
Mixed Integer Programming
Approaches for Group Decision

Making

by

Hoi Cheong Iam

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2022

© Hoi Cheong Iam 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Group decision making problems are everywhere in our day-to-day lives and have great
influence on the daily operation of companies and institutions. With the recent advances in
computational technology, it’s not surprising that some companies would want to harvest
that power to aid their decision-making procedures. Ethelo, the company that we partnered
with in this project, developed an online platform that aids decision-making procedures by
formulating the decision-making problem as a mixed integer nonlinear program (MINLP),
providing feedback by solving the MINLP in real-time, and allowing the general public
to contribute their opinions. Since an interactive component is involved, it is the goal of
this thesis to attempt to reduce the solve time of their MINLP by applying tools from
Operational Research. The main contribution in this thesis is threefold: first, we noticed
that a big proportion of the MINLPs can be easily reposed as linear integer programs, and
that a runtime reduction of at least 87.9% can be achieved by simply redirecting them to a
linear solver. Second, we identified a knapsack-like polyhedral structure that, to the best
of our knowledge, has not been studied before, and derived a sufficient condition to identify
the cases for which all valid cuts can be derived by considering other knapsack or covering
problems. Finally, for the more general case where the objective function is nonlinear and
not continuous, we derived a few different formulations to get to different approximations
of the nonlinear model, and tested all of the approximations computationally.

iii

Acknowledgements

First, I would like to express my sincere gratitude to Prof. Ricardo Fukasawa and
Prof. Joe Naoum-Sawaya, my two supervisors, for their patience, support, and guidance
throughout the journey of my Master’s degree. It would not have been possibe for me
to make it this far without them. I would also like to thank Ethelo and its staffs, who
made this thesis possible by granting us access to their business engine and also providing
technical support in using it.

Last but not least, I would like to thank my thesis readers, Prof. Kanstantsin Pashkovich
and Prof. Walaa Moursi, for their valuable comments that allowed for further improvement
to this thesis.

iv

Table of Contents

List of Figures vii

List of Tables viii

1 Introduction 1

2 Ethelo’s Voting Engine 5

2.1 Terminology . 5

2.2 Ethelo’s Survey and Vote Encoding . 6

2.3 The Scoring Functions . 7

2.3.1 The Ethelo Function . 8

2.3.2 Full Scoring Function . 10

2.4 Describing feasible solutions . 11

2.5 Full MINLP Formulation and Problem Sizes 13

3 Single-Influence Cases 14

3.1 Computational Gains . 14

3.2 Partial Results . 17

3.2.1 Sufficient Conditions for general finite set X 19

3.2.2 Implication on X = {0, 1}n . 23

v

4 Multi-Influence Cases 26

4.1 Reformulating Piecewise Linear Function 27

4.2 Approximating Bi-variate Functions . 30

4.3 Best-fitting with Grid Triangulated Piecewise Linear Functions 33

4.3.1 Fixed Triangulation . 34

4.3.2 Fixed Function Values . 38

4.3.3 Dynamic Triangulation with Adjusted Function Values 46

4.4 Computational Results . 50

4.4.1 Testing Environments . 50

4.4.2 Machine Comparison . 51

4.4.3 Best-fitting Ethelo function . 51

4.4.4 Approximating multi-influence cases 54

4.4.5 Remark on Best Setting for Ethelo Function 56

5 Conclusion 65

References 67

APPENDICES 71

A Relative Gap and CPU Runtime data for multi-influence tests 72

vi

List of Figures

1.1 Snapsort of survey . 3

2.1 Unity function with t = 1/3 . 9

2.2 Graph of Ethelo function with t = 1/3,Ξ = 1/2 (not to be confused with
variable Σ) . 10

4.1 A Grid Triangulation with d1 = 8, d2 = 4, where T is the collection of sets
of extreme points of the triangles . 30

4.2 Example for piecewise linear function constructed with GTConstruct . . 32

4.3 Diagonal (left) and skew-diagonal (right) split for a cell 39

vii

List of Tables

3.1 Information on Problem Formulation for Single-influence cases 16

3.2 Average CPU Runtime Result for Single-Influence Cases 16

4.1 CPU Time comparison between server and PC environment 58

4.2 Wallclock Time and Gap for Approximating Ethelo Function 59

4.3 Table for Squared l2 errors . 60

4.4 Squared l2-error reduction for approximating Ethelo Function 61

4.5 Average Percentage Relative Error over all instances 62

4.6 Worst Percentage Relative Error over all instances 63

4.7 Avg Runtime over all instances, Bonmin Avg = 4.60 64

A.1 Average Percent Rel. Error for buildbackbetter 73

A.2 Average Percent Rel. Error for carbon . 74

A.3 Average Percent Rel. Error for citizen . 75

A.4 Average Percent Rel. Error for granting 76

A.5 Average Percent Rel. Error for parks . 77

A.6 Average Percent Rel. Error for stratford 78

A.7 Average CPU Time for buildbackbetter, Bonmin Avg = 15.68s 79

A.8 Average CPU Time for carbon, Bonmin Avg = 1.57s 80

A.9 Average CPU Time for citizen, Bonmin Avg = 7.09s 81

A.10 Average CPU Time for granting, Bonmin Avg = 0.60s 82

A.11 Average CPU Time for parks, Bonmin Avg = 0.34s 83

A.12 Average CPU Time for stratford, Bonmin Avg = 2.33s 84

viii

Chapter 1

Introduction

Group decision making is practically everywhere in our day-to-day life. It affects every-
thing from electing the next prime minister, to simply arranging a time slot for a regular
Zoom meeting. With related works tracing back to Condorcet’s Jury Theorem as early as
1785 [2], we can still see researchers investigating its related problems through the lenses
of economics [25, 16], operational research (OR) [27, 23], psychology [6], and artificial in-
telligence [18, 9, 34] over the past century. In recent years, we are also seeing interests
from companies who wanted to utilize the power of computers for making better decisions.
For example, some companies are interested in using software to analyze the feedback they
collected from a survey to gain better insight, and some take it one step further and look
for software that also provide recommendation about the best options. In this work, we
discuss the modern computer-based group decision-making platform developed by Ethelo,
and present the work that we developed for improving that platform using OR tools.

Ethelo is a company that specializes on solving group-decision making problems that
arise from budgeting, policy-making, and planing [12]. They have worked with over 200
institutions, including local governments, decentralized autonomous organizations (DAOs),
and indigenous communities, to solve the group-decision making problems they face [12].
When a client approaches Ethelo with their group decision-making problem, which involves
a list of available options to choose from and a set of practical constraints that needs to
be satisfied, Ethelo creates an online survey for the problem dedicated to collecting pub-
lic opinion on what should be done about it. On the survey, Ethelo provides necessary
background of the problem to its participants, asks questions about basic democratic in-
formation for future analysis and, most importantly, allows participants to vote on which

1

of the provided options should be chosen when making the final decision [11]. While online
surveys are commonly used for different purposes in modern days, there is one feature that
sets Ethelo’s surveys apart from others: Ethelo interactively reports the best solution, both
during and after the participant vote.

To ensure that a participant’s intention is correctly captured by the participant’s vote,
Ethelo interactively displays a closest “reasonable” solution - a solution that satisfies either
all or a selected subset of provided constraints, depending on the client’s preference - to
the participant while he/she is voting. In the example provided in Fig. 1.1, the solution
is displayed under the “My Ideal Budget” panel on the right. The displayed project’s aim
was to figure out a plan for reducing carbon footprint while staying under a given budget.
As the participant votes, Ethelo finds a closest reasonable solution by solving a mixed
integer non-linear program (MINLP) and then displays the returned solution, as well as
a few of its characteristics (eg. “My adjusted tax bill”), on the panel. In this project,
all constraints except the budget constraint were enforced by default when looking for the
reasonable solution, and how well the budget constraint was satisfied was displayed on the
ideal budget panel. In the cases where the budget constraint is violated by the selected plan
(as shown in Fig. 1.1), the participant can either modify their input until all constraints
are satisfied, or simply turn on the “Auto-Balance” feature and ask the system to show the
closest feasible solution instead. That is, to ask the system to enforce all constraints in the
project when looking for the solution to display. While these computed solutions are mostly
for information and do not override the participants’ votes, they allow the participants to
modify their vote until the reported feasible solution looks acceptable, which then ensures
that the participant’s intention is correctly captured by the voting mechanism. At the end
of the voting procedure, after all preferences are specified, the participant can re-weigh
the importance of different sections of the survey before their vote is finalized, which then
changes how Ethelo makes their trade-offs in case the voted solution is not feasible to the
problem. Participants are free to modify any part of their votes before it is finalized and
submitted.

After the participant submits his/her vote, Ethelo reports to the participant a short list
of best solutions based on the votes collected thus far, and also where the other partic-
ipants stand on supporting or rejecting each of the solutions. This short list allows the
participants to get a preview of what the final decision may look like, and also get an
idea of where they are standing among the other participants. This short list is computed
by formulating and solving yet another MINLP that has similar constraints as the ones
in the previous paragraph, except this time it considers all collected votes instead of just

2

Figure 1.1: Snapsort of survey

one. To distinguish between the two, we call the MINLP concerning all collected votes
the “multi-influence case” of the problem, and refer to the MINLP concerning only the
voting participant as the “single-influence case” of the problem. While all the interactive
components look engaging to the participants, the fact that a MINLP needs to be solved
in real-time poses a challenge to Ethelo.

As popularly known, MINLPs are NP-hard to solve in general [24], and MINLP solvers
are generally more expensive computationally when compared to mixed-integer linear pro-
gram (MILP) solvers. In the cases where the MINLP problems are not solved fast enough,
participants will have to wait for the required solution to be reported on the survey. This
means that from the participants’ point of view, there would be a noticeable lag on the
supposedly interactive components, or even worse, that some components will not be re-
sponding. This is not desirable from Ethelo’s point of view. In this research, we attempted
to improve the runtime for solving the MINLPs that arises from both the single-influence
and multi-influence case. Our contributions are 1) we identified that most of the single-
influence cases can be re-posed as mixed-integer linear programs (MILP), which led to
significant runtime improvement after redirecting the problems to a MILP solver; and
2) we studied different approximations the MINLP in multi-influence cases, and showed
that they can potentially lead to observable runtime improvements of varying degree while

3

retaining a reasonably good solution quality.

The remaining of this thesis is organized as follows: in chapter 2, we introduce Ethelo’s
voting engine in further detail, and present how the MINLPs in both the single-influence
and multi-influence cases are formulated. In chapter 3, we go over the computational results
in single-influence cases obtained by switching to a MILP solver, and also present several
theoretical results about a sub-case of the single-influence MINLPs. Then, in chapter 4, we
present the reformulation techniques we used for approximating the multi-influence cases
as well as its computational results. Finally, we give our conclusions in chapter 5.

4

Chapter 2

Ethelo’s Voting Engine

In this chapter, we will introduce how Ethelo collects and encodes the votes collected
from participants, and also how the MINLPs for both single- and multi-influence cases are
formulated.

2.1 Terminology

We start our discussion by defining a few terms that will be used throughout this thesis.
For our purpose, a “group decision-making problem” is a problem where we are provided
with 1) a set of options O = [n] := {1, 2, ..., n}, 2) a non-empty set X ⊆ 2O of feasible
solutions, and 3) a real-valued function f : 2O → R that scores each solution in 2O based
on how well they aligns with the collected votes. The goal is to find a feasible solution
x∗ ∈ X such that the score f(x∗) is maximized.

The scoring function f was designed by Ethelo, which we will describe more formally in
section 2.3 and is a part of the US-patent owned by Ethelo [29]. We refer to any subset of
the set O of available options interchangeably as a “solution” or “scenario”. The set 2O of
all subsets of available options O is also the set of all possible solutions. A solution s ∈ 2O

will be encoded as an indicator vector x ∈ {0, 1}O = {0, 1}n, with xo = 1 indicating that
option o is contained in solution s and xo = 0 otherwise. Therefore, we will also consider
{0, 1}n as the set of all possible solutions. Whether we are considering the solutions as
subset of O or binary vector in {0, 1}n in any part of this thesis will be clear from context.

5

We refer to the company or institution that approaches Ethelo with a group decision-
making problem as a “client”, and the individuals that provided inputs to Ethelo’s online
surveys as “participants”. We use “Ethelo’s engine” to refer to the code that Ethelo uses
for formulating the MINLPs and passing them to the MINLP solvers, and use “project”
to refer to the instances of group-decision making problems that Ethelo has solved.

2.2 Ethelo’s Survey and Vote Encoding

To present the set O of available options for the participants to vote, Ethelo organizes
the set of options into widgets, like slide bars and drop down lists, depending on their
semantic meanings. For example, contradicting options like “build a green gate” versus
“build a yellow gate” can be organized as a drop-down list so that participants can only
choose one of them when voting, and options regarding a continuous quantity, like “Funding
Recreation” shown in Fig. 1.1, can be organized as a slide bar. The widgets are set up
in a way that every option in O is contained in precisely one widget. When presenting
the widgets on the online survey, the widgets are further grouped into sections so that
questions regarding similar issues can be presented together. At the end of the survey,
the participants can assign a weight in [1, 100] to each of the sections, with heavier weight
means that the section is more important to them, and hence should avoid deviating
from the selected options in that section when making trade-offs. Note that before a
participant assigns a weight to each of the sections, all sections have an equal weight of 50.
Also, participants can still change their vote in previous sections after assigning weights to
sections.

A “vote” of a participant can be regarded as a partition (O1, O2, O3) of the set O and a
weight vector w ∈ [1, 100]O, where O1 are the options that are “selected” by the participant,
O2 are the ones that are “not selected”, and O3 are the options that are “not voted”. For
each o ∈ O, wo is the weight the participant assigned to the section that contains the
widget for o. An option o is called “voted” if the participant has clicked on, ie. selected an
option on, the widget that contains o. In practice, the votes are encoded as a preference
matrix, which we define as follows:

Definition 2.2.1. When given a project, the preference vector of a participant is a vector
p ∈ [−1, 1]n with ∥p∥1 = 1 that encodes the preference of the voter, with higher value of po
indicating that the option o ∈ O is more preferred. When there are N participants, each
with preference vector p1, p2, ..., pN ∈ Rn, we say that the influence matrix of the project is

6

a matrix P ∈ RN×n given by:
P = [p1, p2, ..., pN]

T

The complete procedure for creating a preference vector for a participant can be found
in Ethelo’s White Paper [28]. For our purpose, we can summarize it as follows:

1. Before the voter starts voting, define a vector v = ϵ1 ∈ Rn, where 1 denotes an
all-one vector and ϵ ∈ R is a small constant.

2. When a participant votes on an option o ∈ O, update the value of vo to 1; and for
other options o′ in the same widget as o, update vo′ to a value in [−1, 1] in a way
such that options with closer semantic meaning to o has a value closer to 1. The
precise values are not important for the purpose of this thesis, but interested readers
can refer to their White Paper [28] for the details of how the values are assigned.

3. When a preference vector for a participant is required, we computed its value by

p =
v ⊙ w

∥v ⊙ w∥1

where ⊙ refers to the entry-wise multiplication.

The influence matrix P and the preference vectors it contains are only used for identifying
whether one solution is more preferred over another, and the constraints are independent
from the participants’ votes. In other words, whether or not a solution is feasible is
independent from the participants’ votes.

2.3 The Scoring Functions

Here we define how the solutions x ∈ {0, 1}n are scored. There are two cases that need to
be considered: the single-influence case, where there is only one vote (or, equivalently, one
participant) to consider, and the multi-influence case, where we consider multiple votes.

7

In the single-influence case, if p ∈ Rn is the preference vector of the participant, a
solution x ∈ {0, 1}n can be scored simply by pTx, which we refer to as the “satisfaction
score” of the participant toward x. In the multi-influence, however, it is not desirable
to simply take the sum or average of the participants’ satisfaction scores as our scoring
function, as Ethelo also want to avoid the controversial solutions where the participants’
opinion are polarized [11]. To fix this issue, Ethelo designed a function, named the “Ethelo
function”, for scoring the multi-influence cases.

2.3.1 The Ethelo Function

The Ethelo function ð : [−1, 1] × [0, 1] → R is designed to be a function of the average
and the (sample) variance of the participants’ satisfaction scores. Note that since the
preference vector p satisfies ∥p∥1 = 1 by definition, for any solution x ∈ {0, 1}n we have:

|pTx| ≤
n∑

i=1

|pi||xi| ≤
n∑

i=1

|pi| = ∥p∥1 = 1

In other words, satisfaction scores of any participant always falls within the interval [−1, 1].
Hence, the average of satisfaction scores will fall in [−1, 1], and the variance will fall in the
range [0, 1]. Note that the above inequalities also applies to any x ∈ [0, 1]n.

Now, let’s define the Ethelo function:

Definition 2.3.1. The Ethelo function ð : [−1, 1]× [0, 1] → R is given by:

ð(µ,Σ) =

0 , if µ = 0

µ+ Ξ · U(Σ)µ , if Σ > t

µ , if Σ = t

µ+ Ξ · U(Σ)(1− µ) , if Σ < t, µ > 0

µ+ Ξ · U(Σ)(−1− µ) , if Σ < t, µ < 0

where t,Ξ ∈ [0, 1] are fixed parameters, and U : [0, 1] → [−1, 1] is called the “unity func-
tion”, defined by:

U(Σ) =

{
t−Σ
t

, if Σ ≤ t
t−Σ
1−t

, if Σ > t

Specially, when µ(x),Σ(x) are the average and variance of the participants’ satisfaction
scores toward a solution x ∈ {0, 1}n, we say that ð(µ(x),Σ(x)) is the “Ethelo Score” of x.

8

Figure 2.1: Unity function with t = 1/3

We included a plot of the Ethelo function in Fig 2.2 for reference. The unity function
U is designed for measuring how “united” are the participants about their opinions on a
particular solution. U(Σ) is a decreasing function on [0, 1] and satisfies U(0) = 1, U(t) = 0,
and U(1) = −1. A graph of the unity function is shown in Fig 2.1. The Ethelo function is
designed to satisfy the following properties:

1. For any fixed Σ0 ∈ [0, 1], ð(·,Σ0) is an increasing function on [−1, 1].

2. For µ0 > 0, ð(µ0,Σ) is a decreasing function in Σ.

3. For µ0 < 0, ð(µ0,Σ) is increasing in Σ.

4. ð(µ,Σ) always have the same sign (positive / negative) as µ.

Intuitively, solutions with positive average satisfaction score can be understood as being
“supported” by general public, and the variance Σ is a measure of how divided the voters are
about their opinions. Since we are looking for the solution with highest Ethelo score when
solving our group decision-making problem, the above presuppositions can be interpreted
as follows:

• When the voters’ opinions are equally divided between two solutions, we prefer the
ones that has a higher average satisfaction score.

• Of the solutions that have the same average in opinion scores and are supported by
general public, we prefer the solutions where the participants are less divided about
their opinions (ie. more united).

9

Figure 2.2: Graph of Ethelo function with t = 1/3,Ξ = 1/2 (not to be confused with
variable Σ)

• In the case where no feasible solution is supported by the general public, of the
feasible solutions that have the same (negative) average score, we prefer the ones
where the public opinions are more diverse, in hope that a larger population will
support the decision.

• In all cases, we prefer solutions that are supported by general public over those that
are not supported.

The parameter Ξ is used as a weight that governs the variance-average trade-off, and
t is referred to as the “tipping point” for deciding whether the general public is united
about their opinions. In practice, the tipping point is usually set to t = 1/3, which is the
variance of uniform distribution over interval [−1, 1], and Ξ is usually set to 1/2. Also, for
any Ξ > 0, we note that the Ethelo function is discontinuous on (µ,Σ) ∈ {0} × [0, t] but
continuous everywhere else.

2.3.2 Full Scoring Function

To summarize the above, we note that when given an influence matrix P ∈ RN×n, where
N is the number of participants, the average of satisfaction scores toward a solution x can

10

be computed as:

µ(x) =
1

N
1TPx

and the variance of satisfaction scores can be computed by:

Σ(x) = V ar[pTx]

= E[(pTx)2]− (E[pTx])2

=
1

N
xTP TPx− 1

N2
xTP T11TPx

=
1

N2
xTP (NI − 11T)Px

where 1 is an all-one vector, and I denotes the identity matrix of appropriate dimension,
in this case N × N . Thus, given influence matrix P , the complete scoring function f :
[0, 1]n → R can be given by:

f(x) =

{
pTx , if P is a row matrix P = pT

ð(µ(x),Σ(x)) , otherwise

which means that in single-influence cases, the scoring function f(x) is linear in x.

2.4 Describing feasible solutions

In practice, the set of feasible solutions X ⊆ {0, 1}n will be given implicitly by a set of
constraints:

X =

{
x ∈ {0, 1}n :

l1 ≤ xAB · g1(x) ≤ u1

l2 ≤ g2(x) ≤ u2

}
where xAB is a binary variable corresponding to the auto-balance option, g1 : RO\{AB} →
Rm1 , where g2 : RO → Rm2 , all entries on l1i , l

2
i are in R ∪ {−∞}, entries of u1, u2 are in

R ∪ {+∞}, and the constraints l1 ≤ xAB · g1(x) ≤ u1 are the ones that will be ignored
unless auto-balance is selected. l1 ≤ xAB · g1(x) ≤ u1 and l2 ≤ g2(x) ≤ u2 are collectively
called the “constraints” of the project. The variable xAB was introduced as above to allow
for better interaction with the parts of Ethelo’s engine that are outside the MINLP solver.
There are cases where the variable xAB is used in g2(x), which we will mention later in this
section. We also note that depending on the values of l1, u1, there may not exist feasible
solutions with xAB = 0.

11

While there are no assumptions on the function g1, g2, when setting up the constraints,
each entry gi of both g1, g2 will be expressed as a compositions of the arithmetic operators
(+,−,×,÷), absolute value operator |·|, and square root operator

√
· in variables xi : i ∈ [n]

due to how the online platform is set up. By looking at the previous projects that were
solved by Ethelo, we observed that in all of the provided cases, each constraint falls into
one of the following 5 categories:

1. Two-sided Knapsack constraints: l ≤ aTx ≤ u where a ∈ Rn
+, l, u ∈ R.

2. XOR constraints (also known as multiple-choice constraints [22, 4]):
∑

i∈S xi = 1 for
some S ⊆ O.

3. Exclusion constraint: ∥x− x̄∥1 ≥ 1 for some x̄ ∈ {0, 1}n.

4. Quotient constraints: l ≤ gi(x) ≤ u with l, u ∈ R and gi(x) = a(x)/b(x), where
a, b : Rn → R are affine functions and b(x) > 0 for all x ∈ [0, 1]n.

5. General Quadratic constraints: l ≤ gi(x) ≤ u with l, u ∈ R and gi(x) = xTAx +
bTx+ c, where A ∈ Rn×n, b ∈ Rn, c ∈ R.

Also, the variable xAB do not appear in any constraint in g2 other than in exclusion
constraints, which is used for excluding a chosen solution from the feasible region of the
MINLP.

From the above description, readers may have noticed that all of the aforementioned
nonlinear constraints, namely the quotient, exclusion, and general quadratic constraints,
can be easily replaced with linear constraints when the variables x ∈ {0, 1}n are binary.
The quotient constraints l ≤ a(x)/b(x) ≤ u can be equivalently replaced by two linear
constraints a(x) − l · b(x) ≥ 0 and a(x) − u · b(x) ≤ 0. For exclusion constraints, since
x̄ ∈ {0, 1}n and variables x ∈ {0, 1}n, the sign of xi − x̄i can be decided solely by the
sign of x̄i, and so ∥x − x̄∥1 =

∑n
i=1 |xi − x̄i| can be rewritten as a linear expression in

x. Lastly, since all variables are binary, the general quadratic constraints can be easily
linearized using any reformulation-linearization techniques (RLT) available in a rich body
of literature ([1, 30, 33], for example). Further, in the cases where these constraints are
multiplied by xAB, we can simply solve the problem twice - once with xAB = 1 and the
other with xAB = 0 - to avoid the non-linear terms that were introduced by multiplying
xAB. These reformulations were originally not performed in Ethelo’s engine, and as we will
see in section 3.1, a significant speedup can be obtained by simply carrying out the above
reformulation and redirecting the originally-MINLP to a MILP solver.

12

2.5 Full MINLP Formulation and Problem Sizes

To summarize all the above sections, the full formulation of MINLP that Ethelo solves
can be given as follows:

max f(x)
s.t. li ≤ xAB · g1i (x) ≤ ui ∀i ∈ {1, 2, ...,m1}

li ≤ g2i (x) ≤ ui ∀i ∈ {1, 2, ...,m2}
∥x∥1 ≥ 1
x ∈ {0, 1}n

(EthP)

where n = |O| is the number of available options, m is the number of constraints in the
project. f : [0, 1]n → R is given by:

f(x) =

{
pTx , if P is a row matrix P = pT

ð(µ(x),Σ(x)) , otherwise

as in section 2.3, gj : Rn → Rmj , lji ∈ R ∪ {−∞}, uj
i ∈ R ∪ {+∞} for all i ∈ {1, 2, ...,mj}

and j ∈ {1, 2}. The ∥x∥1 ≥ 1 constraint was added to exclude the solution x = 0.
Semantically, the solution x = 0 means that “no action needs to be taken for the proposed
problem”, which is not very helpful for Ethelo’s clients.

For most of the problems that Ethelo solved, we have n ≤ 100 and m ≤ 30, but there are
larger problems with more constraints and n ≊ 250. Also, when multiple best solutions are
required in the multi-influence case, Ethelo obtains the sub-sequence solutions by solving
(EthP) repeatedly, while adding a new constraint ∥x − x̄∥1 ≥ 1 to the program (more
specifically, to constraint l2 ≤ g2(x) ≤ u2) after each solve, with x̄ being the just-obtained
optimal solution. These cases are not explicitly considered in this thesis, and are also not
considered in the computational results. However, we note that the exclusion constraints
can be re-posed as linear constraints, so ignoring the added exclusion constraints does not
affect the validity of our results.

13

Chapter 3

Single-Influence Cases

In this chapter, we will present the work we have done regarding the single-influence
cases. These are the cases that arise when Ethelo is computing a closest feasible solution
for their participants, which means that there is only one participant in consideration,
and that only one optimal solution is needed. In these cases, the program (EthP) can be
simplified as:

max pTx
s.t. li ≤ xAB · g1i (x) ≤ ui ∀i ∈ {1, 2, ...,m1}

li ≤ g2i (x) ≤ ui ∀i ∈ {1, 2, ...,m2}
∥x∥1 ≥ 1
x ∈ {0, 1}n

(EthP-SI)

where p is the preference vector of the participant. As mentioned in section 2.5, while
the constraints in (EthP-SI) can often be reposed as linear constraints, such reformulation
procedures were not in place in Ethelo’s engine before this project. In section 3.1, we
will introduce the procedures we implemented in Ethelo’s engine for reformulating the
constraints, as well as the computational speedup by doing so. Then, in section 3.2, we
present a few theoretical results regarding cut generation in a special case of (EthP − SI).

3.1 Computational Gains

Since all constraints in the past projects provided by Ethelo falls into one of the 5
categories of constraints mentioned in section 2.4, which can all be, but had not been,
reposed as linear constraints, it is natural for us to want to redirect the cases that can be

14

reposed as MILP to a MILP solver. To do so, we implemented two procedures in Ethelo’s
engine. The first one, named simple-reform, proceed as follows when received a program
(EthP) that does not contain auto-balance option xAB:

1. If there is at least one constraint in (EthP) that does not fall into type 1-5 as described
in section 2.4, send (EthP) to BONMIN and return the result.

2. Otherwise, for quotient constraints l ≤ a(x)/b(x) ≤ u, we replace it with two con-
straints a(x)−l·b(x) ≥ 0 and a(x)−u·b(x) ≤ 0. For exclusion constraints ∥x−x̄∥1 ≥ 1,
replace it with a linear constraint

∑n
i=1(−1)x̄i(x− x̄i) ≥ 1.

3. If there are general quadratic constraints, replace them with its McCormick’s relax-
ation [1, 26]. That is, replace all terms x2

i with xi (recall all xi are binary) and each
quadratic term xixj, where i < j, with a new binary variable yi,j. Then, for each
new variable yi,j, append constraints yi,j ≤ xi, yi,j ≤ xj, and yi,j ≥ xi + xj − 1 to the
program.

4. Pass the resulting program to CBC, a MILP solver, and return the result.

We have argued in section 2.4 that the above procedure reformulates (EthP) to a MILP
when xAB is not used. CBC was chosen as the MILP solver instead of industrial solvers
like CPLEX due to Ethelo’s preference of open-source solvers, and also because CBC was
already used in BONMIN as one of the sub-procedures. It is worth noting that restricting
ourselves to packages already used in BONMIN also forbids the use of MIQCP solvers. For
programs (EthP) that uses the auto-balance option, we use the following procedure:

1. Formulate two programs, say (EthP − AB0) and (EthP − AB1), by replacing all
instances of xAB by 0 and 1 respectively.

2. If either of (EthP −AB0) and (EthP −AB1) contains constraint that does not fall
into type 1-5 described in section 2.4, pass (EthP) to BONMIN and return the result.

3. Otherwise, pass both (EthP − AB0) and (EthP − AB1) to simple-reform, and
return the better solution of the two.

Below, we present the runtime reduction obtained by implementing the two procedures
above. All tests are performed in window’s subsystem for Linux (WSL) on windows 10,
on a machine with 12GB RAM and a 2.50GHz Intel(R) Core(TM) i7-6500U processor.
The test cases are generated by taking the pass projects that Ethelo granted us access to,

15

and modifying the votes such that only one of the provided votes is being considered. We
generated up to 10 cases for each available project. For the projects where less than 10 votes
have been collected, we generated a test case for each of the provided votes. Information
about hte projects are presented in table 3.1, and the runtime results are shown in table
3.2. As can be seen from the tables, the aforementioned reformulations resulted in at least
99% reduction in CPU runtime for the projects that do not contain quadratic constraints.
For the only project that used quadratic constraints, namely CCD, a runtime reduction of
87.9% was observed when compared to the original implementation that uses BONMIN.

Project
Problem Size g2 cons type g1 cons type

N Cases
n m1 m2 Linear Quotient XOR Linear Quad

parks 13 - 2 2 - - - - 10
BBB 91 12 - - - 12 - - 10
carbon 76 13 2 1 1 13 - - 10
citizen 48 5 3 2 1 5 - - 9
climate 76 13 2 1 1 13 - - 10
granting 50 1 - - - - 1 - 10
semistic 97 9 - - - 9 - - 7
stratford 47 3 - - - 3 - - 10
DAO 243 40 1 1 - 40 - - 8
CCD 43 11 - - - 3 6 2 10

Table 3.1: Information on Problem Formulation for Single-influence cases

Project BONMIN CBC Reduction

parks 1.201 0.002 99.9%
BBB 4.280 0.008 99.8%
carbon 30.600 0.007 >99.9%
citizen 4.802 0.005 99.9%
climate 30.332 0.009 >99.9%
granting 0.357 0.001 99.8%
semistic 7.650 0.007 99.9%
stratford 0.323 0.003 99.1%
DAO 165.820 0.025 >99.9%
CCD 3.870 0.467 87.9%

Table 3.2: Average CPU Runtime Result for Single-Influence Cases

16

3.2 Partial Results

After seeing the significant reduction in the preceding section, we also tried to identify
other structures in Ethelo’s previous projects and see if we can improve their runtime by
introducing new cuts to the solver. At the time when the experiment in the preceeding
section was first done, there were only 8 projects available: the projects BBB and DAO were
not available at the time. Of the available 8 projects, we observed that 2 of them (semistic,
stratford) used only XOR constraints and can be proven to be integral (that is, solving its
continuous relaxation naturally yields the optimal solution of the integer program), and 2 of
the remaining 6 (parks and citizen) contain constraints that are equivalent to l ≤ αTx ≤ u
for some α ∈ Rn

+, l, u ∈ R, which we called the “two sided knapsack constraint”, making it
the most common constraint type after XOR constraints, covering constraints αTx ≥ l, and
knapsack constraints αTx ≤ u. Further, seeing that the XOR constraints often arise from
the commonly-used slider widget on the survey, and that in all of the available projects
each variable is only used in at most one XOR constraint, we considered the following
structure and attempted to find new cuts for it:

max pTx
s.t. l ≤ αTx ≤ u∑

i∈S xi = 1 ∀S ∈ S
x ∈ {0, 1}n

(2SKP)

where l, u ∈ R, α ∈ Rn
+, and S ⊆ 2O = 2[n] is a collection of disjoint sets such that each

S ∈ S has a size of |S| ≥ 2. When performing literature review, we have found related
work regarding what we call the “multiple-choice covering problem” [32, 15, 14, 31]:

max pTx
s.t. l ≤ αTx∑

i∈S xi = 1 ∀S ∈ S
x ∈ {0, 1}n

(MCC)

and also regarding the multiple-choice knapsack problem [22, 15, 3, 17]:

max pTx
s.t. αTx ≤ u∑

i∈S xi = 1 ∀S ∈ S
x ∈ {0, 1}n

(MCK)

While cuts generated for 2-dimensional knapsack problems can also be applied to (2SKP),
we were unable to find works on cut-generation that consider precisely the formulation in

17

(2SKP) to the best of our knowledge. Thus, we asked the question: is there any cut for
(2SKP) that cannot be derived from the formulation (MCC) or (MCK)?

Before attempting to answer the above question, we give some notations and basic
definitions for completeness. Let X = {x ∈ {0, 1}n :

∑
i∈S xi = 1,∀S ∈ S}, where S

denotes the same collection of disjoint subsets of [n] as before.

Definition 3.2.1. We say that a set C ⊆ Rn is convex if ∀a, b ∈ C and ∀λ ∈ [0, 1], we
have λa+ (1− λ)b ∈ C.

Definition 3.2.2. For a non-empty finite set {x1, x2, ..., xk}, we define its convex hull
to be:

conv{x1, x2, ..., xk} =

{
k∑

i=1

λix
i : λ ∈ Rk, λ ≥ 0,

k∑
i=1

λi = 1

}
Then, showing that all valid cuts to (2SKP) are valid for one of (MCC) and (MCK)

is equivalent to showing:

conv{x ∈ X : l ≤ αTx ≤ u} = conv{x ∈ X : αTx ≤ u} ∩ conv{x ∈ X : αTx ≥ l} (*)

for any α ∈ Rn
+, l, u ∈ R with l ≤ u. By defining:

• PI = conv{x ∈ X : l ≤ αTx ≤ u}

• PL = conv{x ∈ X : αTx ≤ u}

• PU = conv{x ∈ X : αTx ≥ l}

we may rewrite (∗) as PI = PL ∩ PU .

In attempt to find new cuts for (2SKP) that cannot be obtained from (MCK) or
(MCC), we attempted to disprove (∗) and tried constructing counter-examples, both by
hand and with the help of a computer program. We implemented a program that draws
α ∈ Rn

+, l, u ∈ R+ randomly in a way that guarantees PI ̸= ∅, with dimension n ≤ 10, and
relaxed the XOR constraints to consider X = {0, 1}n. Then, we used PORTA (“POlyhe-
dron Representation Transformation Algorithm”, a publicly available software [5]) to verify
whether the extreme points of PI are same as those of PL∩PU . However, after running the
program for more than 24 hours, we were unable to find a counter-example with dimension
n ≤ 10. Hence, we conjectured that the statement (∗) is true for all α ∈ Rn

+, l, u ∈ R.
While we are also unable to prove that (∗) is correct in general, we will present in this
section the intermediate results that were gathered during our attempt.

18

3.2.1 Sufficient Conditions for general finite set X

While the results in this subsection (section 3.2.1) were derived for α ∈ Rn
+, l, u ∈ R with

l ≤ u, and X = {x ∈ {0, 1}n :
∑

i∈S xi = 1,∀S ∈ S} with S being a collection of subsets
of [n], since all results can be applied to a general finite set X ⊆ Rn and any α ∈ Rn,
we will present the results under the latter settings. For future reference, let the finite set
X ⊆ Rn, α ∈ Rn, and l, u ∈ R with l ≤ u be fixed. Following previous notations, let:

• PL = conv{x ∈ X : αTx ≤ u}

• PU = conv{x ∈ X : l ≤ αTx}

• PI = conv{x ∈ X : l ≤ αTx ≤ u}

Then, the statement (∗) can be expressed as PI = PL ∩ PU . Observe from our definition
that we always have PI ⊆ PL and PI ⊆ PU , and hence PI ⊆ PL ∩ PU . To show that
PI = PL ∩ PU , it suffices to show that PL ∩ PU ⊆ PI .

We first observe the following property:

Property 3.2.3. For any v̄ ∈ PL ∩ PU , we have l ≤ αT v̄ ≤ u.

Proof. By definition of convex hull and PL, we may write v̄ =
∑k

i=1 λiv
i for some v1, v2, ..., vk ∈

X with αTvi ≤ u, and λ ∈ Rn with λ > 0. Therefore, we have αT v̄ = αT (
∑k

i=1 λiv
i) =∑k

i=1 λi(α
Tvi) ≤

∑k
i=1 λi · u = u. Similarly, we can argue that αT v̄ ≥ l by considering

v̄ ∈ PU .

We further note that any point v̄ ∈ (PL ∩ PU) \ PI cannot be on the boundaries of
l ≤ αTx ≤ u. That is:

Theorem 3.2.4. For any v̄ ∈ PL ∩ PU with either αT v̄ = l or αT v̄ = u, then v̄ ∈ PI .

Proof. Suppose that v̄ ∈ PL ∩ PU is such that αT v̄ = l. Then, since v̄ ∈ PU = conv{x ∈
X : αTx ≥ l}, we can write v̄ =

∑k
i=1 λiv

i for some v1, v2, ..., vk ∈ X with αTvi ≥ l and
λ ∈ Rk with λ > 0. However, since:

l = αT v̄ = αT
∑
i=1

λiv
i =

k∑
i=1

λi(α
Tvi) ≥

k∑
i=1

λi · l = l

19

we must have αTvi = l for all i. It then follows that vi ∈ X satisfies αTvi = l ≤ u, and
hence vi ∈ {x ∈ X : l ≤ αTx ≤ u}. Thus, we have v̄ =

∑k
i=1 λiv

i ∈ conv{x ∈ X : l ≤
αTx ≤ u} = PI , as desired.

The case for αT v̄ = u can be proven analogously by considering v1, v2, ..., vk ∈ PL and
showing αTvi = u.

Then, as a corollary, we see that:

Corollary 3.2.5. When l = u, we have PI = PL ∩ PU .

Proof. As noted before, it suffices to show that PL∩PU ⊆ PI . Let v̄ ∈ PL∩PU be arbitrary.
Then, by property 3.2.3, we see that l ≤ αT v̄ ≤ u. Since l = u, we have l = αT v̄ = u; and
since v̄ ∈ PL ∩ PU by construction, we may conclude by theorem 3.2.4 that v̄ ∈ PI .

We also noticed that since the set X is a finite set, {αTx : x ∈ X} is a finite set of
discrete values. Thus, it might be possible to perturb α, l, u by a small amount without
affecting the sets PL, PU , PI . Therefore, we generalize corollary 3.2.5 as follows:

Corollary 3.2.6. Let L0 = {x ∈ X : αTx < l}, C0 = {x ∈ X : l ≤ αTx ≤ u},
U0 = {x ∈ X : αTx > u}. If there exists (β, β0) ∈ Rn × R such that:

• ∀x ∈ L0, βTx < β0; and

• ∀x ∈ C0, βTx = β0; and

• ∀x ∈ U0, βTx > β0

Then, PI = PL ∩ PU .

Proof. Let L1 = {x ∈ X : βTx < β0}, C1 = {x ∈ X : βTx = β0}, and U1 = {x ∈
X : βTx > β0}. Notice that (L1, C1, U1) partitions X, and hence are all finite sets. By
assumption, we see that L0 ⊆ L1, C0 ⊆ C1, and U0 ⊆ U1. Further notice that (L0, C0, U0)
also partitions the set X. Thus, we have L0 = L1, C0 = C1, and U0 = U1. Observe from
definition of PL, PI , PU that:

• PL = conv(L0 ∪ C0) = conv(L1 ∪ C1) = conv{x ∈ X : βTx ≤ β0}

• PI = conv(C0) = conv(C1) = conv{x ∈ X : βTx = β0}

• PU = conv(C0 ∪ U0) = conv(C1 ∪ U1) = conv{x ∈ X : βTx ≥ β0}

Therefore, by considering β0 ≤ βTx ≤ β0 in place of l ≤ αTx ≤ u, we know from corollary
3.2.5 that PL ∩ PU = PI .

20

From property 3.2.3 and theorem 3.2.4, we see that any v̄ ∈ (PL ∩ PU) \ PI must satisfy
l < αT v̄ < u, and so we may focus our attention on the points v̄ ∈ PL ∩ PU where
l < αT v̄ < u. We observed that:

Observation 3.2.7. If there exists t ∈ R with l < t < u such that {x ∈ PL : αTx = t} ⊆
PI , then for any v̄ ∈ PL with αT v̄ ≥ t, we have v̄ ∈ PI .

To see this, we will instead prove a more general property:

Property 3.2.8. If there exists (β, β0) ∈ Rn × R such that:

1. {x ∈ PL : βTx = β0} ⊆ PI ; and

2. ∀x ∈ (PL \ PI) ∩X = {x ∈ X : αTx < l}, βTx < β0

Then, {x ∈ PL : βTx ≥ β0} ⊆ PI .

Proof. Let H = {x ∈ Rn : βTx = β0} and v̄ ∈ PL be such that βT v̄ ≥ β0. Then, by
condition (1), we see that PL ∩H ⊆ PI . If β

T v̄ = β0, then we have v̄ ∈ PL ∩H ⊆ PI and
we would be done. Thus, it suffices to consider βT v̄ > β0.

Since v̄ ∈ PL, we may write v̄ =
∑k

i=1 λiv
i for some v1, v2, ..., vk ∈ X ∩ PL, and

λ ∈ Rk with λ > 0. Assume without loss of generality that v1, v2, ..., vk are ordered
in decreasing order of βTvi. If βTvi ≥ β0 for all i, then by condition (2) we see that
vi ∈ (PL ∩ X) \ ((PL \ PI) ∩ X) = PI ∩ X for all i, and hence v̄ ∈ conv(PI ∩ X) = PI .
Otherwise, let k0 ≤ k be the smallest index such that βTvk0 < β0. Let λ′ =

∑k0−1
i=1 λi.

Since λ > 0,
∑k

i=1 λi = 1, and k0 − 1 < k, we see that
∑k

i=k0
λi = 1 − λ′ > 0, and that

0 < λ′ < 1. Let q1 = 1
λ′

∑k0−1
i=1 λiv

i, and q2 = 1
1−λ′

∑k
i=k0

λiv
i. Then, we have:

• v̄ = λ′q1 + (1− λ′)q2; and

• q1, q2 ∈ conv{v1, v2, ..., vk} ⊆ PL; and

• βT q2 < β0 by choice of k0.

Since βT q2 < β0 < βT v̄, and βT v̄ = λ′βT q1 + (1− λ′)βT q2, we see that βT q1 > βT v̄ > β0.
Also consider f : [0, 1] → R given by:

f(µ) = µβT q1 + (1− µ)βT q2

21

Since f(λ′) = βT v̄ > β0 and f(0) = βT q2 < β0, by Intermediate Value Theorem we see
that there exists µ0 ∈ (0, λ′) such that f(µ0) = β0. Take:

q̄ = µ0q
1 + (1− µ0)q

2

Then, we have βT q̄ = f(µ0) = β0. Since µ0 ∈ (0, λ′) ⊆ (0, 1), we also have q̄ ∈
conv{q1, q2} ⊆ PL. Thus, q̄ ∈ PL ∩H ⊆ PI . Now, note:

v̄ =λ′q1 + (1− λ′)q2

=

(
λ′ − µ0(1− λ′)

1− µ0

)
q1 +

1− λ′

1− µ0

(
µ0q

1 + (1− µ0)q
2
)

=
λ′ − µ0

1− µ0

q1 +
1− λ′

1− µ0

q̄

Since µ0 < λ′, we see that 1 − µ0 > 1 − λ′; since µ0 ∈ (0, λ′) ⊆ (0, 1), we see that
λ′−µ0

1−µ0
, 1−λ′

1−µ0
∈ (0, 1). Further, observe that λ′−µ0

1−µ0
+ 1−λ′

1−µ0
= 1. Therefore, we have v̄ ∈

conv{q1, q̄}.
Recall that by construction, q1 ∈ conv{x ∈ X : βTx > β0} ⊆ PI , and we have shown

that q̄ ∈ PI . Thus, we may conclude that v̄ ∈ conv{q1, q̄} ⊆ PI , as desired.

Observation 3.2.7 can be treated as a special case of Property 3.2.8 where (β, β0) = (α, t).
Now, analogous to Property 3.2.8, we can show:

Property 3.2.9. If there exists (β, β0) ∈ Rn × R such that:

1. {x ∈ PU : βTx = β0} ⊆ PI ; and

2. ∀x ∈ (PU \ PI) ∩X = {x ∈ X : αTx > u}, βTx > β0.

Then, {x ∈ PU : βTx ≤ β0} ⊆ PI .

Proof. Analogous to property 3.2.8.

Then, combining properties 3.2.8 and 3.2.9, we get the following theorem:

Theorem 3.2.10. If there exists (β, β0) ∈ Rn × R such that:

• {x ∈ PL : βTx = β0} ⊆ PI , {x ∈ PU : βTx = β0} ⊆ PI ; and

22

• ∀x ∈ (PU \ PI) ∩X, βTx > β0; and

• ∀x ∈ (PL \ PI) ∩X, βTx < β0

Then, PL ∩ PU = PI .

Proof. Note that the 3 conditions for this theorem are precisely the conditions for Proper-
ties 3.2.8, 3.2.9 combined. Thus, we may write:

PL ∩ PU ={x ∈ PL ∩ PU : βTx ≥ β0} ∪ {x ∈ PL ∩ PU : βTx ≤ β0}
⊆{x ∈ PL : βTx ≥ β0} ∪ {x ∈ PU : βTx ≤ β0}
⊆PI ∪ PI

=PI

where the last (ie. second) containment follows from both properties 3.2.8, 3.2.9.

Corollary 3.2.11. If there exists (β, β0) ∈ Rn × R such that:

• {x ∈ conv(X) : βTx = β0} ⊆ PI ; and

• ∀x ∈ (PU \ PI) ∩X, βTx > β0; and

• ∀x ∈ (PL \ PI) ∩X, βTx < β0

Then, PL ∩ PU = PI .

Proof. Noticing that PL ⊆ conv(X), PU ⊆ conv(X), and {x ∈ conv(X) : βTx = β0} ⊆ PI

necessarily implies {x ∈ PL : βTx = β0} ⊆ PI and {x ∈ PU : βTx = β0} ⊆ PI , the
conclusion follows from theorem 3.2.10.

3.2.2 Implication on X = {0, 1}n

Before stating the implication of theorem 3.2.10 on X = {0, 1}n, we first introduce a few
basic definitions from chapter 4 of a textbook by Conforti, Cornuéjols and Zambelli [7]:

Definition 3.2.12. A convex set P is integral if P = conv(P ∩ Zn).

Definition 3.2.13. A matrix A ∈ Rm×n is totally unimodular if all of its square sub-matrix
has determinant 0, 1, or −1.

Theorem 3.2.14 (theorem 4.5 of [7]). Let A ∈ Zm×n. The polyhedron Q = {x ∈ Rn : c ≤
Ax ≤ d, l ≤ x ≤ u} is integral for all integral vectors c, d, l, u if and only if A is totally
unimodular.

23

With the above definitions, we show that theorem 3.2.10 has the following implication:

Corollary 3.2.15. Let α ∈ Rn
+, l, u ∈ R be such that l ≤ u. Let:

• PL = conv{x ∈ {0, 1}n : αTx ≤ u};

• PU = conv{x ∈ {0, 1}n : αTx ≥ l}; and

• PI = conv{x ∈ {0, 1}n : l ≤ αTx ≤ u}.

Then, if there exists integer t ∈ [n] such that all S ⊆ [n] with |S| = t satisfies l ≤
∑

i∈S αi ≤
u, then we have PI = PL ∩ PU .

Proof. Let H = {x ∈ Rn :
∑n

i=1 xi = t} and H0 = H ∩ [0, 1]n = {x ∈ Rn : t ≤ 1Tx ≤
t, 0 ≤ x ≤ 1}, where 1 denotes an all-one vector. Since 1T is a row matrix, the only square
sub-matrices of 1T are the 1-by-1 sub-matrices, which consists of a single entry of 1. Thus,
1T is totally unimodular, and so by theorem 3.2.14 we see that H0 is integral. Thus, we
may write:

H0 = conv

{
x ∈ [0, 1]n ∩ Zn :

n∑
i=1

xi = t

}
= conv

{
x ∈ {0, 1}n :

n∑
i=1

xi = t

}

Note that by the choice of t, we see that {x ∈ {0, 1}n :
∑n

i=1 xi = t} ⊆ {x ∈ {0, 1}n : l ≤
αTx ≤ u}, and so H0 ⊆ PI . Now, since PL, PU ⊆ [0, 1]n, we have PL ∩H ⊆ [0, 1]n ∩H =
H0 ⊆ PI , and PU ∩H ⊆ [0, 1]n ∩H = H0 ⊆ PI . Also, since α ≥ 0:

• If 1T x̄ ≤ t, then there exists x′ ∈ [0, 1]n with x′ ≥ x̄ and 1Tx′ = t, which gives
αT x̄ ≤ αTx′ and x′ ∈ H0. Since H0 ⊆ PI , it follows that α

T x̄ ≤ αTx′ ≤ u.

• Similarly, if 1T x̄ ≥ t, then there exists x′ ∈ [0, 1]n with x′ ≤ x̄ and 1Tx′ = t, which
gives αT x̄ ≥ αTx′ and x′ ∈ H0. Since H0 ⊆ PI , it follows that α

T x̄ ≥ αTx′ ≥ l.

In short, we argued that for any x̄ ∈ {0, 1}n, we have 1T x̄ ≤ t implies αT x̄ ≤ u, and
1T x̄ ≥ t implies αT x̄ ≥ u. Taking contrapositive gives us that:

• For any x̄ ∈ {0, 1}n with αT x̄ > u, 1T x̄ > t; and

• For any x̄ ∈ {0, 1}n with αT x̄ < l, 1T x̄ < t.

24

Since we have also showed that H0 := {x ∈ [0, 1]n : 1Tx = t} ⊆ PI , by considering
Corollary 3.2.11 with (β, β0) = (1, t), we may conclude that PI = PL ∩ PU

Loosely speaking, corollary 3.2.15 says that when the bounds l, u are sufficiently far
apart, then PI can be described by simply merging the outer descriptions (ie. inequality
descriptions) of PL and PU . Unfortunately, we were unable to progress beyond this point.
Noting the significant runtime reduction for single-influence cases that was obtained in
section 3.1, we decided to switch our attention to the multi-influence cases.

25

Chapter 4

Multi-Influence Cases

Now we switch our attention to the multi-influence cases. From section 2.5, the MINLP
for this case is given by:

max ð(µ(x),Σ(x))
s.t. li ≤ xAB · g1i (x) ≤ ui ∀i ∈ {1, 2, ...,m1}

li ≤ g2i (x) ≤ ui ∀i ∈ {1, 2, ...,m2}
∥x∥1 ≥ 1
x ∈ {0, 1}n

(EthP-MI)

Since the Ethelo function ð is non-linear and not continuous, it is hard for us to reformu-
late (EthP) as an MILP, even when both g1, g2 are linear functions. However, by replacing
the Ethelo function with a piecewise linear function that satisfies a few special properties, it
is possible to approximate (EthP) with a mixed-integer quadratically constrained program
(MIQCP), which can then be either passed to a MIQCP solver or further linearized using
common RLT techniques. The remainder of this chapter will be divided into 4 parts. In
section 4.1, we will present the procedure we use for remodeling a mathematical program
with piecewise linear objective function using linear constraints, and the properties that
the piecewise linear function needs to satisfy. In section 4.2, we present the procedure
for applying the results in section 4.1 to (EthP) assuming that a proper piecewise linear
function is used to approximate the Ethelo function. Then, in section 4.3, we present the
necessary tools for constructing the piecewise linear function that satisfies the requirements
in section 4.1, and from which the l2-distance to the Ethelo function is minimized. Finally,
in section 4.4, we present the computational results for the multi-influence cases.

26

4.1 Reformulating Piecewise Linear Function

In this section, we will present the procedures for reformulating max{f̄(x) : x ∈ X}
using linear constraints, where f̄ : D → R is a piecewise linear function with D ⊆ R2

compact. Most results in this subsection are taken from [19, 20, 36].

We will start our discussion by defining piecewise linear functions formally:

Definition 4.1.1. Let D ⊆ Rn be compact. We define:

• We say that a finite set of polytopes (Pi)
k
i=1 partitions D if 1)

⋃k
i=1 Pi = D and 2)

for all distinct i, j ∈ {1, 2, ..., k}, relint(Pi) ∩ relint(Pj) = ∅.

• A function f : D → R is called a piecewise linear function if its graph gr(f) =
{(x, f(x)) : x ∈ D} can be partitioned by some finite collection of polytopes.

Note that with the above definition, piecewise linear functions are necessarily continu-
ous.

Let D ⊆ Rn and X ⊆ D be compact, and let f̄ : D → R be piecewise linear. By
definition, we see that gr(f̄) can be partitioned by a finite set of polytopes, say {Pi}ki=1.
Let v(Pi) denote the set of vertices of Pi, and let VP =

⋃k
i=1 v(Pi). Then, by considering the

inner descriptions of the polytopes Pi, ie. describing each Pi as a convex hull of its extreme
points, we can model the graph gr(f̄) using linear disjunctive constraints as follows:

Property 4.1.2. (Formulas (16a), (16b) of [21])Let f̄ : D ⊆ Rn → R be a piecewise
linear function, and let {Pi}ki=1 be polyhedrons that partitions gr(f̄). Let v(Pi) be the set
of extreme points of Pi, V =

⋃k
i=1 v(Pi) be the set of all vertices, and S = {v(Pi) : i ∈ [k]}

be the collection of the sets of extreme points for all Pi’s. Then, we can write:

gr(f̄) =

(x, z) ∈ Rn × R :

[
x
z

]
=

∑
v∈V λvv∑

v∈V λv = 1
λ ∈ CDC(S)

where

CDC(S) :=
{
λ ∈ RV

+ :

∑
v∈V λv ≤ 1

∃i ∈ [k] : λv = 0 for all v /∈ v(Pi)

}

Note that while the constraint
∑

v∈V λv ≤ 1 in definition of CDC(S) is not necessary
in the above formulation, it is necessary for the subsequent results that we use about
CDC(S).

27

Intuitively, the formulation in Property 4.1.2 says gr(f̄) contains precisely the points
that can be described as convex combination of points in V , such that all coefficients λv

with non-zero value correspond to extreme points of a same polytope in {Pi}ki=1. The
constraint λ ∈ CDC(S) is referred to as “combinatorial disjunctive constraint” (CDC
constraints) by Huchette and Vielma [20], hence the abbreviation. CDC constraints can
be represented by Mixed-Integer Linear Program. One way of doing so is by using the
“independent branching (IB) formulation”, proposed by Vielma and Nemhauser [36]. To
introduce this formulation, we will need a few extra definitions.

Definition 4.1.3. Let V be a finite set and S = {S1, S2, ..., Sk} ⊆ 2V . We say that the
conflict graph of CDC(S) is an undirected graph G = (V,E) where

E = {{u, v} ⊆ V : u ̸= v,∄i ∈ {1, 2, ..., k}, {u, v} ⊆ Si}

In other words, for S ⊆ 2V , the conflict graph G = (V,E) of CDC(S) is a graph
where two vertices u, v are adjacent if and only if at least one of λu, λv has to be zero under
constraint λ ∈ CDC(S). Now, following the definitions given by Huchette and Vielma [19],
for any undirected graph G, we say:

Definition 4.1.4. Let G = (V,E) be an undirected graph.

• We say that H is a biclique of G if H is a complete bipartite subgraph of G. That is,
H = (A ∪B,A ∗B) for some non-empty disjoint A,B ⊆ V , where A ∗B = {{a, b} :
a ∈ A, b ∈ B}.

• We say that {(Ai, Bi)}ri=1 is a biclique cover of G with r levels if
⋃r

i=1Ai ∗Bi = E
and (Ai ∪Bi, Ai ∗Bi) is a biclique of G for all i.

Then, the IB formulation for CDC constraints can be given as follows:

Property 4.1.5. (Proposition 4 in [19]) Let V be a finite set, S ⊆ 2V and G be the conflict
graph of CDC(S). Let {(Ai, Bi)}ri=1 be a biclique cover of G. Then:

CDC(S) =

λ ∈ RV
+ :

∑
j∈Ai

λj ≤ yi ∀i ∈ [r]∑
j∈Bi

λj ≤ 1− yi ∀i ∈ [r]

y ∈ {0, 1}r

28

Essentially, the IB formulation enforces the CDC constraint by requesting that for each
biclique (Ai, Bi) in a biclique cover of the conflict graph, at most one of Ai, Bi can contain
variables with non-zero value. Now, putting together properties 4.1.2 and 4.1.5, we can
reach the following theorem:

Theorem 4.1.6. Let D ⊆ R2 be compact and f̄ : D ⊆ R2 → R be piecewise linear. Let
gr(f̄) be partitioned by polytopes {Pi}ki=1, v(Pi) be the set of extreme points of Pi, and
V =

⋃k
i=1 v(Pi), and S = {v(Pi) : i ∈ [k]}. Let (Ai, Bi)

r
i=1 be a biclique cover of conflict

graph of CDC(S). Then, the program max{f̄(x) : x ∈ X} is equivalent to:

max z

st.

[
x
z

]
=

∑
v∈V λvv∑

v∈V λv = 1∑
v∈Ai

λv ≤ yi ∀i ∈ [r]∑
v∈Bi

λv ≤ 1− yi ∀i ∈ [r]
λ ∈ RV

+, y ∈ {0, 1}r
x ∈ X

(MIP)

Proof. Follows by replacing λ ∈ CDC(S) in property 4.1.2 with formulation in property
4.1.5.

Let’s assume that the piecewise linear function f̄ is given by its graph gr(f̄) =
⋃k

i=1 Pi,
where all Pi are given by their inner description. To construct (MIP), it remains to find
a procedure for constructing small biclique covers for conflict graphs. While a biclique
cover always exists for any CDC constraints (for example, for S = {S1, S2, ..., Sk} ⊆ 2V ,
{(Si, V \ Si)}ki=1 is a biclique cover for its underlying conflict graph), finding the smallest
biclique cover (in terms of number of levels) is a NP hard problem [13]. In [19], the authors
provided an algorithm for finding biclique covers of Θ(log n) levels when the conflict graph
of CDC(S) satisfies some special requirement. We summarize their results as follows:

Definition 4.1.7. Let d1, d2 be positive integers and V = [d1] × [d2]. A collection T =
(Ti)

k
i=1 ⊆ 2V is said to be a grid triangulation if:

1. |Ti| = 3 for all Ti ∈ T, ie. conv(Ti) is a triangle for all Ti ∈ T.

2. ∥u− v∥1 ≤ 1 for all u, v ∈ Ti for all Ti ∈ T, ie. Ti is on a regular grid.

29

Figure 4.1: A Grid Triangulation with d1 = 8, d2 = 4, where T is the collection of sets of
extreme points of the triangles

3. The triangles {conv(Ti) : Ti ∈ T} partition D = [1, d1]× [1, d2].

Note that in the above definition, [d1] refers to the set {1, 2, ..., d1} while [1, d1] denotes
a closed interval on R; same applies for [d2] and [1, d2].

Theorem 4.1.8. Let T be a grid triangulation over V = [d1] × [d2]. Then, there is a
biclique cover for the conflict graph of CDC(T) with ⌈log(d1+1)⌉+⌈log(d2+1)⌉+6 levels.

Readers can refer to [19] for an algorithmic construction of such biclique cover.

4.2 Approximating Bi-variate Functions

To apply the formulation (MIP) to Ethelo’s problem, we want to approximate the Ethelo
function with a bivariate piecewise linear function f̄ with grid triangulated domain, which
we define as:

30

Definition 4.2.1. A piecewise linear function f̄ is said to have “grid triangulated domain”
if there exists polytopes {Pi}ki=1 satisfying:

• {Pi}ki=1 partitions gr(f̄); and

• The conflict graph of CDC({v(Pi) : i ∈ [k]} is isomorphic to that of some CDC(T),
where T is a grid triangulation.

To construct grid triangulated piecewise linear functions f̄ : D → R where D =
[al, au] × [bl, bu] ⊆ R2, we designed a procedure, named GTConstruct, that constructs
the function f̄ as follows:

1. Given d1, d2 ∈ Z with d1, d2 ≥ 2, partition [al, au] and [bl, bu] with sequences al =
a1 < a2 < ... < ad1 = au and bl = b1 < b2 < ... < bd2 = bu.

2. Divide the region D into smaller squares, which we call “cells”, with vertical lines
x = ai : i ∈ [d1] and horizontal lines y = bj : j ∈ [d2]. Let vi,j = (ai, bj) denote the
grid points, and V = {vi,j : i ∈ [d1], j ∈ [d2]} be the set of all grid points.

3. Further divide each cell into two triangles by splitting them along one of their diago-
nals. Let T denote the set of all resulting triangles. For each T ∈ T, let v(T) denote
its vertices. Let v(T) = {v(T) : T ∈ T}.

4. For each v ∈ V , choose Fv ∈ R, and construct the graph of f̄ : D → R as follows:

gr(f̄) =
⋃
T∈T

conv {(v, Fv) : v ∈ v(T)}

In other words, the function values on gridpoint v is given by Fv, and for all other
points x ∈ D, if T ∈ T is such that x ∈ T , the function value f̄(x) is defined by
linear interpolation of function values on vertices (v, Fv) of vertices v ∈ v(T).

Taking figure 4.1 as an example, the procedure GTConstruct works as follows:

1. We are given d1 = 8, d2 = 4, and D = [1, 8] × [1, 4]. We choose the partition
{ai}8i=1, {bj}4j=1 such that ai = i, bj = j for all i, j.

2. Divide the regionD = [1, 8]×[1, 4] into a collection C of cells, given by C = {[ai, ai+1]×
[bj, bj+1] : i ∈ {1, 2, ..., d1 − 1 = 7}, j ∈ {1, 2, 3}}, which are the squares in Fig. 4.1.
The set of grid points are given by V = {1, 2, 3, ..., 8} × {1, 2, 3, 4}, and vi,j = (i, j)
for all i = 1, 2, ..., 8, j = 1, 2, 3, 4.

31

Figure 4.2: Example for piecewise linear function constructed with GTConstruct

3. Each cell C ∈ C is divided into two triangles to give the partition in Fig 4.1, T
denotes the set of all triangles in Fig 4.1.

4. Finally, we need to pick the function values Fv for all v ∈ V = {1, 2, 3, ..., 8} ×
{1, 2, 3, 4}, and take linear interpolation in each triangle T ∈ T. If we take Fi,j =
(i− 1)(j − 1) for all i, j, then the resulting function will be as shown in Fig 4.2.

Property 4.2.2. GTConstruct returns a proper piecewise-linear function with grid tri-
angulated domain.

Proof. To see that GTConstruct actually returns a proper function, we show that for
any x ∈ D, f̄(x) = {z : (x, z) ∈ gr(f̄)} is a singleton. Let x ∈ D be arbitrary. Since T
partitions D by construction, we see that f̄(x) ̸= ∅. Also, if there is an unique T ∈ T such
that x ∈ T , then it’s easy to see that f̄(x) is unique. Otherwise, say there are two distinct
T1, T2 ∈ T such that x ∈ T1 and x ∈ T2. Let v̂(Ti;F) = {(v, Fv) : v ∈ v(Ti)} for both
i = 1, 2. To see that f̄(x) is a singleton, we want to show that v̂(T1;F) = v̂(T2;F) and are
both singletons.

32

Suppose for contradiction that there exists distinct z1, z2 ∈ R such that (x, z1) ∈ v̂(T1;F)
and (x, z2) ∈ v̂(T2;F). From the construction of T, we observe that for any T1, T2 ∈ T,
the intersection T1 ∩ T2 can only be ∅, a singleton {v} ⊆ V , or a common edge of T1, T2.
Since x ∈ T1 ∩ T2, we see that T1 ∩ T2 is not empty. If T1 ∩ T2 = {v} for some grid point
v ∈ V , it must be that x = v, and so by construction of v̂(Ti;F) for i = 1, 2 we see that
z1 = z2 = Fv, contradicting z1 ̸= z2. If T1 ∩ T2 is a common edge of T1 and T2, then since
both T1, T2 are triangles we know that T1, T2 share exactly 2 common vertices, say v1, v2,
and T1 ∩ T2 = conv(v1, v2). Since v1, v2 are distinct and x ∈ T1 ∩ T2 = conv(v1, v2), there
exists an unique λ ∈ [0, 1] such that λv1+(1−λ)v2 = x0. Now, from construction of v̂(Ti;F)
for i = 1, 2, we see that z1 = z2 = λFv1 + (1 − λ)Fv2 , which is again a contradiction. As
such, we may conclude that f̄ as returned by GTConstruct is a proper function. Further,
since gr(f̄) is a union of finitely many polytopes by construction, f̄ is piecewise linear.

Also, by considering the mapping id : V → Z2, (ai, bj) 7→ (i, j), we see that {id(v(T)) :
T ∈ T} is a grid triangulation. Since {conv{(v, Fv) : v ∈ v(T)} : T ∈ T} is a collection
of polytope that partitions gr(f̄) by construction, we see that the returned function f̄ is
indeed a piecewise linear function with grid triangulated domain, as desired.

We end this subsection by noting that GTConstruct can be used for approximating
the Ethelo function by considering D = [−1, 1]× [0, 1].

4.3 Best-fitting with Grid Triangulated Piecewise Lin-

ear Functions

In GTConstruct, there are 4 parameters that needs to be inputted for constructing f̄ :
the two partitions {ai}d1i=1 and {bj}d2j=1, triangulation T, and the function values F ∈ RV .
Thus, it is natural to ask how should we choose these parameters such that the resulting
function f̄ best approximates the Ethelo function, or any general bivariate function f :
[al, au] × [bl, bu] ⊆ R2 → R. In attempt to answer this question, in this section we will
present the tools for constructing these parameters such that the l2-distance between the
resulting function f̄ and the target function f is minimized, and also the computational
results when the target function f is the Ethelo function.

For the remainder of this section, we assume that the partitions {ai}d1i=1 and {bj}d2j=1 are
pre-determined, and that the target function f : D = [al, au]× [bl, bu] → R is fixed. We also

33

assume that f(x, y), xf(x, y), yf(x, y), and (f(x, y))2 are all integrable over any compact
subset of D, but the function f itself need not be continuous.

4.3.1 Fixed Triangulation

We first consider a simpler case where the triangulation T is fixed, and attempt to decide
only the function values F ∈ TV . For convenience, we write f̄ (T,F) to denote the function
returned by GTConstruct that uses triangulation T and function values F ∈ RV on grid
points. Recall that the partitions {ai}d1i=1, {bj}

d2
j=1 are assumed to be fixed. With these

notations, the problem we want to solve for finding F can be expressed as:

min
F∈RV

∥f − f̄ (T,F)∥22 := min
F∈RV

∫∫
D

(f(x, y)− f̄ (T,F)(x, y))2dA

We claim that ∥f− f̄ (T,F)∥22 is a convex quadratic function in F and can be evaluated either
numerically or analytically.

For convenience, we will start with the following standard definitions.

Definition 4.3.1. A set of vectors v1, v2, ..., vk ∈ Rn is said to be affinely independent
if λ = 0 is the unique solution to the system (

∑k
i=1 λiv

i = 0,
∑k

i=1 λi = 0, λ ∈ Rk).

Definition 4.3.2. Let v1, v2, v3 ∈ R2 be affinely independent, and let Fv1 , Fv2 , Fv3 ∈ R.
Let vi = (vix, v

i
y) for all i = 1, 2, 3. Then, the linear interpolation over points {(vi, Fvi) :

i = 1, 2, 3} is a linear function L{(vi,Fvi):i=1,2,3}(x, y) = q1x+ q2y + q3 such that:

L{(vi,Fvi):i=1,2,3}(v
i) = q1v

i
x + q2v

i
y + q3 = Fvi

for all i = 1, 2, 3.

Property 4.3.3. Let v1, v2, v3 ∈ R2 be affinely independent and Fvi ∈ R for i = 1, 2, 3.
Let S = {(vi, Fvi) : i = 1, 2, 3}. Then, the linear interpolation LS(x, y) is uniquely defined.
Further, if v1, v2, v3 are fixed, and q = (q1, q2, q3) is such that LS(x, y) = q1x + q2y + q3,
then the mapping m : R3 → R3 which maps F to q (denoted F 7→ q) is a linear mapping.

Proof. By definition of linear interpolation, the vector q = (q1, q2, q3) is such that:v1x v1y 1
v2x v2y 1
v3x v3y 1

q1q2
q3

 =

Fv1

Fv2

Fv3

34

Since v1, v2, v3 are affinely independent, we see that the following system in λ has only the
zero solution: v1x v2x v3x

v1y v2y v3y
1 1 1

λ = 0

which means that

v1x v2x v3x
v1y v2y v3y
1 1 1

 is invertible, and hence so is its transpose

v1x v1y 1
v2x v2y 1
v3x v3y 1

.
It then follows that the vector q = (q1, q2, q3) is uniquely defined by:q1q2

q3

 =

v1x v1y 1
v2x v2y 1
v3x v3y 1

−1 Fv1

Fv2

Fv3

thus the mapping F 7→ q is a linear mapping, which completes our proof.

Now, for any T ∈ T, let:

δT (F) =

∫∫
T

(f(x, y)− L{(v,Fv):v∈v(T)}(x, y))
2dA

be the squared l2-distance between the target function f and linear interpolation L{(v,Fv):v∈v(T)}
over region T . Notice from the construction of f̄ (T,F) that for any (x, y) ∈ D and T ∈ T
with (x, y) ∈ T , we have:

f̄ (T,F)(x, y) = L{(v,Fv):v∈v(T)}(x, y)

Further, since the triangulation T partitions D by construction, we have:

∥f − f̄ (T,F)∥22 =
∫∫

D

(f(x, y)− f̄ (T,F)(x, y))2dA

=
∑
T∈T

∫∫
T

(f(x, y)− f̄ (T,F)(x, y))2dA

=
∑
T∈T

∫∫
T

(f(x, y)− L{(v,Fv):v∈v(T)}(x, y))
2dA

=
∑
T∈T

δT (F) (1)

We claim that δT (F) is a convex quadratic function in F .

35

Property 4.3.4. For a linear function L : R2 → R with L(x, y) = q1x+ q2y + q3, and for
any compact R ⊆ D,

∫∫
R
(f(x, y)− L(x, y))2dA is quadratic in q.

Proof. Since the parameters q1, q2, q3 are independent from variables x, y, by expanding:∫∫
R

(f(x, y)− L(x, y))2dA

=

∫∫
R

(f(x, y)− q1x− q2y − q3)
2dA

=

∫∫
R

((f(x, y))2 + q21x
2 + q22y

2 + q33 − 2q1xf(x, y)

− 2q2yf(x, y)− 2q3f(x, y) + 2q1q2xy + 2q1q3x+ 2q2q3y)dA

=

(∫∫
R

(f(x, y))2dA

)
+

(∫∫
R

x2dA

)
q21 +

(∫∫
R

y2dA

)
q22 +

(∫∫
R

1 · dA
)
q23

− 2

(∫∫
R

xf(x, y)dA

)
q1 − 2

(∫∫
R

yf(x, y)dA

)
q2 − 2

(∫∫
R

f(x, y)dA

)
q3

+ 2

(∫∫
R

xydA

)
q1q2 + 2

(∫∫
R

xdA

)
q1q3 + 2

(∫∫
R

ydA

)
q2q3

Note that all of the integrations above are independent from q, and can be evaluated either
numerically or analytically when a description of f is given. As such, our result follows.

Property 4.3.5. For any T ∈ T, δT (F) is convex in F .

Proof. We first observe as a corollary of property 4.3.3 that for any fixed triangle T ∈ T
and point (x, y) ∈ T , L{(v,Fv):v∈v(T)}(x, y) is linear in F . That is, for F 1, F 2 ∈ RV , a, b ∈ R
and T ∈ T, we have:

L{(v,aF 1
v+bF 2

v):v∈v(T)}(x, y) = a · L{(v,F 1
v):v∈v(T)}(x, y) + b · L{(v,F 2

v):v∈v(T)}(x, y)

For simplicity, let LT (F ;x, y) = L{(v,Fv):v∈v(T)}(x, y) for any T ∈ T , F ∈ RV , and x, y ∈ R.
Then, we know from above that LT (F ;x, y) is linear in F , and so for any λ ∈ (0, 1) and

36

F 1, F 2 ∈ RV :

δT (λF
1 + (1− λ)F 2)

=

∫∫
T

[f(x, y)− f̄ (T,λF 1+λF 2)(x, y)]2dA

=

∫∫
T

[f(x, y)− LT (λF
1 + (1− λ)F 2;x, y)]2dA

=

∫∫
T

[λ(f(x, y)− LT (F
1;x, y)) + (1− λ)(f(x, y)− LT (F

2;x.y))]2dA

≤
∫∫

T

(
λ[f(x, y)− LT (F

1;x, y)]2 + (1− λ)[f(x, y)− LT (F
2;x, y)]2

)
dA

=λδT (F
1) + (1− λ)δT (F

2)

where the inequality follows from convexity of x 7→ x2 : R → R.

Now, combining properties 4.3.3,4.3.4, we see that δT (F) is a quadratic function of F
with constant coefficients. Property 4.3.5 tells us that δT (F) is convex in F . Thus, δT (F)
is a convex quadratic function of F .

Also recall that we have showed ∥ð− f̄ (T,F)∥22 =
∑

T∈T δT (F) in (1). Thus, the program
we want to solve can be rewritten as:

min
F∈RV

∥ð− f̄ (T,F)∥22 = min
F∈RV

∑
T∈T

δT (F) (FnCl)

For any T ∈ T, since δT (F) is a convex quadratic function in F , so is
∑

T∈T δT (F). There-
fore, we see that minF∈RV

∑
T∈T δT (F) is an unconstrained convex quadratic program.

In our experiments, we noticed that for optimal solution F ∗ obtained by solving the above
program with the Ethelo function being the target function, the difference between the
optimal value of (EthP) and that of (MIP) using f̄ (T,F ∗) as approximation tends to be bigger
if it happens that both optimal solutions x∗, x̄ falls on a same triangle T ∈ T where the
order of values {F ∗

v : v ∈ v(T)} on the vertices is different from that of {ð(v) : v ∈ v(T)}.
Hence, we also consider the following program that fixes some of the ordering of variables:

min
∑

T∈T δT (F)
s.t. Fv + ϵ0 ≤ Fv′ ∀(v, v′) : ∃T ∈ T, v, v′ ∈ v(T), f(v) < f(v′)

F ∈ RV

(FnCl-ϵ0)

37

where ϵ0 ≥ 0 is some pre-determined constant. Note that the ordering does not have to be
strict: by setting ϵ0 = 0, the above simply enforces that Fu is not greater than Fv for any
u, v ∈ V with f(u) < f(v).

4.3.2 Fixed Function Values

After the considering the case where we only adjust function values, we also considered
the case where we use the exact function values Fv = f(v) for all v ∈ V , where f : D ⊆
R2 → R is the target function, which is the Ethelo function ð in our case, and decide
only the triangulation T. Recall from GTConstruct that the triangulation T was defined
by splitting each of the cells along one of its diagonals. Let C denote the set of cells in
GTConstruct, note that the partitions {ai}d1i=1, {bj}

d2
j=1 were assumed to be fixed. For

future reference, we define the following:

Definition 4.3.6. For any square C = [xl, xu]× [yl, yu] ⊆ R2 where xl, xu, yl, yu ∈ R with
xl < xu and yl < yu, let’s label its 4 vertices v1(C) = (xl, yl), v2(C) = (xl, yu), v3(C) =
(xu, yu), v4(C) = (xu, yl) in clockwise order. Let:

• T1(C) = conv{v2(C), v3(C), v4(C)}

• T2(C) = conv{v1(C), v3(C), v4(C)}

• T3(C) = conv{v1(C), v2(C), v4(C)}

• T4(C) = conv{v1(C), v2(C), v3(C)}

We say that C is split diagonally if it is given as the union C = T1(C) ∪ T3(C), and we
say that it is split skew-diagonally if it is given as C = T2(C) ∪ T4(C).

Specially, if C is a cell, then we say that C is split diagonally in triangulation T
if T1(C), T3(C) ∈ T, and we say that C is split skew-diagonally in triangulation T if
T2(C), T4(C) ∈ T.

For any cell C ∈ C, let v(C) denote the set of its 4 vertices. Note from the above that

the l2 error contributed by cell C when being split diagonally can be given by δ
(D)
C (F) =

δT1(C)(F)+δT3(C)(F), and that when C is being split diagonally can be split skew-diagonally

is given by δ
(SD)
C (F) = δT2(C)(F) + δT4(C)(F), where δT (F) follows the same definition as

38

Figure 4.3: Diagonal (left) and skew-diagonal (right) split for a cell

in the preceding subsection. Note that the values δ
(D)
C (F), δ

(SD)
C (F) are independent from

how any other cell C ′ ∈ C is being split. Thus, when function values F are fixed to some
F 0 ∈ RV , to minimize ∥f − f̄ (T,F 0)∥22 we can decide the triangulation T greedily. That is,

for each cell C ∈ C, we split C diagonally if δ
(D)
C (F 0) ≤ δ

(SD)
C (F 0); otherwise we split C

skew-diagonally. However, this part is not considered in the computational experiments
due to the following observation:

Property. For a cell C ∈ C, if f(x, y) = t1xy + t2x+ t3y + t4 for some t ∈ R4 on C, then

δ
(D)
C (F 0) = δ

(SD)
C (F 0), where F 0 ∈ RV is such that F 0

v = f(v) for all v ∈ v(C).

To see this, we will first show the following special case:

Lemma 4.3.7. Let C = [0, w] × [0, h] for some w, h ∈ R+, let f(x, y) = xy, and F 0 ∈
Rv(C) be such that F 0

(u,v) = f(u, v) = uv for all (u, v) ∈ v(C) ⊆ R2. Define li(x, y) =

L(u,v,f(u,v)):(u,v)∈Ti(C)(x, y) for all i = 1, 2, 3, 4. Then, δ
(D)
C (F 0) = δ

(SD)
C (F 0).

Proof. We will show that δTi(C)(F
0) = h3w3/180 for all i by evaluating each function

δTi(C)(F
0) one by one. We first consider T3(C).

Note that T3(C) = conv{(0, 0), (w, 0), (0, h)}, and the linear interpolation l3 is such that
(0, 0) 7→ 0, (w, 0) 7→ 0, (0, h) 7→ 0. Since the zero function (x, y) 7→ 0 is a linear function
that satisfies the requirement, and the linear interpolation is unique by property 4.3.3, we

39

see that l3(x, y) = 0 for all x, y. Also, T3(C) can be written as:

T3(C) =conv{(0, 0), (w, 0), (0, h)}
={(x, y) ∈ C = [0, w]× [0, h] : hx+ wy ≥ hw}

={(x, y) : 0 ≤ x ≤ w, 0 ≤ y ≤ h

w
(w − x)}

we can evaluate:

δT3(C)(F
0) =

∫∫
T3(C)

(xy − 0)2dA

=

∫ w

0

∫ h
w
(w−x)

0

x2y2dydx

=

∫ w

0

x2 · 1
3
· h

3

w3
(w − x)3dx

=
h3

3w3

∫ w

0

(
w3x2 − 3w2x3 + 3wx4 − x5

)
dx

=
h3

3w3

(
1

3
w3 · w3 − 3

4
w2 · w4 +

3

5
w · w5 − 1

6
w6

)
=

h3

3w3
· 1

60
w6

=
1

180
h3w3

Now, for T1(C), the linear interpolation l1 is such that (0, h) 7→ 0, (w, 0) 7→ 0, (w, h) 7→
wh. Since (x, y) 7→ hx+wy−hw is a linear function satisfying the requirement, and linear
interpolation is unique, we see that l1(x, y) = hx + wy − hw for all x, y. Also, T1(C) can
be given by:

T1(C) =conv{(0, h), (w, 0), (w, h)}
={(x, y) ∈ [0, w]× [0, h] : hx+ wy ≥ hw}

={(x, y) : 0 ≤ x ≤ w,
h

w
(w − x) ≤ y ≤ h}

40

we may write:

δT1(C)(F
0) =

∫∫
T1(C)

(xy − hx− wy + hw)2dA

=

∫ w

0

∫ h

h
w
(w−x)

(w − x)2(h− y)2dydx

=

∫ w

0

∫ h− h
w
(w−x)

0

(w − x)2(h− y)2d(h− y)d(w − x)

=

∫ w

0

∫ h
w
(w−(w−x))

0

(w − x)2(h− y)2d(h− y)d(w − x)

=

∫ w

0

∫ h
w
(w−u)

0

u2v2dvdu (Change of variable)

=δT3(C)

where the last equality comes from the observation that the integration is same as that of
δT3(C)(F

0) except with different names for variables.

Similarly, for T2(C), the linear interpolation l2 is such that (0, 0) 7→ 0, (w, 0) 7→
0, (w, h) 7→ wh, so we observe that l2(x, y) = wy. Also, T2(C) can be given by:

T2(C) =conv{(0, 0), (w, 0), (w, h)}
={(x, y) ∈ [0, w]× [0, h] : hx− wy ≥ 0}

={(x, y) : 0 ≤ x ≤ w, 0 ≤ y ≤ h

w
x}

Thus,

δT2(C)(F
0) =

∫ w

0

∫ h
w
x

0

(xy − wy)2dydx

=

∫ w

0

∫ h
w
x

0

(w − x)2y2dydx

=

∫ w

0

∫ h
w
(w−u)

0

u2y2dydu (Change of variable, u = w − x)

=δT3(C)(F
0)

And for T4(C), the linear interpolation l4 is such that (0, 0) 7→ 0, (0, h) 7→ 0, (w, h) 7→

41

wh. We observe that l4(x, y) = hx. T4(C) can be given by:

T4(C) =conv{(0, 0), (0, h), (w, h)}
={(x, y) ∈ [0, w]× [0, h] : hx− wy ≤ 0}

={(x, y) : 0 ≤ x ≤ w,
h

w
x ≤ y ≤ h}

Thus,

δT4(C)(F
0) =

∫∫
T4(C)

(xy − hx)2dA

=

∫ w

0

∫ h

h
w
x

x2(h− y)2dydx

=

∫ w

0

∫ h− h
w
x

0

x2v2dvdx (Change of variable, v = h− y)

=

∫ w

0

∫ h
w
(w−x)

0

x2v2dvdx

=δT3(C)(F
0)

In sum, we showed that δTi(C)(F
0) = δT3(C)(F

0) = 1
180

h3w3 for all i = 1, 2, 3, 4. Thus,
we have:

δ
(D)
C (F 0) = δT1(C)(F

0) + δT3(C)(F
0) = δT2(C)(F

0) + δT4(C)(F
0) = δ

(SD)
C (F 0)

as desired.

With the above lemma, we can show the previously-mentioned property:

Property 4.3.8. For a cell C ∈ C, if f(x, y) = t1xy + t2x + t3y + t4 for some t ∈ R4 on

C, then δ
(D)
C (F 0) = δ

(SD)
C (F 0), where F 0 ∈ RV is such that F 0

v = f(v) for all v ∈ v(C).

Proof. We will prove δ
(D)
C (F0) = δ

(SD)
C (F0) by relating the quantities δ

(D)
C (F0), δ

(SD)
C (F0) to

those in lemma 1. Suppose the cell is C = [xl, xu]× [yl, yu] for some xl, xu, yl, yu ∈ R with
xu > xl, yu > yl. Let w = xu − xl > 0 and h = yu − yl > 0, and let C ′ = [0, w]× [0, h]. We
also define:

• li(x, y) = L{(v,F 0
v):v∈v(Ti(C))}(x, y) for all i = 1, 2, 3, 4; and

42

• l′i(x, y) = L{(u,v,uv):(u,v)∈v(Ti(C′))}(x, y) for all i = 1, 2, 3, 4.

Then, by lemma 1, we see that:∑
j∈{1,3}

∫∫
Tj(C′)

(xy − l′j(x, y))
2dA =

∑
j∈{2,4}

∫∫
Tj(C′)

(xy − l′j(x, y))
2dA

also, by definition of δ
(D)
C (F0) and δ

(SD)
C (F0), we have:

• δ
(D)
C (F0) =

∑
j∈{1,3}

∫∫
Tj(C)

(f(x, y)− lj(x, y))
2dA

• δ
(SD)
C (F0) =

∑
j∈{2,4}

∫∫
Tj(C)

(f(x, y)− lj(x, y))
2dA

To see that δ
(D)
C (F0) = δ

(SD)
C (F0), it suffices to show that∫∫

Tj(C)

(f(x, y)− lj(x, y))
2dA = K

∫∫
Tj(C′)

(xy − l′j(x, y))
2dA

for all j = 1, 2, 3, 4 and for some constant K independent from j.

Let j ∈ {1, 2, 3, 4} be arbitrary. For any set S ⊆ R2 and vector v ∈ R2, we denote the
set translations S + v := {u + v : u ∈ S} and S − v = S + (−v). Note that the region of
integration can be translated as follows:∫∫

Tj(C)

(f(x, y)− lj(x, y))
2dA =

∫∫
Tj(C)−(xl,yl)

(f(x+ xl, y + yl)− lj(x+ xl, y + yl))
2dA

Also observe that:

• v1(C)− (xl, yl) = (xl, yl)− (xl, yl) = (0, 0) = v1(C
′)

• v2(C)− (xl, yl) = (xl, yu)− (xl, yl) = (0, yu − yl) = (0, h) = v2(C
′)

• v3(C)− (xl, yl) = (xu, yu)− (xl, yl) = (xu − xl, yu − yl) = (w, h) = v3(C
′)

• v4(C)− (xl, yl) = (xu, yl)− (xl, yl) = (xu − xl, 0) = (w, 0) = v4(C
′)

43

Thus, we see that vk(C)− (xl, yl) = vk(C
′) for all k = 1, 2, 3, 4, and so v(Tj(C))− (xl, yl) =

v(Tj(C
′)), where v(T) denotes the set of the 3 vertices for a triangle T as before. It then

follows that:

Tj(C)− (xl, yl) = conv(v(Tj(C))− (xl, yl)) = conv(v(Tj(C
′))) = Tj(C

′)

Therefore:∫∫
Tj(C)

(f(x, y)− lj(x, y))
2dA =

∫∫
Tj(C)−(xl,yl)

(f(x+ xl, y + yl)− lj(x+ xl, y + yl))
2dA

=

∫∫
Tj(C′)

(f(x+ xl, y + yl)− lj(x+ xl, y + yl))
2dA

Let gj(x, y) =
1
t1
(t1xy − f(x+ xl, y + yl) + lj(x+ xl, y + y + l)). Then, we may write:∫∫
Tj(C)

(f(x, y)− lj(x, y))
2dA

=

∫∫
Tj(C′)

(f(x+ xl, y + yl)− lj(x+ xl, y + yl))
2dA

=

∫∫
Tj(C′)

(t1xy − (t1xy − f(x+ xl, y + yl) + lj(x+ xl, y + yl))
2dA

=

∫∫
Tj(C′)

(t1xy − t1gj(x, y))
2dA

=t21

∫∫
Tj(C′)

(xy − gj(x, y))
2dA (**)

We claim that gj(x, y) = l′j(x, y) := L{(u,v,uv):(u,v)∈v(Tj(C′))}(x, y) for all x, y. To see this, it
suffices to show that gj(x, y) is a linear function with gj(u, v) = uv for all (u, v) ∈ v(Tj(C

′)).

To see that gj is linear, we note that since f(x, y) = t1xy+ t2x+ t3y+ t4 by assumption,
we have:

t1xy − f(x+ xl, y + yl) =t1xy − t1(x+ xl)(y + yl)− t2(x+ xl)− t3(y + yl)− t4

=t1xy − t1(xy + xly + ylx+ xlyl)− t2(x+ xl)− t3(y + yl)− t4

=− t1(xly + ylx+ xlyl)− t2(x+ xl)− t3(y + yl)− t4

which is linear in (x, y), given that t1, t2, t3, t4, xl, yl are all constants. Also, since lj(x, y)
is linear in (x, y), so is lj(x+ xl, y + yl). It then follows that the sum (t1xy− f(x+ xl, y +

44

yl)) + lj(x+ xl, y+ yl) is linear in (x, y), and hence so is gj(x, y) :=
1
t1
(t1xy− f(x+ xl, y+

yl) + lj(x+ xl, y + y + l)).

To see that gj(u, v) = uv for all (u, v) ∈ v(Tj(C
′)), let (u, v) ∈ v(Tj(C

′)) be arbitrary.
Then:

t1(uv − gj(u, v)) =t1uv − t1gj(u, v)

=t1uv − (t1uv − f(u+ xl, v + yl) + lj(u+ xl, v + y + l))

=f(u+ xl, v + yl)− lj(u+ xl, v + y + l)

Recall we have shown that v(Tj(C)) = v(Tj(C
′)) + (xl, yl), which implies that (u+ xl, v +

yl) ∈ v(Tj(C)). Further, recall from definition of lj that lj(x, y) = f(x, y) for all (x, y) ∈
v(Tj(C)). Thus, we may conclude that f(u+ xl, v + yl)− lj(u+ xl, v + y + l) = 0, and so
gj(u, v) = uv for all (u, v) ∈ v(Tj(C

′)).

Since gj(x, y) is a linear function such that gj(x, y) = xy for all (x, y) ∈ v(Tj(C
′)), we

may conclude that gj = l′j. Therefore, continuing from (∗∗), we have:∫∫
Tj(C)

(f(x, y)− lj(x, y))
2dA =t21

∫∫
Tj(C′)

(xy − gj(x, y))
2dA

=t21

∫∫
Tj(C′)

(xy − l′j(x, y))
2dA

45

Since j ∈ {1, 2, 3, 4} was arbitrary, we may conclude that:

δ
(D)
C (F0) =

∑
j∈{1,3}

∫∫
Tj(C)

(f(x, y)− lj(x, y))
2dA

=
∑

j∈{1,3}

t21

∫∫
Tj(C′)

(xy − l′j(x, y))
2dA

=t21
∑

j∈{1,3}

∫∫
Tj(C′)

(xy − l′j(x, y))
2dA

=t21
∑

j∈{2,4}

∫∫
Tj(C′)

(xy − l′j(x, y))
2dA (Lemma 1)

=
∑

j∈{2,4}

t21

∫∫
Tj(C′)

(xy − l′j(x, y))
2dA

=
∑

j∈{2,4}

∫∫
Tj(C)

(f(x, y)− lj(x, y))
2dA

=δ
(SD)
C (F0)

as desired.

Notice from the definition of the Ethelo function that it can be described as ð(µ,Σ) =
c1µΣ + c2µ + c3Σ + c4 for some c ∈ R4 on the regions [−1, 1] × (t, 1], [−1, 0) × [0, t), and
(0, 1] × [0, t) respectively. Thus, any cell that does not intersect with the line segments
[−1, 1] × {t}, {0} × [0, t] will contribute the same error regardless whether they are split
diagonally or skew-diagonally. Note that we can always choose the partitions {ai}d1i=1,
{bj}d2j=1 in a way such that the total area of cells that intersects with at least one of
[−1, 1] × {t}, {0} × [0, t] to be arbitrarily small, and hence the l2-error contributed by
these cells are arbitrarily small, which then means that the l2-error for all triangulations
T will be arbitrarily close to the minimum. Thus, we removed the part where we decide
the triangulation from our experiments.

4.3.3 Dynamic Triangulation with Adjusted Function Values

Now we move on to the more general case where we decide both the triangulation T and
the function values F ∈ RV together. Following the notations in previous sections, we can

46

formulate the problem of finding f̄ (T,F) with minimal l2-error as:
min

∑
C∈C zC

s.t. {zC = δ
(D)
C (F), yC = 0} ∨ {zC = δ

(SD)
C (F), yC = 1} ∀C ∈ C

z ∈ RC, F ∈ RV , y ∈ {0, 1}C
(AD0)

where δT (F) follows the same definition as in the preceding subsections. The variables zC
encodes the squared l2-error contributed by the cell C, and the binary variables yC encodes
whether the cell C is being split diagonally (yC = 0) or skew-diagonally (yC = 1). While
(AD0) is a disjunctive program, we note that if F can be restricted to a bounded region B
and establish a bound MC ∈ R for each cell C ∈ C such that δT1(C)(F) + δT3(C)(F) ≤ MC

and δT2(C)(F) + δT4(C)(F) ≤ MC for all C ∈ C, the above can be remodelled as a convex
program using big-M constraints:

min
∑

C∈C zC
s.t. δ

(D)
C (F) ≤ zC +MCyC ∀C ∈ C

δ
(SD)
C (F) ≤ zC +MC(1− yC) ∀C ∈ C

z ∈ RC, F ∈ B ⊆ RV , y ∈ {0, 1}C
(AD)

Now it remains to identify the set B and constants M ∈ RC.

Recall from the properties 4.3.4, 4.3.5 that δT (F) is a convex quadratic function in F .
From definition of δT (F), we see that δT (F) only depends on the values of Fv : v ∈ v(T)
when the triangle T is fixed. Thus, we can consider δT (F) = δT (Fv(T)) as a function of
variables Fv : v ∈ v(T).

Unlike previous subsections, we will assume in this subsection that δT (Fv(T)) is strictly
convex as a function of Fv(T). To see that this assumption is reasonable, we note that since
δT (F) is a convex quadratic function in F , δT (Fv(T)) is also a convex quadratic function
in Fv(T). If δT (Fv(T)) is convex but not strictly convex, there would be a line L ⊆ Rv(T)

in which all points are minimum points for δT (Fv(T)), but this would be counter-intuitive
since as Fv(T) deviates away from the values of ð(v) : v ∈ v(T), the l2-distance δT (Fv(T))
between the target function f and the linear interpolation L{(v,Fv):v∈v(T)} over triangle T
should approach infinity. Therefore, while we do not have a formal proof for the statement,
it is reasonable for us to assume that δT (F) = δT (Fv(T)) is strictly convex for any triangle
T in any triangulation T. We also note that this assumption was not violated in any of
our experiments.

47

Now, for strictly convex quadratic functions, we may observe the following properties:

Property 4.3.9. Let A ∈ Rn×n be positive definite, b ∈ Rn, c ∈ R, M ∈ R be arbitrary,
and λmin(A) be the smallest eigenvalue of A. Then, we have xTAx + bTx + c ≥ M in the
following two cases:

1. ∥b∥21 − 4λmin(A) ∗ (c−M) < 0 ; or

2. x ∈ Rn and ∥x∥∞ ≥ ∥b∥1+
√

∥b∥21−4λmin(A)∗(c−M)

2λmin(A)

Proof. We note that λmin(A) > 0 as A is positive definite, and:

xTAx+ bTx+ c−M ≥λmin(A)∥x∥22 − ∥b∥1∥x∥∞ + c

≥λmin(A)∥x∥2∞ − ∥b∥1∥x∥∞ + c−M

By viewing the above as a quadratic polynomial in ∥x∥∞, we see that if ∥b∥21 − 4λmin(A) ∗
(c − M) < 0, then xTAx + bTx + c − M > 0 for all x; otherwise, for any ∥x∥∞ ≥
∥b∥1+

√
∥b∥21−4λmin(A)∗(c−M)

2λmin(A)
, we have xTAx+bTx+c−M > 0. As such, the result follows.

Property 4.3.10. Let A ∈ Rn×n be positive definite, b ∈ Rn, c ∈ R, and r ∈ R+ be
arbitrary. Then, for any x ∈ Rn with ∥x∥∞ ≤ r, we have:

xTAx+ bTx+ c ≤
n∑

i=1

n∑
j=1

|Ai,j|r2 + ∥b∥1r + c

Proof.

xTAx+ bTx+ c =
n∑

i=1

n∑
j=1

Ai,jxixj +
n∑

i=1

bixi + c

≤
n∑

i=1

n∑
j=1

|Ai,j|r2 +
n∑

i=1

|bi|r + c

=
n∑

i=1

n∑
j=1

|Ai,j|r2 + ∥b∥1r + c

48

To choose the region B and constants MC in (AD0), let M0 = ∥f − f̄ (T̄,F̄)∥22 where
F̄v = f(v) for all v ∈ V and T̄ is an arbitrary triangulation. Then, for triangulation T∗ and
function values F ∗ arising from optimal solution of (AD), we must have ∥f − f̄ (T∗,F ∗)∥22 ≤
M0. Thus, we may choose B to be a box such that for any F ∈ RV \ B there is always a

cell C ∈ C such that both δ
(D)
C (F) ≥ M0 and δ

(SD)
C (F) ≥ M0, and then choose MC to be

an upper bound for both δ
(D)
C (F), δ

(SD)
C (F) over F ∈ B.

Let C ∈ C be an arbitrary cell, and let v(C) be the set of vertices for C. Then,
since δTi(C)(Fv(Ti(C))) are strictly convex over Fv(Ti(C)) for all i = 1, 2, 3, 4, and v(T1(C)) ∪
v(T3(C)) = v(T2(C)) ∪ v(T4(C)) = v(C), we see that δ

(D)
C = δT1(C) + δT3(C) and δ

(SD)
C =

δT2(C) + δT4(C) are both strictly convex over Fv(C). Also, since δTi(C)(F) are quadratic

functions in F given in closed form, so are δ
(D)
C and δ

(SD)
C . As such, we can compute

AC,0, AC,1 ∈ R4×4, b(C,0), b(C,1) ∈ R4, c(C,0), c(C,1) ∈ R such that:

δ
(D)
C (Fv(C)) =F T

v(C)A
C,0Fv(C) + b(C,0)TFv(C) + c(C,0)

δ
(SD)
C (Fv(C)) =F T

v(C)A
C,1Fv(C) + b(C,1)TFv(C) + c(C,1)

Then, the program (AD) can be constructed with the following procedure:

1. Compute M0 = ∥f − f̄ (T̄,F̄)∥22 where F̄v = f(v) for all v ∈ V and T̄ is an arbitrary
triangulation.

2. For each cell C ∈ C, compute AC,0, AC,1 ∈ R4×4, b(C,0), b(C,1) ∈ R4, c(C,0), c(C,1) ∈ R as
defined above.

3. For k = 0, 1, let rC,k = real(
∥bC,k∥1+

√
∥bC,k∥21−4λmin(AC,k)∗(c−M)

2λmin(AC,k)
), where real(·) denotes

the real part of a complex number, and define rC = max{r0, r1}.

4. Compute MC = maxk=0,1

∑n
i=1

∑n
j=1 |A

C,k
i,j |r2 + ∥bC,k∥1r + c(C,k).

5. Construct program (AD) using MC computed above and

B = {F ∈ RV : ∀C ∈ C,∀v ∈ v(C), |Fv| ≤ rC}

Similar to section 4.3.1, when using the Ethelo function ð as target function, we noticed
that for triangulation T∗ and function values F ∗ obtained by solving (AD), the error
between optimal values of (EthP) and (MIP) tends to be larger when the optimal solutions

49

x∗, x̄ to the two programs both falls in a same triangle T ∈ T∗, of which the order of function
values {Fv : v ∈ v(T)} is different from that of the original values {ð(v) : v ∈ v(T)}. In
attempt to fix this, we also considered a program with extra constraints added to (AD) to
enforce a partial order on the variables Fv : v ∈ V :

min
∑

C∈C zC
s.t. δ

(D)
C (F) ≤ zC +MCyC ∀C ∈ C

δ
(SD)
C (F) ≤ zC +MC(1− yC) ∀C ∈ C

Fu + ϵc ≤ Fv ∀C ∈ C,∀u, v ∈ v(C),ð(u) < ð(v)
z ∈ RC, F ∈ B ⊆ RV , y ∈ {0, 1}C

(AD-ϵ0)

where ϵ0 ≥ 0 is a pre-determined constant. The order of Fv between vertices in v(C) for
a cell C is strict when ϵ0 is strictly bigger than 0; and when ϵ0 = 0, Fu + ϵ0 ≤ Fv simply
requires that Fu is not greater than Fv.

4.4 Computational Results

4.4.1 Testing Environments

The test results in this section are obtained in the following 3 environments:

• “Server”: The “server” is a Linux environment equipped with 256 GB RAM and 4
Intel(R) Xeon(R) Gold 6142 CPUs operating at 2.60GHz, which gives 64 cores in
total. Tests carried out on this machine uses the Python interface of Gurobi 9.1.2,
and are limited to use up to 4 threads at a time.

• “WSL”: This environment is a “Windows Subsystem for Linux” in Windows 10,
which operates on a machine equipped with 12GB RAM and a Intel(R) Core(TM)
i7-6500U CPU operating at 2.50GHz. This gives 2 cores in total. The only tests that
were ran on this environment are those that are done via Ethelo’s engine, which uses
BONMIN for solving MINLP.

• “PC”: This is the Windows 10 environment on the same machine as WSL. This
environment is only used for accessing the difference in performance of Server and
the machine that hosts WSL.

While it would be ideal to have all tests running in the same environment, we were unable
to do so for the tests in this section. Ethelo’s engine needs to be ran under the WSL

50

environment, which the tests in this section cannot be ran on due to time constraints. We
chose to run the tests under the Server environment for its capability of running several
tests in parallel, but we could not run Ethelo’s engine on the Server due to unresolved
technical issue. The “PC” environment is used as a middle ground for comparing the
performance of our program on the WSL environment, which is on the same machine as
PC, and the Server environment.

4.4.2 Machine Comparison

Since the computational data came from different machines, it would be necessary to
note the difference in performance of our code when being ran on different machines. In
table 4.1, we re-ran one of our test from section 4.4.4 (setting mid.cl.adj) on both the
Server and PC to compare the difference in average CPU Time. The “Ratio” rows are
computed by dividing the average CPU runtime on server by that of the PC. The ratios
that are less than 1 (ie. cases where the code runs faster on Server than on PC) are put in
boldface.

As can be observed from the table, while there are cases with denser grid points that
runs faster in terms of CPU Time on the server, the average CPU runtime tends to be
slower on server.

4.4.3 Best-fitting Ethelo function

In this subsection, we present the results that were obtained by solving the programs
presented in section 4.3, namely (FnCl), (FnCl-ϵ0), (AD), (AD-ϵ0), using the Ethelo func-
tion with parameters Ξ = 0.5, t = 1/3 as the target function. This means that we will be
considering the domain D = [−1, 1]× [0, 1] in our formulations. The functions constructed
in this subsection will also be used in subsequent tests for formulation (EthP-MI). The
settings we tested are named in form P.T.F, where P defines the partitions {ai}d1i=1, {bj}

d2
j=1,

T defines the triangulation T, and F defines the construction of the function values F ∈ RV

when running procedure GTConstruct. We say that (d1 × d2) is the “grid size” of the
approximation. We will define each of the 3 components of P.T.F below.

Recall that the partitions {ai}d1i=1, {bj}
d2
j=1 of [al, au], [bl, bu] were assumed to be fixed

throughout section 4.3, where the domain was D = [al, au] × [bl, bu] = [−1, 1] × [0, 1].

51

For testing purpose, we considered the following two ways of generating the partitions
{ai}d1i=1, {bj}

d2
j=1:

• eq: ai = −1 + 2(i− 1)/(d1 − 1), bj = (i− 1)/(d2 − 1) for i ∈ [d1], j ∈ [d2]. That is,
{ai}d1i=1, {bj}

d2
j=1 partitions [−1, 1] and [0, 1] into intervals of equal length, respectively.

• mid: bj = (i− 1)/(d2 − 1) for j ∈ [d2]. d1 = 2k for some integer k > 1, and

ai =

{
−1 + (1− 10−4) · i−1

k−1
, if i ≤ k

10−4 + (1− 10−4) · i−k
k−1

, if i > k

That is, we construct {ai}d1+1
i=1 by defining the small interval [ak, ak+1] = [−10−4, 10−4]

around 0, and partitions the two sides [−1,−10−4], [10−4, 1] evenly. This is done to
accommodate for Ethelo’s discontinuity on {0} × [0, t].

For formulations (FnCl) and (FnCl-ϵ0), the triangulation was also assumed to be fixed.
We tested the two formulations under the following triangulation:

• “cl”: Split a cell in a way that gives a closer approximation at the center of the cell.

That is, given a cell C = conv

{[
ai
bi

]
,

[
ai
bj+1

]
,

[
ai+1

bj+1

]
,

[
ai+1

bj

]}
, we split it diagonally

if

ð
([

ai
bj+1

])
+ ð

([
ai+1

bj

])
− ð

([
(ai + ai+1)/2
(bj + bj+1)/2

])
≤ð

([
ai
bj

])
+ ð

([
ai+1

bj+1

])
− ð

([
(ai + ai+1)/2
(bj + bj+1)/2

])
otherwise we split the cell skew-diagonally.

• “uj”: An “union jack” [35] triangulation, where we split the bottom left cell (ie.
the cell containing point (a1, b1) = (−1, 0)) diagonally, and then the remaining cells
are split in a way that no two cells that share a common edge are split in the same
way.

Then, regarding the ordering of vertices, we considered the following 4 settings when the
triangulation is pre-determined:

52

• exact: Use exact function values F(ai,bj) = ð(ai, bj) for all ai, bj instead of solving
(FnCl) or (FnCl-ϵ0).

• adj: Solve program (FnCl) for function values, without enforcing order between
vertices.

• adj-O: Solve (FnCl-ϵ0) with ϵ0 = 0, ie. enforce non-strict order between vertices.

• adj-S: Solve (FnCl-ϵ0) with ϵ0 = 10−5, ie. enforce strict ordering between vertices.

The “exact” setting is used for comparison only. Similar to above, when the triangulation is
determined by the program (ie. for formulation (AD), (AD-ϵ0)) we considered the following
3 settings:

• AT: “auto triangulation”, solve program (AD) without enforcing ordering between
vertices.

• AT-O: solve (AD-ϵ0) with ϵ0 = 0.

• AT-S: solve (AD-ϵ0) with ϵ0 = 10−5.

For formulations (AD) and (AD-ϵ0), the triangulation is not pre-determined, so we repre-
sented the triangulation with a backslash character “/”.

The tests for the programs were run on the Server using Python interface of Gurobi
9.1.2, with parameters ThreadCount = 4, which limits the number of concurrent threads,
and TimeLimit = 7200, which is the wallclock time limit in seconds. We presented the
runtime data in table 4.2. For programs that did not terminate within time limit, we
also included the relative gap on termination. The settings are named in form P.T.F as
mentioned earlier. There is one entry (mid./.AT, grid size 40x20) where the relative gap
could not be computed because the best bound upon termination is 0. In that case we
presented the absolute gap instead.

From table 4.2, we observed that for settings where triangulation was pre-determined,
ie. the settings P.T.F where T is either “cl” or “uj”, can all be solved within 1 second
wallclock time. These settings corresponds to the formulations (FnCl) and (FnCl-ϵ0). The
settings of form P./.F, which corresponds to the formulations (AD), (AD-ϵ0), are much
harder for Gurobi to solve. The runtime for solving the program can exceed time limit

53

for grid size as small as 12x6. Further, of the 19 cases that did not terminate within time
limit, 11 has a gap of greater than 10% at termination, and 5 of them have final gap larger
than 50%, both excluding the one case where the relative gap could not be computed.

To evaluate the effectiveness of (AD-ϵ0), (AD), (FnCl-ϵ0) and (FnCl) in reducing squared
l2-distance between the Ethelo function ð and the piecewise linear function f̄ constructed by
procedureGTConstruct, we denote f̄

(d1,d2)
P.T.F. to be the piecewise linear function constructed

with setting P.T.F. and grid size d1× d2, and define the squared l2-distances as ∥f̄ (d1,d2)
P.T.F. −

ð∥22. The percentage reduction in squared l2-error is given by 1− z̄/z∗, where z̄ = ∥f̄ (d1,d2)
P.T.F. −

ð∥22 and:

• z∗ = f̄
(d1,d2)
P.T.exact, if T is not ”/”;

• z∗ = f̄
(d1,d2)
P.cl.exact, otherwise.

The numerical values of the squared l2-errors are given in table 4.3, and the percentage
reduction from table 4.4. We first note in table 4.3 that the squared distance for setting
mid./.AT with grid size 22x11 is negative as reported by Gurobi, which is theoretically im-
possible. This shows that the computation for sufficiently small l2-distances are susceptible
to being dominated by feasibility tolerance in Gurobi. In table 4.3, all squared l2-errors
less than 10−6, the default feasibility tolerance in Gurobi, are put in boldface. Then, from
table 4.3, we noticed that the reduction percentages tend to decrease as the grid sizes get
larger. This implies that the squared l2-distances of P.T.exact tend to be closer to the
optimal as the grids get finer.

4.4.4 Approximating multi-influence cases

In this subsection, we compare the performance of solving (MIP) with Gurobi against
solving the original (EthP-MI) with BONMIN. There are 6 projects that were considered in
this experiment, all of which involves only linear constraints and did not use auto-balance
option (ie. xAB was not involved, m1 = 0):

• “BBB” : 91 variables, 12 XOR constraints.

• “carbon”: 76 variables, 13 XOR constraints, 1 covering constraint, 1 knapsack con-
straint, and 13 XOR constraints.

54

• “citizen”: 48 variables, 5 XOR constraints and 3 linear constraints.

• “granting”: 50 variables, 1 knapsack constraint.

• “parks”: 13 variables, 1 knapsack, 1 two-sided knapsack

• “stratford”: 47 variables, 3 XOR constraints.

We generated 100 instances for each of the 6 projects by 1) selecting a random number
N between 20 to 999 (inclusive), and then 2) from the votes collected for the project,
randomly draw N times to form the new influence matrix, with possibly duplicated votes.
We solve the instances under the following two settings, and compared their CPU Runtime:

1. Solve formulation (EthP-MI) with BONMIN, via Ethelo’s engine under WSL envi-
ronment.

2. Solve formulation (MIP) with Gurobi 9.1.2, under Server environment, with param-
eter ThreadCount = 4 and TimeLimit = 600. The piecewise linear function f̄ is
constructed in section 4.4.3 using the corresponding settings.

We note from section 4.4.2 that the CPU Time on server is not faster than the ones on
PC environment, which is on the same machine as the WSL environment. Thus, we may
treat the CPU Runtime on Server as an overestimate of the CPU runtime under WSL
environment and compare it directly to BONMIN’s CPU runtime on WSL.

In tables 4.5 and 4.6, we presented the average “relative error” for between Gurobi’s
solution and BONMIN’s solution. The relative error for an instance is computed as follows:
let xBON be the solution returned by BONMIN, xGRB be the solution returned by Gurobi,
zBON = ð(µ(xBON),Σ(xBON)) and zGRB = ð(µ(xGRB),Σ(xGRB)) be the Ethelo scores
of xBON , xGRB respectively. Then, the relative error is given by (zBON − zGRB)/zBON .
The entries in table 4.5 are computed by taking average of the relative error over all 600
generated instances (100 instances for each of the 6 projects), and those in table 4.6 are
given by taking the maximum over the 600 instances. The average relative errors for each
of the projects are also attached in Appendix A.

From table 4.6, we noticed that the worst average relative error for settings eq.T.F

tend to be greater than the ones for the same setting mid.T.F that uses “mid” partition
instead. We also note that all settings mid.cl.F and mid.uj.F have a worst case average

55

relative error of less than 1%, and that settings mid.cl.exact, mid.cl.adj are the only
two settings that obtained an worst case relative error of less than 0.2% on all tested grid
sizes. Further, with regard to settings mid./.F, we noticed that by adding the constraints
Fu + ϵ0 ≤ Fv to the programs (AD-ϵ0) when computing the approximation, the tested
instances with formulation (FnCl-ϵ0) did not give significant improvement in worst-case
relative error. In fact, the grid sizes 4x4, 8x4 are the only two where the settings with
smallest worst-case error uses approximations obtained by (AD-ϵ0), namely mid./.AT and
mid./.AT-O.

From table 4.5, we see that the relative error of settings mid.cl.F, mid.uj.F are no
greater than 0.06% when averaged over all 600 instances. In particular, mid.cl.exact and
mid.uj.exact are the only two settings that achieves an average error of less than 0.01%
over all tested grids. The average errors of settings mid./.F are no smaller than the worse
of settings mid.cl.exact and mid.uj.exact.

In addition to the quality of solutions, we also compared the CPU runtime for computing
the approximated solution with Gurobi versus computing the exact solution using BON-
MIN. In table 4.7, we presented the CPU Runtime of different settings averaged over all
600 instances. The settings with average CPU runtime longer than that of BONMIN are
put in boldface, and the per-project average CPU runtime are attached in Appendix A.
From table 4.7, we see that the settings mid.cl.F, mid.uj.F runs faster than BONMIN on
average in all grid sizes. However, there is no single setting among the 8 that runs faster
than one another on all grid sizes. The settings mid./.F also do not have a significant edge
in runtime over the settings mid.cl.exact and mid.uj.exact. However, for the two grid
sizes 4x4, 8x4 where mid./.F offers a better worst-case relative error than mid.cl.exact

and mid.uj.exact, the average CPU runtimes are slightly faster than the latter settings,
by up to 0.57 CPU seconds (comparing mid./.AT-O and mid.cl.exact).

4.4.5 Remark on Best Setting for Ethelo Function

In sum, from the above experiments, we believe that the settings mid.cl.exact and
mid.uj.exact with grid sizes 4x4 to 32x16 are most suitable for generating the piecewise
linear approximation that will be used in (EthP-MI), because 1) they reduced the average
CPU runtime from 4.6 seconds to between 1.46s to 2.29s, which translates to 31.7% to
49.8% of the original; 2) they gave one of the lowest relative errors in our experiments, with
an average error of < 0.01% and worst-case error of up to 0.17%; 3) they require minimal
pre-processing when formulating (EthP-MI). This also indicates that l2-error between the

56

original and approximated objective function does not serve as a good predictor for the
quality of the approximated solution.

57

P
ro
j

4x
2

4x
3

4x
4

6x
3

8x
4

10
x
5

12
x
6

22
x
11

40
x
20

10
0x

50
A
ve
ra
ge

B
B
B

S
er
ve
r

1.
71

2.
05

3.
08

2.
54

3.
75

5.
25

4.
46

5.
41

16
.4
9

28
.5
1

P
C

1.
64

2.
06

2.
64

2.
07

2.
68

2.
71

3.
57

3.
78

9.
18

28
.8
8

R
at
io

1.
04

1.
00

1.
17

1.
23

1.
40

1.
94

1.
25

1.
43

1.
80

0
.9
9

1.
32

ca
rb
on

S
er
ve
r

0.
55

0.
59

0.
60

0.
58

0.
69

0.
60

0.
62

1.
00

1.
97

6.
65

P
C

0.
55

0.
58

0.
54

0.
58

0.
65

0.
59

0.
71

1.
37

1.
16

6.
70

R
at
io

1.
00

1.
02

1.
11

1.
00

1.
06

1.
02

0
.8
7

0
.7
3

1.
70

0
.9
9

1.
05

ci
ti
ze
n

S
er
ve
r

2.
04

1.
99

1.
99

2.
28

1.
98

1.
88

1.
85

1.
67

2.
11

12
.2
1

P
C

0.
55

0.
57

0.
58

0.
58

0.
61

0.
60

1.
02

1.
77

2.
99

12
.2
2

R
at
io

3.
71

3.
49

3.
43

3.
93

3.
25

3.
13

1.
81

0
.9
4

0
.7
1

1.
00

2.
54

gr
an

ti
n
g

S
er
ve
r

0.
05

0.
06

0.
06

0.
05

0.
05

0.
10

0.
12

0.
21

0.
42

2.
87

P
C

0.
02

0.
02

0.
02

0.
02

0.
02

0.
08

0.
16

0.
24

0.
41

2.
88

R
at
io

2.
50

3.
00

3.
00

2.
50

2.
50

1.
25

0
.7
5

0
.8
8

1.
02

1.
00

1.
84

p
ar
k
s

S
er
ve
r

0.
09

0.
10

0.
10

0.
11

0.
09

0.
09

0.
11

0.
13

0.
16

1.
99

P
C

0.
05

0.
04

0.
05

0.
05

0.
05

0.
05

0.
06

0.
12

0.
23

1.
98

R
at
io

1.
80

2.
50

2.
00

2.
20

1.
80

1.
80

1.
83

1.
08

0
.7
0

1.
01

1.
67

st
ra
tf
or
d

S
er
ve
r

1.
87

1.
71

1.
65

1.
86

1.
73

2.
08

1.
67

1.
03

0.
94

8.
55

P
C

0.
38

0.
39

0.
39

0.
39

0.
41

0.
51

1.
07

1.
43

2.
54

8.
64

R
at
io

4.
92

4.
38

4.
23

4.
77

4.
22

4.
08

1.
56

0
.7
2

0
.3
7

0
.9
9

3.
02

T
ab

le
4.
1:

C
P
U

T
im

e
co
m
p
ar
is
on

b
et
w
ee
n
se
rv
er

an
d
P
C

en
v
ir
on

m
en
t

58

S
et
ti
n
g

4x
3

4x
4

8x
4

12
x
6

16
x
8

22
x
11

32
x
16

40
x
20

m
id
.c
l.
ad

j
T
im

e
0.
03

0.
02

0.
01

0
0

0
0.
01

0.
01

m
id
.c
l.
ad

j-
O

T
im

e
0.
03

0.
03

0.
03

0.
01

0.
02

0.
03

0.
06

0.
10

m
id
.c
l.
ad

j-
S

T
im

e
0.
02

0.
02

0.
01

0.
01

0.
02

0.
03

0.
08

0.
10

m
id
.u
j.
ad

j
T
im

e
0.
01

0.
02

0.
02

0
0.
01

0
0.
01

0.
02

m
id
.u
j.
ad

j-
O

T
im

e
0.
03

0.
03

0.
01

0.
01

0.
02

0.
04

0.
07

0.
11

m
id
.u
j.
ad

j-
S

T
im

e
0.
03

0.
03

0.
02

0.
01

0.
02

0.
06

0.
07

0.
13

m
id
./
.A
T

T
im

e
0.
49

1.
20

8.
74

72
00
.0
1

72
00
.0
2

12
55
.0
6

63
0.
42

72
00
.0
6

G
ap

-
-

-
2.
37

10
0

-
-

*
5.
6e
-0
8

m
id
./
.A
T
-O

T
im

e
0.
24

0.
43

1.
55

72
00

72
00
.0
1

22
.6
3

9.
50

5.
40

G
ap

-
-

-
23
.1
8

99
.3
5

-
-

-
m
id
./
.A
T
-S

T
im

e
0.
29

0.
41

7.
02

72
00
.0
1

72
00
.0
1

25
73
.3
4

9.
99

6.
41

G
ap

-
-

-
26
.6
6

94
.7
2

-
-

-
eq
.c
l.
ad

j
T
im

e
0

0.
04

0
0

0
0

0.
01

0.
01

eq
.c
l.
ad

j-
O

T
im

e
0

0.
02

0.
01

0.
01

0.
02

0.
03

0.
07

0.
12

eq
.c
l.
ad

j-
S

T
im

e
0.
02

0.
02

0.
01

0.
01

0.
02

0.
04

0.
07

0.
12

eq
.u
j.
ad

j
T
im

e
0.
03

0.
03

0.
01

0
0

0
0.
01

0.
01

eq
.u
j.
ad

j-
O

T
im

e
0.
02

0.
03

0.
03

0.
01

0.
02

0.
04

0.
07

0.
11

eq
.u
j.
ad

j-
S

T
im

e
0.
03

0.
03

0.
03

0.
01

0.
02

0.
04

0.
07

0.
11

eq
./
.A
T

T
im

e
0.
70

0.
89

6.
17

16
8.
70

72
00
.0
1

72
00
.0
2

72
00
.0
6

72
00
.0
3

G
ap

-
-

-
-

16
.7
5

60
.5
0

18
.5
4

59
.6
9

eq
./
.A
T
-O

T
im

e
0.
37

0.
58

1.
31

48
38
.7
6

72
00
.0
1

72
00
.0
1

72
00
.0
1

72
00
.0
2

G
ap

-
-

-
-

1.
25

1.
41

8.
67

6.
81

eq
./
.A
T
-S

T
im

e
0.
31

0.
66

0.
91

17
70
.4
9

72
00
.0
1

72
00
.0
1

72
00
.0
4

72
00
.0
2

G
ap

-
-

-
-

1.
59

3.
03

11
.7
3

21
.5
6

T
ab

le
4.
2:

W
al
lc
lo
ck

T
im

e
an

d
G
ap

fo
r
A
p
p
ro
x
im

at
in
g
E
th
el
o
F
u
n
ct
io
n

59

S
et
ti
n
gs

4x
3

4x
4

8x
4

12
x
6

16
x
8

22
x
11

32
x
16

40
x
20

m
id
.c
l.
ex
ac
t

3.
71
E
-3

2.
78
E
-3

3.
11
E
-4

1.
48
E
-4

6.
48
E
-5

2.
27
E
-5

2.
37
E
-6

4.
75
E
-6

m
id
.c
l.
ad

j
1.
42
E
-3

7.
89
E
-4

1.
76
E
-4

8.
09
E
-5

3.
26
E
-5

1.
19
E
-5

2.
16
E
-6

3.
40
E
-6

m
id
.c
l.
ad

j-
O

2.
04
E
-3

1.
00
E
-3

1.
83
E
-4

9.
64
E
-5

3.
37
E
-5

1.
20
E
-5

2.
16
E
-6

3.
43
E
-6

m
id
.c
l.
ad

j-
S

2.
04
E
-3

1.
00
E
-3

1.
83
E
-4

9.
65
E
-5

3.
37
E
-5

1.
20
E
-5

2.
16
E
-6

3.
43
E
-6

m
id
.u
j.
ex
ac
t

5.
30
E
-3

2.
78
E
-3

3.
11
E
-4

1.
82
E
-4

6.
48
E
-5

2.
27
E
-5

2.
37
E
-6

4.
75
E
-6

m
id
.u
j.
ad

j
1.
64
E
-3

7.
27
E
-4

2.
01
E
-4

1.
12
E
-4

3.
83
E
-5

1.
35
E
-5

2.
36
E
-6

3.
38
E
-6

m
id
.u
j.
ad

j-
O

1.
76
E
-3

8.
00
E
-4

2.
09
E
-4

1.
20
E
-4

3.
95
E
-5

1.
38
E
-5

2.
36
E
-6

3.
43
E
-6

m
id
.u
j.
ad

j-
S

1.
76
E
-3

8.
00
E
-4

2.
09
E
-4

1.
20
E
-4

3.
95
E
-5

1.
38
E
-5

2.
36
E
-6

3.
43
E
-6

m
id
./
.A
T

1.
23
E
-3

4.
59
E
-4

9.
47
E
-6

3.
16
E
-5

1.
01
E
-5

-1
.3
1
E
-7

0
.0
0

5
.6
1
E
-8

m
id
./
.A
T
-O

1.
36
E
-3

4.
94
E
-4

1.
09
E
-5

4.
62
E
-5

1.
08
E
-5

1.
36
E
-6

0
.0
0

0
.0
0

m
id
./
.A
T
-S

1.
37
E
-3

4.
66
E
-4

9.
13
E
-6

4.
63
E
-5

1.
16
E
-5

1
.0
6
E
-7

0
.0
0

0
.0
0

eq
.c
l.
ex
ac
t

8.
82
E
-3

7.
87
E
-3

3.
43
E
-3

1.
91
E
-3

1.
34
E
-3

9.
21
E
-4

6.
05
E
-4

4.
81
E
-4

eq
.c
l.
ad

j
7.
46
E
-3

6.
94
E
-3

2.
99
E
-3

1.
71
E
-3

1.
20
E
-3

8.
27
E
-4

5.
45
E
-4

4.
34
E
-4

eq
.c
l.
ad

j-
O

7.
46
E
-3

6.
94
E
-3

2.
99
E
-3

1.
71
E
-3

1.
21
E
-3

8.
38
E
-4

5.
60
E
-4

4.
47
E
-4

eq
.c
l.
ad

j-
S

7.
46
E
-3

6.
94
E
-3

2.
99
E
-3

1.
71
E
-3

1.
21
E
-3

8.
38
E
-4

5.
60
E
-4

4.
47
E
-4

eq
.u
j.
ex
ac
t

8.
82
E
-3

7.
87
E
-3

3.
43
E
-3

1.
94
E
-3

1.
34
E
-3

9.
21
E
-4

6.
05
E
-4

4.
81
E
-4

eq
.u
j.
ad

j
7.
27
E
-3

6.
56
E
-3

2.
91
E
-3

1.
76
E
-3

1.
21
E
-3

8.
35
E
-4

5.
49
E
-4

4.
35
E
-4

eq
.u
j.
ad

j-
O

7.
27
E
-3

6.
56
E
-3

2.
91
E
-3

1.
77
E
-3

1.
23
E
-3

8.
47
E
-4

5.
62
E
-4

4.
49
E
-4

eq
.u
j.
ad

j-
S

7.
27
E
-3

6.
56
E
-3

2.
91
E
-3

1.
77
E
-3

1.
23
E
-3

8.
47
E
-4

5.
62
E
-4

4.
49
E
-4

eq
./
.A
T

6.
70
E
-3

6.
08
E
-3

2.
74
E
-3

1.
64
E
-3

1.
16
E
-3

8.
06
E
-4

5.
37
E
-4

4.
21
E
-4

eq
./
.A
T
-O

6.
73
E
-3

6.
07
E
-3

2.
74
E
-3

1.
65
E
-3

1.
17
E
-3

8.
22
E
-4

5.
51
E
-4

4.
37
E
-4

eq
./
.A
T
-S

6.
69
E
-3

6.
08
E
-3

2.
74
E
-3

1.
65
E
-3

1.
17
E
-3

8.
21
E
-4

5.
52
E
-4

4.
36
E
-4

T
ab

le
4.
3:

T
ab

le
fo
r
S
q
u
ar
ed

l 2
er
ro
rs

E
n
tr
ie
s
le
ss

th
a
n
1
0
−
6
a
re

p
u
t
in

b
o
ld
fa
ce

60

Settings 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
mid.cl.adj 62% 72% 43% 45% 50% 48% 9% 28%
mid.cl.adj-O 45% 64% 41% 35% 48% 47% 9% 28%
mid.cl.adj-S 45% 64% 41% 35% 48% 47% 9% 28%
mid.uj.adj 69% 74% 35% 38% 41% 41% 0% 29%
mid.uj.adj-O 67% 71% 33% 34% 39% 39% 0% 28%
mid.uj.adj-S 67% 71% 33% 34% 39% 39% 0% 28%
mid./.AT 67% 83% 97% 79% 84% 101% 100% 99%
mid./.AT-O 63% 82% 96% 69% 83% 94% 100% 100%
mid./.AT-S 63% 83% 97% 69% 82% 100% 100% 100%
eq.cl.adj 15% 12% 13% 10% 10% 10% 10% 10%
eq.cl.adj-O 15% 12% 13% 10% 10% 9% 7% 7%
eq.cl.adj-S 15% 12% 13% 10% 10% 9% 7% 7%
eq.uj.adj 18% 17% 15% 9% 10% 9% 9% 10%
eq.uj.adj-O 18% 17% 15% 9% 8% 8% 7% 7%
eq.uj.adj-S 18% 17% 15% 9% 8% 8% 7% 7%
eq./.AT 24% 23% 20% 14% 13% 12% 11% 12%
eq./.AT-O 24% 23% 20% 14% 13% 11% 9% 9%
eq./.AT-S 24% 23% 20% 14% 13% 11% 9% 9%

Table 4.4: Squared l2-error reduction for approximating Ethelo Function

61

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
mid.cl.exact 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mid.cl.adj 0.05 0.02 0.00 0.01 0.00 0.00 0.00 0.00
mid.cl.adj-O 0.06 0.02 0.00 0.01 0.00 0.00 0.00 0.00
mid.cl.adj-S 0.06 0.02 0.00 0.01 0.00 0.00 0.00 0.00
mid.uj.exact 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00
mid.uj.adj 0.06 0.01 0.00 0.01 0.01 0.00 0.00 0.00
mid.uj.adj-O 0.06 0.01 0.00 0.02 0.00 0.00 0.00 0.00
mid.uj.adj-S 0.06 0.01 0.00 0.02 0.00 0.00 0.00 0.00
mid./.AT 0.06 0.00 0.00 0.01 0.03 0.01 0.36 0.70
mid./.AT-O 0.05 0.00 0.00 0.00 0.01 0.53 1.17 1.31
mid./.AT-S 0.06 0.01 0.00 0.01 0.06 0.64 1.00 1.00
eq.cl.exact 0.24 0.20 0.25 0.04 0.04 0.03 0.00 0.00
eq.cl.adj 0.25 0.21 0.31 0.90 5.96 5.50 1.44 5.82
eq.cl.adj-O 0.25 0.21 0.31 0.93 1.42 0.67 0.90 1.08
eq.cl.adj-S 0.25 0.21 0.31 0.93 1.42 0.67 0.90 1.08
eq.uj.exact 0.24 0.20 0.25 0.04 0.04 0.03 0.00 0.00
eq.uj.adj 0.22 0.18 1.22 5.08 5.99 0.60 5.49 5.80
eq.uj.adj-O 0.22 0.18 1.22 2.81 1.43 0.52 0.91 1.07
eq.uj.adj-S 0.22 0.18 1.22 2.37 1.42 0.52 0.91 1.07
eq./.AT 0.24 0.64 0.99 5.33 3.33 1.14 1.16 5.16
eq./.AT-O 0.23 0.65 0.40 3.15 1.83 0.95 2.82 0.76
eq./.AT-S 0.60 0.19 0.40 2.37 1.45 0.67 1.34 1.51

Table 4.5: Average Percentage Relative Error over all instances

62

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
mid.cl.exact 0.18 0.17 0.17 0.11 0.03 0.16 0.05 0.07
mid.cl.adj 0.90 0.50 0.17 0.15 0.08 0.07 0.08 0.08
mid.cl.adj-O 0.90 0.50 0.17 0.15 0.08 0.07 0.08 0.08
mid.cl.adj-S 0.90 0.50 0.17 0.15 0.08 0.07 0.08 0.08
mid.uj.exact 0.18 0.17 0.17 0.11 0.09 0.11 0.02 0.03
mid.uj.adj 0.90 0.12 0.17 0.26 0.15 0.11 0.05 0.03
mid.uj.adj-O 0.90 0.13 0.17 0.29 0.15 0.11 0.05 0.03
mid.uj.adj-S 0.90 0.13 0.17 0.29 0.15 0.11 0.05 0.03
mid./.AT 0.90 0.08 0.08 0.12 0.60 0.50 5.81 5.31
mid./.AT-O 0.90 0.08 0.04 0.09 0.34 6.53 5.28 7.93
mid./.AT-S 0.90 0.16 0.12 0.12 1.41 7.58 5.28 5.09
eq.cl.exact 3.62 2.91 3.62 1.89 0.50 0.43 0.38 0.38
eq.cl.adj 3.62 3.62 3.62 8.35 16.47 17.64 12.41 18.69
eq.cl.adj-O 3.62 3.62 3.62 8.35 10.49 6.98 7.04 7.79
eq.cl.adj-S 3.62 3.62 3.62 8.35 10.49 6.98 7.04 7.79
eq.uj.exact 3.62 2.91 3.62 1.89 0.50 0.55 0.38 0.38
eq.uj.adj 3.62 2.59 10.99 15.02 16.47 4.90 18.01 17.01
eq.uj.adj-O 3.62 2.59 10.99 14.20 10.75 4.10 8.03 7.64
eq.uj.adj-S 3.62 2.59 10.99 12.77 10.75 4.10 8.03 7.64
eq./.AT 3.62 5.60 8.63 15.02 12.48 11.53 8.59 15.80
eq./.AT-O 3.62 5.60 5.43 13.66 10.98 6.98 14.31 4.53
eq./.AT-S 5.60 2.81 5.43 12.77 10.75 6.98 10.31 7.79

Table 4.6: Worst Percentage Relative Error over all instances

63

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
mid.cl.exact 1.34 1.60 1.60 1.72 1.75 1.78 2.29 3.24
mid.cl.adj 1.05 1.11 1.41 1.73 1.53 1.49 2.37 3.79
mid.cl.adj-O 1.05 1.12 1.43 1.80 1.49 1.46 2.30 3.76
mid.cl.adj-S 0.99 1.15 1.48 1.78 1.51 1.47 2.32 3.86
mid.uj.exact 1.28 1.46 1.58 1.71 1.85 1.83 1.92 3.13
mid.uj.adj 1.21 1.39 1.66 1.82 1.99 1.75 2.13 3.75
mid.uj.adj-O 1.02 1.26 1.46 1.91 1.78 1.68 2.16 3.91
mid.uj.adj-S 1.05 1.19 1.46 1.90 1.87 1.72 2.32 4.24
mid./.AT 1.13 1.14 1.15 1.26 1.23 1.47 2.14 336.38
mid./.AT-O 0.99 1.07 1.19 1.61 1.38 4.14 339.59 339.54
mid./.AT-S 0.89 1.15 1.34 1.35 2.47 3.36 337.28 299.61
eq.cl.exact 0.97 0.97 1.08 1.45 1.95 1.66 2.72 2.98
eq.cl.adj 0.82 0.87 0.86 1.52 8.48 4.33 54.79 158.54
eq.cl.adj-O 0.92 0.91 0.95 1.59 2.84 2.94 45.37 155.16
eq.cl.adj-S 0.86 0.94 0.92 1.64 2.77 3.09 47.33 149.44
eq.uj.exact 1.06 1.03 1.07 1.31 1.81 1.80 2.58 3.12
eq.uj.adj 1.11 1.11 2.22 120.17 12.96 3.27 49.66 157.53
eq.uj.adj-O 1.05 1.07 2.18 10.41 2.95 2.66 44.14 147.94
eq.uj.adj-S 1.04 1.06 2.17 5.52 3.19 2.79 42.20 142.60
eq./.AT 1.08 1.03 1.16 85.48 2.75 3.75 57.26 167.41
eq./.AT-O 0.97 0.93 0.95 4.96 3.08 16.12 52.48 159.76
eq./.AT-S 0.90 0.87 0.84 3.32 3.00 3.21 54.82 137.78

Table 4.7: Avg Runtime over all instances, Bonmin Avg = 4.60

64

Chapter 5

Conclusion

In this thesis, we attempted to improve the computational performance of Ethelo’s group-
decision making engine by applying tools from Operational Research. Ethelo used two
MINLPs, namely the “single-influence” and “multi-influence” cases, for solving their group-
decision making problem. For the single-influence cases, we made an observation that the
formulations in all of the past projects provided by Ethelo can be re-posed as a MILP.
By implementing the reformulation procedure and redirecting the resulting MILP to a
specialized MILP solver, namely COIN-OR CBC, we reduced the average time spent in
solving the single-influence MINLP by at least 87.9% in all of the provided projects. For
the single-influence cases, we also identified a generalization of knapsack problem, which
we named as two-sided multiple-choice knapsack problem, and attempted to prove the non-
existence of new cuts in this problem. However, we only managed to derive a few sufficient
conditions, and proved the statement to be true in one special case. On this front, more
work can be done on proving or disproving our conjecture about the underlying polyhedral
structure of the two-sided multiple-choice knapsack problem.

Regarding multi-influence cases, since the objective function was not continuous, we at-
tempted to replace it with a piecewise linear function and apply results from the literature,
mainly results by Huchette and Violma [19], and approximate the original MINLP with
a MIQCP. We also derived two program formulations for finding piecewise linear func-
tions with minimal l2-distance to the target function, namely the objective function of the
original MINLP, and that satisfies some special requirements so that the piecewise linear
function to be used in formulating the MIQCP. We see from our computational experiment
in section 4.4 that, while without theoretical guarantee, our MIQCP is capable of finding

65

a solution that is up to 0.17% worst than the solution provided by BONMIN, which is
the original MINLP solver used by Ethelo, and has an average CPU runtime that is at
least 50.2% faster than BONMIN on our testcases when using the settings recommended
in section 4.4.5. This MIQCP approximation can be applied to any program of which
the objective function lacks desirable properties for finding global optimal solutions, but
more work is needed to derive a theoretical guarantee on quality of resulting approximated
solution. To further improve the performance of Ethelo’s engine, it may also be beneficial
to study how the existing literature ([8], for example) on generating multiple optimal so-
lutions in one branch-and-bound procedure can be generalized to Ethelo’s multi-influence
MINLPs.

66

References

[1] Warren P. Adams and Hanif D. Sherali. A tight linearization and an algorithm for
zero-one quadratic programming problems. Management Science, 32(10):1274–1290,
1986.

[2] David Austen-Smith and Jeffrey S. Banks. Information aggregation, rationality, and
the Condorcet jury theorem. The American Political Science Review, 90(1):34–45,
1996.

[3] Egon Balas. Facets of the knapsack polytope. Mathematical Programming, 8(1):146
– 164, 1975.

[4] E. Beale and J. Tomlin. Special facilities in a general mathematical programming
system for nonconvex problems using ordered sets of variables. Operational Research,
69:447–454, 01 1969.

[5] Zuse Institute Berlin. Polyhedron representation transformation algorithm. https:

//porta.zib.de/ (Accessed Sep 19, 2022).

[6] Pol Campos-Mercade. When are groups less moral than individuals? Games and
Economic Behavior, 134:20–36, 2022.

[7] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Perfect Formulations,
pages 129–194. Springer International Publishing, Cham, 2014.

[8] Emilie Danna, Mary Fenelon, Zonghao Gu, and Roland Wunderling. Generating
multiple solutions for mixed integer programming problems. In Matteo Fischetti and
David P. Williamson, editors, Integer Programming and Combinatorial Optimization,
pages 280–294, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.

67

https://porta.zib.de/
https://porta.zib.de/

[9] Ru-Xi Ding, Iván Palomares, Xueqing Wang, Guo-Rui Yang, Bingsheng Liu, Yucheng
Dong, Enrique Herrera-Viedma, and Francisco Herrera. Large-scale decision-making:
Characterization, taxonomy, challenges and future directions from an artificial intel-
ligence and applications perspective. Information Fusion, 59:84–102, 2020.

[10] Raymond M. Duch and Albert Falcó-Gimeno. Collective decision-making and the
economic vote. Comparative Political Studies, 55(5):757–788, 2022.

[11] Ethelo. Video ”ethelo - park design”. https://ethelo.com/videos/ (Accessed Sep
14,2022),.

[12] Ethelo. Website “what is ethelo?”. https://ethelo.com/what-is-ethelo/ (Ac-
cessed Sep 14,2022).

[13] Michael R. Garey and David S. Johnson. Computers and intractability. A Series of
Books in the Mathematical Sciences. W. H. Freeman and Co., San Francisco, Calif.,
1979. A guide to the theory of NP-completeness.

[14] Fred. Glover and Hanif D. Sherali. Second-order cover inequalities. Mathematical
Programming, 114:207–234, 2008.

[15] Elif Ilke Gokce and Wilbert E. Wilhelm. Valid inequalities for the multi-dimensional
multiple-choice 0–1 knapsack problem. Discrete Optimization, 17:25–54, 2015.

[16] Mark Gradstein, Shmuel Nitzan, and Jacob Paroush. Collective decision making and
the limits on the organization’s size. Public Choice, 66(3):279–291, 1990.

[17] P.L. Hammer, E.L. Johnson, and U.N. Peled. Facet of regular 0-1 polytopes. Mathe-
matical Programming, 8(1):179 – 206, 1975.

[18] Xuan hua Xu, Zhi jiao Du, Xiao hong Chen, and Chen guang Cai. Confidence
consensus-based model for large-scale group decision making: A novel approach to
managing non-cooperative behaviors. Information Sciences, 477:410–427, 2019.

[19] Joey Huchette and Juan Pablo Vielma. Nonconvex piecewise linear functions: Ad-
vanced formulations and simple modeling tools. https://arxiv.org/abs/1708.

00050, 2017.

[20] Joey Huchette and Juan Pablo Vielma. A geometric way to build strong mixed-integer
programming formulations. https://arxiv.org/abs/1811.10409, 2018.

68

https://ethelo.com/videos/
https://ethelo.com/what-is-ethelo/
https://arxiv.org/abs/1708.00050
https://arxiv.org/abs/1708.00050
https://arxiv.org/abs/1811.10409

[21] George L. Nemhauser Juna Pablo Vielma. Modeling disjunctive constraints with a
logarithmic number of binary variables and constraints. Mathematical Programming,
128:49–72, 2011.

[22] Hans Kellerer, Ulrich Pferschy, and David Pisinger. The Multiple-Choice Knapsack
Problem, pages 317–347. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[23] Soung Hie Kim and Byeong Seok Ahn. Interactive group decision making procedure
under incomplete information. European Journal of Operational Research, 116(3):498–
507, 1999.

[24] Leo Liberti. Undecidability and hardness in mixed-integer nonlinear programming.
RAIRO - Operations Research, 53, 05 2018.

[25] Kenneth O. May. A set of independent necessary and sufficient conditions for simple
majority decision. Econometrica, 20(4):680–684, 1952.

[26] Garth P. McCormick. Computability of global solutions to factorable nonconvex
programs: Part i — convex underestimating problems. Mathematical Programming,
10:147–175, 1976.

[27] R. Ramanathan and L.S. Ganesh. Group preference aggregation methods employed
in ahp: An evaluation and an intrinsic process for deriving members’ weightages.
European Journal of Operational Research, 79(2):249–265, 1994.

[28] John Richardson. An algorithm-based approach for resolving complex group
decision problems fairly. https://ethelo.com/wp-content/uploads/2019/

01/Ethelo-White-Paper.pdf=AOvVaw26YzYbFkiVORU9DrLTOvfl (Accessed Sep 14,
2022), 2019.

[29] John Richardson. Methods and systems for conducting surveys and processing survey
data to generate a collective outcome, U.S. Patent 9 727 883, Aug 2017.

[30] Hanif D. Sherali and Warren P. Adams. Reformulation-Linearization Techniques for
Discrete Optimization Problems, pages 479–532. Springer US, Boston, MA, 1998.

[31] Hanif D. Sherali and Fred Glover. Higher-order cover cuts from zero–one knapsack
constraints augmented by two-sided bounding inequalities. Discrete Optimization,
5(2):270–289, 2008. In Memory of George B. Dantzig.

69

https://ethelo.com/wp-content/uploads/2019/01/Ethelo-White-Paper.pdf=AOvVaw26YzYbFkiVORU9DrLTOvfl
https://ethelo.com/wp-content/uploads/2019/01/Ethelo-White-Paper.pdf=AOvVaw26YzYbFkiVORU9DrLTOvfl

[32] Hanif D. Sherali and Youngho Lee. Sequential and simultaneous liftings of minimal
cover inequalities for generalized upper bound constrained knapsack polytopes. SIAM
Journal on Discrete Mathematics, 8(1):133–153, 1995.

[33] Hanif D. Sherali and Cihan H. Tuncbilek. New reformulation lineariza-
tion/convexification relaxations for univariate and multivariate polynomial program-
ming problems. Operations Research Letters, 21(1):1–9, 1997.

[34] Cédric Sueur, Christophe Bousquet, Romain Espinosa, and Jean-Louis Deneubourg.
Improving human collective decision-making through animal and artificial intelligence.
1:e59, 12 2021.

[35] Michael J. Todd. Union Jack triangulations. In Fixed points: algorithms and ap-
plications (Proc. First Internat. Conf., Clemson Univ., Clemson, S.C., 1974), pages
315–336. Academic Press, New York, 1977.

[36] Juan Pablo Vielma and George L. Nemhauser. Modeling disjunctive constraints with
a logarithmic number of binary variables and constraints. Math. Program., 128(1-2,
Ser. A):49–72, 2011.

[37] Laurence A. Wolsey. Valid inequalities for 0–1 knapsacks and mips with generalised
upper bound constraints. Discrete Applied Mathematics, 29(2):251–261, 1990.

70

APPENDICES

71

Appendix A

Relative Gap and CPU Runtime
data for multi-influence tests

We present the per-project results of our multi-influence tests from section 4.4.4 here.
For the relative error tables, namely tables A.1,A.2,A.3,A.4,A.5, and A.6, an entry of “-”
denotes an average error of less than 0.01%.

72

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact 0.01 - - - - - - -
mid.cl.adj 0.06 0.02 - - - - - -
mid.cl.adj-O 0.07 0.02 - - - - - -
mid.cl.adj-S 0.07 0.02 - - - - - -
mid.uj.exact 0.01 - - - - - - -
mid.uj.adj 0.06 - - - - - - -
mid.uj.adj-O 0.07 0.01 - - - - - -
mid.uj.adj-S 0.07 0.01 - - - - - -
mid./.AT 0.07 - - 0.01 0.03 - 0.07 3.53
mid./.AT-O 0.06 - - - 0.02 - 3.47 3.48
mid./.AT-S 0.06 0.01 - - 0.03 - 3.46 3.09
eq.cl.exact 0.17 0.15 0.18 0.20 0.21 0.18 - -
eq.cl.adj 0.17 0.16 0.18 0.20 0.20 0.23 0.69 1.21
eq.cl.adj-O 0.17 0.16 0.18 0.20 0.21 0.23 0.67 1.20
eq.cl.adj-S 0.17 0.16 0.18 0.20 0.21 0.23 0.67 1.20
eq.uj.exact 0.17 0.15 0.18 0.20 0.21 0.21 - -
eq.uj.adj 0.16 0.14 0.17 0.18 0.20 0.26 0.69 1.21
eq.uj.adj-O 0.16 0.14 0.17 0.19 0.20 0.26 0.67 1.20
eq.uj.adj-S 0.16 0.14 0.17 0.19 0.20 0.25 0.67 1.19
eq./.AT 0.17 0.31 0.17 0.19 0.27 0.26 0.69 1.21
eq./.AT-O 0.17 0.31 0.29 0.20 0.21 0.23 0.67 1.20
eq./.AT-S 0.30 0.15 0.29 0.20 0.21 0.25 0.67 1.20

Table A.1: Average Percent Rel. Error for buildbackbetter

73

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact - - - - - - - -
mid.cl.adj - - - - - - - -
mid.cl.adj-O - - - - - - - -
mid.cl.adj-S - - - - - - - -
mid.uj.exact - - - - - - - -
mid.uj.adj - - - - - - - -
mid.uj.adj-O - - - - - - - -
mid.uj.adj-S - - - - - - - -
mid./.AT - - - - - - 0.12 0.05
mid./.AT-O - - - - - 2.42 - 0.03
mid./.AT-S - - - - - 0.04 0.01 2.26
eq.cl.exact - - - - - - - -
eq.cl.adj - - - - 15.24 16.40 0.16 0.08
eq.cl.adj-O - - - - 0.06 0.06 - -
eq.cl.adj-S - - - - 0.06 0.07 - -
eq.uj.exact - - - - - - - -
eq.uj.adj - - 0.37 13.31 15.24 - 0.16 0.16
eq.uj.adj-O - - 0.37 5.55 0.07 - - -
eq.uj.adj-S - - 0.38 2.94 0.07 - - -
eq./.AT - - 0.07 13.31 0.12 0.15 0.16 -
eq./.AT-O - - - 7.56 0.06 1.63 0.09 1.76
eq./.AT-S - - - 2.86 0.06 0.06 1.76 -

Table A.2: Average Percent Rel. Error for carbon

74

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact - - - - - - - -
mid.cl.adj - - - - - - - -
mid.cl.adj-O - - - - - - - -
mid.cl.adj-S - - - - - - - -
mid.uj.exact - - - - - - - -
mid.uj.adj - - - - - - - -
mid.uj.adj-O - - - - - - - -
mid.uj.adj-S - - - - - - - -
mid./.AT - - - - - - - -
mid./.AT-O - - - - - 0.03 1.39 -
mid./.AT-S - - - - - 1.05 1.35 -
eq.cl.exact - - - - - - - -
eq.cl.adj - - - 0.05 7.40 0.74 - 14.44
eq.cl.adj-O - - - 0.05 1.47 - - -
eq.cl.adj-S - - - 0.05 1.48 - - -
eq.uj.exact - - - - - - - -
eq.uj.adj - - 1.09 7.38 7.40 - 13.78 14.45
eq.uj.adj-O - - 1.09 2.21 1.32 - - -
eq.uj.adj-S - - 1.11 2.18 1.28 - - -
eq./.AT - 0.01 0.30 7.40 7.38 - - 14.45
eq./.AT-O - 0.01 - 2.22 1.67 - 2.21 -
eq./.AT-S - - - 2.21 1.44 - - 1.36

Table A.3: Average Percent Rel. Error for citizen

75

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact - - - - - - - -
mid.cl.adj 0.01 - - - - - - -
mid.cl.adj-O 0.02 - - - - - - -
mid.cl.adj-S 0.02 - - - - - - -
mid.uj.exact - - - - - - - -
mid.uj.adj 0.02 - - - - - - -
mid.uj.adj-O 0.02 - - - - - - -
mid.uj.adj-S 0.02 - - - - - - -
mid./.AT 0.02 - - - - - 0.06 0.42
mid./.AT-O 0.01 - - - - 0.71 1.05 0.09
mid./.AT-S 0.02 - - - - 2.30 0.95 0.41
eq.cl.exact 0.03 0.03 - - - - - -
eq.cl.adj 0.04 0.03 0.36 4.33 10.69 11.83 2.64 13.47
eq.cl.adj-O 0.04 0.03 0.36 4.53 4.53 0.06 - 0.08
eq.cl.adj-S 0.04 0.03 0.36 4.54 4.53 0.06 - 0.08
eq.uj.exact 0.03 0.03 - - - - - -
eq.uj.adj 0.03 0.03 4.39 8.72 10.70 - 13.16 13.28
eq.uj.adj-O 0.03 0.03 4.39 8.08 4.65 - - -
eq.uj.adj-S 0.03 0.03 4.39 8.08 4.65 - - -
eq./.AT 0.03 0.11 4.06 8.76 8.62 2.59 0.08 9.58
eq./.AT-O 0.03 0.11 - 8.08 6.01 0.17 8.87 0.42
eq./.AT-S 0.10 0.03 - 8.08 4.65 0.05 0.64 1.23

Table A.4: Average Percent Rel. Error for granting

76

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact - - - - - - - -
mid.cl.adj - - - - - - - -
mid.cl.adj-O - - - - - - - -
mid.cl.adj-S - - - - - - - -
mid.uj.exact - - - - - - - -
mid.uj.adj - - - - - - - -
mid.uj.adj-O - - - - - - - -
mid.uj.adj-S - - - - - - - -
mid./.AT - - - - - - - -
mid./.AT-O - - - - - - 0.79 0.12
mid./.AT-S - - - - 0.12 - - -
eq.cl.exact - - - - - - - -
eq.cl.adj - - - - - - - -
eq.cl.adj-O - - - - - - - -
eq.cl.adj-S - - - - - - - -
eq.uj.exact - - - - - - - -
eq.uj.adj - - - - - - - -
eq.uj.adj-O - - - - - - - -
eq.uj.adj-S - - - - - - - -
eq./.AT - - - 1.46 1.25 0.01 0.99 -
eq./.AT-O - - - - 0.69 - - 0.27
eq./.AT-S - - - - - - - -

Table A.5: Average Percent Rel. Error for parks

77

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact 0.04 0.01 0.01 0.01 - 0.01 - -
mid.cl.adj 0.23 0.08 0.02 0.03 0.01 - - -
mid.cl.adj-O 0.27 0.09 0.01 0.05 0.01 - - -
mid.cl.adj-S 0.27 0.09 0.01 0.05 0.01 - - -
mid.uj.exact 0.04 0.01 0.01 0.01 0.01 - - -
mid.uj.adj 0.25 0.03 0.02 0.06 0.03 - - -
mid.uj.adj-O 0.27 0.03 0.01 0.08 0.03 - - -
mid.uj.adj-S 0.27 0.03 0.01 0.08 0.03 - - -
mid./.AT 0.26 0.02 0.01 0.03 0.12 0.07 1.89 0.20
mid./.AT-O 0.23 - - 0.01 0.06 0.01 0.31 4.15
mid./.AT-S 0.25 0.03 - 0.02 0.20 0.44 0.22 0.23
eq.cl.exact 1.24 1.00 1.29 0.02 - - - -
eq.cl.adj 1.27 1.06 1.32 0.79 2.22 3.83 5.16 5.72
eq.cl.adj-O 1.27 1.06 1.32 0.79 2.22 3.67 4.70 5.24
eq.cl.adj-S 1.27 1.06 1.32 0.79 2.22 3.67 4.70 5.23
eq.uj.exact 1.24 1.00 1.29 0.02 - - - -
eq.uj.adj 1.15 0.90 1.30 0.87 2.37 3.35 5.16 5.73
eq.uj.adj-O 1.15 0.90 1.30 0.84 2.33 2.85 4.79 5.23
eq.uj.adj-S 1.15 0.90 1.30 0.84 2.33 2.84 4.79 5.23
eq./.AT 1.23 3.41 1.31 0.88 2.37 3.85 5.05 5.73
eq./.AT-O 1.19 3.45 2.12 0.84 2.33 3.67 5.05 0.91
eq./.AT-S 3.23 0.95 2.13 0.84 2.33 3.68 4.94 5.25

Table A.6: Average Percent Rel. Error for stratford

78

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact 2.95 4.26 4.25 4.71 4.54 5.44 9.36 14.83
mid.cl.adj 2.16 2.68 4.46 5.67 4.36 5.01 10.00 18.00
mid.cl.adj-O 2.01 2.60 4.39 5.72 4.42 4.95 9.82 17.81
mid.cl.adj-S 2.05 2.64 4.39 5.72 4.36 4.92 9.78 18.42
mid.uj.exact 2.90 4.23 4.26 4.84 5.39 6.14 7.38 14.11
mid.uj.adj 2.01 3.10 4.35 5.93 5.70 6.03 8.83 17.21
mid.uj.adj-O 2.00 3.15 4.36 6.58 6.09 6.28 9.19 18.07
mid.uj.adj-S 1.97 3.15 4.73 6.96 6.30 6.49 10.05 19.83
mid./.AT 2.30 3.51 3.71 3.91 3.34 5.33 3.86 2007.17
mid./.AT-O 2.14 3.65 3.79 5.35 3.70 15.21 2025.94 2026.82
mid./.AT-S 2.14 3.27 4.20 4.01 10.19 6.57 2010.53 1774.09
eq.cl.exact 1.27 1.30 1.23 2.95 5.66 4.82 11.38 12.17
eq.cl.adj 1.33 1.36 1.30 3.43 6.02 10.74 315.37 922.31
eq.cl.adj-O 1.31 1.30 1.29 3.40 5.95 9.22 261.24 916.63
eq.cl.adj-S 1.31 1.37 1.29 3.39 6.18 9.73 273.27 882.83
eq.uj.exact 1.31 1.33 1.25 2.36 5.49 5.51 10.69 13.39
eq.uj.adj 1.26 1.35 1.27 2.65 5.30 10.15 273.81 918.67
eq.uj.adj-O 1.29 1.38 1.29 2.77 6.17 9.02 254.85 875.83
eq.uj.adj-S 1.28 1.37 1.28 2.74 5.86 9.46 243.09 843.70
eq./.AT 1.29 1.43 1.28 3.92 6.74 13.73 330.64 972.16
eq./.AT-O 1.32 1.47 1.49 4.25 6.53 10.30 290.01 920.78
eq./.AT-S 1.42 1.39 1.52 3.38 6.56 10.58 314.21 801.85

Table A.7: Average CPU Time for buildbackbetter, Bonmin Avg = 15.68s

79

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact 0.60 0.60 0.68 0.74 0.79 1.17 0.87 1.16
mid.cl.adj 0.62 0.62 0.81 0.69 0.74 1.15 0.89 1.18
mid.cl.adj-O 0.61 0.61 0.79 0.69 0.75 1.15 0.89 1.19
mid.cl.adj-S 0.61 0.61 0.80 0.69 0.75 1.15 0.90 1.18
mid.uj.exact 0.59 0.57 0.71 0.64 0.75 0.90 0.93 1.11
mid.uj.adj 0.57 0.59 0.79 0.64 0.74 0.82 0.85 1.54
mid.uj.adj-O 0.60 0.62 0.81 0.65 0.77 0.84 0.90 1.60
mid.uj.adj-S 0.60 0.62 0.83 0.68 0.81 0.89 0.94 1.68
mid./.AT 0.62 0.62 0.71 0.67 0.75 0.76 1.58 3.67
mid./.AT-O 0.61 0.62 0.70 0.74 0.85 6.58 0.95 1.49
mid./.AT-S 0.62 0.63 0.79 0.64 0.88 1.85 1.18 18.10
eq.cl.exact 0.59 0.58 0.56 0.83 0.85 0.89 1.02 1.52
eq.cl.adj 0.62 0.62 0.59 1.20 37.79 2.21 1.25 2.30
eq.cl.adj-O 0.62 0.61 0.58 1.20 1.15 1.05 1.14 2.46
eq.cl.adj-S 0.62 0.62 0.59 1.22 1.15 1.04 1.14 2.24
eq.uj.exact 0.61 0.60 0.56 0.74 0.77 0.87 0.90 1.19
eq.uj.adj 0.58 0.58 4.34 711.71 64.29 1.00 1.71 1.54
eq.uj.adj-O 0.59 0.60 4.43 49.98 1.51 1.02 1.04 1.91
eq.uj.adj-S 0.59 0.58 4.39 20.86 1.52 1.00 1.02 1.86
eq./.AT 0.58 0.56 0.79 503.61 2.51 1.00 1.44 2.64
eq./.AT-O 0.61 0.58 0.59 17.11 1.29 78.26 1.20 28.53
eq./.AT-S 0.57 0.63 0.59 8.28 2.10 1.92 3.08 2.70

Table A.8: Average CPU Time for carbon, Bonmin Avg = 1.57s

80

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact 2.36 2.43 2.30 2.40 2.48 2.25 2.13 2.00
mid.cl.adj 1.73 1.69 1.64 1.92 1.93 1.57 1.86 2.14
mid.cl.adj-O 1.90 1.96 1.87 2.09 2.01 1.52 1.63 2.13
mid.cl.adj-S 1.52 1.87 1.83 2.12 1.89 1.50 1.81 2.13
mid.uj.exact 2.12 1.78 2.26 2.24 2.37 2.24 1.72 2.02
mid.uj.adj 2.32 2.42 2.45 2.04 2.70 2.11 1.82 2.19
mid.uj.adj-O 1.73 1.90 1.87 1.95 1.86 1.67 1.69 2.18
mid.uj.adj-S 1.84 1.68 1.53 1.66 1.94 1.65 1.74 2.27
mid./.AT 1.82 1.39 1.32 1.32 1.57 1.50 3.92 4.87
mid./.AT-O 1.57 0.87 1.42 1.76 1.79 1.64 9.21 4.86
mid./.AT-S 1.39 1.58 1.51 1.49 1.90 9.87 9.76 3.08
eq.cl.exact 1.79 1.81 2.34 2.35 2.43 2.42 2.51 2.70
eq.cl.adj 1.48 1.65 1.71 2.25 3.89 9.61 5.78 20.20
eq.cl.adj-O 1.79 1.83 1.99 2.52 6.72 4.29 4.84 5.59
eq.cl.adj-S 1.42 1.83 2.01 2.57 6.20 4.69 4.69 5.49
eq.uj.exact 2.14 2.06 2.33 2.22 2.04 2.62 2.32 2.61
eq.uj.adj 2.44 2.38 5.25 3.70 3.87 4.03 16.57 18.30
eq.uj.adj-O 2.25 2.19 5.05 6.83 7.32 3.16 4.36 4.89
eq.uj.adj-S 2.15 2.23 5.02 6.70 8.01 3.62 4.39 5.09
eq./.AT 2.27 2.04 3.16 2.83 3.60 3.50 5.52 22.65
eq./.AT-O 1.91 1.53 1.92 6.14 7.47 4.67 18.23 5.90
eq./.AT-S 1.44 1.54 1.55 6.00 6.35 3.55 5.93 15.77

Table A.9: Average CPU Time for citizen, Bonmin Avg = 7.09s

81

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact 0.04 0.04 0.05 0.13 0.15 0.21 0.26 0.35
mid.cl.adj 0.04 0.04 0.05 0.14 0.14 0.20 0.28 0.37
mid.cl.adj-O 0.05 0.05 0.05 0.14 0.14 0.21 0.28 0.37
mid.cl.adj-S 0.05 0.04 0.05 0.14 0.14 0.20 0.28 0.37
mid.uj.exact 0.05 0.05 0.05 0.12 0.14 0.20 0.26 0.37
mid.uj.adj 0.05 0.05 0.06 0.14 0.16 0.22 0.24 0.43
mid.uj.adj-O 0.04 0.04 0.05 0.13 0.16 0.22 0.25 0.44
mid.uj.adj-S 0.04 0.05 0.05 0.13 0.16 0.23 0.26 0.47
mid./.AT 0.04 0.04 0.05 0.10 0.12 0.17 0.35 0.48
mid./.AT-O 0.04 0.04 0.04 0.15 0.15 0.25 0.38 0.45
mid./.AT-S 0.05 0.04 0.04 0.11 0.17 0.39 0.33 0.44
eq.cl.exact 0.04 0.04 0.08 0.12 0.16 0.26 0.33 0.43
eq.cl.adj 0.04 0.04 0.10 0.18 0.24 0.33 0.47 0.64
eq.cl.adj-O 0.05 0.04 0.10 0.17 0.20 0.30 0.44 0.62
eq.cl.adj-S 0.04 0.04 0.09 0.18 0.20 0.31 0.44 0.59
eq.uj.exact 0.04 0.04 0.08 0.12 0.16 0.23 0.34 0.45
eq.uj.adj 0.05 0.05 0.11 0.20 0.25 0.29 0.60 0.52
eq.uj.adj-O 0.05 0.05 0.12 0.19 0.28 0.36 0.48 0.54
eq.uj.adj-S 0.05 0.05 0.12 0.19 0.22 0.30 0.48 0.55
eq./.AT 0.05 0.04 0.10 0.24 0.31 0.42 0.65 0.52
eq./.AT-O 0.04 0.04 0.06 0.17 0.26 0.34 0.61 0.71
eq./.AT-S 0.04 0.04 0.06 0.17 0.24 0.35 0.67 0.64

Table A.10: Average CPU Time for granting, Bonmin Avg = 0.60s

82

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact 0.09 0.09 0.10 0.10 0.11 0.12 0.13 0.15
mid.cl.adj 0.07 0.08 0.09 0.10 0.09 0.11 0.16 0.18
mid.cl.adj-O 0.08 0.08 0.09 0.10 0.09 0.11 0.16 0.18
mid.cl.adj-S 0.07 0.08 0.09 0.10 0.09 0.11 0.16 0.18
mid.uj.exact 0.08 0.08 0.10 0.11 0.10 0.10 0.11 0.15
mid.uj.adj 0.09 0.08 0.11 0.11 0.13 0.15 0.15 0.18
mid.uj.adj-O 0.07 0.08 0.09 0.10 0.11 0.13 0.14 0.17
mid.uj.adj-S 0.07 0.08 0.09 0.10 0.11 0.14 0.15 0.18
mid./.AT 0.08 0.07 0.09 0.10 0.10 0.10 0.11 0.21
mid./.AT-O 0.07 0.07 0.08 0.10 0.10 0.09 0.06 0.18
mid./.AT-S 0.07 0.08 0.08 0.11 0.09 0.09 0.14 0.16
eq.cl.exact 0.07 0.07 0.11 0.10 0.11 0.11 0.11 0.25
eq.cl.adj 0.07 0.08 0.09 0.08 0.10 0.09 0.15 0.23
eq.cl.adj-O 0.07 0.07 0.09 0.08 0.11 0.10 0.14 0.25
eq.cl.adj-S 0.07 0.08 0.10 0.10 0.11 0.10 0.14 0.25
eq.uj.exact 0.09 0.08 0.11 0.11 0.10 0.11 0.12 0.25
eq.uj.adj 0.09 0.08 0.11 0.11 0.13 0.10 0.14 0.25
eq.uj.adj-O 0.08 0.09 0.11 0.10 0.14 0.14 0.14 0.26
eq.uj.adj-S 0.09 0.09 0.11 0.10 0.13 0.11 0.14 0.27
eq./.AT 0.09 0.09 0.10 0.11 0.13 0.13 0.21 0.26
eq./.AT-O 0.07 0.08 0.10 0.10 0.07 0.09 0.14 0.37
eq./.AT-S 0.09 0.08 0.09 0.10 0.11 0.11 0.14 0.27

Table A.11: Average CPU Time for parks, Bonmin Avg = 0.34s

83

Setting 4x3 4x4 8x4 12x6 16x8 22x11 32x16 40x20
.cl.exact 1.97 2.20 2.22 2.27 2.45 1.47 1.01 0.95
mid.cl.adj 1.69 1.59 1.38 1.85 1.91 0.90 1.06 0.88
mid.cl.adj-O 1.67 1.43 1.39 2.04 1.55 0.84 1.04 0.87
mid.cl.adj-S 1.66 1.68 1.72 1.90 1.84 0.93 1.02 0.88
mid.uj.exact 1.99 2.05 2.07 2.32 2.36 1.42 1.10 0.99
mid.uj.adj 2.22 2.08 2.18 2.05 2.51 1.16 0.86 0.96
mid.uj.adj-O 1.66 1.79 1.56 2.02 1.68 0.96 0.79 0.99
mid.uj.adj-S 1.77 1.55 1.55 1.86 1.91 0.93 0.82 1.02
mid./.AT 1.93 1.23 1.04 1.49 1.52 0.95 3.03 1.87
mid./.AT-O 1.53 1.16 1.10 1.55 1.69 1.10 1.03 3.46
mid./.AT-S 1.03 1.34 1.42 1.76 1.63 1.37 1.71 1.81
eq.cl.exact 2.06 2.04 2.17 2.35 2.49 1.47 0.96 0.82
eq.cl.adj 1.39 1.50 1.36 1.96 2.85 3.01 5.73 5.58
eq.cl.adj-O 1.67 1.60 1.63 2.18 2.90 2.67 4.44 5.43
eq.cl.adj-S 1.68 1.69 1.43 2.36 2.76 2.67 4.29 5.24
eq.uj.exact 2.14 2.08 2.09 2.31 2.30 1.47 1.13 0.83
eq.uj.adj 2.25 2.22 2.20 2.64 3.90 4.04 5.13 5.93
eq.uj.adj-O 2.04 2.10 2.10 2.57 2.31 2.26 3.96 4.21
eq.uj.adj-S 2.09 2.02 2.10 2.54 3.42 2.27 4.10 4.15
eq./.AT 2.19 2.01 1.51 2.20 3.21 3.73 5.12 6.24
eq./.AT-O 1.88 1.88 1.55 2.01 2.83 3.05 4.71 2.29
eq./.AT-S 1.81 1.54 1.22 1.99 2.64 2.72 4.91 5.43

Table A.12: Average CPU Time for stratford, Bonmin Avg = 2.33s

84

	List of Figures
	List of Tables
	Introduction
	Ethelo's Voting Engine
	Terminology
	Ethelo's Survey and Vote Encoding
	The Scoring Functions
	The Ethelo Function
	Full Scoring Function

	Describing feasible solutions
	Full MINLP Formulation and Problem Sizes

	Single-Influence Cases
	Computational Gains
	Partial Results
	Sufficient Conditions for general finite set X
	Implication on X={0,1}n

	Multi-Influence Cases
	Reformulating Piecewise Linear Function
	Approximating Bi-variate Functions
	Best-fitting with Grid Triangulated Piecewise Linear Functions
	Fixed Triangulation
	Fixed Function Values
	Dynamic Triangulation with Adjusted Function Values

	Computational Results
	Testing Environments
	Machine Comparison
	Best-fitting Ethelo function
	Approximating multi-influence cases
	Remark on Best Setting for Ethelo Function

	Conclusion
	References
	APPENDICES
	Relative Gap and CPU Runtime data for multi-influence tests

