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Abstract

Background: Pathology reports contain key information about the patient’s diagno-
sis as well as important gross and microscopic findings. These information-rich clinical
reports offer an invaluable resource for clinical studies, but data extraction and anal-
ysis is often manual and tedious given their unstructured texts. Thus, an automated
data extraction method from pathology reports would be of significant value and utility.
Language modeling is useful for classifying and extracting information from natural lan-
guage reports. Released in 2018, Bidirectional Encoder Representations from Transform-
ers (BERT) achieved state-of-the-art performance on several natural language processing
(NLP) tasks. Pre-training BERT to the task-specific domain usually improves the model
performance. BioBERT was pre-trained with large biomedical corpora on BERT and out-
performed BERT on biomedical NLP tasks. Clinical BERT pre-trained with clinical data
on BioBERT achieved better results than BioBERT on clinical NLP tasks. It is not clear,
however, whether pre-training on ever smaller training data sets is worthwhile.

Objective: to develop a language model for renal transplant-pathology reports to
extract the answers for two pre-defined questions.

Methods: The study aimed to answer two pre-defined questions: 1) “What kind of
rejection does the patient show?”; and 2) “What is the grade of interstitial fibrosis and tubu-
lar atrophy (IFTA)?”. First, we followed the conventionally recommended procedure and
pre-trained Clinical BERT further with the corpus which contains 3.4K renal transplant-
reports and 1.5M words using Masked Language Modeling to obtain the Kidney BERT.
Second, we hypothesize that the conventional pre-training procedure fails to capture the
intricate vocabulary of narrow technical domains. We created extended Kidney BERT
(exKidneyBERT') by extending the six words to the tokenizer of Clinical BERT and pre-
trained with the same corpus as Kidney BERT on Clinical BERT. Third, all three models
were fine-tuned with QA heads for the questions.

Results: For the first question regarding rejection, the overlap ratio at word level
for exKidneyBERT (83.3% for antibody-mediated rejection (ABMR) and 79.2% for T-cell
mediated rejection (TCMR)) beats that of both Clinical BERT and Kidney BERT (46.1%
for ABMR, and 65.2% for TCMR). For the second question regarding IFTA, the exact
match rate of exKidneyBERT (95.8%) beats that of Kidney BERT ( 95.0%) and Clinical
BERT (94.7%),

Conclusion: When working in domains with highly specialized vocabulary, it is essen-
tial to extend the vocabulary library of the BERT tokenizer to improve model performance.
In this case, pre-training BERT language models for kidney pathology reports improved
model performance even though the training data were relatively small.
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Chapter 1

Introduction

1.1 Background

Renal pathology reports contain crucial diagnostic information, often in an unstructured
text format. With the development of deep learning, pre-trained language model such
as Bidirectional Encoder Representations from Transformers (BERT) [5] was successfully
applied to many different language domains. This project’s goal was to develop a pre-
trained language model for clinical reports of kidney transplants called Kidney BERT.
This model was to be used for classifying and/or building a question-answering system to
query reports provided by the pathology laboratory at the University of California, Davis.
The reports contained diagnostic information as well as descriptive information regarding
the light, immunofluorescence, and electron microscopy findings. A comment section that
summarizes and interprets the findings and how they justify the diagnoses was also present
in some cases. Two questions were of particular interest: “What kind of rejection does
the patient show?” and “What is the grade of interstitial fibrosis and tubular atrophy
(IFTA)?”

Pre-training involves training a language model on a large amount of text prior to con-
sidering the specific application of interest. Pre-trained language models have had tremen-
dous success in recent years. In late 2018, an attention based pre-trained NLP model, deep
bi-directional transformer model (BERT) [5], was released by Google. BERT has achieved
state-of-the-art performance in a number of NLP GLUE tasks [16], which includes named
entity recognition (NER), question and answering (QA)and sentiment classification. For
general purpose NLP tasks, BERT is a leading choice.



For tasks in a specific domain of application, researchers usually pre-train BERT on
a task-specific corpus to improve the prediction performance on the task. For example,
clinical BERT [l] is a language model for texts in the medical domain, and it has been
shown that Clinical BERT achieved better results on biological NLP tasks compared to
the so-called vanilla BERT [1].

When data are available for a specific clinical subdomain of interest, we can pre-train
clinical BERT further to adapt to that specific clinical subdomain. Cabernet [12] is a
question-and-answer (QA) system based on Clinical BERT based on Moffitt [12] pathology
reports which contains 276K reports with 196M words from Moffitt Cancer Center. The
authors demonstrate that Cabernet is superior to clinical BERT on Cancer pathology
reports.

We also pre-trained Clinical BERT further for the subdomain of renal pathology reports.
However, compared to Cabernet, we had less data available to do so.

We noticed that both BioBERT and Clinical BERT use the default tokenizer of BERT,
which will parse the out-of-bag (OOB) words into subwords. We tried to extend the six
keywords in the two pre-defined questions into the tokenizer of Clinical BERT and pre-
trained it to obtain a new model extended Kidney BERT (exKidneyBERT).

We found that exKidneyBERT outperformed both Clinical BERT and Kidney BERT.Thus
we conclude that for the QA tasks, extending the keywords to the tokenizer will improve
the model performance.

1.2 Prior Work

At the beginning, people often exploited rule-based system for QA, which parses the natural
language input by semantic rules, and then matches the parsed output with some pre-stored
answers. In 1995, [2] proposed an architecture for QA tasks by using deep NLP system
combined with a rule-based semantic parser of natural language input and a database query
and management system. The semantic parser was made of a parse tree and a semantic
interpreter. The semantic interpreter took the output of the parse tree and generated a
logical query which will be treated as an input of the NLP database. Moreover, a lexicon
and a world model offered domain knowledge to the parser system, while the lexicon
contained the domain specific word knowledge and the world model described the structure
of the domain classes. Finally, the database could take the logical query from the parser as
an input and return the query result as a potential answer for the natural language input.
A similar system [11] called ExtrAns was applied to the medical data. The input questions
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about genomics was parsed to semantic representations and then being matched with the
most proper documents.

Later, deep neural network was more and more popular, and as an efficient method
to extract features from the natural language document, recurrent neural network (RNN),
especially long short-term memory (LSTM) [6] was generally used in different kinds of NLP
tasks, includes QA. Based on LSTM, a novel architecture called match-LSTM was proposed
and being exploited with a Pointer Net [17]. The model was made of two separate LSTM
layers for processing inputs, and a Pointer Net to limit the output as a span of the given
input. Similar approach was applied on medical corpus as well. In 2018, [20] designed an
NLP framework named SeaReader for the MedQA dataset, which was created as a medical
QA task based on real-world clinical medicine text materials. The SeaReader is consist
of a input layer, context layer, dual-path attention layer, reasoning layer and integration
and decision layer. Bi-directional LSTM was used in the context layer and reasoning layer
for extracting the important feature from input and attention results. The architecture
achieved a better accuracy on the MedQA task compare to several other models.

In recent years, with the development of attention and transformer [15], BERT [7]
was proposed in 2019 by Google, and achieved state-of-the-art performance on a bunch
of natural language understanding (NLU) tasks of General Language Understanding Eval-
uation (GLUE) benchmark [16], which includes QA task. BERT stacked multiple layers
of transformer encoder and applied two unsupervised pre-trained tasks, masked language
modeling (MLM) and next sentence prediction (NSP) to extract word and sentence level
representation respectively. BioBERT [9] is a language model for biomedical language un-
derstanding. It was pre-trained on the PubMed abstracts with 18 billion words. BioBERT
benefits from the pre-training process and beats BERT on multiple bio-NLP tasks such
as biomedical NER, biomedical relation extraction (RE), and biomedical QA. Later, [l]
proposed Clinical BERT, which is a language model for electronic medical records (EMR).
Clinical BERT is tuned on the EMR notes of the Medical Information Mart for Intensive
Care (MIMIC-III) dataset [7] which contains about 60,000 data points. A QA system for
extracting data from cancer pathology reports, Cabernet [12], was built based on BERT.
They first pre-trained Clinical BERT on 276k Moffitt pathology reports which contains
196M words and got a new model CancerBERT (caBERT), and then they tuned caBERT
on QA task to retrieve key information from the pathology reports. Finally the extracted
phrases were used as inputs of a classification net and being classified into different codes.



Chapter 2

Methodology

We prepared the data set (Section 2.1) and developed Kidney BERT by pre-training clinical
BERT (Section 2.2). Then we extended the vocabulary used in the Clinical BERT by six
keywords in the questions of QA tasks and pre-trained on Clinical BERT to obtained
exKidneyBERT (Section 2.3). At the end, we fine-tuned Kindey BERT for question-
answering and classification tasks (Section 2.4).

2.1 Data Set

The renal transplant-pathology reports were obtained from the electronic medical records
of University of California, Davis. This study was determined to be exempt from the
need for Internal Review Board approval since all information was de-identified at the
source. The pathology reports were for transplant kidney biopsy cases, which consists
of unstructured text for the diagnosis as well as light, immunofluorescence, and electron
microscopy results as described by the pathologist. Each report contains following sections:
Diagnosis, Tissues, Gross Description, and Microscopic Description.

Among all the information in the pathology reports, we were interested in the cases with
rejection and the cases with IFTA. There are two major types of rejection for patients after
kidney transplant, T-cell-mediated rejection (TCMR) and antibody-mediated rejection
(ABMR) [l1]. The pathology reports classify IFTA into 5 classes of severity: severe,
moderate, mild, minimal, absent/insignificant. We define a sixth class as “unclassified”,
meaning the report contains no corresponding information. Our goal is to extract a part
of sentence or phrases from the report which best describe the condition of rejection and
IFTA.



Table 2.1: An illustrative example of the text used for the QA task. Bold texts are the
expected answers. Italicized text were removed during training.

Comments: The biopsy shows interstitial inflammation (i2) consisting of mostly mononu-
clear leukocytes. Tubulitis (t2) is readily identified in the areas with infiltrating inflamma-
tory cells. These findings support the diagnosis of acute T-cell mediated rejection
(TIA).

Microscopic Description: The following findings are based on hematoxylin and eosin (HE),
periodic acid-Schiff (PAS), and Masson trichrome-stained sections. The specimen submit-
ted for light microscopic evaluation consists of cortical tissue with at least 35 glomeruli.
No segmentally or globally sclerosed glomeruli are seen. The glomeruli demonstrate fo-
cal mild mesangial widening. The glomerular capillary walls are of normal thickness and
contours. Patchy moderate inflammation is noted associated with scattered moderate
tubulitis. The inflammation consists predominantly of mononuclear leukocytes with coms
plasma cells and only rare eosinophils. Mild interstitial fibrosis and tubular atrophy are
present (10%). The arteries and arterioles show focal mild hyalinosis. No endotheliitis or
peritubular capillaritis is identified.

Table 2.2: An illustrative example of the text used for the classification task. Italicized
text were removed during training.

Microscopic Description: The following findings are based on hematoxylin and eosin (HE),
periodic acid-Schiff (PAS), and Masson trichrome-stained sections. The specimen submit-
ted for light microscopic evaluation consists of cortical tissue with at least 35 glomeruli. No
segmentally or globally sclerosed glomeruli are seen. The glomeruli demonstrate focal mild
mesangial widening. The glomerular capillary walls are of normal thickness and contours.
Patchy moderate inflammation is noted associated with scattered moderate tubulitis. The
inflammation consists predominantly of mononuclear leukocytes with coms plasma cells
and only rare eosinophils. The arteries and arterioles show focal mild hyalinosis. No
endotheliitis or peritubular capillaritis is identified.




For the classification task, we focused on the content in the Microscopic Description
section since it includes the most detailed descriptions of the biopsy. We removed the text
related to the task to avoid showing the correct answer in the input text. An example of
the input text for the classification task is shown in Table 2.2. For the QA task, along with
the text in the Microscopic Description section, we also added the section of the report
comments as a part of the input text since they contain the description of the rejection
cases explicitly and we expect the language model to retrieve the answer from the given
text. Table 2.1 shows an example of the input text for the QA task.

2.2 BERT Pre-training and Kidney BERT

BERT stacks 12 layers (BERT-base model) and 24 layers (BERT-large model) of trans-
former encoder layers with bi-directional self-attention head inside [19]. BERT is pre-
trained by two unsupervised tasks, masked language modeling and next sentence pre-
diction, on the BooksCorpus [21] and English Wikipedia data. In the masked language
modeling stage, 15% of the words in the text were replaced by a special token “[MASK]” to
let the model learn and predict the masked word based on the context. More specifically,
among the words selected for masking, only 80% of them were replaced by the special
mask token. 10% of them are replaced with a random token and the rest 10% of them
are remain the same. In order to let the model learn the relationshop of sentences, BERT
introduced next sentence prediction as well. Two sentences are concatenated together by
a special token “[SEP]”. 50% of the time the second sentence is the actual next sentence,
and the rest time it is chosen randomly. However, in the latest research [10], next sentence
prediction was found not to be important.

Both BioBERT and Clinical BERT take advantage of the pre-training process. CaBERT
further pre-trained on Clinical BERT with Moffitt pathology reports. They simply masked
15% of the words in the Moffitt dataset to a special token “[MASK]”, and then trained the
language model to predict these words [12]. While the performance of pre-trained CaBERT
on the specific downstream tasks of interest was better than when just fine-tuning Clinical
BERT, the performance on other tasks with more general corpora such as SQuAD and
BioASQ had decreased. We suspect that there are tradeoffs in the pre-training process
that depend on the available dataset and choice of downstream task. As a result, we use
the pre-training process suggested by the caBERT authors on our renal pathology reports
but conduct an ablation study to determine whether the additional pre-training step adds
value. Also, our data set is much smaller than that used for caBERT: our data contain
3.4K reports with approximately 1.5M words; caBERT is based on 276K reports with 196M



words [12].

2.3 Extend Six Keywords for exKidneyBERT

Both BioBERT and Clinical BERT use WordPiece tokenization [19] to handle vocabulary
not included among the approximately 30k words BERT trained on. This is called out-of-
bag or OOB vocabulary. For example, the word “interstitial” will be parsed into frequent
subwords “inter”, “##st”, “H##iti”, and “#F#ai” first, and then tokenized into vectors.
Therefore we added the six key words which are parsed into subwords originally in the
two pre-defined questions in the QA tasks “interstitial”, “fibrosis”, “tubular”, “atrophy”,
“T-cell”, and “antibody” to the tokenizer. Also, we needed to extend the embedding
layer’s dimension from 28996 to 29002 to match the newly added words. We decided to
only extend the six keywords to the tokenizer because 1) these six words contain the most
important information needed for the model to locate the answers; 2) extending a lot of
words to the tokenizer may affect the pre-trained representative for the existing vocabulary.
Since the model does not have any knowledge to the newly added six words, we did the
same pre-trained procedure as Kidney BERT on Clinical BERT and obtain a new language
model called extended Kidney BERT (exKidneyBERT).

2.4 Fine-tune BERT models for QA and Classification

Figure 2.1 shows the architecture we exploited for question answering (QA) by using BERT
models. For each input, we concatenated “What kind of rejection does the patient show?”
or “What is the grade of interstitial fibrosis and tubular atrophy?” to the microscopic
description section of the reports together by the special token “[SEP]”. We also added
the special token “[CLS]” to the beginning of the concatenated text to follow the BERT
usage convention. On top of each BERT model, we added a linear layer as a QA span
classifier to the output embedding of BERT. The linear classifier layer will be fine-tuned
with BERT simultaneously. During fine-tuning, the model will predict a start vector S
and an end vector E. The probabilities of each word to be the start and end of the answer
will be the outputs of vectors S and E after softmax [3] by the formula of pg, = and

Si

Zj e

pE, = zeEeiEj . Next, we applied cross-entropy loss [1] to calculate the gradients:
i

— 71X, 9) log(PHIX)),
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Figure 2.1: Architecture of Kidney BERT for the QA Task




where 1(X,g) is the binary indicator for whether or not the predicted label § matches
the ground truth label for input X, and P(9|X) are the probabilities of the outputs from
softmax. Then, we updated the parameters of BERT and the classification layer through
backpropagation. The words with the maximum probability are chosen as the start and
end of the answer text span. If the position of the end word is smaller than that of the
start word, then “no information” will be predicted as an output.

In addition to QA, we also tried to use BERT models on the classification task for ques-
tions with multiple categories as expected answers. Figure 2.2 describes the architecture
for it. Similar to that of QA, the classification model also exploits a linear classifier layer
on top of the BERT models. However, this time we only use the output embedding corre-
sponding to the special token “[CLS]” as the input of the classifier, and then the outputs
of the classifier are converted into the probabilities through softmax. Cross-entropy loss
is used as the loss function as well. We used huggingface transformer [18] as the BERT

Probabilities

1

[ Linear Layer for Classification ]

Kidney BERT

Figure 2.2: Architecture of Kidney BERT for the Classification Task

framework.



Chapter 3

Results

After introducing the metrics used for evaluating model performance (Section 3.1), we
report on four results. First, we trained the models on rejection cases only (Section 3.2).
Second, we trained the BERT models on all renal pathology reports for the classification
tasks (Section 3.3). Third, we trained the BERT models on all the reports for the QA
tasks (Section 3.4).

3.1 Metrics

For the first question, “What kind of rejection does the patient show?”, we labelled the
text span manually from the reports. A typical answer for the question is “No evidence
of acute antibody-mediated rejection”. Since the answers are quite long, we measured
the overlap between the predicted text span and the ground truth answer. We calculated
the overlap ratio of how much the two text spans overlap on a character level and word
level respectively. For the second question, “What is the grade of interstitial fibrosis and
tubular atrophy?”, since the answers are one-word or two-word phrases, we only counted
the prediction results which exactly matched the ground truth phrases. In this case F1-
score was used as a measurement metric.

3.2 Training on a portion of reports - rejection cases

At the beginning, we focused only on the 242 reports with the rejection cases. Of these,
87 contain positive examples for TCMR. For simplicity, we converted the QA problem into

10



Table 3.1: Classification results for freezing Clinical BERT vs. fine-tuning Clinical BERT
on the small TCMR sample. Acc. means accuracy. Log.Reg. means logistic regression.
DNN means dense neural network.

Model Overall F1 of

Acc. Positive
Frozen Clinical BERT+Log.Reg. 0.78 0.35
Frozen Clinical BERT+DNN 0.88 0.77

Fine-tuned Clinical BERT+DNN 0.92 0.85

a binary classification task (rather than predicting a text answer). The task is to predict
whether or not the patient shows TCMR in the report. For the two baseline models, we
froze the parameters of Clinical BERT and used (separately) logistic regression and linear
neural network as a classifier to the embedding of the output sentence of BERT. Next,
we fine-tuned a third model of Clinical BERT with a single layer dense neural network.
Table 3.1 shows the results of the three models. We can see that by fine-tuning the classifier
and Clinical BERT together, both overall accuracy and Fl-score of the positive samples
increased a lot.

3.3 Training on all reports - Classification

Next, we extended the data set to all 3.4K reports. Similar to the transfer learning process
used for caBERT [12], we randomly selected and masked 15% of the words in all the reports
and trained the Clinical BERT to predict those replaced words. After the pre-training
process, we obtained Kidney BERT, our language model for renal pathology reports. Then
we extended the six keywords to the tokenizer of Clinical BERT and redo the same pre-
training prcedure as Kidney BERT on the 3.4k reports to obtain the exKidneyBERT. We
fine-tuned all the BERT models in the pre-training chain includes the vanilla cased base
BERT, BioBERT, Clinical BERT, Kidney BERT, and exKidneyBERT on the rejection
classification tasks. Also, we added a second task, grade classification of IFTA. The results
are shown in Table 3.2.

11



Table 3.2: Classification results for fine-tuning BERT models on the full data set. ‘CLS’

means classification task.

Model Task Overall  Positive

Acc.  Fl-score
BERT Rej. CLS 0.945 0.000
BioBERT Rej. CLS 0.953 0.515
Clinical BERT Rej. CLS 0.977 0.750
Kidney BERT Rej. CLS 0.977 0.765
exKidneyBERT  Rej. CLS  0.978 0.800
Model Task Overall Weighted

Acc.  Fl-score
BERT IFTA CLS 0.768 0.764
BioBERT IFTA CLS 0.788 0.789
Clinical BERT IFTA CLS 0.788 0.788
Kidney BERT  IFTA CLS 0.785 0.785
exKidneyBERT IFTA CLS 0.782 0.780

3.4 Training on all reports - QA

After exploring classification tasks, we next considered question answering (QA). We manu-
ally tagged the desired answer phrases of ABMR and TCMR in each report for the question
“What kind of rejection does the patient show?”. For the question of IFTA, “What is the
grade of interstitial fibrosis and tubular atrophy?”, we tagged any mention of the six out-
come classes as expected answers. We fine-tuned all the BERT models again and each
model is attached with a QA head. For the QA tasks, question and text are concatenated
as the model input. Table 3.3 and Figure 3.1 to Figure 3.3 show the results.

12



Table 3.3: QA results for fine-tuning BERT models on the full data set. Overlap Ratio
Char and Overlap Ratio Word means the overlap length between the prediction answer and
the expected answer divided by the length of the expected answer, at character level and
word level, respectively. Exact Match Rate means a perfect match between the prediction
answer and the expected answer.

Model Task Overlap Overlap
Ratio Char Ratio Word
BERT ABMR QA 0.442 0.616
BioBERT ABMR QA 0.519 0.667
Clinical BERT ABMR QA 0.363 0.461
Kidney BERT  ABMR QA 0.363 0.461
exKidneyBERT ABMR QA 0.604 0.833
BERT TCMR QA 0.494 0.653
BioBERT TCMR QA 0.494 0.653
Clinical BERT TCMR QA 0.494 0.653
Kidney BERT TCMR QA 0.494 0.653
exKidneyBERT TCMR QA 0.664 0.792
Model Task Exact
Match Rate
BERT IFTA QA 0.942
BioBERT IFTA QA 0.956
Clinical BERT IFTA QA 0.947
Kidney BERT IFTA QA 0.950
exKidneyBERT  IFTA QA 0.958

13
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Chapter 4

Discussion

4.1 Principal Results

First, we found that by extending the six keywords in the questions of the QA tasks,
exKidneyBERT outperforms the other BERT models. We compared five BERT models in
total. BioBERT was pre-trained with the PubMed corpus on the cased base BERT model.
Clinical BERT was pre-trained with the MIMIC-III dataset on BioBERT. We created
Kidney BERT by pre-training with our renal pathology data on Clinical BERT and we
developed exKidneyBERT by extending the tokenizer of Clinical BERT with six keywords
in the two questions in our QA tasks and pre-training with our data on Clinical BERT.
We compared the five BERT models’ performance on classification tasks and QA tasks.
Recall that we removed the words related to the target which are the explicit answers
in the input text of the classification tasks, and so that the input text does not contain
the six words extended to the exKidneyBERT. In the classification task of rejection case,
the exKidneyBERT performed the best on both overall accuracy and F1-score of positive
samples. But for the classification task of IFTA, the exKidneyBERT performs the second
worst and the result of BioBERT beats others. The results for the classification tasks could
be a baseline to measure how much the exKidneyBERT benefits from word-extension on
QA tasks. For the QA tasks of ABMR and TCMR, the exKidneyBERT outperforms
other four BERT models on both overlap ratio at character level and word level. Notice
that in the TCMR case, the other four BERT models were stuck at 0.494 of characters’
overlap ratio and 0.653 of words’ overlap ratio while exKidneyBERT broke the barrier and
achieved 0.664 and 0.792 on overlap ratio at character level and word level, respectively.
For the QA tasks on IFTA, unlike the classification case which exKidneyBERT performed
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the second worst, this time exKidneyBERT achieved the best result among all the five
BERT models. This is evidence that the the contribution comes from the six extended
words being present in the vocabulary. This is also consistent with our hypothesis, that
extending the vocabulary is what improves performance, because when the data was pre-
processed for the IFTA classification task, we striped out any sentences that contain the
six words, which means the model was fitted to the extended words.

Second,we performed an ablation study to determine which modeling components con-
tributed to the performance increase. We found that the masked language modeling pre-
training on an increasingly small domain-specific text corpus without extending the vo-
cabulary did not improve the performance in our domain. Previous language models like
Clinical BERT and Cancer BERT suggest that when adapting BERT to a particular do-
main, the BERT model will benefit from pre-training with the domain-specific corpus. We
tried this approach in a comprehensive ablation study and found that pre-training on a
small domain-specific corpus for renal pathology reports is ineffective. By comparing the
result in Table 3.2 and Table 3.3, we can see that on the classification task, the results
for the model based on Kidney BERT is the same as that on Clinical BERT in overall
accuracy, and only 0.015 higher in F1-score of positive samples. On the QA tasks, the re-
sults for Clinical BERT and Kidney BERT are same on the rejection tasks, and the exact
match rate of IFTA task with Kidney BERT is only 0.003 higher than Clinical BERT. In
addition, fine-tuning was beneficial based on the results shown in Table 3.1.

Third, we found that in the domain of our dataset for renal pathology reports, BloBERT
was better than Clinical BERT. We fine-tuned the BERT models on five tasks in total,
except the classification task of rejection case, the results of BioBERT is better than that
of Clinical BERT on other four tasks. A possible reason is that the Clinical BERT was
pre-trained on a different domain than our dataset while BioBERT was pre-trained on a
more general domain.

4.2 Limitations

First, exKidneyBERT were designed to answer the two pre-defined questions only. For
exKidneyBERT, we extended the six keywords in the two questions of the QA tasks we
wanted to resolve. As always, if we desired to solved other QA tasks we need to train new
models for them.

Second, the dataset we used is small compared to the other BERT models we compared
to. Google BERT was pre-trained on 3.3 billion words, BioBERT was pre-trained on 18
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billion words, Clinical BERT was pre-trained on 880 million words, and the dataset we
used for pre-training only contains 196 million words. However, in order to investigate
pre-training when data are scarce, we have to work with a small data set.

4.3 Comparison with Prior Work

We followed the exact same unsupervised pre-training procedure as the Cancer BERT
did [12] to develop Kidney BERT, which initialize the model parameters from Clinical
BERT and randomly selected 15% of the words and replaced them with a special token
“IMASK]” and then train the model to predict the masked tokens. In addition, we tried to
extend the six keywords in the questions of the QA tasks to the BERT tokenizer and repeat
the same pre-training procedure as Cancer BERT on our dataset to create exKidneyBERT.
We found that exKidneyBERT performs better than that of Kidney BERT, which is an
improvement compare to the procedure of Cancer BERT.

4.4 Conclusion

We have made three primary contributions. First, we developed exKidneyBERT, a lan-
guage model with an extended vocabulary of six keywords and specific to renal pathology
reports. ExKidneyBERT outperformed in the QA tasks. Second, we conducted an abla-
tion study and found that BERT model performance does not benefit from pre-training on
our dataset, which is a small amount of renal pathology reports by comparing the results
of Kidney BERT and Clinical BERT. Third, we found that in our renal pathology dataset,
BioBERT performed better than the Clinical BERT on the five NLP tasks.

4.5 Conflicts of Interest

None declared.
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