ĥint.(τ)
1√
2
eiEAti(|MA⟩+ ei(EB−EA)ti |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)

1√
2
eiEAti(|MA⟩

+ ei(EB−EA)ti |MB⟩)|0⟩|g⟩

= e−iĤ0,Stf
1√
2
(|MA⟩+ ei∆Eti |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (iλ)

∫ tf

ti

dτ Ĥint.(τ)
1√
2
(|MA⟩+ ei∆Eti |MB⟩)|0⟩|g⟩

− e−iĤ0,Stf (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)

1√
2
(|MA⟩+ ei∆Eti |MB⟩)|0⟩|g⟩

where ∆E = EB − EA and we neglected the global phase

|ψ(tf )⟩ =
1√
2
(e−iEAtf |MA⟩+ e−iEBtf ei∆Eti |MB⟩)|0⟩|g⟩

− (iλ)

∫ tf

ti

dτ Ĥint.(τ)
1√
2
(e−iEAtf |MA⟩+ e−iEBtf ei∆Eti |MB⟩)|0⟩|g⟩

− (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)

1√
2
(e−iEAtf |MA⟩+ e−iEBtf ei∆Eti |MB⟩)|0⟩|g⟩

=
1√
2
e−iEAtf (|MA⟩+ e−i(EB−EA)tf ei∆Eti |MB⟩)|0⟩|g⟩

− (iλ)

∫ tf

ti

dτ Ĥint.(τ)
1√
2
e−iEAtf (|MA⟩+ e−i(EB−EA)tf ei∆Eti |MB⟩)|0⟩|g⟩

− (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)

1√
2
e−iEAtf (|MA⟩
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+ e−i(EB−EA)tf ei∆Eti |MB⟩)|0⟩|g⟩

we again neglected the global phase which is e−iEAtf

|ψ(tf )⟩ =
1√
2
(|MA⟩+ e−i∆Etf ei∆Eti |MB⟩)|0⟩|g⟩

− (iλ)

∫ tf

ti

dτ Ĥint.(τ)
1√
2
(|MA⟩+ e−i∆Etf ei∆Eti |MB⟩)|0⟩|g⟩

− (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)

1√
2
(|MA⟩+ e−i∆Etf ei∆Eti |MB⟩)|0⟩|g⟩

=
1√
2
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩

− (iλ)

∫ tf

ti

dτ Ĥint.(τ)
1√
2
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩

− (λ2)

∫ tf

ti

dτ

∫ τ

ti

dτ ′Ĥint.(τ)Ĥint.(τ
′)

1√
2
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩

(B.5)

where ∆t = tf − ti. Let us look at the individual terms. We have

|ψ(tf )⟩(0) =
1√
2
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩ (B.6)

|ψ(tf )⟩(1) = − iλ√
2

∫ tf

ti

dτ η(τ)σ(τ)
[
ψ̂(xA)|MA⟩⟨MA|+ ψ̂(xB)|MB⟩⟨MB|

]
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩

= − iλ√
2

∫ tf

ti

dτ η(τ)eiΩτ
[
ψ̂(xA)|MA⟩+ ψ̂(xB)e

−i∆E∆t|MB⟩
]
|0⟩|e⟩

(B.7)

|ψ(tf )⟩(2) = − λ2√
2

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
ψ̂(xA)|MA⟩⟨MA|+ ψ̂(xB)|MB⟩⟨MA|

]
[
ψ̂(x′A)|MA⟩⟨MA|+ ψ̂(x′B)|MB⟩⟨MB|

]
|(|MA⟩+ e−i∆E∆t|MB⟩)0⟩|g⟩

= − λ2√
2

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
ψ̂(xA)|MA⟩⟨MA|+ ψ̂(xB)|MB⟩⟨MB|

]
[
ψ̂(x′A)|MA⟩⟨MA|+ ψ̂(x′B)|MB⟩⟨MB|

]
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩

= − λ2√
2

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
ψ̂(xA)ψ̂(x

′
A)|MA⟩⟨MA|
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+ ψ̂(xB)ψ̂(x
′
B)|MB⟩⟨MB|

]
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩

= − λ2√
2

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
ψ̂(xA)ψ̂(x

′
A)|MA⟩

+ ψ̂(xB)ψ̂(x
′
B)e

−i∆E∆t|MB⟩
]
|0⟩|g⟩ (B.8)

To repeat:

|ψ(tf )⟩(0) =
1√
2
(|MA⟩+ e−i∆E∆t|MB⟩)|0⟩|g⟩ (B.9)

|ψ(tf )⟩(1) = − iλ√
2

∫ tf

ti

dτ η(τ)eiΩτ
[
ψ̂(xA)|MA⟩+ ψ̂(xB)e

−i∆E∆t|MB⟩
]
|0⟩|e⟩

(B.10)

|ψ(tf )⟩(2) = − λ2√
2

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
ψ̂(xA)ψ̂(x

′
A)|MA⟩

+ ψ̂(xB)ψ̂(x
′
B)e

−i∆E∆t|MB⟩
]
|0⟩|g⟩ (B.11)

B.0.1 Measurement in the |±⟩ = (|MA⟩±|MB⟩)/
√
2 Basis

⟨±|ψ(tf )⟩(0) =
1

2
(1± e−i∆E∆t)|0⟩|g⟩ (B.12)

⟨+|ψ(tf )⟩(1) = − iλ
2

∫ tf

ti

dτ η(τ)eiΩτ
[
ψ̂(xA)± ψ̂(xB)e

−i∆E∆t
]
|0⟩|e⟩ (B.13)

⟨+|ψ(tf )⟩(2) = −λ
2

2

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
ψ̂(xA)ψ̂(x

′
A)

± ψ̂(xB)ψ̂(x
′
B)e

−i∆E∆t
]
|0⟩|g⟩ (B.14)

We have the terms (in the density matrix) given by

Trψ

[
Û (0)ρ̂FDÛ

(0)†
]
=

1

4

[
2± 2 cos∆E∆t

]
|0⟩|g⟩⟨g|⟨0| (B.15)

Trψ

[
Û (0)ρ̂FDÛ

(2)†
]
= −λ

2|g⟩⟨g|
4

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)eiΩ(τ−τ ′)(1± e−i∆E∆t)|0⟩⟨0|[
ψ̂(xA)ψ̂(x

′
A)± ψ̂(xB)ψ̂(x

′
B)e

i∆E∆t
]

= −λ
2|g⟩⟨g|
4

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)eiΩ(τ−τ ′)
[
|0⟩⟨0|ψ̂(xA)ψ̂(x′A)
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± |0⟩⟨0|ψ̂(xB)ψ̂(x′B)ei∆E∆t ± e−i∆E∆t|0⟩⟨0|ψ̂(xA)ψ̂(x′A)

+ |0⟩⟨0|ψ̂(xB)ψ̂(x′B)
]

(B.16)

Trψ

[
Û (2)ρ̂FDÛ

(0)†
]
= −λ

2|g⟩⟨g|
4

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
ψ̂(xA)ψ̂(x

′
A)|0⟩⟨0|

± ψ̂(xB)ψ̂(x
′
B)e

−i∆E∆t|0⟩⟨0| ± ψ̂(xA)ψ̂(x
′
A)e

i∆E∆t|0⟩⟨0|

+ ψ̂(xB)ψ̂(x
′
B)|0⟩⟨0|

]
(B.17)

Trψ

[
Û (1)ρ̂FDÛ

(1)†
]
=
λ2|e⟩⟨e|

4

∫∫
dτdτ ′η(τ)η(τ ′)eiΩ(τ−τ ′)

[
ψ̂(xA)|0⟩⟨0|ψ̂(x′A)

± ψ̂(xA)|0⟩⟨0|ψ̂(x′B)ei∆E∆t ± ψ̂(xB)|0⟩⟨0|ψ̂(x′A)e−i∆E∆t

+ ψ̂(xB)|0⟩⟨0|ψ̂(x′B)
]

(B.18)

Tracing out the field and simplifying,

Trψ

[
Û (0)ρ̂FDÛ

(0)†
]
=

1

4

[
2± 2 cos∆E∆t

]
|g⟩⟨g| (B.19)

Trψ

[
Û (0)ρ̂FDÛ

(2)†
]
= −λ

2|g⟩⟨g|
4

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)eiΩ(τ−τ ′)
[
W (xA, x

′
A)
(
1± e−i∆E∆t

)
+W (xB, x

′
B)
(
1± ei∆E∆t

)]
(B.20)

Trψ

[
Û (2)ρ̂FDÛ

(0)†
]
= −λ

2|g⟩⟨g|
4

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
W (xA, x

′
A)
(
1± ei∆E∆t

)
+W (xB, x

′
B)
(
1± e−i∆E∆t

)]
(B.21)

Trψ

[
Û (1)ρ̂FDÛ

(1)†
]
=
λ2|e⟩⟨e|

4

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
W (xA, x

′
A) +W (xB, x

′
B)

±W (xA, x
′
B)
(
2 cos∆E∆t

)]
(B.22)

The sum of the second order terms is

Trψ

[
Û (0)ρ̂FDÛ

(2)†
]
+Trψ

[
Û (2)ρ̂FDÛ

(0)†
]

(B.23)

= −λ
2|g⟩⟨g|
4

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
2W (xA, x

′
A)
(
1 + cos∆E∆t

)
+ 2W (xB, x

′
B)
(
1± cos∆E∆t

)]
(B.24)
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= −λ
2|g⟩⟨g|
2

∫ tf

ti

dτ

∫ τ

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
(
W (xA, x

′
A) +W (xB, x

′
B)
)(

1± cos∆E∆t
)

(B.25)

Thus the ground and excited transition probabilities respectively are given by

PG =
1

2

(
1± cos∆E∆t

)[
1− λ2

2

∫ tf

ti

dτ

∫ tf

ti

dτ ′dη(τ)η(τ ′)e−iΩ(τ−τ ′)
(
W (xA, x

′
A) +W (xB, x

′
B)
)]

(B.26)

PE =
λ2|e⟩⟨e|

4

∫ tf

ti

dτ

∫ tf

ti

dτ ′η(τ)η(τ ′)e−iΩ(τ−τ ′)
[
W (xA, x

′
A) +W (xB, x

′
B)

±W (xA, x
′
B)
(
2 cos∆E∆t

)]
(B.27)

We can write this as

PG =
1

2

(
1± cos∆E∆t

)[
1− λ2

2

(
PA + PB

)]
(B.28)

PE =
λ2

4

(
PA + PB ± 2 cos∆E∆tLAB

)
(B.29)

as stated in the main text.

B.0.2 Total Transition Probability for |±⟩ Basis

We have (unnormalised)

P+
G =

1

2

(
1 + cos∆E∆t

)[
1− λ2

2

(
PA + PB

)]
(B.30)

P−
G =

1

2

(
1− cos∆E∆t

)[
1− λ2

2
(PA + PB)

]
(B.31)

P+
E =

λ2

4

(
PA + PB + 2 cos∆E∆tLAB

)
(B.32)

P−
E =

λ2

4

(
PA + PB − 2 cos∆E∆tLAB

)
(B.33)

Note that P+
G + P−

G + P+
E + P−

E = 1. That is,∑
i=g,e

∑
j=+,−

∣∣∣⟨i|⟨j|Û |ψ(ti)⟩
∣∣∣2 = 1 (B.34)

as stated in the main text.
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B.0.3 Integral Expressions for PD and LAB with Gaus-
sian Switching

Here, we calculate the simplified integral form of PD and LAB for a Gaussian
detector switching, as shown in Eq. (4.58) and (4.59) in the main text. Inserting the
Wightman functions into the expression for the transition probability, we obtain
the following expression

PD
σ

=

√
πγD
2

(
1

4πl
√
2

)
1∑
n η

2n

∑
n,m

1

γD

∫ tf

−tf
ds

e−
γ2Ds2

4σ2 e−iΩγDsH0(s)√
R2

D

γ2Dl
2 cosh(2π(n−m)

√
M)− 1

γ2D
− cosh(s/l)

,

(B.35)

where H0(s) = erf
[
γD(s+2tf )

2σ

]
− erf

[
γD(s−2tf )

2σ

]
. Splitting up the summation into

contributions where n = m and n ̸= m yields

PD
σ

=

√
πγD
2

(
1

4πl
√
2

)
1∑
n η

2n

∑
n=m

1

γD

∫ tf

−tf
ds

e−
γ2Ds2

4σ2 e−iΩγDsH0(s)√
1− cosh(s/l)

+

√
πγD
2

(
1

4πl
√
2

)
1∑
n η

2n

∑
n̸=m

1

γD

∫ tf

−tf
ds

e−
γ2Ds2

4σ2 e−iΩγDsH0(s)√
R2

D

γ2Dl
2 cosh(2π(n−m)

√
M)− 1

γ2D
− cosh(s/l)

.

(B.36)

Using the identity sinh2(s/2l) = cosh(s/l)−1 and making simplifying substitutions
of the integration variable yields

PD
σ

=

√
πγD
2

(
1

2π
√
2

)
1∑
n η

2n

∑
n=m

1

γD

∫ tf/2l

−tf/2l
dz

e−
γ2Dl2z2

σ2 e−2iΩγDlzH0(2lz)

i
√
2 sinh(z)

+

√
πγD
2

(
1

4π
√
2

)
1∑
n η

2n

∑
n̸=m

1

γD

∫ tf/l

−tf/l
dz

e−
γ2Dl2z2

4σ2 e−iΩγDlzH0(lz)√
R2

D

γ2Dl
2 cosh(2π(n−m)

√
M)− 1

γ2D
− cosh(z)

.

(B.37)

To deal with the poles in the first integral, it is convenient to utilise the Sokhotski
formula,

1

sinh(z − iϵ)
= iπδ(z) + PV

1

sinh(z)
(B.38)
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which allows for the simplification:

PD
σ

=

√
πH0(0)

8
− i

8
√
π
PV

∫ tf/2l

−tf/2l
dz

X0(2lz)H0(2lz)

sinh(z)
(B.39)

+
1

4
√
2π

1∑
n η

2n

∑
n̸=m

Re

∫ tf/l

0
dz

X0(lz)H0(lz)√
βnm − cosh(z)

, (B.40)

having defined

X0(s) = e−
γ2Ds2

4σ2 e−iΩγDs, (B.41)

βnm =
R2
D

γ2Dl
2
cosh(2π(n−m)

√
M)− 1

γ2D
. (B.42)

This is the result stated in Eq. (4.58) in the main text. In the infinite interaction-
time limit, this reduces to Eq.(17) derived in [37]. Likewise, substituting the
Wightman function for the cross-term into Eq. (4.56), we obtain

LAB
σ

=
Y0∑
n η

2n

∑
n,m

∫ tf/l

0

dz Z0(lz)Q0(lz)√
αnm − cosh(z)

(B.43)

where Q0(s) is given in (4.57) and we have defined

Y0 =

√
γAγB

√
π

4π
√
γ2A + γ2B

e
− (γA−γB)2σ2Ω2

2(γ2
A

+γ2
B

) , (B.44)

Z0(lz) = e
− γ2Aγ2Bl2z2

2(γ2
A

+γ2
B

)σ2
e
− iΩlzγAγB(γA+γB)

γ2
A

+γ2
B , (B.45)

αnm =
1

γAγB

[
R2
D cosh(2π(m

√
MA − n

√
MB))√

MAMBl2
− 1

]
. (B.46)

This is Eq. (4.59) as shown in the main text.
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