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Abstract

Scala is a generic object-oriented programming language with higher-order abstractions.
Programming abstractions in Scala exemplify reusability and extensibility in the context
of type safety. In particular, generic programming allows user-defined data structures to
behave identically irrespective of the types of their values while remaining free of type
errors.

The implementation of reusability in Scala comes at a cost; the standard implemen-
tation of Scala compiles to Java bytecode, where type erasure significantly reduces Scala
program type information to create compatible Java bytecode. Consequently, autoboxing,
operations needed when using primitive values in a generic context, are introduced into the
final program. The current state-of-the-art techniques for eliminating boxing and achieving
optimal data representations at runtime, known as specialization, rely on static program
analysis. Such techniques must mitigate the problem of code duplication; static optimiza-
tions cannot use runtime information to best select which data structures to specialize.

This thesis proposes a new approach to the specialization of Scala programs. The
approach integrates type information from a high-level source-like input language with the
mechanisms of just-in-time compilation. We propose an ad-hoc specialization mechanism
using a whole program approach; specializations of data structures are created based on
concrete type arguments. In our approach, specialized objects are compatible with non-
specialized code. The thesis uses Truffle, a framework that simplifies the implementation
of just-in-time compilers, to implement an experimental research prototype.

We demonstrate that our approach is viable and produces improvements in throughput
for simplified implementations of real-world Scala programs. While these programs are
simple, it is still challenging for state-of-the-art approaches to specialize optimally. We
show that our approach can improve performance by an order of magnitude in the context
of polymorphic data structures and methods that use bulk storage. We compare the results
of our approach to our interpreter without specialization and compiled Scala on GraalVM,
a state-of-art Java Virtual Machine.
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Chapter 1

Introduction

The best presents don’t come in
boxes.

Bill Watterson

Just-in-time (JIT) compilation has seen great success in implementing runtimes for
objected-oriented programming languages. It has effectively generated efficient machine
code in the presence of virtual dispatch arising from subtype polymorphism[32, 45]. While
a call site may statically have many possible call targets, JIT compilation can incorpo-
rate dynamic runtime information to optimize the most frequently invoked call targets
speculatively. These speculative optimizations often enable compiled code to be inlined, a
critical transformation in the context of JIT compilation. Inlining compiled code generates
opportunities for many further optimizations.

Many object-oriented languages have since incorporated the notion of generic program-
ming, one form of parametric polymorphism. Parametric polymorphism enables programs
to be more modular and reusable as functions and data structures behave identically[65]
regardless of the types of their inputs. Implementations of generic programming often come
at the expense of performance. Static compilers for object-oriented languages with para-
metric polymorphism must compromise when selecting an appropriate data representation
for polymorphic data types and functions. This trade-off comes down to more optimal
data layouts at the expense of space or uniform data layouts, which are not optimal for
every type at the expense of performance.

The selection of an optimal data representation, or specialization, of a polymorphic
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data structure relies on information typically found in the type-rich source representation
of programming languages. Representations must be consistent throughout the whole
program, as code that manipulates such data structures assume their representations to
be consistent. Consequently, the specialization problem is best suited to compilers with
access to whole program information during compilation. However, this is not the case for
object-oriented languages such as Java and Scala, which statically generate a uniform data
representation for their polymorphic definitions to guarantee consistency throughout the
whole program. Additionally, static compilers do not have sufficient runtime information,
which is critical in making favourable optimization decisions compared to JIT compilers.
On the other hand, JIT compilers are ill-suited to whole-program optimizations as they
are best at the dynamic optimization of small regions of a program[14]. Therefore, the
problem of specialization falls between static compilation and JIT compilation.

This thesis introduces TastyTruffle, an interpreter and JIT compiler that incorpo-
rates rich source-level type information with speculative optimizations to specialize data
representations for the Scala programming language. TastyTruffle is implemented in
Truffle, a framework that simplifies the implementation of a JIT compiler for a source
language by implementing an interpreter for that language. Our source language is the
Typed Abstract Syntax Tree (TASTy) serialization format emitted by the Scala 3 com-
piler. TASTy is an abstract syntax tree format emitted after parsing and type checking
Scala programs. By using TASTy, source-level type information can be accessed without
the need to parse and type check a Scala source program.

The contributions of this thesis are as follows:

1. The implementation of an interpreter for the TASTy format using Truffle and the
transformations to convert a TASTy into a Truffle AST for execution. TASTy is a
high-level non-canonical representation of Scala not suitable for execution; non-trivial
transformations must be applied to a TASTy program before execution. In contrast,
Java bytecode of compiled Scala programs is readily available for execution on any
Java virtual machine.

2. The extension of this interpreter to support specialized data representations of generic
types. These specialized data representations are created using concrete type argu-
ments that generic types are instantiated with.

3. The evaluation of the interpreter on simple and realistic programs that present a
challenge to existing state-of-the-art techniques.

2



1.1 Thesis Organization

Chapter 2 provides an overview of the many intermediate representations of Scala from
compilation to execution. It explores the advantages and drawbacks of each interme-
diate representation concerning specialization. Chapter 3 details the implementation of
TastyTruffle. It covers the translation of TASTy into a more suitable IR for execution
in an interpreter where each polymorphic data structure has a uniform representation. It
then provides extensions to the interpreter to support the just-in-time specialization of
polymorphic data structures. Chapter 4 evaluates the interpreter with and without ex-
tensions for dynamic specialization on simple but realistic data structures. The chapter
provides the performance of these evaluated data structures in the context of the standard
implementation of Scala with the underlying JIT compiler of our interpreter without any
augmentation. Chapter 5 explores related work in various implementations of paramet-
ric polymorphism and other Truffle interpreters. Chapter 6 discusses possible extensions
to TastyTruffle to better integrate source-level type semantics with JIT compilation.
Chapter 7 concludes the thesis.
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Chapter 2

Background

In this chapter, an introduction to the Scala programming language is provided. A running
example that will be used for the remainder of this thesis will showcase features commonly
present in Scala programs. TASTy, an intermediate storage format used for separate
compilation of Scala programs will be described. Type erasure, a critical transformation
will be introduced in this chapter. Type erasure alters Scala programs so that they may
be executable on their default platform, the Java Virtual Machine (JVM). The GraalVM
JIT compiler infrastructure, an alternative JVM implementation that we use to implement
a runtime for Scala, will be detailed.

2.1 Scala

Scala[60] is an objected-oriented, generic, and statically typed programming language.
Scala uses a pure object-oriected programming model[41] and addresses many of the
shortcomings[39] in other object-oriented programming languages. Scala can still be consid-
ered Java-like because of the interoperability between Java and Scala programs. Programs
in Scala may contain generic definitions, allowing Scala programs to be composable and
reusable[63]. While these features offer abstractions that facilitate the design of increas-
ingly complex programs, their implementation has significant challenges. In the subsequent
sections of this chapter, we will describe the challenges of implementing these paradigms
when manifested in the various intermediate representations of Scala. The relevant pro-
gramming paradigms present in Scala are:

Object-oriented Every value in Scala is an object, and every operation is a method

4



invocation on an object. Every object in Scala is an instance of a class, and its class
defines its type. Classes[29] are a mechanism for defining state and behaviour for a
group of objects.

Generic Classes in Scala may contain type parameters and such classes are polymor-
phic[73]. Polymorphic classes may define behaviour independent of their data’s types,
allowing them to be extensively reused for multiple data types. In this thesis, The
term parametric polymorphism to refer to generics.

Statically typed Static typing is a discipline where the type information about a program
is known before it is executed. For a Scala program to compile successfully, it must
be well typed. For our purposes, computation should always produce a value that
has a type matching the type declared by the programmer to be considered well
typed. Classes are the primary syntactical mechanism for declaring types in Scala.
The properties of classes, such as state, in the form of fields, and behaviour, in the
form of methods, must be well typed. Similarly, the uses of these properties in other
classes must also be well typed.

2.2 Case Study: A List in Scala

1 abstract class List[+T] {

2 def head: T

3 def tail: List[T]

4 def length: Int

5 def isEmpty: Boolean = length == 0

6 def contains[T1 >: T](elem: T1): Boolean

7 def hashCode(): Int

8 }

Figure 2.1: Definition of List class

In this section, we will introduce the running example used for the remainder of this
thesis and our motivations for its selection. Figures 2.1, 2.2 and 2.3 contain an abstract
singly-linked list class and its two concrete subclass implementations. This set of List

implementations represent probable real-world use cases as they are a scaled-down and
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1 case class Cons[+T](head: T, tail: List[T]) extends List[T] {

2 override def length: Int = 1 + tail.length

3

4 override def contains[T1 >: T](elem: T1): Boolean = {

5 var these: List[T] = this

6 while (!these.isEmpty)

7 if (these.head == elem) return true

8 else these = these.tail

9 false

10 }

11

12 override def hashCode(): Int = {

13 var these: List[T] = this

14 var hashCode: Int = 0

15 while (!these.isEmpty) {

16 val headHash = these.head.## // Compute hashcode

17 if (these.tail.isEmpty) hashCode = hashCode | headHash

18 else hashCode = hashCode | headHash >> 8

19 these = these.tail

20 }

21 hashCode

22 }

23 }

Figure 2.2: Implementation of Cons class

simplified version of the list implementation present in the Scala collections library. The
List definition from the collections library is available by default to all Scala programs.

Figure 2.1 is an example that showcases the paradigms discussed in the previous section
that are also commonly present in real-world Scala programs. Implementations which
extend the abstract List class exhibit the object-oriented property of inheritance. The
List class contains a mixture of polymorphic and non-polymorphic methods to showcase
type specialization. The head method is class-polymorphic in that its type is derived from
a class parameter and becomes specialized when the class is specialized. The contains

method is method-polymorphic and must be specialized after the class is specialized. The
hashCode method computes the hash of a List based on the hash of its elements.

Figure 2.2 contains the implementation of a list node. The Cons implementation con-
tains two polymorphic fields, head and tail. For specialization, how the head field fits into
the storage layout of a Cons instance may differ between a Cons[Int] and a Cons[String].
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On the other hand, the storage layout of the tail field does not have to change between
instances of Cons[Int] and Cons[String] as they are both reference types.

1 case object Nil extends List[Nothing] {

2 override def head: Nothing = {

3 throw new NoSuchElementException("head of empty list")

4 }

5

6 override def tail: Nothing = {

7 throw new UnsupportedOperationException("tail of empty list")

8 }

9

10 override def length: Int = 0

11

12 override def contains[T1 >: Nothing](elem: T1): Boolean = false

13

14 override def hashCode(): Int = 0

15 }

Figure 2.3: Implementation of Nil class

Figure 2.3 contains the implementation of the empty list. The Nothing type is the
subtype of all types in Scala programs. Because the Nil class extends the List with
the Nothing type, it may used to represent the empty list for any type. We provide the
implementation of this class for completeness.

2.3 Typed Abstract Syntax Trees

An Intermediate Representation (IR) is a structural abstraction representing a program
during compilation or execution. IRs are more suitable for reasoning about a program
than program source code. IR can be used for compilation[52], optimization[52, 28], or
execution[53, 54].

Typed Abstract Syntax Tree (TASTy) is a high-level IR produced and emitted after the
type checking phase (also called the typer) of the Scala compiler (see appendix B). TASTy
is a well-typed variation of an Abstract Syntax Tree (AST). ASTs are a commonly used
intermediate representation that resembles the program source representation. TASTy
can be considered a complete IR of a Scala program before compilation, unlike the other
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intermediate representations we will examine throughout this thesis. A complete IR is able
to capture all information of the original Scala source program. We will expand on why
complete intermediate representations are significant in section 2.5.

The full TASTy IR can represent all Scala programs. The Truffle interpreter in this
thesis supports the execution of a subset of TASTy trees sufficient to express the programs
given in figures 2.1 and 2.2. The TASTy trees used in this thesis are divided into the fol-
lowing categories: definitions, terms, and types. We give the pseudocode implementations
of these tree nodes in figures: 2.4, 2.8, and 2.10.
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2.3.1 Definitions

1 // Tree representing code written in the source

2 trait Tree {

3 def symbol: Symbol

4 }

5 // Tree representing a statement in the source code

6 trait Statement extends Tree

7 // Tree representing a definition in the source code

8 trait Definition extends Statement

9

10 // Tree representing a class definition.

11 class ClassDef(

12 nme: String,

13 constructor: DefDef,

14 parents: List[Tree],

15 self: Option[ValDef],

16 body: List[Statement]

17 ) extends Definition

18 // Tree representing a method definition in the source code

19 class DefDef(

20 nme: String,

21 params: List[ParamClause],

22 returnTpt: TypeTree,

23 rhs: Option[Term]

24 ) extends Definition

25 // Tree representing a value definition in the source code.

26 class ValDef(nme: String, tpt: TypeTree, rhs: Option[Term]) extends Definition

27 // Tree representing a type (parameter or member) def] in the source code

28 class TypeDef(nme: String, rhs: Tree) extends Definition

Figure 2.4: Pseudocode class definitions for a subset of TASTy.

A Scala program consists of top-level class definitions, which themselves contain state-
ments. Statements either represent a declaration inside a class, such as method definitions
or executable code (or terms), which we discuss in section 2.3.2. Figure 2.4 provides the
pseudo implementations of all definitions in our subset of TASTy. Every tree has a sym-
bol, a unique reference to a definition. For the use cases in this thesis, most definitions
are translated and represented by a corresponding implementation in Truffle. A ClassDef
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represents a top level class definition. A DefDef tree is the definition of a method inside a
class definition.

1 val Nil = new Nil$

2 class Nil$ extends List[Nothing] { ... }

Figure 2.5: Simplified implementation of the object Nil

A ValDef tree is a context-dependent definition representing different value definition
semantics depending on its defined tree. A top level ValDef, that is a ValDef with no
parent, represents the object abstraction in Scala. The object abstraction is commonly
used to represent the Singleton pattern[39] or as a class-like interface to define static
methods. Consider the Nil class given in figure 2.3, a simplified TASTy equivalent is given
in figure 2.5

A ValDef tree defined in the body of a ClassDef tree represents a field definition. A
ValDef tree defined in the TermParam section of a DefDef tree represents a parameter
definition of the method. A ValDef tree defined among the statements in a Block tree is
a local variable definition limited to the block’s scope. Figure 2.6 shows a brief subset of
the class definition tree for the Cons class to illustrate the many contexts in which ValDef

tree nodes may appear.

Similarly, TypeDef trees refer to different kinds of definitions depending on their def-
inition site. A TypeDef in the body of a ClassDef refers to a polymorphic class type
parameter in our subset of TASTy. When a TypeDef is located in the TypeParam section
a DefDef tree, it refers to a polymorphic method type parameter. The trees defined here
can be used to represent more complex object-oriented and functional abstractions such as
nested classes or closures, but they are beyond the scope of this thesis.

Figure 2.7 is the TASTy structure of the List class given in figure 2.1. Recall that
ClassDef trees have four structural components: the constructor, the list of parent class
definitions, the self type, and the body of the definition. In this thesis, we will not dis-
cuss the self type as it is an abstraction for composition[19, 27] and is not relevant for
execution. The list of parents in a class definition in our subset of TASTy is always a
singleton. Note that while the abstract List class did not explicitly declare a constructor,
the compiler autogenerates and inserts the appropriate constructor implementation before
emitting TASTy. Since List is polymorphic, it contains an inner type definition of its sole
type parameter. This distinction makes TASTy a complete IR, as opposed to the other
intermediate representations we will describe later in this chapter.
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1 ClassDef(

2 // name

3 "Cons",

4 ...,

5 // body

6 List(

7 TypeDef("T", TypeBoundsTree(_, _)),

8 ValDef("head0", ...) // field definition

9 ...

10 DefDef(

11 "contains",

12 List(

13 ...,

14 TermParams(ValDef("elem", ...)) // parameter of contains

15 ),

16 ...,

17 Block(

18 List(

19 ValDef("these", ...), // local variable declaration

20 ...

21 )

22 )

23 )

24 )

25 )

Figure 2.6: Class definition of Cons containing multiple ValDef nodes in a ClassDef

Similarly, DefDef trees also retain their polymorphic properties. The parameters sec-
tion of a DefDef tree is split into two halves. The type parameter section preserves any
polymorphic type parameters in the method definition. The term parameter section con-
tains the normal value parameters found in a method. Term parameters may have types
derived from the type parameter section.

2.3.2 Terms

Figure 2.8 gives the implementation for terms in our subset of TASTy. Terms represent
executable atoms of code that return values. When statements represent terms, they
always evaluate to the Unit type. The Unit type has a single value and is used to specify
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1 ClassDef(

2 // name

3 "List",

4 // constructor

5 DefDef(

6 "<init>",

7 List(

8 TypeParams(TypeDef("T", TypeBoundsTree(_, _)),

9 TermParams(Nil)), _, None

10 )

11 ),

12 // parents

13 List(Apply(Select(New(_, "<init>"), Nil))),

14 // self

15 None,

16 // body

17 List(

18 TypeDef("T", TypeBoundsTree(_, _)),

19 DefDef("head", Nil, TypeIdent("T"), None),

20 DefDef(

21 "tail",

22 Nil,

23 Applied(TypeIdent("List"), List(TypeIdent("T"))),None

24 ),

25 DefDef("length", Nil, TypeIdent("Int"), None),

26 DefDef("isEmpty", Nil, TypeIdent("Boolean"), None),

27 DefDef(

28 "contains",

29 List(

30 TypeParams(TypeDef("T1", TypeBoundsTree(TypeIdent("T"), _))),

31 TermParams(ValDef("elem", TypeIdent("T1"), None))

32 ),

33 TypeIdent("Boolean"),

34 None

35 )

36 )

37 )

Figure 2.7: Tree structure for the definition of List . For brevity, we use to represent
inferred[31] type trees by the compiler.
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1 // Tree representing an expression in the source code

2 trait Term extends Statement {

3 def tpe: Type

4 }

5 // Tree representing a reference to definition

6 trait Ref extends Term

7

8 // Tree representing an assignment lhs = rhs in the source code

9 case class Assign(lhs: Term, rhs: Term) extends Term

10 // Tree representing new in the source code

11 case class New(tpt: TypeTree) extends Term

12 // Tree representing a block `{ ... }` in the source code

13 case class Block(statements: List[Statement], expr: Term) extends Term

14 // Tree representing a while loop

15 case class While(cond: Term, body: Term) extends Term

16 // Tree representing an if/then/else if (...) ... else ... in the source code

17 case class If(cond: Term, thenp: Term, elsep: Term) extends Term

18 // Tree representing a return in the source code

19 case class Return(expr: Term, from: Symbol) extends Term

20 // Tree representing a selection of definition with a name on a prefix

21 case class Select(qualifier: Term, selector: String) extends Term

22 // Tree representing an application of arguments.

23 case class Apply(applicator: Term, arguments: List[Term]) extends Term

24 // Tree representing an application of type arguments

25 case class TypeApply(fun: Term, args: List[TypeTree]) extends Term

26 // Tree representing a reference to definition with a given name

27 case class Ident(name: String) extends Ref

28 // Tree representing constant value

29 case class Constant(value: Int | ... | String) extends Term

Figure 2.8: Pseudocode class definitions for a subset of TASTy trees.

terms that cause side effects. Terms can be considered analogous to expressions from the
abstract syntax trees commonly used for other imperative programming languages. Our
term tree subset of TASTy represents a basic language with support for simple imperative
programming with control flow constructs such as branching and loops. A basic set of
object-oriented features is also encapsulated in the tree definitions above. The set of object-
oriented features includes object creation, instance method invocation, and instance field
access. This subset of TASTY is sufficient to represent the creation of polymorphic classes
as well as the invocation of polymorphic methods to showcase the examples in this thesis.
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Terms in TASTy also retain their types after type checking by the Scala compiler. A
type for a term describes the type of value produced by the term. Terms with no children,
such as Ident trees, are explicit typed. Childless terms have their type information encoded
in a TASTy file. For terms with children, their types are derived from those of their
children’s trees. Type information for non-leaf term trees is regenerated from term leaves
when a TASTy file is read. In essence, types ‘flow’ upwards from leaf nodes in TASTy to
their parent terms until the root term. The interpreter described in this thesis interprets
a tree where the types of all trees are regenerated. We will describe types in detail in the
following section.

2.3.3 Types and Type Trees

TASTy encodes Scala programs with two kinds of type information, type trees and types.
Type trees are a subset of trees that represent types as they are declared in Scala source
code. Types are canonical representations of type trees produced after type checking in
the Scala compiler. Multiple type trees may denote the same underlying type.

1 // Type tree representing a type written in the source

2 trait TypeTree extends Tree {

3 def tpe: Type

4 }

5

6 // Type tree representing a reference to definition with a given name

7 class TypeIdent(name: String) extends TypeTree

8 // Type tree representing a type application

9 class Applied(

10 tpt: TypeTree,

11 args: List[TypeTree | TypeBoundsTree]

12 ) extends TypeTree

13 // Type tree representing a type bound written in the source

14 class TypeBoundsTree(lo: TypeTree, hi: TypeTree) extends TypeTree

Figure 2.9: Pseudocode class definitions for a subset of TASTy type trees.

Figure 2.9 gives the subset of type trees we will use in this thesis. For our purposes, there
are only three ways to refer to types. A TypeIdent type tree is a reference to a type, which
is a ClassDef. An Applied type tree represents a type constructor, which accepts type
arguments and produces a new type. For example, the type Cons[T] is represented as an
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applied type tree, where Cons is the constructor and T is the type argument. A TypeBounds

tree represents the type expression Lo <: T <: Hi, a constraint where T must be a subtype
of type Hi and supertype of type Lo. Type bounds are typically used to represent declared
type parameter constraints, otherwise known as bounded quantification[22], in polymorphic
classes or polymorphic methods. However, the Typer also inserts type bounds because
type parameters in TASTy are universally constrained. A type parameter T is expanded
to Nothing <: T <: Any; that is, the type parameter T must be a subtype of Any and a
supertype of Nothing. In the context of this thesis, we can use subtype to mean subclass
of and supertype to mean superclass of. Practically, this means the type parameter T has
no constraints, since Any is the supertype of all types and Nothing is the subtype of all
types.

1 trait Type // A type, type constructors, type bounds

2 trait NamedType extends Type // Type of a reference to a type or term symbol

3 class TypeRef extends NamedType // Type of a reference to a type symbol

4 class AppliedType extends Type // A higher kinded type applied to some types T[U]

5 class TypeBounds extends Type // Type bounds

Figure 2.10: Pseudocode class definitions for a subset of TASTy type trees.

Figure 2.10 is a set of types used in our subset of TASTy. In most cases in our subset
of TASTy, the type trees have a corresponding type of the same name. However, the
NamedType does not appear in type trees as they are predominantly used to type terms.
The TypeRef type is a reference to a ClassDef tree or a type parameter TypeDef.

In the Scala compilation pipeline, TASTy is eventually simplified and transformed by
the Scala compiler to produce Java bytecode. Each tree before such transformations and
their relevance for execution in our interpreter will be reviewed in Chapter 3.

2.4 Java Bytecode

Java bytecode is a portable intermediate language and instruction set used by the Java
Virtual Machine to execute programs. Java bytecode is similar to an assembly language,
where programs are represented as sequences of atomic instructions that manipulate a
stack or registers. The type system in Java bytecode can describe primitive values such
as int and references to objects such as String. As Java bytecode was not designed from
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the onset to support parametric polymorphism, it is difficult to completely encode Scala
programs using Java bytecode.

Types in TASTy are not immediately compatible with types available in Java bytecode.
Scala’s type semantics must be eliminated from programs by the compiler before emitting
the Java bytecode of the program. The resulting Java bytecode is considered an incom-
plete IR of Scala source programs, as the type information found in the program source or
inferred from the compilation is no longer present. This deficiency is a drawback for exe-
cuting Scala programs on the JVM because speculative optimizations cannot incorporate
source-level semantics.

1 aload_0

2 astore_2

3 aload_2

4 invokevirtual #44 // List.isEmpty:()Z

5 ifne 30

6 aload_2

7 invokevirtual #46 // List.head:()LObject;

8 aload_1

9 invokestatic #52 // Method BoxesRunTime.equals:(LObject;LObject;)Z

10 ifeq 22

11 iconst_1

12 ireturn

13 aload_2

14 invokevirtual #53 // List.tail:()LList;

15 astore_2

16 goto 2

17 iconst_0

18 ireturn

Figure 2.11: Java bytecode of Cons.contains

Figure 2.11 contains the Java bytecode of the contains defined at line 4 in figure 2.2.
Typical control flow elements of Scala programs, such as if terms and while terms have
been converted into branch or jump instructions. Notice that there are no polymorphic type
parameters in the description of classes nor the invocation of polymorphic methods present
in the bytecode. In particular, notice the equality comparison in line 7 of figure 2.2 is
actually a method invocation (instruction 14 in figure 2.11). As the Scala compiler is unable
to determine the type of a polymorphic type parameter during compilation time, it is unable
to select a Java bytecode instruction that implements polymorphic comparison. Instead, a
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bridge method part of the Scala standard library is responsible for handling polymorphic
operations which operate on both reference and primitive types during runtime. In the
next section, we describe the process that transforms Scala programs to a representation
amenable to Java bytecode generation and the additional runtime overhead associated with
this transformation.

2.5 Type Erasure

Type erasure[59] is a transformation that converts polymorphic classes and methods in
Scala to monomorphic classes and methods. This conversion is necessary because poly-
morphic classes cannot be encoded into Java bytecode.. Erasure ensures that any given
polymorphic class and method has a single representation in practice. Type erasure is a
crucial part of Scala compilation that renders the JVM bytecode generated from TASTy
incomplete. Figure 2.12 shows the Cons class after type erasure.

The polymorphic Cons class has all type parameters in its class definition erased and
replaced by the Any type. The Any type is a Scala platform-independent[60] abstract type
representing the supertype of primitive and reference types. In Java bytecode, the Any
type is compiled to the Object type, the supertype of all reference types on the JVM.

While type erasure simplifies classes for runtime, the Scala compiler must resolve the
incompatibility of operations between primitives types and reference types on the JVM[53].
In order for primitive types to have a uniform representation compatible with reference
types, primitive types are encapsulated into corresponding boxed classes whose objects are
passed by reference. For example, java.lang.Integer is a class with an int field. In a
polymorphic context in which a type variable is replaced by the reference type Object,
an int value is not passed directly , but by reference to an object of class Integer that
contains the primitive value. Autoboxing [1] is the set of operations introduced by the
compiler whenever a primitive value is accessed in a polymorphic context. Autoboxing can
be divided into two operations. Boxing occurs when a primitive value must be used where
a polymorphic value is expected. Unboxing occurs when a polymorphic value must be
used where a primitive value is expected. Figure 2.13 shows a simple example of inserted
autoboxing operations using the polymorphic Cons class after type erasure.

The head field inside the Cons class after erasure is no longer polymorphic and instead
has the type Any. The integer value 1 is passed into the Cons class is boxed, and the
primitive value is wrapped as an instance of its boxed class. Similarly, when the head0

field of the instance is read and stored into a local variable, an unboxing operation ex-
tracts the primitive value out of its wrapper instance. In the Scala collections library, a
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1 case class Cons(head: Any, tail: List) extends List {

2 override def length: Int = 1 + tail.length

3

4 override def contains(elem: Any): Boolean = {

5 var these: List = this

6 while (!these.isEmpty)

7 if (these.head == elem) return true

8 else these = these.tail

9 false

10 }

11

12 override def hashCode(): Int = {

13 var these: List = this

14 var hashCode: Int = 0

15 while (!these.isEmpty) {

16 val headHash = these.head.##

17 if (these.tail.isEmpty) hashCode ||= headHash

18 else hashCode |= headHash >> 8

19 these = these.tail

20 }

21 hashCode

22 }

23 }

Figure 2.12: Cons class after type erasure

1 // Before type erasure

2 val lst: List[Int] = Cons(1, Nil)

3 val head: Int = lst.head

4 // After type erasure

5 val lst: List = Cons(box(1), Nil)

6 val head: Int = unbox(lst.head)

Figure 2.13: Example of autoboxing introduced for a List

set of commonly used polymorphic data structures, autoboxing operations are frequent
and necessary. The computational overheads of autoboxing operations on programs that
make substantial use of polymorphic collections, especially the Scala standard library, are
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significant[66]. Eliminating this overhead through optimizing autoboxing operations is one
of the central goals of this thesis. In addition to this direct overhead, autoboxing is a sig-
nificant indirect overhead that makes analyzing programs using primitive values difficult.
As a result, autoboxing inhibits many significant compiler optimizations.

2.6 GraalVM

GraalVM[81] is an implementation of a JVM. Traditionally, the JVM is responsible for
most of the performance optimizations in Java programs[64] through JIT compilation.
JIT compilation is an adaptive optimization that occurs during program execution. JIT
compilation is concerned with optimizing hotspots or portions of the program executed
most frequently. JIT compilers[38, 6] employ a range of speculative techniques to trans-
form the program under optimization. Speculative optimizations use information collected
during program execution, otherwise known as profiling. Assumptions are made from col-
lected profiling data in order to generate high-performance native machine code. A key
aspect of speculative optimizations using assumptions is that optimizations may be undone
when their underlying assumptions are violated; this enables the JIT compiler to optimize
programs without the need to prove assumptions hold in every execution path from a static
perspective.

While other implementations of Java virtual machines are designed specifically for Java,
GraalVM was designed from the onset to be language independent. GraalVM can be
divided into two primary components of interest. The first is Graal, a language-agnostic
JIT compilation infrastructure that handles speculative optimizations and the generation
of high-performance machine code. The second is Truffle, a framework for translating the
semantics of a source language, also called a guest language, to take advantage of the Graal
infrastructure.

Figure 2.14: GraalVM overview[34].
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Figure 2.14 provides an overview on the interactions between the multiple components
of GraalVM. This thesis makes substantial use of both components of GraalVM to create a
runtime for Scala programs using TASTy. The runtime is able to incorporate source level
information for speculative optimizations.

2.6.1 Graal

GraalVM incorporates an existing implementation of a JVM[64] for the actual execution
of programs. Graal is only the general-purpose just-in-time compilation infrastructure
tt optimizes the programs to be executed. Graal is general-purpose in that it conducts
analysis and optimization on the same intermediate representation, Graal IR, regardless
of the source language. Notably, most implementations of a source language utilizing
GraalVM have an implementation in Truffle. In addition to a Truffle interpreter for Java
bytecode[42], there is a direct translator for Java programs in GraalVM that parses Java
bytecode into Graal IR.

Graal IR[34] is an IR suitable for speculative optimizations, while still retaining in-
formation from the Truffle guest language AST. Graal IR is based on the sea of nodes
concept[26] and satisfies the static single-assignment [28] property. A sea of nodes is an
abstraction based on a directed graph structure that relates the control-flow graph[11] of
a program to its data-flow graph[10]. An intermediate representation is in single-static
assignment (SSA) form when each variable is defined before it is used.[48].

GraalIR enables Graal to speculatively compile only the hot branches[35], or branches
that are most frequently taken in the control flow portion of the IR, and their transi-
tive data dependencies. When a compiled program violates any underlying assumptions,
execution is deoptimized [46] and the program resumes execution in the interpreter. Deopti-
mization occurs when the compiled program is no longer considered stable and valid. Graal
automatically inserts guard nodes into the IR, which are conditional checks validating if
speculative assumptions used to compile the program still hold. Deoptimization is part of
an execution loop between Graal and Truffle, which allows GraalVM to adapt aggressively
and speculate to find the best optimization in a dynamic execution environment.

2.6.2 Truffle

Truffle is a framework for implementing an interpreter embedded into GraalVM. Truffle
differs significantly from other implementations of interpreters. Interpreters can usually
be divided into two subsets: tree interpreters and bytecode interpreters. Tree interpreters
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Figure 2.15: Truffle’s approach to self-optimization[47].

transform the program source into an AST. AST interpretation has the added benefit of
executing an intermediate representation close to the program source representation and
is, therefore, more amenable to program optimization. In contrast, bytecode interpreters,
such as the JVM, execute a vastly simplified representation of programs. While interpreters
of bytecode programs tend to be faster than their tree counterparts, the absence of detailed
source information, such as types, often makes program optimization difficult. The problem
of efficiently executing bytecode while retaining the ability to optimize them effectively
using source program information is difficult for Scala on the JVM.

Truffle is an atypical tree interpreter in that it combines the definition, execution, and
optimization of an AST structure into a single abstraction. While the structure of input
programs in other interpreters is independent of the implementation of the interpreter, a
Truffle interpreter is integrated into the structure of its input. More concretely, this means
an implementation of a Truffle interpreter is a collection of subclasses that extend Node

class and implement a execute() method. An interpreter is derived from implementing
its input tree structure by defining execution semantics inside the AST to be executed.

During the execution of the AST, profiling information collected from the interpreter
is used to drive node rewriting and JIT compilation. While Graal is language-agnostic,
Truffle is able to exploit guest-language semantics for dynamic optimizations. This process
of replacing nodes in the AST with better, specialized guest-language counterparts in
Truffle is called node rewriting. Node rewriting makes Truffle abstract syntax trees self-
optimizing and serves two purposes. The first is to incorporate guest language semantics
into the executing program dynamically. The second is to augment the AST for more
efficient JIT compilation. The nature of compiler optimizations requires that programs
are incrementally simplified in order to be optimized. While such types of optimizations
are widely applicable to many languages using the JVM, node rewriting is a high-level
language-specific optimization that occurs before such simplifications.

The self-optimizing execution semantics of the AST are implemented with the Truffle
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Domain Specific Language (DSL). The Truffle DSL is a mechanism to allow a guest language
to integrate semantics into a Truffle AST for self-optimization. A guest language is a set of
semantics, most commonly a programming language, encoded into a Truffle AST. In this
thesis, the guest language that our Truffle AST encodes and executes is TASTy (which
represents Scala).

1 abstract class EqualsNode extends BinaryOpNode {

2 @Specialization

3 def equalsInt(lhs: Int, rhs: Int): Boolean = lhs == rhs

4

5 @Specialization

6 def equals(lhs: Any, rhs: Any): Boolean = {

7 if (lhs == null)

8 rhs == null

9 else

10 lhs.equals(rhs)

11 }

12 }

Figure 2.16: Pseudocode for a Truffle node implementation of an equality which supports
node rewriting.

Figure 2.16 demonstrates an example of the node that supports rewriting declared using
the Truffle DSL. The node declares semantics of the equality operation between integers and
values of type Any. This equality node has semantics for every type because the Any type
is the supertype of all types in Scala. A Truffle node that supports node rewriting begins
in an uninitialized state. When both the left and right-hand side operands are integers,
the node is rewritten to equalsInt state. When arguments of any other combination of
types are detected, either in the uninitialized state or the equalsInt state, the node is
rewritten to the equals state.

Figure 2.17 gives the auto-generated Java program that implements the semantics de-
fined in 2.16. We will not discuss the semantics of every possible state in our generated node
for brevity. Instead, we will discuss the possible state transitions when a node starts in the
uninitialized state. State transitions are encoded as methods that execute the semantics
for a given state, and update said state. States are encoded as bit fields. The uninitialized
state is the 0 value with no states encoded. The equalsInt state is encoded with 1 and
the equals state is encoded with 2. execute_generic1 is invoked when no states (special-
izations) are active in a EqualsNode. The first state transition checks whether the node
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1 @GeneratedBy(EqualsNode.class)

2 public final class EqualsNodeGen extends EqualsNode {

3 @Child private TermNode lhs_;

4 @Child private TermNode rhs_;

5 @CompilationFinal private int current_state;

6

7 private EqualsNodeGen(TermNode lhs, TermNode rhs) {

8 this.lhs_ = lhs;

9 this.rhs_ = rhs;

10 }

11

12 public Object execute(VirtualFrame frame) {

13 return (current_state & 2) != 0 && current_state != 0 ?

14 this.execute_int_int0(state, frame) :

15 this.execute_generic1(state, frame);

16 }

17

18 private Object execute_generic1(int state, VirtualFrame frame) {

19 Object lhs = this.lhs_.execute(frame);

20 Object rhs = this.rhs_.execute(frame);

21 if ((state & 1) != 0 && lhs instanceof Integer)

22 if (rhs instanceof Integer)

23 return this.executeInt((Integer) lhs, (Integer) rhs);

24

25 if ((state & 2) != 0) return this.executeObject(lhs, rhs);

26

27 CompilerDirectives.transferToInterpreterAndInvalidate();

28 return this.executeAndSpecialize(lhs, rhs);

29

30 }

31 }

Figure 2.17: Generated code by the Truffle DSL for the AnyEqNode.

is in one of two possible states (equalsInt or equals). The corresponding specialization
is invoked if the node is in either state and its arguments satisfy the preconditions. This
portion of the node may exist in either interpreted or compiled code. However, if the node
is not initialized, i.e., it is in neither possible state, the code is deoptimized (if compiled),
and execution resumes from the interpreter. While we do not showcase this, it is possible
for a node to be in multiple states during execution.
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The executeAndSpecialize method (figure 2.18) initializes the node to a specialized
state. If both arguments satisfy the Int type check invariant, the node is initialized to
the equalsInt state. Otherwise, it is initialized to the equals state. Subsequent exe-
cutions of the newly initialized node will invoke the appropriate specialization as long as
their respective invariants are maintained. Node rewriting narrows down a node’s best
implementation(s) for a particular profile of values. If a Truffle AST cannot be rewritten
further, it is considered stable. Stable nodes vastly simplify JIT compilation because of
partial evaluation, a critical transformation applied to ASTs for JIT compilation that we
will describe next.

1 private boolean executeAndSpecialize(Object lhs, Object rhs) {

2 int prev_state = this.state_0_;

3 if (lhs instanceof Integer)

4 if (rhs instanceof Integer) {

5 this.current_state = prev_state |= 1;

6 return this.equalsInt((Integer) lhs, (Integer) rhs);

7 }

8

9 this.current_state = prev_state |= 2;

10 return this.equals(lhs, rhs);

11 }

Figure 2.18: Implementation of executeAndSpecialize of EqualsNodeGen

When invocations of a root node exceed a predefined upper bound, Graal JIT compiles
its children trees into native machine code using partial evaluation. Partial evaluation
is a program optimization technique for specializing a program (code) for a given input
(data)[37]. In the context of Truffle, this means specializing an AST node (code) based
on the values, or types of values produced by their children nodes (data)[79]. The special-
ization of an AST node may also be based of the types of children nodes themselves. We
can say that the partial evaluation of an AST will produce an AST that is specialized for
a particular set of values, or more commonly, in our case, a particular set of types.

For example, consider the partial evaluation of an EqualsNodeGen node in the equalsInt
state. The current_state field of the node is annotated with the CompilationFinal di-
rective. Truffle provides the CompilationFinal directive to indicate that a non-constant
value in the guest-language implementation will be a constant when being partially eval-
uated. Because the state is a compilation constant, the condition on line 17 of figure
2.17 evaluates to true when the state is 1 (equalsInt). As a result, only the code for
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execute_int_int0 (provided in 2.19) will be compiled. The generated implementation
of execute_int_int0 contains checks for the specialization invariant. These checks act
as points in the control flow of the compiled code to deoptimize, if these invariants are
violated. The resulting code supplied to the JIT compilation is the specialization of the
EqualsNode for the equalsInt state.

1 private Object execute_int_int0(int state, VirtualFrame frame) {

2 int lhs_int;

3 try {

4 lhs_int = this.lhs_.executeInt(frame);

5 } catch (UnexpectedResultException ex) {

6 Object rhs = this.rhs_.execute(frame);

7 return this.executeAndSpecialize(ex.getResult(), rhs);

8 }

9

10 int rhs_int;

11 try {

12 rhs_int = this.rhs_.executeInt(frame);

13 } catch (UnexpectedResultException ex) {

14 return this.executeAndSpecialize(lhs_int, ex.getResult());

15 }

16

17 assert (state & 1) != 0;

18 return this.executeInt(lhs_int, rhs_int);

19 }

Figure 2.19: Implementation of execute_int_int0 of EqualsNodeGen

The sequence of optimizations given in figure 2.15, node rewriting, partial evaluation,
and deoptimization is the advantage that a TASTy Truffle interpreter has over the tradi-
tional JVM bytecode interpreter for Scala. Truffle allows for the incorporation of source-
level type information into the just-in-time compilation loop. This thesis will focus on
using these features to execute TASTy with type information to augment JIT compilation.
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Chapter 3

The Monomorphic Interpreter

This chapter will describe the methods used to transform TASTy to make it suitable
for a Truffle interpreter, TastyTruffle, without polymorphism. In particular, it will
cover how to translate the organization of data and code in the DefDef, ClassDef, and
Term tree nodes into a Truffle implementation, which is amenable to execution and JIT
optimization. Chapter 4 will then discuss extensions to our implementation to support
parametric polymorphism and cover the techniques we use to specialize nodes to eliminate
autoboxing in the presence of polymorphism.

Scala programs in TASTy format are unsuitable for execution in a Truffle interpreter.
Programs in TASTy must be parsed and transformed into an executable representation in
Truffle. These transformations translate the TASTy tree structure into a more straight-
forward but semantically equivalent Truffle AST. For the rest of this thesis, we refer to
the Truffle AST of TASTy as TastyTruffle IR. As TASTy represents a Scala program close
to its equivalent source representation, canonicalization compiler passes (see appendix B)
that would otherwise normalize the IR are not present. Instead, we implement TastyTruffle
IR to represent a canonicalized executable intermediate representation that can later be
specialized on demand.

Figure 3.1 gives an evaluation loop typical in other interpreters in the context of this
one. A top-level tree is any tree without a parent. In our subset of TASTy, a top level tree
may be a ValDef (a singleton object) or a ClassDef. Here we only present the pseudocode
sufficient to traverse a program in TASTy. Each top-level definition is parsed and saved in
a global interpreter context (registerShape and registerObject). Top-level objects are
lazily initialized as their class definitions may not have been parsed. Registered objects
and classes are then used in subsequent executions of the program.
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1 def parseTopLevel(tree: Tree): Object = tree match {

2 case vdef: ValDef =>

3 lazy val obj = initializeObject(vdef)

4 registerObject(vdef.symbol, obj)

5 case cdef: ClassDef =>

6 registerShape(cdef.tpe, parseClassDef(cdef))

7 case _ => ()

8 }

Figure 3.1: Pseudocode to evaluate every top level tree.

We omit details on how to execute the program to be concise. Entry points in TASTy

are defined by a special method main. As multiple entry points may exist in a given
program, we consider the selection of entry points as an implementation-specific detail. In
the following sections, we will describe the individual types of TASTy nodes, why some
are directly unsuitable for execution, and how to simplify their semantics.

3.1 Converting the DefDef tree into a Truffle RootNode

In this section, we describe the conversion of DefDef trees to root nodes. DefDef trees
are the primary structure that organizes code (terms) in TASTY. Root nodes represent
the root of an executable Truffle AST, the primary abstraction that organizes code in
Truffle. In our case, root nodes are the Truffle analog of a DefDef. Each root node has a
corresponding call target, which is used for the invocation of the root node. Call targets
are the primary compilation unit for Graal. A compilation unit is an organization of code
that can be independently compiled. A root node is automatically instrumented[71] to
profile its number of invocations. When a root node has been frequently invoked inside
the interpreter, it is JIT compiled into machine code by Graal. Subsequent invocations of
the call target will then use the more efficient compiled root node.

Figure 3.2 gives a simplified implementation of a root node. Each root node in Truffle
has a frame descriptor and execution semantics. A guest language must subclass and
implement its root node to enable function invocation semantics.

A frame descriptor describes guest language variables that are in scope during execution.
The abstract execute method describes the invocation behaviour of a root node. When a
root node is executed, it is always supplied with a frame. A frame contains the arguments
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1 abstract class RootNode(desc: FrameDescriptor) {

2 def execute(frame: VirtualFrame): Object

3 def getCallTarget: CallTarget

4 }

Figure 3.2: Pseudocode of a root node.

supplied during invocation and storage slots for local variable definitions in the body of
the method.

1 class DefDef(

2 _: String,

3 params: List[ParamClause],

4 _: TypeTree,

5 rhs: Option[Term]) extends Definition

Figure 3.3: Definition of a DefDef tree with names of less important members replaced
with

A further simplified definition of a DefDef tree is provided in figure 3.3. This section
focuses on two members of a DefDef tree. The parameters of a DefDef tree are given by
the params field. In practice, the type of a ParamClause is an alias for the union type
TypeParams | TermParams, so we omit the ParamClause definition. A DefDef tree will
have a parameter section for type parameters when they are polymorphic and will always
have a term parameters section. DefDef trees may optionally have a body defined in the
rhs field. When trees do not have a body defined, they are abstract method definitions and
do not have a corresponding root node in Truffle. Only non-abstract method definitions
with a body (a term) are executable. The explanation f parsing of terms into nodes for
execution is given in section 3.2

Each value definition in the parameters of a DefDef will have a corresponding frame slot
in its parent frame descriptor. A frame slot references a unique frame value in the context
of a root node. Truffle permits each frame slot in a frame descriptor to be described by a
frame slot kind. In Truffle, there is a corresponding frame slot kind for reference types and
each JVM primitive type. The pseudocode of a frame slot kind and a method to convert
a type into a slot kind is given in 3.4.
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1 object FrameSlotKind extends Enumeration {

2 type FrameSlotKind = Value

3 val Object, Long, Int, Double, Float, Boolean, Byte = Value

4 }

5

6 def getFrameSlotKind(tpe: Type): FrameSlotKind =

7 if (tpe.isPrimitive)

8 // Int => FrameSlotKind.Int

9 // ...

10 // Double => FrameSlotKind.Double

11 getPrimitiveSlotKind(tpe)

12 else

13 FrameSlotKind.Object

Figure 3.4: Simplified implementation of FrameSlotKind

Truffle profiles frame accesses to minimize the amount of autoboxing that occurs when
reading from a frame slot with an Object kind. To eliminate unnecessary specialization
of frame accesses where types are monomorphic and statically refer to a primitive type, a
parameter is assigned the matching primitive frame slot kind in the frame descriptor. In
cases where the type is not a primitive type or a polymorphic applied type, e.g. List[T] but
not T, The Object kind is assigned to the frame slot. Otherwise, the type is a polymorphic
parameter, which could resolve to a primitive type, and the frame slot kind cannot be
resolved statically. We will defer discussion on handling parameters of such polymorphic
types that cannot be resolved statically until section 4.

Figure 3.5 provides the implementation of the DefDefNode and its parameters, the
root node equivalent of a DefDef. The execution of a DefDefNode is divided into two
stages, argument preparation, and execution. First, the arguments of the frame constructed
during invocation (see 3.3.2) are copied into their respective parameter frame slots. Frames
contain separate regions for values of each frame slot kind. We copy each argument into
the appropriate frame slot region based on the frame slot kind prescribed to a parameter.
Storing parameters in this manner eliminates any unnecessary boxing that would otherwise
occur when passing primitives as arguments.

By default, all frames start off virtual. Virtual frames are Truffle abstractions that
provide guest languages an opportunity to exploit escape analysis. Escape analysis[49]
reasons about the dynamic scope of object allocations. Truffle and Graal both exploit the
observations of Partial Escape Analysis [72], a path-sensitive variant of escape analysis, to
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1 case class LocalFrameVal(slot: FrameSlot, kind: FrameSlotKind)

2

3 class DefDefNode(

4 desc: FrameDescriptor,

5 params: Array[LocalFrameVal],

6 body: TermNode) extends RootNode(desc) {

7 override def execute(frame: VirtualFrame): Object = {

8 copyArgumentsToFrame(frame)

9 try {

10 body.execute()

11 } catch {

12 case ex: ReturnException => ex.getValue

13 }

14 }

15

16 def copyArgumentsToFrame(frame: VirtualFrame): Unit =

17 for ((param, arg) <- params zip frame.getArguments)

18 param.kind match {

19 case FrameSlotKind.Int =>

20 frame.setInt(param.slot, arg.asInstanceOf[Int])

21 ...

22 case FrameSlotKind.Double =>

23 frame.setDouble(param.slot, arg.asInstanceOf[Double])

24 case _ =>

25 frame.setObject(param.slot, arg)

26 }

27 }

Figure 3.5: Pseudocode for DefDefNode and Parameter

enable the following optimizations for guest languages:

Region Allocation[16, 76] The substitution of heap allocations with stack allocations
to eliminate unnecessary garbage collection.

Scalar Replacement[50] The complete elimination of an object allocation, where the
fields of the replaced object are substituted by local variables.

The virtual frame abstraction allows guest languages to read and write to a frame
without the requirement to optimize their object allocations. Instead, escape analysis and
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1 def parseDefDef(ddef: DefDef): DefDefNode = {

2 val desc = new FrameDescriptor

3 val parameters = self :: ddef.params.map {

4 case vdef: ValDef => generateLocal(vdef, desc)

5 }

6

7 val body = parse(ddef.rhs)

8 new DefDefNode(desc, parameters, body)

9 }

10

11 def generateLocal(vdef: ValDef, desc: FrameDescriptor): LocalFrameVal = {

12 val kind = getFrameSlotKind(vdef.tpt.tpe)

13 val slot = desc.addSlot(kind)

14 Parameter(slot, kind)

15 }

Figure 3.6: Pseudocode for parsing DefDef into DefDefNode

scalar replacement are responsible for optimizing guest language object allocations during
partial evaluation. After arguments are copied into the frame, their values become available
for access during the execution of the body. The body of a DefDefNode is then executed,
and its computed value is returned.

Figure 3.6 provides a summary on parsing a DefDef tree into its Truffle equivalent
DefDefNode. Frame slot and frame slot kinds provide an abstraction for parameters and
arguments to be resolved before executing the main body in a DefDefNode. In addition
to the parameters explicitly present in TASTY, the root node will have an additional
parameter representing the method’s receiver. The receiver is an object instance whose
class definition owns the method being invoked. In Scala, every method invocation has a
receiver. In TASTy, this translates to every DefDef is owned by a ClassDef. In the next
section, we detail how to organize call targets in Truffle by using ClassDef trees.

3.2 Deriving a Shape from a ClassDef

A ClassDef tree defines the layout of an object in TASTy. The layout of an object dictates
the values that an object instance stores and the methods that can be invoked on an object
instance. The data layout of an object in a Truffle interpreter is described by a shape[25, 80].

31



A Shape is a language-agnostic model for defining the properties of an object instance in
Truffle. A property in a shape describes one member of an object instance; it has an
identifier and a value. A Truffle object instance consists of object storage, which contains
instance-specific data and its shape. Shapes map property identifiers to object storage
locations; guest languages interface with object storage indirectly through properties. In
this thesis, we use a static shape, an immutable variant of a shape. Normally, shapes are
mutable, and their list of properties may change throughout the lifetime of a program[30].
However, programs that dynamically change the layout of their objects[5] are beyond the
scope of this thesis.

1 class ClassDef(

2 name: String,

3 constructor: DefDef,

4 parents: List[Tree],

5 _: Option[ValDef],

6 body: List[Statement]

7 ) extends Definition

8

9 class ClassShape(

10 symbol: Symbol,

11 parents: Array[Symbol],

12 fields: Array[Field]

13 methods: Map[MethodSignature, CallTarget]

14 vtable: Map[MethodSignature, Symbol]

15 ) extends Shape

Figure 3.7: Pseudocode of ClassDef and a shape for a ClassDef.

Recall the definition of a ClassDef in figure 3.7. Each ClassDef tree can be transformed
into a corresponding ClassShape, given in figure 3.7. Figure 3.8 provides a very simplified
implementation of the steps to transform a ClassDef into a ClassShape. The name param-
eter of ClassDef alone is insufficient to be used as an identifier for a ClassShape. Names
do not disambiguate between classes of the same name declared in different packages. In-
stead, we used the symbol of the ClassDef tree as the identifier for the ClassShape. For
the remainder of this thesis, we will use a ClassInstance to refer to an object instance
with properties described by a ClassShape.

A ValDef tree in the ClassDef body translates to a field definition in the ClassShape.
A ClassShape has a collection of fields that implement the static shape property. Figure
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1 def parseClassDef(cdef: ClassDef): ClassShape = {

2 val parents = cdef.parents.map(_.symbol)

3

4 val fields = cdef.body map {

5 case vdef: ValDef => generateField(vdef)

6 }

7

8 val methods = (cdef.constructor :: cdef.body) map {

9 case ddef: DefDef => ddef.symbol.signature -> parseDefDef(ddef)

10 }

11

12 val vtable = cdef.symbol.methodMembers map {

13 symbol => symbol.signature -> symbol

14 }

15

16 new ClassShape(cdef.symbol, parents, fields, init ++ methods, vtable)

17 }

18

19 def generateField(vdef: ValDef): Field = vdef match {

20 case ValDef(_: String, tpt: TypeTree, rhs: Option[Term]) =>

21 new Field(vdef.symbol, vdef.tpt.tpe)

22 }

Figure 3.8: Pseudocode to convert a ClassDef into a ClassShape.

3.9 gives our implementation of a field. Fields define operations to read and write from the
object storage on a ClassInstance. Like frames with frame slot kinds, object instances in
Truffle have separate regions for storing values of each primitive type and one for reference
types. Following the same rules with types and frame slot kinds described in section 3.1,
the data access of a field depends on the type of the ValDef tree from which the field
originates. The remaining members of a ClassShape do not describe data that has to be
stored in the object storage of a ClassInstance.

After the constructor and the DefDef statements of a ClassDef are converted into
root nodes, they are stored in the ClassShape mapped by a method signature. The
pseudocode for a method signature is given in figure 3.10. Method signatures disambiguate
method invocations in the presence of overloading [73], where methods share the same name
but have different arguments. When combined with parametric polymorphism, method
signatures must also be able to disambiguate between methods sharing the same name but
having different type parameters. However, method signatures do not have to disambiguate
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1 class Field(symbol: Symbol, tpe: Type) extends StaticProperty {

2 override def getId: String = symbol.name

3

4 def get(instance: Object): Any =

5 if (tpe == Int) getInt(instance)

6 else if ...

7 else if (tpe == Double) getDouble(instance)

8 else getObject(instance)

9

10 def set(instance: Object, value: Any): Unit =

11 if (tpe == Int) setInt(instance, value.asInstanceOf[Int])

12 else if ...

13 else if (tpe == Double) setDouble(instance, value.asInstanceOf[Double])

14 else setObject(instance, value)

15 }

Figure 3.9: Pseudocode of the field property.

between different type parameters by name, only the number of type parameters a method
has. Because type erasure erases polymorphic type parameters from methods, generic
methods that share the same number of type parameters, as well as the same parameter
types, will conflict and therefore are invalid. As previously mentioned, methods are shared
among all ClassInstance objects with the same shape; call targets are stored on their
owning shape.

1 case class MethodSignature(symbol: Symbol, params: Int, types: Array[Type])

Figure 3.10: Pseudocode of a method signature.

Often a shape will not contain the call target referenced by a signature because the
dispatch is dynamic, and the original type inherits the method. A ClassShape contains
a virtual method table, which maps a method signature to the symbol of a shape that
contains the call target matching the signature. If a method signature does not have a
call target in the current shape, the shape which holds the target is indirectly resolved
using the virtual method table during execution. While this resolution carries significant
performance overhead in Truffle and other programming language implementations, we
will describe a technique that partially mitigates this overhead further in chapter 4.
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3.3 Transforming Terms into Nodes

1 abstract class TermNode extends Node with InstrumentableNode {

2

3 def execute(frame: VirtualFrame): Object

4 def executeInt(frame: VirtualFrame): Int = execute(frame).asInstanceOf[Int]

5 ...

6 def executeDouble(frame: VirtualFrame): Double = execute(frame).asInstanceOf[Double]

7

8 }

Figure 3.11: Pseudocode of a TermNode.

In this section, the conversion of Term trees into Truffle nodes is given. The Truffle
Node abstraction allows guest languages to implement executable fragments of an AST.
Figure 3.11 is our subclass of a Truffle Node. Subclasses of the TermNode will define node-
specific semantics encapsulating a particular functionality of the interpreter. The TermNode
takes advantage of Truffle’s autoboxing elimination by defining companion execute[TYPE]

methods to allow subclasses to declare when an expected result from a child node must
conform to a specific primitive type. In the following sections, we give the subclasses that
individually implement the monomorphic interpreter’s functionality.

3.3.1 Creating Instances

1 def parseNew(new: New): NewNode = new NewNode(new.tpe.symbol)

2

3 class NewNode(symbol: Symbol) extends TermNode {

4 override def execute(frame: VirtualFrame): Object = shapeOf(symbol.tpe).newInstance

5 }

Figure 3.12: Pseudocode of a NewNode and how it is parsed.

The New tree represents the allocation of an instance of a ClassDef. The Truffle
equivalent allocate node given in figure 3.12 is not so different, but it allocates an instance
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with properties described by the ClassShape instead of a ClassDef. Note that a NewNode

only creates an object; the parameters and fields of an object remain uninitialized. An
object is initialized when the type constructor, <init>, is invoked on a newly created
object. TASTy is emitted with this sequence of events in mind; object creation is always
followed by object construction. Structurally, this means that a New tree is always the
child of an initializer Apply tree.

3.3.2 Function Application

1 def parseApply(apply: Apply): ApplyNode = {

2 val signature = apply.symbol.signature

3 apply match {

4 case Apply(Select(qualfier, _), arguments) =>

5 if (qualifier.tpe.isPrimitve)

6 if (args.length == 0) unaryOp(signature, qualifier)

7 else binaryOp(signature, qualifier, args(0))

8 else if (qualifier.tpe.isArray)

9 arrayOp(signature, qualifier, arguments)

10 else

11 new ApplyNode(signature, parse(qualifier), arguments.map(parse))

12 }

13 }

Figure 3.13: Pseudocode of parsing an Apply tree.

The Apply tree is a context-dependent tree that represents multiple types of opera-
tions. The types of their receiver disambiguate these operations. Figure 3.13 provides
an overview of the transformations discussed in this section as pseudocode for parsing an
Apply into TastyTruffle IR. We omit the implementations of unaryOp, binaryOp, arrayOp
to remain concise; These methods generate a Truffle intrinsic node, representing a similar
JVM equivalent. In the following sections, we enumerate all possible semantics in our
subset of TASTy:

Arithmetic and Logical Operators

In TASTy, there are no unary and binary operators, typically found in Java or other imper-
ative languages. Unary and binary operators are an invocation of the 0-argument (unary
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operator) or 1-argument (binary operator) method. For example, the following addition
operator in Scala 1 + 2 is desugared to 1.+(2). That is, the binary operator + is repre-
sented as the invocation of the instance function Int.+ on the receiver with value 1 and
type Int with a single argument 2. Generally, in the Scala compilation pipeline, meth-
ods that operate on primitive types and have an equivalent bytecode instruction on the
JVM[53] are replaced by those instructions in compiled program bytecode. This process of
selecting efficient implementations for numerical or logical operations is called intrinsifica-
tion. Similarly, TastyTruffle avoids implementing methods of primitive types with actual
call semantics as primitive operations are frequently used and simplify optimization for
Graal.

Array Access

The syntax for accessing array elements in Scala does not differ from the method invoca-
tion on an array. In other imperative languages, such as Java, the syntax for accessing
arrays is commonly separate from the syntax of invoking a method. For example, the
access array(0) is desugared to array.apply(0) once the program is emitted in TASTy.
However, an array write array(0) = 42 is desugared to array.update(0, 42).

Similar to unary and binary operators, the underlying implementation of array oper-
ations is intrinsified into JVM bytecode instructions where possible. However, using the
bytecode provided in figure 2.11 as an analog, operations on polymorphic arrays cannot be
intrinsified. Instead, polymorphic array operations are handled by functions in the Scala
runtime library. The overhead of such operations is substantial and commonly represents
the most significant performance bottleneck in array-bound programs. These costs are
additionally abstracted from the user as they commonly arise when using array-backed
collections from the Scala standard library.

To operate without specialization, the implementation of our interpreter also incorpo-
rates the same runtime code to handle polymorphic array operations. The methods used
to eliminate the runtime overhead of these polymorphic bridge methods will be covered in
chapter 4.

Method Invocation

Otherwise, the Apply tree encodes a ‘normal’ method invocation. Truffle provides
two abstractions for call nodes. The direct call node is used when the call target can be
statically resolved. In our subset of TASTy, this is the set of methods with private or final
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1 @NodeChild("receiver")

2 @NodeField("signature", MethodSignature.class)

3 class ApplyNode(@Children args: Array[TermNode]) extends TermNode {

4 final val INLINE_CACHE_SIZE: Int = 5;

5

6 @Specialization(guards = "instance.getShape == shape", limit = "INLINE_CACHE_SIZE")

7 def cached(

8 frame: VirtualFrame,

9 instance: ClassInstance,

10 @Cached("instance.getShape") shape: ClassShape,

11 @Cached("create(resolveCall(instance, signature)") callNode: DirectCallNode

12 ): Object = callNode.call(evalArgs(frame, instance));

13

14 @Specialization(replaces = "cached")

15 def virtual(

16 frame: VirtualFrame,

17 instance: ClassInstance,

18 @Cached callNode: IndirectCallNode

19 ): Object = {

20 val callTarget = resolveCall(instance.getShape, signature);

21 callNode.call(callTarget, evalArgs(frame, instance))

22 }

23 }

Figure 3.14: Simplified implementation of the call node with a polymorphic inline cache
used in TastyTruffle.

modifiers[43] and class constructors. Otherwise, the Truffle indirect call node is used for
calls where call targets must be dynamically resolved. Using indirect calls instead of direct
calls comes with a performance overhead as indirect call nodes are difficult to inline and
inhibit Graal’s dynamic intraprocedural analyses. In this thesis, we describe a call node
implementation for both statically and dynamically dispatched calls. In order to minimize
the use of indirect call nodes, we take advantage of a polymorphic inline cache[45] to
eliminate the overhead of resolving virtual calls for JIT compilation.

Figure 3.14 shows a simplified Truffle call node in TastyTruffle that implements
a polymorphic inline cache. The ApplyNode is declared using the Truffle DSL. The
@NodeChild and @NodeField annotations declare that the DSL should generate children
and properties of those names and types, respectively. The @Specialization annotation
declares the node writing semantics for method invocation. Because we have defined a
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limit on the number of specializations, the DSL will also generate additional code for a
polymorphic inline cache. This cache saves call targets based on the type of receiver seen
at the call site.

When the type of receiver has not been seen in the inline cache, an additional cache
entry is generated and appended to the cache for the next call. Because a polymorphic
inline cache dispatches direct calls based on the type of the receiver value seen, Graal can
speculatively optimize the call site with the assumption that the receiver is always the
same type and, therefore, the call target does not change among invocations. Further-
more, this allows the calls site to be inlined, allowing a feedback loop of intraprocedural
optimizations[78, 13] to propagate through the inlined tree. One important aspect to note
is that the size of a polymorphic inline cache must be kept reasonable such that the cost of
searching the cache does not defeat the speedup afforded by using the cache. If the size of
the cache exceeds an implementation-specific limit, the caller node is rewritten to use an
indirect call. The cache size is often decided based on profiling and heuristics to balance
the cost of inline cache lookup against the penalty of an indirect call.

Figure 3.15: A possible polymorphic inline cache for a List.contains callsite.

Figure 3.15 shows a data flow diagram of the application of a polymorphic inline cache
to a call site of contains when the receiver type is statically known to be List. The
diagram shows that the call site was previously called with a receiver where the dynamic
type has been both Cons and Nil. The ApplyNode will first check if the type of receiver
at the call site has the type Cons; If the check passes, then the cached direct call node is
invoked, and the call is complete. It will do the same for the type Nil. Otherwise, the
type of receiver has not been seen before, and the call target is resolved virtually and then
cached for the following invocation at this call site.
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When the polymorphic inline cache is applied to a monomorphic call site (where the
type of the receiver does not change), it simplifies to a single element inline cache[32].
Because the type of the receiver at the call site remains stable, the cache look-up of the
call target based on the type always succeeds, and the call site never fall backs to using an
indirect call node.

3.3.3 Accessing Fields

In our subset of TASTy, the Select tree represents a read of a field of a ClassInstance.
Notice in the resolution of the Apply tree that the Apply tree represents a method invo-
cation, when the applicator is a Select. Because functions are first-class objects in Scala,
the TASTy tree for a method invocation is the access of a method as if it were a field,
then the application of result to a list of arguments. Since this case has been previously
handled when parsing the Apply tree, a Select tree always selects a value definition.

1 @NodeChild("receiver")

2 @NodeField("symbol", Symbol.class)

3 abstract class ReadFieldNode extends TermNode {

4 final val INLINE_CACHE_SIZE: Int = 3;

5

6 @Specialization(guards = "instance.getShape == shape", limit = "INLINE_CACHE_SIZE")

7 def cached(

8 instance: ClassInstance,

9 @Cached("instance.getShape") shape: ClassShape,

10 @Cached("lookupField(shape)") field: Field

11 ): Object = field.getContents(instance)

12

13 @Specialization(replaces = "cached")

14 def virtual(instance: ClassInstance): Object = {

15 val field = lookupField(instance.getShape)

16 field.getContents(instance)

17 }

18

19 private def lookupField(shape: ClassShape): Field = shape.getField(symbol)

20 }

Figure 3.16: Pseudocode of field read node with a polymorphic inline cache.
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However, fields may only be directly accessed in the immediate class scope. Field access
from an outside context is achieved through an accessor. Accessors are special methods
generated in the compilation pipeline solely to access a field because the Scala compiler
enforces the uniform access principle[?] for all programs. We apply the transformation
to generate accessors in class definitions because accessors are normally generated after
TASTy is emitted in the standard Scala compilation pipeline. Accessors also conveniently
provide a mechanism to resolve indirect field access. Indirect field access occurs when an
inherited field is accessed in a subclass. As we already have a mechanism for resolving
method applications, we will combine this mechanism with a new direct field read node to
implement field access.

Figure 3.16 gives a simplified implementation of a field read node. Like the virtual
dispatch of call targets, fields are resolved dynamically with the shape of a ClassInstance.
We apply a polymorphic inline cache to the lookup of field properties to eliminate the
performance overhead associated with this kind of virtual dispatch.

3.3.4 Accessing Locals and Globals

1 def parse(ident: Ident): TermNode = {

2 if (ident.symbol.isObjectDef)

3 new ReadGlobalNode(symbol)

4 else

5 new ReadLocalNode(localOf(symbol))

6 }

Figure 3.17: Pseudocode to parse an Ident tree.

The Ident tree is a name that refers to either a local or global value. Local values take
the form of a local variable or a method parameter. Global values refer to top-level object
definitions. We differentiate between a local and a global based on whether the symbol of
the Ident tree refers to a singleton top-level object definition (shown in figure 3.17).

Figure 3.18 provides the pseudocode of ReadGlobalNode and ReadLocalNode. In our
interpreter, local variables and method parameters are uniformly represented by the frame
slot abstraction. During parsing, it is sufficient to maintain a mapping from symbols to a
Local to resolve which local variable is read. Truffle does not provide an abstraction for
storing global values. Instead, we retain a mapping of symbols to instances for all global
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1 object Globals {

2 val values: Map[Symbol, ClassInstance]

3 }

4

5 class ReadGlobalNode(symbol: Symbol) extends TermNode {

6 override def execute(frame: VirtualFrame): Object = Globals.values.get(symbol)

7 }

8

9 class ReadLocalNode(local: Local) extends TermNode {

10 override def execute(frame: VirtualFrame): Object = frame.getObject(local.index)

11 }

Figure 3.18: Pseudocode of local and global value read nodes.

object value definitions. Recall from figure 3.1 that a top-level value definition is registered.
When the symbol of an Ident refers to a ObjectDef, or a top-level ValDef, it is resolved
using the symbol to look up top-level global values previously registered in 3.1.

3.3.5 Mutating Values

1 def parseAssign(assign: Assign): TermNode = assign match {

2 case Assign(select: Select, rhs) =>

3 new WriteFieldNode(parse(select.qualifier), select.symbol, parse(rhs))

4 case Assign(ident: Ident, rhs) =>

5 new WriteLocalNode(localOf(ident.symbol), parse(rhs))

6 }

Figure 3.19: Pseudocode to parse an Assign tree.

The Assign tree has context-dependent semantics based on the structure of its left-
hand side term. Figure 3.19 contains the simplified logic to resolve Assign trees into the
appropriate term nodes. If the left-hand side term is a Select tree, the current tree mutates
the field of a ClassInstance. Otherwise, the left-hand side is an Ident which refers to the
local variable in the frame. We differentiate between which node to generate based on the
type of the tree seen on the left-hand side. WriteFieldNode and WriteLocalNode mirror
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their read node counterparts, but instead of reading from their respective locations, they
update the value at their locations. Like field reads, field writes in scopes outside of the
class are dispatched through mutators. Mutators serve the same purpose as accessors but
carry an argument to update the value of the field.

3.3.6 Conditionals

1 def parseIf(i: If): IfNode = {

2 new IfNode(parse(i.cond), parse(i.thenp), parse(i.elsep))

3 }

4

5 class IfNode(

6 @Child cond: TermNode,

7 @Child t: TermNode,

8 @Child f: TermNode) extends TermNode {

9 val cp = ConditionProfile.create();

10

11 override def execute(frame: VirtualFrame): Object =

12 if (cp.profile(cond.executeBoolean(frame)))

13 t.execute(frame)

14 else

15 f.execute(frame)

16 }

Figure 3.20: Pseudocode for parsing an If into an IfNode

The implementation of conditional control flow in our interpreter is quite simple. Two
execution paths exist for the two possible results from evaluating the condition term; the
path taken depends on the boolean after evaluation. An IfNode is derived from an If tree
(given in figure 3.20), which allows for divergence in program control flow. The implementa-
tion of the TastyTruffle IR mirrors the semantics given by its original TASTy tree. In order
to take advantage of conditional speculative optimization, we add a ConditionProfile

onto the result of the condition term. A condition profile records the likelihood that a
branch is either true or false. Graal then speculatively optimizes the frequently true or
false branches of an IfNode using its condition profile.
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3.3.7 Loops

In our subset of TASTy, the While tree is the only looping construct. The control flow
of the While tree is quite simple; the body term is executed as long as the condition
term holds at the beginning of every iteration. Truffle provides the LoopNode abstraction
for implementations of guest language loop structures. The loop node abstraction allows
guest languages to take advantage of On-Stack Replacement [36]. On-stack replacement is a
technique that switches control of part of a program running in the interpreter to compiled
code while that part is executing.

1 def parseWhile(tree: While): WhileNode = {

2 new WhileNode(parse(tree.cond), parse(tree.body))

3 }

4

5 class WhileNode(@Child cond: TermNode, @Child body: TermNode) extends TermNode {

6

7 @Child val loopNode: LoopNode =

8 Truffle.getRuntime.createLoopNode(new WhileRepeatingNode(cond, body))

9

10 override def execute(frame: VirtualFrame): Object = {

11 loopNode.execute(frame)

12 ()

13 }

14

15 class WhileRepeatingNode(

16 @Child cond: TermNode,

17 @Child body: TermNode

18 ) extends Node with RepeatingNode {

19 val cp = ConditionProfile.create()

20

21 override def executeRepeating(frame: VirtualFrame): Boolean =

22 if (cp.profile(cond.executeBoolean(frame))) {

23 body.execute(frame)

24 true

25 } else false

26

27 }

28 }

Figure 3.21: Pseudocode for a WhileNode
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So far in this thesis, the root node has been the primary compilation unit in Graal. Root
nodes profile their invocation count and get JIT compiled when they have been invoked
frequently. However, loop constructs that are executed for many iterations also justify JIT
compilation. The loop node is an additional type of JIT compilation unit which Graal
can compile. A key difference between loop nodes and root nodes is when their compiled
equivalents are utilized. While compiled root nodes are used in subsequent invocations of
their call targets after they are JIT compiled, compiled loop nodes are used in the next
iteration after they are JIT compiled. As on-stack replacement is not a central focus of this
thesis, we will only discuss it briefly, because loop nodes are the recommended abstraction
for guest languages to implement loop structures in Truffle.

Figure 3.21 contains the implementation of a WhileNode and its derivation from a While

tree. Like our implementation of the IfNode, we add a condition profile onto the node which
evaluates the termination condition inside WhileRepeatingNode. Truffle will automatically
instrument the WhileNode. After sufficient iterations of the WhileRepeatingNode, the
repeating node is compiled, and the next iteration of the WhileNode will use the compiled
repeating node.

3.3.8 Blocks

1 def parseBlock(block: Block): BlockNode = {

2 val desc = getParentFrameDescriptor(block)

3

4 val terms = block.statements map {

5 case vdef: ValDef => generateBlockLocal(desc, vdef)

6 case term => term

7 }

8

9 new BlockNode(terms, parse(block.expr))

10 }

11

12 def generateBlockLocal(desc: FrameDescriptor, vdef: ValDef): TermNode = {

13 val local = generateLocal(vdef)

14 new WriteLocalNode(local, parse(vdef.rhs))

15 }

Figure 3.22: Pseudocode for parsing Block into BlockNode
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This section covers the translation of the Block tree to its TastyTruffle IR equivalent.
The Block is unique among term trees as it describes data and code. In our subset of
TASTy, this means that a block may contain declarations of local variables as well as
executable terms. Figure 3.22 provides an overview on the transformations necessary to
convert a Block tree into BlockNode. We divide the discussion of blocks into the resolution
of local variables when encountering a ValDef tree and the execution of all other trees.

Local variables are bound to a scope. A scope represents the lifetime in which a variable
can refer to a value. Similarly, uses of variables are only valid when used under the
appropriate scope. Local variables and their use sites are represented in intermediate
representations through various methods. In abstract syntax trees, local variables and their
uses are represented as nodes dominated by their scopes (which are themselves nodes). In
our subset of TASTy, a ValDef dominated by a Block represents a local variable. When
a ValDef tree is present in this context, the right-hand side of the value definition will
be non-empty. A local variable declaration in Scala must always be accompanied with an
initial value.

1 class BlockNode(stats: Array[TermNode], last: TermNode) extends TermNode {

2 @ExplodeLoop

3 override def execute(frame: VirtualFrame): Object = {

4 for (stat <- stats)

5 stat.execute(frame)

6 last.execute(frame)

7 }

8 }

Figure 3.23: Pseudocode of the BlockNode

Because terms always return a value, the Block tree must follow the same seman-
tics. Figure 3.23 gives the pseudocode for our implementation of a BlockNode. The
@ExplodeLoop is a Truffle DSL directive that guides Graal to unroll[12] the loop for the
execution of each child node. Unrolled loops simplify partial evaluation as each iteration of
the loop is treated as an individual statement, and thus they reveal constant values, which
are simpler for partial evaluation. As the number of children in a BlockNode is known
before execution, it makes sense to unroll the loop to simplify optimization.
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3.3.9 Returns

1 class ReturnException(result: Object) extends ControlFlowException

2

3 class ReturnNode(@Child term: TermNode) extends TermNode {

4 override def execute(frame: VirtualFrame): Object = {

5 val result = term.execute(frame)

6 throw new ReturnException(result)

7 }

8 }

Figure 3.24: Pseudocode of ReturnException and ReturnNode

A Return tree ends the execution of the current method and passes a value back to
the caller. The semantics of returning control flow in Truffle is implemented as a program
exception. An exception is an unexpected disruption of program control flow.

The implementation of the ReturnException and ReturnNode is given in figure 3.24.
The ReturnException is a subclass of the ControlFlowException. Control flow excep-
tions are special exceptions that Truffle treats differently from other JVM exceptions for
control flow analysis. A return exception is thrown with the return value evaluated from a
return node. The exception is then caught by the executing DefDefNode, where the return
value is passed back to the caller.

Recall in figure 3.5 that a body of a DefDefNode is executed and a ReturnException

is possibly caught. If a ReturnException is not caught, the callee did not encounter a
ReturnNode during its execution. By default, Scala methods always return the result com-
puted by the last term in the outermost block of a method if no other return expressions
are present in the control flow of the method.

3.3.10 Putting it All Together

In this section, we summarize all the tree transformations introduced for the monomor-
phic variant of our interpreter. Figure 3.25 is the structure of the Cons.contains method
in TASTy. We have omitted the type tree, which has been declared inside the local variable
definition. We use the Cons.contains method as an example to summarize the transfor-
mations described in this section.
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1 Block(

2 ValDef("these", _, This),

3 While(

4 Apply(Select(Ident("these"), "empty"), "!", List.empty),

5 If(

6 Apply(

7 Select(Select(Ident("these"), "head"), "=="),

8 Ident("elem")

9 ),

10 Return(Constant(true)),

11 Assign(Ident("these"), Select(Ident("these"), "tail"))

12 )

13 ),

14 Constant(false)

15 )

Figure 3.25: TASTy of Cons.contains

1 BlockNode(

2 WriteLocalNode("these", ReadLocalNode("this")),

3 WhileNode(

4 UnaryOpNode("!", ApplyNode("these", "List.isEmpty[0]()", Array.empty)),

5 IfNode(

6 ApplyNode(

7 FieldReadNode(ReadLocalNode("these"), "head"),

8 "Any.==[0]()",

9 ReadLocalNode("elem")

10 ),

11 ReturnNode(ConstantNode(true)),

12 WriteLocalNode("these", ReadFieldNode(ReadLocalNode("these"), "tail")),

13 )

14 ),

15 ConstantNode(false)

16 )

Figure 3.26: Cons.contains as a Truffle AST

Figure 3.26 is the Truffle equivalent AST of Cons.contains. Simple strings are used
to represent symbols and method signatures to avoid unnecessary detail in the example.
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Notice that many TASTy nodes have an equivalent TastyTruffle IR, which closely mirrors
their structure. However, other TASTy nodes must be simplified to a representation more
suitable for runtime. In particular, ValDef trees are eliminated and replaced by an initial-
izer node that assumes the frame slot for the local variable definition was added during
parsing. In chapter 4, the challenges of using these trees in the presence of parametric
polymorphism and their associated performance overhead will be described.
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Chapter 4

The Polymorphic Interpreter

1 abstract class TypeNode extends Term {

2 override final def execute(frame: VirtualFrame): Object = resolveType(frame)

3 def resolveType(frame: VirtualFrame): Type

4 }

Figure 4.1: An abstract type node.

In this chapter, The interpreter will be extended to support the execution of polymor-
phic trees. To that end, the notion of reified type nodes will be introduced. In essence, to
implement specialization of polymorphic classes and methods, types will be treated as first-
class values. Like the TermNode represents the Term tree node from TASTy, the TypeNode

represents the Type from TASTy but instead of producing a value from evaluation, it pro-
duces a type. To better illustrate this concept, figure 4.1 contains the implementation of
the node superclass that evaluates to a type and not a value.

Figure 4.2 gives the simplified implementation to reify type references in the poly-
morphic interpreter. For now, we will limit the scope of reified type to the simplest and
introduce concepts that integrate reified types with Truffle abstractions further in the
chapter. Figure 4.3 extends the NewNode to support the creation of object instances us-
ing reified type nodes. Because a type reference essentially reifies statically available type
information, very little changes in the implementation of a NewNode.

Because types are erased from their instantiation sites in Java bytecode, the underlying
type of a type parameter are not normally known during runtime. Introducing types

50



1 parseType(tpe: Type): TypeNode = tpe match {

2 case ref: TypeRef => TypeRefNode(ref)

3 }

4

5 class TypeRefNode(ref: TypeRef) extends TypeNode {

6 override def resolveType(frame: Frame): Type = ref

7 }

Figure 4.2: A TypeNode for handling type references.

1 def parseNew(new: New): NewNode = new NewNode(parseType(new.tpe))

2

3 class NewNode(@Child typeNode: TypeNode) extends TermNode {

4 override def execute(frame: VirtualFrame): Object = {

5 val tpe = typeNode.resolveType(frame)

6 shapeOf(tpe).newInstance

7 }

8 }

Figure 4.3: Extension to the NewNode for the polymorphic interpreter.

during execution will allow data layouts to be determined at runtime. The type node is
the abstraction we use to encapsulate this concept. The principal idea behind the type
node is to allow for the resolution of types during runtime. Introducing a mechanism
to resolve types during runtime avoids the pitfalls of type erasure. In this half of the
chapter, whenever we discuss the advantages of the polymorphic interpreter, we will use
a monomorphic interpreter where the code has undergone type erasure as our frame of
reference.

Using the newly available type information during runtime, data layout can be spe-
cialized based on the types seen. In the following subsections, we will focus on specific
instances of boxing using Graal IR for compiled code executed using the monomorphic
interpreter. Then we introduce subclasses of the TypeNode and show how reified types can
be utilized to specialize the data layouts from the monomorphic interpreter.
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4.1 Specializing Methods

1 class DefDefTemplate(

2 desc: FrameDescriptor

3 tparams: Int,

4 vparams: List[ValDef | LocalFrameVal],

5 locals: List[ValDef | LocalFrameVal],

6 rhs: Term

7 ) extends RootNode(desc) {

8 def execute(frame: VirtualFrame): Object = ???

9 def specialize(types: Array[Type]): DefDefNode = ???

10 }

Figure 4.4: Pseudocode for a DefDefTemplate.

Polymorphic methods in Scala can be polymorphic under class type parameters, method
type parameters, or both (see 2.2). This section will focus only on the specialization
of polymorphic methods under their type parameters. We defer the discussion of the
specialization of class-polymorphic methods until the next section. We will introduce the
concept of a template; templates retain sufficient information about the data layout of
a definition in TASTy to generate their runtime representations dynamically. Instead
of a DefDefNode, a DefDefTemplate (given in figure 4.4) is a root node that represents a
polymorphic method. When a DefDefTemplate is specialized, the result is a monomorphic
DefDefNode specialization. As Truffle does not have mechanisms that support root node
rewriting at the current time, we describe how to use Truffle DSL constructs to make
method specialization performant.

The specialization of a DefDefTemplate begins at invocation. Because type arguments
are introduced at specific polymorphic call sites, method specializations must be created
at or after invocation. When a method template is invoked with both type and value
arguments, it forwards the value arguments to the appropriate specialization based on the
type arguments.

The specialization of a method template is the ad hoc creation of a root node with a
specialized frame descriptor. A DefDefTemplate retains the number of type parameters
it owns; this is sufficient to resolve type arguments for creation and dispatching to spe-
cializations, and type parameters never collide by name. Source information about value
parameters is stored on a template instead of abstracted local frame values. The type
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1 def parseDefDef(ddef: DefDef): DefDefNode | DefDefTemplate = {

2 val tparams = ddef.params.filter(_.isInstanceOf[TypeDef]).length

3 if (tparams == 0)

4 createDefDefNode(ddef)

5 else {

6 val vparams = ddef.filter(_.isInstanceOf[ValDef]) map {

7 case vdef @ ValDef(_, tpt, rhs) =>

8 if (tpt.tpe.isTypeParameter)

9 vdef

10 else

11 generateLocal(vdef)

12 }

13

14 val locals = liftLocals(ddef.rhs)

15 new DefDefTemplate(desc, tparams, vparams, locals, ddef.rhs)

16 }

17 }

18

19 def createDefDefNode(ddef: DefDef): DefDefNode // a monomorphic DefDef

20

21 ...

Figure 4.5: Pseudocode for parsing DefDef into DefDefNode

of value parameter can potentially be resolved from a method type parameter. Since the
frame descriptor is unpopulated because value parameters are possibly polymorphic, it is
not yet appropriate to create executable term nodes that may read from or write to the
frame slots of polymorphic value parameters. Figure 4.5 extends the transformation of a
DefDef to include method templates.

4.1.1 Invoking Polymorphic Methods

In this section, we demonstrate when and where polymorphic methods are invoked.
For this demonstration, we will show one of the natural benefits of executing TASTy. A
polymorphic method invocation in TASTy is always an Apply tree node where the qualifier
is a TypeApply. The TypeApply tree node represents a type application. Without delving
into great detail, a type application is the process of producing a monomorphic method
from a polymorphic method by unification. Analogous to normal applications, which
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1 def parseApply(apply: Apply): ApplyNode = {

2 val signature = apply.symbol.signature

3 apply match {

4 case Apply(Select(qualfier, _), arguments) => ... // monomorphic trees

5 case Apply(TypeApply(Select(qualifier, _), targs), args) =>

6 new ApplyNode(signature, parse(qualifier), (targs ++ args).map(parse))

7 }

8 }

Figure 4.6: Extension to parsing a polymorphic Apply tree.

accept values as arguments and produce values as results, type applications accept types
as arguments and produce values as a result. With this in mind, TypeApply nodes are a
naturally suitable site to invoke and create specializations for methods.

1 def apply(T: Type, array: Array[T]): List[T] = T match {

2 case Int => apply$Int(array.asInstanceOf[Array[Int]])

3 ...

4 case _ => apply$Any(array.asInstanceOf[Array[Any]])

5 }

Figure 4.7: Pseudocode that mimics the implementation of specialized method dispatch
using Scala sources.

Figure 4.6 extends the transformation of Apply tree nodes to include polymorphic
applications. The application of a polymorphic method follows the same semantics as the
application of a monomorphic method. The actual specialization of the frame layout occurs
inside the template that a polymorphic ApplyNode invokes. This design decision allows
the invocation of polymorphic methods even in the presence of dynamic dispatch. In the
next section, we will describe the additional machinery that is added after a polymorphic
inline cache has resolved virtual dispatch to handle type application and how to make such
mechanisms amenable for partial evaluation.
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4.1.2 Typed Dispatch Chains

1 class DefDefTemplate(...) extends RootNode(...) {

2

3 @CompilerDirectives.CompilationFinal

4 val specializations: Array[(Array[Type], DirectCallNode)] = Array.empty

5

6 def execute(frame: VirtualFrame): Object = {

7 val typeArgs = resolveArguments

8 dispatchCached(frame, typeArgs)

9 }

10

11 @ExplodeLoop

12 def dispatchCached(frame: VirtualFrame, typeArgs: Array[Type]): Object = {

13 for ((typeSig, specialization) <- specializations)

14 if (typeSig == typeArgs)

15 return specialization.call(frame.getArguments)

16 CompilerDirectives.transferToInterpreterAndInvalidate()

17 dispatchNew(frame, typeArgs)

18 }

19

20 def dispatchNew(frame: VirtualFrame, typeArgs: Array[Type]): Object = {

21 val specialization = specialize(typeArgs)

22 val callNode = DirectCallNode.create(specialization)

23 specializations += (typeArgs -> callNode)

24 callNode.call(frame.getArgs)

25 }

26

27 ...

28 }

Figure 4.8: Pseudocode for typed dispatch inside a DefDefTemplate.

Dispatch chains[69] are multi-layered inline caches. We introduce the notion of typed
dispatch chains. Typed dispatch chains integrate the semantics of type applications via a
second inline cache after virtual call resolution. Figure 4.8 contains the simplified imple-
mentation of the execution semantics in a DefDefTemplate.

Specializations of polymorphic methods are created on demand and then cached based
on their reified type signatures. One challenge of making caching mechanisms fold away
in partial evaluation is that the cache must be a compilation constant. Type arguments
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at type application sites are always stable, i.e., their respective type nodes evaluate to
the same type; the look-up of the specialized call node should have no overhead when JIT
compiled with the aid of partial evaluation. We exploit a simple array of type signatures and
specialized call node pairs to make this possible. When the loop for looking up a cache entry
in the array is unrolled during partial evaluation (directed by ExplodeLoop), the loop is
transformed into a block of conditional expressions for each cache entry. This unrolled loop,
combined with the injected knowledge that type argument values are compilation constants,
results in the conditional elimination[18] of checks for non-matching cache entries. Once the
appropriate specialization is found, the call is forwarded to the root node, which contains
the specialized term nodes.

When a combination of type arguments has not yet been encountered and their corre-
sponding specialization is unavailable, the specialization must be generated and invoked.
To prevent this slow path of execution from being JIT compiled, we direct the compiler
to bail out of JIT compilation with the transferToInterpreterAndInvalidate directive.
The directive allows guest languages to insert their own deoptimization points into the
control flow of a program; this ensures code of the slow branch when creating the spe-
cialization is never compiled. Note that in the first case where a type argument lookup
succeeds (the fast path), the directive is unreachable because the control flow of the code
returns and, therefore, will not be part of compiled code.

Figure 4.9 is an extension of the example given in figure 3.15 with typed dispatch.
The example assumes the type arguments for Int and Double for Cons.contains[T]

and Nil.contains[T] has previously been specialized and cached. After the polymor-
phic inline cache resolves the receiver to an exact type, the corresponding specialization
is looked up. While this example may seem deceptively large, only the path taken in the
control flow is compiled after partial evaluation. For example, consider the invocation
List.contains[Int] when the receiver is an instance of Cons. The corresponding com-
piled code will not contain the check that type parameter is an Int. Because all other
program logic is eliminated during partial evaluation, the inlining of calls is also straight-
forward. After the partial evaluation, the typed dispatch mechanism is also eliminated,
and the specialized method is the only code remaining.

4.1.3 Case Study: The Subset of a List

Recall the implementation of contains given in figure 2.2. An implementation of a method
using contains to determine if a list is the subset of another is given in 4.10. This case
study is implemented for List[Int] in order to showcase method specialization in the
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Figure 4.9: The typed dispatch chain for a List.contains call site

context of control flow without consideration for class specialization. More specifically,
this case study will examine how repeated invocations of Cons.contains[Int] will interact
with the interpreter.

In the initial execution of the subset method in the interpreter, profiling information
about call receiver types and type arguments are collected. The invocation of contains
during the first iteration of the loop given in line 3, the virtual call is indirect and the
specialization for contains[Int] does not exist. First, the call target for the concrete
implementation of contains is resolved and entered into the inline cache. Second, the
specialization for contains[Int] is created and entered into the inner typed inline cache.

Invocations of contains in subsequent iterations of the loop where the receiver type is
stable, the virtual call is inline and forwarded to the specialization for Int. Therefore, the
invalidation condition in the JIT compiled variant of the code assumes the type of receiver
has not changed. Because receiver types are dynamic and type arguments are static at call
sites, a change in the type of receiver at a call site is is sufficient for invalidation. If this
assumption is violated, execution resumes in the interpreter and profiling information is
again collected for a future JIT compilation.
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1 def subsetInt(fst: List[Int], snd: List[Int]): Boolean = {

2 var iter: List[T] = fst

3 while (!iter.isEmpty)

4 if (!snd.contains(iter.head))

5 return false

6 true

7 }

Figure 4.10: Implementation of subset.

This process repeats for each receiver type seen at a call site and specialization occurs
once for each of the call targets that are resolved through virtual dispatch. Note that for
N possible types seen in the receiver at a call site, only N specializations will be created.
The assumption generated by Truffle guard both cache lookup operations in the typed
dispatch chain. By integrating typed dispatch into an inner inline cache after virtual call
resolution, no additional assumptions are generated by Truffle for JIT compilation.

4.1.4 Specializing Polymorphic Parameters

The data layout of a method is given by the frame descriptor of its root node. A special-
ized method will have a specialized frame descriptor. Specialized frame descriptors will
have the appropriate primitive frame slot kinds assigned to value definitions that have
their polymorphic types resolved to a primitive type. Therefore, the core principle behind
method specialization is generating a TermNode tree from a Term tree using a specialized
frame descriptor. Apart from extensions given earlier in this section, the parsing of Term
nodes does not differ from their monomorphic counterparts.

Figure 4.12 gives an extension to generate frame slots from type parameters and
polymorphic value definitions associated with the method to generate frame slots from
monomorphic value definitions. Like its counterpart in the monomorphic interpreter, the
abstraction for a local frame value in the polymorphic interpreter has a slot. However, a
local frame value in the polymorphic interpreter retains a type instead of a frame slot kind.
If the type of a value parameter can be resolved with the type arguments supplied during
specialization, the specialized frame slot is created and added to the descriptor.
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1 class DefDefTemplate(...) extends RootNode(...) {

2 def execute(frame: VirtualFrame): Object = ...

3

4 def specialize(types: Array[Type]): DefDefNode = {

5 val desc = this.desc.copy()

6

7 val parameters = self :: vparams.map(specializeValDef(types, desc))

8 locals.foreach(specializeValDef(types, desc))

9

10 val body = parse(rhs)

11 new DefDefNode(desc, parameters, body)

12 }

13

14 def specializeValDef(

15 types: Array[Type],

16 desc: FrameDescriptor,

17 v: LocalFrameVal | ValDef

18 ): LocalFrameVal = v match {

19 case vdef: ValDef => generateLocal(types, vdef, desc)

20 case v => v

21 }

22 }

Figure 4.11: Pseudocode for on-demand specialization inside a DefDefTemplate.

index(τ) =

{
i def f [t0, . . . , ti, . . . , tn](. . .) if ti = τ, owner(τ) = f

−1 otherwise

Figure 4.11 contains the pseudocode for creating specialized root nodes and accom-
panying frames using type arguments. A mapping of types (via their symbols) to their
respective index in the type argument array is sufficient to handle this resolution. The
symbol owner is the symbol of the tree that encloses the current tree. Because we are
only discussing methods polymorphic under their own type parameters, all polymorphic
value parameters are resolved in this context. The derivation of local frame values from
monomorphic value definitions remains unchanged.

A type definition is treated in the same manner as a value definition; it is assigned a
frame slot with an Object frame slot kind. This allows storing types in the method frame,
allowing for the resolution of types after invoking a method template. So far, we have only
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1 def generateLocal(

2 types: Array[Type],

3 defn: ValDef | TypeDef,

4 desc: FrameDescriptor): LocalFrameVal = defn match {

5 case tdef: TypeDef =>

6 val kind = FrameSlotKind.Object

7 val slot = desc.addSlot(kind)

8 LocalFrameVal(slot, ReifiedType)

9 case vdef: ValDef =>

10 val idx = index(vdef.tpt.tpe)

11 val tpe = if (idx != -1) types(idx) else vdef.tpt.tpe

12 val kind = getFrameSlotKind(tpe)

13 val slot = desc.addSlot(kind)

14 LocalFrameVal(slot, tpe)

15 }

Figure 4.12: Extension to pseudocode that generates frame slots to include polymorphic
definitions.

discussed the resolution of type arguments in an intraprocedural context. Storing reified
types in the frame during execution allows for the resolution in an interprocedural context.
We will detail why this is important in the following subsection.

Truffle conveniently profiles the types of frame arguments to speculatively eliminate the
unboxing of boxed values when reading frame values (including arguments). For example,
the following invocation list.contains((elem: Int)) will be profiled by Truffle even if
we store elem in an Object frame slot. Truffle will then speculatively unbox elem in the
body of contains if appropriate. These optimizations and their limits are discussed in
Chapter 5.
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1 def maximum[T <: Numeric](list: List[T]): Boolean = {

2 var max: T = zero

3 var curr: List[T] = a

4 while (!curr.isEmpty)

5 if (curr.head > max)

6 max = curr.head

7 max

8 }

Figure 4.13: Implementation of a max method for a List.

In contrast, write operations of polymorphic frame values cannot be speculatively elim-
inated. Because Truffle does not specialize data layouts, i.e., frames are determined by
their descriptors, which in turn are determined by the guest language implementation,
frame writes of polymorphic values will always have to be boxed. The elimination of
boxed polymorphic writes from frame descriptor specialization is one of the major benefits
when compared to the monomorphic interpreter. Code that has polymorphic code, which
reads and writes to a frame frequently, will no longer have to unbox, compute primitive
operations on unboxed values, then box those values back into their respective slots. Fig-
ure 4.13 contains an example program with polymorphic code that frequently writes to a
polymorphic local variable after some computation.

4.1.5 Case Study: A List Constructor

In this section, we examine an example containing code Truffle cannot optimize well.
Figure 4.14 gives an additional constructor that creates a polymorphic list from a poly-
morphic array. We focus on the term array.length, which computes the length for a
polymorphic array on line 3. When the Typer detects an array operation on a polymor-
phic array value, it automatically inserts the array runtime bridge method responsible for
handling the operation. For example, line 3 after the Typer would be transformed into
var i = array_length(array) - 1. We give the implementation of array_length in
figure 4.15.

In both Scala and the JVM, arrays of primitive types are invariant. That is to say, the
type Array[Int] is neither a subtype or supertype of the type Array[Any]. On the other
hand, the type Array[T <: AnyRef] is covariant. This contradiction in the presence of
code that creates or operates on polymorphic arrays requires runtime bridge methods to
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1 object List {

2 def apply[T](array: Array[T]): List[T] = {

3 var i = array.length - 1

4 var these: List[T] = Nil

5 while (i >= 0) {

6 these = new Cons[T](array(i), these)

7 i -= 1

8 }

9 these

10 }

11 }

Figure 4.14: An alternate static constructor that converts an Array[T] to a List[T]

1 def array_length(array: AnyRef): Int = {

2 if (array.isInstanceOf[Array[AnyRef]])

3 array.asInstanceOf[Array[AnyRef]].length

4 else if (array.isInstanceOf[Array[Int]])

5 array.asInstanceOf[Array[Int]].length

6 else if (array.isInstanceOf[Array[Double]])

7 array.asInstanceOf[Array[Double]].length

8 ...

9 else if (array.isInstanceOf[Array[Boolean]])

10 array.asInstanceOf[Array[Boolean]].length

11 else

12 throw new NullPointerException

13 }

Figure 4.15: Implementation of array_length

appear seamless to a programmer. When combined with the nature of Scala’s type system,
the Scala runtime obscures opportunities for speculative optimizations.

Notice the type of the argument in array_length is AnyRef; because the types of
arrays are invariant, the direct supertype is AnyRef, the type for any reference type. To
compute the length for a polymorphic array, array_length switches over every similar but
unrelated array type. In the body of every type check condition, the argument must be
cast to the appropriate array type after the type check succeeds before the length is finally
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computed. We introduce a method to vastly simplify the Graal IR of such instances of
array bridge methods when specialized methods would have type-specific information to
augment JIT compilation.

1 import CompilerDirectives.castExact

2 def copyArgumentsToFrame(frame: VirtualFrame): Unit =

3 for ((param, arg) <- params zip frame.getArguments)

4 param.tpe match {

5 case Int =>

6 frame.setInt(param.slot, arg.asInstanceOf[Int])

7 ...

8 case Double =>

9 frame.setDouble(param.slot, arg.asInstanceOf[Double])

10 case tpe: Array[AnyRef] | tpe: Array[Int] | ... | tpe: Array[Double] =>

11 frame.setObject(param.slot, castExact(arg, getClass(tpe)))

12 case _ =>

13 frame.setObject(param.slot, arg)

14 }

Figure 4.16: Pseudocode for DefDefNode and Parameter

As arrays are references, they are stored on frames via an Object slot. This alone
is insufficient to optimize polymorphic frame slots for array types. Instead, we extend
the way that frame arguments are copied into the frame from figure 3.5 in figure 4.16.
Because a parameter now retains its type instead of a frame slot kind, we introduce a
special operation when copying arguments that are arrays. The castExact directive is a
type narrowing operation that hints to Graal that a value is an instance of a type. By
injecting type information from TASTy into our executable IR, all subsequent checks that
switch over the type of an array are simplified during partial evaluation.

4.1.6 Propagating Type Arguments

Polymorphic invocations often occur inside the definition of a polymorphic class or a
polymorphic method. That is to say that, the type argument at a type application site can
be a type parameter. Figure 4.17 is an example where a type application occurs inside the
definition of a polymorphic method and derives its type argument from a type parameter.

We introduce a subclass of a type node that retrieves method type arguments stored on
the frame. Because type parameters are treated in the same manner as value parameters,
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1 def subset[T](a: List[T], b: List[T]): Boolean = {

2 var curr: List[T] = a

3 while (!curr.isEmpty) {

4 if (!b.contains[T](curr.head)) return false

5 curr = curr.tail

6 }

7 true

8 }

Figure 4.17: An example where type arguments are derived from type parameters.

1 class MethodParamTypeNode(@Child readLocal: ReadLocalNode) extends TypeNode {

2 override def resolveType(frame: VirtualFrame): Type =

3 readLocal.execute(frame).asInstanceOf[Type]

4 }

Figure 4.18: The type node for dynamically resolving method type parameters.

they are stored in the method’s frame. The resolution of type arguments that are param-
eters from a method follows the same mechanism as the resolution of local variables. This
mechanism enjoys the same Truffle virtualization optimizations of value reads when propa-
gating type arguments interprocedurally. Subsequent invocations of polymorphic methods
that have type parameters stored on the frame will partial evaluate their specializations.
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4.2 Specializing Classes

1 def parseClassDef(cdef: ClassDef, types: Array[Type]]): ClassShape = {

2 val parents = cdef.parents.map(_.symbol)

3

4 val fields = cdef.body map {

5 case vdef: ValDef => generateField(vdef, types)

6 }

7

8 val methods = (cdef.constructor :: cdef.body) map {

9 case ddef: DefDef => ddef.symbol.signature -> parseDefDef(ddef)

10 }

11

12 val vtable = cdef.symbol.methodMembers map {

13 symbol => symbol.signature -> symbol

14 }

15

16 new ClassShape(cdef.symbol, parents, fields, init ++ methods, vtable)

17 }

Figure 4.19: Extensions to specialize a ClassDef.

This section details the specialization of classes and class members with polymorphic
semantics based on class type parameters. Previously, we discussed the specialization of
methods that are solely polymorphic under their parameters without the mention of meth-
ods that are class-polymorphic. The reasoning behind this decision can be explained thus:
the invocation of a class-polymorphic method requires a look up into that class’s shape;
by extension, that class must be specialized before such a polymorphic invocation may oc-
cur. For example, the method List.contains in figure 2.1 contains method-polymorphic
semantics that are resolved after a polymorphic class instance is created.

As class specialization does not share the same demands regarding runtime mechanisms
as method specialization, we will adopt a rewrite-driven approach to specializing class
definitions at object creation sites. We will use techniques to monomorphize, at least
partially, polymorphic TASTy trees instead of altering the transformation of a ClassDef

to a ClassShape. With this rationale, we can adapt many elements of the monomorphic
interpreter for polymorphism.

Figure 4.19 provides an overview of the steps that are required to create a specialized
monomorphic ClassDef from a polymorphic origin. Similar to how type definitions be-
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1 class ClassParamTypeNode(@Child readField: ReadFieldNode) extends TypeNode {

2 override def resolveType(frame: VirtualFrame): Type =

3 readLocal.execute(frame).asInstanceOf[Type]

4 }

Figure 4.20: The type node for dynamically class method type parameters.

come parameters when reified in the context of a DefDef, type definitions in the context of
ClassDef become fields when reified. The rationale is that instances of specialized poly-
morphic classes store their specialized type fields to propagate types. Figure 4.20 gives the
pseudocode for a type node that resolves a type parameter from an instance of a special-
ized class. We rewrite both value and method definitions to transform polymorphic class
definitions into monomorphic class definitions.

4.2.1 Creating Specialized Instances

The AppliedType is the analogue of TypeApply for type applications when creating ob-
ject instances. We can derive a specialization site for class definition by the reification of an
applied type into an AppliedTypeNode. Figure 4.21 is an overview of the AppliedTypeNode
and its derivation from its TASTY type counterpart. In our subset of TASTy, an applied
type represents an instantiation of a polymorphic type.

For example, consider the term, given in figure 4.22, that returns an instance of a
polymorphic type. The type List[Int] is the result of the type application of List[T] to
Int. We will refer to polymorphic applied types, such as List[T], as polymorphic applied
types. The data representation of a polymorphic applied type is undetermined; depending
on the type arguments supplied during type application, the data representation will vary.

When executable nodes are derived from polymorphic applied types, given in figure
4.23, type arguments are resolved during runtime before application to their type con-
structor. We refer to the instantiations resulting from the application of type arguments
to polymorphic applied types as monomorphic applied types (e.g., List[Int]). Having
a monomorphic applied type provides the opportunity to generate a specialized shape.
Therefore, each group of monomorphic applied types has a unique data representation.
For example, a List[Int] and List[Double] will each have a unique data representation,
and the underlying layout of their instances will be different. However, a List[String]

and List[List[Int]] will share the same data representation as their type arguments
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1 parseType(tpe: Type): TypeNode = tpe match {

2 ...

3 case AppliedType(con, targs) =>

4 new AppliedTypeNode(parseType(con), targs map parseType)

5 }

6

7 class AppliedTypeNode(

8 @Child con: TypeNode,

9 @Children targs: Array[TypeNode]) extends TypeNode {

10 @ExplodeLoop

11 override def resolve(frame: VirtualFrame): Type {

12 val types = Array.empty[Type]

13 for (targ <- targs)

14 types += targ.resolve(frame)

15

16 AppliedType(con.resolve(frame), types)

17 }

18 }

19

20 def shapeOf(tpe: Type): ClassShape = tpe match {

21 ...

22 case AppliedType(con, targs) =>

23 val cdef = getClassDef(con)

24 parseClassDef(cdef, targs)

25 }

Figure 4.21: The AppliedTypeNode and its derivation from an AppliedType.

1 new List[Int]

Figure 4.22: Example of creating instance of an applied type.

are reference types and will not see any benefit from independent specialization. There-
fore, creating an object instance with a polymorphic class definition will have its shape
determined when its created.

This approach also avoids the issue of name mangling. Name mangling disambiguates
distinct entities in a program that share the same name but do not inhabit the same
namespace (e.g., a package). In the context of parametric polymorphism and specializa-
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1 NewNode(AppliedTypeNode(TypeRefNode("List"), Array(TypeRefNode("Int"))))

Figure 4.23: TastyTruffle IR of creating an instance of an applied type.

tion, many approaches to specialization require specialized classes and methods to have
mangled names. The creation of polymorphic classes and call sites of polymorphic methods
must be rewritten to refer to the correct specialization. In our approach, operations on
object instances with a polymorphic type are unaffected by its underlying shape. In the
next section, we give extensions on generating a static shape from a monomorphic applied
type after type application.

4.2.2 Case Study: Cons.head

1 val list: List[Int] = ...

2 list.contains(0)

Figure 4.24: Example invocation of Cons.contains[Int]

In this section, we introduce an example, given in figure 4.24, that motivates the special-
ization of shapes. The example is a source-like representation of List.contains[Int], the
specialized variant of the List.contains method. We compare the body of List.contains
with and without a specialized storage layout for the implementation of contains in the
Cons class.

Figure 4.25 contains a source-like representation of contains if the data layout of Cons
follows the standard translation of type erasure but the method is still specialized. We draw
attention to the example’s equality operation defined on line 5. Without the specialization
of either classes or methods, both the left-hand-side and right-hand-side operands would be
boxed integers, and the == operation dispatches to these.head.equals(elem). However,
because methods are specialized and classes are not specialized in our case, the head field
must be unboxed before equality can be checked. Figure 4.26 contains the specialized
equivalent code of 4.25. Once the class layout is specialized, no unboxing is present in the
program.
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1 def contains$Int(elem: Int): Boolean = {

2 var these: List = this

3 while (!these.isEmpty) {

4 val head = these.head.asInstanceOf[Int]

5 if (unbox(head) == elem) return true

6 else these = these.tail

7 }

8 false

9 }

Figure 4.25: Implementation of contains in an erased Cons class.

1 def contains$Int(elem: Int): Boolean = {

2 var these: List = this

3 while (!these.isEmpty) {

4 // val head = ...

5 if (these.head == elem) return true

6 else these = these.tail

7 }

8 false

9 }

Figure 4.26: Implementation of contains in a specialized Cons class.

4.2.3 Specializing Class Members

1 def generateField(vdef: ValDef, types: Array[Type]): Field = vdef match {

2 case ValDef(_: String, tpt: TypeTree, rhs: Option[Term]) =>

3 val idx = index(tpt.tpe)

4 val tpe = if (idx > 0) types(idx) else tpt.tpe

5 new Field(vdef.symbol, tpe)

6 }

Figure 4.27: Extensions to generate a field from a polymorphic value definition.
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This section extends the translation scheme for generating shapes from class definitions
to include polymorphic class definitions. There are two elements of data layout that must
be determined when generating the shape of a polymorphic class definition. Fields, the
data in object instances, must be resolved with monomorphic types for value definitions.
Frame slots, data stored in the frame of methods that are class-polymorphic, must also be
resolved. Frame slots and descriptors present a unique challenge as complete specialization
of descriptors may require type parameters from both methods and classes.

The underlying type of a polymorphic field, and therefore its data representation as part
of its static shape, cannot be determined statically. When the field translation scheme is
supplied with type arguments, we can generate the specialized monomorphic field. Figure
4.27 extends the pseudocode that generates fields for shapes to include polymorphic value
definitions. If it is beneficial to specialize a field, e.g. val x: T or val x: Array[T], we
resolve the type parameter from the type arguments to generate a specialized field property.
Otherwise, we default to the monomorphic implementation for generating a field.

1 def parseDefDef(ddef: DefDef, types: Array[Type]): DefDefNode | DefDefTemplate = {

2 val tparams = ddef.params.filter(_.isInstanceOf[TypeDef]).length

3

4 val vparams = ddef.filter(_.isInstanceOf[ValDef]) map {

5 case vdef @ ValDef(_, tpt, rhs) => specializeValDef(desc, vdef, types))

6 }

7

8 val locals = liftLocals(ddef.rhs) map {

9 case vdef @ ValDef(_, tpt, rhs) => specializeValDef(desc, vdef, types))

10 }

11

12 val noGenParams = vparams.forall(_.isInstanceOf[LocalFrameVal]

13 val noGenLocals = locals.forall(_.isInstanceOf[LocalFrameVal])

14 if (noGenParams && noGenLocals)

15 new DefDefNode(desc, vparams, ddef.rhs)

16 else

17 new DefDefTemplate(desc, tparams, vparams, locals, ddef.rhs)

18 }

Figure 4.28: Extension to parse a DefDef with class type arguments.

Polymorphic methods challenge specialization because they can be polymorphic under
two sets of type parameters. As a result, dynamically resolved types are not available for
specialization at the same time; class type arguments are available at object creation, and
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method type arguments are available at invocation. To address this, we need to be able to
partially specialize methods from the class perspective. Figure 4.28 extends the translation
of DefDef nodes with class type arguments. If the method is polymorphic under class
type parameters, the layout of a frame for the root node of a DefDef must be partially
determined.

index(τ) =


i def f [t0, . . . , ti, . . . , tn](. . .) if ti = τ, owner(τ) = f

j class C[t0, . . . , tj, . . . , tm](. . .) if tj = τ, owner(τ) = C

−1 otherwise

We extend the definition of index to resolve the index of a type parameter to a corre-
sponding type argument array in a context-sensitive manner (i.e., whether type arguments
originate from a type application of a class or a method).

After the class specialization of a DefDef, it is still possible that a DefDef contains
polymorphic semantics. However, all polymorphism that is derived from a class type
parameter has been specialized, and such terms and parameters are now monomorphic.
Therefore, a DefDef that is still polymorphic is only polymorphic under its own type
parameters. The remaining polymorphic data layout will be specialized when the method
template is invoked.

1 ClassShape(

2 "Cons$Int",

3 Array(

4 Field("T", Object),

5 Field("head", Int),

6 Field("tail", Object)

7 ),

8 Map(

9 "length()" -> DefDefNode("length")

10 "contains[1](scala.Any)" -> DefDefTemplate("contains")

11 "hashCode()" -> DefDefNode("hashCode")

12

13 ),

14 ...

15 )

Figure 4.29: Shape of Cons[Int]
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As an example, we give figure 4.29 to show the data layout of the specialized class
Cons[Int]. We omit the runtime elements of a shape in our example as we only want to
show how the data of a specialized shape is organized. The only object storage property
that differs between class specializations is the head field. For the specialization Cons[Int],
the head field is stored with the Int type. The storage types of fields may differ among
specializations; they are all referenced by the same symbol. This allows the access of fields
between specializations to remain opaque from the perspective of client code.

The layout of the shape with respect to call targets remains unchanged. Call targets are
duplicated across each shape of a specialized class definition. Because method definitions
potentially contain polymorphic code that relies on class type parameters, this duplication
is necessary for each class-specialized call target to have the correct frame descriptor.

Each specialized shape contains fields that store the type argument of their special-
ization. These remain constant throughout all instances of the same specialized shape,
allowing us to store the type arguments on shapes directly. Having type parameters as
fields allow the reuse of the field access interface for class type definitions.
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Chapter 5

Evaluation

In this chapter, The performance of the polymorphic interpreter will be evaluated on six
microbenchmarks. An existing set of benchmarks from [77] will be used as they exercise
many features of the Scala runtime that require specialization to perform optimally. The
performance of these benchmarks will also be evaluated on the monomorphic interpreter,
the variant of our interpreter that does not specialize data layout, to measure the improve-
ment produced by our techniques. The benchmarks will also be evaluated on native Scala
bytecode executing on GraalVM to demonstrate the results produced by TastyTruffle
are fair when compared to a real world implementation. Finally, we discuss the results of
the benchmarks, examine the causes of performance deficiencies, and how our implemen-
tation resolves them.

5.1 Benchmarks

Each microbenchmark exercises unique polymorphic operations that are typically perfor-
mance bottlenecks[66, 70] in Scala programs. The ArrayBuffer class implements a resiz-
able buffer backed by an array. It contains three microbenchmarks that stress polymorphic
operations in the context of contiguous memory access.

The List class is the implementation of a linked list that we have used as the running
example in this thesis. We use the List class to evaluate polymorphic operations in the
context of random heap access. Like the ArrayBuffer benchmarks, there is an append

and contains microbenchmark. We will use lists to test the performance of polymorphic
hash computations using List.hashCode.
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1 class ArrayBuffer[T] {

2 protected def initialSize: Int = 16

3 var size0 = 0

4 var array: Array[T] = newArray[T](Math.max(initialSize, 1))

5

6 def length: Int = size0

7 private def get(i: Int): T = array(i)

8 private def set(i: Int, elem: T): Unit = array(i) = elem

9

10 def contains(elem: T): Boolean = {

11 var i = 0

12 while (i < size0) {

13 if (array(i) == elem) return true

14 i += 1

15 }

16 false

17 }

18

19 def reverse(): Unit = {

20 var pos = 0

21 while (pos * 2 < size0) {

22 swap(pos, size0 - pos - 1) // swaps two elements in the array

23 pos += 1

24 }

25 }

26

27 def append(elem: T): Unit = {

28 val newSize0 = size0 + 1

29 ensureSize(newSize0)

30 set(size0, elem)

31 size0 = newSize0

32 }

33

Figure 5.1: Code of the ArrayBuffer benchmark.

5.2 Methodology

Performance measurement of just-in-time compiled programs is an infamously difficult
issue[44, 40]. Many non-deterministic effects, such as speculative optimization, garbage
collection, and thread scheduling, affect the performance of programs executing on the

74



Java Virtual Machine. To address some of these effects, the JVM must be warmed up be-
fore measuring program performance. A benchmarking routine is warmed up with several
iterations of invocations for profiling data to be collected and JIT compilation to be fin-
ished. Therefore the measured performance of a microbenchmark will record the program
executing the stable JIT compiled code instead of code executing in the interpreter.

Each benchmark method in this chapter is warmed up with 10 iterations of warmup to
stabilize the throughput of the method under measurement. Results of these are measured
in throughput, the number of executions that were successfully completed in a second.
The results are averaged from 10 measurement iterations for 10 seconds each. We evalu-
ate our microbenchmarks on input sizes between one hundred thousand and one million
elements to account for memory factors in our benchmarks. Each benchmark is run on
three different implementations, Scala on GraalVM (Graal), the monomorphic interpreter
without specialization (Mono), and the polymorphic interpreter (Poly). While we provide
the evaluation of our benchmarks on Scala and GraalVM, we do so to provide a baseline
to show that the performance of our monomorphic interpreter is reasonable and that the
performance improvement of our polymorphic extensions is fair.

5.3 Experimental Results

The benchmarks are evaluated on a system with an AMD Opteron 6274 with 32 cores at
2.2 GHz. The system has 64 GB of memory. The underlying GraalVM used for executing
Scala bytecode and both Truffle interpreters is GraalVM Enterprise Edition 22.3.

The benchmark for ArrayBuffer.append inserts a sequence of elements into a newly
initialized array buffer. This benchmark stresses array memory movement and the results
are given in figure 5.2. Each time the backing array is too small for an additional element,
the backing array is resized by creating a new larger array and copying over existing ele-
ments. This resizing operation (ensureSize in 5.8) dominates the time spent in execution.
There are autoboxing operations that occur during the update of the backing array when
appending an element. As such, appending to an array buffer is on average 1.5 times
faster on the polymorphic interpreter than the monomorphic interpreter. However, the
time spent in this benchmark is dominated by the array resizing operation, which largely
translates to memory allocation and movement. Because of this, executing compiled Scala
bytecode on GraalVM can be up to 4 times faster than the monomorphic and polymorphic
interpreter for smaller input sizes. These types of operations are faster executing in Java
bytecode on Graal when compared to a Truffle interpeter. However, as input size grows,
the gap in throughput between Scala on GraalVM and polymorphic TastyTruffle narrows.
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Figure 5.2: Benchmark results for ArrayBuffer.append.
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Figure 5.3: Benchmark results for ArrayBuffer.contains.
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Figure 5.4: Benchmark results for ArrayBuffer.reverse.
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Figure 5.5: Benchmark results for List.append.
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Figure 5.6: Benchmark results for List.contains.
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Figure 5.7: Benchmark results for List.hashCode.
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1 // Ensure that the internal array has at least `n` cells.

2 def ensureSize(n: Int): Unit = {

3 val arrayLength: Long = array.length // Use a Long to prevent overflows

4 if (n > arrayLength) {

5 var newSize: Long = arrayLength * 2

6 while (n > newSize) newSize = newSize * 2

7 // Clamp newSize to Int.MaxValue

8 if (newSize > lang.Int.MaxValue) newSize = lang.Int.MaxValue

9

10 val resized = newArray[T](newSize.toInt)

11 var i = 0

12 while (i < size0) {

13 resized(i) = get(i)

14 i += 1

15 }

16 array = resized

17 }

18 }

Figure 5.8: Implementation of ensureSize of the ArrayBuffer benchmark.

The ArrayBuffer.contains benchmark tests array operations in isolation. The bench-
mark checks an array buffer for the existence of an element and the results are given in figure
5.3. It exercises a polymorphic array access followed by a polymorphic equality operation
(e.g. (x: T) == (y: T)). A polymorphic equality operator has dispatched the equals

method of its left-hand side argument. This results in boxing one or both arguments in
equality checks between polymorphic values. The specialization of the List.head field
and the subsequent specialization of Any.== into the appropriate value equivalent resulted
in an average 4 times greater throughput for long values, 3.6 times greater throughput
speedup for double values, and 3 times greater throughput for int values.

ArrayBuffer.reverse reverses the order of the elements in the array buffer. Revers-
ing an array is performance-bound by the loop of swap operations. A swap operation
(given in 5.9) consists of two polymorphic value definitions (frame writes) initialized from
polymorphic array accesses followed by the inverse of those two operations.

The performance of the reverse microbenchmark proved to be the most challenging
benchmark in terms of matching handwritten monomorphic code in [77]. The performance
of each type variant of reverse is roughly equal in the monomorphic interpreter and
Scala on GraalVM; neither implementation can specialize the polymorphic reads and array
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1 def swap(i: Int, j: Int): Unit = {

2 val tmp1: T = get(i)

3 val tmp2: T = get(j)

4 set(i, tmp2)

5 set(j, tmp1)

6 }

Figure 5.9: Code to swap two elements in an array buffer

accesses. The polymorphic interpreter has up to 28 times more throughput than the
monomorphic interpreter and GraalVM.

The List.append benchmark constructs a list from an array. As the creation of poly-
morphic instances is predominantly memory-bound and not compute-bound, there is no
significant improvement in throughput from specialization. In fact, executing Scala via
Java bytecode on GraalVM results in substantially greater throughput. Appending to a
list on Graal is up to 8 times faster than the monomorphic and polymorphic interpreter.

List.contains exercises the same performance-bottlenecks as ArrayBuffer.contains,
except under the context of random heap access for a list. The execution of List.contains
on the polymorphic interpreter is roughly 50% faster than on the monomorphic interpreter.

List.hashCode tests the specialization of the hash code function. Every class in Scala
inherits the hashCode function from the Any type. When the hashCode method is invoked
in a polymorphic context, the Scala compiler inserts the anyHash bridge. The semantics of
computing hash codes among the same values with different types, such as Int and Long,
necessitates the insertion of this bridge, which complicates JIT compilation.

Figure 5.10 gives the implementation of the anyHash function. In every polymorphic
invocation of List.hashCode, the improvement throughput on the polymorphic interpreter
peaks at roughly 2.5 times that of the monomorphic interpreter. With the exception
of List.hashCode[Double], the throughput on the polymorphic interpreter matches the
implementation of Scala on GraalVM.
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1 public static int anyHash(Object x) {

2 if (x == null) return 0;

3 if (x instanceof Long) return longHash(((Long) x).longValue());

4 if (x instanceof Double) return doubleHash(((java.lang.Double) x).doubleValue());

5 if (x instanceof Float) return floatHash(((Float) x).floatValue());

6

7 return x.hashCode();

8 }

Figure 5.10: Implementation of the anyHash function.

5.4 Discussion

In this section, we discuss the results of our evaluation through the examination of Graal
IR. We will specifically look at the performance overhead of autoboxing operations when
combined with the Scala runtime. We divide the discussion into two segments. The first
covers the performance benefits of specialization methods and classes for each value type
in Scala. The second shows the impact of specializing methods and classes for array types.

5.4.1 Inspecting Graal Graphs

Many of our microbenchmarks, such as List.contains and List.hashCode, rely on op-
timal frame and field accesses (without boxing) for performance. This section examines
the Graal IR of List.head. We show that the Graal IR of the microbenchmarks on
the monomorphic interpreter contains autoboxing nodes that incur performance overheads
compared to the Graal IR of the same programs seen in the polymorphic interpreter.

As previously mentioned, Truffle can speculatively optimize read operations on boxed
frame values. Figure 5.11, contains the parameter of elem in List.contains, which is
an example of such a speculative optimization. This speculative optimization relies on a
TrustedBoxedValue to unbox the primitive. A TrustedBoxedValue represents injected
information from an external source.

In this particular case, it is known by the compiler that the boxed instance comes
from the invocation List.contains((elem: Int)). Unique int values may be mapped
to a unique Integer instance in the Java runtime, eliminating unnecessary boxed object
creation. The unbox operation in node 848 will be ‘floated’ up the graph such that all
subsequent nodes dominated by the reading of a boxed frame value have no autoboxing.
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Figure 5.11: Graal IR with speculative unboxing of elem based on a type profile of its
frame slot in List.contains

This optimization is also possible because the invocation of contains occurs in a single
type context. That is, contains is only ever invoked with a single type argument in our
microbenchmark; therefore, Truffle can insert speculative optimizations based on the type
of the argument passed. As the number of types is limited, in our case, only a single
type, the value can be speculatively unboxed. This optimization would not be possible
in a multiple type context, where contains is invoked at many sites with distinct value
type arguments. This type of invocation environment, more commonly found in real-
world programs, pollutes the type profiles of the method and inhibits speculative unboxing
operations. In theory, our approach to method specialization would not be hindered by
this problem; we consider the evaluation of the interpreter in this environment out of the
scope of this thesis.

We examine in detail the Graal IR focusing on the List.head accessor method in our
List running example. The accessor is frequently used in our List microbenchmarks;
performance of List.contains and List.hashCode depends on the elimination of the
unboxing in this method. We focus on unboxing when the head field is accessed by the
List.head accessor. This unboxing can be seen in 5.12a.

We can see that guard nodes are inserted by Graal into the compiled graph during
JIT compilation. A guard node ensures that a speculative assumption still holds during
execution. Because the default storage type of a polymorphic field without specialization
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(a) Graal IR of Cons.head focused on
field access of head

(b) Graal IR of Cons.head after being in-
lined into Cons.contains

Figure 5.12: Comparison of Graal IR between unspecialized code of Cons.head and spe-
cialized code of Cons.head in the callee context.

is an Object, Graal makes two runtime assumptions about the field in the JIT compiled
contains method to ensure the compiled method does not throw a runtime exception if
the return value needs to be unboxed. The first guard, identifiable by node 278, checks
that the value is not the null reference. As the null value is only compatible with
reference types, attempting to unbox a null value produces a runtime exception. The
second guard, with the identifier 282, is a type check that the value is an Integer object.
Notice that the predecessor node is the type check instanceof a!# java.lang.Integer

86



and not instanceof java.lang.Integer. instanceof nodes in Graal IR checks against
stamps instead of normal JVM types identifiers. A stamp is much like a type identifier but
has additional descriptors attached. For example, the stamp a!# java.lang.Integer has
the following descriptors:

(a) Asserts that the stamp marks a reference type identifier. The stamp marks the boxed
reference type java.lang.Integer.

(!) Asserts that the value is not the null reference value. The stamp contains this
descriptor because it is preceded by a non-null guard.

(#) Asserts that the value marked by the stamp is exactly an instance of the type identifier
described by the stamp and not an instance of a subclass of the type identifier

In more succinct terms, the instanceof node 285 checks that the value is precisely
the instance of a java.lang.Integer and is not the null value. If the assumptions are
not violated in compiled code, the boxed integer value is then returned from the compiled
code. Note that no unboxing happens because the value of head has not yet been used in
a polymorphic context.

When the access or method List.head is inlined into its callsite in Cons.contains (see
figure 5.12b), an unbox operation is introduced because the equality operation in node 1744
compares primitives and not references. Notice that the two guard nodes previously seen
in figure 5.12a are folded into one node because the instanceof node is an extension of
the null check node. Because polymorphic field values are stored as a reference on the
object instance, these speculative assumptions are necessary to generate compiled code.
To eliminate the overhead of the unbox operation and the accompanying guard nodes, The
polymorphic fields of a class must be specialized.

Figure 5.13a contains the field access of head after the field has been specialized and has
the appropriate storage type in the storage layout of Cons[Int]. Notice that a box node
has been introduced prior to the value of head prior to the return node of Cons.head.
Because the execute method of a DefDefNode returns an Object, the return value is
preemptively boxed when inspecting the IR of the method. However, after inlining into
the body of Cons.contains, the box operation is no longer necessary as the boxed value
will be immediately unboxed. Graal will automatically eliminate this type of autoboxing.
When a specialized class instance is used in place of a generic class instance, the field access
subgraph of List.head is fully simplified.
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(a) Graal IR of List.head after field
read of head is specialized.

(b) Graal IR of Cons.head after being
inlined into Cons.contains

Figure 5.13: Comparison of Graal IR between unspecialized code of Cons.head and spe-
cialized code of Cons.head in the caller context.

5.4.2 Mixing in Array Type Information

While eliminating the autoboxing of frame and field accesses provided incremental improve-
ments, incorporating array type information produced further throughput improvements
for our array-backed microbenchmark. In this section, we examine the Graal IR that
contain type switches for the Scala runtime to handle arrays.
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Figure 5.14: Graal IR of array_length in the context of
List.apply[T](array: Array[T])
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Figure 5.15: Graal IR of array_length in the context of
List.apply[T](array: Array[T]) augmented with a π node

Figure 5.14 contains the Graal IR of array_length inlined into List.apply[T]. Notice
that the instanceof type checks nodes (white) that are succeeded by an ArrayLength node
(red) for each of the branches in array_length. The numerous consecutive conditional ex-
pressions complicate the control flow analysis in JIT compilation. These conditional checks
add unnecessary branching and burdens JIT compilation when the type of a specialized
array could be known from specialization.

Figure 5.15 contains the simplified Graal IR of array_length inlined into List.apply[T].
Notice that there is a single ArrayLength node that is dominated by a π node. A π node[17]
enforces a bound on a value. In the case of Graal, a π node enforces a bound on the type of
a value. More specifically in our example, the π node narrows the type of the 2nd param-
eter of List.apply[T] to a monomorphic array type. When the type of the parameter is
narrowed, the type checks that enforce array types from figure 5.14 are eliminated because
the type is now known.

This method does not consider polymorphic scenarios where an array of boxed primi-
tives are used interchangeably with an array of primitives. Such scenarios would require
the insertion of additional autoboxing nodes or an intraprocedural transformation where
boxed arrays are converted to primitive arrays. While these solutions are possible in the
context of Truffle, we consider these kinds of scenarios out of the scope of this thesis.
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Chapter 6

Related Work

This chapter discusses previous academic and industrial work related to this thesis. The
first section provides an introduction to the various implementations of parametric poly-
morphism. The second section is a brief overview of programming languages that support
a notion of reified types. The third section covers related work on the implementation of
polymorphism in Java. The fourth section of this chapter provides an overview of previous
and state-of-the-art efforts to specialize Scala programs. The last section presents prior
and ongoing efforts in the implementation of other Truffle interpreters.

6.1 Implementations of Parametric Polymorphism

Implementations of parametric polymorphism can be divided into two broad categories[20]:

Homogeneous Translation This approach provides a single data representation for
each polymorphic type. An example of this implementation is the type erasure
transformation applied in the Java and Scala compilation pipelines. Morrison et al.
also refer to this form of polymorphism as the uniform polymorphism[58].

Heterogeneous Translation In contrast to homogeneous translation, the heterogeneous
translation ensures a unique data representation for every polymorphic type instanti-
ation. The heterogeneous translation can also be referred to as textual polymorphism.

This section will cover various approaches to implementing parametric polymorphism
in the context of these two forms. As polymorphism in Java and Scala are more relevant
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to the central themes of this thesis, we will first focus on implementations of parametric
polymorphism for other languages.

Parametric polymorphism was first studied in functional programming languages[57,
31]. Leroy proposed an approach in which type coercion operations are inserted between
polymorphic operations and monomorphic data. The coercion operations in this approach
are quite similar to the notion of boxing and unboxing, which Leroy describes as wrapping
and unwrapping.

The heterogeneous translation is a common implementation of parametric polymor-
phism in object-oriented programming languages. template semantics in the C++ pro-
gramming language popularized parametric polymorphism in objected-oriented program-
ming languages. Templates define a generic definition of some kind in C++. The C++

compiler will generate heterogeneous translations based on every set of concrete type argu-
ments supplied during compilation. The implementation of polymorphism in the Common
Language Runtime[55, 54] by Kennedy and Syme makes use of reified types in a polymor-
phic bytecode IR during execution. Polymorphic class definitions are loaded as templates;
Templates generate specialized class layouts on an ad-hoc basis based on the reified type
arguments seen during bytecode execution. Their approach relies on CLR extensions to
support types not present in existing JVM implementations. Our approach shares many
similarities with the approach described by Kennedy and Syme. One drawback of their ap-
proach is that the polymorphic bytecode IR does not support the complete set of operations
on types. For an object instance of type List[T], it not possible to determine the concrete
type of T. For example, reflection is necessary to differentiate between a List[Int] and
a List[String]. Furthermore, the authors note that their implementation is unable to
support type variances, which are mainstays of the Scala type system, in their implemen-
tation of generics. Our implementation differs as such operations are possible because the
IR could potentially incorporate the full type language of TASTy.

6.2 Implementations of Reified Types

Some programming languages have previously introduced similar notions of types-as-values.
Zig[2] permits compilation-time types as first-class values. Compile-time evaluation in Zig
exposes constant folding as a user abstraction. Specific instantiations of generic data struc-
tures are then created based on reified type values during compilation-time. Hack[4] and
Kotlin[3] both have the notion of inline reified types More specifically, reified types in
Hack and Zig allow type parameters of user-annotated inline-able methods to be available
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during run-time. Combined with inlining, this allows concrete type arguments from invo-
cation sites to be used in the method body. For example, run-time control flow based on
concrete types are possible using inline reified types. When combined with other higher-
order abstractions, such as anonymous classes, inline reified types allow for data layout
optimizations.

6.3 Generics and Java

Prior efforts to implement generics in Java have been based on static compilation tech-
niques restricted by the open-world assumption. The open-world assumption is that the
program under compilation is incomplete; extra parts of the program will be supplied in a
future iteration of compilation. This form of compilation is commonly known as separate
compilation. As such, the compilation results of the current parts of the program must be
interoperable with the compilation results of the remaining yet-to-be-determined parts.

The Java language did not initially support parametric polymorphism. As a result,
many different approaches were proposed before a uniform polymorphism became the ac-
cepted implementation for Java. Pizza[62] was a superset of Java that supported het-
erogeneous and homogeneous translations of polymorphic definitions into Java. Agesen,
Freund, and Mitchell proposed a heterogeneous translation for parametric polymorphism
for Java during load-time instead of compile-time[7]. NextGen[23] separates the translation
of polymorphic classes into monomorphic and polymorphic components. In NextGen, only
the polymorphic members of a class definition are specialized; These specialized classes
inherit the implementation of their monomorphic members from a common parent class.
Finally, GJ[20] proposed the foundations for what is now the accepted implementation
of parametric polymorphism in Java. Polymorphic class definitions have a single uniform
data representation after type erasure. these approaches determine the data representation
of polymorphic definitions in a static context. Our approach is based on the closed-world
assumption.

6.4 Specialization in Scala

The standard implementation of parametric polymorphism in Scala follows that of Java;
generic class definitions have their type parameters erased. All previous approaches at-
tempt to avoid the problem of bytecode explosion, where the specialization of polymorphic
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data with every possible type creates an exponential number of unique data representa-
tions. Dragos describes the earliest efforts to specialize Scala programs with the aid of
annotations[33]. Annotations avoid unnecessarily specializing polymorphic data through
knowledge injected by a programmer. Ureche, Talau, and Odersky expand upon this ap-
proach by reducing unnecessary duplication among specializations through sharing[77].
Sharing exploits the insight that specializations of some value types may be reused for the
specializations of other value types. For example, the representation of ArrayBuffer[Long]
could be used, with the addition of some glue code, for the specialization of ArrayBuffer[Int]
instead of generating an additional specialized representation. Both approaches mix the
implementation of uniform polymorphism with user-guided specialization directives. Our
approach generates a heterogeneous translation of a generic class definition on an ad-hoc
basis.

6.5 Truffle Interpreters

There are many Truffle interpreters in active development at the time of writing. TruffleRuby[69,
30],FastR, Graal.js, Graal.Python,[47] are some of the industrial implementations of dy-
namically typed languages implemented with Truffle. They all make substantial use of
Truffle facilities, some discussed earlier in this thesis, to speculative optimize program
execution. Espresso[42] is an implementation of a Java bytecode interpreter in Truffle.
Espresso is a metacircular implementation of a Java Virtual Machine. Because Espresso
executes the same Java bytecode format as other JVM implementations, it uses the same
approaches to optimizing polymorphic data layout as the conventional implementation of
Java on GraalVM.
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Chapter 7

Future Work

TastyTruffle is intended to be a framework for dynamic whole-program approaches to
optimizing Scala. In this section, we discuss some possible extensions to the interpreter
that further take advantage of Truffle mechanisms. A substantial penalty of heterogeneous
translations of polymorphic programs is code explosion. For large polymorphic programs,
the penalty of heterogeneous translation is twofold. First, the cost of increased memory
usage. Having many specialized data representations incurs extra storage unless these data
representations are regenerated every time a specialization is needed. The second is the
hidden computational overhead of specialization. Like other computational overheads of
managed runtimes such as garbage collection, time spent generating specialized variants
of polymorphic classes or methods means time not spent executing the program. This
overhead may be reduced by distributing such workloads into multiple threads. We propose
several heuristics to influence when a specialization is created.

Many prior approaches to specialization have already attempted to minimize the num-
ber of specializations to mitigate performance degradation for complex polymorphic def-
initions, where there is often a O(tn) space complexity worse case1. These approaches
balance the tradeoff between performance and code size to optimistically generate only the
specializations required to eliminate performance bottlenecks. Because of the work done
in [33], many existing Scala programs are already user-annotated with a specialization
directive. Similarly, our approach could be extended to include the semantics of this an-
notation, generating specializations with user-guide information only where needed. The
translation of non-annotated definitions will use a shared type-erased data representation.

1t is the number of values types combined with the reference type, n is the number of type parameters
in a generic definition.
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However, mixing annotated and non-annotated programs will present missed optimization
opportunities in the non-annotated portions of the program.

Truffle offers many mechanisms for profiling values and types. Some of this profiling
instrumentation is automatically done by Truffle, such as the profiling of argument types
for node rewrites. In contrast, the guest language implementer adds other instrumentation,
such as condition profiles. These profiles augment partial evaluation and enable speculative
assumptions for optimizations such as conditional elimination. We propose instrumenting
specialization sites to profile type arguments. Type argument profiles could then be used to
decide the specific instantiation to specialize. A profile-guided approach to specialization
could limit specializations to only the most frequently used instantiations.

Often a polymorphic instantiation is not sufficiently frequent to warrant specialization;
the default homogeneous data representation will be shared among unspecialized instan-
tiations. A type-erased homogeneous data representation may still be tagged with the
underlying applied type. We can further augment type-erased polymorphic fields, and
frame slots to profile reads from and writes to their respective storage locations. These
two pieces of dynamic information can be combined to allow the specialization of specific
instantiations that are frequently manipulated but not frequently created.

We can apply the same optimization to sharing data layouts between specific specializa-
tions with inspiration from the work done by Ureche et al. in [77]. Because the additional
operations that adapt shared specializations to their original type contexts are negligible
in terms of performance[77], these operations make sense to implement directly as Truffle
nodes that will be further optimized by JIT compilation.
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Chapter 8

Conclusions

This thesis introduced TastyTruffle, a Truffle interpreter that is a platform for ex-
perimenting with ad hoc data representations. The thesis described methods to translate
TASTy, a tree serialization format for Scala 3, into an executable IR suitable for execution
in an optimizing interpreter. We show in this thesis how to exploit the type information
present in an input source language such as TASTy to generate specialized data repre-
sentations for polymorphic data structures. We demonstrate that these techniques can
substantially improve the performance of simple Scala programs in an experimental inter-
preter when compared to a state-of-the-art Java virtual machine.

A particular challenge in the implementation of TastyTruffle was the translation
of TASTy into TastyTruffle IR. Because TASTy is emitted after parsing and type
checking, no other compiler transformations typical in other intermediate representations
are present. Many features of the Scala programming language are built as abstractions of
simpler constructs that the compiler must further simplify. Without the existing compiler
transformations to simplify these abstractions, TASTy can be at times extraneously high-
level for execution. While this did not significantly affect the evaluation of simple Scala
programs for our experiments, it limits the breadth of programs that are executable by our
interpreter. A possible solution to this hurdle is to read TASTy, perform a subset of Scala
compiler transforms, then execute the program using our translation. While we will have
to avoid the type erasure transformation and all subsequent transformations that depend
on the type erasure results, a much more significant portion of existing Scala programs can
be executed on our interpreter. This capability is particularly important in the context
of the Scala collections library. As many Scala applications rely extensively on the Scala
collections library, it would open the possibility for evaluating TastyTruffle on larger
real-world workloads.
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The specialization of classes with both class-polymorphic and method-polymorphic se-
mantics proved to be a complex implementation detail. The gap between the specialization
of classes (at object creation) and the specialization of methods (at method invocation)
required the selection of appropriate intermediate representation to encapsulate the partial
specialization. Partial specializations have been specialized but also still contain polymor-
phic semantics, which must be resolved at a future specialization site. In this thesis, we
chose to use a high-level approach to aid the translation of TASTy definitions with TASTy
type arguments. However, many prior approaches provide inspiration to tackle this prob-
lem. A possible solution might avoid multiple mechanisms for specialization, there avoiding
partial specializations entirely. Alternatively, specialized call targets could be added onto
a shape in an ad-hoc, profile-driven manner without the need to dispatch and select a spe-
cialization inside a call target. Truffle already has the tooling for dynamic object layouts in
the form of the DynamicShape. As class specialization is a relatively experimental feature
in the lifespan of TastyTruffle, we consider this a possibility for future optimization.

In this thesis, we have evaluated TastyTruffle on simple but challenging to specialize
data structures exhibiting bulk memory access and random heap access. The elimination
of autoboxing in the list data structure resulted in incremental performance improvements
where autoboxing proved to be a performance bottleneck. The elimination of autoboxing
in data structures backed by polymorphic arrays resulted in performance improvements by
an order of magnitude. TastyTruffle validates that there are opportunities for data
representation optimizations that bridge static compilation and just-in-time compilation.
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dynamic compilation and deoptimization. In Proceedings of the 1st ACM/USENIX
International Conference on Virtual Execution Environments, VEE ’05, page 111–120,
New York, NY, USA, 2005. Association for Computing Machinery.

[50] Thomas Kotzmann and Hanspeter Mossenbock. Run-time support for optimizations
based on escape analysis. In Proceedings of the International Symposium on Code
Generation and Optimization, CGO ’07, page 49–60, USA, 2007. IEEE Computer
Society.

[51] Peter J. Landin. The mechanical evaluation of expressions. Comput. J., 6:308–320,
1964.

[52] Chris Lattner and Vikram Adve. Llvm: A compilation framework for lifelong pro-
gram analysis & transformation. In International Symposium on Code Generation
and Optimization, 2004. CGO 2004., pages 75–86. IEEE, 2004.

103



[53] Tim Lindholm, Frank Yellin, Gilad Bracha, and Alex Buckley. The Java Virtual
Machine Specification, Java SE 7 Edition: Java Virt Mach Spec Java 3. Addison-
Wesley, 2013.

[54] Erik Meijer and John Gough. Technical overview of the common language runtime.
language, 29(7), 2001.

[55] Erik Meijer and John Gough. Technical overview of the common language runtime.
language, 29(7), 2001.

[56] Bertrand Meyer. Object-oriented software construction, volume 2. Prentice hall En-
glewood Cliffs, 1997.

[57] R. Milner, L. Morris, and M. Newey. A logic for computable functions with reflexive
and polymorphic types. In Proceedings of the Conference on Proving and Improving
Programs, pages 371–394. IRIA-Laboria, 1975.

[58] R. Morrison, A. Dearle, R. C. H. Connor, and A. L. Brown. An ad hoc approach to the
implementation of polymorphism. ACM Trans. Program. Lang. Syst., 13(3):342–371,
jul 1991.

[59] Maurice Naftalin and Philip Wadler. Java Generics and Collections: Speed Up the
Java Development Process. ” O’Reilly Media, Inc.”, 2006.

[60] Martin Odersky, Philippe Altherr, Vincent Cremet, Burak Emir, Sebastian Maneth,
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Appendix A

Scala Unified Type System

AnyVal

Any

AnyRef (java.lang.Object)

Double Float Long Int Short Byte Unit Boolean Char List Option YourClass

Null

Nothing
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Appendix B

Scala 3 Compiler Phases

1 /** Phases dealing with the frontend up to trees ready for TASTY pickling */

2 protected def frontendPhases: List[List[Phase]] =

3 // scanner, parser

4 List(new Parser) ::

5 // namer, typer

6 List(new TyperPhase) ::

7 // YCheck positions

8 List(new YCheckPositions) ::

9 // Sends information on classes' dependencies to sbt via callbacks

10 List(new sbt.ExtractDependencies) ::

11 // Extract info into .semanticdb files

12 List(new semanticdb.ExtractSemanticDB) ::

13 // Additional checks and cleanups after type checking

14 List(new PostTyper) ::

15 // Additional checks and transformations for Scala.js (Scala.js only)

16 List(new sjs.PrepJSInterop) ::

17 // Check PCP, heal quoted types and expand macros

18 List(new Staging) ::

19 // Sends a representation of the API of classes to sbt via callbacks

20 List(new sbt.ExtractAPI) ::

21 // Set the `rootTreeOrProvider` on class symbols

22 List(new SetRootTree) ::

23 Nil

24

25 /** Phases dealing with TASTY tree pickling and unpickling */

26 protected def picklerPhases: List[List[Phase]] =

27 // Generate TASTY info

28 List(new Pickler) ::
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29 // Turn quoted trees into explicit run-time data structures

30 List(new PickleQuotes) ::

31 Nil

32

33 /** Phases dealing with the transformation from pickled trees to backend trees */

34 protected def transformPhases: List[List[Phase]] =

35 List(

36 // Some transformations to put trees into a canonical form

37 new FirstTransform,

38 // Internal use only:

39 // Check that compiled program has no data races involving global vars

40 new CheckReentrant,

41 // Eliminate references to package prefixes in Select nodes

42 new ElimPackagePrefixes,

43 // Cook the comments: expand variables, doc, etc.

44 new CookComments,

45 // Check restrictions that apply to @static members

46 new CheckStatic,

47 // Reduce closure applications

48 new BetaReduce,

49 // Check initialization of objects

50 new init.Checker) ::

51 List(

52 // Rewrite vararg parameters and arguments

53 new ElimRepeated,

54 // Expand single abstract method closures to anonymous classes

55 new ExpandSAMs,

56 // Add accessors for protected members

57 new ProtectedAccessors,

58 // Expand methods of value classes with extension methods

59 new ExtensionMethods,

60 // Avoid caching RHS of simple parameterless given aliases

61 new UncacheGivenAliases,

62 // Expand arguments to by-name parameters to closures

63 new ByNameClosures,

64 // Hoist complex arguments of supercalls to enclosing scope

65 new HoistSuperArgs,

66 // Adds specialized methods to FunctionN

67 new SpecializeApplyMethods,

68 // Various checks mostly related to abstract members and overriding

69 new RefChecks) ::

70 List(

71 // Turn opaque into normal aliases

72 new ElimOpaque,

73 // Compile cases in try/catch
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74 new TryCatchPatterns,

75 // Compile pattern matches

76 new PatternMatcher,

77 // Make all JS classes explicit (Scala.js only)

78 new sjs.ExplicitJSClasses,

79 // Add accessors to outer classes from nested ones.

80 new ExplicitOuter,

81 // Make references to non-trivial self types explicit as casts

82 new ExplicitSelf,

83 // Expand by-name parameter references

84 new ElimByName,

85 // Optimizes raw and s string interpolators

86 // by rewriting them to string concatentations

87 new StringInterpolatorOpt) ::

88 List(

89 // Drop erased definitions from scopes and simplify erased expressions

90 new PruneErasedDefs,

91 // Remove placeholders of inlined patterns

92 new InlinePatterns,

93 // Inlines calls to value class methods

94 new VCInlineMethods,

95 // Express vararg arguments as arrays

96 new SeqLiterals,

97 // Special handling of `==`, `|=`, `getClass` methods

98 new InterceptedMethods,

99 // Replace non-private vals and vars with getter defs (fields are added later)

100 new Getters,

101 // Specialized Function{0,1,2} by replacing super with specialized super

102 new SpecializeFunctions,

103 // Put try expressions that might execute on non-empty stacks into their own methods

104 new LiftTry,

105 // Collect fields that can be nulled out after use in lazy initialization

106 new CollectNullableFields,

107 // Expand outer selections

108 new ElimOuterSelect,

109 // Implement super accessors

110 new ResolveSuper,

111 // Add forwarders for FunctionXXL apply method

112 new FunctionXXLForwarders,

113 // Add forwarders for aliases of superclass parameters

114 new ParamForwarding,

115 // Optimize generic operations on tuples

116 new TupleOptimizations,

117 // Lift blocks from receivers of applications

118 new LetOverApply,
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119 // Intercept creation of (non-generic) arrays and intrinsify.

120 new ArrayConstructors) ::

121 // Rewrite types to JVM model, erasing all type parameters, abstract types and refinements.

122 List(new Erasure) ::

123 List(

124 // Expand erased value types to their underlying implmementation types

125 new ElimErasedValueType,

126 // Remove pure stats from blocks

127 new PureStats,

128 // Peep-hole optimization to eliminate unnecessary value class allocations

129 new VCElideAllocations,

130 // Optimize `scala.Array.apply([....])` and `scala.Array.apply(..., [....])` into `[...]`

131 new ArrayApply,

132 // Adds fake new invocations to local JS classes in calls to `createLocalJSClass`

133 new sjs.AddLocalJSFakeNews,

134 // Rewrite PolyFunction subclasses to FunctionN subclasses

135 new ElimPolyFunction,

136 // Rewrite tail recursion to loops

137 new TailRec,

138 // Fill in constructors for Java enums

139 new CompleteJavaEnums,

140 // Expand trait fields and trait initializers

141 new Mixin,

142 // Expand lazy vals

143 new LazyVals,

144 // Add private fields to getters and setters

145 new Memoize,

146 // Expand non-local returns

147 new NonLocalReturns,

148 // Represent vars captured by closures as heap objects

149 new CapturedVars) ::

150 List(

151 // Collect initialization code in primary constructors

152 // Note: constructors changes decls in transformTemplate,

153 // no InfoTransformers should be added after it

154 new Constructors,

155 // Count calls and allocations under -Yinstrument

156 new Instrumentation) ::

157 List(

158 // Lifts out nested functions to class scope, storing free variables in environments

159 new LambdaLift,

160 // Note: in this mini-phase block scopes are incorrect.

161 // No phases that rely on scopes should be here

162 // Replace `this` references to static objects by global identifiers

163 new ElimStaticThis,
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164 // Identify outer accessors that can be dropped

165 new CountOuterAccesses) ::

166 List(

167 // Drop unused outer accessors

168 new DropOuterAccessors,

169 // Lift all inner classes to package scope

170 new Flatten,

171 // Renames lifted classes to local numbering scheme

172 new RenameLifted,

173 // Replace wildcards with default values

174 new TransformWildcards,

175 // Move static methods from companion to the class itself

176 new MoveStatics,

177 // Widen private definitions accessed from nested classes

178 new ExpandPrivate,

179 // Repair scopes rendered invalid by moving definitions in prior phases of the group

180 new RestoreScopes,

181 // get rid of selects that would be compiled into GetStatic

182 new SelectStatic,

183 // Generate JUnit-specific bootstrapper classes for Scala.js (not enabled by default)

184 new sjs.JUnitBootstrappers,

185 // Find classes that are called with super

186 new CollectSuperCalls) ::

187 Nil

188

189 /** Generate the output of the compilation */

190 protected def backendPhases: List[List[Phase]] =

191 // Generate .sjsir files for Scala.js (not enabled by default)

192 List(new backend.sjs.GenSJSIR) ::

193 // Generate JVM bytecode

194 List(new GenBCode) ::

195 Nil
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