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Abstract

Longevity risk, as one of the major risks faced by insurers, has triggered a heated stream

of research in mortality modeling among actuaries for effective design/pricing/risk manage-

ment of insurance products. The idea of borrowing a “proper” amount of information from

populations with similar structures, widely acknowledged as a conducive strategy to enhance

the accuracy of the mortality prediction for a target population, has been explored and uti-

lized by the actuarial community. However, the problem of determining a “proper” amount

of information amounts to a trade-off that one needs to strive well between gains from

including relevant signals and adverse impacts from bringing in irrelevant noise. Conven-

tional solutions to determine a “proper” amount of information resort to multiple sources

of exogenous data and involve substantial manual work of “feature engineering” without

guaranteeing an improvement in prediction accuracy. Therefore, in this thesis, we set sail

from the exploration to design fully data-driven frameworks to screen out useful hidden in-

formation from different aspects effectively to enhance the predicting accuracy of mortality

rates with the assistance of various statistical learning approaches.

First and foremost, Chapter 2 aims to throw light on how to select a “proper” group

of populations among a given pool to ensure the success of a multi-population mortality

model conducive to improved mortality predicting accuracy. We design a fully data-driven

framework, based on a Deletion-Substitution-Addition algorithm, to automatically recom-

mend a group selection for joint modeling through a multi-population model in order to

obtain enhanced predicting accuracy. The procedure avoids the excessive involvement of

subjective decisions in the group selection. The superiority of the proposed framework in

mortality predicting performance is evident by extensive numerical studies when compared

with several conventional strategies for population selection problems.

Chapter 3 also focuses on how to effectively borrow information from a given pool of

populations to enhance the mortality predicting accuracy in a computationally efficient

manner. In this chapter, we propose a bivariate model based ensemble framework to aggre-

gate predictions that use the joint information from each pair of populations in the given

pool. In addition, we also introduce a time-shift parameter to the base learner mortality

model for extra flexibility. This additional parameter characterizes the time by which one

population is ahead of or behind the other in their mortality development stages and allows

for borrowing information from populations at disparate mortality development stages. The

results of the empirical studies confirm the effectiveness of the proposed framework.

In Chapter 4, we extend the idea of borrowing information by changing the scope of

consideration from populations to ages. We provide insights on detecting similarities and
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borrowing information that is hidden under the similarities of age-specific mortality patterns

among ages. We propose a novel predicting framework where the overall predicting goal is

decomposed into multiple individual tasks that search for age-specific age bands to ensure

the mortality prediction of each target age can receive the benefit of borrowing information

across ages to the largest extent. Extensive empirical studies with the Human Mortality

Database confirm noticeable differences for different target ages in their ways of borrowing

information from other ages. Those empirical studies also confirm an overall improvement

in predicting accuracy of the proposed framework for most ages, especially for adults and

retiree groups.

In Chapter 5, information across different ages and different populations is considered si-

multaneously. We extend the idea of borrowing information among ages to multi-population

cases and proposed three different approaches: a distance-based approach, an ensemble-

based approach, and an ACF model-based approach. Empirical studies with real mortality

data are conducted to compare their predicting performance and significance in improving

predicting accuracy compared with some benchmark models. Additionally, several general

stylized facts of how ages from multiple populations are borrowed by the distance based-

method are provided.

Finally, Chapter 6 briefly outlines some directions worth further exploration for research

by the momentum from each chapter and some research ideas that are less relevant to the

previous chapters.
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Chapter 1

Introduction

1.1 An Overview of Human Mortality Modeling

1.1.1 Mortality Models and Mortality Prediction

Longevity risk, attributed to the increase in human life expectancy, has been recognized

as one of the major risks faced by insurers, governments, and individuals. The effect of

longevity risk is systematic, and it has created substantial financial pressure on the pension

fund industry and annuity providers. A reliable mortality forecast is crucial for the pricing

and valuation of various life insurance and living benefit products. It is also critical to

the establishment of prudent risk management strategies for various insurance institutions.

As such, human mortality modeling and prediction have become one of the most popular

research topics in past decades in the actuarial community. Being viewed as “a bumpy road

to Shangri-La” by demographer [Tuljapurkar, 2005], the task of providing future human

mortality prediction of high qualities involves studies on obtaining high-accuracy forecasts

for the future from the past and present data based on specific mortality models and has

triggered a proliferation of research.

The mortality prediction is typically performed by a two-stage procedure. In the first

stage, a specific mortality model is chosen and calibrated using historical mortality data.

In the second stage, future death rates are obtained through extrapolation based on some

underlying time series models, usually within the class of autoregressive integrated moving

average (ARIMA) processes. The choices of both the mortality model and the extrapolative

method are crucial to the eventual performance of the resulting mortality forecasts.

Mortality models, as the inevitable tool to comprehensively understand and quantify

human mortality rates, usually focus on how mortality rates are influenced by different
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ages of individuals, the medical and social progress with respect to time, and the lifelong

effects that follow individuals from birth. The study of mortality models has a very long

history. Numerous mortality models have been developed since Gompertz published his

law of mortality in 1825 [Gompertz, 1825]. Among all the mortality models developed

thus far, the Lee-Carter model [Lee and Carter, 1992] has become the benchmark model

since its seminal publication. The Lee-Carter model decomposed the age-specific mortality

rates over a certain time period into the mean age-specific mortality rates, the mortality

trend, the amount of mortality change at a given age, and an error term. Since then,

various extensions of the Lee-Carter model have been proposed with alternative estimation

procedures or adjustments on assumptions for improvements in modeling or forecasting of

mortality rates. Below are some examples. Wilmoth [1993] introduced the weighted least

squares estimation for the model in the presence of zero-mortality rates and non-constant

variance in mortality data. Lee and Miller [2001] and Booth et al. [2002] addressed the

issue with the jump-off bias and put forward different approaches to adjust the overall

time trend. Brouhns et al. [2002a] substituted the Singular Value Decomposition (SVD)

approach with a log-bilinear Poisson regression procedure for the calibration of the Lee-

Carter model. Renshaw and Haberman [2003a] reinterpreted the Lee-Carter model and

introduced a methodology based on a generalized linear model. De Jong and Tickle [2006]

generalized the model under the state-space framework to encompass a wide range of flexible

multivariate time series models, among which the Lee-Carter model is a special case.

In addition to the adjustments made to the Lee-Carter model, many new methods and

models have also been proposed in the literature. Currie et al. [2004] used P-splines for

the smoothing and forecasting of two-dimensional mortality tables. Hyndman and Ullah

[2007] promoted ideas from functional data analysis, nonparametric smoothing, and robust

statistics to form a mortality model that could also be viewed as a generalization of the Lee-

Carter model. Renshaw and Haberman [2006] extended the Lee-Carter model through a

cohort parameter to describe the non-linear mortality trend in order to improve its forecast-

ing performance. Hatzopoulos and Haberman [2009] and Hatzopoulos and Haberman [2011]

employed a sparse age-period model structure for mortality experience under a generalized

linear model framework and utilized multiple principal components to extract mortality

dynamics. To better capture the mortality trend in older ages, Cairns et al. [2006] intro-

duced the Cairns-Blake-Dowd (CBD) model which employs linear or quadratic functions of

age to model the logit of the death probabilities for senior ages. Other worth-mentioned

mortality models includes Plat [2009], and O’Hare and Li [2012]. As a holistic analysis for

the general APC-type mortality model, Hunt and Blake [2021] examined the similarities

and differences among a number of mortality models and provided a classification scheme
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for these models. Furthermore, Cairns et al. [2009] summarized the most famous M1-M8

and provides a quantitative comparison between them.

All aforementioned mortality models fit into the concept of the single population model,

which, as the name suggests, is intended to model the mortality rates of a single population.

When it comes to the forecast of multiple populations, these models treat each population

separately and provide a forecast for each population independently. In recognition of

the common features in mortality development patterns across populations, coherent multi-

population mortality methods have been developed and their capacity to enhance forecasting

accuracy has been well attested. Coherent multi-population mortality models have been

designed to avoid unrealistic crossovers or divergence in anticipated future mortality across

countries or between genders, which could arise from applying a single-population model

to each population separately. The main idea behind coherent forecasting is that mortality

forecasts for populations with similar mortality developments are not expected to diverge

substantially even though structural differences remain across populations. As a prototype

of various coherent multi-population mortality forecasting models, the Augmented Common

Factor (ACF) model proposed by Li and Lee [2005] extended the Lee-Carter model to

multiple populations. The model jointly models the logarithmic age-specific death rates of

a group of different populations with a common factor, and at the same time, it includes

population-specific components to allow disparate development of mortality for individual

populations. After the introduction of the ACF model, many other multiple-population

mortality models have been proposed. In particular, Cairns et al. [2011b] and Dowd et al.

[2011] discussed the incorporation of the age-period-cohort structure into a two-population

modeling framework. Kleinow [2015] proposed the common age effect model in which age

has the same effect on the centralized logarithmic mortality rates for all the populations in

the joint model. The functional-data-based approach in Hyndman and Ullah [2007] was also

adopted for a multi-population mortality modeling in Hyndman et al. [2013], Shang [2016]

and Shang and Hyndman [2017]. Russolillo et al. [2011] incorporated a third component

that represents differences in populations into the decomposition of the logarithmic mortality

rates, thereby extending the Lee-Carter model to a three-way structure. Hatzopoulos and

Haberman [2013] extended the GLM framework in Hatzopoulos and Haberman [2009] and

Hatzopoulos and Haberman [2011] into multi-population cases with the help of clustering

method to construct the common age/period effect terms. Moreover, Li et al. [2015b]

proposed bivariate-population generalizations for each of the seven single-population models

M1-M3 and M5-M8 from Cairns et al. [2009]. Villegas et al. [2017] offered a comprehensive

review of multiple-population models and a systematical assessment that appraises the

suitability of available two-population mortality models for the assessment of basis risks
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resulting from using longevity swaps for pension scheme de-risking. Enchev et al. [2017]

compared between variations of the ACF model [Li and Lee, 2005] and the common age effect

(CAE) model [Kleinow, 2015]. Other papers that provide insights on model comparison and

model selection include Danesi et al. [2015], Atance et al. [2020]

As mentioned earlier in this section, the task of mortality prediction is typically per-

formed in a two-stage procedure, where the employed mortality model is fitted to historical

mortality data for the estimates of the model parameters in the first stage and a proper

time series model, usually an autoregressive integrated moving average (ARIMA) process, is

chosen to extrapolate the time effect sequences and obtain a forecast of future death rates.

With the aim of improving eventual mortality forecasts, researchers proposed multivariate

time series models for relevant components in a joint mortality model. For example, Zhou

et al. [2014] considered modeling the dynamics of mortality rates of two related populations

simultaneously with a two-dimensional vector autoregressive model (VAR) and a vector er-

ror correction model (VECM). Other examples of this type of model include VAR models

with higher dimensions and different sparsity constraints [Li and Lu, 2017, Guibert et al.,

2019, Shi, 2021, Li and Shi, 2021, Chang and Shi, 2022] and VECM-based models [Yang and

Wang, 2013, Zhou et al., 2019]. Furthermore, semiparametric models have also been applied

to mortality modeling to provide a different way for mortality predictions [Li et al., 2015a,

2016, Li and O’Hare, 2017]. Actuarial researchers also seek to explore and develop alter-

native statistical representations for mortality models that avoid the traditional two-stage

procedure by allowing modeling, estimation, and prediction of mortality under a unified

framework. As Fung et al. [2017] and Fung et al. [2019] have demonstrated, popular mor-

tality models such as the Lee–Carter class of models can be written in a general state-space

modeling methodology.

Researchers also explored other aspects of human mortality modeling. Firstly, as men-

tioned in Booth and Tickle [2008], the correct estimation of forecast uncertainty has become

an important goal. The impact of parameter uncertainty has been studied by Brouhns et al.

[2002b, 2005], Koissi et al. [2006] with a bootstrapping methodology, and Czado et al. [2005],

Cairns et al. [2006] with a Bayesian framework. Secondly, to better account for multiple

sources of uncertainties and deal with missing data, a Bayesian framework has been incor-

porated with mortality and demographic modeling [Pedroza, 2006, Kogure and Kurachi,

2010, Cairns et al., 2011b, Li, 2014, Wísniowski et al., 2015, Wong et al., 2018, Lin and

Tsai, 2022]. Moreover, consideration has also been given to the impact of potential struc-

tural changes in mortality trends with representative examples including the broken-trend

stationary model in Li et al. [2011], the regime switching models to mortality modeling in

Milidonis et al. [2011], and the incorporation of some testing methods for structural break
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detection in Coelho and Nunes [2011], O’Hare and Li [2015], and Van Berkum et al. [2016].

Other topics include the non-Gaussian error terms of mortality models [e.g., Wang et al.,

2011, 2013] and age coherence in Li and Lu [2017], Li [2013], and Gao and Shi [2021].

1.1.2 Mortality Data

The Human Mortality Database (HMD), launched online in 2002, is regarded as an impor-

tant data resource to provide detailed, consistent, reliable, and accurate human mortality

data for longevity-related research. As described in Barbieri et al. [2015], the database

contains mortality data for 46 populations (including sub-national groups) in total, with

data classified by age (from age 0 up to age 110+), sex, year of death, and year of birth.

The database consists of both original raw data collected from official sources such as birth

counts, death counts, and calculated data, including population size, exposure-to-risk, death

rates, and life tables. Although the database has the earliest data stemming back to 1751 in

Sweden and contains observations over 100 years for one-third of the included countries or

regions, we aim at studying a recent period of data from 1970 to 2010 to avoid the potential

impact of rare events such as the Second World War throughout the thesis. The mortality

data are accessible through software R as the common programming language. Typical R

packages related to demographic analysis and mortality modeling includes demography by

Hyndman et al. [2019] and StMoMo by Villegas et al. [2015].

1.2 Statistical Learning in Human Mortality Modeling

A revolution in statistics occurred between 1960 and 1980 when the statistical learning the-

ory was introduced and developed [Vapnik, 1999a,b]. As vast amounts of data are being

generated in many fields, the evolving statistical learning approaches have played an in-

creasingly important role in coping with the challenge of extracting important information

hidden in the data.

The statistical learning approaches can be broadly categorized into two classes: super-

vised learning and unsupervised learning. Generally, supervised learning refers to predicting

or estimating an output based on one or more inputs. Unsupervised learning, on the other

hand, describes the associations and patterns within the given data without a supervised

output. There are already conventional statistical models which have long been applied

in actuarial science. While a detailed introduction of statistical learning approaches can

be found in Vapnik [1999a] and Hastie et al. [2009], we provide a brief overview of how
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other more advanced complementary statistical learning methods have been incorporated

into the research area of human mortality modeling and forecasting. Tsai and Cheng [2021]

has incorporated statistical clustering methods into mortality models to improve predic-

tion performance. Other examples of applying clustering methods include Schnürch et al.

[2021] and Levantesi et al. [2022]. Under the topic of model combination, Shang and Haber-

man [2018] utilized the model confidence set approach proposed in Hansen et al. [2011] to

combine multiple mortality models for improved mortality predictions, Kontis et al. [2017]

applied a probabilistic Bayesian model averaging (BMA) approach to mortality and life

expectancy projection, and Kessy et al. [2021] developed a stacked regression ensemble

method to combine predictions from different mortality models. Neural network, as one of

the prevailing machine learning tools, has also been incorporated into mortality prediction

procedures recently. Perla et al. [2021] generalized the Lee-Carter model using convolu-

tional network models for predictions. Richman and Wüthrich [2021] extended the model

to multiple populations by using neural networks for automatic selection of optimal model

structure, and Nigri et al. [2019] applied a recurrent neural network with a long short-term

memory architecture to the Lee-Carter model for improved predictive capacity. Wang et al.

[2021] has considered capturing the “neighboring” effect with the help of neural networks to

enhance predictive power. Furthermore, the gaussian process regression approach has also

been adopted for mortality prediction in Huynh and Ludkovski [2021] and Lam and Wang

[2021].

1.3 Review of Mortality Models

This subsection serves as a quick review of several mortality models that will be constantly

involved in the thesis.

1.3.1 Lee-Carter Model

Let mx,t denote the central death rate, also known as the age-specific death rate (ASDR),

for age x ∈ {0, 1, . . . , ω} and year t ∈ {0, 1, . . . , T} of a population, where ω represents the

limit age of the population. The Lee-Carter model decomposes the age-period surface of

logarithmic ASDRs in the following form:

logmx,t = ax + bxkt + εx,t, (1.1)

with normalization constraints
∑

x bx = 1 and
∑

t kt = 0, where εx,t represents the white

noise term.
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The right-hand side of Equation (1.1) contains a static age function ax that captures

a general shape of mortality across ages and features of the mortality curve that do not

change with time, a period function kt that determines the evolution of mortality rates over

time, and a non-parametric age function bx that captures the relative speed of change in

mortality at each age x.

The estimation methods of the parameters in the Lee-Carter model can be categorized

into non-likelihood-based and likelihood-based. No probability distributions are assumed

when the non-likelihood-based methods are adopted while a probability distribution for

the death counts is specified when the likelihood-based methods are adopted. As a typical

example of the non-likelihood-based methods, the Singular Value Decomposition (SVD)

method is proposed in Lee and Carter [1992], where the static age function ax is estimated

as the average of logarithmic ASDRs over the modeling time-period:

âx =
1

T + 1

T∑
t=0

logmx,t, (1.2)

and bx and kt are respectively identified as the first left and the first right singular vectors of

the matrix logmx,t−âx. Another example that belongs to the category of the non-likelihood-

based methods is the weighted least squares (WLS) estimation method in Wilmoth [1993].

As for the likelihood-based methods, classic examples like Wilmoth [1993], Brouhns et al.

[2002a] and Renshaw and Haberman [2006] all assume a Poisson distribution for the observed

number of deaths with the mean equal to the expected number of deaths under the Lee-

Carter model; that is

Dx,t ∼ Poisson (Ex,t, exp(ax + bxkt)) , (1.3)

with Dx,t and Ex,t denoting the number of deaths and the exposures-to-risk at age x and

time t, respectively. The estimates of the model parameters are consequently obtained by

maximizing the corresponding log-likelihood function. Other distributions like the negative

binomial distribution have also been proposed as the candidate of the distribution for the

observed number of deaths; see, for example, Li et al. [2009].

An appropriate time series model for the mortality index kt is vital to the mortality

predictions through the Lee-Carter model. Lee and Carter [1992] proposed a random walk

with drift (RWD):

kt+1 = kt + d+ et, (1.4)

where d is a constant drift and {et, t ≥ 0} are the independent and identically distributed

(i.i.d.) error terms. Both the drift d and the variance of the error terms et can be estimated

by standard time series estimation techniques. kt is predicted stochastically and then used
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to forecast ASDRs through Equation (1.1). Apart from the RWD, the Lee-Carter model has

also been proposed for implementation with the more general ARIMA model [e.g., Li et al.,

2009]. The ARIMA model can be estimated by the Box-Jenkins method [Box et al., 2015]

and implemented using the auto.arima function from the R package forecast [Hyndman

et al., 2007].

1.3.2 CBD Model

The CBD model, introduced in Cairns et al. [2006], is regarded as one of the most popular

competitor models to the Lee-Carter model for the prediction of senior ages. Let q(x, t)

denote the probability that an individual in population j aged x will die between t and t+1

given the individual is alive at time t, for t = 0, 1, . . . , T and x = x1, . . . , xn. The CBD

model depicts the mortality development of a population in the following form:

logit q(x, t) = log

[
q(x, t)

1− q(x, t)

]
= Kt + (x− x̄)kt + εx,t, (1.5)

with x̄ denotes the average age in the data range being used and εx,t’s are the i.i.d. error

terms.

The absence of the static age function and the adoption of the parametric age function

in Equation (1.5) reduce the number of free parameters and make the model more parsi-

monious. If we denote Dx,t as the number of deaths at age x in year t, the corresponding

exposure number Ex,t and one-year death probability q(x, t), the estimation of model pa-

rameters can be obtained via maximizing the model log-likelihood where Dx,t is assumed to

follow a binomial distribution with parameters Ex,t and q(x, t).

1.3.3 Several Extensions of Lee-Carter and CBD Models

As we previously mentioned, there are many extensions of the Lee-Carter models in the

literature. Below we recall the specific contents of a few extensions that are relevant to

our discussion in subsequent chapters of the thesis. First of all, the following models with

multiple age/period terms are studied by Booth et al. [2002], Renshaw and Haberman

[2003b] and Hyndman and Ullah [2007]:

logmx,t = ax +
N∑
i=1

b(i)x k
(i)
t + εx,t, (1.6)

with b
(i)
x k

(i)
t representing the multiple pairs of age/period effect terms. Furthermore, Ren-

shaw and Haberman [2006] and Haberman and Renshaw [2009] considered the classic APC
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model structure with a simplified form of

logmx,t = ax + bxkt + γt−x + εx,t, (1.7)

where the extra cohort effect terms γt−x is introduced to address the mortality differences

between people with different birth years t− x.

For CBD-type models, it is natural to consider extending the model by adding age/period

terms with higher-order polynomial age functions or cohort terms. For instance, the follow-

ing extensions of CBD models can be found in Cairns et al. [2009]:

M6 : logit q(x, t) = Kt + (x− x̄)kt + γt−x + εx,t, (1.8)

M7 : logit q(x, t) = Kt + (x− x̄)k
(1)
t +

(
(x− x̄)2 − σ̂2

x

)
k
(2)
t + γt−x + εx,t, (1.9)

M8 : logit q(x, t) = Kt + (x− x̄)kt + (xc − x)γt−x + εx,t. (1.10)

In the above, kt and k
(i)
t represent the period effect terms, γt−x represents the cohort effect

term, the constant σ̂2
x is calculated as the mean of (x− x̄)2 over all the involved ages, and

xc is a constant parameter that needs to be estimated. In the above, we also used the same

model labels M6-M8 as used in Cairns et al. [2009].

1.3.4 Augmented Common Factor (ACF) Model

Li and Lee [2005] pointed out that mortality patterns and trajectories in closely related

populations are likely to be similar in some respects. For this reason, they argued that

mortality forecasts for individual populations can be improved by taking into account the

common patterns in a group. They proposed the augmented common factor (ACF) model

which incorporates a common factor shared by all the individual populations in the group

with the population-specific factors which further accommodate the remaining disparate

development patterns in mortality for each population.

Let mx,t,i denote the ASDR of the ith population in a group G of populations for age x

and year t. The ACF model depicts the mortality development of each individual population

in the following form:

logmx,t,i = ax,i +BxKt + bx,ikt,i + εx,t,i, (1.11)

with normalization constraints
∑

xBx = 1,
∑

tKt = 0,
∑

x bx,i = 1, and
∑

t kt,i = 0, where

εx,t,i’s are the i.i.d. error terms. The static age functions ax,i are still estimated as the

average of logarithmic ASDRs over the modeling time period for each population:

âx,i =
1

T + 1

T∑
t=0

logmx,t,i, i ∈ G. (1.12)
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For the estimation of the other parameters, the SVD procedure is applied to the aggregate

data of the group to obtain Bx and Kt, and then an extra round of SVD is further applied to

the residual data, (logmx,t,i− âx,i−B̂xK̂t), to get bx,i and kt,i for each individual population.

To obtain the forecast of mortality, Li and Lee [2005] proposed to model Kt with an

RWD and kt,i with either a random walk (RW) without drift or a first-order autoregression

(AR(1)) model to guarantee a nondivergent forecast in the long run. After both Kt and kt,i

have been modeled, mortality forecasts are obtained by extrapolating these time series into

years t > T and by Equation (1.11).

Li and Lee [2005] argued that members in a properly chosen group should have similar

mortality trends which are sufficiently captured by the common factor so that the remaining

population-specific terms would be stable in their scales. They also explained that the model

would fail if kt,i has a long-term trend because the long-term trend might be an indication

of a systematically and significantly different trend between population i and the rest of the

group.

Extensions of a multi-population model based on the ACF framework are not hard. For

example, the common age effect (CAE) model proposed by Kleinow [2015] sets the same

effect on the centralized logarithmic mortality rates for all the populations in the joint model

as follows:

logmx,t,i = ax,i +
∑
j

b(j)x k
(j)
t,i + εx,t,i, (1.13)

where b
(j)
x k

(j)
t,i representing the multiple pairs of age/period effect terms. The key spirit of

the CAE model lies in the assumption that the age effect terms b
(j)
x are the same shared

by different populations in the system while the period effect terms k
(j)
t,i remain population-

specific. Yang et al. [2016] considered adding the cohort effect to the ACF model to model

the centralized logarithmic mortality rates as follows:

logmx,t,i = ax,i +BxKt +
∑
j

b
(j)
x,ik

(j)
t,i + γt−x + εx,t,i, (1.14)

where γt−x are the cohort effect terms added to the system for all populations to depict the

mortality differences between cohorts born in different years.

1.4 Research Questions

The idea of borrowing information from populations with similar structures has been well

recognized as a useful strategy to enhance the accuracy of the mortality prediction for
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a target population. A supportive example is the superiority of the ACF model to the

Lee-Carter model in terms of prediction errors when the former is applied to a group of

populations with some common mortality development patterns. As the discussion of human

mortality modeling proceeds, the scope of borrowing information has been broadened to

deeply dig into the useful hidden information in the mortality data itself from all aspects

instead of being restricted to utilizing exogenous information, such as socioeconomic or

geographic variables.

Figure 1.1 provides a preliminary illustration of the mortality trajectories at some dif-

ferent scopes. The left plot displays the age-aggregated (over ages 0 to 100) logarithmic

mortality data sequences of 30 male populations (see Table A.1 for a detailed list) from 1970

to 2002, with two different colors indicating two different types of mortality development

patterns based on some clustering results. The middle figure shows the age-aggregated

(over ages 55 to 90) logarithmic mortality data sequences of the Canadian male and the

U.S.A. male from 1970 to 2002. The dashed curve is a horizontal shift of the Canadan male

curve by six years. The right panel demonstrates the age-specific logarithmic mortality data

sequences of Canadan male from 1970 to 2002.

Figure 1.1 reveals the existence of both similarity and difference in mortality data across

different dimensions of age, period, and populations. First of all, the age-aggregated loga-

rithmic mortality rate sequences in the left panel indicate that the overall mortality devel-

opment pattern can be similar within a certain group of populations and also can be very

different across different groups of populations. Second, a contrast in the age-aggregated

mortality level between the senior Canadian male and the senior U.S.A. male in the middle

panel of the figure indicates the existence of a time lag in the development stage of mortality

levels across populations. Finally, the right panel of the figure discloses that the similarity

of mortality development is shared not only across populations but also across different ages

within the same population. Certainly, the figure also clearly illustrates the difference in

mortality development patterns when two ages are away from each other enough.

When it comes to borrowing information for mortality prediction, there exists a trade-

off between the gains from including valuable signals and the adverse impact of bringing in

irrelevant noise. This thesis aims to develop frameworks to dig out useful information from

mortality data in different aspects by prudently designing and deploying sensible statistical

learning approaches. The major focus of the thesis lies in considering borrowing information

across populations and among ages. A brief overview of the topics we approached is given

as follows whereas a more detailed discussion can be found in relevant chapters.
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Figure 1.1: An illustration of similarity and difference in mortality trajectories. Left:

age-aggregated logarithmic mortality data sequences of 30 male populations for ages 0

to 100. Middle: Age-aggregated logarithmic mortality rate sequences for the US male

population and the Canadian male population for ages 55 to 90. Right: Age-specific

logarithmic mortality rate sequences for the Canadian male population.

1.4.1 Borrowing Information across Populations

When the information across different populations is to be considered, one crucial step is

to conduct multi-population mortality modeling. Chapter 2 aims to throw light on the

problem of the selection of a “proper” group of populations, which is believed to be the key

to the success in multi-population mortality modeling. When the group of populations are

appropriately chosen, the hidden information would have a conducive impact on the study

of the multi-population system and become particularly useful for insurance companies

with overseas business to decide how to improve their domestic mortality prediction with

the help of their overseas data. However, most of the existing joint mortality modeling

procedures in current literature assume that the grouping information is either known a

priori or pre-specified according to certain exogenous information, which involves substantial

manual “feature engineering” and significant subjective judgment but is unable to insure

an improvement in future prediction accuracy for the multi-population mortality modeling.

Moreover, further issues would arise in the current multi-population mortality modeling

framework when a high-dimensional multi-population model is adopted as the base learner.

First of all, an explosion in computational demand may result in intractability of the model

or convergence issues for the parameter calibration procedure. Moreover, the “curse of

dimensions” would lead to a lack of flexibility for the base learner mortality models and

prevent the base learner to have a rich structure to depict some desired or interesting char-

acteristics found in the mortality data of different populations. As an illustrative example,

the kind of “parallelity” of trajectories and patterns of mortality development among pop-
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ulations, shown in Figure 1.1, has been widely observed as a developing population may

demonstrate a similar mortality improvement pattern in the recent decade to what a de-

veloped population has experienced over the past decades. Since it is reasonable to believe

that even at different development stages of mortality level, populations could still be pulled

together for joint modeling of mortality rates and that the similarity in the trajectories and

patterns of their mortality rates can still bring in beneficial information for an enhancement

of mortality prediction. However, the potential is not fully studied in current literature.

Chapter 3 focuses on providing solutions to avoid possible computational hurdles and allow

for the “parallelity”.

1.4.2 Borrowing Information among Ages

The evolution in the discussion of multi-population mortality modeling has made the idea

of borrowing information quite popular. On top of that, literature has confirmed that the

concept of borrowing information can be further extended to other aspects like ages, for

example, Shang and Haberman [2020] and Tsai and Cheng [2021]. Chapter 4 is inspired by

the belief that detecting similarities among different ages and borrowing useful information

among ages can potentially benefit mortality predictions in the form of enhancement in pre-

dicting accuracy. However, there are no clear views on how to determine a “proper” amount

of information to be borrowed from the similarities among different ages and how differently

the information among ages is utilized for different target ages. Let alone consider a more

comprehensive task where the information across different ages and different populations is

considered simultaneously.

1.5 Overview of the Thesis

The remainder of the thesis is organized as follows.

In chapter 2 we fill in the gap between multi-population mortality modeling and the

grouping strategy that heavily depends on manually selection with exogenous explanatory

information such as those from geographic or socioeconomic aspects. We develop a flexible

framework for the selection of populations from a given candidate pool to assist a target

population in mortality forecasting. The defining feature of the framework is the deletion-

substitution-addition (DSA) algorithm, which is entirely data-driven and versatile to work

with any multiple-population model for mortality prediction. As an illustration, the frame-

work with an extended augmented common factor model is applied to the Human Mortality
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Database (HMD) and the superiority of the proposed framework is evident in mortality pre-

dicting performance. Meanwhile, the automatic selecting outcome of the DSA-based model

has insightfully provided recommendations on the membership of the optimal group for

different target populations to circumvent difficulties in manual selections.

In chapter 3, We provide potential remedies for the drawbacks in high-dimensional multi-

population mortality modeling by proposing a model averaging predicting framework that

allows for borrowing information from the mortality data of a given pool of auxiliary pop-

ulations to enhance the accuracy of the mortality forecast for a target population. Unlike

directly fitting a high-dimensional multi-population model for future prediction, the model

averaging idea is novelly used to aggregate information from different auxiliary populations

by jointly linking each of them to the target population from a cascade of base learner

models of a lower dimension. The usage of a bivariate-population base learner circumvents

the potential computational difficulties and intractability of the high-dimensional multi-

population model and makes it possible to capture vivid characteristics in mortality data

with a more flexible base learner model. A time-shifting parameter ∆t is introduced in the

bivariate-population base learner model to capture the “parallelity” by characterizing the

time by which one population is ahead of or behind the other in their mortality development

stages. We consider various model averaging strategies, including a simple average, an aver-

age inside geographical groups, an average within k-means clusters, and a fully data-driven

“Rank and average” strategy. The “Rank and average” ranks auxiliary populations accord-

ing to their capability of assisting the prediction of the target population and average over

those on the top, which utilizes the information from multiple populations effectively in a

computationally friendly way. In addition, we add a time-shifting term to the base learner

for extra flexibility to allow for borrowing information from populations at disparate mortal-

ity development stages. We conduct empirical studies with the Human Mortality Database

to investigate the performance of the proposed model averaging method and study the value

of including a time-shifting term in the base learner. It is interesting that these empirical

studies reveal that the time-shifting parameter in the model is capable to characterize the

development stage of one population relative to the other.

In chapter 4, we aim to provide insights on detecting similarities and borrowing informa-

tion that is hidden under the trajectories of age-specific mortality among ages by proposing

a novel predicting framework where the overall predicting goal is decomposed into multiple

individual tasks of searching for individual age set to ensure the mortality prediction of each

target age can receive the benefit of borrowing information across ages to the largest extent.

Extensive numerical studies with the Human Mortality Database (HMD) have demonstrated

noticeable differences for different target ages in their ways to borrow information among
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other ages and confirm an overall improvement in predicting the accuracy of the proposed

framework for the majority of ages, especially for adults and retiree groups.

In chapter 5, we aim to extend the idea of borrowing information among ages to multi-

population scenarios with a more comprehensive framework that can take the information

among different ages and across different populations into consideration simultaneously.

Three different approaches are proposed. One of them extends the age-specific age set

framework to a more general case with a proposed “distance” measure to quantify the

similarities among different age-specific mortality sequences in their development patterns.

Two additional approaches, respectively based on an ensemble paradigm and the ACF

model are then introduced to address potential drawbacks. Numerical studies with the real

mortality data have confirmed all the three approaches’ potential capability to consider

borrowing information among different ages from different populations with the desired

improvement in predicting accuracy. Additionally, several general stylized facts of how ages

from multiple populations are borrowed are provided based on the results of the proposed

multi-population distance-based method. In general, there exists a noticeable difference

that young and old ages generally borrow information from more ages with a wider range

and from external ages while the adult/retiree ages choose less amount of reference ages

with a more concentrated range within the population.

We finally summarize the thesis and outline some relevant topics which we are interested

in for further research in Chapter 6.
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Chapter 2

A DSA based Framework for

Mortality Forecast

2.1 Introduction

It has been widely accepted as an advantage of using multi-population models for mor-

tality predictions because borrowing information from populations with similar structural

mortality patterns and trajectories can be helpful to the mortality forecasting of a target

population. As mentioned in the preceding chapter, one crucial step in gaining the benefit

of multi-population models is the selection of a “proper” group of populations in the joint

modeling. Most existing joint mortality modeling procedures assume that the grouping

information is either known a priori or pre-specified according to certain exogenous infor-

mation, such as geographic proximity or socioeconomic variables. However, such a heuristic

specification fails to guarantee that every selected population is indeed conducive to an

enhancement in mortality prediction. Cluster analysis, insofar as we can tell, is the only

structured method adopted in the literature for the purpose. Hatzopoulos and Haberman

[2013] adopted the fuzzy C-means (FCM) cluster analysis to select populations with similar

mortality characteristics for joint modeling. The FCM yields a list of cluster centers and a

matrix to indicate the level of association each data element is with each center.

In this chapter, we propose a novel, flexible and effective method for the selection of

populations. Instead of relying on geographic, socioeconomic, or any other exogenous infor-

mation for grouping, our method is built on a well-designed deletion-substitution-addition

(DSA) algorithm, which is entirely data-driven and directly “learns” for the best group of

populations from a given candidate pool without resorting to any explanatory data input.

Our DSA algorithm is inspired by the partDSA [see Molinaro et al., 2010, Sinisi and van der
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Laan, 2004], a deletion-substitution-addition algorithm originally designed for prediction by

recursively partitioning the covariate space in a regression context. The DSA algorithm si-

multaneously derives joint modeling results for the target population and the selected group

of populations. We then extrapolate the established model into future periods to obtain

mortality predictions for the target population.

Just as a typical clustering method (e.g. Hatzopoulos and Haberman [2013]), our DSA

algorithm can also associate a target population with a particular group of populations for

joint modeling, but with a substantial difference. At the outset of the implementation,

one needs to designate a target population for the DSA algorithm to work towards the

selection of populations for joint modeling. The best mortality prediction accuracy which the

DSA algorithm aims to achieve pertains exclusively to the target population. If the target

population changes to another in the pool, a rerun of the DSA algorithm is necessary. In

general, the resulting grouping does not remain unchanged. In contrast, a typical clustering

algorithm does not have a target population, and it aims at obtaining a grouping of objects

that are more homogeneous within each group (also called a cluster) than those across

groups.

We apply our DSA based prediction model to the Human Mortality Database (HMD)

for sixty gender-specific populations from thirty countries or regions in the world. We com-

pare the performance of the DSA based model with that of the Lee-Carter model and the

ACF models which make use of different grouping strategies. A simple all-in-one strategy, a

grouping strategy based on geographic proximity information, as well as grouping obtained

by the k-means and the k-median cluster methods are respectively adopted in the imple-

mentation of the ACF models. Using data from 1970 to 2002, we train the models and

extrapolate them into the period of 2003-2010 for prediction. The performance is measured

by four metrics, that is, the mean squared error, the mean absolute error, the mean squared

percentage error, and the mean absolute percentage error. Compared with the benchmark

models mentioned earlier, our DSA based model proves to have provided results with higher

prediction accuracy. Summary statistics as well as a formal hypothesis test, the Diebold-

Mariano test, on the prediction results for the sixty populations corroborate the superiority

of our DSA based model over the benchmarks.

The rest of this chapter is organized as follows. Section 2.2 gives a detailed account of

the DSA algorithm and the DSA based framework for mortality forecasting. Section 2.3

presents the numerical studies. Section 2.4 offers some further discussion and remarks.
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2.2 DSA based Framework for Mortality Forecasting

This section introduces our DSA algorithm-based framework for mortality forecasting. The

framework provides a fully data-driven method and is flexible to be applied with any multi-

population joint models, while we will take the extended ACF model for illustration purposes

in the chapter. The DSA algorithm is designed to generate a sequence of groups of popu-

lations in increasing size, and a validation procedure is applied to select the optimal group

for a given target population. The mortality forecasting is conducted based on the selected

optimal group.

2.2.1 Extended ACF model

The implementation of our proposed prediction framework entails the specification of a

multi-population mortality model and the application of the designed DSA algorithm. For

illustrative purposes, we adopt the Poisson common factor model by Li [2013] in our studies.

Viewed as an extension of the ACF model of Li and Lee [2005], the Poisson common factor

model allows more than one population-specific terms. For simplicity, we will refer this

model as the extended ACF model in the following discussion of the chapter.

Given a group of populations G of size M , the extended ACF model describes logarithmic

ASDRs of each individual population i ∈ G by the following form:

logmx,t,i = ax,i +BxKt +

Ni∑
j=0

bx,j,ikt,j,i + εx,t,i, (2.1)

where ax,i, Bx, Kt and εx,t,i carry the same meanings as in the ACF model. The difference

lies in that we allow more complexity in population-specific effect with (bx,j,i, kt,j,i) as pairs

of population-specific components with Ni as the number of the population-specific compo-

nents for population i. Constraints
∑

x bx,j,i = 1,
∑

t kt,j,i = 0,
∑

xBx = 1 and
∑

tKt = 0

are also imposed to avoid the unidentifiability issue for the extended model.

As an integrated part of the above extended ACF model, ax,i is calibrated as the average

of logarithmic ASDRs over the modeling time-period for each population:

ax,i =
1

T + 1

T∑
t=0

logmx,t,i, (2.2)

but Bx and Kt are calibrated in a different way. The extended model applies the SVD

procedure to (logmx,t,i − ax,i) for each individual population i to obtain Bx,i and Kt,i as
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the resulting first left and right singular vectors, and we compute Bx and Kt as the simple

average of those Bx,i’s and Kt,i’s, respectively, i.e.,

Bx =
1

M

∑
i∈G

Bx,i and Kt =
1

M

∑
i∈G

Kt,i. (2.3)

There followed another round of SVD procedures applied to the residuals, (logmx,t,i−ax,i−
BxKt), to calibrate the population-specific components. The first Ni left and right vectors

are used to calibrate bx,i,j and kt,i,j, j = 1, . . . , Ni, respectively.

The above calibration procedure for Bx and Kt is in the same spirit of the model aver-

aging idea in statistics. That is, averaging estimation of the same objective from different

sources can potentially reduce the estimation uncertainty. So, we work with the assumption

that the individual populations in the group G share the common component pair (Bx, Kt),

and the estimation formed by an average of the calibrated value from each individual popu-

lation can potentially lead to a more efficient estimate of (Bx, Kt). As an alternative to the

simple average in Equation (2.3), a weighted average using population size can potentially

further reduce the estimation uncertainty for the common factor (Bx, Kt), because there

is a reason to believe that an estimation from a larger population tends to bring in less

uncertainty. However, it is challenging to quantify the precise impact of the population size

on the estimation uncertainty of the common factor; meanwhile, an enhanced performance

of the weighted average highly relies upon this piece of information to be precisely incorpo-

rated into the calculation. For this reason, we adopt the simple average for the calibration

of the common factor in this chapter.

For mortality forecasting, we fit the sequence Kt with a random walk with drift model

to forecast the common trend in future mortality changes as in Li and Lee [2005]. In

the meanwhile, we allow the population-specific components kt,i,j to embrace the potential

benefits of generality by fitting them with the “best” ARIMA model, which is obtained by

using the auto.arima function from the R package forecast. A detailed description of the

ARIMA fitting procedure used by the R function can be found in Hyndman et al. [2007].

After obtaining the time series models for these components, we extrapolate them into years

t > T to form mortality forecasts for the target population i.

Some clarifications about the above extended ACF model are in order. The parameters

M and Ni allow for different levels of model complexity. Tuning M enables the model

to have the desired size of the group, and tuning Ni allows for the desired complexity of

population-specific effects. As we will explain later, the rational choice for the parameters

is no longer an issue since the values of M and Ni can be learned through a validation step

during the modeling procedure. Moreover, this extended model includes the Lee-Carter and
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the ACF models as special cases. When Ni = 0 and M = 1 (i.e., the group G only contains

the target population i), the extended ACF model degenerates into the Lee-Carter model.

When Ni = 1, the model reduces to the ACF model.

2.2.2 DSA Algorithm: Risk Functions and the Three Moves

In our framework, the data period (years 0 to T ) is divided into a modeling period (years 0

to S) and a validation period (years (S + 1) to T ), and the dataset is accordingly divided

into a modeling set and a validation set. The DSA algorithm is applied with the modeling

set only, and the validation procedure utilizes the validation set for selecting the optimal

group.

The DSA algorithm starts with a group of size one containing the target population

only. The algorithm generally utilizes three specific moves or step functions (i.e., deletion,

substitution, and addition) to generate a sequence of group selections. For each group size,

the algorithm aims to find a group of populations to minimize a pre-specified risk function

over groups of the same size. Choices of risk function include the mean squared error (MSE),

mean absolute error (MAE), mean squared percentage error (MSPE) and mean absolute

percentage error (MAPE).

Given a group G containing the target population i, we calibrate the extended ACF

model (2.1) with the modeling dataset. Denote

log m̂x,t,i = ax,i +BxKt +

Ni∑
j=0

bx,j,ikt,j,i,

where Ni ∈ {1, 2, . . . , Nmax} is fixed, and with a slight abuse of notation, all the items on

the right-hand side mean their calibrated values. Note that Nmax denotes the maximum

number of population-specific components that we consider in the extended ACF model and

we take Nmax = 5 in our numerical implementation in the sequel.

The risk function on the group G for target population i can be calculated as follows:

• MSE:

f(G) =
1

(ω + 1)× (S + 1)

∑
x,t

(logmx,t,i − log m̂x,t,i)
2 , (2.4)

• MAE:

f(G) =
1

(ω + 1)× (S + 1)

∑
x,t

|logmx,t,i − log m̂x,t,i| , (2.5)
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• MSPE:

f(G) =
1

(ω + 1)× (S + 1)

∑
x,t

(
logmx,t,i − log m̂x,t,i

logmx,t,i

)2

, (2.6)

• MAPE:

f(G) =
1

(ω + 1)× (S + 1)

∑
x,t

∣∣∣∣ logmx,t,i − log m̂x,t,i

logmx,t,i

∣∣∣∣ , (2.7)

where the summation is for x ranging over the considered set of ages and for t over

the modeling period (i.e., years 0 to S). The right-hand side of the above formula

depends on the group G via Bx and Kt.

With the parameter Ni fixed over the set {1, 2, . . . , Nmax}, the proposed algorithm

searches to minimize the in-sample value of the adopted risk function (hereafter “risk value”

for short) over groups of the same size. For each group size s, the optimal group Gs attains

the minimum in-sample risk value among Gs that denotes the collection of all the subsets

of populations in size s from the candidate pool, that is,

Gs := argminG∈Gs f(G).

It is computationally inefficient to search for the optimal Gs among the whole set Gs for

every s. The DSA algorithm proceeds in a stepwise manner to complete the search. The

result, though suboptimal, is more computationally efficient. It follows the same spirit

as in many machine learning methods, such as regression tree methods and stepwise (for-

ward or backward) regression procedures, to obtain a good balance between optimality and

computational demands.

The DSA algorithm searches through specifically designed iterations and stops with the

control of a specific stopping criterion. At each iterative step, the algorithm first maps

the current group G of size s into groups of size s − 1, s, and s + 1, respectively, through

moves or step functions, Deletion, Substitution, and Addition. Then, the algorithm solves

an optimization problem to secure the optimal outcome throughout all possible results. The

three moves are defined as follows:

• Deletion: A deletion move allows the removal of one population from the current

group. Formally, given the current group G of size s, this move first returns set

DEL(G) that contains s different groups of size s − 1 by deleting one member from

the current group G. Then, the algorithm searches for the optimal element within

DEL(G), denoted as G−, which has the smallest risk value among all possible out-

comes, i.e.,

G− := argmin
G′∈DEL(G)

f(G′).
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• Substitution: A substitution move allows the replacement of one population in the

current group with another from the remaining set in the candidate pool. Formally,

given the current group G of size s, this move first returns set SUB(G) that contains

a number of different groups of size s by making substitutions. Then the algorithm

searches for the optimal element within SUB(G), denoted as G=, which has the small-

est risk value among all possible outcomes, i.e.,

G= := argmin
G′∈SUB(G′) f(G′).

• Addition: An addition move allows the introduction of one more candidate pop-

ulation into the current group. Formally, given the current group G of size s, this

move first returns set ADD(G) that contains different groups of size s + 1 by adding

one member into the current group from the rest of the candidates. Then the algo-

rithm searches for the optimal element within ADD(G), denoted as G+, which has

the smallest risk value among all possible outcomes, i.e.,

G+ := argmin
G′∈ADD(G)

f(G′).

2.2.3 DSA algorithm: Ordering of Moves and Pseudo Codes

After having given an account of the risk function and the three allowed moves (i.e., deletion,

substitution, and addition), we now move on to the ordering of the moves, the initiation,

and the stopping criterion of the DSA algorithm. We need the following notations to record

information:

• A list G∗ to record the best groups of different group sizes. Gs, as an element of G∗,
represents the best group of size s, s = 1, 2, . . ..

• A vector BEST to record the in-sample risk values corresponding to each element of

the list G∗:
BEST(s) = f(Gs), s = 1, 2, . . . .

Throughout the iterations of the algorithm, information contained in vectors G∗ and BEST

keeps updating untill the algorithm comes to a stop. The details of the algorithm are

described as follows:

1. Initialization:
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• The algorithm starts with a group of size one which contains the target population

only, and retains the rest of candidate populations in the pool.

• G1 = G1, since the best group of size one must be the group containing only the

target population.

• The risk value f(G1) is calculated and BEST(1) is assigned to equal f(G1).

• A stopping value, called cut-off-growth (COG), is assigned to indicate the max-

imum number of candidate populations considered for joint mortality modeling.

A small COG results in an early stop for the algorithm, whereas a large COG

results in a computationally demanding algorithm. COG can be set as large as

the size of candidate pool. With consideration having been given to computa-

tional feasibility, COG should be set as large as possible for the reason that its

value corresponds with the class size of candidate groups being considered in the

searching of the best group.

2. Move through step functions:

• †Let G be the current working group and denote its size by s.

• Deletion If s > 3, search for the optimal updated G− of size s − 1 among

all allowed deletion moves, where G− = argmin
G′∈DEL(G)

f(G′). If f(G−) <

BEST(s− 1), put BEST(s− 1) = f(G−), set Gs−1 = G− to extract the grouping

information of G− to update the optimal group of size s− 1, update the current

working group by G = G−, and return to †.

• Substitution If s > 2, find the optimal updated G= of size s among all allowed

substitution moves, where G= = argmin
G′∈SUB(G′) f(G′). If f(G=) < BEST(s),

put BEST(s) = f(G=), set Gs = G= to extract the grouping information of

G= to update the optimal group of size s, update the current working group by

G = G=, and return to †.

• Addition Find an optimal updated G+ of size s+ 1 among all allowed addition

moves, where G+ = argmin
G′∈ADD(G)

f(G′). If f(G+) < BEST(s + 1), put

BEST(s + 1) = f(G+), set Gs+1 = G+ to extract the grouping information of

G+ to update the optimal group of size s+ 1, update the current working group

G = G+, and return to †.

3. Stop criterion: If s = COG, stop the algorithm.

The implementation of the above algorithm will result in a sequence of groups G∗ ≡ {Gs, s =

1, . . . ,COG}, which gives the optimal choice of grouping for each size s = 1, · · · ,COG in
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the sense to attain the minimum in-sample risk value. Each element in the vector BEST

records the in-sample risk value for the corresponding element in the vector G∗. As a concise

summary, the DSA algorithm is described by the pseudo-codes in Algorithm 1 and the flow

chat in Figure 2.1.

2.2.4 The DSA based Prediction Model

For the target population i, the parameters Mi and Ni in the extended ACF model (2.1)

are the group size and the number of population-specific components, respectively. With a

fixed Ni ∈ {1, 2, . . . , Nmax}, the implementation of the DSA algorithm yields the “optimal”

group of populations, denoted by G∗i,Mi,Ni
, for each group size Mi ∈ {1, . . . ,COG}. For

each G∗i,Mi,Ni
, we can obtain a mortality model, so implementing the DSA algorithm for

Ni ∈ {1, 2, . . . , Nmax} yields Nmax × COG mortality models in total.

To determine the best model for prediction, we resort to a validation procedure, which

entails the selection of the best values of parameters Mi and Ni. The extended ACF model

can be calibrated with the identified G∗i,Mi,Ni
from the DSA algorithm for each combination

of Mi and Ni. We project the calibrated models into the validation period (i.e., years S + 1

to T ) and calculate the validation risk values using formulae (2.4)-(2.7) with the summation

changed to be over the validation period. The optimal Mi and Ni are selected as those that

achieve the lowest validation risk value (measured by one of the four metrics calculated as

in Equations (2.4)-(2.7) using validation set). In so doing, we obtain the calibrated model

corresponding to the optimal parameters Mi and Ni. Then, the obtained model is projected

into the future periods for mortality forecasting.

The DSA-based prediction model can be summarized into a procedure of the following

five steps:

1. Initialization. Specify the target population i, the corresponding candidate pool

(all possible choices of other populations) and COG. Divide the training data of age-

specific mortality rates into two periods: modeling period, and validating period.

2. Implementation of the DSA algorithm. For each fixed Ni ∈ {1, 2, . . . , Nmax},
apply the DSA algorithm with the modeling dataset to obtain a sequence of optimal

groups Gi,Mi,Ni
, Mi ∈ {1, 2, . . . ,COG}, which gives the lowest in-sample risk value for

each group size Mi.

3. Validation. The optimal group G∗i,Mi,Ni
emerges by choosing the smallest validation

risk among all the COG×Nmax models identified from the DSA algorithm.
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Algorithm 1: DSA algorithm for optimal grouping selection

Input: Target population, Candidate Pool, COG

Output: G∗ (a sequence of groups in increasing size), and BEST (a vector of risks

values)

Initiation: s = 1, G = G1, G1 = G1, BEST(1) = f(G1), BEST(s) =∞ for

s = 2, . . . ,COG;

† Load information: Current group G of size s;

while s < COG do

if s > 3 then

Deletion: Find the optimal G− of size s− 1;

if f(G−) < BEST(s− 1) = f(G∗s−1) then

BEST(s− 1) = f(G−);

Set G∗s−1 = G−, G = G−, and return to †;
end

end

if s > 2 then

Substitution: Find the optimal G= of size s;

if f(G=) < BEST(s) = f(Gs) then

BEST(s) = f(G=);

Set G∗s = G=, G = G=, and return to †;
end

end

Addition: Find the optimal G+ of size s+ 1;

if f(G+) < BEST(s+ 1) = f(Gs+1) then

BEST(s+ 1) = f(G+);

Set Gs+1 = G+, G = G+, and return to †;
end

end
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Start of the algorithm

Initialization: COG,

s = 1, G1 and BEST [1]

* Current group G with size s

s < COG?

Stop iteration and Output: Gs

and BEST [s] for s ∈ [1 : COG]

End of the algorithm

No

Deletion:G− ≡
argminG′∈DEL(G) f(G

′)

f(G−) < BEST (s− 1)

Yes

G= ≡ argminG′∈SUB(G) f(G
′)

Gs−1 ← G−, G ← G−,BEST (s −
1) ← f(G−) return to *

Yes

No

f(G=) < BEST (s)

G+ ≡ argminG′∈ADD(G) f(G
′)

Gs ← G=, G ← G=,BEST (s) ←
f(G=) return to *

Yes

No

f(G+) < BEST (s+ 1)

return to *

Gs+1 ← G+, G ← G+,BEST (s +

1) ← f(G+) return to *

Yes

No

Figure 2.1: Illustration of DSA: the flow chart
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4. Parameter Estimation. With the determined values of Mi and Ni as well as the

selected group G∗i,Mi,Ni
from the preceding step, we re-calibrate the selected model

using the whole training dataset (including both the modeling and validating datasets).

5. Forecasting. We project the re-calibrated model into the future periods for mortality

forecasting.

2.3 Numerical analysis

2.3.1 Data and Benchmark Models

We apply our DSA-based procedure to a set of populations from the HMD for mortality

prediction. The HMD is available for download on the website: https://www.mortality.

org/. The HMD contains data from 46 countries or regions, with different scopes and

lengths of time. We selected 30 out of the 46; see Appendix A.1 for the detailed list.

As mentioned in Section 1.1.2, we will focus on mortality data from 1970 to 2010.

We applied the following principles to the choices of populations. The mortality data of

34 countries/regions from 1970 to 2010 are chosen in our study. Our assumption is that

the more recent the data, the more relevance it bears on current and future mortality.

Therefore, our study does not take into consideration the time period before the Second

World War. This provision may also help to avoid the potential impact of rare events or

pattern changes. In addition, a moderately sufficient amount of data are preferred to learn

a prediction model. That being said, we do our best to maintain a balance between the

size of the candidate pool and the length of the time period for the data. For countries

and regions that have mortality data with multiple scopes, only one specific scope is chosen

to avoid double counting. Four countries/regions (i.e., Estonia, Iceland, Luxembourg, and

Northern Ireland) are left out because their datasets contain many missing data and zero

death rates. We use interpolation to fix missing data, and replace zero mortality rates with

the average value of the same age group from the years preceding and succeeding the given

year.

For each of the 30 populations, we consider mortality forecasts for both genders. Each

gender of the same population is treated separately, thus we actually have 60 populations

in our study. When one of the 60 populations is the target for prediction, the rest of the 59

populations form the candidate pool, to which we apply the DSA algorithm. We compare

our model with the following benchmark models:
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• Lee-Carter: The Lee-Carter model will be fit for each of the 60 populations indepen-

dently, using mortality rates in the whole training set. The sequence of kt obtained

from the SVD procedure is fitted using the auto.arima function from the R package

forecast to search for a suitable ARIMA model.

• ACF·AIO: Each gender consists of 30 populations, and the ACF model is fitted with

all the 30 populations jointly.

• ACF·GeoInfo: The 30 populations of each gender is divided into 8 groups based on

geographic proximity (for grouping information, see Appendix A.1). The grouping

basically follows Richman and Wüthrich [2021] with a few necessary adjustments,

because the populations in our study are not entirely identical to theirs. For each

gender, the ACF model is fitted to each geographic group.

• ACF·kmeans: For each gender, groups are obtained by k-means cluster method

applied to logarithmic mortality rates data. Then the ACF model is fitted to each

group. We set parameter k = 8 (the same number of groups as in ACF·GeoInfo) in

the clustering algorithm and apply the best clustering result from 1,000 independent

random initializations in the clustering algorithm.

• ACF·kmedian: The same as ACF·kmeans except that groups are obtained by k-

median cluster method.

Regarding the above benchmark models, two further points are worth mentioning:

(a) Since our DSA based procedure fits all the time trend sequences with ARIMA models,

we fit an ARIMA model to the sequence kt obtained from the Lee-Carter model so

that the results can be comparable.

(b) The last two benchmark models in the above list are resulted from two prevailing

clustering algorithms, the k-means and the k-median. It should be noted that k (or

K) in these two clustering algorithms is a standard notation in the machine/statistical

learning literature, and it differs from the time trend sequence kt from the Lee-Carter

model.

2.3.2 Numerical Procedure

The numerical procedure is carried out throughout our study in the following steps:
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1. We split the mortality dataset (consists of data from 1970 to 2010) into a training

set (1970-2002) and a test set (2003-2010). This gives roughly 80% of the data for

training and 20% for testing. The training set is further split into a modeling set

(1970-1993) and a validation set (1994-2002).

2. We set each of the 60 populations as the target for prediction and take the rest 59

gender-specific populations as the candidate pool. The DSA algorithm proceeds with

the following specifications:

(a) We use each of the four metrics defined in Equations (2.4)-(2.7) as the risk

function in the DSA algorithm. The resulting prediction models are, respectively,

labeled as DSA·MSE, DSA·MAE, DSA·MSPE, DSA·MAPE.

(b) COG = 30. The COG is set in the DSA algorithm to maintain a balance between

model generality and computational demand.

(c) Nmax = 5. This parameter controls the complexity of population-specific effects

which are contained in the residuals after extracting the common factor in the

extended ACF model. The choice of Nmax = 5 is consistent with the setup of

p = 5 considered by Booth et al. [2002] in the rank-p SVD approximation for

mortality modeling.

3. The model validation step is implemented in accordance with the procedure described

in Section 3.3 to determine the optimal group for each target population. Then, the

whole training dataset (including both the modeling and validating sets) is used to

recalibrate the parameters in the determined model.

4. For each target population, by using the re-calibrated model from the preceding step,

we form forecasts of logarithmic ASDRs over the testing period (i.e., 2003-2010). We

compute the test risk value for each of the four metrics (i.e., MSE, MAE, MSPE, and

MAPE) in Equations (2.4)-(2.7) with the summation taken over the testing period.

5. For each benchmark model (i.e., Lee-Carter, ACF·AIO, ACF·GeoInfo, ACF·kmeans,

and ACF·kmedian), we calibrate with the training data (including both the modeling

and the validating sets), extrapolate the calibrated model into the testing period to

obtain mortality forecasts, and then calculate risk values for each risk metric as we do

with the DSA-based model.
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2.3.3 Prediction Performance

This subsection compares the prediction performance of our DSA based models with that of

the benchmarks through summary statistics and a formal hypothesis test. The comparison

is based on the test risk values (MSE, MAE, MSPE, or MAPE) from the 60 populations

described in Section 2.3.1.

2.3.3.1 Comparison via Summary Statistics

The numerical procedure in Section 2.3.2 with each prediction model yields a test risk

value for each population. A smaller test risk value is more desirable, as it ensures a

better performance for a prediction model. Table 2.1 reports the 1st-quartile, 3rd-quartile,

mean, and median of the test risk values of the 60 populations obtained under different

combinations of risk metrics and prediction models. These summary statistics show that our

DSA-based prediction models generally yield smaller risk values, that is, they perform better

than all benchmarks. In particular, DSA·MSE and DSA·MAE consistently outperform other

prediction models in terms of MSE, MAE, and MAPE. Even under the risk metric MSPE,

the performance of these two DSA models is comparable to all benchmark models if not

better. The DSA·MSPE model, though having less satisfactory performance than other

DSA models, is nevertheless competitive when compared with the benchmark models.

Figure 2.2 gives boxplots of the test risk values of 60 populations under various prediction

models evaluated using each risk metric. The test MSPE values are rather dispersive, and

a zoom-in version with all outliers excluded is given in Figure 2.3. These figures indicate

that the DSA-based models generally yield smaller mean and median, fewer outliers, and

smaller variations of the resulting risk values. Therefore, the performance of our DSA model

is superior to that of other models, regardless of the risk function that is applied in the DSA

step and the metric that is used in calculating the test risk values.

2.3.3.2 Comparison via Diebold-Mariano Test

For a formal comparison of prediction performance, we conduct the one-sided Diebold-

Mariano (DM) test to determine if the prediction error of a given model is statistically

significantly smaller than that of another. The DM test, introduced by Diebold and Mariano

[1995] and further improved by Harvey et al. [1997], is a formal statistical hypothesis testing

method in the field of forecast comparison. The test is based on two sequences of forecast

values from two predictive models. To implement the DM test, we made some modifications
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Table 2.1: Summary statistics of test risk values of the 60 populations.

MSE 1st quartile Median Mean 3rd quartile

Lee-Carter 0.0397 0.0680 0.1409 0.0886

ACF·AIO 0.0291 0.0538 0.0579 0.0794

ACF·GeoInfo 0.0324 0.0629 0.0589 0.0810

ACF·kmeans 0.0318 0.0576 0.0611 0.0773

ACF·kmedian 0.0304 0.0520 0.0583 0.0851

DSA·MSE 0.0233 0.0491 0.0518 0.0751

DSA·MAE 0.0238 0.0494 0.0512 0.0756

DSA·MSPE 0.0276 0.0519 0.0580 0.0811

DSA·MAPE 0.0277 0.0491 0.0548 0.0758

MAE 1st quartile Median Mean 3rd quartile

Lee-Carter 0.1406 0.1644 0.1917 0.1971

ACF·AIO 0.1227 0.1575 0.1567 0.1889

ACF·GeoInfo 0.1237 0.1660 0.1567 0.1838

ACF·kmeans 0.1254 0.1560 0.1554 0.1793

ACF·kmedian 0.1248 0.1558 0.1573 0.1860

DSA·MSE 0.1105 0.1445 0.1465 0.1792

DSA·MAE 0.1104 0.1480 0.1455 0.1751

DSA·MSPE 0.1102 0.1520 0.1558 0.1921

DSA·MAPE 0.1126 0.1444 0.1495 0.1749

MSPE 1st quartile Median Mean 3rd quartile

Lee-Carter 0.0013 0.0026 0.0087 0.0053

ACF·AIO 0.0012 0.0027 0.0048 0.0045

ACF·GeoInfo 0.0011 0.0026 0.0057 0.0052

ACF·kmeans 0.0012 0.0024 0.0054 0.0049

ACF·kmedian 0.0012 0.0026 0.0049 0.0048

DSA·MSE 0.0012 0.0022 0.0055 0.0043

DSA·MAE 0.0012 0.0021 0.0052 0.0047

DSA·MSPE 0.0012 0.0022 0.0056 0.0044

DSA·MAPE 0.0014 0.0023 0.0049 0.0039

MAPE 1st quartile Median Mean 3rd quartile

Lee-Carter 0.0262 0.0353 0.0414 0.0436

ACF·AIO 0.0252 0.0324 0.0343 0.0415

ACF·GeoInfo 0.0247 0.0343 0.0346 0.0433

ACF·kmeans 0.0240 0.0311 0.0347 0.0399

ACF·kmedian 0.0254 0.0312 0.0346 0.0420

DSA·MSE 0.0242 0.0309 0.0330 0.0386

DSA·MAE 0.0235 0.0295 0.0324 0.0394

DSA·MSPE 0.0256 0.0311 0.0344 0.0422

DSA·MAPE 0.0251 0.0312 0.0328 0.0383
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Figure 2.2: Boxplots of test risk values of the 60 populations.
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Figure 2.3: Boxplot of test MSPE values with outliers discarded.

to steps 4 and 5 in the numerical procedure described in Section 2.3.2. We do the summation

in formulae (2.4)-(2.7) only for age and calculate risk values for each year over the testing

period (2003-2010). This gives us 8 test risk values for each prediction model along with

each risk metric.

For each metric and each target population, the DM test is conducted pairwise between

one DSA model and one benchmark model. To facilitate the exposition of the pairwise test

procedure, we label the pair of models in comparison by Model A and Model B. As has been

noted earlier, a sequence of 8 test risk values is associated with each prediction model. Two

one-sided DM tests are available to us, respectively, corresponding to the null hypothesis,

that is Model A is no worse than Model B, and the opposite. When Model A is confirmed

to be significantly better than the other in the pair by the test with a p-value smaller than

0.05, we count it as a win by Model A over Model B. Similarly, if Model B is confirmed to

perform better by the test with a p-value smaller than 0.05, we count it as a win by Model

B over Model A. We do the tests for each of the 60 target populations and total all the wins

obtained by one model over the other. The number of wins by Model A and that by Model

B do not necessarily sum to 60, because the question is still open as to whether Model B

necessarily wins when the test does not confirm a win by Model A.

Table 2.2 reports the number of wins by one model over another under each performance

risk metric. Each cell of the table includes two integers. The first integer is the number of

wins by the corresponding model in the row over the model on the column, and the second
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integer is the number of wins by the model in the column over the one in the row. For

example, “(49, 1)” in the first cell from the left of the first row in the panel of MSE means

that the DSA·MSE model wins 49 times over the Lee-Carter model, and the Lee-Carter

model wins the DSA·MSE model only once among all the 60 comparisons. For the rest of

the 10 populations, we are unable to deduce which model performs statistically better.

Table 2.2 clearly indicates, according to the DM test results, the DSA based models

generally perform much better than all the benchmark models. The superiority of the DSA

based models is all the more evident when compared with the Lee-Carter, the ACF·AIO, and

the ACF·kmedian models, regardless of the applied performance metric. The ACF·GeoInfo

and the ACF·kmeans have the best performance among the set of benchmark models, but

not as good as the DSA based models do in general. However, exceptions do occur when

the DSA·MSPE model is applied.

The population-specific comparison is also conducted between the DSA·MSE model and

the benchmark ACF·GeoInfo model based on the test MSE on 30 female populations and

listed in Table A.2. Based on the results, the proposed method has led to an increase in

predicting accuracy for 24 out of 30 female populations with an averaged 15.59% improve-

ment.

2.3.3.3 Comparison upon Gender-specific Populations

We show the boxplots of test risk values for the 30 female populations in Figure 2.4 and

those for the 30 male populations in Figure 2.5 in order to investigate the performance of

the DSA-based model in relation to the benchmark models when applied to gender-specific

populations. In general, while the prediction errors for female mortality seem to be stable,

those for male mortality rates are volatile, regardless of the risk metric used for performance

measure. The prediction quality of every prediction model is higher in the female population

than in the male. Even so, the superiority of the DSA-based models over the benchmarks

is still evident on the boxplots from the populations of either gender.

2.3.4 Some Further Observations on the DSA based Models

Figure 2.6 demonstrates the distribution of the optimal group size Mi and the population-

specific component size Ni selected by each DSA-based model over the 60 populations. The

figure shows that the DSA-based models select varying group sizes and component sizes

across the 60 target populations. Only a small portion of the 60 populations are assigned

with a group size of one by the DSA-based models. Accordingly, we believe that, in terms
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Table 2.2: Wins of one prediction model over another under the criterion

of a p-value less than 0.05 from the one-sided DM test. The first element

in cell is the number of wins (from the comparison over all the 60 pop-

ulations) by the corresponding model in the row over the model on the

column.

MSE Lee-Carter ACF·AIO ACF·GeoInfo ACF·kmeans ACF·kmedian

DSA·MSE (49, 1) (34, 9) (30, 12) (30, 16) (35, 9)

DSA·MAE (47, 4) (37, 10) (29, 10) (27, 20) (36, 11)

DSA·MSPE (40, 7) (27, 19) (19, 20) (21, 21) (27, 17)

DSA·MAPE (42, 5) (27, 14) (27, 16) (25, 21) (26, 15)

MAE Lee-Carter ACF·AIO ACF·GeoInfo ACF·kmeans ACF·kmedian

DSA·MSE (45, 2) (34, 13) (31, 13) (23, 17) (36, 10)

DSA·MAE (46, 5) (39, 10) (31,12) (25, 17) (39, 10)

DSA·MSPE (36, 11) (29, 20) (23, 21) (19, 24) (30, 21)

DSA·MAPE (43, 5) (28, 13) (22, 20) (21, 17) (29, 14)

MSPE Lee-Carter ACF·AIO ACF·GeoInfo ACF·kmeans ACF·kmedian

DSA·MSE (29, 9) (22, 12) (26, 10) (23, 13) (24, 7)

DSA·MAE (28, 5) (18, 8) (24, 9) (20, 12) (21, 7)

DSA·MSPE (26, 7) (22, 17) (18, 13) (16, 18) (21, 16)

DSA·MAPE (24, 9) (22, 12) (15, 13) (18, 15) (22, 13)

MAPE Lee-Carter ACF·AIO ACF·GeoInfo ACF·kmeans ACF·kmedian

DSA·MSE (37, 6) (34, 15) (26, 17) (22, 18) (34, 13)

DSA·MAE (36, 4) (32, 6) (29, 13) (23, 16) (33, 6)

DSA·MSPE (30, 10) (25, 17) (21, 22) (18, 22) (25, 17)

DSA·MAPE (31, 7) (24, 15) (20, 19) (21, 20) (25, 14)
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Figure 2.4: Boxplots of test risk values from the 30 female populations.

of mortality prediction, the DSA algorithm considers the single-population model as less

competitive for most populations. Moreover, we observe that the DSA-based procedure

selects more than one population-specific component, i.e., Ni > 1, for a majority of the 60

populations. That is to say, the extension that includes more than one population-specific

component in model (2.1) helps to enhance the performance of mortality prediction.

We also explore the membership of the optimal group selected by the DSA-based models

for each target population and conduct a comparison with the grouping information from

the geographic proximity specified in Appendix A.1. For the sake of brevity, we focus on

the DSA·MSE model and present four specific examples in Table 2.3. The membership

results ensure that our DSA-based procedure not only produces groups that are consistent

with geographic information to a certain degree but also makes further improvements. In

some cases, when the group based on geographic proximity is satisfactory, our DSA-based

procedure proceeds to choose a further subset as the optimal one. For instance, the group

of female Hungarians belongs to this category. In other cases, discrepancies occur between

the optimal group from the DSA procedure, and the geographic proximity information,

then several representative populations from other parts of the world are added to the

optimal group. For example, female Canadians are added to the group of female Taiwanese.
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Figure 2.5: Boxplots of test risk values from the 30 male populations.

This happens when the prediction accuracy can be enhanced with the group that contains

not only geographically proximate populations but also distant ones with similar mortality

development patterns. In further other cases, the target population has relatively unstable

mortality patterns. In order to offset the adverse effects of volatility in the mortality rates

of the target population and avoid obtaining unstable prediction results, some populations

from other parts of the world instead of being geographically proximate are added to the

optimal group. One such example is the Bulgarian female population.

2.4 Concluding Remarks

Our data-driven framework selects populations from any given candidate pool to enhance

mortality forecasting of individual populations. The DSA algorithm is the key element of our

framework, designed to screen populations for joint modeling. The framework is fully data-

driven and flexible to embrace any multi-population mortality model. Numerical analysis

with the Human Mortality Database is conducted to confirm that the performance of the

proposed DSA-based prediction method is indeed superior to many prevailing benchmark
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Figure 2.6: Distributions of Mi (group size) and Ni (number of population

specific components) selected by the DSA based prediction model over the

60 populations.
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Table 2.3: Some examples of membership in the optimal group selected by the

DSA·MSE model.

Target
Members

Test MSE

Population DSA·MSE ACF·GeoInf

Bulgaria.female

Bulgaria.female

Australia.female

Czech Republic.female

Denmark.male

Japan.female

Latvia.female

Latvia.male

Norway.female

Russia.male

Slovakia.male

New Zealand.male

Scotland.male

0.0481 0.0961

Hungary.female
Hungary.female

Czech Republic.male
0.0529 0.0853

Canada.female

Canada.female

Canada.male

Austria.male

Japan.male

Japan.female

Netherlands.male

Taiwan.female

U.S.A.female

0.0168 0.0198

Taiwan.male

Taiwan.male

Switzerland.male

Portugal.female

Czech Republic.male

Japan.female

0.0199 0.0360
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models.

The implementation of the DSA algorithm in our framework yields a sequence of groups

in increasing size. Thus, the algorithm can be treated as a stepwise forward procedure

for the selection of populations. It starts with a group consisting exclusively of the target

population. Then, more populations are added to gradually increase the group size, though

deletion and substitution moves might be repeated in the course of the procedure. An

alternative to the DSA algorithm is the Addition-Substitution-Deletion (ASD) algorithm,

which reverses the order of the three moves in the DSA algorithm. Different from the DSA

algorithm, the ASD algorithm starts with a group composed of the target population and

all the candidates from the pool. Then, the group size is gradually decreased by removing

certain populations from the group. Both the DSA and the ASD algorithms can eventually

provide a sequence of grouping results for model selection in the validation step. Instead

of the ASD algorithm, we choose the DSA algorithm for our mortality forecast framework

largely because of its computational efficiency. The DSA algorithm allows the users to cut

off the search process by setting the parameter COG and controlling the computational

demand in running the algorithm. When a COG smaller than the total size of the input

candidate pool is set, the algorithm will search for optimal groups in size only up to the

designated value of COG, and discard all the groups in size bigger than COG. On the

contrary, if we need to control the computational demand in the ASD algorithm and set

a value for COG smaller than the total number of the candidate pool, the algorithm will

leave out all the groups in size smaller than COG in the search for the best grouping.

Quantification of uncertainty is one of the essential aspects of any forecasting procedure.

With respect to the forecasting of mortality rates, the fan charts are commonly employed

for uncertainty quantification. The fan charts delineate confidence intervals for the future

mortality rates over time. Examples can be found in Hatzopoulos and Haberman [2009],

Li et al. [2009] and Cairns et al. [2011b]. The implementation of our DSA framework

yields a joint model of mortality rates for the target population along with a set of selected

auxiliary populations. We can simulate a great number of paths for future mortality rates

from the resulting mortality model, and then generate fan charts from the simulated paths.

Since it is quite a conventional procedure to build the fan charts and the most innovative

part of our DSA-based framework lies in its flexibility to embrace various joint models and

information from a given candidate pool of populations, we choose not to delve into the

details of quantification of forecast uncertainty in the chapter.

When conducting a comprehensive evaluation of a mortality forecasting model, many

factors are worthy of our attention, and empirical prediction accuracy is merely one of

them. For instance, Cairns et al. [2009] and Haberman and Renshaw [2011], among others,
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have considered various desirable properties, such as parsimony, transparency, generation

of simple paths, cohort effects, nontrivial correlation structure, robust parameter estimates,

biological reasonableness. It is only in terms of the empirical prediction accuracy that the

present chapter asserts the superiority of the DSA-based models over the benchmarks. On

no account do we claim the superiority of our model in any other aspect. For example,

the ACF model using stationary times series models, including the random walk with zero

drift and AR(1) model, for the population-specific components, can yield coherent mortality

forecasting results. By extending the models to the general ARIMA model, the resulting

model can no longer generate coherence.
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Chapter 3

Bivariate Model Based Ensemble and

Time Shifting

3.1 Introduction

In this chapter, we propose an ensemble statistical learning framework that allows for bor-

rowing information from the mortality data of a given pool of auxiliary populations to

enhance the accuracy of mortality forecast for a target population. In this ensemble frame-

work, we propose to use bivariate mortality models as the base learners. We establish a

sequence of bivariate mortality models between the target population and each auxiliary

population from the given pool and then apply a certain averaging strategy to ensemble

all the estimates from those established bivariate models. The idea of averaging over a

sequence of estimates for the same prediction target was commonly used in meta-analysis

in statistics and stacking ensemble methods in machine learning, e.g., Claeskens and Hjort

[2008], Raftery et al. [1997], Hansen and Racine [2012], and references therein. Recently, the

averaging idea has been implemented in some literature for mortality prediction. First, the

model averaging method has been applied by Shang [2012], Shang and Haberman [2018],

and Shang and Booth [2020]. Second, the stacking regression ensemble methods have been

used in Kessy et al. [2021]. These studies fit different types of single-population mortality

models to the mortality data of a given population and then apply different model aver-

aging strategies to aggregate the forecasts from various models to obtain a final forecast.

In contrast, we utilize the averaging approach novelly to borrow information from multi-

ple auxiliary populations to enhance the forecasting accuracy for a target population. We

aggregate predictions for a target population that are obtained from a cascade of bivariate-

population models of the same type (i.e., base learners), each built upon the data of the

42



target population and one of the auxiliary populations.

Our proposed bivariate model based ensemble (BMBE) framework facilitates borrowing

information from multiple populations, and in the meanwhile, circumvents the potential

computational difficulties and intractability of a large-dimensional multi-population model.

We investigate various “averaging strategies” including a simple average over the whole

pool of auxiliary populations, an average within geographical subgroups, and an average

within k-means clusters. We also propose a data-driven “rank and average” strategy which

ranks auxiliary populations according to their capability of improving the accuracy of the

mortality forecast for the target population and averages over those top-performed ones

selected by a cross-validation procedure.

Another merit of the proposed BMBE framework is its flexibility in working with dif-

ferent base learners. When bivariate-population models such as ACF and CBD models are

adopted as the base learner, the flexibility of our proposed framework allows us to add

a parameter ∆t into the common mortality trend component to characterize the time by

which one population is ahead of or behind the other in their mortality development stages.

According to Zhou et al. [2014], some populations tend to be more dominating while others

tend to follow their mortality dynamics. For instance, a developing country may demon-

strate a similar mortality improvement pattern in the recent decade to what a developed

country experienced earlier in the 1990s. Furthermore, as mentioned in Section 5.4 of Li

et al. [2015b], for two populations, the period effect estimates, which capture the mortality

developing trend in time, usually roughly co-move with one another but are located at dif-

ferent absolute levels. These observations motivate us to study the effect of time shift on

the accuracy of mortality forecast under our proposed BMBE framework. Leads and lags

in mortality have also been studied in Milidonis and Efthymiou [2017] with the belief that

developed populations would lead the mortality changes in the less developed populations.

We apply the proposed BMBE prediction method to mortality data of 24 populations

of both genders from the Human Mortality Database (HMD). We conduct two empirical

studies. In the first empirical study, we adopt the ACF model (with and without a time

shift component) as the base learner and apply the BMBE method with various averaging

strategies to predict mortality rates of ages between 0 and 100. In the second empirical

study, we take the CBD model (with and without a time shift component, with and with-

out a cohort effect term) as the base learner because we aim to predict mortality rates for

seniors aged 55-90. The outperformance of the proposed BMBE over several benchmark

prediction methods is profound in the first empirical study where the ACF model is used

as the base learner and the inclusion of the time shift component can further improve the

forecasting accuracy. The second empirical study reveals some key points of using the model

43



average approach: 1) If the utilized base learner is a misspecified bivariate-population model

for most pairs of populations, the biases arising in individual bivariate-population models

cumulate and may lead to unsatisfactory prediction results in the BMBE framework. Less-

ening misspecification in base learners is the key to success when using the model average

approach. 2) A weak base learner with fewer model assumptions predicts less accurately

than a strong base learner with more model assumptions if these model assumptions are

correctly specified, of which the first empirical study provides a good example. However,

the weak base learner performs better if these model assumptions are not satisfied, of which

the second empirical study provides a good example. There is a trade-off between predic-

tion accuracy and robustness. 3) The “rank and average” strategy is more robust to the

misspecification of the base learner compared to other averaging strategies.

The rest of the chapter proceeds as follows. Section 3.2 describes the ACF and CBD

models with the additional time shift parameter. These two models are used as the base

learners in our empirical studies, respectively. Section 3.3 introduces various averaging

strategies. Section 3.4 presents empirical studies with the Human Mortality Database.

Section 3.5 provides some discussion about the interpretation of the time shift parameter

and the effect of a cohort effect on the base learners. Finally, Section 3.6 provides concluding

remarks and some discussions on possible avenues for future research.

3.2 The Base Learner

In our proposed BMBE framework, the base learner is a bivariate-population model used

to link the target population with one auxiliary population from a given pool. In principle,

any bivariate-population model can be used as the base learner in our proposed BMBE

framework.In this chapter, we use two prevailing bivariate-population models, the ACF and

CBD models, as the testbed because of their unique roles in the literature. As mentioned in

the preceding section, we add a time shift parameter ∆t to the bivariate-population models

to investigate how it can affect the resulting forecasting accuracy of our BMBE approach.

We label the resulting bivariate-population models by ACF-ts and CBD-ts, respectively,

with the suffix to indicate the inclusion of the “time shift” parameter in the models.

3.2.1 ACF-ts Model

Let logmj(x, t) denote the central logarithmic mortality rate at age x in year t of the

jth population, for t = 0, 1, . . . , T , x = x1, . . . , xn, and j = 1, 2. The ACF-ts model is
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an extension of the bivariate-population ACF model of Li and Lee [2005] with an extra

parameter ∆t representing the time shift:

logm1(x, t) = a1(x) +B(x)K(t) + b1(x)k1(t) + ε1(x, t), (3.1)

logm2(x, t) = a2(x) +B(x)K(t−∆t) + b2(x)k2(t) + ε2(x, t). (3.2)

The first population (with subscript 1) is the target population for mortality prediction. The

second population (with subscript 2) is the population included to borrow information from,

and is hereafter referred to as the “auxiliary population”. The time shift parameter ∆t,

which takes integer values from an interval symmetric about 0, characterizes the advance

or delay of “evolution” in years by the target population over the auxiliary. If ∆t = 0,

the model degenerates to the bivariate-population ACF model of Li and Lee [2005]. The

other components in the model carry the same meaning as those in the ACF model, i.e.,

the common trend term is a product of B(x), a deterministic age function, and K(t), a

stochastic period function, bj(x) and kj(t) constitute the population-specific components,

and εj(x, t) are the white noise terms, j = 1, 2. The time-lag structure of the common

process in the aforementioned base learner is a special case of a more general Granger-

causality method in Milidonis and Efthymiou [2017]. We actually assumes the common

process term in population 1 at time t is perfectly correlated with that in population 2 at

time t−∆t.

To avoid the issue of model unidentifiability, we impose the following constraints in

parallel to the ACF model:

n∑
l=1

B(xl) = 1,
∑
t∈S

K(t) = 0,
n∑
l=1

bj(xl) = 1, and
T∑
t=0

kj(t) = 0,

where S = {−∆t,−∆t + 1, . . . , T} for ∆t ≥ 0 and S = {0, 1, . . . , T − ∆t} for ∆t < 0. In

our study, we fit the common trend sequence K(t) by a random walk process with drift

(RWD), a widely used model in the literature. In the meanwhile, we fit the population-

specific components kj(t) with the “best” ARIMA model chosen by the Akaike Information

Criterion (AIC). For the calibration of the ACF-ts model, we prespecify a set of integer

values for ∆t, implement the usual singular value decomposition (SVD) procedure for the

calibration of the model with ∆t fixed at each integer from the prespecified set, and then

apply a validation procedure to choose the best ∆t value (see Section 3.2.4). We relegate

the step-by-step calibration procedure to Appendix B.1.
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3.2.2 CBD-ts Model

Let qj(x, t) denote the probability that an individual in population j aged x will die between

t and t + 1 given the individual is alive at time t, for t = 0, 1, . . . , T , x = x1, . . . , xn, and

j = 1, 2. The CBD-ts model describes the mortality development of two populations as

follows:

logit(q1(x, t)) = K(t) + (x− x̄)k1(t) + ε1(x, t), (3.3)

logit(q2(x, t)) = K(t−∆t) + (x− x̄)k2(t) + ε2(x, t), (3.4)

where logit(q) ≡ log
(

q
1−q

)
, x̄ =

∑n
l=1 xl/n. The time shift parameter ∆t takes integer

values from a symmetric interval centered at 0. This specification extends the original

single-population CBD model of Cairns et al. [2006] or equivalently model M5 in Cairns

et al. [2009] to a bivariate-population model by introducing a common age-period term

K(t) shared by both populations and a time shift parameter to reflect the differences in

their mortality development stages. We fit the common trend sequence K(t) with a RWD

model and the population-specific components kj(t) with a bivariate RWD model. The

calibration of ∆t is also carried out through a validation procedure as in the ACF-ts model

(see Section 3.2.4 for details), and that of other components uses the maximum likelihood

method (see Appendix B.2 for details).

3.2.3 A Generalized Model Setup

The aforementioned models can be further summarized as a general framework that encom-

passes many classic bivariate-population mortality models. If ηj(x, t) is denoted to represent

an age-specific quantity characterizing the mortality level at age x in year t of the jth pop-

ulation, for t = 0, 1, . . . , T , x = x1, . . . , xn, and j = 1, 2. A generalized bivariate-population

model that allows time shift can be specified as follows:

η1(x, t) = F (x, t) + f1(x, t),+ε1(x, t), (3.5)

η2(x, t) = F (x, t−∆t) + f2(x, t) + ε2(x, t). (3.6)

F (x, t) is a function characterizing an underlying common mortality trend shared by both

populations, ∆t takes integer values from a symmetric interval with respect to 0, f1(x, t)

and f2(x, t) reflect the specific features of the two populations respectively, and ε1(x, t) and

ε2(x, t) denote white noise terms in the above model.

We have demonstrated how extensions can be spawned from the ACF model and the

CBD model under this framework respectively. Extension of some other mortality models is
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also available through different specifications of ηj(x, t), F (x, t) and fj(x, t). For example,

the cohort effect could be considered in fj(x, t), to extend those mortality models with a

cohort effect. An Example will be provided in Section 3.5.2.

3.2.4 Choice of ∆t

As mentioned earlier, the parameter ∆t is designed to capture the difference in years of

mortality development between the target population and the auxiliary population in the

bivariate ACF-ts or CBD-ts model. The way to determine the value of ∆t is in the same

spirit as choosing values of hyperparameters in statistical learning, which can be realized

by applying a validation procedure. As a preparation, the training dataset is partitioned

into a modeling set and a validation set and a grid of integer values is pre-specified for ∆t.

The modeling set is used to calibrate a model with a fixed ∆t and this modeling procedure

yields a series of fitted models corresponding to each integer in the pre-specified set. The

value of ∆t is determined as the one that yields the smallest overall sum of squared errors

(SSE) calculated based on the validation set for predicting logmj(x, t) in the ACF-ts model

or logit(qj(x, t)) in the CBD-ts model.

In the analysis of HMD in Section 3.4, we take a pre-specified set of integers over [−10, 10]

for ∆t. Given two specific populations, sometimes it is clear the mortality development stage

of the target population is in advance of the auxiliary population or the other way around,

so a set of positive or negative integers is appropriate. However, we universally adopt the

candidate set {−10,−9, . . . , 9, 10} for ∆t when jointly modeling any pair of target and

auxiliary populations to make the choice of ∆t fully driven by data and avoid selection

biases due to subjective judgment on the development stages of populations.

3.3 Bivariate Model Based Ensemble for Prediction

The bivariate-population models introduced in Section 3.2 allow us to borrow information

from one auxiliary population for the forecasting of the target. To borrow information

from multiple populations, it is natural to think of a multi-population model, which can be,

however, highly intractable and computationally prohibitive when it comes to calibration.

Further, as pointed out in the introduction section, identifying a set of auxiliary populations

conducive to enhancing forecast accuracy for the target population is a complex undertaking.

So, instead of calibrating a multi-population model, we propose an ensemble framework

using the bivariate-population models as the base learners.
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The primary idea of the ensemble procedure is to reduce the prediction uncertainty

and improve prediction accuracy by aggregating prediction results from multiple predictive

models. For a given target population and a pool of auxiliary populations, we fit a bivariate-

population model between the target population and each auxiliary population in the pool

and obtain the extrapolative results (i.e., forecast) on future mortality rates of the target

population from each of the resulting bivariate-population models. We then aggregate all

the forecasts to form a final forecast for the mortality of the target population. Let η
(s)
1 (x, t)

denote the mortality forecast of the target population for age x and calendar year t using

information from the sth auxiliary population, s = 1, . . . , S. Here, η1(x, t) = logm1(x, t)

if the ACF-ts model was adopted as the base learner, and η1(x, t) = log
[

q1(x,t)
1−q1(x,t)

]
if the

CBD-ts model was used. Then the final ensemble prediction takes a general form of

η̂1(x, t) =
S∑
s=1

wsη
(s)
1 (x, t) , (3.7)

where ws is the weight assigned to the sth auxiliary population. We consider the following

averaging strategies (i.e., the strategies of assigning the weights ws):

• Simple Average (SimAvg): This is the most naive strategy where we assign equal

weights to all S auxiliary populations, i.e., set ws = 1
S

, for s = 1, . . . , S, in Equa-

tion (3.7). This strategy does not involve any screening over the cascade of bivariate-

population models regarding their efficacy in predicting the mortality of the target

population.

• Average Based on Geographic Information (GeoAvg): We use geographic

proximity as exogenous information to pre-select groups. For a given target popula-

tion, the final forecast is the average of forecasts from the bivariate-population models

with auxiliary populations within the same geographic group as the target population.

Specifically, if there are R auxiliary populations within the same geographic group as

the target population, we set ws = 1
R

in Equation (3.7) for the R auxiliary populations,

and ws = 0 for those auxiliary populations outside the geographic group.

• Average Based on Clustering Results (KmeansAvg): This is a data-driven

strategy to pre-specify groups using cluster analysis (k-means method) to find popu-

lations with similar mortality characteristics [Hatzopoulos and Haberman, 2013]. For

a given target population, we compute the final forecast as the simple average of the

forecasts from the bivariate-population models built with each auxiliary population

located within the same cluster as the target.
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• Rank and Average (RankAvg): This strategy is inspired by the notion that “rel-

evant” populations tend to bring in more information while “irrelevant” populations

only bring in noises. We rank auxiliary populations according to the validation SSEs of

the corresponding bivariate-population models on the validation data set mentioned

in Section 3.2.4. This strategy tends to only keep the top u∗ bivariate-population

models for the final forecast. For any u ∈ {1, 2, . . . , S}, the final forecast based on

the top u bivariate-population models is calculated by assigning ws = 1
u

for each of

the top u bivariate-population models, and ws = 0 for the rest bivariate-population

models in Equation (3.7). The value of u∗ is selected as the one such that the final

forecast yields the smallest validation SSE.

The RankAvg strategy addresses the challenge of auxiliary populations selection and

facilitates a customized selection procedure for each target population. It is expected

to have a relatively more robust performance compared with the other strategies since

it takes in the whole pool of auxiliary populations and has a mechanism of screening

out those that are impotent in improving the prediction accuracy for the mortality of

the target population.

3.4 Empirical Analysis

In this section, we evaluate the performance of various averaging strategies and base learners

under the proposed BMBE framework by applying them to the Human Mortality Database

(HMD) and comparing them with several benchmark models. We conduct two empirical

studies. The first study focuses on the mortality forecast for a full range of ages between

0 and 100 and adopts the bivariate ACF model (with and without time shift) as the base

learner. The second study focuses on mortality forecasting for the senior age group, ages

between 55 and 90, and applies the bivariate CBD model (with and without time shift) as

the base learner since the CBD model is known for its superior performance in characterizing

mortality development for seniors. In addition, we also study the possible influence to add

a cohort effect to the CBD base learner in our BMBE framework.

As one would see shortly, the first empirical study confirms a noticeable improvement

in mortality forecasting accuracy by the BMBE method over benchmark models and a

positive contribution in reducing forecast error by adding the time shift component to the

base learner. The second empirical study still shows an improvement by the BMBE method

though not as significant as in the first empirical study, and the inclusion of the time

shift parameter only has a marginal effect on the performance of the resulting mortality
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forecast. Furthermore, these empirical studies together reveal the importance of avoiding

severe misspecification in the base learner for the proposed ensemble method to work well.

3.4.1 Data Description

To strike a balance among different factors, such as the size of the candidate pool, the length

of time, and the number of missing values in HMD, we concentrate on the mortality data

of 30 populations from 1970 to 2010 in our empirical studies. The mortality data (1970–

2010) is split into a training set (1970–2002) and a test set (2003–2010). The training set is

further split into a modeling set (1970–1994) and a validation set (1995–2002). We use the

modeling set to fit bivariate-population models and create candidate predictive rules and

the validation set to determine the value of the parameter ∆t in each bivariate-population

model with time shift. The validation set is also used to determine the optimal number of

top-performed forecasts used in the RankAvg strategy.

According to Brainerd and Cutler [2005], demographic disasters in the form of sharply

rising death rates happened among several member countries of the former Soviet Union in

the 1990s and beyond. These populations may demonstrate an obviously different trajectory

of mortality development from the rest in the HMD, thus one population from the group

cannot be seen as an advance or a delay of a population outside the group, which imposes

a major challenge in adopting bivariate-population models with a time shift. Before we

hastily exclude these populations from our studies, we conduct further analysis to ensure

the appropriateness of the criterion of population choice used in our studies. These empirical

studies together also reveal the importance.

We illustrate the age-aggregated logarithmic mortality sequence for each of the 30 pop-

ulations on the left panel of Figure 3.1. We then conduct a k-means cluster analysis to

detect structural dissimilarity among these sequences of age-aggregated logarithmic mortal-

ity. The k-means cluster procedure is designed to exclude the effect of mortality level on the

dissimilarity among different populations. Below are the details of the clustering procedure:

1. Define a dissimilarity matrix D with entries Di,j being the variance of the sequence

diffi,j(t) =
∑

x logi(x, t)−
∑

x logj(x, t), t = 1970, 1971, . . . , 2002.

2. Apply Multi-Dimensional Scaling (MDS) to transform the matrix D into a 2-dimensional

objective. According to Cox and Cox [2008], MDS outputs a configuration of points

in a 2-dimensional space, where each point represents one original sequence and the

distance between each point pair retains the dissimilarity measured by Di,j to the

greatest extent.
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3. Implement a k-means cluster analysis to the transformed outputs of MDS.

It is worth noting that variance is used in the above procedure as the dissimilarity measure

so that the disparity in mortality level does not have an effect on the dissimilarity measure.

If two populations i and j have parallel trajectories in their age-aggregated logarithmic

mortality, the difference sequence is a constant and thus, Di,j = 0; otherwise, we anticipate

a positive value for the variance.

We display the clustering results on the right panel of Figure 3.1. From the figure, most

member countries (Belarus, Bulgaria, Latvia, Lithuania, Russia, and Ukraine) of the former

Soviet Union are classified into a separate group. We view these populations as “outliers”

in mortality development patterns. We exclude these six populations from our analysis

and focus on the rest of the 24 populations in our empirical studies; see Table 3.1 for the

specific names of the 24 populations and their geographic grouping; see Diao et al. [2021]

and Richman and Wüthrich [2021].

Table 3.1: Geographic grouping of 24 populations from HMD.

Target Population Geographic Group Target Population Geographic Group

Australia Oceania Netherlands West Europe

Austria West Europe New Zealand Oceania

Japan Asia Norway Scandinavia

Belgium West Europe Poland East Europe

Scotland Great Britain Portugal South Europe

Canada North America U.S.A. North America

Czech Republic East Europe Slovakia East Europe

Denmark Scandinavia Spain South Europe

Finland Scandinavia Sweden Scandinavia

France West Europe Switzerland West Europe

Hungary East Europe Taiwan Asia

Italy South Europe England & Wales Great Britain

3.4.2 Empirical Study with the ACF-ts Model

In this empirical study, we investigate the performance of the BMBE method using the ACF

model (with and without time shift) as the base learner, study various averaging strategies
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Figure 3.1: Clustering results of age-aggregated logarithmic mortality rates based

on MDS (from top to bottom: female and male populations)
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and the value of adding the time shift term and compare their performance with the classic

ACF models in predicting the mortality rates of ages 0–100.

3.4.2.1 Prediction Models

We take each of the 24 populations in Table 3.1 as the target for mortality forecasting and

obtain the forecasts through the BMBE method as described in Section 3.3. Specifically,

we develop a bivariate-population ACF-ts model between the target population and each of

the remaining 23 populations, resulting in 23 prediction rules for the mortality of the target

population. We then apply an averaging strategy to ensemble all of the 23 prediction results

into a final forecast. We apply all the four averaging strategies introduced in Section 3.3,

and label the resulting forecasts by ACF-ts.SimAvg, ACF-ts.GeoAvg, ACF-ts.KmeansAvg,

and ACF-ts.RankAvg, respectively. For ACF-ts.KmeansAvg, we apply a k-means clustering

analysis with k = 8 and 1,000 independent random initializations. We execute the analysis

over the 24 populations for both genders respectively.

To examine the value of including the time shift term in the ACF model, we consider

ACF·RankAvg model, which is the spacial case of ACF-ts·RankAvg with ∆t fixed at

zero. We also consider the following benchmark models for comparative analysis:

• Lee-Carter: The Lee-Carter model is fitted to each population separately. The

sequence of k(t) obtained from an SVD procedure is fitted using the auto.arima

function from the R package forecast to search for a suitable ARIMA model.

• ACF·AIO: The ACF model is fitted to the 24 populations jointly.

• ACF·GeoInfo: The ACF model is fitted to each geographic groups in Table 3.1.

• ACF·kmeans: The ACF model is fitted to each cluster from the k-means clustering

algorithm (with k = 8 and 1,000 independent random initializations).

We calibrate each of the above benchmark models using the training set (1970–2002) and

then extrapolate the resulting models into the testing period (2003–2010) for mortality

forecasting.

3.4.2.2 Prediction Performance

Evaluation Based on Test SSEs
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The prediction accuracy is evaluated in terms of test SSEs, which are denoted by e(t)

and calculated as follows:

e(t) =
100∑
x=0

[logm1(x, t)− log m̂1(x, t)]
2 , t = 2003, . . . , 2010,

where m1(x, t) is the realized mortality rate of a target population, and m̂1(x, t) is its

forecast. For a succinct summary about the performance of each forecasting model, we

compute the overall test SSE as
∑2010

t=2003 e(t) for each target population. A smaller test SSE

implies a better prediction performance.

Rotating the target population over the 24 in the pool, we obtain 24 overall test SSEs.

We report the 1st quartile, median, mean, and the 3rd quartile of the 24 overall test SSEs

for each forecasting model in Table 3.2. These results indicate that our proposed BMBE

based forecasts (the bottom five in each panel of Table 3.2), particularly ACF-ts·RankAvg

and ACF-ts·SimAvg, substantially outperform the benchmark models (the top four models

in each panel of Table 3.2) with a smaller median and mean of the resulting test SSEs.

The 1st and 3rd quartiles from each of the five BMBE based predictions are also generally

smaller than those for the benchmark models.

The 24 populations show a similar downward trend in their trajectories of logarithmic

mortality rate as shown by those red curves in Figure 3.1. Therefore, the trajectory of

one population may be well approximated by shifting that of another population and the

ACF model with a time shift can be considered a good fit for most pairs of populations.

When the base learner is a correctly specified model, the SimAvg strategy is expected to

perform well as it has the advantage of averaging over the full list of auxiliary populations

and makes use of all useful information. The relative underperformance of the GeoAvg and

KmeansAvg strategies is due to the fact that they both only borrow information from a

small subset of the population pool. The RankAvg strategy gives comparable results to the

SimAve strategy. A comparison between ACF-ts·RankAvg and ACF·RankAvg confirms the

benefit of including a time shift component in the ACF base learner.

The population-specific comparison is also conducted between the ACF-ts·RankAvg

model and the benchmark ACF·GeoInfo model based on the test SSE on 24 male pop-

ulations and listed in Table B.1. Based on the results, the proposed method has led to an

increase in predicting accuracy for 19 out of 24 male populations with an averaged 14.15%

improvement.

Evaluation Based on One-sided Diebold-Mariano Tests
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Table 3.2: Summary statistics of test SSEs comparing the prediction per-

formance of the BMBE based approaches using ACF or ACF-ts as the base

learner versus benchmark models.

1st Quartile Median Mean 3rd Quartile

Female Population

Lee-Carter 19.24 45.11 44.04 63.86

ACF·AIO 20.49 44.91 43.76 62.09

ACF·GeoInfo 20.95 45.49 42.96 63.77

ACF·kmeans 18.99 45.77 41.63 59.19

ACF·RankAvg 18.54 43.04 38.81 55.81

ACF-ts·SimAvg 16.59 39.65 37.78 54.00

ACF-ts·GeoAvg 19.43 38.21 38.95 56.67

ACF-ts·KmeansAvg 15.11 43.79 39.51 59.47

ACF-ts·RankAvg 15.04 40.84 37.34 54.73

Male Population

Lee-Carter 28.28 40.85 49.07 65.29

ACF·AIO 28.28 39.54 46.90 65.76

ACF·GeoInfo 23.75 37.43 41.41 64.02

ACF·kmeans 24.35 36.70 42.31 58.82

ACF·RankAvg 21.49 37.15 37.13 54.52

ACF-ts·SimAvg 23.00 33.67 36.66 56.69

ACF-ts·GeoAvg 26.74 35.76 37.97 57.63

ACF-ts·KmeansAvg 24.80 35.82 39.69 58.38

ACF-ts·RankAvg 24.40 31.61 35.58 56.11
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Like it has been adopted in Section 2.3.3.2 in the previous chapter to compare the

performance of mortality forecasting models, we conduct a one-sided Diebold-Mariano (DM)

test to determine if the test SSE from one predictive model is statistically significantly

smaller than that of another. We follow the same comparison procedure using the DM test

as we did in Section 2.3.3.2. For readers’ convenience, we restate the details of the procedure

in the context of the present empirical study.

For a pair of models in comparison, Model A and Model B, we apply two one-sided DM

tests, respectively, with the null hypothesis that Model A is no worse than Model B and

that Model B is no worse than Model A. The hypothesis tests are conducted based on the

resulting sequences of test SSEs, {e(t), t = 2003, . . . , 2010} from both models. If Model A

is concluded to be significantly worse than Model B by the DM test with a p-value smaller

than 0.05, we count it as a win of Model B over Model A in predicting the mortality of

the target population. If Model B is confirmed to be significantly worse than Model A by

the DM test, we count it as a win of Model A over Model B. There are scenarios in which

both tests lead to p-values larger than 0.05, and none of the two models wins the other in

statistical significance.

Table 3.3 reports the number of wins for one model (from the group of BMBE methods)

over another (from the group of benchmark models or the ACF.RankAvg model). Each cell

of the table contains two integers recording the comparative results of the model in the

row versus the one in the column. The first integer is the number of wins by the model

in the row over the one in the column. The second integer is the number of wins by the

model in the column. For example, “(23, 1)” in the first column in the panel of Female

Population means that the ACF-ts·SimAvg model wins 23 times over the Lee-Carter model

and the Lee-Carter model wins the ACF-ts·SimAvg model only once among all of the 24

comparisons for female populations. As shown in Table 3.3, the BMBE based predictive

models perform significantly better than benchmark models in terms of the number of wins.

The superiority of ACF-ts·SimAvg and ACF-ts·RankAvg is evident when compared with

the four benchmark models as these two models frequently win among all 24 comparisons for

both female and male populations. Furthermore, the results for both genders also indicate

that ACF-ts·RankAvg wins ACF·RankAvg more frequently, which reinforces the benefits

of including the time shift component (i.e., the parameter ∆t) in the ACF base learner.

3.4.3 Empirical Study with the CBD-ts Model

In this empirical study, we investigate the forecasting performance of the BMBE method

for seniors with ages ranging from 55 to 90. The CBD-type models are known as an
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Table 3.3: Number of wins for comparison between the BMBE approaches and the bench-

mark ACF models from DM tests: In each cell, the first integer indicates the number of

wins by the model in the row over the model in the column out of 24 comparisons and the

second integer is the number of wins by the model in the column over the one in the row.

Lee-Carter ACF·AIO ACF·GeoInfo ACF·kmeans ACF·RankAvg

Female Population

ACF-ts·SimAvg (23, 1) (22, 1) (17, 0) (16, 3) (9, 3)

ACF-ts·GeoAvg (13, 0) (15, 1) (13, 3) (12, 4) (3, 9)

ACF-ts·KmeansAvg (15, 1) (15, 2) (15, 3) (11, 3) (5, 8)

ACF-ts·RankAvg (21, 2) (19, 2) (16, 1) (14, 2) (10, 4)

Male Population

ACF-ts·SimAvg (24, 0) (20, 0) (16, 4) (15, 4) (8, 9)

ACF-ts·GeoAvg (16, 3) (13, 3) (10, 9) (11, 7) (5, 12)

ACF-ts·KmeansAvg (19, 0) (17, 0) (10, 5) (10, 9) (6, 12)

ACF-ts·RankAvg (24, 0) (21, 0) (14, 3) (17, 3) (11, 5)
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improvement of the Lee-Carter/APC-type models for modeling and predicting the mortality

of a senior group because of their relatively simple log-linear structure of the mortality curve

and parsimonious age effects, see Cairns et al. [2009] and Cairns et al. [2011a]. We use the

CBD model and its extension with time shift as the base learner in our BMBE method and

compare the resulting forecasting performance with the classic CBD model (Cairns et al.,

2006), which is also known as model M5 in Cairns et al. [2009].

3.4.3.1 Prediction Models

We consider the same four averaging strategies as described in Section 3.3 and use them

with CBD models with a time shift. We label the resulting predictive models by CBD-

ts·SimAvg, CBD-ts·GeoAvg, CBD-ts·KmeansAvg, and CBD-ts·RankAvg, respectively. To

study the value of adding a time shift component in the base learner, we also consider the

CBD·RankAvg method, which is the special case of the CBD-ts·RankAvg method with ∆t

fixed at zero in the base learner. For comparison, we consider the classic CBD model (CBD)

as a benchmark.

3.4.3.2 Prediction Performance

Evaluation Based on Test SSEs

As in the previous empirical study, we use the overall test SSE
∑2010

t=2003 e(t) as a measure

of prediction accuracy, where

e(t) =
90∑

x=55

[logit q1(x, t)− logit q̂1(x, t)]
2 , t = 2003, . . . , 2010,

q1(x, t) is the probability that an age-x individual from the target population dies between

year t and t+ 1 given the individual is alive at time t, and q̂1(x, t) is its prediction.

Table 3.4 summarizes the prediction performance of the various models in the second

empirical study. The CBD-ts·RankAvg method is a clear winner over the classic CBD

model for both female and male populations. The performance of the SimAvg strategy is

disappointing and worse than the classic CBD model, which forms a contrast to its out-

standing performance in the first empirical study. The success of the SimAvg strategy in the

first empirical analysis is benefited by the fact the trajectories of age-aggregated logarithmic

morality rate share similar negative slopes as shown in Figure 3.1 and a ACF-ts model works

as a reasonably well-specified base learner for most pairs of populations. The parallelity in

trajectories of the aggregate logarithmic mortality rates within the 24 populations was also
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confirmed by the MDS-based clustering analysis described in Section 3.4.1. However, the

current empirical study considers the trajectories of age-aggregated logitqj(x, t) over ages

50-90, and these trajectories are not parallel to each other to the same degree as we have

in the first empirical study. This implies that the CBD-ts model could be a misspecified

base learner for a population pair, and the biases of forecast arising in each misspecified

base learner cumulate and lead to deteriorated prediction results in the SimAvg strategy.

The misspecification issue is much less severe for the GeoAvg and KmeansAvg strategies as

they only average over a small subset of populations.

The superiority of the RankAvg strategy is apparent. The test SSEs from this strategy

(from both CBD-ts.RankAvg and CBD.RankAvg) are smaller than those from the CBD

model for both male and female populations. This strategy performs well in both empirical

studies and exhibits some robustness in its outperformance. It does not require any pre-

grouping and uses a fully data-driven mechanism to identify a subset of auxiliary populations

for the final forest. When an auxiliary population demonstrates a different development

pattern from the target population, the prediction based on the corresponding CBD-ts

model may lead to a large prediction error and the RankAvg strategy tends to rank this

auxiliary population low and eventually screen it out in the cross-validation procedure.

Furthermore, a comparison between CBD·RankAvg and CBD-ts·RankAvg shows that

the inclusion of the time shift parameter in the base learner improves the results slightly for

male populations but not the female populations. The results of the two empirical studies

suggest that there is a trade-off between prediction accuracy and robustness. When we

include a time-shift term in the base learner, we implicitly assume that the trajectory of

one population is roughly a shift of the other. If the assumption is satisfied, the base learner

with the time-shift term is more efficient and the final forecast is more accurate and stable.

Nevertheless, if the assumption is severely violated, we pay a heavy price with a biased base

learner and get a deteriorated final forecast. The base learner without time-shift terms gives

mediocre prediction results if the time-shift assumption is satisfied, while they do not have

the pain point of being sensitive to misspecification.

Similarily, the population-specific comparison is conducted between the CBD-ts·RankAvg

model and the benchmark CBD model based on the test SSE on 24 male populations and

listed in Table B.2. 16 out of 24 male populations benefit from the proposed method with

an averaged 3.76% improvement.

Evaluation Based on One-sided Diebold-Mariano (DM) Tests

We also apply the DM test to compare the performance of the various predictive models
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Table 3.4: Summary statistics of test SSEs comparing the prediction perfor-

mance of BMBE based approaches using CBD or CBD-ts as the base learner

versus the CBD model.

1st Quartile Median Mean 3rd Quartile

Female Population

CBD 3.61 5.87 7.37 11.67

CBD·RankAvg 3.76 6.06 6.31 7.66

CBD-ts·SimAvg 5.13 7.96 10.28 13.32

CBD-ts·GeoAvg 4.60 6.50 8.76 11.95

CBD-ts·KmeansAvg 3.97 5.76 7.61 11.70

CBD-ts·RankAvg 3.18 5.76 6.94 10.32

M6 5.37 7.53 8.45 10.40

M6·RankAvg 8.14 33.96 59.19 103.29

Male Population

CBD 2.32 2.88 3.08 3.63

CBD·RankAvg 2.08 2.93 2.94 3.44

CBD-ts·SimAvg 2.08 3.04 5.95 4.38

CBD-ts·GeoAvg 2.12 2.60 2.84 3.69

CBD-ts·KmeansAvg 2.22 2.54 2.84 3.56

CBD-ts·RankAvg 2.04 2.67 2.85 3.38

M6 2.13 3.14 3.20 3.73

M6·RankAvg 3.70 7.49 16.64 14.97
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and report the results in Table 3.5. The table suggests that all the BMBE methods still beat

the CBD model in terms of the number of wins, except when CBD-ts·GeoAvg is applied to

female populations. The DM test also confirms the superiority of CBD-ts·RankAvg among

all the predictive models.

Table 3.5: Number of wins for comparisons between a CBD-ts model and the

CBD model based on a pairs of one-sided DM tests: In each cell, the first integer

indicates the number of wins of the model in the row over the model in the column

out of 24 comparisons and the second integer is the number of wins of the model

in the column over the one in the row.

CBD

Female Male

CBD·RankAvg (12, 9) (9, 8)

CBD-ts·SimAvg (10, 7) (12, 9)

CBD-ts·GeoAvg (7, 8) (12, 6)

CBD-ts·KmeansAvg (11, 5) (6, 5)

CBD-ts·RankAvg (11, 3) (10, 5)

3.5 Further Discussions

3.5.1 Interpretation of ∆t values

3.5.1.1 Interpretation of ∆t Values in ACF-ts Models

For each target population, 23 ∆t values are resulted from the 23 bivariate ACF-ts models;

each is built between the target and one reference from the rest 23 populations. We report

the mean of the 23 ∆t values for each target population in Table 3.6. Since ∆t is designed

to characterize the advance or delay of “evolution” in years by the target population over

the auxiliary, the sign and magnitude of the parameter are expected to reflect the target

population’s relative position in the mortality development compared to the reference pop-

ulation. To be more specific, we expect a target population at a more developed level to
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have a positive ∆t, while a target population at a less developed mortality level to have

a negative sign for ∆t. The results in Table 3.6 are expected in some sense. We can see

that populations, such as Canada, France, Japan, England and U.S.A., which are widely

recognized to hold a leading position in the evolution of human mortality, have a positive

mean value of ∆t while those relatively less developed populations, such as Czech Republic

and Hungary, have a negative mean value of ∆t.

Table 3.6: Mean of 23 ∆t values for each target population based on the ACF-ts model.

Target Female Male Target Female Male

Australia 0.13 0 New Zealand -1.70 -0.87

Austria -1.22 -1.91 Norway -2.00 -0.83

Belgium 0.26 0.13 Poland 0.17 0.70

Canada 3.09 0.83 Portugal -0.09 -0.39

Czech Republic -1.35 -1.96 Slovakia 0.57 -0.61

Denmark -0.83 0 Spain 0.48 -0.70

Finland -0.39 -0.78 Sweden 1.65 0.39

France 0.74 0.74 Switzerland -1.30 -1.61

Hungary -1.52 -1.74 Taiwan -1.52 -1.65

Italy 0.04 1.35 England & Wales 1.91 2.91

Japan 2.83 4.61 Scotland -1.70 -1.96

Netherlands 0.17 1.43 U.S.A. 1.57 1.91

To demonstrate the relationship between ∆t and mortality development stage, we use

the mean age-aggregated logarithmic mortality over the training period as a proxy for the

relative mortality level and draw a scatterplot of the mortality level versus the mean value

of ∆t from the 24 populations; see the left upper graph in Figures 3.3 and 3.4 for female

and male populations, respectively. Since a positive and large value of ∆t should indicate

a leading position in mortality development, we expect that a smaller value of the mean

age-aggregated logarithmic mortality is associated with a larger ∆t value. It is interesting

to note that the Pearson correlation coefficients between the two variables take the values

of -0.397 and -0.478 in the female and male populations, respectively, indicating a modestly

negative relationship between the mean values of ∆t and the mortality levels for the 24

populations.

While we observed a negative correlation between the ∆t value and the mortality level
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over the 24 populations, we are mindful of the fact that ∆t directly reflects the mortality level

only when the population-specific effects are relatively small compared with the common

mortality trend in the ACF-ts model (3.5)-(3.6). For a better interpretation on how the ∆t

value is related to the mortality level, we define the concept of Relative Scale to measure

how much population-specific effects contribute to the mortality development of a pair of

popualtions compared to the common trend in a base learner model.

For a bivariate-population model with population-i as the target and population-j as

the reference, its Relative Scale, denoted RS(i, j), is calculated as follows:

RS(i, j) =
1

2

mean[∆ki(t)]

mean[∆K(t)]
+

1

2

mean[∆kj(t)]

mean[∆K(t)]
, (3.8)

where the mean operator is applied for the corresponding sequence over the time period

involved in the model, and

∆ki(t) = ki(t+ 1)− ki(t), ∆kj(t) = kj(t+ 1)− kj(t), ∆K(t) = K(t+ 1)−K(t).

From the definition, a small RS(i, j) value implies that the common mortality trend is the

major driving force of mortality development for both populations, and a large RS(i, j)

value means that at least one of the two involved populations in the base learner model

has its mortality development dictated largely by its population-specific effects. Figure 3.2

demonstrates the RS(i, j) value of each pair from the 24 populations under our analysis and

the figure reveals that the RS value is rather large for some pairs of populations, creating

the risk of using the ∆t value to represent the mortality level of a population. As a relevant

note, the matrices in Figure 3.2 are symmetrical since we have RS(i, j) = RS(j, i) by the

definition of the RS measure.

To dig deeper into the intricate relationship between the ∆t value and the mortality level

of invovled populations, we start from either a lower or an upper triangle in the matrices

of Figure 3.2, and set a threshold γ ∈ {0.25, 0.5, 1,∞} for RS to delete populations from

the set until all of the remaining RS(i, j) entries in the matrices are smaller than the

threshold. The deletion proceeds in an interative way, and the population with the the

largest RS(i, j) value in the remaining entries of the matrices is deleted in each iteration

until the criterion is met (i.e., all of the remaining entries are smaller than the threshold γ).

It is worth noting that γ =∞ means no deletion of any population from the matrices, and

the remaining entries with a smaller γ from the deletion procedure should correspond to a

stronger negative correlation between the ∆t value and the mortality level for the remaining

populations. This is confirmed by the scatterplots of the mortality level versus the mean

value of ∆t in Figures 3.3 and 3.4, where each graph only contains the scatterplots from
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Figure 3.2: Values of Relative Scale based on ACF-ts models. Left panel: female

data. Right panel: male data.

the remaining populations with RS value smaller than the corresponding threshold value γ.

With a decrease in prespecified γ, the negative relationship between the mean value of ∆t

and the mortality level appears stronger. The Pearson correlation coefficient between the

two variables decreases from -0.397 to -0.671 for the female populations and from -0.478 to

-0.793 for the male populations respectively, with γ decreasing from ∞ to 0.25.

3.5.1.2 Interpretation of ∆t Values in the CBD-ts Models

Similar to Section 3.5.1.1, the mean of the 23 ∆t values, resulted from the 23 bivariate

CBD-ts models with different auxiliary populations, for each target population is calculated

and reported in Table 3.7.

To analyze the relationship between the calibrated ∆t values in the bivariate CBD-ts

models and the mortality development level, the RS measure, aimed to capture the degree

of dominance by the common trend process over the population-specific effects, has been

applied in the study for the CBD-ts models. As demonstrated in Figure 3.5, the resulting RS

values for all of the involved pairs of populations are quite small. Thus, the common trend

process dominates for the development of mortality in all the involved bivariate-population

CBD-ts models, and a high correlation between the ∆t value and the mortality level of a

population is expected.

The scatter plots of the mean of age-aggregated logarithmic mortality rates versus the

mean of ∆t values for all the 24 target populations are provided in Figure 3.6, exhibiting

an obvious negative relationship between the mean value of ∆t and the mortality level.

64



Australia

Austria Belgium

Canada

Czech Republic

Denmark

Finland

−− France total population

Hungary

Italy

Japan

Netherlands

−− NZ total population

Norway

Poland

Portugal Slovakia

Spain

Sweden

Switzerland

Taiwan

−− England & Wales Total Population

−− Scotland

U.S.A.

−560

−550

−540

−530

−520

−510

−2 −1 0 1 2 3
∆t

M
or

ta
lit

y 
Le

ve
l

(a) γ =∞, Corr = −0.397

Australia

Austria
Belgium

Canada

Czech Republic

Denmark

Finland

−− France total population

Italy

Japan

−− NZ total population

Norway

Poland

Portugal

Slovakia

Spain

Taiwan

−− England & Wales Total Population

−− Scotland

U.S.A.

−560

−550

−540

−530

−520

−510

−2 −1 0 1 2 3
∆t

M
or

ta
lit

y 
Le

ve
l

(b) γ = 1, Corr = −0.506
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(c) γ = 0.5, Corr = −0.560
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Figure 3.3: Female Data: relationship between the mean value of ∆t and the relative

mortality level based on ACF-ts models with different threshold values of γ.

Populations with lower mortality tend to have a positive mean value of ∆t, and those

with higher mortality tend to have a negative mean value of ∆t. The Pearson correlation

coefficients between the two variables for the female population and male populations are as

high as -0.896 and -0.971 respectively, suggesting a very strong negative linear correlation.

These observations confirm the intended interpretation of the parameter ∆t in our bivariate

CBD-ts models: a positive and large value implies the advance of the target population in
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(c) γ = 0.5, Corr = −0.772
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Figure 3.4: Male Data: relationship between the mean value of ∆t and the relative mortality

level based on ACF-ts models with different threshold values of γ.

mortality development relative to the auxiliary population, and a negative value implies a

delay of the target population in mortality development.

Moreover, since the common mortality trend is the major driving force of mortality

development for both populations in every bivariate-population system involved in the cur-

rent empirical study as validated by the observed small RS values, the value of the ∆t also

quantifies the number of years of difference in mortality development between the target

66



Table 3.7: Mean of 23 ∆t values for each target population based on the CBD-ts model.

Target Female Male Target Female Male

Australia 4.48 4.43 New Zealand -0.13 2.22

Austria 1.17 -0.83 Norway 1.65 2.61

Belgium 1.65 -1.13 Poland -7.17 -7.78

Canada 3.91 5.17 Portugal -0.04 -1.87

Czech Republic -7.30 -8.39 Slovakia -6.26 -8.57

Denmark -6.04 -2.74 Spain 8.26 5.43

Finland 1.48 -2.70 Sweden 0.91 6.43

France 7.65 4.13 Switzerland 7.04 6.57

Hungary -7.91 -9.48 Taiwan -4.96 -0.91

Italy 6.00 3.87 England & Wales -2.39 -0.39

Japan 9.48 8.65 Scotland -6.04 -5.65

Netherlands -3.17 -0.30 U.S.A. -2.26 1.22
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Figure 3.5: Values of Relative Scale based on CBD-ts models. Left panel: female

data. Right panel: male data.
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Figure 3.6: Relationship between the mean value of ∆t and the relative mortality level

based on CBD-ts models.

population and the auxiliary population. For instance, the calibrated ∆t value between the

US male population (as the target) and the Canadian male population (as the auxiliary) is

−6, meaning that the Canadian male population is 6 years earlier than the target US male

population in terms of the mortality development stage. We show the age-aggregated loga-

rithmic mortality sequences of the two populations in Figure 3.7 for a graphical illustration

of the relationship between the two populations.

3.5.2 Inclusion of Cohort Effect

Cohort effect, which addresses the mortality differences between people with different years

of birth, has been widely documented in the mortality literature, see Renshaw and Haber-

man [2006], Cairns et al. [2009], Plat [2009] and Hunt and Blake [2021]. In this section, we

study the possible influence of the cohort effect on mortality forecasting under our BMBE

framework. We consider the following CBD-type model with a cohort effect as the base

learner:

log

[
qj(x, t)

1− qj(x, t)

]
= K(t) + (x− x̄)k1(t) + γ1(x, t) + ε1(x, t), (3.9)

log

[
qj(x, t)

1− qj(x, t)

]
= K(t−∆t) + (x− x̄)k2(t) + γ2(x, t) + ε2(x, t), (3.10)
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90.
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where qj(x, t), K(t), kj(t), x̄, εj(x, t) and ∆t carry the same meaning as specified in (3.3)

and (3.4) for CBD-ts model. This specification extends the original single-population M6

model in Cairns et al. [2009] to a bivariate-population model by introducing a common

K(t) and a time-shift term facilitating borrowing information from the auxiliary population

across time. We label this model by “M6-ts”. The difference of “M6-ts” from the CBD-ts

model is the inclusion of the extra cohort effect terms γj(x, t), j = 1, 2.
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Figure 3.8: Deviance residual of the CBD model on different populations.

Left: male of ages 55 to 90 for England & Wales; right: male of ages 55

to 90 for Demark.

Table 3.8 summarizes the test SSEs from the single population M6 model, and the BMBE

method using the model in (3.9) and (3.10) as the base learner. The RankAvg averaging

strategy is applied in the BMBE method, and therefore, the resulting predictive model is

labeled by M6-ts·RankAvg. A comparison between Table 3.4 and 3.8 indicates that the test

SSEs of M6-ts·RankAvg are significantly larger than those of the other models, especially
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for female populations. The inclusion of both the cohort effect term and the time shift term

in the base learner is detrimental to the overall forecasting accuracy in the study.

Table 3.8: Summary statistics of test SSEs for BMBE approach (using

RankAvg averaging strategy and M6 as the base learner) versus the plain

M6 model.

1st Quartile Median Mean 3rd Quartile

Female Population

M6 5.37 7.53 8.45 10.40

M6·RankAvg 8.14 33.96 59.19 103.29

Male Population

M6 2.13 3.14 3.20 3.73

M6·RankAvg 3.70 7.49 16.64 14.97

There are considerable differences in the strength of the cohort effect across different

populations, and strong cohort patterns have only been found in some populations, see

Li et al. [2016]. Figure 3.8 contains two demonstrative examples regarding the disparate

strength of the cohort effect. Strong diagonal signals in the residuals of the CBD model

indicate the existence of a cohort effect for the male seniors from England & Wales in the

left subfigure. In contrast, the residuals of the CBD model exhibit pure randomness so

male seniors from Denmark in the right subfigure do not suggest the existence of a cohort

effect. Therefore, the M6-ts model containing cohort effect terms for both populations is a

misspecified model for this pair of populations. Adding cohort effects to both populations

in the base learner may only benefit a target population having a strong cohort effect itself

and can borrow information from the ones which also have strong cohort effects in the

BMBE method. It jeopardizes the overall forecasting performance as it is a misspecified

base learner as long as one in each population pair does not include a noticeable cohort

effect. This suggests a complicated parametric model with many model assumptions is not

suitable to serve as a base learner under the BMBE framework.
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3.6 Concluding Remarks

We propose a general and flexible ensemble framework for mortality forecasting that allows

for borrowing information across populations via a cascade of bivariate mortality models,

thus called bivariate mortality based ensemble (BMBE). The framework ensembles fore-

casts from all the bivariate mortality models using various averaging strategies for the final

forecast, among which the “Rank and Average” averaging strategy yields robust outperfor-

mance in forecast accuracy. The “Rank and Average” strategy also turns out to outperform

benchmark models in our empirical studies. One salient advantage of the “Rank and Av-

erage” strategy lies in its no requirement of pre-grouping populations and its ability to

recognize useful information and exclude irrelevant noise in a data-driven manner. We also

study the effect of a time shift component and a cohort effect term on the base learner on

the resulting mortality forecasting accuracy within the ensemble framework. Our empirical

studies suggest that avoiding severe misspecification in the base learner is the key to success

when utilizing the BMBE approach.
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Chapter 4

Enhancing Mortality Prediction via

Selection of Age Bands

4.1 Introduction

A general problem in front of actuaries is obtaining reliable estimates of future mortality

rates for insurance product design, pricing, and risk management. As discussed in the

previous chapters, borrowing information across populations has become quite prevailing

and has been confirmed helpful if an appropriate procedure is applied. In this chapter, we

move our focus to borrowing information across ages.

Almost all the existing mortality models, e.g., The Lee-Carter model [Lee and Carter,

1992] and the CBD model [Cairns et al., 2006], exploit joint modeling across ages that can

be perceived as a venue for borrowing information across ages for mortality prediction. As

we have illustrated in Figure 1.1 in Chapter 1, the mortality development patterns turn

to have more similarities within some groups of ages (e.g., young ages, middle ages, senior

ages) and more differences across different age groups. This motivates us to study the

problem of selecting age bands to be used in mortality models for enhanced prediction

performance. Indeed, some literature has confirmed the different predicting results with

different age ranges used in a mortality predictive model. Shang and Haberman [2020]

conducted comparisons between the full-age range model that uses data from all accessible

ages and the partial-age range model that uses data from ages of interest only. Furthermore,

Tsai and Cheng [2021] incorporated statistical clustering methods into mortality models to

dig into similarities of age-specific development patterns among ages and improve predicting

performance. Wang et al. [2021] considered the “neighboring” effect under the assumption
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that future mortality development of a target age is influenced by the development patterns

of its “neighboring” ages.

In this chapter, we aim to throw more light upon the idea of borrowing information

across ages and design an innovative age-specific age band (ASAB) based framework for

mortality prediction with enhanced accuracy by detecting similarities in mortality develop-

ment patterns across ages and fully utilizing useful hidden information with the help of data

mining tools. The framework is built on splitting the overall predicting goal into multiple

individualized predicting tasks, seeking potential improvement in predicting accuracy for

each target age to the largest extent, and then aggregating all the results to meet the over-

all predicting task. Different data mining tools are incorporated to determine the specific

form of an optimal pool of ages or age sets to borrow information through an existing mor-

tality model. We propose considering an age-specific age band for different target ages to

borrow information from neighboring ages. The chosen age band is expected to be capable

of embracing the potential benefits of the similarity shared by those ages in their mortality

development patterns and maintaining a relatively simple structure.

The proposed ASAB based mortality prediction framework for selecting age bands is

flexible to embed most existing mortality forecasting models, whereas we will exploit the

Lee-Carter model as the embedding mortality model in this chapter for an illustrative pur-

pose. We apply the proposed ASAB based prediction method to the mortality data of 24

populations of both genders from the Human Mortality Database (HMD), together with

some benchmarks based on statistical learning approaches like clustering. The empirical

study results confirm the effectiveness of our proposed ASAB based method in that our

proposed method secures an overall improvement in predicting accuracy for most of the 48

populations. Meanwhile, the proposed ASAB based framework has demonstrated its poten-

tial to be extended to combine with borrowing information across populations by embedding

multi-population models.

Based on the assumption that nearby target ages should borrow information from a simi-

lar set of ages to achieve desirable prediction accuracy enhancement, a smoothing procedure

is incorporated in the ASAB based framework. The effects of different choices of the desired

smoothness have been examined in our empirical study. Based on the empirical results,

we recommend setting a moderate degree of smoothness as the desired level to ensure the

effectiveness of the smoothing procedure. Furthermore, we discuss the capability to ensure

a certain degree of age coherence of the proposed ASAB based method. The results con-

firmed that the ASAB based methods, both the smoothed and the non-smoothed version,

have demonstrated their abilities to maintain a desirable level of age coherence.
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The rest of the chapter proceeds as follows. Section 4.2 provides a detailed description of

our proposed ASAB based prediction framework and the data-mining procedures we utilize

to determine the age band selection. Section 4.3 presents empirical studies of our proposed

methods and compares them with benchmark models considered in our study by analyzing

data from the Human Mortality Database. Finally, Section 4.4 provides some concluding

remarks.

4.2 Age-Specific Age Band (ASAB) Based Framework

for Mortality Prediction

For the prediction of a mortality table, a conventional way is to calibrate a mortality model

with the full age-range data target and obtain the predicting results. The similarities

among different ages, which can further enhance the predicting accuracy, however, are not

fully utilized with a full age-range model. To embrace the potential benefit of borrowing

information across ages that share similarities in their mortality development pattern, some

data-mining tools have been introduced to help detect similarities and formulate mortality

prediction. In this section, we propose the age-specific age band (ASAB) based framework

for mortality prediction, in which the overall predicting target is split into multiple individual

target ages and focus on the mortality prediction of each target age with help of borrowing

information across ages by searching for an optimal age band.

4.2.1 General Age-Specific Age Set Based Framework

Literature has confirmed the positive potential of utilizing similarities among different ages

for acquiring enhanced mortality prediction. Shang and Haberman [2020] proved by em-

pirical studies that partial-age range models, i.e., models calibrated with data of ages of

interest only, can provide better mortality prediction accuracy for the retiree group. Tsai

and Cheng [2021] pointed to certain similarities shared by some specific set of ages in their

mortality development patterns and obtained improved mortality prediction performance

by incorporating these similarities through clustering analysis.

In contrast to the above literature, we propose a general age-specific age set based

mortality predicting paradigm, for which the ASAB framework that we will focus on in

this chapter is a particular case. In the age-specific age set based paradigm, we split the

overall predicting target into multiple individual target ages and separately consider the

mortality prediction for each target age, say x0 ∈ {xL, xL+1, . . . , xU} of a target population,
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to fully take advantage of borrowing hidden information among different ages. For each

individual target age x0, the general paradigm aims to determine an age-specific age set A∗x0
to be used in the calibration of a mortality model through a certain searching procedure.

Assuming that mortality data in the study lies in an age-year window X × T , with X =

{xL, xL + 1, · · · , xU}, T = {tL, tL + 1, · · · , tU}. Given the age-specific age set A∗x0 for target

age x0 ∈ X , the Lee-Carter model or the CBD model is calibrated only using the data of

all the ages within the set A∗x0 :

logm(x, t) = ax + bxkt + εx,t, x ∈ A∗x0 , x0 ∈ X , (4.1)

logit q(x, t) = log

[
q(x, t)

1− q(x, t)

]
= Kt + (x− x̄)kt + εx,t, x ∈ A∗x0 , x0 ∈ X , (4.2)

with t ∈ [tL, tU ], and εx,t’s are the independent and identically normally distributed with

zero mean and age-specific variance σ2
x. The future mortality prediction for each target age

x0 is then obtained by extrapolation. Although we have introduced both the Lee-Carter

model and the CBD model under the proposed framework, we would focus on the study

of Lee-Carter model in the subsequent empirical study in Section 4.3 for illustration. We

adopted the SVD-based calibrating procedure for Lee-Carter model. Then for each specifc

target age x0, we fit the calibrated period sequence kt by a random walk process with drift

(RWD) for the corresponding Lee-Carter model and extrapolate based on the calibrated

time series model, just like what we did in Chapters 2 and 3.

4.2.2 Age-Specific Age Band Method

One specific candidate to determine A∗x0 for the predicting target age x0 is to consider

borrowing information from its adjacent ages under the rationale that the mortality devel-

opment patterns for adjacent ages turn out to be more similar than ages far away from each

other. This motivates us to consider A∗x0 as an age band for an individual target age x0

that consists of its adjacent ages from x̃L to x̃U , where x̃L ≤ x0 ≤ x̃U . In the following two

subsections, we provide two specific forms of age bands that we will use in our empirical

studies in the sequel and discuss how to determine the specific ranges of age bands.

4.2.2.1 Symmetric Age Band

Definition 4.2.2.1 (Symmetric Age Band) For a given predicting target age x0, a sym-

metric age band of x0 with a band radius r, denoted as A(x0, r), consists of ages from x̃L to
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x̃U , where x̃L = max(x0 − r, xL),

x̃U = min(x0 + r, xU).
(4.3)

As the name suggested, a symmetric age band includes an equal number of ages from both

sides of the target age. For a given target age x0, different values of hyperparameter r

result in unique age bands A(x0, r), representing different extents of borrowing information

from the neighboring ages. Therefore, the task of determining the “optimal” symmetric age

band for each target age x0 can be accomplished by determining the age-specific “optimal”

value of the hyperparameter r, denoted as r∗x0 . It is also expected that the value of r∗x0
should not change much as the value of x0 changed to some adjacent values in most cases.

The similarity of mortality development patterns among nearby ages usually leads to a

similar amount of information for nearby target ages that need to be borrowed to achieve

the optimal prediction accuracy enhancement.

4.2.2.2 Asymmetric Age Band

Definition 4.2.2.2 (Asymmetric Age Band) For a given predicting target age x0, an

asymmetric age band of x0 with a lower radius rL and an upper radius rU , denoted as

A(x0, rL, rU), consists of ages from x̃L to x̃U , wherex̃L = max(x0 − rL, xL),

x̃U = min(x0 + rU , xU).
(4.4)

The length of its age band, denoted as l = x̃U − x̃L + 1, can also serve as an index of the

amount of information borrowed from other ages. However, a given target age x0 and a

given length l does not necessarily yield a unique asymmetric age band since all A(x0, rL, rU)

with rL + rU + 1 = l satisfy the constraint on the length of age band.

To ensure the optimal asymmetric age band is determined by the selection of the opti-

mal value of hyperparameters l, we need a searching procedure to search for the optimal

asymmetric age band with different given values of l in a computationally efficient manner.

We design a fully data-driven DSA algorithm to fulfill the task in a computationally effi-

cient manner. The idea of the DSA algorithm takes the same spirit as the one from Diao

et al. [2021] (or Chapter 2), where a DSA algorithm has been developed for the population

selection problem in multi-population mortality modeling by providing a recommendation

for the proper choice of reference populations. The DSA algorithm for determining the age
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band in the current context starts with an age set of size one containing only the target

age x0 itself and searches iteratively on the two-dimensional covariate (rL, rU) from (0, 0)

to a pre-specified upper limit (A,B). We apply the in-sample sum of squared errors (SSE)

as the risk function in the DSA algorithm, while we may also try with other risk functions

such as Mean absolute error(MAE), Mean squared percentage error (MSPE), and Mean

absolute percentage error(MAPE), those that have been studied in Chapter 1. Assuming

the training data has a time window Ttrain (which does not necessarily consist of consecutive

years as T does), we calculate the risk for a given age band A(x0, rL, rU) as follows:

f(A(x0, rL, rU)) =
∑

t∈Ttrain

(ηx0,t − η̂x0,t)
2 , (4.5)

in which ηx0,t can be logm(x0, t) or logit q(x0, t), depending on the choice of mortality model

(i.e., Lee-Carter or CBD models), and η̂x0,t is the calbriated value of ηx0,t using the age band

A(x0, rL, rU).

Assuming the current asymmetric age band for target age x0 at the beginning of each

iteration has a length of l = a + b + 1 with rL = a and rU = b, the algorithm updates

the current asymmetric age band by checking whether the outputs from the following three

moves (see Figure 4.1 for graphical illustration) can yield better result compared with the

current records:

• Deletion: Delete one age from the left or right of the current age band. This would

result in two new age bands with a length of l = a + b: (rL, rU) = (a − 1, b) if a > 0

or (rL, rU) = (a, b − 1) if b > 0. The better one between these two outputs would

be chosen to compare with the current recorded “best” age band with a length of

l = a+ b.

• Substitution: Substitute one age from the left or right of the current age band. This

would result in two new age bands with a length of l = a+b+1: (rL, rU) = (a−1, b+1)

if a > 0, b < B or (rL, rU) = (a + 1, b − 1) if a < A, b > 0. The better one between

these two outputs would be chosen to compare with the current recorded “best” age

band with a length of l = a+ b+ 1.

• Addition: Add one more age to the left or right of the current age band. This would

result in two new age bands with a length of l = a + b + 2: (rL, rU) = (a + 1, b) if

a < A or (rL, rU) = (a, b + 1) if b < B. The better one between these two outputs

would be chosen to compare with the current recorded “best” age band with a length

of l = a+ b+ 2.
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Similar to the DSA algorithm in Chapter 2, the search follows the order of deletion-

substitution-addition and would stop when a = A and b = B.

Implementing the DSA algorithm generates a sequence of (asymmetric) age bands in

consecutively increasing lengths from l = 1 to l = A + B + 1, and each age band in

the sequence is the one that minimizes the value of the exploited risk function over all

examined age bands of the same length in the algorithm. Instead of directly examining

all combinations of (rL, rU) ∈ {(a, b), a ∈ [0, A], b ∈ [0, B]}, the DSA algorithm provides

an effective “greedy” searching scheme that yields age bands with the smallest value of

the exploited risk function compared to a large portion of age bands of the same length in

a much more computational friendly manner. Therefore, the “optimal” age band can be

chosen among the resulting sequence by determining the value of l that yields to the smallest

risk function value. We denote the resulting optimally selected value of l by l∗x0 . Similar to

what we commented about the r∗x0 sequence in the preceding subsection, the value of l∗x0 is

expected to stay relatively stable as the value of x0 changes to some adjacent values.

4.2.2.3 Selection of Age Band

As mentioned in previous subsections, the optimal age band can be chosen among these

inputs of age bands with different radii r or lengths l by determining the optimal value of

corresponding hyperparameters, r (for the symmetric age band) or l = rL + rU + 1 (for

the asymmetric age band), which can be realized by using a general validation procedure.

In order to make full use of the data, We propose a block cross-validation-style method,

inspired by Bergmeir and Beńıtez [2012] and [Bergmeir et al., 2014]. Block cross-validation

is regarded as a variant of conventional cross-validation for time series data. As mentioned in

[Bergmeir et al., 2014], making full use of the data brings in the advantage of more precise

error estimates of the prediction for the blocked cross-validation scheme and meanwhile

assures independence by leaving a margin of a certain distance in time between the training

and validating blocks. The method recently has been in favor in the mortality community

as a new tool to provide robust validation error estimates, see [Kessy et al., 2021] and

[SriDaran et al., 2022] as examples.

In the block cross-validation method, all available training data is partitioned into k

blocks sequentially. Each block of sequential data is used as the validation set once to eval-

uate the performance of different models, while the rest k−1 blocks are used as the training

blocks after s-year data are left out from both sides of the validating block. The omission of

some data on borders is applied to ensure the approximate independence between training

and validating data. The choice of k depends on the trade-off between the computational
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Figure 4.1: Illustrative figure of the DSA iterative updating scheme for creating a

sequence of asymmetric age bands.
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cost and the amount of available data. A larger k leads to an increase in the number of

models to be estimated while a smaller k leads to a smaller training set. Similarly, the

choice of s (i.e., the size of the data omitted from the validation block of data) depends

on the trade-off between the degree of independence and the amount of available data. A

large s leads to a considerable loss of data and may even result in an insufficient amount

of data for model estimation while a small s can not ensure the approximate independence

between training and validating data. An illustrative example can be found in Figure 4.2,

which demonstrates how the data is split into training blocks and validating blocks for a

4-fold block cross-validation in our empirical study.

After choosing a validating block with a time window Tvalidate and the training blocks

with a time window Ttrain, the age-specific coefficients ax and bx in the Lee-Carter model (4.1)

can be estimated using a standard SVD procedure with the training blocks. The SVD pro-

cedure also gives the values of the period index kt over the training time window but no

values for kt over the validating time window Tvalidate. These missing values are imputed

by fitting a random walk with drift using all observable period indices on both sides of the

validating block as

kt = kt−1 + d+ εt, (4.6)

where d serves as the drift parameter and εt as the noise term. A forward/backward fill

approach, shown in Equation (4.8) would be then utilized to impute the missing values of

kt in Tvalidate based on estimated d̂ and realized values of kt in Ttrain:

forward fill : k̂t = kt−α + αd̂, (4.7)

backward fill : k̂t = kt+α − αd̂. (4.8)

For each chosen validation block, the validation SSEs of logarithmic mortality rates of

target age x0 for a given age band A(x0, ·) of any forms are calculated as

f(A(x0, ·)) =
∑

t∈Tvalidate

(logmx0,t − log m̂x0,t)
2 . (4.9)

The validation SSEs are then summed up as the BCV-SSE. Finally, A∗x0 , the optimal age

band for target age x0 is selected among all available age bands A(x0, ·) as the one with the

least BCV-SSE.

The above model fitting and cross-validation procedure are described for the Lee-Carter

model. The procedures can be applied in parallel for other mortality models, e.g., CBD

model.
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4.2.2.4 Smoothing

With the aforementioned blocked cross-validation procedure, the optimal age band for target

age x0 has been decided with a sequence of values of age-specific hyperparameters r∗x0
or l∗x0 being determined by comparing the values of the realized BCV-SSE. However, the

randomness of the realized values may potentially influence the results of the comparison

and thus result in steep ups and downs in the r∗x0 or l∗x0 as the target age x0 changes. As

mentioned in previous discussions, nearby target ages usually borrow similar amounts of

information to achieve the optimal prediction accuracy enhancement, leading to a relative

stableness in the chosen values of r∗x0 or l∗x0 with respect to different values of x0. Smoothing,

as a standard tool to create an approximating function that attempts to capture important

patterns in the sequence while leaving out the influence of noise, is considered to be applied

to the r∗x0 or l∗x0 sequence to adjust their final values in an attempt to retain the stableness

with different values of x0.

Many different smoothing algorithms can be considered while we adopt the following

“moving average” scheme, where each point in the original sequence is replaced with the

average of h adjacent points:

r∗x0.smooth =
1

2h+ 1

(
r∗x0−h + r∗x0−h+1 + · · ·+ r∗x0 + · · ·+ r∗x0+h

)
(4.10)

where h is known as the radius of the smoothing window. For values at the beginning and

the end of the sequence, the averaging function is applied to a smaller sections of the array,

from r∗xL to r∗x0+h, or from r∗x0−h to r∗xU . In this chapter, different values of h have been

considered to represent the various degrees of desired smoothness.

4.3 Empirical Study

In this section, we empirically evaluate the performance of our proposed ASAB based predic-

tion methods via analysis of the Human Mortality Database (HMD) and make comparisons

with clustering-based methods proposed in Tsai and Cheng [2021]. As one would see shortly,

the empirical study confirms a noticeable improvement in overall mortality predicting ac-

curacy by our proposed ASAB based method over the clustering-based benchmark models.

More specifically, the ASAB based method reduces predicting error for a majority of ages,

especially for the adult and retiree age groups that contain ages 30 to 89, while it yields a

comparable predicting performance with the benchmark models for the other age groups.
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4.3.1 Empirical Setting and Predictive Models

We consider the mortality data from 24 populations as listed in Table 3.1 in Section 3.4 of

Chapter 3 for a age-year window X×T with X = {0, 1, · · · , 100} and T = {1970, 1971, · · · , 2010}.
The mortality data is split into a training set (1970–2002) and a test set (2003–2010). Each

involved prediction model is trained using the training data set (1970–2002) and the resulting

models are extrapolated to the testing period (2003–2010) to obtain mortality prediction.

The prediction models we consider in this empirical study include:

• Lee-Carter: As a benchmark model, the Lee-Carter model is fitted to each population

separately with the full-age band from 0 to 100 for each gender.

• ASAB Based Lee-Carter Model: The ASAB based approach embedded with the

Lee-Carter model is applied for the mortality prediction of each of the 24 populations.

The details of the implementation procedure have been described in Section 4.2. We

temporarily consider symmetrical age bands in the study and will investigate the effect

of asymmetrical age bands later.

To adopt the block cross-validation procedure, the training data of 33 years (1970–

2002) are decomposed into 4 non-overlapping blocks with a length of roughly 8 years

for each. Each of the four blocks would be used as the validating block once to

evaluate the performance of prediction models with different age bands, and the data

in the closest s = 5 years on both sides of the validating block are omitted. The

remaining data after omission are used to train the prediction model and the final

choice of optimal age band for target age x0 depends on the overall performance on

all validating blocks. Figure 4.2 shows how the 4-fold block cross-validation works on

the training set (1970–2002).

Depending on whether we apply the smoothing step in determining the age band size,

we have two prediction models from the ASAB based method:

– LC-ageband: Use the aforementioned 4-fold BCV procedure to search for the

optimal symmetric age band for each age among symmetric age bands with dif-

ferent band radii r, including both the age band containing the target age x0

itself only and the full-age band including all ages from 0 to 100.

– LC-ageband-smooth: Based on the age band sizes determined in the LC-

ageband model, a smoothing step of moving average scheme with the length of

smoothing window h = 4 is applied. That is, for each target age x0, the smoothed
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Figure 4.2: Illustrative figure of a 4-fold blocked cross validation (BCV). Blue

squares represent points from the time series used for model training, orange tri-

angles represent points used for validation, and green circles represent the omitted

data points.

value r∗x0.smooth computed as the average of {r∗x0−4, r
∗
x0−3, · · · , r

∗
x0+4} is used as

the radius of the selected age band.

• Clustering-based models: The clustering-based methods use the results of clus-

tering analysis to determine ages that should be regarded as in the same cluster to

be included in the calibration of a mortality model. As we have claimed in previous

sections, we apply the Lee-Carter model to the data for each resulting cluster of ages

from the clustering analysis as Tsai and Cheng [2021] does. Specifically, we let Yx,t be

the annual increment of age-specific mortality level of age x from year t to year t− 1,

i.e.,

Yx,t = logm(x, t)− logm(x, t− 1), t ∈ [tL+1, tU ]. (4.11)

We take time series Yx,t as the clustering feature for each age x. With a normal

assumption for each element in the age-specific Yx,t sequences with mean µx and

variance σ2
x, we can assume age x1 and x2 should be classified into the same cluster

if the pairs (µx1 , σ
2
x1

) and (µx2 , σ
2
x2

) are similar. Therefore, the clustering algorithms

are implemented on the set of two-dimensional objects {(µ̂x, σ̂2
x) : x ∈ X}, where

µ̂x = Ȳx,t =
1

n− 1

tU∑
tL+1

Yx,t, (4.12)

σ̂2
x =

1

n− 2

tU∑
tL+1

(
Yx,t − Ȳx,t

)2
. (4.13)

Depending on which specific clustering method is used, we have three different pre-

diction models with their labels corresponding to a clustering method as follows:
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– LC-Kmeans: Use the K-means clustering method to determine each age cluster.

We use the recommended value of K from NbClust function in R package NbClust

[Charrad et al., 2014] to determine the number of clusters.

– LC-HCluster: Use Ward’s agglomerative clustering method [Ward Jr, 1963] to

determine each age cluster, in which a bottom-up merging approach using the

sum of squared errors as the objective function on the two-dimensional objects

(µ̂x, σ̂
2
x) is applied. At each step, the pair of clusters that leads to a minimum

increase in total within-cluster variance is merged. The optimal number of clus-

ters, as another important feature of this clustering algorithm, is decided by the

recommended number of clusters from applying NbClust function in R [Charrad

et al., 2014].

– LC-GMM: Use the Gaussian mixture model (GMM) clustering method to de-

termine each age cluster. The GMM clustering method assumes a mixture of

Gaussian distribution to the data. By iteratively modifying the parameters of

the mixture distribution until they best fit the underlying data, each component

distribution of the mixture models represents a cluster. The GMM clustering

algorithm consists of three cores: initialization via other clustering results, max-

imum likelihood estimation via the EM algorithm, and the selection of models

and the number of clusters via approximate Bayes factors with the BIC. We fol-

lows the strategy proposed by Fraley and Raftery [2002] to fit the data with a

Gaussian mixture structure using mclust function in R package mclust [Scrucca

et al., 2016]. A detailed description of the method can be found in Fraley and

Raftery [2002] as well as Tsai and Cheng [2021].

4.3.2 Predicting Performance

Similar to those empirical studies in the previous chapters, the overall prediction accuracy

is evaluated in terms of test SSEs, which are denoted by e(t) and calculated as follows:

e(t) =
100∑
x=0

[logm(x, t)− log m̂(x, t)]2 , t = 2003, . . . , 2010,

where m(x, t) is the mortality rate for the target population, and m̂(x, t) is its predicted

quantity. For a succinct overview, the overall test SSE as
∑2010

t=2003 e(t) for each target popu-

lation over the 24 populations in the pool is computed and we obtain 24 overall test SSEs.

The 1st quartile, median, mean, and the 3rd quartile of the resulting 24 overall test SSEs

for each predicting model are reported in Table 4.1 as a general comparison in predicting
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accuracy among different models, in which a smaller value implies a better prediction per-

formance. The results in the table indicate that our proposed ASAB based method with

smoothing (i.e., LC-ageband-smooth) substantially outperforms the benchmark Lee-Carter

model as well as the three clustering-based models with a smaller median and mean of

the resulting test SSEs, for both female and male populations. The 1st and 3rd quartiles

of Test SSEs from ASAB based method with smoothing are also generally smaller than

those from other prediction models. The ABAS based method without smoothing (i.e.,

LC-ageband) also shows comparable predicting power as the LC-GMM method, which is

the best among all the three considered clustering based methods, a result also confirmed

by empirical studies with mortality data for both genders of the US and the UK in Tsai

and Cheng [2021].

We also apply the one-sided Diebold-Mariano (DM) test (see Diebold and Mariano

[1995] and Harvey et al. [1997]) to compare the predicting accuracy between the group of

the two ASAB based methods and the group consisting of the Lee-Carter model and the

three clustering based models. The comparison procedure is the same as what we conducted

in Section 2.3.3.2 of Chapter 2 and Section 3.4.2.2 of Chapter 3. We quickly summarize

the comparison procedure again below for readers’ convenience. For a pair of models in

comparison, two one-sided DM tests with the corresponding null hypothesis that one model

is no better than the other are conducted based on the sequences of age-aggregated test SSEs

from both models for the same population in the 24 populations. If one model is concluded

to be significantly better than the other by the corresponding test with a p-value smaller

than 0.05, we count it as a win of that model. The comparison is made on the number

of wins obtained between the pair of models, a larger number indicates a more advanced

position in improving predicting accuracy for the corresponding models. Table 4.2 reports

the comparison results. Each cell of the table contains two integers recording the comparison

results of the model in the row versus the one in the column, with the first integer as the

number of wins of the model in the row, and the second as the number of wins of the model in

the column. As Table 4.2 clearly indicates, the ASAB based models significantly outperform

the benchmark models in terms of providing more accurate predictions, especially the one

with a smoothing procedure applied to the selected age band sizes.

We are also interested in investigating whether the relative outperformance of our ASAB

based methods may vary over different ages. To this end, we decompose the test SSEs with

a finer partition in ages. We draw the boxplots of test SSEs (in its logarithmic scale) of 24

populations obtained for different age groups under various prediction models in Figure 4.3.

The full age range is decomposed into the following six non-overlapping age groups:
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Table 4.1: Summary statistics of test SSEs of 24 female populations and 24

male populations comparing the prediction performance of different predicting

methods.

1st Quartile Median Mean 3rd Quartile

Female Population

Lee-Carter 19.37 44.73 44.64 63.90

LC-GMM 16.80 44.44 45.18 66.18

LC-Kmeans 18.01 46.84 45.15 71.06

LC-HCluster 16.99 45.43 45.02 72.40

LC-ageband 17.44 44.49 44.00 67.36

LC-ageband-smooth 14.81 41.94 40.57 59.22

Male Population

Lee-Carter 28.40 41.31 49.79 67.97

LC-GMM 24.70 35.98 40.60 59.77

LC-Kmeans 27.21 38.55 45.97 62.67

LC-HCluster 27.15 38.92 46.30 62.67

LC-ageband 16.78 37.67 39.14 60.66

LC-ageband-smooth 16.01 34.99 37.44 53.90

87



Table 4.2: Number of wins for comparisons between the proposed models (in the

row) and the benchmark models (in the column) based on a pairs of one-sided DM

tests: In each cell, the first integer indicates the number of wins of the model in

the row out of 24 comparisons while the second integer is the number of wins of

the model in the column.

Lee-Carter LC-GMM LC-Kmeans LC-HCluster

Female Population

LC-ageband (10, 4) (10, 6) (13, 5) (12, 5)

LC-ageband-smooth (17, 0) (19, 1) (19, 1) (17, 1)

Male Population

LC-ageband (18, 1) (11, 4) (15, 1) (15, 2)

LC-ageband-smooth (22, 0) (19, 3) (19, 0) (17, 0)

• Child: ages 0 to 9;

• Teenage: ages 10 to 19;

• Young Adult: ages 20 to 29;

• Adult: ages 30 to 59;

• Retiree: ages 60 to 89;

• Elder: ages larger than 89.

As shown in Figures 4.3 and 4.4, the extent of improvement in predicting accuracy by our

proposed ASAB based methods varies over genders and age groups. For female populations

(refer to the first column in Figures 4.3 and 4.4), major improvement in predicting accuracy

of adopting the proposed age-band-base methods has been observed in the adult and retiree

age groups that together contain ages 30 to 89, while the predicting performance remains

just comparable to other methods for other age groups. For male populations (refer to the

second column in Figures 4.3 and 4.4), all the ages except the groups of Child (ages 0 to

9) and Elder (ages larger than 89) embrace an obvious benefit of reduced predicting error

brought in by the proposed ASAB based methods.
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Table 4.3: Population-specific test SSEs comparing the prediction performance

of the ASAB based method versus benchmark models.

LC-GMM LC-ageband-smooth Change%

Male Population

England & Wales 15.03 10.98 -26.97%

France 12.57 10.57 -15.89%

New Zealand 60.92 52.68 -13.52%

Scotland 62.91 64.13 1.94%

Australia 29.90 26.28 -12.08%

Austria 33.28 33.39 0.34%

Belgium 37.01 37.80 2.11%

Canada 16.70 12.29 -26.41%

Czech Republic 37.82 36.59 -3.27%

Denmark 76.36 71.81 -5.97%

Finland 63.09 62.57 -0.81%

Hungary 45.62 48.16 5.57%

Italy 32.65 24.53 -24.85%

Japan 9.90 6.78 -31.52%

Netherlands 32.93 32.78 -0.44%

Norway 68.57 66.73 -2.69%

Poland 14.73 13.16 -10.66%

Portugal 91.13 86.57 -5.00%

Slovakia 48.19 44.63 -7.38%

Spain 34.94 25.00 -28.46%

Sweden 56.70 54.49 -3.89%

Switzerland 59.39 53.70 -9.58%

Taiwan 27.36 16.96 -38.02%

U.S.A. 6.78 6.03 -11.01%

MEAN 40.60 37.44 -11.19%

MEDIAN 35.98 34.99 -8.48%
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Figure 4.3: Boxplots of test SSEs of 24 female populations (left panel) and 24 male

populations (right panel) comparing the prediction performance of different methods

for different age groups: Child, Teenage, and Young Adult.
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Figure 4.4: Boxplots of test SSEs of 24 female populations (left panel) and 24 male

populations (right panel) comparing the prediction performance of different methods

for different age groups: Adult, Retiree, and Elder.
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4.3.3 Influence of Smoothing

In the proposed ASAB based method, a smoothing step was proposed to denoise and capture

how the band radius r∗x0 sequence changes with respect to different values of x0. The

numerical results in previous subsections have confirmed that the smoothing step with a

specific degree of smoothness has led to an improvement in prediction accuracy. A natural

question to answer is how different degrees of smoothness, represented by different values

of h, would influence the extent of improvement in prediction accuracy. In fact, a large

range of values for the length of smoothing window h, representing different scenarios of

no smoothness(h = 0), week smoothness(0 < h < 3), moderate smoothness(3 ≤ h < 10)

and strong smoothness (h = 20 or even h = 50), have been considered in our empirical

study while we only reported results for h = 4 in the preceding subsection. To illustrate

how the performance of our ASAB based method may vary over the different choices of the

smoothing window length h, we demonstrate the resulting average realized test SSEs over

the 24 populations in Figure 4.5 for both genders. We also include results of the original Lee-

Carter model and results of another smoothing scheme based on median, known as “3RS3R”

(see [Tukey et al., 1977]) in Figure 4.5 for comparison. According to the figure, the resulting

overall prediction accuracy of the method is quite stable under moderate smoothness with

3 ≤ h < 10, and the resulting overall realized SSEs are the most favorable. While we did not

report the specific realized SSEs under smoothness window lengths different from 4, their

overall magnitudes are quite similar for different values of h with moderate and median

smoothness. The median smoothness yields larger but very slightly realized SSEs. We

thus recommend considering smoothing with moderate smoothness while different choices

of smoothing algorithms appear to be less important to the goal of optimally enhancing

predicting accuracy.

Another interesting question is whether there is any pattern in the selected band size as

the target age varies from 0 to 100. To address this question, we compute the average of the

selected smoothed age-specific band radius r∗x0.smooth over the 24 populations, and illustrate

its values in Figure 4.6. It clearly indicates that a smaller band radius is preferred for middle

ages while a larger band radius is preferred for both younger and elder ages, which provides

the insight that middle ages only need to borrow information from a moderate number of

their neighboring ages to benefit their future mortality prediction while the young and elder

ages, in general, need to borrow information from more ages.
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4.3.4 Consistency of Age-Band-Selection-Based Methods

There exist recent discussions about the issue of age coherence. Age coherence, as the name

suggested, refers to the phenomenon that mortality rates at different ages do not diverge

in the long run [Li and Lu, 2017]. Some literatures have viewed age coherence as a desired

property for the long-term forecast of mortality data. To resolve issues regarding age coher-

ence, Li et al. [2013] proposed a “rotation” approach that let the age effect terms become

time-variant and gradually converge to an ultimate structure. Gao and Shi [2021] allowed

for the geometric and hyperbolic decayed relative speed for the change of the age effect

terms over the out-of-sample forecasting steps. However, many classic mortality models

do not have a specially designed structure that satisfies the age coherent constraints, e.g.,

Lee-Carter model, CBD model, and ACF model. In this subsection, we are not provid-

ing resolutions to the age coherence issue but conduct numerical examination on whether

the proposed ASAB based methods can ensure a comparable degree of consistency in its

mortality forecasts when comparing to the classic benchmarks.

The numerical comparison is based on a proposed index named the crossing ratio, where

a specific form of violation of consistency is examined. A crossing happens when the relative

order of age-specific logarithmic mortality rates of two ages x1 and x2 at two different time

spots t1 and t2 are different, i.e., a crossing happens when

(logmx1,t1 − logmx2,t1)× (logmx1,t2 − logmx2,t2) < 0. (4.14)

The crossing ratio then records the proportion of amount that a crossing happens among all

possible combinations of (x1, x2) over the age-window X = {0, 1, · · · , 100} for pre-specified

t1 and t2 in the year-window T = {1970, 1971, · · · , 2010}. The crossing ratio, whose value

ranges from 0 to 1, is used as an index to demonstrate the degree of age coherence. A value

close to 0 indicates strong consistency whereas a value close to 1 indicates a severe viola-

tion of consistency. In our empirical study, the crossing ratios for forecasts from different

prediction models applied to the 24 populations are calculated, with a fixed ending time

point t2 = 2010, which is the last year of the testing period. The average crossing ratios

over the 24 populations are reported in Table 4.4. to examine the average performance of

each method in terms of maintaining age coherence, with the different starting time points

t1 indicating both a short-term case (when t1 = 2002, which is the last year of the training

period) and a long term case (when t1 = 1970, which is the first year of the training period).

For the row “Real Data” in the table, the realized data are used for the logarithmic mor-

tality rates logmx1,t2 and logmx1,t2 in Equation (4.14) defining a crossing, while predictive

values are used for the other rows in the table. As Table 4.4 indicates, a reasonable level
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of consistency has been generally observed, both in real data and all predictive mortality

models. In particular, the ASAB based methods have achieved comparably smaller cross

ratios, compared to Lee-Carter model and even the real data in both the short-term and the

long-term comparisons. This confirms that the ASAB based methods, both the smoothed

and the non-smoothed version, have demonstrated their abilities to maintain a desirable

level of consistency of its mortality forecasts.

Table 4.4: Averaged crossing ratio with different pre-specified t1 and t2.

(t1, t2) = (2002, 2010) (t1, t2) = (1970, 2010)

Female Population

Real Data 2.42% 3.21%

Lee-Carter 1.75% 3.13%

LC-ageband 1.70% 3.18%

LC-ageband-smooth 1.72% 3.10%

Male Population

Real data 1.95% 2.90%

Lee-Carter 1.45% 2.81%

LC-ageband 1.32% 2.77%

LC-ageband-smooth 1.39% 2.70%

4.3.5 Asymmetric Age Band

In the empirical studies of previous subsections, the ASAB based method using a symmetric

age band has been compared with other benchmark models and proved its outperformance.

A natural direction of possible extensions is to consider adopting asymmetric age bands,

which would in theory add extra flexibility in the form of the age band for each target

age and therefore potentially lead to additional benefits for prediction enhancement. As

mentioned earlier in this chapter, the selection of the “optimal” asymmetric age band can

be achieved by the following two steps:
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1. Adopt a fully data-driven DSA-based algorithm to search for the “optimal” asymmet-

ric age band with different given values of l, ranging from 0 to a specific upper limit

L;

2. Adopt a BCV procedure to determine the best asymmetric age band among those “op-

timal” asymmetric age bands with different given values of l that have been obtained

in the previous step.

To explore the potential of asymmetric age bands, we apply the same data splitting scheme

as we explained at the beginning of Section 4.3.1 to ensure a comparable final result. We set

the upper limit L = 100, which makes it possible to include both the age band containing

the target age x0 itself only and the full age band containing all ages from 0 to 100 in the

output of the first step and then being considered in the second step. The search for the

optimal asymmetric age band for each age is conducted with the same 4-fold BCV procedure

and followed by a smoothing step of a moving average scheme with the length of smoothing

window h = 4 as we did previously. The realized overall test SSEs for 24 populations

are summarized in Table 4.5. The theoretical advantage of adopting asymmetric age bands,

according to the results in Table 4.5, in general, does not brings extra superiority in providing

improved predicting performance in practice.

Table 4.5: Comparing the prediction performance between symmetric ageband

method, denoted as LC-ageband-smooth and asymmetric ageband method,

denoted as LC-DSA-smooth.

1st Quartile Median Mean 3rd Quartile

Female Population

LC-ageband-smooth 14.81 41.94 40.57 59.22

LC-DSA-smooth 14.70 42.04 43.03 65.58

Male Population

LC-ageband-smooth 16.01 34.99 37.44 53.90

LC-DSA-smooth 15.70 35.70 37.77 57.71
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4.4 Concluding Remarks

In this chapter, we propose an age-specific age band based mortality predicting framework

that aims to fully utilize the beneficial information hidden across ages in their similarities of

mortality development patterns to enhance mortality prediction accuracy. The overall pre-

dicting goal is decomposed into multiple individualized predicting tasks in which an optimal

age band is to be selected to determine the number of neighboring ages to borrow informa-

tion. Extensive empirical studies with the Human Mortality Database were conducted to

compare the proposed age-specific age band based prediction models with other benchmark

models that also consider utilizing the similarities in mortality development patterns among

different ages. An overall improvement of our proposed method in predicting accuracy has

been observed for the majority of ages, especially for adults and retiree groups. Among all

methods, we recommend using the age-specific age band based method with a smoothing

procedure for the band sizes because this method shows consistently superior performance

in predicting accuracy in all of our empirical studies.

98



Chapter 5

Borrowing Information from Multiple

Aspects

5.1 Introduction

Previous studies in the preceding chapters have triggered a more profound consideration

for effectively borrowing information from multiple aspects simultaneously. This chapter

serves as a comprehensive fusion of previous chapters to actively explore proper strategies

that consider hidden information across both ages and populations to formulate future

mortality predictions for a potentially improved prediction accuracy. This chapter will

provide three different specific approaches to the stated end and implement them with data

from the Human Mortality Database (HMD). All of them are motivated by the question

of how to extend the age-specific age set paradigm proposed in the preceding chapter to a

more complex multi-population setting. The first approach is a distance-based approach,

based on a variance-based distance measure that defines the “neighborhood” of the target

age among all ages from multiple populations. The second approach is an ensemble-based

approach built upon the distance-based approach. The third approach is the ACF model-

based approach, which extends the age-specific age band (ASAB) based method from the

last chapter to the ACF model framework. Performance comparisons are conducted among

the proposed approaches and the single population ASAB based method as the benchmark

based on empirical studies with the Human Mortality Database. The empirical studies show

a noticeable improvement in prediction accuracy from the distance-based approach for male

populations and a comparable predicting accuracy for female populations compared with the

single ASAB based model. The ensemble-based method yields a similar prediction accuracy

to the multi-population distance-based approach and performs quite robustly with different
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combinations of hyperparameters. The ASAB method applied with the ACF model performs

the best among all the three approaches for female populations but is less desirable for male

populations. Additionally, this chapter also discloses some interesting stylized facts from the

HMD about how ages would be selected from multiple populations by the distance-based

approach.

The rest of the chapter proceeds as follows. Section 5.2 introduces the proposed pre-

dicting strategies, framework, and the data-mining procedures that we utilize to determine

the optimal age sets. Section 5.3 presents empirical studies of our proposed methods and

compares them with benchmark models considered in our study. This section also includes

a summary of some stylized facts about how ages from multiple populations are selected by

the distance-based approach. Finally, Section 5.4 provides some concluding remarks.

5.2 Three Predicting Approaches

5.2.1 Distance-based Approach

When it comes to extending the age-specific age set paradigm to a multiple population

setting, the designed procedure should be capable of detecting the useful information hidden

from a specific combination of populations and ages and, in the meanwhile, maintaining

computational efficiency. One sensible way is to view each age-specific mortality rate time

series from different populations as a different candidate in the age candidate pool and then

consider selecting those ages in the “neighborhood” of the target age for mortality modeling.

However, unlike the single-population case where the concept of “neighborhood” has its

natural meaning due to the natural ordering of ages, we have to define what constitutes a

“neighborhood” of a given target age in the whole pool of candidate ages. In this section,

we propose a variance-based quantity to measure distance and define the “neighborhood” in

order to extend the age-specific age set paradigm to the scenario of borrowing information

from multiple populations.

As the name suggests, the distance-based approach works similarly to the well-known k-

nearest neighbors algorithm (KNN) (Fix and Hodges [1989]), bringing in useful information

from those “neighboring” ages sharing enough homogeneity in terms of a certain “distance”

measure with the target age x0 for potential improvement of prediction accuracy. So, in the

distance-based approach, the desired optimal age set A∗x0 is determined as a group of k age

“neighbors” of the predicting target age x0 with k ∈ {0, 1, · · · , K}, where K represents the

maximum allowed number of ages to borrow information in the age-specific age set based

100



paradigm.

The implementation of the approach involves designing a proper “distance” measure that

is capable to capture similarities in mortality developing trends. To exclude the effect of

mortality level, a general “distance” measure between two age-specific mortality sequences

of age i and j (i and j may come from different populations) is designed in the following

way:

1. A difference sequence is first defined as:

diffi,j(t) = η(i, t)− η(j, t), t ∈ T ,

which represents the difference between the two age-specific mortality sequences from

age i and age j at time t. The choice of η depends on the chosen mortality model. ηi,t

can be logm(i, t) for Lee-Carter model and logit q(i, t) for CBD model.

2. A dissimilarity matrix D is then defined with entries Di,j as the variance of the se-

quence diffi,j(t), t ∈ T , i.e.,

Di,j = Var (diffi,j(t)) .

The designed dissimilarity matrix is able to represent the extent of similarity shared by two

different ages in the sense that a smaller value of Di,j means more paralleled the two age-

specific mortality sequences, meaning a closer relationship in their mortality development

pattern over time. The “neighboring” system can be formed based on values of elements

in D for each target age x0. For the choice of the optimal age set A∗x0 associated with the

target age x0, a validation procedure is required for determining the desirable size of the set

A∗x0 , denoted by kx0 , conducive to ensuring mortality predicting accuracy. This number kx0

means that the set A∗x0 consists of the target age x0 and the kx0 ages closest to the target age

x0 judged by the adopted variance-based distance measure. Similar to the age-specific age

band method introduced in Section 4.2.2, we apply a 4-fold BCV procedure to determine

the optimal kx0 value over {0, 1, · · · , K}. The pre-specified value for the maximum allowed

number of ages K may impact the performance of the proposed distance-based approach.

A larger value of K would lead to more potential to achieve desired improvements with the

help of a richer age candidate pool but raise the computational hurdle for implementation. A

smaller value of K would impose stronger assumptions that the most beneficial information

is hidden among ages with strong similarities only. Our empirical studies in Section 5.3 set

K to be 100 and also investigate the marginal gaining predicting accuracy by a few larger

values for K.
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Similar to the argument in Section 4.2.2.4, a smoothing step is desired to avoid steep

ups and downs in the size of A∗x0 as the target age x0 changes with the belief that two

neighboring target ages should generally use similar age sets in the mortality modeling so

thatA∗x0 should have a relatively stable size as the target age x0 varies from one to a neighbor

age. In our empirical studies, the same moving average smoothing scheme as introduced in

Chapter 4 with radius h = 4 is adopted on the outcomes of the age-specific sequence of kx0s

from the 4-fold BCV results for each population.

We adopted the conventional extrapolating procedure based on time series models where

we fit the period sequence in the underlying mortality model by a proper time series model

and extrapolate based on the calibrated time series model. Since the Lee-Carter model is

chosen as the underlying model for the distance-based approach in the empirical experiment

of this chapter, a random walk process with drift (RWD) is used to describe the period effect

term.

The above description of the distance-based approach is in the context of borrowing

information from multiple populations and thus, we call it the multi-population distance-

based approach and the corresponding prediction model multi-population distance-based

model. Similarly, the approach can be applied to borrow information from ages within

the target population only. In this case, all the K candidate ages in the above-described

procedure all from the same population as the target age x0, we call it the single-population

distance-based approach and the corresponding prediction model single-population distance-

based model.

5.2.2 Ensemble-based Approach

As one can see later in Section 5.3.1, directly increasing the maximum allowed number of

ages K to form a richer age candidate pool to be selected can lead to further improvement in

predicting performance but raise the computational hurdle for implementation. To maintain

computational feasibility, we propose an ensemble-based approach, where a mild size subset

from the pool is selected randomly, and a fixed size of ages from the subset are chosen,

based on the same “distance” criterion, to borrow information. With repetition of random

subsampling for N times, we obtain N predictions of mortality for the target age, and each

is based on one sampled subset. Different averaging strategies from Chapter 3 could then

be applied for the formulation of the final prediction. We adopt a simple average scheme

in this chapter for the purpose of simplicity in implementation and illustration. There

are three hyperparameters to specify in implementing the ensemble method: N represents

the repetition time of random subsampling, n represents the size of each randomly chosen
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subset, and m represents the pre-specified size of “neighboring” ages in each subset chosen to

borrow information. Different combinations of the values of these three hyperparameters are

compared in their predicting performances in the subsequent Section 5.3.3. Cross-validation

is not needed in the ensemble-based approach and thus it saves a significant amount of

computational demands compared to the distance-based method previously introduced.

The same extrapolating procedure in Section 5.2.1 is adpoted. A random walk process

with drift (RWD) is again used to describe the period effect term.

5.2.3 ACF Model-based Approach

Another factor worth consideration for further improvements in the effectiveness of borrow-

ing information across ages and populations is the choice of the underlying mortality model.

In our previous subsection, the Lee-Carter model was embedded in the multi-population

distance-based approach, which may not sufficiently reflect the commonality and disparity

in mortality development patterns across populations. We thus propose the ACF model-

based approach, where an age set selection procedure is implemented before fitting the

mortality data with the ACF model for the prediction of a prediction target age.

Clearly, there are a lot of different designs regarding how the age set selection procedure

can be done and what grouping over the pool of populations to enforce in fitting the ACF

model. In this chapter, we consider the age band based framework as introduced in Chap-

ter 4, and apply the same cross-validation procedure to determine the optimal band size for

each target age as the one that yields the smallest validation SSE for the target age itself.

In doing so, the Lee-Carter model is replaced by the ACF model fitted to each group of

populations from the same geographical location. After the age band is selected, the predic-

tion of mortality prediction for a target age is obtained based on the derived geographical

grouping based ACF model by the conventional extrapolation as we did in Chapter 2.

5.3 Empirical Studies

The empirical studies for the performance of the three proposed methods in this section

would be conducted on the same 24 populations from the Human Mortality Database (HMD)

with the same data splitting scheme as we used in Sections 3.4 and 4.3.
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5.3.1 Performance Evaluation for the Distance-based Approach

As we have previously mentioned, the distance-based approach can be applied to borrow

information across multiple populations or within the target population. For the approach

applied within the target population, the age candidate pool consists of the ages 0-100

from the same target population. In our empirical study, we consider the following two

single-population distance-based prediction models:

• LC-distance: For each target age x0, the other ages are ranked with the proposed

distance measure, instead of the numerical order of the ages. The optimal age set

A∗x0 is determined as the group of the k “neighboring” ages of the predicting target

x0, where the value of k is then decided by a 4-fold BCV procedure as previously

explained. The maximum allowed value of k is set to be 100, which allows every A∗x0
could be the full-age set containing all ages from 0 to 100.

• LC-distance-smooth: Similar to LC-distance, but the size of A∗x0 for each target

age x0 is obtained using the moving averaging smoothing procedure with the length

of smoothing window h = 4.

For the application of the distance-based approach to borrow information across all 24

populations, the overall age candidate pool consists of all the ages 0-100 from these 24

populations, which amounts to 2424(= 101 × 24) different “ages”. In our empirical study,

we consider the following two multi-population distance-based models:

• Multi-LC-distance: The distance-based method is applied with an age candidate

pool consisting of all ages from all the 24 populations in a total size of 2424 as explained

above, and all the candidate ages are ranked by their distances to the target age x0.

The optimal age set A∗x0 is determined as the group of the k “neighboring” ages of

the predicting target x0. The value of k is also decided with a 4-fold BCV procedure.

The maximum allowed number of ages K is set to be 100 with the belief that most

beneficial information is hidden among ages with strong similarities.

• Multi-LC-distance-smooth: Similar to Multi-LC-distance, but the size of A∗x0
for each target age x0 is obtained using the moving averaging smoothing procedure

with the length of smoothing window h = 4.

Similar to the empirical studies in the preceding chapters, the overall prediction accuracy

is evaluated in terms of test SSEs for the logarithmic mortality rates over the 24 populations
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in the pool and the same set of summary statistics of the resulting 24 overall test SSEs for

each predicting model are reported in Table 5.1. Further, the DM test results for pairwise

model comparison regarding prediction performance are summarized in Table 5.2.

According to Table 5.1, adopting the distance-based method under the single population

scenario has resulted in similar predicting performance compared to the age-band-based

method, whenever the smoothing step is applied or not for the size of the selected age

set. The comparable performance between the two types of prediction methods can be

observed for both female and male populations via these statistics tabulated in Table 5.1.

This observation is not surprising because the variance distance of an age close to the

target age values tends to be smaller than that of an age farther away from the target age.

Therefore, the selected age sets in the final prediction models are similar between these two

approaches. Furthermore, a comparison of the last two rows with the other rows in each

panel of Table 5.1 indicates that the relative performance between the multi-population

distance-based approach and the single-population distance-based approach is not the same

for populations of the two different genders. For female populations, the extra data searched

in the multiple-population approach does not lead to obvious improvement in prediction

accuracy compared with the single-population approach. However, the multiple-population

approach does lead to a noticeable improvement in prediction accuracy for male populations

as the approach allows the selected age set to include ages from populations other than the

one where the target age is located.

We also apply the DM test based procedure to compare the Multi-LC-distance-smooth

model with the Lee-Carter, and the LC-ageband-smooth models in their prediction errors.

The DM test based procedure was conducted in the same way as we described in Sec-

tion 2.3.3.2 of Chapter 2 and Section 3.4.2.2 of Chapter 3. The numbers of wins by one

model over the other from the DM test procedure are reported in Table 5.2. The results in

the table show that the distance-based method outperforms the standard Lee-Carter model

over both female and male populations in terms of DM tests. However, its relative perfor-

mance compared with the age band based method is disparate between the female and male

populations. Over female populations, the age band based method beats the distance-based

method more times than the other way around (13 versus 5). Over male populations, how-

ever, the distance-based method works better than the age band based method (11 versus

5).

We also investigate the effect on the prediction performance from the maximum allowed

number K for the age set size in the distance-based approach. We consider three different

values for K (100, 200, and 400) and apply the multi-population distance-based method

with smoothing to all 24 populations of both genders. The same set of statistics over the
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Table 5.1: Summary statistics of test SSEs from the 24 populations comparing

the prediction performance between distance-based models, Lee-Carter model,

and age band based models from Chapter 4.

1st Quartile Median Mean 3rd Quartile

Female Population

Lee-Carter 19.37 44.73 44.64 63.90

LC-ageband 17.44 44.49 44.00 67.36

LC-ageband-smooth 14.81 41.94 40.57 59.22

LC-distance 17.13 44.65 44.15 67.17

LC-distance-smooth 16.82 43.67 42.78 65.86

Multi-LC-distance 16.50 41.91 45.78 72.24

Multi-LC-distance-smooth 16.96 40.95 42.14 66.85

Male Population

Lee-Carter 28.40 41.31 49.79 67.97

LC-ageband 16.78 37.67 39.14 60.66

LC-ageband-smooth 16.01 34.99 37.44 53.90

LC-distance 16.38 38.07 39.25 60.15

LC-distance-smooth 15.55 36.35 37.40 57.05

Multi-LC-distance 15.43 36.09 37.14 57.02

Multi-LC-distance-smooth 14.04 34.68 35.24 53.10
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Table 5.2: Number of wins for comparisons between the proposed models (in the

column) and the benchmark models (in the row) based on a pairs of one-sided DM

tests: In each cell, the first integer indicates the number of wins of the model in

the row out of 24 comparisons while the second integer is the number of wins of

the model in the column.

Multi-LC-distance-smooth

Female Population

Lee-Carter (7, 14)

LC-ageband-smooth (13, 5)

Male Population

Lee-Carter (1, 20)

LC-ageband-smooth (5, 11)

resulting 24 SSEs from the 24 populations is reported in Table 5.3. The mean of the 24 SSEs

shows a decreasing trend as the maximum allowed number of ages K increases. In other

words, it seems that further improvement in predicting performance can be achieved by

increasing the value of the maximum allowed number of ages K to form a richer age candi-

date pool to be selected over the cross-validation step in the distance-based approach. The

caveat, however, is that such brutal-force implementation of the proposed multi-population

distance-based method would become computationally challenging as the increase of the

value of the maximum allowed number of ages K results in an explosion in computational

demands for all the needed model fitting, cross-validation, and other necessary calculation.

This is the reason we consider the ensemble method that we described in Section 5.2.2.

5.3.2 Stylized Facts from the Distance-based Approach

As mentioned earlier, the proposed multi-population distance-based approach would return

an age-specific age set A∗x0 for each specific target age x0 from a given target population.

The optimal age set A∗x0 contains age x1, x2, · · · , xk, some of which come from the same

population as x0 while the rest do not. For referral convenience, we call those selected ages

for a target age as its reference ages. It is interesting to investigate some stylized facts of
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Table 5.3: Summary statistics of test SSEs of 24 populations comparing the

prediction performance of the distance-based models with different values of

the maximum allowed number of ages K.

1st Quartile Median Mean 3rd Quartile

Female Population

Multi-LC-distance-smooth, K = 100 16.96 40.95 42.14 66.85

Multi-LC-distance-smooth, K = 200 17.39 40.86 40.58 62.25

Multi-LC-distance-smooth, K = 400 17.85 41.07 40.13 59.38

Male Population

Multi-LC-distance-smooth, K = 100 14.04 34.68 35.24 53.10

Multi-LC-distance-smooth, K = 200 14.50 33.91 34.79 51.98

Multi-LC-distance-smooth, K = 400 15.48 33.60 34.64 50.53

how the reference ages are chosen differently with respect to different target ages x0.

Firstly, for each target age x0 from a given target population, we calculate the mean of

all chosen reference ages x1, x2, · · · , xk in the age set A∗x0 , denoted as x̄i, then the absolute

value of the difference between x̄i and x0 is calculated. We do this for every x0 of the 24

target populations, and then take an average from these 24 target populations. The left

panel of Figure 5.1 demonstrates this averaged absolute distance with respect to different

values of the target ages x0 to present the average discrepancy between the chosen reference

ages and the target. A small value indicates the chosen reference ages do not differ much

from the target age on their average value while a large value indicates the existence of a

noticeable discrepancy between the chosen reference ages and the target age. As the left

panel of Figure 5.1 reveals, the discrepancy seems prominent when the target age x0 is

smaller than 30 or close to 100 but unapparent for the middle ages. The results validate

that the selected ages spread out from the target age more when a young or an elder age is

the target for mortality prediction than an age from other bands.

Secondly, for each target age x0 from a given target population, the standard deviation

of all chosen reference ages x1, x2, · · · , xk in the age set A∗x0 is calculated. The age-specific

standard deviations are then averaged over all 24 target populations and plotted in the right
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panel of Figure 5.1, to indicate how volatile the chosen reference ages are with different values

of the target ages x0. A low standard deviation indicates that the chosen reference ages

do not differ much from each other while a high standard deviation indicates that chosen

reference ages are spread out over a wider range. With an observable decreasing trend for

both genders as the value of the target ages x0 increases, the figure confirms that younger

ages would generally borrow information from ages with a wider range while the reference

ages for adult/retiree ages are chosen to be more concentrated. Meanwhile, an increase of

the standard deviation at the right end (when the target age x0 is large) is also observed in

both genders, providing evidence of the very old ages borrow information from ages widely

in the distance-based approach.
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Figure 5.1: Stylized facts of chosen reference ages xi with respect to different target

ages x0. Left: absolute difference between the averaged chosen reference ages x̄i and

the target age x0. Right: standard deviation of chosen reference ages xi with respect

to different target ages x0.

It is also interesting to have a closer look at the composition of chosen ages over different

target ages x0 to examine the difference between the number of domestic ages (selected

reference ages from the same target population) and the number of foreign ages (selected

reference ages from other reference populations). The averaged number of the selected

domestic ages and that of the selected foreign ages (i.e., those contained in set A∗x0) are

illustrated, respectively, by the two curves in Figure 5.2 to show how they vary over the

target age x0. The curves show a similar trend over both female and male populations.

Roughly speaking, the number of selected domestic ages shows a first increasing and then

decreasing trend while the number of selected foreign ages presents a first decreasing and
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then increasing trend as the value of the target age x0 increases. In other words, for both

female and male populations, younger and older ages tend to borrow information from more

ages out of the population where the target age is located, while those middle ages tend to

use more ages from the domestic population in our distance-based approach.
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Figure 5.2: Number of selected ages: Domestic versus Foreign.

Furthermore, as every target age of every target population selects its age-specific age set

among all the ages of all the 24 populations in the distance-based approach, it is interesting

to explore what relative “role” that one specific age/population has undertaken in the

system of the information “flow”. For a specific target age x0 from a specific population

i, the optimal age set A∗x0 consists of age x1, x2, · · · , xk, some of which come from the

same population i while the rest do not. Regardless of the population they come from, the

numbers of times of age 0 to 100 being selected as the members of A∗x0 for target age x0

are recorded. The results are then aggregated among all 24 populations with respect to

different values of x0 and demonstrated in Figure 5.3 as a concise summary for the general

status of the difference in selection frequency of different ages. The thickness of the arrows

represents the differences in selection frequency of different ages. A thicker arrow means the

age represented by the starting point of the arrow has been chosen more frequently by the

age represented by the ending point of the arrow in the distance-based method, while the

thinner arrow means the selection happens less frequently. Moreover, the overall layout of

the arrows can provide insights into the difference in the relative “role” that one specific age

has undertaken in the system of the information “flow”. A large amount of arrows inflow

to the point would indicate the age represented by the point majorly serves as the role to

“borrow” information from others, while a large amount of arrows outflow from the point

110



would indicate the age represented by the point are “providing” information to others.

As Figure 5.3 shows, for both female and male populations, there exists a large amount

of information inflow when a very young or very old age, usually less than 10 or above 80, is

fixed as the target age. It is very frequent to include information that comes from the same

very young or very old age group. This observation has again confirmed that young and old

ages borrow information from more ages compared with a target age in other bands.

Similarly, the numbers of ages from each of the 24 populations being selected as the

members of A∗x0 for target age x0 of a given target population are recorded, regardless of

the specific values of the chosen ages. The results are then aggregated among all target ages

within the same target population. Figure 5.4 demonstrates how frequently each target

population with an age selects an age from another population. The thickness of the arrows

represents the selection frequency of the population at the starting point by the population

at the ending point.

As Figure 5.4 shows, there exist populations that mainly borrow information from ages

within themselves, like the US and Japan, and populations that borrow from other popula-

tions more, like Austria, Scotland, and New Zealand for both genders. Further population-

specific results can also be obtained from Figure 5.4. For instance, the US female mainly

borrows information from ages within itself and meanwhile provides information to females

in Finland, Netherlands, Canada, and Sweden. Another illustrative example is the France

male, which receives information mainly from the US male and itself and provides informa-

tion for males in Belgium, Switzerland, Austria, and Italy.

5.3.3 Empirical Evaluations over Different Approaches

In this section, we implement the three different approaches described in Section 5.2 to all

24 populations for both genders separately and compare their relative performance using the

resulting test SSEs for the logarithmic mortality rate with their summary statistics reported

in Table 5.4. In the ensemble-based approach, we exploit hyperparameters (n,m,N) =

(150, 100, 100). The results confirm a similar predicting accuracy between the ensemble-

based method and the multi-population distance-based method. Furthermore, the ACF

model-based method has a noticeable improvement in terms of predicting accuracy over

the other two approaches when female populations are considered for mortality prediction.

However, it does not lead to an improvement for male populations. There was indeed a slight

deterioration in predicting accuracy with the ACF-based approach over male populations.

Finally, we also experimented to check how the triplet hyperparameters (n,m,N) may
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Figure 5.3: Visualized summary of relations between different ages. A thicker arrow

means the age represented by the starting point of the arrow has been chosen more

frequently in the age-specific age set for the mortality prediction of the age represented

by the ending point of the arrow in the distance-based method while the thinner arrow

means the selection happens less frequently. The left panel demonstrates results for

female populations and the right panel demonstrates results for male populations.

affect the predicting performance of the ensemble-based approach. We reported the pre-

diction summary results in Table 5.5 for different combinations of the three parameters,

tabulated separately by gender. The results in the table indicate the predicting perfor-

mance of the ensemble-based approach is rather robust when m is set at 100, a number

almost the same as the number of full age range considered in a single-population method.

Different choices of parameters N and n yield similar magnitudes of SSEs.

Extra combinations of hyperparameter values in the ensemble-based approach were also

considered with the experimental outcomes demonstrated in Figure 5.5, where each curve

shows how the resulting average SSE from all the 24 populations responds to the value

of one or two parameters when the other parameter(s) is fixed. Figure 5.5, we have the

following observations:

• The upper left panel shows how the average SSE varies over different values for n, the

size of subsamples in the ensemble-based approach when the other two parameters

are fixed with m = 100 and N = 100. The curve in the panel indicates that an overly

large value for the subsampling size is detrimental to the resulting predicting accuracy.

One interpretation of this observation is that a larger value of n tends to have more
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Figure 5.4: Visualized summary of relations between different populations, represented

by different points. A thicker arrow means the population represented by the starting

point of the arrow has been chosen more frequently to help predict the population

represented by the ending point of the arrow in the distance-based method while the

thinner arrow means the selection happens less frequently. The left panel demonstrates

female results while the right panel demonstrates male results.

overlapping across the subsampled age set for ranking and this will lead to a more

similar predicting rule from each subsampling in the ensemble-based method while

maintaining relatively independence among predictions from different subsamples is

essential to ensure the efficiency of a general ensemble prediction method.

• The upper right panel gives changing trend of the average SSE over different values

of m when the other two parameters are fixed at n = 200 and N = 100. The curve in

the panel shows that the best predicting accuracy can be obtained by taking the size

of the selected age set the same as the size of each subsample in the ensemble-based

approach.

• The experiment for results in the lower left panel is motivated by our observation from

the upper right panel of the figure which shows that the best predicting accuracy was

reached when m = n. The experiment results in the lower left panel indicate that the

best choice is roughly between 100 and 200 for m and n when they are set equal to

each other in the ensemble-based method.

• The lower right panel of Figure 5.5 gives the curve of the average SSE versus the value

of N , the number of subsampling in the ensemble-based approach. As one can expect
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from a general understanding of an ensemble method, an increase in the subsampling

time would not detrimental to the resulting predicting performance. The curves in the

panel indicate that the marginal benefit of increasing the subsampling time is rather

tenuous.

Table 5.4: Summary statistics of test SSEs of the 24 populations comparing

the prediction performance of different proposed strategies.

1st Quartile Median Mean 3rd Quartile

Female Population

Multi-LC-distance-smooth, K = 100 16.96 40.95 42.14 66.85

Multi-LC-distance-smooth, K = 200 17.39 40.86 40.58 62.25

Multi-LC-distance-smooth, K = 400 17.85 41.07 40.13 59.38

Multi-LC-ensemble (150, 100, 100) 18.67 40.71 41.04 61.40

ageband-ACFGeoInfo 15.40 38.87 37.23 54.29

Male Population

Multi-LC-distance-smooth, K = 100 14.04 34.68 35.24 53.10

Multi-LC-distance-smooth, K = 200 14.50 33.91 34.79 51.98

Multi-LC-distance-smooth, K = 400 15.48 33.60 34.64 50.53

Multi-LC-ensemble (150, 100, 100) 15.41 33.80 34.66 51.76

ageband-ACFGeoInfo 19.23 33.11 36.49 49.71

5.4 Concluding Remarks

In this chapter, the task of improving future mortality prediction accuracy is incorporated

with a more comprehensive setting where information across different ages and different pop-

ulations is considered simultaneously. This chapter proposes three approaches: a distance-

based approach as an extension of the age-specific age set paradigm in Chapter 4 to the

multi-population scenario with a specially designed “distance” measure, an ensemble-based
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Table 5.5: Summary statistics of test SSEs of the 24 populations comparing

the prediction performance of ensemble-based approach with different values

of hyperparameters, where N is the number of subsampling, n is the size of

subset subsampled each time, and m is the size of the chosen age set using

the distance-based method from each subsampled age set.

Multi-LC-ensemble (n,m,N) 1st Quartile Median Mean 3rd Quartile

Female Population

Multi-LC-ensemble (125, 100, 100) 18.51 39.33 40.98 62.01

Multi-LC-ensemble (150, 100, 100) 18.67 40.71 41.04 61.40

Multi-LC-ensemble (175, 100, 100) 18.80 42.71 41.22 61.08

Multi-LC-ensemble (200, 100, 100) 18.88 43.88 41.40 60.80

Multi-LC-ensemble (200, 150, 100) 18.91 43.99 41.32 60.32

Multi-LC-ensemble (200, 100, 50) 18.87 43.91 41.42 60.80

Multi-LC-ensemble (200, 100, 200) 18.88 43.90 41.40 60.78

Multi-LC-ensemble (200, 100, 300) 18.89 43.91 41.40 60.79

Multi-LC-ensemble (200, 100, 400) 18.88 43.90 41.41 60.78

Multi-LC-ensemble (200, 100, 500) 18.88 43.90 41.41 60.79

Male Population

Multi-LC-ensemble (125, 100, 100) 15.09 33.86 34.69 52.04

Multi-LC-ensemble (150, 100, 100) 15.41 33.80 34.66 51.76

Multi-LC-ensemble (175, 100, 100) 15.79 33.62 34.68 51.77

Multi-LC-ensemble (200, 100, 100) 17.85 32.68 35.81 51.60

Multi-LC-ensemble (200, 150, 100) 16.17 33.24 34.65 51.19

Multi-LC-ensemble (200, 100, 50) 16.03 33.30 34.75 51.64

Multi-LC-ensemble (200, 100, 200) 15.99 33.34 34.73 51.72

Multi-LC-ensemble (200, 100, 300) 15.98 33.34 34.72 51.66

Multi-LC-ensemble (200, 100, 400) 15.98 33.32 34.72 51.69

Multi-LC-ensemble (200, 100, 500) 15.99 33.29 34.72 51.72
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Figure 5.5: Average of realized test SSEs for ensemble-based method with different

values of hyperparameters. Topleft: average of realized test SSEs for ensemble-based

method with different values of n and fixed m and N . Topright: average of realized

test SSEs for ensemble-based method with different values of m and fixed values of

n and N . Bottomleft: average of realized test SSEs for ensemble-based method with

different values of m = n and fixed N . Bottomright: average of realized test SSEs for

ensemble-based method with different values of N and fixed m and n.
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approach that averages results from multiple random subsets, and an ACF model-based ap-

proach that combines the age band based framework with the ACF model using exogenous

geographic information.

Thorough comparisons among the proposed approaches are conducted based on exten-

sive empirical studies. The results of numerical studies with the Human Mortality Database

(HMD) have confirmed the potential capability to consider borrowing information among

different ages from different populations with a certain level of improvement in predicting ac-

curacy for all three approaches. The multiple-population distance-based approach has led to

a noticeable improvement in prediction accuracy for male populations. The ensemble-based

method yields results similar to the multi-population distance-based method in predict-

ing accuracy with much less computational demand. Another intriguing property of the

ensemble-based method is its capacity to obtain robust results with a range of values of the

triplet hyperparameters. As for the ACF model-based approach, it has been suggested by

the empirical results that a more complex model, e.g., the ACF model is more appropriate

for female populations while a simpler Lee-Carter model works better for male popula-

tions. Additionally, several general stylized facts of how ages from multiple populations are

borrowed by the distance-based method are provided.
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Chapter 6

Future Works

This thesis studies the problem of borrowing helpful information from multiple aspects to

enhance human mortality predicting accuracy using prudently designed statistical learning

approaches. By the momentum of the research outcomes in this thesis, there are many

directions worth further exploration for future research, and this chapter aims to describe

some of these in two separate sections. Section 6.1 states some specific aspects that are

worth further exploration following up the research in each of Chapters 2-5. Section 6.2

proposes an imputation framework for forecasting any interesting quantities associated with

the future liabilities of life insurance products.

6.1 Follow-up Research from Each Chapter

Chapter 2 provides a DSA algorithm based solution for the problem of selecting a “proper”

group of populations to ensure the success of multi-population mortality modeling. There

are several directions to further the application of the DSA based framework for mortality

prediction. Firstly, because of the flexibility in its design, there is enough room to adjust

elements in the DSA algorithm, such as the risk function, the threshold, and even the order

of the three moves (Deletion, Substitution, Addition), to consider a broader scope of usage.

Secondly, while the DSA algorithm is applied with the extended ACF model in Chapter 2,

it is interesting to investigate its performance along with other multi-population models

such as the CBD model proposed by Cairns et al. [2006] or the common sparse age-period

model introduced by Hatzopoulos and Haberman [2013]. Finally, other classic machine

learning methods have also been introduced into the area of mortality forecasting recently.

For example, Richman and Wüthrich [2021] extended the Lee-Carter model to multiple

populations by using neural networks for the automatic selection of optimal model structure,
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and Nigri et al. [2019] applied a recurrent neural network with a long short-term memory

architecture to the Lee-Carter model for improved predictive capacity. A comparison or

combination of the DSA-based procedure and other machine learning techniques can be

potentially effective in mortality forecasting.

Chapter 3 designs an alternative framework that addresses major potential issues that

arise with direct usage of a high-dimensional multi-population model. The proposed bivari-

ate model based ensemble (BMBE) framework can ease computational hurdles and allow

extra flexibility in the structure of the underlining base learner mortality model. There

are several aspects worth further exploration of the BMBE framework. Firstly, while the

bivariate ACF and bivariate CBD models were used as the base learners in Chapter 3, other

bivariate-population models are worth consideration in the BMBE framework, for example,

the gravity model in Dowd et al. [2011], or the VAR and VECM models introduced by Zhou

et al. [2014]. Secondly, although the BMBE framework does not impose any constraints on

the base learner, a base learner that captures more desirable characteristics of the mortality

data is conducive to improving the prediction accuracy of the general framework. It could

be rewarding to consider a set of base learner candidates (instead of a fixed base learner

for every population pair as we do in the thesis) and apply a data-driven model selection

procedure for the fit of each population pair before ensembling base learners for the final

forecast. An automated procedure of identifying a suitable base learner for each population

pair is imperative if a large set of base learner candidates would be implemented, particularly

when the pool of auxiliary populations is also large. Finally, as another exciting extension,

it would be interesting to investigate further the design of base learner candidates. We may

consider other model features in addition to time shift and cohort effect that have been

investigated in Chapter 3. Furthermore, since the strength of the cohort effect varies from

population to population, it could also be interesting to consider a base learner candidate

in the set of candidate pools with an “asymmetric” structure where a cohort effect term is

included for one population but not for the other.

In chapter 4, the idea of borrowing information has been altered to a different scope in

which similarities among different ages are detected and considered as a source of informa-

tion for future predicting accuracy enhancement. A novel age-specific age set framework

is introduced to decompose the overall predicting goal into multiple individual tasks and

search for individual age bands to ensure the mortality prediction of each target age can

receive the benefit of borrowing information across ages to the largest extent. Furthermore,

Chapter 5 approaches the problem at a more comprehensive level where the selection of

both ages and populations are considered jointly. Three different approaches are proposed

in this chapter, including one distance-based approach, an ensemble approach (based on
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the distance-based approach), and an ACF-based approach. As follow-up research, it would

be interesting to explore the performance of these approaches by altering some elements in

their designs. For example, different types of ensemble methods and different specifications

of the ACF model can be considered. Moreover, a challenging yet promising venture is to

extend the DSA-based procedure or the BMBE framework to select not only population

groups but also time periods and age bands in a computational-friendly way so that infor-

mation from multiple aspects can be collected in a more effective way to ensure a further

improvement in mortality prediction.

6.2 Imputation Method for Forecasting Future Liabil-

ities of Life Insurance Products

We propose an imputation method for forecasting any interesting quantities associated

with the future liability of life insurance products. To convey the idea, let us use the n-year

term life annuity immediate as an example and consider forecasting a quantile of its future

liability.

Let ax,t(n) denote the time-t pure value of an n-year term life annuity. It can be computed

from the individual death rates through:

ax,t(n) =
n∑
k=1

v(k)sx,t(k), (6.1)

where sx,t(k), denoting the k-year survival probability for an individual aged x in year t, is

calculated as

sx,t(k) =
k−1∏
j=0

px+j,t+j =
k−1∏
j=0

(1− qx+j,t+j)

with px,t = sx,t(1) and qx,t = 1− px,t. Assume we have historical mortality rates data:

qx,t, for x = x0, x0 + 1, . . . , xw, and t = 1, 2, . . . , T,

where xw represents the age limit so that qxω ,t = 1 for every t. These historical data enable

us to compute realized values of ax,t(n) up to time T − n + 1. One conventional way to

estimate the risk measure Value at Risk of

ax,t(n) for t = T + 1, T + 2, . . . , .....

is to establish a dynamic mortality model for qx,t and then apply a simulation procedure

to get an estimate of the risk measure. However, this existing method calls for a full
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specification of the mortality model, and any violation of the model may lead to a large

estimation error for the risk measure. Instead, we plan to consider a quantile factor model

directly on ax,t(n) to address the problem of estimation. The historical data enable use

to compute the realized data for ax,t for the age-year window {x0, x0 + 1, · · · , xw}× =

{1, 2, · · · , T − n + 1} without access to ax,t(n) from T − n + 2 to T because they rely on

future morality rates. An imputation procedure is then adopted for the values of ax,t(n)

from year T − n+ 2 to year T :

a∗x0,T−n+2(n), a∗x0,T−n+3(n), . . . , a∗x0,T (n)

a∗x0+1,T−n+2(n), a∗x0+1,T−n+3(n), . . . , a∗x0+1,T (n)
...

...
. . .

...

a∗xw,T−n+2(n), a∗xw,T−n+3(n), . . . , a∗xw,T (n)

(6.2)

Once the imputation finishes, we apply a quantile-based factor model to the whole set

of data, including both the realized data and the imputed data of ax,t(n). Comparing

the estimate of VaR using the conventional simulation method and the newly proposed

quantile-based method, the simulation method should work reasonably well when there are

no misspecifications for the underlining mortality model. Under scenarios when misspecifi-

cations appear, the proposed quantile-based method is expected to provide a more robust

estimate for future Value at Risk. The design of the specific form of the quantile model

remains an interesting topic, and we expect that the proposed method would throw light on

the further usage of quantile-based methods in mortality prediction and risk management.

121



References

David Atance, Ana Debón, and Eliseo Navarro. A comparison of forecasting mortality

models using resampling methods. Mathematics, 8(9):1550, 2020.

Jushan Bai and Serena Ng. Determining the number of factors in approximate factor models.

Econometrica, 70(1):191–221, 2002.

Magali Barbieri, John R Wilmoth, Vladimir M Shkolnikov, Dana Glei, Domantas Jasil-

ionis, Dmitri Jdanov, Carl Boe, Timothy Riffe, Pavel Grigoriev, and Celeste Winant.

Data resource profile: the human mortality database (HMD). International Journal of

Epidemiology, 44(5):1549–1556, 2015.
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Ronald Richman and Mario V Wüthrich. A neural network extension of the Lee–Carter

model to multiple populations. Annals of Actuarial Science, 15(2):346–366, 2021.

Maria Russolillo, Giuseppe Giordano, and Steven Haberman. Extending the Lee-Carter

model: a three-way decomposition. Scandinavian Actuarial Journal, 2011(2):96–117,

2011.

Miguel Santolino. The Lee-Carter quantile mortality model. Scandinavian Actuarial Jour-

nal, 2020(7):614–633, 2020.

Simon Schnürch, Torsten Kleinow, and Ralf Korn. Clustering-based extensions of the com-

mon age effect multi-population mortality model. Risks, 9(3):45, 2021.

Luca Scrucca, Michael Fop, T. Brendan Murphy, and Adrian E. Raftery. mclust 5: clus-

tering, classification and density estimation using Gaussian finite mixture models. The R

Journal, 8(1):289–317, 2016. URL https://doi.org/10.32614/RJ-2016-021.

Syazreen Shair, Sachi Purcal, and Nick Parr. Evaluating extensions to coherent mortality

forecasting models. Risks, 5(1):16, 2017.

Han Lin Shang. Point and interval forecasts of age-specific life expectancies: A model

averaging approach. Demographic Research, 27:593–644, 2012.

Han Lin Shang. Mortality and life expectancy forecasting for a group of populations in de-

veloped countries: a multilevel functional data method. The Annals of Applied Statistics,

10(3):1639–1672, 2016.

Han Lin Shang and Heather Booth. Synergy in fertility forecasting: improving forecast

accuracy through model averaging. Genus, 76(1):1–23, 2020.

130

https://doi.org/10.32614/RJ-2016-021


Han Lin Shang and Steven Haberman. Model confidence sets and forecast combination: an

application to age-specific mortality. Genus, 74(1):1–23, 2018.

Han Lin Shang and Steven Haberman. Retiree mortality forecasting: A partial age-range

or a full age-range model? Risks, 8(3):69, 2020.

Han Lin Shang and Rob J Hyndman. Grouped functional time series forecasting: an appli-

cation to age-specific mortality rates. Journal of Computational and Graphical Statistics,

26(2):330–343, 2017.

Yanlin Shi. Forecasting mortality rates with the adaptive spatial temporal autoregressive

model. Journal of Forecasting, 40(3):528–546, 2021.

Sandra E Sinisi and Mark J van der Laan. Deletion/substitution/addition algorithm in

learning with applications in genomics. Statistical Applications in Genetics and Molecular

Biology, 3(1):1–38, 2004.

Dilan SriDaran, Michael Sherris, Andrés M Villegas, and Jonathan Ziveyi. A group reg-

ularisation approach for constructing generalised age-period-cohort mortality projection

models. ASTIN Bulletin, 52(1):247–289, 2022.

Cary Chi-Liang Tsai and Echo Sihan Cheng. Incorporating statistical clustering methods

into mortality models to improve forecasting performances. Insurance: Mathematics and

Economics, 99:42–62, 2021.

John W Tukey et al. Exploratory Data Analysis, volume 2. Reading, MA, 1977.

Shripad Tuljapurkar. Future mortality: A bumpy road to Shangri-La?, 2005.

Frank Van Berkum, Katrien Antonio, and Michel Vellekoop. The impact of multiple struc-

tural changes on mortality predictions. Scandinavian Actuarial Journal, 2016(7):581–603,

2016.

Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer science & business

media, 1999a.

Vladimir N Vapnik. An overview of statistical learning theory. IEEE Transactions on Neural

Networks, 10(5):988–999, 1999b.

Andrés Villegas, Vladimir K Kaishev, and Pietro Millossovich. StMoMo: An R package

for stochastic mortality modelling. In 7th Australasian Actuarial Education and Research

Symposium, 2015.

131



Andrés M Villegas, Steven Haberman, Vladimir K Kaishev, and Pietro Millossovich. A

comparative study of two-population models for the assessment of basis risk in longevity

hedges. ASTIN Bulletin, 47(3):631–679, 2017.

Chou-Wen Wang and Sharon S Yang. Pricing survivor derivatives with cohort mortality

dependence under the Lee–Carter framework. Journal of Risk and Insurance, 80(4):1027–

1056, 2013.

Chou-Wen Wang, Hong-Chih Huang, I-Chien Liu, et al. A quantitative comparison of the

Lee-Carter model under different types of non-Gaussian innovations. The Geneva Papers

on Risk and Insurance-Issues and Practice, 36(4):675–696, 2011.

Chou-Wen Wang, Hong-Chih Huang, and I-Chien Liu. Mortality modeling with non-

Gaussian innovations and applications to the valuation of longevity swaps. Journal of

Risk and Insurance, 80(3):775–798, 2013.

Chou-Wen Wang, Jinggong Zhang, and Wenjun Zhu. Neighbouring prediction for mortality.

ASTIN Bulletin, 51(3):689–718, 2021.

Joe H Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the

American Statistical Association, 58(301):236–244, 1963.

John R Wilmoth. Computational methods for fitting and extrapolating the Lee-Carter

model of mortality change. Technical report, Technical Report, Department of Demog-

raphy, University of California, Berkeley, 1993.

Arkadiusz Wísniowski, Peter WF Smith, Jakub Bijak, James Raymer, and Jonathan J

Forster. Bayesian population forecasting: extending the Lee-Carter method. Demography,

52(3):1035–1059, 2015.

Jackie ST Wong, Jonathan J Forster, and Peter WF Smith. Bayesian mortality forecasting

with overdispersion. Insurance: Mathematics and Economics, 83:206–221, 2018.

Bowen Yang, Jackie Li, and Uditha Balasooriya. Cohort extensions of the Poisson common

factor model for modelling both genders jointly. Scandinavian Actuarial Journal, 2016

(2):93–112, 2016.

Sharon S Yang and Chou-Wen Wang. Pricing and securitization of multi-country longevity

risk with mortality dependence. Insurance: Mathematics and Economics, 52(2):157–169,

2013.

132



Rui Zhou, Yujiao Wang, Kai Kaufhold, Johnny Siu-Hang Li, and Ken Seng Tan. Modeling

period effects in multi-population mortality models: Applications to Solvency II. North

American Actuarial Journal, 18(1):150–167, 2014.

Rui Zhou, Guangyu Xing, and Min Ji. Changes of relation in multi-population mortality

dependence: An application of threshold VECM. Risks, 7(1):14, 2019.

133



Appendices

134



Appendix A

Appendix of Chapter 2

A.1 Geographic Grouping

The following table illustrates the grouping of populations using geographic information

and classifies the thirty populations into eight geographic groups:

Target Country Geographic Group Target Country Geographic Group

Australia Oceania Netherlands West Europe

Austria West Europe New Zealand Oceania

Belarus East Europe Norway Scandinavia

Belgium West Europe Poland East Europe

Bulgaria East Europe Portugal South Europe

Canada North America Russia East Europe

Czech Republic East Europe Slovakia East Europe

Denmark Scandinavia Spain South Europe

Finland Scandinavia Sweden Scandinavia

France∗ West Europe Switzerland West Europe

Hungary East Europe Taiwan Asia

Italy South Europe England & Wales Great Britain

Japan Asia Scotland Great Britain

Latvia East Europe U.S.A. North America

Lithuania East Europe Ukraine East Europe

Table A.1: Geographic grouping information.

135



• Oceania (2 members): Australia, New Zealand

• North America (2 members): Canada, U.S.A.

• Great Britain (2 members): England & Wales, Scotland

• Asia (2 members): Japan, Taiwan;

• Scandinavia (4 members): Denmark, Finland, Norway, Sweden

• West Europe (5 members): Austria, Belgium, France, Switzerland, Netherlands

• East Europe (10 members): Belarus, Poland, Bulgaria, Russia, Czech Republic, Slo-

vakia, Hungary, Latvia, Lithuania, Ukraine

• South Europe (3 members): Spain, Italy, Portugal

A.2 Population-specific Results
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Table A.2: Population-specific test MSEs comparing the prediction perfor-

mance of DSA·MSE model versus benchmark ACF·GeoInfo model.

ACF·GeoInfo DSA·MSE Change%

Female Population

Australia 0.0274 0.0218 -20.36%

Austria 0.0937 0.0675 -27.97%

Belarus 0.0694 0.0720 3.73%

Belgium 0.0499 0.0518 3.88%

Bulgaria 0.0961 0.0481 -49.90%

Canada 0.0198 0.0168 -15.13%

Czech Republic 0.0899 0.0623 -30.71%

Denmark 0.1196 0.0949 -20.69%

Finland 0.0972 0.0924 -4.96%

France 0.0208 0.0150 -27.71%

Hungary 0.0853 0.0529 -38.02%

Italy 0.0259 0.0216 -16.47%

Japan 0.0146 0.0173 18.19%

Latvia 0.1981 0.1256 -36.60%

Lithuania 0.0870 0.0775 -10.93%

Netherlands 0.0496 0.0500 0.84%

New Zealand 0.0769 0.0760 -1.15%

Norway 0.0802 0.0867 8.01%

Poland 0.0375 0.0146 -61.05%

Portugal 0.0571 0.0549 -3.90%

Russia 0.0620 0.0344 -44.57%

Slovakia 0.0904 0.0749 -17.11%

Spain 0.0324 0.0286 -11.56%

Sweden 0.0708 0.0689 -2.70%

Switzerland 0.0865 0.0948 9.64%

Taiwan 0.0237 0.0213 -10.23%

England & Wales 0.0152 0.0137 -9.80%

Scotland 0.0683 0.0649 -4.94%

U.S.A. 0.0129 0.0131 1.81%

Ukraine 0.0709 0.0287 -59.49%

MEAN 0.0643 0.0521 -15.59%

MEDIAN 0.0689 0.0523 -10.58%
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Appendix B

Appendix of Chapter 3

B.1 Calibration of the ACF-ts Model

Below are the specific steps for the calibration and extrapolation of the ACF-ts model with

∆t fixed:

1. Shift data of the auxiliary population (i.e., population 2) ∆t years backward along

the timeline if ∆t ≥ 0 or ∆t years forward if ∆t < 0. We then aggregate the data

by using age-time-specific population size as the weighting variable. Specifically, if we

let Ej(x, t) to denote the exposure number for age x and time t from population j,

j = 1, 2, then the aggregate death rates are computed as

E1(x, t)m1(x, t) + E2(x, t)m2(x, t)

E1(x, t) + E2(x, t)
.

The resulting aggregated data span over the time horizon [−∆t, T ] if ∆t ≥ 0 or

[0, T −∆t] if ∆t < 0; that is,

• when ∆t ≥ 0:

∗ over [−∆t, 0), it only contains data from the auxiliary (j = 2);

∗ over [0, T −∆t], it contains the weighted average of the data from both the

target (j = 1) and the auxiliary (j = 2);

∗ over (T −∆t, T ], it only contains data from the target (j = 1).

• when ∆t < 0:

∗ over [0, −∆t), it only contains data from the target (j = 1);

138



∗ over [−∆t, T ], it contains the weighted average of the data from both the

target (j = 1) and the auxiliary (j = 2);

∗ over (T, T −∆t], it only contains data from the auxiliary (j = 2).

2. Based on the aggregated data from Step 1, we calibrate B(x) and K(t) as the first

left and right singular vectors from a singular value decomposition (SVD) procedure.

The length of calibrated sequence K(t) depends on the value of ∆t. The time index of

realized K(t) is {−∆t,−∆t+ 1, . . . , T} for ∆t ≥ 0 and {0, 1, . . . , T −∆t} for ∆t < 0.

3. Denote the residuals R1(x, t) = [logm1(x, t)−B(x)K(t)] and R2(x, t) = [logm2(x, t)−
B(x)K(t−∆t)]. Then, we calibrate aj(x) as an average of the residual rates over the

modeling period for each population and age:

aj(x) =
1

T + 1

T∑
t=0

Rj(x, t), j = 1, 2, and x = x1, . . . , xn.

4. For each j = 1, 2, we apply a SVD procedure further to Rj(x, t) − aj(x) to get bj(x)

and kj(t).

5. Fit the sequence K(t) by a RWD, and each sequence kj(t) with an AutoRegressive

Integrated Moving Average (ARIMA) model using the auto.arima function from the

R package forecast.

6. We follow the conventional extrapolation paradigm for mortality forecasting. We

obtain projections of K(t) and k1(t) into future years t and then use Equation (3.1)

to obtain forecasts by taking the white noise terms as zero. The prediction of K(t) is

obtained either from the calibration step or by an extrapolating procedure, depending

on the value of ∆t. If ∆t ≥ 0, the aggregated data from Step 1 span over the time

horizon [−∆t, T ] and in this case, the prediction of K(t) for any future year t > T

should be obtained via extrapolating the established time series model. In contrast,

if ∆t < 0, the aggregated data from Step 1 span over the time horizon [0, T − ∆t],

where we note T − ∆t > T . In this case, we directly input the calibrate values

of K(t) obtained in Step 2 into equation (3.1) for mortality forecasts over the period

[T, T−∆t], and apply the extrapolation procedure for prediction beyond time T−∆t.

B.2 Calibration of the CBD-ts Model

The model extrapolation of the CBD-ts model follows the same Steps 5 and 6 for the ACF-

ts model described in Section B.1. Below are the specific steps in our calibration for the
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CBD-ts model with a fixed ∆t:

1. Assume the number of deaths at age x in year t for jth population, denoted by Dj(x, t),

follows a Binomial distribution with an exposure number Ej(x, t) and one-year death

probability qj(x, t), i.e., Dj(x, t) ∼ Bin
[
Ej(x, t), qj(x, t)

]
.

2. With the realized number of death Dj(x, t) and the exposure number Ej(x, t), we

compute the log-likelihood function:

` =
2∑
j=1

n∑
l=1

∑
t∈S

`
(
Dj(xl, t), qj(xl, t)

)
(B.1)

where

`
(
Dj(x, t), qj(x, t)

)
∝ Dj(x, t) log

[
qj(x, t)

]
+
[
Ej(x, t)− dj(x, t)

]
log
[
1− qj(x, t)

]
.

3. From equations (3.3) and (3.4), we have the following two expressions:

q1(x, t) = expit
[
K(t) + (x− x̄)k1(t)

]
, (B.2)

q2(x, t) = expit
[
K(t−∆t) + (x− x̄)k2(t)

]
, (B.3)

where expit(u) = exp(u)
1+exp(u)

.

4. Calibrate the K(t) and kj(t) sequences by plugging (B.2) and (B.3) into the log-

likelihood (B.1) and then maximizing it with respect to K(t) and kj(t) using the

Newton-Raphson iterative procedure.

B.3 Population-specific results
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Table B.1: Population-specific test SSEs comparing the prediction perfor-

mance of the BMBE based approaches ACF-ts·RankAvg versus benchmark

ACF·GeoInfo model.

ACF·GeoInfo ACF-ts·RankAvg Change%

Male Population

Australia 26.45 27.22 2.93%

Austria 34.94 34.54 -1.14%

Belgium 38.75 33.22 -14.29%

Canada 13.33 14.98 12.40%

Czech Republic 39.67 28.54 -28.05%

Denmark 66.33 65.67 -0.98%

Finland 73.81 58.63 -20.57%

France 15.10 16.02 6.13%

Hungary 54.41 28.80 -47.07%

Italy 36.10 28.03 -22.35%

Japan 9.36 4.72 -49.61%

Netherlands 35.08 31.13 -11.28%

New Zealand 54.01 56.62 4.84%

Norway 72.18 55.94 -22.50%

Poland 15.00 6.53 -56.47%

Portugal 73.83 68.92 -6.64%

Slovakia 56.78 38.13 -32.85%

Spain 29.67 32.10 8.22%

Sweden 64.36 49.41 -23.23%

Switzerland 70.34 66.47 -5.50%

Taiwan 27.43 27.19 -0.89%

England & Wales 15.64 12.42 -20.55%

Scotland 63.91 61.71 -3.45%

U.S.A. 7.37 6.88 -6.59%

MEAN 41.41 35.58 -14.15%

MEDIAN 37.43 31.62 -8.96%
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Table B.2: Population-specific test SSEs comparing the prediction perfor-

mance of the BMBE based approaches CBD-ts·RankAvg versus benchmark

CBD model.

CBD CBD-ts·RankAvg Change%

Male Population

Australia 2.32 2.88 23.94%

Austria 3.72 3.62 -2.73%

Belgium 3.81 3.67 -3.85%

Canada 2.16 1.63 -24.64%

Czech Republic 2.30 1.79 -22.06%

Denmark 3.60 1.89 -47.46%

Finland 5.16 5.62 8.91%

France 5.04 5.05 0.20%

Hungary 2.35 2.64 12.52%

Italy 1.52 1.54 1.30%

Japan 2.83 2.19 -22.65%

Netherlands 5.90 3.45 -41.49%

New Zealand 3.44 5.34 55.27%

Norway 5.01 3.36 -33.00%

Poland 1.50 1.32 -12.56%

Portugal 2.92 2.93 0.28%

Slovakia 2.37 2.60 9.99%

Spain 2.30 2.09 -8.88%

Sweden 2.43 1.67 -31.39%

Switzerland 3.00 2.93 -2.19%

Taiwan 1.25 2.34 86.93%

England & Wales 2.54 2.70 6.23%

Scotland 3.31 2.15 -34.96%

U.S.A. 3.32 3.05 -7.96%

MEAN 3.09 2.85 -3.76%

MEDIAN 2.88 2.67 -3.29%
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