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Abstract

An automated assembly system is an integral part of various manufacturing industries
as it reduces production cycle-time resulting in lower costs and a higher rate of produc-
tion. The modular system design integrates main assembly workstations and parts-feeding
machines to build a fully assembled product or sub-assembly of a larger product. Ma-
chine operation failure within the subsystems and errors in parts loading lead to slower
production and gradual accumulation of parts. Repeated human intervention is required
to manually clear jams at varying locations of the subsystems. To ensure increased opera-
tor safety and reduction in cycle-time, visual surveillance plays a critical role in providing
real-time alerts of spatiotemporal parts irregularities.

In this study, surveillance videos are obtained using external observers to conduct spa-
tiotemporal object segmentation within: digital assembly, linear conveyance system, and
vibratory bowl parts-feeder machine. As the datasets have different anomaly specifica-
tions and visual characteristics, we follow a bottom-up architecture for motion-based and
appearance-based segmentation using computer vision techniques and deep-learning mod-
els.

To perform motion-based segmentation, we evaluate deep learning-based and classical
techniques to compute optical flow for real-time moving-object detection. As local and
global methods assume brightness constancy and flow smoothness, results showed fewer
detections in presence of illumination variance and occlusion. Therefore, we utilize RAFT
for optical flow and apply its iteratively updated flow field to create a pixel-based object
tracker. The tracker differentiates previous and current moving parts in different colored
segments and simultaneously visualizes the flow field to illustrate movement direction and
magnitude. We compare the segmentation performance of the optical flow-based tracker
with a space-time graph neural network (ST-GNN), and it shows increased accuracy in
boundary mask IoU alignment than the pixel-based tracker. As the ST-GNN addresses
the limited dataset challenge in our application by learning visual correspondence as a
contrastive random walk in palindrome sequences, we proceed with ST-GNN to perform
motion-based segmentation.

As ST-GNN requires a first-frame annotation mask for initialization, we explore appearance-
based segmentation methods to enable automatic ST-GNN initialization. We evaluate
pixel-based, interactive-based, and supervised segmentation techniques on the bowl-feeder
image dataset. Results illustrate that K-means applied with watershed segmentation and
gaussian blur reduces superpixel oversegmentation and generates segmentation aligned
with parts boundary. Using Watershed Segmentation on bowl-feeder image dataset, 377
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parts were detected and segmented of total 476 parts present within the machine. We find
that GLCM and Gabor filter perform better in segmenting dense parts regions than graph-
based and entropy-based segmentation. In comparison to entropy-based and graph-based
methods, the GLCM and Gabor filter segment 467 and 476 parts, respectively, of total 476
parts present within the bowl-feeder. Although manual annotation decreases efficiency,
we see that the GrabCut annotation tool generates segmentation masks with increased
accuracy than the pre-trained interactive tool. Using the GrabCut annotation tool, all 216
parts present within the bowl-feeder machine are segmented. To ensure segmentation of
all parts within the bowl-feeder, we train Detectron2 with data augmentation. We see that
supervised segmentation outperforms pixel-based and interactive-based segmentation.

To address illumination variance within datasets, we apply color-based segmentation by
conversion of image datasets to HSV color space. We utilize the images, converted within
the value channel of HSV representation, for background subtraction techniques to detect
moving bowl-feeder parts in real-time. To resolve image registration errors due to lower
image resolution, we create Flex-Sim synthetic dataset with various anomaly instances
consisting of multiple camera viewpoints. We apply preprocessing methods and affine-
based transformation with RANSAC for robust image registration. We compare color
and texture-based handcrafted features of registered images to ensure complete image
alignment. We evaluate the PatchCore Anomaly detection method, pre-trained on MVTec
industrial dataset, to the Flex-Sim dataset. We find that generated segmentation maps
detect various anomaly instances within the Flex-Sim dataset.
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Chapter 1

Introduction

With advancements in digital manufacturing and smart factories, mass customization is
becoming more and more prevalent; and the integration of reconfigurable automated sys-
tems has been increasing to optimize an end-to-end manufacturing process. Assembly is
an integral part of the product lifecycle. Data illustrates that the time allocated towards
product assembly accounts for 20%-50% of the total production time, and the manufac-
turing costs associate with 20%-30% of the total cost of a fully assembled product [99].
Therefore, product assembly has a significant impact on factors such as product delivery
time, cost, quality, durability, as well as maintenance. By digitalization of the assembly
line, manufacturing companies aim to optimize such assembly factors while enabling mass
customization.

Across the different industries in manufacturing, the assembly of custom industrial
products involves complex manufacturing processes to assemble base components of vary-
ing shapes and functions. With the rise of COVID-19, the global manufacturing industry
experienced increased product demand throughout many sectors. According to the United
Nations Industrial Development Organization (UNIDO), global manufacturing production
increased by 9.4% in 2021. The market size within manufacturing, measured by revenues
in USD, was estimated to be $434.2 billion in global healthcare sector, $952.4 billion in
global aerospace sector, $2.7 trillion in global automotive sector, and $724.48 billion in
global consumer electronics sector [85]. To meet the increasing demands for varied indus-
trial products, manufacturing companies are in critical need to employ assembly systems,
which enable mass production with increased operational efficiency, reduced manufacturing
defects, and lower costs.

Through the emergence of the fourth industrial revolution, the application of digital
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technologies such as 3D printing, artificial intelligence, robotics, and the internet of things
(IoT) makes it possible to use reconfigurable automated systems. Specifically, in applying
these systems to perform complex assembly operations using real-time production mon-
itoring, decentralized 3D printing facilities, real-time optimization and decision-making
support. Such system attributes enable product assembly with decreased defects, costs
and increased efficiency, respectively. To increase operational efficiency in mass produc-
tion, the worldwide spending on digital transformation in manufacturing is forecast to
reach $2.8 trillion USD by 2025[85].

With the integration of reconfigurable automated systems within the production pro-
cess, manufacturing companies aim to complete the core work processes such as materials
handling, milling, assembly, and inspection, as illustrated by the production process in
Figure 1.1. Such examples of digital transformation are evident within the Aerospace
and Healthcare manufacturing industries. Specifically, the initiative taken by Relativity
Space, an aerospace manufacturing company, to enable cost-effective and modular assem-
bly of rockets using 3D printing technology [59]. Thus reducing the time in orbital rocket
launch to days as opposed to years, which previously resulted due to conventional manu-
facturing processes applied. In addition to the intelligence and analytics integrated within
Siemens manufacturing sector, which aims to provide real-time machine health monitoring
facility[23]. This is significant as the use of digital technologies in manufacturing enforces
reliability with minimal parts required, speed through a faster production time, flexibility
in the supply chain, and optimization.

In this thesis, the research methods are evaluated on surveillance videos of automated
assembly systems, which are used to perform core assembly processes within the consumer
goods manufacturing sector. Specifically, the assembly machines and part-feeding system:
linear conveyor system, digital assembly and the vibratory bowl-feeder machine.

1.1 Problem Scope

An automated assembly system integrates multiple electromechanical automated devices,
which perform a sequence of assembly operations to combine multiple components into a
fully assembled product or a subassembly of a larger product. To reduce production cycle-
time resulting in lower costs and higher rates of production, the devices are embedded
as part of the following subsystems: the main assembly workstation and parts-feeding
at the workstation. The workstations are the main sites within the assembly system,
which perform the core manufacturing operations for the assembly of base components.
In order to move parts from the initial position at specified angle intervals, the assembly
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Figure 1.1: Core manufacturing operations conducted during the assembly process[25]

workstations consist of linear and rotatory indexing systems[69]. As the indexers are driven
pneumatically or through servo-based systems, they play a critical role in controlling the
part acceleration and decelerations. This is significant towards ensuring accurate part
positioning, and facilitating smooth part transfer between two intermediate workstations.
To reduce time in parts transfer between main assembly workstations, linear and rotational
indexers within workstations operate in continuous, synchronous, and asynchronous motion
for the transfer of parts[69]. Therefore, all moving parts regulate with shared motion
characteristics within the assembly machine.

The varied motion of the transfer system is obtained through indexing applied in dif-
ferent configurations of the main workstations. Specifically, in configurations such as the
dial-type, in-line, carousel, and single-station assembly machines. Depending on the in-
tegrated indexing system, the modular workstations perform manufacturing operations
such as screw driving and dispensing, pick and place, crimping, ultrasonic welding, and
pressing[69].

Within the dial-type configuration, the base partare is indexed around a circular dial,
as illustrated in Figure 1.2. The rotatory configuration operates in a synchronous and
continuous motion to index parts, which are positioned on the outer periphery of the
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dial. In manufacturing operations, the dial-type configuration is applied to add and fas-
ten components at workstations surrounding the outer periphery of the dial. The in-line
type configuration consists of workstations arranged in a linear sequence, as illustrated in
Figure 1.2, to perform assembly operations such as metal-cutting. The in-line configura-
tion enables parts transfer using continuous, synchronous, and asynchronous motion. The
carousel configuration integrates the circular configuration of dial-type and linear configu-
ration of in-line to transfer parts using continuous, synchronous, and asynchronous transfer.
The single-station configuration consists of a stationary base part system, in which robotic
manipulators are used to deliver base parts and transfer completed assemblies in linear
sequence. Through the different physical configurations, the linear and rotational indexers
operate in synchronous and asynchronous motion for machine operation and part trans-
fer. In normal operation, the parts are transferred between intermediate workstations with
specified orientation and movement[69]. To facilitate parts-feeding at workstations, the

Figure 1.2: Illustration of various assembly machine configurations[14]
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parts-feeding systems such as a hopper and a vibratory bowl-feeder are used for single part
feed into the assembly workstations. The hopper serves as the container in which parts
are loaded in bulk. During the initial parts-feeding within the hopper machine, the parts
orientation is randomly arranged. The vibratory bowl-feeder consists of different shelf lev-
els with variations in the accumulation of parts,as illustrated in Figure 1.3. The design of
the bowl-feeder shelves enables decreased accumulation of parts towards the bowl-feeder
exit and controls the orientation of parts within the outer shelf. Additionally, the design of
the parts-housing located within the electromechanical devices within the main assembly
workstations and the parts-feeding system enable the accurate placement of parts, with
different shapes and sizes, into a specified orientation[69].

Figure 1.3: Illustration of parts-feeding machines within automated assembly systems[14]

1.2 Problem Motivation

During the normal operation of main assembly workstations and parts-feeding system,
machine operation failure within the subsystems and errors in parts loading lead to in-
creased cycle-time. Specifically, factors such as mechanical failure and increased sensor
noise in motion control systems affect algorithmic objective resulting in minimization of
fault-tolerance and an increase in the total time allocated in assembly[69]. Additionally,
slower production rate is caused by variations in parts loading such as missing parts, new
part-type insertion of varying shapes, part orientation change, and misaligned parts fit-
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ting within the housing. An example of exact part alignment within indexer housing is
illustrated in Figure 1.4.

Therefore, the decrease in production rate over time within workstations leads to the
accumulation of parts thus causing part jams within various locations of the subsystems.
Repeated human intervention is required to manually clear jams within different subsys-
tems’ locations. This is significant as the accumulation of parts over time results in lower
production throughput and decreased machine operator safety. To ensure a reduction in cy-

Figure 1.4: Illustration of part placement within indexer housing and orientation devices
within bowl-feeder machine[14]

cle time and increased operator safety, automated visual inspection systems play a critical
role towards recognition, monitoring, and providing real-time alerts of the spatiotemporal
irregularities within the workstations and parts-feeding systems. For this reason, a time
series analysis is performed to extract spatial and temporal characteristics of moving parts
in real-time. The extracted characteristics are analyzed for comparison with normal be-
havior part characteristics within main assembly workstations and parts-feeding systems.

The visual surveillance can be integrated as part of the in-line production process, or an
externally placed monitoring device located outside of main workstations within the auto-
mated assembly systems, as illustrated in Figure 1.5[44]. Therefore, the surveillance videos
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Figure 1.5: Illustration of in-line and externally placed visual inspection system[1]

can consist of parameters such as varying anomaly specifications and multiple regions of
interest captured from various camera viewpoints. The placement of an automated visual
inspection system outside the location of main assembly workstations and parts-feeding
systems captures external disturbances such as repeated machine operator intervention.
This is significant as such external disturbances introduce limitations in the visual charac-
teristics such as occlusion, illumination variation, and lower image resolution.

Current works within the automated inspection systems focus on visual surveillance as
part of the in-line manufacturing process. The objective of existing in-line visual surveil-
lance is to detect surface defects within manufacturing parts of varying textures. Within
the pre-existing manufacturing datasets, the region of interest consists of a zoomed-in focus
on the different part classes within the manufacturing assemblies such as tablets, metal
bolts, carpets, etc[11]. Therefore, minimal external disturbances exist within the dataset
such as machine operator intervention and limitations within the visual characteristics.

1.2.1 Problem Statement

In this study, surveillance videos are obtained of the digital system with modular assembly
blocks, linear motor-based conveyance, and vibratory bowl-feeder parts-feeding machine.
The research objective is to detect part jams by providing real-time alerts of spatiotemporal
irregularities within varying regions of the automated assembly machines. By performing
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a time series analysis of spatiotemporal part characteristics, the parts accumulation can be
detected early on before a part jam occurs, and thereby decreasing production cycle-time.

1.3 Thesis Contribution

To conduct time-series analysis of spatiotemporal characterisics for anomaly detection, spa-
tiotemporal part segmentation is performed on the obtained surveillance videos. Specifi-
cally, a bottom-up architecture is followed to perform motion-based and appearance-based
segmentation by evaluating computer vision techniques and deep learning-based models.
Image preprocessing methods are applied to address limited visual characteristics within
the datasets. Additionally, spatiotemporal characteristics are analyzed for anomaly detec-
tion using traditional methods and deep learning-based models. Based on the methods
evaluation on various manufacturing datasets, we show:

• Segmentation of current and previous moved parts using a pixel-based tracker. Based
on method evaluation, the tracker generated different colored segments to visualize
current and previously moved parts. Within the bowl-feeder dataset, the tracker dif-
ferentiated the outer-shelves foreground parts with frequent motion and accumulated
parts within base-shelf in different colored segments.

• Automatic initialization of Space-time Graph Neural Network(ST-GNN) model us-
ing appearance-based segmentation to generate a first-frame annotation mask. Based
on evaluation of appearance-based segmentation methods, supervised segmentation
outperformed pixel-based and interactive-based segmentation techniques. With su-
pervised model training and evaluation applied on the bowl-feeder dataset, the De-
tectron2 model generated segmentation mask on foreground parts with increased
boundary mask IoU alignment .

• Robust affine image registration applied with correspondence selection to transform
synthetic manufacturing images, captured from multiple camera viewpoints, into one
coordinate system. Registered images increased accuracy in spatial feature extraction
and anomaly detection.
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Chapter 2

Background

2.1 Obtained Surveillance Videos

An automated assembly system performs a sequence of assembly operations to build a full
assembled product. To reduce production cycle-time,the devices are embedded as part of
the following subsystems: main assembly workstation and parts-feeding at workstation.
Failure within the machine operation of the subsystems and errors in parts loading lead to
increased cycle time. For this reason, automated visual inspection systems play a critical
role in monitoring and in providing real-time alerts of irregularities within the workstations
and the parts-feeding systems.

2.1.1 Dataset Characteristics

Within automated assembly systems, visual surveillance can be integrated as part of in-line
production process or as an externally placed monitoring device located outside of main
assembly workstations. In this study external observers are used to obtain surveillance
videos of modular digital assembly blocks, linear motor-based conveyance, and vibratory
bowl-feeder machine.

The modular design of digital assembly system aims to assemble bike-lights using its
rapid speed matching (RSM) robotic arm and transfer components under two hundred
strokes per minute. The electronic cam-driven system synchronizes motion between mod-
ular assembly blocks for faster component transfer. Therefore, in normal operation, the
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Figure 2.1: Normal Operation of the Bike-light digital assembly

coordinated multi-axis motion control enables synchronous transfer of bike-light base com-
ponent from a linear escapement to a dial-type part feeder configuration, where the RSM
robotic arm transfers component into the fixtures of assembly pallet within a single sta-
tion configuration. For each assembly module, the complete transfer of parts consists of
one-part placement within linear escapement, two components placed in dial-type feeder
and four components placed in assembly pallet, as illustrated in Figures 2.1 and 2.2. Due
to parts-feeding errors and technical failures in assembly system, the anomalies consist
of missing circular-shaped components within the various assembly modules. The linear

Figure 2.2: Normal Operation of rotational indexer within the Bike-light digital assembly

motor-based conveyance is an assembly workstation with a carousel track configuration
and affixed magnetic assembly carriers. By controlling the activation of stationary elec-

10



tromagnetic coils embedded within straight and curved track segments, the assembly car-
riers adapt an asynchronous motion for transferring base components to serial assembly
workstations[69]. In normal operation, each assembly carrier transports base component
of same shape and with a constant component orientation, as illustrated in Figure 2.3.
In this instance, rectangular-shaped objects are transported by the conveyor system.Main
anomalies in system consist of absence of parts, changed component orientation, and new
part-type insertion of different shape. Additional anomaly instances include machine op-
erator intervention and temporal deviations in assembly carrier movement. The vibratory

Figure 2.3: Normal and anomalous spatio-temporal behavior of the conveyance system

bowl-feeder has different shelf levels, which consist of variations in the accumulation of
parts.The design of the bowl-feeder shelves enables decreased accumulation of parts to-
wards the bowl-feeder exit and controls the orientation of parts within the outer shelf[69].
In normal operation, the parts within the bowl-feeder outer-shelf exit at a particular ori-
entation. During anomalous instances, a part jam occurs during the bowl-feeder outer exit
due to change in part-type orientation, as illustrated in Figure 2.4.

As the anomalies consist of spatial deviations within the assembly machine parts, a time
series data analysis is performed to spatially segment varying regions of interest within the
assembly machine videos. To detect spatiotemporal irregularities within the assembly
machine videos, the extracted features from spatiotemporal segmentation are compared
with the normal behavior characteristics of the spatiotemporal features.
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Figure 2.4: Normal and anomalous spatio-temporal behavior of the vibratory bowl-feeder
machine

Based on the dataset characteristics outlined in Figure 2.5, each dataset consists of
varying parameters such as appearance-based anomalies of different shapes, parts with
synchronous or asynchronous motion, videos consisting of multiple camera viewpoints,
changing locations of anomalies within the subsystems, and varying texture of foreground
objects. Specifically, the appearance-based anomalies consist of missing parts such as
rectangular-shaped objects in assembly cells of the conveyor system, circular-shaped ob-
jects in digital assembly, and parts accumulation within the outer-shelf region of the vi-
bratory bowl-feeder exit.

2.2 Motion-based Segmentation

This section outlines motion-based segmentation techniques such as moving object detec-
tion and temporal segmentation. Through the application of motion-based segmentation,
foreground parts can be segmented based on shared motion characteristics. This is signif-
icant towards addressing limitations in spatial part characteristics and segmentation.
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Figure 2.5: Specifications of varying dataset characteristics and anomalous behavior within
different assembly machines datasets

2.2.1 Moving Object Detection

To detect moving objects in real-time, the local optical flow method of Lucas Kanade is
evaluated, which estimates the sparse motion between two consecutive frames using the
corner features extracted, as illustrated in Figure 2.7. To solve for the pixel displacement
between consecutive frames, the Lucas Kanade method assumes brightness consistency,in
which the pixel brightness intensity with respect to changes in pixel position over time
remains the same, as illustrated in Figure 2.6. The application of the local method attenu-
ates noise through sparse feature extraction and increases detection in presence of limited
visual characteristics.

Although the Lucas-Kanade method attenuates noise to increase the accurately detect
moving objects, the sparse feature extraction causes a decrease in the number of object
detection. To increase real-time detection of moving objects, the global Gunnar-Farneback
optical flow method is applied, which estimates the dense motion between two consecutive
frames based on polynomial expansion. The method models image intensity by approxi-
mating the pixel local neighborhood using a quadratic polynomial f1 as defined in Equation
2.1, in which, the polynomial variables, 1, x2, y2, x, y, xy, represent the pixel values, and
the coefficients A, b, c represent as the symmetric matrix, vector, and scalar values, re-
spectively. To show pixel motion, a second new signal f2, with a global displacement of d,
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Figure 2.6: Optical flow computation to solve pixel displacement in consecutive frames[26]

is used to represent the consecutive frame, as outlined in Equation 2.2. This is significant
as the method assumes constant brightness intensity in pixel values in order to equate the
coefficients in Equations 2.1 and 2.2 and solve for the pixel displacement, as outlined in
Equations 2.3.

f1(x) = xTA1x+ bT
1 x+ c1 (2.1)

f2(x) = f1(x− d) = (x− d)TA1(x− d) + bT
1 (x− d) + c1 (2.2)

A2 = A1

b2 = b1 − 2A1d

c2 = dTA1d− bT
1 d+ c1.

(2.3)

As limitations in visual characteristics such as discontinuities in surface illumination,
reflectance, and occlusion cause pixel intensity variation in consecutive frames, the as-
sumptions to compute optical flow with traditional local and global methods would not
be met. Therefore, fewer moving object detections can result due to decreased number
of pixel features extracted and tracked in presence of pixel intensity variation. In order
to increase accuracy in real-time detection of moving parts, the Recurrent All-Pairs Field
Transforms (RAFT) deep network architecture is applied for optical flow.
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Figure 2.7: Sparse flow field(left) and dense flow field(right)[97]

Figure 2.8: Model architecture: RAFT deep learning-based optical flow[88]

To estimate a dense displacement field, the RAFT method maps each pixel in image
I1 to its corresponding pixel in image I2. To formulate a robust optical flow approach, the
RAFT architecture consists of the following modules: feature extraction, computing visual
similarity, and iterative updates, as illustrated in Figure 2.7[88][7]. Specifically, the feature
extractors consist of a feature encoder network and context network, whose architecture is
based on the convolutional neural network (CNN) consisting of 6 residual blocks.

The convolution layers extract low-level features with higher filter sizes in initial layers
and high-level features with lower filter sizes in latter layers. With the application of
different filter sizes, patch-based feature extraction attenuates noise in image regions with
surface illumination. Therefore, a higher number of moving object detection can result in
presence of limited visual characteristics. The visual similarity module aims to calculate
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the correlation between all-pairs feature vectors of the two feature maps, f1 of I1 and f2 of
I2 [88]. The correlation volume is computed by taking the dot product between all pairs
of the feature vectors, as shown in Equation 2.4.

Cijkl =
∑
h

gθ (I1)ijh · gθ (I2)klh (2.4)

To detect objects with large displacement, a 4-layer correlation pyramid (C1, C2, C3,
C4) is constructed by pooling the two latter dimensions of the correlation volume with
multi-scale filters. The update iterator produces an update flow direction,which is applied
to the current flow estimate[88][26]. In order to compute the flow direction update, the
update operator uses an optimized GRU cell, in which each iteration of GRU takes the
concatenation of flow, correlation, and context features as inputs. The flow prediction
outputted by the GRU cell is upsampled and visualized using the optical flow color wheel
illustrated in Figure 2.8, in which the flow magnitude is represented by varied colors and
flow direction is represented by the intensity of the varied colors.

Figure 2.9: Optical flow field visualization with variation in colors and intensity[7]

2.2.2 Temporal Segmentation

The ST-GNN model visualizes each video frame as a graph representation, in which the
nodes represent the image patches, the blue edges, as illustrated in Figure 2.9, locally
correspond to image patches in time, and the query node represents the initial image
patch in the first frame, and the target node is set as the initial node as well[37]. Due
to the challenge of the limited ground truth labels in label propagation for video object
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Figure 2.10: Representation of video as a space-time graph[37]

segmentation, the model applies cycle-consistency in learning visual correspondence across
query and target node across space-time. Specifically, the aim of the random walker is to
associate the nodes across space-time.

2.3 Appearance-based Segmentation

The appearance-based methods segment objects based on spatial characteristics, such as
object shape, color and texture. In this section, the various appearance-based methods
can be applied to segment spatial part features using pixel characteristics, user feedback
and object classification.

2.3.1 Pixel-based Segmentation

The GLCM is a second-order statistical texture method, which characterizes the texture
of an image by calculating how often a pixel with intensity (gray-level) value i occurs in
a spatial relationship to a pixel with value j[63]. The spatial relationship is defined as
the pixel of interest and the adjacent pixel located either horizontally (0), vertically (90),
or diagonally (-45, -135), as illustrated in Figure 2.10. Therefore, the spatial relationship
between pixels is characterized by constant pixel intensity at a given orientation and a
distance d. By calculation of the pixel spatial relationship using the GLCM function, the
GLCM matrix can be obtained. This is significant as the statistical measures such as
variance, correlation, homogeneity, and energy values can be extracted from the GLCM
matrix[72][49]. The variation in Equation 2.8 measures the local variation in the GLCM
matrix, energy in Equation 2.6 measures the joint probability occurrence of a particular
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pixel pair, homogeneity in Equation 2.7 measures the spatial distribution of elements,
and the correlation in Equation 2.5 derives the sum of squared values in GLCM.These
statistical values, obtained from the GLCM matrix, are significant for performing texture
classification in image objects[72][62][15][36].

Figure 2.11: Spatial relationships of pixels, in which D is defined as the distance from the
pixel of interest[36]

−
∑
i,j

(i− µ)(j − µ)

σ2
P (i, j) (2.5)

∑
i,j

P (i, j)2 (2.6)

∑
i,j

1

1 + (i− j)2
P (i, j) (2.7)

∑
i,j

(i− µ)2P (i, j) (2.8)

To analyze texture based on pixel spatial locality, orientation selectivity, and frequency
characteristics, the 2D Gabor filters are applied. The 2D Gabor filters are represented
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as a sinusoidal signal, in which the signal frequency and orientation are modulated by a
gaussian wave. To detect the presence of specific frequency bandwidth within a localized
image region, the orthogonal directions of the 2D Gabor filter can be fine-tuned. The or-
thogonal directions consist of an imaginary and a real component which can be formed into
a complex number as defined in Equation 2.9[80][77]. Within the complex number, the sig-
nal wavelength, represented by lambda, controls the width of texture strips, the direction,
represented by theta, controls the orientation of strips, the phase offset, the psi, controls
the phase difference, the standard deviation, sigma, controls the bandwidth size with the
number of texture strips included within, and the aspect ratio, the gamma, controls the
height of the Gabor function. The texture parameters within the complex equation are
significant in thresholding the number of objects detected. Within the texture analysis, the
texture can be segmented based on the texture repetition or tone characteristics defined
by the spatial relationship of pixels, and the texture complexity or structural arrangement
of the texture primitives[96][80].

g(x, y;λ, θ, ψ, σ, γ) = exp

(
−x

′2 + γ2y2

2σ2

)
sin

(
2π
x′

λ
+ ψ

)
(2.9)

In order to segment objects based on texture complexity, entropy-based segmentation is
applied to analyze local entropy or complexity within a local pixel neighborhood. Through
the application of an entropy filter, subtle variations within the local gray level distribu-
tions can be detected. The local entropy is measured by applying a structuring element,
consisting of a specific radius value, to capture the local grey level distribution. This
is significant as increasing or decreasing the disk radius of the entropy filter causes the
image to blur or sharpen, respectively. The sharpened image increases the detection of
texture complexity and leads to an increased binary segmentation of objects within an
image[103][57][27].

As the illumination changes within different regions of the bowl-feeder cause sharp
discontinuities in pixel variation, edge-based segmentation is evaluated by applying the
canny edge detector method. As sharp discontinuity in pixel gray levels lead to edge
formation within the image regions, the canny detector detects edges by measurement
of gradient magnitude and direction. To detect the edges with the canny detector, the
steps consist of noise reduction, gradient calculation, non-maximum suppression, double
threshold, and Edge tracking by hysteresis[76].

The noise reduction is performed by applying a gaussian smoothing filter of a specific
kernel size to blur regions within the image. The gaussian convolution masks, as defined in
Equations 2.10 and 2.11, are applied in the X and Y directions. Afterward, gradient magni-
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tude and direction are detected in Equations 2.12 and 2.13, which can represent the blurred
images’ horizontal, vertical and diagonal edges. The gradient direction is perpendicular to
the edges[104]. Non-maximum suppression is significant in removing pixels, which are not
considered part of the edges. The hysteresis thresholding is further performed to threshold
pixels as part of the edges or the background image regions. Specifically, a pixel gradient
higher than the upper threshold is classified as part of the edge. The meanshift is an
unsupervised clustering algorithm, which detects blobs in a smooth density of samples.
The centroid-based method updates the centroid value as the mean of points within a
given image region. The mean shift steps consist of forming a sliding cluster for each data
point, each sliding window is shifted towards higher density regions by shifting the regions,
specific sliding windows are selected by deleting overlapping windows, and data points are
updated iteratively to each of the sliding window[104][86].

Gx =

 −1 0 +1
−2 0 +2
−1 0 +1

 (2.10)

Gy =

 −1 −2 −1
0 0 0
+1 +2 +1

 (2.11)

G =
√
G2

x +G2
y (2.12)

θ = arctan

(
Gy

Gx

)
(2.13)

2.3.2 Interactive-based Segmentation

To compare the performance of the GrabCut annotation tool with deep learning-based
interactive segmentation, the feature-backpropagating refinement scheme (F-BRS) model
is applied. The F-BRS model applies the DeepLabV3+ network architecture, which is
trained on the Semantic Boundaries Dataset (SBD) 8,498 images and annotations of object
classes such as vehicles, households, and animals. The DeepLabV3+ consists of a ResNet
backbone with atrous convolutions for feature extraction, atrous spatial pyramid pooling
(ASPP) module for resampling feature map at different rates and segmenting the object
at multiple scales using semantic segmentation annotations, and a 1x1 convolution to
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Figure 2.12: Model architecture: F-BRS Interactive Segmentation[42]

output final segmentation from concatenated masks, as illustrated in Figure 2.12[83]. The
pre-trained FBRS segmentation model segments objects using positive and negative clicks
from user-based feedback. The positive and negative clicks guide the generation of semantic
segmentation masks on the various classes of objects.

2.3.3 Supervised Segmentation

Specifically, the feature pyramid network for feature extraction, the region proposal net-
work for detection of regions with objects using multi-scale features, and the box head
for classifying objects within the bounding box, as illustrated in Figure 2.13. The feature
pyramid network applies a batch of images, of constant height and width, as input to
extract features and output feature maps at different scales. For multi-scale feature maps
in detection, the backbone of Base-RCNN-FPN consists of the ResNet50 block structure
with stem block and multiple bottleneck blocks at various stages. The stem block performs
down-sampling of the input using strided convolutions at a specified kernel size and outputs
the feature map tensor. The bottleneck residual block reduces the number of parameters
and matrix multiplication for dimensionality reduction. From the res2-res5 stages, the four
tensors are generated: P2 at 1

4
scale, P3 at 1

8
scale, P4 at 1

16
scale, and P5 at 1

32
scale.

The lastlevelmaxpool, at a specified kernel size, is applied to down-sample P5 to 1
64

scale
features and generates P6 output.

The feature extraction at different scales is significant to identify and extract pixel
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Figure 2.13: Model Architecture of Detectron2[32]

features in the presence of limited visual characteristics such as illumination variance and
occlusion[98][81]. The multi-scale feature maps are then applied as inputs to the region
proposal network, which detects regions of smaller objects, from P2 to P5, and larger ob-
jects, from P4 to P6. The process overview consists of generating an objectness map and
a prediction of a relative box shape to anchors using the RPN head, generating anchors to
align the objectness map to the ground truth boxes, associating ground truth boxes with
generated anchors using Intersection-over-Unit (IoU) Matrix, optimizing location predic-
tion of boxes using loss calculation in training, and selecting region proposal boxes based
on predicted objectness score[81]. The box head applies the output of proposal boxes to
warp feature maps into fixed-size features and generates fine-tuned box locations. After-
ward, the box head classifies the object within the region of interest and applies further
fine-tuning of box position and shape based on localization and classification loss[81].

2.4 Preprocessing Methods

This section outlines the preprocessing methods, which can be applied to address limited
visual characteristics. The preprocessing methods consist of morphological operations and
image registration techniques.The externally placed visual surveillance captures regions
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of interest (ROIs) from multiple camera viewpoints. In order to compare spatiotemporal
characteristics of the ROIs, an affine-based transform is applied for image registration. By
application of such preprocessing methods, the visual characteristics can be addressed to
increased accuracy in spatial anomaly detection.

2.4.1 Image Preprocessing

The opening applied on X&Y is the union of translations of Y, which fit within X, as shown
in Equation 2.14[79]. This operation is equivalent to applying erosion followed by dilation,
in which the structuring element of a specified kernel size removes thin protrusions from
the foreground object and then adds pixels to the object boundaries. Therefore, removing
the internal noise of the foreground objects. To break the fusion of joined segmentation
masks, the closing operation is applied on X&Y, which is the complement of the union of
Y translations that do not fit within X, as shown in Equation 2.15. This operation aims
to dilate the foreground object and remove pixels at the object boundaries. Therefore,
small holes within the foreground objects and mask fusion are eliminated by using this
operation[79][19].

A ◦B = (A⊖B)⊕B (2.14)

A •B = (A⊕B)⊖B (2.15)

2.4.2 Image Registration

The affine transformation matrix applies shear, scale, rotation, and translation as defined
in transformation matrix in Equation 2.16. The affine transformation consists of 6 DoF
with translation applied. The geometric transformation is performed to warp an image
of interest to the reference image. Through image registration, images, captured from
multiple viewpoints, can be transformed into the same coordinate system.[

x′

y′

]
=

[
a b
c d

] [
x
y

]
+

[
tx
ty

]
(2.16)
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2.5 Chapter Summary

This section presented the various approaches and working principle of motion-based and
appearance-based methods. The outlined methods can be applied for foreground part seg-
mentation within various assembly machines. By outlining the working principle of these
methods, the main objective is to understand their technical advantages and disadvantages.
For instance, the application of deep learning-based optical flow can increase detection ac-
curacy in presence of limited visual characteristics. In comparison to the RAFT method,
the assumptions of local and global methods limit accuracy in detection performance. By
understanding the dataset characteristics and technical advantages of various methods,
the research objectives can be met with increased accuracy and efficiency. Through the
assessment of different methods, the appropriate methods to perform spatiotemporal seg-
mentation are selected.
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Chapter 3

Related Work

Within current research studies, automated visual inspection systems are integrated in-
line within the manufacturing process to perform anomaly detection within the various
image datasets. Similar to the videos applied in this study, the pre-existing manufactur-
ing datasets consist of varying anomaly specification, limited visual characteristics, and
assembly parts of similar spatial characteristics. Therefore, various anomaly detection and
image processing methods are explored to accurately detect spatial and temporal anoma-
lies. This section aims to outline the related works on image processing methods, motion-
based and appearance-based segmentation. In addition to handcrafted methods and deep
learning-based models evaluated to perform anomaly detection in real-time manufacturing
applications.

3.1 Motion-based Features

This section outlines motion-based segmentation methods applied to detect moving parts
in real-time within the automated assembly system. According to the varying anomaly
specification and dataset characteristics, the related works focus on motion-based segmen-
tation such as background subtraction, optical flow and thresholding techniques.

3.1.1 Moving Object Detection

As assembly machines consist of different configurations, moving assembly parts regulate in
synchronous, asynchronous, or continuous motion during the execution of main assembly
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operations. To detect the spatiotemporal part irregularities during the machine operation,
spatiotemporal part characteristics of the current frame are compared in a time-series
analysis with normal behavior spatiotemporal part characteristics. In order to segment
spatiotemporal part characteristics, motion-based segmentation methods are applied. As
assembly parts consist of shared motion characteristics, real-time object detection is per-
formed to identify and localize moving parts within the assembly machine. Specifically,
for the application of visual inspection within manufacturing systems, real-time object
detection methods such as background subtraction, optical flow, frame-differencing, and
sensor-based detection are applied.

Figure 3.1: Taxonomy of moving object detection techniques

As the datasets consist of varying anomaly specifications and limited visual characteris-
tics, different motion-based techniques are performed to increase the detection accuracy of
moving objects. In Arnal et al, the visual inspection within an automobile production line
is performed using the local optical flow method of Lucas Kanade to inspect defects within
car body surfaces[6]. Specifically, approaches such as image fusion techniques, deflectome-
try principle, and optical flow are evaluated to detect small deformations within car body
surfaces. As small defects cause the surface to become non-specular or less specular, small
defects such as dings and dents cannot be detected by fusion image techniques and de-
flectometry principles. Specifically, these methods rely on the triangulation method and
deviation of light change in the shape of the pattern to detect the presence of defects. As
small defects can appear less specular, the research study applies a combination of optical
flow and deflectometry principal approach to detect anomalies of different dimensions[6].
For the computation of global optical flow, Dosovitskiy et al, estimates the motion through
the deep learning-based optical flow to perform motion detection[34].
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As optical flow assumes brightness constancy, additional motion-based segmentation
techniques can be applied within manufacturing to distinguish between foreground and
background objects. In their work, Chen et al, detect motion-based objects in a surveillance
system using low-rankness with a regularization method[44][17]. Background subtraction
techniques can be applied within manufacturing systems, which can distinguish the fore-
ground from the background in video frames. Additionally, in Rembold et al, the detection
and handling of rectangular-shaped objects within the conveyor belt are evaluated using
the methods: background monitoring, template refreshing, and template library. Within
the first method, the background of the video is set as the template and the search window
measures distortion within the template to detect the presence of the moving object. Al-
though the background monitoring method detects the presence of moving objects, factors
such as illumination variation, and a lower quality of grid granularity in the template can
result in decreased detection accuracy of the position and rotation of the object. There-
fore, to accurately detect object position and orientation, the second method detects the
foreground object using a binary image, in which the change in pixel intensity indicates the
presence of the moving object. With the detection of the foreground object, the second
method refreshes the template to detect the presence of the next incoming object. As
the template refreshing method is unable to detect concave objects, a template library is
created using the third method, in which objects, at different orientations and positions,
are saved into memory. With template matching, moving objects at different positions and
orientations are detected in the video frames[74].

Additionally, sensor-based techniques are also applied to detect motion in manufactur-
ing systems. In Chavez-Garcia et al, the color sensor and metal detector are applied to
detect the spatial features of the object. Additionally, an ultrasonic distance detection
sensor is placed on the conveyor line to monitor the movement of the moving object within
different regions of the conveyor belt. With the application of vision-based and sensor-
based detection, assembly parts with defects can be detected and identified for separation
in the assembly line[16].

3.1.2 Moving Object Tracking

As moving assembly parts can be detected and identified within the assembly machines
using real-time detection techniques, motion tracking methods are applied to track the
movement of the detected object in consecutive frames. Through object tracking, the
spatiotemporal part characteristics in each frame can be obtained for comparison with
normal behavior part characteristics and to perform anomaly detection. Therefore, var-
ious object tracking methods are applied within manufacturing systems to continuously
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track objects in presence of limited visual characteristics and with varying anomaly spec-
ifications for the real-time surveillance system. In Burt et al, the method focuses on ap-
plying high-speed feature detection and hierarchical scaling of images to perform real-time
surveillance[44][45]. Wiklund et al apply image differencing methods to perform motion
tracking of objects[5][13]. In Goldberg et al, motion tracking is performed using temporal
filtering with vision hardware[44]. In Wessel et al, real-time application of motion tracking
is performed using Horn and Schunk’s method[5]. In his research study, Safadi applies a
tracking filter and a pyramid-based vision system to perform motion tracking[5].Durrant-
White and Rao apply a Kalman filter-based tracking to track object motion using multiple
cameras[5]. Miller integrates a camera and an arm to perform a tracking track, in which
the kinematic and control parameters of the system serve as the learning objective[5]. In
Koller et al, the motion tracker consisted of two Kalman filters, in which the first filter
was estimated for the position and the second filter was used for the shape estimation of
moving vehicle traffic[93]. Similarly, Meyer applied motion filtering toward position esti-
mation through the application of a motion filter to measure the affine parameters of an
object[93].

3.1.3 Temporal Segmentation

Through the application of object detection and motion tracking, the moving assembly
parts are detected in real-time, and the parts are tracked in consecutive frames using
motion. As spatiotemporal characteristics of parts can be segmented using the following
computer vision techniques, the limitations in visual characteristics result in decreased ac-
curacy in the performance of real-time object detection and motion tracking methods. In
order to increase accuracy in spatiotemporal segmentation, supervised and unsupervised
temporal segmentation methods can be performed within manufacturing applications. In
Nakamura et al, semi-supervised temporal segmentation is applied to segment a specialized
vehicle for manufacturing applications[64]. To perform supervised segmentation, Zhao et
al apply a two-stream network architecture for action localization, in which one stream
applies feature extraction from input video frames and the other stream, computes the
optical flow of features extracted[56]. Temporal segmentation can be applied in manufac-
turing to perform action recognition and detect external disturbances caused due machine
operator activity. In a similar case, Zhou et al performed the unsupervised task of ac-
tion segmentation through the maximization problem of the clustering score. Specifically,
the method divides the input frames into segments in order for the clustering score to be
maximized[104].
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3.2 Appearance-based Features

This section outlines appearance-based segmentation methods applied to detect parts in
real-time within the automated assembly system. Based on the part spatial characteristics,
the related works focus on various appearance-based segmentation such as pixel-based
characteristics and supervised object detection methods to group similar foreground objects
within the manufacturing image datasets.

Figure 3.2: Taxonomy of appearance-based techniques to segment foreground objects based
on spatial characteristics

3.2.1 Pixel-based Segmentation

As motion-based methods allow characterization and segmentation of parts based on shared
motion characteristics, appearance-based methods can be applied to segment parts based
on spatial features such as texture, color, and shape. In order to detect part irregulari-
ties within assembly machines, detection and segmentation of spatial part characteristics
in each frame can be compared with normal spatial characteristics of parts. In texture
segmentation, the features can be segmented using methods such as wavelength transform,
morphological filter, Gabor filter, etc. Farrokhnia et al applied texture features, calculated
from Gabor filters, to classify the uniformity of the painted metallic surface[90]. Serra et
al applied morphological operations to detect defects in wood. Similarly, Distante et al
applied oriental texture analysis with a morphological approach for leather inspection[90].
Additionally, color-based segmentation can be applied to perform defect detection in var-
ious industrial applications. Specifically, in detecting defects within the food production
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Figure 3.3: Taxonomy of pixel-based techniques to segment spatial characteristics: texture,
shape and color of foreground objects

line. As the food production line requires vision-based tasks related to enhancement,
recognition, and visualization, the color-based methods allow segmentation of assembly
products in presence of limited visual characteristics. In Loresco et al, color space analysis
is performed using KNN for lettuce crop stages identification in a smart farm setup. Specif-
ically, K-nearest neighboring is used to perform image segmentation for the RGB, HSV,
and YCbCr color spaces[52]. Different color-based segmentation methods are applied to
obtain the best color space for the identification of the different growth stages within the
agricultural process. Similarly, pixel-based methods can be applied in the segmentation of
object shapes. As assembly machines assume the same shape of part type, shape-based
segmentation can be used to detect spatial anomalies such as missing objects and the in-
sertion of new part-type of varying shapes. In Lou et al, watershed segmentation is applied
to extract topological features in additively manufactured surfaces and perform anomaly
detection analysis.

3.2.2 Interactive Segmentation

As limitations in visual characteristics such as occlusion, and illumination changes can re-
sult in pixel intensity variation, evaluation of pixel-based segmentation methods can show
decreased detection accuracy of assembly parts. In order to increase detection accuracy in
the presence of limited visual characteristics, user feedback can be integrated within the
vision-based system to group similar objects. In Oh et al, the method consists of applying
interactive segmentation to perform object decomposition, in which user feedback is used
for part-type segmentation and surface-type segmentation[67]. Additionally, deep learning-
based methods can be applied to perform interactive segmentation within applications in
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various industries. For example, Xue et al, apply deep learning-based interactive segmen-
tation, which applies click points and boundary boxes as inputs to train the CNN-based
model for annotation tasks[103]. Similarly, Maninis et al apply points such as left-most,
top, right-most, and bottom pixels as input to train the proposed DEXTR model in the
segmentation of objects[61].

3.2.3 Supervised Object Detection and Segmentation

Although interactive-based segmentation increases accuracy in object segmentation during
the presence of limited visual characteristics, the repeated user feedback required decreases
efficiency and causes a slower model deployment in real-time applications. Therefore, su-
pervised detection methods can be applied to segment parts accurately and efficiently. For
instance, a Region-based convolutional neural network illustrates accuracy in the detec-
tion and localization of objects within images. Mask RCNN model, an extension of Faster
RCNN, can be applied to perform region segmentation at the pixel level. To perform object
detection in images at multiple scales, Farhadi et al generate predictions at different lay-
ers of the feature extraction network. Mangat et al apply a supervised learning approach
to train object detection model and detection of low-texture objects within a manufac-
turing setting. Specifically, by applying YOLOv3 towards object detection in synthetic
manufacturing dataset[60].

3.3 Assembly Machines Videos: Anomaly Detection

This section outlines the application of handcrafted methods for spatial feature detection.
The extracted spatial part characteristics in current frame can be compared with normal
behavior part characteristics to perform spatial anomaly detection.

3.3.1 Hand-Crafted Features

To perform anomaly detection within manufacturing applications, handcrafted methods
can be used to perform feature extraction and for the detection of anomalies in various
datasets. For instance, grey level co-occurrence matrices and local binary patterns can be
applied to perform spatial feature extraction and perform surface defect detection. Spectral
feature extraction based on Gabor transforms and wavelet transforms can be applied for
defect detection in textured surfaces. The application of handcrafted methods can also be
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used in real-time crowd anomaly detection. As manufacturing video datasets consist of
temporal patterns evident in traffic and crowd activity datasets, handcrafted methods
performed in crowd activity and traffic datasets can be applied within manufacturing
datasets. For instance, Wang et al apply a spatiotemporal texture model to perform feature
extraction, in which the texture feature space is formed using wavelet transform[101].

3.3.2 Chapter Summary

This section outlines the existing related works based on the motion-based and appearance-
based segmentation methods. These methods are applied on manufacturing datasets, which
consist of similar spatial and temporal characteristics to the datasets applied in this study.
By review of these related works, the appropriate motion-based and appearance-based
segmentation methods are selected to evaluate on the conveyor system and the bowl-feeder
datasets. Specifically, in applying motion-based segmentation methods such as optical
flow and background subtraction techniques to segment moving foreground parts within
the bowl-feeder machine. The appearance-based segmentation methods based on texture
and color space analysis can be applied to segment spatial part characteristics.
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Chapter 4

Methodology

In this section, the following methods are evaluated to conduct spatio-temporal segmenta-
tion of assembly parts and to perform anomaly detection within various automated man-
ufacturing machines.The outlined bottom-up architecture is applied for motion-based and
appearance-based segmentation using computer vision techniques and deep learning-based
models. Additionally, image processing methods are evaluated to address limitations within
the visual characteristics. By addressing limited visual characteristics and segmentation of
the part characteristics, anomaly detection methods are applied on spatial features using
handcrafted methods and deep learning-based models.

4.0.1 Illumination Invariance

Figure 4.1: Overview of performing and evaluating color-space segmentation through mov-
ing parts detection in assembly machines
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As the regions within the bowl-feeder outer shelves consist of illumination variation,
the pixel intensity variation due to lighting changes results in a lower number of assembly
parts detected. To address illumination variance within the bowl-feeder regions, the image
datasets are transformed into grayscale and the hue, saturation, and value (HSV) color
space. The converted images are applied to perform background subtraction using Local
SVD Binary Pattern (LSBP) and Mixture of Gaussian (MoG) methods. As the color-space
conversion and illumination robust background subtraction address illumination variance,
increased number of foreground parts can be detected.

4.0.2 Synthetic Dataset Creation

Figure 4.2: Synthetic dataset creation of linear conveyance system with instances of normal
and anomalous behavior

As the linear conveyance dataset consists of low image resolution resulting in texture
inconsistency, the limited visual characteristics cause image registration errors due to the
failure of corresponding texture features between two extracted ROIs. To illustrate im-
age registration between extracted ROIs, a synthetic conveyor dataset is created using the
FlexSim manufacturing software. The dataset consists of conveyor belt videos with one
object transfer and multiple objects transferred at once to indicate normal and anomalous
behavior, respectively.Additional anomalous behaviors consist of part texture and orienta-
tion changes within the conveyor belt system. Similar to the real-time linear conveyance
system in manufacturing applications, the surveillance videos are captured from multi-
ple and fixed camera viewpoints. This is significant for illustrating image registration by
transforming images, of multiple viewpoints, into one coordinate system. To accurately
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detect moving parts in real-time within surveillance videos, the conveyor belt is controlled
at average speed to allow small object motion and enable accurate moving part detection
using optical flow methods.

4.0.3 Data Augmentation

In order to perform supervised object detection and segmentation, deep learning-based
methods require datasets for model training and evaluation. Due to the limited datasets
in manufacturing and limited visual characteristics such as camera movement, lower image
resolution, and occlusion, model training and evaluation results in decreased detection
accuracy. To address the challenge of the limited dataset, data augmentation techniques are
applied to the bowl-feeder datasets such as brightness intensity increase, zoom, width shift,
rotation, and horizontal flip. The brightness intensity increase was applied to train a model
for object detection with varying illumination distribution and in instances of pixel intensity
variation. The zoom parameter was introduced within the dataset to identify and detect
pixel characteristics corresponding to assembly part shape and texture. Additionally, the
parameters such as width shift, rotation, and horizontal flip were applied to change the
visual appearance of the bowl-feeder. The variational appearance of the bowl-feeder would
enable the model to detect assembly parts within different real-time applications of the
bowl-feeder machines.

Figure 4.3: Data augmentation techniques applied on the bowl-feeder dataset, which con-
sists of variational parts-feed
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4.1 Motion-based Features

In this section, the motion-based segmentation methods based on traditional computer vi-
sion techniques and deep learning models are evaluated. Specifically, in applying techniques
to perform moving object detection, pixel-based tracking, and deep learning-based segmen-
tation to visualize current and previously moved parts. Within this study, the RAFT deep
learning-based method is applied to compute the moving object flow field. The iteratively
updated flow field of RAFT is applied to create an optical flow-based tracker to visualize
current and previously moved parts in different colored segments.

Figure 4.4: Overview of motion-based segmentation method applied

4.1.1 Moving Object Detection

Figure 4.5: Initial evaluation of RAFT optical flow method for moving object detection in
digital assembly dataset
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The analysis of spatiotemporal irregularities within assembly machines is performed
by segmenting moving parts for comparison of their spatiotemporal feature characteristics
with the normal behavior feature characteristics. To conduct spatiotemporal object seg-
mentation, the moving parts are identified and localized within the videos using real-time
object detection. As all parts within a specific assembly machine consist of synchronous
or asynchronous motion, real-time part identification and localization is based on motion
characterization of base assembly parts.

Specifically, local and global methods based on traditional computer vision techniques
and deep learning-based models are evaluated to perform optical flow on various datasets of
assembly system. Additionally, RAFT is applied to detect and visualize the object motion
between consecutive frames at different thresholds of the flow magnitude, as illustrated
in 4.5. The thresholding of flow magnitude is applied to reduce noise in predicted flow
masks and reduce the application of morphological operations in the generation of flow-
based binary segmentation masks. Image processing steps are applied to extract regions
of moving objects within the bowl-feeder.

Flow-based segmentation of moving objects can consist of varying shapes and sizes.
Therefore, variational parameters are required within object contour detection and ROI
extraction steps in order to perform further spatial data analysis. To form a pipeline with
generalizable image processing steps, inverse binary masks are generated, in which the
stationary parts are visualized as regions of interest. As the dense regions of stationary
parts are mainly located within the base-shelf of the bowl-feeder machine, the inverse binary
segmentation masks would generate ROI masks of uniform shape and size. To visualize the
quiver plot in consecutive frames of bowl-feeder videos, the iteratively updated flow field is
applied, in which the arrow length and direction illustrate flow magnitude and direction,
respectively.

4.1.2 Moving Object Pixel Tracking

To perform pixel-based tracking of moving parts within the assembly machines, the iter-
atively updated flow field of the RAFT optical flow are applied to visualize previous and
current moving parts in different colored segments. The 2D flow field is also simulatenously
visualized to illustrate flow magnitude and direction of assembly parts, as illustrated in
Figure 4.6. The current and previous colored segments are visualized in white-colored and
blue-colored segments, respectively. By visualization of current and previous moved parts,
the motion-based segmentation can segment accumulated parts within the bowl-feeder base
shelf and moving parts regulating within the outer-shelves of the bowl-feeder.
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Figure 4.6: Preliminary evaluation of pixel-based tracker on digital assembly dataset for
tracking current and previously moved objects

4.1.3 Spatio-Temporal Segmentation

Figure 4.7: Initial evaluation of Space-time Graph Neural Network(ST-GNN) model on
digital assembly dataset for spatio-temporal segmentation of moving objects

In order to compare the segmentation performance of pixel-based tracker, the ST-GNN
model is applied to conduct temporal segmentation on manufacturing datasets. To perform
the temporal segmentation, the model visualizes video frame as a graph representation, as
illustrated in Figure 2.9, and learns visual correspondence in palindrome sequences. As the
query and target node are defined as the same image patch across time, the model applies
cycle-consistency to locally correspond image patches in palindrome sequences.

The model is evaluated on original videos of the bowl-feeder and digital assembly
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datasets, as illustrated in Figure 4.7. To initialize the ST-GNN model, a first-frame anno-
tation mask is generated using the RAFT optical flow method.

4.2 Appearance-based Features

Figure 4.8: Overview of the appearance-based method applied to enable automatic initial-
ization of the ST-GNN model

This section aims to highlight the appearance-based segmentation methods applied to
segment foreground assembly parts based on spatial characteristics. As spatial features can
be segmented based on pixel characteristics, user-based feedback and object classes, pixel-
based segmentation, interactive-based segmentation and supervised segmentation methods
are evaluated, respectively. The generated segmentation mask, with increased boundary
mask IoU, will be applied as first-frame annotation to enable automatic initialization of
the ST-GNN model segmentation model, as shown in methods overview in Figure 4.8.

4.2.1 Pixel-based Segmentation

As the objects can be grouped based on similar texture, shape, and color given that
pixel brightness intensity remains constant, pixel-based methods are evaluated to perform
appearance-based segmentation. As the moving parts within the vibratory bowl-feeder
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consist of a similar spatial arrangement of intensity levels within the pixel local neigh-
borhood, texture-based segmentation methods are evaluated to segment the foreground
moving parts and the background bowl-feeder surface.

The texture analysis is performed to group objects based on texture repetition and
complexity. To perform texture repetition analysis, the Gray-Level Co-Matrix (GLCM)
and Gabor filters are evaluated to characterize texture in similar objects based on pixel
orientation and intensity levels. The entropy-based method is evaluated to segment fore-
ground objects based on texture complexity. As the datasets consist of limited visual
characteristics, limitations such as illumination variance can cause pixel intensity variation
and errors in texture-based segmentation. To increase accuracy in pixel-based segmenta-
tion, shape-based and color-based segmentation methods are evaluated. Specifically, the
clustering-based meanshift segmentation and region-based techniques such as watershed
segmentation and graph-based segmentation methods are evaluated on the bowl-feeder
datasets. As illustrated in Figure 4.9, the watershed segmentation consists of perform-
ing threshold and edge-based segmentation to reduce background noise and obtain the
boundaries of foreground parts. The boundary-based edge segmentation serves as loca-
tion guidance for the superpixel generation. To reduce superpixel oversegmentation and
background segmentation, gaussian blur and K-Means clustering are applied. To segment
foreground parts based on color characteristics, the bowl-feeder datasets are converted to
the HSV color space.

Figure 4.9: Method Overview: Watershed Segmentation

4.2.2 Interactive Segmentation

As objects with similar spatial characteristics can be grouped with user feedback, manual
interactive and deep learning-based segmentation methods are evaluated. In this study,
the GrabCut annotation tool is applied to segment foreground objects from the image
background. Specifically, in applying the zoom-in feature to focus on segmenting assembly
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parts with specific shape and texture characteristics[87]. Afterward, user feedback is ap-
plied to manually segment the foreground assembly parts within the bowl-feeder machine.
The foreground objects are assigned to different classes than the background surface and
visualized using different colored segments.

To compare the performance of the manual segmentation with deep learning-based in-
teractive segmentation, the F-BRS segmentation model is applied. The model is evaluated
on the bowl-feeder datasets. By applying the interactive segmentation model, the user
guides the generation of segmentation mask at specified user-click locations.

4.2.3 Supervised Object Detection and Segmentation

Figure 4.10: Overview of the supervised segmentation method applied on the bowl-feeder
dataset

As interactive-based methods require repeated user feedback toward the generation of
object segmentation masks, the manual feedback can result in decreased system efficiency
and slower model deployment in real-time applications. Therefore, supervised segmen-
tation is evaluated to generate a first-frame annotation mask and enable an automatic
initialization of the ST-GNN model. To detect and segment foreground parts using the
supervised approach, the Detectron2 object detection model is trained and evaluated on
bowl-feeder videos consisting of variational parts-load. As the pixel intensity in foreground
image objects contributes to various color and texture characteristics, the extracted object-
based features can be applied for model training and evaluation in object detection, using
the architecture in Figure 2.13[98].

In this study, the model is trained and evaluated using an 80:20 train & test split with
200 training images and 50 test images. The training images were split into two batches
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for the application of different data augmentation techniques and for the detection of parts
boundaries with varying levels of illumination, image rotation, and distorted bowl-feeder
orientation. Specifically, Batch 1 consisted of an increase in brightness scale change zoom,
and Batch 2 consisted of applied horizontal flip with an increase in rotation width shift.
The test dataset consisted of original frames of variational parts-load such as minimally
filled and dense part clusters.

4.3 Anomaly Detection

In this section, the outlined methods are evaluated to detect spatial anomalies within the
synthetic conveyor belt dataset. Specifically, in analyzing features obtained from hand-
crafted techniques and deep learning-based methods to detect spatial irregularities within
part characteristics. The preprocessed and registered images allow accurate comparison of
spatial part characteristics with normal behavior.

4.3.1 Image Preprocessing

Figure 4.11: Overview of preprocessing methods applied to the flow-based segmentation
masks

In order to perform anomaly detection using spatial features of moving assembly parts,
image preprocessing methods must be applied to the optical flow segmentation masks.
The preprocessing methods consist of performing morphological operations to reduce the
noise in optical flow masks, applying region of interest (ROI) selection and extraction
for background subtraction, and evaluating image registration techniques to transform
extracted ROIs to the same coordinate system. As the segmentation masks generated
from RAFT contain noise such as joined segmentation masks and detected motion on
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background features, morphological techniques such as opening and closing operations
are applied. After applying preprocessing methods to the segmentation masks generated
from RAFT, the ROI selection and extraction are performed for background subtraction.
Specifically, the fine-tuned mask is used to find object contours, and the coordinates of the
largest contour area are set to the defined coordinates of the inner rectangle. By doing so,
the adjusted coordinates of the contour are used to draw a rectangle on the ROI without
including the additional background of the image. Each ROI is then extracted and saved
externally to perform image registration techniques.

4.3.2 Image Registration

Figure 4.12: Process overview of affine-based transform applied with RANSAC to ensure
robust image registration

To detect and compare spatial features of extracted ROIs to normal behavior charac-
teristics, the captured ROIs from multiple viewpoints must be transformed into the same
coordinate system. Specifically, the points are mapped from one extracted ROI to corre-
sponding points of a reference ROI within a coordinate system. By registering viewpoints
into the same coordinate system and aligning two images, handcrafted features such as
texture and color can be compared to indicate spatial anomalies such as a missing object
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or changes in part-type orientation. As the linear conveyance dataset consists of lower im-
age resolution and small dimensions of extracted ROIs, keypoint detection results in errors
and an empty feature descriptor. Therefore, the synthetic dataset is applied to demon-
strate image registration and handcrafted methods on registered images for the detection
of spatial anomalies.

In this study, the objects on the conveyor belt are captured from the side top view and
top view, in which image registration is applied to transform the two images into the same
coordinate system. As illustrated in Figure 4.12, the image registration process is initialized
with the inputs: source image, target image, the minimum number of corresponding points
to estimate the affine matrix, and threshold value to define outliers in RANSAC. The source
image serves as a reference to map the target image coordinates to its corresponding points
within the reference coordinate system. Afterward, the Scale Invariant Feature Transform
(SIFT) features are extracted and matched between the two images. Specifically, the
SIFT descriptors of the input source and target images are matched. To choose the best
matches of descriptors, the L2 distance metric is applied to filter out descriptors closest
to each other.A match ratio is applied to filter out the best matches of descriptors. To
ensure robust feature matching, the thresholding value is applied to remove outliers. The
corresponding points are applied as an input in the RANSAC algorithm to estimate the
affine transformation matrix between the two images. The image registration will be
applied on the synthetic conveyor belt dataset. Additional image registration techniques
were applied with varying object texture; however, variation in pixel intensity and lower
image resolution can result in image registration errors[71].

4.3.3 Hand-Crafted Features

In order to compare the spatial features between aligned images, handcrafted methods such
as color and texture descriptors are applied to detect spatial anomalies such as changes in
part orientation and part type, as shown in Figure 4.13. In this study, the Histogram of
Oriented Gradients (HOG), and the color descriptor are applied to compare shape and color
features between two images, respectively. The HOG descriptor measures the frequency of
gradient orientation within a localized region of an image. To compute the shape features,
the HOG descriptor applies the magnitude and angle to generate a histogram of oriented
gradients. The HOG descriptors generated from two images can be compared using Eu-
clidean distance. This is significant as an increased Euclidean distance between descriptors
indicates the presence of spatial anomalies such as missing objects and changes in part
orientation. Additionally, color descriptors were also applied to detect spatial anomalies
such as the absence of parts. Specifically, as the color descriptor calculates the histogram of
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Figure 4.13: Process overview of the hand-crafted methods applied on the post-processed
Region of Interests (ROI) extracts

the red, blue, and green channels, the absence of a blue assembly part within the assembly
cell would be indicated by a decreased count of the blue channel.

4.3.4 PatchCore Anomaly Detection

To compare the performance of handcrafted methods with deep learning-based anomaly
detection methods, the PatchCore anomaly detection model is applied to the synthetic
linear conveyance dataset. The PatchCore anomaly detection model consists of a pre-
trained network on ImageNet classes[75]. In order to detect anomalies using the deep
learning-based method, the model is trained and evaluated on normal and anomalous
classes of the conveyor dataset, respectively. The normal class consisted of one object
on the conveyor belt, and the anomalous class consisted of variations such as the object
color and multiple objects moving on the conveyor belt. To perform model training and
evaluation, the model was trained on 300 nominal images and evaluated on 114 images
and ground-truth annotations of anomaly variations with 20 images of normal class. The
moving objects for the training and testing images with ground-truth annotation masks
were detected using the RAFT optical flow. Morphological operations and ROI extraction
are applied as preprocessing steps to segment flow-based segmentation masks.

During model training, the nominal samples are broken into neighborhood-aware patch
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level features as input into the memory bank, as illustrated in Figure 4.14. To reduce
inference time, the neighborhood patches within the memory bank are down-sampled using
greedy coreset sampling. In model evaluation, the anomalies within the conveyor dataset
are classified if a minimum of one patch is anomalous. After detection of anomalies during
the model evaluation, a pixel-level anomaly segmentation map for anomaly localization is
generated using patch-feature scoring[75].

Figure 4.14: PatchCore deep learning-based anomaly detection method applied on syn-
thetic conveyance dataset

4.4 Chapter Summary

This section outlined the methods evaluated to perform motion-based and appearance-
based segmentation of foreground assembly parts within the various automated manufac-
turing machines. Specifically, in exploring traditional and deep learning-based methods to
increase accuracy of moving object detection. The pixel-based tracker and the ST-GNN
models are compared to evaluate segmentation accuracy of foreground objects. To enable
automatic initialization of ST-GNN model, appearance-based segmentation methods are
explored. Specifically, pixel-based, interactive-based and supervised segmentation methods
to accurately detect foreground parts based on spatial characteristics. Additionally, the
preprocessing methods are outlined, which reduce limitations in visual characteristics. The
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handcrafted and deep learning-based methods are outlined to perform anomaly detection
on processed datasets.
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Chapter 5

Experiments & Results

This section outlines the qualitative and quantitative results generated from the evaluation
of motion-based and appearance-based segmentation methods. To segment foreground as-
sembly parts based on shared temporal characteristics, motion-based segmentation meth-
ods such as moving object detection, object tracking and temporal segmentation were
performed. To segment foreground assembly parts based on their shared spatial charac-
teristics, the appearance-based methods of pixel-based, interactive-based and supervised-
segmentation were performed. The spatial features consist of parts texture, color and shape
characteristics.

By using pixel characteristics, user-based feedback and object classes, the appearance-
based methods accurately segmented foreground parts. Additionally, this section illustrates
and compares spatial anomaly detection results generated using handcrafted methods and
deep learning model. In this study, motion-based and appearance-based segmentation
were performed and compared on various instances of bowl-feeder machine. Different ap-
plications of bowl-feeder consisting of variational parts-load and illumination variance were
applied due to data availability at the time of experiment with respective methods. Meth-
ods evaluation on such dataset characteristics improved method robustness and accuracy
of results.

5.1 Illumination Invariance

The bowl-feeder machine consists of foreground moving parts, as illustrated using manual
annotation in Figure 5.1. As the datasets consisted of limited visual characteristics such as
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illumination variance, color-space conversion and illumination robust background subtrac-
tion techniques were applied to the bowl-feeder image dataset.The objective was to reduce
limited visual characteristics by applying color-space conversion and background subtrac-
tion techniques. The experimental setup consisted of initially applying color-space conver-
sion and then performing background subtraction techniques on the converted images to
assess illumination robust moving object detection. Based on the results in Figure 5.2, the
illumination robust Local SVD Binary Pattern (LSBP) background subtraction method
showed increased moving parts detection than Mixture of Gaussian (MOG) method. This
is significant as the LSBP method compares the local pixel values to calculate structure
modelling of local image regions. In comparison to background subtraction MOG, LSBP
consists of increased robustness to cast shadows and illumination variance.

5.2 Motion-based Features

In this section, the motion-based segmentation was performed by evaluation of moving
object detection, pixel-based tracking and spatial-temporal segmentation methods. By
performing motion-based segmentation, the foreground moving objects would be segmented
based on shared motion characteristics.

5.2.1 Moving Object Detection

To perform motion-based segmentation of foreground assembly parts, moving object de-
tection was applied to detect parts based on shared temporal characteristics. Motion
characteristics such as synchronous or asynchronous parts regulation within assembly ma-
chines. Therefore, techniques such as local Lucas-Kanade and global Gunnar-Farneback
optical flow methods were evaluated to detect and segment moving parts. In presence of
limited visual characteristics, the traditional local method would reduce noise in object de-
tection using sparse feature detection and extraction. The experimental setup consisted of
performing independent evaluation of local and global method on the bowl-feeder dataset.
Based on the results in Figure 5.3, the local method detected increased number of objects
within outer-shelves of the bowl-feeder and simultaneously visualized the flow direction
of detected objects. In comparison to the local optical flow, the global gunnar-farneback
method showed increased number of object detection within the bowl-feeder machine. This
is significant as the global method computed optical flow using dense feature detection and
extraction. Therefore, the results in Figure 5.3 and 5.4 illustrated increased accuracy in
object detection using the global method in comparison to the local method.
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Figure 5.1: Manual annotation of all foreground parts within the bowl-feeder machine

In order to increase detection accuracy in presence of limited visual characteristics such
as illumination variance and occlusion, the deep learning-based RAFT method was applied
to compute optical flow. The RAFT optical flow performs multi-scale feature extraction
to detect moving objects. The method was applied on various manufacturing machines
datasets such as the digital assembly line, linear conveyance system and vibratory bowl-
feeder machine. In comparison to the traditional methods, RAFT illustrated increased
object detection in presence of occlusion and illumination variation. In Figure 5.5, the
segmentation masks generated using RAFT showed decreased mask IoU and increased
alignment with parts boundary. This is significant as the RAFT feature network attenuates
noise in detection by performing multi-scale feature detection and extraction. The 2D flow
field in section c of Figure 5.5 illustrates the flow magnitude using variation in vector length
and parts movement in counter-clockwise direction.

The RAFT method was applied to conduct separate detection analysis studies, in which
the moving and stationary foreground objects were detected, respectively. Inverse binary
segmentation masks were generated to detect and segment stationary objects. By detection
of stationary objects, the generated segmentation masks would consist of uniform shape
and size as most accumulated parts were located within the base shelf of the bowl-feeder.
Therefore, decreased preprocessing steps such as morphological operations and ROI ex-
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Figure 5.2: Application of color-space conversion and background subtraction techniques
for robustness to illumination variation, noise and shadows

traction would be required to perform on the segmentation masks. Based on the results in
Figure 5.6, RAFT accurately detected and segmented moving objects within bowl-feeder
in comparison to detection of stationary objects.

5.2.2 Moving Object Pixel Tracking

As RAFT accurately detected the foreground moving objects within the automated ma-
chines, its iteratively updated flow field is applied to create a pixel-based tracker. The
objective of the pixel-based tracker was to differentiate previous and current moving parts
in different colored segments and simulatenously visualizes the flow field to illustrate flow
magnitude and direction. Based on the results in Figure 5.7, the tracker accurately seg-
mented the current and previously moving parts in the bowl-feeder and the digital assembly
datasets. For instance, the tracker accurately visualized the previous moved parts within
the base shelf in blue-colored segments. As the parts within the outer-shelf moved more
frequently than accumulated parts within base-shelf, the tracker accurately visualized them
in white-colored segments. Additionally, the evaluation of pixel-based tracker on the digi-
tal assembly dataset illustrated segmentation of current and previously moved parts using
similar visual characteristics.
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Figure 5.3: Lucas Kanade optical flow applied to detect foreground moving parts in real-
time. Detected parts segmented in grayscale masks

5.2.3 Spatio-Temporal Segmentation

Although the pixel-based tracker accurately segments the moving objects, the generated
segmentation masks consisted of increased boundary IoU, which resulted in the segmenta-
tion of foreground moving parts and background surface of machines. The different colored
segments would increase the preprocessing steps to select and extract the region of inter-
ests. To increase accuracy in segmentation boundary mask IoU with parts boundary, the
space-time graph neural network (ST-GNN) was evaluated on the bowl-feeder and digital
assembly datasets. The experimental setup consisted of evaluating the ST-GNN model on
the vibratory bowl-feeder, linear conveyance and digital assembly dataset. Based on the
results in Figure 5.9, the ST-GNN model accurately generated a segmentation mask in
alignment with the parts boundary of rotational indexer and the robotic manipulator.
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Figure 5.4: Gunnar Farneback optical flow method applied to detect moving foregrounds
parts in real-time. Flow direction of detected parts visualized using color variation of
segmentation masks

5.3 Appearance-based Features

As the ST-GNN model was applied to proceed with motion-based segmentation, the
appearance-based segmentation techniques were evaluated to generate the first-frame an-
notation mask. The generated first-frame annotation mask would enable automatic ini-
tialization of the ST-GNN model.To perform appearance-based segmentation, pixel-based,
interactive-based and supervised segmentation methods were evaluated on the bowl-feeder
image dataset.

5.3.1 Interactive Segmentation

To group and segment similar foreground objects based on the user-based feedback, the
F-BRS deep learning-based interactive segmentation and GrabCut manual segmentation
methods were evaluated on the bowl-feeder datasets. Figure 5.10 illustrates the appli-
cation of appearance-based segmentation methods, which applied user-based feedback to
segment foreground assembly objects. In specific, the manual segmentation using Grab-
Cut annotation tool and the F-BRS interactive deep learning-based model. Based on the
methods evaluation in Figure 5.10, the results illustrated increased segmentation accuracy
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using manual segmentation in comparison to the segmentation performance of F-BRS deep
learning-based model.

5.3.2 Pixel-based Segmentation

Although the manual interactive-based method illustrated increased accuracy in segmen-
tation of the foreground objects, the method required repeated user-based feedback thus
decreasing method efficiency. To group object based on spatial characteristics such as tex-
ture, shape and color, pixel-based segmentation methods were evaluated. The experimental
setup consisted of independent evalution of various pixel-based segmentation techniques on
the bowl-feeder image dataset.Based on the results in Figure 5.12, the region-merging seg-
mentation techniques of Watershed segmentation accurately segmented foreground parts
than the texture-based segmentation methods, as illustrated in Figure 5.13. With Gaus-
sian blur and K-means clustering applied, the Watershed segmentation accurately sepa-
rated the foreground objects without superpixels oversegmentation. Although the texture
segmentation using GLCM and Gabor filters detected foreground parts, additional pre-
processing steps would be required to extract ROIs of irregular shapes and size. The
entropy-based segmentation illustrated decreased accuracy in foreground segmentation as
background parts with similar texture characteristics were also segmented. In Figure 5.14,
the clustering-based Meanshift method accurately segmented dense cluster parts in com-
parison to the Graph-based segmentation method applied. To conclude, the region-merging
Watershed segmentation and clustering-based segmentation accurately segmented the fore-
ground object shapes than the texture-based segmentation methods.

The pixel-based segmentation accurately segmented the foreground parts within the
bowl-feeder than interactive-based segmentation method. Due to the pixel intensity varia-
tion and limited visual characteristics, the pixel-based segmentation resulted in decreased
accuracy.

5.3.3 Supervised Object Detection and Segmentation

To increase accuracy in segmentation of foreground parts, the supervised segmentation
was applied using the Detectron2 detection model. The deep learning model was trained
on augmented datasets of the bowl-feeder machine. The model evaluation was performed
on the original bowl-feeder datasets, which consisted of variational parts load. Based on
the results in Figures 5.17 and 5.18, the Detectron2 model accurately segmented all of
the foreground parts in presence of limited visual characteristics. Model generalization
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was performed to evaluate detection accuracy on various other instances of the bowl-
feeder machine. Figure 5.17 shows missed detection of assembly parts within the various
bowl-feeder machines. To conclude, the Detectron2 model evaluation illustrated increased
detection accuracy in original bowl-feeder dataset than in evaluation on other bowl-feeder
instances.

5.4 Anomaly Detection

In order to perform anomaly detection in spatial part characteristics, handcrafted methods
and deep learning-based models were evaluated to detect spatial irregularities within the
part characteristics. The preprocessed and registered images were applied to increase
accuracy in feature extraction and comparison with normal behavior part characteristics.

5.4.1 Image Preprocessing

To detect spatial anomalies within moving assembly parts, the RAFT optical flow method
was primarily applied to detect moving parts and generate the parts segmentation masks.
Therefore, the experimental setup for image preprocessing consisted of moving object de-
tection using RAFT, morphological operations applied on segmentation masks and ROI
extraction. In Figure 5.19, the preprocessing methods such as morphological operations
and ROI selection were performed to attenuate noise and extract the ROIs from the back-
ground surface. Based on the evaluation in Figure 5.19, ROIs of uniform shape and size
were extracted for detection of spatial anomalies.

5.4.2 Image Registration

As the assembly parts were captured from multiple camera viewpoints, affine-based im-
age registration was applied to transform images into one coordinate system. The image
registration is significant for comparison of spatial characteristics between aligned images.
The experimental setup consisted of extracting and matching SIFT features between the
read source and target images. The closest matches of descriptors between the two images
and correspondence selection were applied to estimate the affine transformation matrix for
image registration. Based on the results in section c of Figure 5.19, the input target im-
age with top view was completely aligned to the side top viewpoint of the input reference
image. The higher image resolution in synthetic manufacturing dataset was significant for
robust image registration.
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5.4.3 Hand-Crafted Features

To compare the spatial features of two extracted ROIs for anomaly detection, the experi-
mental setup consisted of extracting spatial handcrafted features such as color and texture
on the various manufacturing datasets. Specifically, in Figure 5.19 and 5.20, the hand-
crafted method and deep learning-based methods were applied to detect spatial anomalies
such as missing parts, changes in part-type orientation and color. Based on the results in
Figure 5.19, the handcrafted methods such as texture and color descriptors illustrated de-
tection of missing object. In specific, the indication of missing objects through the changes
in texture gradient orientations of the HOG texture descriptor. The variation within the
RGB values of the color histogram also indicated the absence of blue-rectangular object
within the assembly cell. Specifically, the increase in the value of the red color channel of
the color histogram, as illustrated in section b of Figure 5.19.

5.4.4 PatchCore Anomaly Detection

To compare the anomaly detection performance of the handcrafted methods, the deep
learning-based PatchCore anomaly detection method was evaluated on the synthetic dataset
of the conveyance system. As the original surveillance videos of the conveyance system
consisted of lower image resolution, a synthetic dataset was generated to address limited
visual characteristics and reduce image registration errors. The synthetic dataset consisted
of spatial anomalies such as the presence of multiple parts, changes in part-type orientation
and color. Based on the results in Figure 5.20, the PatchCore anomaly detection accu-
rately detected and localized spatial anomalies within the moving parts of conveyor system.
The method generated segmentation map to localize and illustrate spatial anomalies. The
segementation map accurately localized the spatial anomalies consisting of multiple parts
present and color change of part.

5.5 Chapter Summary

This section presented the visualizations and quantitative results generated using the
motion-based and appearance-based segmentation methods. The evaluation of traditional
and deep learning-based motion segmentation techniques increased accuracy within mov-
ing object detection, object tracking and temporal segmentation. Based on evaluation
of moving object detection techniques, the deep learning-based optical flow outperformed
the traditional local and global methods in presence of limited visual characteristics. In
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comparison to the pixel-based tracker, the results illustrated increased accuracy in parts
segmentation using the ST-GNN model. To enable automatic initialization of the ST-GNN
model, the supervised appearance segmentation method outperformed the interactive-
based and pixel-based segmentation methods. The evaluation of handcrafted methods
and deep learning-based model accurately detected the spatial anomalies within the man-
ufacturing datasets. To conclude, various motion-based and appearance-based methods
were evaluated to increase accuracy in temporal and spatial parts segmentation.
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Figure 5.5: Deep learning-based RAFT optical flow applied: digital assembly
(a),conveyance system (b), and vibratory bowl-feeder(c). Flow direction and magnitude of
parts illustrated using varied colors and color intensity, as shown in color wheel (d)
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Figure 5.6: Comparison of stationary and moving parts detection using RAFT optical flow
method. Illustration of ROIs generated from flow-based detection
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Figure 5.7: Temporal segmentation of current and previously moved objects using optical
flow-based tracker 60



Figure 5.8: Evaluation of motion-based segmentation methods for moving part detection
and segmentation

Figure 5.9: Temporal segmentation of foreground moving assembly parts with Space-Time
Graph Neural Network (ST-GNN) model
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Figure 5.10: Comparison of manual and deep learning-based interactive segmentation
methods: GrabCut Manual Annotation Tool(b) and f-BRS segmentation model(a)
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Figure 5.11: Evaluation of interactive-based segmentation methods for part detection and
segmentation based on spatial part characteristics

Figure 5.12: Region-merging Watershed segmentation method applied to detect and seg-
ment spatial part characteristics
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Figure 5.13: Texture-based methods: GLCM, Gabor filter and Entropy-based segmentation
applied to perform foreground parts segmentation based on texture-analysis

Figure 5.14: Comparison of region-based Graph segmentation (left) and clustering-based
Meanshift segmentation (right) to perform detection and segmentation of bowl-feeder parts.
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Figure 5.15: Color-based segmentation of foreground parts using the Value (luminance)
channel of HSV color-space

Figure 5.16: Evaluation of pixel-based segmentation methods for part detection and seg-
mentation based on spatial characteristics
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Figure 5.17: Application of supervised segmentation method using Detectron2 to detect
and segment spatial part characteristics

Figure 5.18: Evaluation of supervised-based segmentation methods for part detection and
segmentation based on object classification
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Figure 5.19: Application of preprocessing methods applied to optical flow-based segmenta-
tion masks and image registration to align images, captured from multiple view points, to
one coordinate system(a) and (c). Handcrafted methods applied to detect spatial anoma-
lies in registered images(b). 67



Figure 5.20: Application of PatchCore deep learning-based anomaly detection method to
detect the spatial anomalies. Results of spatial anomaly detection compared with hand-
crafted features.
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Chapter 6

Discussion & Conclusion

In this section, an analysis is performed to assess the results generated from the evaluation
of appearance-based and motion-based segmentation methods. Additionally, the evalua-
tion of preprocessing methods is discussed to improve spatial anomaly detection within
manufacturing datasets.

The surveillance videos of various automated assembly systems consist of limited vi-
sual characteristics such as illumination variance, occlusion, and lower image resolution.
As the limitations in visual characteristics can result in pixel intensity variation, the inten-
sity changes cause errors in moving object detection and image registration. To address
these limited visual characteristics, methods such as color-space segmentation and syn-
thetic dataset creation are applied to illustrate illumination invariance and higher image
resolution. The color-space conversion is applied to transform the dataset into the Hue,
Saturation, and Value (HSV) color space, as illustrated in Figure 5.15 of Experiments
Results section. Color-space conversion is applied to bowl-feeder image datasets such as
grayscale and HSV color space. The converted images are applied to perform the back-
ground subtraction methods and assess the accuracy of moving object detection. The
illumination invariance is significant towards an increase in parts detection accuracy in
bowl-feeder regions with varying illumination.

Based on the background subtraction evaluation, the illumination robust LSBP back-
ground subtraction method resulted in a higher number of detections. As illustrated in
Figure 5.2, the LSBP background subtraction shows increased moving parts detected than
MOG method. To address the lower image resolution, the synthetic dataset of the linear
conveyance system is created with a higher image resolution. By the creation of a syn-
thetic dataset with various anomaly instances consisting of multiple camera viewpoints,
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image registration is successfully applied to transform various images into one coordinate
system. To address the limited dataset challenge within manufacturing applications, data
augmentation methods are applied to train and evaluate models with supervised learn-
ing approaches. The data augmentation techniques such as brightness intensity increase,
zoom, and image rotation increase spatial detection of parts in varying visual instances.
The data augmentation techniques such as zoom and brightness intensity change also in-
crease accuracy in the detection of parts shape and texture.

To detect moving objects in real-time, the local optical flow method of Lucas Kanade
is evaluated, which estimates the sparse motion between two consecutive frames using the
corner features extracted. To solve for the pixel displacement between consecutive frames,
the Lucas Kanade method assumes brightness consistency, as illustrated in Equation 6.1,
in which the pixel brightness intensity with respect to changes in pixel position Ix,Iy in
consecutive frames over time, It, remains the same. The constant pixel intensity values in
spatial and temporal derivatives allow solving for the unknown parameters u and v, which
represent the pixel displacement in x and y directions, respectively. To resolve the apera-
ture problem of single gradient pixel direction and indicate true object motion, the local
method assumes constant motion among neighboring pixels in a defined region, as outlined
in Equation 6.2. This is significant as the optical flow velocity vector, v in Equation 6.2, is
valid in regions, defined within matrix A, over the spatiotemporal derivative. The optical
flow velocity vector is obtained by solving the least square approximation in Equation 6.3.
Specifically, the matrix, A⊤A, represents the structure tensor of an image at point p, in
which the larger matrix eigenvalues λ meet the assumption of constant motion within the
local neighborhood of pixels. This is significant as the structure tensor matrix,A⊤A, used
to valid image regions for the optical flow application resembles the parameters outlined
in the Harris Corner Detector. Therefore, to ensure accuracy in real-time moving object
detection with optical flow, the features extracted from the Harris Corner Detector are ap-
plied as corners consist of higher eigenvalues, illustrated in Figure 6.1. Based on the local
method evaluation, the results illustrated fewer parts detected in outer shelves, which vary
through different regions within the shelves. This is significant as the parts in the base
shelf rotate at a higher rate than in parts within the higher shelves. Therefore, the pixels
of a moving object within the base shelf consist of small motion thus resulting in a higher
number of detections in the base shelf.

Ixu+ Iyv + It = 0 (6.1)
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...
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...
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p∈P IyIt

]
(6.3)

Figure 6.1: Classification of Image Points as Edges and Corners[8]

To increase real-time detections of moving objects, the global Gunnar-Farneback opti-
cal flow method was applied, which estimates the dense motion between two consecutive
frames based on polynomial expansion. Based on the Gunnar-Farneback evaluation, the
results illustrated an increased number of part detections on the outer shelves of the bowl-
feeder than on the base shelf accumulated with parts consisting of small motion. Within
the regions of outer shelves, the real-time detection of parts is intermittent. This is sig-
nificant as the outer shelves consist of background regions with illumination variation and

71



continuous rotation of circular parts, which have varying surface colors. This illustrates
the failure to meet the brightness consistency assumption and the constant pixel intensity
values. The changes in pixel intensity of parts due to variation in illumination and surface
color reflectance resulted in intermittent real-time parts detection. Therefore, the coeffi-
cients, in Equations 6.4, cannot be equated and solved for pixel displacement as increased
unknown parameters exist due to changes in pixel intensity values. In comparison to the
local method of Lucas Kanade optical flow, the Gunnar-Farneback method illustrated an
increased number of detections. This is significant as the local method applies motion
estimation for features detected using Harris corner detectors. As the outer shelves of
the bowl-feeder consist of illumination variation, the failure in brightness consistency as-
sumption results in fewer detections. Specifically, fewer detections resulted as part regions
with most discontinuities in illumination, surface reflectance, depth, and surface normal
are exposed to the lighting distribution changes within the bowl-feeder surface. Whereas,
the global Gunnar-Farneback method approximated motion estimation for all pixels within
the image thus resulting in an increased number of parts detected even in presence of the
illumination variation.

A2 = A1

b2 = b1 − 2A1d

c2 = dTA1d− bT
1 d+ c1.

(6.4)

In comparison to the moving parts detection using traditional global and local methods,
the application of the deep learning-based model RAFT resulted in an increased number
of moving parts detections. As the traditional local Lucas-Kanade and global Gunnar-
Farneback methods assume brightness constancy and smooth flow, the pixel intensity vari-
ation due to illumination variation and occlusion in varying bowl-feeder regions result in
missed part detections. Although the global RAFT deep learning-based method assumes
smooth flow and brightness constancy, the integration of patch-based feature extraction
using different filter sizes attenuates noise in image regions with varying illumination. In
order to address the large displacement of assembly parts, the RAFT method also applies a
correlation volume, which is constructed using the multi-scale filters of the 4-layer correla-
tion pyramid. The different filter sizes allow the detection of smaller and larger objects with
large displacement using multi-scale features. With the integration of a multi-scale feature
network and the 4-layer correlation pyramid, the deep learning-based method allows for
increased moving object detection in presence of limited visual characteristics. In compari-
son to the RAFT method, this is significant as the Gunnar-Farneback method illustrated a
lower number of moving parts detections. Specifically, due to the failure in brightness con-
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stancy assumption, which prevented tracking pixel displacement in consecutive frames due
to pixel intensity changes. The pixel intensity changes caused an increase in the unknown
parameters to solve for pixel coefficient displacement using the polynomial expansion. As
the RAFT optical flow method outperformed traditional local and global optical flow, the
iteratively updated flow field of RAFT was applied to compute optical flow and create a
pixel-based tracker. Based on the RAFT optical flow evaluation to detect moving objects
and stationary objects as separate studies, the results showed increased accuracy in the
detection of moving objects in comparison to the detection of stationary objects. The
application of RAFT to detect stationary objects resulted in failed detections as the flow
magnitude threshold value of object motion was declared to be 0. This is significant as the
inverse binary masks generated not only detected foreground stationary objects but also
background objects, which remained stationary. Therefore, the iteratively updated flow
field of moving objects in consecutive frames was applied to create a pixel-based tracker.
Based on the moving object detection using RAFT, the 2D flow field visualization illus-
trated accuracy in assembly parts motion. Specifically, the accumulated parts within the
base-shelf consist of small motion, whereas the outer shelves with less comparative parts
consist of larger motion displacement in a counter-clockwise direction.

As the RAFT method illustrated only current real-time moving objects, the pixel-
based tracker was created to illustrate current and previous moving parts within the various
automated assembly machines. The tracker differentiated the previous and current moving
parts in different colored segments and simultaneously visualized the flow field to illustrate
the movement direction and magnitude. Based on the pixel-based tracker evaluation, the
results visualization accurately illustrated the counter-clockwise movement of assembly
parts within the various automated assembly machines. Specifically, the counter-clockwise
movement of bowl-feeder assembly parts, the rotary indexer motion in a counter-clockwise
direction, the movement direction of the robotic manipulator, and the assembly plate
within the digital assembly. The pixel-based tracker illustrated the current moving objects
and previously moved objects in white and blue colored segments, respectively. Based on
the results visualization, the tracker correctly visualized the assembly parts within the base
shelf in the blue-colored segment as the parts move less frequently in comparison to the
moving parts in the outer shelves of the bowl feeder. As the moving parts in the outer
shelves of the bowl-feeder move more frequently and with larger motion displacement, the
tracker correctly visualized the current moving parts in a white-colored segment.

In order to compare the segmentation performance of the pixel-based tracker with the
deep learning-based segmentation model, the space-time graph neural network (ST-GNN)
model was applied. Based on the ST-GNN model evaluation, the generated segmentation
masks consisted of decreased boundary IoU, which resulted in increased alignment accuracy
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of segmentation masks with parts boundary. In comparison to the ST-GNN segmentation
performance, the pixel-based tracker consisted of increased boundary IoU, which resulted
in overlapping segmentations of parts and bowl-feeder background surface. Therefore, the
ST-GNN model illustrated increased accuracy in segmentation performance than the pixel-
based tracker. Additionally, as the pixel-based tracker visualized moving parts in different
colored segments, the region of interest extraction can be challenging in presence of masks
with varying shapes and colors. As the ST-GNN model addressed the limited dataset
challenge by learning visual correspondence as a contrastive random walk in palindrome
sequences, the ST-GNN was applied further to perform motion segmentation in surveillance
videos of various assembly machines.

To reduce repeated manual annotations and accelerate model deployment in real-time
production, the model initialization was automated to generate a first-frame annotation
mask. Appearance-based segmentation methods were evaluated to group objects based
on pixel similarity, user-based feedback, and classes defined within a pre-trained object
detection model. As the image regions located within the bowl-feeder machine consisted of
discontinuities in illumination, surface-reflectance, orientation, and depth, local variances
existed within pixel intensity. An example of such discontinuities is illustrated in Figure
6.2.The variations in pixel intensity allowed the detection of low-level features such as object
texture, color, and shape. To distinguish between foreground parts and the background
surface of the bowl-feeder, pixel-based segmentation methods were evaluated to group
pixels based on variations in low-level features.

Figure 6.2: Illustration of discontinuities in surface normal, depth, surface reflectance and
illumination[70]
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The difference in the spatial arrangement of regions, with local variances in pixel in-
tensity, leads to the formation of different texels within an image. The variation in pixel
intensity properties and spatial relationship between texels forms textures such as fine,
grained, coarse, and smooth. As image objects with varying surface reflectance and illu-
mination result in different textured surfaces, characteristics in the spatial arrangement of
regions such as texture repetition, directionality, and complexity can be applied to segment
foreground and background objects in an image. In order to segment images based on tex-
ture repetition, grey level co-occurrence matrix (GLCM) and Gabor filter were applied to
differentiate based on orientation on the spatial frequencies of the texture pattern. Based
on the segmentation results, the GLCM and Gabor filter performed better in the segmen-
tation of dense parts than the Entropy-based segmentation. Specifically,467 and 476 parts
were segmented, using GLCM and Gabor filter, of the total 476 parts present within the
bowl-feeder.The GLCM texture analysis calculated statistical measures such as contrast,
correlation, homogeneity and energy values to segment foreground parts.

Although the texture-based analysis segmented foreground objects of similar texture
characteristics, multiple post-processing steps would be required to select and extract re-
gion of interests. In comparison to the texture-based segmentation, the region-merging
watershed method segmented 377 parts within the total 476 parts present within the bowl-
feeder machine. Although the watershed segmentation consisted of decreased number
of segmentation, the generated segmentation mask consisted of decreased mask IoU and
accurate mask alignment with parts boundary. This is significant as the K-means and
gaussian blur applied to the image reduced superpixel oversegmentation and detection
of background surface. In comparison to the region-based watershed segmentation, the
graph-based merging method segmented 0 parts of the 476 parts present within the bowl-
feeder.This is significant as gaussian blur was not applied with graph-based segmentation
to reduce noise present within the background surface. Therefore, the segmentation results
illustrated that the watershed segmentation, meanshift, GLCM and gabor filter accurately
segmented an increased number of foreground parts within the bowl-feeder.

As limitations in visual characteristics such as occlusion and illumination change cause
pixel intensity variation, pixel-based segmentation methods oversegment image regions
in presence of increased noise. To address the decreased segmentation accuracy posed by
oversegmented regions, interactive-based segmentation methods were evaluated to segment
parts within the ATS vibratory bowl-feeder. The user feedback within deep learning-based
and manual annotation segmentation served as location guidance to interactively mark the
mislabeled regions and provide precise boundary segmentation of the foreground object.
To reduce computational costs in applying deep learning-based interactive segmentation
on bowl-feeder datasets, the feature backpropagating refinement scheme (f-BRS) was eval-
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uated, which performed backpropagation on only intermediate layers within the network
rather than the whole network, as illustrated in Figure 2.10.

After f-BRS model evaluation with ground truth mask generated with RAFT, the seg-
mentation results illustrated an increase in mislabeled regions, misaligned mask intersection
over union (IoU) with parts boundary with an applied zoom-in feature, and an increase of
30-50 interactive clicks required to generate an object segmentation mask. Additionally,
as illustrated by the green dots located in Figure 5.10 over bowl-feeder parts, minimal
segmentation resulted even with a significant increase in user clicks provided. This is sig-
nificant as the f-BRS model applies the DeepLabV3+ network architecture trained on the
Semantic Boundaries Dataset (SBD) 8,498 images and annotations of object classes such
as vehicles, households, and animals. The DeepLabV3+ consists of a ResNet backbone
with atrous convolutions for feature extraction, atrous spatial pyramid pooling (ASPP)
module for resampling feature map at different rates and segmenting the object at multi-
ple scales using semantic segmentation annotations, and a 1x1 convolution to output final
segmentation from concatenated masks.

As the model was trained on image features and respective semantic labels of the SBD
dataset, the current segmentation applied to the bowl-feeder dataset resulted in mislabeled
regions and misaligned masks as pixel-wise classification corresponds to pre-trained SBD
semantic labels. Due to the challenge of a limited dataset of ATS machines, and lower
image resolution present within existing public bowl-feeder videos, additional changes were
not applied to the model training parameters. Additionally, the f-BRS optimization task,
outlined in Equation 6.5, minimized mean squared area loss in the provided locations of
user clicks, xi, yi, by regularizing channel-wise scaling and bias in the intermediate layers
of the network. This is significant as the initially predicted mask, Mpred, with mislabeled
regions resulted due to pixel-wise correspondence on pre-trained pixel labels and spatial
information; therefore, an increase in negative user clicks was required to classify objects
as background and reduce mislabeled regions. Additionally, the evaluation of the zoom-
in feature within the f-BRS model illustrated an increase in mislabeled regions. As the
zoom-in feature applied the location of the first-click prediction mask for bounding box
localization and image cropping, the decrease in initial mask IoU caused the feature to
direct towards incorrect background objects thus resulted in mislabeled regions.

λ (∥S − 1∥2 + ∥B∥2) +
n∑

i=1

(
Mpred

xi,yi
− li

)2
(6.5)

As the f-BRS model evaluation showed a decrease in mask IoU and an increase in mis-
labeled regions and the user clicks required, the GrabCut annotation tool was evaluated.
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The manual annotation tool allows the user to select an initial region of interest (ROI)
and designate the background and foreground object using classID labels of different colors
and bounding boxes. After setting the classID to foreground objects, the user can begin
to manually scribble a mask on top of the bowl-feeder parts. Although the GrabCut anno-
tation tool required increased user feedback and manual scribbling on foreground objects,
the results illustrated increased accuracy in segmentation mask generation than the seg-
mentation results generated using an f-BRS model. This is significant as the bounding box
selection allowed accurate binary segmentation between the foreground area as a region
within the bowl-feeder and the background area as a region outside of the bowl-feeder.
Specifically, to perform binary segmentation through an iterative update of the region
space, which was modeled as a mixture of Gaussians in color space. The accuracy in lo-
calization between background and foreground region allowed producing accurate classID
labels for specific objects through manual scribble-based annotation. Therefore, segmen-
tation results illustrated that the Grabcut annotation tool performed better in comparison
to the pre-trained f-BRS model on the SBD dataset.

Although Grabcut annotation tool allowed accurate segmentation of all parts within
the bowl feeder, the process required manual annotation thus decreasing efficiency in the
ST-GNN model initialization. To accelerate model deployment in real-time production,
supervised segmentation methods were evaluated to enable automatic initialization and
accurately segment all parts within the bowl-feeder. For real-time detection of moving
parts within the ATS machines, the Detectron2 deep learning-based detection model was
trained with applied data augmentation and evaluated on the original frames of the bowl-
feeder dataset. The segmentation masks were then created from the detection results and
evaluated for mask IoU with parts boundary.

The Detectron2 model was evaluated to perform part detection and segmentation within
the bowl-feeder. The model consisted of a backbone network for the generation of feature
maps at different scales, a region proposal network to detect regions with objects, and an
ROI box head for the classification of a detected object. To ensure robust detection perfor-
mance, the dataset consisted of shuffled frames with instances of variational parts filled in
bowl-feeder such as minimal-filled and dense part clusters. To apply model generalization,
the datasets consisted of bowl-feeders frames with variational part types consisting of metal
bolts, springs, and pipettes. After applying model training and evaluation, the segmenta-
tion results illustrated the detection of all parts within the titan bowl-feeder datasets with
complete mask IoU alignment with the part boundary. Due to the lower image resolution
of part shape, the results consisted of missed detections in other instances of the bowl-
feeder videos. The results showed detection of each part with varying orientation and with
a varying accumulation of parts within different shelves of the bowl-feeder.
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To detect the spatial anomalies within the various manufacturing datasets, the hand-
crafted methods and deep learning-based models were applied. As the moving objects
were detected using the RAFT optical flow method, the generated segmentation masks
detected motion on the background conveyor belt surface. Therefore, the application of
preprocessing methods such as morphological operations reduced background noise and the
steps required to extract the region of interests. Based on the results of spatial anomaly
detection, the handcrafted methods such as color and HOG texture descriptor indicated
the missing part within the assembly cell. The variation in the RGB values of the color
histogram and the gradient in texture orientation illustrated the absence of blue rectan-
gular part within the assembly cell. As the application of handcrafted features required
ROI extract of the same shape and size, additional post-processing steps were required.
To increase efficiency in anomaly detection, the deep learning-based PatchCore anomaly
detection method was evaluated. Based on the evaluation of PatchCore model, the results
illustrated increased accuracy in identification and localization of various spatial anoma-
lies within the assembly parts. The generated segmentation maps consisted of decreased
mask IoU and increased accuracy in mask alignment with parts boundary. This is signif-
icant as the generation of synthetic manufacturing dataset with higher image resolution
increased detection accuracy of spatial pixel characteristics. Therefore, in comparison to
the handcrafted methods, the Patchcore method increased efficiency in anomaly detection
and provided an accurate segmentation map to localize the spatial anomalies.

6.1 Conclusion

In this study, we addressed the increased production cycle-time and reduced machine
operator safety as repeated human intervention is required to manually clear part jams
within varying locations of the subsystems. To ensure machine operator safety and reduce
production cycle-time, we performed spatiotemporal part segmentation within the various
manufacturing lines. To address limitations within the dataset characteristics such as
illumination variance and lower image resolution, we performed preprocessing methods
and color conversion techniques for real-time moving object detection.

Due to the lower image resolution, we created the synthetic manufacturing dataset
with different camera viewpoints and verified complete image alignment using affine-based
transformation and RANSAC. To ensure robust image registration, we compared the color
and texture handcrafted features of the registered images. To compare the performance
between handcrafted features and deep learning-based anomaly detection method, we eval-
uated Patchcore Anomaly Detection method, pre-trained on manufacturing dataset, with
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Flex-Sim dataset. Based on evaluation of anomaly detection methods, the PatchCore
method generated a segmentation map for anomaly localization and increased system effi-
ciency.

To perform motion-based and appearance-based segmentation, we followed a bottom-
up architecture to evaluate computer vision techniques and deep learning-based models. In
presence of occlusion and illumination variance, the deep learning-based optical flow RAFT
showed increased real-time moving object detection than classical local and global methods
in optical flow. Therefore, RAFT was applied to compute optical flow and its iteratively
updated flow field were applied to create a pixel-based object tracker. We compared the
segmentation performance of an optical flow-based tracker with a space-time graph neural
network (ST-GNN), and it showed increased accuracy in boundary mask IoU alignment
than the pixel-based tracker.

To enable automatic initialization of the ST-GNN model, we explored appearance-
based segmentation methods such as pixel-based, interactive-based, and deep learning-
based segmentation methods. After evaluation of these methods on the bowl-feeder dataset,
the supervised segmentation method outperformed the pixel-based and interactive-based
segmentation methods.

6.1.1 Future Work

This study focused on spatiotemporal segmentation of parts within the automated manu-
facturing machines. To improve performance of the spatiotemporal segmentation methods
in future, additional manufacturing datasets are required for application in model train-
ing and evaluation. The datasets should consist of reduced limited visual characteristics
and similar spatiotemporal characteristics. To detect spatiotemporal irregularities within
the machines, the future work consists of performing feature extraction and a time-series
spatio-temporal analysis. During the spatiotemporal time-series analysis, extracted fea-
tures within current frame will be compared with normal behavior part characteristics for
anomaly detection.
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[58] Väıa Machairas, Etienne Decencière, and Thomas Walter. Waterpixels: Superpixels
based on the watershed transformation. In 2014 IEEE International Conference on
Image Processing (ICIP), pages 4343–4347. IEEE, 2014.

[59] Mario Malave. Will 3-d printing take us to mars? relativity space thinks so.

[60] Amolkirat Singh Mangat, Juergen Mangler, and Stefanie Rinderle-Ma. Interactive
process automation based on lightweight object detection in manufacturing processes.
Computers in Industry, 130:103482, 2021.

85



[61] Kevis-Kokitsi Maninis, Sergi Caelles, Jordi Pont-Tuset, and Luc Van Gool. Deep
extreme cut: From extreme points to object segmentation. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, pages 616–625, 2018.

[62] Fardin Mirzapour and Hassan Ghassemian. Using glcm and gabor filters for classi-
fication of pan images. In 2013 21st Iranian Conference on Electrical Engineering
(ICEE), pages 1–6. IEEE, 2013.

[63] Fardin Mirzapour and Hassan Ghassemian. Fast glcm and gabor filters for texture
classification of very high resolution remote sensing images. 2015.

[64] Kazuaki Nakamura, Naoko Nitta, Noboru Babaguchi, Kensuke Fujii, Satoki Mat-
sumura, and Eiji Nabata. Semi-supervised temporal segmentation of manufacturing
work video by automatically building a hierarchical tree of category labels. IEEE
Access, 9:68017–68027, 2021.

[65] S Nashat, A Abdullah, S Aramvith, and MZ Abdullah. Support vector machine
approach to real-time inspection of biscuits on moving conveyor belt. Computers
and Electronics in Agriculture, 75(1):147–158, 2011.

[66] Stefan Escaida Navarro, David Weiss, Denis Stogl, Dimitar Milev, and Bjoern Hein.
Tracking and grasping of known and unknown objects from a conveyor belt. In
ISR/Robotik 2014; 41st International Symposium on Robotics, pages 1–8. VDE, 2014.

[67] Yosep Oh. Assembly design and production planning towards additive manufacturing-
based mass customization. PhD thesis, State University of New York at Buffalo, 2019.

[68] Niall O’Mahony, Sean Campbell, Anderson Carvalho, Suman Harapanahalli, Gus-
tavo Velasco Hernandez, Lenka Krpalkova, Daniel Riordan, and Joseph Walsh. Deep
learning vs. traditional computer vision. In Science and information conference,
pages 128–144. Springer, 2019.

[69] Bernhard Preim and Charl Botha. Image Analysis for Medical Visualization. 2014.

[70] Mengyang Pu, Yaping Huang, Qingji Guan, and Haibin Ling. Rindnet: Edge detec-
tion for discontinuity in reflectance, illumination, normal and depth. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 6879–6888,
2021.

[71] Quqixun. Quqixun/imageregistration: A demo that implement image registration
by matching sift descriptors and appling ransac and affine transformation. https:

//github.com/quqixun/ImageRegistration.

86

https://github.com/quqixun/ImageRegistration
https://github.com/quqixun/ImageRegistration


[72] Andrik Rampun, Harry Strange, and Reyer Zwiggelaar. Texture segmentation us-
ing different orientations of glcm features. In Proceedings of the 6th International
Conference on Computer Vision/Computer Graphics Collaboration Techniques and
Applications, pages 1–8, 2013.

[73] Ray. Computer vision-watershed algorithm. https://medium.com/

analytics-vidhya/computer-vision-watershed-algorithm-ca16bd00485,
Sep 2020.

[74] D. Rembold, U. Zimmermann, T. Langle, and H. Worn. Detection and handling of
moving objects. In IECON ’98. Proceedings of the 24th Annual Conference of the
IEEE Industrial Electronics Society (Cat. No.98CH36200), volume 3, pages 1332–
1337 vol.3, 1998.

[75] K Roth, L Pemula, J Zepeda, B Schölkopf, T Brox, and P Gehler. Towards total
recall in industrial anomaly detection. arxiv 2021. arXiv preprint arXiv:2106.08265.

[76] Eli S Saber and A Murat Tekalp. Integration of color, edge, shape, and texture
features for automatic region-based image annotation and retrieval. Journal of Elec-
tronic Imaging, 7(3):684–700, 1998.

[77] Safa Sadaghiyanfam. Using gray-level-co-occurrence matrix and wavelet transform
for textural fabric defect detection: A comparison study. In 2018 Electric Electronics,
Computer Science, Biomedical Engineerings’ Meeting (EBBT), pages 1–5. IEEE,
2018.

[78] Stefano Savian, Mehdi Elahi, and Tammam Tillo. Optical flow estimation with deep
learning, a survey on recent advances. In Deep biometrics, pages 257–287. Springer,
2020.

[79] Silvia Sellan, Jacob Kesten, Ang Yan Sheng, and Alec Jacobson. Opening and closing
surfaces. ACM Transactions on Graphics (TOG), 39(6):1–13, 2020.

[80] Anuj Shah. Through the eyes of gabor filter. https://medium.com/@anuj_shah/

through-the-eyes-of-gabor-filter-17d1fdb3ac97, Jun 2018.

[81] Sai Shashank. Detectron2 vs. yolov5 (which one suits
your use case better?). https://medium.com/ireadrx/

detectron2-vs-yolov5-which-one-suits-your-use-case-better-d959a3d4bdf,
2022.

87

https://medium.com/analytics-vidhya/computer-vision-watershed-algorithm-ca16bd00485
https://medium.com/analytics-vidhya/computer-vision-watershed-algorithm-ca16bd00485
https://medium.com/@anuj_shah/through-the-eyes-of-gabor-filter-17d1fdb3ac97
https://medium.com/@anuj_shah/through-the-eyes-of-gabor-filter-17d1fdb3ac97
https://medium.com/ireadrx/detectron2-vs-yolov5-which-one-suits-your-use-case-better-d959a3d4bdf
https://medium.com/ireadrx/detectron2-vs-yolov5-which-one-suits-your-use-case-better-d959a3d4bdf


[82] S Shishira, Vidyadhar Rao, and Sithu D Sudarsan. Proximity contours: Vision based
detection and tracking of objects in manufacturing plants using industrial control
systems. In 2019 IEEE 17th International Conference on Industrial Informatics
(INDIN), volume 1, pages 1021–1026. IEEE, 2019.

[83] Konstantin Sofiiuk, Ilia Petrov, Olga Barinova, and Anton Konushin. f-brs: Re-
thinking backpropagating refinement for interactive segmentation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages
8623–8632, 2020.

[84] Lei Su, Hua Huang, Lunming Qin, and Wenbin Zhao. Transformer vibration detec-
tion based on yolov4 and optical flow in background of high proportion of renewable
energy access. Frontiers in Energy Research, page 71, 2022.

[85] Jiaze Sun, Huijuan Lee, and Jun Yang. The impact of the covid-19 pandemic on the
global value chain of the manufacturing industry. Sustainability, 13(22):12370, 2021.

[86] Richard Szeliski. Computer vision: algorithms and applications. Springer Science &
Business Media, 2010.

[87] Kazuhito Takahashi. Grabcut-annotation-tool. https://github.com/Kazuhito00/
GrabCut-Annotation-Tool/blob/main/README_EN.md.

[88] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field transforms for optical
flow. pages 402–419. Springer, 2020.

[89] Sebastian Thiede, Poorya Ghafoorpoor, Brendan P Sullivan, Sebastian Bienia,
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