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Abstract 

Human inattention is the leading cause of traffic accidents in many regions around the world. 

Autonomous vehicle technologies are rapidly emerging with the aim to remove the human factor 

in key driving procedures, such as perception, decision-making, path planning, and control. These 

technologies are subject to technological, ethical, and social scrutiny; therefore, extensive work is 

required to instill confidence in the reliability of these automated driving features. One key 

responsibility of automated driving is in planning and tracking a trajectory to avoid collisions with 

obstacles, such as other vehicles. One of the foremost challenges in the formulation of a feasible 

path is considering the dynamics and constraints of the vehicle and the environment. 

Model predictive control (MPC) is one of the most common control techniques for its ability 

to handle constraints. For this reason, MPC has been widely studied for path planning and tracking 

for autonomous vehicles and mobile robots. MPC relies upon an accurate vehicle dynamics model 

which enables accurate state predictions, thereby resulting in effective control actions to achieve 

the desired objective. It is challenging, however, to capture all of the details and uncertainties of 

the dynamics associated with a vehicle. In particular, modeling tire dynamics requires detailed 

nonlinear models to fully reflect the vehicle behavior. One common technique for motion planning 

using MPC is to employ artificial potential fields (PFs) which generate an artificial repulsive force 

from obstacles or road boundaries to influence the controller to track the vehicle along a safe 

trajectory. Some state-of-the-art PF-based techniques include the PF intensity directly in the MPC 

objective function, thereby considering the vehicle constraints and dynamics as part of the path 

planning.  

In this thesis, an enhanced PF-based motion controller is presented. The control design uses 

MPC with a detailed dynamics model; the model considers the combined-slip effect on tire forces, 

nonlinearities, and actuator dynamics. Therefore, it offers an improvement upon prior studies 

which rely upon simplified dynamics models. Moreover, the PF intensity is included in the 

objective function, like prior studies, although the PF approximation is further simplified by only 

considering the lateral component of the repulsive force as part of the latera controller.  A separate, 

novel longitudinal control policy uses the longitudinal component of the PF gradient to regulate 

the speed setpoint when approaching an obstacle in the same lane; subsequently, proportional-
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integral-derivative (PID) controllers command axle torque and brake pressure to track the 

reference speed. The developed controller and dynamics model are validated in both simulation 

and physical vehicle tests. To emulate the various driving scenarios where avoidance or stopping 

is required, a virtual driving environment is employed: simulated obstacles are placed in the 

roadway, the detections of which are sent to the controller. The controller performance is 

demonstrated in various evasive maneuvers, and in different road conditions.   
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CHAPTER 1  

Introduction 

1.1.  Motivation 

The National Highway Traffic Safety Administration reported that drivers are the critical factor in 

94% of crashes from 2005 to 2007 [1]. In many other countries around the world, such as the 

Czech Republic, for example, human inattention is the leading cause of traffic accidents [2]. The 

advent of autonomous driving is therefore fueled in part by the need to reduce traffic accidents by 

removing the human factor from the perception, decision making, and control of vehicles. 

Although autonomous driving has been recognized for its benefits with regard to reliable and safe 

transportation, it poses many technological, ethical and social challenges which must be addressed 

[3]. One outstanding technological challenge facing autonomous driving is the development of 

reliable motion planning and control techniques.  

The key problem of planning and control for autonomous driving is determining a collision-free 

trajectory which navigates obstacles and reaches a goal state [4]. Planning the trajectory is 

challenging because vehicles are subject to dynamical and mechanical limits, rendering some 

maneuvers infeasible, such as those which are necessary to avoid a collision [5]. Many different 

planning and control techniques have been studied, some of which directly address the problem of 

satisfying the kinematic and dynamic limits of the vehicle. Model-predictive control (MPC) is the 

most widely adopted method of systematically handling constraints [6]; therefore, MPC is a 

common solution for path planning control [5], [7], [8]. MPC may be paired with one of many 

possible planning algorithms: some approaches generate the path directly in the control objective, 

while others use a standalone program to generate a reference trajectory which is then tracked by 

the MPC. 

Potential field (PF)-based path planning has been widely studied for mobile robotics and 

autonomous driving [5], [7], [9]–[12]. Potential fields prevent collisions with obstacles by 

emulating a repulsive force away from the obstacle [13]. Moreover, potential fields may be 

generated for different types of features, including vehicles and road and lane boundaries [14]. The 
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advantage of using PFs for obstacle avoidance is that the intensity of the field may be integrated 

directly into the control objective function such that the controller prevents collisions while 

considering other objectives and constraints. With such an approach, no reference trajectory is 

generated for obstacle avoidance, but rather the controller generates an optimal trajectory spanning 

the prediction horizon at each discrete control step.  

The effectiveness of MPC is highly dependent on an accurate vehicle dynamics model for 

prediction. It is not feasible, however, to capture all the complexities and uncertainties of the 

vehicle dynamics. Tire dynamics, for instance, are highly complex and uncertain, especially in 

extreme maneuvers [15]. Therefore, many developments have focused on either increasing the 

complexity of dynamics models or, instead, adapting to the vehicle dynamical uncertainties by 

training a learning model. Both approaches provide a higher level of prediction accuracy over a 

traditional, fixed linear model. There is a need, however, to explore the effects of a higher fidelity 

dynamics model for motion planning and control, such as that which considers nonlinear, 

combined-slip tire response. A complex tire model is particularly advantageous when the vehicle 

is engaged in harsh maneuvers, where the lateral and longitudinal tire slip is significant. 

1.2. Objectives 

One principal objective of this thesis is to demonstrate the application of a high accuracy dynamics 

model to an MPC-based motion planning and control routine. An existing planning approach based 

on artificial PFs is adapted using an improved prediction model. This thesis outlines a dynamics 

model which features consideration for combined-slip tire forces, actuator dynamics, and 

nonlinearities in the body dynamics. Simulation results are studied to show the prediction accuracy 

of various key states, such as tire forces, in various collision-avoidance maneuvers. 

The second main objective is to reduce computational complexity of the MPC problem, 

particularly as it relates to the approximation of the PF intensity. Unlike the prior developments, 

the presented control strategy is decoupled: MPC handles lateral control and planning based on 

PFs, while the longitudinal control uses a feedback loop based on the PF gradient to slow and stop 

the vehicle when driving behind a lead vehicle. Additional steps are proposed to simplify the PF 

approximation, such as ignoring the longitudinal gradient of the potential fields in the lateral 

control policy.  
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The third objective is to construct a simulation environment to validate the performance of the 

controller. This simulation environment must feature a vehicle dynamics model to represent the 

plant, as well as a means of generating driving scenarios and reading sensor information based on 

those scenarios. The vehicle plant model is developed using a collection of library blocks provided 

in MATLAB and Simulink. The model is adequately detailed for representing the lateral and 

longitudinal vehicle dynamics; it considers combined-slip tire forces and aerodynamics. In this 

thesis, the dynamics of the plant model are directly compared to the controller model, particularly 

regarding the estimated tire forces of each. 

1.3. Outline 

Chapter 2 describes the relevant literature – particularly, existing approaches for motion planning 

and tracking, as well as vehicle dynamics modeling. The described literature focuses on using 

MPC for path planning and tracking. Many of the studies use PFs in combination with MPC. The 

path planning approach described in this thesis is based on the methodology of one study by 

Rasekhipour et al., which is outlined in detail in this section. 

Chapter 3 describes the vehicle dynamics model developed for the MPC motion planning 

controller. The models of each dynamical aspect of the vehicle are outlined, including the nonlinear 

bicycle model of the vehicle body, Burckhardt combined-slip tire model, wheel model, and 

steering actuator model. The dynamics equations for each component are introduced. Moreover, 

these equations are constructed into a linear model, where the system is linearized about the 

operating point. Then, the system is discretized in order to make discrete state predictions within 

the context of the MPC controller. 

Chapter 4 describes the overall design and evaluation of the path planning and control algorithm. 

This includes an overview of the PF-based approach adapted from the literature [7], where the PF 

approximation is convexified for solution with quadratic problem. Next, the design of the MPC 

control objective is shown, where the PF intensity, path tracking error, and steering effort are 

penalized to optimize the steering action for collision avoidance and lane centering. Additionally, 

the stability constraints are described, where the yaw rate and side-slip angle are limited to prevent 

oversteering. The longitudinal control policy is also described in this section, which uses the 
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longitudinal potential field gradient as feedback to cruise or stop the vehicle for a lead vehicle. For 

estimating unmeasurable vehicle states, a pair of state observers are also evaluated in this section.  

Chapter 5 describes the simulations generated for validating the controller design. The results are 

generated using a simulation environment featuring a vehicle dynamics model, which is compared 

directly to the controller model. Additionally, virtual driving scenarios are integrated in-the-loop, 

where vehicle and lane boundary detections are generated. A set of simulation results are presented 

which demonstrate the performance of the controller in various driving scenarios. This includes 

the avoidance of static and moving vehicles, performing adapting cruise and stopping for a lead 

vehicle, and performing an evasive maneuver in adverse road conditions. 

Chapter 6 includes a set of experimental results on a physical vehicle. A test vehicle featuring 

automated electric drive motors and steering is used to validate the motion controller in various 

collision-avoidance maneuvers. A virtual driving scenario allows for placement of dummy 

obstacles in the environment, simulated detections of which are sent to the controller. The 

experimental tests reflect those executed in simulation, but at lower speeds.   

Chapter 7 includes a set of conclusions and a plan for future work to develop and evaluate the 

control method described in this thesis. The conclusions highlight the advantages of higher fidelity 

vehicle and tire models for the controller, as the state predictions are shown to closely match those 

of the vehicle plant. The future work includes suggestions to improve the accuracy of the controller 

model, as well as to expand the scope of this control method to other vehicle control techniques, 

such as torque vectoring. 
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CHAPTER 2  

Literature Review and Background 

2.1. Motion Planning and Tracking 

Vehicle motion control requires an advanced control approach which considers numerous 

constraints and control objectives.  A common control approach, MPC, relies upon a dynamics 

model to optimize the control inputs, such as steering or acceleration, over a given time horizon. 

The optimization is performed with respect to certain control objectives associated with path 

tracking, including lane centering and speed tracking. Additionally, MPC solves the problem with 

regard for dynamical or mechanical constraints of the vehicle. Therefore, MPC been widely 

studied for path tracking of autonomous vehicles and mobile robots [5], [8], [16]–[19]. For 

example, Yuan et al.  developed an MPC-based mixed motion planning and tracking routine for 

longitudinal and lateral control [17]. Other studies rely upon MPC for motion tracking, often paired 

with a path planning program such as a graph search-based or artificial potential field-based 

planner. 

In conjunction with MPC, studies have demonstrated techniques to include collision avoidance as 

part of the control objective. For instance, Brown et al. present an MPC controller for combined 

path planning and tracking [16]. In this study, the authors employed a safe driving area constrained 

by road boundaries and the bounds of obstacles in the roadway. One objective of the controller is 

to track a reference path, as defined by the center of the desired driving lane. However, when an 

obstacle is present in the lane, the constraints influence the control input to result in the vehicle 

safely deviating from the lane to avoid a collision. Additionally, vehicle stability is considered by 

constraining states such as the yaw rate. Similarly, Schulman et al. propose an approach for mobile 

robot path planning where the control actions are selected to achieve the optimal collision-free 

trajectory [20]. The algorithm therein handles obstacles with various forms, including thin and 

irregularly shaped obstacles. Constraints on the no-collision conditions are generated according to 

the exact geometry of the robots and obstacles. 
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Artificial potential fields (PFs) are another technique for achieving collision avoidance in 

conjunction with MPC. PFs generates an artificial repulsive force away from an obstacle, the 

magnitude of which can be used as a heuristic for path planning. When applied in conjunction with 

MPC, the PF intensity may be used to generate a reference path which is tracked by the controller. 

Ji et al. have presented a path planning and tracking routine where the reference trajectory is 

generated using potential fields [5]. Although this approach to potential field-based path planning 

considers a variety of obstacles, the planned path does not directly consider the dynamical 

constraints of the vehicle [7]. Therefore, several studies have included potential fields directly in 

the MPC objective function alongside the vehicle dynamics terms [7], [11], [21], [22]. This 

approach ensures that the planned path is feasible according to the dynamical constraints of the 

vehicle. Huang et al. have proposed a path planning program for vehicles to avoid obstacles using 

a resistance network and model predictive control (MPC) [23]. This method utilizes a two-tiered 

approach to motion planning and control: the upper layer consists of a path-planner based on the 

resistance network, while the lower layer features separate MPCs for lateral and longitudinal 

control based on a point mass model. Rasekhipour et al. introduce a method of convexifying 

potential field functions so that the MPC optimization problem may be solved using quadratic 

programming [7]. This solution demonstrates good obstacle avoidance behavior, but further work 

is required to enhance the accuracy of the vehicle dynamics model, such as consideration for the 

combined-slip effect on tire forces. Additionally, methods of further reducing the computational 

complexity of the MPC problem should be explored, particularly for the potential field 

approximation. 

Other approaches feature a standalone planning algorithm which generates an optimal path for the 

MPC to track. Dolgov et al. propose a path planning algorithm for autonomous vehicles which 

employs the A-star algorithm [24]. The planner obtains a kinematically feasible trajectory, as the 

search algorithm is applied to the kinematic state space of the vehicle. The optimal path is selected 

based on two heuristics: the non-holonomic cost, which considers the shortest path in the absence 

of obstacles, and the holonomic-with-obstacles cost which considers the cost of collisions. This 

study compares the effectiveness of free-space planning to semi-structured planning guided by 

lane networks. Erke et al. show a similar approach to local planning using the A-star algorithm 

[25]. The A-star is typically problematic when applied to autonomous driving; it may plan a path 

which is optimal in terms of finding the shortest distance around an obstacle, but at the cost of 
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deviating from the natural trajectory of a human driver. Therefore, this study uses a global 

guideline which matches the best path in the absence of obstacles. The algorithm is shown to be 

robust and stable and, moreover, it results in the avoidance of obstacles much earlier than a 

traditional A-star planner. 

The state-of-the-art approaches to path tracking with regard to highway lane following vary in 

nature. Some developments use an end-to-end approach where a single model is trained to learn 

the dynamics between detection and control. For example, Chen et al. describe an end-to-end 

learning approach using convolutional neural networks (CNNs) to steer the vehicle for lane 

centering based directly on the vision detections of the lane boundaries [26]. This approach aims 

to mimic the black-box nature of a human driver, where perception and sensory information 

informs the control actions without consideration for the intermediate steps therebetween. 

Conversely, others opt for a modular approach where clear interfaces between functions, such as 

perception, decision-making, and control, are established. For example, Liu et al. describe a 

technique where lane boundaries are detected using a lightweight network which processes camera 

data [27]. Then, a separate Kalman filter-based controller tracks the lane center using the output 

of the lane detection module. This type of approach allows for analysis of intermediate signals in 

the autonomous driving stack, thereby enabling easier troubleshooting and validation of each 

function.    

2.2. Dynamics Modeling 

One important step to implement a reliable MPC controller for path planning and tracking is the 

design of a reference model to represent the vehicle dynamics. The reference model should capture 

the actual dynamics of the vehicle with a high degree of accuracy so that the control actions are 

optimized according to realistic state predictions. Many studies which employ MPC for path 

planning and tracking use a simplified dynamics model of the vehicle as a reference. Although the 

complex dynamics of a real vehicle cannot be fully captured, some studies increase the level of 

detail in the reference model to achieve a better representation of the vehicle dynamics. This 

includes the consideration of nonlinear tire dynamics or steering actuator dynamics. 

The bicycle model is the most commonly used vehicle model for its simplicity and ease of 

implementation [28]. The model features 3 degrees-of-freedom (DOF) – the lateral and 
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longitudinal translations and yaw rotation. Moreover, it assumes a single-track system, featuring 

one tire in the front and one tire in the rear. A kinematics- or dynamics-based bicycle model may 

be used for representing the vehicle. Some studies have shown successful results using only a 

kinematic vehicle model [7], [22]; however, a dynamics model provides a higher level of accuracy, 

as it affords consideration for the effects of tire forces. The dynamic bicycle model is shown to 

capture the vehicle dynamics adequately well for the purpose of trajectory planning, but its 

estimates deviate significantly from a higher DOF model in harsh driving maneuvers, such as those 

where high lateral acceleration is exhibited [29]. Adaptations may be made to improve the 

modeling accuracy of the bicycle model by pairing it with a nonlinear tire force model and actuator 

dynamics model, for example. 

Tire force modeling has a significant effect on the accuracy of any vehicle dynamics model. To 

reduce complexity in the model, several studies have developed MPC-based lateral controllers 

which assume linear tire dynamics [7], [11], [22], [30]. However, the simplification by assuming 

linear tire dynamics leads to significant prediction inaccuracies due to normalized tire forces at 

large slip angles [31]. Moreover, ignoring the combined-slip effect on tire forces impairs prediction 

accuracy at large longitudinal slip ratios. Therefore, numerous approaches have opted for including 

nonlinear and combined-slip tire models [17], [31]–[34]. These approaches provide more accurate 

estimates of tire forces, particularly in scenarios where both lateral and longitudinal slip is 

significant, such as in poor road conditions, or evasive maneuvers. These tire models are fit to 

empirical data by tuning a set of parameters. Common nonlinear tire models include the Pacejka 

magic formula [35] and the Burckhardt model, the latter of which has a much more simple form 

[36]. Furthermore, both models may be formulated in terms of pure lateral-, pure longitudinal-, or 

combined-slip. It is shown in literature that these two models perform similarly in a variety of road 

conditions [36].  

A simplified model which ignores actuator dynamics results in the false assumption that the 

optimal control actions by the MPC are immediately applied at the lowest level of the vehicle 

mechanics. For example, the steering request applied by the controller is not immediately reflected 

as the actual steering angle at the wheel; there is some transient response which should be 

considered. Therefore, the accuracy of the bicycle model is shown to improve when steering 

actuator dynamics are included [18]. Kim et al. have proposed a MPC for path tracking which 
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features a 2nd order steering dynamics model in the controller [18]. Other actuators, such as the 

accelerator and brakes, may also be modeled as first or 2nd order systems in order to improve the 

prediction accuracy of the MPC.  

Despite the efforts to model the many complexities of a vehicle, there remains numerous sources 

of error that cannot be easily represented with physical models. Therefore, many studies have 

explored learning-based models, resulting in the advent of learning-based model predictive control 

(LBMPC). LBMPC features a dynamics model which includes an unknown error term that is 

updated based on the learned behavior of the system. For example, Kabzan et al. have developed 

a LBMPC for autonomous racing which uses Gaussian Process Regression (GPR) to learn the 

error between the reference model and vehicle plant [37]. Ostafew et al. have shown similar 

developments using GPR-based LBMPC for mobile robot path tracking [38], [39]. GPR is a 

favorable technique as it not only provides an estimate of the model inaccuracy, but also provides 

the variance of the estimate based on the extent to which the model has been trained in a particular 

state space. Other studies use parametric models such as neural networks to characterize the 

reference model error. [40], [41]. Although LBMPC using a neural network is shown to be safe 

and robust [41], the reliability of the network output is uncertain, as it does not provide the variance 

of its estimate. 
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CHAPTER 3  

Prediction Model for Vehicle and Wheel 

Dynamics 

A detailed vehicle dynamics model is developed for the MPC prediction model by combining 

state-of-the-art models for the vehicle body, wheels, tires, and actuators. This model considers 

combined-slip tire forces according to the Burckhardt tire model. Moreover, the wheel dynamics 

and steering actuator dynamics are included. This dynamics model enhances dynamics models 

presented in similar prior studies, many of which ignore the nonlinear and combined-slip effects 

on tire forces. 

3.1.  Bicycle Model 

The bicycle model simplifies the lateral vehicle dynamics by modeling the vehicle body as a 

single-track system with one front tire and one rear tire. By using such model as a reference for 

MPC, the controller complexity is reduced, thereby improving computational load. The bicycle 

model may be approximated as a linear system; however, in doing so, the accuracy is 

compromised. Therefore, a nonlinear formulation is selected, which shall be linearized at the 

operating point for the MPC controller. 

This formulation of the bicycle includes the following states: the global X-coordinate, 𝑋; the 

longitudinal speed, 𝑣𝑥; the global Y-coordinate, 𝑌; the lateral speed, 𝑣𝑦; the yaw angle, 𝜓; and the 

yaw rate, 𝑟, as shown in Figure 3.1. The following differential equations characterize the vehicle 

body dynamics as 

𝑓1 = 𝑋̇ = 𝑣𝑥 cos(𝜓) − 𝑣𝑦 sin(𝜓) 

( 1 ) 

𝑓2 = 𝑣̇𝑥 =
𝐹𝑥,𝑓 cos(𝛿𝑓,act) − 𝐹𝑦,𝑓 sin(𝛿𝑓,act) + 𝐹𝑥,𝑟

𝑚
+ 𝑣𝑦𝑟 

( 2 ) 
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𝑓3 = 𝑌̇ = 𝑣𝑦 cos(𝜓) + 𝑣𝑥 sin(𝜓) 

( 3 ) 

𝑓4 = 𝑣̇𝑦 =
𝐹𝑥,𝑓 sin(𝛿𝑓,act) + 𝐹𝑦,𝑓 cos(𝛿𝑓,act) + 𝐹𝑦𝑟

𝑚
− 𝑣𝑥𝑟 

( 4 ) 

𝑓5 = 𝜓̇ = 𝑟 

( 5 ) 

𝑓6 = 𝑟̇ =
𝑙𝑓(𝐹𝑥,𝑓 sin(𝛿𝑓,act) + 𝐹𝑦,𝑓 cos(𝛿𝑓,act)) − 𝑙𝑟𝐹𝑦,𝑟

𝐼𝑧
 

( 6 ) 

where 𝐹𝑥,𝑓 and 𝐹𝑥,𝑟 are the total front and rear longitudinal tire forces in the respective wheel 

frames, respectively, and 𝐹𝑦,𝑓 and 𝐹𝑦,𝑟 are the total front and rear lateral tire forces in the respective 

wheel frames, respectively. Moreover, 𝑚 is the vehicle mass and 𝐼𝑧 is the yaw moment of inertia. 

The actual front steering angle is denoted as 𝛿𝑓,act, where the steering request affects the actual 

steering angle according to the actuator dynamics model described in 0.  

 

Figure 3.1: Bicycle model for vehicle body dynamics 
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3.2. Wheel Dynamics 

The wheel dynamics are also included as part of the reference model to characterize the 

longitudinal slip, as it affects the estimation of both lateral and longitudinal tire forces. Figure 3.2 

shows the wheel states and parameters for each of the two wheels in a single-track system. The 

time derivatives of the front and rear wheel angular velocities are 

𝑓7 = 𝜔̇𝑓 =
2𝑇axle,𝑓 − 𝐹𝑥,𝑓𝑅eff

2𝐼𝑤
 

( 7 ) 

and 

𝑓8 = 𝜔̇𝑟 =
−𝐹𝑥,𝑟𝑅eff

2𝐼𝑤
, 

( 8 ) 

respectively, where 𝑇axle,𝑓 is the axle torque applied to each front wheel, 𝑅eff is the effective tire 

rolling radius, and 𝐼𝑤 is the rolling moment of inertia of each wheel. 

 

Figure 3.2: Single-track wheel dynamics model 
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3.3. Actuator Dynamics 

The incorporation of steering actuator dynamics in the prediction model improves the accuracy of 

the bicycle model [18]. Therefore, the steering actuator dynamics are modeled as a first order 

system, 

𝑓9 = 𝛿̇𝑓,act =
𝛿𝑓,req − 𝛿𝑓,act

𝜏𝛿𝑓

, 

( 9 ) 

where 𝛿𝑓,req is the steering request and 𝜏𝛿𝑓
= 50 ms is the estimated steering actuator time 

constant. By including the actuator dynamics, the actual steering angle, 𝛿𝑓,act may be added to the 

state vector, and 𝛿𝑓,req may be considered as a control input to be optimized by MPC. 

3.4. Combined-Slip Tire Forces 

Combined-slip tire models consider the interaction of longitudinal and lateral slip in estimating 

the tire forces, whereas pure slip models map the lateral slip to lateral forces and longitudinal slip 

to longitudinal forces. Therefore, combined-slip models afford more accurate force estimates when 

both longitudinal and lateral slip are significant, such as during evasive maneuvers. In this study, 

the tire forces are estimated using the Burckhardt combined-slip tire model. The Burckhardt model 

is simpler in its expression than the more widely used Pacejka model, whereas the numerous 

parameters of the latter are set according to empirical data. Therefore, the Burckhardt model is 

easily tunable by least-squares (LS) fitting or by trial and error. Moreover, the simpler formulation 

of the Burckhardt model is less computationally intensive.  

According to the combined-slip Burckhardt model, the lateral force on each tire in the single-track 

model, where 𝑖 ∈ {𝑓, 𝑟}, is defined as  

𝐹𝑦,𝑖 = 𝐹𝑧,𝑖

𝛼𝑖

𝑆res,𝑖
[𝐶1𝑦,𝑖(1 − 𝑒−𝐶2𝑦,𝑖𝑆res,𝑖) − 𝐶3𝑦,𝑖𝑆res,𝑖], 

( 10 ) 
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where 𝐶1𝑦,𝑖, 𝐶2𝑦,𝑖, and 𝐶3𝑦,𝑖 are the tunable model parameters, and 𝐹𝑧𝑖 is the total downward force 

from the vehicle body on each axle. The tire slip angle, 𝛼𝑖, is computed for the front and rear tires, 

respectively, as, 

𝛼𝑓 = 𝛿𝑓,act − tan−1 (
𝑣𝑦,𝑓

𝑣𝑥
) 

( 11 ) 

and 

𝛼𝑟 = −tan−1 (
𝑣𝑦,𝑟

𝑣𝑥
) 

( 12 ) 

where 𝑣𝑓 and 𝑣𝑟 are the lateral speeds at the front axle, 𝑣𝑦,𝑓 = 𝑣𝑦 + 𝑙𝑓𝑟, and rear axle, 𝑣𝑦,𝑟 = 𝑣𝑦 −

𝑙𝑟𝑟, respectively. 

According to the Burckhardt combined-slip model, the longitudinal force on each tire is defined 

as  

𝐹𝑥,𝑖 = 𝐹𝑧,𝑖

𝜆𝑖

𝑆res,𝑖
[𝐶1𝑥,𝑖(1 − 𝑒−𝐶2𝑥,𝑖𝑆res,𝑖) − 𝐶3𝑥,𝑖𝑆res,𝑖], 

( 13 ) 

where 𝐶1𝑥,𝑖, 𝐶2𝑥,𝑖, and 𝐶3𝑥,𝑖 are the tunable model parameters, and 𝜆𝑖 is the longitudinal tire slip 

ratio, computed for the front and rear tires, respectively, as 

𝜆𝑓 =
−(𝑣𝑥cos𝛿𝑓 + 𝑣𝑦,𝑓 sin𝛿𝑓 − 𝜔𝑓𝑅eff)

𝜔𝑓𝑅eff

 

( 14 ) 

and 

𝜆𝑟 =
−(𝑣𝑥 − 𝜔𝑟𝑅eff)

𝜔𝑟𝑅eff

, 

( 15 ) 
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where 𝑅eff is the effective rolling radius of the tires. The combined-slip ratio, 𝑆res,𝑖, is defined at 

each axle as 

𝑆res,𝑖 = √𝜆𝑖
2 + 𝛼𝑖

2, 

( 16 ) 

which characterizes the total slip as it affects both the longitudinal and lateral tire forces. In each 

of the respective force equations (( 10 ), ( 13 )), the fraction of the slip in the respective direction 

over the total slip is multiplied by the Burckhardt model equation computed using the combined 

slip ratio.  

To accurately represent the force response of the tires, the model parameters must be tuned to fit 

the empirical force data. The Burckhardt tire model parameters in ( 10 ) and ( 13 ) are tuned by 

fitting the force response by LS to 205/55R16 tire data for pure lateral and longitudinal slip 

conditions, respectively, as shown in Figure 3.3d. The data is fit for 𝐹𝑧 = 8090.49 N for the front 

tires and 𝐹𝑧 = 4045.24 N for the rear tires, as these closely match the actual respective values of 

𝐹𝑧 in the simulated vehicle plant. The resultant parameters are shown in Table 3.1. 
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Figure 3.3: (a) Lateral and (b) longitudinal tire forces using the Burckhardt model for pure-slip 

conditions. The parameters are tuned by LS regression fitting to tire data for 205/55R16 tires at 𝐹𝑧 =
8090.49 N. 

Table 3.1: Tuned Burckhardt tire model parameters 

Parameter Value Parameter Value 

𝐶1𝑥𝑓 0.9744 𝐶1𝑦𝑓 1.075 

𝐶2𝑥𝑓 35.42 𝐶2𝑦𝑓 20.45 

𝐶3𝑥𝑓 0.1387 𝐶3𝑦𝑓 0.4902 

𝐶1𝑥𝑟 1.02 𝐶1𝑦𝑟 1.121 

𝐶2𝑥𝑟 36.16 𝐶2𝑦𝑟 21.16 

𝐶3𝑥𝑟 0.143 𝐶3𝑦𝑟 0.5077 
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3.5. Model Linearization and Discretization 

3.5.1. Linearization at Operating Point 

MPC generally requires a linear prediction model of the form, 𝑥̇ = 𝐴𝑥 + 𝐵𝑢, where 𝐴 and 𝐵 are 

the system matrices, 𝑥 is the state vector, and 𝑢 is the control vector. Due to the incorporation of 

the combined-slip Burckhardt tire model, however, the vehicle dynamics model used for prediction 

is nonlinear. Therefore, it is necessary to linearize the model at each control step, thereby ignoring 

nonlinearities over the duration of the prediction horizon.  

The state vector for the prediction model is 𝑥 = [𝑋 𝑣𝑥 𝑌 𝑣𝑦 𝜓 𝑟 𝜔𝑓 𝜔𝑟 𝛿𝑓,act]
⊤

 and the single 

control input is the front steering angle request, 𝑢 = 𝛿𝑓,req. The set of state equations in ( 1 ) - ( 9 ) 

comprise the vector, 𝑓(𝑥, 𝑢) = [𝑓1, 𝑓2, … 𝑓9], which characterizes the continuous-time dynamics of 

the vehicle system. By linearizing about the operating point, the system may be approximated 

linearly as 

𝑥̇ = 𝑓(𝑥, 𝑢) ≈ 𝐴𝑥 + 𝐵𝑢 + 𝑊, 

( 17 ) 

where 

𝐴 =

[
 
 
 
 
 
∂𝑓1

∂𝑋
… …

∂𝑓1

∂𝛿𝑓,act

⋮
∂𝑓2

∂𝑣𝑥
⋮

⋮ ⋱ ⋮
∂𝑓9

∂𝑋
… …

∂𝑓9

∂𝛿𝑓,act]
 
 
 
 
 

|

|

𝑥=𝑥𝑡,𝛿𝑓,req=𝛿𝑓,req,𝑡−1
∗

, 

( 18 ) 

𝐵 =

[
 
 
 
 

∂𝑓1

∂𝛿𝑓,req

⋮
∂𝑓9

∂𝛿𝑓,req]
 
 
 
 

||

𝑥=𝑥𝑡,𝛿𝑓,req=𝛿𝑓,req,𝑡−1
∗

, 

( 19 ) 
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and where the matrix, 𝑊, includes the residual linearization terms, as 

𝑊 = 𝑓𝑡 − 𝐴𝑥𝑡 − 𝐵𝛿𝑓,req,𝑡−1
∗ . 

( 20 ) 

The operating point is characterized by the current state, 𝑥𝑡, and the previous optimal steering 

angle, 𝛿𝑓,req,𝑡−1
∗ . Additionally, the vector characterizing the system dynamics, 𝑓, is shown as 𝑓𝑡 

when evaluated at the current time step. 

3.5.2. Discretization 

To implement the dynamics model for MPC, the continuous-time formulation must be converted 

to a discrete-time formulation. Thereby, state predictions are generated for a set of discrete time 

steps into the future. The continuous-time linearized model is discretized with a time step of length, 

𝜏s = 100 ms. At each time step, 𝑡, each future state is predicted as 

𝑥𝑡+𝑘+1 = 𝐴𝑑𝑥𝑡+𝑘 + 𝐵𝑑𝛿𝑓,req,𝑡+𝑘 + 𝑊𝑑, 

( 21 ) 

where 𝐴𝑑, 𝐵𝑑, and 𝑊𝑑 are the discretized versions of the system matrices, 𝐴, 𝐵, and 𝑊, 

respectively as [42] 

𝐴𝑑 = 𝑒𝐴𝜏s 

( 22 ) 

𝐵𝑑 = (∫ 𝑒𝐴𝑡
𝜏s

0

𝑑𝑡) 𝐵 = ∑
𝐴𝑗−1𝜏s

𝑗

𝑗!

𝑁

𝑗=1

𝐵 

( 23 ) 

𝑊𝑑 = (∫ 𝑒𝐴𝑡
𝜏s

0

𝑑𝑡) 𝑊 = ∑
𝐴𝑗−1𝜏s

𝑗

𝑗!

𝑁

𝑗=1

𝑊 

( 24 ) 
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The solutions to the integrals in ( 23 ) and ( 24 ) are approximated with Taylor series expansions, 

as shown. The number of terms in each expansion is determined by trial and error where additional 

terms are added until the state predictions from a nominal state converge to consistent values. For 

each, 𝐵𝑑 and 𝑊𝑑, the number of terms, 𝑁, is 4. 

3.5.3. Prediction Horizon Formulation 

At each discrete time step, 𝑡, a sequence of state predictions is made over the prediction horizon 

with 𝑁𝑝 time steps, each with a length of 𝜏𝑠, as 

𝑥pred = [

𝑥𝑡+1

⋮
𝑥𝑡+𝑁𝑝

] = 𝛷𝑥𝑡 + 𝛩 [

𝛿𝑓,req,𝑡

⋮
𝛿𝑓,req,𝑡+𝑁𝑐−1

] + 𝑍 

( 25 ) 

where the matrices, 𝛷, 𝛩, and 𝑍 are defined as, 

𝛷 =

[
 
 
 
 
𝐴𝑑

𝐴𝑑
2

⋮

𝐴𝑑

𝑁𝑝
]
 
 
 
 

, 

( 26 ) 

𝛩 =

[
 
 
 
 
 
 
 

𝐵𝑑 0 … 0
𝐴𝑑𝐵𝑑 𝐵𝑑 0 ⋮

⋮ ⋱ 0
⋮ 𝐵𝑑

𝐴𝑑

𝑁𝑝−1
𝐵𝑑 … … ∑ 𝐴𝑑

𝑁𝑝−𝑁𝑐−𝑘

𝑁𝑝−𝑁𝑐

𝑘=0

𝐵𝑑
]
 
 
 
 
 
 
 

, 

( 27 ) 

and 
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𝑍 =

[
 
 
 
 

𝑊𝑑

(𝐴𝑑 + 1)𝑊𝑑

⋮

(𝐴𝑑

𝑁𝑝−1
+ 𝐴𝑑

𝑁𝑝−2
+ ⋯+ 1)𝑊𝑑]

 
 
 
 

. 

( 28 ) 

The state prediction vector, 𝑥pred, represents a matrix-based formulation of the prediction horizon, 

generated by repeating the discrete state updates from ( 21 ). This form is used for formulating the 

MPC problem which optimizes the set of steering actions, {𝛿𝑓,req,𝑡, … , 𝛿𝑓,req,𝑡+𝑁𝑐−1}, as described 

in 4.3. 

The prediction horizon length is a key parameter for MPC, as it affects the length of time that the 

model generates state predictions. In this study, the prediction horizon length, 𝑁𝑝, is set to 30 steps 

with a time step length, 𝑇𝑠 = 50 ms; therefore, the prediction horizon spans 1.5 s. With a nominal 

speed of 80 km/h, the prediction horizon spans a future distance of 33.33 m.  
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CHAPTER 4  

Development of a Potential Field-based 

Motion Planning Controller 

A comprehensive planning and control system is developed which employs MPC and PF-based 

path planning for collision avoidance. Based on prior studies which use PFs for path planning, this 

method includes an approximation of the PF intensity directly in the MPC objective function such 

that the proximity to each obstacle is penalized during the prediction horizon. In this study, 

however, the potential field approximation is further simplified by only considering the repulsive 

force from the PFs which acts in the lateral road direction. Additionally, this approach decouples 

the lateral and longitudinal controllers: the lateral control is handled by MPC according to PFs and 

other stability objectives, while the longitudinal control is handled by a feedback-based controller 

using the potential field gradient in the longitudinal direction. Thereby, the MPC-based control 

problem is simplified, and the speed control is handled much like a traditional adaptive cruise 

control (ACC) system, but with the employment of artificial PFs. 

4.1.  Potential Fields 

Artificial potential fields are generated for each feature in the environment which requires some 

path planning on the part of the ego vehicle to avoid collision or to avoid undesired lane departures. 

The potential field intensity is penalized in the controller cost function such that the optimal control 

solution should safely navigate the ego vehicle in the presence of obstacles and lane or road 

boundaries. Figure 4.1 shows an example of the potential field intensity generated around a non-

crossable obstacle, such as a vehicle. 
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Figure 4.1: Potential field intensity surrounding a non-crossable obstacle. 

4.1.1. Non-crossable Obstacles 

For a non-crossable object, such as a vehicle, pedestrian, or barrier, the potential field intensity in 

its proximity is generated according to [7] 

ℎ𝑖 =
𝑎𝑁𝐶

𝑠
𝑖

𝑏𝑁𝐶
, 

( 29 ) 

where 𝑎𝑁𝐶 and 𝑏𝑁𝐶 are intensity and shape parameters, respectively, and 𝑠𝑖 is the signed distance 

between the ego vehicle and 𝑖𝑡ℎ obstacle. The signed distance is scaled by safe distances, Δ𝑋𝑠,𝑖
𝑟  

and Δ𝑌𝑠,𝑖
𝑟 , to adjust the shape of the field in the lateral and longitudinal directions as  

𝑠𝑖 = √𝑠𝑋𝑟,𝑖
2 + 𝑠𝑌𝑟,𝑖

2 = √(
𝛥𝑋𝑖

𝑟

Δ𝑋𝑠,𝑖
𝑟 )

2

+ (
𝛥𝑌𝑖

𝑟

Δ𝑌𝑠,𝑖
𝑟 )

2

, 

where Δ𝑋𝑟 and Δ𝑌𝑟 are the longitudinal and lateral distances between the ego vehicle and 𝑖𝑡ℎ 

obstacle in the road coordinate frame. The safe distances in the longitudinal and lateral directions 

are defined as 
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Δ𝑋𝑠,𝑖
𝑟 = Δ𝑋𝑠0

𝑟 + 𝑣𝑥𝑇0 +
(𝑣𝑥 − 𝑣𝑥,𝑖)

2

2𝑎nom

 

( 30 ) 

and 

Δ𝑌𝑠,𝑖
𝑟 = Δ𝑌𝑠0

𝑟 + 𝑣𝑥𝑇0sin(𝜓 − 𝜓𝑖) +
(𝑣𝑦 − 𝑣𝑦,𝑖)

2

2𝑎nom

, 

( 31 ) 

respectively, where Δ𝑋𝑠0 and Δ𝑌𝑠0 are the minimum safe distances when stationary, 𝑇0 is a safe 

following time, and 𝑎nom is the comfortable nominal acceleration of the ego vehicle. 

4.1.2. Convexification and simplification of potential fields 

The potential field function for an obstacle or lane boundary must be approximated as a convex 

function at the operating point, 𝑡, to enable a quadratic solution for the MPC objective function. A 

second order Taylor series is therefore used to approximate the field intensity, ℎ, as 

𝑔i
𝑟(𝑋𝑡+𝑘, 𝑌𝑡+𝑘) = 𝑔𝑖

𝑟(𝑋𝑡
𝑟 , 𝑌𝑡

𝑟) + ∇𝑔𝑟
𝑖
⊤|

𝑋𝑡,𝑌𝑡
[
𝑋𝑡+𝑘

𝑟 − 𝑋𝑡
𝑟

𝑌𝑡+𝑘 − 𝑌𝑡
]

+
1

2
[
𝑋𝑡+𝑘

𝑟 − 𝑋𝑡
𝑟

𝑌𝑡+𝑘
𝑟 − 𝑌𝑡

𝑟 ]
⊤

∇2𝑔𝑖
𝑟|𝑋𝑡,𝑌𝑡

[
𝑋𝑡+𝑘

𝑟 − 𝑋𝑡
𝑟

𝑌𝑡+𝑘
𝑟 − 𝑌𝑡

𝑟 ] ,

 

( 32 ) 

This approximation is quadratic in nature; therefore, it is solvable by quadratic programming. 

However, convexity only holds true in this approximation if the diagonal terms of the Hessian 

matrix, ∇2𝑔𝑖
𝑟, are positive. To achieve this condition, a transformation into the (𝜁, 𝜂) frame is 

performed, as shown in Figure 4.2, according to the methodology presented in Rasekhipour et al. 

[7]. The gradient and Hessian of the Taylor series approximation are thereby rotated by  𝛾 – the 

angle between the scaled signed distance and the road heading angle, 𝜙𝑟, as 

∇𝑔𝑇,𝑖 =

[
 
 
 
 
∂ℎ𝑖

∂𝜁
∂ℎ𝑖

∂𝜂 ]
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( 33 ) 

and 

∇2𝑔𝑇,𝑖 =

[
 
 
 
 
∂2ℎ𝑖

∂𝜁2

∂2ℎ𝑖

∂𝜁 ∂𝜂

∂2ℎ𝑖

∂𝜁 ∂𝜂

∂2ℎ𝑖

∂𝜂2 ]
 
 
 
 

, 

( 34 ) 

respectively. In the (𝜁, 𝜂) frame, a non-zero gradient only exists in the 𝜁 direction because 𝜂 acts 

orthogonally to the direction of repulsion. Moreover, the off-diagonal terms in the Hessian matrix 

are zero. However, the diagonal terms are not guaranteed to be positive in the current form. 

Therefore, an eigenvalue decomposition is performed to ensure convexity, where the negative 

eigenvalues are removed; next, the Hessian matrix is recomposed with the modified eigenvalue 

matrix as 

∇2𝑔𝑇,conv,𝑖 = 𝑉𝛬𝑝𝑉−1, 

( 35 ) 

where 𝑉 is a square 2 × 2 matrix whose 𝑗𝑡ℎ column is the eigenvector, 𝑞𝑗, and 𝛬𝑝 is a 2 × 2 matrix 

whose first diagonal element is the single positive eigenvalue, 𝜆1, of ∇2𝑔𝑇,𝑖. Consequently, the 

revised Hessian matrix, ∇2𝑔𝑇,conv,𝑖, is positive-definite and, thus, the potential field approximation 

is convex. 
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Figure 4.2: The X- and Y- distances between the ego vehicle and the ith obstacle are scaled by the safe 

distances, Xs,i and Ys,i, and then rotated 𝜁, 𝜂 coordinate frame. 

Once convexified, the Hessian and gradient are rotated into the road coordinate frame as ∇𝑔𝑖
r =

𝑅𝑇∇𝑔𝑇,𝑖 and ∇2𝑔𝑟 = 𝑅𝑇
⊤∇2𝑔𝑇,conv,𝑖𝑅𝑇, respectively, where 𝑅𝑇 is the 2-by-2 rotation matrix with 

rotation angle, 𝛾. 

The component of the repulsion emanating from each potential field in the longitudinal direction 

in the lane is not necessary for a pure lateral control policy. Therefore, the components of the 

gradient and Hessian which are parallel to the road heading are set to zero. Conversely, the prior 

study by Rasekhipour et al. keeps both the lateral and longitudinal components in the 

approximation because the lateral and longitudinal control are coupled [7]. Thus, only the lateral 

repulsive force of the field is included in the objective function. The resultant PF gradient and 

Hessian in the road frame, (𝑋𝑟 , 𝑌𝑟), are defined as 
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∇𝑔𝑖
𝑌𝑟,𝑟 = [0

𝜕ℎ𝑖

𝜕𝑌𝑖
𝑟]

⊤

 

( 36 ) 

and 

∇2𝑔𝑖
𝑌𝑟,𝑟 = [

0 0

0
𝜕2ℎ𝑖

𝜕(𝑌𝑖
𝑟)2

], 

( 37 ) 

respectively, where 𝑌𝑟 is the lateral direction of the road at the location of the 𝑖𝑡ℎ feature.  

To achieve the form of the approximation shown in ( 32 ), where the expansion is defined with 

respect to the (𝑋, 𝑌) coordinate frame, a final rotation is performed. The lateral components of the 

gradients and Hessians are transformed back into the global coordinate frame as ∇𝑔𝑖
𝑌𝑟

=

𝑅𝜙𝑟,𝑖
∇𝑔𝑖

𝑌𝑟,𝑟
 and ∇2𝑔𝑖

𝑌𝑟
= 𝑅𝜙𝑟,𝑖

⊤ ∇𝑔𝑖
𝑌𝑟,𝑟𝑅𝜙𝑟,𝑖

, respectively, where 𝑅𝜙𝑟,𝑖
 is the rotation matrix for the 

road heading angle at the 𝑖𝑡ℎ feature location, 𝜙𝑟,𝑖. Then, the PF approximation with respect to the 

(𝑋, 𝑌) frame is defined as 

𝑔𝑖
𝑌𝑟(𝑋𝑡+𝑘, 𝑌𝑡+𝑘) = 𝑔𝑖(𝑋𝑡, 𝑌𝑡) + ∇𝑔𝑌𝑟

𝑖

⊤
|
𝑋𝑡,𝑌𝑡

[
𝑋𝑡+𝑘 − 𝑋𝑡

𝑌𝑡+𝑘 − 𝑌𝑡
]

+
1

2
[
𝑋𝑡+𝑘 − 𝑋𝑡

𝑌𝑡+𝑘 − 𝑌𝑡
]
⊤

∇2𝑔𝑖
𝑌𝑟

|
𝑋𝑡,𝑌𝑡

[
𝑋𝑡+𝑘 − 𝑋𝑡

𝑌𝑡+𝑘 − 𝑌𝑡
]

. 

( 38 ) 

Finally, the approximations of all PFs are summed as 𝐺𝑦 = ∑ 𝑔𝑖
𝑌𝑟𝑁

𝑖=1 , which is finally included in 

the MPC objective function, as described in 4.3.1. Each processing step of the PF approximation 

described in this section, such as the rotations, convexification, and simplifications, are performed 

once offline, whereas the final approximation shown in ( 38 ) is computed online. Therefore, the 

numerous aforementioned processing steps do not affect the computational expense of the 

controller. 
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4.2. Vehicle Stability Constraints 

Due to the mechanical limitations of the vehicle, it is necessary to bound the front steering angle 

as −𝛿𝑓,𝑚𝑎𝑥  ≤  𝛿𝑓 ≤ 𝛿𝑓,𝑚𝑎𝑥, where 𝛿𝑓,max is set to 10 degrees. Additionally, the yaw rate, 𝑟, and 

side-slip angle, 𝛽, are constrained to prevent over-steering as [43] 

𝛽 =
𝑟𝑙𝑟
𝑣𝑥

± tan𝛼p, 

( 39 ) 

and 

𝑟 = ±
𝜇𝑟,est𝑔

𝑣𝑥
, 

( 40 ) 

where 𝜇𝑟,est is the estimated road-tire friction coefficient, 𝑔 is the acceleration due to gravity, and 

𝛼p is slip angle of the rear tires corresponding to the peak lateral tire force. Since 𝛽 is not in the 

state space, 𝛽 is applied by bounding the lateral speed, 𝑣𝑦, as 𝑣𝑦 = 𝑣𝑥tan
−1 (𝛽). The estimated 

road-tire friction coefficient, 𝜇𝑟,est, is set naively as 0.8 to reflect dry road conditions. Therefore, 

in the case of poor road conditions, the yaw rate constraints will be too wide. The effect of adjusting 

the estimated friction coefficient to accurately reflect poor road conditions is therefore studied in 

Chapter 5. 

4.3. Optimal Control Problem 

4.3.1. Objective Function 

The control objective considers several objectives with regard for path planning, path tracking, 

lateral stability, and steering effort. This includes penalizing tracking error with respect to the 

nominal path, which is the center of the desired driving lane. Additionally, the approximated 

potential field intensity is penalized. To improve vehicle stability and reduce unnecessary steering 

action, both the magnitude of the steering actions and the difference between each steering angle 

and the previous optimal steering angle, 𝛿𝑓,req,𝑡−1
∗ , are penalized.  
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The optimal problem for lateral control is characterized by an objective function where the set of 

steering actions, {𝛿𝑓,req,𝑡, … , 𝛿𝑓,req,𝑡+𝑁𝑐−1}, and the set of constraint slack variables, {𝜖1, … , 𝜖𝑁𝑝
}, 

are optimized. The control objective by which the control inputs are optimized is defined as  

min
𝛿𝑓,𝜖

∑ (‖𝑌𝑡+𝑘 − 𝑌𝑑𝑒𝑠,𝑡+𝑘‖𝑄

2
+ ‖𝛿𝑓,𝑡+𝑘−1‖𝑅

2
+ 𝐺𝑌,𝑡+𝑘 + ‖𝜖𝑘‖𝑆

2)

𝑁𝑝

𝑘=1

+‖𝛿𝑓,req,𝑡+𝑘−1 − 𝛿𝑓,req,𝑡−1‖𝑃
2 ,

 

( 41 ) 

where 𝑄, 𝑅, 𝑆, and 𝑃 are weighted identity matrices for the 𝑌-coordinate tracking error, steering 

angle, difference between the current and previous steering angles, and the constraint slack 

variables, respectively. The desired 𝑌-coordinate, 𝑌𝑑𝑒𝑠, is the center of the desired driving lane. 

4.3.2. Constraints 

Certain vehicle states are constrained, such as those which affect vehicle stability, as outlined in 

0. Additionally, the Y-coordinate, 𝑌, is constrained according to the road boundaries. Within the 

MPC policy, the inequality constraint, 𝐴𝑐𝑢 ≤ 𝑏𝑐, constrains the vehicle states, where 

𝐴𝑐 = [
𝐶𝑐𝛩

−𝐶𝑐𝛩
] 

( 42 ) 

and 

𝑏𝑐 = [
𝑥‾ − 𝐶𝑐𝛷𝑥𝑡

−𝑥‾ + 𝐶𝑐𝛷𝑥𝑡
], 

( 43 ) 

and where the constrained states, 𝑌, 𝑣𝑦 and 𝑟, are indexed in the state prediction by the block 

diagonal matrix, 𝐶𝑐. The upper and lower bounds of 𝑌, 𝑣𝑦 and 𝑟 comprise 𝑥 and 𝑥  respectively as 

𝑥 = [𝑌 𝑣𝑦 𝑟 … 𝑌 𝑣𝑦 𝑟]
⊤

and 𝑥 = [𝑌 𝑣𝑦 𝑟 … 𝑌 𝑣𝑦 𝑟]
⊤
. 
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Slack in the state constraints is necessary to avoid infeasibility while solving the quadratic 

programming problem. This slack allowance is characterized by a set of slack variables, 𝜖𝑘 =

[𝜖𝑌,𝑡+𝑘 𝜖𝑌,𝑡+𝑘 𝜖𝑣𝑦,𝑡+𝑘 𝜖𝑣𝑦,𝑡+𝑘 𝜖𝑟‾,𝑡+𝑘 𝜖𝑟,𝑡+𝑘]
⊤

. 

4.3.3. Quadratic Programming Formulation 

The control objective function is solved using quadratic programing in MATLAB. To do so, the 

cost function in ( 41 ) is converted into the quadratic programming problem, 

𝐽 =
1

2
𝑢̃⊤𝐻̃𝑢̃ + 𝑓⊤𝑢̃, 

( 44 ) 

where the augmented control vector, 

𝑢̃ = [𝛿𝑓,req,𝑡 𝛿𝑓,req,𝑡+1 … 𝛿𝑓,req,𝑡+𝑁𝑐−1 𝜖1 … 𝜖𝑁𝑝]
⊤
, 

( 45 ) 

comprises the set of steering actions for the control horizon and the set of slack variables for the 

state constraints. The Hessian matrix and gradient vector of  𝐽 are defined as 

𝐻̃ = [
𝐻 0𝑁𝑐×6𝑁𝑝

06𝑁𝑝×𝑁𝑐
𝑆6𝑁𝑝×6𝑁𝑝

] 

( 46 ) 

and 

𝑓 = [
𝑓

06𝑁𝑝×1
], 

( 47 ) 

respectively. The matrix, 𝐻, and the vector, 𝑓, characterize the quadratic problem in the absence 

of slack variables, as 
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𝐻 = 2[(𝐶𝑌𝛩)⊤𝑄𝐶𝑌𝛩 + 𝑅 + 𝑃]

+(𝐶𝑋,𝑌𝛩)
⊤
∇2𝐺𝑌|𝑋𝑡,𝑌𝑡

𝐶𝑋,𝑌𝛩
 

( 48 ) 

and 

𝑓⊤ = 2[𝐸⊤𝑄𝐶𝑌𝛩 − 𝑃𝛿𝑓,𝑡−1] + ∇𝐺𝑌|𝑋𝑡,𝑌𝑡
𝐶𝑋,𝑌𝛩

+𝛺⊤∇2𝐺𝑌|𝑋𝑡,𝑌𝑡
𝐶𝑋,𝑌𝛩.

 

( 49 ) 

The block diagonal matrix, 𝐶𝑌, indexes 𝑌 in the state vector, whereas 𝐶𝑋,𝑌 indexes 𝑋 and 𝑌 in the 

state vector. Moreover, 𝐸 = 𝐶𝑌𝜙𝑥𝑡 − 𝑌𝑑𝑒𝑠 and 𝛺 = 𝐶𝑋,𝑌𝜙𝑥𝑡 − 𝛤, where 𝛤 = [𝑋𝑡 𝑌𝑡]
⊤ extended 

over 2𝑁𝑝 rows. The objective, 𝐽, is subject to the augmented inequality constraint, 𝐴̃𝑐𝑢̃ ≤ 𝑏𝑐, 

where 

𝐴̃𝑐 = [𝐴𝑐 −𝐼6𝑁𝑝]. 

( 50 ) 

4.4. State Estimation 

A state observer estimates non-measurable states according to the control inputs in 𝑢 and the 

measurable state outputs in 𝑦. A Kalman filter is a particular type of state observer for a stochastic 

system, where measurement and process noises are considered [44]. Conversely, a Luenberger 

observer is a state observer for a deterministic system. To estimate some states in 𝑥 which are 

typically unmeasurable on a production vehicle, such as the lateral speed, 𝑣𝑦, a pair of state 

observers are tested. At each discrete time step with step size, 𝜏𝑠, the state, 𝑥, is estimated as 𝑥̂, 

with the measurable output, 𝑦 = 𝐶𝑥 = [𝑋 𝑣𝑥 𝑌 𝜓 𝜔𝑓 𝜔𝑟 𝛿𝑓,𝑎𝑐𝑡]
⊤

.  

4.4.1. Kalman filter 

For the Kalman filter, the first step of state estimation is to make the a priori prediction, 𝑥̂−, as 

𝑥̂𝑡
− = 𝐴𝑑|𝑥=𝑥̂𝑡−1

𝑥̂𝑡−1 + 𝐵𝑑|𝑥=𝑥̂𝑡−1
𝑢𝑡 + 𝑊𝑑|𝑥=𝑥̂𝑡−1

 

( 51 ) 
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and 

𝑃𝑡
− = 𝐴𝑑|𝑥=𝑥̂𝑡−1

𝑃𝑡−1𝐴𝑑
⊤ + 𝑄𝑛, 

( 52 ) 

where 𝑄𝑛 is the covariance matrix of the process noise, modeled as Gaussian white noise, and 𝑃𝑡
− 

is the a priori estimate covariance matrix. Next, the prediction, 𝑥̂−, is corrected to 𝑥̂, and the 

estimate covariance, 𝑃−, is corrected to 𝑃, according to 

𝐾𝑘 = 𝑃𝑡
−𝐶⊤(𝐶𝑃𝑡𝐶

⊤ + 𝑅𝑛)−1, 

( 53 ) 

𝑥̂𝑡 = 𝑥̂𝑡
− + 𝐾𝑘(𝑦𝑡 − 𝐶𝑥̂𝑡

−), 

( 54 ) 

and 

𝑃𝑡 = (𝐼9 − 𝐾𝑘𝐶)𝑃𝑡
−, 

( 55 ) 

where 𝐾𝑘 is the Kalman filter gain matrix and 𝑅𝑛 is the covariance matrix of the sensor noise, 

modeled as Gaussian white noise. As the controller is run in simulation, there is no sensor noise 

present; therefore, the sensor noise covariance matrix is set to zero. The process noise covariance 

matrix is set to a diagonal matrix, which is then tuned by trial-and-error until the estimate, 𝑥̂, 

converges to the actual full-state, 𝑥. 

4.4.2. Luenberger observer 

For the Luenberger observer, the state estimate is updated according to a simple feedback loop, as 

shown in Figure 4.3, where the estimation error, 𝑦 − 𝑦̂, is used to correct the estimate produced 

by the linear model as 

𝑥̂𝑘+1 = 𝐴𝑑𝑥̂𝑘 + 𝐵𝑑𝑢𝑘 + 𝐺𝑑 + 𝐿𝑑(𝑦 − 𝐶𝑑𝑥̂𝑘), 

( 56 ) 
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where 𝐿𝑑 is the discrete-time observer gain matrix, which is tuned to set the eigenvalues of 

(𝐴𝑑 − 𝐿𝑑𝐶𝑑) to be inside the unit circle. 

 

Figure 4.3: Luenberger observer block diagram 

4.4.3. Comparison of observers 

Figure 4.4 shows the results of the state observers when the lateral speed, 𝑣𝑦, is unmeasurable in 

the state output, 𝑦. In this scenario, the vehicle follows a double lane change maneuver while 

traveling at 100 km/h. It is shown that both the Luenberger and Kalman observers track the actual 

state trajectory with a high level of accuracy. However, the Kalman filter tracks the actual state 

more closely than the Luenberger observer due to the consideration for process noise with the 

former technique. 

To assess the stability of the Luenberger observer, the eigenvalues of the matrix, (𝐴𝑑 − 𝐿𝑑𝐶𝑑), are 

recorded. The fourth eigenvalue, 𝜆4, corresponds to the estimate of the unknown state, 𝑣𝑦; during 

this maneuver, 𝜆4 has the highest magnitude of all eigenvalues, but does not exceed a magnitude 

of 0.664 after tuning 𝐿𝑑. Therefore, the full-state observation by this approach is stable. 

The Kalman filter also exhibits a high level of stability and rapid convergence to the actual value 

of 𝑣𝑦. This is demonstrated by the posteriori estimate covariance matrix, 𝑃, all elements of which 

exhibit magnitudes no greater than 0.02 during the entire simulation. Therefore, the coefficient of 

variation (CV = 𝜎/𝜇), is approximately 4% at the instances where the lateral speed is the greatest, 
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which indicates a high level of confidence in the state estimates provided by the Kalman filter, 

even during rapid steering maneuvers. 

 

Figure 4.4: Lateral speed during a double lane change maneuver at 100 km/h, where the state is estimated 

by Kalman and Luenberger observers 

4.5. Longitudinal Velocity Control 

While MPC handles the lateral control associated with obstacle avoidance and lane-keeping, the 

longitudinal control strategy is independent. The objective of the longitudinal controller is to track 

the desired longitudinal speed, 𝑣𝑥,des. In the nominal case, where there are no obstacles in the 

vicinity of the ego vehicle, 𝑣𝑥,des = 𝑣𝑥,max, where 𝑣𝑥,max is the speed limit. If an obstacle is within 

both safe distances, 𝑋𝑠 and 𝑌𝑠, the speed is reduced to avoid a collision. In this case, the desired 

speed is set according to the PF gradient resulting from the respective obstacle, 

𝑣𝑥,des = 𝑣𝑥,max

(

 
 

1 − 𝑘𝑋

∂𝑔𝑖
∗

∂𝑋
|
𝑋𝑡

∂𝑔𝑖
∗

∂𝑋
|
𝑋𝑠,𝑡)

 
 

, 

( 57 ) 

where 𝑔𝑖
∗ is the PF approximation of the obstacle in question, 𝑘𝑋 is a tunable factor of safety, and 

𝑣𝑥,max is the speed limit. By this policy, the longitudinal gradient of the PF is leveraged only for 

longitudinal control, while it is completely ignored in the lateral control policy. Therefore, the 

repulsive force from each PF is divided into its longitudinal and lateral components to exclusively 

affect the control policies for the respective directions. 
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The speed is controlled by a pair of low-level PID controllers which command the front axle 

torque, 𝑇axle,𝑓, and brake pressure, 𝑃b, as shown in Figure 4.5. Additionally, an anti-lock braking 

system (ABS) is included, which releases the brakes using a bang-bang controller if either the front 

or real longitudinal slip ratios decrease below -0.2. 

 

Figure 4.5: Block diagram of longitudinal control loop 

4.6. Reference State Formulation 

4.6.1. Localization on Path 

The vehicle is located on a pre-recorded global path according to the method exhibited in Figure 

4.6. The objective of this localization routine is to define the position of the vehicle in a path-based 

coordinate frame, with path-coordinate, 𝑠, and lateral displacement, Δ. In the diagram shown, the 

Bus represents the vehicle, where the CG location is denoted by the East and North coordinates, 

(𝐸𝐵, 𝑁𝐵). The reference path, as shown in green, consists of a set of discrete waypoints, shown to 

be connected by imaginary line segments. The vehicle is localized in the path frame by select the 

nearest path waypoint in terms of Euclidian distance and checking whether an orthogonal vector, 

(
𝑑𝑁

𝑑𝐸
)
𝑛𝑜𝑟𝑚𝑎𝑙

exists on that segment with one end at the vehicle coordinates, (𝐸𝐵, 𝑁𝐵) and such that 
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(
𝑑𝑁

𝑑𝐸
)
𝑟𝑜𝑎𝑑

× (
𝑑𝑁

𝑑𝐸
)
𝑛𝑜𝑟𝑚𝑎𝑙

= −1. 

( 58 ) 

By this definition, the coordinates of the intersection point of the orthogonal vector and the path 

segment are 

𝐸𝑒 =
(
𝑑𝑁
𝑑𝐸

)
𝑟𝑜𝑎𝑑

[𝑁𝐵 + (
𝑑𝑁
𝑑𝐸

)
𝑟𝑜𝑎𝑑

𝐸1 − 𝑁1] + 𝐸𝐵

1 + (
𝑑𝑁
𝑑𝐸

)
𝑟𝑜𝑎𝑑

2  

( 59 ) 

𝑁𝑒 = (
𝑑𝑁

𝑑𝐸
)
𝑟𝑜𝑎𝑑

(𝐸𝑒 − 𝐸1) + 𝑁1 

( 60 ) 

The one-dimensional path coordinate of the vehicle, 𝑠𝑏, is therefore defined as the known path 

coordinate of the waypoint, (𝐸1, 𝑁1) plus the Euclidian distance between (𝐸1, 𝑁1) and (𝐸𝑒 , 𝑁𝑒). 

 

Figure 4.6: Localization on 1-dimensional path coordinate 
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In an iterative routine, the validity of the localization step is executed by checking whether the 

resultant orthogonal vector lies between the points (𝐸1, 𝑁1) and (𝐸2, 𝑁2); the orthogonal vector 

may intersect an extrapolation of this path segment in either direction. The localization routine is 

repeated by incrementally checking each path segment in the appropriate direction until an 

orthogonal vector is computed which lies within the bounds of the respective path segment. 

4.6.2. Reference Coordinates and Heading 

After localizing the vehicle on the path coordinate, the reference trajectory for the prediction 

horizon is constructed. Each 𝑘𝑡ℎ discrete step is assigned the reference coordinates, 

𝑋𝑑𝑒𝑠,𝑡+𝑘, 𝑌𝑑𝑒𝑠,𝑡+𝑘, and the reference heading angle, 𝜓𝑑𝑒𝑠,𝑡+𝑘. These reference values are 

determined according to the estimated waypoint locations at each predicted step. For each step, 

the corresponding path waypoint is defined as 

𝑛𝑡+𝑘 = 𝑛(𝐸2,𝑁2) + floor (
𝜏𝑠𝑣𝑥𝑘

𝑑
) 

( 61 ) 

where 𝑛(𝐸2,𝑁2) is the index of the next closest path waypoint after the vehicle, as shown in Figure 

4.6, and 𝑑 is the Euclidian distance between each waypoint in the reference path. By this 

estimation, the vehicle speed is assumed to remain constant throughout the prediction horizon, and 

the vehicle is assumed to track directly on the reference path. Thereby, rough approximations of 

the desired coordinates and heading for each 𝑘𝑡ℎ step in the prediction horizon are given as 

𝑋𝑑𝑒𝑠,𝑡+𝑘 = 𝐸(𝑛𝑡+𝑘), 

( 62 ) 

𝑌𝑑𝑒𝑠,𝑡+𝑘 = 𝑁(𝑛𝑡+𝑘), 

( 63 ) 

and 

𝜓𝑑𝑒𝑠,𝑡+𝑘 = 𝜓(𝑛𝑡+𝑘), 

( 64 ) 
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where 𝜓(𝑛𝑡+𝑘) is the road heading angle, 𝜓𝑟, at the (𝑛𝑡+𝑘)
𝑡ℎ path waypoint, as evaluated by the 

mean of the two path segment headings adjacent to the respective point, as 

𝜓(𝑛𝑡+𝑘) = mean(atan (
𝑁(𝑛𝑡+𝑘+1)− 𝑁(𝑛𝑡+𝑘)

𝐸(𝑛𝑡+𝑘+1)− 𝐸(𝑛𝑡+𝑘)
) , atan (

𝑁(𝑛𝑡+𝑘)− 𝑁(𝑛𝑡+𝑘−1)

𝐸(𝑛𝑡+𝑘)− 𝑁(𝑛𝑡+𝑘−1)
)). 

( 65 )  
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CHAPTER 5  

Simulation Results 

A virtual test environment is constructed within MATLAB and Simulink to validate the 

performance of the control algorithm described in Chapter 4. This simulation environment features 

a medium-fidelity dynamics model to represent the vehicle plant. Additionally, driving scenarios 

are generated and integrated with the vehicle plant; detections of actor vehicles and lane boundaries 

are output from the scenario and read by the controller.  

5.1.  Simulation Environment 

5.1.1. Vehicle Model 

To validate the controller performance, a simulated vehicle plant is designed using the MATLAB 

& Simulink Vehicle Dynamics Blockset. As shown in Figure 5.1, a vehicle body block is used in 

conjunction with four wheel and tire blocks. The states vector, 𝑥, is read directly by the controller, 

in addition to the tire normal forces, 𝐹𝑧𝑓 and 𝐹𝑧𝑟, and effective rolling radius, 𝑅eff. The vehicle 

body parameters, including 𝑚, 𝐼𝑧, 𝑙𝑓, and 𝑙𝑟, are defined in Table 5.1. The tire model parameters 

are set to the default values for Light Passenger Car 205/60R15 within the Combined Slip 2DOF 

Wheel blocks. The road surface friction for the plant is set by adjusting the lateral and longitudinal 

friction coefficients, 𝑃𝐷𝑌1 and 𝑃𝐷𝑋1, respectively, from the Pacejka Magic formula [35]. The 

control inputs, including the front steering angle, 𝛿𝑓,req, axle torque to each front wheel, 𝑇axle,𝑓, and 

brake pressure, 𝑃b, are input to the appropriate wheel blocks in the vehicle plant.  

 



 

39 

 

 

Figure 5.1: Block diagram of vehicle model, featuring a vehicle body dynamics model and four wheel and 

tire models which consider the combined slip effect on tire forces. 

The tire model blocks (Combined Slip Wheel 2DOF) use the Pacejka tire formula [35] and 

consider the combined-slip effect. The Pacejka tire formula and the Burckhardt model, the latter 

of which estimates the tire forces in the MPC prediction model, exhibit similar behavior for a 

variety of road conditions [36]. Therefore, the reference model can reasonably represent the plant 

tire dynamics, assuming the model parameters are tuned properly. Figure 5.2 shows the lateral 

force generated from each model, both in low- and high-longitudinal slip conditions. For this 

comparison, the Burckhardt model is tuned by least-squares (LS) fitting to 205/55R16 tire data at 
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𝐹𝑧 = 4045.24 N. The advantage of using a combined-slip model is exhibited, as the pure-slip 

model significantly over-estimates the lateral tire force in the case of high longitudinal slip (Figure 

5.2(b)). Moreover, the Burckhardt combined-slip model is shown to accurately estimate the lateral 

tire forces in a range of slip conditions. However, the difference between the two models is 

significant at very high slip angles (> 20 degrees). 

 

Figure 5.2: Estimated lateral tire forces for combined- and pure-slip Burckhardt models, compared to 

those generated by the Pacejka model. (a) Low slip ratio: 0.003. (b) High slip ratio: 0.3. 

First order braking dynamics are included as part of the plant model with a time constant, 𝜏b, as 

defined in Table 5.1. The steering dynamics are modeled with a second order transfer function, 

𝛿𝑓,act = 𝛿𝑓,req

𝜔𝑛,s
2

𝑠2 + 2𝜔𝑛,s𝜁s𝑠 + 𝜔𝑛,s
2

 

( 66 ) 

where 𝜔𝑛,s and 𝜁s are the natural frequency and damping ratio of the steering system, respectively, 

as defined in Table 5.1. Additionally, the steering rate of change saturates at |
𝑑𝛿𝑓,act

𝑑𝑡
| ≤ 1 deg/s. 
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Table 5.1: Simulated vehicle model parameters 

Symbol Description Value Units 

𝑚 Mass 1270 kg 

𝐼𝑧 Yaw moment of inertia 1536.7 kg m2 

𝑙𝑓 Front axle to CG 1.015 m 

𝑙𝑟 Rear axle to CG 1.895 m 

𝐼𝑤 Wheel rolling moment of inertia 1.084 kg m2 

𝑅𝑒 Effective tire rolling radius 0.325 m 

𝜔𝑛,s Steering natural frequency 2𝜋

0.04
 

rad/s 

𝜁s Steering damping ratio 1 - 

𝜏b Braking time constant 0.01 s 

5.1.2. Scenario Design 

The vehicle model is simulated in various driving scenarios generated using the MATLAB Driving 

Scenario Designer application. Figure 5.3 shows an example of a 2-dimensional driving scenario, 

where the ego vehicle is shown in blue, and an actor vehicle is shown in orange. In this scenario, 

a three-lane roadway is also included. The trajectory of the actor vehicle is set in the scenario 

designer as a set of waypoints with a pre-determined velocity at each point. The ego vehicle is 

given an initial pose in the scenario designer, but its trajectory is determined based on the controller 

input during simulation. The scenario is also shown in a 3-dimensional environment which uses 

the Unreal gaming engine to generate realistic graphics of the environment. 
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Figure 5.3: Example of driving scenario generated using MATLAB Driving Scenario Designer 

In the simulation environment, features such as lane boundaries and obstacles are detected by 

virtual sensors on the ego vehicle. These sensors are configured using the Driving Scenario 

Designer tools provided in MATLAB. Lane boundaries are detected by a simulated vision sensor 

for a specified horizon ahead of the ego vehicle. Obstacles such as actor vehicles are detected by 

a simulated radar sensor. 

5.2. Simulation Results 

5.2.1. Obstacle avoidance 

Figure 5.5 shows the controller performance when avoiding a vehicle in its driving lane while 

traveling at 80 km/h. In Figure 5.5(a), the vehicle to be avoided is stationary; in Figure 5.5(b), the 

vehicle to be avoided is traveling at 50 km/h. It is shown in both scenarios that the vehicle avoids 

the obstacle by performing a lane change maneuver. Particularly, Figure 5.4 shows the ego vehicle 

trajectory to smoothly navigate around the potential field of the stopped vehicle. Moreover, each 

maneuver is comfortable and stable, as exhibited by low side-slip angles (Figure 5.5 (e) and Figure 

5.5(f)). This highlights the ability of the controller to perform avoidance maneuvers at high speeds 

while maintaining rider comfort and vehicle stability. 

Both avoidance maneuvers shown in Figure 5.5 exhibit a very low longitudinal slip ratio due to 

high road surface friction and low axle torque input. Therefore, the combined-slip effect is 

negligible in both scenarios. Figure 5.5(g) and (h) show the lateral tire forces estimated by the 
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MPC reference model, compared to the actual forces, for the avoidance maneuvers featuring static 

and moving vehicles, respectively. The actual and estimated forces follow a very similar trend 

throughout the maneuver, highlighting good tire force estimates in pure lateral slip conditions. 

However, at the point where the tire slip angles are the highest, the lateral forces are generally 

overestimated. This discrepancy is a result of model mismatch due to sub-optimal tuning of the 

Burckhardt parameters. 

 

Figure 5.4: Potential field intensity and ego vehicle trajectory 
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Figure 5.5: (a, c, e, g) Avoidance of a static vehicle while traveling at 80 km/h in dry road conditions. (b, 

d, f, h) Traveling at 80 km/h, avoiding a vehicle traveling at 50 km/h. (a, b) Trajectories of ego vehicle 

and actor vehicle. (c, d) Steering angle.  (e, f) Side-slip angle, 𝛽, and tire slip angles, 𝛼𝑓 and 𝛼𝑟. (g, h) 

Actual lateral tire forces compared to those estimated by reference model. 
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5.2.2. Stopping for Obstacles 

Figure 5.6 shows the controller performance when slowing from 80 km/h to 50 km/h to follow the 

actor vehicle ahead, and then stopping completely behind that vehicle, according to the speed 

control policy in ( 57 ). Figure 5.6(a) shows that the ego vehicle comes to a complete stop 

approximately 6 m behind the actor vehicle. Moreover, it is shown in Figure 5.6 (c) that the desired 

speed profile is smooth as it converges toward the speed of the actor vehicle, at both 50 km/h and 

0 km/h. This indicates that the longitudinal control policy is effective in safely following and 

stopping at a safe distance from obstacles. The longitudinal slip ratio in the stopping maneuver is 

very low, even when braking to stop for the actor vehicle, as shown in Figure 5.6(d). The low slip 

ratio is due to high road surface friction and low axle torque and brake pressure (Figure 5.6(b)). 

This results in good rider comfort and vehicle stability. Moreover, Figure 5.6(e) shows the 

estimated longitudinal tire forces during the stopping maneuver. The estimated tire forces closely 

match the actual longitudinal tire forces, indicating accuracy on the part of the Burckhardt model 

in pure longitudinal slip conditions. 
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Figure 5.6: Traveling at 80 km/h, slowing to 50 km/h for vehicle ahead, then stopping for vehicle ahead in 

dry road conditions (𝜇𝑟,est = 0.8). The actor vehicle begins decelerating to a stop at X = 850 m and 

comes to a full stop at X = 950 m. 

5.2.3. Evasive maneuver 

The capability of the path planning controller to avoid a collision are tested under conditions which 

feature high lateral and longitudinal tire slip. Figure 5.8 demonstrates a harsh avoidance maneuver 

in wet road conditions with road surface friction, 𝜇r = 0.5. In this scenario, the ego vehicle follows 

behind an actor vehicle at 100 km/h until the actor vehicle stops abruptly. To avoid a collision, the 

path planning controller and speed controller are both enabled, resulting in a combination of 

avoidance and slowing. 

It is shown in Figure 5.8(a) that the ego vehicle successfully performs a left lane change to avoid 

the stopped vehicle. Despite the low road surface friction, the vehicle remains stable, as exhibited 

by the low side-slip angle shown in Figure 5.8(f). Furthermore, although a high longitudinal 

acceleration is exhibited due to harsh braking, the lateral acceleration remains under 1 m/s2 

throughout the maneuver, as shown in Figure 5.8(e). Moreover, the lateral tire forces, as estimated 

by the reference model, maintain good accuracy, as shown in Figure 5.8(g). The lateral tire forces 
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are generally overestimated due to the low road surface friction; however, the estimates follow an 

analogous trend to the actual forces throughout. This result demonstrates good performance on the 

part of the path planning controller in poor road conditions, where the tire forces are overestimated. 

The desired longitudinal speed decreases as the ego vehicle approaches the vehicle ahead, as 

shown in Figure 5.8, according to ( 57 ).Once the vehicle has achieved the safe lateral distance, 𝑌𝑠, 

the ego vehicle resumes driving at 𝑣𝑥,max. The speed control is achieved by regulating axle torque, 

𝑇axle,f, and brake pressure, 𝑃b. As shown in Figure 5.8(c), the brake pressure increases sharply to 

decelerate the vehicle. The longitudinal slip ratios of both front and rear tires, therefore, exhibit 

values approaching -6% during maximum braking, as shown in Figure 5.8(g). This result 

demonstrates the importance of considering the combined-slip effect for estimating tire forces, 

particularly in harsh braking maneuvers where the longitudinal slip ratio is high. Moreover, the 

longitudinal control law is shown to work well in collaboration with the path planning controller 

to maintain vehicle stability during evasive maneuvers.  

Figure 5.7 shows the side-slip angle and yaw rate trajectory for the emergency avoidance maneuver 

presented in Figure 5.8. The effect of the estimated tire friction coefficient, 𝜇r,est, is studied by 

changing it from the naive estimate of 0.8, to the correct road friction coefficient, 0.5. Both 

trajectories stay within the strictest constraint according to 𝜇r,est = 0.5. This result exhibits the 

capability of the controller to maintain vehicle stability despite low road surface friction. 

Moreover, the two trajectories are virtually identical. This demonstrates that a naive estimate of 

the road surface friction is acceptable, even when road conditions are actually poor; therefore, 

online road surface friction estimation is not necessary for the purpose of calculating state 

constraints. 
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Figure 5.7: Phase portrait of yaw rate and side-slip angle for emergency avoidance maneuver 
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Figure 5.8: Following vehicle at 100 km/h, followed by the actor vehicle stopping within a distance of 80 

m. Road conditions are wet (𝜇𝑟 = 0.5). (a) Trajectories of ego and actor vehicles. The triangle markers 

denote the time when the actor vehicle begins decelerating to a stop and the 'X' markers denote the time 

when the actor vehicle comes to a full stop. (b) Requested and actual front steering angles. (c) 

Longitudinal control inputs, including front axle torque and brake pressure. (d) Desired and actual 

longitudinal speeds. (e) Lateral, longitudinal, and total resultant acceleration. (f) Side-slip angle and slip 

angles of front and rear tires. (g) Longitudinal slip ratios of front and rear tires. (h) Actual and estimated 

lateral tire forces. (i) Actual and estimated longitudinal tire forces. 

. 
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CHAPTER 6  

Experimental Results 

6.1. Vehicle Platform 

Experimental validation of the controller and motion planner described in Chapter 5 is performed 

on a test vehicle – a Chevrolet Equinox SUV equipped with independent four-wheel electric drive 

and automatic steering, as shown in Figure 6.1. The dynamics and kinematics parameters of the 

vehicle are shown in Table 6.1, each of which are set accordingly within the controller reference 

model. No modeling noise is considered in the model; therefore, the parameters of the reference 

model are assumed to match those of the actual vehicle plant. 

 

Figure 6.1: Chevrolet Equinox used for experimental validation of motion controller 

The motion controller is run in MATLAB/Simulink with a CAN interface for receiving state 

signals and sending control signals. An onboard global navigation satellite system (GNSS) reports 

the vehicle coordinates, velocity, heading angle, yaw rate, and acceleration. Moreover, speed 

sensors report the angular velocity of each wheel. The control signals, including the front steering 

angle, 𝛿𝑓,req, and the front axle torque, 𝑇axle, are sent by the controller to be activated by the 

steering actuator and the front wheel motors, respectively. No states are estimated in the 
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experimental trials, nor is sensor noise accounted for in the controller. Therefore, it is assumed that 

the noise from each sensor is negligible. 

Table 6.1: Chevrolet Equinox parameters 

Symbol Description Value Units 

𝑚 Mass 2271 kg 

𝐼𝑧 Yaw moment of inertia 4600 kg m2 

𝑙𝑓 Front axle to CG 1.43 m 

𝑙𝑟 Rear axle to CG 2.855 m 

𝐼𝑤 Wheel rolling moment of inertia 1.084 kg m2 

𝑅𝑒 Effective tire rolling radius 0.325 m 

6.2. Scenario Design 

A virtual driving scenario is designed according to a real-world test environment to test the motion 

controller on the physical vehicle. Figure 6.2 shows an overhead view of the test environment in a 

parking lot on the University campus. To set up the scenario, the vehicle is driven in a straight line 

while the coordinates from the GNSS are recorded. Then, the recorded points are used to construct 

the reference path, as shown. Furthermore, this reference path is imported into the MATLAB 

Driving Scenario Designer to construct a driving scenario with three lanes, where the middle lane 

corresponds to the reference path. In this driving scenario, an actor vehicle is also added to 

represent an obstacle to be avoided. The three-lane roadway represents the area that is considered 

acceptable for avoidance – the ego vehicle may avoid on either side of the obstacle and 

subsequently return to the center lane. The resultant scenario is shown overlaid on the map in 

Figure 6.2.  
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Figure 6.2: Obstacle avoidance and path tracking scenario in parking lot 

6.3. Results 

6.3.1. Path tracking 

The first experimental test aims to validate the path tracking performance of the motion controller 

in the absence of any obstacles. In this test, the ego vehicle is parked at the beginning of the 

reference path and then the controller is activated. Meanwhile, a human operator controls the motor 

torque to achieve a longitudinal speed of approximately 20 km/h. Only the lateral controller is 

activated in this case to achieve path tracking by steering while cruising at a constant speed. Figure 

6.3 shows the path tracking result, where the ego vehicle trajectory exhibits good tracking of the 

reference path. The steering angle request is smooth and tracked closely by the actual steering 

angle, as shown in Figure 6.3(b). Moreover,  Figure 6.3(e) shows the lateral tracking error, which 

converges toward zero after correcting for the error due to the initial positioning of the vehicle. 

This result demonstrates the ability of the controller to track the vehicle along a reference path 

while commanding a steering angle which is achievable by real steering actuator dynamics. 

Furthermore, it demonstrates that the lateral position in the lane may be held even when the speed 

is not constant due to the accelerator input by a human operator. 
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Figure 6.3: Path tracking performance on Chevrolet Equinox. (a) Trajectory and reference path. (b) 

Requested and actual steering angles. (c) Longitudinal speed. (d) Side-slip angle and tire slip angles. (e) 

Lateral tracking error. 

6.3.2. Obstacle avoidance 

The driving scenario shown in Figure 6.2 is executed to demonstrate the obstacle avoidance 

performance of the motion controller, where a virtual obstacle is placed on the reference path. In 

this case, the ego vehicle is parked at the beginning of the reference path and then the lateral 

controller is activated while a human operator controls the acceleration to achieve a speed of 

approximately 27 km/h. In this case, the longitudinal control is not important, as only the steering 

will be affected by the PF from the obstacle. Figure 6.5 shows the resultant behaviour while 

avoiding the obstacle: the trajectory is shown to first follow the reference path before deviating to 

the right of the path around the obstacle, and then finally, returning to the reference path. 

Furthermore, Figure 6.4 shows the 3D contour of the PF, which demonstrates that the ego vehicle 

trajectory circumvents the peak of the PF emanating from the obstacle and returns to the path 

where the PF intensity is significantly lower. This trajectory reflects the simulation results 

presented in 5.2.1, albeit at a much lower speed than the simulated maneuver.  
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Figure 6.4: Potential field intensity surrounding obstacle, where the ego vehicle trajectory is indicated by 

the red line. 

The successful obstacle avoidance is the result of the steering request shown in Figure 6.5(b), 

where the steering angle alternates between consecutive right-, left-, and right-hand turns, with a 

maximum steering angle of approximately 8 degrees. The steering angle request is tracked closely, 

but some lag is observed, particularly when switching from a right-hand turn to a left-hand turn 

after deviating to the right side of the obstacle. Furthermore, the steering angle saturates at 8 

degrees during the left-hand turn due to hard constraints set on the steering angle. This angle 

constraint is set to prevent unsafe behavior due to a harsh steering angle. When compared to the 

simulation result shown in 5.2.1, the steering request herein is much higher and changing from one 

direction to another more sharply. This rapid shift in the steering angle request may be caused by 

lag in the steering actuator, as well as a lower speed which allows for a higher steering angle 

without violating the stability constraints. Ultimately, this steering request results in a smooth and 

comfortable trajectory. 
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Figure 6.5: Result of obstacle avoidance maneuver on Chevrolet Equinox. (a) Trajectory of ego vehicle 

and location of obstacle. (b) Actual and requested steering angle at the front wheels. (c) Longitudinal 

speed. (D) Side-slip angle and tire slip angles. (e) Yaw rate and the constraints thereof. 

During the maneuver, rider comfort and vehicle stability are maintained, as exhibited by a low 

side-slip angle and yaw rate, as shown in Figure 6.5(d) and Figure 6.5(e), respectively. 

Furthermore, Figure 6.6 shows the phase portrait of the side-slip angle and yaw rate trajectory; the 

trajectory stays well within the stability constraints defined in ( 39 ) and ( 40 ). Ultimately, this 

result validates the effectiveness of the motion controller in controlling a real vehicle to avoid a 

static obstacle in the driving lane and safely return to the lane thereafter while maintaining vehicle 

stability and rider comfort. 
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Figure 6.6: Phase portrait of yaw rate and side-slip angle during an obstacle avoidance maneuver. The 

constraints are indicated by the red dotted boundary. 

6.3.3. Stopping for obstacle 

To test the longitudinal control policy defined in ( 57 ), an experimental scenario is set up where 

the ego vehicle is required to stop for a lead vehicle placed in the driving lane. In this case, the 

virtual obstacle is placed on the far end of the reference path. The ego vehicle is parked at the start 

of the reference path, then the lateral and longitudinal controllers are both activated. However, the 

obstacle avoidance feature is deactivated; therefore, the longitudinal controller is responsible for 

stopping the vehicle to avoid a collision. Unlike the prior experimental trials, the human operator 

has no influence on the speed in this case. The resultant trajectory is shown in Figure 6.8(a), where 

the ego vehicle travels along the reference path until it comes to a stop approximately 7 m ahead 

of the lead vehicle. Furthermore, Figure 6.7 shows the 3D contour of the PF intensity surrounding 

the obstacle, where the ego vehicle trajectory is shown to approach the peak of the PF but stop 

beforehand due to the increasing longitudinal gradient of the field. 
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Figure 6.7: Potential field intensity surrounding obstacle during stopping maneuver, where the ego 

vehicle trajectory is indicated by the red line 

The longitudinal controller commands the front axle torque to achieve the desired speed, and the 

lateral controller commands the steering to track the reference path, as shown in Figure 6.8(b) and 

Figure 6.8(c), respectively. Figure 6.8(d) shows the longitudinal speed request throughout the trial, 

where the request starts at the setpoint of 𝑣𝑥,max = 25 km/h and then decreases according to the 

potential field gradient, as computed in ( 57 ). Consequently, the vehicle comes to a gradual and 

complete stop while achieving a safe distance behind the obstacle. This reflects the simulated result 

presented in 5.2.2 and ultimately demonstrates the effectiveness of this novel longitudinal control 

policy in adapting the vehicle speed to avoid a collision with a lead vehicle. Additionally, this 

result demonstrates that the lateral controller can keep the vehicle centered in the driving lane 

while the vehicle slows to a stop. 
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Figure 6.8: Stopping performance on Chevrolet Equinox. (a) Ego vehicle trajectory, where the ego 

vehicle stops ~6 m behind the obstacle. (b) Steering angle. (c) Front axle torque, where negative torque 

acts to slow the vehicle. (d) Requested and actual longitudinal speeds. (e) Lateral, longitudinal, and 

resultant acceleration. 
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CHAPTER 7  

Conclusions and Future Work 

7.1. Conclusions 

This thesis describes an autonomous vehicle motion controller which employs MPC and potential 

fields for autonomous vehicle path planning control. The described method advances prior works 

by augmenting the accuracy of the vehicle dynamics model. The controller design presented herein 

considers the combined-slip effect on tire forces: the tire forces are estimated by the Burckhardt 

combined-slip model, which are shown to model those generated by the Pacejka model in various 

slip conditions with reasonable accuracy. Additionally, other key state predictions are shown to 

match the actual states with a high degree of accuracy. Therefore, the dynamics model is an 

effective representation of vehicle dynamics for lateral motion control. 

The study also presents steps to reduce the computational complexity of the controller. A novel 

longitudinal control policy, which slows the vehicle to avoid collisions according to the potential 

field gradient, removes the longitudinal aspect from the optimization problem. The longitudinal 

control policy is shown to slow the vehicle to perform adaptive cruise control as well as stop for 

another vehicle at a safe distance. Moreover, the potential field approximation in the MPC 

objective is simplified to only consider the repulsive force in the lateral direction, which further 

simplifies the problem. Furthermore, unlike prior studies, the potential field approximation 

considers the estimated road heading angle to adapt the PF repulsive force according to the lateral 

direction in the road coordinate frame. 

The presented motion control design is validated through both simulation and physical vehicle 

tests. The experimental tests showed good performance of the controller in two maneuvers: 

avoiding and stopping for an obstacle in the driving lane. Each of these tests showed that the 

longitudinal and lateral controllers maintain a safe distance from the obstacle with regard for 

vehicle stability and rider comfort. In simulation, these maneuvers are repeated, but at higher 

speeds which are not feasible during the physical tests. Therein, the system is shown to maintain 

vehicle stability, even during highly evasive maneuvers where road conditions are diminished. 
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Moreover, the longitudinal and lateral controllers are demonstrated in concert to perform such an 

evasive maneuver: the brakes are applied to slow the vehicle, while the steering is activated to 

perform a lane change. 

7.2. Future Work 

The design of the controller may be further improved by adapting to varying road surface friction. 

It is shown that the controller model overestimates the tire forces in simulation when the road 

surface friction is diminished due to poor conditions. The yaw rate and side slip angle may be used 

to train a data-driven model in select road conditions to provide an estimation model for road 

conditions. By such an estimate, the tire model parameters may be adapted according to better 

reflect the actual road conditions, thereby improving the prediction accuracy of the controller 

model. Other uncertain parameters in the controller model, such as vehicle mass, for example, may 

also be adapted rather than assuming fixed values. 

A detailed dynamics model is presented in this thesis, which characterizes the vehicle, tire, wheel, 

and actuator dynamics. While the benefits of such a model are demonstrated, there remains some 

uncertainty in the vehicle which is not represented by the controller model. Therefore, a learning-

based model should be explored in the future. Such a learning-based model may be trained on the 

error of the fixed dynamics model to improve prediction accuracy. A comparison of the learning-

based approach to a fixed model like the one shown in this thesis would be valuable. 

This thesis presents a decoupled control approach: MPC handles only lateral control using active 

front steering, and an error-based longitudinal controller tracks the desired speed by commanding 

axle torque and braking. Although the detailed wheel and tire model in the lateral controller 

improves the prediction accuracy, it should be further leveraged for longitudinal control objectives, 

such as traction control. To do so, the MPC controller may perform torque vectoring in addition 

to active steering, according to the total tire slip ratio. Thereby, the lateral stability of the vehicle 

as well as the traction of each tire would be considered as part of the optimal control policy. 

Furthermore, the vehicle may perform more effective evasive maneuvers, particularly where road 

conditions are diminished. 
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