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Abstract

Software projects make use of libraries extensively. Libraries have intended API sur-
faces—sets of exposed library interfaces that library developers expect clients to use. How-
ever, in practice, clients only use small fractions of intended API surfaces of libraries.
Clients also use libraries in unexpected ways sometimes. Understanding usage patterns of
library APIs by clients is beneficial to both client and library developers—targeting issues
such as version upgrades, breaking changes and software bloating. We have implemented a
tool to study both static and dynamic interactions between clients, the libraries they use,
and those libraries’ direct dependencies. We use this tool to carry out a detailed study of
API usage patterns on 90 clients and 11 libraries. We present a classification framework
for developers to classify API uses. We then describe two additional developer-focussed
applications of the data that our tool produces: a secondary visualization tool VizAPI,
as well as the concept of library fission. Conceivably, VizAPI can allow client and library
developers to answer the following queries about the interaction of their code and the
libraries they depend on: Will my client code be affected by breaking changes in library
APIs? Which APIs in my library’s source code are commonly used by clients? The concept
of library fission, by which we mean the splitting of libraries into sub-modules, is based on
the usage patterns that we observe. This can potentially help library developers release
backward compatible versions of their libraries. It could also help client developers isolate
breaking changes and reduce the likelihood of vulnerabilities and version conflicts that may
be introduced through direct or transitive dependencies.
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Chapter 1

Introduction

The long-term aspiration for software component reuse has finally arrived. This vision—
of a component ecosystem enabling ubiquitous reuse and economies of scale—was first
proposed over 50 years ago [41] and has finally become reality. Today’s applications
are largely built from existing components (with one major exception being embedded
or safety-critical systems). A key contributor to this shift was the emergence of open
source component repositories. Tools such as Maven and npm lower the barriers for using
third-party components through automated dependency resolution. Developers can easily
include functionality from third-party components in their projects. The size and growth
rate of these repositories is staggering.

Virtually all modern software projects use libraries, driven in part by the ease of depen-
dency resolution build tools like Maven and npm. Library developers design Application
Programming Interfaces, or APIs, for their libraries, and clients invoke these APIs. APIs
typically provide clients with methods that can be invoked, fields that can be accessed,
classes that can be instantiated or inherited from, and annotations that can be used. We
use the term “API surface” to denote the APIs that a library makes available to other
code artifacts (its clients). Myers and Stylos [44], and many others, have advocated for
the importance of easy-to-use and maintainable API surfaces.

1.1 Motivation

Reusing functionality provided by third-party components saves time and increases modu-
larity of software. However, there are no silver bullets in software engineering [25]. Compo-
nent reuse comes with important trade-offs. The number of dependencies used by modern
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software has exploded, and so has their complexity [30, 4]: deeper, transitive dependencies
are now common, components are upgraded more frequently, and developers increasingly
struggle to deal with issues arising from those changes, such as: (1) dealing with conflicting
versions of the same component (also known as dependency hell) and dealing with supply
chain vulnerabilities of deep dependencies (often notified by bots creating pull requests);
(2) new issues around security and resilience of the software supply chains, for example,
problems with changes to commodity components (as in the infamous left-pad incident [11])
and novel attack patterns like typosquatting; and, (3) the use of unnecessary, bloated, and
trivial dependencies [1, 53].

So, components are revolutionary but bring new problems. Let’s consider one problem:
breaking changes. By breaking change, we mean a change in an external dependency
which could break its client, either syntactically or semantically. An example of a syntactic
breaking change is the modification of the name of a public method in a library, which
will result in a compilation error in any client that calls it. An example of a semantic
breaking change is a behaviour change in a library that is undesired by clients. Potentially
breaking changes in library APIs are common [14, 48]. However, any library change is
only potentially breaking; does it actually break any particular client? Only if a client
uses a specific component API with an incompatible change. Under plain Java (i.e. no
runtime containers) and considering reflection, the API surface of any component is huge.
Essentially: every method can be called, and every field can be read and written. In the
history of Java (and other languages), several constructs enable component developers to
better define and enforce the API surface, including access modifiers, modules, and bundles
restricting access to packages, and packaging of components that only expose “services”, i.e.
instantiable classes implementing some abstract type that specifies the service. However,
these restrictions always have to compete with the need to provide runtime introspection
and code generation features. There are clear benefits in restricting the API surface: such
restrictions can facilitate analyses that can calculate whether breaking changes are likely
to actually break clients. In terms of precision, added restrictions to the API surface would
facilitate breakage analyses with fewer false positives (i.e., increased precision).

As a second problem, consider the detection of vulnerabilities in dependencies. Detec-
tion is relatively straight-forward: compute the transitive closure of all dependencies, and
cross-reference the transitive dependencies with vulnerability databases like CVEs. Tools
like snyk and dependabot are based on this general idea. Some languages and build sys-
tems like npm have built-in language-specific support (npm audit). The problem is again
precision—listing something as a dependency does not mean that all of its functionality is
used. So, if dependencies are sufficiently large and deep, a conservative approach inevitably
results in false positives. Indeed, Elizalde Zapata et al [19] found that 73% of their studied
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clients with theoretically vulnerable dependencies were not actually at risk from CVEs
in those dependencies, and Chinthanet et al [10] implemented a code-based vulnerability
detection tool for Node.js applications. Like the boy who cried wolf, false positives can
lead to a potentially devastating impact on application security when true positives start
being ignored, as demonstrated in the infamous Equifax incident [39]. Sadowski et al [50],
among others, also cite the necessity for low false positive rates in developer tools.

We study software component usage and explore its usefulness in this work. Specifically,
our research aims to explore the following questions: is the API surface huge in practice?
How much of it is actually used and in what ways is it used? Ought we better control
component use? What are some ways to do so?

We look at API surface usage and API bypasses in our study. We also present a classi-
fication framework for classifying API uses and present different usage patterns, including
expected and unexpected ones.

We also apply our results and identify two applications based on them—VizAPI and
library fission. We introduce VizAPI to help library developers, client developers and re-
searchers to visually understand API usage. To mitigate the issue of huge API surfaces and
multiple, complex dependencies, we introduce the concept of library fission. By observing
how clients use libraries in practice, we can propose splitting libraries into loosely confed-
erated modules. Then, a client can depend on some subset of the library’s modules. This
has implications both on safe upgrades and on security vulnerabilities. Upgrades are safe
if potentially-breaking changes are in unused components. And, security vulnerabilities in
unused components are less likely to cause problems in their clients.

1.2 Contributions

The contributions of this work include:

• a tool to record both static and dynamic interactions between clients, the libraries
they use, and those libraries’ direct dependencies

• a detailed empirical study of API usage patterns on 11 libraries and 90 clients

• VizAPI, a tool which presents visualization of API usage information

• a case study on the concept of library fission
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Our tool collects static information and also instruments Java code to collect dynamic
instrumentation data about API uses in practice. This includes different patterns of in-
teractions across components, such as vanilla invocations, field usage, annotation usage,
subtyping, dynamic proxies, reflective calls and service loaders. The tool records these
interactions across the boundaries of clients, libraries and transitive dependencies.

Using the tool’s output, we empirically study how developers access libraries in prac-
tice, so that we (and others) can develop tools to help developers achieve more stability.
Additionally, we present a classification framework to help developers classify different API
uses. We conduct our study on a corpus of 11 open-source libraries and 90 clients. We have
generated API usage data for this corpus of 101 projects, which we have made publicly
available.

Our visualization tool, VizAPI, presents this information about API uses in practice
as a D3.js visualization, which can be useful to component developers when they want to
introspect about their software.

We also apply the API usage information to explore the concept of library fission. We
define library fission as splitting up a component into smaller sub-modules. The possi-
ble advantages of library fission includes lesser chances of breaking changes in clients of
the library, and lesser chances of vulnerabilities and version conflicts introduced through
dependencies.

4



Chapter 2

API Usage Study

We aim to take a snapshot of where current software practices stand: we investigate
how APIs are used and misused. Our goal is to investigate API usage patterns, both
conceptually and in practice. Such patterns can provide interesting hints for API designers
in the future.

We begin by defining two terms that we use in this work, followed by an example.
A library’s intended API surface is the set of classes, methods and fields that it expects
clients to use. Other classes, methods and fields are internal to the library. Clients using
internal parts of the library perform some sort of bypass. On the other hand, a client uses
an actual API surface of the library. In the absence of bypasses, the actual surface is a
subset of the declared surface.

ua

ub

C1 C2

C3C4

C5 (internal)

Library L

Figure 2.1: API surface of library L, which exports classes C1 through C4. Class C5 is
internal and direct calls to it are not allowed. Client ua uses classes C3 and C2, while client
ub uses classes C4 and C3.
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Figure 2.1 illustrates the situation where library L is used by clients (users) ua and ub.
L’s intended API surface includes classes C1 through C4, while class C5 is internal to L,
and uses of it involve bypasses. From Figure 2.1, we can see that the actual API surface
includes classes C2 through C4, and we don’t know about whether C1 is used by any extant
client.

2.1 Classification of API Uses

Before we look at API usage patterns, we first present our classification framework for
classifying API uses and also to understand whether an API use is a misuse. We intend for
this framework to serve as a guideline for component developers who want to understand
their software’s interactions with other components.

The framework aims to enumerate different ways that a library exposes APIs to clients
and to classify their usage. It enables library developers to think about whether the actual
APIs being exported and used by clients are intended uses. As an example, a library
developer knows that certain public methods are exported as an interface. However, they
may not intend to export a specific type as part of the interface, but observe it being used
by a client. They can reflect on whether such client uses of their APIs are expected or
unexpected based on their original design; this could prove useful when they design new
APIs. We hope that this framework can be useful to client developers for comparing and
contrasting the design of different libraries with similar functionality.

This conceptual framework outlines four dimensions along which a potential API use
can be classified. We phrase the four dimensions as questions; each API usage has an
answer for each of the questions. They are as follows: what, how which way and why not?

1. What thing is being accessed?

• types: user declares a subtype of a provider type;

• classes: user instantiates an object of a provider’s class;

• annotations: user annotates a class or member with a provider-defined annota-
tion;

• methods: user invokes a method from the provider;

• fields: user accesses a field defined in the provider; and,

• casts: user casts to a provider type.

6



2. How is it accessed?

• direct: user directly names thing being accessed;

• indirect: (methods only) thing being accessed differs from thing on declared
type of the receiver object;

• reflection/unsafe: user creates a handle to thing being accessed and uses that
handle to perform the access;

• advanced dynamic: none of the above—user accesses thing in some other way,
for example, via proxies.

3. Which way is the access going?

• client user to library provider;

• library user to client provider, via callbacks.

4. Why not, i.e. is the user bypassing access control?

• access modifiers prevent the access, but are overridden;

• modularity conventions or mechanisms prevent the access: “internal” package,
Java 9 modules, or OSGi;

• service loader restrictions prevent the access.

The “why not” dimension differentiates uses from misuses; an API use that is allowed
and expected by the API developer does not have an answer for “why not”. Considering
intended versus actual API surfaces gives another perspective on the “why not” question.
The other dimensions serve to classify the API use or misuse and understand which kinds
of uses and misuses are most common. We suggest that it is useful to think of misuse as
on a continuum rather than as a strict binary allowed-versus-not-allowed. Some uses are
more appropriate than others: when a client passes an object to a serialization library, it
is asking the library to access even the private fields of that object, and so this does not
constitute a misuse. Calling a deprecated API is less clear-cut. Finally, explicitly calling
into internal classes is likely to be a misuse. All bypasses some incur technical debt and
add to the project’s risk, but some bypasses are more risky than others.

We produce lists for the “what” and “how” dimensions by enumerating different ways a
class and its members can be used. Similarly, for “why not”, we enumerate access control
mechanisms and ways to bypass them. These lists are not exhaustive and can be constantly
added to.
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2.2 API Usage Patterns

We now discuss API usage patterns with examples. Our examples use the connector-j li-
brary1, which enables Java programs to communicate with MySQL databases. Namespaces
are omitted for brevity. The standard Java library JDBC types belong to package java.sql
and MySQL classes to packages com.mysql.cj.jdbc.*. Most of the code snippets are not
considered best practice, and therefore illustrate API misuses.

2.2.1 Vanilla API Usage

MySQL JDBC driver class com.mysql.cj.jdbc.Driver implements the java.sql.Driver
interface from the standard Java library. This is a case where the user, connector-j, is a
client of the standard library API. It is not bypassing any access control, directly accessing
a type from its library, and the access is going from the client to the library.

Shifting perspectives, connector-j is intended for use as a library by its own clients. Its
Driver implementation has a public constructor that can be directly instantiated by its
clients, as shown in line 1 of Listing 2.1. It turns out that clients are not supposed to in-
stantiate Driver classes themselves—JDBC documentation states that, for recent versions
of JDBC, clients are supposed to call DriverManager.getConnection(). However, there
are no compile-time or run-time checks prohibiting the instantiation of this object. We
call this a modularity convention violation. The part of the library that is being accessed
is a class and the access is going from client (shown) to library (connector-j). Although
direct instantiation is not the intended use of the API, the library must provide a public
constructor to enable service discovery.

Continuing with our example, line 2 of the same Listing 2.1 shows a direct invocation.
Although this call is a virtual method invoke, the declared type and actual types will
always coincide in this example. There is no access control bypass here, and this is a
direct invocation of a method call from the client to the library. We also observe indirect
invocations, i.e. virtual invokes where declared and actual differ.

1 com.mysql.cj.jdbc.Driver driver = new com.mysql.cj.jdbc.Driver ();

2 driver.connect("jdbc:mysql:foo", null);

Listing 2.1: Direct Instantiation and Invocation

1https://github.com/mysql/mysql-connector-j/, release 8.0.26
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Our classification also allows for direct field accesses—from client to library or vice-
versa (in the library to a client-provided parameter object). Of course, these may come
with or without access control bypasses.

2.2.2 Reflection and Reflective API Bypasses

Java reflection provides an alternate way for users to access APIs, i.e. it is an alternate
“how” something is accessed. Reflective accesses exist in practice and are more challenging
to analyze statically than vanilla usages, as investigated by Landman et al [35]; however,
Bodden et al [7] have presented pragmatic workarounds based on recording dynamic infor-
mation and using it statically. Clients request a reflective handle to classes, methods (and
constructors), and fields, and call certain Java API methods to access the thing behind the
handle. Listing 2.2 shows a reflective instantiation of a Driver; prior to JDBC 4, this used
to be the recommended way of creating a JDBC driver, but has been superceded by using
a DriverManager to get a connection. We understand that this is not explicitly forbidden,
but it is deprecated.

1 Class clazz = Class.forName("com.mysql.cj.jdbc.Driver");

2 java.sql.Driver driver =(java.sql.Driver)clazz.newInstance ();

Listing 2.2: Instantiating a java.sql.Driver via reflection

Even if constructors, methods and fields and the classes declaring them are not visible,
reflection can still be used to instantiate, invoke or access the respective things, subject
to permission being granted by security managers. Listing 2.3 shows the use of reflection
to bypass access modifiers. While the class ConnectionImpl is public, the no-argument
constructor has access modifier protected. However, reflection allows users to override
access restrictions and call that constructor anyway. These are examples of a reflective
API bypass pattern. This call is thus a reflective-API-bypassing access to a constructor via
reflection, from the client to the library. Line 3 makes the constructor accessible, using a
pattern known as “deep reflection”. Under Java 9, a user must provide a specific parameter
to the JVM to allow such calls.

Java has mechanisms for preventing unwanted reflective accesses in general. In addition
to preventing deep reflection and providing security managers, Java 9 also displays warnings
about illegal reflective accesses to JDK internals. (Reflection can, of course, also be used
to make calls that are part of a library’s published API.)

1 Class clz=Class.forName("com.mysql.cj.jdbc.ConnectionImpl");

2 Constructor constructor = clz.getDeclaredConstructor ();

9



3 constructor.setAccessible(true);

4 Connection conn = (Connection)constructor.newInstance ();

Listing 2.3: ”Deep reflective” instantiation bypassing visibility constraints

At this stage, we’d like to reiterate our goal in investigating API accesses. We’ve
discussed vanilla API usages and reflective accesses to APIs. These two types of accesses
have different affordances in terms of program evolution, and we aim to empirically evaluate
how developers access libraries in practice, so that we (and others) can develop tools to
help developers achieve more stability.

Upon a syntactic breaking upgrade, a vanilla API usage will fail to compile. Reflection
is more dynamic—developers have the power to query the system and to adapt to the
actual versions of the components that they are interacting with. If they use this power,
then their code can be more resilient. However, failures that do arise can be more subtle
and severe, these include semantic failures. The same phenomenon is present in Rinard’s
acceptability-oriented computing [49].

Dynamic techniques like reflection in data binding and persistence mapping pose ad-
ditional perils. Even minor changes to classes can render data produced with previous
versions un-readable. Adding, removing or modifying a field in a class mapped to a
relational database table requires altering the table and migrating data. Adding a cus-
tom constructor (and thereby removing the default constructor) or removing a setter
method may derail a deserialization mechanism based on the Java bean model (for ex-
ample, java.bean.XMLDecoder). Binary serialization has long suffered from this problem.

2.2.3 Restricting API surfaces: Services, Package Names and
Package Exports

We mentioned that reflective instantiations of Drivers were recommended prior to JDBC
4. Post-JDBC 4, the recommendation is now to use the service loading mechanism to
further reduce dependencies of clients on particular drivers. Specifically, the client is to
use the DriverManager abstraction, which allows multiple drivers to bid on establishing a
connection for a given database URL. (The client does not use the service loader directly.)

1 ServiceLoader <java.sql.Driver > services = ServiceLoader.load(java.sql.

Driver.class);

2 java.sql.Driver driver = services.iterator ().next();

3 java.sql.Connection conn = driver.connect("jdbc:mysql:foo",null);

Listing 2.4: Driver instantiation through a service loader
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Service loading (described by Fowler in [23]) is now widely used to register and access
service implementations, for example, parsers, character sets, JDBC drivers, and JUnit5
extensions. Listing 2.4 shows an example of a client requesting an available Driver from
a service loader (and not the DriverManager) and using that driver to request a jdbc
MySQL connection.

Access modifiers are not the only way to protect APIs from being called directly by
clients. Java’s namespace is segregated by hierarchical package names, but there is no way
to allow or deny others access to specific packages (at a package level granularity) in plain
Java. The Java standard library does state the modularity convention that some of its
implementation (specifically the classes living in the sun.* namespace) is not to be used
by clients, but this convention is not enforced. Many libraries also use the convention that
packages named internal are not for use by clients.

Java 9 modules [45] and OSGi [46] offer other ways to delimit an intended API, in
terms of a set of exported packages. However, without enforcement, clients can use all of
the methods and fields of their libraries.

Enforcing the stated constraints requires additional support—either a Java 9+ runtime
or an OSGi container implementation. The Java 9+ compiler and runtime ensure that mod-
ules do not access modules to which they do not have access, for example, non-exported
modules. Under Java 9+, modules can also rely on having fine-grained control over re-
flection permissions. Similarly, under an OSGi container implementation, non-exported
packages are invisible to other code in the same Java Virtual Machine, and this is enforced
using the class loader mechanism.

We run all of our clients and libraries unprotected by Java 9 modules and OSGi
containers—this is an opportunity to observe whether developers bypass the stated con-
straints or not. As we’ll see in Section 2.4, they almost universally do not bypass con-
straints.

By advertising services or exported packages, components define an intended API.
Clients should not have any additional compile-time dependencies on the component be-
yond the intended API: any such additional dependencies become API bypasses. In par-
ticular, any of the following is an API bypass if it occurs in client code:

1. instantiation of a type declared in the component but not defined in the intended
API;

2. reference to a type declared in the component (T.class; casts (T); or uses of anno-
tation types) not defined in the intended API;
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3. invocations of method implementations which are not part of the intended APIs,
following a downcast from an intended API to a private API; or,

4. accesses to fields not defined in the intended API.

2.2.4 Reversing Directions: Callbacks and Dependency Injection

We think of clients calling libraries. However, callbacks from libraries to clients are common
in practice: the client provides an object to the library, and then library calls back a
pre-defined method on the client. Callbacks are especially ubiquitous in languages like
JavaScript, but do occur in Java code. Fowler [24] uses the term “framework” to describe
callback-heavy libraries that practice this Inversion of Control.

JDBC uses callbacks to tell its clients about events that happen to connections, as shown
in Listing 2.5. Call sites for callbacks live in the library connector-j, and the respective
invocations are virtual calls in JDBC resolved at runtime to invocations of methods that
live in the client.

1 ConnectionEventListener listener = new ConnectionEventListener () {

2 public void connectionClosed(ConnectionEvent event) {}

3 public void connectionErrorOccurred(ConnectionEvent event) {}

4 };

5 ConnectionPoolDataSource datasource = new MysqlConnectionPoolDataSource ()

;

6 PooledConnection conn = datasource.getPooledConnection ();

7 conn.addConnectionEventListener(listener);

Listing 2.5: Callbacks in JDBC

Callbacks can be reflective. This is widely used in JSON and XML data binding and
object-relational mapping. For instance, the jackson object mapper and the XML serializer
in the Java standard library can serialize instances of Java classes by exploiting reflection
and Java Bean programming patterns. That is, the library accesses non-public fields in
the client by discovering getters and invoking them dynamically, rather than reflectively
reading the fields. Note the direction of the access—from library to client. This is an
example of an API bypass that is not a misuse.

A popular alternative to jackson is guava. That library instead directly accesses even
non-public fields, bypassing access restrictions2 Note that the general idea of reversing the
direction of API access is not restricted to method calls but also extends to fields.

2See UnsafeReflectionAccessor::makeAccessible in package com.google.gson.internal.reflect.
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2.2.5 Beyond Reflection

There are several other techniques that allow dynamically using code provided by libraries.
Dynamic proxies (java.lang.reflect.Proxy) can be used to dynamically subtype exist-
ing types, with invocation handlers being used to provide any required method implemen-
tations. This mimics protocols like Smalltalk’s doesNotUnderstand, and was originally
used to provide stubs for remote object protocols like RMI and CORBA, and later in some
mock object frameworks. However, usage is rather rare [15], and modern remoting and
mock testing frameworks (in particular, protocol buffers and mockito) use some form of
code generation instead.

An older dynamic mechanism is the sun.misc.Unsafe API. Mastrangelo et al [40]
pointed out that Java’s undocumented Unsafe API was extensively used in practice to
circumvent the safety properties guaranteed by the Java Virtual Machine. Since then, this
API has been migrated to a jdk.unsupported module, and Evans [20] noted that many
of the features have been migrated into supported Java APIs.

The invokedynamic instruction can also be used as an intermediate mechanism to
access APIs via custom dispatch. However, the usage patterns defined by the current Java
compiler restrict the use to the compilation of lambdas and string concatenation only.
There might be more interesting API access patterns in clients compiled with non-Java
compilers (such as Kotlin), but this is outside the scope of this study.

In principle, Unsafe or its newer equivalents could be used to bypass API access restric-
tions. However, we believe that the patterns observed in practice are unlikely to correspond
to actual violations.

2.3 Methodology

Now that we have looked at some API usage and misuse patterns, we next describe the
implementation of our tool which we run on our benchmarks to find these patterns. We
also discuss our benchmark selection process in this section.

2.3.1 Static Analysis and Instrumentation

We use Javassist [9] to perform class hierarchy analysis on clients and create a static call
graph. We collect data about client usages of libraries by running client test suites under
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instrumentation. The instrumentation records API uses which cross client/library bound-
aries, closely mirroring the API usage patterns that we describe in Section 2.2. We also
use Javassist for instrumentation, modifying the build system of each project (Maven) to
run instrumented tests and obtain dynamic call graphs.

client

library

depends on

modify
with Javassist

other
library

also depends on

maven:
run tests

test output

raw API
usage info

Python
scripts

D3 visu-
alizations

Figure 2.2: Our instrumentation workflow. Using Javassist, we analyze and instrument
clients and run their test suites. (We process the generated data with Python scripts to
create D3 visualizations for VizAPI.)

Figure 2.2 summarizes our instrumentation and data capture workflow. We next de-
scribe our instrumentation implementation in detail.

We identify interactions across the client/library boundaries by inspecting JAR files
of each software component to obtain a list of classes for every component. We associate
classes and their members to components based on these lists. Since the JAR files contain
source code, we ensure that none of the library uses meant solely for unit testing are
captured.

Vanilla invocations The standard case is simple. At every invoke instruction in every
loaded method which transfers control between the client and the library, we add code to
record that invoke by incrementing a counter. We handle both static and virtual (includ-
ing special, virtual, interface, and dynamic) calls. Crossing the client/library boundary
includes conventional calls from the client to the library as well as callbacks from the
library to the client.

Field accesses We capture direct (field sets and gets) and reflective (via invocations of
java.lang.reflect.Field.get() and .set()) field accesses.
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Dynamic proxies and reflective calls We specially handle invocations of the distin-
guished method java.lang.reflect.Method.invoke() method used to invoke dynamic
proxies and reflective calls, recording details of the calls that we intercept. We identify
dynamic proxies by checking whether the invocation of Method.invoke() originates from
a class that implements java.lang.reflect.InvocationHandler. If so, we inspect the
call stack to find the caller and callee of Method.invoke() and record the call if it crosses
the client/library boundary. All other calls to Method.invoke() are standard reflective
calls, and we record the respective callers and callees. (We also specifically ignore calls to
Method.invoke() made by the Maven surefire plugin as it runs tests.)

Instrumenting methods also allows us to capture several other library uses, as we de-
scribe below.

Class usages We capture reflective uses of the Class object by intercepting calls to
java.lang.Class.forName() and java.lang.ClassLoader.loadClass().

Service Loaders We are particularly interested in bypasses of services that use the
ServiceLoader API. Before the instrumentation, we record a list of services and their im-
plementations by inspecting files in src/main/resources/META-INF/services. With this
information, we look for service bypasses which are direct uses of service implementation
classes in clients, either through instantiations, casts or reflection. We also intercept calls
to method load() in classes with name Service*Loader and record any calls to methods
beyond the published interface.

setAccessible() Java provides the setAccessible() method to allow reflective access to
class members despite access modifiers. After a call to this method, the program may then
(subject to security manager restrictions) reflectively access the class member. We thus
record calls to setAccessible() along with the previous visibility of the class member.

Annotations We have a quasi-static approach for finding class, field and method an-
notations: we observe all annotations for a class or class member when it is loaded, and
record cases where a class or member declares an annotation from the library of interest.
We also record an association between the class and its memers’ annotations.

Inheritance and interface implementation At load time, we also record information
about all superclasses and implemented interfaces that cross the library/client barrier.
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Instantiations and casts We also instrument the NewExpr and Cast bytecodes to record
library/client instantiations and casts.

2.3.2 Benchmark Selection

Our benchmark set consists of 11 libraries and 90 clients. For libraries, we pick the
most popular Maven repositories in different categories such as logging, json parsing and
databases. Table 2.1 presents our set of libraries. We measured lines of code (kLOC) using
SLOCcount3 and number of classes by building libraries and counting resulting .classes.
A project uses ServiceLoaders if it has a META-INF/services directory and Java 9 mod-
ules if it has a module-info.java file. A library is an OSGi component if it contains a
MANIFEST.MF file in its build output4, and this manifest contains Export-Package decla-
rations.

Table 2.1: Libraries that we investigated for API usage and mis-usage patterns

non-test Service Java 9
Library version description kLOC # classes Loader modules OSGi
commons-collections4 4.4 data structure implementations 28.9 524 X
commons-io 2.8.0 IO functionality library 12.6 182 X
joda-time 2.10.10 date and time handling library 28.9 247 X
slf4j-api 1.7.9 logging library 1.5 28 X
jsoup 1.13.1 HTML parser 12.5 249 X
fastjson 1.2.76 json parser/generator 43.6 260 X
gson 2.8.8 json parser/generator 14.4 182 X X
json 20210307 json parser/generator 11.8 27
jackson-core 2.12.3 json parser/generator 27.1 124 X X
jackson-databind 2.12.3 bindings for json parser/generator 68.2 700 X X
h2 1.4.200 database 147.2 1010 X X

We use the libraries.io dataset5 to construct a dependency graph and look for the most
used upstream components (highest number of other components depends on [any version
of] those), and the top downstream components (clients). We exclude any clients that have
less than 10 stars or less than 10 forks on Github. Apart from this, we also pick a subset
of projects from the Duets benchmarks [18]. We exclude components that do not contain
unit tests, components that use our chosen library only for testing and components that

3https://dwheeler.com/sloccount/
4Some libraries (for example, connector-j ) create OSGi metadata during the build, so we look for the

metadata in the build output, not in the source.
5https://libraries.io/
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declare the library as a dependency in their POM file, but do not actually use it. Our
benchmark set contains both Maven single module and multi-module components.

We executed each of the clients’ test suites to collect data about how the clients use
all of their dependencies; our data therefore includes not just interactions between our
clients and the 11 libraries sampled, but also “bycatch”—that is, other libraries that are
also called by the clients (“also depends on” in Figure 2.2) and the libraries. The total
static transitive closure of dependencies of our clients includes 4297 components.

Collecting execution data from programs is more challenging than it seems: download-
ing software and collecting static numbers is fairly straightforward, but running this soft-
ware to instrument it involves fixing numerous uninteresting environment glitches which
nevertheless block progress—even in the stable environment of a continuous integration
system at a large software company, Kerzazi et al [29] found that 17.9% of builds break,
and our context is even more challenging.

While our current benchmark set consists of 101 projects, it is possible to run both
our static and dynamic analysis tool and the VizAPI visualization tool on new libraries
and clients. However, when either tool is run by a library developer, they are required to
provide a specific set of clients that they wish to observe as input to the tools. Libraries.io
can be used to find popular clients of libraries—it provides a dependency tree based on
projects’ packaging information.

We have made our existing data publicly available6.

2.4 Results

We look for our usage patterns in our benchmark collection of 11 libraries (Table 2.1).

2.4.1 API bypasses

We first investigate the use of API bypasses in our clients. This is useful to library devel-
opers if they want to identify which parts of their libraries that are supposed to be internal
are actually used by clients. This can help them with API design in future versions.

In Section 2.1, we enumerate three broad categories of bypasses: access modifiers,
modularity conventions, and service loaders. We discuss each of them in turn.

6https://zenodo.org/record/6951140
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Library Client Member Visibility Count

libthrift benchmark-thrift Field private 1
spring-context fastjson Constructor private 1
javax.servlet-api fastjson Field private 9
spring-context fastjson Field private 22
javax.servlet-api fastjson Method public 17
spring-beans fastjson Method public 11
spring-context fastjson Method public 38
spring-web fastjson Method public 3
jsoup JsoupXpath Method protected 1
rocketmq-common rocketmq-acl Field private 7

Table 2.2: setAccessible Calls—Client to Library
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Access modifiers and reflection Table 2.2 shows selected uses of the reflection API
setAccessible() to enable reflective access from clients to libraries, and Table 2.3 shows
selected uses of setAccessible() to enable reflective callbacks from libraries back to
clients. We can see that accesses to fields, constructors, and methods are all reasonably
common, though some codebases only reflectively access fields, while others only access
methods.

In our data, 1.9% of the setAccessible() calls are used to ensure accessibility of a class
member in the same rocketmq project version 4.9.1 but in a different module (Maven mod-
ule). For instance, rocketmq-acl makes private field SendMessageRequestHeaderV2::a

from rocketmq-common accessible before accessing it. Such inter-module accesses are more
controlled than client/library accesses since they are within the same project, but are still
a form of technical debt.

We investigated all setAccessible() calls on fields that belong to in rocketmq. (rock-
etmq is a client that calls fastjson). These calls are made from the library to the client,
i.e., accesses are from library fastjson to client rocketmq using callbacks. We see hundreds
of setAccessible() calls being executed when the client tests are run. The rocketmq
source code shows 6 classes with calls to setAccessible(): a serialization/deserialization
pair for the CommandCustomHeader class, 2 methods which appear to print out the state
of an object for debugging or logging purposes, and 2 methods which store a reference to
a specified field or which call a specified method, provided in those methods’ parameters.
We would not characterize the first 4 API bypasses as misuses, and it is not obvious that
the last 2 are misuses either. Another interesting use of setAccessible() on a field is
by benchmark-thrift to access the field maxLength which is a class member of the class
TFramedTransport belonging to Apache thrift. This is a private field and the default
maximum length is overridden by the client.

We found that 23% of the calls to setAccessible() were on methods. Of those,
only 2 distinct methods that were reflectively invoked were previously not accessible. We
manually inspected all of the reflective callers of these 2 methods. Protected method
Node.setParentNode() in jsoup is called from code in org.seimicrawler.xpath in JsoupX-
path. This appears to be test code committed to the main repository. The next method
is the default-visibility method getInstance(). This method is used to obtain a single-
ton instance of ReflectionNavigator from within the same project. The motivation for
developers calling setAccessible within the same project is unclear to us, rather than
modifying the code themselves. This work can help developers identify such instances and
possibly refactor their code.

We do find that some methods are already accessible before being invoked, and some
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methods are made accessible but never actually invoked.

An API bypass requires a setAccessible() call followed by an actual reflective access.
As expected, we see a good overlap between the setAccessible() calls to methods and
reflective invocations. We find that our benchmarks contain reflective invocations of 20
constructors following a call to setAccessible, which were not already public. Of the 20
callsites, some are generated by the groovy dynamic language; some are for serialization
and some instantiate objects where the constructor had default visibility. All of these
reflective constructor invocations are callbacks from the library to the client: the library
is providing a factory method to create instances of a client type that it has been supplied
with. This appears to be an acceptable API use. Tables 2.4 and 2.5 show how many
reflective usages are actually made.

Table 2.4 shows some of our data on reflective field accesses. We observe that many
of these reflective field accesses are for serialization. We also observe that in the case of
fields, there are only a few calls that access fields that were previously not accessible.

Table 2.5 shows the reflective callback API usage pattern. We see that most accesses
in this pattern are made on public methods. We examined the list of methods that are
accessed using this usage pattern and this pattern is popular for logging, serialization and
deserialization. We also observe a lot of getters and setters accessed this way.

Containers, modules, and modularity conventions For OSGi, none of our libraries
are used by our clients in the context of OSGi containers, so the clients are free to violate
OSGi access control. Our results show that, even though they can, they almost universally
do not. The sole exception is a pair of calls from client xsoup to internal class StringUtil
of library jsoup; the calling class in xsoup was copied from jsoup and still uses its internal
helper functions. These calls violate both modularity conventions and OSGi export decla-
rations. When we found these calls, we submitted a pull request7 duplicating the jsoup

methods into xsoup, and it was quickly merged, showing that the xsoup developer was not
in favour of violating modularity conventions.

Similarly, although we have Java 8 clients which can violate the unenforced module
export rules of Java 9 libraries (they run in environments that don’t enforce the rules), none
of the clients do so. We believe that the most likely explanation is that such modularity
violations are uncommon; however, it is also possible that Java 9 module definitions are
too permissive and do not prevent calls that should be prevented.

7https://github.com/code4craft/xsoup/pull/53
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Library Client default private protected public total

vraptor mirror 0 1 0 0 1
dble gson 0 0 12 0 12
capitalone.dashboard:core jackson-databind 0 26 0 0 26
capitalone.dashboard:core gson 3 142 0 0 145
capitalone.dashboard:core jaxb-impl 0 0 4 0 4
capitalone.dashboard:core mockito-all 0 4 0 0 4
capitalone.dashboard:core spring-beans 1 21 0 0 22
capitalone.dashboard:core spring-core 2 157 0 0 159
benchmark-thrift jcommander 0 5 0 0 5
pagehelper-. . . -autoconfigure spring-beans 0 2 0 0 2
MultiChainJavaAPI gson 21 0 0 0 21
motan-core hessian 0 0 2 0 2
crushpaper hibernate-core 0 33 0 0 33
dubbo-cluster dubbo-common 0 31 0 0 31
dubbo-common gson 0 20 0 0 20
dubbo-config-api dubbo-common 0 1 0 0 1
dubbo-metadata-api gson 0 22 0 0 22
dubbo-registry-api gson 2 0 0 0 2
rocketmq-broker commons-lang3 0 8 0 0 8
rocketmq-client commons-lang3 0 7 0 0 7
rocketmq-client rocketmq-common 0 27 1 0 28
rocketmq-common rocketmq-acl 0 7 0 0 7
rocketmq-common rocketmq-remoting 0 60 0 0 60
rocketmq-remoting rocketmq-common 0 23 0 0 23
rocketmq-store rocketmq-common 0 69 0 0 69
libthrift benchmark-thrift 0 1 0 0 1
mybatis pagehelper 0 1 0 0 1
thymeleaf ognl 0 0 0 1 1
thymeleaf spring-expression 0 0 0 1 1

Table 2.4: Reflection on fields

Table 2.6 shows uses of packages labelled “internal” from outside a given module. In
some cases (for example, netty-buffer and netty-common), the uses are across different
modules in the same project. We looked at one case, rocketmq-remoting and netty. In this
case, rocketmq-remoting uses internal logging infrastructure from netty in its NettyLogger
module; such a module might be expected to be more closely coupled to its callee than
other parts of the code. On the other hand, the usage of groovy internals in rest-assured
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would appear to be due to the choice of Groovy as an implementation language, and thus
compiler-generated references to internals in the rest-assured code.

Service bypasses We find that all clients of libraries that use service loaders bypass
the defined services. This is done most commonly through instantiation, but also through
casts, subtyping and reflection.

For instance, component com.h2database:h2 advertises a service (org.h2.Driver im-
plementing java.sql.Driver), making it a JDBC4-compliant driver. Its clients can obtain
connections through the JDBC driver manager, which selects and instantiates instances
based on driver URLs. However, client glowroot.agent (specifically class org.glowroot.-
agent.embedded.util.DataSource) directly instantiates org.h2.jdbc.JdbcConnection

and therefore becomes dependent on using the particular database h2. This leads to fur-
ther direct calls to org.h2.jdbc APIs being observed. This is a clear bypass of a defined
API.

Now consider fastjson. This component declares that it provides several services, in-
cluding three services defined by interfaces in the javax.ws.rs.ext package, part of the
JEE support for RESTful services. The respective services are implemented in classes in
the package com.alibaba.fastjson.support.jaxrs. However, looking at clients, we also
see calls to APIs provided in fastjson APIs outside packages implementing the interfaces
declared as services. For instance, com.alibaba.fastjson.JSON::toJSONString is called
from org.springframework:spring-web. This is a legitimate use of a JSON parser via a
non-standard API, and in this sense, it is a false positive as we detect it as a API misuse.
So fastjson could be easily split into two components, one providing an “open API” for
the JSON parser functionality, and one implementing and providing the RESTful services.
The services would then depend on the open API. This would significantly reduce the
overall API surface of fastjson, splitting it into two components, each with well defined
functionalities and internal coherence.

We have mainly focussed on “why not”, i.e. what mechanisms clients use to bypass API
restrictions: reflection, violating conventions, and service loader bypasses, and reported
results with respect to “what thing”. When relevant, we discussed “how” the bypass
occurred, especially for reflection, and we reported the directionality of the bypasses.

Finding 1: Programs are generally well-behaved: reflection is mostly used for
serialization not API bypasses; OSGi and Java 9 module definitions are always
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respected; internal packages are only called sparingly; but service loaders are
almost always bypassed.

2.4.2 Extent of API usage

Continuing with our investigation of API surfaces, but moving from misuses to uses, we
present results on API use.

Table 2.7 presents the usage distribution of libraries’ API elements (methods, fields,
and classes subtyped) as covered by client tests. The “total in lib” refers to the number
of public and protected members, including static ones. To calculate these totals, we use
the latest stable version of each library and consider it to be representative of the versions
used by clients. The “distinct used” column counts an element once regardless of how
many clients use that element, while “total used” counts an element once per client using
it. We identify method calls by the declared type of the receiver object, for example, calls
to o1.f() and o2.f() are the same if o1 and o2 have the same declared type. Our uses
include both vanilla and reflective uses of API elements.
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Library Client default private protected public total
mirror vraptor 0 0 0 1 1
jboss-el-api 3.0 spec vraptor 0 0 0 4 4
dble dble 0 0 0 11 11
fastjson dble 0 0 0 12 12
junit dble 0 2 0 0 2
alipay-sdk-java alipay-sdk-java 0 0 0 63 63
jackson-databind bandwidth-java-sdk 0 0 0 2 2
fongo capitalone.dashboard:core 0 0 0 3 3
spring-beans capitalone.dashboard:core 0 0 0 7 7
spring-core capitalone.dashboard:core 0 0 0 2 2
spring-data-commons capitalone.dashboard:core 0 0 0 1 1
mirror vraptor 3 2 2 13 20
jboss-el-api 3.0 spec vraptor 0 0 0 4 4
logback-core logback-classic 0 0 0 13 13
janino logback-classic 0 0 0 3 3
slf4j-api logback-classic 0 0 0 1 1
spring-beans druid 0 0 0 4 4
cxf-core fastjson 0 0 0 1 1
spring-web fastjson 0 0 0 1 1
spring-beans core 0 0 0 7 7
spring-data-commons core 0 0 0 1 1
freemarker ez-vcard 0 0 0 64 64
querydsl-core querydsl-sql 0 0 1 2 3
groovy json-path 0 10 0 5 15
groovy rest-assured 0 34 1 141 176
springside-utils springside-core 0 0 0 1 1
junit springside-metrics 0 0 0 7 7
jackson-databind swagger-codegen 0 0 0 24 24
jmustache swagger-codegen 0 0 0 1 1
fastjson rocketmq-* 0 0 0 232 232
netty-all rocketmq-remoting 0 0 0 4 4

Table 2.5: Reflective Callbacks
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Table 2.6: Uses of .internal APIs externally

To From count
fastjson jersey-common 1
netty-all rocketmq-remoting 2
netty-common lettuce-core 2
netty-common netty-buffer 4
netty-common netty-transport 1
json-path groovy 13
rest-assured groovy 147
rest-assured-common json-path 2
rest-assured-common rest-assured 2
rest-assured-common groovy 15
jasperreports ecj 11
rocketmq-remoting netty-all 9
ecj jasperreports 6
jersey-common fastjson 1
jersey-common hk2-utils 2
kotlin-stdlib okio 3
jsoup xsoup 2
mockito-core ognl 1
mockito-core spring-expression 1
mongo-java-driver fongo 3
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We can observe that at most 22% (and on average 9%) of the methods in the API
surface are used by clients, with slf4j-api having the highest use proportion. Table 2.7
suggests that there is a small overlap between methods used by clients.

We also looked at the json library and found that its own tests reach 151 of the 258
API methods, compared to the 25 methods used by our selected clients. One possible
reason for the sparsity of API use is that, at least in json, over half of the API methods
are overloaded, i.e. share a name with some other API method.

Despite standard OO practices calling for fields to be encapsulated, more than half of the
libraries have their fields accessed by clients. Only 1 of the joda-time and 25 of the jackson-
core fields are static (so it’s not just constants); the rest of the accesses are to instance
fields. However, the number of fields used is often in the single digits, the jackson libraries
being an exception with about 11% of declared fields used. We inspected the use of jackson
fields and found that these usages mostly exist within the jackson libraries themselves. We
count calls that happen across the jackson libraries as crossing library/client boundaries.
An example of these usages is the WritableTypeId class belonging to jackson-core, which
is used often, and usually by jackson-databind. WritableTypeId is a Java class that acts
like a C-style struct; it exposes fields and not methods. It is intended to be used for passing
information, and the use of its fields is expected.

About half of the libraries have clients subclassing a single-digit number of library
types, again with the exception of jackson with dozens of subtypes in clients, which are
also often other jackson libraries.

We observe only one use of library annotations across all our benchmarks. crushpaper
uses com.fasterxml.jackson.databind.annotation.JacksonStdImpl, which is used for
indicating implementation classes and is typically used by serializers and deserializers in
jackson.

Figure 2.3 presents a boxplot of pairwise Jaccard similarities between the portion of
the APIs used by different clients for each library. Two clients u1 and u2 of library L which
use exactly the same parts of L’s API would result in a similarity of 1; more generally, it
is

|used.APIL(u1) ∩ used.APIL(u2)|
|used.APIL(u1) ∪ used.APIL(u2)|

.

Although Table 2.7 showed that some of the members overlap, we can see from this
Figure that the overall level of overlap is generally less than 10%. We observe a half-
dozen client pairs (data points) where there is about 50% overlap between client API uses,
including for fastjson, commons-io, and json. Although the mean overlap for slf4j-api is
near 0, there are also 4 pairs of clients which have more than 50% overlap.

28



Figure 2.3: Jaccard similarities between clients’ API usages

We were not surprised by the generally small amounts of overlap, because the libraries’
exposed API surfaces tended to have thousands of exposed elements and hundreds of
used elements. This result makes a convincing argument for libraries being fissioned into
modules, which we discuss further in Section 3.2.

Table 2.8 presents another view of API overlap between clients. We constructed the
largest set of methods shared by more than 1 client of a library (“max-set”) and report
the size of that set as well as the percentage of clients which use all of that set of methods.
So, for json, we can see that there is one method called by 3 out of 4 clients, and for jsoup,
ten methods are all called by 3 out of 4 clients. We characterize the amount of overlap as
generally low but not nonexistent: a few methods are repeatedly used.

Finding 2: APIs are sparsely used by clients—mostly methods (9% utilization),
but a few fields (4%) and supertypes (6%). There is limited but nonzero overlap
between the methods used by different clients.
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Library Total No. % Clients calling No. of methods
of clients same methods called by (%) clients

fastjson 26 50 1
commons-collections4 6 50 1
commons-io 9 44 1
joda-time 9 56 1
h2 3 0 0
gson 17 41 1
json 4 75 1
jsoup 4 75 10
slf4j-api 89 51 2
jackson-databind 23 26 1
jackson-core 13 46 4

Table 2.8: % of clients calling same methods
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Chapter 3

Applications of API Usage
Information

In this chapter, we discuss two applications of our results from Chapter 2. The first is the
visualization tool VizAPI which uses the results of our static and dynamic analyses tool
to create visualizations for developers to understand API usage in their components. The
second is library fission, which we also perform using the results of our static and dynamic
analyses tool.

3.1 Visualization

We now present the VizAPI tool, which shows visualization overviews depicting API
usages—namely, usages of clients by libraries for the most part, but also inter-library
usages (which includes usages of transitive dependencies by libraries). The goal of VizAPI
is to provide information for developers considering the impacts of changes to libraries.

We have verified that each client uses only a small portion of each of its dependencies’
API surfaces. Consider breaking changes again. GitHub provides the Dependabot tool [43],
which monitors for upstream changes and automatically proposes pull requests to update
dependency versions. That tool may well pull in breaking changes. However, we hypothe-
size that, most of the time, most breaking changes will not affect most clients; it is useful
for clients to know whether they are using the parts of the API surface that are subject to
a particular breaking change. A client with broad dependencies on a library (uses a larger
fraction of its API surface) is more likely to be affected by its changes than a client with
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narrow dependencies (smaller fraction). A narrow library dependency would also suggest
that it would be easier to swap the library for a functionally similar replacement.

Our visualization allows developers and researchers to visualize distribution information
about how different parts of clients use different parts of libraries. A limitation of this tool
is that with larger, complex systems, the visualization graphs become denser and more
difficult to interpret. Another limitation is that the tool is highly dependent on the size of
the project in terms of time and can take hours to produce graphs. However, we do not
intend for this tool to be used regularly as part of a software development cycle. It is only
intended to be used when developers want to examine their use of libraries or usage by
clients. VizAPI is still in a preliminary phase and in development.

VizAPI incorporates information from static and dynamic analyses. We have made
VizAPI publicly available1. We have also archived the artifact at https://doi.org/10.5281/zenodo.7023911

Figure 3.1: An Example VizAPI Visualization

We first define the terms “client”, “library” and “dependency”. A “client” is a software
component which directly uses some functionality of an external component, which is the
“library”. Any external component that the “library” directly uses is a “dependency”.

Figure 3.1 illustrates a possible VizAPI usage scenario, from the perspective of a client
developer. Consider a client C (blue nodes) and a library L (purple nodes), in the context
of plain Java. Library L has packages L1, L2, and L3. C calls into L1 and L2. Internally,
within L, L1 and L2 call into each other, but not into L3. The VizAPI result, with no

1https://github.com/SruthiVenkat/api-visualization-tool
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edges from C directly to L3, allows a developer to conclude that breaking changes in L3

will not affect C. Also, if only L3 uses an external dependency D (yellow node), then we
know that C will not need D to be on its classpath.

We next describe the design of VizAPI, including how we collect information and format
it for the d3js visualization library. We also present two VizAPI usage scenarios.

3.1.1 Visualization System

Once we have generated data from our tool that runs the static and dynamic analyses, we
use a modified version of the d3graph2 library in Python to generate a d3js3 visualization.
The modifications that we made to the d3graph library in Python in Python include
multiple styling changes (for example, changing node styles based on whether it is a client,
library or dependency), legends and a toggle to show all package names. The graphs in
Figures 3.1, 3.2a and 3.2b are examples of graphs produced by VizAPI.

VizAPI graphs are force-directed graphs based on the frequency of interactions between
different software components. Each node is a set of one or more packages that belong to
the same JAR. There are three categories of nodes: clients are represented by nodes with
white interiors; libraries by nodes with filled interiors and black borders; and dependencies
(called by libraries but not clients) by nodes with filled interiors and normal borders. We
coalesce nodes if they originate from the same JAR and have the same incoming and
outgoing edges.

Each edge is directed from the source package(s) to the target package(s) and repre-
sents an interaction (invocations, fields, annotations, subtyping) between packages. The
thickness of each edge reflects the frequency of interactions between the source and the
target. Double-clicking on a node emphasizes its direct interactions with other packages
while fading out the rest of the graph.

We run a Python implementation of the Louvain clustering algorithm [6], and make
the clusters visible by colouring nodes based on cluster. This means that the same colour
could indicate nodes (of the same category) from the same or different JARs. Hovering on
a node shows the list of packages and the JAR that they belong to, formatted as “jar :
〈space separated list of packages〉”.

2https://pypi.org/project/d3graph/
3https://d3js.org/
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3.1.2 Case Study

We conducted a pilot study of VizAPI. We have generated data from our benchmarks. We
have collected both static and dynamic data for these projects, and we are in a position to
generate graphs for combinations of clients and libraries in these projects. We present two
usage scenarios below; graphs for our usage scenarios are publicly available.4 We intend
for these usage scenarios to show how VizAPI can be useful to client developers when they
want to observe library API usage and for library developers when they want to observe
how their library is used by clients.

Usage Scenario 1: jsoup Imagine that we are a jsoup developer and want to under-
stand how some clients interact with it, in anticipation of making some breaking changes.
We choose clients JsoupXpath5 and ez-vcard6. Figure 3.2a shows static and dynamic in-
teractions of the 2 clients with the jsoup7 library. Recall that nodes represent packages
and edges represent interactions (usually invocations) between packages.

We can start our exploration with the cluster of pink nodes. Many of these nodes
belong to either JsoupXpath or jsoup. Hovering over a node tells us the package names
while double-clicking shows us its direct interactions. (To search for a package, we can click
on “show package names” and use the browser’s find functionality.) Here, client JsoupX-
path calls directly into org.jsoup.nodes and org.jsoup.select. Notably, and as we
might expect, we can see that org.jsoup.helper and org.jsoup.internal aren’t called
directly by JsoupXpath. This would mean that breaking changes in org.jsoup.helper or
org.jsoup.internal wouldn’t directly affect JsoupXpath8

Similarly, ez-vcard, which belongs to the purple cluster in Figure 3.2a, directly calls into
org.jsoup. ez-vcard also calls into jackson-core9 and jackson-databind10, which are very
tightly coupled amongst their own packages and with each other. As a jsoup developer, we
would be indifferent since it does not affect us; others, however, can observe that breaking
changes in jackson-core and jackson-databind could propagate.

4https://sruthivenkat.github.io/VizAPI-graph/
5https://github.com/zhegexiaohuozi/JsoupXpath
6https://github.com/mangstadt/ez-vcard
7https://github.com/jhy/jsoup
8As a specific example, the retraction of an internal jsoup API would not break this client. Behavioural

changes that are directly passed through to the external API, for example, through delegation, can still
break clients, but we can consider those to be changes in the external API.

9https://github.com/FasterXML/jackson-core
10https://github.com/FasterXML/jackson-databind
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Usage Scenario 2: dataprocessor Figure 3.2b presents a second usage scenario. Here,
say we are the developers of client dataprocessor11 (hollow with orange border). This client
uses the fastjson12 library (green fill). Our visualization shows calls only from dataproces-
sor package com.github.dataprocessor.slice, which is the orange-bordered client node
(identity of the package available by hovering) to the package com.alibaba.fastjson.
No other parts of dataprocessor use fastjson. This means that when we, as dataprocessor
developers, need to upgrade the fastjson version, we only need to inspect the source code in
our com.github.dataprocessor.slice package and cross-reference against release notes
for fastjson.

Note also the disconnected nodes in Figure 3.2b. These are all packages of fastjson that
are not used by dataprocessor: any breaking changes in these packages definitely do not
directly affect dataprocessor, and are less likely to affect it overall than packages that are
directly used.

3.2 Library Fission

Modern software extensively reuses existing functionality using third-party libraries. Over
time, libraries tend to extend their functionality, introducing more features and modifying
existing ones. This leads to huge library sizes, a lot of which goes unused by a client that
imports it. We have observed that modern API surfaces are vast and include thousands of
potential access points, of which only hundreds are used by any typical client.This is called
software bloating and there has been work around debloating. Debloating focuses on a
single client at a time; it depends on dynamic analysis based on the client’s execution. We
instead propose library fission, which focuses on splitting libraries based on client usage.
This is a more permanent solution to bloating and does not require running analyses on
clients for every execution. (We aim to split libraries based on client behaviour in a way
that sub-modules of the fissioned library have common functionality.)

We use the data generated by our static and dynamic analyses to experiment with
fissioning a subset of our corpus of libraries. On a high level, by library fission, we mean
that we separate packages of a library into different Maven submodules. The following are
the steps we follow to perform library fission for a given library, L:

1. Filter out all interactions with L, i.e., client uses of L, L’s uses of dependencies and
intra-library uses of L.

11https://github.com/dadiyang/dataprocessor
12https://github.com/alibaba/fastjson
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2. Run the Louvain clustering algorithm on the filtered data where each node is set to
be a package belonging to a jar.

3. Split up L into Maven submodules based on the clusters.

4. Test on a random subset of L’s clients.

We now discuss specific examples from our libraries.

3.2.1 fastjson

We have 26 clients for fastjson. Based on the usages of these clients, we obtained the
following initial set of 5 clusters:

• Cluster 1:

– com.alibaba.fastjson.annotation

– com.alibaba.fastjson.asm

– com.alibaba.fastjson.parser

– com.alibaba.fastjson.serializer

– com.alibaba.fastjson.support.hsf

– com.alibaba.fastjson.support.config

– com.alibaba.fastjson.support.retrofit

– com.alibaba.fastjson.support.springfox

• Cluster 2:

– com.alibaba.fastjson

• Cluster 3:

– com.alibaba.fastjson.util

– com.alibaba.fastjson.parser.deserializer

• Cluster 4:

– com.alibaba.fastjson.support.spring
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– com.alibaba.fastjson.support.spring.annotation

• Cluster 5:

– com.alibaba.fastjson.support.jaxrs

We observe that the clusters are loosely based on functionality, that is, the packages
within a cluster have similar functionality. This is not strictly true for all packages, but it
is a good approximation. We see that the jaxrs and spring functionalities are clusters of
their own and it makes sense to separate these into submodules since they provide their
own independent functionality. However, we observed that there exist cyclic dependencies
between Cluster 1, 2 and 3. If a library developer performs library fission and they run into
cyclic dependencies, we recommend that they resolve these dependencies by moving classes
into appropriate submodules. Due to our lack of domain knowledge (we don’t know about
what individual fastjson classes do), we combined these 3 clusters into one submodule.
Our final submodules are as follows:

• Submodule 1 — utils:

– com.alibaba.fastjson.annotation

– com.alibaba.fastjson.asm

– com.alibaba.fastjson.parser

– com.alibaba.fastjson.serializer

– com.alibaba.fastjson.support.hsf

– com.alibaba.fastjson.support.config

– com.alibaba.fastjson.support.retrofit

– com.alibaba.fastjson.support.springfox

– com.alibaba.fastjson

– com.alibaba.fastjson.util

– com.alibaba.fastjson.parser.deserializer

• Submodule 2 — spring:

– com.alibaba.fastjson.support.spring

– com.alibaba.fastjson.support.spring.annotation
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• Submodule 3 — jaxrs:

– com.alibaba.fastjson.support.jaxrs

When we split fastjson into submodules, we observed that each submodule needed
fewer dependencies in the pom compared to the current version of fastjson that is not
split. The current version of fastjson has 61 dependencies, while utils has 47, spring has
27 and jaxrs has 29. Importing one of these newer submodules means a smaller probability
of propagated vulnerabilities, version conflicts and breaking changes.

We sent an email to the fastjson contributors proposing a split and did not receive
a response, after which we created a pull request13. Our PR text was as follows: “This
PR splits fastjson into 3 submodules - utils, spring, jaxrs. We’re looking into Java API
usage as part of research and propose this split. These submodules are based on usage
patterns that we’ve observed clients making of fastjson. It is beneficial to clients – they
can import only the submodule they need to use (utils seems to be most popular). After
this change, clients will not be affected by breaking changes in unused submodules and can
avoid version conflicts and vulnerabilities propagated through dependencies. We believe
that this split makes it easier to release backward compatible versions of fastjson and to
isolate breaking changes.”

We looked for fastjson’s vulnerabilites using the “Synk Vulnerability DB” and found
the “Unsafe deserialization in com.alibaba:fastjson” vulnerability which affects versions
¡ 1.2.83. Following this, we inspected the source code for the fix and found that the
vulnerability originates in the utils cluster. Using Github’s advanced search, we went
through 10 projects that use fastjson and found that while 6 of them use utils and will
continue to be vulnerable, the vulnerability will not be reported for 4 of the projects after
fission.

3.2.2 jsoup

Based on usage by the 7 clients of jsoup we have in our benchmark set, we observed the
following clusters:

• Cluster 1:

– org.jsoup.parser

13https://github.com/alibaba/fastjson/pull/4276
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– org.jsoup.safety

– org.jsoup.helper

– org.jsoup.internal

• Cluster 2:

– org.jsoup

– org.jsoup.examples

• Cluster 3:

– org.jsoup.select

– org.jsoup.nodes

We observed multiple cyclic dependencies. In the case of cyclic dependencies, it is best
for the library developers to split classes in packages and move them to clusters based on
functionality.

We now discuss a few interesting things we noted in the jsoup clusters. Cluster 1
contains org.jsoup.internal. It is clear from the naming that this package is meant for
internal use only and not for clients. We suggest that such packages be moved to a separate
submodule so that clients are not tempted to import them. Similarly, Cluster 2 contains
org.jsoup.examples which also almost certainly will not be needed by clients and can
also be moved to a separate submodule.

Due to the multiple cyclic dependencies that we observed, we did not raise a pull request
for jsoup.

3.2.3 guava

The guava library makes an interesting case for library fission since it provides multiple
functionalities such as I/O, caching, collections and so on, all within the same library. Due
to this, we see multiple clusters for the library as expected. In this library too, we observe
that packages have loosely similar functionality within clusters. Our final submodules for
guava are as follows:

• Submodule 1 — annotations:
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– com.google.common.annotations

• Submodule 2 — eventbus:

– com.google.common.eventbus

• Submodule 3 — reflect:

– com.google.common.reflect

• Submodule 4 — html-xml:

– com.google.common.html

– com.google.common.xml

• Submodule 5

– com.google.common.escape

– com.google.common.io

– com.google.common.net

– com.google.common.graph

• Submodule 6

– com.google.common.base

– com.google.common.cache

– com.google.common.collect

– com.google.common.hash

– com.google.common.math

– com.google.common.primitives

– com.google.common.util

We looked at the “Synk Vulnerability DB” for guava. We found two vulnerabilties,
“Information Disclosure” which affects the “com.google.common.io” package and “Dese-
rialization of Untrusted Data” which affects the “com.google.common.collect” package.
When we combed through projects that depend on guava using Github’s advanced search,
we found multiple projects that depend on the invulnerable packages of guava and would
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potentially benefit from fissioning guava, in terms of security vulnerabilities. We observe
that interactions with transitive dependencies play a bigger role in deciding whether a vul-
nerability affects a client, compared to when we actually create clusters for library fission.

We believe that library fission is potentially beneficial to developers. However, we
expect developer resistance when it comes to making these changes in their libraries, since
they are breaking changes. Indeed, Tran et al [56] looked into improving file layouts of 2
open source systems (Linux and VIM); while this information is not in the cited work, we
were told that, while the developers of these systems were appreciative of the changes they
had made, they were still reluctant to accept them as they were breaking changes [26].
We believe that the appropriate window to introduce fission changes is when other major
breaking changes are being planned.

The main breaking change that library fission introduces in a client is that the client
needs to identify the submodules that it requires and import only those submodules. We
expect no impacts on clients in terms of performance, since we are only adding visibility
restrictions. The worst case that we foresee is that a client must include all the submodules
of the library, in which case there is no difference from the previous (unfissioned) version
of the library. We performed manual exploratory testing of library fission on a subset of
libraries and a random subset of their clients from our benchmarks. The unit test results
were the same and we observed no change in build times.

3.3 Upgrades, Breaking Changes and Backward Com-

patibility

Our data for 101 Java software components contains different kind of interactions across
component boundaries. This data can be analyzed and prove useful in the following ways:

• Library developers can observe different usage patterns of their APIs. The clusters
observed in library packages can help with new version releases. Breaking changes
might be restricted to clusters and library developers can choose whether to make
clusters from new versions backward compatible with other clusters from older ver-
sions or not.

• Clients can also check if breaking changes in new library versions will affect their
code during upgrades and cross check this with library changelogs.
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• Unused dependencies can be identified and removed to prevent them from possibly
introducing version conflicts and vulnerabilties.
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(a) Usage Scenario 1: Library jsoup (pink with dark borders), called by two clients, ez-vcard (hollow
with purple border) and JsoupXpath (hollow with pink border). Exploration shows that internal jsoup
packages aren’t called directly by clients.

(b) Usage Scenario 2: Client dataprocessor (hollow, orange border) calls only one package in library fastjson
(green fill).

Figure 3.2: VizAPI Usage Scenarios.
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Chapter 4

Related Work

We now discuss related work, which is divided into three sections. Section 4.1 presents
work related to API usage while Sections 4.2.1 and 4.2.2 present work related to our two
applications; library fission and the VizAPI visualization tool respectively.

4.1 API Usage

This work revolves around the usage of library APIs by clients. There is a large body of
work investigating API usages. Mining API specifications was first introduced by Ammons
et al [3]. In their work, frequent interaction patterns are obtained from program execu-
tion. More closely related to our present work is that by Zhong and Mei [60], who have
investigated API usages in a dataset of 7 experimental subjects and the libraries that they
depend on. Some of those findings are relevant to us: they find that clients use less than
10% of the declared APIs in libraries. Our results corroborate these findings. Our work
differs from [60] in that we are specifically not investigating sequencing relationships be-
tween API calls. Saied et al [51] studied which API calls tended to co-occur in client code
and inferred co-usage relationships between these calls. Our work goes beyond previous
work by investigating not only which intended APIs get used but also APIs which are not
declared to be part of the interface but are used in practice. We record different types of
usage patterns, which we explain further in Chapter 2.

Thummalapenta and Xie [54] presented the related SpotWeb tool, which identifies
framework hotspots (APIs that are often used) and coldspots (APIs that are never used);
they do not consider framework APIs that are used but not intended to be. Hotspots and
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coldspots are, however, related to our investigations about client use of APIs; part of our
study could be seen as investigating the prevalence of hotspots on our benchmark suite.
Their notion of API usage is similar to ours, but they perform a static search to identify
uses, while we statically record uses but also dynamically record test executions. They
also identify the top N percent of used APIs as hotspots, and unused APIs as coldspots.
Viljamaa [58] also aimed to find hotspots but used concept analysis to do so.

Good API design is important, and Piccioni et al [47] carried out a detailed study to
determine what contributed to API usability. Our work also takes an empirical approach
and studies what clients use in practice, as well as parts of the API which are hidden from
users and yet are still used.

On the subject of API evolution, Yasmin et al [59] investigate deprecation and removal
of APIs in the RESTful context, while Zhou and Walker [61] investigate it in the context
of Java APIs with examples on the Web, and Li et al [37] investigate deprecation in the
Android context. Finding deprecated APIs is useful for preventing breaking changes. Calls
to removed APIs will definitely fail, especially in the RESTful context, where the server
retracts the API (there is no previous library version to fall back on). Internal APIs share
some similarities with deprecated APIs, in that calls to deprecated APIs may fail in the
future—there are no guarantees. Our tool records all client-to-library interactions, as well
as intra-client and intra-library interactions, and so we record usage of internal APIs.

Our study of API usage patterns includes investigating API bypasses. Dynamic lan-
guage features are one way to bypass protections, and Dietrich et al [15] explored the
extent of their use in the significant XCorpus. A related bypass technique is unsafe Java
(especially used for performance), and Mastrangelo et al [40] characterized the use of un-
safe Java in their benchmark suite. Amann et al [2] perform an evaluation of API mis-use
detectors and provide a classification of API mis-uses in their work. However, they focus
on misuses that result in exceptions while we focus on mis-uses that are unexpected but
do not lead to any errors or exceptions.

4.2 Our Applications

We investigate client uses of library code, targeting two applications: the VizAPI visu-
alization tool and library fission. Clients benefit from sharpened warnings about unsafe
upgrades, knowledge that some upgrades are safe, and having reduced attack surfaces.
Library upgrades have been investigated by many researchers, including Lam et al [34]
and Kura et al [33]. Kura et al found that most software had outdated dependencies, and
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that software developers had negative feelings about being required to constantly upgrade
their libraries. Foo et al [22] proposed a static analysis which detected safe upgrades, but
could only certify safety for 10% of upgrades. Our combined static and dynamic approach
presents the developer with more information. The applications of this information—the
VizAPI visualization tool and library fission can potentially enable easier upgrades. From
the library side, library fission can help with maintainability—smaller libraries can be
released with fewer worries about downstream effects.

4.2.1 Library Fission

The related notion of “tree-shaking” has been well-known since at least the 1990s, and
recently rebranded as “debloating”. The Jax project by Tip et al [55] was early work on
debloating in the Java space. More recently, JShrink by Bruce et al [8] has applied more
modern techniques to programs using more modern Java features (for example, lambdas).
Both our approach and JShrink’s integrate static and dynamic data to present recom-
mendations to developers about what they should update and what they should exclude.
However, debloating depends on executing and analyzing the client. Library fission, on the
other hand, does not require running analyses on clients for every execution, since it splits
libraries based on client usage.

A related concept is library shading, as done for instance by the Maven shade plugin1.
We are looking for code that is included (due to indiscriminate inclusion of dependencies)
but not used. A well-known problem that arises with dependencies is that different versions
of a library can sometimes be included in the same client, and this is more likely to happen
when there are more dependencies. Shading mitigates this problem, to some extent, by
renaming included libraries such that each included version appears to be different.

Hejderup and Gousios [28] explore a question which is central to our approach—how
well do client tests exercise their dependencies’ libraries? To some extent, we rely on client
test suites exercising enough of the dependencies to get valid results from our analyses.
Their conclusion is that a combination of static and dynamic analysis of the client has
some chance of detecting breaking changes in its dependencies, and we accordingly use
static analysis to supplement our dynamic results.

Shah et al [52] present refactorings which enable dependency breaking. In our work,
we instead use dynamic and static data to investigate library fission and enable clients to
depend on the same libraries as before, but less of them, using techniques that are similar

1https://maven.apache.org/plugins/maven-shade-plugin/
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to library shading. The difference is that we create versions of libraries that are smaller,
not simply renamed.

4.2.2 VizAPI

We now discuss existing work related to VizAPI, our visualization tool. A representative
tool from the software visualization literature is CodeSurveyor, by Hawes et al [27], which
visualizes large codebases using the analogy of cartographic maps. While it incorporates
dependency information into the layout of the map, VizAPI differs from CodeSurveyor in
that VizAPI focusses on usage relationships between different modules (for example, API
invocations) using dynamic analysis by executing test cases and static analysis to identify
relationships between clients and libraries, rather than investigating a particular system,
as CodeSurveyor does. Earlier work includes the software cartography project by Kuhn et
al [31] and software terrain maps by DeLine [13].

Call graph visualization is, of course, a well-known technique, as seen for example, in
the Reacher tool [36]. VizAPI also presents static and dynamic call information. However,
we designed it to support decisions about library/client interactions: the granularity of
nodes is packages (typically it is methods); and the layout is influenced by frequency of
interactions. Another key difference is that VizAPI also displays interactions other than
method calls, which include field usage, annotation usage, subtyping, reflective calls and
dynamic proxies.

Kula et al [32] also developed a tool to visualize changes in dependencies over time—
but not how a particular client depends on its libraries. Our VizAPI tool’s dependency
visualizations will help developers prioritize required upgrades as low-effort or high-effort.

Bergel et al [5] propose the Graph DSL for software visualizations. That language
could generate static representations similar to VizAPI’s; however, VizAPI chooses a spe-
cific point in the design space, and we argue that this point is useful for helping developers
understand potential impacts of upgrades.
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Chapter 5

Conclusion

The goal of this work was to enable 1) library developers to make better decisions when
designing new APIs, pruning or modifying unused APIs and to refactor their libraries; and
2) client developers to make better decisions about library upgrades and breaking changes.

5.1 Threats to Validity

Our threats to validity include the usual threat to external validity of insufficient sam-
ple size or variety—many of our seed libraries are JSON parser/generators, although our
transitive closures result in a wider range of domains.

There is also the construct validity issue: tests may not adequately represent actual
client behaviours. Dietrich et al discuss this in their work [16]; they find that even when
coverage by unit tests is low, the low coverage is made up for by the fact that programmers
are likely to write tests for the parts of the code that they believe to be most important. The
other issue is considering client test suites as a reasonable representation of how libraries
are used by the client. Our use of both static and dynamic information addresses both this
issue and that of low coverage.

Specifically, because we use class hierarchy analysis for our static analysis, our visual-
ization will present all possible static calls—possibly too many. That is, the main hazard
with static analysis is that our visualization may include more static edges than are ac-
tually possible. Some of those edges could be ruled out by a more precise call graph.
Reflection aside, no static edges are missing (our approach is “soundy” [38] with respect
to static information). On the other hand, dynamic edges have actually been observed on
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some execution; better tests could yield more dynamic edges. But even if a dynamic edge
is missing, there will be a static edge if the behaviour is possible.

We may have missed other categories of bypass patterns—though we believe that we
have chosen at least a representative sample of mechanisms to ensure modularity.

Finally, our results apply best to Java-like languages, and may vary dramatically for
other languages.

5.2 Actionable Outcomes

Based on our exploration of API uses and mis-uses, we make some recommendations for
both API and language/analysis designers.

1. API scope: Both we and Thummalapenta and Xie [54] find that APIs are sparsely
used. While some APIs are included in libraries for the sake of completeness (e.g.
implementing all methods on an interface even if they are never expected to be called),
API designers can seek to prune unused APIs that have no conceptual reason to exist;

2. Deprecation: One could investigate the scope for aggressive deprecation of unused
APIs in released libraries, giving more liberty to API designers to modify their code;

3. Refactoring: Our results show that library fission could be useful, i.e., some existing
APIs can be split into loosely-connected parts, reducing effective API surface and
potentially developer cognitive burden;

4. Modularity: API and language designers can be confident that stated encapsulation
boundaries are respected.

5.3 Directions for Future Work

In our study of API usage in our set of benchmarks, we find that APIs are sparsely
used. This corroborates the same finding in Thummalapenta and Xie [54]’s work. We
also see that our clients call into parts of libraries with a limited but nonzero overlap. An
interesting experiment would be to plot cumulative usage as the number of clients increases
and observe if the percentage of APIs used reaches a saturation point.
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We can also extend our API usage study further by investigating why certain APIs are
used the way that they are. It was interesting to observe that reflection and setAccessible()

are commonly used for serialization. This is done to gain access to fields of objects to be se-
rialized. Other observations from our study include reflection and setAccessible() being
used on methods, reflection and setAccessible() being used on things that are already
accessible (for example, public methods), accesses to non-constant fields of a library by a
client and so on. Understanding the reason for these usage patterns can aid in better API
design in the future.

VizAPI is in development and future work includes features such as zooming and fil-
tering. User evaluations of our VizAPI tool can establish and improve the effectiveness
of VizAPI. This can be performed following existing techniques [42]; in particular, experi-
ments where users perform software understanding and maintenance tasks.
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Appendix A

Artifacts

Our Github repository for the static and dynamic analyses tool is at

https://github.com/SruthiVenkat/calls-across-libs

The artifact documentation for VizAPI is presented below.

This document explains our artifact for the VizAPI tool, including how to obtain,
install, and use the artifact. VizAPI generates a d3js visualization of library API usage
by clients, using a modified version of Python’s d3graph library. Our working Github
repository for VizAPI is at https://github.com/SruthiVenkat/api-visualization-tool. We
have also archived the artifact at https://doi.org/10.5281/zenodo.7023911 and our dataset
at https://doi.org/10.5281/zenodo.7023872.

A.1 Getting Started

To acquire the repository, clone the repository (or download the archived version) and
then copy the apis-data directory from the dataset into the root directory of the artifact.
The API data directory contains our data for 101 benchmarks. If the input to VizAPI
exists in apis-data, then VizAPI directly generates visualizations from the data files. If
not, our package first runs the instrumentation to create the data files, and then generates
visualizations from them.

We next describe the input to VizAPI. To run on a benchmark, the tool expects a
JSON file called input.json as its input. The JSON file must contain an array of objects
where each object describes a project; it can be in one of the following formats:
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1. The first format, shown immediately below, is to be used when data for the project
already exists in apis-data. In this case, the artifact ID of the project (which can
be arbitrarily chosen by the user) and the type of the project (whether it is a client
or library) need to be specified.

1 [{
2 "artifact": artifact ID of project,

3 "type": "client" or "library"

4 }]

Listing A.1: Input Format

2. The second is to be used when data for the project does not exist in apis-data.
Again, the artifact ID of the project and the type of the project (whether it is a
client or library) still need to be specified. Since the data do not exist, VizAPI
also needs to capture instrumentation data, and hence VizAPI expects the URL and
commit ID of the project. VizAPI expects the project to be in Maven format and
can automatically execute the project’s tests.

1 [{
2 "url": Github link to repo,

3 "commit": Commit ID,

4 "artifact": artifact ID of project,

5 "type": "client" or "library"

6 }]

Listing A.2: Input Format

A.2 Running VizAPI with Docker

We recommend using Docker to run VizAPI; we have tested the configuration and believe
that it should be portable.

1. Run docker build -t img name . from the directory where you have cloned the
Github repository.

2. Run docker run

-v /path/to/this/repo/api-
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visualization-tool:/api-

visualization-tool img name

The path before the : in the command is your local path to the repo. The path after
the : in the command is the path in the container, which is /api-visualization-tool.

A.3 Running VizAPI without Docker

It is also possible to run VizAPI outside of Docker.

1. Install the following Python packages: pandas, jupyterlab server, networkx, colourmap,
python-louvain, sklearn, ismember, d3graph, PyGithub.

2. Change paths starting with /api-visualization-

tool to point to the location of your repository in the following files: api-viz.py,
config/config.properties.

3. Run api-viz.py.

In both cases, i.e., with and without Docker, the final graph is generated with the name
api-usage.html, in the VizAPI main directory.

The following is an example input.json needed to reproduce the Graph 1 at

https://sruthivenkat.github.io/VizAPI-graph/:

1 [{
2 "artifact": "dataprocessor",

3 "type": "client"

4 }]

Listing A.3: Input Example

Some points to note are:

1. The size of the Docker image is around 4.1 GB.

2. The more data points, the longer the graphs take to generate.

3. When running VizAPI to generate graphs, you may see many Python Future warn-
ings. They can be ignored.
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