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Abstract

The development of devices leveraging their quantum nature to outperform classical
analogues has been an ongoing effort for many decades now. In this thesis we investigate
two facets related to this effort, albeit at different potential timescales of utility.

First, we discuss our contributions in understanding collective spin ensembles interact-
ing with a resonance cavity. This set up is common in superconducting qubit devices and
electron spin-resonance experiments. The traditional model when considering this situa-
tion is the Tavis–Cummings model, although many of the methods could be adapted to
other mesoscopic systems composed of ensembles of spins and cavities. In particular, we
focus on characterizing the shifts in the energies due to dressing states, which are known as
Lamb shifts. Before this line of work, most efforts focused on generating difference equa-
tions which could be solved iteratively to extract these shifts and dressed states. While
this methodology works for systems involving hundreds of spins to thousands of spins, this
iterative construction loses utility for larger ensembles due to the time needed to determine
the parameters and prevents broad trends from being noted. Through these works we have
stated how to determine the moments of the statistical distribution of the Lamb shifts,
how to bound the largest of these shifts, and which of the subspaces are most important
when finding these shifts. Beyond this, we have found that by including thermal effects
we may use the moments of the Lamb shifts to greatly simplify a perturbative expansion
to determine values of certain observables in optimal time (in spin ensemble size). These
results provide greater insights into this model, provide faster simulation times, and can
aide in experimental tests of these devices.

Second, we discuss the contributions made in quantum error-correcting codes. The typ-
ical formalism used for quantum error-correcting codes is the stabilizer formalism. In our
work we have extended this formalism to no longer directly depend on the local-dimension
of the quantum computing device. For instance, most devices being currently designed and
built run on qubits, which have local-dimension two, while qutrits have local-dimension
of three. By removing this local-dimensional dependency we are able to generate many
stabilizer codes, including codes with parameters previously unknown–amongst which are
local-dimension-invariant forms, with the same distance parameter value, for the Steane
code, the entire quantum analog of the classical Hamming family, and the Toric code.
While these codes do not outperform the best known codes, this serves as an interesting
pedagogical and extended framework and may provide for improved codes upon sufficient
consideration, or aide in other work in fields closely related to stabilizers. Meanwhile,
this extended framework permits for the importation of quantum error-correcting codes
from lower local-dimension values to devices with higher local-dimension values, which at
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least provides some code options if a quantum computer is developed with easily tuned
local-dimension value.

These topics should be considered as disjoint, and all variable meanings are reset be-
tween the topics.
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Collective Spin-Cavity Ensembles
Overview

In this part of the thesis we will primarily focus on one particularly prevalent model for
collective spin-cavity interactions, known as the Tavis–Cummings model, while some of the
results would also apply for similar systems. This model, which can be used to describe
hybrid quantum devices, has been studied in a myriad of ways since its conception in the
1960s. Lacking, however, in these analyses has been an ability to even estimate parameters
of the dressed energy shifts for larger systems with larger numbers of total excitations in
the system. We develop this ability in steps.

In chapter 1 we begin by breaking down the general model for the interaction between
spins and cavities into the Tavis–Cummings model, explaining the different assumptions
needed for the model to continue to hold. Following this we compute the exact energy level
shifts for small systems, in part to explain the breakdown of the model into its irreducible
representations but also to illustrate the increasing complexity involved in finding the
energy splittings. Generally it requires diagonalizing N matrices with dimensions up to
N ×N , for N spins, which becomes untenable for larger mesoscopic systems.

In chapter 2 we make use of the observations from the first chapter in order to compute
various functions on the set of eigenvalues within each total excitation and angular mo-
mentum subspace. Amongst these functions are the average, the variance of these splitting
values, all of the odd moments of the splitting values, as well as bounds on the size of
the largest splitting within each manifold. While selecting for a particular angular mo-
mentum value is generally challenging, this provides some initial expressions which we can
further leverage. Beyond this, through analytic continuation of the degeneracy counts in
the irreducible representations for the angular momentum subspaces we are able to show
that considerations of this model which only include a single subspace, or even a constant
number of them, fail to demonstrate the full richness of the system. Together these results
provide statements on the spectrum of the energy values in the system, as well as which
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manifolds are predominant and which play less significant roles.

In chapter 3 we build on both of the prior chapters to turn these observations from
considerations as a function of the total number of excitations in the system into functions
of the temperature of the system–making the results more experimentally testable. We
begin by noting the particular temperature regime of interest: if the temperature is too low
the system can be described rather simply, if the temperature is too high then the rotating-
wave approximation will break down; instead we target (and specify) the sweet spot of
interest. Following this we demonstrate that the partition function, and many observables,
can be considered as expansions in terms of the moments of the energy shifts in the system.
Leveraging all of the prior results we are able to show optimal scaling as a function of
the system size for simulating parameters preserving particular symmetries–dropping from
O(N3) to Θ(

√
N). Using this we can obtain some potentially observable signals that have

signatures due to the coupling of the spins to the cavity. We then briefly discuss further
directions, perturbations to the system, as well as other models that may be able to utilize
some of the results shown here. These results allow for better numerical insights into
these systems, demonstrates potential signatures due to the interactions between the spins
and cavity, and provides a solid theoretical footing for further observations and potential
insights.
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Chapter 1

Introduction to Collective Spin-Cavity
Ensembles

1.1 Introduction

The field of quantum electrodynamics (QED) was initiated by Lamb’s discovery that an
electron interacts with its own radiation field to split the energies of the 2s1/2 and 2p1/2
levels of the Hydrogen atom [7]. This splitting, referred to as the Lamb shift, demonstrates
that the electromagnetic field and vacuum can be considered as quantized systems. Cavity
QED systems, where two–level quantum systems (such as atoms or spins) are confined in
a high quality factor (high Q) cavity, present features analogous to the Lamb shift. The
light–matter interaction breaks degeneracies between separable field and atom states with
the same number of excitations, k, hybridizing the states with a splitting that scales in
magnitude as

√
k. Provided the cavity Q is high enough, and the atomic coherence is

long enough, this hybridization may be observed experimentally [8]. Understanding the
structure of cavity QED Lamb shifts has become particularly important recently due to
their role in the development of large-scale quantum information processors [9, 10, 11, 12]
and hybrid quantum devices [13, 14, 15], such as quantum memories for microwave photons
[16, 17, 18, 19] and optical photons [20, 21, 22]. Lamb shifts also play a crucial role
in radiative ground-state cooling of a spin ensemble interacting with a microwave cavity
[23, 24, 25, 26, 27].

In general, experimentally observed splittings in a high–cooperativity spin–cavity sys-
tem are a complex function of the many Lamb shifts that occur in various collective angular
momentum and excitation subspaces. Calculating the full set of Lamb shifts is generally
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intractable for mesoscopic systems, leading to a number of approximation methods being
utilized to analyze experimental data. The most common approximations are to restrict
theoretical treatments to the largest, permutation–invariant, Dicke subspace, or to treat
the spin ensemble in the low–excitation regime as a simple quantum harmonic oscillator
[28, 29].

Dynamics outside of the Dicke subspace have been shown to be important for nearly
all practical laboratory conditions to capture the full picture of the system [30, 31], so
we extend the existing techniques to provide descriptive statistics of the Lamb shifts that
occur in arbitrary collective angular momentum and excitation subspaces, culminating in
a description of these statistics upon averaging over subspace degeneracies. Our analysis
provides a tool for compactly describing and analyzing the complex Lamb shifts that occur
in spin-cavity systems, with validity over a wide range of temperatures and excitation levels
appropriate for experimental mesoscopic quantum devices.

1.2 Hamiltonian Structure

1.2.1 Definitions and Notation

The notion of a Lamb shift in cavity QED may be formally defined using the Jaynes–
Cummings Hamiltonian, describing the light–matter interaction of a single two-level quan-
tum system with a quantized single–mode electromagnetic field [32] (ℏ = 1 throughout
this work):

Ĥ0 = ωca
†a+

ωs

2
σz,

Ĥint = g0(a
†σ− + aσ+),

ĤJC = Ĥ0 + Ĥint, (1.1)

whereH0 is the Hamiltonian describing the quantization of the two–level system and single–
mode field, and Hint is the interaction Hamiltonian. The lowering (raising) operators, â
(â†), describe the annihilation (creation) of a photon in the field mode with energy ωc. The
number operator, â†â, describes the quantization of the field mode in terms of the number
of photons, n, occupying the mode, and defines the Fock eigenstates, |n⟩, as â†â |n⟩ = n |n⟩.
The corresponding quantization of the two-level system is given by Zeeman eigenstates,
σ̂z |↑⟩ = + |↑⟩ and σ̂z |↓⟩ = − |↓⟩, with energy splitting ωs given by the Pauli z spin
operator, σz. For brevity, we will refer to a general two-level quantum system as a spin
and the single–mode electromagnetic field as the cavity.
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The spin–cavity interaction Hamiltonian describes a coherent swapping of a single pho-
ton between the spin and the cavity mode, where σ̂+ = σ̂x + iσ̂y and σ̂− = σ̂x − iσ̂y
correspond, respectively, to the raising and lowering operators of an excitation in the spin
system. The strength of the spin–cavity interaction is given by the geometric parameter

g0 = geµB

√
µ0ωc

2Vc
, (1.2)

where ge is the electron Landau g-factor, µB is the Bohr magneton, µ0 is the permeability
of free–space, and Vc is the mode volume of the cavity. We restrict ourselves to the regime
g0 ≪ ωc, ωs such that a rotating–wave approximation (RWA) may be applied to suppress
multi-photon processes which do not conserve total excitation count in the system. For
simplicity, we will also restrict our argument to the case where the spin system and cavity
mode are resonant (ωc = ωs = ω0).

We denote the separable k-excitation eigenstates of Ĥ0 as {|k⟩ |↓⟩ , |k − 1⟩ |↑⟩} and,
upon diagonalization under Ĥint, the resulting hybridized spin-cavity eigenstates are:

{ 1√
2
(|k⟩ |↓⟩+ |k − 1⟩ |↑⟩), 1√

2
(|k⟩ |↓⟩ − |k − 1⟩ |↑⟩)}, (1.3)

with a Lamb shift given by g0
√
k, and a total splitting due to the Lamb shifts of 2g0

√
k.

In the special case of k = 1 (the single–excitation manifold), the Lamb shift splitting is
commonly referred to as a “normal mode” or “vacuum Rabi” splitting [8]. The non–linearity
of the Lamb shift with excitation number has been observed experimentally to verify the
“quantum” nature of the spin–cavity interaction [33].

The Jaynes–Cummings model may be generalized to an ensemble of N non–interacting
spins independently coupled to a single–mode cavity, with interaction Hamiltonian

ĤD,int = 2
N∑
i=1

gi0(â
† + â)σ̂i

x. (1.4)

Assuming the spin–cavity interaction is homogeneous, such that the spins interact collec-
tively with the cavity mode and the summation may be dropped, yields the Dicke model
[34], with interaction Hamiltonian

ĤD,int = g0
(
â† + â)Ĵx. (1.5)

Treating an inhomogeneous spin–cavity interaction can become quite complicated and
has been treated in the literature using various methods [35, 36, 37]. Upon discarding
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the counter–rotating term in a rotating–wave approximation considered in the interaction
frame, the system is described by the Tavis–Cummings Hamiltonian [38]:

ĤTC = ω0(â
†â+ Ĵz) + g0(â

†Ĵ− + âĴ+), (1.6)

where the two–level spin operators have been replaced with collective operators that act
identically over the ensemble of energetically indistinguishable spins and a RWA has once
again been made:

Ĵz =
1

2

N∑
i=1

σ̂(i)
z , (1.7)

Ĵ± =
N∑
i=1

σ̂
(i)
± . (1.8)

The collective operators span the sl(2;C) Lie algebra, and thus satisfy the following
commutation relations:

[Ĵz, Ĵ±] = ±Ĵ±, (1.9)

[Ĵ+, Ĵ−] = 2Ĵz. (1.10)

The collective operator algebra is a sub-algebra of self–adjoint operators acting on the
N -spin system, and conveniently satisfies the same commutation relations as those for a
single particle spin operator. By a change of basis, we can identify the transverse spin
operators:

Ĵx =
1

2

(
Ĵ+ + Ĵ−

)
, (1.11)

Ĵy =
1

2i

(
Ĵ+ − Ĵ−

)
. (1.12)

The transverse spin operators, along with Ĵz, span a collective su(2) algebra, which differ
from spin-1/2 Pauli operators in that the collective operators are not their own inverses.
The representations of the sl(2;C) operators can be defined by their action on a state of
total angular momentum j with z component m:

Ĵz |j,m⟩ = m |j,m⟩ (1.13)

Ĵ± |j,m⟩ =
√
j(j + 1)−m(m± 1) |j,m± 1⟩ . (1.14)
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Throughout this work, we focus on two good quantum numbers representing conserved
quantities. The first of these is the total angular momentum, j, which determines the
eigenvalues of the total angular momentum operator,

Ĵ2 = Ĵ2
x + Ĵ2

y + Ĵ2
z , (1.15)

with eigenvalues j(j + 1). The second of these conserved quantities is the number of total
excitations, k, given as the eigenvalues of the excitation operator,

K̂ = â†â+ Ĵz +
N

2
11. (1.16)

The scaled identity term in the excitation operator ensures excitations are non-negative,
as the action of Ĵz on the ground state has eigenvalue −N/2.

An important feature of the TC Hamiltonian is that the spin–cavity interaction strength,
g0, is often replaced with an effective interaction strength that is enhanced by

√
N :

geff = g0
√
N. (1.17)

This transformation is paired with a 1/
√
N term in the collective angular momentum

raising and lowering operators, which we will omit in this work. The ensemble enhancement
of the spin–cavity interaction strength has allowed observation of an analogous normal
mode splitting (often referred to as “strong coupling”) in ensemble spin systems interacting
with high quality factor (high Q) cavities [39, 40, 41, 42]. The relative strengths of the
parameters necessary to resolve this splitting are formalized by defining the cooperativity:

C =
4Ng20QT2

ω0

, (1.18)

where Q is the quality factor of the cavity and T2 is the coherence time of the spin ensemble.

It is common to perform a Holstein–Primakoff transformation on the collective angular
momentum operators in order to simplify the underlying algebra [28]. This transformation
is valid on a single subspace of angular momentum j, such that

Ĵ+ −→ b̂†
√

2j11− b̂†b̂ (1.19)

Ĵ− −→ b̂

√
2j11− b̂†b̂. (1.20)

By requiring that standard angular momentum commutation relations are maintained, the
transformation for Ĵz is then fixed:

Ĵz −→ b̂†b̂− j11. (1.21)
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Often j is taken to be the Dicke subspace, such that j = N/2, and N is assumed to be
large compared to the number of excitations. If the number of excitations approach j, the
spin system begins to saturate and the approximation becomes increasingly invalid [43]. In
general, thermal population of the Dicke space is negligible at nearly all experimental
temperatures [31], so we treat the Hamiltonian in generality across all subspaces and
excitation manifolds.

1.2.2 Symmetries of Light–Matter Interaction

When the collective spin–cavity interaction, geff, is zero, the ground state is |0⟩ |N/2,−N/2⟩,
which represents a state with zero photons in the cavity and all spins in their ground states–
taken in this work to be pointing down. When geff > 0, the Dicke Hamiltonian is symmetric
under the parity operator Π̂ = exp

[
−iπ

(
Ĵz + â†â

)]
, with eigenvalues ±1. This implies

that the Hilbert space of the Dicke model can be decomposed into a direct sum of two
spaces labelled by the parity operator’s sign: H = H+ ⊕ H−. In this model, excitations
are not conserved, and the two parity subspaces are infinite dimensional.

For the case of N = 1, this particularization of the Dicke model is known as the
Quantum Rabi Model (QRM), which has recently been solved [44, 45], where eigenvalues
and eigenstates are given in terms of special functions [46]. The existence of this solution
can be seen directly from the symmetry group of the Hamiltonian, as the parity symmetry
is sufficient to show that the QRM is integrable [47]. When considering N > 1, the parity
symmetry is no longer sufficient to show integrability, and it is expected that the Dicke
model is not exactly solvable [48]; in other words, there are no explicit solutions in terms
of any known functions.

Unlike the Dicke Model, the TC model admits a continuous symmetry, described by
the circle group, U(1), in addition to parity symmetry and total angular–momentum sym-
metry. The generator of the continuous symmetry has infinite eigenvalues, enumerated
by k ∈ N, while the total angular momentum symmetry has eigenvalues j = N/2, N/2 −
1, · · · , 1/2 (0), where the last value for j is determined by whether N is odd or even.
The additional symmetry is sufficient to make the Tavis–Cummings model integrable and
solvable, which is supported by the Bethe ansatz solution provided by Bogoliubov [49, 50].

Given that Ĵ+ conserves total angular momentum j, the repeated action of Ĵ+ on the
ground state of an N spin ensemble will only populate the N + 1 fully symmetric states
in the Dicke subspace. Bogoliubov utilized these orbits to verify a Bethe ansatz solution
of the Tavis–Cummings model is correct, casting the eigenvalue problem as equivalent to
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solving a differential equation [49, 50]. Translating their construction into our notation,
the primary expression is

|Φλ
j,k⟩ =

k∑
m=0

Aλ
j,k,m(â

†)k−mĴm
+ |0⟩ |j,−j⟩ , (1.22)

for recursively defined scalar coefficients Aλ
j,k,m determined from difference equations, where

j indicates the angular momentum space and k indicates the excitation subspace. Eigen-
vectors within a (j, k) subspace are labeled by the index λ.

The two symmetries of the TC model directly imply that the Hamiltonian admits a two
parameter subspace decomposition. This observation will be used throughout the remain-
der of our analysis. The Holstein–Primakoff approximation largely ignores the angular
momentum parameter, j, by focusing on a single value of it, particularly the j = N/2
subspace, which is treated as a single harmonic oscillator. The Bogoliubov solution via
Bethe ansatz, while correct, is as computationally hard as solving the eigenvalue problem
itself. Further work attempting to directly analyze large photon number behavior via a
direct diagonalization approach has been performed by restriction to the Dicke subspace
and tested experimentally [51].

1.3 Breaking down the model

In this section we discuss the reduction of the Dicke Hamiltonian to the Tavis–Cummings
model and its direct sum representation. In particular, we will show that, up to the
rotating-wave approximation, we may treat this system in the following way:

ω0(a
†a+ Jz) + g0(a+ a†)Jx 7→

⊕
j,k

(kω0I + g0L(j, k))
⊗dj , (1.23)

for some yet undefined L(j, k) matrices and degeneracies dj.

1.3.1 Ensembles of spins

Here we consider breaking down an ensemble of N spin-1/2 particles into their eigenstates
under the collective spin Hamiltonian Jz =

∑
i σ

(i)
z and J2.
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For a single spin, the problem is trivial, there is only one basis possible. When there
are two spins, we can decompose the space as:

1

2
⊗ 1

2
∼= 1⊕ 0, (1.24)

where ∼= indicates an isomorphic relation. This means that instead of considering two
spin-1/2 particles, we can instead treat the system as the direct sum of a spin-1 particle,
with 3 levels, and a spin-0 particle, with a single level. The eigenvectors for J2 and Jz are
given by:

{| ↓↓⟩, 1√
2
(| ↓↑⟩+ | ↑↓⟩), | ↑↑⟩} ⊕ { 1√

2
(| ↓↑⟩ − | ↑↓⟩)}. (1.25)

These sets of states are known as the triplet and singlet states, respectively.

For three spins the decomposition in terms of single spin states begins to become more
complicated. We may summarize the breakdown as:

1

2
⊗ 1

2
⊗ 1

2
∼=

3

2
⊕ 1

2
⊕ 1

2
. (1.26)

A valid basis set for this decomposition which are eigenvectors of J2 and Jz is:

{| ↓↓↓⟩, 1√
3
(| ↓↓↑⟩+ | ↓↑↓⟩+ | ↑↓↓⟩) ,

1√
3
(| ↓↑↑⟩+ | ↑↓↑⟩+ | ↑↑↓⟩), | ↑↑↑⟩} (1.27)

⊕{ 1√
2
(| ↓↑↓⟩ − | ↑↓↓⟩) ,

1√
2
(| ↓↑↑⟩ − | ↑↓↑⟩)} (1.28)

⊕{ 1√
6
(2| ↓↓↑⟩ − | ↑↓↓⟩ − | ↓↑↓⟩) ,

1√
6
(| ↑↓↑⟩+ | ↓↑↑⟩ − 2| ↑↑↓⟩)}. (1.29)

When N = 4 the decomposition is given by:
1

2
⊗ 1

2
⊗ 1

2
⊗ 1

2
∼= 2⊕ 1⊕ 1⊕ 1⊕ 0⊕ 0. (1.30)

To find the representations for these states in terms of single spin values one would use
Clebsch-Gordon coefficients, however, the examples worked so far suffices for our purpose.
Note that there will be a singly degenerate, totally symmetric subspace that is equivalent to
a spin-N/2 particle. The general formula for computing the degeneracies of each subspace
with collective angular momentum j is given by [52, 53]:

dj =

(
N

N/2 + j

)
−
(

N

N/2 + j + 1

)
(1.31)

=
2j + 1

N/2 + j + 1

(
N

N/2 + j

)
. (1.32)
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With these we may write a collection of N spins in direct sum form preserving J2 and
Jz as: (

1

2

)⊗N

∼=
N/2⊕

j=jmin

j⊗dj , (1.33)

with jmin = 0 if N is even, else jmin = 1
2
. This decomposition of an ensemble of spins

into collective angular momentum subspaces will form the basis for our analysis upon
introducing a coupled cavity to the system.

1.3.2 Rotating-Wave Approximation (RWA)

The on-resonance Dicke Hamiltonian is given by:

ω0(a
†a+ Jz) + g0(a+ a†)(J− + J+) (1.34)

Consider the effects of moving into the interaction picture given by HI = ω0(a
†a+ Jz):

UIHU
†
I −HI = eitω0(a†a+Jz)g0(a+ a†)(J− + J+)e

−itω0(a†a+Jz) (1.35)

= g0(e
itω0a†a(a+ a†)e−itω0a†a)(eitω0Jz(J− + J+)e

−itω0Jz). (1.36)

To proceed from here it is easiest to consider the result from applying this Hamiltonian on
a test state |n⟩|j,m⟩:

∝ g0(e
−iω0ta+ eiω0ta†)(e−iω0tJ− + eiω0tJ+) (1.37)

= g0(e
−2iω0taJ− + e2iω0ta†J+ + aJ+ + a†J−). (1.38)

Taking the time average of this expression, we drop the first two terms, leaving us only with
g0(aJ++a

†J−). These prior steps were merely considerations of what would happen were we
to move into the interaction picture, however, by making the rotating-wave approximation
(dropping the terms which rapidly time average to zero), we reduce the Dicke Hamiltonian
to the Tavis-Cummings Hamiltonian:

HTC := ω0(a
†a+ Jz) + g0(aJ+ + a†J−), (1.39)

which is our primary Hamiltonian of study here. Before closing this section, notice that this
time averaging is only a valid approximation when the eigenvalues (or evolution oscillations)
of the terms aJ+ and a†J− is a smaller scale than ω0 since otherwise those terms would
oscillate at a similar frequency and dropping the other terms causes as much of a loss of
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information. This means that the RWA begins to break down once the eigenvalues of these
terms approach ω0, which is a limitation of this model, however, we focus in this work on
the regimes whereby the RWA continues to hold.

We can put both of these reductions together to generate the direct sum decomposition
with the L(j, k) matrices determined by acting on the bases with the coupling Hamilto-
nian divided by the energy scale, aJ+ + a†J−. By coupling the two systems we obtain
dressed states of collective spin ensembles, with the dressing induced across the number of
excitations in the cavity.

1.4 Explicit Calculations for N = 1, 2, 3

We now provide explicit calculations of the energy-level structure, state hybridization, and
Lamb shifts for small ensembles of N = 1, 2, and 3 spins.

1.4.1 N = 1

A single spin coupled to a single–mode electromagnetic field is described by the Jaynes–
Cummings Hamiltonian [32]:

Ĥ0 + Ĥint = ω0(â
†â+ σ̂z) + g0

(
â†σ− + âσ+

)
. (1.40)

Since Ĥint couples spins with equal energy in the unperturbed spectrum, the Hilbert space
decouples into blocks of constant total excitation, indexed by the good quantum number
k: ⊕

k

|ψk⟩
[
⟨ψk|Ĥ0 + Ĥint|ϕk⟩

]
⟨ϕk|, with Ĥ0ϕk = Ekϕk and Ĥ0ψk = Ekψk. (1.41)

The ground state with no excitations (k = 0), |0⟩| ↓⟩, is unique and is not hybridized
by Hint. For the remaining states, hybridization occurs and we utilize conservation of
excitation number by Hint to calculate the eigenstructure. Consider the two states with
finite excitation, k > 0, defined by {|k⟩ |↓⟩ , |k − 1⟩ |↑⟩}. The interaction Hamiltonian
represented in this basis is given by the direct sum over all two–dimensional excitation
spaces:

Ĥint
∼=
⊕
k

g0

[
0

√
k√

k 0

]
. (1.42)
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By direct diagonalization, the energy eigenvalues of Hint in the manifold with k excitations
are given by

Ek,± = kω0 ± g0
√
k, (1.43)

which correspond to hybridized energy eigenstates

|ψk,±⟩ =
1√
2
(|k⟩| ↓⟩ ± |k − 1⟩| ↑⟩). (1.44)

All Lamb shifts that occur for N = 1 are summarized in the following table:

Subspace Excitations Lamb Shifts Numerical Values
j = 1/2 k = 1 g0 g0

k = 2 g0
√
2 1.41g0

k = 3 g0
√
3 1.73g0

k g0
√
k

1.4.2 N = 2

Multiple spins coupled to a single–mode electromagnetic field are described by the Tavis-
Cummings Hamiltonian [38]:

ĤTC = ω0(â
†â+ Ĵz) + g0(â

†Ĵ− + âĴ+), (1.45)

The case of two spins can be solved in two different ways: one where the full matrix is
solved in the Zeeman basis of the spins, and one where the matrix is written in a direct
sum representation of a spin-0 space (singlet) and spin-1 (triplet) space. We will solve this
case in the Zeeman basis to contrast with the direct-sum representation used for the N = 3
case. Inclusion of a second spin leads to a richer energy-level structure than for N = 1:
Similar to the N = 1 case, the ground state with no excitations (k = 0), |0⟩| ↓↓⟩, remains
unperturbed by Hint:

|1, 0 : α⟩ = |0⟩|1,−1⟩ = |0⟩| ↓↓↓⟩ (1.46)

The single–excitation manifold (k = 1) undergoes hybridization, determined by the
coupling matrix L(1, 1): 0 1 1

1 0 0
1 0 0

 (1.47)
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Through direct diagonalization, the hybridized cavity–dressed states and perturbed ener-
gies are

|1, 1 : β⟩ = 1√
2
[|1⟩|1;−1⟩+ |0⟩|1; 0⟩] = 1

2
[
√
2|1⟩| ↓↓⟩+ |0⟩| ↓↑⟩+ |0⟩| ↑↓⟩], (1.48)

E = ω0 + g0
√
2 (1.49)

|1, 1 : α⟩ = 1√
2
[|1⟩|1;−1⟩ − |0⟩|1; 0⟩] = 1

2
[
√
2|1⟩| ↓↓⟩ − |0⟩| ↓↑⟩ − |0⟩| ↑↓⟩], (1.50)

E = ω0 − g0
√
2 (1.51)

|0, 1 : α⟩ = |0⟩|0; 0⟩ = 1√
2
[|0⟩| ↓↑⟩ − |0⟩| ↑↓⟩], (1.52)

E = ω0 + 0, (1.53)

where for collective angular momentum j with secondary quantum number m, we have
written |j;m⟩. For our figure, we will call these dressed states |1, 1 : β⟩, |1, 1 : α⟩, and
|0, 1 : α⟩, respectively, where we have labeled our states with |j, k : index⟩ with index being
a Greek letter, alphabetically used in order of increasing energy.

For k = 2, we have an interaction Hamiltonian given by:
0

√
2

√
2 0√

2 0 0 1√
2 0 0 1
0 1 1 0

 . (1.54)

This matrix has eigenvectors (dressed states) and eigenvalues (energies with associated

15



Lamb shift) of

|1, 2 : β⟩ := 1√
3
[−|2⟩|1;−1⟩+

√
2|0⟩|1; 1⟩] = 1√

3
[−|2⟩| ↓↓⟩+

√
2|0⟩| ↑↑⟩], (1.55)

E = 2ω0 + 0 (1.56)

|0, 2 : α⟩ := |1⟩|0; 0⟩ = 1√
2
[|1⟩| ↓↑⟩ − |1⟩| ↑↓⟩], (1.57)

E = 2ω0 + 0 (1.58)

|1, 2 : γ⟩ := 1√
6
[
√
2|2⟩|1;−1⟩+

√
3|1⟩|1; 0⟩+ |0⟩|1; 1⟩] (1.59)

=
1

2
√
3
[2|2⟩| ↓↓⟩+

√
3|1⟩| ↓↑⟩+

√
3|1⟩| ↑↓⟩+

√
2|0⟩| ↑↑⟩], (1.60)

E = 2ω0 + g0
√
6 (1.61)

|1, 2 : α⟩ := 1√
6
[
√
2|2⟩|1;−1⟩ −

√
3|1⟩|1; 0⟩+ 1|0⟩|1; 1⟩] (1.62)

=
1

2
√
3
[2|2⟩| ↓↓⟩ −

√
3|1⟩| ↓↑⟩ −

√
3|1⟩| ↑↓⟩+

√
2|0⟩| ↑↑⟩], (1.63)

E = 2ω0 − g0
√
6 (1.64)

For higher excitation manifolds, k ≥ 2, there are always exactly four states that must
be diagonalized, determined by the coupling matrix Hint/g0 with exactly k excitations:

0
√
k

√
k 0√

k 0 0
√
k − 1√

k 0 0
√
k − 1

0
√
k − 1

√
k − 1 0

 (1.65)

Again, through direct diagonalization, the hybridized cavity–dressed states and perturbed

16



energies are:

1√
2k − 1

[−
√
k − 1|k⟩|1;−1⟩+

√
k|k − 2⟩|1; 1⟩] (1.66)

=
1√

2k − 1
[−

√
k − 1|k⟩| ↓↓⟩+

√
k|k − 2⟩| ↑↑⟩],

E = kω0 + 0 (1.67)
|k − 1⟩|0; 0⟩ (1.68)

=
1√
2
[|k − 1⟩| ↓↑⟩ − |k − 1⟩| ↑↓⟩],

E = kω0 + 0 (1.69)
1√

2
√
2k − 1

[
√
k|k⟩|1;−1⟩+

√
2k − 1|k − 1⟩|1; 0⟩+

√
k − 1|k − 2⟩|1; 1⟩] (1.70)

=
1

2
√
2k − 1

[
√
2
√
k|k⟩| ↓↓⟩+

√
2k − 1|k − 1⟩(| ↓↑⟩+ | ↑↓⟩) +

√
2
√
k − 1|k − 2⟩| ↑↑⟩],

E = kω0 + g0
√
2
√
2k − 1 (1.71)

1√
2
√
2k − 1

[
√
k|k⟩|1;−1⟩ −

√
2k − 1|k − 1⟩|1; 0⟩+

√
k − 1|k − 2⟩|1; 1⟩] (1.72)

=
1

2
√
2k − 1

[
√
2
√
k|k⟩| ↓↓⟩ −

√
2k − 1|k − 1⟩(| ↓↑⟩+ | ↑↓⟩) +

√
2
√
k − 1|k − 2⟩| ↑↑⟩],

E = kω0 − g0
√
2
√
2k − 1 (1.73)

Notice that within each eigenvector only terms involving a single collective spin value j
is used for each term. If the direct sum representation is used instead of the Zeeman
representation, such that the basis states are constant total angular momentum states
(spin-1 and spin-0), the complexity of the problem is somewhat reduced. In this case, the
only difference is replacing |k⟩| ↑↓⟩ and |k⟩| ↓↑⟩ with |k⟩(| ↑↓⟩+ | ↓↑⟩) and |k⟩(| ↑↓⟩−| ↓↑⟩).
In this representation, the singlet state | ↑↓⟩− | ↓↑⟩ is annihilated by J± and forms its own
space. All Lamb shifts that occur for N = 2 are summarized in the following table:

Subspace Excitations Lamb Shifts Numerical Values
j = 1 k = 1 g0

√
2 1.41g0

k = 2 g0
√
6 2.45g0

k = 3 g0
√
10 3.16g0

k g0
√
2
√
2k − 1

j = 0 k 0 0
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Figure 1.1: Illustration of the resulting hybridization of energy levels in the Tavis–
Cummings model for N = 2. Vertical single arrow lines (red) indicate transitions mediated
by Ĵ+, meaning that the eigenstates represented by the horizontal bars have a non-zero Ĵ+
matrix element. Transitions are all–to–all between neighboring excitation subspaces of the
same angular momentum. Note that there are no allowed transitions via collective spin or
photon operators between distinct angular momentum subspaces, regardless of the value of
j. Separation between excitation spaces is a constant ω0, denoted by bidirectional arrows
(blue) between the pre–hybridized angular momentum states. Lamb shift splittings are
denoted by bidirectional arrows (green) to the right of the hybridized states. In the j = 1
subspace, the Lamb shifts are given by: E1,1 = g0

√
2 ≈ 1.41g0, E1,2 = g0

√
6 ≈ 2.45g0, and

E1,3 = g0
√
10 ≈ 3.16g0.
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1.4.3 N = 3

The utility of the direct sum representation becomes even more apparent when N = 3 and
subspace degeneracy first arises (see figure 2.1). As for N = 1 and 2, the ground state
with no excitations (k = 0), |0⟩| ↓↓↓⟩ remains unperturbed by Hint. When the number
of excitations are such that k ≤ 2, the number of hybridized states are sub-maximal.
For clarity, we divide the analysis into three cases that depend on the total number of
excitations present in the joint spin–cavity system: k = 1, k = 2, and k ≥ 3.

Case 1: k = 1

In the single–excitation manifold there are four basis states, with hybridization determined
by the coupling matrix Hint for k = 1:

g0


0 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 (1.74)

Solving this matrix through direct diagonalization gives the hybridized cavity–dressed
states and perturbed energies of

|3/2, 1 : β⟩ := 1√
2
[|1⟩|3/2;−3/2⟩+ |0⟩|3/2;−1/2⟩] (1.75)

=
1√
6
[
√
3|1⟩| ↓↓↓⟩+ |0⟩(| ↓↓↑⟩+ | ↓↑↓⟩+ | ↑↓↓⟩)] , E = ω0 + g0

√
3 (1.76)

|3/2, 1 : α⟩ := 1√
2
[−|1⟩|3/2;−3/2⟩+ |0⟩|3/2;−1/2⟩] (1.77)

=
1√
6
[−

√
3|1⟩| ↓↓↓⟩+ |0⟩(| ↓↓↑⟩+ | ↓↑↓⟩+ | ↑↓↓⟩)] , E = ω0 − g0

√
3 (1.78)

|1/2, 1 : α⟩1 := |0⟩|1/2;−1/2⟩1 (1.79)

=
1√
2
|0⟩(| ↑↓↓⟩ − | ↓↓↑⟩) , E = ω0 (1.80)

|1/2, 1 : α⟩2 := |0⟩|1/2;−1/2⟩2 (1.81)

=
1√
2
|0⟩(| ↓↑↓⟩ − | ↓↓↑⟩) , E = ω0, (1.82)

where the subscript on |1/2;−1/2⟩ indicates the degeneracy number of that subspace.
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Figure 1.2: Illustration of the resulting hybridization of energy levels in the Tavis–
Cummings model for N = 3, explicitly on resonance such that ω0 = ωs = ωc. Vertical
single arrow lines (red) indicate transitions mediated by Ĵ+, meaning that the eigenstates
represented by the horizontal bars have a non-zero Ĵ+ matrix element. Transitions are all–
to–all between neighboring excitation subspaces of the same angular momentum, with some
transitions between the k = 2 and k = 3 subspaces omitted for clarity. Note that there
are no allowed transitions via collective spin or photon operators between distinct angular
momentum subspaces, regardless of the value of j. Separation between excitation spaces is
a constant ω0, denoted by bidirectional arrows (blue) between the pre–hybridized angular
momentum states. Lamb shift splittings are denoted be bidirectional arrows (green) to
the right of the hybridized states. In the j = 1/2 subspaces, these splittings are given by
E1/2,1 = g0 and E1/2,2 = g0

√
2. In the j = 3/2 subspace, the Lamb shifts are given by:

E3/2,1 = g0
√
3 ≈ 1.73g0, E3/2,2 = g0

√
10 ≈ 3.16g0, E3/2,3,1 = g0

√
10−

√
73 ≈ 1.21g0, and

E3/2,3,2 = g0
√
10 +

√
73 ≈ 4.31g0.
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Case 2: k = 2

When a second excitation is added to the joint spin–cavity system, the number of basis
states increases to seven, with hybridization determined by the coupling matrix Hint/g0 for
k = 2: 

0
√
2

√
2 0

√
2 0 0√

2 0 0 1 0 1 0√
2 0 0 1 0 0 1
0 1 1 0 0 0 0√
2 0 0 0 0 1 1
0 1 0 0 1 0 0
0 0 1 0 1 0 0


(1.83)

This matrix may be represented as a direct sum, Hint/g0 = L(3/2, 2) ⊕ L(1/2, 2)1 ⊕
L(1/2, 2)2, to yield  0

√
6 0√

6 0 2
0 2 0

⊕
[
0 1
1 0

]
⊕
[
0 1
1 0

]
(1.84)

By direct diagonalization, the first entry in the direct sum gives hybridized cavity–dressed
states and perturbed energies of

|3/2, 2 : α⟩ := 1

2
[

√
1

2
|2⟩|3/2;−3/2⟩ −

√
5

2
|1⟩|3/2;−1/2⟩+ |0⟩|3/2; 1/2⟩] =(1.85)

1

2
√
3
[

√
3

2
|2⟩| ↓↓↓⟩ −

√
5

2
|1⟩(| ↓↓↑⟩+ | ↓↑↓⟩+ | ↑↓↓⟩) + |0⟩(| ↓↑↑⟩+ | ↑↓↑⟩+ | ↑↑↓⟩)] ,(1.86)

E = 2ω0 − g0
√
10 (1.87)

|3/2, 2 : γ⟩ := 1

2
[

√
1

2
|2⟩|3/2;−3/2⟩+

√
5

2
|1⟩|3/2;−1/2⟩+ |0⟩|3/2; 1/2⟩] =(1.88)

1

2
√
3
[

√
3

2
|2⟩| ↓↓↓⟩+

√
5

2
|1⟩(| ↓↓↑⟩+ | ↓↑↓⟩+ | ↑↓↓⟩) + |0⟩(| ↓↑↑⟩+ | ↑↓↑⟩+ | ↑↑↓⟩)] ,(1.89)

E = 2ω0 + g0
√
10 (1.90)

|3/2, 2 : β⟩ := 1√
11

[−
√
2|2⟩|3/2;−3/2⟩+ 3|0⟩|3/2; 1/2⟩] =(1.91)√

3

11
[−
√

2

3
|2⟩| ↓↓↓⟩+ |0⟩(| ↓↑↑⟩+ | ↑↓↑⟩+ | ↑↑↓⟩)] ,(1.92)

E = 2ω0 (1.93)
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Similarly, the second and third entries of the direct sum give
1√
2
[|0⟩|1/2; 1/2⟩1 ± |1⟩|1/2;−1/2⟩1] (1.94)

=
1

2
[|1⟩[| ↓↑↓⟩ − | ↑↓↓⟩]± |0⟩[| ↓↑↑⟩ − | ↑↓↑⟩]] , (1.95)

E = 2ω0 ± g0 (1.96)
1√
2
[|0⟩|1/2; 1/2⟩2 ± |1⟩|1/2;−1/2⟩2] (1.97)

=
1

2
√
3
[|1⟩[2| ↓↓↑⟩ − | ↑↓↓⟩ − | ↓↑↓⟩]± |0⟩[| ↑↓↑⟩+ | ↓↑↑⟩ − 2| ↑↑↓⟩]] , (1.98)

E = 2ω0 ± g0 (1.99)

where we define for the figure:

|1/2, 2 : α⟩1 :=
1√
2
[|0⟩|1/2; 1/2⟩1 − |1⟩|1/2;−1/2⟩1] , (1.100)

|1/2, 2 : β⟩1 :=
1√
2
[|0⟩|1/2; 1/2⟩1 + |1⟩|1/2;−1/2⟩1] (1.101)

|1/2, 2 : α⟩2 :=
1√
2
[|0⟩|1/2; 1/2⟩2 − |1⟩|1/2;−1/2⟩2] , (1.102)

|1/2, 2 : β⟩2 :=
1√
2
[|0⟩|1/2; 1/2⟩2 + |1⟩|1/2;−1/2⟩2] (1.103)

(1.104)

Case 3: k = 3

When k = 3, the number of spin states becomes maximal and all 23 = 8 spin states
participate in hybridization, determined by the coupling matrix Hint/g0 at k = 3:

0
√
3

√
3 0

√
3 0 0 0√

3 0 0
√
2 0

√
2 0 0√

3 0 0
√
2 0 0

√
2 0

0
√
2

√
2 0 0 0 0 1√

3 0 0 0 0
√
2

√
2 0

0
√
2 0 0

√
2 0 0 1

0 0
√
2 0

√
2 0 0 1

0 0 0 1 0 1 1 0


, (1.105)
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where the ordered basis states for this matrix representation are given by the set {|3⟩| ↓↓↓
⟩, |2⟩| ↓↓↑⟩, . . . |0⟩| ↑↑↑⟩}. This matrix admits a direct sum representation with coupling
matrices L(3/2, 3)⊕ L(1/2, 3)⊕ L(1/2, 3), given by:

0 3 0 0

3 0 2
√
2 0

0 2
√
2 0

√
3

0 0
√
3 0

⊕
[
0

√
2√

2 0

]
⊕
[
0

√
2√

2 0

]
. (1.106)

The first matrix is written in the Dicke (fully symmetric) basis (normalized versions of
|k −m⟩Ĵm

+ | ↓↓↓⟩ with m ∈ {0, 1, 2, 3}), while the second and third are written in terms of
the composite spin–1/2 bases, given by

1√
2
|2⟩(| ↓↑↓⟩ − | ↑↓↓⟩) ,

1√
2
|1⟩(| ↓↑↑⟩ − | ↑↓↑⟩) (1.107)

1√
6
|2⟩(2| ↓↓↑⟩ − | ↑↓↓⟩ − | ↓↑↓⟩) ,

1√
6
|1⟩(| ↑↓↑⟩+ | ↓↑↑⟩ − 2| ↑↑↓⟩). (1.108)

The matrix representations for the degenerate spin-1/2 subspaces are identical, and
thus indistinguishable under a collective operation or measurement. There is freedom in
the choices of bases for the degenerate subspaces; the states provided are the standard
basis states for these subspaces, as computed via a Clebsch–Gordon table [54].

We diagonalize each block individually, starting with the matrix representing the j =
3/2 subspace, and find the resulting (non-normalized) Lamb-shifted dressed states are given
by the following superpositions:

|3/2, 3;±1,±2⟩ := ±1

√
10∓2

√
73(1±2

√
73)|3⟩|3/2;−3/2⟩+ 3(7∓2

√
73)|2⟩|3/2;−1/2⟩

∓16

√
10∓2

√
73
√
2|1⟩|3/2; 1/2⟩+ 6

√
6|0⟩|3/2; 3/2⟩ (1.109)

= ±1

√
10∓2

√
73(1±2

√
73)|3⟩| ↓↓↓⟩

+(7∓2

√
73)3|2⟩ 1√

3
(| ↓↓↑⟩+ | ↓↑↓⟩+ | ↑↓↓⟩) (1.110)

∓16

√
10∓2

√
73
√
2|1⟩ 1√

3
(| ↓↑↑⟩+ | ↑↓↑⟩+ | ↑↑↓⟩) (1.111)

+6
√
6|0⟩| ↑↑↑⟩, (1.112)

each with associated energy

E3;±1±2 = 3ω0 ∓1 g0

√
10∓2

√
73. (1.113)
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We have introduced a shorthand notation via a subscript on the ± sign, such that ±1,±2

are a pair of sign choices (and ∓1 indicates that the opposite sign as ±1 is used, and likewise
for ∓2) which allows for a more compact expression for all four dressed states. The four
perturbed energy values are not equally spaced, though they still come in oppositely signed
pairs of equal magnitude. In terms of the Greek letter notation we have the following
equivalences:

|3/2, 3 : α⟩ := |3/2, 3;+,−⟩ , |3/2, 3 : β⟩ := |3/2, 3;+,+⟩, (1.114)
|3/2, 3 : γ⟩ := |3/2, 3;−,+⟩ , |3/2, 3 : δ⟩ := |3/2, 3;−,−⟩. (1.115)

For the remaining two matrices with j = 1
2

in the direct sum decomposition, these
systems are algebraically equivalent to the single spin model. This equivalence allows us
to immediately write down the diagonalized states and perturbed energies:

|1/2, 3;±⟩1 :=
1

2
[|2⟩[| ↓↑↓⟩ − | ↑↓↓⟩]± |1⟩[| ↓↑↑⟩ − | ↑↓↑⟩]],

E3;± = 3ω0 ± g0
√
2

|1/2,±⟩2 :=
1

2
√
3
[|2⟩[2| ↓↓↑⟩ − | ↑↓↓⟩ − | ↓↑↓⟩]± |1⟩[| ↑↓↑⟩+ | ↓↑↑⟩ − 2| ↑↑↓⟩]],

E3;± = 3ω0 ± g0
√
2.

The subscript on the kets in the above equations indicate the arbitrarily chosen degeneracy
label of that subspace.

Case 4: k ≥ 3

While the above considered k = 3, we can solve this case as well as all higher cases at once.
In the general case of k ≥ 3, the number of manifold states become maximal (see figure
2.1) and all 23 = 8 spin states participate in hybridization, determined by the coupling
matrix L(3/2, k):

24



L(k) =



0
√
k

√
k 0

√
k 0 0 0√

k 0 0
√
k − 1 0

√
k − 1 0 0√

k 0 0
√
k − 1 0 0

√
k − 1 0

0
√
k − 1

√
k − 1 0 0 0 0

√
k − 2√

k 0 0 0 0
√
k − 1

√
k − 1 0

0
√
k − 1 0 0

√
k − 1 0 0

√
k − 2

0 0
√
k − 1 0

√
k − 1 0 0

√
k − 2

0 0 0
√
k − 2 0

√
k − 2

√
k − 2 0


, (1.116)

where the ordered basis states for this matrix representation are given by the set {|k⟩| ↓↓↓
⟩, |k−1⟩| ↓↓↑⟩, . . . |k−3⟩| ↑↑↑⟩}. As before, this matrix admits a direct sum representation
(3
2
⊕ 1

2
⊕ 1

2
) with coupling matrices L(3/2, k)⊕ L(1/2, k)⊕ L(1/2, k), given by:

0
√
3
√
k 0 0√

3
√
k 0 2

√
k − 1 0

0 2
√
k − 1 0

√
3
√
k − 2

0 0
√
3
√
k − 2 0

⊕
[

0
√
k − 1√

k − 1 0

]
⊕
[

0
√
k − 1√

k − 1 0

]
.

(1.117)
The first matrix is written in the Dicke (fully symmetric) basis (normalized versions of
|k −m⟩Ĵm

+ | ↓↓↓⟩ with m ∈ {0, 1, 2, 3}), while the second and third are written in terms of
the composite spin–1/2 bases, given by

1√
2
|k − 1⟩(| ↓↑↓⟩ − | ↑↓↓⟩) ,

1√
2
|k − 2⟩(| ↓↑↑⟩ − | ↑↓↑⟩) (1.118)

1√
6
|k − 1⟩(2| ↓↓↑⟩ − | ↑↓↓⟩ − | ↓↑↓⟩) ,

1√
6
|k − 2⟩(| ↑↓↑⟩+ | ↓↑↑⟩ − 2| ↑↑↓⟩).(1.119)

The matrix representations for the degenerate spin-1/2 subspaces are identical, and
thus indistinguishable under a collective operation or measurement. There is freedom in
the choices of bases for the degenerate subspaces; the states provided are the standard
basis states for these subspaces, as computed via a Clebsch–Gordon table [54].

We diagonalize each block individually, starting with the matrix representing the j =
3/2 subspace, and find the resulting (non-normalized) Lamb-shifted dressed states are given
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by the following superpositions for |3/2, k;±1,±2⟩:

:= ±1

√
5k − 5∓2

√
25− 32k + 16k2(2k − 5±2

√
25− 32k + 16k2)|k⟩|3/2;−3/2⟩

+(1 + 2k ∓2

√
25− 32k + 16k2)

√
3
√
k|k − 1⟩|3/2;−1/2⟩

∓12

√
5k − 5∓2

√
25− 32k + 16k2

√
3
√
k − 1

√
k|k − 2⟩|3/2; 1/2⟩

+6
√
k − 2

√
k − 1

√
k|k − 3⟩|3/2; 3/2⟩ (1.120)

= ±1

√
5k − 5∓2

√
25− 32k + 16k2(2k − 5±2

√
25− 32k + 16k2)|k⟩| ↓↓↓⟩

+(1 + 2k ∓2

√
25− 32k + 16k2)

√
3
√
k|k − 1⟩ 1√

3
(| ↓↓↑⟩+ | ↓↑↓⟩+ | ↑↓↓⟩)

∓12

√
5k − 5∓2

√
25− 32k + 16k2

√
3
√
k − 1

√
k|k − 2⟩ 1√

3
(| ↓↑↑⟩+ | ↑↓↑⟩+ | ↑↑↓⟩)

+6
√
k − 2

√
k − 1

√
k|k − 3⟩| ↑↑↑⟩, (1.121)

each with associated energy

Ek;±1±2 = kω0 ∓1 g0

√
5(k − 1)∓2

√
16k2 − 32k + 25. (1.122)

We have introduced a shorthand notation via a subscript on the ± sign, such that ±1,±2

are a pair of sign choices (and ∓1 indicates that the opposite sign as ±1 is used, and likewise
for ∓2) which allows for a more compact expression for all four dressed states. The four
perturbed energy values are not equally spaced, though they still come in oppositely signed
pairs of equal magnitude. In terms of the Greek letter notation we have the following
equivalences:

|3/2, k : α⟩ := |3/2, k; +,−⟩ , |3/2, k : β⟩ := |3/2, k; +,+⟩, (1.123)
|3/2, k : γ⟩ := |3/2, k;−,+⟩ , |3/2, k : δ⟩ := |3/2, k;−,−⟩. (1.124)

For the remaining two matrices with j = 1
2

in the direct sum decomposition, these
systems are algebraically equivalent to the single spin model. This equivalence allows us
to immediately write down the diagonalized states and perturbed energies:

|1/2, k;±⟩1 :=
1

2
[|k − 1⟩[| ↓↑↓⟩ − | ↑↓↓⟩]± |k − 2⟩[| ↓↑↑⟩ − | ↑↓↑⟩]],

Ek;± = kω0 ± g0
√
k − 1

|1/2,±⟩2 :=
1

2
√
3
[|k − 1⟩[2| ↓↓↑⟩ − | ↑↓↓⟩ − | ↓↑↓⟩]± |k − 2⟩[| ↑↓↑⟩+ | ↓↑↑⟩ − 2| ↑↑↓⟩]],

Ek;± = kω0 ± g0
√
k − 1.
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The subscript on the kets in the above equations indicate the arbitrarily chosen degeneracy
label of that subspace. All Lamb shifts that occur for N = 3 are summarized in the
following table:

Subspace Excitations Lamb Shifts Numerical Values
j = 3/2 k = 1 g0

√
3 1.73g0

k = 2 g0
√
10 3.16g0

k = 3 g0
√
10±

√
73 1.21g0, 4.21g0

k g0

√
5(k − 1)±

√
16k2 − 32k + 25

j = 1/2 k = 1 0 0
k = 2 g0 g0
k = 3 g0

√
2 1.41g0

k g0
√
k − 1

j = 1/2 k = 1 0 0
k = 2 g0 g0
k = 3 g0

√
2 1.41g0

k g0
√
k − 1

1.4.4 N > 3

The following figure illustrates the general decomposition structure into the various angular
momentum subspaces:

The case of low excitation count for arbitrary N is discussed in [51], so we stop working
through examples now and work toward providing results that hold for larger N and k
counts.

This chapter introduced the primary model of interest throughout this part of the
thesis. Explicit examples have been worked through, however, general trends have only
been touched upon. In the next chapter we discuss how to extract information about the
distribution of the Lamb shifts without needing to diagonalize each coupling matrix, which
becomes untenable for large values of N and k.
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j = N/2 j = N/2− 1 j = N/2− 2 j = N/2− 3
x 1 x (N − 1) x N(N − 3)/2 x N(N − 1)(N − 5)/6

Figure 1.3: Schematic representation of the energy eigenstates of the Tavis-Cummings
Hamiltonian with excitations 0 ≤ k ≤ 3 along the vertical, and labelled horizontally by
the number of degeneracies of each angular momentum subspace.
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Chapter 2

The Tavis-Cummings Model’s Energy
Structure

In this chapter we delve into the Tavis–Cummings model and aim to extract information
about the distribution of the Lamb shifts without either solving difference equations nor
diagonalizing matrices. Both of these methods become intractable for large excitation
numbers and spin-ensembles, so instead we take a trace based approach and put this
approach into physical meanings. The chapter following this carries this idea further from
making statements about the spectrum of the Lamb shifts to extraction of expected time
evolutions for thermalized states.

2.1 Subspace Decomposition of the TC Model

A direct sum decomposition of the TC Hamiltonian was given explicitly in the original
1968 work by Tavis and Cummings [38]. Recast in our notation, the decomposition is

Ĥ ∼=
⊕
j,k

(
ω0k11j,k + g0L(j, k)

)
, (2.1)

where L(j, k) are coupling matrix representations of the interaction Hamiltonian defined
in equation (2.5). Solving for the structure of the TC model is akin to diagonalizing the
Hamiltonian in each subspace under the action of the coupling matrix. As discussed in
Section 2.3.1 and calculated explicity for N = 1, 2, 3 in the appendix, the numerical and
analytical complexity of the eigenstructure problem scales unfavourably with ensemble size,
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N , and excitation number, k. Thus, analyzing the TC model according to the statistical
behaviour of the Lamb shifts, represented by L(j, k), becomes valuable for mesoscopic
ensembles with a moderate level of excitation (Section 2.3).

We define a natural basis for a specific (j, k) subspace with total angular momentum j
and k excitations as

Bj,k = {|αj,k⟩ |α = 1, · · · , nj,k, nj,k + 1}, (2.2)

using a shorthand ket representation of the tensor product of a spin-cavity state:

|αj,k⟩ = |k − α− k0(j)⟩ |j,−j + α⟩ . (2.3)

The single parameter, α, provides a convenient representation of states within a (j, k)
subspace. The value, nj,k = |Bj,k|−1, one less than the dimension, is chosen for convenience.
We define k0(j) = N/2− j as the number of excitations present in the ground state of an
angular momentum j subspace within an N spin ensemble. Explicitly, nj,k is given as

nj,k = min{2j, k − k0(j)}. (2.4)

If k < k0(j), then the basis set is empty and there are no states present at this excitation
level within the j angular momentum subspace (Figure 1.3 shows this generally, while
Figure 2.1 illustrates this for the the case of N = 3).

Under unitary evolution generated by collective operators, two subspaces with the same
value of j stemming from ensembles of differing N will behave identically, as these sub-
spaces have isomorphic representations. The main functional difference between them is
their relative locations within the energy level spectrum of their respective Hamiltonians.
Thus, while the evolution or action of a collective operator, J+ and J−, can be calcu-
lated identically, the resultant contribution of the evolution to aggregate statistics or an
observable will be weighted differently.

By applying the interaction term from ĤTC , g0(â†Ĵ− + âĴ+), to the bases defined in
Equation (2.2), the Lamb shift coupling matrix for a (j, k) subspace may be written as

L(j, k) =

nj,k∑
α=1

lα(j, k)

(
|αj,k⟩⟨(α + 1)j,k|

+ |(α + 1)j,k⟩⟨αj,k|
)
, (2.5)
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where the matrix elements are given by

lα(j, k) =
1

g0

〈
αj,k

∣∣∣ Ĥint

∣∣∣(α + 1)j,k

〉
=
√(

2αj − α(α− 1)
)(
k − k0(j)− α + 1

)
. (2.6)

In the above expression subscripts are only included within kets such as |αj,k⟩, while α
itself is a scalar.

The index j runs from N/2 to 0 (1/2) when N is even (odd). Each angular momentum
space is of dimension 2j+1, such that the total number of spin states accounted for across
all values of j is O(N2), as opposed to 2N for the full space. The degeneracy of a subspace
of total angular momentum j on N spins is given as

dj =
N !(2j + 1)

(N/2− j)!(N/2 + j + 1)!
. (2.7)

There are dj disjoint angular momentum subspaces with total angular momentum j present
in a direct sum decomposition of

(
C2
)⊗N [31]. By including this degeneracy, we recover the

identity that the sum over the dimension of all disjoint subspaces is equal to the dimension
of the entire space: ∑

j

(2j + 1)dj = 2N . (2.8)

Through Schur–Weyl duality, we can associate total angular momentum symmetry
with invariance over permutations (or subgroups of permutations) of the ordering of the
underlying spin Hilbert spaces [55]. Within this context, the Dicke subspace (j = N/2)
is the fully symmetric subspace with every angular momentum state remaining invariant
under action of the permutation group of order N , S(N). The remaining subspaces have
a more complex structure under the action of a spin-permutation.

Importantly, each degenerate copy of a j subspace can be naturally and uniquely la-
belled by a Young Tableau. If one wished to consider a perturbation to the TC Hamil-
tonian which distinguished individual spins, such as a field inhomogeneity, then these
Young Tableaux would be required to properly determine the perturbation’s action on
subspaces with identical total angular momentum j. For clarity, explicit detailed examples
for N = 1, 2, 3 were worked out in the prior chapter.

31



Figure 2.1: Illustration of the resulting hybridization of energy levels in the Tavis–
Cummings model for N = 3, explicitly on resonance such that ω0 = ωs = ωc. Vertical
single arrow lines (red) indicate transitions mediated by Ĵ+, meaning that the eigenstates
represented by the horizontal bars have a non-zero Ĵ+ matrix element. Transitions are all–
to–all between neighboring excitation subspaces of the same angular momentum, with some
transitions between the k = 2 and k = 3 subspaces omitted for clarity. Note that there
are no allowed transitions via collective spin or photon operators between distinct angular
momentum subspaces, regardless of the value of j. Separation between excitation spaces is
a constant ω0, denoted by bidirectional arrows (blue) between the pre–hybridized angular
momentum states. Lamb shift splittings are denoted be bidirectional arrows (green) to
the right of the hybridized states. In the j = 1/2 subspaces, these splittings are given by
E1/2,1 = g0 and E1/2,2 = g0

√
2. In the j = 3/2 subspace, the Lamb shifts are given by:

E3/2,1 = g0
√
3 ≈ 1.73g0, E3/2,2 = g0

√
10 ≈ 3.16g0, E3/2,3,1 = g0

√
10−

√
73 ≈ 1.21g0, and

E3/2,3,2 = g0
√
10 +

√
73 ≈ 4.31g0.
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2.2 The Maximally Degenerate Subspace

The maximally degenerate collective angular momentum subspace forN spin–1/2 particles,
which we denote as j∗, is given by

j∗ =

√
N

2
− 1

2
+

1

6
√
N

+O(N−1). (2.9)

Formally j∗ is given by one of the two valid nearest half-integer values for j, but since
which is larger requires knowing N , we will use this expression. This space is increasingly
separated from the Dicke space as N increases. Also, the value of j∗ does not approach
0 or 1/2, indicating that large N structure, through the lens of degeneracy, is not well–
approximated by either a single spin with angular momentum j = N/2, nor one with small
angular momentum, such as j = 1/2.

Given that the maximally degenerate angular momentum subspace is well–approximated
by this expression for j∗, it is useful to determine how well dynamics calculated in this
subspace represent the entire system dynamics. To formalize this notion, consider the ratio
of dj∗ , the degeneracy of the j∗ subspace, to dj∗+1, the degeneracy of the neighboring j∗+1
subspace:

dj∗

dj∗+1

= 1 +O(N−3/2). (2.10)

The maximally degenerate subspace is not significantly more degenerate than its nearest
neighbor. This argument may be extended to show that subspace degeneracy does not
vary much locally in general. Thus, even though j∗ is the most degenerate subspace, the
system dynamics cannot reasonably be approximated by considering dynamics solely in
this space.

Within the context of degeneracy–weighted observables, then, there is no single sub-
space which can accurately mimic the structure and dynamics of the entire Hamiltonian.
The minimal collection of angular momentum subspaces that must be considered for a given
N may be quantified by the strong support of dj (Figure 2.2), which is approximately given
by the interval 0 ≤ j ≤ O(

√
N), for all allowed values of j. That is, nearly all of the states

are contained in the subspaces below some constant multiple of
√
N . The O(

√
N) upper

limit can be derived by considering the ratios of the degeneracies of increasingly separated
angular momentum subspaces (see appendix for further details).

The insights provided by the computation of j∗ and determination of the strong sup-
port of dj have a few important implications. Firstly, that the system must be represented
by O(

√
N) subspaces may be of interest to those working in the area of the complexity
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Figure 2.2: Normalized plot of dj as a function of j, for N = 1000 spin-1/2 particles. The
maximally degenerate space is the j = 15 angular momentum space. This plot clearly
indicates that when weighted by degeneracy, the Dicke subspace contributes negligibly as
compared to lower j angular momentum subspaces.

of quantum systems. Secondly, this also may be of interest to those simulating quan-
tum systems admitting a similar angular momentum subspace decomposition, in that so
long as one has the subspace structure being preserved, any observable that grows sub–
exponentially in j, as suggested by (2.53), can be sufficiently modelled using this region
of strong support. By restricting computations to this region, we can expect a halving
of the dominant order of the computational cost (i.e. an O(N4) algorithm can be well
approximated by an O(N2) algorithm). In fact, this reduction of order further reduces the
effective spin dimensionality of the problem from O(N2) spin states, to O(N) spin sates,
yielding a significant complexity reduction from the original dimension of 2N .

2.3 Lamb Shift Statistics

In this section, techniques are presented for extracting more information about the Lamb
shift coupling matrices without resorting to numerically solving an eigenvalue problem.
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2.3.1 Single Angular Momentum Subspace

Given the subspace decomposition of the TC Hamiltonian,

Ĥ ∼=
⊕
j,k

(
ω0k11j,k + g0L(j, k)

)
, (2.11)

if one were able to diagonalize L(j, k), then the Hamiltonian would be fully solved. It is
instructive to visualize the representation of L(j, k) with respect to Bj,k as in 2.1:

0 l1(j, k)
l1(j, k) 0 l2(j, k)

l2(j, k) 0
. . .

. . . . . . ln(j, k)
ln(j, k) 0

 . (2.12)

Thus, the Lamb shift coupling matrix can be naturally represented as a hollow tridiagonal
matrix, a highly structured sparse matrix.

A full closed-form diagonalization of this matrix is unlikely to exist, but there is still
a good amount of information that can be extracted. As a first approach we can con-
sider the problem from a numerical linear algebra perspective. It was shown in 2013 that
the eigenvalues of this variety of matrix can be computed exactly (to within numerical
precision) in O(nj,k log nj,k) floating point operations, a speed-up over the unstructured
problem [56]. This algorithm can be used to efficiently extract the Lamb shifts of a given
(j, k) space, if desired. The eigenvector problem, given an eigenvalue λ, is then solvable in
O(nj,k) floating point operations utilizing the Thomas algorithm [57]. This must be done
for each of the nj,k+1 eigenvalues. Thus, while the cost of producing the set of eigenvalues
is O(nj,k log nj,k), the cost of producing the entire eigensystem is O(n2

j,k), dominated by
the eigenvector problem. We expect the numerical speedup of finding the eigenvalues to be
useful for simulating this system’s dynamics and computing state dependent quantities for
states defined by classical mixtures across angular momentum subspace, thereby increasing
the maximal value for N that can be feasibly simulated on a classical processor.

Given that the eigenvalues of hollow tridiagonal matrices come in oppositely signed
pairs, the eigenvalue spectrum of the Lamb shift coupling matrix can be treated as a two
parameter family of even sets [58]:

Λ(j, k) = {λ |L(j, k)v = λv,v ̸= 0}. (2.13)
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The fact that the eigenvalues of these coupling matrices is a family of sets and not multi-
sets is shown in [59]. Thus, if |Λ(j, k)| = |Bj,k| = nj,k +1 is odd, there must be exactly one
eigenvalue with value λ = 0. There are a number of useful properties of the collection of
Lamb shifts that can be analytically computed, or well-estimated.

Computing the Determinant

A standard parameter of matrices to compute is the determinant, given by the product of
the eigenvalues. A two step recursive formula may be used to compute the determinant of
the Lamb shift coupling matrix, L(j, k). Let A be a symmetric tridiagonal (Jacobi) matrix
with matrix elements,

A =
n+1∑
α=1

aα |α⟩⟨α|+
n∑

α=1

bα
(
|α⟩⟨α + 1|

+ |α + 1⟩⟨α|
)
, (2.14)

and sub-matrices Aα, formed by discarding all basis vectors with index greater than α.
Then,

det(A) = det(An+2)

= an+1 det(An+1)− b2n det(An). (2.15)

Upon computing the determinant of L(j, k), we find that if nj,k + 1 is odd, then the
recurrence terminates with detA0 = 0, and so detL(j, k) = 0. Otherwise, nj,k + 1 is even
and the determinant is given as

detL(j, k) = (−1)
n+1
2 l2nl

2
n−2 · · · l21, (2.16)

where the dependence of the matrix elements lα on (j, k) is suppressed for clarity. Through
this recursive formula for the determinant, the singular multiplicity of the zero eigenvalue,
when nj,k + 1 is odd, is shown.

Computing the mean

While it is interesting to know that the determinant can be computed efficiently and in a
closed form, it does not provide a good, compact description of the structure of the Lamb
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shifts. Rather, given the set of Lamb shift eigenvalues, Λ(j, k), it is more useful to provide
descriptive statistics. The t-th moment is given by〈

Λ(j, k)t
〉
=

1

|Bj,k|
∑

λ∈Λ(j,k)

λt. (2.17)

We can avoid computing the eigenvalues explicitly by noticing that the sum over eigenvalues
is equivalent to the trace of the Lamb shift coupling matrix. Thus,〈

Λ(j, k)t
〉
=

1

|Bj,k|
tr
(
L(j, k)t

)
. (2.18)

Then, given that the Lamb shift coupling matrix is hollow, the mean of the Lamb shifts
in each subspace is zero,

⟨Λ(j, k)⟩ = 0, (2.19)

as all the diagonal entries of L(j, k) are zero. This statement can be extended to all odd
moments of the Lamb shift eigenvalues. That is, for each coupling matrix, L(j, k),〈

Λ(j, k)2t+1
〉
= 0, ∀t ∈ N. (2.20)

This follows immediately from the fact that, for every λ ∈ Λ(j, k), −λ ∈ Λ(j, k).

Computing the variance

The variance can be used as an effective measure of the average magnitude of the Lamb
shift splittings in each subspace, which in this case is equal to the second moment of Λ(j, k):

Var(Λ(j, k)) =
〈
Λ(j, k)2

〉
− ⟨Λ(j, k)⟩2

=
〈
Λ(j, k)2

〉
. (2.21)

Computing the variance is then equivalent to determining the trace of the square of the
coupling matrix, which is a banded pentadiagonal matrix, explicitly given as

l21 0 l1l2
0 l21 + l22 0 l2l3

l1l2 0
. . . . . . . . .

l2l3
. . . . . . . . . ln−1ln
. . . . . . l2n−1 + l2n 0

ln−1ln 0 l2n


(2.22)
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Thus, the trace of the square of L(j, k) has a compact closed form expression in terms of
the matrix elements lα(j, k),

trL(j, k)2 = 2
n∑

α=1

lα(j, k)
2. (2.23)

The variance of Λ(j, k), for k ≥ k0(j), with k′ = k − k0(j), is then given by the expression

Var(Λ(j, k)) =
1

2
|Bj,k|3 −

1

3
|Bj,k|2 (2k′ + 4j + 7)

+ |Bj,k| (2jk′ + 2k′ + 4j + 7/2)

− 1

3
(6jk′ + 8j + 4k′ + 5). (2.24)

Recalling that the dimension of the basis of a (j, k) space is given by |Bj,k| = min{2j+
1, k− k0(j) + 1}, when k satisfies k− k0(j) > 2j the dimension of the space becomes fixed
at 2j+1. And so, for k such that k−k0(j) > 2j, or equivalently k > N/2+ j, Var(Λ(j, k))
is a linear function in k. This can be seen by substituting |Bj,k| = 2j + 1 into equation
(2.24).

Taking the square root of the variance provides the standard deviation, which has an
interpretation as the average distance from the mean. In this sense, for a given subspace
of constant angular momentum j, the average Lamb shift is O(

√
k) for k > N/2 + j. To

describe the full statistics of the Lamb shifts that occur in an ensemble, we must consider
all angular momentum subspaces and their respective degeneracies for a given number
of excitations, k. Before doing so, it is useful to note an important implication of the
statistical structure of the Lamb shifts in arbitrary angular momentum and excitation
subspaces.

2.3.2 Rotating–Wave Approximation Revisited

Given that all L(j, k) are non-negative matrices, the maximal absolute value of the eigen-
value, also given by the spectral norm, may be bounded from above and below using the
Perron–Frobenius theorem:

min
m

∑
n

[L(j, k)]mn ≤ maxΛ ≤ max
m

∑
n

[L(j, k)]mn. (2.25)
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Applying this theorem shows that maxΛ(j, k) is upper bounded by the following cases:
2√
3

√
(2j + k′)jk′ generally

2[j
√
k′ − 1

2
j2√
k′
+ 1

8
j4

(k′)5/2
+O( j5

(k′)7/2
)] 2j ≪ k′

2[ 1√
2
k′
√
j − 1

8
√
2

(k′)2√
j
+ 1

512
(k′)4

j5/2
+O( (k

′)5

j7/2
)] k′ ≪ 2j.

(2.26)

The relations for maxΛ(j, k) can narrow the energy range necessary for consideration
in experimental design for a given value of N and bounded total energy. Likewise, a lower
bound on the maximal splitting can be found via the same argument. This always yields
the minimum of the first row and the last row (both of which have a single entry in the
coupling matrix).

These bounds on the maximal eigenvalue have an important implication with regard to
making a rotating–wave approximation (RWA). As a general rule of thumb, the RWA used
for approximating the Dicke Hamiltonian by the Tavis–Cummings Hamiltonian is said to
be valid for g0

√
N ≪ ω0. Although this rule of thumb is useful for determining whether

vacuum Rabi oscillations between the spin ensemble and cavity may be experimentally
resolved, it is not a good metric for determining the validity of the RWA. To improve the
specificity of this requirement, we first note that, from the lower bound for the maximal
eigenvalue,

lim
j,k→∞

∥L(j, k)∥∞ = ∞, (2.27)

meaning that eventually g0maxΛ(j, k) will approach and exceed 2ω0. Thus, a more accu-
rate condition for justifying a RWA is

g0maxΛ(j, k) ≪ ω0. (2.28)

This constraint puts a limit on the size of j and k that can be considered with this model. A
maximally allowed value for k, after which the RWA breaks down, is not a property unique
to the TC Hamiltonian, as the JC Hamiltonian’s RWA is invalidated when k ≈ ω2

0/g
2
0.

Given our upper and lower bounds on maxΛ(j, k), we can estimate where the RWA begins
to breakdown. As an example, we consider the behavior of the density of states for an
N = 20 system.

The density of states is a sum of delta functions over all excitation spaces, with location
given by the energies of the Lamb-shifted eigenstates, scaled by the weight:

n(E) =
∞∑
k=0

∑
λ∈Λ(k)

wk(λ)δ(E − (kω0 + λg0)). (2.29)
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Figure 2.3: Scaled density of states for N = 20 spins in the Tavis–Cummings model, with
ω0/g0 = 500. This is found by diagonalizing the coupling matrices.

When the RWA holds, the distribution of delta functions across neighboring excitation
subspaces will be well separated, as show in Figure 2.3. On the other hand, Figure 2.4
illustrates what the energy level structure looks like when the RWA breaks down. In
this case, states in a given excitation subspace can overlap with states from neighboring
excitation subspaces, breaking the notion of the good quantum number, and invalidating
the predictions of the model.

Figure 2.4: Scaled density of states for N = 20 spins in the Tavis–Cummings model, with
ω0/g0 = 100. This is found by diagonalizing the coupling matrices.
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2.4 Degeneracy Averaged Lamb Shift Statistics

Given that relaxation and thermal processes in an ensemble tend to suppress collective
behavior and spread population over many angular momentum subspaces [24, 30, 31, 60],
the utility of descriptive statistics of the Lamb shifts for specific values of j is limited. We
may join the above discussions to provide a description of the degeneracy-averaged Lamb
shift taken over all subspaces, as a function of ensemble size, N , and total excitation level,
k. An expression for the root mean square Lamb shift averaged over the degeneracies
across all angular momentum subspaces may then be derived.

To begin, we define a probability distribution on the set of eigenvalues across all values
of j at a given value of k. A natural choice is weighting each eigenvalue by its degeneracy:

wk(λ) =
∑
j

{
dj λ ∈ Λ(j, k)

0 else
(2.30)

The sum over j accounts for the case of repeat eigenvalues across j spaces, although we
believe it is generally only the 0 eigenvalue that repeats. For convenience, we also define
the set of Lamb shift eigenvalues over k excitations to be given as:

Λ(k) =
⋃
j

Λ(j, k). (2.31)

The set of pairs, (λ, ωk(λ)) define an unnormalized probability distribution on the Lamb
shifts for an N spin TC system with k excitations.

The t-th moment of the Lamb shifts across all angular momentum subspaces is then
formally written as 〈

Λ(k)t
〉
=

1

Dk

∑
λ∈Λ(k)

wk(λ)λ
t, (2.32)

where Dk is the number of states with k excitations:

Dk =
k∑

k′=0

(
N

k′

)
. (2.33)

Recalling that, if k < k0(j) = N/2− j, then there are no states of excitation k for the
given value of j. In this case, Λ(j, k) is empty and does not contribute to the statistics of
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this excitation level. Once k ≥ N , the total number of states present at a given excitation
becomes fixed at Dk = 2N .

As with the case of a single angular momentum space, it is better to compute the mo-
ments utilizing traces of the Lamb shift coupling matrix, which are computable in O(nj,k)
floating point operations, as compared to the O(nj,k log nj,k) scaling of the eigenvalue prob-
lem. The computational advantage is particularly significant for the second moment, as
Equation (2.24) provides a closed-form expression for the trace, dropping the cost to O(1)
operations per angular momentum subspace. Using this insight, Equation (2.32) may be
rewritten as 〈

Λ(k)t
〉
=

1

Dk

∑
j

dj tr(L(j, k)t). (2.34)

Given that Λ(k) is the union of even sets, it is also an even set, such that the odd moments
for the Lamb shifts indexed by k excitations are all zero:〈

Λ(k)2t+1
〉
= 0, ∀t ∈ N. (2.35)

Due to the combinatorial nature of the weights on eigenvalues, there is no exact closed
form expression for the even moments of the Lamb shift splittings. However, it is com-
putationally feasible to visualize the function for select values of N , as shown in Figure
2.5.

The suppression of the variance for k < N/2 can be explained by recalling the partial
energy level diagram of Figure 1.3. As each additional angular momentum subspace is
considered, the ground state of that j space is introduced into the statistics with energy
splitting of zero. Since dj is an increasing function for j < j∗, the dominant element
of the distribution of eigenvalues is the ground state of the smallest considered angular
momentum subspace. This trend holds true until k approaches N/2 − j∗. In the case of
N = 1000, Equation (2.9) provides j∗ = 15, hence the suppression of the variance to nearly
k = N/2.

The linearity of the variance, starting at roughly k = N/2, can be explained by noting
that the variance of each j–subspace will be linear in k for values of k > N/2+j. Thus, the
transition into the linear regime at k ≈ N/2 is caused by the variance of subspaces in the
region of strong support of dj being most dominant in the linear regime for k > N/2 + j∗.
Thus, one can expect a linear variance in k for values of k > N/2+

√
N/2−1/2+1/(6

√
N),

which is dominated by N/2 for large N .

We can efficiently illustrate the trend numerically by performing a regression on the
linear regime of the variance for select values of N , and plotting the slope of these lines as
a function of N (Figure 2.6).
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Figure 2.5: Variance of the unit–less (ℏ = g0 = 1) Lamb shift splittings for N = 1000
spin–1/2 particles. Notice that the variance becomes linear in k soon after k = N/2 = 500.
Notice the non-linearity and reduction of scale of the variance in the lower excitation
subspaces as compared to the k > N/2 subspaces.

Figure 2.6: Slope of the variance of the collective Lamb shift splittings in the linear regime,
for various N . Points mark computed values of the slope for each N . The regression model
is Slope(N) = 0.9989N − 0.27, with an R2 value of nearly 1.

The result of the regression indicates that for the values of k and N considered, the
variance is effectively growing at a rate of 0.9989Nk. In fact, analytically, the variance of
the Lamb shift splittings, as a function of k excitations, grows as the product of N and k
for k ≥ N (see Appendix):

Var(Λ(k)) = O(Nk). (2.36)

We further conjecture that this result holds for all k > k∗, where k∗ is some value in the
range N/2 < k∗ < N , and likely depends on N . This can be seen in part by noting that the
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dimension of a subspace, |Bj,k|, saturates at 2j+1 when k = k0(j)+2j = N/2+j. Further,
since one need only consider the strong support of dj when averaging (for more details see
the appendix), the result could likely be extended to hold if k∗ = N/2 + O(

√
N). In the

region k∗ < k < N , the statistics are not exposed to all possible spin states as Dk < 2N .
This issue can be avoided by bounding dj/Dk instead of dj/2N , for all values of k greater
than some k∗. Since Dk is almost constant on this region, the extension should not be too
difficult.

2.5 Discussion

This work provides a method to estimate the expected statistics of Lamb shifts for ensem-
bles with a given number of spins, N , spin–cavity interaction strength, g0, and number
of excitations, k. By averaging over subspace degeneracies, we arrive at the well–known
result that the effective Lamb shift has a magnitude given approximately by g0

√
Nk when

averaged over all subspaces. Care must be taken in applying this result, however, as the
linearity of the variance in k is invalid for k < N/2, as illustrated in Figure 2.5 and mathe-
matically seen in the proof of Equation (2.36) utilizing the region of strong support in the
subspaces. This indicates that, while the single excitation splitting prediction of O(

√
N) is

indeed valid for states with enough energy under the right conditions, for non–trivial mod-
erate excitation states the variance cannot be approximated as simply. Given that many
quantum devices operate exactly in this regime of low to moderate excitation, as dictated
by common experimental temperatures of 10 mK to 4K, further examination of the ex-
perimental validity of various subspace restriction techniques used to describe experiments
on mesoscopic ensembles is required. The tools presented in this work are expected to aid
such analysis, permitting more accurate descriptions of mesoscopic ensemble dynamics at
a given temperature.

Our results are derived for energy splittings in the static picture. In order to make
statements about dynamics of the system, the results will need to be extended to in-
clude thermalization effects and an analysis of the evolution of appropriate observables.
Considering subspace mixing from thermal effects, local relaxation processes, and field
inhomogeneities is also important. Qualitatively large field inhomogeneities will remove
all collective behavior, reducing the system to that of a tensor product of spins, while
for sufficiently small field inhomogeneity the collective behavior should remain. Quantita-
tively finding the level of inhomogeneities that can be present likely reduces to the theory
eigenvalue perturbations from matrix analysis, a possible starting point would be the tools
presented in [61, 62].
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As a final note, our results are consistent with various experiments measuring a high–
cooperativity state splitting of spin ensembles interacting with high Q cavities, where g0

√
N

behavior is observed [39, 42, 63, 64]. These experiments are generally run at relatively high
power, corresponding to many excitations in the system. It has also been noted that high–
cooperativity splitting disappears at sufficiently high drive powers [51, 65]. The coalescence
of the splitting into a single peak is indicative of the Tavis–Cummings eigenstructure model
becoming invalid, with “classical” behavior emerging due to the smearing of the density
of states (Figure 2.4). The tools we’ve provided in this work should be useful in gaining
additional insight into this quantum-classical transition.

2.6 Mathematical Proofs

Proof of Equation (2.9). To derive the value of j∗, we begin by defining the degeneracy
function in a convenient form,

f(j) =
2j + 1

N/2 + j + 1

(
N

N/2 + j

)
, (2.37)

where j takes integer or half-integer values 0 ≤ j ≤ N/2, depending on the parity of N .
To prepare for differentiation, the binomial coefficient can be extended to a continuous
function (

N

K

)
=

Γ(N + 1)

Γ(K + 1)Γ(N −K + 1)
, (2.38)

such that Equation (2.37) can be written as a continuous function in j

f(j) =
2j + 1

N/2 + j + 1

Γ(N + 1)

Γ(N/2 + j + 1)Γ(N/2− j + 1)
. (2.39)

We may now differentiate and look for critical values:

d

dj
f(j) = 4

(
N

N/2 + j

) 1
2
(2j + 1)(N + 2j + 2)(HN/2−j −HN/2+j) +N + 1

(N + 2j + 2)2
. (2.40)

In equation (2.40), Hx is the Harmonic series truncated at term x. The degeneracy is
then maximal when

1

2
(2j + 1)(N + 2j + 2)(HN/2−j −HN/2+j) +N + 1 = 0. (2.41)
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We can re-cast this result by utilizing the expression for Hx = log x+ γ+O(x−1), where γ
is the Euler-Mascheroni constant (γ ≈ 0.577). This allows us to take the difference of the
Harmonic numbers as log’s, which cancels the additive term. After simplifying, we are left
with

1

2
(2j + 1)(N + 2j + 2) log(

N/2− j

N/2 + j
) +N + 1 = 0. (2.42)

This is a very tight approximation. If we examine the series expansions of this, we see
that taking j ≈

√
N
2

will remove the leading error. We may repeat this procedure, noting
that the errors are a Laurent series in

√
N , so we adjust by decreasing powers of

√
N

corrections. Using this, we take as a guess that j =
√
N−1
2

+ 1
6
√
N

, which yields:

(3N + 1)(3(N3/2 +N +
√
N) + 1)

log( −6N+6
√
N−2

3
√
N(N+

√
N−1)+1

+ 1)

18N
+N + 1. (2.43)

When expanded as a series in the limit of large N , we have:

1√
N

+O(
1

N
), (2.44)

and thus our guess is equal to the true root in the limit of N −→ ∞. Thus,

j∗ =

√
N − 1

2
+

1

6
√
N

+O(N−1) (2.45)

is the collective spin space with the largest degeneracy, up to error O(N−1). ■

Proof of Equation (2.10). We begin by considering the ratio:

dj∗

dj∗+1

=
N !(2j∗ + 1)

(N/2− j∗)!(N/2 + j∗ + 1)!
· (N/2− j∗ − 1)!(N/2 + j∗ + 2)!

N !(2j∗ + 3)
(2.46)

=
2j∗ + 1

2j∗ + 3
· N/2 + j∗ + 2

N/2− j∗
(2.47)

= (1− 2

2j∗ + 3
) ·

1 + 2j∗

N
+ 4

N

1− 2j∗

N

(2.48)

= (1− 2

2j∗ + 3
)(1 +

2j∗

N
+

4

N
)(1 +

2j∗

N
+ (

2j∗

N
)2 +O(((j∗)/N)3)) (2.49)
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where the last factor is a geometric series expansion with a ratio of 2j∗

N
. Grouping by

powers, using j∗ = O(
√
N), we have:

1 + [− 2

2j∗ + 3
+

2j∗

N
+

2j∗

N
] + [

4

N
− 2

4j∗

(2j∗ + 3)N
+ 2(

2j∗

N
)2] +O(N−3/2) (2.50)

Now we utilize j∗ =
√
N
2

− 1
2
+ 1

6
√
N

to evaluate the above:

= 1 + 0 + [− 2

N
+

4

N
− 4

√
N√

NN
+ 2(

1√
N
)2] +O(N−3/2) (2.51)

So the ratio of the degeneracies is 1 +O(N−3/2). ■

Proof of Strong Support for 0 ≤ j ≤ O(
√
N). Recall the computation of the relative pop-

ulation between the maximal angular momentum subspace and its neighbor, and consider
the case when the leading term will contribute to the ratio of neighboring values of j. We
found that when 2j

N
≪ 1,

dj
dj+1

= 1 + [
4j

N
− 2

2j + 3
] +O(N−1), (2.52)

which cancelled when j = j∗ since j∗ =
√
N
2

+O(1).

Suppose we still have 2j
N

≪ 1, but now we consider a subspace nearby the maximal
angular momentum space, such that j = j∗ +Ω(

√
N). The ratio for this value of j is then

1 + Ω(N−1/2). This ratio will remain valid for increasing values of j, so long as 2j
N

≪ 1.

To find the ratio of the degeneracies of the next nearest neighbors, we apply this
procedure twice, finding

dj
dj+2

= (1 + Ω(1/
√
N))2. (2.53)

To continue this argument to further subspace degeneracies, listed within the set

{dj, dj+1, . . . , dj+O(
√
N)}, (2.54)

we can write a geometric series taken at the infinity limit since the other term will contribute
a much smaller portion to the sum. Thus, this series limits to

1

1− 1
1+Ω(1/

√
N)

= O(
√
N). (2.55)
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We have shown that while the total number of allowed values for j is O(N), the fractional
contribution contained in this region is only O(N−1/2). Thus we have that of the 2N

possible angular momentum states, most of them are contained within the lowest, smallest
values of j, O(

√
N) angular momentum subspaces. ■

Proof of Equation (2.24). We will make use of the following summation formulae,

n∑
i=1

i =
n(n+ 1)

2

n∑
i=1

i2 =
n(n+ 1)(2n+ 1)

6

n∑
i=1

i3 =
n2(n+ 1)2

4
.

Recall that the trace of the square of the coupling matrix can be written exactly as

trL(j, k)2 = 2
n∑

α=1

lα(j, k)
2 = 2

n∑
α=1

(
2αj − α(α− 1)

)(
k′ − α + 1

)
. (2.56)

Now, grouping the summand by orders of α we have

l2α(j, k) = α3 − α2(2j + 1 + k′ + 1) + α(2j + 1)(k′ + 1). (2.57)

And so

trL(j, k)2 =
1

2
|Bj,k|4 −

2

3
|Bj,k|3 (2j + k′ + 7/2) + |Bj,k|2 (4j + 2k′ + 2jk′ + 7/2)

− 2

3
|Bj,k| (3jk′ + 4j + 2k + 5/2). (2.58)

The variance is then, by definition,

Var(Λ(j, k)) =
1

2
|Bj,k|3 −

1

3
|Bj,k|2 (2k′ + 4j + 7)

+ |Bj,k| (2jk′ + 2k′ + 4j + 7/2)− 1

3
(6jk′ + 8j + 4k′ + 5). (2.59)

■
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Proof of Equation (2.26). We begin by transforming the entry values into a continuous
function of α so that we may differentiate it. We will use Perron-Frobenius since we have
a non-negative matrix and so can bound the maximal eigenvalue by the maximal row sum.
To this end we focus on maximizing a single lα(j, k) entry and double it since the true
maximum will occur within one entry of the optimal continuous value choice for α and
there are two entries in that row.

Differentiating this we have:
d

dα

[√
α
√

2j + 1− α
√
k′ − α + 1

]
=

3α2 − 4α + 2j(−2α + k′ + 1)− 2αk′ + k′ + 1

2
√
α(α− 2j − 1)(α− k′ − 1)

(2.60)
and so this is optimized when:

α =
1

3

(
2j + k′ + 2±

√
4j2 − 2jk′ + 2j + (k′)2 + k′ + 1

)
(2.61)

=
1

3

(
2j + k′ + 2±

√
(2j +

1

2
)2 + (k′ +

1

2
)2 − 2jk′ +

1

2

)
(2.62)

In the above we must exclude the positive sign choice since this results in α ≥ |Bj,k|, which
is beyond the domain for α. With the negative sign choice we note that α is linear in j and
k′ to first order, so we remove the 1 shifts in our objective function. With this, we have:√

j2 − (α− j)2
√
k′ − α =

√
2jα− α2

√
k′ − α (2.63)

=
√
α
√
2j − α

√
k′ − α (2.64)

Solving for the roots again using this simplified expression provides:

α =
1

3
(2j + k′ −

√
4j2 − 2jk′ + (k′)2) +O(

√
j +

√
k) (2.65)

=
1

3
(2j + k′ −

√
(2j + k′)2 − 6jk′) (2.66)

=
1

3
(2j + k′ − (2j + k′)

√
1− 6jk′

(2j + k′)2
) (2.67)

=
1

3
(2j + k′)(1−

√
1− 6jk′

(2j + k′)2
) (2.68)

Observe that maxj,k′
6jk′

(2j+k′)2
= 3

4
where k′ = 2j, and minj,k′

6jk′

(2j+k′)2
= 0 when one is

constant and the other approaches infinity. This means that:

0 < α ≤ 1

6
(2j + k′) (2.69)
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Putting this into our expression for the largest eigenvalue, being sure to include the factor
of two due to there being a second entry, provides:

maxΛ(j, k) < 2

√
1

6
(2j + k′)

√
2j
√
k′ (2.70)

=
2√
3

√
(2j + k′)jk′ +O(j3/4 + (k′)3/4) (2.71)

This expression is mostly relevant when 2j ≈ k′. We now move to the cases of 2j ≪ k′

and k′ ≪ 2j. Returning to our prior expression this is:√√√√1

3
(2j + k′)(1−

√
1− 6jk′

(2j + k′)2
)

√√√√2j − 1

3
(2j + k′)(1−

√
1− 6jk′

(2j + k′)2
)(2.72)

×

√√√√k′ − 1

3
(2j + k′)(1−

√
1− 6jk′

(2j + k′)2
) (2.73)

=

√√√√ 2

27
(8j3(

√
1− 6jk

(2j + k)2
− 1) + 6j2k + k3(

√
1− 6jk

(2j + k)2
− 1) + 3jk2) (2.74)

Taking a series expansion of this and doubling for there being two entries we have:

maxΛ(j, k) ≤

2
√
j2k′ − j3 + j4

4k′
2j ≪ k′

2
√

j(k′)2

2
− 1

8
(k′)3 + 1

128
(k′)4

j
k′ ≪ 2j

(2.75)

≈

{
2[j

√
k′ − 1

2
j2√
k
+ 1

8
j4

k5/2
+O(j5/(k′)7/2)] 2j ≪ k′

2[ 1√
2
k′
√
j − 1

8
√
2

(k′)2√
j
+ 1

512
(k′)4

j5/2
+O((k′)5/j7/2)] k′ ≪ 2j

(2.76)

■

Proof of Equation (2.34). This relation can be seen as the weighted average of averages,
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and can thus be derived as follows:〈
Λ(k)t

〉
=

1

Dk

∑
j

dj |Bj,k|
〈
Λ(j, k)t

〉
=

1

Dk

∑
j

dj |Bj,k|
tr(L(j, k)t

|Bj,k|

=
1

Dk

∑
j

dj tr(L(j, k)t).

■

Lemma 1. The degeneracies in our system satisfy:

dj
2N

= O(
1

N
) (2.77)

for all allowed values of j.

Proof. Since dj < dj∗ for each j, we particularize to j = j∗. Then, taking only the leading
term of j∗ =

√
N/2, we have

dj∗ =

√
N/2 + 1

N/2 +
√
N/2 + 1

(
N

N/2 +
√
N/2 + 1

)
. (2.78)

Focusing on the first factor,
2

N+1√
N+1

+ 1
= O(1/

√
N). (2.79)

Since k = N/2 +
√
N/2 + 1, we have that |N/2− k| = o(n2/3), we can utilize the

following asymptotic equivalence relation [66]:(
N

k

)
∼ 2N√

Nπ/2
e−(N−2k)2/(2N). (2.80)

Then, using the fact that N − 2k =
√
N − 2, we find that

e−(N−2k)2/(2N) = e−(
√
N−2)2/(2N)

= e−1/2+2/
√
N−2/N

=
1√
e

(
1 +O(1/

√
N)
)
. (2.81)
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Putting together the leading term with the asymptotic equivalence relation, we find(
N

N/2 +
√
N/2 + 1

)
∼ 2N√

Nπe/2

(
1 +O(1/

√
N)
)

= O(2N/
√
N). (2.82)

This finally implies
dj∗ = O(2N/N), (2.83)

and thus it hold that for all allowed j,

dj2
−N = O(1/N). (2.84)

■

Proof of Equation (2.36). In order to derive our result, we particularize to k > N , since
this fixes Dk = 2N and k > N/2 + j is true for each value of j. Then,

Var(Λ(k)) =
1

2N

∑
j

dj tr(L(j, k)2). (2.85)

Recall the trace of the square of a coupling matrix is given by,

tr(L(j, k)2) =
1

2
|Bj,k|4 −

1

3
|Bj,k|3 (2k′ + 4j + 7) + |Bj,k|2 (2jk′ + 2k′ + 4j + 7/2)

− 1

3
|Bj,k| (6jk′ + 8j + 4k′ + 5) (2.86)

Using the fact now that |Bj,k| = 2j + 1 and k′ = k −N/2 + j, we find that

tr(L(j, k)2) = k
(8
3
j3 + 4j2 +

4

3
j
)
−N

(4
3
j3 + 2j2 +

2

3
j
)
+
(4
3
j3 + 2j2 +

2

3
j
)
.

We focus on only the terms of order k, thus the dominant part of the expression we wish
to analyze is given by

4

3
k(2j3 + 3j2 + j). (2.87)

It remains to determine the order k contribution to the entire variance, upon averaging
over the degeneracies,

Var(Λ(k)) =
4

3
k
∑
j

dj
2N

(2j3 + 3j2 + j) + · · · , (2.88)
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where the terms of order k0 will be dropped moving forward.

In order to make the sum over j tractable, we make use of Lemma 1,

dj
2N

= O
( 1
N

)
. (2.89)

Given that the strong support of the weighting function is from 0 to O(
√
N), we have,∑

j

4kdj
2N

2j3 + 3j2 − 2j

3
=

4k

3

∑
j

O
( 1
N

)
(2j3 + 3j2 − 2j)

≈ O
( k
N

) O(
√
N)∑

j=0

(2j3 + 3j2 − 2j)

= O
( k
N

)
O(N2)

= O(Nk). (2.90)

■
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Chapter 3

The Tavis-Cummings Model and Some
Dynamics in the Thermal Case

Hybrid quantum systems consisting of a collection of spin-1/2 particles uniformly inter-
acting with an electromagnetic field are important for the development of quantum infor-
mation processors and other quantum devices. Such systems are often modelled by the
Tavis–Cummings model and so having an accurate understanding of the thermal behaviors
of this system is needed to understand the behavior of these systems in more realistic envi-
ronments. In this work we show that the system has a temperature whereby degeneracies in
the system become dominant, when in such a temperature regime perturbative expansions
for thermal properties in terms of the Lamb shifts are derived as well as numeric methods
with optimal scaling, in terms of the size of the spin system. These provide methods for
approximating, and bounding, properties of these systems as well as characterizing the
dominant population regions, as well as related systems such as coupled-cavity arrays and
cavity mediated coupling of collective spin ensembles.

3.1 Introduction

In this chapter, we focus on the collective interaction of a mesoscopic spin ensemble, with
N spins, with a single mode quantum electromagnetic field. These systems, in the case of
N = 1, have been used to verify their quantum nature [33] as well as being a useful tool
for designing quantum devices, and so a more full understanding of the thermal properties
of these systems could aid further progress in the development of quantum information
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processors [9, 11, 12, 67], hybrid quantum devices [13, 14, 15], and radiative cooling of spin
ensembles [23, 24, 25, 26, 27], among other possible uses.

In our system we take each particle to be a non-interacting spin-1/2 particle, cou-
pled uniformly to the electromagnetic field. After a rotating wave approximation, this is
modeled by the Tavis-Cummings (TC) Hamiltonian,

Ĥ = ωcâ
†â+ ωsĴz + g0(âĴ+ + â†Ĵ−), (3.1)

where g0 is the single particle-mode coupling strength–we work in natural units throughout
this work (ℏ = kb = 1) [38].

This work builds off the techniques and results of our prior paper, which formed the first
two chapters of this thesis [1]. As shown in our prior work, we have the ability to efficiently
compute, as well as provide meaningful statistics on, the energy level structure of the Tavis-
Cummings Hamiltonian under a certain set of assumptions. While those results provided
some information they failed to provide practical methodology for taking these results and
testing them, this work proceeds to carry those results to experimental expectations as well
as providing tools of use for other systems with similar structures. Most of the experimental
assumptions required here can be realized in a laboratory setting, as we just require that
the ensemble be on resonance with the cavity, ωc = ωs ≡ ω0, and that g0

√
N ≪ ω0

(albeit that this second expression is not quite correct as we argued) and no spin-spin
interactions, however, the prior results also did not include thermal effects. Under these
assumptions, we have that angular momentum, j, and the number of total excitations, k,
that is excitations stored in both the spin ensemble and the cavity, are conserved. This
induces a two parameter family of non-interacting subspaces.

This work is organized as follows. It begins with the definitions needed for our analysis.
Following this we remark on the temperature regime of particular interest and show that
so long as the system is sufficiently above absolute zero there will be nearly no popula-
tion in the Dicke (N/2) subspace, nor in the lowest-excitation levels within the angular
momentum subspaces, finding a smooth transition where the degeneracies of this system
increasingly dominate. This tends to fall in the 10 mK to 10 K range, although varies with
the parameters of the system. If the temperature of the system is low enough that the
degeneracy does not dominate, more brute-force methods may be employed. If, however,
the temperature is in a more degeneracy dominated regime, the introduced perturbative
expansion may be used for computing the partition function and the Boltzmann averaging,
which allows us to generate expressions for the shifts in the systems Helmholtz and average
energies due to the coupling between the cavity and spin ensemble. Finally, through this
perturbative expansion, we are able to generate optimal algorithms for computing many
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expectation values, as well as histograms for these properties–bringing the runtime down
from O(N3) to Θ(

√
N), both with a O(T ) dependence on temperature, for temperature T

1.

While we focus on the partition function, average energy of the system, and the Lamb-
shift induced fluctuations of the number operator under the self-evolution of the system,
the techniques employed and the results shown can be used for other thermodynamic
properties. Having access to both quick numerical methods for computing properties of
these systems and perturbative expansions for these properties will allow additional insights
into this model, as well as systems with similar structures such as coupled-cavity arrays
[68, 69, 70], collective spin ensembles with cavity mediated interactions [71, 72], and multi-
connected Jaynes-Cummings models and the extension of this work to the Tavis-Cummings
version [73, 74]. The utility of this work for a myriad of physically motivated models with
applications to a variety of quantum technologies suggests that this work will help with
understanding and designing experiments for collective mesoscopic systems.

3.2 Definitions

We include our notations and definitions in this section. The Pauli operators are written
in the Zeeman basis. These spin operators can be combined as a sum of tensor products to
produce the collective versions of these spin operators. Let N be the number of spin–1/2
particles. Then the collective spin operators are given by

Ĵz =
1

2

N∑
i=1

σ̂(i)
z , Ĵ± =

N∑
i=1

σ̂
(i)
± . (3.2)

where the superscript on the Pauli operator indicates action only on the i-th particle.

The action of these operators on a state of total angular momentum j with z component
m are given by:

Ĵz |j,m⟩ = m |j,m⟩ (3.3)

Ĵ± |j,m⟩ =
√
j(j + 1)−m(m± 1) |j,m± 1⟩ . (3.4)

We note that our Hamiltonian has two good quantum numbers representing conserved
quantities, so long as the system is cool enough that the rotating-wave approximation

1In this chapter Θ time means that the expression is upper-bounded and lower-bounded by the argu-
ment’s time complexity.
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continues to hold. The first of these is the total angular momentum, j, which determines
the eigenvalues of the total angular momentum operator, Ĵ2 = Ĵ2

x+Ĵ
2
y+Ĵ

2
z , with eigenvalues

j(j + 1). The second of these conserved quantities is the number of total excitations, k,
given as the eigenvalues of the excitation operator,

K̂ = â†â+ Ĵz +
N

2
11. (3.5)

The scaled identity term in the excitation operator ensures excitations are non–negative,
as the action of Ĵz on the ground state has eigenvalue −N/2.

We recall next the pertinent aspects and definitions from our prior work. Our Hamil-
tonian may be written in direct sum form as

Ĥ ∼=
⊕
j,k

(
ω0k11j,k + g0L(j, k)

)⊗dj , (3.6)

where L(j, k) are hollow tridiagonal square matrices with known entries and dimension
|Bj,k| = min{2j + 1, k − k0(j) + 1}, with k0(j) = N/2 − j. The set of eigenvalues for
g0L(j, k) is written as Λ(j, k), which are referred to as the Lamb shifts for those values
of j and k. Some properties of note for these L(j, k) includes that all odd moments of
the eigenvalues are zero, while the second moment has an analytic expression, and has
expressions for bounds on the largest eigenvalue [1].

The index j runs from N/2 to 0 (1/2) when N is even (odd). Each angular momentum
space is of dimension 2j+1. The degeneracy of the subspace with total angular momentum
j on N spins is given as

dj =
N !(2j + 1)

(N/2− j)!(N/2 + j + 1)!
. (3.7)

That is, there are dj disjoint angular momentum subspaces with total angular momentum
j present in a direct sum decomposition of

(
C2
)⊗N [31].

The eigenvalues for one of these coupling matrices may be computed inO(|Bj,k| log |Bj,k|).
Lastly, the degeneracies have a region of strong support of O(

√
N) about j∗, the most

degenerate angular momentum subspace, where j∗ ≈
√
N/2. This means that the vast

majority of the degeneracies lay within this region. These observations aide in our analysis.

3.3 T domain and g0 = 0 case

In this section we begin by providing the solutions to the uncoupled versions of the partition
function and average energy, so that they may be used as references with which we compare
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the coupled TC model. Notably, the uncoupled case has an analytic solution and so there
are no regimes to worry about, whereas the coupled case requires differing approaches
depending on the regime. The movement between these regimes is shown, where one is
degeneracy dominated and the other is Boltzmann limited, which provides the foundation
for our further results as we focus on the rich degeneracy dominated regime.

3.3.1 g0 = 0, or uncoupled, case

Throughout this chapter, we will compare our results with those which would be expected
from an uncoupled cavity-spin ensemble system. The uncoupling can be due to g0 = 0, or
having a sufficiently large difference between the coefficients ωs and ωc. We take the g0 = 0
case so the expressions more closely match those we will obtain later in this work. In this
case the reference Hamiltonian is given by H0 = ω0(a

†a+ Jz +
N
2
11) which has a partition

function, as shown in Appendix 3.7.1, given by:

Z0 = (1− e−βcω0)−1(1 + e−βsω0)N , (3.8)

where βc = T−1
c is the inverse temperature of the cavity, while βs = T−1

s is the inverse
temperature of the spin system, which has an average energy of

⟨E⟩0 = ω0(e
βcω0 − 1)−1 +Nω0

e−βsω0

1 + e−βsω0
. (3.9)

This analytical solution holds regardless of the temperature of each of the uncoupled
subsystems and could even permit field inhomogeneities for the spins. These equations
themselves are of minimal interest on their own, but can help illuminate the differences in
the system upon introducing the coupling Hamiltonian and considering the total Tavis–
Cummings model. As no analytical solution like Equation (3.8) is known for the Tavis–
Cummings model, in the next subsection we consider the various temperature regimes that
can be of interest in the Tavis–Cummings model and specify which regime we focus on in
the remainder of this work.

3.3.2 Low T, minimal Dicke

Of all the angular momentum subspaces, quite possibly the easiest one to say much about
is the Dicke space, which is the completely symmetric subspace. This subspace has partic-
ularly nice eigenstates and has been studied extensively [28, 29]. However, this subspace
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is only singularly degenerate, dN/2 = 1, while for larger N all other angular momentum
subspaces have significantly greater degeneracies. Even though the Dicke space contains
the unique ground state with k = 0 excitations there is a temperature at which the expo-
nential suppression due to the Boltzmann factor is no longer significant compared to the
vast multiplicity of other angular momentum subspaces and the Dicke space is left with
minimal population. This regime shift temperature is, as we shall argue, a small temper-
ature, meaning that if one is not below this value, it is likely not correct to describe the
system as being within the Dicke space. This tends to occur for temperatures between
10 mK and 300 mK for small systems of 103 spins, above which the Dicke population is
minimal.

As a short, simplified argument for the expression for this regime change temperature
we consider the following reduced picture. Let k ≤ 1 and let the system have N spins. In
this case only the first two levels in the Dicke space are populated and the j = N

2
−1 angular

momentum space’s lowest energy state is populated. Figure 3.1 shows this subspace of the
full spectrum. The partition function of the Dicke subspace is given by 1+ e−β(ω0−g0

√
N) +

e−β(ω0+g0
√
N), while that due to j = N

2
− 1 is (N − 1)e−βω0 . Then

p(Dicke) =
1 + e−β(ω0−g0

√
N) + e−β(ω0+g0

√
N)

1 + e−β(ω0−g0
√
N) + e−β(ω0+g0

√
N) + (N − 1)e−βω0

. (3.10)

This is only close to 1 when 1 + e−βω02 cosh(βg0
√
N) > (N − 1)e−βω0 . Since g0

√
N ≪

ω0 due to the rotating-wave approximation, we may approximate this requirement with
eβω0 > (N−1), which provides T < ω0/ log(N−1), with log being the natural log function
throughout this work. Since N is typically large we will take this as

T < ω0/ logN. (3.11)

If further subspaces are included in the denominator this value can only decrease, however,
as we show in Appendix 3.7.2, this asymptotic expression is still correct.

The rest of this paper focuses on the regime where T > ω0/ logN , but the system is still
within the rotating-wave approximation. See Figure 3.2 for a pictorial representation of
this regime. In this higher temperature regime rich structure and dynamics are exhibited,
which will be explored in detail throughout this work. While the consideration of spin
ensembles in the "high temperature approximation" is reminiscent of this result, those
results sometimes use simplifications not appropriate for our system. In Slichter, it is
assumed that the interactions between the spins is effectively local, while here we inherently
require the system to be collective in its behavior [75].
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Figure 3.1: This shows the portion of the energy spectrum considered for the regime
change argument. The left column is the Dicke subspace, while the second column is the
next angular momentum subspace over, while the value above indicates the multiplicity of
the degeneracies. The vertical axis indicates the energy of the states.

3.3.3 Higher T, While Still in the Rotating-Wave Approximation

Next, we consider T > ω0/ logN and what happens as T is slowly increased. The analytic
continuation of the function for the degeneracy of the angular momentum subspaces is a
unimodal function with a peak at j∗ =

√
N/2 − 1/2 and with the vast majority of the

probability mass between 0 and O(
√
N). To gain insights into the behavior of the system

as the temperature increases, let us consider the population ratio of adjacent angular
momentum subspaces. In particular, for some temperature T we consider the summation
over k, resulting in a population ratio of:

p(j)

p(j + 1)
=

dj(e
−βω0 + 2e−2βω0 + 3e−3βω0 + · · · )

dj+1(1 + 2e−βω0 + 3e−2βω0 + · · · )
(3.12)

≈ dje
−βω0

dj+1

, (3.13)

where for this consideration we use that the Lamb shift splittings are small, g0maxΛ(j, k) ≪
ω0 so that the rotating-wave approximation holds, and so neglect them here. While one of
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Nc

T = 10 mK 6.96 · 1020
T = 100 mK 121
T = 300 mK 4
T = 1 K 1

Table 3.1: Nc is the value of N such that N < eℏω0/(kbT ), so that mostly the Dicke subspace
is populated. The above table uses ω0 = 20π GHz. It means that for T at and above 1 K
the population will not be predominantly in the Dicke space, regardless of the number of
spins in the system. When T = 100 mK, once the ensemble involves around 120 spins the
system is minimally in the Dicke subspace, meaning that for mesoscopic systems population
in the Dicke subspace will be minimal.

the above geometric series terminates a term earlier than the other, the size of that term
is near zero as xe−ax tends to zero rapidly. More generally the ratio of the populations in
angular momentum space j and the Dicke space is given, up to the negligible geometric
series terms, by

p(j)

p(N/2)
= dje

−βω0(N/2−j), (3.14)

which means that this subspace has more population when dje
−βω0(N/2−j) > 1, which is

when T > ω0(N/2 − j)/ log dj. This expression is a monotonic function in j which very
slowly increases to a maximal value of ω0/(2 log 2), as shown in Appendix 3.7.4. So this
regime change temperature in the prior subsection is only a value whereby the population
in the Dicke subspace is small, but it is not sufficient to say that further angular momentum
subspaces are predominantly populated. Another way to see this is to consider the ratio
of the populations in adjacent angular momentum values once again, which provides:

dje
−βω0

dj+1

> 1 ⇒ T > ω0/ log(dj+1/dj). (3.15)

The denominator changes sign for j < j∗, meaning that there is no temperature where
these angular momentum values have a greater probability. However, for j > j∗ there
will be more population in the smaller angular momentum space once the temperature is
sufficiently large, then the width of j∗ to O(

√
N) ought to be considered to capture the

dominant population. The smallness in the ratio is not sharp though, meaning that a
sliding collection of angular momentum values must be considered. This is illustrated in
Figure 3.3. Formally the rectangle of what must be considered slides to the left as the
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Figure 3.2: This figure shows schematically what the density of states looks like for an
ensemble of spins coupled with a cavity. The rotating-wave approximation holds so long
as the envelope of states for two different total number of excitations do not overlap.

temperature increases, however, since the region left of j∗ is small, the entire thing may be
considered without an increase in computational time. Since the ratio is not sufficiently
small for most temperatures, we do not know that the subset of angular momentum values
which must be considered is asymptotically smaller than N . While on the one hand taking
these sums over k would reduce the temperature dependence in the runtime to simulate
these systems, the dependency on N is not particularly good, especially once the Lamb
shifts are considered. In the next section we consider the impact of including the Lamb
shifts on the partition function as well as other expectations.

3.4 Perturbative Expansions and Shifts in Expectations

In the prior section we neglected the effects of the Lamb shifts as they were considered
small in comparison to the excitation energy splitting of ω0. We now include the effects
of the Lamb shifts generating a perturbative expansion that can be carried to the desired
precision. This provides a more tractable way to describe the system and allows for easier
qualitative understanding of it, as well as leading to a faster simulation runtime.
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Figure 3.3: For the temperature regime considered, the boxes labelled B and C (right of
the j∗ line) are the only subspaces with majority population so long as T < ω0/(2 log 2).
Above this temperature the boxes labelled A and B’s angular momentum subspaces must
be included. The width is 2

√
N here for both A + B and B + C. Plotted for N = 1000,

zoomed in to the j ≤ 100 subset.

As the system involves many spins, we take the system as an ensemble, using a density
matrix and obeying the canonical Boltzmann distribution for populations. In this statistical
mechanics setting, knowing the partition function is of central importance. For the Tavis–
Cummings model the partition function is given by:

Ztotal(β) =
∞∑
k=0

N/2∑
j=j0(k)

(
dje

−βkω0

∑
λ∈Λ(j,k)

e−βλg0

)
, (3.16)

where we have defined

j0(k) = max {N/2− k, N/2− ⌊N/2⌋} . (3.17)
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Upon Taylor expanding and using our results on the parity of eigenvalues we may write
Ztotal(β) = Z0(β)+Zpert(β). In this expression Z0(β) is the partition function of the system
with g0 = 0, which is exactly solved in Equation (3.8). Zpert(β) represents the perturbative
expansion portion of the total partition function. Throughout the work we will truncate
Zpert(β) to only involve the leading term, however, further terms may be included and their
structure is discussed in Appendix 3.7.5. In this expansion we have:

Z0(β) =
∑
k

e−βkω
∑
j

dj|Bj,k|, (3.18)

which is the same as equation (3.8), and

Zpert(β) =
(βg0)

2

2

∑
k

e−βkω
∑
j

dj|Bj,k|V ar(Λ(j, k)), (3.19)

where we have dropped the higher order terms2. While Z0 corresponds to the case of g0 = 0
it can also be interpreted as the spin ensemble undergoing excitation swaps with the cavity
zero times, while Zpert is induced from a double-quantum transition (transferring to the
cavity and back, or vice versa) with the next term being a quadruple-quantum transition,
and so forth. In effect these perturbative expansion terms provide the correlations induced
in the system from the coupling. The strength of these higher order transitions can be
neglected compared to the leading perturbative term so long as 1

2
(βg0)

2Var(Λ(j, k)) < 1
for all j, k with appreciable population, where Var(Λ(j, k)) = 1

|Bj,k|
∑

λ∈Λ(j,k) λ
2 and has an

analytic expression [1]. This can be used as a guide for the size of the spin ensemble needed
in order to see the effects of the coupling with the cavity, or to know that this perturbative
expansion may be truncated as early as it is presented here.

This expansion for the partition function can be used to determine the shifts induced
in certain expectations. In principle any expression of the partition function may be com-
puted, but to illustrate the utility, let us consider the shift in the Helmholtz free energy
of the system. This is one of the few macroscopic thermodynamic properties that may be
computed directly from the quantum model, without specification of other variables. For
a closed system at thermal equilibrium we have:

−β∆⟨A⟩ := −β(⟨A⟩Ztotal − ⟨A⟩Z0)

= log(Z0 + Zpert)− logZ0

= (logZ0 + log(1 + Zpert/Z0))− logZ0

= Zpert/Z0 +O((Zpert/Z0)
2). (3.20)

2By definition, |Bj,k|Var(Λ(j, k)) = tr(L(j, k)2)
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Figure 3.4: Figure of Zpert/Z0 as a function of N with N in 100 to 1000, T = 0.3 K,
g0 = 200π Hz, ω0 = 20π GHz. Equation (3.20) states this is proportional to the first order
term in the shift of the Helmholtz free energy due to the coupling: −β∆⟨A⟩.

As this is a negative value this means that the introduction of the coupling has slightly
reduced the amount of free energy in the system, which agrees with intuition as for each
excitation a larger portion of the population will reside within the dressed states with the
most negative Lamb shift values. A plot of −β∆⟨A⟩, to first order, is shown in Figure
3.4, numerically computed as a function of N . Over one order of magnitude the ratio is
a linear function, so assuming a similar linear trend continues for larger N a system with
around 1016 spins results in a ratio of 1/100, leading to an experimentally noticeable shift.
For differing temperatures a similar trend occurs, with varying slopes.

Performing a similar analysis, see Appendix 3.7.6, one finds that the average energy
shift in the system is given by:

∆⟨E⟩ := ⟨E⟩Ztotal − ⟨E⟩Z0 (3.21)

≈ ((⟨k⟩Zpert − ⟨k⟩Z0)ω0 −
2

β
)
Zpert

Z0

. (3.22)

In the above ⟨k⟩Zpert is the expectation of k over the normalized distribution for Zpert(k),
and ⟨k⟩Z0 is the same but for Z0(k). This expression for the shift in average energy is
also always negative, again matching intuition that having lower-energy dressed states to
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populate means that the average energy of the system will be decreased.

While these analytical results are of some interest and use, they are somewhat limited
in practical utility. The primary problem is that they still require evaluation of summations
to obtain values. In the next section we show that this perturbative expansion may be
used to provide a drastic speedup in simulation runtimes of this system.

3.5 Rapid Simulation of Thermal Observables

In the study of mesoscopic systems it is rare to obtain analytical results due to the com-
plexity of such systems. Simulating mesoscopic systems often requires a trade-off between
precision and speed, at times using heuristics to bound the accuracy of such methods.
Using the tools shown here, we may simulate the Tavis–Cummings model with arbitrarily
small error and in optimal runtime dependence on the size of the ensemble. While this
work only provides the speedup for the Tavis–Cummings model, a similar methodology
might be useful for other systems exhibiting collective behaviors such as a pair of spin
ensembles interacting via mean fields.

Before diving into the new results, let us consider the naive approach for computing
thermal functions. Assuming one uses the decomposition of the Hamiltonian as a direct
sum of spaces labelled by good quantum numbers j and k, this task would require finding
the eigenvalues of the terms in the direct sum. These are, up to, (N+1)×(N+1) matrices,
which takes time O(N2) to solve and there are O(N) of them for each value of k, lastly
these eigenvalues must be found for each k of importance, for which there are O(T ) of
them. Putting these together the total complexity is O(TN3). A slight improvement can
be obtained by using the faster eigenvalue solutions for tridiagonal matrices, but this only
reduces the problem to O(TN2 logN) generally [56].

To illustrate the result we will consider the computation of the partition function’s two
components Z0 and Zpert for some chosen temperature. Z0 takes O(1) time since it has an
analytic expression, so the focus will be on Zpert. To compute Zpert we must perform the
sums in:

∑
k

e−βkω0

∑
j

dj

(βg0)2
2

∑
λ∈Λ(j,k)

λ2 +
(βg0)

4

4!

∑
λ∈Λ(j,k)

λ4 + . . .

 . (3.23)

While one could solve for the eigenvalues λ in the above by finding the roots of the
characteristic polynomial for each L(j, k), this can be circumvented by computing traces.
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In general the cost of computing the trace is O(N) as the coupling matrices may be as
large as (N/2)× (N/2). If, however, we truncate after the first term, the time to compute∑
λ2 is only O(1) since we have an analytic expression for this in terms of j, k, and N .

This is a valid approximation so long as (βg0)2

2

∑
λ2 < 1. This removes two full powers of

N dependence.

Following this, due to the temperature regime that we are in only a small subset of
j values contribute much to the summation. From the region of strong support for the
degeneracies, we see that Θ(

√
N) angular momentum values must be considered assuming

a selected fractional error δ is permitted, as shown in Appendix 3.7.3. Lastly, the outermost
summation is bounded by a geometric series with rate βω0, so using O(T ) terms suffices
to capture the majority of the probability density. While O(T ) suffices, this bound is of
somewhat limited use since T will eventually become large enough that the rotating-wave
approximation breaks down for a notable number of populated states. In total, however,
this gives a runtime of O(T

√
N). Note that this region of strong support is known to

be tightly Θ(
√
N) meaning that this runtime is optimal scaling in the parameter of N .

An important caveat to this discussion is that this result only applies for the degeneracy
dominated regime, such that O(

√
N) excitations exist in the system, below that it is best

to apply brute-force methods due to the comparative smallness of the problem.

If one wished to include any further perturbative terms, the trace must be computed,
which at worst will take Θ(N) time since there are values of j and k with that dimension.
The subset of j values that must be considered still remains Θ(

√
N). This generates a

dependency of Θ(N3/2) for including additional terms. If one wished to compute the Lamb
shifts themselves, or achieve machine precision, this raises the cost to O(N3/2 logN), which
is a modest increase for the additional information gained.

While the above showed the rapidity of computing a scalar, the partition function,
our reductions also permit the rapid simulation of some time evolving operators as well.
For an observable O the structure of the summation, with the good quantum numbers
j and k, is preserved so long as the operator only depends on j and k, as well as some
other parameter that can be summed out. Any function of the cavity and collective spin
operators, which includes most observables of interest, satisfy this requirement. While
these may be simulated using the same summation, the same rapidity cannot be promised
without one more requirement, which is that the operator O is a subexponential function
in j and k–some examples of subexponentially growing functions include Jx, eitJz , and
e(a

†a†−aa)it. When O is subexponential the region of strong support in the degeneracies
and the geometric series bound on excitations can be applied, otherwise these break down
and the full summation must be considered.
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Figure 3.5: Schematic figure showing j values that need summing over for any given k
choice. The width of each shape is Θ(

√
N), aside from the tapered tip of the triangle for

which there are insufficiently many angular momentum values available, so all of them are
used there.

As a concrete example, we will consider the signal shift for the thermal TC state due
to a periodic drive induced by Jx for the observable Jy. Explicitly:

⟨Jyeit(H0+Hint+Ωcos(ω0t)Jx)ρthermale
−it(H0+Hint+Ωcos(ω0t)Jx)⟩. (3.24)

We find after reductions, as shown in the Appendix 3.7.10, that this reduces to:

sin(Ωt)tr(Jzρthermal), (3.25)

so the induced shift is, to first order, sin(Ωt)tr(Jzρpert). The summations for this are shown
in Appendix 3.7.10, whereas Figure 3.6 shows how the shift grows as a function of N and
Figure 3.7 shows the periodic behavior.

Naturally, if one wanted to generate a histogram of the populations as a function of k
or j the respective summation can be suspended and instead used to generate the points.
This is used to show the populations of the terms in the partition function for various
temperatures in Figure 3.10. In this figure we see that the population’s center drastically
shifts as we move into the degeneracy dominated regime (T = 0.3K), additionally the
width of the distribution increases, as expected.
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Figure 3.6: The shift in the value of tr(ω0Jzρth) due to the Lamb shifts. The negative sign
indicates the availability of lower spin values, weighing the mean down. This is plotted for
T = 0.3 K, g0 = 200π Hz, ω0 = 20π GHz, and for N as 100 to 1000. Statistical analysis:
r2 = 0.9488, with slope = 20π ·109 ·−4.502 ·10−15, intercept = 20π ·109 ·9.08 ·10−13. There
seems to be a pretty strong deviation from a straight line, however, so these might not be
a good case to extrapolate behavior for high N but provides some experimental signal of
sorts.

As one final pair of examples, we can find expressions for the expectations and variances
of the uncoupled system and the coupled system in the number operator. Taking the
difference of the values for a†a and V ar(a†a) and dividing by the uncoupled system value,
we obtain the following pair of plots, both of which are linear. In effect, these plot the
change in the number of photons in the cavity due strictly to the Lamb shifts, and likewise
for the variance in the number of photons in the cavity.

A summary of the results are presented in the table below:
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Figure 3.7: The signal of ω0Jy after time t in the rotating-frame of Jz for the driven
Hamiltonian H + ΩJx with Ω = 2π GHz. This is plotted for T = 0.3 K, g0 = 200π Hz,
ω0 = 20π GHz, and N = 1000. As stated in Equation (3.119), this is a simple sine times
the shift from the prior figure.

3.6 Conclusion

Understanding further details about the interactions between ensembles of spins and cav-
ities enables better control of such systems as well as possibly providing additional ob-
servables. These hybrid quantum devices could be used as processors, among other uses.
In this work we focused on the Tavis–Cummings model and the thermal properties of
this model. In the case of this model we found that the system goes through a smooth
transition from having predominantly angular momentum ground states populated to hav-
ing the population spread out over a collection of Θ(

√
N) spins, the so-called degeneracy

dominated regime. This informs a perturbative expansion for the partition function and
general thermal averages in this model. From this expansion, we are able to obtain optimal
simulation runtimes at least for many choices of observables.

The body of this work has focused on the case of perfect on-resonance between the
cavity and spins, as well as a perfectly homogeneous field. In order to improve the utility
of these results the effects of such perfections removal should be analyzed and it should be
determined whether current technology inhomogeneities are sufficiently small for the effects
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Figure 3.8: The fractional change in the mean number of photons in the cavity as a function
of N . This is plotted for T = 0.3 K, g0 = 200π Hz, ω0 = 20π GHz, and N = 100 to 1000.
This is a linear trend (r2 = 1) with slope 3.54 · 10−17 and intercept −6.49 · 10−16. Once
N ≈ 1015 this fraction would be appreciable.

of these ensemble Lamb shifts to be observed. Considerations of these inhomogeneities are
discussed in Appendix 3.7.8, and provide a benchmark with which experimental setups
may be compared, as well as when the strength of these perturbations no longer allow our
reductions without significant loss of accuracy.

Of note, the complexity of this quantum system has been determined, even in the
presence of slight perturbations. This means that within the complexity of quantum sys-
tems community and experimental realizations of early-term quantum devices, the Tavis–
Cummings model, as considered here, is not sufficiently complex of a system. Either larger
perturbations or dipolar couplings should be considered in order to generate a truly "hard"
problem for a classical computer to solve.

Lastly these results must be translated fully into an experiment and a prediction for the
experimental signal. Figures 3.6, 3.7, 3.11, and 3.12 provide clear expected experimental
results which can provide insights into the exact regimes experimentally considered as well
as how well this theory matches experiments. This will hopefully inform the parameters in
the experiment and permit the resolution of this collective effect and the associated Lamb
shifts, as well as better understanding of spin ensemble systems in this regime.
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Figure 3.9: The fractional change in the variance of the number of photons in the cavity as
a function of N . This is plotted for T = 0.3 K, g0 = 200π Hz, ω0 = 20π GHz, and N = 100
to 1000. This is a linear trend (r2 = 1) with slope 2.21 · 10−15 and intercept 9.4 · 10−15.
Once N ≈ 1013 this fraction would be appreciable.

3.7 Mathematical Arguments

3.7.1 Computation of g0 = 0 Thermalization Case

Here we show the steps involved in computing the non-interacting partition function and
average energy for a spin ensemble and cavity. This involves solving the problem for a
cavity and a collection of N collective spins.

For a cavity, the thermal state is given by:

ρcavity
th = (1− e−βω0)

∞∑
k=0

e−βω0k|k⟩⟨k| (3.26)

The partition function for the cavity can then be given by:

Zc = (1− e−βω0)−1 (3.27)
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Error O(g40) O(g2c0 ), c > 2 Machine Precision Naive

Zpert, Ztot, ∆⟨A⟩, ∆⟨E⟩ Θ(
√
N) Θ(N3/2) O(N3/2 logN) O(N3)

O(j, k) (no ROSS promise) O(N) O(N2) O(N2 logN) O(N3)

O(j, k) (ROSS promised) Θ(
√
N) Θ(N3/2) O(N3/2 logN) O(N3)

Table 3.2: The above table lists the different run times needed for a chosen level of precision,
as a function of g0. The quickest, nontrivial level of precision is markedly faster. For
comparison, the time needed in the naive approach is listed. In order to utilize the region
of strong support, the observable O must be a subexponential function in j and k. Note:
ROSS stands for region of strong support.

The average energy for a thermalized cavity is then given by:

⟨E⟩c = (1− e−βω0)
∞∑
k=0

kω0e
−βω0k (3.28)

= (1− e−βω0)
∞∑
k=0

− ∂

∂β
e−βω0k (3.29)

= −(1− e−βω0)
∂

∂β

∞∑
k=0

e−βω0k (3.30)

= ω0e
βω0(1− e−βω0)(1− eβω0)−2 (3.31)

= ω0(e
βω0 − 1)−1 (3.32)

For a collection of N uniformly interacting spins the Hamiltonian is given by ω0(Jz +
N
2
11).

Note that the eigenstates of this are equivalent to those of ⊗N
i=1σ

(i)
z . As such, we have:

ρ̂spins
th = ⊗N

i=1

e−βω0| ↑⟩⟨↑ |+ | ↓⟩⟨↓ |
1 + e−βω0

(3.33)

The partition function for this portion can be given by:

Zs = (1 + e−βω0)N (3.34)

The average energy is then given by:

⟨E⟩s = Nω0
e−βω0

1 + e−βω0
. (3.35)
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The total energy when g0 = 0 is then given by:

⟨E⟩0 = ⟨k⟩Z0ω0 (3.36)

= ω0(e
βω0 − 1)−1 +Nω0

e−βω0

1 + e−βω0
(3.37)

3.7.2 Cutoff Temperature Argument

In this appendix we show that for temperatures above ω0/ logN , the population within
the Dicke subspace is minimal, as well as the population in the low-excitation manifolds
being minimal. These will combine into our argument for the number of angular momentum
subspaces that must be considered for a given temperature in order to capture the majority
of the population in the system.

For our analysis we neglect the Lamb shifts, and at the end argue why they do not
change the results, except in high order. To begin with, consider the partial partition
function Z̃ composed of only considering the contributions to the partition function of the
two angular momentum subspaces with the largest value (j = N/2 and j = N/2−1). This
partial partition function is given by:

Z̃ = (1 + 2e−βω0 + 3e−2βω0 + · · · ) +N(e−βω0 + 2e−2βω0 + 3e−3βω0 + · · · ) (3.38)

=
”∞”∑
j=0

(j + 1)e−jβω0 +N
”∞”∑
j=0

je−jβω0 , (3.39)

where ”∞” signifies that these sums are not truly taken to infinity, but rather to N+1 and
N respectively, then the remaining terms are N + 1 times the exponential factor and N
times the exponential factor, however, since N is large we take it as ∞ for these weighted
geometric sums. Note that Z̃ < Z0 < Ztotal, and so we may bound the probability of being
in the N/2 subspace by:

p(Dicke) <
∑”∞”

j=0 (j + 1)e−jβω0

Z̃
. (3.40)

This will be negligible when p(Dicke) ≪ 1, which occurs when the second term in Z̃
dominates. This is promised when:

”∞”∑
j=0

e−jβω0 [(j + 1)−Ne−βω0j] < 0. (3.41)
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This can be guaranteed if Ne−βω0 > 1 + 1/j for all j, which provides Tc = ω0/ logN .
This means that for T > Tc the population in the Dicke subspace must be negligible.
As discussed in the main text, while in the rotating-wave approximation regime, the
Lamb shifts are small enough to not alter the asymptotic behavior in these expressions, as
g0maxλ≪ ω0 is required.

Consider the case where the system is cold enough that the maximum number of excita-
tions appreciably excited in the system is given by some kmax ≪ N . With this condition,
we can approximate the binomial term in the degeneracy function using the following
expression [76]: (

N

k

)
= (1 + o(1))

Nk

k!
. (3.42)

Motivated by our restriction of the number of excitations to be small and bounded, we
consider the degeneracy of the angular momentum ground state with k excitations. Given
N spins, the ground state of the subspace with angular momentum j has k = N/2− j spin
excitations.

Then, the degeneracy of the ground state with k excitations is given by

dg(k) =
N − (2k − 1)

N − (k − 1)

(
N

N − k

)
. (3.43)

Rearranging this term and utilizing the approximation of the binomial coefficient, we find
that

dg(k) =
1

1− k
N−(2k−1)

Nk

k!
(1 + o(1)). (3.44)

Since k ≪ N , we can safely approximate the degeneracy of the ground state with k
excitations as dg(k) ≈ Nk/k!.

The dimension of the ground state subspace is 1, and has a zero energy splitting. This
implies that the ground state contributions to the partition function are given by,

Zg(β) =
kmax∑
k=0

e−βkω0
Nk

k!

=
kmax∑
k=0

1

k!
(e−βω0elogN)k (3.45)

≈ ee
logN−βω0 (3.46)
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Then the population in these states is given by:

ee
logN−βω0

(1− e−βω0)−1(e−βω0/2 + eβω0/2)N
, (3.47)

which is minimal for T > Tc.

Given these properties for temperatures above ω0/ logN , we then define the ground
state cutoff temperature to be

Tc =
ℏω0

kb logN
. (3.48)

Above this temperature the population in the Dicke subspace and in the lowest energy
states will be minimal, so the more full structure of the system must be considered.

3.7.3 Algorithmic scaling

Theorem 2. For an arbitrary constant error, δ, the runtime to compute a parameter which
is a function of j and k, and subexponential in j, is Θ(

√
N).

To prove the dependence on N , we begin by noting that dj has a unique maximum
at j∗, about which the ratio of adjacent terms is 1 + O(N−3/2) [1]. Generally the ratio
between two adjacent angular momentum subspaces is given by:

dj
dj+1

=
2j + 1

2j + 3
· N/2 + j + 2

N/2− j
. (3.49)

Differentiating this, we see that there are no valid j values that extremize this expression,
and it begins with a ratio of N for j = N/2 − 1 and tends to 1

3
for j = 0. Therefore,

this ratio is monotonic, and bijective, over the domain of possible j values, having a ratio
between 1/3 and N − 1.

Next we will need the following lemma, a well-known result of geometric series:

Lemma 3. The number of terms that must be summed such that the geometric series with
ratio (1+ ϵ)−1 has a fractional error of δ is given by O(log(δ−1)ϵ−1), for δ ≪ 1 and ϵ≪ 1.

Proof. We begin by noting that:
∞∑
i=0

(1 + ϵ)−i =
1

1− 1
1+ϵ

= 1 + ϵ−1. (3.50)
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So we wish to find t such that:

t∑
i=0

(1 + ϵ)−i ≥ (1− δ)(1 + ϵ−1) (3.51)

Note that this sum is equivalent to:

t∑
i=0

2−i log(1+ϵ) ≥ (1− δ)(1 + ϵ−1) (3.52)

Then this is given by:

t = O(log(1+ϵ)−1(δ)) (3.53)
= O(− log(δ)/ log(1 + ϵ)) (3.54)
≈ O(log(δ−1)/ϵ) (3.55)

■

Corollary 4. For a series of real numbers where the terms monotonically decrease by at
least a constant ratio, 1+ϵ, the number of terms needed to approximate their sum to relative
error δ is O(log(δ−1)/ϵ).

Proof. This is the same as the above, except now we allow the ratio to possibly become
more severe than 1 + ϵ, as our summations will have. ■

Proof of Theorem 2. Fix k. Then the set of possible j values falls in the range [max{jmin,
N
2
−

k}, N
2
]. The ratio of populations between angular momentum subspace j and j + 1, with

j in the range aforementioned, is then given by:

r =
dj
dj+1

µ

µ+ 1
, (3.56)

where µ is the number of states available for subspace j (if j is not the smallest value
permitted for a given k choice, one could have say the lower 3 levels for j and the lower 4
for j + 1).

Generally dj
dj+1

∈ (1/3, N − 1], but suppose we restrict ourselves to j such that dj
dj+1

∈
(1+N−1/2, N−1], which occurs for j = Θ(j∗) = Θ(

√
N). Now, we wish for r = 1+Ω(N−1/2)
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to be satisfied. Note that µ/(µ + 1) begins at 1
2

and tends to 1, so if we can ensure
µ/(µ+ 1) = 1−O(N−1/2) then r will satisfy our desired value. Once µ ≈

√
N , then:

µ

µ+ 1
=

√
N√

N + 1
(3.57)

=
1

1 +N−1/2
(3.58)

≈ 1−N−1/2 (3.59)

Putting this together, it means that to obtain the sum for some fixed k value, assuming
dj/dj+1 = 1 +N−1/2, we sum from max{jmin,

N
2
− k} for O(

√
N) terms, then for another

O(
√
N) terms whereby these terms converge to within a δ error within O(

√
N) terms from

the prior lemma and corollary. Lastly, note that dj/dj+1 = 1 + N−1/2 for j = O(
√
N) so

when the ratio is below this, there will be at most O(
√
N) more j values to sum. Putting

these together, we obtain a δ error, for any constant δ, with only O(
√
N) terms summed.

Lastly, for the matching lower-bound, we can use the result from our prior work, [1],
where we showed that Ω(

√
N) angular momentum values contain the far majority of the

degeneracies in the system. This provides a lower-bound for higher excitations whereby
most of the degeneracies are available. Together this means that this procedure is effectively
optimal in the spin system size, N , with a runtime of Θ(

√
N). ■

3.7.4 Monotonicity of Population Ratio Temperature

Here we show that the temperature needed to have more population in a low j value than
the Dicke value slowly rises to a limiting temperature requirement of ω0/(2 log 2). Note
that for small j, the following approximation may be made:

dj =

(
N

N/2 + j

)
· 2j + 1

N/2 + j + 1
(3.60)

≈ 2N√
Nπ/2

e−(2j)2/(2N) · 2j + 1

N/2 + j + 1
(3.61)

where the approximation is from [66]. This is to leading order given by 2N and so:

lim
N→∞

ω0(N/2− j)

log dj
=

ω0

2 log 2
. (3.62)

Lastly the expression ω0(N/2−j)/ log dj has a unique root, the above, and is always positive
up to j∗. After this temperature the other angular momentum subspaces are populated
according to the main text.
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3.7.5 Thermal Expectation Expansions

Here we show the error in truncating the expansion for the partition function. The partition
function can be used to compute averages directly related to the partition function and
also by taking the expectation of the partition function we can compute other averages.

The exact expression for the partition function for our system of interest is given by:

Z =
∑

j,k, λ∈Λ(j,k)

dje
−β(kω011+g0L(j,k)) (3.63)

=
∑
k

e−βkω011
∑
j

dj
∑

λ∈Λ(j,k)

e−βg0λ. (3.64)

We focus on truncating the inner sum. We set the inner summation as τ(j, k, β). Then Z
is:

Z =
∑
k

e−βkω0τ(j, k, β). (3.65)

We may then expand τ in a power series. This will allow us to find the bounded error in a
truncated expansion. Before beginning, we note that we may assume we have ∥Λ(j, k)∥∞ ≪
ω0/g0, as in this regime the rotating-wave approximation holds, which is needed to have
the pair of good quantum numbers utilized in the Tavis–Cummings Hamiltonian.

We begin with an expansion of the innermost sum in τ :∑
λ∈Λ(j,k)

e−βg0λ ≈
∑
λ

1−βg0
∑
λ

λ+
(βg0)

2

2

∑
λ

λ2− (βg0)
3

3!

∑
λ

λ3+
(βg0)

4

4!

∑
λ

λ4+. . . (3.66)

As we showed in our prior work all odd moments of the eigenvalues are zero since eigenvalues
come in positive-negative pairs [1]. The number of eigenvalues is |Bj,k|, so this expansion
is then given by:

|Bj,k|(1 +
(βg0)

2

2
Var(Λ(j, k))) +O((βg0)

4
∑
λ

λ4) (3.67)

This expansion says that the partition function can be considered as a summation over
the states of the uncoupled system plus contributions from second order transitions from
the coupling Hamiltonian, and the fourth order, and so forth. We wish for this to trun-
cate, so let’s consider what temperatures we can promise the higher order terms to be
negligible. Note that (1

2
(βg0)

2
∑
λ2)2 > 1

4
(βg0)

4
∑
λ4, and generally (1

2
(βg0)

2
∑
λ2)t >
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1
2t
(βg0)

2t
∑
λ2t, and so if 1

2
(βg0)

2
∑
λ2 < 1 then the higher order terms are all smaller and

can be neglected if sufficiently small. This means that the first order correction is dominant
so long as |Bj,k| (βg0)

2

2
V ar(Λ(j, k)) ≪ 1.

Assuming we satisfy this condition we have:

τ(j, k, β) ≈
∑
j

dj|Bj,k|(1 +
(βg0)

2

2
Var(Λ(j, k))). (3.68)

Including this back in the summation over k, we have:

Ztotal = Z0 + Zpert (3.69)

where Z0 is the partition function when g0 = 0 (just a collection of spins uncoupled with a
cavity), and Zpert is the contribution due to the interaction between the cavity and spins.

This also means that the normalization factor, Z−1, can be expanded as:

1

Ztotal
=

1

Z0 + Zpert
(3.70)

≈ 1

Z0

(1− Zpert

Z0

), (3.71)

where the last expression comes from utilizing a truncated geometric series expansion.

3.7.6 Average Internal Energy Shift

We may now compute the average energy of this system, as well as the associated shift
induced due to the coupling:

⟨E⟩ = − 1

Z

∂

∂β
Z. (3.72)

Applying this to our expression for Ztotal in (3.65) and applying the chain rule for differ-
entiating, then using the first order correction given by (3.68) we obtain:

= ⟨k⟩Zω0 −
2

β

Zpert

Z
. (3.73)
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We may now break this into perturbation powers to obtain a more physically meaningful
expression. For each line we plug in our expansions and drop higher order terms:

= ⟨k⟩Z0Z0ω0(
1

Z0

(1− Zpert

Z0

)) + [Zpert⟨k⟩Zpertω0 −
2

β
Zpert](

1

Z0

(1− Zpert

Z0

)) (3.74)

= ⟨k⟩Z0ω0(1−
Zpert

Z0

) + ⟨k⟩Zpert

Zpert

Z0

ω0 −
2

β

Zpert

Z0

(3.75)

= ⟨k⟩Z0ω0 + ((⟨k⟩Zpert − ⟨k⟩Z0)ω0 −
2

β
)
Zpert

Z0

(3.76)

This means that the shift in the average internal energy is given by ∆⟨E⟩ = ((⟨k⟩Zpert −
⟨k⟩Z0)ω0 − 2

β
)Zpert

Z0
. This expression can be considered as the average excitation difference

between the perturbed portion of the system and the uncoupled system, (⟨k⟩Zpert −⟨k⟩Z0),
with the addition of a thermally scaling factor of the perturbation expansion variable
− 2

β

Zpert
Z0

, and will always be negative, so long as the expansions are valid. This agrees with
intuition as having the lower-energy Lamb shifted energy states to place some population
into can only decrease the average energy of the system.

3.7.7 Rapid Computation of Expectations with Certain Invari-
ances

Here we outline the analytical results implications for bounding expectations of observables
of thermal states of the Tavis–Cummings model as well as the runtime improvements for
numerical methods evaluating these expectations. For this we focus on observables with
particular invariances, and list them as cases. For each case,

∑
means that the variable(s)

must be summed over, whereas
∫

means that that variable is either invariant with respect
to that variable or can analytically have its dependence removed. In what follows k is the
number of excitations, j is the angular momentum subspace value, and m is the spin value
within that angular momentum subspace value.

(a)
∑
j, k,m: in this case O(k, j,m) depends on all three parameters. In this case the full

summation must be considered which makes the problem nearly intractable and has
runtime of O(TN2). If one can ensure that the region of strong support is satisfied,
then this can be reduced to O(TN).

(b)
∑
k, j

∫
m: O(j, k) is the observable. The probabilities are only functions of j and

k in this case so Var(Λ(j, k)) may be used in the expectation computation. Addi-
tionally, so long as O(j, k) is sub-exponential in j we may use the region of strong
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support within the degeneracies to simplify the expression and improve the runtime
of computing this expectation. This results in O(T

√
N) time.

(c)
∑
k,
∫
j,m: in this case the observable only depends on the number of excitations

O(k). Since the dependency on j is removed and can be tabulated, this loses all
dependency on N and requires only O(T ) time.

(d)
∑
j,
∫
k,m: this follows similar reasoning as the above. The temperature dependence

can be removed and summed over independently, meaning just the spin states matter,
taking O(N) unless the region of strong support can be provided, in which case this
reduces to O(

√
N).

For observables such as Jz the pair of quantum numbers remain valid and so the trace
value is basis independent so we just take the summation over |k, j,m⟩. Some examples of
these categories include: a†a and a+ a† in (c) and Jz and Jx in (b). In fact, any function
of cavity operators (a and a†) and collective spin operators (J+, J−, and Jz) is covered in
case (b), with any function that grows subexponentially in j also being able to exploit the
region of strong support. Some examples of subexponentially growing functions include
Jx, eitJz , and e(a†a†−aa)it.

3.7.8 Perturbations and Inhomogeneities

The following theorem is used, it is a direct consequence from the Bauer-Fike Theorem
and Weyl’s inequality [77, 78]:

Theorem 5. Let H and H + δH be Hermitian matrices with eigenvalues {λ1, λ2, . . .} and
{µ1, µ2, . . .}, respectively, in non-increasing order. Then for all eigenvalues, with index i,
we have:

|λi − µi| ≤ ∥δH∥2. (3.77)

This result naturally extends to the case of block preserving perturbations. The sum-
mation structure for our Hamiltonian remains the same so long as ∥δH∥2 ≪ ω0. The
perturbation expansion needs the variance updated with tr((H + δH)2) − tr(H + δH)2,
which slightly increases the value, but if small enough perturbations, the net change is
effectively nothing.

It is worth noting that formallyH, and δH, act on Hilbert spaces with countably infinite
bases, so without the thermal effects the norm may not converge. If one requires block
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preserving perturbations, then the level of perturbation needs only be bounded by ω0 within
each block, and so the infiniteness of the Hilbert space is circumvented. Some examples of
block preserving perturbations include those which preserve the angular momentum and
total excitation quantum numbers, which would include most forms of field and coupling
inhomogeneities, but would not include dipolar interactions or individual spin orientation
perturbations.

Formally these operators are semi-bounded Hermitian operator on a countably infinite
space and the results are rigorous so long as ∥δH∥2 is bounded [79]. Fortunately, the
Hilbert spaces of H and H + δH are effectively truncated at large k since the rotating-
wave approximation breaks down, which results in the loss of the good quantum numbers
and the lack of validity for the direct sum decomposition.

As an explicit example, let us consider dipolar flip-flop coupling between pairs of spins:

δHff = dij(σ
(i)
+ σ

(j)
− + σ

(i)
− σ

(j)
+ ), i ̸= j. (3.78)

Note that this is independent of the number of excitations in the cavity so the Hilbert
space can be taken as a direct sum over the number of excitations in the cavity, meanning
that we only require ∥δHff∥2 ≪ ω0 within each block. We then have:

∥δHff∥2 =
√
tr(δHffδHff ) (3.79)

=

√∑
ij

2d2ij. (3.80)

Then this says that interaction due to dipolar flip-flops does not change the summation
structure so long as

∑
ij 2d

2
ij ≪ ω2

0. If one wished to bound this in some lattice-like scenario
where each spin couples predominantly with O(1) spins, then the total summation will have∑

ij 2d
2
ij going as O(N). If no such restriction is made, then there will be O(N2) terms in

the summation.

3.7.9 Number Operator Expectation Fractional Shift and Vari-
ance Fractional Shift

To compute the expectation of the number operator under self-evolution, we will need to
compute n̂pert(j, k) := tr(ω0a

†aL2(j, k)). Written using k′ = k − k0(j) and following the
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notations used in [1], we may compute:

tr(a†aL2(j, k)) (3.81)
= ⟨1j,k|a†a|1j,k⟩l21(j, k) + ⟨|Bj,k||a†a||B|j,k⟩l2|Bj,k|(j, k) (3.82)

+

|Bj,k|−1∑
α=2

⟨αj,k|a†a|αj,k⟩(l2α(j, k) + l2α+1(j, k)) (3.83)

= (k′ − 1)(2j)(k′) + (k′ − |B|)(|B|(2j − (|B| − 1))(k′ + 1− |B|) (3.84)

+

|B|−1∑
α=2

(k′ − α)(α(2j − α + 1)(k′ − α + 1) + (α + 1)(2j − α)(k′ − α)) (3.85)

= (k′ − 1)(2j)(k′) + (k′ − |B|)(|B|(2j − (|B| − 1))(k′ + 1− |B|) (3.86)

+

|B|−1∑
α=2

[(−2)α4 + (1 + 4j + 4k′)α3 + (−1− 8jk′ − 2k′2 − k′)α2 (3.87)

+(4jk′2 − 2jk′ + k′)α + (2jk′2)] (3.88)
= 2jk′(k′ − 1) + [−|B|4 + (2j + 2k′)|B|3 + (−4jk′ − 2j − k′2 − 3k′ − 1)|B|2 (3.89)

+(2jk′2 + 2jk′ + k′2 + k′)|B| (3.90)

+A
1

30
(6|B|5 − 15|B|4 + 10|B|3 − |B| − 30) +B

1

4
(|B|4 − 2|B|3 + |B|2 − 4)(3.91)

+C
1

6
(2|B|3 − 3|B|2 + |B| − 6) +D

1

2
(|B|2 − |B| − 2) + E(|B| − 2) (3.92)

=
A

5
|B|5 + (−1− A

2
+
B

4
)|B|4 + (2j + 2k′ +

A

3
− B

2
+
C

3
)|B|3 (3.93)

+(−4jk′ − 2j − k′2 − 3k′ − 1 +
B

4
− C

2
+
D

2
)|B|2 (3.94)

+(2jk′2 + 2jk′ + k′2 + k′ − A

30
+
C

6
− D

2
+ E)|B| (3.95)

+(2jk′(k′ − 1)− A−B − C −D − 2E) (3.96)

= −2

5
|B|5 + 1

4
(1 + 4j + 4k′)|B|4 + 1

6
(−16jk′ − 4k′2 − 2k′ − 9)|B|3 (3.97)

+
1

4
(8jk′2 − 4jk′ − 4j − 4k′ − 1)|B|2 (3.98)

+
1

30
(60jk′2 + 50jk′ + 20k′2 + 10k′ − 3)|B| (3.99)

+2(−3jk′2 + 4jk′ − 2j + k′2 − 2k′ + 1) (3.100)
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Evaluating this at the two regimes |B| = min{2j + 1, k′ + 1}, we obtain:

16

5
j5 − 16

3
j4k′ + 4j4 +

8

3
j3k′2 − 20

3
j3k′ − 16j3 + 4j2k′2 − 2

3
j2k′ − 25j2

− 14

3
jk′2 +

26

3
jk′ − 81

5
j + 2k′2 − 4k′ (3.101)

and

1

3
jk′4 + jk′3 − 16

3
jk′2 + 8jk′ − 4j − 1

15
k′5 − 1

12
k′4 − 11

6
k′3 − 47

12
k′2 − 101

10
k′, (3.102)

respectively. These are analytical expressions still.

We wish to find, where ρth is the coupled thermal state, the perturbative term of which
is computed using n̂pert(j, k):

fractional mean shift :=
tr(ω0a

†aρth)− tr(ω0a
†aρ0)

tr(ω0a†aρ0)
(3.103)
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Second moment

We begin by defining n̂
(2)
pert(j, k) := tr(ω2

0(a
†a)2L2(j, k)). Using a similar method as just

before, we may compute:

tr((a†a)2L2(j, k)) (3.104)
= ⟨1j,k|(a†a)2|1j,k⟩l21(j, k) + ⟨|Bj,k||(a†a)2||B|j,k⟩l2|Bj,k|(j, k) (3.105)

+

|Bj,k|−1∑
α=2

⟨αj,k|(a†a)2|αj,k⟩(l2α(j, k) + l2α+1(j, k))

= (k′ − 1)2(2j)(k′) + (k′ − |B|)2(|B|(2j − (|B| − 1))(k′ + 1− |B|) (3.106)

+

|B|−1∑
α=2

(k′ − α)2(α(2j − α + 1)(k′ − α + 1) + (α + 1)(2j − α)(k′ − α))

= (k′ − 1)2(2j)(k′) + (k′ − |B|)2(|B|(2j − (|B| − 1))(k′ + 1− |B|) (3.107)

+

|B|−1∑
α=2

[2α5 + (−1− 4j − 6k′)α4 + (1 + 12jk′ + 6k′2 + 2k′)α3

+(−12jk′ + 2jk′ − 2k′3 − k′2 − 2k′)α2 + (4jk′3 − 4jk′2 + k′2)α + (2jk′3)]

= |B|5 + (−2j − 3k′ − 2)|B|4 + (6jk′ + 2j + 3k′2 + 5k′ + 1)|B|3 (3.108)
+(−6jk′2 − 4jk′ − k′3 − 4k′2 − 2k′)|B|2

+(2jk′3 + 2jk′2 + k′3 + k′2)|B|+ (2jk′3 − 4jk′2 + 2jk′)

+A
1

12
(2|B|6 − 6|B|5 + 5|B|4 − |B|2 − 12)

+B
1

30
(6|B|5 − 15|B|4 + 10|B|3 − |B| − 30) + C

1

4
(|B|4 − 2|B|3 + |B|2 − 4)

+D
1

6
(2|B|3 − 3|B|2 + |B| − 6) + E

1

2
(|B|2 − |B| − 2) + F (|B| − 2)
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Grouping by powers of |B|, we obtain:

=
A

6
|B|6 + (1− A

2
+
B

5
)|B|5 + (−2j − 3k′ − 2 +

5

12
A− B

2
+
C

4
)|B|4 (3.109)

+(6jk′ + 2j + 3k′2 + 5k′ + 1 +
B

3
− C

2
+
D

3
)|B|3 (3.110)

+(−6jk′2 − 4jk′ − k′3 − 4k′2 − 2k′ − A

12
+
C

4
− D

2
+
E

2
)|B|2

+(2jk′3 + 2jk′2 + k′3 + k′2 − B

30
+
D

6
− E

2
+ F )|B|

+(2jk′3 − 4jk′2 + 2jk′ − A−B − C −D − E − 2F )

=
1

3
|B|6 + 1

5
(−1− 4j − 6k′)|B|5 + (3jk′ +

3

2
k′2 +

1

2
k′ − 5

12
)|B|4 (3.111)

+(−10

3
jk′ +

2

3
j − 2

3
k′3 − 1

3
k′2 +

4

3
k′ +

1

6
)|B|3

+(2jk′3 − 8jk′2 + 4jk′ − 3

2
k′2 − 1

2
k′ +

1

12
)|B|2

+(2jk′3 + 4jk′2 − 5

3
jk′ +

2

3
k′3 +

1

3
k′2 − 1

3
k′ − 1

15
)|B|

+(−jk′3 + 4j + 2k′3 − 6k′2 + 6k′ − 2)

Evaluating this at the two regimes |B| = min{2j + 1, k′ + 1}, we obtain:

− 64

15
j6 +

48

5
j5k′ − 32

5
j5 + 24j4k′2 − 56

3
j4k′ − 4

3
j4 +

8

3
j3k′3 +

40

3
j3k′2 − 64

3
j3k′ +

4

3
j3

+ 4j2k′2 + 2j2k′2 − 16

3
j2k′ +

1

3
j2 +

1

3
jk′3 +

2

3
jk′2 − 2

3
jk′ +

56

15
j + 2k′3 − 6k′2 +

29

5
k′ − 21

10
(3.112)

and

−13

10
k′6+

21

5
jk′5− 1

30
k′5+

8

3
jk′4+

1

12
k′4− 13

3
jk′3+2k′3− 5

3
jk′2− 25

4
k′2+

86

15
k′+

58

15
j− 21

10
(3.113)

respectively. These are analytical expressions still. From here the fractional variance shift
can be found using linearity of the trace and thermal density state.

3.7.10 Driven Solution

We will consider the result of:

tr(Jyeit(H+2Ωcos(ω0t)Jx)ρthe
−it(H+2Ωcos(ω0t)Jx)) (3.114)
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Note that since ρth ∝ e−βH we may commute the evolution of Hint around it as Hint

(without the rotating-wave approximation) commutes with Jx. Further the term a†a in H0

commutes with Jy, so we may cancel that term as well. Then this reduces to:

tr(Jyeit(ω0Jz+2Ωcos(ω0t)Jx)ρthe
−it(ω0Jz+2Ωcos(ω0t)Jx)). (3.115)

We will now move into the rotating frame defined by ω0Jz for the Hamiltonian ω0Jz +
2Ω cos(ω0t)Jx. This becomes ΩJx [23]. Our expression is now:

tr(e−itΩJxJye
itΩJxρth). (3.116)

If we only keep the terms with constant number of excitations, we obtain from [23] that:

tr(e−itΩJxJye
itΩJxρth) = tr(

1

2
(e−iΩt(Jy + iJz) + eiΩt(Jy − iJz))ρth) (3.117)

= tr(cos(Ωt)Jyρth) + tr(sin(Ωt)Jzρth) (3.118)
= sin(Ωt)tr(Jzρth), (3.119)

where the first trace is zero due to not preserving the number of excitations.
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Computing tr(ω0Jzρth) first non-zero change:

tr(JzL2(j, k)) (3.120)

= (1− j)l21(j, k) + (|B| − j)l2|B|(j, k) +

|B|−1∑
α=2

(α− j)(l2α(j, k) + l2α+1(j, k)) (3.121)

= (1− j)(2j)(k′) + (|B| − j)(|B|(2j − (|B| − 1))(k′ + 1− |B|) (3.122)

+

|B|−1∑
α=2

(α− j)(α(2j − α + 1)(k′ − α + 1) + (α + 1)(2j − α)(k′ − α))

= |B|4 + (−3j − k′ − 2)|B|3 + (2j2 + 3jk′ + 4j + k′ + 1)|B|2 (3.123)
+(−2j2k′ − 2j2 − jk′ − j)|B|+ (−2j2k′ + 2jk′)

+

|B|−1∑
α=2

2α4 + (−1− 6j − 2k′)α3 + (1 + 4j2 + j + 6jk′)α2

+(−4j2k′ − j + 2jk′)α + 2j2k′

= |B|4 + (−3j − k′ − 2)|B|3 + (2j2 + 3jk′ + 4j + k′ + 1)|B|2 (3.124)
+(−2j2k′ − 2j2 − jk′ − j)|B|+ (−2j2k′ + 2jk′)

+A
1

30
(6|B|5 − 15|B|4 + 10|B|3 − |B| − 30) +B

1

4
(|B|4 − 2|B|3 + |B|2 − 4)

+C
1

6
(2|B|3 − 3|B|2 + |B| − 6) +D

1

2
(|B|2 − |B| − 2) + E(|B| − 2)

=
A

5
|B|5 + (1− A

2
+
B

4
)|B|4 + (−3j − k′ − 2 +

A

3
− B

2
+
C

3
)|B|3 (3.125)

+(2j2 + 3jk′ + 4j + k′ + 1 +
B

4
− C

2
+
D

2
)|B|2

+(−2j2k′ − 2j2 − 2jk′ − j − A

30
+
C

6
− D

2
+ E)|B|

+(−2j2k′ + 2jk′ − A−B − C −D − 2E)

=
2

5
|B|5 + 1

4
(−1− 6j − 2k′)|B|4 + 1

6
(8j2 + 12jk′ + 2j − 3)|B|3 (3.126)

+
1

4
(−8j2k′ + 4jk′ + 6j + 2k′ + 1)|B|2

+
1

30
(60j2k′ − 40j2 − 60jk′ − 10j + 3)|B|

+(−2j2k′ − 4j2 − 6jk′ + 6j + 2k′ − 2)
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Figure 3.10: Figure of the distribution of the population for Z0 as a function of the number
of excitations in the system (k). These are plotted for N = 100, ω0 = 20π GHz.
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Figure 3.11: Figure of the distribution of the population for Ztotal as a function of the
number of excitations in the system (k) against the secondary spin quantum number (m).
These are plotted for N = 100, g0 = 200π Hz, and ω0 = 20π GHz. Note that for T = 0.01
Kelvin the population is essentially in the Dicke subspace and global groundstate.
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Figure 3.12: Figure of the distribution of the population for Zpert, the Lamb shifts alone,
as a function of the number of excitations in the system (k) against the secondary spin
quantum number m. These are plotted for N = 100, g0 = 200π Hz, and ω0 = 20π
GHz. Note that for T = 0.01 Kelvin the population is essentially in the Dicke subspace
and global groundstate. The volumes, normalized by Ztotal, are given by 2.81 · 10−16,
1.25 · 10−15, 3.82 · 10−16, and 7.91 · 10−17, respectively.
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Part II

Higher-dimensional Quantum
Error-Correcting Codes
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The Protection of Higher-dimensional
Quantum Information Overview

Quantum computers are often envisioned as operating on 2-level quantum systems, known
as qubits. However, if one permits the use of more levels, also known as larger local-
dimensions, a larger computational space becomes available per particle. In this part we
explore a slight extension of the traditional stabilizer method generating additive quantum
error-correcting code.

In chapter 4 we provide a brief introduction to classical error-correcting codes only
so that the analogous terms can be defined in the case of quantum error-correcting codes.
When discussing quantum error-correcting codes we briefly discuss how syndrome measure-
ments can be performed in non-destructive ways, making the connection, and important
differences, between the classical and quantum cases clear–defining the stabilizer formalism.

In chapter 5 we discuss how we may transform stabilizer codes designed for one local-
dimension into codes that exist for any local-dimension choice. This means that particularly
if the local-dimension of a quantum device were easily able to be tuned then these same
codes can be used regardless of which local-dimension is selected. From there we prove
that so long as the local-dimension is sufficiently large the distance of these codes can
be promised to remain at least as high, while for smaller local-dimensions the distance
can be manually verified. Through these methodology we construct a number of error-
correcting codes which have their parameters preserved regardless of the choice of local-
dimension. While these methods do not provide codes which are strictly better than those
already known, it provides a broader perspective on stabilizer codes and may aid in better
understanding of Pauli operator centered algorithms.
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Chapter 4

Introduction to Quantum
Error-Correcting Codes

Our goal in this chapter is to begin from classical additive error-correcting codes and show
the mapping to their quantum analog of stabilizer codes.

4.1 Classical Error-Correcting Codes

To begin, let us consider possibly the simplest encoding procedure. Let us encode the
single bits as:

0 7→ 000, 1 7→ 111. (4.1)
Now, if any single bit flip occurs, we can still take the majority vote to decode the bit. If,
however, two bit flips occurs, then we will incorrectly decode the bit. As a general principle
we will assume that errors that involve more bit flips will occur less often.

This simple repetition code protects our bit against any single bit flip. If we wish to
protect against two bit flips, then we would need to encode our single bit into five bits,
such as by encoding:

0 7→ 00000, 1 7→ 11111. (4.2)
We could continue in this way, creating more and more protected encodings of our bit.
Unfortunately, the rate of the code, number of logical bits per physical bits, is only 1

3
at

most. If we instead batch encodings into blocks, we can improve this rate significantly.
If we consider parities of bits instead of simply taking majority vote we can generate

better encodings. For this we have the following definitions:
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Definition 6. For a classical block code C the parity check matrix H states which parities
to consider when attempting to determine the error.

Definition 7. For a classical block code C the generator matrix G has rows which form
the basis for the physical bits used in the encoding of the bits.

By construction we will require HGT = 0 so that any member, v, in the vector space
formed from the rows of G still satisfies Hv = 0. Let us revisit the repetition code, which
we can restate in terms of these block matrices:[

1 1 0
0 1 1

] [
1 1 1

]T
= 0. (4.3)

Note that both the 000 and 111 codewords are represented by the generator matrix since
the vector space is over Z2.

As an important example, we can consider the Hamming code, which has parity check
matrix:

H =

1 1 1 1 0 0 0
1 1 0 0 1 1 0
1 0 1 0 1 0 1

 . (4.4)

This columns of this matrix are all three digit binary strings aside from the all zero string.
We will not bother writing out the codewords since they provide no additional insights.
The rate of this code is 4/7 since the column null space has dimension four. Notice though
that for any single physical bit flip it will pull out one column from H, which is guaranteed
to be unique. This means that we can correct any single bit flip. If, however, two bit
flips occur then we will not be able to differentiate that two bit flip from the single bit flip
that generates the same parity check value. This brings us to defining the parameters of
classical block code:

– n: the number of physical bits used to generate protected logical bits. The number
of columns in the parity check matrix H.

– k: the number of logical bits. This is given by the dimension of the column null space
of H.

– d: the distance of the code. This is given by the minimal number of columns of H
which are linearly dependent over Z2.

The construction of good parity check matrices, and hence good classical codes, has
been well-studied and is not the focus of this work, so we leave this topic here. We have
introduced the essential parameters of classical additive error-correction and will next
discuss how this idea, with some modifications, can be imported to the quantum realm.
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4.2 Quantum Error-Correcting Codes

In an ideal world we would just use classical error-correction in the quantum realm as
well. Unfortunately there are some properties of quantum systems that prevent this. If
one measures the parity of the quantum bits this causes the collapse of the quantum state
making your quantum computer just about the same as a classical computer, so clearly we
should avoid measuring our encoded states. We also cannot simply copy the encoded states
and perform measurements to determine the error on that copy and apply the correction
on the original. The no-cloning theorem prevents this [80]. A different solution must be
used: indirect measurement of the parities.

Definition 8. A qubit is a normalized vector in C2

For qubits we must protect against changes in the ratio of the entries, both real value
(bit-flip) and imaginary value (phase-flip). In order to discuss the indirect measurement
method, we must introduce a few essential qubit gates.

We begin with the most fundamental building blocks, the Pauli gates (also known as
the Pauli matrices):

X =

[
0 1
1 0

]
, Z =

[
1 0
0 −1

]
, Y =

[
0 −i
i 0

]
(4.5)

where we have written these matrices in the computational basis, |0⟩ and |1⟩. Alongside
these, we also have the following pair of gates:

H =
1√
2

[
1 1
1 −1

]
, CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 (4.6)

where the former is called the Hadamard gate and the latter the CNOT gate. The
Hadamard gate transforms between bit (|0⟩, |1⟩) basis and phase (|+⟩, |−⟩) basis. The
CNOT gate conditionally performs a NOT (X) gate on a target register based on if the
controlling register is a |0⟩ or |1⟩.

With these gates we can generate the quantum analog of the classical repetition code.
We begin encoding |0⟩ into |000⟩ and |1⟩ into |111⟩, meaning that if we wish to encode
α|0⟩+ β|1⟩ we would encode it as α|000⟩+ β|111⟩. We will use a pair of auxiliary qubits,
preset as |0⟩, to determine the parity of our bits. We will use the registers in our encoded
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Figure 4.1: Our first circuit for protecting a qubit against a single bit-flip error through
non-destructive measurements. In this diagram the E block is where an error may have
occurred, whereas the C block is the correction applied, based on what measurement values
are obtained from the auxiliary qubits.

state as the controls for CNOT gates with the auxiliary qubits as the targets. The CNOT
gates will be placed following the pattern of parity checks used for the repetition code.
This is illustrated in Figure 4.1.

First, let us make sure that if no error occurs we get a trivial change on the auxiliary
qubits. In this case each auxiliary qubit receives a pair of flips, returning them to their
original value. If we then measure these auxiliary qubits, we will get "0" for both. Now
suppose a single bit flip occurs. The parities of the auxiliary qubits will be altered by
whichever physical register receives the error. This results in a unique pair of final values
allowing us to determine which single bit flip occurred, then correct the discovered error
(up to a higher order). This means that we have successfully imported this code from the
classical setting to the quantum setting.

This is only sufficient for protecting a single qubit against a bit flip. We need to also
protect against phase flips in order to fully protect our qubit. To aid in our construction of
a phase-flip protected qubit and parity checking circuit, let us reconsider the prior example,
although altering some gates. These changes are shown in Figure 4.2. In this circuit now
the auxiliary qubits are flipped if and only if the bit flip (X gates) that occur during the
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error phase do not commute with the parity checking control-phase (CZ) gates.

Figure 4.2: Our new circuit for protecting a qubit against a single bit-flip error through
non-destructive measurements. In this diagram the E block is where an error may have
occurred, whereas the C block is the correction applied, based on what measurement values
are obtained from the auxiliary qubits.

We can use this alternate form now to create a circuit which protects against an arbi-
trary single register phase flip. This time we encode the state as α|+++⟩+β|−−−⟩, and
simply replace the CZ in the circuit with CNOT gates. Again the read out values from
the auxiliary qubits will be given by the parity of the commutator of the error with these
parity check control gates. The phase-flip protection scheme is shown in Figure 4.3. This
idea can be combined together to generate the Shor 9-qubit code as a simple concatenation
of these two codes [81]. Generally, we do not need to consider these circuits, but instead
just focus on the commutators of the errors with the parity check control X and control Z
gates, allowing us to step away from these circuits and instead focus on Pauli operators.

As of this point the relationship to classical error-correction has been loose, however,
the connection can be solidified significantly. We would need a parity check-like matrix
to still differentiate between the non-commuting term occurring from an X operator or a
Z operator, so we must allow for the power of each of these operators to be taken into
account. This leads to the symplectic representation for stabilizers:
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Figure 4.3: Our circuit for protecting a qubit against a single phase-flip error through
non-destructive measurements. In this diagram the E block is where an error may have
occurred, whereas the C block is the correction applied, based on what measurement values
are obtained from the auxiliary qubits.

Definition 9. The symplectic representation of an n register Pauli operator, X a⃗Z b⃗, trans-
forms the Pauli to a 2n length binary vector a⃗

⊕
b⃗.

This definition will be extended in the following chapter, but suffices for the discussion
here. The inner product needed to match the commutation requirements of Paulis is given
by:

Definition 10. Let p1 = X a⃗1Z b⃗1 and p2 = X a⃗2Z b⃗2. Then p1 and p2 commute if and only
if a⃗1 · b⃗2 + a⃗2 · b⃗1 = 0 mod 2.

Since we are truly working with matrices in the quantum case, quantum states which
are unaltered by each of these parity checks would require that all of these parity checks
commute with each other. This means that a stabilizer code requires that all generators
commute with each other. With this, we finally are able to write quantum codes in forms
strongly reminiscent of classical error-correcting codes.

As an important example, let us consider the Steane code [82]. As Pauli operators this
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can be given by the following parity checking Pauli operations:

⟨XXXXIII,XXIIXXI,XIXIXIX,ZZZZIII, ZZIIZZI, ZIZIZIZ⟩. (4.7)

If we instead write this in the symplectic representation we may write:
1 1 1 1 0 0 0 | 0 0 0 0 0 0 0
1 1 0 0 1 1 0 | 0 0 0 0 0 0 0
1 0 1 0 1 0 1 | 0 0 0 0 0 0 0
0 0 0 0 0 0 0 | 1 1 1 1 0 0 0
0 0 0 0 0 0 0 | 1 1 0 0 1 1 0
0 0 0 0 0 0 0 | 1 0 1 0 1 0 1

 . (4.8)

In particular, this code is given by using the seven physical bit Hamming code to perform
the parity check in each of the bit and phase bases. This code then protects against any
single bit-flip or phase-flip error, which form a complete error-basis [83].

The Pauli operators for a code form a commuting group, while in the symplectic repre-
sentation they form a vector space over a finite field. This means that different group mem-
bers, formed from compositions of generators, correspond to different linear combinations
of the basis vectors in the symplectic representation. Given this, we will interchangeably
refer to the stabilizer group or the vector space for a given collection of Pauli operators
forming a group.

Then in analogy with classical codes, we have the following parameters for a qubit
stabilizer code:

– n: the number of physical qubits used to encode the logical qubits. In the symplectic
representation this is given by the number of columns in one of the two parts.

– k: the number of logical qubits which are protected by the stabilizer code. While
not apparent from this construction, this is given by n minus the rank of the matrix,
which is effectively the column null space of one portion of the matrix [84].

– d: the distance of the stabilizer code. This is given by the lowest Pauli weight
operator that commutes with the parity checking generators for the stabilizer code,
but is itself not represented by those parity checking generators (in the stabilizer
group).

With these definitions we see then that the Steane code has n = 7, k = 1, and d = 3.
Generally there are full methodologies for constructing stabilizer codes with all sorts of
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parameters. In the next chapter we discuss a new method for constructing stabilizer codes,
focusing on higher local-dimensional quantum systems. As of this time it is primarily of
pedagogical use, but could provide essential insights for other problems due to its non-
standard approach.
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Chapter 5

Local-dimension-invariant Stabilizer
Codes

5.1 Motivation

The ability to perform classical computation within an arbitrarily small error rate was
shown by Shannon in the 40’s [85]. He provided a theoretical framework showing that
modern classical computation would be possible. From that point, there arose a new
challenge of finding actual codes that could best implement Shannon’s result. This in turn
pushed coding theory into a new realm, inspiring codes such as the Hamming code family
and BCH codes [86], and later leading to incredible ideas such as Polar codes [87] and
Turbo codes [88].

As computational power progressed, there began to be investigations into the potential
power of using quantum phenomena as a computational tool. This brought those same
questions explored for classical computers back into question. This led to various ideas
to try to bring over classical codes in some form or another. Among some of the earlier
ideas was the stabilizer formalism [89], CSS codes [90, 91], and teleportation [92]. Many
classical coding theory methods have been generalized into this new quantum setting, such
as Polynomial codes (a generalization of BCH and cyclic codes) [93, 94], Polar codes [95],
and Turbo codes [96, 97]–including results such as a complete list of all perfect codes [98].

Having protected quantum information is an essential piece of being able to perform
quantum computations. There are a variety of methods to help protect quantum infor-
mation such as those discussed in [99], but here we focus on the common tool used for
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correcting quantum errors known as stabilizer codes, the quantum analog of classical ad-
ditive codes [84, 100].. In this work we focus on stabilizer codes as they are the quantum
analog of classical linear codes. Even with error-correcting codes, having sufficient amounts
of protected quantum information to perform useful tasks is still an unresolved challenge.
A way to retain a similarly sized computational space while reducing the number of par-
ticles that need precise controls is to replace the standard choice of qubits with qudits,
quantum particles with q levels, also known as local-dimension q [101]. Throughout this
work we require q to be a prime so that each nonzero element has a unique multiplicative
inverse over Zq. This restriction can likely be removed, but for simplicity and clarity we
only consider this case. This relationship for the growth of computational states can also be
captured in the formula for the number of logical codewords for a qudit stabilizer code, qk,
which states that the number of codewords grows exponentially with the local-dimension q
as the base, so increasing q increases the amount of information protected per particle [6].
Experimental realizations of qudit systems are currently underway [102, 103, 104, 105, 106],
so having more error-correcting codes will aid in protecting such systems.

This means that we also need error-correction methods for these qudit systems. Prior
work on qudit codes often depends on having a classical code which satisfies the conditions
needed for CSS code construction, or a similar orthogonality requirement (such as [107,
108, 109]). This allows for the generation of many qudit quantum codes, however, at
times these codes can require very strict relations between the number of bases for the
particles (sometimes called the local dimension of the system) as defined in Definition 11,
the number of particles, and the number of logical qudits. This can result in these codes
being less useful for constructed qudit systems. This work aims to tackle this problem
by working to reduce this level of restriction by allowing codes to be used for qudits of
a different number of bases than they were initially designed for. While most codes have
been designed for a given local-dimension value, Chau showed that both the 5-qubit [110]
and 9-qubit [111] codes could be transformed into qudit codes with the same parameters
and minimal modifications to the code. In some regards one may consider this work as a
tool somewhat similar in nature to CSS code construction: CSS allows classical to quantum
code construction whereas this allows for quantum to quantum code construction.

This chapter is organized as follows. We begin by extending our definitions from the
prior chapter to permit qudit operations, as well as a few more definitions needed for this
chapter. Following this we provide a few simple examples of stabilizer codes which can be
applied regardless of the local-dimension of the underlying device in Section 5.3. Following
this we show that any stabilizer code can be put into a form which could be used regardless
of the local-dimension–so called local-dimension-invariant (LDI) codes. In the section after
that we prove that so long as the system has a sufficiently large local-dimension we can
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promise that the distance of the code is at least the same, if not higher. In section 5.6
we consider the possibility of applying a code designed for some initial local-dimension
system on a device with a smaller local-dimension and whether the distance could still be
preserved. We then proceed to consider the class of stabilizer codes known as Calderbank-
Shor-Steane (CSS) codes and show that at least one non-trivial family of codes can be
used regardless of the local-dimension and still have at least as high a distance. We then
move to discussing a few more examples of LDI codes, including a topological example,
using this to highlight the importance in the selection of the LDI representation. Finally
we conclude with the implications of this work as well as many possible future directions
to carry this line of work.

5.2 Definitions

In this section we define the majority of the tools used in this chapter. We begin by recalling
some common definitions and results for qudit Pauli operators. For a more complete guide
on qudit stabilizer codes, we recommend [6].

A qubit is defined as a two level system with states |0⟩ and |1⟩. We define a qudit
as being a quantum system over q levels, where q is prime. We denote by Zq the set
{0, 1, . . . q − 1}. When q = 2 we refer to each register as a qubit, while for any value of q
we call each register a qudit. In order to speak more generally and not specify q, we will
often times refer to each register as a particle instead.

Definition 11. Generalized Paulis for a particle over q orthogonal levels (local-dimension
q) are given by:

Xq|j⟩ = |(j + 1) mod q⟩, Zq|j⟩ = ωj|j⟩ (5.1)

with ω = e2πi/q, where j ∈ Zq.

When q = 2, these are the standard qubit operators. For notational clarity, we will drop
the subscript on these operators. These matrices, and their compositions, like their qubit
counterparts, form a nice error basis [83, 6]. These operators also form a group, which over
a single particle is indicated by Pq. This group structure is preserved over tensor products
of these operators, so a generalized Pauli acting on n particles will be in the group Pn

q .

Definition 12. A stabilizer group, also called here stabilizer code, S with commuting gen-
erators {si} is defined as the subgroup of all n-qudit generalized Paulis formed from all
multiplicative compositions (◦) of these generators. This subgroup must not contain a non-
trivial multiple of the identity.
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Since each operator has order q, a collection of n − k compositionally independent
generators for this stabilizer group will have qn−k elements. We recall for the reader, the
well-known result [6]:

Theorem 13. For any stabilizer code with n − k qudit stabilizers and n physical qudits,
there will be qk mutually orthogonal basis stabilizer states, or codewords.

We will work under the assumption that errors on distinct particles are independent
and we will assume the error model on each qudit is the depolarizing channel. This is a
standard choice. Given this error model we will predominantly be interested in the number
of non-identity terms in any error as the exponent of the error term increases with this.
This gives us the following definition:

Definition 14. The weight of an n-qudit Pauli operator is given by the number of non-
identity operators in its tensor product statement.

We note that, so long as no ambiguity exists, we suppress ⊗. We only include ⊗ to
make register changes explicit.

Working with tensors of operators can be challenging, and so we make use of the
following well-known mapping from these to vectors. This mapping is sometimes referred
to as the symplectic representation, but we use alternative notation in this work to provide
some notational flexibility utilized in this work. By representing these operators as vectors
at times the solution to a problem can become far more tractable.

Definition 15 (ϕ representation of a qudit operator). We define the linear surjective map:

ϕq : Pn
q 7→ Z2n

q (5.2)

which carries an n-qudit Pauli in Pn
q to a 2n vector mod q, where we define this mapping

by:
I⊗i−1Xa

qZ
b
qI

⊗n−i 7→
(
0i−1 a 0n−i

∣∣0i−1 b 0n−i
)
, (5.3)

which puts the power of the i-th X operator in the i-th position and the power of the i-th
Z operator in the (n + i)-th position of the output vector. This mapping is defined as a
homomorphism with: ϕq(s1 ◦ s2) = ϕq(s1) ⊕ ϕq(s2), where ⊕ is component-wise addition
mod q. We denote the first half of the vector as ϕq,x and the second half as ϕq,z.

Equivalently we can state this mapping as:

ϕq

(
n⊗

t=1

XatZbt

)
=

(
n⊕

t=1

at

)⊕(
n⊕

t=1

bt

)
, (5.4)
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where in the above
⊕

is a direct sum symbol. We will write a vertical bar between the
vector for the X powers and the vector for the Z powers mostly for ease of reading.

When q = 2 this is the standard mapping used in the qubit stabilizer formalism. We
may invert the map ϕq to return to the original n-qudit Pauli operator with the global
phase being undetermined. We make note of a special case of the ϕ representation:

Definition 16. Let q be the dimension of the initial system. Then we denote by ϕ∞ the
mapping:

ϕ∞ : Pn
q 7→ Z2n (5.5)

where no longer are any operations taken mod some base, but instead carried over the
full set of integers.

The ability to define ϕ∞ as a homomorphism still (and with the same rule) is a portion
of the results of this work–shown in Theorem 20. Our definition of ϕq is the standard
choice for working with stabilizers over q bases, however, our ϕ∞ allows us to avoid being
dependent on the number of bases our system has when working with our stabilizers.
Formally we will write a code in ϕq, perform some operations, then write it in ϕ∞, then
select a new local-dimension q′ and use ϕq′ . We shorten this to write it as ϕ∞, and can
later select to write it as ϕq′ for some prime q′ by taking element-wise mod q′. While
the operators in ϕ∞ all commute, normalization of the codewords for infinitely many levels
becomes a potential problem.

As an example of the difference in the ϕ representations, consider the following:

ϕ2(X⊗Z−1⊗I⊗XZ) = (1 0 0 1 | 0 1 0 1), ϕ∞(X⊗Z−1⊗I⊗XZ) = (1 0 0 1 | 0 −1 0 1).
(5.6)

The commutator of two operators in this picture is given by the following definition:

Definition 17. Let si, sj be two qudit Pauli operators over q bases, then these commute if
and only if:

ϕq(si)⊙ ϕq(sj) = 0 mod q (5.7)

where ⊙ is the symplectic product, defined by:

ϕq(si)⊙ ϕq(sj) = ⊕k[ϕq,z(sj)k · ϕq,x(si)k − ϕq,x(sj)k · ϕq,z(si)k] (5.8)

where · is standard integer multiplication mod q and ⊕ is addition mod q.
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Equivalently the commutator of two generalized Paulis, p1 and p2, is written and com-
puted as ϕ(p1) ⊙ ϕ(p2) = a⃗(1) · b⃗(2) − b⃗(1) · a⃗(2), with · as the standard dot product. This
is not formally a commutator, but when this is zero, or zero modulo the local-dimension,
the two operators commute, while otherwise it is a measure of number of times an X
operator passed a Z operator without a corresponding Z operator passing an X operator.
When q = 2, this becomes the standard commutation relations between qubit Pauli’s and
is particularly simplified since addition and subtraction mod 2 are identical.

Definition 18. A stabilizer code, specified by its n− k generators, is characterized by the
following set of parameters:

– n: the number of (physical) particles that are used to protect the information.

– k: the number of encoded (logical) particles.

– d: the distance of the code, given by the lowest weight of an undetectable generalized
Pauli error. An undetectable generalized Pauli error is an n-qudit Pauli operator
which commutes with all elements of the stabilizer group, but is not in the group
itself.

These values are specified for a particular code as [[n, k, d]]q, where q is the local-dimension
of the qudits.

Stabilizer codes come in two varieties: degenerate and non-degenerate codes. We pause
for a moment here to discuss how degenerate codes, a uniquely quantum coding feature,
differ from non-degenerate codes. Degenerate codes are different in the following equivalent
ways. Firstly, they may have multiple errors with the same syndrome value and that map
to different physical states, but upon recovery still map back to the same logical state.
Secondly, degenerate codes may have generators, aside from the identity operator, which
have lower weight than the distance of the code. These two differences make degenerate
codes markedly different from their non-degenerate counterpart. Degenerate codes, while
having these extra nuances, are a crucial class of stabilizer codes as any quantum analog
of a low-density parity-check (LDPC) code with high distance will need to be a degenerate
code.

To aid in determining which error might have occurred the syndrome values are com-
puted by finding the commutator of the error with each of the generators for the stabilizer
code.

A stabilizer code is written in the ϕ representation as a matrix whose rows are a set of
n− k generators for the subgroup. There are some operations that we may perform which
must preserve the parameters of the code, these include, in the ϕ representation:
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– Row swaps, corresponding to relabelling the generators.

– Swapping columns i and i+n with j and j+n, corresponding to relabelling particles.

– Multiplying a row by any number in {1, . . . , q− 1}, corresponding to composing that
generator with itself.

– Adding row i to row j, corresponding to composing the operators.

– Swapping column i with −1 times column i + n, corresponding to a discrete-fourier
transform (DFT) on particle i; the qudit analog of the Hadamard gate.

We neglect the phase gate,
√
Z, since we do not use it here, but it would also preserve

the parameters of the code. Note though that the SUM gate (qudit CNOT gate) will not
usually preserve the distance of the code so we do not allow ourselves to perform that
operation on our codes [112]. Now that the tools have been presented we proceed to our
results.

5.3 Simple Examples

Consider the following example of generators for a stabilizer group: ⟨XX,ZZ⟩. As a qubit
code this forms a valid stabilizer code with codeword:

|00⟩+ |11⟩√
2

(5.9)

and the commutator of these generators can be seen to be: (1) + (1) = 2 ≡ 0 mod 2.
Now suppose we wish to use this code for a qutrit system. In order to do that we must
transform these generators into ones which have commutator 0, this can be achieved with
⟨XX−1, ZZ⟩, whose powers are congruent mod 2 to the original code. In this case ϕ∞(X⊗
X−1)⊙ ϕ∞(Z ⊗ Z) = 0. This means that not only can this be used for qutrits, but for all
prime number of bases. The codeword in the qutrit case is:

|00⟩+ |12⟩+ |21⟩√
3

(5.10)

and the generalization of this for the codewords of a q level system is a simple extension.
We simply make each term in the codeword have the entries sum to a multiple of the qudit
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dimension so that the ZZ operator has a +1 eigenvalue:

1
√
q
(

q∑
j=1

|j mod q, q − j mod q⟩). (5.11)

If we look at the generators of this code, there is no single qudit operator that commutes
with the generators, thus the distance of this invariant form of the code is still d = 2.

This is not the only example of a code that can be turned into a form that is able to be
used regardless of the local-dimension. Another great example is the 5-qubit code [110].
In fact, no changes are needed:

⟨XZZXI, IXZZX, XIXZZ, ZXIXZ⟩. (5.12)

From inspection this can be seen to have commutators 0, and so this is a valid stabilizer
code for qudits, and it can also be checked that this code will always have distance 3.
There is also the 9-register code [111].

It is helpful to have a couple of examples, however, it has been unknown whether it is
always possible to put stabilizer codes into an invariant form. We move forward from here
to show that this can always be done, and a method of how to do this. The remainder of
this chapter delves into various aspects related to this question.

5.4 Methods for Constructing Local-dimension-invariant
Stabilizer Codes

In the prior section we saw a few examples of codes which can be used regardless of what
local-dimension our qudits have. In this section we show that it is always possible, and
with a constructive method, to put a stabilizer code into a local-dimension-invariant form.
The prescriptive method shown is not unique, so we briefly discuss a couple of slight
modifications which can be of use, as well as a particular property of some codes which
can be preserved.

We begin with the following definition, motivated by the prior section’s observations
and the definition for ϕ∞:

Definition 19. A stabilizer code S is local-dimension-invariant (LDI) if and only if:

ϕ∞(si)⊙ ϕ∞(sj) = 0, ∀si, sj ∈ S (5.13)
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We now show that all qudit stabilizer codes can be written in an LDI form. This shows
that we can form valid stabilizer groups over any number of bases, but says nothing about
the distance of these codes. This aspect is treated in the section immediately following.

Theorem 20. All stabilizer codes can be transformed into a local-dimension-invariant
form.

Proof. Let {s1, . . . , sn−k} be a set of stabilizer generators for a qudit code over q levels,
with q prime. We must construct a set of stabilizers, {s′1, . . . , s′n−k}, such that:

(a) ϕ∞(s′i) ≡ ϕq(si) mod q, for all i

(b) ϕ∞(s′i)⊙ ϕ∞(s′j) = 0, for all i ̸= j.

Without loss of generality, we assume that our stabilizers are given in canonical form: ϕ(s1)
...

ϕ(sn−k)

 =
(
In−k X2 Z1 Z2

)
. (5.14)

We define the strictly lower diagonal matrix, L, with entries:

Lij =

{
0 i ≤ j

ϕ∞(si)⊙ ϕ∞(sj) i > j
(5.15)

and define s′1, . . . , s′n−k such that: ϕ(s′1)
...

ϕ(s′n−k)

 =
(
In−k X2 Z1 + L Z2

)
. (5.16)

We show that s′1, . . . , s′n−k satisfy the conditions.

(a) Since ϕ∞(si) ⊙ ϕ∞(sj) ≡ 0 mod q for all i ̸= j, we observe that Lij ≡ 0 mod q for
all entries. By adding rows of L to our stabilizers, we have not changed the code
modulo q.
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(b) For i > j, we observe that:

ϕ(s′i)⊙ ϕ(s′j)

= (ϕ(si) + (0 | Li 0))⊙ (ϕ(sj) + (0 | Lj 0))

= ϕ(si)⊙ ϕ(sj) + ϕ(si)⊙ (0 | Lj 0)

+ (0 | Li 0)⊙ ϕ(sj) + (0 | Li 0)⊙ (0 | Lj 0)

= ϕ(si)⊙ ϕ(sj) + 0− Lij + 0

= 0.

■

Example 21. Consider the 7-qubit Steane code with parameters [[7, 1, 3]]2, denote it by Ξ
[82]. The ϕ representation is given by:

ϕ2(Ξ) =

[
H | 0
0 | H

]
(5.17)

where H is the parity-check matrix for the classical Hamming code given by:

H =

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1

 . (5.18)

We will put this into a local-dimension-invariant form using the method shown in Theorem
20. We begin by putting this in standard form, performing operations mod 2:

ϕ2(Ξ) =


1 0 0 0 0 0 1 | 0 0 0 0 1 1 0
0 1 0 0 0 0 0 | 0 0 0 1 1 1 0
0 0 1 0 0 0 1 | 0 0 0 1 0 1 0
0 0 0 1 0 0 0 | 1 1 0 0 0 0 1
0 0 0 0 1 0 0 | 0 1 1 0 0 0 1
0 0 0 0 0 1 0 | 1 1 1 0 0 0 0

 . (5.19)

Now that we have the code expressed in standard form we construct the matrix containing
the symplectic inner products, no longer taking operation over mod 2. The anti-symmetric
matrix [⊙] representing the symplectic inner products between the stabilizers and the re-
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sulting L matrix for this code are given below:

[⊙] =


0 0 0 2 0 0
0 0 0 0 0 0
0 0 0 0 2 0
−2 0 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0

⇒ L =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−2 0 0 0 0 0
0 0 −2 0 0 0
0 0 0 0 0 0

 . (5.20)

Adding this to our standard form, we have an invariant form for the Steane code given by:

ϕ∞(Ξ) =


1 0 0 0 0 0 1 | 0 0 0 0 1 1 0
0 1 0 0 0 0 0 | 0 0 0 1 1 1 0
0 0 1 0 0 0 1 | 0 0 0 1 0 1 0
0 0 0 1 0 0 0 | −1 1 0 0 0 0 1
0 0 0 0 1 0 0 | 0 1 −1 0 0 0 1
0 0 0 0 0 1 0 | 1 1 1 0 0 0 0

 . (5.21)

Since now all stabilizer generators from ϕ∞(Ξ) commute, this form of the code is a valid
stabilizer code over any number of bases. We do not know, however, what the distance of
this code is from this. We address this in Example 31.

We will want to know the size of the maximal entry in this invariant form for our bound
on ensuring the distance of the code is at least preserved. The bound on the maximal entry
is provided from the above proof:

Corollary 22. The maximal element in ϕ∞(S), B, is upper bounded by:

(2 + k(q − 1))(q − 1). (5.22)

Proof. As before, we begin with S in standard form. For any i ̸= j, there are at most k
entries, those entries which are not part of the Identity portion of the standard form, in
which both ϕq,x(si) and ϕq,z(sj) are non-zero and bounded above by q − 1, and a single
entry, corresponding to the sole nonzero entry in the Identity portion of the standard form,
in which one is 1 whereas the other is bounded above by q − 1. This gives us a bound on
the inner product of: k(q − 1)2 + (q − 1). This is a bound on the size of an entry in our
invariant stabilizer of q − 1 + k(q − 1)2 + (q − 1) = (2 + k(q − 1))(q − 1). ■
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Example 23. In this example we show that CSS codes remain CSS codes under this trans-
formation. Consider a general CSS code given by:

ϕ(Ξ) =

[
Ik1 Xk2 Xn−(k1+k2) | 0 0 0
0 0 0 | Zk1 Ik2 Zn−(k1+k2)

]
(5.23)

where we have put the two block matrices into approximately standard form. Now, we
perform Hadamards (or discrete Fourier transforms) on the k2 sized middle blocks. We
then have:

ϕ(Ξ) =

[
Ik1 0 Xn−(k1+k2) | 0 Xk2 0
0 Ik2 0 | Zk1 0 Zn−(k1+k2)

]
. (5.24)

Now, we note that the first k1 stabilizers exactly commute with each other, i.e., inner
product 0 in the ϕ∞ sense, and likewise for the k2 other stabilizer generators. Now we
simply need to consider the case where we pick generators from each of the halves. We
consider the matrix [⊙], as above. This has nonzero entries for rows in k2 when the columns
are in k1. Likewise for when the rows are in k1, the entries are nonzero for columns in
k2. Thus we only add entries to Zk1 and Xk2 with [⊙] and, hence, certainly also for our L
matrix. In fact, the L matrix adds entries only to Zk1 since it is lower triangular. Given
the new invariant form matrix, we may now invert our initial step of applying discrete
Fourier transforms and we will still have a CSS code.

While the proof of Theorem 20 used Lij = ϕ∞(si)⊙ϕ∞(sj) in order to generate a single
LDI form, we may generate other LDI forms by altering the added L matrix. We note two
of these now: L(+) and L(−).

Definition 24. L(+) (L(−)) has L(+)
ij (L(−)

ij ) is ϕ∞(si)⊙ϕ∞(sj) if the symplectic product is
greater than zero (less than zero).

These alternative Lmatrices each provide a different property. Firstly, using L(+) allows
ϕ∞(S) to have only non-negative entries. There are certain properties that are only gener-
ally true for matrices with non-negative entries, so this can perhaps be of use. Additionally,
this could be of use for systems formally with countably infinite local-dimension, such as
Bosonic systems, where operators with negative powers are not feasible. Secondly, L(−)

permits a slight reduction in the bound for the maximal entry in ϕ∞(S), as the following
Lemma shows:

Lemma 25. The maximal entry in ϕ∞(S), B, can be at most (1 + k(q − 1))(q − 1), and
generally B ≤ maxi,j |ϕ∞(si)⊙ ϕ∞(sj)|.
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Upon putting the code into canonical form this follows immediately from the definition
of L(−) as each entry will be whatever value was already in that location (values in Zq)
minus the absolute value of the inner product, which will be at most the absolute value of
the inner product. While this is a small improvement on the value of B, since it will be
the base of an exponential expression this amounts to a larger improvement in the overall
cutoff value.

While these are a few ways of generating LDI forms, there are a very large number of
options. Finding a collection of entries, which are congruent to zero modulo the initial
local-dimension, that generates all trivial commutations is equivalent to finding solutions
to a system of linear, homogeneous, Diophantine equations with a large surplus of variables
[113]. Given this, there is good reason to believe that far tighter bounds on B may be
possible.

5.5 LDI Proofs of Distance Promise Bounds

Now that we know that all qudit codes can be put into an LDI form, we now prove that
at least for sufficiently large local-dimension values we can ensure that the distance of the
code is at least preserved. We find a cutoff on the number of bases in the underlying space
needed to at least preserve the distance.

Theorem 26. For all primes p > p∗, with p∗ a cutoff value greater than q, the distance of
an LDI form for a non-degenerate stabilizer code [[n, k, d]]q used for a system with p bases,
[[n, k, d′]]p, has d′ ≥ d.

To make claims about the distance of the code we begin by breaking down the set of
undetectable errors into two sets. These definitions highlight the subtle possibility of the
distance reducing upon changing the local-dimension.

Definition 27. An unavoidable error is an error that commutes with all stabilizers and
produces the 0⃗ syndrome over the integers.

These correspond to undetectable errors that would remain undetectable regardless of
the number of bases for the code since they always exactly commute under the symplectic
inner product with all stabilizer generators–and so all members of the stabilizer group.
Since these errors are always undetectable we call them unavoidable errors since changing
the number of bases would not allow this code to detect this error. This then provides the
following insight:
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Remark 28. The distance of a code over the integers is given by the minimal weight
member in the set of unavoidable errors. The distance over the integers is represented by
d∗, and so d∗ ≥ d. This value is also the minimum number of columns of the stabilizer
generator matrix that are linearly dependent over the integers (or equivalently over the
rationals), in the symplectic sense.

We also define the other possible kind of undetectable error for a given number of bases,
which corresponds to the case where some syndromes are multiples of the number of bases:

Definition 29. An artifact error is an error that commutes with all stabilizers but produces
at least one syndrome that is only zero modulo the base.

These are named artifact errors as their undetectability is an artifact of the number of
bases selected and could become detectable if a different number of bases were used with
this code. Each undetectable error is either an unavoidable error or an artifact error. We
utilize this fact to show our theorem.

Proof. The ordering of the stabilizers and the ordering of the registers does not alter the
distance of the code. With this, ϕ∞ for the stabilizer generators over the integers can have
the rows and columns arbitrarily swapped.

Let us begin with a code over q bases and extend it to p bases. The errors for the
original code are the vectors in the kernel of ϕq for the code. These errors are either
unavoidable errors or are artifact errors. We may rearrange the rows and columns so that
the stabilizers and registers that generate these entries that are nonzero multiples of q are
the upper left 2d× 2d minor, padding with identities if needed. The factor of 2 occurs due
to the number of nonzero entries in ϕ∞ being up to double the weight of the Pauli. The
stabilizer(s) that generate these multiples of q entries in the syndrome are members of the
null space of the minor formed using the corresponding stabilizer(s).

Now, consider the extension of the code to p bases. Building up the qudit Pauli op-
erators by weight j, we consider the minors of the matrix composed through all row and
column swaps. These minors of size 2j×2j can have a nontrivial null space in two possible
ways:

– If the determinant is 0 over the integers then this is either an unavoidable error or
an error whose existence did not occur due to the choice of the number of bases.

– If the determinant is not 0 over the integers, but takes the value of some multiple of
p, then it’s 0 mod p and so a null space exists.
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Thus we can only introduce artifact errors to decrease the distance. By bounding the
determinant by p∗, any choice of p > p∗ will ensure that the determinant is a unit in Zp,
and hence have a trivial null space since the matrix is invertible.

Now, in order to guarantee that the value of p is at least as large as the determinant,
we can use Hadamard’s inequality to obtain:

p > p∗ = B2(d−1)(2(d− 1))(d−1) (5.25)

where B is the maximal entry in ϕ∞. Since we only need to ensure that the artifact
induced null space is trivial for Paulis with weight less than d, we used this identity with
2(d− 1)× 2(d− 1) matrices.

When j = d, we can either encounter an unavoidable error, in which case the distance
of the code is d or we could obtain an artifact error, also causing the distance to be d. It
is possible that neither of these occur at j = d, in which case the distance becomes some
d′ with d < d′ ≤ d∗. ■

We alluded prior to this proof that the code over the integers has distance at least
as large. To determine how many bases are needed to ensure we have distance d∗, we
simply extend our above result to obtain the cutoff expression, whereby no further distance
improvements can be obtained from embedding the code–suggesting that another code
ought to be used.

Corollary 30. For a non-degenerate stabilizer code we obtain the integer distance d∗ when:

p > B2(d∗−1)(2(d∗ − 1))d
∗−1. (5.26)

After this value the distance cannot be improved through embedding. If d∗ is unknown, this
can be upper bounded by using n− k in place of d∗.

Proof. This follows from the above proof. The looser bound comes from d∗ ≤ n− k, so we
can evaluate this at d∗ = n− k to obtain the loosest condition. ■

As a brief example of using this theorem, let us consider the Steane code again:

Example 31. In our example of the Steane code, Corollary 22 tells us that the maximal
entry is at most 3, but from our application of the method given in Theorem 20, we have
B = 1 so we defer to this value since it’s the true maximal entry value. The original
distance was d = 3. This means that for all primes larger than 12·2(2 · 2)2 = 16 we are
guaranteed that the distance is preserved. For primes below that value, we can manually
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check and apply alternate manipulations if needed. Given that all entries are ±1, we know
that the determinant of all the minors of interest are bounded by 4, all primes at least as
large as 5 preserve the distance. Through manual checking 3 is also not a possible minor
determinant, so all primes preserve the distance for our LDI form of the Steane code.

We also have the following theorem which provides an alternative bound utilizing the
structure of the symplectic product more directly as well as block matrix formulas:

Theorem 32. For all primes p > p∗ the distance of an LDI representation of a non-
degenerate stabilizer code [[n, k, d]]q over p bases, [[n, k, d′]]p, has d′ ≥ d, where we may use
as p∗ the value:

(B(q − 1)(d− 1)(1 + (d− 1)2(q − 1)d−1(d− 2)(d−2)/2))d−1, (5.27)

with q the initial local-dimension, d the distance of the initial code, and B the maximal
entry in the ϕ∞ representation of the code.

Proof. Let us begin with a code with local-dimension q and apply it to a system with
local-dimension p. The errors for the original code are the vectors in the kernel of ϕq for
the code. These errors are either unavoidable errors or are artifact errors. The stabilizers
that generate these multiples of q entries in the syndrome are members of the null space
of the minor formed using the corresponding stabilizers.

Now, consider the extension of the code to p bases. Building up the qudit Pauli oper-
ators by weight j, we consider the minors of the matrix. These minors of size 2j × 2j can
have a nontrivial null space in two possible ways:

– If the determinant is 0 over the integers then this is either an unavoidable error or
an error whose existence did not occur due to the choice of the number of bases.

– If the determinant is not 0 over the integers, but takes the value of some multiple of
p, then it’s 0 mod p and so a null space exists.

Thus we can only introduce artifact errors to decrease the distance. By bounding the
determinant by p∗, any choice of p > p∗ will ensure that the determinant is a unit in Zp,
and hence have a trivial null space since the matrix is invertible.

We next utilize the structure of the symplectic product more heavily in order to reduce
the cutoff local-dimension. Note that for a pair of Paulis in the ϕ representation, we may
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write:

ϕ(s1)⊙ ϕ(s2) = ϕ(s1)

[
0 −In
In 0

]
ϕ(s2)

T (5.28)

:= ϕ(s1)gϕ(s2)
T (5.29)

and so we may consider the commutation for the generators with some Pauli u as being
given by

⊕n−k
i=1 (ϕ(si)g)ϕ(u)

T , where
⊕

is a direct sum symbol here, indicating that a vector
of syndrome values is returned. This removes the distinction between the two components
and allows the symplectic product to act like the normal matrix-vector product. Now,
notice that for any Pauli weight j operator, we will have up to j nonzero entries in the X
component of the ϕ representation and up to j nonzero entries in the Z component. This
means that up to j columns in each component will be involved in any commutator.

Next, note that to ensure that an artifact error is not induced it suffices to ensure that
there is a nontrivial kernel, induced by the local-dimension choice, which is ensured so
long as any 2(d− 1)× 2(d− 1) minor does not have a determinant which is congruent to
the local-dimension. This can be promised by requiring the local-dimension to be larger
than the largest possible determinant for such a matrix. Since there will be at most j
nonzero entries in each component it suffices to consider j columns from each component
and subsets of 2j rows of this.

From this reduction, we need only ensure that the local-dimension is larger than the
largest possible determinant for this 2j × 2j minor. Let us denote this minor by:[

X1 Z1

X2 Z2

]
, (5.30)

where each block has dimensions j × j. The maximal entries are q − 1 for X1 and X2,
whereas for Z1 and Z2 it is bounded by B. We now use the block matrix identity:

det

[
X1 Z1

X2 Z2

]
= det(X1)det(Z2 −X2X

−1
1 Z1). (5.31)

Since all entries in X1 are integers and the determinant is, by construction, nonzero,
the maximal entry in X−1

1 will be at most that of the largest cofactor of X1. The largest
cofactor, C̃, will be at most (q− 1)d−2(d− 2)(d−2)/2, as provided by Hadamard’s inequality.
The largest entry in Z2 − X2X

−1
1 Z1 is then upper bounded by B(1 + (q − 1)C̃(d − 1)2).

From here, we may apply Hadamard’s inequality for determinants again using the given
entry bounds, using that each block has dimensions up to (d− 1)× (d− 1), which provides
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p∗ = (q − 1)d−1(d− 1)d−1(B(1 + (q − 1)C̃(d− 1)2))d−1, or alternatively expressed in terms
of our fundamental variables as

(B(q − 1)(d− 1)(1 + (d− 1)2(q − 1)d−1(d− 2)(d−2)/2))d−1. (5.32)

In the case of q = 2 this reduces to (B(d− 1)(1 + (d− 1)2(d− 2)(d−2)/2))d−1.

Lastly, when j = d, we can either encounter an unavoidable error, in which case the
distance of the code is d or we could obtain an artifact error, also causing the distance to
be d. It is possible that neither of these occur at j = d, in which case the distance becomes
some d′ with d < d′ ≤ d∗, with d∗ being the distance of the code over the integers. ■

Before concluding this section, we provide a brief comparison of this bound to the
original one of B2(d−1)(2(d − 1))(d−1). The new bound only depends on Bd−1 opposed
to the original B2(d−1), which as the bound on B depends on k means that for codes,
or code families, with larger k values the new bound can provide a tighter expression.
Unfortunately, however, this new bound is doubly-exponential in the distance of the code
d, having a dependency of roughly dd

2 opposed to the prior dependency of dd, so if one
is attempting to promise the distance of a code with a larger distance, this new bound is
likely to be far less tight. In summary, this alternative bound is not per se better, however,
since one may simply use whichever of the bounds is tighter this alternative bound may
provide a lower requirement for the local-dimension needed in order to ensure that the
distance of the code is at least preserved.

5.5.1 Degenerate Codes

Degenerate codes are a uniquely quantum phenomenon, which suggests that they are a
crucial class of quantum error-correcting codes in order to obtain certain properties. For
a degenerate quantum error-correcting code we must avoid undetectable errors, but also
detectable errors which produce the same syndrome but do not map to the same physical
codeword. Any LDPC-like quantum error-correcting code will be degenerate, as, equiv-
alently, a quantum error-correcting code is degenerate if there is some stabilizer group
member with lower weight than the distance of the code and by construction one would
aim to have a high distance for a quantum LDPC code but still O(1) weight for each gen-
erator. We show now that a similar distance promise may be made in the degenerate case
as was possible in the non-degenerate case, and remark on what differences exist between
the two classes in the local-dimension-invariant framework in the next section.
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Theorem 33. For all primes p > p∗ the distance of an LDI representation of a degenerate
stabilizer code [[n, k, d]]q over p bases, [[n, k, d′]]p, has d′ ≥ d, where p∗ is the same function
of n, k, d, and q as before.

Proof. In the case of non-degenerate codes all undetectable errors, up to distance d, were
in the normalizer of the generators, N (S), as the weight of all members of the stabilizer
group have weight at least d. For degenerate codes we only need to be concerned about
elements in N (S)/S, as now there are some members of the stabilizer group which might
have weight below d. The latter set is a subset of the former (N (S)/S ⊂ N (S)), and so
the same distance promise is obtained as before. ■

Notice that all Paulis with weight less than d that are in S produce a syndrome that
is all zeros, over the integers, and so may appear to be within the category of unavoidable
errors when syndromes are computed. This means that when checking the distance this
must carefully be taken into account, otherwise the members in S may be mistaken for
these errors leading to an erroneous distance value.

This means that just like non-degenerate quantum codes, we may also promise the
distance of the code in the degenerate case, and with the same cutoff bound. This provides
both classes of stabilizer codes and so provides a distance promise for all stabilizer codes.

5.5.2 Brief Aside: MDS Codes

The quantum Singleton bound is given by n−k ≥ 2(d− 1) [114]. All stabilizer codes must
satisfy this bound. One could aim to design codes which saturate this universal bound.
Such codes are called Maximally Distance Separated (MDS) codes.

Corollary 34. Given an MDS code with parameters [[n, k, d]]q, we may generate an MDS
code with parameters [[n, k, d]]p for all p > p∗.

This suggests that perhaps MDS codes, while optimal in some sense (saturating the
quantum Singleton bound), and their MDS property may not be the best metric for op-
timality when considering local-dimension choices as well [115]. The generalized quantum
Hamming bound is local-dimension aware, however, codes which saturate this bound–
known as perfect codes–are fully enumerated and cannot have distance 5 or above [98].
Additionally the generalized quantum Hamming bound does not always hold for degener-
ate stabilizer codes. This means that perhaps focusing on the MDS property of codes is
not a great metric for quality always.
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5.6 Opposite Direction Distance Promises

The above provides a condition on the number of bases needed to ensure the distance of
the code is at least preserved, but one could also ask, given an LDI code, whether that
code can be used over fewer bases. We provide a bound on this with the following:

Lemma 35. For a non-degenerate code, for all p < p∗∗, with p∗∗ a cutoff value less than
q (possibly ≤ 2), the distance of [[n, k, d]]q over p bases, [[n, k, d′]]p, must have d′ < d.

Proof. Let t = ⌊d−1
2
⌋. The qudit quantum Hamming bound requires the initial code to

satisfy:
t∑

j=0

(
n

j

)
(q2 − 1)j ≤ qn−k. (5.33)

Now we consider applying the code over p levels. Then we may bound:(
n

t

)
(p2 − 1)t ≤

t∑
j=0

(
n

j

)
(p2 − 1)j. (5.34)

Likewise, when p ≥ 2 we may bound:

pn−k ≤ (p2 − 1)n−k. (5.35)

Combining these we have: (
n

t

)
(p2 − 1)t ≤ (p2 − 1)n−k. (5.36)

Then we violate the initial inequality if:

p <

√
1 +

(
n

t

)1/((n−k)−t)

= p∗∗ (5.37)

This means that p∗∗ is only a valid bound when it is larger than 2, otherwise this result is
trivially true since we no longer have a quantum code. ■

Combining these results mean that distance may be preserved for p∗∗ ≤ p < p∗, while
for p > p∗ it is guaranteed to have the distance preserved. For the region of values of p
where the distance might be preserved, one can manually check and attempt another LDI
form to try to make the distance preserved for the desired number of bases.
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The expression for p∗∗ was derived by using the generalized quantum Hamming bound,
which holds for all non-degenerate codes, however, for degenerate codes this bound does
not always hold as there is no longer a bijective relationship between correctable errors and
syndromes. This means that for a general degenerate code we have the following Lemma:

Lemma 36. There is no corresponding p∗∗ that holds for arbitrary degenerate codes.

While not all degenerate quantum codes obey the generalized quantum Hamming
bound, there are certain code families which do [107, 116]. For those code families the
exact same expression for p∗∗ holds as did for non-degenerate codes.

The non-existence of a p∗∗ expression for arbitrary degenerate codes provides an op-
portunity. Consider a code whose initial local-dimension q is far larger than 2. In the
non-degenerate case this p∗∗ provides a local-dimension value below which the distance of
the code must decrease, but for degenerate codes the lack of this means that it may be
possible to apply the code over a far smaller local-dimension, even local-dimension 2, and
still preserve all of the parameters, and particularly the distance. This suggests that it may
be possible to import codes into lower local-dimension values than previously expected.

We conclude this section by briefly summarizing the distance promises. We will be
referring to figure 5.1, where the x-axis is the local-dimension and the y-axis is promise on
the distance of the code. Below p∗∗ we know that the distance of the code must be lower
than the initial distance d. For p∗∗ < p < q, we have no information about the distance
of the code from any of our results. Codes in this region would be those which can be
applied over a smaller local-dimension than their initial design. Following this, we know
that at local-dimension q the distance is unchanged as the LDI form does not alter the
code over q. Between q and p∗ we again have no promises on the distance of the code,
however, we do have multiple expressions for p∗, so any further reductions in this value
would lower the cutoff value for the local-dimension needed to preserve the distance of the
code. In section 5.8 we show a particular case whereby this cutoff can be slightly super
quadratically improved. Proceeding, between p∗ and p∗(d∗) we know that the distance of
the code must be at least d but could be as high as d∗ (the distance over the integers).
Finally, for local-dimensions larger than p∗(d∗) we know that the distance of the code must
be d∗. It is possible that d∗ = d, however, it is not certain, hence we make the distinction
in the schematic diagram.
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Figure 5.1: Distance promises in the non-degenerate code case for LDI codes. Along the
x-axis is the newly selected local-dimension for the LDI code transformed from initial
local-dimension q.

5.7 Logical Operators for LDI Codes

Besides from the stabilizers we also need logical operators to perform computations over
the encoded qudits. Now we show how to construct such invariant logical operators.

Lemma 37. We may define invariant logical operators, L∞, for the stabilizer code S as
well.

Proof. Each logical operator is in N(S)/S, the normalizer of S excluding S, and there are
k X logical operators and k Z logical operators. This means that we could, if we desired,
generate a code S′ whose generators are S∪LX . This will have rank n and can be written
in standard form as: [

In|∗
]

(5.38)

meaning that LX may be diagonalized within the last k qudits. This can also be done with
LZ .
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Then, since these logical operators are compositionally independent, they must be
linearly independent in the ϕ representation, meaning rank(LX ∪ LZ) = 2k. Now, if we
take the standard form for S and append LX , LZ as additional rows we have: S

LX

LZ

 =

In−k A | B C
0 D | E F
0 G | H J

 (5.39)

From the above observation it is possible to compose the generators for LX , LZ to generate
the matrix: In−k A | B C

0 Ik | E ′ F ′

0 G′ | H ′ Ik

 (5.40)

At this point we focus on fixing the commutators between elements of LX and LZ . Since
the first k qudits will always contribute 0 to the commutator we drop those columns:[

Ik | F ′

G′ | Ik

]
(5.41)

We can further reduce this to: [
Ik | 0
0 | Ik

]
(5.42)

This trivially satisfies the required relations:

ϕq(X̄i)⊙ ϕq(Z̄j) = δij (5.43)

ϕq(X̄i)⊙ ϕq(X̄j) = ϕq(Z̄i)⊙ ϕq(Z̄j) = 0, ∀i, j (5.44)

Throughout these computations we have updated E ′ and H ′. We now simply apply The-
orem 20 to each logical operator in turn appended to ϕ(S). ■

Remark 38. This process does not alter our invariant stabilizer form, so our bound from
earlier still holds.

5.8 Calderbank-Shor-Steane (CSS) Case

We now proceed to a new result related to local-dimension-invariant (LDI) codes in the case
of Calderbank-Shor-Steane (CSS) codes. In Example 23, we showed that CSS structure
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can be preserved when transformed into an LDI form. CSS codes have a set of independent
generators only using X operators or Z operators for each generator.

Figure 5.2 illustrates the initial distance promises proven for arbitrary stabilizer codes,
as well as the improvements to be shown in the case of CSS codes. For local-dimensions
p with q < p < p∗, the distance of the code is uncertain. For this uncertainty region the
distance could be lower, it could be the same, or it could even be higher, however, it must
be determined manually. It is conjectured that for q ≤ p the distance can be at least
preserved, however, this is only known to be possible for a few codes, such as the 5, 7, and
9 particle codes [110, 2, 111]. This section adds to this collection an infinite family. While
the distance is promised to be at least the same for p∗ < p, the caveat is that the current
bound for p∗ for an arbitrary stabilizer code is very large: p∗ = B2(d−1)(2(d − 1))d−1 with
B being the largest entry in the LDI form. This value is typically large, so reductions to
it is crucial to make the technique of more practical use. In the class of CSS codes we may
reduce this cutoff value roughly quadratically: p∗CSS ≈

√
p∗.

Theorem 39. For all primes p, p > p∗CSS, with p∗CSS = Bd−1(d − 1)(d−1)/2, the distance
of a local-dimension-invariant CSS code with parameters [[n, k, d]]q used over p levels with
parameters [[n, k, d′]]p, has d′ ≥ d.

The proof of Theorem 39 follows using largely the same argument as before.

Proof. We begin by recalling that Example 23 showed that LDI codes, using the given
method, preserve CSS structure. CSS codes take the structure:[

X | 0
0 | Z

]
. (5.45)

The distance preservation property may then be considered separately within the two
blocks X and Z. This effectively reduces the Pauli weight of an error to the Hamming
weight of the error within a single error-axis. Each block only has nonzero valued syndrome
values for Z and X terms in a Pauli respectively. Given this, the Pauli weight for any error
activating syndromes in just the X portion is the same as the Hamming weight for those
operators. This is likewise the case for the Z portion. This then means that in order to
have an undetectable error it must be undetectable within the X portion and within the
Z portion.

Next, undetectable errors correspond to nontrivial kernels of matrix minors. Consider
building up the errors composed solely of Z operators by their Hamming weight w. The
kernel is nontrivial if the w × w matrix minor corresponding to this Hamming string has
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Figure 5.2: This schematic image illustrates the effect of finding a reduced expression for
the cutoff value for the distance promise. The light green area on the left is the set of
local-dimension values which must have their distance manually checked, the red region
is the set of local-dimension values which must have their distance manually checked for
a CSS code if the general p∗ expression is used, whereas when p∗CSS is used that region
automatically has the distance promised.

a determinant that is congruent to zero modulo the local-dimension. To avoid tracking
the locations of the Hamming weights we allow ourselves to arbitrarily permute the entries
within each portion of the CSS code. The determinant for a minor can be zero in two
different ways:

– If the determinant is 0 over the integers then this error is either an unavoidable error
or an error whose existence did not occur due to the choice of the local-dimension.

– If the determinant is not 0 over the integers, but is merely some multiple of the
local-dimension, then this corresponds to an artifact error.

This means that we only have to worry about this second case lowering the distance upon
changing the local-dimension. If the determinant of this minor can be guaranteed to be
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smaller than the local-dimension then we are promised that the distance will at least remain
the same. We may bound the determinant of a w × w matrix minor using Hadamard’s
inequality, which we evaluate at d − 1 since we only need to ensure no artifact errors are
induced prior to weight d. This then provides:

p∗CSS = Bd−1(d− 1)(d−1)/2. (5.46)

Then so as long as the local-dimension is larger than this no Z error will result in a
distance lower than d. This same argument can be made for X errors, which completes
the proof. ■

In essence this is based on needing only to perform the prior distance promise proof
over each of the two blocks in these codes and only needing to worry about the Pauli
weight of the error in each block being the same as the Hamming weight. This is slightly
better than a quadratic improvement over the general p∗ bound. This is a step toward
decreasing the value of p∗ significantly enough to make this method of practical use. Let
us consider the utility of this improvement for the qubit Hamming family, with parameters
[[2N − 1, 2N − 1 − 2N, 3]]2. The first member of this family, H3, is known as the Steane
code with parameters [[7, 1, 3]]2 [82]. An LDI form, with parameters [[7, 1,≥ 3]]q, for this
code was found earlier in this chapter as:

ϕ∞(H3) =


1 0 0 0 0 0 1 | 0 0 0 0 1 1 0
0 1 0 0 0 0 0 | 0 0 0 1 1 1 0
0 0 1 0 0 0 1 | 0 0 0 1 0 1 0
0 0 0 1 0 0 0 | −1 1 0 0 0 0 1
0 0 0 0 1 0 0 | 0 1 −1 0 0 0 1
0 0 0 0 0 1 0 | 1 1 1 0 0 0 0

 . (5.47)

We return this code to CSS form by applying DFTs on particles 4, 5, and 6:

ϕ∞(H3) =


1 0 0 0 1 1 1 | 0 0 0 0 0 0 0
0 1 0 1 1 1 0 | 0 0 0 0 0 0 0
0 0 1 1 0 1 1 | 0 0 0 0 0 0 0
0 0 0 0 0 0 0 | −1 1 0 −1 0 0 1
0 0 0 0 0 0 0 | 0 1 −1 0 −1 0 1
0 0 0 0 0 0 0 | 1 1 1 0 0 −1 0

 . (5.48)

Using the bound for p∗ without knowing the code is CSS but knowing that the maximal
entry is 1, we find p∗ = 16. This leaves a handful of primes still to verify the distance over.
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If instead we use Theorem 39 with the known maximal entry of 1 we obtain p∗ = 1222/2,
which is 2. This means that the distance of this code is always at least preserved. While
this was discussed before, this provides a quicker way to obtain this fact and illustrates the
improvements obtained here.

The prior description of an LDI representation for the Steane code used the prescriptive
method for generating an LDI form for the code, however, we could have equivalently
performed the following alteration:

ϕ2(H3) =


1 1 1 1 0 0 0 | 0 0 0 0 0 0 0
0 1 1 0 1 1 0 | 0 0 0 0 0 0 0
0 1 0 1 1 0 1 | 0 0 0 0 0 0 0
0 0 0 0 0 0 0 | 1 1 1 1 0 0 0
0 0 0 0 0 0 0 | 0 1 1 0 1 1 0
0 0 0 0 0 0 0 | 0 1 0 1 1 0 1

 . (5.49)

We then put the code into an LDI form by flipping the signs of some of the entries,
producing:

ϕ∞(H3) =


1 1 1 1 0 0 0 | 0 0 0 0 0 0 0
0 1 1 0 1 1 0 | 0 0 0 0 0 0 0
0 0 1 1 0 1 1 | 0 0 0 0 0 0 0
0 0 0 0 0 0 0 | 1 −1 1 −1 0 0 0
0 0 0 0 0 0 0 | 0 1 −1 0 1 −1 0
0 0 0 0 0 0 0 | 0 0 1 −1 0 −1 1

 . (5.50)

Intuitively, we select signs so that the Z rows add to zero, and also add to zero within
the blocks corresponding to those in the X rows. This also satisfies the same distance
promise–always having distance at least 3, regardless of the local-dimension. In fact, we
can extend this method of flipping the signs of some entries in this code to that of the
whole family of codes within the [[2N − 1, 2N − 1− 2N, 3]]2 family. We show that this sign
flipping can always generate an LDI representation for the code. In particular, we find
that for this family we can prove a tight bound on the value of the maximal entry:

Lemma 40. For the qubit quantum Hamming code family with parameters [[2N − 1, 2N −
1− 2N, 3]]2, there is an LDI representation such that B = 1 for all members of the family.

Recall that this family is generated by each column being one of the nonzero binary
strings of length N in each the X component and the Z component. We will take the
register placement of each string to be the same in the X component and the Z component.
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Proof. We begin by noting that for the N = 3 case we already have the Steane code
discussed just above (equation (5.50)). We will now prove inductively that we may always
generate an LDI form such that B = 1. Let H∞

N be the N -th family member such that all
generators in H∞

N commute with those of HN . Next, consider for N ≥ 4, one can write the
next member of the family in terms of the prior member as:

ϕ2(HN+1) =


1 1⊗2N−1 0⊗2N−1 | 0 0 0
0 HN HN | 0 0 0

0 0 0 | 1 1⊗2N−1 0⊗2N−1

0 0 0 | 0 H∞
N H∞

N

 , (5.51)

with the superscript ⊗ indicating repetition of that value. However, this version of the
code is not in an LDI representation. We make the following sign changes and then verify
that this version is an LDI representation:

ϕ∞(H∞
N+1) =


1 1⊗2N−1 0⊗2N−1 | 0 0 0
0 HN HN | 0 0 0

0 0 0 | 1 v 0⊗2N−1

0 0 0 | 0 H∞
N H∞

N

 , (5.52)

where v = (−1
⊕

1)⊗2N−1−2
⊕

(−1). By the inductive hypothesis all operators in HN

commute with those of H∞
N . Next, the first row commutes with the first nontrivial row in

the Z component as there are an equal number of −1 and +1 in v. The sum of each row
in H∞

N is 0, again due to alternating signs, and so the first row commutes with all rows
in H∞

N . We must lastly ensure that v commutes with each row in HN . Consider the most
recently added row in HN . This will be given by 1⊗2N−1⊕

0⊗2N−1−1, which will commute
with v. The following rows will be those of (0

⊕
HN−2

⊕
HN−2)

⊗2, which delves one level
further down the classical Hamming family. The second repetition of (0

⊕
HN−2

⊕
HN−2)

trivially commutes as the entries in the Z component are all zero. We then just need
v⊙ (0

⊕
HN−2

⊕
HN−2) = 0. Note that HN−2 has an odd number of columns (2N−2 − 1),

and so the symplectic product terms from the first HN−2 will begin with the +1 term in v
and then alternate, while for the second HN−2 the terms will begin with the −1 term in v
and then alternate. This means that for every +1 there is a −1 and so they commute. ■

While the ability to write this family in an LDI representation only using {0,±1} as
the entries is of limited interest, applying this result with Theorem 39 we obtain:

Corollary 41. All qubit Hamming codes have an LDI representation that has distance at
least 3, meaning that this generates a [[2N −1, 2N −2N−1,≥ 3]]q code family for all N ≥ 3
and q a prime.
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Proof. This family is a CSS code family. This result then follows from the CSS distance
promise for LDI codes and the above Lemma showing that B = 1 may be achieved for this
family. ■

This shows that the local-dimension-invariant form is at least in some cases able to
provide tight expressions that allow for the full importing of code families for larger local-
dimension systems. Additionally, this provides another qudit code family, a particularly
non-trivial one, with two parameters N and q.

5.9 Additional Examples

To help ground some of the discussions, we provide some more examples next. These
illustrate the utility of this framework as well as providing clear examples whereby the
choice of LDI form can significantly change the distance promise that can be made.

Example 42. Consider the qubit code with generators ⟨s1, s2⟩ = ⟨X⊗n, Z⊗n⟩, with n ≥ 4
being an even number. This code has parameters [[n, n− 2, 2]]2. |ϕ∞(s1)⊙ϕ∞(s2)| = n, so
directly applying Lemma 25, B = n− 1 is obtained. This provides a bound of 2(n− 1)2 via
the prior bound, while with the new bound shown here this is (n− 1). The results then say
that the distance is preserved for p > n− 1.

Let us take the LDI form for the code as ⟨X1−nX⊗(n−1), Z⊗n⟩. Observe that all weight
one Paulis do not commute with at least one generator for the code, whereas IZZ−1I⊗(n−3)

is an unavoidable error, so the distance is always d = 2.

While this suggests that the determinant bound we showed is incredibly loose, we can
write the qubit code in a different LDI form as ⟨(XX−1)⊗(n/2), Z⊗n⟩. For this form B = 1,
which provides p∗ = 2, using either bound, which means that the distance is always at
least preserved. This illustrates the impact of careful selection of the LDI form used, and
suggests that perhaps with a careful choice of LDI form the bounds provided can be tight
for a given code.

Example 43. As another example let us consider the Shor code, with parameters [[9, 1, 3]]2,
and consider a local-dimension-invariant form for it. The Shor code is a degenerate code
as the inner blocks of the code have some repeated syndromes. The code has a maximal
symplectic product of 2, meaning that there is an LDI form which has B = 1. One such
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option is the following set of generators:

⟨XX−1II⊗6, IXX−1I⊗6, I⊗3XX−1II⊗3,

I⊗3IXX−1I⊗3, I⊗6XX−1I, I⊗6IXX−1,

Z⊗6I⊗3, I⊗3Z⊗6⟩. (5.53)

Using B = 1, the bound from [2] is tighter, which provides p∗ = 16, meaning that so
long as the local-dimension is 17 or larger the distance will be at least 3. From here,
manual checking, for local-dimensions 3, 5, 7, 11, and 13, verifies that the distance is
always preserved. There already was a 9-register code [111], however, this contextualizes
the result within the local-dimension-invariant framework. For completeness, a set of logical
operators for this code is given by X̄ = XX−1XX−1XX−1XX−1X and Z̄ = Z⊗9, which
was initially neglected in the definition of the code [111]. For the logical operators we only
require that they do not commute with each other, but do commute with the generators for
the code–here X̄ ⊙ Z̄ ̸= 0.

5.9.1 The Toric Code

All of the examples considered so far have been traditional stabilizer codes. In more near-
term applications of quantum error-correction topological codes have become of greater
interest. Amongst topological codes is the toric code, proposed by Kitaev, which has a
distance that is the square root of the number of qubits. We examine the toric code here
and show how we can put it into an LDI form that always preserves the distance.

The toric code is constructed on a square grid of qubits and its dual square grid also
as qubits. The code is CSS with the stabilizer generators given as X operators on the
edges of each grid square, and Z operators on the cross from the intersection of squares,
see Figure 5.3. We make the proposed modifications in the figure, flipping the power of
opposing pairs of Pauli operators within each generator. This allows for compositions to
still perfectly commute with all other generators. This simple change provides an LDI form
for the code, but does not, yet, guarantee that the distance is preserved.

For the toric code, the logical operators are completely topologically winding strings
of a single Pauli operator. This is what gives the code the high distance as the weight of
the logical operators is a lower bound on the distance for non-degenerate codes such as
this. As an ansantz, we take these same logical operators and consider the coset equivalent
forms for them upon interacting with the stabilizer generators. In Figure 5.4 we show two
characteristic examples. The top example imagines applying the X stabilizer from below
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the middle X operator, which deforms the string. This is exactly the same action as the
qubit case, except the left edge is a −1 power instead of +1. Consider, however, if we
apply the same generator from above. Then the string is deformed like the in qubit case
but there is also an added bridge in the operator that is impossible in the qubit case (it
disappears upon taking mod 2). Now, this behavior could be extended and we could
generate more bridges, however, no bridge can fully wind around the torus and generate
a non-trivial action on the logical space. This means that the distance is still preserved,
although these peculiar bridges appear for the non-qubit case. As of this time, it is not
clear whether these bridges provide some possible other changes to the toric code, aside
from singular strings not always being the logical operator, but rather strings with possible
multiplicities in them.

Figure 5.3: This figure shows the transformations on the stabilizing plaquettes for the
qubit toric code to generate a toric code that works regardless of the local-dimension of
the system. This transforms the code from a [[2N2, 2, N ]]2 code into a [[2N2, 2, N ]]q code
for any prime q.
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Figure 5.4: This figure illustrates the distance argument, showing that the distance of the
code is preserved upon changing the local-dimension of the code. Notice that bridges are
generated which are only existent in the non-qubit case.
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5.10 Conclusion and Discussion

The local-dimension-invariant (LDI) representation of stabilizer codes allows these codes to
be applied regardless of the local-dimension of the underlying system. LDI codes can have
their distance promised to be at least preserved, once the system has sufficiently many
levels. We have found two different bounds on the required local-dimension the second
bound (5.27) suffers a severe dependency on the distance of the code, but it does provide
a nearly quadratic improvement on the dependency of the largest entry in the LDI form
of the code, given by B. So while this bound is less helpful in some cases than the first
bound (5.25) it can be a tighter bound in others. Of particular note is the situation where
one does not need to guarantee the same distance as the original code, but just some lower
distance δ or larger. In this case the value for B does not change, however, everywhere that
a d appears in the expressions for p∗ may be replaced by δ. In these cases the quadratic
improvement on the dependency on B shown here can become particularly advantageous.

While few qudit quantum computer prototypes are currently being built this provides
another avenue for generating qudit quantum error-correcting codes. While currently the
size of the local-dimension must be large to promise the distance of an arbitrary LDI code,
we have provided a case, CSS codes, where this can be at least quadratically improved.
Beyond this improvement we have also constructed a new qudit code family that is directly
imported from a qubit code family. This is the first non-trivial family to be perfectly carried
over via the LDI framework [113]. While there already exists qudit quantum Hamming
families with paramters [[n, n− 2m, 3]]q for m ≥ 2 in the cases of gcd(m, q2 − 1) = 1, n =
(q2m − 1)/(q2 − 1) and gcd(m, q − 1) = 1, n = (qm − 1)/(q − 1), this new code family
fills in values of n which are not covered by these [6]. Additionally, while there exists
[[n, n−4, 3]]q codes for odd prime power q values and 4 ≤ n ≤ q2+1, this provides options
for n beyond q2 + 1 [117]. Lastly, while arguably Maximally-Distance-Separable (MDS)
codes are optimal, there are a number of values of n for which there are no known MDS
codes for a given value of q [118]. While the family presented here is not MDS, perhaps
the analysis used in this work can be applied to help fill in missing parameter choices.

Unfortunately, the utility of this method is somewhat limited as both bounds on the
required local-dimension are quite large, as indicated in Table 5.1, but as seen in the
examples this bound can often be significantly reduced through careful construction of the
LDI form. In order to improve the practicality of this technique the value for p∗ must
be significantly decreased. One way to reduce these bounds is to reduce the expression
for B, the maximal entry in the LDI representation. To do so, other analysis techniques
will be needed beyond simple counting arguments. Since the LDI form for a code is not
unique, one possible method may be to solve systems of homogeneous linear diophantine
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equations, which given the surplus of variables (additions to entries) compared to variables
(requirement of commutations to be zero) is likely to yield far smaller bounds on B. A
starting point for this might include the following works: [119, 120].

Although in this work we find some critical value, p∗, above which all primes preserve
the distance of the code, we believe that this result carries to all primes at least as large as
the initial local-dimension if one uses other procedures to put the code into an LDI form.
Proving this, or at least tightening the bound on the critical value, seems like an important
extension of this result, since the current bound can be quite large.

Additionally, this work has only concerned itself with preserving the distance of codes in
LDI representations, but investigating whether other desirable properties (such as transver-
sality, cyclicity, or fault-tolerant properties of a given code) are able to be preserved is also
an important direction.

Other directions that the work can be carried include knowing when it is possible to
take codes already known over q levels, and not a perfect code, and preserve the distance
while using the code over p < q levels, or when a degenerate code can be used over a far
smaller local-dimension value than it was initially designed for. Broadly speaking, if p∗
can be reduced to q this would provide for a loose hierarchy of stabilizer codes whereby all
2-level codes could be used as 3-level, 5-level, and so forth codes, and all 3-level codes could
be used for 5-level, 7-level, and so forth codes. While examples have seemingly indicated
this, this is too much of a leap from current results.

Here we have shown at least the pedagogical utility of local-dimension-invariant stabi-
lizer codes, and so naturally there are questions as to what other uses this technique will
have. Is it possible to apply this technique to show some foundational aspect of quantum
measurements?

Could the connection of these LDI codes to bosonic codes be made concrete? Or what
are the possible applications of this work for the Gottesman-Kitaev-Preskill (GKP) coding
scheme in continuous variable quantum computing [121, 122]? As a longer term goal, is
it possible to go from using this work for bosonic codes fully to quantum convolutional
codes [123, 124, 125, 126]? As that coding method in principle uses countably infinitely
many bases, which suggests a possible correspondence or at least ability to intermix the
interpretations between these seemingly disparate information protecting schemes.

Can this technique in some way be used for other varieties of stabilizer like codes, such
as Entanglement-Assisted Quantum Error-Correcting Codes [127, 128]? If this method can
be applied in this situation it is possible that it could remove the need for entanglement
use in these codes, so long as the local-dimension is altered. However, even still, the local-
dimension required would likely be quite large so the importance of decreasing the bounds
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Code parameters Bound from (5.25) Bound from (5.27)

[[9, 1, 3]]2 256 400
[[13, 7, 3]]2 65536 6400
[[21, 13, 3]]2 614656 19600
[[29, 19, 4]]2 13824000000 1481544000
[[13, 7, 3]]3 12960000 4161600
[[27, 22, 3]]3 1049760000 37454400
[[91, 85, 3]]3 218889236736 540841536
[[25, 22, 3]]5 213813760000 31258240000

Table 5.1: This table compares the bounds on p∗, above which the distance of the code is
known to be preserved, for a few example codes. The bound on B is used for the value of
B. Examples taken from [5] for the qubit codes and [6] for qudit cases.

for p∗ would become that much more. If, however, these prior points were addressed
it could perhaps lead to far simpler low-density parity-check (LDPC) codes. Currently
constructions utilize challenging homological structures of braiding groups, although have
achieved the ideal parameters [129, 130, 131, 132]. We wonder whether, with these pieces,
it would be possible to generate quantum LDPC codes directly from classical LDPC codes.
This would permit far more direct importation of classical error-correcting codes with
excellent properties, between LDPC codes to more general fault-tolerant schemes used
classically.
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