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Abstract

When Feynman originally proposed the concept of a quantum computer, his purpose

was to perform quantum simulation of complex materials. It is thus a key requirement

that quantum resources can emulate physical processes that occur in nature. This is

not only true for advancing our understanding of physics, but also for validating that

these quantum devices work “at scale” in the first place. With recent developments, the

realization of fully-controllable quantum devices of N ∼ 200 qubits has become a reality.

The memory requirements to store the state of such a device is soon to surpass the total

memory capacities available on earth.

Given a physical state, full quantum-state tomography requires an exponential number

of measurement basis for the characterization. Hence, it is also necessary to develop qual-

itative methods and phenomenology to make conclusive statements without direct access

to the full physical state in the laboratory. One inherently useful aspect for this type of

“benchmarking” is to understand quantum phases of low-energy states of a many-body

system. Being able to simulate complex ground states is not only useful for discovery of

novel phases of matter, but is also necessary requirement to validate the “supremacy” of a

quantum device. Moreover, simulating physics on quantum devices currently is very diffi-

cult and, due to their noisy nature, untrustworthy. Both as a stop gap in device validation

and in laboratory limitations where some access to the wavefunctions is required, improv-

ing the state-of-art methodology for classical simulation of many-body systems will remain

an important direction in the foreseeable future. This thesis focuses mainly on state-of-art

tensor-network toolboxes to simulate static and dynamical behaviours of highly-complex

many-body systems, exemplified by both local and non-local properties of the quantum

matter.

In chapter 1, I motivate the rest of the thesis and provide an introduction to the

physics of cavity quantum electrodynamics (QED), and its generalized cousin, waveguide

QED. In particular, I describe how the range of quantum phases can be expanded using

local constraints and site-independent cavity modes. Finally, I provide a summary for the

remaining chapters.

In chapter 2, I describe state-of-art numerical toolboxes to efficiently represent and

manipulate quantum states, namely the tensor network method that controls the approx-

imation of wavefunctions in an exponentially-large Hilbert spaces with the entanglement

degree of freedom spread across a network of heavily sparse and compressed tensors. The

crucial insight of these so-called tensor network states is discussed, where the approxi-

mation of the wavefunction is made by limiting its entanglement degree of freedom, also

known as the bond dimension. We provide a physically relevant picture of the AKLT
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representation of matrix product states (MPS) for the compressability and expressibility

of most low-energy states of many-body systems in low dimensions, colloquially known as

the area law of entanglement.

We describe two well-known examples for variational 1D-like tensor network states,

known as MPS. The two prominent optimization toolboxes are the density-matrix renormalization-

group (DMRG) and time-dependent variational protocol (TDVP), as well as their infinite-

size variants. We conclude this chapter by discussing new methods of simulating open-

system dynamics for many-body systems in the Markov limit using tensor network meth-

ods. The first is to perform a direct MPS-based quantum trajectory simulation of an

open quantum system. The second is to create a new MPS representation of a vectorized

density matrix for the open quantum system, and to determine the steady-state using

DMRG-based methods.

In chapter 3, I provide an experimental protocol for generating universal quantum

matter in a waveguide QED platform by coupling collective atomic motions of the trapped

atoms to the continuum of waveguide modes. This spin-mechanical coupling generates uni-

versal (QMA-complete) 2-local Hamiltonian. Using this platform, we extend the method-

ology to generalized interacting SU(n) models. We describe several models implementable

with the platform, such as the chiral spin liquids with DMI term, Kitaev honeycomb model,

and an interacting SU(n)-model. I will discuss the application of tensor network states in

emulating 1D SU(n)-spin chain across a quantum critical phase known as a quantum Lut-

tinger liquid. This conformal phase, described by a Wess-Zumino-Witten (WZW) confor-

mal field theory (CFT), is a proximate gapless spin liquid phase in one-dimensions. From

this, we extract conformal data, such as the central charge and critical exponents from

the physical spin model. Finally, we discuss the engineering challenge for realizing such a

photonic crystal waveguide, including the effects of Casimir-Polder forces on the trapped

atoms. We discuss a controlled renormalization procedure to obtain the gauge-invariant

Hamiltonian analytically as well as the gauge-invariant matrix product state through the

applications of isometric tensors. This chapter is largely based upon Ref. [1].

In chapter 4, I discuss how novel quantum phases can be created in strongly-coupled

many-body QED. Reactive many-body QED for a chequerboard lattice generates a Ryd-

berg ice coupled to the cavity back-action. The long-range quantum fluctuations dissem-

inate dimer coherence across the system size, generating long-range entanglement. The

“infinite-range” quantum fluctuations have a profound impact on the stability and pro-

jective symmetry group of the spin liquid state in a dynamical U(1)-lattice gauge theory.

We discuss the physical model underlying this platform. We find that Higgs-condensation

of scalar charges spontaneously breaks the U(1) gauge group to a Z2 sub-group. A gen-

uine deconfined phase persists in this setting, enabling the exploration of topological order
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within the Rydberg quantum ice. We discuss and utilize several methods for detecting

quantum spin liquids. This work supplements our experimental observations, which will

be discussed elsewhere. This chapter is largely based upon the Ref. [2].

Finally, in chapter 5, I provide an overview of future directions for this work. The

utilization of tensor networks within a quantum device, so called quantum tensor networks,

could offer deep insight to the physics of strongly-correlated quantum systems. This is

utilized to the physics of many-body QED for dissipative universal quantum computation.
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Exemplary waveguide QED spin network. Slotted squircle photonic crystal

waveguide (SPCW) enables a versatile platform for highly tunable defect

guided modes, with the supermodes shown in the inset. As a candidate

PCW, structural parameters are provided in the Table 3.1 and discussed in
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the intensity profile for TE supermodes for exciting (trapping) Cs atoms at

wavelengths λp = 852 nm (λt = 794 nm). (b) Normalized band diagram for
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(i)
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with α ∈ {r, b, z}. (d) Raman engineering. Programmable Raman fields

Ω
(i)
α,l selectively couples internal states |g⟩, |s⟩ of atom i to the Bogoliubov

phononic mode l ∈ {1, · · · , N} with two-photon detuning ν
(i)
l . Each sin-

gle sideband mode with frequency ν
(i)
l (red dash line) is nearly resonant to

∆
(i)
gs − ϵl (black solid line), where ϵl is the phonon spectrum. Only the red

sideband couplings are depicted for simplicity. . . . . . . . . . . . . . . . . 35

3.2 Chiral spin liquid phase in Kagome lattice with vector-spin coupling. (a)

Antiferromagnetic Heisenberg model ĤAF with Dzyaloshinskii-Moriya inter-

action χ̂vector is illustrated for spins in an artificial Kagome lattice. The

grey arrows indicate the sign of the vector coupling in χ̂vector. Panels (b)–

(d) Raman sidebands realize ĤCSL in Eq. 3.8 with tunable chirality χ̂vector

for J⊥ = JZZ = 0.5kHz and λ = 0.1kHz. Adiabatic evolution through a

paramagnetic phase with time-dependent sidebands prepares the chiral spin

liquid for cold atoms in PCWs. . . . . . . . . . . . . . . . . . . . . . . . . 41
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within logical blocks

i, j. Quantum dynamics among the ice states is induced by a perturbative

spin-exchange Ôi,j between atoms belonging to different blocks. (b) Effective

reduction of the Hilbert space into gauge sectors. The low-energy dynamics

is constrained within the SU(n) single-excitation sector, represented by a

gauge charge Q = n− 2, with errors protected by a many-body gap λG. (c)

The global spin network is transformed into a network of logical SU(n) spins

i, j by encoding the SU(n)-spin with a collection of n SU(2)-spins. U(1)-

gauge constraints Ĝi block the excitation manifold within the logical spin so

that the energy sectors of the parent Hamiltonian are separated by the total

excitation number. Spin-exchange coupling between atoms belonging to

different logical blocks i, j induces an effective two-body interactions between

SU(n) spins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.4 Emergence of Wess-Zumino-Witten (WZW) conformal field theories (CFT).

(a) Local Hamiltonian encoding of SU(3)k=1 field theories on a ring onto

SU(2) waveguide QED simulator. The target WZW CFT is isometrically

transformed to the local Hilbert space of the simulator with electric charge

Q = 1. (b) Phase diagram of the bilinear biquadratic spin-1 model with

Neff = 42 logical blocks (N = 124 atoms). Pinch points of static structure

factor Sk
zz = ⟨Sk

zS
−k
z ⟩ at momentum k = 2π/3, 4π/3 signify the existence of

divergent correlations at the Uimin-Lai-Sutherland (ULS) quantum critical

point (QCP). The static structure factor is obtained from the correlation

functions in 3.10.4 with uniform matrix product states (MPS) in the ther-

modynamic limit. (c) Critical scaling for entanglement entropy for vacuum

state of (1+1)D SU(3)k WZW field theory of level k = 1. The vacuum

entanglement entropy follows the Calabrese-Cardy formula for (1+1)D con-

formal field theories (CFT). The central charge c = 2.05± 0.03 is extracted

from the finite-size scaling. (d) Production of c = 2 primary fields (quasipar-

ticles) upon local quenching. Topological solitons carry fractional quantum

statistics of Abelian anyonic phase ϕ = 2π/3. (e) Dynamical probes for

quasiparticles of the WZW CFT. Ground states are obtained with a hy-

brid DMRG-TEBD algorithm for finite MPS in a complex-time coordinate

(3.10.4). Dynamical structure factor is obtained by real-time evolving the

ground state MPS with a TEBD algorithm. . . . . . . . . . . . . . . . . . 64
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3.5 Quantum-state transfer over a spin chain. (a) Fidelity between the real-

time state on the last spin and the initial state on the first spin for two

input states |ψ(1)
in ⟩ = (|g⟩ − |s⟩)/

√
2 (red line) and |ψ(2)

in ⟩ = |s⟩ (blue dashed

line). Inset is the mean number of phonons with a maximum value about

0.06, which shows that phonon is rarely populated in the whole process and

validates the adiabatic elimination of phonons. The dynamics is numerically

simulated for the full Hamiltonian, which includes the interactions of the

atomic internal states, phonons, and electromagnetic vacuum. Close-to-unit

fidelity F = 0.994 is achieved over time scale tf ≃ π/α. (b) Real-time

dynamics of spin polarization ⟨σ̂z⟩ for all sites on the chain. The dashed

(solid) line is obtained from the full (effective) Hamiltonian (in Eq. 3.12) . 65

3.6 Slotted squircle photonic crystal waveguide. (a) SPCW band diagram. The

guided modes are depicted as solid lines for both the excitation νD2 (red)

and trapping modes νt (blue). Through our optimization iterations, the

guided modes (GM) νD2, νt are flattened around the Cesium D2-transition

and magic-wavelength trapping frequencies. GM νt is defined to operate

at the blue-detuned magic wavelength condition for the D2-transition at

λt = 793.5 nm. The grey shaded region indicates the presence of slab modes.

(b) SPCW geometry. The parameters that define the SPCW structure is

provided in Table 3.1. (c) Effective mode area Aeff. We depict the x-cut

contour map of Aeff for GM νD2. At the trapping region, we anticipate

sub-wavelength localization Aeff/λ
2
D2 ≃ 0.18 and effective coupling rate gc ≃

11.5 GHz. The resulting photonic Lamb shift and localization length are

∆1D ≃ 620 MHz and Lc ≃ 0.77 µm at ∆e = 0.4 THz. (d) Contour intensity

map of the guided modes νD2, νt. . . . . . . . . . . . . . . . . . . . . . . . 66
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3.7 Collective atomic decay and photonic Lamb shift of a finite SPCW. (a) Pho-

tonic Lamb shift ∆1D
Lamb for electronically excited states. The energy shift

∆1D of the excited state |6P3/2, F = 4⟩ of Cs is computed by the numeri-

cally evaluating the local scattering Green’s function Gs(x,x
′, ω). We only

consider the level shift caused by the SPCW structure, but not the abso-

lute renormalization by the electromagnetic vacuum. As a benchmark, we

normalized the Lamb shift by the free-space decay rate Γvac. We also dis-

play the photonic Lamb shift ∆1D under the single-band approximation as

red dashed line. The close agreement between the two models testify the

accuracy of the extrapolated Γ1D. (b) The enhancement and inhibition of
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Chapter 1

Introduction

Quantum information science offers new and exciting methods of processing data not

feasible within classical systems. The most well-known example is Shor’s algorithm, which

allows the factoring of integer number in a polynomial time. Factoring of prime numbers is

important, because modern commerce relies on RSA encryption, namely the exponential

complexity of factoring on classical computers [3]. Another more direct and potentially dis-

ruptive use case is the utilization of quantum information to understand physical systems.

Some examples include the expansion of our knowledge in the fundamentals of physics, such

as holography and quantum gravity [4], the creation of stable quantum memories through

topological spin liquids, or discovering new useful substances with quantum chemistry [5].

However, to bring any of these visions to fruition, we require the ability to understand,

control, and describe quantum systems in some way [6].

Quantum states in their most general representation grow exponentially in their com-

plexities as a function of their system size N . Even for a two-level qubits, a general state

of only 300 qubits would require more classical bits than the number of nucleons in the

observable universe. Thus, no matter how powerful classical computers could get, storing

states of large system size N will always remain elusive [7]. Luckily, we can achieve a large

class of challenging tasks without ever needing to represent the general wavefunction |ψ⟩.
The first obvious situation is when we have a state that can be written as a sum of a

handful of Fock-state basis. Instead of storing the full wavefunction, we only need to store

the coefficients of the non-zero elements. If we keep track of what basis states correspond

to which coefficients and truncate those basis states with very small coefficients, we could

reduce the data required into a sparse form. We can even do this compression for the

operators. In both cases, this is called a sparse matrix [8]. We could even compress the

rows or columns to reduce the amount of data we need. This is the method used in common

quantum optics packages like QuTIP [9].
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Another common trick is to restrict your computational space to some global symmetry,

such as conserving total Sz or particle numberN [10]. Generally, for the utilization of global

symmetry groups, one needs a Hamiltonian that conserves those global symmetries. When

you have such conservation rules, it significantly reduces the computational Hilbert space.

More often than not, these methods are not general, and can only serve to slightly expand

the number of qubits that you could simulate.

Even in a simple 1D Heisenberg spin-chain with a total Sz = 0, the global conservation

is insufficient to reduce the required Hilbert space for efficient computation with a large

number of atoms. Moreover, mean field methods are only adequate for a set of semi-

classical problems. Indeed, in all of these methods, the problem of exponential scaling has

not been fixed, but only delayed to complex problems that do require the full non-sparse

wavefunction.

One exception has been the discovery of quantum Monte-Carlo (QMC) methods. At

its most fundamental core, QMC methods utilize the duality of the quantum Hamiltonian

with a classical one, which can be efficiently described by a thermodynamic partition func-

tion. However, QMC is not a well-controlled method for solving the ground-state problem

in computationally-complex Hamiltonians. Sign-problematic Hamiltonians (also known

as non-stoquastic Hamiltonians) are the class of problems that pose the most difficulty

in many-body physics. For these computationally-complex ground-state problems, it is

no longer possible to maintain the positivity of the partition function and the statistical

description of the theory breaks down. That is, there is no semi-classical probabilistic

interpretation for the ground-state wavefunction, and prohibits the utilization of QMC

updates and any of their related cousins. [11]

Luckily, there exists a physically-inspired unbiased numerical scheme for a large class

of Hamiltonian and their long-range structure, known as tensor network states. In a

tensor networks, instead of storing the macroscopic quantum state directly, one stores

the state in a series of “site”-dependent tensors in an enlarged Hilbert space that can

locally be manipulated. By not storing the wavefunction and only storing the tensors, the

effective Hilbert space scaling can be reduced to polynomial scaling, and the tensors can be

utilized for computing observables up to some cut off in the Schmidt decomposition. The

control parameter for truncating the quantum state in the entanglement basis is known

as the bond dimension [7]. Furthermore, tensor network states mimics the many-body

low-energy wavefunctions, in that they inherit their entanglement structure from the local

Hamiltonian. Furthermore, the properties of these tensor network states encode the long-

wavelength information content in their bonds, enabling the computation of entanglement

entropy [7] and, in more complex cases, the transfer matrices [12], as well as their full

entanglement spectrum, which fully prescribes the low-energy excitations of the system.
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Furthermore, tensor network states are not limited by simple sparse matrix constraints,

whether they be matrix product states (MPS) [7] or projected entangled pair states (PEPS)

[13], 2D generalization of MPS, or some other tensor network states (e.g., MERA) are still

limited on a computational level to a class of states with geometrically-limited entangle-

ment [14]. For a general highly-entangled state (e.g., excited states), tensor networks still

require exponential scaling to represent them in their bond dimensions. However, as will

be discussed in more detail in chapter 2, it can be shown that, for any gapped Hamilto-

nian with local interactions, the entanglement entropy that cut the ground state into two

bipartitions depends only on the “surface area” of the physical cut [14].

Since we can use entanglement entropy as a proxy to determine the level of entangle-

ment in the states, the “area” law of entanglement is a surprising manifestation [15]. To

see this, let us remind that, first, the “area” of the cut scales based on the number of bonds

cut. Second, the physical systems experience local interactions. As a result, tensor net-

works enable a wide range of problems to be solved numerically that would not otherwise

be possible. Furthermore, even in some gapless systems, tensor networks can sometimes

approach a reasonable approximation of the ground state to obtain their long-wavelength

properties in certain calculations [16].

Regardless, there are still some systems in which high entanglement is intrinsic and

can not be avoided. If one had a universal quantum computer, they could simulate most

Hamiltonian with reasonable efficiency [17]. Let me just caution that the ground-state

problem of some Hamiltonians is so complex that even a universal quantum computer

would take an exponential number of step to simulate its ground-state energy. In addition,

such a universal device appears to be a long way off. There is, however, a intermediate so-

lution to perform the simulation of quantum systems with noisy devices, “analog quantum

simulation”.

The goal of quantum simulation is to use a well-controlled physical system to simulate

the physics of another more complex quantum system. One simple reason why analog

quantum simulators are easier to manipulate is because quantum simulators made with

trapped ions [18] or Rydberg atoms [19] are often in micrometers size scales, while an

electronic model in a solid or a molecule [5] can be on sizes of angstrom. The dynamics

can also be slower on the simulator than the real physical system. This provides practical

means to observe the evolution that would otherwise be too fast to do so [20]. The most

important advantage of a quantum simulator is that it often allows models to be easily

interrogated and controlled, in order to understand their finer details [6].

An example of this will be seen in the later chapter on the quantum simulation of spin

liquids. Computing expectation values of Wilson Loops for a natural model is generally

3



incredibly difficult and, if not, impossible. Despite having several candidate substances

that could realize a spin liquid, such as (BEDT −TTF )2Cu2(CN)3 [21], ZnCu3(OH)6Cl2

[22], and Na4Ir3O [23], actually performing the required measurements to validate their

deconfinement is often not possible. Quantum simulators, on the other hand, can have

direct access to non-local observables such as the Wilson loops via snap-shot based mea-

surements.

1.1 Background on cavity QED

To introduce the concept of cavity QED [24], let us first try to understand the simple

case of a single atom coupled to the single mode of an optical cavity. In this case, the atom

will have two spin states |g⟩ and |s⟩, and a cavity field in the Fock-state basis states |n⟩.
Experimentally, the spin states are normally represented by the hyperfine ground states.

The Hamiltonian for such a system can be understood as being comprised of three parts:

Hatom = ℏ∆aσ̂+σ̂− (1.1)

Hfield = ℏ∆câ
†â (1.2)

Hint = ℏg(â†σ̂− + âσ̂+) (1.3)

Hatom is the Hamiltonian of an isolated atom with no field, where σ− is the spin lowering

operator and σ+ is the raising operator and ∆a is the atomic detuning. Hfield is the

Hamiltonian of an empty single-mode cavity with detuning ∆c. Hint is the interaction

Hamiltonian between the radiation field and the internal state of the atom with coupling

constant g. The resulting Hamiltonian

HJCM = Hatom +Hfield +Hint (1.4)

HJCM = ℏ∆aσ̂+σ̂− + ℏ∆câ
†â+ ℏg(â†σ̂− + âσ̂+) (1.5)

is known as the Jaynes-Cummings model [25].

This Hamiltonian can be solved exactly to obtain the dressed eigenstates and their

respective energies for n = 1, 2, 3... and δ = ∆c −∆a [26]:

|±n⟩ = δ ±
√

4g2n+ δ2 |g, n⟩+ 2g
√
n |s, n− 1⟩ (1.6)

E±n =
ℏ
2
(2n∆c − δ ±

√
4g2n+ δ2) (1.7)
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1.2 Dispersive cavity QED

Let us now see how a trivial many-body model might arise through the collective

coupling to the radiation field. In the dispersive limit ∆c ≫ g,∆a, we can write the

Hamiltonian as H = H0 + V where H0 = ℏ∆câ
†â and V = ℏ∆aσ̂+σ̂− + ℏg(â†σ̂− + âσ̂+) to

treat V as a perturbation on the field. Looking at the vacuum n = 0 subspace, the cavity

field can be adiabatically eliminated to produce an effective Hamiltonian for just the spin

system:

Heff = [∆a +
g20
∆c

]σ+σ−. (1.8)

This is precisely the Lamb shift modified by the large density of states within the cavity

field.

Let us now see how this Lamb shift manifests into a many-body term when the system

is expanded to a multi-atom model. Namely, let us now consider the Tavis-Cummings

limit, where all atoms are equally coupled to a single-mode cavity as follows:

HTCM = ℏ∆câ
†â+

∑

i

ℏ∆aσ̂
(i)
+ σ̂

(i)
− + ℏg(â†σ̂(i)

− + âσ̂
(i)
+ ) (1.9)

By repeating the perturbative process for the elimination of the cavity field, we realize

now an all-to-all connected kinetic Hamiltonian:

Heff =
∑

i,j

[δi,j∆a +
g20
∆c

]σ
(i)
+ σ

(j)
− , (1.10)

where δi,j = 1 if i = j and δi,j = 0. This kinetic term is nonetheless a single-particle

Hamiltonian, as it can be described at a mean-field level by introducing a single classical

parameter of collective operators Ŝα =
∑

i σ
(i)
α .

1.3 Waveguide and many-body QED

Let us now consider two examples where cavity QED can be significantly enriched.

First, we can try to avoid the description at the mean-field level by somehow breaking

the permutation symmetry of Eq. 1.10. In practice, one can try to achieve this by starting

to introduce multiple cavity modes, transverse or longitudinal. The point here is that

each atom couple with different amplitude and phase to different modes of the cavity.

As such, as the cavity field is removed, the renormalized atom-atom interaction becomes
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translationally-variant. This is the generalized regime of waveguide QED or multimode

cavity QED.

The general philosophy here is that by modifying the electormagnetic vacuum sur-

rounding the atom, it is possible to construct optical devices that renormalize the atom

array with desired “single-particle” properties. Thus, waveguide QED can generate tunable

range magnetism. In chapter 3, we exploit this property to stabilize a universal quantum

matter within the waveguide QED toolbox.

In the second example in chapter 4, we can now turn to the question of transforming

the “dielectric” substrate from a single-particle one to a many-body media. The quest here

is to realize lattice spin models characterized by local symmetry.

As an example, the cavity QED Hamiltonian can be constructed to add a local con-

straint in the form of Hcontraint = Λ
∑

⊠(
∑

i∈⊠ σ̂z
(i)−Q)2, where ⊠ are ice cells of sites in a

checkerboard pattern (See Fig 4.2). This term can be readily implemented using spin-spin

interactions such as the van der Waals interaction between Rydberg Atoms [27]. A more

detailed process, along with the physical model will be discussed further in chapter 4.

Heff =
∑

i,j

[δi,j∆a +
g20
∆c

]σ
(i)
+ σ

(j)
− + Λ

∑

⊠

(
∑

i∈⊠

σ̂z
(i) −Q)2 (1.11)

1.4 Summary of the chapters

This thesis will focus on developing numerical methods, particularly through the use of

tensor networks for equilibrium and out-of-equilibrium systems, so methods for studying

the properties of a system’s steady state, or its excitations. The second chapter will consist

of an overview of standard numerical methods involving tensor networks. The chapter will

start with an overview of tensor networks, their diagrams (which will be used heavily) and

their efficiencies. After which an explanation of the construction of matrix product states,

matrix product operators, and the area law will be given. Two of those should give a basic

understanding of the framework in which all the following computations will be done.

The chapter will then go into detail describing very standard algorithms used within

tensor networks, such as the iterative method, the Density Matrix Renormalization Group

(DMRG) [28]. DMRG is a very versatile and effective method for finding the ground

state of a Hamiltonian and within it the construction of local subspace Hamiltonians.

The infinite system variant of the DMRG algorithm called IDMRG will also be explained,

which utilizes the translational invariance of the infinite system [29]. I will also discuss

the Time-Dependent Variational Principle (TDVP) [30]. TDVP a method for performing
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time evolution of a state, or more precisely, the action of an operator’s matrix exponential.

This distinction is relevant because this method will also be used to perform imaginary

and complex time evolution.

Chapter 3 consists of a proposal for a waveguide quantum electrodynamics (QED) tool-

box for universal quantum simulation. Essentially, entanglement is what limits the ability

of tensor networks, so it’s not surprising that it is also what gives quantum devices their

power. It is the property of entanglement that allows a quantum computer to get exponen-

tial speed up in solving some problems [3]. A quantum simulator is a controllable quantum

device that can be used to simulate other quantum systems of interest [6]. The toolbox in

question allows general construction and thus simulation of SU(2) 2-body Hamiltonians.

This means Hamiltonians of the form H =
∑

i,j ĥi,j, where hi,j is an operator that

acts only on sites i and j. The toolbox utilizes the coupling of spin-matter to atomic

motion generated by ”spin-independent” forces of the synthetic vacuum of the PCWs

(Photonic Crystal Waveguide) to mediate the underlying long-range interactions. More

specifically, we have spin states ketg and kets, as well as collective vibrational motion,

the Bogliobov modes. The Bogliobov modes, along with site-dependent Zeeman shifts

and several site-independent programmable Raman fields, are combined to couple the spin

to the Bogliobov modes. This allows one to remove the Bogliobov modes and generate

an arbitrary two-site spin-spin interaction Hamiltonian. The constructed universal SU(2)

2-body spin Hamiltonian can then be extended to arbitary SU(N).

Here, the SU(2) spins are formed into logical blocks of N physical spins, with each

block being mapped to a single SU(N) spin. This is accomplished by an energy constraint,

so that, in the low energy subspace, the system forms an effective gauge constraint. In

particular, each block has a major energy cost for any number of spins being excited

except exactly single collective excitation. This works similarly to the principle of Rydberg

blockade [1, 27], where additional excitation becomes energetically unfavorable.

The functionality of the toolbox is verified through the use of tensor network sim-

ulations. We compare computations done directly with a SU(N) Wess-Zumino-Witten

(WZW) model to the emergent WZW model. This emergent WZW model arises from an

isometric map of the low energy subspace of the SU(2) system of the toolbox. In particular,

these two will be computed through a combination of MPS imaginary time evolution and

DMRG. Furthermore, the process to convert these multi-site blockette SU(2) gauge con-

strained states to a SU(N) state using a tensor network isometric mapping will be detailed.

Finally, some difficult numerical use cases for the toolbox relating to the strong coupling

WZW model for SU(N) will be discussed.

The fourth chapter will consist of an investigation into model comprised of the interplay
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between the QED fluctuation and local U(1) gauge constraints provided by Rydberg in-

teractions. The phase diagram showed numerous exotic phases, ranging from superradiant

phase, to a family of valence-bond crystals (stripe and plaquette), and to topological and

conformal phases. In particular, we found that it is possible to stabilize a Z2 topological

spin liquid in the many-body QED platform.

Interestingly, this phase corresponds to the Higgs phase of the U(1) gauge theory,

which breaks down the local conservation to Z2 gauge symmetry by way of the long-range

cavity-mediated interactions. Furthermore, we find signatures of a deconfined spin liquid

described by a QED3 CFT. In this work, the numerics were used to support the existence

of these phases. This ranges from obtaining operational metrics for topological and CFT

entanglement entropy, decay of correlation functions, and the scaling behavior of Wilsonian

loops in both the deconfined and confined phases. Furthermore, we have constructed the

modular matrices, encoding the full braiding statistics of the anyons in the Z2 spin liquid

phase.

The thesis will then conclude with the chapter 5. I will provide a prospective to future

work from the concepts and tools developed in this thesis.
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Chapter 2

Numerical Methods

2.1 Introduction to tensor network representation

A tensor Ti1,i2,... is just an array of values where each address in the array is specified

uniquely by a series of index values i1, i2, .... The number of elements within a tensor

is determined by the dimensionality of each index dim(T ) = dim(i1) ∗ dim(i2).... The

number of indices of a tensor is called its “rank”, and it can have any number including

0. A rank 0 tensor is a scalar, rank 1 a vector, rank 2 a matrix and 3 can be thought

of as a 3-dimensional array of values. We can diagrammatically represent these tensors

with tensor network diagrams [31] that consist of boxes and lines. Where each box is a

tensor with the number of lines coming off the box determining the rank of the tensor.

So a box with 1 line is a vector, two lines are a matrix, and so on. A tensor can have

its indexes connected. These tensors use a built-in index summation convention, where

repeated indexes are summed over. This summing is called “contracting the tensor”. Two

tensors connected by a line is used to represent two tensors sharing an index. For instance,

the below diagram represents
∑

iAi,jB
l
i,k:

The previous sum can generate a new tensor with a rank equal to that of the number of

“free” indexes, so, M l
j,k =

∑
iAi,jB

l
i,k. A tensor series of connected tensors forms a tensor

network. A network of connected tensors can always be contracted by a single tensor.

This single tensor will have indices the same as the free indices of the network. This thesis

henceforth will make use of summation notation, where summations over shared indices

are assumed, so M l
j,k = Ai,jB

l
i,k.
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2.2 Scaling of contractions

The efficiency of a contraction of several indices is dependent on the order in which it is

performed. The difference between contracting indices in one order vs. another is often the

difference between polynomial and exponential scaling. A general contraction between two

tensors has an efficiency dependent on the number of elements that you must sum to do

the contraction. For example, the contraction of the tensor in Fig.2.1 between the tensors

Ai,j and Bl
i,k over i, would require summing a total of dim(j) ∗ dim(i) ∗ dim(k) ∗ dim(l)

elements.

To illustrate the importance of contracting in a particular order, Fig. 2.2 and Fig. 2.3

show two different methods of contracting a grid-patterned 2 × N tensor network. Both,

when fully contracted, should give us a c-number. That particular tensor network is the

same one used, as we will see later, for the inner product of two states. The first contraction

scheme in Fig. 2.2 has a computational complexity of O(NpD2) [31], Fig. 2.3 scheme

has O(pN) where p is the dimensionality of the site indexes, and D is the dimensionality

of the link indexes. Merely by choosing to contract your sites in a particular order, you

achieve an exponential speedup in the computational time required, thus illustrating its

importance.

(a)

Figure 2.1: Diagram of
∑

iAi,jB
l
i,k
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(a) (b)

(c) (d)

Figure 2.2: Ideal scheme for contracting a 2 by N grid tensor network. This is equivalent
to the inner product of two MPS where the red lines are called the links index and have
a dimensionality of D, while the green is site indexes and have a dimensionality of p.
Following steps (a) to (d) the computational complexity can be seen to be O(NpD3) which
is determined from the hardest step (going from c to d). Steps (b) to (d) repeat until all
the sites have been contracted.

(a) (b)

(c) (d)

Figure 2.3: An alternative scheme for contracting a 2 by N grid tensor network. (a) to (d)
illustrate the process of contracting length-wise on each row, finally contracting the whole
thing to get a c-Number. This network is equivalent to the inner product of two MPS
where the red lines are called the links index and have a dimensionality of D, while the
green is site indexes and have a dimensionality of p. Contracting all the sites length-wise
on each line gives a computational complexity of O(pN) scaling exponentially with the
length of the network (seen in (d)).
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2.3 Matrix product states

The matrix product state (MPS) is an example of a 1D tensor network state. MPS

represents a state under the case of relatively low entanglement entropy in an extremely

compressed manner. This is particularly applicable to the case of 1D Hamiltonian such as

the one we used. The standard definition of the matrix product for an n qudit state is [14]:

|ψ⟩ =
∑

s1,...sN

Tr
(
A(1)

s1
A(2)

s2
...A(n)

sn

)
|s1, ..., sn⟩ (2.1)

where A
(k)
i is a square matrix, of dimensions χ by χ, si goes from {1, 2, ..., d} and goes d is

the number of dimensions of the local site (i.e. 2 for a qubit, 3 for qutrit, etc) [31]. What

is critical about the matrix product state is how efficiently it can represent information.

For a generic state, the matrix product representation only needs a total of ndχ2 values

[31]. If we assume a constant χ this would have linear scaling, as opposed to a standard

basis representation which requires a total of dn values.

The matrix product state is thus limited in its utility by the scaling of the χ2 parameter.

For a general quantum system, its scaling is exponential, so in practice saving you nothing.

However in the case of a local gapped Hamiltonian consisting of only nearest neighbour

interactions, Ĥ =
∑

i,j ĥi,j, the entanglement entropy for the ground state scales based on

the number of local bonds cut/the area of the cut [32]. So for say a line of atoms, χ2

would scale like O(1). This is because, as will be discussed, χ2 is the result of Schmidt

decompositions [32], which is directly related to entanglement entropy.

Let us see how to construct a matrix product state. To begin, say you have a state

within the Hilbert space Ha⊗Hb, where Hb has dimension D and Ha has dimension d < D.

The state can be written as:

|ψ⟩ =
χ∑

k=1

√
pk |Ak⟩ |Bk⟩ (2.2)

where χ is the Schmidt rank, which is at most χ = d, and
√
pk is the singular value of

the Schmidt decomposition. The Schmidt decomposition is done by performing a singular

value decomposition, on the boundary where one wishes to split the Hilbert space [33].

To construct the matrix product state, one performs a repeated Schmidt decomposition

n − 1 times [33]. The exact process can be seen below in the following tensor diagrams.

However, the below diagrams will do so using an equivalent but numerically more efficient

definition for the MPS where A
(k)
sk need not be square matrices but are instead χi by χi+1.

The trace is often also integrated directly into the matrices by having A
(1)
s1 and A

(N)
sN be

1 by χ2, and χN by 1 respectively, such that they achieve a quadratic form equivalent to

12



(a)

Figure 2.4: Diagram of Area Law. The area states that the entanglement entropy between
systems A and B scales based on the number of bonds broken by the separation. In this
case, it scales based on the perimeter of A.

it. It should be easy to see that by just taking χ to be the largest of χi that our above

scaling arguments still hold. Writing |ψ⟩ in this equivalent formulation of the MPS with

the matrix A
(k)
sk being represented with tensors A

(k)
sk,bk,bk+1

gives us:

|ψ⟩ =
∑

s1,...,sN

A
(1)
s1,b2

A
(2)
s2,b2,b3

...A
(N−1)
sN−1,bN−1,bN

A
(N)
sN ,bN

|s1, ..., sN⟩ (2.3)

To see why these two forms are equivalent, notice that each terms of the trace e⃗Ti A
(1)
s1 ...A

(N)
sN e⃗i

can be contracted such that A′(1,i)
s1

= e⃗Ti A
(1)
s1 and A′(N,i)

sN
= A

(1)
sN e⃗i. This state is then already

in the more efficient form. So to compute the full MPS, all we are doing is just summing

MPSs (which can be done efficiently [28, 34]). Generally, you do not want to do this and

instead just start with the state in this more efficient way.

The Matrix Product Operator (MPO), on the other hand is the operator equivalent

to the MPS state; it, much like the MPS, is computed using repeated singular value

decompositions. The process is essentially identical to that in Fig. 2.5 after replacing the

state with a operator.
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(a) (b)

(c) (d)

Figure 2.5: Diagrams for Construction of Matrix Product State, (a) start from a generic
state written |ψ⟩ =∑i,...,k αi,...,k |i⟩ ... |k⟩. (b) At the first site, perform a Schmidt decom-
position (using a singular value decomposition) (c) perform a Schmidt decomposition on
the remaining state splitting at the second atom. (d) Repeat for each site, then use the
left tensor to contract the singular values. This will form the matrices that make up the
MPS.

2.4 Notes on orthogonality sites and local gauging

Often, it is convenient to contract the singular values of a MPS such as to utilize the

properties of the singular value decomposition. By doing so, you can maximize the orthog-

onality, moving the singular values to a specific site. Given some matrix M , there exists a

M = UDV †, where U is said to be left unitary and V is right unitary. To ”orthogonalize” a

state, contract the first two sites and perform a singular value decomposition of the tensor

to UDV †, and replace site 1 of your |ψ⟩ with U1 and site 2 with DV †
2 . After that, repeat

for site 2 and replace site 3 with DV †
3 , and so on until you reach the last site N. We then

can say that the “orthogonality core” is on the N -th site or the state is “gauged” to the

N -th site. It is easy to see that one can contract sites N − 1 and N again replacing site

N − 1 with UN−1D, site N with VN to move the orthogonality core to N − 1, and so on

[34].
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(a) (b)

(c)

Figure 2.6: Example Tensor Diagrams for MPS and MPO. (a) A standard finite MPS
tensor network. Each tensor represents the matrix for a respective site, the loose hanging
index is the computational basis or site basis and is how one interacts with the state.
The indexes connecting the tensors are called link indexes. The bond dimension is the
maximum link dimension on a MPS and is normally the limiting factor in using an MPS
for computation. For a general state, the bond dimension scales exponentially with the
size of the Hilbert space, luckily though for some systems this is not so. (b) An example
of a finite MPO tensor network. The parts of the MPO network are named similarly to
the MPS, except that an operator can be applied from the left or right, so it’s important
to match the correct site indexes when applying an MPO to a MPS (c) Example of tensor
network for the application of MPO operator to MPS Ĥ |ψ⟩

(a) (b)

(c) (d)

Figure 2.7: Orthogonality diagrams. The process for constructing an orthogonalized MPS
is gauged to the centre, where orange is used to represent left orthogonal matrices and
purple for right orthogonal. The process consists of contracting (a) the first two sites, (b)
performing a singular value decomposition and contracting the singular matrix with the
right site, and (d) repeating from both the left and right such that the orthogonality is
moved to the desired position.

The utility of gauging the MPS can be seen when computing the inner product of a
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local operator. Since A†A = 1, you can trivially contract those connections away from your

tensor network and thus only have to compute the contraction for the local sites. This can

be seen below:

(a) (b)

Figure 2.8: Diagrams for the tensor inner product. Diagram of inner product ⟨ψ|M |ψ⟩
where M is a local operator. Left orthogonal and right orthogonal operators in (a) when
contracted with their corresponding conjugate pair simplify to 1, and thus can be contracted
to an empty link in (b). This allows one to very efficiently calculate expectation values of
local operators with an MPS.

2.5 Density-matrix renormalization group and their

infinite-size variant

Density Matrix Renormalization Group (DMRG) and its infinite variant, infinite-size

(uniform) DMRG, are variational methods to obtain the ground state of a low-dimensional

Hamiltonian. To start, let us look at the simpler finite-size and translationally-variant

version. This method requires you to first have your Hamiltonian in the form of a matrix-

product operator (MPO) and an initial guess state (ansatz) in the form of a MPS, such as

a local random MPS state.

By definition, variational methods consist of varying your state |ψ⟩ such to minimize

⟨ψ|H |ψ⟩ [35]. DMRG works in the same manner except that, instead of varying the entire

state as one would in naive gradient descent, one varies a two-site tensor by modifying the

local gauge projection. The two site tensor Ai,i+1 = AiAi+1 is comprised of a contraction

between sites i and i+1 of your MPS |ψ⟩ = A1A2...AN . This should be done while ensuring

that the orthogonality core was initially on the ith site. In short, the DMRG algorithm
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works by minimizing the energy functional on a local subspace Hamiltonian (that is more

manageable), while keeping the rest of the tensors constant. It does this, by iterating

over all the sites, ”sweeping” back and forth until convergence. To begin, one starts with

constructing the tensor(s) that together will form the local Hamiltonian.

The local subspace Hamiltonian H i,i+1
eff is a tensor that acts identically to the full Hamil-

tonian H = H1...HN but only outputs the result for a local subspace. Its tensor network

is similar to the inner product ⟨ψ|H |ψ⟩, except that the state’s tensors are missing for

the ith and (i + 1)th sites (where i and i + 1 are the two sites you are iterating over

currently). From the left contract the inner product one site at a time to generate left

boundary tensors L1 = A1H1A
†
1 to Li−1 = Li−2Ai−1Hi−1A

†
i−1, and similarly from the right

to generate RN = ANHNA
†
N to Ri+1 = Ri+2Ai+1Hi+1A

†
i+1. The local Hamiltonian op-

erator is H i,i+1
eff = Li−1HiHi+1Ri+2 where Hi and Hi+1 are from the Hamiltonian MPO

H = H1H2...HN . The local operator made from the combination can then be applied to

Ai,i+1 to give you the local action of the Hamiltonian. Depending on your local solver you

may never need to compute Heff and instead feed the result of its action directly into your

solver [34].

This entire process can be seen Fig. 2.9.
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(a) (b)

(c) (d)

Figure 2.9: Steps of the finite DMRG (a) The full action of the local hamiltonian operator.
(b-c) The action of the local hamiltonian operator after contracting the edge tensors and
the sites. (d) the action of the local hamiltonian operator on sites i and i+1. This will be
fed into a iterative solver completing a step of the DMRG. This process repeats for all the
sites from the left, then right completing a sweep of which there may be many required to
achieve convergence.
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(a)

Figure 2.10: Example of tensor network for Heff , this should ideally never actually be
constructed and instead action should be used within the eigensolver instead. This network
is equivalent to H i,i+1

eff = Li−1HiHi+1Ri+2.

After generating a method of efficiently computing H · Ai,i+1 you can feed this into

an iterative eigensolver to partially minimize the energy and give you an updated A′
i,i+1.

There are multiple solvers one can use, such as the Davidson [28], Lanczos [36] and in

some unique cases, Arnoldi [37, 38], however, the norm is to use the Davidson method.

Generally, you don’t want to fully converge for this local A′
i,i+1 as this is only the optimal

for that site if none of the other sites in the MPS changes, which they likely will as modify

the other sites.

To retrieve the MPS site tensor merely perform a singular value decomposition on Ai,i+1

to get UiDVi+1, and replace the state |ψ⟩’s MPS for site i with Ui and site i+1 with the

contraction DVi+1 doing this will move the orthogonality core one forward. Having done

so you’ve completed the Davidson (or your chosen algorithms) iteration for the ith site.

To move to the i+1 site contract Li−1 with Hi, Mi and M
∗
i to generate Li. We’ve already

computed Ri+3 Hi+1,Hi+2 thus giving us everything we need for the local Hamiltonian for

i + 1 starting site, allowing us to use our eigensolver for i + 1. The DMRG then consists

of applying Davidson iterations for two site pairs from left to right (1 and 2 then 2 and

3, ...) then right to left (N and N − 1 then N − 2 and N − 3, ...), over and over again

until you’re satisfied with the convergence. Each left to right, then right to the left set

of iterations is called a sweep, and generally, it takes several sweeps to converge, however,

the more critical limiting factor for difficult models is in the allowed bond dimension when

you truncate in the SVD.

The best models for DMRG are those that do not require a high bond dimension to get

a small truncation error. It should however be mentioned that DMRG is biased towards

certain states, particularly those of lower entanglement which in some cases can cause
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problems [28].

The infinite DMRG (IDMRG), works similarly to the DMRG but takes advantage of the

translational invariance in the infinite system [29]. The process begins by performing some

small number of DMRG sweeps on a state consisting of two unit cells using a translationally

invariant Hamiltonian to give us our starting state. These unit cells can have any number

of sites ≥ 2 each. To illustrate the IDMRG process let’s look at a 4-site state consisting

of 2 sites for each unit cell. The state is then gauged towards the centre with the singular

value matrix for the 1st IDMRG sweep Λ1 being uncontracted in the centre. At this point

the state is doubled, so that the 2 unit cells (4 sites) become 4 (8 sites), which are then

contracted to make the boundary tensors like before. To do this contract the inner product

of the left half of the first unit cell (excluding Λ1) with the left Hamiltonian cap to make

HL, similarly for the right half to make HR. At this point, one subtracts the energy from

the previous (in this step finite) DMGR from HL to only have the energy of the 4 site state

be included. With the new 2-unit cell state and the edge environment tensors L0 = HL

and RN+1 = HR, perform the DMRG sweep.

(a)

Figure 2.11: The translationally invariant hamiltonian MPO, this MPO is constructed in
a way to allow one arbitrarily extension by stitching 1st site to the Nth site, and merely
having caps on either side after achieving the desired size.
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(a) (b)

(c) (d)

(e)

Figure 2.12: Illustration of the steps of the IDMRG algorithm. (a) The initial finite
state seeded into the IDMRG. (b) ⟨ψ|H |ψ⟩ for the initial state where HL and HR are
merely trivial edge tensors caps initially to terminate the infinite hamiltonian giving a
finite version. If the Hamiltonians MPO is constructed in a upper trianglular format it will
be the first and last basis vectors for the matricies of sites 1 and N. (c) The updated HL

after completing the first sweep. (d) The updated HR after completing the first sweep. (e)
The next IDMRG state with the respective environment tensors that will be contracted
with the local hamiltonian and have the Davidson iterations applied.

After this, the process repeats except when you insert your new unit cell, instead of

having nothing between them in the initialization multiplied by the inverse of the previous

sweeps singular values Λ−1
N−1. This wasn’t needed before as there was a free hanging index.

You can also use this to assess whether convergence has been achieved as you should find

that ⟨ΛN−1⟩ΛN = 1 for the converged translationally invariant state [29].
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(a) (b)

Figure 2.13: (a) IDMRG’s |ψ⟩ after the first sweep (b)(a) IDMRG’s |ψ⟩ after the second
sweep, noticing the insertion of Λ−1

N−1 inbetween the two unit cells. This same format is
repeated for all subsequent sweeps, though possibly with ΛNB3B4Λ

−1
N−1A1A2λN instead of

ΛNA1A2Λ
−1
N−1B3B4λN depending on whether the sweep number is odd or even.

2.6 Time-dependent variational principle

The time-dependent variational principle (TDVP) [39] is a method of evolving a finite

MPS in time. It works by calculating the action of the exponential of some MPO etH on

a MPS |ψ⟩. As such it can solve both evolutions in real and imaginary time. There are

multiple variants but the version that will be described here is the simplest to understand

the 2-site TDVP (2TDVP). The 2TDVP method is very similar to the finite DMRG; in it,

you solve for a local subspace of 2 sites at a time (i and i+1) sweeping back and forth. The

Davidson iterations are replaced with Krylov iterations which solve for e
iHδt
2 locally. The

only real difference however is that each iteration must generate a subspace for a single

site i + 1 in which a corrective backwards time step of e
−iHδt

2 is applied. This is done to

prevent inner sites from being stepped twice.

I will now outline the entire algorithm in detail. First initialize i = 1, your initial

state |ψ⟩ = A1...AN and the Hamiltonian MPO H = H1...HN . To evolve |ψ(t)⟩ =

exp(iHt) |ψ(t)⟩ to |ψ(t+ δt)⟩ perform a right half sweep, followed by a left half sweep.

Combined these are called a sweep. The 2TDVP is sweeping over and over until a desired

final time is reached. The right half sweep is performed as follows:

1. Set the orthogonality core of |ψ⟩ and H to i.

2. Calculate the boundary tensors Li−1 =
∏i−1

j=1AjHjA
†
j and Ri+2 =

∏N
j=i+2AjHjA

†
j

and the site contraction Ai,i+1 = AiAi+1.

3. Compute with exp(
iHi,i+1δt

2
)Ai,i+1 with the Krylov subspace method and set Ai,i+1 to

the result.

4. Perform Singular value decomposition Ai,i+1 = UiDVi+1, set Ai = Ui and Ai+1 =

DVi+1 (this moves the orthogonality core to i+ 1.
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5. Calculate and update boundary tensor Li.

6. Compute with exp(−iHi+1δt
2

)Ai+1 with the Krylov subspace method and set Ai+1 to

the result.

7. Repeat the above steps iterating i from 1 to N-1, this is a right half sweep.

The left half sweep is similarly performed as follows:

1. Set the orthogonality core of |ψ⟩ and H to i.

2. Calculate the boundary tensors Li−1 =
∏i−1

j=1AjHjA
†
j and Ri+2 =

∏N
j=i+2AjHjA

†
j

and the site contraction Ai,i+1 = AiAi+1.

3. Compute with exp(
iHi,i+1δt

2
)Ai,i+1 with the Krylov subspace method and set Ai,i+1 to

the result.

4. Perform Singular value decomposition Ai,i+1 = UiDVi+1, set Ai = UiD and Ai+1 =

Vi+1 (this moves the orthogonality core to i.

5. Calculate and update boundary tensor Li.

6. Compute with exp(−iHiδt
2

)Ai with the Krylov subspace method and set Ai to the

result.

7. Repeat the above steps iterating i from 1 to N-1, this is a right half sweep.

It is also often useful to do what is called a subspace expansion [30] to your state. In

many cases, it will allow the TDVP to work better, particularly for very low link dimension

states. This however will not be discussed here because more important for the 1TDVP

method.
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(a) (b)

Figure 2.14: First two substeps of the 2TDVP, it should be noted that this diagram is
slightly misleading since only the action of the exponentials is computed not an actual
MPO

2.7 Driven-dissipative quantum dynamics

2.7.1 Master equation and stochastic Schrodinger equation

For open systems, the Schrodinger equation with a system Hamiltonian is often not suf-

ficient to explain the dynamics, while it is also often too difficult to model the environment.

Luckily mostly isolated systems generally have the environment operate in a manner as

to only weakly entanglement with the systems state. This allows us to model the random

process as a Markovian chain. A Markov chain is essentially a random process where the

likelihood of some event affecting the system (such as dissipation) is dependent only on the

current state of the system [40]. This is particularly important when discussing dissipation

into the environment which has to be modelled using the master equation. Since we are

dealing with a probabilistic state or mixed state we must model the system using a density

matrix. The most general form of the quantum master equation is as follows [41]:

ρ̇ = L(ρ) (2.4)

L(ρ) = 1

iℏ
[H, ρ]−

∑

l

γl
2
(K̂l

†
ĉkρ+ ρK̂l

†
K̂l − 2K̂lρK̂l

†
) (2.5)

where K̂l are the quantum jump operators, γl are the dissipation rates and we call L the

Lindbladian super-operator. A simple example of this would be a single 2-level atom that

dissipates into the environment. In this case, the jump operator K̂ = |g⟩ ⟨e| would be
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releasing the photon and transitioning to the ground, and γl would be the decay rate.

Causing decay is the normal result of an external environment interacting with some spec-

ified system. The master equation allows one to nearly fully model the interaction with

very little information [41].

2.7.2 Quantum trajectory andMonte Carlo wavefunction method

One problem with the master equation is that it relies on the density matrix instead of

the state. In tensor network terms, this means evolving an MPO instead of a MPS which

can be incredibly cumbersome and prevents most of our techniques from being used. MPOs

scale far worse than MPS states. Fortunately, there is an alternative method that allows one

to directly use a state MPS instead of the density matrix MPO. The quantum trajectory

method works by performing many different probabilistic paths the state’s evolution can

take and then combining them together to form a density matrix at the end. [41] Though

often it is sufficient to just average over the observables never needing to generate the

density matrix. To do this set our state |ψ⟩ = |ψ(t0)⟩ to the initial state, we will need this

initial state later. We then evolve |ψ⟩ with the non-Hermitian Hamiltonian as follows for

a single-time step:

Ĥeff = Ĥ +
∑

l

iγl
2
K̂†

l K̂l (2.6)

After that we need to consider the possibility of a quantum jump, to do this first we

need to compute the probability of each jump as follows:

pl = γlδt| ⟨ψ| K̂lK̂l |ψ⟩ | (2.7)

To see whether a jump has occurred during δt generate a random number r between 0

and 1, and if r ≤ pl then a jump has occurred. If a jump occurs update |ψ⟩ by applying the

jump operator |ψ′⟩ = K̂l |ψ⟩, otherwise do not update |ψ⟩. This will give you |ψ(t+ δt)⟩.
The non-Hermitian decay part of Heff might seem surprising because the decay affects the

state even when a jump does not occur, however, this is expected because not detecting

a photon is a measurement in itself. Repeat the Heff evolution and jump time steps

until reaching the desired end time. This will give you a single quantum trajectory, or

one possible path that the state could’ve taken in its evolution. To properly model the

dissipation many paths must be computed with the same process, making sure to always

start with the same |ψ(t0)⟩. If one performs n trajectories then the density matrix can be

written as ρ(t) =
∑

i
1
n
|ψi(t)⟩ ⟨ψi(t)|. [41] Alternatively one can compute the observables
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they wish along the path to get and average over them instead, this is often the more

efficient method.

2.7.3 Vectorized density matrix

The problem with the trajectory method is that it’s not obvious how many trajectories

are required to properly model the system. Often times it can become intractable to

perform the computation such a large number of times. This is especially true if you’re

only interested in the steady state as it could also require a very large tf for your system

to settle down. There does exist another method [38] that allows one to evolve ρ as if it

were a MPS that allows us to use these advantages. To start map ρ to a vector |ρ⟩⟩, in
general ρ can be written as ρ =

∑
σ,σ′ cσ,σ′ |σ⟩ ⟨σ′| where |σ⟩ = |σ1, σ2, ..., σN−1σN⟩ is the

multi-site basis state, and cσ,σ′ are c-number coefficients. The mapped vectorized density

matrix |ρ⟩⟩ is then:

|ρ⟩⟩ =
∑

σ,σ′

cσ,σ′ ||σ⟩ ⟨σ′|⟩⟩ (2.8)

where we define the vectorized operator ||σ⟩ ⟨σ|⟩ from the tensor product as follows:

|ρ⟩⟩ =
∑

σ,σ′

cσ,σ′

N⊗

i=1

|σi⟩⟩ ⊗
N⊗

i=1

|σ′
i⟩⟩ (2.9)

To evolve this |ρ⟩⟩ we map the lindbladian super operator from the master equation

to a normal MPO operator acting on the vectorized density, as in ρ̇ = L |ρ⟩⟩. Taking

advantage that in our basis that |XρY ⟩⟩ = Y T ⊗X |ρ⟩⟩, we can that the master equation

super operator becomes:

L(ρ) → L |ρ⟩⟩ (2.10)

L = −i(I ⊗H −HT ⊗ I) +
∑

l

1

2

[
2K̂∗

l ⊗ K̂l − I ⊗K†
lKl −KT

l Kl ⊗ I
]

(2.11)

where K∗
l is the complex conjugate and K†

l is the hermitian conjugate and KT
l is the

transpose. In this case, the dissipation rate is included in the jump operator itself so we

redefine Kl =
√
γlKl. In converting ρ of N sites to a vectorized density we create a MPS

with 2N sites. This is generally still favourable over evolving the density matrix MPO as

we can use all our efficient algorithms for the MPS.

Another caveat is whether one expects the steady state to be heavily mixed or close

to a pure state. If it is close to a pure state then the sites should be ordered above
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as Aσ1Aσ2 ...AσNAσ′
1 ...AσN′ or what I’ll call the ”long” pattern. This is because ρ =

|ψ⟩ ⟨ψ| is just a simple tensor product with no correlation, however, in the case of heavily

mixed states such as the identity it is better to order the sites such that your MPS goes

Aσ1Aσ′
1Aσ2Aσ′

2 ...AσNAσ′
N or what I’ll call the “short” pattern. This is because |σi⟩ ⟨σ′

i| can
be highly correlated and with an MPS you want to minimize the amount of long-range

entanglement to maximize the efficiency. This brings some complications in performing

the tensor product, however, they can be solved relatively easily as shown in Fig. 2.15.

(a) (b)

(c) (d)

Figure 2.15: (a) The index structure of the heavily mixed scheme for the vectorized density
matrix of a 3-site system. (b) The tensor network A⊗ B of operators A and B, with the
modified site order configuration (c) Contraction of A1 and B1, the first step in converting
these two MPOs into a single MPO (d) Schmidt decomposition of the contraction. Re-
peating (c)-(d) are for all the sites returns us to the standard MPO structure. Assume in
all diagrams that lines of different colours overlapping do not represent matching indexes.

One interesting property is that the steady-state satisfies L |ρ⟩⟩ = 0, so by finding

the eigenvector of L with eigenvalue 0 you can directly solve for the steady state of your

system. This can be calculated using an MPS in an Arnoldi DMRG scheme previously

mentioned, as, unlike the Davidson method the Arnoldi can be programmed to solve for

the eigenvectors with specific eigenvalues. Alternatively and from my experience far more

reliable one can use the standard tried and true Davidson DMRG method to find the

ground state of L†L to get the steady state. One problem though with both of these

methods is that they don’t conserve the trace, even if they conserve the norm ⟨⟨ρ|ρ⟩⟩ = 1.

This even occurs if you perform a TDVP evolution instead of using a DMRG. Generally,

this can be handled though as you can merely take this into consideration when computing
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your observables as follows [38]:

⟨Ô⟩ = Tr(ρ̂Ô)/Tr(ρ) = ⟨⟨I| I ⊗ Ô |ρ⟩⟩ / ⟨⟨I|ρ⟩⟩ (2.12)

This equation, unfortunately, causes problems for the ”long” site pattern because ⟨⟨I|
requires O(2N) resources to represent due it being equivalent to several long-range corre-

lations between sites i and i′ = N + i. As a result, we’ve found it is generally better to

never compute ⟨⟨I| directly. Instead compute its action as a series of MPOs that project

out the non-identity overlap, and a MPS that leads to an equivalence relation.

2.8 Alternative interpretation of matrix product states

An alternative formulation of the matrix product state that gives a more physical inter-

pretation is that of the auxiliary spin representation [32]. The auxiliary spin representation

works by having each of the physical spin sites comprised of two auxiliary spins. Each aux-

iliary spin is entangled with one other auxiliary spin within the nearest neighbor’s physical

spin. A diagram of this configuration can be seen in Fig. 2.16. The state formed by these

auxiliary spins is:

|wD⟩ =
D∑

k=0

|k, k⟩ (2.13)

Where D is the bond dimension of the link and the dimensionality of the auxiliary spin.

For the edge auxiliary spins the state takes the form of |w(edge)
D ⟩ =∑D

k=0 |k⟩. It should be

noted that this is assuming a non-periodic MPS, in periodic MPS like the infinite case there

is no need for an edge state. The state of the MPS is actually stored not in the auxiliary

spins but in the isometric mappings Ps that maps from the 2 auxiliary spin basis of a site

s to its respective physical spin basis. Applying these mappings as a tensor product to all

the physical spin sites provides the ability to construct a general state as follows:

|ψ⟩ = P1 ⊗ P2 ⊗ ...⊗ PN |wD⟩⊗N (2.14)

where the isometric mapping can be written in a way very reminiscent of our other repre-

sentation of the matrix product state as follows:

Ps =
∑

i,α,β

A
i,(s)
α,β |i⟩ ⟨α, β| (2.15)
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When we expand out |ψ⟩ subbing in the equation for Ps the states take a form identical

to the original formula that was given for the matrix product state whereas the suggestive

notation implies A
i,(s)
α,β is just the MPS state’s matrix for site s. What’s fascinating about

this representation is that despite having only local entanglement by merely applying what

is effectively local isometric ”projectors”, we can represent a general even potentially very

long-range entanglement state.

(a)

Figure 2.16: (a) Auxiliary particle matrix product state representation. Physical spin sites
and auxiliary spins are represented by blue circles and red ovals respectively. The physical
spins are constructed by applying the isometric map Ps to the two auxiliary spins within
and comprising the site. Auxiliary spins are entangled by at most 1 other auxiliary spin in
the nearest neighbour physical site forming the state |wD⟩, where D is the bond dimension
of the link.
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Chapter 3

Waveguide QED platform for

synthetic quantum matter

3.1 Summary

This chapter will consist of a proposal for a waveguide cavity quantum electrodynamic

(QED) toolbox for quantum simulation. It was originally presented within [1] for which

I am a co-author. My contribution on the project consisted of performing the numeri-

cal work, writing technical portion of the manuscript, and coming up with the isometric

mapping that was used to bring the SU(2) states to SU(N).

Tensor networks are only able to go so far when it comes to handling quantum states.

There are some states that simply can not be realistically represented with tensor networks.

This is especially true of highly entangled states or those in gapless systems [7, 31], which

do form in nature. This leaves a large set of physical problems unsimulatable with them.

Luckily, Feymann had a way around this, the quantum simulator[17]. A quantum simulator

is a controlled quantum device that can be used to simulate other quantum systems of

interest [6]. In short, it’s simulating quantum physics using quantum physics. A simulator

is not the same as a quantum computer, even though quantum computers are capable of

doing quantum simulation.

In current devices, quantum simulation is done by directly modelling a Hamiltonian in

an analog device as opposed to the gate-based binary approach a true quantum computer

would do [17]. Analog simulators are within the capability of near-term devices, while

digital quantum simulators are expected to remain elusive for the foreseeable future [6].

Quantum simulators are expected to advance a wide range of fields, from chemical dynamics

to particle physics to cosmology [42].
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There have been many proposals for quantum simulator platforms, including those

based on trapped ions, superconducting circuits, neutral atom arrays [42] and photons

[43]. All these digital quantum simulation methods have managed to be achieve 50 qubit

simulators [19, 44–46]. The ability for 1000s of qubit quantum simulators seems to be real-

istically within reach, and this is already beyond the ability of direct exact diagonalization

methods[42]. Analog quantum simulators, archetypically, are limited to physics similar to

the quantum platform they are run on. However, that is not necessarily true, an alternative

scheme is the new paradigm of universal analog quantum simulation, which we explore in

this chapter. In this chapter, a proposal for a neutral atom array model that makes use of

a waveguide and cavity QED to perform universal analog quantum simulation is presented.

The platform directly allows general construction and thus simulation of SU(2) 2-body

Hamiltonians. 2-body Hamiltonians are those of the form H =
∑

i,j ĥi,j, where hi,j is an

operator that acts only on sites i and j. Hamiltonians of this form have been shown capable

of performing universal quantum computation [47–49]. The use case is far outside of our

current capabilities, but what we propose instead is using the platform to perform analog

synthetic quantum matter simulation.

A standard use case consists of: Preparing some initial state, doing the respective time

evolution, and then measuring whatever observables are relevant [6]. Alternatively, one can

adiabatically evolve the Hamiltonian to transfer a trivial ground state (e.g., paramagnet

state) to the ground state of some computationally relevant Hamiltonian [47]. The toolbox

utilizes coupling of spin-matter to atomic motion generated by “spin-independent” forces

of the synthetic vacuum of the PCWs (Photonic Crystal Waveguide) to mediate the

underlying long-range spin-spin interactions.

In more detail, we have spin matter with spin states |g⟩ |s⟩ and a collective vibrational

motion called the phononic Bogliobov modes. The Bogliobov modes, along with site-

dependent Zeeman shifts and several site-independent programmable Raman fields, are

combined to couple the spin to the bogliobov modes in such a way that one can eliminate

the bogliobov modes and create an arbitrary two-site spin interaction Hamiltonian. At

first glance, the platform appears to support only direct SU(2) simulation. However, this

can be expanded to all SU(N) models by leveraging its universality.

To achieve this, we group the sites into blocks ofN sites. In each block, it is energetically

favorable for exactly 1 site to be excited within them at a time. This works similarly to

Rydberg blockade, where an energy constraint enforces only 1 atom within a region to

be excited [1, 27]. By having a sufficiently large energy cost for any other number of

excitations, we can restrict the system to a low-energy subspace separated by a large

energy gap. The energy constraint works to form an effective gauge constraint, enabling us
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to construct general SU(N) 2-spin local Hamiltonians. The functionality of the toolbox will

be verified through the use of tensor network simulations comparing computations directly

with a Wess-Zumino-Witten (WZW) model and the emergent WZW model arising from

an isometric map of the low energy subspace of the SU(2) system. In particular, these two

will be computed through a combination of MPS imaginary time evolution and DMRG.

Furthermore, the process to convert these multi-site SU(2) gauge constrained states to

SU(N) states using a tensor network isometric mapping will be detailed. Finally, some

difficult numerical example use cases will be discussed for the toolbox arising from the

strong coupling WZW model.

The novelty of this toolbox is as follows:

• This is the first experimental proposal for realizing general universal 2-body Hamil-

tonians with a fully analog quantum simulator.

• We provide the first method of designing an effective gauge constraint that encodes

sets of N SU(2) atoms to SU(N) spins. We then use this to achieve arbitrary pairwise

interactions between the SU(N) spins.

• We provide the ability a method to manipulate anyons and perform open quantum

system simulation with a waveguide QED architecture.

3.2 Introduction

An exciting frontier in quantum information science is the realization and control of

complex quantum many-body systems. Hybrid nanophotonic system with cold atoms has

emerged as the paradigmatic platform for realizing long-range spin models from the bot-

tom up, exploiting their modal geometry and group dispersion for tailored interactions. An

important challenge is the physical limitation imposed by the photonic bath, constraining

the types of local Hamiltonians that decompose the available physical models and restrict-

ing the spatial dimensions to that of the dielectric media. However, at the nanoscopic

scale, atom-field interaction inherently accompanies significant driven-dissipative quantum

forces that may be tamed as a new form of a mediator for controlling the atomic internal

states. In this chapter, we formulate a quantum optics toolbox for constructing a universal

quantum matter with individual atoms in the vicinity of 1D photonic crystal waveguides.

The enabling platform synthesizes analog quantum materials of universal 2-local Hamil-

tonian graphs mediated by phononic superfluids of the trapped atoms. We generalize our

microscopic theory of analog universal quantum simulator to the development of dynami-

cal gauge fields. In the spirit of gauge theories, we investigate emergent lattice models of
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arbitrary graphs, for which strongly-coupled SU(n)-excitations are driven by an underlying

multi-body interaction. As a minimal model in the infrared, we explore the realization of

an archetypical strong coupling quantum field theory, SU(n) Wess-Zumino-Witten model,

and discuss a diagnostic tool to map the conformal data of the field theory to the static

and dynamical correlators of the fluctuating photons in the guided mode.

One of the central problems in quantum information science and condensed matter

physics is to create and control strongly interacting quantum systems, and to measure the

equilibrium and non-equilibrium properties of the many-body system [17, 50, 51]. Recent

experiments with ultracold atoms have extended the ranges of unconventional phenomena

that may be accessed. A common thread to these efforts is the quest to design the Hamilto-

nian by harnessing the natural interactions available between cold atoms [52]. Much of the

focus has largely been on analog and Floquet quantum systems. However, these approaches

are limited in their applicability to complex target Hamiltonians whose description departs

significantly from the microscopic model of the simulator.

A parallel development has been the exploration of computational complexity of local

Hamiltonians, whose ground state properties cannot be efficiently obtained even by a digi-

tal quantum computer. An example of such a Quantum-Merlin-Arthur (QMA) problem is

to find the ground state of 2-local Hamiltonians ĤQMA =
∑

ij ĥij, where the local decompo-

sition ĥij consists of at most 2-body SU(2) operators. More generally, arbitrarily complex

quantum matter Ĥtarget can be emulated with a seemingly simpler but QMA-complete lat-

tice model ĤQMA [53], in that all physical properties and local structures of Ĥtarget can be

efficiently mapped onto the universal model ĤQMA. Likewise, a quantum simulator that

realizes analogue Hamiltonians ĤQMA can be adapted for universal quantum computation

in the spirits of cellular automata and Hamiltonian computation [47–49].

With recent developments in atom-photon interfaces with photonic crystals [54–64],

there has been significant interest towards assembling quantum many-body systems by

garnering the control over individual quantum systems [17, 50–52]. With the atomic tran-

sition frequency residing within the photonic band gap (PBG), the underlying lattice of

atoms cannot dissipate propagating waves into the guided modes (GMs) of the photonic

structure. However, the mere presence of the atoms at sites i, j in a waveguide seeds dy-

namic defect modes that support stable atom-field bound states in the form of evanescent

waves [54, 55, 65–67], mediating exchange interaction J|i−j|⃗̂σ
(i) · ⃗̂σ(j) between the trapped

atoms [68, 69]. With auxiliary Raman sidebands and digital time-steps [17], the phase-

amplitude function J|i−j| can be engineered for atoms coupled to 1D and 2D photonic

crystal waveguides (PCW), and realize translationally-invariant pairwise models for quan-

tum magnetism, constrained by the dimension of the dielectric [70]. Conversely, photons

propagating through the guided mode exhibit novel quantum transport and many-body
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phenomena [71–75].

At the nanoscale, atom-field interaction is modified by the electromagnetic vacuum of

the “dielectric,” consisting of both the passive photonic structure and the active emitters.

Such a quantum dielectric is inherently renormalized by the strong coherent and dissipa-

tive radiative forces between the atoms. Indeed, complex spin-mechanical textures arise

through localized spin-dependent photon-mediated forces [76]. More generally, nanoscopic

quantum forces modify the mechanical “vacuum” of the atomic motion, where Bogoliubov

phonons are distributed across the atomic sample as a collective bath that in turn couples

to the spin system. Dissipative nature of these forces in PCW may be exploited to sta-

bilize and self-organize new forms of mechanical phases of quantum matter, and complex

observables may be constructed for the detection of highly entangled quantum systems.

Here, we harness the coherent coupling between atomic motion and internal states in

1D PCW for the realization of an analogue universal quantum matter. We develop a

low-energy theory for the quantum motion of the trapped atoms in the bandgap regime

of waveguide quantum electrodynamics (QED). By coupling Bogoliubov phonons to the

spin matter, we realize a fully programmable lattice spin system ρ̂s for neutral atoms.

In our approach, arbitrary binary interaction ĥij ≃ ∑
α,β J

(i,j)
αβ σ̂

(i)
α σ̂

(j)
β is realized for any

combination of SU(2)-spin operators σ̂
(i)
α , σ̂

(j)
β with α, β ∈ {0, x, y, z} between sites i and

j. Our spin-network ρ̂s are described by Hamiltonian graphs with connectivity i, j that

can no longer be represented by spatial lattices and dimensions, and realizes the universal

2-local quantum matter ĤQMA =
∑

i,j ĥij in a fully analog manner. Our waveguide QED

simulator, stabilizing ĤQMA, is universal, in that any k-local Hamiltonian Ĥtarget of arbi-

trary connectivity can be embedded into the low-energy sector of ĤQMA [53]. This notion

of universality is strong in that any physical phenomena of Ĥtarget must correspond to an

“emergent” behavior of the analogue simulator ĤQMA in the long-distance limit.

Moreover, we formulate a hardware-efficient protocol to design dynamical gauge struc-

tures of many-body system and realize a plethora of SU(n) models with our waveguide

QED simulator. Motivated by gauge fixing in quantum spin glasses and color codes, we

describe a general construction for which the low energy physics of ρ̂s encompasses the

full scope of binary lattice models for SU(n)-spin excitations with local constraints that

protect the many-body wave function ρ̂s from errors. Here, atomic arrays constrained by

their local symmetries are encoded into logical SU(n)-blocks, and dynamical U(1)-gauge

fields mediate programmable long-range interactions between the logical blocks.

Utilizing these capabilities, we demonstrate the versatility of our universal analog sim-

ulator by constructing chiral spin liquids [21] and holographic strange metals [77, 78]. As a

primordial example to the tower of phases, we explore the physics of SU(3) Wess-Zumino-
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(c) (d)

(b)(a)

Atom 1 Atom 2 Atom N

Figure 3.1: Complex quantum many-body physics with waveguide QED systems. (a)
Exemplary waveguide QED spin network. Slotted squircle photonic crystal waveguide
(SPCW) enables a versatile platform for highly tunable defect guided modes, with the
supermodes shown in the inset. As a candidate PCW, structural parameters are provided
in the Table 3.1 and discussed in 3.9. Green spheres represent the trapped atoms. Inset.
Contour map of the intensity profile for TE supermodes for exciting (trapping) Cs atoms at
wavelengths λp = 852 nm (λt = 794 nm). (b) Normalized band diagram for the supermodes
of SPCW. Inset. Two lasers Ωdg,Ωds with detunings δdg, δds create strong photonic Lamb
shifts ∼ e−|i−j|a0/Lc between two atoms localized within a photonic bandgap [65]. The
bandgap is detuned by ∆b with respect to the transition frequency. (c) Raman couplings
synthesize programmable interactions between two atoms at sites i, j ∈ {1 · · ·N} for any
combination of SU(2) spin operators. Site-resolved addressing with spatially global fields

Ω
(i)
α,l (in the frequency domain) is achieved through inhomogeneous Zeeman shifts ∆

(i)
gs

through intermediated excited states |ẽ⟩, |e⟩, |e⟩ with α ∈ {r, b, z}. (d) Raman engineering.

Programmable Raman fields Ω
(i)
α,l selectively couples internal states |g⟩, |s⟩ of atom i to the

Bogoliubov phononic mode l ∈ {1, · · · , N} with two-photon detuning ν
(i)
l . Each single

sideband mode with frequency ν
(i)
l (red dash line) is nearly resonant to ∆

(i)
gs − ϵl (black

solid line), where ϵl is the phonon spectrum. Only the red sideband couplings are depicted
for simplicity.
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Witten conformal field theory (CFT), a holographic dual to a Chern-Simons gravity [79], by

encoding the target CFT onto the low-energy sector of our waveguide QED simulator. We

investigate the critical scaling of CFT entanglement and the dynamics of semionic quasi-

particle excitations, as reflected by the fluctuating photons of the PCW. Our networked

approach provides powerful tools for controlling analog quantum systems with complexities

far beyond of regular spin lattices heretofore explored.

The structure of this chapter is organized as follows. In Section 3.3, we investigate

the interplay among waveguide photons, atomic external motion and internal energy lev-

els, and establish the low-energy theory for an analogue quantum simulator of universal

Hamiltonians [53]. In Section 3.4, we discuss the realization of a chiral spin liquid on

Kagome lattice and the detailed design of Raman sidebands. In Section 3.5, we intro-

duce the realization of SU(N) spin models by gauging N two-level atoms to a constrained

subspace. With this logical encoding, we construct a general SU(n) Hamiltonian for the

waveguide QED platform. In Section 3.6, we analyze the emergence of a minimal SU(3)

Wess-Zumino-Witten model with matrix product states and discuss operational metrics

for its diagnosis. In Section 3.7, we discuss the experimental feasibility and summarize the

advances made in this work.

3.3 Platform

3.3.1 Lamb shifts in PCW: Phononic Hubbard model

Our approach is based upon the unique capability of PCWs to induce strong photon-

mediated forces between proximal neutral atoms and to create many-body states of internal

spin and external motion. By engineering the QED vacuum of the PCW, we synthesize

coherent mechanical coupling between the trapped atoms, and renormalize the atomic array

into a mechanical quantum network. Long-range interaction of the universal Hamiltonian

ĤQMA =
∑

i,j ĥi,j is mediated through the phononic quantum channels with full control

over the decompositions ĥi,j and their connectivity i, j.

As shown in Fig. 3.1, our basic building block is an 1D lattice of neutral atoms at

positions xi strongly coupled to a dispersive PCW with mode function uk0(x) represented

by the red line of Fig. 3.1(b). The band edge at frequency wb is red-detuned by ∆b =

ω−ωb > 0, so that the atomic transition frequency ω lies within the band gap. Each atom

is tightly localized at the antinodes of uk0(x) with trap frequency ωt and lattice constant a0

by a nanoscopic optical potential VT = V0 sin
2 k0x with a trapping field at a higher-order

GM (blue line). In 3.9, we analyze a versatile candidate structure (Silicon Nitride Squircle
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PCW) with highly tunable GMs in terms of TE photonic band gap, effective photon mass

me and mode area Aeff near the band edge kx = k0 (See Fig. 3.1(b) for the band diagram).

|g⟩ and |s⟩ are the two hyperfine ground states that define the computational basis C of

the waveguide QED simulator, and the ground states respectively couple to excited states

|d⟩ and |d⟩, which will be eliminated to induce a pure mechanical coupling between the

atoms.

The atom-PCW Hamiltonian reads ĤPCW =
∫
dx
∫∞
0
dωf̂

†
(x, ω)f̂(x, ω)+

∑
i(ωdσ

(i)
dd +

ωd̄σ
(i)

d̄d̄
+ ∆gsσ

(i)
ss ) +

∑Na

i=1

∑
µ=dg,d̄s[

∫∞
0
dωE(xi, ω) · dµσ̂

(i)
µ + Ωµσ

(i)
µ e−iνµt], where ddg(d̄s) is

the transition dipole momentum from |g(s)⟩ to |d(d̄)⟩ and Ωdg(d̄s) is the Rabi frequency

of the pumping fields with frequency νdg(d̄s) that couples |g(s)⟩ and |d(d̄)⟩. We assume

ddg = dd̄s = d. The electric field in the PCW can be represented by classical Green’s

function G(x,x′, ω) as Ê(x, ω) = iµ0ω
2
√

ϵ0
π

∫
dx′
√
Im{ϵ(x′, ω)}G(x,x′, ω)f̂(x, ω), where

f̂(x, ω) represents the quantized excitation of the dielectric with permittivity ϵ(x′, ω) [80].

In the limit fdg(d̄s) = Ωdg(d̄s)/δdg(d̄s) = f ≪ 1 where δdg(d̄s) = νdg(d̄s) − ωd(d̄), we adi-

abatically eliminate the excited states |d⟩ and |d̄⟩ from the system and integrate out

the photonic modes [81–84]. We thereby obtain the low-energy Liouvillian dynamics
˙̂ρ = −i[Ĥ int

M , ρ̂] + L0[ρ̂] + LM [ρ̂] with a purely mechanical Hamiltonian

Ĥ int
M = f 2∆Lamb(x̂i, x̂j)σ̂

(i)
0 σ̂

(j)
0 (3.1)

and the respective Lindblad superoperators L0[ρ̂] =
∑

i,j
Γijf

2

2
(2σ̂

(i)
0 ρ̂σ̂

(j)
0 − σ̂

(i)
0 σ̂

(j)
0 ρ̂ −

ρ̂σ̂
(i)
0 σ̂

(j)
0 ) and LM [ρ̂] =

∑
i,j

Γijf
2

2
(2eikx̂i ρ̂e−ikx̂j − eik(x̂i−x̂j)ρ̂ − ρ̂eik(x̂j−x̂i)) acting on the

internal and external degrees of freedom (DOF), where σ̂0 = |g⟩⟨g|+ |s⟩⟨s| is the identity

spin operator in C. Photonic Lamb shift and correlated dissipation, modified by the PCW,

are given by

∆Lamb(x̂i, x̂j) = 2µ0ω
2
bd

∗ · Re[Gs(x̂i, x̂j, ωb)] · d (3.2)

Γij(x̂i, x̂j) = µ0ω
2
bd

∗ · Im[G(x̂i, x̂j, ωb)] · d, (3.3)

where Gs = G−G0 is the scattering Green’s function relative to the vacuum term G0 (See

3.9). Importantly, coherent dynamics of Eq. 3.1 is decoupled from the internal states within

the computational space C, and only induce non-local mechanical interaction between the

trapped atoms. The state-independence of Eq. 3.1 is crucial, as the photon-mediated

spin-exchange coupling cannot break the translational invariance intrinsic to the photonic

crystal structure [65]. Instead, our quantum simulator emerges from the programmable

interactions between the internal states and the Bogoliubov modes of Eq. 3.1. Indeed,

seen from the atoms, the correlated radiative decay Γij does not directly contribute to

37



the dynamics of computational subspace C but induces mechanical damping to the atomic

quantum motion.

In our case, the GM near the band edge kx = k0 (corresponding frequency ωb) exhibits

an extremely flat band wk −wb ≃ − 1
2me

(kx − k0)
2 and the GM photons acquire large mass

1/me = −(∂2wk/∂k
2
x) (See Fig. 3.1(b) for the first Brillouin zone). In the reactive regime

of the PBG, the atoms predominantly couple to this band edge and the Green’s function

is approximated by

G1D(x̂i, x̂j) = J1Duk0(xi)uk0(xj)e
−|x̂i−x̂j |/Lc , (3.4)

where the localization length Lc =
√

1/2me∆e ∼ a0 is controlled by the detuning ∆e ≃ 2∆b

of the pumping field from band edge. J1D = − c2

2ωbLcAeff

1
∆e+iκ/2

is the coupling rate to the

PCW with effective mode area Aeff ≃ λ2, mode function uk0(xi) at the band edge, and

decay rate κ (κ0) in the band gap (at the band edge). The correlated Lamb shift thereby

provides the tunnelling interaction ĤM = f 2∆1De
−|x̂i−x̂j |/Lc between local phonons pinned

on the lattice sites xi and xj, with ∆1D = ωbd
2∆e

ϵ0LcAeff(∆2
e+κ2/4)

. Importantly, the collective

damping Γ1D ∼ Γ̃1D exp(−Ld/Lc) is exponentially inhibited for a finite device length Ld,

with Γ̃1D = ωbd
2κ0

2ϵ0LcAeff(∆2
e+κ2

0/4)
, and figure of merit F = ∆1D/Γ1D ∼ exp(Ld/Lc) ≫ 1 is

favorable for massive photons with flat bands and long device length Ld ≫ Lc.

To make progress analytically, we consider the case of Lc ∼ a0 with massive photons

(flat bands in the PCW), where the atom-atom interaction reduces to nearest-neighbouring

terms. We thereby expand the mechanical Hamiltonian ĤM around the equilibrium posi-

tions to the second order of the zero-point motion x0 =
√

ℏ/2mωt and obtain the quadratic

form

HM =
∑

i

p̂2i
2m

+
mω2

t

2
x̂2i −

ℏgm
L2
c

x̂ix̂i+1 +O(x̂4i ), (3.5)

for the mechanical coupling constant gm = f 2∆Lamb and the trap frequency ωt. With a

first-type sine transform Bjk = 1√
N
sin[i π

N+1
jk], we diagonalize HM =

∑N
l=1 ϵlβ̂

†
l β̂l, whose

quasiparticles are the Bogoliubov phonons {β̂l} with spectrum ϵl =
√
ω2
t +

2ℏgmx2
0

L2
c

cos( π
N+1

l)

with momentum-space mode indices l. For nanoscopic optical potentials with kxx0 ̸≪ 1,

Eq. 3.5 describes a 1D Bose-Hubbard model for atomic motion with on-site (long-range)

interaction ∼ x̂4i /x
4
0 (|x̂i − x̂j|4/L4

c), where the Bogoliubov phonons are excited out of

the superfluid vacuum. The radiative damping Γ1D gives rise to motional decoherence

LM [ρ̂MA] =
∑

l
γm
2

(
2ˆ̃xlρ̂MA

ˆ̃xl − {ˆ̃x2l , ρ̂MA}
)
with damping γm =

gmx2
0

∆eL2
c
κe−Ld/Lc and quadra-

ture ˆ̃xl = β̂l+ β̂
†
l . We note that the requirement for Lc ∼ a0 is not intrinsic to the protocol,

as long-range interaction Lc > a0 only modifies the frequencies of the phononic bands.

The momentum-space Bogoliubov modes constitute the frequency-selective channels of an
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all-to-all connected mechanical quantum network and coherently mediate the interactions

between the atomic nodes, transforming the atomic array into a universal quantum matter.

3.3.2 Networked universal quantum matter

To mediate the universal lattice model via the phononic channels, we gain indepen-

dent control over the interaction coefficients between any atom pair i, j by way of Ra-

man engineering in the sideband-resolved limit. This is ensured in the reactive regime

of PCW, because the mechanical damping constant γm is exponentially suppressed by

F ∼ exp(Ld/Lc) ≫ 1 relative to the phonon spread. As shown in Fig. 3.1(c), we dis-

tinguish the coupling of an individual atom i to a particular Bogoliubov mode l with

site-dependent ground-state energy shift ĤA =
∑

i ∆
(i)
gs σ̂

(i)
z with ∆

(i)
gs = ∆gs + gFmFB(xi)

in the form of a linear Zeeman gradient B(xi) [70]. The ground-state shift δ∆gs between

neighboring sites is larger than the width of the phonon spectrum |ϵN − ϵ1|, so that the

frequency difference ∆
(i)
gs − ϵl is different for all pairs of (i, l) (See Fig. 3.1(d)).

Then, we introduce spatially global Raman interaction

Ĥ = ĤM + ĤA +
∑

i,j

∑
α,l

Ω
(j)
α,l

2
σ̂
(i)
α sin(k

(j)
α,l x̂i)e

−iν
(j)
α,lt + h.c [85–88] with N2 frequency side-

bands to the atom chain through the GM, where k
(i)
α,l ≃ k and ν

(i)
α,l denote the wavenum-

ber and frequency for the Raman fields that couple the spin operator σ̂
(i)
α of atom i

with α ∈ {±, z} to the Bogoliubov mode l with α ∈ {±, z}. By expanding sin(kx̂i) ≃∑
l η0Bil(β̂

†
l + β̂l) in the Lamb-Dicke limit with η0 = x0/a0 and switching to the interaction

picture, we find ĤMA =
∑

α,i,j,l Ω
(j)
α,lσ̂

(i)
α e

−i(ν
(j)
α,l−ζα∆

(i)
gs )tη0Bilβ̂

†
l e

iϵlt + h.c, with ζα = ±1, 0 for

α = ±, z. As ∆
(i)
α,l = ν

(i)
α,l − ζα∆

(i)
gs + ϵl ≪ |ϵl − ϵl−1| ≪ δ∆gs, we integrate over the rapidly

oscillating terms and leave only the slowly-varying terms ∼ exp[i(ν
(i)
α,l − ζαω

(i)
A + ωl)t] and

obtain the spin-mechanical Hamiltonian ĤMA =
∑

i,l

∑
α∈{x,y,z}

η0Ω
(i)
α,l

2
Bilσ̂

(i)
α β̂le

−i∆lt + h.c,

thereby coupling the spin operator σ̂
(i)
α at site xi to a particular Bogoliubov mode l. Here,

the detuning ∆
(i)
α,l = ∆M is chosen to be identical for all phononic mode l, atom i and spin

operator type α, and the Rabi frequencies are transformed as Ω
(i)
x,l = (Ω

(i)
+,l + Ω

(i)
−,l)/2 and

Ω
(i)
y,l = i(Ω

(i)
+,l − Ω

(i)
−,l)/2.

By projecting the master equation to the computational subspace C [89], we obtain the

open-system dynamics ˙̂ρA = −i[ĤQMA, ρ̂A] +
∑

α L[ρ̂A] for the spin system, governed by

the universal Hamiltonian

ĤQMA ≃
∑

i,j,α,β

J
(i,j)
α,β σ̂

(i)
α σ̂

(j)
β +

∑

i,γ

h(i)γ σ̂
(i)
γ , (3.6)
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and the correlated dissipation

L[ρ̂A] =
∑

i,j,α,β

γ
(i,j)
α,β

2

(
2σ̂

(i)
β ρ̂Aσ̂

(j)
α − {σ̂(i)

α σ̂
(j)
β , ρ̂A}

)
(3.7)

for any combination of α, β, γ ∈ {x, y, z} and between any two spins at sites i, j. Im-

portantly, the exchange interaction J
(i,j)
α,β and the bias field h

(i)
γ can be arbitrarily de-

signed by solving a set of nonlinear equations J
(i,j)
α,β = 2Re[

∑
l Ω̃

(i)
α,lΩ̃

(j)∗
β,l /∆M ] and h

(i)
γ =

−2ϵαβγIm[
∑

l Ω̃
(i)
α,lΩ̃

(i)∗
β,l /∆M ] where Ω̃

(i)
α,l = η0Ω

(i)
α,lBil and Levi-Civita symbol ϵαβγ. Namely,

we have 6N2 DOFs for the sidebands {Ω(i)
α,l} from the nonlinear equations, while only

3(3N2 − N)/2 independent parameters {J (i,j)
α,β , h

(i)
γ } are required to represent the univer-

sal model ĤQMA. Hence, for any set {J (i,j)
α,β , h

(i)
γ }, at least one solution {Ω(i)

α,l,∆M} can be

obtained to the target model within certain physical constraints (e.g., laser power). We

envisage that the Raman sideband matrices {Ω(i)
α,l} are real-time tunable. The Hamiltonian

ĤQMA(t) can be evolved to map out complex phase diagrams of many-body models and be

globally quenched to study out-of-equilibrium dynamics. The frequency sidebands {Ω(i)
α,l}

can be streamed by the time-domain response function Ω(t) using a single-mode phase-

amplitude modulator. Dissipative rate is evaluated as γ
(i,j)
α,β = γm

∆M
J
(i,j)
α,β + γAδi,j, where δij

denotes the Kronecker symbol. Coherence-to-dissipation ratio C = Jαβ/γαβ = F/N ∼
exp(Ld/Lc)/N ≫ 1 of our simulator improves exponentially in the reactive regime. In

practice, C is constrained by γA due to the finite Ωα,l and ∆M of the Raman fields.

3.4 Chiral spin liquids in Kagome lattice

Frustration in lattice spin systems, in which local energy constraints cannot all be

satisfied, can lead to deconfined phases of quantum spin liquids (QSL). In a QSL, quantum

fluctuations drive the collective state of the spins into highly entangled quantum matter,

such as the resonating-valence bond state in Z2-spin liquids, whose emergent topological

properties can only be described in terms of long-range entanglement [21]. Unlike gapped

Z2-spin liquids, chiral spin liquids (CSL) spontaneously break the time-reversal and parity

symmetry, while preserving other symmetries, and host fractional quasiparticle excitations

with topological order [90]. Such a CSL is thought to be a parent state of the illusive

anyonic superconductor.

As an example of Eq. 3.6, we discuss a method of creating topological CSL discovered by

Kalmeyer and Laughlin, a bosonic analogue of the celebrated fractional quantum Hall effect

[91–93], with our waveguide QED toolboxes. We consider an anisotropic antiferromagnetic
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XXZ Hamiltonian

ĤCSL =
∑

⟨ij⟩

(
J⊥σ̂

(i)
⊥ σ̂

(j)
⊥ + JZZ σ̂

(i)
z σ̂

(j)
z

)
+ λχ̂, (3.8)

on a Kagome lattice with tunable spin-chirality χ̂. Despite the physical dimension of the

atomic lattice in 1D PCWs, our toolboxes allow the spins to sit on a synthetic geometry

provided by the connectivity of the translationally-variant spin-exchange couplings, as

depicted by the 2D Kagome lattice in Fig. 3.2. With λ = 0, ĤCSL reduces to the Kagome

XXZ antiferromagnet, which has been widely studied for its time-reversal symmetric Z2

spin liquid [94, 95].
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Figure 3.2: Chiral spin liquid phase in Kagome lattice with vector-spin coupling. (a)
Antiferromagnetic Heisenberg model ĤAF with Dzyaloshinskii-Moriya interaction χ̂vector is
illustrated for spins in an artificial Kagome lattice. The grey arrows indicate the sign of
the vector coupling in χ̂vector. Panels (b)–(d) Raman sidebands realize ĤCSL in Eq. 3.8
with tunable chirality χ̂vector for J⊥ = JZZ = 0.5kHz and λ = 0.1kHz. Adiabatic evolution
through a paramagnetic phase with time-dependent sidebands prepares the chiral spin
liquid for cold atoms in PCWs.

In the presence of strong chiral interactions on the triangles ∆ of the sublattice, e.g.,

scalar spin-chirality χ̂scalar =
∑

i,j,k∈∆
⃗̂σi·(⃗̂σj×⃗̂σk), the ground state supports a topologically-
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protected chiral edge mode circulating the macroscopic outer boundary with closed loops

within the inner hexagons of the Kagome lattice [91]. As a convention, the sum
∑

i,j,k∈∆

runs clockwise over the nearest-neighbor sites around the triangles. To see how the ex-

tended chiral edge modes emerge in a Kagome lattice, we first identify that the ground

state of a single closed loop χ̂scalar around a single triangle is the Kalmeyer-Laughlin wave-

function. By mapping the elementary triangular puddles into a Kondo-type network for

edge states [91], individual puddles encircled with the chiral states merge together to de-

velop a macroscopic puddle with a single chiral topological edge state around the outer

boundary of the lattice, reminiscent of the two-channel Kondo problem. This allows for

unidirectional spin transport along the boundary, and the bulk excitations are described

by semionic exchange statistics (ϕ = π).

The difficulty in realizing Eq. 3.8 as the low-energy theory of physical Hamiltonians

with cold atoms is the spin-chiral coupling ⃗̂σj × ⃗̂σk that breaks the parity symmetry. The

capability to realize universal pairwise interaction, including off-diagonal spin operators

σ̂ασ̂β, makes our approach highly suitable for analog quantum simulation of quantum liq-

uids with chiral spin coupling. As an example, we realize here the minimal instance of CSL

with 2-body vector chirality χ̂vector =
∑

i,j∈∆ ẑ · (⃗̂σ(i) × ⃗̂σ(j)) in the form of Dzyaloshinskii-

Moriya (DM) interaction. The Raman sideband matrices shown in Figs. 3.2(b)–(d) realize

Eq. 3.8 on a unit cell of a Kagome lattice in Fig. 3.2(a). The DM interaction breaks the

underlying SU(2) symmetry, while preserving the lattice and U(1) spin symmetry. Hence,

unlike the case of χ̂scalar, the CSL does not persist for χ̂vector in the limit of strong coupling

λ≫ J⊥ = JZZ . However, it is numerically predicted that gapped CSL phase does exist for

XXZ antiferromagnets with a finite vector spin-chirality λ < J⊥ = JZZ at zero magnetic

field [92, 93]. The capability to tune vector-chirality as well as other spin-orbit couplings

also opens the route to synthetic multiferroics and emergent interfacial spin textures, in-

cluding skyrmions and topological surface states.

3.5 Gauging waveguide QED simulator to interacting

SU(n) lattice models

The native Hamiltonian of our waveguide QED simulator spans the universal binary

analog models of SU(2)-spin operators. In analogy to lattice gauge theories (LGT) that give

rise to constrained Hilbert space [96, 97], we can also design dynamical gauge structures

that mediate a wide range of binary models consisting of SU(n)-operators in a completely

analog fashion, such as the Heisenberg quantum magnet for interacting SU(n)-spins. While

the digital quantum simulator can emulate the dynamics of arbitrary unitary dynamics,
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we confine our discussion here to binary SU(n)-spin models that arise within the projected

gauge-invariant subspace of the parent’s SU(2) waveguide QED simulator. Such a “con-

densed matter” approach [96] can create deconfined quantum phase by direct cooling to its

ground state, and the errors can be mitigated within the gauge sector of interest. Indeed,

instead of merely replicating the target quantum state as with digital quantum simulators,

the actual physical phenomena is encoded onto the low-energy sector of the waveguide QED

simulator. In this section, we discuss a general Heisenberg SU(n) quantum magnet as an

exemplary implementation, but more complex models involving vector and anisotropy can

be realized in an analogous fashion.

Our goal is to create a programmable Heisenberg magnet

ĤH =
∑

j>i Jij

∑
α Λ̂

(i)
α Λ̂

(j)
α , where Λ̂α is the generalized Gell-Mann matrix (3.10.1). The

challenge of simulating SU(n)-spin with cold atoms and ions is that the spin operators

cannot be efficiently mapped to a rotation within an internal DOFs due to limited transition

pathways, e.g., selection rules. In addition, there is a difficulty to implement spin-models

with certain symmetries that cannot be imposed to the fundamental symmetries of the

atomic interactions, e.g., SU(n)-symmetric collisions in alkali-earth atoms limited by the

nuclear spin DOF [98]. Apart from the programmability of Jij, the n
2 − 1 generators of

SU(n) algebra and their interactions would need to be mapped to the physical system. Our

method eliminates both bottlenecks, by locally encoding an ensemble of SU(2) spins to the

SU(n)-subspace, and by building the interaction symmetry directly into the Hamiltonian

in an emergent manner.

The general strategy is to impose an effective local gauge symmetry onto the spin system

through the separation of time scale. We can then introduce a perturbative spin-exchange

term that only virtually breaks the local symmetries. By construction, we aim to obtain a

microscopic many-body dynamics within the gauge sector, which can be effectively inter-

preted as the macroscopic binary interactions between the SU(n) spins. From the viewpoint

of lattice gauge theories, the constrained quantum dynamics can be qualitatively under-

stood as quantum fluctuations within the background gauge field of a frustrated vacuum

of the logical spin system, which give rise to a physical 4-body plaquette interaction.

As shown in Fig. 3.3, we partition the physical atomic lattice i, j into logical spins

i, j ∈ L, each containing n physical atoms, that encode the local SU(n) spin. This is

achieved by local U(1)-gauge constraints Ĝi that blockade the total excitation number

within the logical spin i to reside in the single-excitation subspace {|α⟩ ≡ |sα⟩
∏

β ̸=α |gβ⟩}
with α ∈ {1 · · ·n}. Such a gauge generator Ĝi =

∑
i∈i σ̂

(i)
z − Q effectively imposes the

Gauss law (“ice rules”) with electric charge Q = n− 2, analogous to quantum spin ice

models [21, 96] that mediate long-range ring-exchange interactions. The ground state

(most excited state) sector of ĤG = λG
∑

i Ĝ
2
i
for λG > 0 (λG < 0) is spanned by n-
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Figure 3.3: SU(n)-spin networks under spin ice gauge constraints. (a) Parent spin ice
Hamiltonian. Trapped atoms in PCWs are subjected to local ”ice” rules (Gauss laws) with
an energetic cost ĤG = λG

∑
i Ĝ

2
i
within logical blocks i, j. Quantum dynamics among the

ice states is induced by a perturbative spin-exchange Ôi,j between atoms belonging to
different blocks. (b) Effective reduction of the Hilbert space into gauge sectors. The low-
energy dynamics is constrained within the SU(n) single-excitation sector, represented by a
gauge charge Q = n−2, with errors protected by a many-body gap λG. (c) The global spin
network is transformed into a network of logical SU(n) spins i, j by encoding the SU(n)-spin
with a collection of n SU(2)-spins. U(1)-gauge constraints Ĝi block the excitation manifold
within the logical spin so that the energy sectors of the parent Hamiltonian are separated by
the total excitation number. Spin-exchange coupling between atoms belonging to different
logical blocks i, j induces an effective two-body interactions between SU(n) spins.

dimensional states {|α⟩} of the SU(n)-representation. Without the loss of generality, we
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rewrite the Heisenberg model within this definition,

ĤH =
∑

i ̸=j

Ji,j

∑

α,β

T̂ (i)
αβ T̂

(j)
βα , (3.9)

where T̂αβ = |α⟩⟨β|.
In order to introduce spin-spin interaction between the logical blocks, we treat the primi-

tive Hamiltonian ĤI =
∑

i,j D̂i,j+Ôi,j as a perturbation to ĤG with D̂i,j = Di,j

∑
α σ̂

(iα)
ss σ̂

(jα)
ss

and Ôi,j = Oi,j

∑
α σ̂

(iα)
+ σ̂

(jα)
− , where σ̂(iα) denotes the spin operator acting on the αth atom

in the ith logical block. With the local gauge constraints, we obtain the effective Hamilto-

nian within the gauge-invariant sector Q as

Ĥeff =
∑

i ̸=j

Di,j

∑

α

T̂ (i)
αα T̂ (j)

αα + Ji,j

∑

α ̸=β

T̂ (i)
αβ T̂

(j)
βα , (3.10)

with the gauge-variant errors (spinon excitations) suppressed by the many-body gap λG

(spinon energy). In the physical space, the spin-exchange coefficientsDi,j,Ji,j = −O2
i,j
/2λG

are the gauge-mediated ring-exchange interactions among the four spins selected by the

primitive two-body model ĤI . With Di,j = Ji,j, the effective Hamiltonian is mapped to

the universal SU(n)-Heisenberg magnet ĤH. The gauge-projected Hamiltonian is derived

in 3.10.2.

One feature of our synthetic approach is that the symmetries of the interaction can

be directly built into the underlying Hamiltonian, without resorting to the fundamental

symmetries of the atomic collisions. For instance, with a minor modification, we can easily

create SU(n)-symmetric Hamiltonians for arbitrary n, e.g., unlimited by the nuclear-spin

DOF, for the study of transition metal oxides [99] and heavy fermion systems. Furthermore,

because we can design Ji,j arbitrarily through the Raman fields, our system can be tailored

to study novel frustrated magnetic ordering in long-range SU(n)-spin models with the

Haldane gap [100–103]. As discussed in the next section, our waveguide QED simulator

can be applied to the realization of quantum field theories [79, 104].

In 3.10.3, we discuss an efficient method to construct the real-time evolution of the

Sachdev-Ye (SY) model [105] with dynamical Raman fields, an all-to-all limn→∞SU(n)-

Heisenberg model ĤSY (Eq. 3.9 with Gaussian-random Ji,j). The SY model describes

a non-Fermi liquid state of matter, known as the “strange metal,” characterized by the

absence of long-ranged quasiparticle excitations analogous to high-Tc cuprate supercon-

ductors. In connection to quantum chaos [77], a quenched system under ĤSY rapidly

loses the phase coherences and reaches a quantum many-body chaos within time scales

that remarkably saturate the quantum bound of the Lyapunov time τL = ℏ
2πkBT

. With
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gauge-mediated many-body string Hamiltonian between a set of SU(n)-spins and an an-

cilla qubit, we can even directly assemble and measure arbitrarily complex OTOCs [106–

108] ⟨Ŵ †(τ)V̂ †(0)Ŵ (τ)V̂ (0)⟩ ∼ eτ/τL for SU(n)-variables Ŵ , V̂ in our platform for the de-

tection of the quantum chaos and the scrambling of entanglement in many-body quantum

systems. The SY model also serves as a model of holography that duals quantum gravity

in AdS2/CFT [77, 105].

3.6 Strongly-coupled WZW field theory

Quantum field theories (QFT), defined on continuous spacetimes with each site sup-

porting infinite-dimensional Hilbert spaces, become increasingly intractable to simulate in

the regime of strong coupling even on quantum devices. Near the strong coupling, the

physics of the UV fixed point is often described by conformal field theories (CFT) with

a scale-invariant and universal description. Moreover, extracting the conformal data of

the emergent CFT is a notoriously difficult task for real quantum hardwares. In an ex-

amplary fashion, we demonstrate the emergence of (1+1)D SU(n)k Wess-Zumino-Witten

(WZW) CFT [79, 104, 109] in the waveguide-coupled SU(n) Hamiltonian (Fig. 3.4(a)),

which describes the boundary physics of a bulk (2+1)D Chern-Simons topological gravity

in the scaling limit [110]. In condensed matter systems, WZW theory serves as the parent

that hosts a family of symmetry-protected gapless edge states in fractional quantum Hall

systems. The primary fields Ψ of the CFT are produced and monitored by way of real

optical fields of the guided modes. The long-wavelength conformal data, including the

central charge c, the quantum dimensions D, and operator product expansion of Ψ, is re-

constructed from the correlation between physical observables of the microscopic simulator,

as reflected by the fluctuation of the optical fields in the guided mode.

As discussed in Fig. 3.4(a), we consider a critical SU(3)-Heisenberg Hamiltonian for

nearest-neighbor interacting Neff logical SU(3) spins living on a ring with Ji,i+1 = Jc for

Eq. 3.9 (See the phase diagram of Fig. 3.4(b) with quantum critical point θULS = π/4).

The target system is mapped to the waveguide QED simulator (i) by creating nearest-

neighbore bonds between physical atoms with ĤI (blue arrows of Fig. 3.4(a)) and (ii) by

gauging the simulator to Q (red shaded area of Fig. 3.4(a)). The gauged spectra of the

simulator (with λG) is thereby that of the target with an error (D/λG)
2 ≪ 1. To access

the ground state |g̃⟩ of the target model (most excited state of the gauged simulator),

we perform a hybrid matrix-product state (MPS) algorithm for the waveguide quantum

simulator moving along a complex time, combining both density-matrix renormalization

group (DMRG) and time-evolving block decimation (TEBD) methods. By evolving a
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random MPS under the action limt→∞ exp
[
−i(ĤI + iĤG)t

]
, we obtain the most excited

state within the low-energy sector Q = 1 of the simulator, which is isometric to the DMRG

ground state of the logical antiferromagnetic SU(3) model (3.10.4).

To see how the SU(3)1 WZW CFT for level k = 1 natively emerges from the Hamilto-

nian constraints of the simulator, let us consider the parton picture of the target Hamil-

tonian (See Eq. 3.9). We map the logical operators with 3-color fermions (quarks)

T̂ (i)
αβ = ψ̂

(i)†
α ψ̂

(i)
β under the constraint ψ̂

(i)†
α ψ̂

(i)
α = 1 for colors α, β = {r, g, b}. The par-

ton Hamiltonian

Ĥparton = J
∑

i

ψ̂(i)†
α ψ̂

(i)
β ψ̂

(i+1)†
β ψ̂(i+1)

α (3.11)

is equivalent to a SU(3) Hubbard model HHubbard = −∑i t[ψ̂
(i)†
α ψ̂

(i+1)
α +h.c]+U [ψ̂

(i)†
α ψ̂

(i)
α −

1]2 for fermions in the interaction limit U/t ≫ 1. In the infrared, low-energy excita-

tions are only populated at the Fermi points kF = π/3, thereby coarse-graining the

fermionic fields ψ̂
(i)†
α = eikF xiψ̂L,α(xi) + e−ikF xiψ̂R,α(xi) to the continuum. As the Hub-

bard model for U/t ≪ 1 gives rise to 3-color free Dirac fermions (charge boson and

SU(3)1 WZW gauge fields g), the Hubbard interaction asymptotically decouples the charge

with a gap. Thus, the Hubbard interaction leaves the WZW fixed point in the low-

energy sector with an action S = 1
16π

∫
G2 d

2ξTr[∂αg
−1∂αg] + Γ(g) and topological term

Γ(g) = 1
24π

∫
G3 d

3ξϵαβγTr[(g−1∂αg)(g
−1∂βg)(g

−1∂γg)]. This is reminiscent to chiral Lut-

tinger liquids (LL) on fractional quantum Hall edges [111]. Unlike the Haldane phase of

the spin-1 counterpart, the emergent field theory of the SU(3) model is described by univer-

sal properties, where the (chiral) fermionic fields ψ̂L,σ, ψ̂R,σ become the Virasoro primary

fields gαβ(z, z) = ψ̂†
L,σ(z)e

iϕ̂(z,z)ψ̂R,σ(z) of the WZW CFT with colors σ = {r, g, b} and

space-time z = −i(x − t), z = i(x + t). These fields are generated by the spin currents

Ja
L(x) =

1
2
ψ̂†
L,σ(x)τ

a
σ,σ′ψ̂L,σ′(x) and Ja

R(x) =
1
2
ψ̂†
R,σ(x)τ

a
σ,σ′ψ̂R,σ′(x) following the SU(3)1 Kac-

Moody algebra, where τaσ,σ′ = (Λa)σ,σ′/2 are the elements of the generalized Gell-Mann

matrices in 3.10.1. Importantly, from the operator product expansion, the conformal data

of SU(3)1 WZW CFT can be obtained for the central charge c = 2, scaling dimensions

D = 2
3
and critical exponents ν = 2 for the WZW field gαβ.

In order to physically extract the conformal data from the simulator, we need to mea-

sure the static and dynamic response functions. To this end, we dissipate an observ-

able Ô(j) of the physical atom at site j to the waveguide
∑

j gj
∑

j∈j Ô(j)âk0e
ikj with a

well-defined momentum k. The first-order correlation ⟨:â†(τ)â(0):⟩k of the optical field

leaving the guided mode regresses towards the dynamical response function Sk
O(τ) =

⟨0CFT|Ô−k(τ)Ôk(0)|0CFT⟩ of the logical spin system, where |0CFT⟩ is the vacuum state

of the WZW CFT and Ôk =
∑

j

gj
κ0

∑
j∈j Ô(j)eikj. This method allows us to construct
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a broad class of static and dynamical structure factors of the many-body system, giving

access to the low-energy excitations as well as the universal properties ν and D of the

CFT. In 3.10.4, we analyze our result for the spin correlators ⟨Ŝ(i)
z Ŝ

(j)
z ⟩ ∼ |i − j|−2D and

extrapolate the scaling dimensions D = 0.67 ± 0.02 with the DMRG ground state up to

Neff = 200 logical blocks. We also characterize the correlation length ξ ∼ |θ − θc|−ν with

the critical exponents ν = 2.10± 0.05 for the bilinear biquadratic (BBQ) spin-1 Hamilto-

nian with Uimin-Lai-Sutherland (ULS) quantum critical point (QCP) θc = π/4 with an

enlarged SU(3)-symmetry, corresponding to our SU(3) Heisenberg model.

In Fig. 3.4(b), we present the phase diagram of the BBQ model detected with the static

spin structure factor Sk
zz = ⟨Ŝ−k

z Ŝk
z ⟩. Near the ULS QCP, power-law singularities appear in

the form of pinch points at the momentum k = 2π/3 and 4π/3, indicative of absence of long-

range order (disordered state) for the SU(3) spin model and the gapless soliton excitations

on top of the CFT vacuum (algebraic spin liquid state). These topological solitons appear

to carry anyonic statistics with Abelian phase ϕ = π. Upon locally quenching the many-

body system with Ŝ
(i)
z , these solitons can be produced in pairs moving at the Fermi velocity

vF = π/3 (Fig. 3.4(d)). To assess the spectral properties of WZW fields, we probe the

dynamical structure factor Szz(w, k) =
∫
exp(iwτ)Sk

zz(τ) in Fig. 3.4(e). Two soliton modes

are visible in the contour map Szz(w, k) (See the two solid guiding lines), reflected by their

length scales 3/2π and 3/4π. In addition, the solitonic continuum appears smoothly as the

quisiparticle populations between the two solid lines due the coherence between the soliton

pairs, and higher order 4-local soliton excitations begin to appear between the dashed black

line and the solid red line for k > 2π/3.

We characterize the central charge c of the CFT by scaling the entanglement entropy

S = −Tr[ρA ln ρA] between the subsystems A and B of the logical system with ρA =

TrB|0CFT⟩⟨0CFT|. In the framework of entanglement Hamiltonian H̃A =
∑

l ϵ̃l|ϵ̃l⟩⟨ϵ̃l|, we
consider the problem of extracting thermodynamic property of the state ρA = exp(−H̃A) =∑

l e
−ϵ̃l |ϵ̃l⟩⟨ϵ̃l|, where {ϵ̃l} is the entanglement spectrum for the CFT vacuum state |0CFT⟩

[112]. The entanglement entropy S =
∑

l ϵ̃l ln(ϵ̃l) is then obtained from the entanglement

Hamiltonian H̃A at an effective temperature T = 1, whose eigenspectrum {ϵl} is determined

by many-body spectroscopy [113, 114]. Importantly, due to the Bisognano-Wichmann

theorem, the entanglement Hamiltonian H̃A can be cast in terms of the original model

ĤH (See Eq. 3.9) with inhomogeneous coupling Ji,i+1 = JcΓ(i) and prefactor Γ(x) =
Neff

π
sin
(

πx
Neff

)
defined over a subsystem i ∈ A [112], which can be simulated by the SU(N)

toolbox of Eq. 3.10.

In Fig. 3.4(c), we present our result of the entanglement entropy for SU(3) Heisenberg

model. At quantum critical points in (1 + 1)D, the vacuum-state entanglement entropy
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S(x,Neff) logarithmically scales with the system size Neff, following the Calabrese-Cardy

formula S(x,Neff) =
c
3
log
[(

Neff

π
sin
(

πx
Neff

))]
for the bipartite cut x up to a non-universal

offset [115]. By fitting to the Calabrese-Cardy formula, we thereby obtain the central

charge c = 2.05±0.03, consistent with the CFT prediction c = 2. In the parton theory, the

c = 2 WZW CFT is manifested by the two-component non-Abelian bosons of the Luttinger

liquid. The tensor product of compactified bosons, each carrying c = 1 in the dual space,

effectively give rise to the c = 2 field theory for the SU(3)-symmetric spin model.

As a final remark, while this section focused on the minimal instance (1 + 1)D SU(3)1

WZW CFT, our waveguide QED simulator and meausrement protocols are directly appli-

cable to a wider class of WZW CFT. Namely, the symmetry group SU(n)k and level k can

be engineered with the local encoding n = N/Neff and the sector Q, and long-range inter-

actions can be introduced for arbitrary spatial dimensions. Unlike the Abelian-like spin

liquids described by SU(3)1 WZW CFTs, SU(3)k WZW CFTs are genuinely interacting

CFTs, and host a far richer family of non-Abelian anyons.

3.7 Discussion

Realization of universal quantum matter with waveguide QED simulator presents tech-

nological challenges which can be addressed by state-of-art nanophotonic experiments [59–

62]. Defect-free atomic arrays can be generated in free-space with acousto-optical deflec-

tors [116, 117] and spatial light modulators [118]. With evanescent cooling and advanced

side-illumination loading techniques for PCW structures [57, 119], it is conceivable to pre-

pare defect-free atom array on flat-band PCWs, such as the SPCW. In 3.9, we provide

an example of a SPCW tailored to achieve the desired photonic bands for renormalizing

individual Cs atoms to universal quantum matter. Programmable control of the exchange

coefficients requires the capability to tune ∼ N2 phase-amplitudes of the Raman sideband

matrices in tandem. Such a capability has been adapted for 100-spin coherent Ising ma-

chine [120, 121], and ultrafast multimode modulation techniques have been developed in

the telecommunication industry. With present state-of-art technologies, it is thus perceiv-

able that the universal quantum matter consisting of several tens of atoms could be realized

with the proposed waveguide QED platform. We remark that there are also active research

integrating 2D PCWs with cold atoms [122].

In the waveguide QED simulator, the correlated Lamb shift in the PCW generates

mechanical interaction between the external motional states of the trapped atoms. In

turn, the Bogoliubov phonons are exploited as a quantum bus for mediating the univer-

sal Hamiltonian. Compared to other networked quantum architectures, the PCW allows
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a versatile control over both the dissipative loss and coherent dispersion (single-particle

band structure) of such a bus. The figure of merit F provides a natural scaling pa-

rameter for the coherence-to-dissipation ratio of the simulator. In the reactive regime,

F ∼ me exp(Ld/Lc) ≫ 1 exponentially improves with longer device length Ld for a given

photon mass me. As an example, in 3.9, we numerically simulate the Green’s function

G1D(x̂i, x̂j) and find F ∼ 104 for the Silicon Nitride SPCW structure.

In conclusion, we have proposed the realization of universal quantum matter with the

waveguide QED platform. Compared to previous analogue simulation proposals, our plat-

form stabilizes universal Hamiltonians that can be adapted to the emulation of arbitrary

quantum matter [53]. Physically, our networked approach allows the direct control of the

2-local Hamiltonian ĤQMA at the operator level. Moreover, the static and dynamical struc-

tures of arbitrary k-local Hamiltonian Ĥtarget with k > 2 of arbitrary dimension can be

prescribed to the low-energy theory of the waveguide QED simulator. In particular, we

discuss the emergence of programmable binary SU(n) models by gauging the waveguide

QED simulator. Indeed, the SU(n) models should be considered as the application of the

“universality” of the simulator, by which the target SU(n) physics is encoded onto the

low-energy theory of the waveguide QED simulator. For instance, we have analyzed the

paradigmatic quantum field theory, the Wess-Zumino-Witten model by accessing phase di-

agrams, static and dynamical response functions, and CFT entanglement of the many-body

system with matrix product states.

With respect to digital approaches, the crucial difference is that Ĥtarget is in fact man-

ifested entirely by the waveguide QED simulator. That is, not only the quantum state,

but also the entire spectrum of Ĥtarget in tandem is emulated by another physical system.

Cooling, thermalization, and dynamics of target quantum model can be mapped to the

same equilibrium and non-equilibrium physics of the parent analogue quantum system.

Thus, our approach promises a universal analogue quantum simulator, where all physical

properties can in principle be replicated as an emergent phenomena.

Waveguide QED offers a unique playground for neutral atoms, in which light, motion

and spin are all intertwined by the electromagnetic vacuum of the dielectric. By engineering

the coupling between the phononic superfluid and the atomic spins, we have provided an

analogue framework for simulating universal quantum matter with cold atoms. Such a sim-

ulator can be applied for universal quantum computation with continuous-time quantum

cellular automata and Hamiltonian quantum computation [47–49]. Our waveguide QED

simulator utilizes largely non-interacting phonons with Lc ≫ x0. In the limit Lc ≃ x0,

the kinetic term of the extended Bose-Hubbard model ĤM is constrained by the density-

density interaction. Under such local gauge symmetries, complex lattice gauge theories

beyond truncated quantum link models can emerge from the coherent coupling between
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the spin matter and fluctuating gauge phonons, renormalizing ordinary non-interacting

matter to quantum field theories with the waveguide dielectric.

3.8 Perfect Transfer in a Spin Chain

To benchmark and verify the various approximations made for Eq. 3.6, we simulate an

1D quantum wire that enables perfect quantum-state transfer (QST) between remote spin

registers [123–129]. In particular, we compare the effective dynamics of ĤQST to that of

the parent Hamiltonian Ĥ = ĤM +ĤA+
∑

i,j

∑
α,l

Ω
(j)
α,l

2
σ̂
(i)
α sin(k

(j)
α,l x̂i)e

−iν
(j)
α,lt+h.c in Section

3.3.1. We prepare an 1D spin medium with the translationally-variant XX Hamiltonian

ĤQST =
N−1∑

i=1

J (i,i+1)

2
(σ̂(i)

x σ̂
(i+1)
x + σ̂(i)

y σ̂
(i+1)
y ), (3.12)

where J (i,i+1) = α
√
i(N − i) and α is a global interaction constant. We solve the system

parameters {Ω(i)
x,k,Ω

(i)
y,k} from the set of nonlinear equations for J (i,i+1) under the constraint

of minimum total intensity
∑

i,l(|Ω
(i)
x,l|2 + |Ω(i)

y,l|2).

As discussed in Ref. [123], ĤQST achieves the perfect state transfer of arbitrary in-

put states |ψin⟩ between the edge sites i = 1, N over arbitrarily long N with unit fidelity

by virtue of the mirror symmetry in the spin-exchange coefficients J (i,i+1). Unlike se-

quential direct state transfer, no external manipulation or feedback on the spin chain is

required, and the complete transfer is achieved within transfer time tf = π/α without

state-preparation of the global spin chain. In Fig. 3.5(a), we simulate the full Hamiltonian

dynamics of quantum-state transfer for two input states |ψ(1)
in ⟩ = (|g⟩ − |s⟩)/

√
2 (red line)

and |ψ(2)
in ⟩ = |s⟩ (blue dashed line) through an 1D atomic chain with N = 6 atoms without

eliminating the phonon fields. We keep the coupling terms between those mismatched

sidebands and Bogoliubov phonon modes. By sampling various input states coupled to an

initially polarized spin medium, the minimal QST fidelity for pure states is numerically

determined F = Tr[|ψ(1)
in ⟩⟨ψ(1)

in |ρs] = 0.994 at tf ≃ π/α, yielding only 0.5% error in the

final state, testifying the accuracy of the effective Hamiltonian ĤQMA in Eq. 3.6.

As shown in the inset of Fig. 3.5(a), the phonons across the entire spin chain are hardly

populated throughout the state transfer, justifying the adiabatic elimination procedure. In

Fig. 3.5(b), we also compare the full atom-phonon dynamics (solid lines) of the individual

spin-polarizations ⟨σ̂(i)
z ⟩ for an initially polarized spin medium |g · · · g⟩ with that of the

reduced two-body Hamiltonian ĤQST in Eq. 3.12 (dashed lines). When |ψ(2)
in ⟩ is injected

to the first spin (black line), the spin-excitation delocalizes across the entire spin chain
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and coherently builds up the its amplitude at the final spin with ⟨σ̂(6)
z ⟩ ≃ 1 at t ≃ π/α

(red line). The minute difference between the solid and dashed lines affirms the various

approximations for ĤQMA. In 3.9, we simulate the full open-system dynamics of QST for

Eq. 3.12, by starting from the Green’s tensor G(x,x′, w) of the candidate PCW structure

in Fig. 3.1, and incorporate all known dissipative mechanisms intrinsic to our protocol.

Such an effective dynamics is shown to be immune from the structural disorders of the

PCW at the tolerance levels of state-of-art nanofabrication [130].

3.9 Squircle Photonic Crystal Waveguide

The full realization of our waveguide QED toolboxes requires the capability to main-

tain favourable figure of merit F = ∆Lamb/Γtot with short-ranged mechanical interactions

between the trapped atoms, where the localization length Lc =
√
1/2me∆e is comparable

to the lattice constant a0. Here, ∆e ≃ 2∆b denotes the detuning of atomic transition to

the effective cavity mode [65], and ∆b is the detuning of the atomic transition frequency

to the band edge. While it is not necessary to have nearest-neighbour interactions with

sparse loading, the atomic collective motion can experience band-flattening effect due to

the long-range phonon tunnelling, which reduces the local addressability of the spin-motion

couplings. For laser cooling and trapping nearby the nanoscopic structures, the PCW re-

quires a wide angular field of view for the optical access, and restrict the dimensions of

PCW slabs to 1D and 2D. Because of the lack of full 3D PBGs, the total decay rate

Γtot = Γ1D + Γ′ consists of both the waveguide decay Γ1D and the homogeneous decay Γ′.

While Γ1D is significantly suppressed for large ∆e, majority of slow-light PCWs do not have

the adequate band structure with large me to induce strong coherent motional coupling

with F ≫ 1 at small Lc.

3.9.1 System parameters

In this section, we discuss a variation of a slotted PCW that utilizes PBG of the 2D

slab as the guiding mechanism [131–133]. As shown in Fig. 3.6, the dispersion is tailored

by a line defect introduced to a triangular TE-PBG slab, where a significant portion of

the energy of the GM is localized within the air slot. We introduce anomalous squircles in

the vicinity of the air slots to alter their band curvatures. The rationale of our dispersion

engineering is that the combination of the lattice constant a0, the hole radius r, and the

air slot width ws can tune the locations of the band edge frequencies with respect to the

band gap of the slab, while the additional squircle geometries defined by the asymmetry
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a, b cause differential energy shifts between the z-even bands of opposite x-symmetry. By

placing the bands deep into the PBG of the surrounding slab, we suppress the k-space

interval [kc, kl] where the in-plane field profile of the GM is localized by index-guiding near

the light cone. The proximal squircle geometry then flattens the GM across the band-gap

guided k-space fraction [kl, k0]. In addition, the out-of-plane emission Γh is affected by the

distance of the squircles to the slot.

We apply a gradient descent algorithm for the SPCW geometry n(r⃗) (design variables)

to minimize the objective function Ftotal(n(r⃗)) = Fc + FD2 + Ft with intermittent thermal

excitations to avoid local extrema, as with simulated annealing. The objective function

consists of the contributions from band curvature Fc ∝ |me|−2 and frequency deviations

FD2(Ft) = |ωb − νD2 + ∆b|2(|ωb − νt|2) of |F = 4⟩ → |F ′ = 5⟩ transition frequency νD2

(blue-detuned magic wavelength frequency νt) for atomic Cesium from the band edges wb

of the respective modes. During the optimization sequence, the complex band diagram is

computed to estimate the effective mass me and the localization length Lc with plane-wave

expansions [134]. After convergence, we switch over to a finite structure with device length

Ld and apply a combination of filter-diagonalized FDTD and FDFD methods [135, 136]

on a high-bandwidth interconnected computational cluster with the Yee lattice modified

to directly optimize the dyadic Green’s function G(x,x′, ω) [137, 138] and arrive at the

final design variable n(r⃗) in Table 3.1. To include imperfections of realistic devices, we

introduce the uncertainty ±1 nm to the system variables consistent with the state-of-art

PCW nanofabrication techniques [130].

The result of dispersion engineering is shown in Fig. 3.6(a) for our flat-band Silicon

Nitride SPCW slab, with the effective mass me = 2.1 Hz−1 · m−2. In the single-band

approximation, the localization length is expected to be Lc ≃ 2a0 at ∆e = 0.4 THz. We

assume that the atom is confined by the blue-detuned magic-wavelength GM trap νt at

λt = 793.5 nm (blue line of Fig. 3.6(a)) with the intensity represented by the blue-colored

contour map in Fig. 3.6(d). The excited states of the trapped atom is modified by the

vacuum of νD2-mode (red line of Fig. 3.6(a)) as indicated by the red contour map in Fig.

3.6(d). At the band edge k0 = 0.5, νD2-mode is highly localized with the effective mode

area Aeff ≃ 0.18λ2D2. The resulting photonic lamb shift is ∆1D ≃ 620 MHz at ∆e = 0.4

Lattice constant a0 366± 1 nm Slot width w 226± 1 nm
Slab thickness t 200± 1 nm Squircle radius rs 99± 1 nm
Secondary radius r′ 105± 1 nm Hole radius r 109± 1 nm
First line shift l 413± 1 nm Secondary line shift m 729± 1 nm
Squircle height a 79± 1 nm Squircle width b 124± 1 nm

Table 3.1: Final design variables for the SPCW with slab index n = 2. The uncertainty
±1 nm is added for the normal distributions of the disordered SPCW structure in Fig. 3.7.
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THz.

We now turn to the numerical Green’s function G(x,x′, ω) of a finite SPCW with

device length Ld = 80a0 in Fig. 3.7. We evaluate the collective decay and the coherent

interaction

Γ
(i,j)
total =

µ0ω
2

ℏ
Im[d∗ ·G(xi,xj, ω) · d], (3.13)

∆
(i,j)
Lamb =

2µ0ω
2

ℏ
Re[d∗ ·Gs(xi,xj, ω) · d], (3.14)

where the scattering Green’s function is Gs = G − G0 with respect to the vacuum G0.

More generally, we also define the waveguide Green’s function Gwg = G−Gh absent the

homogeneous (non-guided) contributions Gh (coupling to the lossy modes beyond the light

cone and to the free-space modes), where the waveguide portionGwg can be estimated from

a multimode cavity model [82] under a single-band approximation, with the resulting decay

rate

Γ1D =
µ0ω

2

ℏ
Im[d∗ ·Gwg(xi,xj, ω) · d], (3.15)

into the waveguide GM.

As shown in Fig. 3.7, in the dispersive regime [61], the flat band νD2 exhibits extreme

slow-light enhancement of the decay rate with group index ng ≃ 1, 000 near the band

edge. As the atom enters the band gap in the reactive regime ∆e > 0 [62], the waveguide

decay rate Γ1D from Gwg is exponentially suppressed (red dashed line in Fig. 3.7(b)), while

the highly asymmetric Fano-like resonance of Gwg around the band edge gives rise to a

photonic Lamb shift ∆1D ≃ 620 MHz (Fig. 3.7(a)) that greatly exceeds Γtotal ≃ 60 MHz

(Γ1D ≃ 4 kHz) in the band gap with figure of merit F > 104 at ∆e = 0.4 THz (Fig. 3.7(c)),

indicating significant coherence fraction in the collective motion relative to the correlated

phononic dissipation. With the close agreement between the numerical Green’s function G

(black lines) and the waveguide model Gwg (red dashed lines) in Fig. 3.7, we can reliably

predict Γ1D from Gwg and the mechanical loss factor γm from both Gwg and G. Thanks to

the large band flatness, we can operate as close as ∆b = 5 THz (∆e ≃ 10 THz) and attain

short-ranged motional coupling over Lc ∼ 2a0 ≪ Ld, while maintaining inherent figure of

merit F ∼ 1010. We remark that F is defined as the ultimate coherence-to-dissipation

ratio for the collective phonon modes in Section 3.3.1, where we only consider the inherent

dissipation of the atomic motions in the photonic band gap. In practice, our method will be

realistically limited by the phase-noises of Raman sideband lasers and the inhomogeneous

hyperfine broadening of the trapped atoms, as well as various uncontrollable surface forces.

For disordered photonic structures, we compute the dyadic Green’s functions with the

Gaussian-random geometric disorder ∼ 1 nm (positions and sizes of the holes, thickness
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of the waveguide) distributed across the entire nanophotonic waveguide. In a single real-

ization, the radiative enhancement factor at the band edge may be hindered by Anderson

and weak localization. However, in the reactive regime ∆e > 0, we observe that the decay

rate and the photonic Lamb shift in Fig. 3.7, as well as the nonlocal Green’s function

G(xi,xj, ω) are not significantly modified by the structural disorders ∼ 1 nm (grey dashed

lines in Fig. 3.7). Such nano-fabrication tolerances have been demonstrated in Refs. [60,

62]. Because of the nature of the photonic bandgap, the non-radiative atom-field localized

modes are resistant to the degree of structural disorder.

3.9.2 Ground-state potentials and phononic modes

We now turn our attention to the trapping mechanism for the atoms in the SPCW.

To form an atomic chain, we confine the atoms in the y − z plane by two incoherent side-

illumination (SI) beams [58, 61] and localize the x-motion by a weak GM trap at 794 nm,

as shown in Fig. 3.8. With the SI beams near the blue-detuned magic wavelengths λ = 687

nm in an optical accordion, we anticipate efficient loading into the GM trap. Because the

SI beam provides additional confinement along z [139–141], we can operate the GM trap

away from the band edge at kx = 0.48, thereby reducing the intensity contrast along x.

With this protocol we can gain a 3D FORT with trapping potential shown in Fig. 3.8

(d–f).

From the numerical non-local Green’s function G(ri, rj, w), we observe that the local-

ization length scales with Lc =
√
1/2me∆e and the effective mass me = 2.1 Hz−1 · m−2

up to ∆e ≃ 5 THz. We attribute the deviation of the localization scaling beyond ∆e > 5

THz to the residual Lamb shift by the off-resonant couplings to the other bands and

to the slab modes. Fig. 3.9 depicts the local nature of external atom-atom interac-

tion tij = η2l f
2∆Lamb(xi, xj) with ηl = x0/Lc relative to the mechanical decoherence

γm = η2l f
2(Γ1D+ |∆Lamb/∆e|2Γ′), where the homogeneous decay rate Γ′ ≃ 0.7Γvac is weakly

inhibited. At ∆e = 0.4 THz, we find tunneling rate t ≃ 2π × 230 kHz and localization

length Lc = 0.77µm and phonon loss rate γm ≃ 2π × 5 Hz. Another possible error source

could be recoil heating from the trapping beam. Since we work with FORT in blue detun-

ing, the heating rate can be estimated as γheat ≃ Er(Ωt/δt)
2Γ′/ℏwt [142], where Ωt and δt

are trapping Rabi frequency and laser-atom detuning respectively, and Er = 4π2ℏ2/2mλ2t
is recoil energy. For cesium atom and our trapping setup, the heating rate is estimated as

γheat ∼ 0.2Hz ≪ γm, therefore can be neglected safely.

Beyond the scope of the present work, we have also investigated SPCWs with strong

phononic on-site U0 interactions, which maps the phononic model to XXZ spin magnet

and Luttinger liquids for finite filling factor. Further design variation that provides strong
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Table 3.2: A summary of energy scale hierarchy and corresponding effective error rates.

phononic density-density interaction Uijn̂in̂j will be discussed elsewhere. Such a constraint

on the local phonon field provides a mechanism to impose local symmetry similar to the

context of lattice gauge theories in condensed matter systems.

3.9.3 Phonon-mediated spin-exchange coefficient

For universal spin-control with N ≃ 50 atoms, we estimate the spin-exchange coupling

rate Jij ≃ 50 kHz with the intrinsic decoherence rate γ
(i,j)
α,β ≪ 1 Hz at ∆e = 0.4 THz. As

an example, we depict the open-system dynamics of the quantum-state transfer protocol

in Fig. 3.10 by solving the master equation (Eqs. 3.6-3.7). As discussed above, because of

γm/∆M ∼ 10−4, the intrinsic phonon-induced spin decoherence γ
(i,j)
α,β is highly negligible.

We thereby include the spin-relaxation rate γ
(i,i)
FORT < 1 Hz of the FORT beams [143] by

adding the following local dissipative terms to the original master equation in Eq. 3.7.

Lss[ρ̂S ] = −
∑

i

γ
(i,i)
FORT

2
({σ̂ss, ρ̂S} − 2σ̂gsρ̂S σ̂sg),

Lgg[ρ̂S ] = −
∑

i

γ
(i,i)
FORT

2
({σ̂gg, ρ̂S} − 2σ̂sgρ̂S σ̂gs).

We note that, due to the highly differential decay rates for the D1 and D2 lines of Cs

by the SPCW, we do not observe any suppression of Raman spontaneous emission rates

relative to the Reyleigh scattering by the FORT. The state-fidelities for N = 1 and N = 6

atoms are displayed as black and red solid lines n Fig. 3.10, respectively. We assume

an initially injected spin state of |s⟩ with the parameters of Fig. 3.5. For the clarity of

presentation, the remaining spin-medium is prepared to the ground state |g · · · g⟩. As the
spin-excitation is transferred within the dissipative spin chain, the overall spin medium

is thermally depolarized by the actions of the local dissipation and the state-fidelity F is

progressively reduced to F → 0.5 with ρ̂S →∏
i
1
2
(|gi⟩⟨gi|+ |si⟩⟨si|).
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3.10 SU(N)-Gauged Waveguide Qed Simulator

3.10.1 Generalized Gell-Mann matrices

The n-dimensional Hermitian generalized Gell-Mann matrices (GGM) are the higher-

dimensional extensions of the Pauli matrices (for qubit) and the Gell-Mann matrices (for

qutrit). Similar to the roles which the Pauli (Gell-Mann) matrices play in SU(2) (SU(3))

algebra, they are the standard SU(n) generators. There are three different types of GGMs

— n(n−1)
2

symmetric ones, n(n−1)
2

anti-symmetric ones and n − 1 diagonal ones, which are

defined respectively as

1. Symmetric GGMs (1 ≤ α < β ≤ n)

Λ̂
(s)
αβ = |α⟩⟨β|+ |β⟩⟨α|, (3.16)

2. Anti-symmetric GGMs (1 ≤ α < β ≤ n)

Λ̂
(a)
αβ = −i|α⟩⟨β|+ i|β⟩⟨α|, (3.17)

3. Diagonal GGMs (1 ≤ α ≤ n− 1)

Λ̂(d)
αα =

√
2

α(α + 1)

α∑

β=1

|β⟩⟨β| − α|α + 1⟩⟨α + 1|, (3.18)

Hence, in total, we have n2−1 GGMs. From the definitions, one can verify that, similar to

the Pauli matrices, all GGMs are Hermitian and traceless. They are orthogonal and form

a basis together with identity În.

3.10.2 Gauge-projected SU(n) Heisenberg model

To gauge the primitive Hamiltonian ĤI to the local symmetry sector, we define a

projection operator P̂G which brings quantum states to the ground-state sector Q = n− 2

of the gauge Hamiltonian ĤG. Namely, ĤGP̂G = P̂GĤG = EGĤG, where EG is the ground-

state energy of ĤG.
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We perturbatively expand ĤI within the sector Q with the Kato’s series

Ĥ
(1)
eff = P̂GĤIP̂G

Ĥ
(2)
eff = P̂GĤI Ŝk1ĤIP̂G

Ĥ
(3)
eff = P̂GĤI Ŝk1ĤI Ŝk2ĤIP̂G

· · · ,

where Ŝ0 = −P̂G and Ŝn = [(1 − P̂G)(EG − ĤG)
−1]n. Because ĤI breaks the local gauge

symmetry, the first-order term vanishes Ĥ
(1)
eff = 0. The low-energy dynamics is thereby

described at the second order with

Ĥ
(2)
eff =

∑

i,j

Ji,j

(∑

α ̸=β

σ̂
(α,i)
+ σ̂

(β,i)
− σ̂

(β,j)
+ σ̂

(α,j)
−

∏

k ̸=β

σ̂(k,i)
gg

∏

l ̸=α

σ̂(l,j)
gg

+ σ̂(α,i)
ee σ̂(β,j)

ee

∏

k ̸=α

σ̂(k,i)
gg

∏

l ̸=β

σ̂(l,j)
gg + h.c

)
, (3.19)

where the ring-exchange coefficient Ĵi,j = −O2
i,j
/2λG is mediated by a pair of virtual

spinon excitations Q′ = Q± 2. By the addition of a gauge-invariant 2-body Hamiltonian

Ĥanc = −∑i,j

(
Ji,j

∑
α ̸=β σ̂

(α,i)
ee σ̂

(β,j)
ee +Di,j

∑
α σ̂

(α,i)
ee σ̂

(α,j)
ee

)
to the perturbative Hamilto-

nian Ĥtotal = Ĥanc+ Ĥ
(2)
eff + ĤG, we obtain the effective Hamiltonian in Eq. 3.10 within the

single-excitation gauge sector Q.

3.10.3 Sachdev-Ye quantum magnet

In Section 3.5, we discussed the all-to-all connected SU(n) Heisenberg model. However,

as an effective model in terms of second-order perturbation, all connections Jij must be all

negative (ferromagnetic) or positive (antiferromagnetic), determined by the eigenenergy

sector that we choose, while fully Gaussian-random-distributed couplings are the crucial

ingredients for the generation of quantum chaos of the Sachdev-Ye (SY) model [77, 105].

SY Hamiltonian reads

ĤSY =
1√
n

∑

j>i

Jij

∑

α

Λ̂(i)
α Λ̂(j)

α , (3.20)

where the after-quench connections {Jij} are drawn from the probability distribution

P (Jij) ∼ exp [−J 2
ij/(2J 2)].

We describe a stroboscopic strategy to simulate the dynamics driven by such a Hamil-

tonian. For an arbitrary SY Hamiltonian, we can separate it into two parts ĤSY =

Ĥ
(+)
SY + Ĥ

(−)
SY , where Ĥ

(+)
SY (Ĥ

(−)
SY ) contains only all terms with positive (negative) con-
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nections and thus can be realized efficiently in our platform. To realize a coarse-grained

unitary evolution in a single time step ∆t, we first turn on the positive Hamiltonian Ĥ
(+)
SY

for a time period of ∆t/2. Then, we switch on the Ĥ
(−)
SY for the same period and keep the

Hamiltonian for another ∆t. At last, we evolve the system again under Ĥ
(+)
SY for ∆t/2.

The entire dynamics is then given by exp [−iĤSY∆t] +O(∆t3) with an error of the order

∆t3 due to the non-commuting Ĥ
(+)
SY and Ĥ

(−)
SY .

We can also measure the out-of-time-operator-correlations for the SY model in our

platform, which is essential for describing the entanglement scrambling in this system.

The crucial step is creating a controlled GMM operation ÛC−Λα = |g⟩⟨g| ⊗ Î + |s⟩⟨s| ⊗ Λ̂α,

which can be used to decompose an arbitrary SU(n) operator. Let us take a controlled

symmetric GGM C-Λ̂
(s)
αβ as an example. To realize this kind of controlled operations, we

can couple an ancilla qubit to the αth and the βth qubits in a single logical block with the

two-body term Ĥαβ = χασ̂
(A)
ss σ̂

(α)
+ + χβσ̂

(A)
ss σ̂

(β)
+ + h.c. This leads to an effective interaction

χ̃αβσ̂
(A)
ss T̂αβ + h.c. within the gauge-invariant sector Q, where χ̃αβ = χ∗

αχβ/λG and λG is

the coupling constant in gauge Hamiltonian ĤG defined in Section 3.5. According to the

definition of GGMs, if χ̃αβ is real, the evolution under this Hamiltonian for an interaction

time t = π/2|χ̃αβ| yields Û
C−Λ

(s)
αβ
. And if we set χ̃αβ as pure imaginary, a controlled

anti-symmetric GGM C-Λ̂
(a)
αβ would be realized.

We next describe a general method to construct and efficiently measure OTOCs for

arbitrary SU(n) observables in this system driven by arbitrary Hamiltonian ĤSY without

tomographic reconstruction. Unlike other protocols, our strategy is to encode the OTOC

onto the single ancilla qubit A through controlled string operation and interferometrically

read out the internal state of a single ancilla qubit. We consider two operators, V̂ (i) =∑
α v

(i)
α Λ̂

(i)
α and Ŵ (j) =

∑
β w

(j)
β Λ̂

(j)
β , acting on the system logical magnons and decom-

posed by the GGM operators {Λ̂(i)
α } and {Λ̂(i)

β }. The goal is then to measure all Cα,β,α′,β′ ≡
⟨Λ̂(j)

β′ (τ)Λ̂
(i)
α′ (0)Λ̂

(j)
β (τ)Λ̂

(i)
α (0)⟩ and construct the overall OTOC with weighted distribution

w∗
β′v∗α′wβvα. The circuit in Fig. 3.11(b) facilitates the transformation that maps the

dynamical correlators Cα,β,α′,β′ to the ancilla qubit with the initial system-ancilla state

|ψ(0)⟩S ⊗|g⟩A. The ancilla atom can be physically represented by the atoms in close prox-

imity to the impedance-matching tethers of PCWs, so that the internal spins of the ancilla

atom can readily evanescently dissipate to the input and output couplers. The sequence of

gate sets maps the initial state to V̂
(i)
α′ (0)Ŵ

(j)
β′ (τ)|ψ(0)⟩S |s⟩A + Ŵ

(j)
β (τ)V̂

(i)
α (0)|ψ(0)⟩S |g⟩A

with Ô(τ) = eiĤτ Ôe−iĤτ . Here, the time-inverse evolution can be realized in a positive

time flow but inverse the sign of all Jij. As with Ramsey interferometer, we measure the

expectation values of the local spin vectors for qubit A, where the dynamic correlators

of the system atoms are Cα,β,α′,β′ = 1
2
[⟨σ̂x⟩A + i⟨σ̂y⟩A]. This method can be extended to
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high-order dynamic correlations in a straightforward fashion.

3.10.4 Wess-Zumino-Witten quantum field theory

As a minimal SU(N) model, we discuss the realization of a stringly conformal field

theory with an integrable 1D SU(3) Heisenberg model. Here, we investigate the universal

features of the SU(3)1 Wess-Zumino-Witten (WZW) quantum field theory of level k = 1.

In particular, we extract the conformal data by accessing the entanglement entropy for an

1D SU(3) Heisenberg model at the Ulmin-Lai-Sutherland (ULS) critical point, the parent

Hamiltonian for generating a zoo of strongly-correlated ground states, such as those found

in fractional quantum Hall systems. Because of the versatile programmability, the gauged

waveguide QED simulator can be readily extended to the low-energy states of the 2D anti-

ferromagnetic SU(n) model (Eq. 3.10), which are described by the (2+1)DWZW conformal

field theory and holographically connected to a 3D Chern-Simons quantum gravity in the

scaling limit.

Namely, we consider the realization of a (1+1)D SU(3)1 WZW CFT for the antiferro-

magnetic SU(3) Heisenberg model

ĤWZW = Jc

∑

i

∑

α

Λ̂(i)
α Λ̂(i+1)

α , (3.21)

for the logical SU(3) spins on a ring within the sector of Q = n − 2 of the waveguide

QED simulator. Since Jc = −O2
i,i+1

/2λG < 0, the vacuum state of the WZW CFT is

encoded onto the most excited state of Eq. 3.21 within the sector Q. This model has been

extensively studied in the context of Haldane phase of the bilinear biquadratic (BBQ)

spin-1 model

ĤBBQ = Jc

∑

i

cos θŜiŜi+1 + sin θ
(
ŜiŜi+1

)2
. (3.22)

The enlarged SU(3) symmetry of Eq. 3.21 (Eq. 3.22 at θULS = π/4) can be thought of as

the consequence of the critical point of Berezinskii-Kosterlitz-Thouless (BKT) transition

between the massive Haldane phase and an extended critical phase, described by the WZW

field theory.

Enlarged SU(3)-symmetry of bilinear biquadratic spin-1 models

To understand the relationship between the familiar Haldane gap for spin-1 Heisenberg

magnets at the exactly solvable point θAKLT = arctan(1/3) (AKLT valence bond state)
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and the massless WZW field theory at θULS = π/4 (See also Fig. 3.4(b)), we describe how

the SU(3)-breaking marginal operator in the vicinity to the SU(3)-symmetric critical point

θULS deforms the WZW CFT and dynamically generate a mass term in the Haldane phase

by way of a BKT transition [111]. By moving into the fermionic parton picture defined in

Section 3.6, the BBQ Hamiltonian can be mapped to

ĤBBQ
parton = Ĥparton + ϵ2Ĥmarginal, (3.23)

under the constraint
∑

α ψ̂
(i)†
α ψ̂

(i)
α = 1. The SU(3)-symmetric parton Hamiltonian Ĥparton,

defined in Eq. 3.11, is the dominant term near the ULS point, and kinetically exchanges ex-

citations between the sites. The marginal operator Ĥmarginal = J ∑i ψ̂
(i)†
α ψ̂

(i)
β ψ̂

(i+1)†
α ψ̂

(i+1)
β ,

proportional to ϵ2 = tan θ− 1, projects the neighbouring sites to the singlet space, similar

to the singlet projectors of the AKLT Hamiltonian.

By applying the Hubbard-Stratotonovich transformation to Eq. 3.23 at the ULS

point θULS, we obtain the mean-field Hamiltonian Ĥmf = |χi,i+1|2 + µi(ψ̂
(i)
α ψ̂

(i)
α − 1) −

χi,i+1ψ̂
(i)†
α ψ̂

(i+1)
α + h.c with the auxiliary fields χi,i+1 = ⟨ψ̂(i)†

β ψ̂
(i+1)
β ⟩ and the constraints ex-

pressed in terms of the chemical potential µi, with a Fermi sea filled up to the momentum

kF = π/3. Around this saddle point, the low-energy physics of Eq. 3.23 at θULS is described

by ψ̂
(i)†
α = eikF xiψ̂L,α(xi) + e−ikF xiψ̂R,α(xi) with the chiral fermions ψ̂L,α(x), ψ̂R,α(x) only

populated at the Fermi points, and write Eq. 3.23 as

Ĥ(x) ≃ πvF

∫
dx

∑

α,β

(ĵα,βR ĵβ,αR + ĵα,βL ĵβ,αL )

+ϵ2(ĵα,βR ĵα,βR + ĵα,βL ĵα,βL ), (3.24)

in terms of U(3)-currents ĵα,βL (ĵα,βR ) = ψ̂†
L,αψ̂L,β(ψ̂

†
R,αψ̂R,β) and Fermi velocity vF .

For the first term (with a global U(3)=U(1)⊕SU(3) symmetry), a U(1) charge gap opens

and leaves the SU(3)-symmetric WZW model ĤWZW at the low-energy sector. Following

the Abelian bosonization procedure ψ̂L,α =: 1/2π exp(−i
√
4πϕ̂α) : of Ref. [111], the SU(3)-

symmetric continuum Hamiltonian reads

ĤWZW ∼
∫
dx(∂ϕ1∂ϕ1 + ∂ϕ2∂ϕ2 + a.h) (3.25)

with two compact SU(3) boson fields ϕ1,2 (each with central charge c = 1). Fig. 3.4(a)

depicts the CFT scaling behaviour of entanglement entropy following the Calabrese-Cardy

formula for different system size NL (c = 2.05 ± 0.03). The entanglement entropy is

computed by system-size expansion of finite matrix product states (MPS) for logical spins
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on a ring with a maximum bond dimension χ = 8000. The finite MPS was optimized using a

hybrid complex-time evolution algorithm (Section 3.10.4). Following the operator product

expansion, it can be shown that ⟨Ŝ(i)
z Ŝ

(j)
z ⟩ULS ∼ cos(2kF |i−j|)

|i−j|2D with a scaling dimension D =

2/3 [144]. Fig. 3.4(d) displays the correlation function obtained by optimizing uniform

MPS with infinite DMRG algorithm truncated to χ = 500, and the scaling dimension is

fitted to D = 0.68±0.03. The marginal perturbation of Eq. 3.24, on the other hand, breaks

the global SU(3) symmetry of the ULS point, and a mass gap mθ = exp[−γ(θULS − θ)−0.6]

is dynamically generated for increasing coupling constant ϵ > 0 (θ < θULS) with spin-

spin correlation ⟨Ŝ(i)
z Ŝ

(j)
z ⟩θ ∼ cos(2kF |i − j|)e−mθ|i−j| and non-universal constant γ. The

asymptotic freedom of the marginal interaction at ϵ > 0 can be thought of as a BKT

phase transition in terms of the renormalization group flow [144]. The yellow line of Fig.

3.4(b) illustrates the scaling behavior of the correlation length ηc ∼ 1/mθ in comparison

to those obtained from uniform MPS, where the non-universal constant γ is fitted to the

data points. The maximum correlation length ξc ≃ 40 at the ULS point is artificially cut

off due to the finite χ = 500 truncation to the uniform MPS.

Hybrid complex-time algorithm

Because the vacuum state of WZW CFT corresponds to the most excited state within

the low-energy sector Q, standard DMRG algorithms cannot be adequately adapted to

access the ground state of the target Hamiltonians (See also the inset of Fig. 3.4(a)).

We instead apply a hybrid complex-time evolution to a random MPS in order to relax the

system to the most excited state (target ground state) within the ground-state sector of the

simulator by way of a time-evolving block decimation (TEBD) algorithm on the modified

Hamiltonian

Ĥ =
∑

i,j

(Ôi,j + D̂i,j) + iĤG, (3.26)

where the definitions of Ôi,j, D̂i,j, ĤG in Section 3.5. The imaginary constraint ĤG allows

the cooling of the random MPS to the sector Q, while the first term mediates the gauge-

invariant ring-exchange Hamiltonian (Eq. 3.19) with an imaginary Ĵi,j = iO2
i,j
/2λG, which

heats the system to the most excited state of the low-energy sector Q.

Following the complex-time evolution, an isometric matrix product projector (MPO)

is locally contracted with the time-evolved MPS to map the physical SU(2) spins to the

logical SU(3) spins. While the isometric tensor is not necessary to the protocol, we have

found that such a practice allows a more intuitive interpretation on the operations taking

place in the logical degrees of freedom. In particular, the converted MPS obtained through

this method coincides to that obtained by performing a finite DMRG on the logical WZW
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Hamiltonian in Eq. 3.21. Fig. 3.13 displays the energy relaxation for the hybrid algorithm

(solid line), which prepares the vacuum state of the WZW CFT (dashed line).
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Figure 3.4: Emergence of Wess-Zumino-Witten (WZW) conformal field theories (CFT). (a)
Local Hamiltonian encoding of SU(3)k=1 field theories on a ring onto SU(2) waveguide QED
simulator. The target WZW CFT is isometrically transformed to the local Hilbert space
of the simulator with electric charge Q = 1. (b) Phase diagram of the bilinear biquadratic
spin-1 model with Neff = 42 logical blocks (N = 124 atoms). Pinch points of static struc-
ture factor Sk

zz = ⟨Sk
zS

−k
z ⟩ at momentum k = 2π/3, 4π/3 signify the existence of divergent

correlations at the Uimin-Lai-Sutherland (ULS) quantum critical point (QCP). The static
structure factor is obtained from the correlation functions in 3.10.4 with uniform matrix
product states (MPS) in the thermodynamic limit. (c) Critical scaling for entanglement
entropy for vacuum state of (1+1)D SU(3)k WZW field theory of level k = 1. The vacuum
entanglement entropy follows the Calabrese-Cardy formula for (1+1)D conformal field the-
ories (CFT). The central charge c = 2.05 ± 0.03 is extracted from the finite-size scaling.
(d) Production of c = 2 primary fields (quasiparticles) upon local quenching. Topologi-
cal solitons carry fractional quantum statistics of Abelian anyonic phase ϕ = 2π/3. (e)
Dynamical probes for quasiparticles of the WZW CFT. Ground states are obtained with
a hybrid DMRG-TEBD algorithm for finite MPS in a complex-time coordinate (3.10.4).
Dynamical structure factor is obtained by real-time evolving the ground state MPS with
a TEBD algorithm.
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Figure 3.5: Quantum-state transfer over a spin chain. (a) Fidelity between the real-
time state on the last spin and the initial state on the first spin for two input states
|ψ(1)

in ⟩ = (|g⟩ − |s⟩)/
√
2 (red line) and |ψ(2)

in ⟩ = |s⟩ (blue dashed line). Inset is the mean
number of phonons with a maximum value about 0.06, which shows that phonon is rarely
populated in the whole process and validates the adiabatic elimination of phonons. The
dynamics is numerically simulated for the full Hamiltonian, which includes the interactions
of the atomic internal states, phonons, and electromagnetic vacuum. Close-to-unit fidelity
F = 0.994 is achieved over time scale tf ≃ π/α. (b) Real-time dynamics of spin polarization
⟨σ̂z⟩ for all sites on the chain. The dashed (solid) line is obtained from the full (effective)
Hamiltonian (in Eq. 3.12)
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(a) (c)(b)

(d)

Figure 3.6: Slotted squircle photonic crystal waveguide. (a) SPCW band diagram. The
guided modes are depicted as solid lines for both the excitation νD2 (red) and trapping
modes νt (blue). Through our optimization iterations, the guided modes (GM) νD2, νt are
flattened around the Cesium D2-transition and magic-wavelength trapping frequencies.
GM νt is defined to operate at the blue-detuned magic wavelength condition for the D2-
transition at λt = 793.5 nm. The grey shaded region indicates the presence of slab modes.
(b) SPCW geometry. The parameters that define the SPCW structure is provided in Table
3.1. (c) Effective mode area Aeff. We depict the x-cut contour map of Aeff for GM νD2.
At the trapping region, we anticipate sub-wavelength localization Aeff/λ

2
D2 ≃ 0.18 and

effective coupling rate gc ≃ 11.5 GHz. The resulting photonic Lamb shift and localization
length are ∆1D ≃ 620 MHz and Lc ≃ 0.77 µm at ∆e = 0.4 THz. (d) Contour intensity
map of the guided modes νD2, νt.
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Figure 3.7: Collective atomic decay and photonic Lamb shift of a finite SPCW. (a) Photonic
Lamb shift ∆1D

Lamb for electronically excited states. The energy shift ∆1D of the excited state
|6P3/2, F = 4⟩ of Cs is computed by the numerically evaluating the local scattering Green’s
function Gs(x,x

′, ω). We only consider the level shift caused by the SPCW structure,
but not the absolute renormalization by the electromagnetic vacuum. As a benchmark,
we normalized the Lamb shift by the free-space decay rate Γvac. We also display the
photonic Lamb shift ∆1D under the single-band approximation as red dashed line. The close
agreement between the two models testify the accuracy of the extrapolated Γ1D. (b) The
enhancement and inhibition of spontaneous emission in dispersive and reactive regimes.
The total decay rate Γtotal is strongly enhanced at the band edge, and is exponentially
inhibited in the band gap with Γtotal ≃ Γ1D exp(−Ld/Lc), where Γ1D is the enhanced decay
rate at the resonance closest to the band edge, Ld = 80a0 is the device length for lattice
constant a0, and Lc is the localization length. Deep into the band gap ∆e ≫ 0, the
reduction of Γtotal is limited by the weakly inhibited homogeneous decay rate Γ′ ≃ 0.7Γvac

that predominantly emits photons out of plane of the slab. (c) Lamb shift to decay rate
ratio ∆1D/Γtotal across a wide detuning range up to ∆e ≃ 10 THz. Inset. Figure of merit
F ≫ 1 (red dashed line). The grey shaded region indicates the presence of slab modes.
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Figure 3.8: Adiabatic ground-state potentials for Cesium atom assisted by side-illumination
beams. Cesium trapping potentials of |6S1/2⟩ for (b) x− y plane and (c) y − z plane with
(d) the x-, (e) y-, and (f) z-slices. We assume that the refractive index n is frequency-
independent. The coordination system (x, y, z) of the SPCW is defined in Fig. 3.6(b).
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Figure 3.9: Short-ranged atom-atom interaction in a photonic band gap. We numerically
evaluate the non-local Green’s function G(xi,xj, w) for the SPCW and obtain the figure
of merit for effective detunings ∆e = 0.01, 0.05, 0.14, 0.24, 0.4, 1.6, 10 THz. Due to the
large photon mass me, the atoms experience exponentially localized tunneling interactions
tij/γm ≫ 1 over lengths Lc. The grey shaded regions depict the dissipative regime with
tij < γm, where collective phononic loss dominates over the coherent tunneling rate. For
large ∆e, the ratio tij/γm ≫ 104 is exponentially enhanced at the expense of reduced values
tij ≃ 2π × 20 kHz and localized length Lc ≃ 2.5a0 at ∆e ≃ 10 THz.
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Figure 3.10: Quantum-state transfer over a dissipative spin chain. The open-system dy-
namics is numerically computed for the quantum-state transfer across N = 6 atoms with
figure of merit F ≃ 104 by the quantum trajectory method. In addition to the intrinsic
mechanical dissipation, we include spin-relaxation processes in the far-off-resonant optical
trap. The state fidelity of the first (last) atom in the spin chain is displayed as a black
(red) line.

Measurement of OTOC variables Cα,β,α′,β′

|g〉A R̂y(π4 ) • • R̂x(π2 ) • •



Λ̂
(i)
α

Û(τ) Û(−τ)
Λ̂
(j)
β|ψ(0)〉S

Λ̂
(i)
α′

Λ̂
(j)
β′

Figure 3.11: Construction of SU(n) OTOCs. Measurement prescription of highly com-
plex out-of-time-order correlators (OTOC). The circuit constructs the OTOC variables

Cα,β,α′,β′ ≡ ⟨Λ̂(j)
β′ (t)Λ̂

(i)
α′ (0)Λ̂

(j)
β (t)Λ̂

(i)
α (0)⟩ of system atoms S and maps the values to the

internal state of a single ancilla qubit A. The time-inverse evolution for the global dy-
namics Û(−τ) = e−i(−ĤSY)τ can be realized still in a positive time flow but with a negative
Hamiltonian −ĤSY, i.e., inverting the sign of all Jij.
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Figure 3.12: Bilinear biquadratic spin-1 model. (a) CFT scaling of entanglement entropy at
the Uimin-Lai-Sutherland (ULS) point θULS = π/4. (b) Quantum phase transition between
gapped Haldane phase and gapless nematic phase at the ULS quantum critical point. (c)

Spin-spin correlation function ⟨Ŝ(i)
z Ŝ

(j)
z ⟩ at the Affleck-Lieb-Kennedy-Tasaki (AKLT) point

θAKLT = arctan(1/3) with a valence-bond ground state. (d) Spin-spin correlation function

⟨Ŝ(i)
z Ŝ

(j)
z ⟩ at the ULS point θULS = π/4. The correlation functions and the phase diagram

are computed from the uniform matrix product states (MPS), optimized by infinite DMRG
algorithm with truncated bond dimension up to χ = 500. Finite χ generates an artificial
cutoff in the correlation length ξc to the otherwise algebraic correlation function. The
fitting thereby only takes |i − j| < ξc ≃ 40 as the input. The entanglement entropy is
simulated from a finite MPS for the logical SU(3) spins (3 physical spins per logical spin)
on a ring with bond dimension up to χ = 8000.
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Figure 3.13: Complex-time matrix-product state evolution. Random matrix product state
(MPS) is initially prepared for 54 physical spins (NL = 18 logical spins), and the MPS
is evolved under complex-time coordinate (Eq. 3.26) by way of time-evolving block dec-
imation (TEBD) algorithm with an open boundary condition. At each time step, the
SU(2) MPS of the physical spins is transformed to the SU(3) MPS for the logical spins
by locally contracting the SU(2) MPS with an isometric matrix product operator (MPO)
that projects the physical spins to the low-energy sector Q. The overall dynamics is de-
scribed by a cooling (heating) to (within) the ground state sector Q, corresponding to the
preparation of the vacuum state of the WZW CFT. The dashed line indicates the DMRG
ground-state energy obtained for the target WZW Hamiltonian. The maximum bond di-
mension is χ = 200.
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Chapter 4

Quantum phases of strongly-coupled

many-body QED in reactive regime

4.1 Summary

This chapter is largely based on the preprint [2]. My role in this work consisted of

performing the numerical work and discussing its implications.

The quantum spin liquid was first proposed in 1973 as the ground state of an anti-

ferromagnetic hexagonal lattice [145]. It was formulated as a ”resonant valence bond”

(RVB) state, which is a superposition of exponentially many valence bond states (states

comprised of a series of tensor producted singlets). It wasn’t until Kitaev that critical

insights into spin liquids and their usefulness were uncovered with his toric code [146].

The toric code is the quintessential example of a spin liquid, displaying many of the crit-

ical features that make them so interesting. The toric code has 4 degenerate ground states

that are topologically protected. The ground states are gapped and only a macroscopic

operator which scales like the system size can perform transitions from one ground state

to the other. The gap works to suppress errors in the form of quasi-particles [146]. This

topological protection makes the toric code an incredibly error-resistant form of quantum

memory [146, 147]. In particular by utilizing these topologically degenerate ground states

as your computational basis.

When they do form, excitations take the form of anyons with fractional spin that are

created in pairs. These two anyons could travel together and then annihilate each other,

creating a loop in their path. If the loop is topologically trivial it does not affect the

information stored in the logical basis [146]. Otherwise, it will have an impact on the

data stored in the logical basis. For quantum memory, this is not desired. However, for
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performing computation, this is exciting. By moving anyons together in a way that forms

topologically non-trivial loops, you can perform operations on their computational basis.

The question then arises does there exist quasi-particles that through braiding would

enable universal quantum computation [148]? The toric code’s quasiparticles are not suf-

ficient for universal quantum computation[149], however, it did inspire a search for other

so-called non-abelian anyons that would be. An example of such a search is that into

Majorana Fermions [150].

The toric code result is that of a Z2 spin liquid, and the Hamiltonian utilized by it is

very difficult. It consists of 4 body terms, which are hard to create as nature tends to act

with 2 bodies. It is only recently that Google managed to implement it experimentally by

”brute forcing” it with repeated gates applications [151]. The creation and analysis of spin

liquids continues to garner significant interest [145]. Some other experimental proposals

for spin liquids is that of a Z2 spin liquid in a kagome lattice, for which there have been

several AMO and material proposals for its generation and detection [152–154]. This is

especially true when using cold atoms like trapped ions or Rydberg atoms. For instance,

a recent Harvard paper using a ruby lattice (which is the dual of the kagome lattice) has

even achieved positive identification of a spin liquid. [155]

What this section will do is provide an investigation into a many-body QED platform

model that is experimentally relevant. This model will be shown to allow the stabilization

of a Z2 spin liquid and potentially a never-before realized QED3 spin liquid. The model

works by combining QED fluctuations with Rydberg interaction induced local U(1) gauge

constraints. Numerous exotic phases were found, including a superradiant phase, valence-

bond crystals, and topological and conformal phases. Most interestingly, we find signatures

of a deconfined spin liquid described by a QED3 CFT. In this work, the numerics were used

to support the existence of these phases. This ranges from obtaining operational metrics for

topological and CFT entanglement entropy, decay of correlation functions, and the scaling

behaviour of Wilsonian loops in both the deconfined and confined phases. Furthermore,

we have constructed the modular matrices that encode the full braiding statistics of the

anyons in the Z2 spin liquid phase.

The novel contributions within this section are as follows:

• We provide the first experimental proposal for stabilizing spin liquid states.

• This is the first application of many-body QED in reactive limit.

• We provide a new experimentally viable method of positively detecting spin liquid

states.
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Understanding and creating novel forms of light-matter quantum systems stimulates

broad and fundamental insights in quantum information science. Remarkably, complex

physical processes can arise as an emergent phenomena from an interacting network of

light and matter. Here, we introduce a new class of strong-coupling quantum optics,

where coherent atom-cavity dynamics is intertwined with the internal constraints imposed

on the quantum material. We develop a conceptual paradigm of many-body quantum

electrodynamics (QED), for which exotic quantum phases can be stabilized for a Rydberg

ice when reactively coupled to the QED vacuum of the cavity field. We investigate how

the cavity back-action induces a quantum melting of a Rydberg ice to topological and

conformal spin liquids belonging to distinct superselection sectors. We discuss laboratory

toolboxes for unambiguously detecting the spin liquid states and for probing their exotic

quasiparticles with topological string operators, uncertainty-based entanglement witness,

and cavity photon statistics. The quest to explore the surprising phenomena of light and

matter awaits the arrival of many-body QED, where interacting matter and light are put

on equal footing at the level of individual quanta.

4.2 Introduction

Much of the phenomena in atomic, molecular, optical and condensed matter physics are

described by the interaction between light and matter [156–159]. Often, the behaviours of

such dynamical systems are captured by system-size expansion of the light-matter coupling

constant gc. Cavity quantum electrodynamics (QED) offers a paradigmatic framework for

non-perturbative dynamics of open quantum systems as a parent model for a broad range

of light-matter quantum systems [58, 59, 61, 62, 132, 160–206]. In the strong coupling

regime, the statistical description of its system dynamics can no longer be captured by

a small-parameter fluctuation δn around a mean field nc → 0 [207–209]. As the scaling

parameter nc required to exert non-trivial dynamics vanishes in the face of dissipation, the

observable system evolution becomes intricately dependent on the dynamical fluctuation

δn at the level of individual quanta [165, 166].

As a scaling parameter of cavity QED, the critical atom (photon) number n
(a)
c (n

(γ)
c )

describes the characteristic number of atoms (photons) required to modify the entire atom-

cavity level structure, initiating multiphoton processes for n
(γ)
c , n

(a)
c → 0 [210]. However,

in the presence of a macroscopic number of background atomic (photonic) excitations

Na(Nγ) ≫ 1, the radiative dynamics of strongly-coupled cavity QED and their generalized

cousins is reduced to a “simple” mean-field description involving collective spin excitations

(coherent states) with negligible fluctuations, limiting single-quanta-level optical nonlin-
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earity only to a small Na(Nγ) [167, 211]. Indeed, the ranges of cavity-mediated interactions

with few modes are nearly divergent, and the effects of quantum fluctuation are suppressed

by a large N -expansion of a classical background field [212]. Thus, the overall “scale” of

quantum fluctuations and the achievable dynamical “complexity” of macroscopic light-

matter quantum systems are generally restricted by their inverse system size ∼ 1/N .

Here, we present a new regime of strong-coupling quantum optics, many-body QED,

where short-ranged internal constraints Λ of a many-body quantum material compete with

the long-range QED fluctuations of the cavity modes. Ubiquitous questions arising from

the study of quantum matter breath new life in the domain of strong-coupling quantum

optics. The general spirit of our work is that long-range cavity-mediated coupling can

dramatically modify the spectral dimension and the universal properties that characterize

the bare theory of the quantum material. In particular, we investigate how long-range QED

vacuum can reactively melt a two-dimensional Rydberg ice [97, 213–222] to topological

and conformal spin liquids [21, 145, 154, 223–228]. We describe laboratory toolboxes of

many-body QED for the positive identification of spin liquid states with topological string

operators and uncertainty-based entanglement witness, as well as powerful methods for

probing and detecting anyons in the spin liquid with cavity photon statistics. Moreover,

we investigate the entanglement response and low-energy spectra of the spin liquid with

anyon flux insertion, and characterize the modular transformation of the topological and

conformal sectors.

A crucial observation of our finding is that the long-wavelength description of reactive

many-body QED bear essentially little similarity to the ground-state phase of the origi-

nal material system, but neither do they retain the universal mean-field properties of the

macroscopic cavity QED without a local gauge structure [212]. Instead, the frustration of

the two competing long-range orders (infinite-range QED vacuum and local gauge symme-

tries) provides a powerful mechanism to disseminate quantum fluctuations and entangle-

ment and to stabilize quantum orders heretofore not expected when the degrees of freedom

for light and matter are taken separately. The present investigation supplements the re-

cent experimental discovery of cavity spin liquids and quasiparticles in strongly-coupled

many-body QED [229], and opens a new paradigm of quantum optics in the exploration of

highly-entangled states, where dynamical complexities of light and matter fundamentally

intertwine and enrich at scale.

Our general approach is to first begin with the expectations from collective atom-field

Hamiltonians for non-interacting materials and then to build an understanding of locally

gauging a reactive chequerboard-lattice cavity QED media under an ice constraint. After

presenting the model in Section 4.4, we discuss the ground-state phase diagram for the

many-body QED on a chequerboard lattice. In particular, we emphasize the principal role
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of long-range QED fluctuations that promotes a Z2 topological spin liquid as the ground

state of U(1) lattice gauge theory coupled to Higgs scalar fields and speculate a “decon-

fined” quantum criticality between incompatible valence bond solid patterns in different

charge sectors that stabilizes a conformal spin liquid state described by QED3. We then

provide the signatures that support the two flavours of spin liquids with the absence of

long-range ordering for local operators and the low-energy transfer-matrix spectrum. More-

over, we unambiguously demonstrate the presence of the spin liquid states by calculating

the universal corrections to the entanglement entropy in the long-wavelength limit and the

modular transformation between the superselection sectors. We further classify the pro-

jective symmetry groups of the spin liquids by analyzing the responses of the entanglement

entropy and the modular states transformed by a topological flux insertion.

Before proceeding, we caution that the ultimate goal of this work is to motivate further

investigations of local gauging and non-local baths as the physical mechanisms for enriching

complexities of light and matter. Moving beyond the reactive limit, our theoretical formal-

ism only serves as a case study towards the daunting “spaghetti” regime of strongly-coupled

many-body QED with a general local symmetry group G (Fig. 4.1). In this domain of

strong coupling quantum optics, highly-entangled states can be born entirely from quantum

fluctuations and “surprising” behaviour of light and matter can emerge from the dynamical

frustration between global strong-coupling and local constraints beyond renormalization

theories.

4.3 Many-body quantum electrodynamics

The model we consider can arise in a variety of contexts [178, 230, 231], but a crucial

requirement for strongly-coupled many-body QED is that the local gauge constraints ΛG

dominate over atom-cavity coupling rate gc in the single-quanta level strong coupling [197,

229], namely ΛG ≫ gc > max(κ, γ). Thus, a natural host to explore many-body QED is a

lattice of Rydberg atoms strongly coupled to an optical cavity [232, 233] and Rydberg ions

coupled to their collective motions, where gc (κ) is interpreted as the spin-motion coupling

(heating) rate [230]. For the sake of concreteness, we consider the setting of Fig. 4.1, similar

to the experiment [229], where a programmable tweezer array of neutral atoms [116–118,

234–240] is strongly coupled to a single-mode optical cavity and local Ising constraints are

generated by Rydberg blockades [219, 221, 241–244].
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Figure 4.1: Strongly-coupled many-body quantum electrodynamics (QED) in the reactive
limit. (a) Coupling a many-body system, characterized by local symmetry groups G, to
the QED vacuum of a general optical cavity. The characteristic interaction graph of the
many-body system is represented by Λ. The many-body system is strongly coupled to
the cavity with a single-atom vacuum Rabi splitting gc ≫ (κ, γ), compared to the the
cavity (κ) and atomic decay rates γ. Many-body QED is realized in the limit Λ ≫ gc,
where coherent atom-field dynamics is constrained by the local symmetry sectors G of
the many-body system. (b) Emergent degrees of freedom in many-body QED. Low-energy
quasiparticles populate the local symmetry sectors G (logical layer) and dynamically couple
to the vacuum of the cavity, enriching the background field of the many-body system to
complex quantum dynamics in the reactive limit.

We thereby consider the constrained atom-cavity dynamics within some local symmetry

sector G of the many-body (Rydberg) Hamiltonian ĤG with the Liouvillian motion ˙̂ρ =

i[ĤmQED, ρ̂] + κDa[ρ̂] + γDσ[ρ̂] and many-body QED Hamiltonian

ĤmQED = ∆câ
†â+ ĤcQED + ΛGĤG, (4.1)

with cavity QED Hamiltonian ĤcQED = gc(â + â†)Ŝx, dissipative superoperators DO[ρ̂] =

Ôρ̂Ô† − {Ô†Ô, ρ̂}/2 for the jump operators Ô ∈ {σ̂(i)
− , â} and collective spin operators

Ŝα =
∑Na

i=1 σ̂
(i)
α . With ΛG ≫ gc, the local constraint ĤG =

∑
■
(Ĝ

■
−Q)2 (e.g., Kitaev toric

code [245]) acting on sites ■ restricts the many-body dynamics within a charge sector Q
by the generator Ĝ

■
of the Abelian gauge symmetry.

More generally, the many-body term ĤG may include more complex terms that embed
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non-Abelian gauge theories (e.g., Kitaev Honeycomb model [246]) with its own quasipar-

ticles (e.g., Ising anyons) and dynamical gauge fields. The crucial philosophy here is that

the quasiparticles of ĤG necessarily couple to light fields and are renormalized by the

cavity-mediated long-range interaction between the deconfined charges of the dynamical

gauge theory (See the logical level of the coarse-graining procedure in Fig. 4.1b). It is

conceivable that the cavity backaction on the anyons can impart and enrich the quantum

dynamics with wholly emergent degrees of freedom heretofore not present in the original

quantum matter ĤG by way of the radiative coupling to the cavity baths. Moreover, on

resonance ∆c = 0 (“spaghetti” regime), these new degrees of freedom incorporate radiative

excitations of the cavity and strongly-coupled many-body QED necessarily involves the

coherent interactions between light fields and the exotic quasiparticles.

To illustrate this, we adiabatically eliminate the cavity field in the reactive limit ΛG >

∆c ≫ gc and obtain the low-energy theory,

ĤmQED = −
∞∑

n=1

P̂Q

(
ĤcQED(1− P̂Q)

∆câ†â+ ΛGĤG

)n−1

ĤcQEDP̂Q

+∆câ
†â+ ΛGĤG, (4.2)

where P̂Q projects the atom-cavity system into the vacuum sector |0⟩c|Q⟩
■
. As ĤcQED

creates gauge charges from |0⟩c|Q⟩
■
, gauge-invariant multi-particle quantum dynamics

remains the only dominant process as the lowest order of the expansion in the first term

of Eq. 4.2 after integrating out the cavity field. On the other hand, a single-mode cavity

absent the constraint ∆c can only generate a semi-classical flip-flop interaction ∼ − g2c
∆c
Ŝ+Ŝ−

with mean-field operators Ŝ± =
∑N

i σ̂
(i)
± and stabilize a global spin singlet in the form of

Dicke state

|G⟩cQED = |S = 0, Sz = 0⟩, (4.3)

as its ground state in the language of collective spin algebra.

To qualitatively see how P̂Q can promote and enhance quantum fluctuations in the

system, let us consider how a four-particle dimerized state | ⟩ = | 1,3⟩ ⊗ | 2,4⟩ with the

singlet | i,j⟩ = 1√
2
(|eigj⟩ − |giej⟩) is transformed under a projective constraint P̂

(i,j)
1 that

selects local components on sites i, j ∈ {1, 2} ({3, 4}) with a single collective excitation.

Qualitatively, P̂
(i,j)
1 can be thought of as the action of Rydberg blockade acting on geo-

metrically local sites {1, 2} ({3, 4}), while cavity fields mediate geometrically long-range

dimer bonds | i,j⟩ between the remote sites {1, 3} ({2, 4}). Here, the local projection with
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appropriate normalization factor N produces a GHZ entangled state

1√
N
P̂

(1,2)
1 P̂

(3,4)
1 | ⟩ = 1√

2
(|g1e2g3e4⟩+ |e1g2e3g4⟩) (4.4)

among the four spins. The key message is that the local symmetry imposed onto cavity-

mediated long-range bonds (with a permutation symmetry) enhances the quantum fluctu-

ation for the ground states stabilized by many-body QED.

Moreover, with tunable coupling ĤcQED to multiple cavity modes [70, 198], universal

QMA-complete Hamiltonian (programmable variant of Eq. 4.2) can be boostrapped from

the flip-flop dynamics of ĤcQED when projected by a local constraint [247]. Thus, the global

spin singlets |G⟩cQED prepared by long-range cavity-mediated Hamiltonian serve as a “re-

source substrate” on top of which long-range entanglement can emerge when the Hilbert

space is restricted locally. As we will show, quantum phases simply generated from global

interactions (e.g., |G⟩cQED) fundamentally differ from those under combinatorial constraints

(global permutation symmetry and local gauge symmetry). The dynamical frustration be-

tween the global and local degrees of freedom can promote the stability of highly entangled

phases that are not possible when only one of the conservation rules is allowed. In turn,

a seemingly simple dissipative process (e.g., spontaneous emission) can have profound im-

pact to the open-system evolution of the many-body state, when constrained by both the

global (cavity) and local (Rydberg) symmetries [247]. The computational complexity of

the light-matter quantum dynamics can be enriched exponentially by local projections of

the many-body Hamiltonian [248]

We further remark that the general strategies of enriching complexity by local projec-

tions are also be found in the AKLT representation of tensor network states, parton theory

of spin liquids, and the theories of universal Hamiltonian. In tensor network states, highly-

complex multipartite entangled states are constructed from building blocks of disconnected

dimer bonds between auxiliary particles by local gauging [249]. In the parton description,

a classical parton wavefunction within an enlarged Hilbert space is promoted to long-range

entangled spin liquids by a local Gützwillar projection that brings back the system to its

physical Hilbert space [224, 250]. In addition, all static and dynamical properties of any

local Hamiltonian can be universally emulated by the action of local gadgets acting on a

long-range 2-local Hamiltonian in a larger Hilbert space [53, 251, 252].

80



(a)

W
av

el
en

gt
h 

sc
al

e

Physical atoms
Spinon (gauge charge)

Vison (gauge flux)
& Emergent photon

Rydberg ice

(c)

(b)

(d)

(e)

0 5 10
0

1

2

3

4

0

1

2

3

4

0 5 10
0

1

2

3

4

0

1

2

3

4
(f) (g)

Figure 4.2: Quantum phases of reactive many-body QED in a chequerboard lattice. (a)
Coupling a 2D Rydberg spin ice with a local U(1) gauge symmetry to a multimode opti-
cal cavity in the reactive limit. Many-body states are locally constrained by an Ising-like
Hamiltonian to the gauge sector Q within the purple plaquettes, while quantum fluctuation
is injected to the many-body system by way of cavity QED. (b) Coarse-graining procedure
of many-body QED for stabilizing the vacuum state of topological and conformal field the-
ories. In the long-wavelength limit, non-trivial quasiparticles (spinon, visons, and collective
photon modes) emerge within different topological and conformal sectors. (c) Spinons and
visons in the deconfined phase of Z2 lattice gauge theory. Spinon and vison are mutual
semions with a non-trivial statistical phase θsv = π/2. (d) Quantum dimer dynamics me-
diated by cavity QED vacuum bath. Quantum dynamics involving non-bipartite dimers
are driven by long-range cavity-mediated interactions.

4.4 Cavity-assisted melting of a Rydberg ice

We now turn to the question of the possible quantum phases stabilized for the reactive

many-body QED in Eq. 4.1 when a Rydberg ice is coupled to a single-mode cavity. We

assume that the chequerboard lattice wrapped around an infinitely-long cylinder (Nx → ∞)

with a finite circumference Ny. The many-body QED Hamiltonian reads

ĤmQED = ∆câ
†â+ ĤcQED + ΛGĤice, (4.5)

Ĥice =
∑

⊠

(Ĝ⊠ −Q)2, (4.6)

with the generator Ĝ⊠ =
∑

i∈⊠ σ̂
(i)
z acting on the corner-sharing ice sites i ∈ ⊠, as shown

in Fig. 4.2(a). The ice constraints can be generated on a chequerboard lattice Rydberg
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tweezer array (Fig. 4.1(a)) by integrating out driven-dissipative dynamics of reservoir

atoms [253].

Before we proceed to the discussion of the full phase diagram in the reactive limit, let us

review some properties for the ground state |G⟩cQED of cavity QED with ΛG = 0 from the

perspective of dimer physics. The Dicke state |G⟩cQED possesses global symmetries Ŝz = 0

and Ŝ = 0 and their physical properties can be described by the macroscopic mean fields

Ŝ and their descendants. The global singlet state |G⟩cQED is an example of an insulating

and disordered state, similar to a quantum spin liquid.

From a dimer language, |G⟩cQED can be written as an “infinite-range” resonating va-

lence bond (RVB) state, an equal-weight macroscopic superposition of fully-packed dimer

configurations

|G⟩cQED =
1√
N
∑

C∈all

∏

i,j∈C

| i,j⟩ (4.7)

However, unlike short-ranged RVB states, the perfect filling of the dimers is not due to some

local constraints that promote the pairing and regulate the dimer patterns. Indeed, the

dimer movements of |G⟩cQED are not microscopically constrained (e.g., six or eight vertex

models), and the unit filling is merely a consequence of the global quantum numbers S = 0

and Sz = 0. Thus, this ground state can be thought of as a liquid-like superradiant (SR)

phase characterized at the level of classical mean field theory by the all-to-all permutation

symmetry of the cavity field and a well-defined global phase with maximal fluctuations of

the dimer number, similar to a superfluid.

While |G⟩cQED is a trivial disordered state, it serves as a useful background field tem-

plate for many-body QED to construct more complex quantum phases when infinite-range

cavity-mediated dimer resonances are restricted to the local symmetry sector Q. Qual-

itatively, with increasing order of ΛG/gc, the scale of quantum fluctuation is amplified

across the system by local constraints, and the long-range entanglement survive as a uni-

versal property at the thermodynamic limit. In this setting, bona fide spin liquid states

(short-ranged RVB state) may be born from manifestly quantum fluctuations (cavity QED

vacuum), locally preserving an extensive ground-state entropy and acquiring a macroscopic

quantum field theory description. Beyond directly accessing the elusive spin liquid states,

many-body QED is a controlled laboratory platform to investigate the symmetry-broken

phases that harbour the deconfined states by anyonic condensations for classifying the

projected symmetry groups of the spin liquids in an experiment.

To illustrate this for the symmetry sector Q = 0 , we systematically derive the coarse-

grained Liouvillian quantum plaquette dynamics up to the sixth order of O(gc/ΛG) [89] for

a Rydberg ice reactively coupled to a zero-dimensional quantum bath of the single-mode
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optical cavity. We obtain the projected master equation at the sixth order of Nakajima-

Zwanzig projection operator formalism ˙̂ρS = −i[Ĥeff, ρ̂S ]+
∑

k(ĉ
eff
k ρ̂S ĉ

eff†
k −{ρ̂S , ĉeff†k ĉeffk }/2).

In the Q = 0 sector, the relevant effective Hamiltonian and jump operators are (apart from

the single-atom decay ĉi =
√
γσ̂

(i)
− )

Ĥeff = −Jring
∑

□

Ŵ
(ijkl)
□ −Kring

∑

7
Ŵ

(ijklmn)
7

+ΛG

∑

⊠

(∑

i∈⊠

σ̂(i)
z

)2

, (4.8)

with plaquette operators Ŵ
(ijkl)
□ = σ̂

(i)
+ σ̂

(j)
− σ̂

(k)
+ σ̂

(l)
− +h.c and Ŵ

(ijklmn)
7 = σ̂

(i)
+ σ̂

(j)
− σ̂

(k)
+ σ̂

(l)
− σ̂

(m)
+ σ̂

(n)
− +

h.c and ring-exchange couplings Jring = 4g4eff/ΛG(ΛG +∆c)
2 andKring = 36g6eff/ΛG(ΛG +∆c)

4.

The corresponding dimer resonances for Ŵ
(ijkl)
□ and Ŵ

(ijklmn)
7 are illustrated in Figs. 4.1(d)

and (e), respectively. Notably, the additional hexagonal dimer resonance Ŵ
(ijklmn)
7 is driven

by the “zero”-dimensional cavity baths and will play a crucial role in the stabilization of a

topological spin liquid within the context of a U(1) lattice gauge theory.

In the reactive limit of strongly-coupled many-body QED, the system remains coherent

with negligible dissipation. Different dissipative processes give rise to unique types of

“errors” that create a pair of anyons in a topological spin liquid. System’s spontaneous

emission ĉi (ĉ□) generates or annihilates a pair of spinons (visons). On the other hand, ĉring

is a source of inhomogeneous broadening for the visons. We only remark the expression for

the correlated spin-flip decay ĉ2 =
√
κ2
∑

□

(∑
i,j∈□ σ̂

(i)
x σ̂

(j)
x

)
, which lead to the production

of photon pairs at the output mode of the cavity. ĉ2 facilitates the time-resolved charac-

terization of conditional response function of plaquette dynamics Ŵ□ upon the production

of vison pairs by monitoring the correlated photon pairs leaking through the cavity mode.

In the limiting case ΛG → ∞ (Kring → 0), the ground state for Q = 0 is the projected

wavefunction of the Dicke state |VBS1⟩mQED = 1√
N P̂Q=0|G⟩cQED and is described by a

resonating plaquette “solid” phase. As shown in the inset of Fig. 4.2, the dimer and

plaquette patterns of |VBS1⟩mQED depict a classical phase with a broken lattice translation

symmetry (i.e., a crystalline phase of localizeable plaquettes □ with ⟨Ŵ□⟩ > 0) in the

so-called magnetic field basis. With negligible Kring, Eq. 4.8 corresponds to the lattice

Hamiltonian of a pure frustrated compactified U(1) gauge theory, (2 + 1)D fcQED,

ĤfcQED = −2Jring
∑

cos(∇× A ) +
U

2

∑
E2 (4.9)

on a bipartite lattice (in this case, on the dual square lattice of Fig. 4.1(c)) with U ≫ Jring

[145]. Here, we label the plaquettes ( ) as “star” (“flux”) sites on the dual lattice
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description of Fig. 4.1(c), where electric/spinon (magnetic/vison) excitations may exist

respectively. The local quantum number Q of Ĥice is thereby interpreted as the electric

gauge charge of QED. It is well-known that the celebrated Polyakov mechanism for (2+1)D

QED [254] induces confined phase, in place of a gapless Coulomb spin liquid, by the

proliferation of instantons. The condensation of those instantons in turn gaps out the

artificial photon of the Coulomb phase and drives a symmetry breaking transition to a

valence bond solid. In fact, the resonating plaquette solid state |VBS1⟩mQED is precisely

the anticipated confined phase of the fcQED ĤfcQED on the dual square lattice without a

static charge Q = 0.

In the intermediate regime ΛG ≳ gc, the long-range dimer resonance Ŵ
(ijklmn)
7 occurs

within an hexagon of extended Kagome lattice that is embedded into the physical che-

querboard lattice (See Fig. 4.1(d)-(e)). The existence of such cavity-mediated resonances,

which breaks the bipartiteness of the geometric lattice, plays a crucial role in the enhanced

stability of the gapped spin liquid state of U(1) lattice gauge theories. Indeed, the physical

theory of many-body QED is not strictly defined on the two-dimensional lattice. Instead,

it is a hybrid dimensional theory of a zero-dimensional quantum fluctuation progressively

constrained with increasing order O(ΛG/gc) by the Hamiltonian graph Ĥice defined on a

two-dimensional lattice, only recovering the two-spatial dimensional infrared fcQED limit

when ΛG → ∞. Between the SR and VBS phases at Q = 0, the local constraint Ĥice is

soft, and higher-order dimer resonances begin to involve the fluctuations of dimer pairs

on the diagonal bonds (Fig. 4.1(d)-(e)). For example, for ΛG∆/g
2
c ∼ 3, the hexago-

nal resonance contributes significantly to the delocalized dimer (plaquette) dynamics with

Jring/Kring ∼ 2. In particular, these diagonal dimers can play an active role in locally

breaking down the U(1) gauge symmetry in an emergent manner. The delicate conditions

to host new quantum phase harbouring these two competing quantum orders are now ripe.

The full phase diagram of the reactive many-body QED is shown in Fig. 4.1(f)-(g)

for a Rydberg ice placed on an infinitely-long cylinder with Ny = 8. The phase diagram

was obtained by translational-invariant matrix product states with a snaking-algorithm

on a cylinder optimized with infinite-size density-matrix renormalization group (iDMRG).

To simulate the physics in the thermodynamical limit with long-range cavity modes, we

restrict the simulation with algebraically-decaying cavity-mediated interaction leading to a

quantum fluctuation ∼ tij(σ̂
(i)
x σ̂

(j)
x +σ̂

(i)
y σ̂

(j)
y ) with spin-exchange coefficient tij ∼

(
a0
rij

)α
and

a0 (rij) is the lattice constant (interatomic distance). Tunable-range quantum fluctuation

can also be realized by multimode cavity QED in the limit ∆ ≫ gc [188] with the single-

mode limit recovered for α → 0 (infinite-range quantum fluctuation). The phase diagram

of the entanglement entropy for α = 6 (α = 3) is shown in Fig. 4.1(f) (Fig. 4.1(g)) as a

function of constraint ΛG and electric charge Q.
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Apart from the trivial ferromagnetic phase |FM⟩ = |e · · · e⟩, we find that a plethora of

exotic quantum phases can be stabilized in the chequerboard-lattice reactive many-body

QED, as summarized below:

Symmetry-broken phases

• Superradiance-like phase (SR): This state represents the trivially disordered and lo-

cally featureless phase at ΛG → 0, corresponding to the global spin-singlet phase in

the limit of α → 0. The system is superfluid-like and the macroscopic wavefunction

is described by a single-parameter global phase ϕ and by large dimer fluctuation. It

is qualitatively similar to a coherent state consisting of superextensive unrestricted

dimer patterns. As shown in Fig. 4.3 (c) and (d), the dimer fluctuations of the

SR phase violate the local constraints. As such, gauge charge fluctuation prolifer-

ate in the system, and can condensed into a superfluid. This superfluid, from the

perspective of the topological spin liquid, is our SR phase.

• Resonating plaquette solid (VBS1): VBS1 phase approximates the ground-state of

the fcQED (Eq. 4.9) on a square lattice at Q = 0 sector in the limit U → ∞.

The valence bond (plaquette) order and their crystalline pattern of the magnetic flux

⟨X̂(ijkl)⟩ with X̂(ijkl)
=
∏

i∈ σ̂
(i)
x over persist over a long range. From the spin liquid

perspective, VBS1 is driven by the condensation of visons, breaking the translation

symmetry.

• Stripped plaquette solid (VBS2): The stripped VBS2 phase is valence bond solid

pattern of ⟨X̂(ijkl)
Ẑ

(lmno)⟩ with Ẑ
(ijkl)

=
∏

i∈ σ̂
(i)
z over , which extends over an

enlarged square lattice. This phase is generated by condensing emergent fermions

(vison-spinon bound state) of the Z2 spin liquid.

• Resonating plaquette solid (VBS3): VBS3 phase is another pattern of valence bond

solid over an extended lattice, yet incompatible with the dimer/plaquette patterns

of VBS2.

Quantum phases

• Gapped Z2 spin liquid (QSL): The Z2 spin liquid is the Higgs phase of the U(1)

lattice gauge theory. In the intermediate range of ΛG, the local constraint is now

only soft and the long-range dimer resonances explicitly break the bipartiteness of

the chequerboard lattice. In particular, diagonal dimers placed on the chequerboard

lattice act as charge-2 Higgs scalar fields, which themselves can locally condense and
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induce a symmetry breaking of the gauge group to Z2. The Higgs condensation

mechanism opens up a gap for the instantons, which otherwise would destroy the

spin liquid. The spin liquid phase itself is belongs to the toric-code universality class

and is stabilized by the presence of long-range cavity QED fluctuation. As shown in

the inset to Fig. 4.1, the QSL phase remain featureless and disordered when probed

locally by both plaquette operators X̂
(ijkl)

, Ẑ
(ijkl)

, while the extensive dimer patterns

of its RVB representation restricted to the local symmetry sector Q = 0. It is thus

a short-ranged RVB state. Direct evidences for the Z2 spin liquid are provided in

the following sections, including the real-space topological string order parameter,

topological entanglement entropy, and the modular S transformation between the

superselection sectors.

• Critical QED3 spin liquid (QED3): This spin liquid state is generated by a possible

deconfined quantum criticality (DQC) at Q = 1 between two mutually incompatible

symmetry-broken phase VBS1 and VBS3. Similar to the Kagome lattice, the low-

energy theory for this critical phase is described by a dynamical U(1) gauge field

coupled to dynamical matter fields. Similar to the easy-axis Kagome lattice with

triangular constraints, at Q = 1, there are two flavours of gapless gauge charges that

can strongly couple to the dynamical gauge field. The key evidences for the projected

symmetry group of the gapless spin liquid are the existence of logarithmically scal-

ing entanglement entropy, the gapless collective photon mode in the transfer matrix

spectrum, and the ground-state response to a vison flux insertion threading the cylin-

der. An indirect consequence of the gapless collective photon modes is found in the

inset to Fig. 4.1, where faint blue-colored excited dimer modes are delocalized over

the entire system. Further investigation of QED3 phase is required to determine the

particular conformal field theory in the strong coupling, as there are other competing

theories of gapless Z2 spin liquids on a square lattice [255–257].

The symmetry-broken VBS phases are unique in that their spin-spin correlations, like

their spin liquid counterpart, do not exhibit long-range order. However, VBS is a weakly

entangled phase and have structuring ordering of the dimers. As such, the hidden order

can be exposed in Fig. 4.3(g)-(h) by examining the plaquette-plaquette correlations. Upon

such an analysis, only the QSL and QED3 phases demonstrate the absence of long-range

ordering of local operators in both spin and dimer/plaquette degree of freedom. This

is most radically shown in the exponential (algebraic) decay of the plaquette-plaquette

correlations for the QSL (QED3) phase in Fig. 4.3(e).

Another crucial aspect is that the stability of the spin liquid arises from the Higgs

condensation of the diagonal dimer bonds. With smaller scaling form α → 0, the stability
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of the topological phase is expected to persist, as shown vividly in Fig. 4.3(f). The QSL

phase is indeed marked by the reduction of the dimer structural factor (SFF).

We now turn to the question of a positive identification of the deconfinement. In Fig.

4.4, we demonstrate the utilization of the real-space Wilson loop X̂C(ẐC) =
∏

i∈C σ̂
(i)
x (σ̂

(i)
z )

along a close contour C for the electric and magnetic field basis, respectively. The decon-

fined phase of a gauge theory is describe by a boundary-scaling decay of the Wilsonian

loops. The boundary scaling of the Wilson loop is clearly demonstrated in Fig. 4.4(e)-(f)

for both the QSL and QED3 phase, as well as the VBS1.

The physical origin of the boundary-scaling relationship for these loop operators is

the entanglement structure of the quantum field theory. However, in the presence of

matter fields, in this case with the Higgs fields, it is not possible to distinguish the local

structure arising from the interaction between the gauge fields and the Higgs charges,

from the genuine deconfinement arising from the free gauge theory. As such, the Wilson

loop themselves cannot correctly identify the deconfined phase. We thereby consider an

alternative measure as follows.

Now, we consider normalized half-loops in the real-space, also known as the FM order

parameter. Qualitatively, the FM order parameter describes the degree of entanglement

of the loops. Namely, if the loops can be factorized as a product of two strings, the

normalized order parameter will reach 1. On the other hand, the suppression of the string

order parameter indicates the presence of strong correlations and entanglement for the

loop. From a different perspective, the string operator measures the density of the anyons

at the end points of the string. For instance, the Xstring (Zstring) measures the spinon

(vison) density at the end points.

As shown in Fig. 4.5, the FM order parameters FX,Z are suppressed for both quantum

phases QSL and QED3. As a non-local order parameter, the FM order parameter can cor-

rectly capture the deconfined nature of the two spin liquids. What is even more intriguing

is that it can provide a correct projected symmetry classification by analysing the proximal

classical phases harboring the quantum phases.

Namely, the SR and VBS3 are identified by the proliferation of emergent fermions

(vison-spinon bound states) in Fig. 4.5, which condense the classical phases of SR and

VBS3 (superconductor with different orbital pairing from the perspective of the anyons).

On the other hand, the VBS1 exhibits a large vison population, consistent with the theory

of valence bond solids for the quantum dimer model on a square lattice. Hence, from the

analysis of the descendent classical phases, we provide a strong evidence of a Z2 spin liquid

characterized by four topological sectors (unity, vison, spinon, emergent fermion threading

through the cylinder).
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Figure 4.3: Enforcement of local gauge symmetry and valence bond structure. (a) Coupling
a 2D Rydberg spin ice with a local U(1) gauge symmetry to a multimode optical cavity in
the reactive limit. Many-body states are locally constrained by a Ising-like Hamiltonian
to the gauge sector Q within the purple plaquettes, while quantum fluctuation is injected
to the many-body system by way of cavity QED. (b) Coarse-graining procedure of many-
body QED for stabilizing the vacuum state of topological and conformal field theories. In
the long-wavelength limit, non-trivial quasiparticles (spinon, visons, and collective photon
modes) emerge within different topological and conformal sectors. (c) Spinons and visons
in the deconfined phase of Z2 lattice gauge theory. Spinon and vison are mutual semions
whose mutual exchange statistics is governed by an Abelian phase θsv = π/2. (d) Quantum
dimer dynamics mediated by cavity QED vacuum bath. Quantum dynamics involving non-
bipartite dimers are driven by long-range cavity-mediated interactions.
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Figure 4.4: Detection of deconfined quantum liquids with loop tomography. (a) Coupling
a 2D Rydberg spin ice with a local U(1) gauge symmetry to a multimode optical cavity in
the reactive limit. Many-body states are locally constrained by a Ising-like Hamiltonian
to the gauge sector Q within the purple plaquettes, while quantum fluctuation is injected
to the many-body system by way of cavity QED.
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Figure 4.5: FM order parameter. (a) Coupling a 2D Rydberg spin ice with a local U(1)
gauge symmetry to a multimode optical cavity in the reactive limit. Many-body states are
locally constrained by a Ising-like Hamiltonian to the gauge sector Q within the purple
plaquettes, while quantum fluctuation is injected to the many-body system by way of cavity
QED.
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Figure 4.6: Entanglement signatures of quantum spin liquids. (a) Coupling a 2D Rydberg
spin ice with a local U(1) gauge symmetry to a multimode optical cavity in the reactive
limit. Many-body states are locally constrained by a Ising-like Hamiltonian to the gauge
sector Q within the purple plaquettes, while quantum fluctuation is injected to the many-
body system by way of cavity QED.
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Figure 4.7: Low-energy excitations of quantum spin liquids. (a) Coupling a 2D Rydberg
spin ice with a local U(1) gauge symmetry to a multimode optical cavity in the reactive
limit. Many-body states are locally constrained by a Ising-like Hamiltonian to the gauge
sector Q within the purple plaquettes, while quantum fluctuation is injected to the many-
body system by way of cavity QED.
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Chapter 5

Conclusion

5.1 Summary of thesis

In chapter 2, I presented an in-depth background on the construction of tensor network

states and commonly used variational methods arising from them for the classical simula-

tion of quantum many-body systems. This included the representations of quantum states

within the framework of matrix product states (MPS) and quantum operators in matrix

product operators (MPO).

A description of their basic creation and an explanation of their utility were given. Fol-

lowing this, I presented standard algorithms such as the iterative variational optimization

of ground states for MPOs using the Density Matrix Renormalization Group (DMRG) and

its infinite state variant, IDMRG. Then, I described a method for simulating time-evolution

(both within a domain of real and imaginary time) of a MPS called, Time Dependent Vari-

ational Principles (TDVP).

A discussion was given about performing a numerical simulation of open quantum sys-

tems and how the master equation is handled in practice. In this, I provided two common

numerical methods; the first being the trajectory method, which consists of performing

a non-Hermitian evolution along with the possibility of jumps several times to generate

statistics required for the density matrix. The second being the vectorized density matrix,

which consists of treating the entire density matrix as a quantum state within an enlarged

Hilbert space. The later works by either evolving or obtaining the steady-state solution via

a DMRG to reduce the Liouvillian functional of the vectorized super-operator describing

the open system dynamics.

In chapter 3, we propose a waveguide QED platform capable of realizing universal

quantum matter through direct control of the 2-local Hamiltonian ĤQMA operators. This
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is implemented by engineering the coupling between the phononic superfluid and the atomic

spins as needed. This work was originally published in Ref. [1].

The waveguide toolbox, unlike a digital simulator, is analog and fully manifests the

system of the virtual matter, not just the ground state, allowing the entirety of the spectrum

to be utilized. We discuss the emergence of SU(n) models by gauging the waveguide QED

simulator and encoding it onto the low-energy theory of the waveguide QED simulator.

Moreover, the static and dynamical structures of arbitrary k-local Hamiltonian Ĥtarget

with k > 2 of arbitrary dimension can be prescribed to the low-energy theory of the

waveguide QED simulator. To access our SU(n) simulators capability we have analyzed the

paradigmatic quantum field theory, the Wess-Zumino-Witten (WZW) model by accessing

phase diagrams, static and dynamical response functions, and CFT entanglement of the

many-body system with matrix product states.

Currently, the waveguide quantum simulator works by using non-interacting phonons

as a linear mediator. One approach would be to create a phonon-phonon interaction that

directly implements a gauge constraint, similar to the one we used to compute SU(N).

In principle, this should not give us any wider range of computeability since the toolbox

is already universal. However, allowing us to directly implement the gauge constraint

still yields some potential advantages. Implementing a higher number of spin interactions

may necessitate several layers of perturbative expansion. It is particularly evident in the

simple case of a many-body fermion model and the Jordan Wigner transformation, which

requires an N -body operator. In theory, it is possible to simulate it, but it may become

impractical in practice. This is often true for lattice gauge theory systems, in particular

[20]. Alternatively, we could try to directly engineer interactions between the spins to have

a direct gauge symmetry. In this case, some natural phenomenon like the Van der Waal

[258] interactions of Rydberg atoms would be used. We could then try to add quantum

fluctuations to this system. Doing this would allow our toolbox to perform computations

in a manner similar to that of chapter 4.

In chapter 4, we discussed our recent work on stabilizing dynamical gauge fields in the

many-body QED platform. We described the physics of many-body QED, where local

U(1) gauge constraints on the Rydberg gain medium (in a chequerboard lattice) can be

promoted to frustrated compact QED plus Higgs fields. These Higgs fields can condense

and break the local gauge symmetry to a finite gauge group, such as Z2. These Higgs fields

originate from the long-range nature of the cavity-mediated interactions and the insertion

of zero-dimensional quantum fluctuations into the 2D Rydberg ice. We describe a mean-

field method based on a novel Jordan-Wigner transformation to obtain the parton picture

of the QED3 deconfined criticality. This gapless spin liquid is thought to be the parent of

the purported gapped Z2 spin liquid, which exists at intermediate coupling.
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We provide strong theoretical evidence for the spin liquids by examining the real-

space FM string operators and Wilson/Hooft’s loop operators. We find the divergence

of string tensions in the symmetry-broken phases harbouring the disordered liquid phase.

On the other hand, Wilson loops over non-contractable topologies provide signatures of

the topological order for the ground state wavefunction, enabling positive identification of

the spin liquid. Moreover, the correlations between the Wilson loops and the uncertainty

can be mapped to an entanglement witness, called quantum Fisher information, allowing

us to obtain the topological index of the gapped spin liquid. This method allows us to

identify the spin liquid as in the toric code’s universality class. Furthermore, we reconstruct

the modular matrices for the collective excitations from the vacuum of the spin liquid,

directly accessing the anyonic nature of the braiding statistics (spinon, vison, and emergent

fermions). Finally, we examine the flux-dependent entanglement entropy and low-energy

spectrum via transfer matrix methods. This provides us access to the presence of a linearly

dispersed gapless mode in the CFT state, strongly suggestive of the emergent photon mode

of QED3. Together with this evidence, we conclude that the ground state of the cavity-

coupled Rydberg ice permits a rich phase diagram, consisting of two flavours of quantum

spin liquid phases.

5.2 Prospects

5.2.1 Dissipative ground-state cooling of universal lattice spin

models

One direction that we are presently working on is quantum reservoir engineering of the

many-body QED platform in the limit of dissipative SU(2) constraints. Unlike prior work

on steady-state entangled states and reservoir computation [259], our recent work allows

the dissipative preparation of low-energy states (thermal states) of universal models. That

is, the 2-local spin model can encode the entire spectrum and dynamical response functions

of any Hamiltonian. Ground-state cooling of a universal local Hamiltonian is known to

be QMA-complete, and, as such, even universal quantum computers would not be able to

efficiently solve the ground-state energy problem in polynomial time. From a computational

complexity perspective, our dissipative mechanism likely has similar constraints. However,

a major benefit is that our cooling procedure is entirely independent of the fine-tuning

of the Hamiltonian. That is, the cooling procedure requires no knowledge of the target

model, whether or not it is gapped. As such, we do not suffer from the spectral gap of

some adiabatic path.
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5.2.2 Resonant coupling of many-body QED

In this work, we are currently investigating the resonant regime of many-body QED.

The steady-state transmission spectra of many-body QED in earlier experiments in the

UQML group have indicated highly complex and nonlinear excitation modes. The goal of

this work is to explore the possible many-body atom-field states that would persist by a

mere transmission measurement. While further work is required, the early experimental

signature includes extreme bunching and anti-bunching at different frequency modes and

pump power. This indicates the breakdown of the scaling parameter and strong-coupling

effects for large N ≫ 1, radically departing from the microscopic description of generalized

cavity QED systems.
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tanglement transport and a nanophotonic interface for atoms in optical tweezers”,

Science 373, 1511–1514 (2021).

[65] James S Douglas, Hessam Habibian, C-L Hung, Alexey V Gorshkov, H Jeff Kimble,

and Darrick E Chang, “Quantum many-body models with cold atoms coupled to

photonic crystals”, Nature Photonics 9, 326–331 (2015).

[66] Tao Shi, Ying-Hai Wu, Alejandro González-Tudela, and J Ignacio Cirac, “Bound
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