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Abstract

Resource management is one of the main responsibilities of operating systems. In Linux,
the Completely Fair Scheduler (CFS) allocates CPU time to processes, allowing them to
share CPU time. Although effective in allocating CPU time, CFS does not consider the
consumption of other system resources (e.g., memory bandwidth, I/O devices, and power
supply). It has been shown that the contention on memory bandwidth has a significant
impact on the performance of processes [13]. A proper solution for memory bandwidth al-
location should consist of a source throttling part and a memory request scheduler. In this
work, we consider the multi-resource fair scheduling problem. We focus on CPU and mem-
ory bandwidth as the main resources. We take a software-hardware co-design approach to
design and implement our proposed multi-resource fair scheduler, Dominant Resource Fair
Queueing Scheduler (DRFQS). First, we propose simple modifications to the memory con-
troller to monitor memory bandwidth usage per process and schedule memory requests.
Second, we propose DRFQS to replace the CFS in Linux. DRFQS schedules processes
based on the dominant resource fair queueing (DRFQ) method [9]. DRFQS utilizes the
memory monitoring module and controls the memory scheduler in the modified memory
controller. We implement our proposed memory controller design in the gem5 simulator
and implement our CPU scheduler based on Brain Fuck Scheduler (BFS) in the Linux ker-
nel v4.8. We evaluate our design and implementation by: (i) measuring allocation of CPU
time and mmoery bandwidth, and comparing them with the desired allocations, (ii) run-
ning benchmarks under memory bandwidth contention and comparing their performance
with the original hardware and software and with our proposed modifications. Our evalu-
ation demonstrates that our design guarantees fairness while achieving high performance.
We reduce the running time of memory-intensive benchmarks under memory bandwidth
contention by close to 50%.
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Chapter 1

Introduction

1.1 Motivation

Resource sharing is a main building block of most computer systems from embedded
systems to personal computers to datacenter clusters [5, 26]. In most systems, the operating
system facilitates resource sharing among processes. In many operating systems, including
Linux, processes are scheduled to have a fair share of CPU time. However, the consumption
of CPU time does not always directly correlate with the consumption of other system
resources. Therefore, fair allocation of CPU time does not guarantee fair allocation of
other resources [10, 9]. For example, the consumption of memory bandwidth by DMA-
capable devices is not considered when scheduling processes [18]. With DMA-capable
devices, a process can generate a large amount of memory traffic. The process for which
DMA memory requests are generated might not use CPU while the requests are being
processed. However, the consumed memory bandwidth slows down other processes that
run on the CPU and require memory. To demonstrate this problem, we run two processes
in a target simulated ARM system (see Section 5.1 for details). Process A generates a
large number of DMA memory requests, and process B generates a large number of CPU
memory requests. When process A and B run together, process B is slowed down, in some
cases by a factor of more than 2, while process A does not experience any meaningful
slowdown. In our experiment, we use the fio benchmark as process A and mbw, lbm, Gems,
and mcf (see Section 5.2 for details) as process B. The slowdown of all benchmarks is shown
in Fig. 1.1. In the experiment, the processes do not compete for CPU. Therefore, the result
shows that the design of today’s memory controllers makes DMA requests prioritized. It is
also because the Linux scheduler, the Completely Fair scheduler (CFS), does not support
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Figure 1.1: Slowdown of Benchmarks when Running Concurrently

multi-resource fair allocation of CPU time and memory bandwidth. If the two processes
compete for CPU, the slowdown would be worse for process B compared to process A under
CFS. CFS schedules processes based on their CPU usage. Process A consumes much less
CPU time than process B to generate the same number of memory requests.

The example above shows that failing to consider contention on multiple resources
could violate fairness among processes. For both embedded systems and cloud servers,
unfair allocation of resources could lead to critical problems. In embedded systems, the
completion time of critical and real-time tasks may increase and become unpredictable
[1, 25]. In cloud servers, it can lead to the violation of service level agreement (SLA) [33],
or less utilization of resources if inefficient performance isolation is used [10].

1.2 State of the Art

To allocate other resources, Linux supports cgroup, which sets a budget on multiple
resources [2] (e.g. memory space, disk I/O, and network bandwidths) for a group of one
or multiple processes. When a group of process(es) exceeds its budget on a resource, they
are throttled from consuming more of that resource. However, cgroup does the allocation
on a per-resource basis and lacks support for memory bandwidth allocation.

Prior work can be divided into two main categories: multi-resource fair allocation and
memory bandwidth allocation.

1.2.1 Multi-resource Fair Allocation

Space-shared Resources. To allocate multiple resources fairly, Ghodsi et al. pro-
posed Dominant Resource Fairness (DRF) [10]. The resource that a user has the highest
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share of is the dominant resource of the user. In a multi-user environment, the dominant
resource of different users might be of different types. DRF maximizes the minimum share
of the dominant resource across all users. This means that all users are guaranteed a fair
share of their dominant resource. DRF incentivizes users to share the resources with other
users. In most cases, users get more resources under DRF than the equal partitions of
all system resources. In the worst case, users are guaranteed to get the same amount of
resources as equal partitions (see Section 2.4.1 for details).

Time-shared Resources. As an extension to DRF, Ghodsi et al. proposed Dominant
Resource Fair Queueing (DRFQ)[9] for allocating time-shared resources. The proposed
scheduler is based on virtual time. The scheduler picks the next packet with the lowest
virtual time to be serviced when the resource it requires becomes available. The virtual
time of a packet when the system is backlogged is based on the dominant resource time
consumption of the previous packet of the same user.

1.2.2 Memory Bandwidth Allocation

The memory bandwidth allocation problem consists of two parts: (i) monitoring the
memory bandwidth consumption of processes and (ii) enforcing the allocation. Prior works
monitor the memory bandwidth consumption of processes running on CPU by utilizing
the Performance Monitoring Unit (PMU) [32, 17]. Monitoring the per-process memory
bandwidth consumption by DMA-capable devices using existing hardware features (e.g.,
IOMMU) is also discussed in [7], although existing hardware features are not sufficient
for such monitoring. Enforcing the memory bandwidth allocation can be implemented at
the source of the memory requests (e.g., CPU) [32, 13] or at the target (i.e., the memory
controller) [22, 8, 13]. However, source-based only and target-based only solutions are
demonstrated to be insufficient, and a solution that combines both source-based and target-
based enforcement is more effective [13].

1.3 Methodology

In this thesis, we consider the problem of multi-resource fair scheduling in modern
computer systems. To address this problem, we propose the Dominant Resource Fair
Queueing Scheduler (DRFQS) to achieve fair allocation of CPU time and memory band-
width in Linux. We take a software-hardware co-design approach to design and implement
DRFQS. The main idea is to consider processes as packet flows and each run of the process
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as a packet. We design and implement a CPU scheduler for DRFQS which is an extension
of DRFQ and relies on the hardware to provide information about the memory bandwidth
consumed by each process. The memory bandwidth allocation is enforced by source-based
throttling provided by our proposed CPU scheduler and target-based arbitration provided
by our proposed memory scheduler hardware.

To allocate memory bandwidth, we add performance counters and a control interface
to provide per-process memory bandwidth consumption information to the kernel CPU
scheduler. To track memory usage per process, we use different approaches for CPU and
DMA-capable devices. For CPU memory requests, since there is only one process running
on a CPU core at any given time, we use the core ID and the mapping from core ID to
process ID (PID) provided by the CPU scheduler to identify the process responsible for
CPU memory requests. Prefetch and writeback requests generated by the cache system as
a result of a CPU memory request are attributed to the same process responsible for the
CPU memory request. For DMA-capable devices, we use the subStreamID (ARM) field
in memory request packets to provide the PID of the responsible process to the memory
controller. To evaluate our design, we use the gem5 simulator. We also use SimpleSSD, an
NVMe SSD simulation as the DMA-capable device. We modify the NVMe protocol, the
NVMe driver in Linux, and SimpleSSD to support using PID as subStreamID. We verify
our memory bandwidth tracking design to ensure that it tracks the memory bandwidth
consumed by processes through different routines.

We modify the memory scheduler in the memory controller to make it use the virtual
time of processes for scheduling. The priority of memory requests is determined by the
virtual time of the responsible process. Requests generated by a process with lower virtual
time have higher priority. The scheduler picks the highest priority request from all queued
requests to be processed. The virtual time of processes is provided by the CPU scheduler
by writing to registers in the memory controller. The design of the queues of the memory
scheduler is also modified to better handle high request rate.

We implement our kernel CPU scheduler based on CFS in Linux. We replace the
per-CPU run queue design of the CFS with a single-queue design. We implement our
single-queue design based on the code of the Brain Fuck Scheduler (BFS) [30]. Following
DRFQ, we use virtual time in our proposed scheduler. The scheduler reads the data from
the performance counters in the memory controller, makes scheduling decisions, and writes
to the registers to control the memory scheduler.

To summarize, our work consists of the following parts:

1. We propose a design tracking per-process memory bandwidth usage by CPU and
DMA-capable devices. The design is implemented in the kernel scheduler, the device driver,
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and the memory controller (Chapter 3).

2. We propose a CPU scheduler using virtual time based on the usage of both CPU
time and memory bandwidth. The calculation of virtual time is based on the Dominant
Resource Fair Queueing [9]. We implement the scheduler Linux kernel v4.8 using the BFS
scheduler (Section 4.2).

3. We propose a memory request scheduler in the memory controller with input from
the CPU scheduler. We evaluate our design using gem5 (Section 4.4).

4. We address the problems of memory bandwidth allocation and performance tur-
bulence caused by the difference between the original use case of DRFQ and our target
system. We introduce delayed wakeup for DMA-intensive processes for fairness (Section
4.5.1). We also use a smoothened virtual time as the input for the memory packet scheduler
to reduce performance turbulence for memory-intensive processes (Section 4.5.3).
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Chapter 2

Background and Related Works

In this chapter, we first review previous works on CPU scheduling and memory band-
width scheduling. Then, we introduce the multi-resource fair allocation problem. Finally,
we provide a brief overview of the dominant resource fair (DRF) allocation and its extension
to time-shared resources, dominant resource fair queueing (DRFQ).

2.1 Resource Allocation Model

Resource sharing is a classic topic in computer systems. We consider a typical multiple-
user computer system, in which each user can run multiple instances of different applica-
tions. Each instance of an application is a task. In process-based operating systems, the
task is described as a process. Resources that different users may compete on include
CPUs, memory capacity, memory bandwidth, and external devices, e.g., disks, network
cards, and GPUs. In general, resources can be shared in two ways: (i) space-shared and
(ii) time-shared. With space-shared, allocations remain constant over time. With time-
shared, time is divided into time slices, and allocation may change from one time slice to
another. It can also be said that space-shared resource is a special case of time-shared
resource. When a space-shared resource is allocated to a user, the user can use it for
unlimited time slices.

In process-based operating systems, the CPU is usually time-shared. To allow different
processes to run “concurrently” on CPU, operating systems schedule processes to run for a
time slice. After the time slice is expired, the process may be replaced by another process.
In other computer systems, the CPUs can be treated as a space-shared resource. For
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example, big data frameworks like Hadoop allocate CPU cores and memory space to tasks.
A task has full access to the resource allocated to it until it finishes. In this case, CPU
cores and memory space are space-shared resources.

Fairness for space-shared and time-shared resources is evaluated based on the share of
each resource allocated to each user. For space-shared resources, the share allocated to
the user is the amount of the resource allocated to the user divided by the total amount
of the available resource. For time-shared resources, it is the total time allocation on the
resource during the allocation period multiplied by the average share of allocation then
divided by the length of the period. The length of the allocation period varies based on
how the system measures resource allocation.

For space-shared resources, the share of allocation is determined before the user starts
to run the application. The system usually does not know the actual utilization of the
allocated resources. For time-shared resources, the system usually knows the actual con-
sumption of the resource. Spillover time-shared resources can be reclaimed to be used by
other users. For example, if a process is blocked before it consumes all allocated CPU
time, the scheduler picks another process to run. If all other processes have consumed
their allocation, the scheduler still picks one of them to run and consume the spillover
CPU time.

2.2 CPU Scheduling

Round-robin is a classic CPU scheduling policy. In round-robin scheduling, time is di-
vided into multiple time slices. Each time slice is allocated to the process at the head of the
run queue. Processes take turns running on CPU for the period of the time slice in circular
order. To support priority-based scheduling, two common techniques are weighted round-
robin (WRR) scheduling and strict priority (SP) Scheduling [23]. Weighted round-robin
scheduling makes the length of time slices for each process proportional to the weight of
the process [19]. Strict priority scheduling assigns fixed priority to each process. Processes
with lower priority execute only when there is no higher priority process ready.

Based on weighted round-robin and strict priority, multilevel queueing (MQ) scheduling
classifies processes into different queues of fixed priority. Lower priority queues execute only
when there is no task in higher priority queues ready. Each queue has its own scheduling
policy, e.g., round-robin or weighted round-robin.

Waldspurger et al. [29] propose lottery scheduling and stride scheduling [28] to achieve
QoS in scheduling. Lottery scheduling assigns processes tickets in proportion to their
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weights. It guarantees that all processes get at least one ticket. The scheduler randomly
picks a ticket and schedules the process which owns the ticket to execute. The ticket is
removed after being picked. When all tickets are removed, the scheduler assigns tickets to
processes again. It ensures that every process will have a chance to execute by giving them
at least one ticket.

Stride scheduling improves lottery scheduling by making the scheduling deterministic.
It introduces the stride for each process, which is inversely proportional to the number of
tickets held by the process. It also introduces the pass for each process, which increases by
the stride each time a process receives a time slice. The scheduler picks the process with
the lowest pass to execute, removing the randomness of lottery scheduling. Compared to
weight round-robin, lottery scheduling and stride scheduling gives processes with higher
priority more chances to get a time slice instead of giving them longer time slices. This
prevents high-weight processes from occupying CPU for a long period of time, which in
turn prevents other processes from starving.

In networking, to achieve “perfect” theoretical fairness, Generalized Processor Sharing
(GPS) provides an ideal algorithm to share a network link among packets from multiple
flows with different weights. With GPS, the bandwidth allocated to each flow is propor-
tional to its weight. GPS is only a theoretical benchmark and is not practical because it
assumes that the network traffic can be arbitrarily split. An approximation of GPS is the
Weighted Fair Queueing (WFQ) [3]. Virtual time is introduced in the implementations of
WFQ as a simplified description that links resource consumption and progress of a flow to
its priority [3]. Virtual time allows flexible manipulation of the priority of processes. For
example, the weight of a process determines the ratio between virtual time increment and
actual time consumed.

The Linux CPU scheduler is called the Completely Fair Scheduler (CFS) [12]. CFS is
considered to be an implementation of WFQ. In CFS, each CPU has its own run queue.
Ready processes (i.e., in TASK RUNNING state) are assigned to a CPU and added to its run
queue. In each run queue, process descriptors are sorted by their virtual time and stored in
a red-black tree (rbtree) data structure. When choosing the next process to run on CPU,
CFS picks the process that has the lowest virtual time. The virtual time of a process is
calculated based on the CPU time allocated to the process in the past. By picking the
process with the lowest virtual time, CFS maximizes the minimum share of CPU time for
all processes. When a process is running, its virtual time is updated periodically every
time the timer interrupt is triggered. When a process is blocked, suspended, or yields, its
virtual time is also updated. In these cases, the virtual time is updated based on the CPU
time consumed and the weight of the process after the previous update. When a process is
unblocked, its virtual time is updated to a value slightly lower than the minimum virtual
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time of the run queue, if this value is not lower than its original virtual time. The minimum
virtual time is a monotonically increasing value maintained by the scheduler. It is updated
when the minimum virtual time across all processes in the run queue increases. It is added
to the virtual runtime of a process when it is assigned to a run queue and subtracted from
a process that is being migrated from the run queue.

To balance the load among CPU cores, CFS calculates the load value for each process
and each run queue. The load value of a process is based on its CPU time consumption in
the past and its weight. The load value of a run queue is the summation of the load value
of all processes in the queue. CFS compares the load value of different queues to determine
if there is an imbalance. If there is a significant imbalance, CFS performs migration to
balance the workload between the CPUs. This ensures processes do not get unfairly delayed
because the CPU they are assigned to is overloaded.

Despite being the default scheduler of Linux for years, CFS suffers from some main
weaknesses. First, it does not fully support latency-sensitive workloads [6]. Consider a
latency-sensitive process A, that receives a packet once every 16 time slices and it takes 4
time slices to process the packet. Suppose that the application runs in a run queue with 3
other processes which are always ready or running. When a packet arrives, A is unblocked
and starts running. A runs for a time slice each time it is scheduled to run. After that, it
waits for the 3 other processes to each run for a time slice. As a result, after the packet
arrives, A is scheduled to run in the 1st, 5th, 9th, and 13th time slices. While the processing
time is 4 time slices in total, the response time of A is 13 time slices. If other processes are
not latency-sensitive, the ideal scheduler should let A run for 4 time slices uninterrupted
every 16 time slices. After that, A is blocked until the next packet arrives. The other
3 processes are scheduled to each run for 4 time slices from the 12 time slices left. As a
result, in every 16 time slices, all 4 processes have run for 4 time slices. In this case, the
response time of A is minimized, while CPU time is fairly allocated among processes over
a longer time period (16 time slices).

Duda et al. propose the Borrowed-Virtual-Time (BVT) [6] scheduler to improve the
performance of latency-sensitive workloads while preserving the fairness in CPU time allo-
cation. BVT introduces the effective virtual time for latency-sensitive processes, replacing
their actual virtual time. The effective virtual time of a latency-sensitive process is its
actual virtual time subtracted by its warp value. The warp value of a process is the vir-
tual time the process is configured to borrow. This gives latency-sensitive processes the
advantage to be scheduled first and keep running on the CPU for a longer time period.
However, the borrowed virtual time can be quickly consumed. If that happens, the process
is blocked after which the borrowed virtual time is recharged. In the example mentioned
previously, A can be scheduled ideally by BVT if its warp value is configured to be 3 time
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slices or more.

The second problem with CFS is the overhead of implementing the multi-queue design in
CFS. By using separate run queues for each CPU core, CFS minimizes the lock contention
among CPU cores [12]. However, balancing the load among multiple queues introduces a
significant overhead [20]. An alternative scheduler is the Brain Fuck Scheduler (BFS) [30].
In BFS, a single global run queue is shared among all the CPU cores. CPU cores can access
the global run queue by acquiring a global lock. BFS uses virtual deadline to determine
which process to schedule next. When a CPU becomes idle, it queries the global queue
for the next process with the lowest virtual time. The virtual deadline for each process is
calculated based on the current time and the weight of the process (which is determined
by a nice value). BFS also supports different scheduling policies for real-time tasks created
by root users and unprivileged users, normal tasks, and background tasks.

BFS handles CPU affinity by calculating the distance between cores. For each pair of
CPU cores, a distance value is set during kernel initialization. The distance indicates the
overheads when migrating a process from one CPU core to the other. If the memory access
is uniform among all cores (i.e., non-uniform memory access (NUMA) is not enabled), BFS
sets the distances between every pair of CPU cores to be the same value. When picking
the next running process, the virtual time is multiplied by 2 to the power of such distance.
This way, the migration would not happen unless the CPU is significantly backlogged.

Since the CPUs need to acquire a global lock to access the single run queue, lock
contention becomes a problem for BFS when the number of CPUs increases. However,
because of its simplicity, when the number of CPUs is small, especially when there are less
than 16 CPUs, BFS shows better performance than CFS for many benchmarks [11].

Lastly, CFS is also found to have unexpected bugs in multi-core systems [20]. In modern
multi-core systems, when NUMA is enabled, a set of CPU cores, called a NUMA node,
shares the same local memory. The access time of non-local memory is longer than local
memory. To adapt to NUMA, CFS first performs group load balancing between NUMA
nodes, then balances the CPU cores in each NUMA node. This reduces the migration of
processes between cores of different NUMA nodes. Lozi et al. [20] found that the group
balancing algorithm in CFS is problematic. It leaves cores idle while other cores are busy
in some special cases.
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2.3 Memory Bandwidth Scheduling

The solutions to memory bandwidth scheduling can be categorized into two types: (i)
source-based and (ii) target-based. In source-based solutions, the request generation rate
is throttled at the source (e.g., CPU) to reduce or eliminate backlog at the target, i.e.,
the memory controller. In target-based solutions, when there is a backlog at the target,
requests with higher priority are prioritized over others. The priority of memory requests
from different sources in a target-based solution is usually based on the memory bandwidth
usage by the source in the past or the progress of tasks that should be prioritized. To collect
the data on memory bandwidth usage, most solutions rely on hardware features. We first
review source-based solutions using existing hardware features. Then, we review target-
based solutions, which usually need new hardware features. Finally, we review combined
source-based and target-based solutions which provide better outcomes than source-based
or target-based alone.

2.3.1 Source-based Solutions

Software-only Solutions

cgroup [24] is a kernel feature in Linux for resource management. It supports limitation,
accounting, and isolation of resource consumption for many different resources, such as
CPU, memory, disk I/O, and network. While cgroup does not manage memory bandwidth,
it does manage disk I/O and network which are major sources of memory bandwidth usage
other than CPU. cgroup relies on the Linux subsystem that manages the resource to collect
resource consumption data and apply restrictions. For example, the support for disk I/O
relies on the block I/O (bio) layer [15]. cgroup first attributes I/O requests to a process
if it is not generated by the kernel. For non-buffered requests, e.g., all read requests and
direct write requests, the requesting process is obvious. For buffered write requests, data
written to the device is stored in a write buffer until a write-back is triggered. A write-back
can be triggered by the requesting process, other processes, or the kernel. Thus, cgroup
relies on the memory subsystem to identify the owner of the page for the requested data
and counts it as the requesting process. The block I/O subsystem reports to cgroup when a
block I/O request starts or finishes. cgroup can throttle requests from a group by limiting
the group’s block I/O queue depth or introducing artificial delays.

While cgroup’s management of disk I/O and network affects the memory consumption
by external devices, it does so indirectly. This is insufficient to fairly allocate memory
bandwidth among processes for four main reasons. First, it does not support accounting
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and limiting normal memory bandwidth consumption generated by CPU reads and writes.
Second, cgroup does not track the exact time of each memory operation. In the example
of block I/O, cgroup only tracks the size of requests and the start and the end time of
the request. The memory traffic associated with a request may be distributed unevenly
during the period the request is being serviced by the hardware. As a result, there are
inaccuracies when estimating memory bandwidth consumption, especially when the service
time is long. Third, the size of requests may be different from the amount of memory traffic
generated by the device. Common reasons for this are the uncertainty of hit or miss in
the cache system (if I/O devices use cache) and the device may use the main memory
to store intermediate results (e.g. FPGA accelerators). Lastly, cgroup manages different
types of resources separately. If a group uses multiple devices, e.g., disk I/O and network,
estimating the combined memory bandwidth consumption is almost impossible.

Prior work has explored using the existing Linux subsystems to manage per-process
memory bandwidth consumption. Ewert et al. [7] propose solutions to estimate the mem-
ory bandwidth usage of processes by disk I/O and network. The authors explore both
software and hardware solutions. The authors conclude that current hardware can provide
accurate data for total memory bandwidth consumption by I/O devices, but it cannot
provide memory bandwidth consumption by each device or each process. Following the
implementation of cgroup, device drivers are modified to obtain memory bandwidth usage
by each process from disk and network devices. Assuming that the actual memory band-
width usage of I/O operation is proportional to the usage reported by device drivers, the
authors use the proportion from the driver-reported memory bandwidth and the hardware-
reported total memory bandwidth by all I/O devices to calculate the memory bandwidth
usage by each process. However, the assumptions made in this work are completely accu-
rate. The authors’ design only updates the memory bandwidth usage of a process when
it is dequeued. If the memory traffic between two updates distributes unevenly over time,
then this method suffers from inaccuracies similar to cgroup.

Hardware-assisted Solutions

Existing hardware provides features that can be used to monitor the memory bandwidth
usage of CPUs and I/O devices. In most modern CPUs, the Performance Monitoring Unit
(PMU) provides a set of hardware counters that can be utilized to track system events.
Usually, the PMU supports counting the number of retired instructions of each type, the
cycles CPU spent on each status (e.g., memory stall), and the number of cache hits and
misses. The PMU counters can also trigger interrupts. Prior works utilize the PMU
counters to monitor system status and apply measures to manage memory interference.
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Using the PMU, Kim et al. [17] propose memory-aware CFS (mCFS), a modification
to Linux CFS to compensate processes for slowdowns due to memory contention. mCFS is
implemented and tested on NVIDIA Xavier SoC, which is primarily used in embedded sys-
tems. Xavier integrates a high-performance GPU that can be used to run machine learning
workloads. The authors demonstrate the performance impact of memory contention be-
tween CPU cores and between CPUs and GPUs. In mCFS, the PMU is used to measure
the backend stall cycles and total CPU cycles. The authors define the intrinsic stall and
the memory-related stall to distinguish the cause of stalls. The authors also define the
actualized scaled CPU time to compensate for memory-related stall cycles when counting
the CPU time consumed by the processes. The actualized scaled CPU time is used to
calculate virtual time, which in turn is used to schedule processes.

Tang et al. [26] analyze the memory performance in datacenter applications running on
multi-socket servers. When multiple threads run on hardware with non-uniform memory
access and multi-level caches, modification of shared memory by one thread may cause
other parts of the system to invalidate the caches storing the same address. The location
of these threads on the CPUs has a significant impact on cache performance. The authors
illustrate the destructive impact on cache performance caused by improper thread location
and develop heuristic and adaptive approaches to co-locate threads properly.

In real-time applications, memory contention makes memory-related delays unpre-
dictable. Thus, the operating system cannot predict if a real-time task can meet its
deadline. MemGuard [32] is a solution addressing the problem. MemGuard regulates
the total memory request rate to be lower than the DRAM controller’s service rate and
ensures a minimum memory bandwidth allocation for processes. The implementation of
MemGuard is a patch to the Linux kernel. The kernel patch uses the PMU counters to
count the number of last-level cache (LLC) misses. The memory traffic of processes is
estimated by the number of cache misses on partitions of the cache mapped to the CPU
core the process runs on. The authors use an empirical value for the DRAM controller’s
bandwidth, which is the total budget of all processes. When scheduling a process to run on
CPU, MemGuard calculates the memory bandwidth budget for the process. The budget
is converted to a threshold and used to configure the PMU counters according to the tech-
nical specifications. When the counter reaches the threshold, it indicates that the process
has used up the memory traffic allocation in the current scheduling period. The PMU
generates an overflow interrupt. MemGuard services the interrupt and stops the process
from running. If there is unused memory bandwidth budget reclaimed from processes that
have not consumed up all their allocated budget, the budget is transferred to the interrupt
process. Then the interrupted process can run until it consumes its new budget.

MemGuard has been used to solve many problems caused by memory interference.
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Schwäricke et al. [25] built a solution to real-time virtual machine (VM) communication
using MemGuard. The authors argue that the increasing usage of GPUs and FPGAs for
computing requires large data transfers to and from memory. They consider the transfer
between applications running on different virtual machines that share devices like GPUs
and FPGAs. The virtual machines use the virtio interface provided by the hypervisor
to communicate with each other. Communication between virtual machines requires the
copying of a large amount of data. In the target platform, QoS-regulated DMA engines
are used to copy large chunks of data within the memory. Memory interference exists
among the CPU cores and the DMA engines (The authors exclude other DMA-capable
devices). To address this problem, the authors extend the hypervisor to control MemGuard
and QoS DMA engines to regulate the memory usage by CPU and DMA engines. The
hypervisor schedules the virtio packet used for VM communication. This way, since the
memory bandwidth regulation minimizes memory interference, the VM communication
time is predictable with the solution.

An extension of MemGuard, BWLOCK [31], addresses the performance degradation of
applications that access memory in bursts, e.g. multimedia decoders. This type of applica-
tion is sensitive to memory latency but has a low average memory bandwidth consumption
over a long period. The authors define the memory-performance critical sections for these
applications. BWLOCK provides a user-level API for user applications to acquire a lock on
memory before entering such sections. Processes with the lock are allowed to use memory
without restrictions, while others are regulated to use a small constant amount of memory
bandwidth.

Aghilinasab et al. [1] propose a solution based on BWLOCK protecting GPU from
memory interference by CPU while maximizing the memory bandwidth available to CPU
and ensuring that tasks on GPU meet their deadline. Real-time tasks acquire the lock
when using the GPU. The impact of memory interference on DMA operations of GPU
is minimized by BWLOCK by restricting memory usage of CPU cores. To maximize the
memory bandwidth available to CPU, the proposed solution estimates the finish time of
GPU tasks based on the progress, the estimation of worst-case execution time (WCET), and
the current time. Compared to BWLOCK which allocates a constant amount of memory
bandwidth to CPU cores when the lock is acquired, the solution adjusts the amount based
on the estimated finish time of the real-time GPU task. If the finish time is estimated to
be earlier than the deadline, then the amount of memory bandwidth available to CPU is
increased.
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2.3.2 Target-based Solutions

In most existing systems, the memory controller schedules requests to maximize through-
put. The status of DRAM when a request arrives affects the processing time of the request.
A typical DRAM chip consists of multiple independent banks that allow requests destined
for different banks to be processed in parallel. Each bank is organized as a two-dimensional
array with multiple rows and columns and has one row buffer [21]. A memory address can
be divided into bits storing the target bank, row, and column. To access data from a row,
the row must be activated first and stored in the row buffer. Then, a read/write request
is processed on the row buffer. This results in three different statuses when a request
arrives, row hit (the row buffer has the requested row), row closed (the row buffer is not
loaded with any row), or row conflict (the row buffer has another row that is different
from the requested one), ordered by the resulting processing time from low to high. If row
conflict happens, the row buffer always has to be written back. This is because the data
is destroyed in the row after it is activated.

Resequencing the DRAM requests to have more row hits and reduce row conflicts can
greatly improve the performance of DRAM. The memory controller often uses the first-
ready first-come-first-serve (FR-FCFS) scheduling policy that maximizes row hits. It is
an improvement of the first-come-first-serve (FCFS) scheduling policy. In FR-FCFS, the
earliest row-hit request has the highest priority, while the latest row-conflict request has
the lowest.

DRAM also has extra delays when switching between read and write commands. To
reduce the overhead, the memory controller often minimizes the times of switching. If the
request queue of the previous direction is not empty, the memory controller continues in
the same direction. Only when there is no queued request in the previous direction, the
memory controller switches the direction to process queued requests in the other direction.

To support fair scheduling of memory requests, prior solutions modify existing hard-
ware. PARDIS [22] is a design of dedicated memory processors in the memory controller.
The proposed memory controller consists of a request processor and a transaction proces-
sor. Both of them support running firmware code to control their behavior. The request
processor receives request packets from the last level cache of CPUs and translates them
into transactions. The transaction is the minimum unit of memory operations used as an
intermediate representation in the processors. The transaction processor translates trans-
actions into actual commands used by the memory. The authors evaluated the design by a
software simulator for behavior and Verilog design for area and power consumption. The
firmware used in the evaluation includes FCFS and FR-FCFS.
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Usui et al. [27] propose a solution to make the scheduling of memory requests application-
aware by categorizing memory requests. For CPUs, GPUs, and hardware accelerators, the
latency and bandwidth requirements of memory access can be categorized into 6 types
based on the application workloads and their stages. The memory requests are first pri-
oritized based on their type, then with other properties, e.g., their deadline. The authors
evaluated the design with a cycle-accurate simulator. Their results show that scheduling
based on types outperforms scheduling policies that do not distinguish between the types
of requests.

Fang et al. [8] address the problem of CPU-GPU memory contention with a solution
dynamically recognizing the pattern of requests. The authors noted that the requests from
GPU usually have high locality and high row-hit rate. The requests from CPU may be
similar to GPU, but may also have low locality and low hit rate depending on the type of
application. In their solution, the requests from CPU and GPU are isolated in different
queues. Within the CPU queue, requests from each CPU core are distinguished based on
locality. The authors propose dynamic bank partitioning, mapping requests with different
characteristics to different bank sets, to eliminate memory interference of multiple CPU
applications. Within the GPU queue, requests from each GPU core are assigned different
criticality based on latency tolerance. A dynamic switching policy is also proposed to
switch between criticality-based scheduling and locality-based scheduling (FR-FCFS). This
balances fairness and performance. The authors evaluate their work on a simulator based
on gem5, which is also used by other researchers studying CPU-GPU interference [16].

2.3.3 Combined Solutions

Hower et al. propose PABST [13]. The authors demonstrate that neither source-only
nor target-only memory bandwidth management can provide sufficient fairness for different
types of processes. Source-only solutions ignore the impact of latency on processes that
sparsely traverse through a large range of memory. Target-only solutions cannot handle
excess memory requests from processes that generate many requests in bursts. The authors
propose a solution that consists of two parts: (i) a governor inside the L2 cache and (ii) a
priority arbiter inside of the memory controller. When the arbiter reports saturation of the
read queue in the memory controller, the governor throttles requests from each CPU core.
The throttled request rate is proportional to the weight of each CPU core. This minimizes
the overflow of memory requests at the memory controller and ensures fairness. The arbiter
also tracks the memory bandwidth usage by each core. If the actual consumption of a CPU
core is furthest behind its target consumption proportional to its weight, the requests from
the CPU core are prioritized. As a result, processes that consume little memory bandwidth

16



but are sensitive to latency are prioritized. The solution is implemented and tested on an
in-house, cycle-approximate simulator that models data center servers. Source-based only
and target-based only solutions are also implemented for comparison. The results show that
source-based only and target-based only solutions achieve target fairness in some different
circumstances but fail in others. In comparison, PABST combines the benefits of both
source-based and target-based solutions and achieves better fairness in most circumstances.

2.4 Multi-Resource Allocation

The definition of fairness and efficiency for single resource allocation is simple. For
fairness, when all users have the same weight, no one should prefer the allocation of others.
When they have different weights, their allocation should be proportional to their weight.
For efficiency, all resources should be utilized if the users’ demand reaches the system
capacity. The system should not be able to allocate resources to a user without reducing
the allocation of another user in such circumstances. When users demand more than one
type of resource, it is hard to define fairness. The shares of allocation of different types
of resources can be different. Multiple definitions are proposed to define the share of
allocation of all resources from the shares of each resource. Based on these definitions,
multiple scheduling policies are proposed.

We consider four properties when discussing multi-resource allocation [10]:

• Sharing incentive. All users are better off sharing resources than exclusively using
a fair partition of the resources in isolation.

• Strategy-proofness. Users cannot increase their utility by misreporting their re-
source demands.

• Envy-freeness. Users always prefer their own allocation to the allocation of others.

• Pareto efficiency. The system utilization is maximized so that it is impossible to
increase the utility of a user without decreasing the utility of another user.

Max-min allocation is commonly used in computer systems to achieve fairness and
efficiency. Max-min guarantees a minimum share of resources for each user. Weighted
max-min allocation guarantees each user a minimum share of resources proportional to the
weight of the user. Max-min allocation can be applied to multiple resources. When doing
multi-resource allocation, max-min guarantees a minimum share of each resource for each
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user. However, the minimum share of each resource under max-min is the same. Such an
allocation fails to consider the heterogeneity of demands. This reduces max-min allocation
on multiple resources to a single-resource fair allocation on an abstract single resource that
consists of slices of each resource.

Max-min allocation on multiple resources is not efficient. To see this, consider a system
with 6 CPUs and 6GB of memory. Support that each task of user A’s application requires
1 CPU and 2GB of memory and each task of user B’s application requires 2 CPUs and
1GB of memory. The max-min allocation would give each of them 3 CPUs and 3GB of
memory if they have the same weight. With such allocation, both users A and B can
only run one task of their applications. As a result, only half of the system resources are
utilized. If user A gets 2 CPUs and 4GB of memory, and user B gets 4 CPUs and 2GB of
memory, both users can run 2 tasks of their applications. In this example, user applications
have resource demand vectors that do not match the single resource abstraction. Using
max-min allocation in such a case results in low performance for user applications and low
utilization of system resources.
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Figure 2.1: Allocation and Utilization of max-min

For time-shared resources, the difference in consumption of different resources also
exists and can lead to similar problems with max-min allocation. Consider two time-
shared resources, CPU time and memory bandwidth. If user A consumes mostly CPU time
and negligible memory bandwidth, and user B consumes mostly memory bandwidth and
negligible CPU time, the ideal allocation is to allocate a large share of memory bandwidth
to user A and a large share of CPU time to user B. With max-min allocation, both users
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get half of their desired type of resource, and the other half allocated to the other user
remains unused.

2.4.1 Dominant Resource Fairness

Ghodsi, et al. [10] propose Dominant Resource Fairness Fair Allocation (DRF) that
achieves multi-resource fairness. Unlike the max-min allocation, DRF calculates the share
of different types of resources for each user. DRF equalizes and maximizes the share of
dominant resource for all users. In a system with multiple resources, for each resource j,
the capacity of that resource is denoted as rj. The allocation of user i on resource j is
denoted as ui,j. The share of allocation of user i on resource j, si,j, is defined as:

si,j =
ui,j

rj
(2.1)

The resource that a user has the highest share of is the dominant resource of the user.
The share of the dominant resource of user i (the dominant share of user i), di, is defined
as:

di =
maxj{si,j}

wi

, j ∈ resources (2.2)

In Equation 2.2, wi is the weight of user. DRF allocates resources to users according
to users’ demands. To achieve the target multi-resource fair allocation, it picks the user
with the lowest dominant share among those who have tasks ready to run. If the available
resources can satisfy the demand of the next task of that user, the task is scheduled to
run. The user’s dominant share is also updated. DRF repeats this until the next task of
the user with the lowest dominant share cannot be satisfied by available resources. At this
point, the system achieves the target multi-resource fair allocation1.

In the previous example, DRF would allocate 2 CPUs and 4GB of memory to user A
and 4 CPUs and 2GB of memory to user B. The dominant share of both A and B is 2

3
and

the system is fully utilized. We explain how DRF meets the four desired properties using
the previous example.

Sharing incentive. The users are better off sharing all system resources than exclu-
sively using an equal partition of the resources. In the previous example, if user A and user
B both use a fair partition exclusively, which is 3 CPUs and 3GB of memory, then both of

1Only guaranteed under the assumption of progressive filling, i.e., the dominant share of all users
increases at the same rate after their tasks are scheduled
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Figure 2.2: Allocation and Utilization of DRF

them can only run 1 task of their application. However, under DRF allocation, user A gets
2 CPUs and 4GB of memory, and user B gets 4 CPUs and 2GB of memory. This allows
both of them to run 2 tasks. Therefore, both users would prefer the DRF allocation over
the equal partition.

Strategy-proofness. The users cannot run more tasks by misreporting their resource
demands. In the previous example, if A lies that it needs more memory, it does not change
user A’s dominant resource. Therefore, it does not change A’s allocation as DRF makes
share of dominant resource equal among all users. If A lies that it needs more CPU, DRF
may reduce A’s memory allocation. For example, if A increases its demand of CPU to
3, then CPU becomes A’s dominant resource, and DRF will allocate 3 CPUs and 2GB of
memory to A and 3 CPUs and 1.5GB of memory to B. This way, user A’s allocation of
memory reduces and gets penalized for misreporting.-

Envy-freeness. The users prefer their own allocation to others’ allocation. In the
previous example, if A and B exchange their DRF allocation, then both of them can only
run 1 instance. As a result, both A and B would not prefer the DRF allocation of the other.
In the previous example, both users have the same dominant resource. If the applications
have the same dominant resource, then their allocations are the same. As a result, they
would not prefer the other’s allocation either.

Pareto efficiency. The system utilization is maximized so that it is impossible to
increase the allocation of a user without decreasing the allocation of another user. In the
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Notation Explanation
i Process i
wi The weight of process I
pin The nth packet of process i
R(p) The running time on CPU for packet p
c The number of CPU in the system
b(p) The memory traffic in bytes generated while

processing packet p
m The memory bandwidth of the system

Table 2.1: Notations used in the Dominant Resource Fair Queueing Scheduler

DRF allocation of the example, the system utilization is 100% when A gets 2 CPUs and
4GB of memory while B gets 4 CPUs and 2GB of memory. Obviously, there is no available
resource so increasing the allocation of a user always results in a decreased allocation of
another user.

2.4.2 Dominant Resource Fair Queueing

For packet scheduling, Ghodsi, et al. [9] propose the dominant resource fair queueing
(DRFQ) to achieve DRF properties fro5 time-shared resources. The symbols used in DRFQ
is listed in Table 2.1. DRFQ is an extension of start time fair queueing (STFQ). STFQ
uses virtual start time and virtual finish time to schedule packets of different flows. When
a packet of a flow arrives, if the flow is not backlogged, then the virtual start time of the
packet is the same as the actual time. If the flow is backlogged, then the virtual start
time of the packet is the same as the virtual finish time of the previous packet. The
difference between the virtual start time and the virtual finish time of a packet is the
packet’s processing time. STFQ picks the packet with the lowest virtual start time to be
processed next.

Based on STFQ, three variants of DRFQ are proposed: (i) memory-less DRFQ, (ii)
dove-tailing DRFQ, and (iii) ∆-bounded DRFQ. In memory-less DRFQ, the processing
time of a packet is defined as the dominant resource time of the packet. The dominant
resource time of a packet is the largest processing time on any resource. For the nth packet
of flow i, pin, its processing time on resource j, tin,j, is defined as:

tin,j =
sin,j
rj

(2.3)
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In Equation 2.3, rj is the total capacity of resource j and sin,j is the time consumed by
pin on resource j. The processing time of pin on resource j is the time consumed by p on
resource j normalized by the total capacity of resource j. The dominant resource time of
pin, D(pin), is defined as:

D(pin) =
maxj{tin,js}

wi

, j ∈ resources (2.4)

In Equation 2.4, wi is the weight of flow i. The calculation of virtual start time and
virtual finish time is similar to that of STFQ:

S(pin) = max(V (a(pin)), F (pin−1)), (2.5)

and
F (pin) = S(pin) +D(pin) (2.6)

In Equation 2.5, a(pin) is the actual time when pin arrives. V (a(pin)) is the system virtual
time at actual time a(pin). S(pin) is the virtual start time of packet pin and F (pin) is its
virtual finish time. The virtual start time of pin is the larger one of the system virtual time
when it arrives (flow i is not backlogged) and the virtual finish time of the previous packet
pin−1 (flow i is backlogged).

Memory-less DRFQ is fair when the dominant resource of packets of the same flow is
the same. However, if the packets of a flow have different dominant resources, it is unfairly
penalized. Dove-tailing DRFQ addresses the problem of fairness.

In dove-tailing DRFQ, the system virtual time is maintained for each resource. A
packet also has a virtual start time and a virtual finish time on each resource. The virtual
start time of a packet on a resource is the larger one of the system virtual time on that
resource and the virtual finish time of the previous packet on that resource. The virtual
finish time of a packet on a resource is the virtual start time of the packet on that resource
plus the processing time on that resource. The virtual start time of a packet is the largest
virtual start time on all resources of the packet. When the dominant resource of flow I
switches from resource A to resource B, later packets cause less increment on the virtual
start time than that of memory-less DRFQ. This is because the packets have higher virtual
times on A which is accumulated when the dominant resource of I is A. The increment
of virtual times on the new dominant resource, B, does not affect the virtual time of the
packet until the gap of virtual times between A and B is filled.

Dove-tailing DRFQ may cause starvation when there is a big gap between virtual start
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times on different resources. ∆-bounded DRFQ addresses the problem of starvation. ∆-
bounded DRFQ sets the upper bound of the gap between virtual start times on different
resources of a packet. The minimum virtual start time on any resource is the maximum
virtual start time across all resources minus ∆.

The authors implemented memory-less DRFQ and evaluated it with dominant-resource
monotonic workloads. Results show that memory-less DRFQ achieves DRF for packet
flows.
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Chapter 3

Tracking Per-Process Memory
Bandwidth Usage

In our proposed design, a process’s memory bandwidth usage in the past affects how
it is scheduled in the future. However, memory controllers do not usually track memory
bandwidth usage per process. Therefore, we proposed simple modifications to the memory
controller to track per-process memory bandwidth usage. We modify gem5 to implement
our proposed modification. In this chapter, we first present a quick overview of the memory
subsystem. Then, we provide a detailed description of our modifications to the memory
controller. Finally, we describe our implementation in gem5 and illustrate how we validate
our implementation through experiments.

3.1 Characteristics of Memory Requests

gem5 treats memory requests from CPU and DMA-capable devices differently. In this
section, we introduce how memory requests from these sources are generated and treated
by the rest of the system.

3.1.1 Memory Requests from CPU

Memory requests originating from CPU are generated by the instruction bus, the data
bus, or the Memory Management Unit (MMU). The instruction bus fetches instructions.
When memory instructions execute, the data bus generates requests to read from or write
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to the memory. If a virtual address is used, the MMU fetches the page table to translate
virtual addresses to physical addresses. Compared to the data bus, the total number of
memory requests generated by the instruction bus and the MMU is negligible.

Read and write requests have different impacts on the memory subsystem and the
performance of the application. Each CPU core in the target system has a private L1
cache and a shared L2 cache. When the CPU generates a memory read request, it is
first handled by the L1 cache. If the data is found in L1, there is a cache hit, and L1
responds with the data. If it misses, the L1 cache sends a request to L2 and waits for the
response. When the response arrives, L1 tries to find an available cache line. If all cache
lines are allocated, then L1 performs a cache line replacement. In write-back caches, if
the cache has to replace a dirty cache line, a writeback request is sent to the L2. The L2
cache handles the requests similarly, but sends a request to and waits for responses from
the memory controller. Read requests can trigger prefetching and generate additional
read requests. Therefore, a read instruction can trigger additional memory requests, i.e.,
writeback requests and prefetching requests.

When the CPU generates a memory write request, the cache handles it as a read-modify
request. This is because the cache operates at the granularity of cache lines (e.g., 64 bytes)
and the size of a write request is smaller than the size of a cache line. The request either
hits in the cache or the cache line is brought to the cache on a cache miss. Then, a partial
write is performed on the cache line. The cache line is marked dirty after being written.
The cache line is not written to the memory until a replacement happens.

In Linux, one process runs on a CPU core at any time. Therefore, each core can be
mapped to a process. The memory requests generated by the core can be attributed to
the process.

3.1.2 Memory Requests from DMA-capable Devices

In gem5, memory requests from DMA-capable devices first go through the I/O bus
and a small I/O cache. The I/O cache in gem5 is added to handle coherency problems
based on snooping requests. The default size of the I/O cache is 1KB, making it negligible
compared to the size of DMA requests. The I/O cache handles the requests similarly to the
L2 cache. After the requests enter the rest of the cache system, they are treated similarly
to requests from CPU. However, attributing a request to a process is different for DMA
memory requests.

Different from CPU, processes can share a DMA-capable device at the same time.
Therefore, a request generated by a DMA-capable device cannot be simply attributed to
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a process by identifying the device that generated the request. A possible solution for this
problem is to store the process ID (PID) in memory requests.

Existing hardware with IOMMU 1 supports storing PID in memory requests. IOMMU
[14] is introduced to support translation from virtual address to physical address for I/O
devices. Before IOMMU, I/O devices use contiguous physical addresses to access memory.
This would give them full access to all memory, creating security problems. Allocating
contiguous physical addresses for large DMA is also challenging. IOMMU translates virtual
addresses based on page tables provided by the kernel. The IOMMU locates the page
tables to be used for a request by the Requester ID (RID) identifying the device and the
Process Address Space ID (PASID) in PCI-e packets identifying the user process. The fields
streamID and substreamID in ARM SMMU packets are identical with RID and PASID.
IOMMU provides performance monitoring counters that count the number of memory
requests sorted by PASID, which can be used to count I/O memory traffic generated by
each user.

Ideally, if IOMMU is enabled and PASID is supported by the operating system and the
DMA-capable device, when a process starts an operation on the device, the device driver
provides the process ID and the virtual address of the data buffer to the hardware. The
data buffer is allocated in user space memory. When the device needs to use DMA to read
from or write to the data buffer to service the request, it uses the process ID provided by
the driver as PASID. The kernel configures the IOMMU to translate the virtual address
using the process’s page table. As a result, the device performs DMA read and write
on the user space memory of the process. If the device does not support PASID, the
kernel can use I/O Virtual Address (IOVA). IOVA creates an address space for one or
more devices, separating data buffers from the rest of the memory. If the kernel does not
support IOMMU, IOMMU operates in pass-through mode. All requests in the system use
physical address and IOMMU does not perform any translation on the addresses.

Many existing DMA-capable devices, including GPU, NIC, and SSD, do not support
PASID. A key reason for this is that the protocols used by these types of devices do not
have a definition of PASID. For example, NVMe command used by NVMe protocol does
not have a field for PASID in its data structure.

The operating system also needs to determine which process is responsible for DMA
memory traffic. However, this can be hard to implement. For example, considering disk
I/O, the virtual file system (VFS) and the block I/O layer in Linux obfuscate the process
responsible for DMA operations. In VFS, non-direct write operations write to the page
cache. After that, the data is written back to the disk when the utilization of the page cache

1Our target system also has SMMU, which is the name of IOMMU in ARM systems.
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Name Number of
Registers

R/W Description

traffic[max pid] 8192 RO The traffic attributed
to each process

virtualTime pid[max pid] 8192 RW The virtual time of
each PID set by the
kernel

virtualTime coreId[n cpus] 4 RW The virtual time of
the process running on
each CPU core

pid coreId[n cpus] 4 RW The PID of process
running on each CPU
core

Table 3.1: Registers in the Memory Controller in gem5

reaches a threshold or after a time threshold. Such mechanisms make it hard to determine
the original process responsible for the write command sent to the disk. However, non-
direct I/O is usually used for small amounts of data transfer. If the size of the data to
be written exceeds the size of the page cache, the overhead of copying data to and from
the page cache degrades the performance. To address this problem, for large disk I/O,
a common practice followed by I/O-intensive applications (e.g., MySQL InnoDB engine)
is to use direct asynchronous I/O provided by the libaio library in Linux to bypass the
page cache. Such applications manage I/O cache by themselves, use direct I/O to avoid
the overheads of page cache, and use asynchronous I/O to reduce CPU usage.

3.2 Monitoring Memory Bandwidth

To track per-process memory usage, we propose modifications to the memory controller.
In particular, we propose adding an interface which is connected to the peripheral bus. The
interface allows the kernel running on CPU to access a group of memory-mapped registers
used for memory bandwidth monitoring and memory packet scheduling. The definition of
the registers is shown in Table 3.1.

traffic and pid coreId registers are used to track memory traffic of processes. traffic
registers count the number of bytes read and written by each process. They are read-only
and clear to 0 after each read by the kernel running on CPU. When the kernel assigns a
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PID to a newly created process, it reads the traffic register associated to the PID to clear
the value of the register to 0. After that, the kernel read the traffic registers to get the
amount of traffic generated by each process since the last read. pid coreid registers store
the mapping from CPU core ID to PID. It is used to find the PID of memory requests
generated by CPU. We set the maximum number of PIDs in Linux to 8192 (32768 by
default). In our experiments, the maximum PID never exceeds 1024.

Implementing our proposed design in real hardware raises some practical challenges
that need to be addressed. First, the cost is correlated to the number of each set of
registers, which is the maximum number of processes or the number of CPU cores. While
the number of CPU cores is usually limited, the number of processes can be a large value.
A possible solution is to distinguish processes that need memory bandwidth tracking and
memory request scheduling. The operating system can assign them another unique ID
with a limited maximum value to be used in the memory controller. Second, accessing the
registers introduces extra delay depending on the hardware implementation. The delay
can be reduced by using a faster hardware design or limiting the times of access to these
registers in the kernel.

3.3 gem5 Simulator

To implement our proposed modifications to the memory controller, we use the gem5

simulator. The gem5 simulator is a cycle-accurate full-system simulator widely used in
computer architecture studies [8][16]. The gem5 simulator supports multiple simulation
models for CPUs, cache systems, system buses, and memory. Custom implementations of
simulated network cards, GPUs, and SSDs can be integrated into gem5 simulation.

In gem5, all simulation objects inherit the SimObject. Some types of simulation ob-
jects including cache, buses, and CPUs share other superclasses which provide the basic
function of the object. Simulation objects usually have configurable parameters. Instances
of simulation objects are created and configured by the starter script that starts running
the simulation. In this section, we introduce important components in gem5.

3.3.1 Simulation Mode

gem5 supports different simulation modes, providing different levels of speed and ac-
curacy for different use cases. Implementation of simulated hardware components may
support one or more modes. The fastest system emulation (SE) mode only provides the
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emulation of most system-level services including system calls. The atomic mode simulates
a full system without memory and system bus delays, which runs slower. The timing mode
is based on the atomic mode but simulates all memory and system bus delays, which runs
slowest. While some detailed hardware behavior is not fully consistent with real hardware,
the timing mode is considered accurate enough for system research [4]. In this thesis, we
use gem5 to simulate memory subsystem with contention and delays. Thus, we only use
timing mode in later discussions.

3.3.2 CPUs

gem5 provides different CPU models. In atomic mode, a simple instruction-per-cycle
(IPC) CPUmodel is used. In timing mode, the simplest CPUmodel is the TimingSimpleCPU,
which is based on the IPC CPU used in atomic mode but also simulates the delays caused
by memory instructions. A more complex CPU model is the in-order, pipelined CPU
model. The most sophisticated CPU model is the out-of-order CPU model based on the
Alpha 21264 RISC CPU that is used in real world. Complex CPU models provide bet-
ter in-simulation performance but lower simulation speed. CPU models in gem5 are also
Instruction Set Architecture (ISA) independent, as the ISA layer is separated from the
CPU models. Thus, multiple ISAs are implemented using the CPU models, and develop-
ers can modify the ISA design. For simplicity and simulation performance ,we use ARMv8
TimingSimpleCPU in our experiments.

3.3.3 Ports and Buses

gem5 models the bus requests and responses within the components such as CPU,
cache system, external devices, and memory controller. Simulation objects have one or
more ports to connect with other objects. For example, the CPU object has an instruction
bus and a data bus, both have a memory-side port connected to the L1 I-cache or D-cache.
The memory controller has a CPU-side port connected to the memory bus interconnect.
Simulation objects between the source (e.g., CPU) and the target (e.g., memory controller)
have both a CPU-side port and a memory-side port.

In timing mode, the memory-side port provides an interface with the sendTimingReq

function and the recvTimingResp function, and the CPU-side port provides an interface
with the recvTimingReq function and the sendTimingResp function. The sendTimingReq
function is called to send a request. It then invokes the recvTimingReq function of the
corresponding CPU-side port. The sendTimingResp function is called to send a response
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for a request. It then invokes the recvTimingResp function of the simulation object which
sent the request. Requests are modeled as packets in the Packet class.

3.4 Monitoring CPU Memory Usage

In gem5, the memory requests are modeled in the Packet class. A packet stores the
information of a memory request. To identify the originating core of a packet, we added
coreId field in the class, which has a default value of -1, meaning it is not initialized and
invalid. When a packet is created by the CPU data bus, the core ID is written to the
coreId field. To attribute a packet generated by a CPU core to a process, the memory
controller uses the coreId and the mapping stored in the pid coreid registers. When
the kernel switches to a new non-idle process, it writes the PID of the new process to the
pid coreid register corresponding to the CPU core it is performing the context switching.

coreId is propagated when a packet triggers the creation of prefetching and writeback
packets. Prefetching packets are created in the QueuedPrefetcher::insert function. In
QueuedPrefetcher::insert, prefetching packets are created and inserted into the outgo-
ing packet queue of the cache. coreId from the original packet is propagated to the newly
creatffffed packet, attributing prefetching packets to the process that created the original
packet.

Writeback packets are created in the BaseCache:recvTimingResp function, which is
invoked when the response of a packet arrives at a cache. If the response is for a read packet
that requires a cache block to be allocated, a writeback is triggered.
BaseCache:recvTimingResp calls other functions to find the block and evict it if nec-
essary. It generates a list of writeback packets. We modify BaseCache:recvTimingResp

to propagate coreId from the original packet of the response to the generated writeback
packets. Although the data being written back may not belong to the process that triggers
the writeback, we still attribute the writeback to the triggering process that generated the
original packet. This is because the triggered writebacks are the results of the execution
of the triggering process. Attributing them to the triggering process makes the counting
directly correlate with the impact on system resources by the process. Writeback can also
be triggered by a writeback packet generated by the upper-level cache to the lower-level
cache if the lower-level cache needs to evict a block. In this case, coreId is propagated
from the original writeback packet to the generated writeback packets.

When a packet arrives at the memory controller, the DRAMCtrl::recvTimingReq func-
tion is invoked. DRAMCtrl::recvTimingReq adds packets to DRAM queues if the queues
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are not full. We modify DRAMCtrl::recvTimingReq to update the traffic registers which
store the per-process memory traffic tracking. If coreId of the incoming packet is valid,
the memory controller reads the PID from the corresponding pid coreid register. Then,
it adds the size of the Packet to the traffic register corresponding to the PID.

3.5 Monitoring DMA Memory Usage

To monitor per-process memory traffic generated by DMA-capable devices, we utilize
the existing implementation which supports SMMU. The gem5 Packet class already pro-
vides the subStreamID field that can be used to store PID. We add support for subStreamID
in the DMA-capable device, the driver, and the memory controller.

We first add the definition of PID in NVMe commands. In the NVMe protocol, oper-
ations including read and write are controlled by NVMe commands. An NVMe command
consists of multiple little-endian 64-bit Command Dwords. In the current definition of
NVMe commands, several Command Dwords are unused. We pick Command Dword 1,
which is unused in both read command and write command, to store the PID value. Both
Linux and SimpleSSD implement the data structure of NVMe command. In Linux ker-
nel, NVMe command is implemented in struct nvme command rw. Command Dword 1
is defined as the u64 rsvd2 field. In SimpleSSD, NVMe command is implemented in
SimpleSSD::HIL::NVMe::SQEntry. Command Dword 1 is defined as two uint 32t fields
reserved1 and reserved2.

The NVMe driver needs to determine which PID it should write to NVMe com-
mands. In the NVMe driver in Linux, the nvme setup rw function sets up NVMe com-
mands. For I/O operations initiated using the libaio library, the nvme setup rw is
called during the system call invoked by the initiating process. Thus, the PID can be
obtained from the system context. In the Linux kernel, current global variable stores the
pointer to the descriptor of the process currently running on the current CPU core. The
driver writes the PID from the current global variable to the u64 rsvd2 field in struct

nvme command rw, so SimpleSSD can get the PID from fields reserved1 and reserved2

in SimpleSSD::HIL::NVMe::SQEntry.

After receiving a command, SimpleSSD creates an SGL or PRP object to store the
command. NVMe commands use Physical Region Page (PRP) or Scatter/Gather List
(SGL) for addressing memory. The type of addressing of an NVMe command is spec-
ified in the NVMe command. NVMe driver in Linux uses PRP. To support tracking
the PID of NVMe commands, we add a subStreamID field in both SGL class and PRP
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class. subStreamID is initialized with the PID in the NVMe command (reserved2 in
SimpleSSD::HIL::NVMe::SQEntry).

When the execution of the command needs to access the memory, the dmaRead or
dmaWrite function of the NVMeInterface class is called to create DMA entries (DMAEntry
class). We add the subStreamID fields in DMAEntry, which is initialized with the value from
subStreamID in SGL or PRP. DMA entries are stored in the DMA queue, waiting to be pro-
cessed. When DMA entries are processed, packets are created and sent to the I/O cache.
This is done in NVMeInterface::submitDMARead and NVMeInterface::submitDMAWrite.
We modify NVMeInterface::submitDMARead and NVMeInterface::submitDMAWrite to
use subStreamID from DMAEntry when calling functions DmaDevice::dmaRead and
Dmadevice::dmaWrite to create DMA packets. After entering the I/O cache, the packets
can trigger writeback and prefetch. In these cases, the subStreamID of the original packet
is propagated to the generated packets similarly to coreId as mentioned in previous sec-
tion. Finally, when a DMA packet arrives at the memory controller, the memory controller
gets the PID from subStreamID and adds the traffic register corresponding to the PID
with the size of the packet.

3.6 Verification

Amount of Traffic. We first verify that the total amount of traffic counted by the
memory controller matches the traffic generated by processes. We run mbw benchmark that
does array copy, which reads from one address and then writes to another address. With
mbw, the generated memory traffic is 50% higher than the memory traffic intended by the
code. This is mainly because the cache subsystem treats write requests as read-modify-
writeback. Thus, writing to the memory generates additional read requests equal to the
size written. We also run fio to read from and write to the SSD using asynchronous direct
I/O by libaio. While reading from the SSD generates memory traffic slightly more (less
than 1%) than the intended size of read, writing to the SSD generates much lower memory
traffic when the block size is small. This is because DMA requests may hit in the L2 cache.
fio writes the same buffer in the memory to the SSD repeatedly, so the buffer is cached
in L2 and not replaced if it is small enough.

Memory Packets from All Sources. We also validate that our implementation can
capture requests created by different hardware components. We run lbm, Gems, and mcf

from SPEC2006 benchmark to measure the distribution of source of requests. Fig. 3.2
depicts the source of requests. Requests are categorized into accounted requests generated
by the cache writeback, the L1 prefetcher, the L2 prefetcher, and the CPU data bus, and
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Figure 3.1: Intended and Measured Memory Traffic of mbw and fio

unaccounted requests. All accounted write requests are categorized as cache writeback
requests. Percentages of write requests for lbm, Gems, and mcf is 43.9%, 37.2%, 50.3%.
Accounted read requests are categorized as requests generated by the L1 prefetcher, the L2
prefetcher, and the CPU data bus. Percentages of requests generated by the L1 prefetcher
for lbm, Gems, and mcf is 32.9%, 32.0%, 27%. Percentages of requests generated by the L2
prefetcher for lbm, Gems, and mcf is 23.2%, 30.8%, 22.7%.

Accounted Read requests generated by the data bus for all three benchmarks are less
than 1%. This indicates that most read requests generated by CPU data bus are hit in the
cache because of prefetching. The results also show that requests that are not accounted
for any process generated when the benchmarks run is less than 1% of total requests. In
summary, the results show that our implementation correctly reports the memory traffic
generated by processes.
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Chapter 4

Dominant Resource Fair Queueing
Scheduler

We propose Dominant Resource Fair Queueing Scheduler (DRFQS) to fairly allocate
CPU time and memory bandwidth. DRFQS allocates CPU time and memory bandwidth
fairly according to our proposed model based on DRFQ (Section 2.4.2. CPU time allocation
is enforced by the kernel scheduler. Memory bandwidth allocation is enforced by the kernel
scheduler (as source throttler) and the memory request scheduler (as target arbitrator).

In this chapter, we first illustrate our model of processing scheduling in operating
systems. Then, we overview our Linux scheduler design. Next, we describe our proposed
modifications to the memory controller. Finally, we discuss challenges that arise because
of the differences between the DRFQ model and process scheduling in the OS. We end
this section by proposing solutions to these challenges to achieve multi-resource fairness in
process scheduling.

4.1 Process Scheduling Model in Operating System

We use memory-less DRFQ (see Section 2.4.2) to model the process scheduling in Linux.
The notation used is listed in Table 4.1. The design of the run queue in CFS mostly follows
the STFQ. DRFQ reduces to STFQ when there is only one type of resource. We keep the
properties of CFS so our model reduces to CFS when the processes only have contention
on CPU time.
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Notation Explanation
i Process i
wi The weight of process I
pin The nth packet of process i
R(p) The running time on CPU for packet p
c The number of CPU in the system
b(p) The memory traffic in bytes generated while

processing packet p
m The memory bandwidth of the system
Vcurrent Current system virtual time

Table 4.1: Notations used in the Dominant Resource Fair Queueing Scheduler

In DRFQS, processes are considered similar to packet flows in DRFQ. DRFQS divides
the execution of a process into “packets.” A packet describes the period in which a process
is running on CPU or using memory bandwidth through DMA-capable devices. A new
packet is created when the status of a process changes (e.g., when a process is preempted,
blocked, unblocked, or runs out of its current time slice). The previous packet finishes
when the new packet is created. When a process is ready but not running on CPU, it is
considered to have a backlogged packet and no packet currently being processed. When a
process is running on CPU or is blocked, it is considered to have a packet currently being
processed and no packet backlogged.

In DRFQ, the processing time of a packet should be calculated based on the time
it consumes on different resources. However, this cannot be determined before it runs.
Therefore, in DRFQS, the processing time of a packet is calculated based on its resource
consumption measured after it finishes. DRFQS relies on only the virtual start time to
schedule packets from processes. The processing time of a packet only affects the virtual
finish time of the current packet and the virtual start time of future packets. We define the
processing time on CPU to represent the consumption of CPU time and processing time
on memory controller to represent the consumption of memory bandwidth.

Consider a system with c CPU cores and m GB/s memory bandwidth. For a packet
that describes the period when the process is running on CPU, the processing time on
CPU is calculated as:

T (pin, CPU) =
1

c
×R(pin), (4.1)
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where pin is the nth packet of process i and R(pin) is pin’s running time on CPU. A
process uses 1 of c CPUs, so the share of CPU consumed during R(pin) is

1
c
.

The processing time on memory bus is calculated as:

T (pin,mem) =
b(pin)

m
, (4.2)

where b(pin) is the amount of memory traffic in gigabytes generated by pin after the
packet is created. This includes the memory traffic generated by CPU instructions or
DMA-capable devices, whether the process runs on CPU or not. Therefore, the dominant
resource time of the packet pin is calculated as the larger one of the processing time on
CPU and the processing time on memory bus, divided by the weight of the process:

D(pin) =
max(T (pin, CPU), T (pin,mem))

wi

. (4.3)

The virtual finish time of pin is calculated as the virtual start time plus the dominant
resource time:

F (pin) = S(pin) +D(pin). (4.4)

In CFS, recently unblocked processes are not charged for the memory bandwidth they
consume when they are blocked. However, when a process is blocked, it still can consume
memory bandwidth. For example, with asynchronous disk I/Os, a process can start a disk
I/O operation before it is blocked. When the hardware finishes the operation, it triggers a
system interrupt to unblock the process. The period that the process is blocked is treated
as a packet in DRFQS, denoted as pik. p

i
k does not consume CPU. The dominant resource

time of pik is calculated as:

D(pik) =
b(pik)

m× wi

. (4.5)

A blocked process may consume little to no memory bandwidth (e.g., a process waiting
for events other than the finishing of DMA operation). In CFS, a system virtual time
is maintained for each queue and used to assign the virtual time of recently unblocked
processes. In DRFQS, we maintain and use a system virtual time system similar to CFS’s:

V (t) = max(V (t′),minp(S(p))), ∀p ∈ packets currently processing, (4.6)
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where V (t) is the system virtual time at actual time t, and t′ is the actual time of the
last time the system virtual time was updated. The system virtual time is updated to the
minimum virtual start time of all currently processing packets if it does not decrease.

If a process consumes little to no memory bandwidth when it is blocked, it is considered
not to be backlogged. We apply this to the calculation of the virtual start time of pik+1:

S(pik+1) = max(V (a(pik+1))− C,F (pk)), (4.7)

where V (a(pik+1)) is the system virtual time when pik+1 arrives (when the process is
unblocked), and C is a positive constant. By subtracting C from the system virtual time
before assigning it to a non-backlogged packet, DRFQS gives recently unblocked processes
a higher priority than other processes similarly to CFS.

Lastly, newly created processes are considered to have a non-backlogged packet. The
virtual start time of the packet is assigned to the system virtual time when the process is
created:

S(pi0) = V (a(pi0)). (4.8)

4.2 Linux Scheduler Design

The process scheduler of DRFQS is based on the BFS scheduler of Linux [30]. In
this section, we first explain the reason we choose BFS over CFS. Then, we discuss our
modifications to the data structures of the original BFS. Next, we explain how the virtual
time is updated and used in the kernel scheduler. Finally, we discuss how the kernel
controls the memory scheduler with the input of virtual time.

4.3 The Linux Kernel and the BFS Scheduler

CFS scheduler uses a separate run queue for each CPU core. The virtual time of pro-
cesses in different run queues is not comparable. This is because each run queue maintains
its own minimum virtual time (min vruntime). min vruntime increases when the virtual
time of the process with minimum virtual time in the queue increases. CFS does not bal-
ance the value of min vruntime of multiple run queues. If min vruntime of different queues
increase at different paces, e.g., when the number of processes in the queues are different
so the CPU time allocated to each process is different, the value of min vruntime of the
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queues becomes significantly different after running for some time. min vruntime is used
to initialize new processes, subtracted from processes migrated out from the queue, and
added to processes migrated into the queue. As a result, the imbalance of min vruntime

makes the virtual time of the processes in different queues incomparable. CFS balances
loads of different queues only if their load value is significantly different. This makes the
unfairness between queues persists for a long period. Incomparable virtual time makes it
hard to determine the priority of memory packets in the memory controller. Different from
CFS, BFS uses only a single global run queue. We adopt the single-queue design of BFS
and implement our scheduler based on BFS code.

In BFS, each process has a virtual deadline. The scheduler updates this value and uses
it to pick the process to run. The deadline is updated when the following functions are
called:

1. time slice expired() resets the timeslice and set the new deadline for a process
that just used up its time slice when a scheduler timer interrupt is triggered. The deadline is
set to the current system time plus the priority offset. The priority offset value is calculated
based on the process’s priority so that high priority process has a lower deadline.

2. adjust deadline() adjusts the deadline of a process when its priority changes while
it is running. The deadline is subtracted by the priority offset based on its previous priority,
then added with the priority offset based on the new priority.

3. wake up new task() finishes the initialization of a new process, then adds it to the
run queue and makes it ready to run. The deadline of the newly created process is set to
the deadline of the process that created it.

In our target system, NUMA is not enabled. BFS initializes the distance between each
pair of CPU cores to be 3. If a process was previously assigned to another CPU, its deadline
is multiplied by 8 before comparing it with other processes. This ensures CPU affinity,
reducing times of migration and migration overheads.

4.3.1 Data Structure Modifications

BFS uses the task struct data structure for process descriptors and the global rq

data structure for global run queue. Each process has a task struct. Pointers of
task struct are stored in lists. A global global rq variable, grq, is used for the global
run queue. The kernel acquires a lock before accessing or modifying grq. We add necessary
fields to task struct and global rq as shown in Table 4.2 and Table 4.3, respectively.
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Name Type Description
vruntime uint64 The virtual time of the process
last update uint64 The actual time indicating the

last time the virtual time of the
process was updated

nice int32 The nice value of the process used
to calculate the weight

is unblocked bool The flag indicating if the process
has benn unblocked

Table 4.2: Added Fields in the task struct Data Structure

Name Type Description
global vruntime uint64 The system virtual time Vcurrent

Table 4.3: Added Fields in the global rq Data Structure

In the process descriptor task struct, we replace the deadline field used by BFS with
vruntime. vruntime stores the virtual time of the process as in CFS. last update stores
the actual time (scheduler clock time) when the last time vruntime is updated. nice is
added to store the weight of the process. is unblocked is added to mark if a process is
a recently unblocked process. It is set when the process is unblocked and cleared when
the process starts to run on CPU. It is used to delay the wake-up of recently unblocked
processes in some circumstances to achieve fairness (see Section 4.5.1 for details). In the
global variable grq, the global vruntime field is added to store the system virtual time
Vcurrent.

Addition of Virtual Time to BFS

Original BFS uses virtual deadline to schedule processes. We replace the deadline with
virtual time. The virtual time of a process is a monotonically increasing value that is
updated on three events:

1. when the scheduler timer interrupt is triggered, the interrupted process runs out its
time slice, and

2. when a blocked process is unblocked, and

3. when a new process is created.
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Before updating the virtual time, the kernel calculates the processing time on CPU and
the processing time on memory bus. The processing time on CPU is calculated with the
actual time passed since the time recorded by last update in task struct. last update

is updated when the CPU switches to process i or when update vruntime(i) was called on
the process. The current time is read from the grq.niffies field in the global run queue.
The actual time passed is calculated by subtracting last update from grq.niffies. The
processing time on CPU is the actual time passed divided by the number of CPU cores,
according to Equation 4.1.

The processing time on memory bus is calculated according to Equation 4.2. It is
calculated by dividing the traffic generated since the last time update vruntime(i) was
called on process i by the maximum memory bandwidth. The traffic is read from the
traffic register corresponding to the PID of the process (as shown in Table 3.1). For
a system with single-channel 1066MHz 32-bit LPDDR2 memory, the theoretical speed is
4.264 bytes/ns. The theoretical speed is almost impossible to reach. This is because the
overheads of row buffer miss and eviction and read/write direction turning. Our experiment
shows that the worst-case maximum memory bandwidth of such a DRAM module can be
as low as 3.5 bytes/ns. For such a system, 4 bytes/ns can be used as an approximate
value of maximum memory bandwidth for simplicity. The choice of such value affects the
calculated share of memory bandwidth. Therefore, it affects the calculation of dominant
resource time. However, it has an effect on allocation only if processes in the system have
different types of dominant resources and the share of CPU time and the share of memory
bandwidth consumed by some processes are close. The maximum memory bandwidth used
in the scheduler can be set higher to benefit processes with memory bandwidth as their
dominant resource, or set lower to benefit processes with CPU time as their dominant
resource.

We also track the system virtual time, Vcurrent, according to Equation 4.6. It is
used to assign the virtual time of recently unblocked processes (according to Equation
4.7) and newly created processes (according to Equation ). We designate a function,
update global vruntime() to update the system virtual time, as shown in Algorithm 1.
The function first finds the lowest virtual time of all processes currently running on CPUs.
If the value is larger than the previous Vcurrent, then global runtime is updated to the
new lowest virtual time value.

When a new process is created, update global vruntime() is called first to update
Vcurrent, and then the virtual time of the newly created process is set to Vcurrent.

When a process is running and the scheduler timer interrupt is atriggered, the
schedule() function is called. schedule() is the main scheduler function. If a pro-
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Algorithm 1 Updating System Virtual Time

T ← minimum virtual time of running proceses
if T > system virtual time then
system virtual time ← T

end if

cess, denoted as i, runs on the interrupted CPU core before the interrupt is triggered,
schedule() updates the status of i and picks the next process to run on the interrupted
CPU core. We designate a update vruntime(i) to update the virtual time of i based on
Equation 4.4, as shown in Algorithm 2.

update vruntime also updates the virtual time of processes running on other cores.
This prevents the inconsistency of virtual time. If other running processes are not updated,
then their virtual time is likely to be lower than the newly updated process. Since virtual
time is also used by the memory scheduler, this avoids unfairness in the memory scheduler.
While blocked processes may consume memory bandwidth, their virtual time cannot be
updated in the same way. This is because the number of blocked processes is large and
most of them do not consume memory bandwidth. Updating virtual time for all of them
creates significant overheads. If the virtual time of blocked processes is not updated,
memory requests generated by DMA-capable devices for these processes would have a
temporal advantage over other requests. However, the virtual time is updated fairly when
the blocked process is unblocked.

Simply adding the virtual time with the dominant resource time can cause starvation.
Consider the situation when there are two processes and more than two CPU cores. As
there is no contention on CPU, one of the processes, denoted as A, always runs on the CPU
and generates a large amount of memory traffic, making memory bandwidth its dominant
resource. The other, denoted as B, also always runs on the CPU and generates little
memory traffic, making CPU time its dominant resource. The maximum share of CPU
allocated to a process is 1

c
, where c is the number of CPU cores. The share of memory

bandwidth can be higher than that. As a result, A’s virtual time grows faster than B’s.
Over time, A’s virtual time becomes much larger than B’s. The system virtual time tracks
the lowest virtual time across all running processes, which is B’s. If new processes are
created in this situation, their virtual time is much lower than A’s. When the number
of processes is more than the number of CPU cores, A is starved until other processes
catch up with it on virtual time. To prevent such starvation, DRFQS limits the difference
between the virtual time of a running process and the system virtual time. If the limit
is too small, the increment of virtual time becomes unfair if a process consumes a large
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share of resources between two updates. If the limit is too large, the starvation can be
too long when it happens. We use the length of 10 time slices as the limit. Therefore,
in update vruntime, after updating the virtual time of all processes, schedule() calls
update global vruntime() to update Vcurrent. Then, it compares the virtual time of i
with the Vcurrent and applies the limit.

Algorithm 2 Updating Virtual Time of Running Process i

for each running process j (includes i) do
T ← current time −last updatej
last updatej ← current time
b← traffic[pidj]

vruntimej += max(T
c
, b
m
)/wj

end for
update global vruntime()

vruntimei ← min(Vcurrent + 10× timeslice, vruntimei)

When a blocked process is unblocked, the activate task() function is called. The
function first updates the virtual time of all running processes and Vcurrent similarly to
schedule() and calls update global vruntime() to update the global virtual time. The
function calculates the virtual time of the unblocked process as Equation 4.7, as shown
in Algorithm 3. The constant C in Equation 4.7 is set to the length of 10 time slices.
If a process consumes little to no memory bandwidth so its virtual time is lower than
Vcurrent −C after adding its dominant resource time, it is considered “sleeping” when it is
blocked. In this case, its virtual time is set to Vcurrent−C, which is similar to CFS. If not,
it either “sleeps” for a short time or is actually “running” when it is blocked. Different
from running processes, the increment of virtual time of recently unblocked processes has
no upper bound. This is because a process can be blocked for a long time and consume a
large share of memory bandwidth during the period. A limit on the increment of virtual
time can cause an unfair advantage for recently unblocked processes. The scheduler marks
the process as a recently unblocked process by setting its is unblocked field to true, in
order to support delayed wake-up in Section 4.5.1.

We replace the definition of nice value. We modified the setpriority() system call.
The system call takes an integer as a parameter and writes the nice value of the process,
stored in the nice field of the calling process’s descriptor, with the input integer. When
updating vruntime, the nice value is converted to the weight as shown in Equation 4.9.
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Algorithm 3 Updating Virtual Time of Recently Unblocked Process i

update vruntime()

b← traffic[pidi]
vruntimei += b

m
/wi

vruntimei ← max(Vcurrent + 10× timeslice, vruntimei)

wi =

{
1 + nicei, when nicei >= 0,

1
1−nicei

, when nicei < 0.
(4.9)

Controlling the Memory Scheduler

The kernel writes the virtualTime pid, virtualTime coreId, pid coreId registers
(in Table 3.1) to provide input to the memory scheduler. When switching the process
on a CPU core, the kernel writes the PID of the process that starts to run on the CPU
core to the corresponding pid coreId register. This provides the mapping from CPU core
to PID, enabling the memory tracking module in the memory controller to identify the
process responsible for memory requests generated by CPU cores and caches. When the
virtual time of a process is updated, the kernel writes the vruntime field of the process
descriptor to the corresponding virtualTime pid register. This updates the priority of the
requests generated by the process. The virtualTime pid register is only used to provide
the priority by DMA memory requests. For memory requests generated by CPU cores
and caches, the virtualTime coreId registers are used to provide the priority of these
requests. On both occasions (when switching the process and when updating the virtual
time), the corresponding virtualTime coreId register is updated.

4.4 Design of Memory Scheduler

We use a first-ready, lowest-virtual-time-first policy in the memory scheduler of the
memory controller. With such a policy, the memory scheduler first finds the request that
hits the row buffer. If such a request does not exist in the queue, it picks the request with
the lowest virtual time. If a request can be attributed to a process, its virtual time is set
to the virtual time of the process responsible for it coreId and subStreamId fields of the
memory request packet and the registers shown in Table 3.1. For packets generated by
the data bus of CPU cores and additional packets triggered by these packets, the memory
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controller gets the virtual time from the virtualTime coreId register corresponding to the
core ID provided by the coreId field of the packet. For packets generated by DMA-capable
devices and additional packets triggered by these packets, the memory controller gets the
virtual time from the virtualTime pid register corresponding to the PID provided by the
subStreamId field of the packet.

For packets generated by the instruction bus of CPU cores and packets generated by
DMA-capable devices for a DMA operation started by routines other than direct disk I/O,
the coreId field and the subStreamId field are not valid. The virtual time of these memory
requests is assigned to 0, giving them the highest priority. However, if these requests need
to be counted, requests generated by the instruction bus can be attributed similarly to
the requests generated by the data bus. Requests generated by non-direct disk I/O can
be attributed to the process that triggers the I/O with modifications to the VFS layer of
Linux. Requests generated by the kernel should avoid causing memory contention, or they
should be given the highest priority when necessary.

After assigning virtual time to a packet, the memory scheduler then determines whether
to accept the packet and insert it into the queue. The memory controller has a read queue
for read requests and a write queue for write requests. Accepted packets are inserted into
the corresponding queue, sorted first by virtual time and then by actual arrival time, i.e.,
the hardware time when the packet arrives. When the arrival rate of packets is high,
excessive packets are rejected. Our proposed design rejects a packet on two occasions: (i)
when the corresponding queue is full, and (ii) when the utilization of the corresponding
queue is higher than 90% and the virtual time of the packet is not lower than the lowest
virtual time across all packets in the queue (the head of the queue). This way, 10% of the
queue is preserved to packets with lower virtual time (higher priority), allowing them to
be prioritized when the packet rate is high.

When the DRAM bus becomes ready, the memory scheduler picks a packet from the
queues to be processed. The memory scheduler first determines which queue to pick from,
i.e., the next direction (read or write) of the DRAM bus. Our proposed design chooses
the queue whose head has lower virtual time. This may result in frequent switching of the
direction of the DRAM bus. Switching the direction of DRAM bus introduces extra delay.
The delay when switching from read to write and from write to read is provided in the
tRTW and tWTR parameter of the DRAM, respectively. Therefore, frequent switching
causes degradation of memory performance. This is an intrinsic trade-off between per-
formance and fairness. The performance degradation is negligible in the system and for
two main reasons. First, bursty requests are mostly generated by the prefetcher or DMA-
capable devices. Requests of the same burst have the same virtual time and direction and
do not cause frequent switches of direction. Second, the virtual time used in the memory
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scheduler does not change frequently. It only changes when the kernel scheduler updates
the registers, which has an interval long enough compared to the switching time.

After the queue is determined, with the first-ready, lowest-virtual-time-first policy, the
memory scheduler iterates through the queue, starting from the head, to find a row hit. If
it exists, the first row-hit packet is picked. Otherwise, the scheduler picks the head of the
queue which has the lowest virtual time.

4.5 Supplemental Implementation of DRFQS

In the previous section, we followed the model provided by DRFQ to build DRFQS.
However, there are some main differences between the packet scheduling problem in DRFQ
and the process scheduling in operating systems, as well as between memory bandwidth
and other resources. In this section, we discuss the challenges raised by these differences
and the solutions we propose to address them.

4.5.1 Delayed Wake-up for DMA Process

Consider the situation when the system has only an I/O process, denoted as A, that
generates DMA memory requests, and a memory-intensive process, denoted as B, that
generates normal memory requests. The dominant resource of both A and B is memory
bandwidth. If the number of CPU cores is more than the number of actively running
processes, then A and B both can get CPU when they are ready. Theoretically, if A con-
sumes more memory bandwidth than B, its virtual time increases faster than B’s, and A’s
virtual time will eventually become higher than B’s. When the virtual time of A becomes
higher than B, the memory scheduler delays the packets of A and prioritizes the packets of
B, allowing B to consume more bandwidth. This way, the memory bandwidth allocation
eventually becomes fair. However, in practice, A gets unfair advantages over B. The first
reason is that the virtual time of a blocked process is not updated until it is unblocked.
When A is blocked, the DMA-capable device generates memory requests for the DMA op-
eration started by A. These requests are prioritized over requests generated by B because
the virtual time of A lower. The second reason is that the volume of bursts of requests gen-
erated by DMA-capable devices is usually larger than that of requests generated by CPU.
When the request rate is high, the memory controller starts rejecting packets when its
queue becomes full. As mentioned in Section 2.3.3, the memory scheduler is a target-based
solution that cannot enforce memory allocation solely by itself when the memory request
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rate is higher than the capacity of the memory bus. Such a situation should be managed
by a combination of source-based throttling and target-based scheduling. However, even
though A has a higher virtual time than B, because there is no contention on CPU, the
source throttling does not apply to this case.

To address this challenge, we throttle the CPU even if it results in one or more CPUs
idling. We introduce delayed wake-up for recently unblocked processes. When a blocked
process uses excessive memory bandwidth (more than 1

c
), it borrows time from the future.

When the process is unblocked, it is penalized as its virtual time increases due to its
consumption of excessive memory bandwidth. If the virtual time of a recently unblocked
process is larger than the system virtual time plus a constant, it would not be picked to
run even if there is an available CPU, and no other process that can be scheduled. A
smaller value of the constant provides better fairness, while a larger value of the constant
provides better performance. In our implementation, the constant is set to 10 time slices,
considering the block size of our I/O operations. In other words, a process, denoted as i,
would not be picked by the scheduler if it is a recently unblocked process and:

vruntimei > Vcurrent + 10× timeslice. (4.10)

When other processes run and the system virtual time increases as a result of that, the
penalized process will eventually get a chance to run on the CPU. When there is no other
process ready and all CPUs are idling, the system virtual time will not be updated. In this
case, we allow the DMA process to run on CPU since there is no contention.

However, such a solution is based on the assumption that a process continues to con-
sume memory bandwidth after it is unblocked. If the process only needs CPU after it is
unblocked, delayed wake-up introduces unnecessary delay. The trade-off between perfor-
mance and fairness on this challenge is based on the ability of the memory scheduler to
enforce memory allocation and the tolerance of unfairness on memory bandwidth alloca-
tion. If the hardware can enforce memory bandwidth allocation or performance is preferred
over fairness in such extreme cases, then delayed wake-up is not required.

4.5.2 Best-Effortness for DMA Process

Delayed wake-up introduces a problem when there is no memory bandwidth contention.
In the example of the previous section, if process B consumes only CPU time and does
not create memory contention, A and B can run concurrently without interfering with
each other. This is what happens in CFS since it does not consider memory bandwidth
contention. However, with the delayed wake-up design, A is not allowed to consume a larger
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share of memory bandwidth than the share of CPU consumed by B (i.e., 1
c
). This degrades

the performance of A and leaves a significant portion of memory bandwidth unused.

Such a problem is caused by the property of DRFQ allocation. To ensure fairness,
DRFQ allocations only guarantee the minimum share of the dominant resource for each
process. However, for efficiency, the unused memory bandwidth should be allocated to the
process that needs it. The difficulty to achieve such a goal is that unlike detecting idle
CPU, it is hard to detect if there is spare memory bandwidth. The maximum bandwidth
of memory depends on the pattern of requests. The memory can be saturated when the
observed bandwidth consumption is much lower than the theoretical bandwidth. In prior
works [13, 32], solutions to detect memory bandwidth saturation have been proposed. In
[13], memory bandwidth saturation is detected by measuring the utilization of the read
queue in the memory controller. In [32], a worst-case maximum DRAM bandwidth ob-
tained by experiments is used to ensure that the total memory bandwidth budget does not
exceed the capacity in any case. A solution that mitigates the problem without relying on
the memory controller is to ”allocate” idle CPU time to running processes when updating
their virtual time. This increases the dominant share of processes whose dominant share is
CPU. In the previous example, as DRF equalizes the dominant share, such a solution also
increases the share of memory bandwidth from 1

c
to 1

n processes
. n processes is the number

of processes running on CPU which is less than c (the number of CPU cores). However,
neither solution is perfect and the trade-off between fairness and efficiency still needs to
be considered.

4.5.3 High Variance in Memory Bandwidth Allocation

Our proposed memory scheduler uses the virtual time of processes to schedule memory
requests. The design of the scheduler makes the virtual time an ordinal value. The priority
of processes at the memory scheduler is only determined by the order of their virtual time.
No matter how large the difference between the virtual time of two processes is, the memory
scheduler behaves the same. This results in sharp changes in allocations over time as small
random differences in virtual time happen frequently on processes with the same priority
that should be treated the same. The randomness is introduced by the randomness in
the execution of processes. For example, if a daemon process in the system is unblocked,
preempts a running process, and runs for a short time, the process that is preempted has
a slightly lower virtual time that the processes that are not preempted. Our experiments
show that the variance in memory bandwidth allocation can reach 10%.

We propose a simple solution to smoothen the priorities. We divide the virtual time by
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the length of a time slice when the kernel writes it to the registers (virtualTime coreId

and virtualTime pid) storing the virtual time of processes in the memory controller. The
virtual time stored in the vruntime field of task struct is in nanoseconds. The length
of a time slice is 4ms, or 4000000. We use an approximate calculation by left shifting the
virtual time by 22. As a result, the priorities of processes become different only if there
is a significant difference in virtual time. When the difference is insignificant, such as the
random difference caused by a short preemption, the priorities do not change.
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Chapter 5

Evaluation

In this chapter, we first describe the hardware platform we use to evaluate our proposed
design. Then, we evaluate the fairness of DRFQS allocations by comparing the measured
resource allocation with the theoretical fair allocations. Next, we compare the running
time of workloads under DRFQS to their running time on a baseline hardware and under
default kernel to evaluate the impact on performance. The results show that our proposed
design achieves approximate DRF allocations for CPU time and memory bandwidth and
significantly improves the performance of prioritized processes under memory bandwidth
contention.

5.1 Evaluation Platform

We use full-system simulation in gem5 to evaluate our software-hardware co-design. The
hardware specifications of the evaluation platform are listed in Table 5.1. The simulated
system has 4 CPU cores and each core has an L1 cache. The L2 cache is shared among
all cores. We use both the original memory controller that uses the FR-FCFS scheduling
policy and the modified memory controller that uses the first-ready lowest-virtual-time-
first scheduling policy for comparison. The DRAM in the target system is a 1066MHz
32-bit LPDDR2 DRAM, which has a theoretical maximum bandwidth of 3.971GB/s (4.264
bytes/ns).

50



Component Specification
CPU 4× ARMv8 IPC CPU (TimingSimpleCPU) @

3GHz
L1 Cache 32KB I-cache, 64KB D-cache each core, 4-

way set associative, 64-byte block size, 2-
cycle latency

L2 Cache 2MB, 8-way set associative, 64-byte block
size, 8-cycle latency

Memory Controller One 128-packet read queue and one 128-
packet write queue, Original FR-FCFS
scheduling and DRFQS scheduling

DRAM Bandwidth LPDDR2 1066MHz 32-bit, 3.971 GB/s the-
oretical bandwidth

Table 5.1: Evaluation Platform

5.2 Benchmarks

We run a series of benchmarks to measure the fairness and efficiency of DRFQS. The
list of benchmark sets is shown in Table 5.2. We define the benchmark processes running in
Linux as foreground processes and background processes. Background processes start first.
When background processes finish their initialization stage, we start running the foreground
processes. We make sure that background processes do not finish earlier than foreground
processes by setting the parameters of both processes. As a result, the foreground processes
always run with the interference created by the background processes. After the foreground
processes finish, we measure the running time and the average resource allocation of the
foreground processes. For sets 1 to 3, we exchange the position of processes so both of
them run as a foreground and a background process.

The dominant resource of a process may change during its run time. Usually, after a
process is started, it is in the initialization stage. After the initialization is finished, it
enters the actual running stage. We use three basic benchmarks that have mostly constant
behavior in their running stage, i.e., mbw, fio,sjeng.

mbw is a simple memory bandwidth micro-benchmark. In our experiments, we configure
mbw to repeatedly copy from one array to another. The size of each array is 16MB. It is
large enough so the caches do not affect performance. mbw generates 48MB of memory traf-
fic for each copy, as write instructions are handled by the cache as read-modify-writeback.
Writing to the target array causes the caches to generate additional memory read requests
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No. Foreground Process Background Process
1 mbw mbw

2 mbw fio

3 fio mbw

4 mbw 4× sjeng

5 fio 4× sjeng

6 lbm None
7 lbm fio

8 Gems None
9 Gems fio

10 mcf None
11 mcf fio

Table 5.2: Benchmark Process Sets

with a size equal to the array. mbw reports the time elapsed and speed for each run of the
copy. When running alone, mbw consumes about 2700MB/s of memory bandwidth. Di-
vided by the total memory bandwidth value used in DRFQS (4 bytes/ns, or 3815 MB/s),
the share of memory bandwidth consumed by mbw is about 0.7. The system has 4 CPUs,
so the share of CPU time consumed by mbw is about 1

4
. This makes memory bandwidth

its dominant resource. However, the memory interference by other processes in the system
may reduce the memory bandwidth allocated to mbw. When the share of memory band-
width allocated is lower than the share of CPU time allocated, CPU time becomes mbw’s
dominant resource. This happens when other processes consume memory bandwidth and
create memory bandwidth contention. The share of memory bandwidth consumed by mbw

decreases. However, the share of CPU time consumed by mbw does not decrease when there
is no contention on CPU. Instead, mbw spends time on CPU waiting for memory requests
to complete. When the memory bandwidth contention causes the share of memory band-
width consumed by mbw to be lower than 1

4
, CPU time becomes the dominant resource of

mbw. In our experiments, we make sure this does not happen unintentionally.

fio is a disk I/O micro-benchmark. In our experiment, we configure fio to sequen-
tially read a 32MB file repeatedly with a block size of 1MB using direct asynchronous
I/O provided by libaio library. fio reports its CPU usage when performing disk I/O
operations. Since it uses asynchronous I/O, the SSD consumes memory bandwidth when
fio is blocked. In DRFQS, the dominant resource of fio is CPU time when it runs on
CPU, or memory bandwidth when it is blocked. Therefore, the dominant share of fio over
a long period is the sum of the share of CPU time and the share of memory bandwidth.
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When running alone, fio consumes about 2000MB/s of memory bandwidth. As a result,
fio creates memory bandwidth contention if running with another process such as mbw.

sjeng is a chess engine. After initialization, it only consumes CPU time. As a result,
the dominant resource of sjeng is always CPU in its running stage. When running alone,
sjeng consumes 100% of one CPU core and never blocks. Therefore, when running with
other processes, sjeng consumes as much CPU time as available. We use this to calculate
sjeng’s CPU usage when running under contention.

Other than these basic micro-benchmarks, we run 3 benchmarks from SPEC2006 with
different memory intensiveness to represent real-world workloads: lbm, Gems, and mcf,
ordered by their memory intensiveness from high to low.

When calculating the share of memory bandwidth allocation, we need to consider the
fact that the theoretical maximum bandwidth is impossible to reach with most workloads.
In DRFQS, the maximum bandwidth is used as the total available memory bandwidth. It
is used to: (i) identify the dominant resource and (ii) calculate the virtual time. DRFQS
uses 4 bytes/ns (3815 MB/s) to simplify calculations. When analyzing the allocation re-
sults, we choose the total available memory bandwidth with the following principle. When
there is no memory bandwidth contention, we use 3.725 GB/s which is used by DRFQS
as the total available memory bandwidth. When there is memory bandwidth contention,
it means that the memory bandwidth is saturated. Therefore, the total available memory
bandwidth is the sum of the memory bandwidth consumed by all processes. We determine
the existence of memory bandwidth contention by comparing the memory bandwidth allo-
cated to processes to their demand. The demand for memory bandwidth of a process is the
memory bandwidth consumption measured when it runs alone. If the memory bandwidth
allocated to a process is lower than its demand and is not caused by the delayed wakeup
mechanism, there is a memory bandwidth contention.

5.3 Evaluation of Resource Allocation

In this section, we evaluate the resource allocation by DRFQS. We run benchmarks
and measure the dominant share of each process. The goal of DRFQS is to make the
dominant share of each process proportional to its weight. We compare the ratio between
the dominant share of processes and compare it with the ratio between their weights. If
DRFQS achieves DRF allocation, then the ratio between the dominant share of any two
processes is the same as the ratio between the weight of the two processes.
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Figure 5.1: Memory Bandwidth Consumption of two mbw processes

5.3.1 Allocation of Memory Bandwidth

Workloads without DMA

We run set 1 with two mbw processes, A and B, of different weights. We change the
weight of A and B and measure the memory bandwidth allocated to them. We make sure
that the difference between the weights does not make CPU time becomes the dominant
resource of any of them by setting their weights close to each other. The share of CPU
time consumed by A and B is always 1

4
. The result of memory bandwidth consumption is

shown in Fig. 5.1.

Fig. 5.1 shows that the memory bandwidth allocated to A and B differs when the ratio
between their weights changes. The total memory bandwidth consumed by both A and
B also slightly differs. In all cases, the memory bandwidth allocated to both A and B is
more than 1000 MB/s. Compared to the maximum memory bandwidth used by DRFQS
(3815 MB/s), the share of memory bandwidth is larger than the share of CPU time (1

4
).

Therefore, we calculate the ratio between A’s dominant share and B’s dominant share by
calculating the ratio between the memory bandwidth allocated to A and B. We compare
it to the ratio between their weights, as shown in Fig. 5.2.

Fig. 5.2 shows that the ratio between the dominant share of the two mbw processes is
almost identical to the ratio between their weights. The actual allocation by DRFQS is
almost the same as the theoretical DRF allocation. When the weight of A and B is 1:1,
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Figure 5.2: Ratio of Dominant Share between Two mbw Processes

1:2, 2:3, and 3:4, the error is -0.96%, 0.48%, -0.22%, and 0.05%, respectively. In these
experiments, mbw always runs on CPU. The memory bandwidth allocation is enforced only
by target-based arbitration at the memory controller based on the input from the kernel
scheduler. The result shows that for processes that consume memory bandwidth by CPU
read and write, DRFQS allocates memory bandwidth proportionally to their weights.

Workloads with DMA

In this experiment, we run set 2 and set 3 with different weights for mbw and fio.
We measure the CPU time and memory bandwidth consumption for each combination
of weights. The CPU time allocation is shown in Fig. 5.3 and the memory bandwidth
consumption is shown in Fig. 5.4.

The dominant share of mbw is its share of memory bandwidth. The dominant share
of fio is its share of memory bandwidth plus its share of CPU. We calculate the ratio of
dominant share and compare it with the target DRF allocation, as shown in Fig. 5.5.

Fig. 5.5 shows that the ratio between the dominant share of mbw and fio closely follows
the ratio between their weights. However, the difference is larger than in the previous
experiment of two mbw processes. When the weight of mbw and fio is 1:1, 2:1, 3:1, 4:1, 5:1,
the error is -3.2%, 6.9%, 8.1%, 7.0%, 9.0%. In this experiment, the memory bandwidth
allocation is enforced by both source-based throttling at the kernel scheduler (the delayed
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Figure 5.3: CPU Consumption of mbw and fio
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Figure 5.4: Memory Bandwidth Consumption of mbw and fio
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Figure 5.5: Ratio of Dominant Share between mbw and fio and Target Ratio

wake-up applied to fio) and the target-based arbitration at the memory controller. The
larger error is caused by the difference in memory request pattern between mbw and fio

and delayed wake-up which only applies to fio.

5.3.2 Allocation of Different Dominant Resources

We run set 4 and set 5 with the same weight for all processes. We use the assumption
that the CPU time not allocated to mbw or fio is equally shared by the 4 sjeng processes.
The share of allocation on CPU time and memory bandwidth and the dominant share of
each mbw and each sjeng process when running set 4 is shown in Fig. 5.6. The same shares
for fio and each sjeng process when running set 5 is shown in Fig. 5.7.

The result shows that DRFQS equalizes the dominant share of processes. In set 4,
the dominant share of mbw is only 1.1% more than that of sjeng. In set 5, the dominant
share of fio is only 0.9% more than that of sjeng. The allocation also achieves higher
utilization of system resources. In set 4 and set 5, there are 5 processes in total. With
max-min allocation (see Section for details), each process can only get 20% of all system
resources. With DRFQS, the dominant share of all of them is more than 20%.
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Figure 5.6: Share of Allocation of mbw and sjeng
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Figure 5.7: Share of Allocation of fio and sjeng
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Figure 5.8: Running Time of SPEC2006 Benchmarks

5.4 Comparison of Running Time

In this experiment, we run sets 6-12 in both CFS and DRFQS. In sets 6, 8, and 10, the
SPEC2006 benchmark runs without resource contention. In set 7, 9, 11, the SPEC2006
benchmark runs with fio. In DRFQS, We adjust the weight of the benchmark and fix
the weight of fio to 1. In CFS, as there is no CPU contention, the weight of processes
does not affect performance. We only run the processes with default weight in CFS. We
measure the running time of the benchmark and compare the result of DRFQS to that of
CFS. The result is shown in Fig. 5.8. All running times are normalized to the running
time in CFS without resource contention.

Fig. 5.8 shows that DRFQS can significantly reduce the performance impact of memory
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bandwidth contention by implementing multi-resource fair allocation of CPU and memory
bandwidth on processes. In CFS, the benchmark is 1.8-2 times slower when fio creates
memory contention. In DRFQS, the slowdown of the benchmark is controlled by the weight
of the processes. When the weight of the benchmark process is the default value 1, the
running time is less than 25% longer than without memory bandwidth contention. If the
memory-intensiveness of the benchmark is high (e.g., lbm), increasing the weight of the
benchmark can reduce the running time even more. This is achieved by increasing the
benchmark’s allocation of memory bandwidth to satisfy the high demand when increasing
the benchmark’s weight. However, for benchmarks less bounded by memory bandwidth,
the effectiveness of DRFQS decreases.

5.5 Conclusion

Based on our evaluation, we conclude that our proposed design, DRFQS, can achieve
dominant resource fairness on CPU time and memory bandwidth in the target system. DR-
FQS makes the share of the dominant resource of each process proportional to the weight of
the process. With such fairness, the performance impact of memory bandwidth contention
is addressed. The running time of processes under memory bandwidth contention can be
controlled by the weight of processes.
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Chapter 6

Conclusions and Future Work

In operating systems, memory bandwidth contention between processes has a significant
impact on performance. It is necessary for operating systems to manage memory band-
width allocation for processes. To extend operating systems from allocating CPU time to
allocating CPU time and memory bandwidth, two major problems need to be resolved.
First, the operating system needs information about memory bandwidth consumption per
process. Second, the operating system needs to allocate memory bandwidth to processes
and effectively enforce the allocations.

Our proposed solution supports per-process memory traffic tracking by simple mod-
ifications to existing hardware and software. In our verification, our proposed solution
captures most memory traffic and attributes them to the responsible process. Our pro-
posed solution allocates CPU time and memory bandwidth, achieving dominant resource
fairness (DRF). The memory bandwidth allocation is enforced by source throttling in the
CPU scheduler and target arbitration in the memory controller. In our evaluation, we show
that our implementation achieves DRF allocations. Our results also show that such alloca-
tions effectively manage the performance impact made by memory bandwidth contention,
significantly reducing performance degradation for prioritized processes.

For the future work, our proposed design can be extended in several dimensions. First,
simulation results could be improved by boosting the memory performance of the simulated
CPU, replacing the DRAM with higher performance models (e.g., DDR4 DRAM) and
adding other DMA-capable devices (e.g., GPU, NIC, and FPGA).

Second, the memory traffic tracking and memory packet scheduling we proposed can be
implemented in HDL simulations or ASICs. The software simulator is less accurate than
HDL simulations or ASICs, and it does not provide any insight into the cost of area and
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power supply when implementing them in ASICs. To implement these features on real
hardware, practical challenges, such as delays, need to be considered.

Third, the CPU scheduler we implemented has problems inherited from the original BFS
scheduler. When running on a system with a large number of CPU cores, lock contention
may degrade the performance. In future work, a per-CPU run queue design should be used
while also supporting the DRF allocation of CPU time and memory bandwidth.

Lastly, the multi-resource fair allocation we proposed in our model is based on single-
threaded process. For multi-threaded processes, Linux treats each thread as a process
(light-weight process, LWP). A possible solution to address this challenge is to split the
weight of the process to its threads. A process can assign different weights to its threads.
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