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Abstract

Legibility has recently become an important property to consider in the design of so-
cial navigation planners. Legible motion is intent-expressive, which when employed during
social robot navigation, allows others to quickly infer the intended avoidance strategy.
Predictability, although less commonly studied for social navigation, is, in a sense, the
dual notion of legibility, and should also be accounted for in order to promote efficient
motions. Predictable motion matches an observer’s expectation which, during navigation,
allows others to confidently carryout the interaction. In this work, we present a navigation
framework capable of reasoning on its legibility and predictability with respect to dynamic
interactions, e.g., a passing side. Our approach generalizes the previously formalized no-
tions of legibility and predictability by allowing dynamic goal regions in order to navigate
in dynamic environments. This generalization also allows us to quantitatively evaluate the
legibility and the predictability of trajectories with respect to navigation interactions. Our
approach is shown to promote legible behavior in ambiguous scenarios and predictable be-
havior in unambiguous scenarios. We also provide an adaptation to the multi-agent case,
allowing the robot to reason on its legibility and predictability with respect to multiple
interactions simultaneously. This adaptation promotes behaviors that are not illegible to
other agents in the environment. In simulation, this is shown to resolve scenarios of high-
complexity in an efficient manner. Furthermore, our approach yields an increase in safety
while remaining competitive in terms of goal-efficiency when compared to other robot nav-
igation planners in randomly generated multi-agent environments. The code of this work
will be made publicly available1.

1https://github.com/jlbas/LPSNav

iii

https://github.com/jlbas/LPSNav


Acknowledgements

I would like to express my deepest gratitude to my supervisors Christopher Nielsen and
Stephen L. Smith. They have provided invaluable insight and support throughout my
studies and I am very fortunate to have had the opportunity of working with them. I
will continue to cherish our weekly discussions as they’ve been very enjoyable and thought
provoking. Seeing their level of dedication and strong work ethic has been inspirational
and something I aspire to attain.

I would also like to thank my loving parents Anne and Roger for always showing support,
whatever challenge I decide to take on. They taught me to be appreciative of what I have,
something I remind myself daily which helped maintain a positive mindset over the years.
I am also thankful for my younger sister Sophie, who is never scared to challenge me and
who I strive to be a better role model for.

Lastly, I thank my partner Renée for joining me on this journey. Our adventures
together have kept me sane along the way.

iv



Table of Contents

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Social Navigation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.2 Social Robot Navigation . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Preliminaries 11

2.1 Legible Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Predictable Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Modelling the Robot’s Motion . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Modelling Legible Motion . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.2 Modelling Predictable Motion . . . . . . . . . . . . . . . . . . . . . 17

3 Legibility and Predictability for Social Robot Navigation 19

3.1 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Defining a Navigation Interaction Using Dynamic Goal Regions . . . . . . 20

v



3.3 Robot and Observer Motion Models . . . . . . . . . . . . . . . . . . . . . . 24

3.4 Legibility and Predictability of Navigation Interactions . . . . . . . . . . . 24

3.5 Deriving the Optimal Costs for the CVM . . . . . . . . . . . . . . . . . . . 26

3.6 Goal and Trajectory Conditionals of Primitives . . . . . . . . . . . . . . . 31

3.7 Optimizing Legibility and Predictability . . . . . . . . . . . . . . . . . . . 33

3.8 Multi-Agent Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4 Results 39

4.1 Post Hoc Trajectory Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2 Implementation Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.3 Qualitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Basic Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Antipodal Circle Swap . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.4 Quantitative Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.1 Basic Scenarios . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.4.2 Randomly Generated Multi-Agent Scenarios . . . . . . . . . . . . . 48

5 Conclusions and Future Research 51

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 Future Work and Open Problems . . . . . . . . . . . . . . . . . . . . . . . 52

5.2.1 User Study and Hardware Implementation . . . . . . . . . . . . . . 52

5.2.2 Directions for Future Development . . . . . . . . . . . . . . . . . . 54

5.2.3 Legibility and Predictability . . . . . . . . . . . . . . . . . . . . . . 57

References 60

vi



List of Figures

1.1 Inferring the navigation avoidance strategy . . . . . . . . . . . . . . . . . . 1

1.2 Freezing robot problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 A legible trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Comparing the legibility of different trajectories . . . . . . . . . . . . . . . 12

2.3 A predictable trajectory . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 Comparing the predictability of different trajectories . . . . . . . . . . . . 14

2.5 Goal inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.6 Trajectory inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 The effect of global goals on the intermediate goal inference . . . . . . . . 21

3.2 Comparison of different methods to orient the interaction line . . . . . . . 22

3.3 Components of the interaction line . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Optimal trajectories to each segment of the interaction line . . . . . . . . . 26

3.5 Optimal trajectories with static goal modelling . . . . . . . . . . . . . . . . 27

3.6 Optimal trajectories with dynamic goal modelling . . . . . . . . . . . . . . 28

3.7 Constant bearing strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.8 Drawback of the interaction not being set for the goal conditional . . . . . 32

3.9 A motion primitive intersecting the interaction line . . . . . . . . . . . . . 33

3.10 Pareto front of motion primitives for a given configuration . . . . . . . . . 34

3.11 The effect of varying lambda during a navigation interaction . . . . . . . . 35

vii



4.1 Observer’s inferences tracked along an interaction . . . . . . . . . . . . . . 41

4.2 Simple unicycle model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Robot’s set of motion primitives . . . . . . . . . . . . . . . . . . . . . . . . 42

4.4 Overlay of the trajectories resulting from basic scenarios . . . . . . . . . . 44

4.5 Trajectories from circle scenarios . . . . . . . . . . . . . . . . . . . . . . . 46

4.6 Tracking the minimal predicted distance . . . . . . . . . . . . . . . . . . . 49

4.7 Performance metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.1 Effect of employing a global planner . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Trajectory segments with and without cooperation . . . . . . . . . . . . . 54

5.3 Redefinition of the interaction line with an elliptical personal space . . . . 56

5.4 Passing inferences for a candidate social cost function . . . . . . . . . . . . 58

5.5 Trajectories and legibility scores for a candidate social cost function . . . . 59

viii



List of Tables

4.1 Quantitative results for the swap and pass scenarios . . . . . . . . . . . . . 47

4.2 Statistical significance of the legibility . . . . . . . . . . . . . . . . . . . . . 48

4.3 Statistical significance of the predictability . . . . . . . . . . . . . . . . . . 48

ix



Chapter 1

Introduction

Without having to explicitly communicate their intentions, humans are able to seemingly
effortlessly navigate amongst one another in a collision-free manner. Even in open social
spaces devoid of navigation rules or underlying structure, they can safely make continued
progress towards their goals. This can largely be attributed to their ability to infer others’
interaction strategies, as depicted in Figure 1.1. This inference allows each human to adapt

Left Collide Right
Left Collide Right

Figure 1.1: A human (gray) inferring a robot’s (purple) avoidance strategy.

their trajectory in order to avoid a collision. Ultimately, this cooperation reduces the
combined effort spent by each agent while deviating from their initially planned trajectory
to avoid a collision, and in turn, increases the navigation efficiency.

When constructing their navigation strategies, human’s are likely to prioritize nearby
humans, where there is a more immediate risk for collision. Nonetheless, during each
interaction, they will attempt to indicate its strategy to the other as early as possible in
hopes of reducing the uncertainty about its intended passing side. The degree to which
these indications are made clear vary depending on the complexity of the environment.
For example, one might infer a passing side from something as subtle as an other’s shift in
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eye gaze or something as obvious as a prominent adjustments in direction. From an early
age, we learn to identify and employ these motion queues to aid our navigation in social
spaces.

Social navigation is the task of a social agent, either a human or a robot, navigating
in a shared environment with other social agents to reach its goal. Although the goals
are unknown to each other, social agents are aware that others in the environment are
also solving their own navigation problems. In social navigation, the agents adapt their
motions by taking into account those of the others in order to respect social conventions
(e.g. personal space). This differs from traditional navigation in that an agent is not
represented as a dynamic obstacle, but rather a social entity.

Recently, there has been an increasing interest for the deployment of autonomous mobile
robots into social environments. However, the complexities of social navigation continue
to prevent state-of-the-art frameworks from being seamlessly deployed into the real world.
Many existing approaches take inspiration from humans’ navigation strategies in hopes
of generating human-like motion. Since robots typically don’t exhibit the same motion
queues as a human, this begs the question as to how the robot should best make use of
its motion when navigating a dynamic multi-agent environment? We focus on the implicit
communication of intention through motion, rather than an explicit modality such as signal
lights, since changing the speed and heading is fundamental to all mobile robots.

This thesis analyzes and discusses how a mobile robot should make use of the shape and
time parameterization of its trajectory in order to indicate its avoidance strategy during
navigation interactions with other agents. A more formal problem formulation is given in
Section 3.1. We generalize existing properties of motion which arise from the inference of
trajectories and goals that were shown to facilitate human-robot interaction (HRI) tasks
to the problem of social navigation. The presented navigation framework allows the robot
to reason on the degree to which it should seek to indicate its intention to surrounding
agents.

1.1 Literature Review

Although autonomous robots have traditionally operated in controlled and human secluded
environments, recent advancements have given rise to their deployment into social spaces.
There is an increasing interest for their use in warehouses, in the healthcare sector, for
search and rescue, for deliveries, for surveillance, in the workplace and other social ser-
vices [69]. To motivate the social navigation task, the following literature review begins
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with an overview of human locomotion studies. These studies seek to explain and model
the strategies taken by humans when navigating a social space. Afterwards, existing social
robot navigation frameworks, some of which have taken inspiration from the mentioned
human locomotion studies, will be discussed. This will lead to the current state of the
field, where we will briefly introduce important properties of motion in which modern
frameworks have found to be important to consider for social navigation.

1.1.1 Social Navigation

Pedestrian motion is inherently complex and continues to be a focal point of interest
amongst autonomous robot researchers. During locomotion, humans make use of numer-
ous motion cues such as gaze [73] and head movement [45] to avoid collisions. It remains
uncertain as to how they construct their anticipatory strategies while navigating dynamic
environments. The concepts of personal space, originally proposed in the theory of prox-
emics [40], describes a physical region in which people seek to maintain around themselves.
The size of the space is non constant and was found to depend on demographic factors such
as cultural background [40], ethnic group [9], age [9] and gender [2]. In [39], it is shown
that the personal space takes the shape of an ellipse and its size depends on environmental
factors such as the speed and certainty in others’ motion. They also found that anticipation
and preplanning are involved in the navigation task, as participants were shown to exhibit
early gate adaptation and maintain constant clearances around obstacles. Furthermore,
in North America, a tendency to walk on the right was found [98, 11]. People also tend
to walk in a way that minimizes their energy expenditure [66]. One such strategy is to
maintain a constant speed while navigating [89].

Many existing studies have focused on determining the collision avoidance strategies
employed by humans during locomotion [23, 8, 46]. These studies seek to find at which
point and to what extent a human on a collision course with another human adapts their
motion. In [23], participants were asked to avoid a collision with an oncoming human doll,
fixated to a guy wire and travelling at a constant velocity regulated by a stepper motor.
For different approach velocities, they found that the participants adapted their motion at
the same time. However, the rate of change of avoidance maneuver’s lateral motion was
found to be correlated to the approach velocity of the object. In [8], they examined the
collision avoidance strategy for a subject on a collision course with an interferer travelling
orthogonally on a collision course. The interferer was specifically instructed not to react
to the subject. The avoidance strategy was similarly studied between a human and non-
reactive interferer in [46]. There, they evaluated the effect that the angle between the
subjects and the speed of the interferer had on the human’s avoidance strategy. Although
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these studies seek to determine human collision avoidance strategies during locomotion,
they do not take into account collaboration in the interaction.

More recently, it was found that humans collaborate during a collision avoidance task
[75, 74]. In these studies, when instructed to avoid a collision with one another, the
participants shared the navigation load by reorienting their path and adapting their speed.
In [75], they introduce a collision avoidance metric, which tracks the minimal predicted
distance (MPD) during an interaction between walkers. The pedestrians were found to
adapt their motion only when it is required, that is, when the MPD drops below a threshold
of 1 meter. In [74], they showed that the navigation load is not equally shared between
pedestrians, but rather that it is role-dependent. In fact, the participant giving way was
shown to contribute more to the collision avoidance task than the one crossing first. The
contribution of each agent is computed by integrating the effect of its motion adaptations
to the MPD over the course of the interaction. The first to cross was found to only adjust
their speed, whereas the human giving way adjusted both their speed and path.

1.1.2 Social Robot Navigation

This section briefly reviews the progression of social robot navigation from early works,
which modelled humans as non-reactive obstacles, to state-of-the-art human inspired ap-
proaches which explicitly model cooperation in the interaction.

Modeling Humans as Non-Reactive Obstacles

Early works in autonomous robot navigation considered humans to be non-reactive obsta-
cles, and did not attempt to model pedestrian behavior [34]. These approaches, termed
reaction-based, relied on frequent re-planning in order to capture the other agents’ dynam-
ics. However, as they do not consider the human’s cooperation, these approaches often
suffered from oscillatory behaviors [32]. Some approaches have employed existing pedes-
trian behavior models, such as the social force model [41](SFM). This potential field-based
approach models human behavior as a sum of attractive and repulsive forces, which repre-
sent the human’s motivation to reach its goal while avoiding obstacles and other humans in
the environment. In [31], the robot models social interactions using the SFM to navigate
crowded environments. The SFM is considered to perform well when simulating crowds,
which has useful applications when analyzing crowd evacuation dynamics. However, this
model was shown to perform poorly when predicting individual motion, especially for eva-
sive maneuvers [52].
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Other reaction-based approaches have focused on multi-robot collision avoidance [96,
95, 87]. These approaches, categorized as reciprocal collision avoidance, build on the idea
of velocity obstacles [32] to guarantee collision free motion, assuming all agents are ho-
mogeneous, that is they follow the same policy. Their extension in [87] improves on the
previous approaches by explicitly taking into account that other robots may also change
their trajectories based on their surroundings. As a result, the multi-robot navigation is
guaranteed to be oscillation free in addition to being collision free. However, the homo-
geneity assumption is not well suited for the deployment into human-shared environments.

Human Inspired Social Navigation

Recently, research in autonomous robot navigation has taken inspiration from pedestrians’
navigation abilities. These approaches seek to generate motion that respect social conven-
tions as followed by humans. In [49], they present a social navigation framework based
on proxemics theory [40] and passing side convention [11]. A human-like behavior model
is developed in [90] which takes into account other pedestrians’ intentions. Their model
is based on the SFM, where the virtual forces affecting the pedestrian’s motion are based
on a dynamically set subgoal and surrounding obstacles. To evaluate the performance of
their motion planner, they compute the difference between its generated motion and that
which was observed by a human participant. The trajectories generated by the navigation
framework presented in [38] are said to be human-friendly, in that they can intuitively be
predicted by humans. Their approach makes use of the same heuristics as employed by
humans during collision avoidance.

Learning based approaches have focused on extracting navigation heuristics while ob-
serving human trajectories from pedestrian datasets [47, 78]. In [99], they present an in-
verse reinforcement learning approach for robot navigation in an office environment. Their
approach employs the principle of maximum entropy to obtain a probabilistic model of
human behavior. This is learned on a large dataset of example human trajectories. Given
the human probabilistic model, their approach seeks to minimally disrupt the human’s mo-
tion, given by the prediction model. During experiments, their algorithm is shown to be
able to generalize to entirely new environments. In [59], human relative motion is learned
from a dataset and used to compute a dynamic cost map which is used by a robot to plan
socially acceptable motion. They evaluate their approach against human behavior to see
how well it can generalize to unseen human motion.
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Modeling Cooperation During Navigation Interactions

A key constituent in human navigation is their ability to infer others’ interaction inten-
tions, e.g., to which side are they trying to pass. In crowded environments, this inference
allows them to cooperate in the interaction, enabling efficient navigation. Early robot nav-
igation frameworks often overlooked or did not attempt to model these aspects, resulting
in undesirable behaviors such as oscillations [1] or the freezing robot problem [93]. The
freezing robot problem arises in complex dynamic environments when the motion planner
deems all paths to be unsafe, causing the robot to freeze in place. This occurs frequently if
the planner does not account for cooperation from other agents in the environment (Fig-
ure 1.2 (a)). In fact, it is often the case that nearby agents would be willing to make way
for the robot (Figure 1.2 (b)). By accounting for cooperation, many paths are no longer
considered unsafe, and the robot can continue to make progress in the environment.

(a) Planned path without cooperation (b) Planned path with cooperation

Figure 1.2: Freezing robot problem where many paths are deemed unsafe since the robot
does not account for the other agents’ cooperation (a), despite the fact that many are willing
to adapt their trajectories (b).

Due to the myopic nature of non-cooperative approaches, recent research in social
robot navigation has focused on modeling coupled interactions. Such approaches have
sought to model social robot navigation as a cooperative collision avoidance task. To
overcome the freezing robot problem, in [92], they develop interacting Gaussian processes
which explicitly capture cooperative collision avoidance. They validate their approach
by performing many runs accross a dense human crowd. By comparing against existing
non-cooperative approaches, they found that a cooperation model is critical for safe robot
navigation in complex social environments.
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In [64], the authors use topological braids to encode agents’ joint behaviors. They show
that their algorithm more rapidly decreases the uncertainty of the emerging avoidance
strategy in the workspace. To demonstrate the usefulness of their concept, they consider
a discrete cooperative game representing a simplified version of the real-world problem. A
non-cooperative game-theoretic approach is proposed in [94], where human-like motion is
generated by modeling the decision making process using Nash equilibria. Recently, deep
reinforcement learning (DRL) approaches have demonstrated promising results [28, 19].
These approaches train policies that implicitly encode the agents’ models and interaction
intentions. However, complex learning-based approaches make it difficult to extract the
social strategies being employed during navigation.

Legible and Predictable Motion for Social Robot Navigation

Since mobile robots are not equipped with the same motion cues as humans (e.g. gaze and
head movement), humans have much more difficulty in inferring their intentions. Studies
have shown that humans are more conservative (i.e. give a larger clearance) when avoiding
moving inanimate objects [88] or objects with fixed limbs [61] than they are when avoiding
humans. Legibility has become an important property of motion to consider in human-
robot interactions (HRI) [85]. This property is used to describe intent-expressive motion,
that is, motion in which the robot’s goal or intent can quickly and confidently be inferred
by a human observer [24].

Early works claiming to generate legible motion often did so indirectly by targeting
related properties, such as [10]. In [27], the authors directly use legibility as an optimization
criterion to generate legible motion. However, since they only consider stationary goal
points in the workspace, their metrics cannot be directly applied to locomotion applications.
Although largely studied for HRI, legibility has recently become an important property to
consider in the design of social navigation planners. During a user study, humans were
found to prefer larger signaling distances, i.e., the distance at which the robot initiates
the avoidance maneuver [76]. Furthermore, in a human-robot crossing scenario, legible
navigation was shown to increase the perceived safety [57]. In [51], a cost function is
formulated that takes into account social and context dependent costs. The authors show
that their planner is able to generate legible motion with respect to the robot’s underlying
goal in the workspace.

Many navigation frameworks seeking to produce legible motion do so by considering
the robot’s legibility with respect to its global goal pose [38, 51, 55]. However, in dynamic
and crowded environments, humans are in many cases unaware of others’ global goals and
adjust their trajectories based on the inferred avoidance strategy (e.g. the passing side).
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In [17], legible motion was shown to reduce the planning effort in a locomotion setting. A
social navigation planner which considers its legibility alongside the observer’s viewpoint
is proposed in [91]. In a simulated restaurant setting, the robot seeks to indicate its goal
using the legibility objective from [24] and [72] while remaining in the observer’s field of
view. Their method is effective at increasing the legibility for observers with a limited view
of the restaurant. However, tailoring the path to be legible to certain participants made
it less clear to others. Future research is required to determine how legibility should be
optimized for multiple observers at different view points.

Motion cues for a doorway yielding maneuver between a robot and human are specif-
ically studied in [44]. They use a broader definition for the legibility of robot behavior
from [57]. They compare five yielding cues: stop, decelerate, retreat, tilt and nudge. In an
online user study, they found that the retreating maneuver was the most effective at being
correctly interpreted with the highest confidence. Nonverbal legibility cues are studied
in [43], where they compare the use of projected arrows and flashing lights on the ground
to communicate goal information or path information or both. Their findings suggest that
arrows should communicate path information and flashing lights should communicate goal
information. Although they found projected arrows to be communicative in both scenarios,
flashing lights were only communicative for goal information.

The combination of explicit and implicit robot-human communication is analysed for
social navigation in [18]. A haptic feedback device is worn by the human, with which the
robot can modulate the vibration pattern to indicate robot priority or human priority.
They found that users were more confused when the robot only used implicit commu-
nication, especially in robot priority tasks. Using a combination of explicit and implicit
communication allowed the user to understand the robot’s intention 92% of the time. They
showed that this proactive communication method reduced the users’ effort while navigat-
ing, as indicated by a shorter path length. Due to certain assumptions in their work, the
planner is unable to deal with certain scenarios, such as when the human suddenly stops.
The authors also suggest that their planner could benefit from a sampling-based method
since their current optimization is computationally expensive.

A simplified legibility objective is proposed in [67] which enables the use of optimal
control algorithms. They use a simpler observer model than what was originally used for
the derivations of the legibility metric [24]. The simplified model avoids having to evaluate
the partition function, which is an integral over an infinite dimensional space. Previously,
a quadratic cost function was assumed for the observer’s model of the robot in order to
simplify the computation. Since this assumption is no longer needed, they show that
their simplification allows the optimization of nonlinear robot dynamics at an equivalent
computational complexity.
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An interactive model predictive control robot navigation framework for dense crowds is
proposed in [21]. They propose a pedestrian motion model with which the robot predicts
their intentions and interactions in the crowd to find an optimal trajectory. In simulation
and in real-world scenarios, their approach generates more gentle variations in angular
velocity, which the authors claim improves the legibility.

Legibility has also been considered in the interaction between a single agent and a multi-
robot system. In [16], they consider the trajectory, dispersion and stiffness of a group of
mobile robots to communicate their intentions to a user. Through a user study conducted
in a virtual environment, they found the trajectory of the group to affect the correctness
of communication, whereas the dispersion and the stiffness affected the time it took to
correctly infer the robots’ intentions. Their study is extended in [15], where they consider
the same three motion-variables on the legibility of multiple robot groups. In contrast to
their first study, the trajectory and dispersion affected the correctness of communication,
whereas only the stiffness affected the response time. The legibility and glanceability of a
multi-robot system is considered in [48]. They introduce glanceability as a measure of an
observer’s ability to infer the robots’ intentions pre-attentively. In an online user study,
the collective behavior-based motion was the most legible, whereas the trajectory-based
motion was the most glanceable.

In a multi-agent environment, Social Momentum makes use of topological braid theory
to generate legible motion [65]. They use the angular momentum between two agents as an
approximation for the navigation interaction dynamics. Their approach enable topological
reasoning about the interaction while having a lower computational cost than their work
which directly computed the topological braids [64]. Their planner’s optimization scheme
trades off between the legibility of the interaction and the robot’s progress to its goal. To
evaluate their framework, they measure the topological complexity of the trajectories as a
proxy for legibility. Our work is more closely related to this approach, since it explicitly
reasons about the emerging collision avoidance strategy, rather than the global goal within
the workspace. However, rather than directly optimizing the progress to goal, we suggest
that the robot should instead optimize over its predictability with respect to the navigation
interaction. Predictability, as it was defined in [24], measures the degree to which motion
matches an observer’s expectation. However, in their work, it is defined as a property
which depends on a complete trajectory, and as such, is not well suited for motion planning
applications. In this work, we generalize predictability to partial trajectories, allowing it
to be considered for navigation interactions.

When comparing different works that use these properties of motion, one might find
slight inconsistencies across the various definitions for legibility and predictability [71, 86,
4, 50, 56]. For example, in [55], legibility is used to describe robot locomotion that is both
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intent expressive and matching expectation. Legibility has also previously been assumed
to be a consequence of predictable motion [10]. In this paper, we refer to legibility and
predictability as formalized in [24], where they propose mathematical models for their infer-
ences and find them to be fundamentally different and sometimes contradicting properties
of motion.

1.2 Contributions

The main contribution of this work is to generalize legibility and predictability as formalized
in [24] to social navigation. Existing navigation frameworks claiming to generate legible
motion have done so by evaluating their approach through the use of user studies. Until
now, there has not been a quantitative method to evaluate the legibility or predictability of
a robot with respect to navigation interactions. Thus, our contributions are fourfold. First,
we present an approach to explicitly model navigation interactions as dynamic goal regions.
Second, we generalize legibility and predictability for static goal points as formalized in [24]
to dynamic goal regions. Third, we propose an approximation of the predictability score
for partial trajectories discussed in [33], making it suitable for real-time planners. Lastly,
we propose a navigation planner that is capable of optimizing over the legibility and the
predictability of its motion with respect to navigation interactions.

1.3 Notation

In this work, scalars are denoted in lowercase, x, vectors in bold lower case, x, matrices in
upper case, X, sets in calligraphic, X , and collections in bold calligraphic, X . The symbol
:= denotes equal by definition and the set of non-negative real numbers is denoted by R≥0.
If a, b ∈ R, then [a, b] := {x ∈ R : a ≤ x ≤ b}. If x ∈ Rn, then ∥x∥ denotes the Euclidean
norm. The workspace of a robot is denoted by W ⊆ Rn, where n ∈ N depends on the
type of robot and the application. A workspace trajectory, or trajectory for short, of the
robot is a parameterized curve ξ : [ts, tf ] ⊂ R → W , where ts < tf , ts denotes the start of
an interaction while tf is the end of the interaction (to be defined below). The set of all
workspace trajectories is denoted by T and, for notational simplicity, we denote by ξa→b

the trajectory along ξ from the configuration pR(ta) to pR(tb), where ts ≤ ta < tb ≤ tf ,
and a = pR(ta) and b = pR(tb). For consistency, when referring to a position along a
trajectory, we choose the notation pR(ta) as opposed to ξ(ta).
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Chapter 2

Preliminaries

In this chapter, we review the existing notions of legibility and predictability for static goal
points in a robot’s workspace. First, to get an intuitive understanding of these properties,
an illustrative example of a simplified scenario is provided. Second, the mathematical
derivations used to model legibility and predictability are reviewed.

2.1 Legible Motion

Let G ⊂ W be a finite set of possible goals and let g⋆ ∈ G denote the robot’s true goal.

Definition 2.1.1 (Legible Motion [24]). The motion generated by the partial trajectory
ξs→t from the starting position to the current position is said to be legible when an observer
can quickly and confidently infer the robot’s true goal g⋆ ∈ G.

To get an intuitive understanding of legibility, let us consider a simplified scenario
where G is uniquely comprised of two distinct static goals, g1 and g2. The robot’s true
goal is an element g⋆ ∈ G which the robot is trying to reach. An example legible trajectory
for the case of the robot’s true goal being g2 is shown in Figure 2.1. We notice that the
trajectory exhibits an aggressive deviation towards g2 very early. Since it was assumed
that the robot’s only possible goals are g1 and g2, an observer that knows G would quickly
infer the true goal g2, thus making the motion legible.

More formally, legible motion is modeled by the goal inference function

fL : T → G, (2.1)
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Figure 2.1: Example legible trajectory with respect to g⋆
2, assuming g1 and g⋆

2 are the
robot’s only goals in the workspace.

mapping trajectories to goals, and ξs→t is legible at time t ≤ tf if

fL(ξs→t) = g⋆. (2.2)

The earliest t for which this is true is a measure of how legible the trajectory ξs→f is.
As an example, let us consider the five trajectories reaching the robot’s true goal g2 in
Figure 2.2. Each endpoint of the partial trajectories ξs→ti , i ∈ {1, 2, . . . , 5}, ti < tf , depict

Figure 2.2: Trajectories of decreasing legibility from bottom to top, assuming g1 and g2

are the robot’s only goals in the workspace and g2 is the robot’s true goal. Here, the time
taken to correctly infer the goal increases with the indices, indicating that the trajectories
are becoming less legible.

the positions along the trajectory to which an observer correctly inferred the robot’s true
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goal, i.e. fL(ξs→ti) = g2. Assuming the robot is travelling at constant speed, the times
corresponding to these positions are increasing with the index i. Therefore, the legibility
of the trajectories is decreasing with the index i. Considering the five trajectories from s
to g2, ξ

1
s→g2

is the most legible and ξ5s→g2
is the least legible.

2.2 Predictable Motion

Conversely, predictability assumes the true goal is known to the observer. It relates to how
closely the motion matches what the observer expects.

Definition 2.2.1 (Predictable Motion [24]). Given the true goal g⋆ ∈ G, the motion
resulting from the entire trajectory ξs→g⋆ from s to g⋆ is said to be predictable if it matches
the observer’s inference.

Let us consider a simplified scenario where the robot has a single true goal g⋆ ∈ G. Prior
to have started moving, it is also assumed that the robot’s true goal is known to the ob-
server. There are many possible trajectories the robot could take to reach g⋆. However, as
previously mentioned, predictability depends on what the observer expects. This expecta-
tion will therefore be specific to the individual and vary based on their familiarity and prior
experiences with robotic tasks. An example inferred trajectory for an observer expecting
the robot to be a rational agent seeking to navigate efficiently is shown in Figure 2.3

Figure 2.3: Example inferred trajectory matching an observer’s expectation.

More formally, predictable motion is modeled by the trajectory inference function

fP : G → T , (2.3)

mapping goals to trajectories, and ξs→g⋆ is predictable if

fP (g
⋆) = ξs→g⋆ . (2.4)
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The closeness of ξs→g⋆ to the observer’s inferred trajectory fP (g
⋆), given by a distance

metric d : T × T → R≥0, is a measure of how predictable the trajectory ξs→t is. As an
example, let us consider the five possible trajectories from s to g⋆ in Figure 2.4. If we use

Figure 2.4: Trajectory (dashed black) most closely matching the observer’s expectation
(solid black) of the possible robot trajectories from s to g⋆ (dashed black/grey).

the Fréchet distance [5] with the Euclidean distance as its distance function to compare
trajectories, we would find that the dashed black line most closely matches the observer’s
inferred trajectory.

2.3 Modelling the Robot’s Motion

In order for a robot to consider how legible or predictable its motion is to an observer, it
requires a model of the observer’s expectation. That is, given the goal inference (2.1) and
trajectory inference (2.3) functions, how does the observer map trajectories to goals and
goals to trajectories? In this work, the observer is modeled according to [24] and using
the principle of rational action [35]. From this, it is assumed that the observer expects the
robot to be a rational agent seeking to reach its goal efficiently. This is represented by a
cost functional

c : T → R≥0, (2.5)

which the observer expects the robot to minimize.

2.3.1 Modelling Legible Motion

The goal inference function (2.1) models how the observer infers the robot’s goal g ∈ G
given its past trajectory ξs→t. This is modeled by computing the probability for each goal
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g ∈ G and choosing the most likely [24]:

fL(ξs→t) = argmax
g∈G

P (g | ξs→t). (2.6)

The above posterior probability is computed using Bayes’ theorem:

P (g | ξs→t) = z−1
s→tP (ξs→t | g)P (g), (2.7)

where P (g) ∈ [0, 1] represents a prior on the goals with
∑︁

g∈G P (g) = 1 and where

zs→t :=
∑︂
g∈G

P (ξs→t | g)P (g) (2.8)

is a normalizer over G. It is assumed that the prior on the goals, P (g), is known or learned.
However, in the general case, with no a priori knowledge, equal probability of 1

|G| could be
assigned to each goal point.

Having related the posterior as such, the likelihood, P (ξs→t | g), is modeled using the
following Boltzmann policy:

P (ξs→t | g) =
exp

(︁
− βcg[ξs→t]

)︁∫︁
ξ̄s→g∈T

exp
(︁
− βc[ξ̄s→g]

)︁
dξ̄s→g

, (2.9)

where
cg[ξs→t] = c[ξs→t] + c[ξ⋆t→g], (2.10)

expresses the cost to reach the goal g through ξs→t and the optimal trajectory ξ⋆t→g and
where ξ⋆t→g = argminξt→g∈T

c[ξt→g]. The Boltzmann policy models the observer as choosing
trajectories proportional to their exponential cost [7]. The likelihood in (2.9) defines a
probability distribution over the entire set of feasible trajectories ξs→t ∈ T . Here, β acts
as a rationality parameter [7] and controls how likely, in the observer’s model, the robot
is to deviate from its rational trajectory (i.e. the minimizer of c). From (2.9), we see that
as β → 0, each trajectory becomes equally likely. On the other hand, when β → ∞, the
optimal trajectory converges to a probability of one and all other trajectories converge to
zero probability. In other words, the observer models the robot as an irrational agent for
small values of β and a rational agent for large values of β.

Since the integral in (2.9) is challenging to compute, the authors in [24] make an
approximation using Laplace’s method as derived in [25]. They begin by taking the second-
order Taylor series expansion of c[ξs→g] about its optimal trajectory ξ⋆s→g:

c[ξs→g] ≈ c[ξ⋆s→g] + δξ⊺s→g∇ξ⋆s→g
+

1

2
δξ⊺s→gHξ⋆s→g

δξs→g (2.11)
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where ∇ξ⋆s→g
and Hξ⋆s→g

are respectively the gradient and Hessian of c evaluated at ξ⋆s→g

and δξs→g = (ξs→g−ξ⋆s→g). Since ξ
⋆
s→g minimizes c, the first order term vanishes. Plugging

this into the integral in (2.9), they get the following:∫︂
ξs→g∈T

exp
(︁
− βc[ξs→g]

)︁
dξs→g ≈

exp
(︁
− βc[ξ⋆s→g]

)︁ ∫︂
ξs→g∈T

exp
(︁
− 1

2
βδξ⊺s→gHξ⋆s→g

δξs→g

)︁
dξs→g. (2.12)

Lastly, they compute the Gaussian integral, which when substituted back into (2.9) gives:

P (ξs→t | g) ≈ exp
(︂
β
(︁
c[ξ⋆s→g]− cg[ξs→t]

)︁)︂√︄βn|Hξ⋆s→g
|

2nπn
. (2.13)

This allows the approximation of (2.7) as

P (g | ξs→t) ≈ z−1
s→t exp

(︂
β
(︁
c[ξ⋆s→g]− cg[ξs→t]

)︁)︂√︄βn|Hξ⋆s→g
|

2nπn
P (g). (2.14)

Since the normalizer over the goals, z−1
s→t, is a constant term, plugging (2.14) into the goal

inference (2.6) gives:

fL(ξs→t) = argmax
g∈G

exp
(︂
β
(︁
c[ξ⋆s→g]− cg[ξs→t]

)︁)︂√︄βn|Hξ⋆s→g
|

2nπn
P (g). (2.15)

By assuming a quadratic cost functional c, the Hessian also becomes a constant term,
where the goal inference can be further simplified to

fL(ξs→t) = argmax
g∈G

exp
(︂
β
(︁
c[ξ⋆s→g]− cg[ξs→t]

)︁)︂
P (g). (2.16)

Intuitively, modelling the observer’s goal inference with (2.16) will select the goal to
which the cost-to-goal of the robot’s trajectory up to time t, cg[ξs→t], most closely matches
the starting cost-to-goal of the optimal trajectory, c[ξ⋆s→g]. In other words, the most
likely goal is that to which the robot’s trajectory is most closely aligned with the optimal
trajectory to that goal. Here, the closeness of the trajectories is measured by the chosen
cost functional c. Figure 2.5 illustrates the goal inference (2.16) for our simplified scenario
with two candidate goals in the workspace using trajectory length as the cost functional.
We can see that the path length to g2 through t is much shorter than that to g1 through t
relative to their optimal trajectories from the start, ξ⋆s→g2

and ξ⋆s→g1
respectively. Therefore,

|c[ξ⋆s→g2
]− cg2 [ξs→t]| < |c[ξ⋆s→g1

]− cg1 [ξs→t]|, and from (2.16), g2 is correctly chosen as the
most likely goal.
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Figure 2.5: Optimal trajectories from the start s and from the position at time t to
the goals g1 and g2. Since the path length to g2 through t is shorter than that to g1

through t relative to ξ⋆s→g2
and ξ⋆s→g1

respectively, g2 is correctly inferred as the robot’s goal
using (2.16).

2.3.2 Modelling Predictable Motion

The trajectory inference function (2.3) models how the observer infers the robot’s trajec-
tory, ξs→g⋆ , having knowledge of the robot’s intended goal g⋆. In fact, this directly models
the observers expectation of the robot’s motion. Recall that the observer is modelled as ex-
pecting the robot to seek to minimize the cost functional c (2.5). The trajectory inference
function (2.3) is therefore modeled as the minimizer of c:

fP (g
⋆) = argmin

ξs→g⋆∈T
c[ξs→g⋆ ]. (2.17)

Given the set of robot trajectories ξs→g⋆ ∈ T depicted in Figure 2.6, and setting the
cost functional c to be the trajectory length, the shortest trajectory (solid black) is the
minimizer of (2.17) and therefore what the robot would model the observer as having
inferred.
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Figure 2.6: Example set of robot trajectories T from s to g⋆. Given trajectory length
as the cost functional c, the robot would model the observer as having inferred the shortest
trajectory (solid black).
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Chapter 3

Legibility and Predictability for
Social Robot Navigation

In this section, we present an approach that extends the notions of legibility and pre-
dictability from [24] to dynamic goal regions. This allows us to apply these properties to
navigation interactions in dynamic environments.

3.1 Problem Formulation

We consider a robot R moving in a planar workspace W ⊆ R2 towards a stationary goal
gR ∈ W and sharing the workspace with another dynamic agent A. An adaptation to the
multi-agent case is provided in Section 3.8. To only make use of what is readily observable
in a social environment, it is assumed that the robot’s goal is unknown to A and the robot
has no means of explicitly communicating its intended goal. Through its onboard sensors,
we assume that the robot has access to the position pi(t) ∈ W and velocity vi(t) ∈ R2,
i ∈ {R,A}, for ∥pR(t) − pA(t)∥ ≤ dsense, where dsense is the sensor range. The heading of
the robot and the other agent at time t are, respectively, the angle that vR(t) and vA(t)
make with respect to a fixed axes in the inertial frame.

The control space of the robot is a finite set of motion primitives P and each motion
primitive ρi ∈ P has the same time duration δt > 0. A navigation scheme for the robot
is a sequence of primitive selections. The robot R is considered to be in a collision with
the other agent A at time t if ∥pR(t) − pA(t)∥ ≤ rC where rC > 0 is a positive constant
depending on the footprint of the robot and agent.
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We seek to design a navigation strategy so the robot reaches its goal while simulta-
neously using the shape and speed of its trajectory to disambiguate its intentions to the
other agent. To accomplish this, we take inspiration from the notions of legibility and
predictability, in the sense of [24] and as reviewed in Section 2.1 and Section 2.2, which
have been validated in the HRI field [26]. The way in which legibility and predictability are
to be optimized poses an important design decision. In this work, we design a navigation
framework based on the following high-level principles:

1. A robot should disambiguate its intended navigation strategy by being legible.

2. Once legible, the robot should proceed predictably.

3. Motion should adhere to social norms (i.e., left or right passing conventions).

3.2 Defining a Navigation Interaction Using Dynamic

Goal Regions

It is important to differentiate the types of goals involved in social navigation. As a robot
navigates an environment, there is likely a global goal position to which it is trying to
reach. Although certain areas in the environment are more frequented than others, such
as doorways and charging stations, it is unreasonable to assume that the other agent has
complete knowledge of all possible goals nor that there are finitely many. For this reason,
rather than trying to infer the robot’s global goal from a possibly infinite set of candidate
goals in the surroundings, the other agent will try and infer an intermediate goal, such as
the robot’s intended passing side. The differentiation between the global and intermediate
goals is illustrated in Figure 3.1.

Although the other agent seeks to infer the intermediate goal, that is not to say that
global goals will not affect this inference. For example, in Figure 3.1, at the beginning of
the interaction, both agents are initially aligned to pass each other on the right. Having
noticed the robot swerve to the left, the other agent will likely assume it is trying to reach
the doorway, further decreasing the likelihood of the robot swerving back to pass on the
right. However, in the absence of the doorway, the other agent might instead assume the
robot is avoiding a nearby danger, such as a spill, after which it is likely to swerve back
and return to its originally planned trajectory.

To compute the goal (2.1) and trajectory (2.3) inferences during social navigation, the
robot first needs a model of a navigation interaction. As the robot navigates towards its
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Charging
Station

Spill

Figure 3.1: The effect of global goals on the intermediate goal inference.

global goal gR, it will attain intermediate navigation goals, which we refer to as interaction
goals. We consider three possible interaction goals: passing on the left, passing on the
right and colliding.1 These goals can be represented by regions that translate according to
the other agent’s motion. The interaction goals are therefore dynamic and non-singleton
sets. These properties distinguish the interaction goals from the static singletons taken as
goals in previous works [77, 14, 30].

Let I(t), hereinafter referred to as the interaction line at time t, represent the line
passing through the other agent’s position pA(t) oriented to be orthogonal to the vector
pointing from the robot’s position pR(t) to its goal gR(t) (see Figure 3.3). Orienting the
interaction line as such allows the robot to reason about a passing side irrespective of the
other agent’s heading (i.e. front/back in a t-junction scenario or left/right in a head-on
scenario).

A comparison between candidate methods of orienting the interaction line is illustrated
in Figure 3.2. For example, let us consider the configurations in (a) where the line is
oriented with the other agent’s heading. Specifically, the agents travelling orthogonally
to the robot’s motion (left/right-most agents) depict a problematic configuration. In this
configuration, the interaction line is parallel to the robot’s motion. This wouldn’t allow
the robot to evaluate the goal and trajectory inferences for passing in front or in back of
the other agent. Instead, it would always plan according to the left and right regions. This
modeling would also make the interaction very sensitive to changes in the other agent’s
heading.

Orienting the line to be orthogonal to the robot’s heading, as shown in (b), avoids
the problematic configuration discussed above. However, orienting the line with the robot
would make the interaction very sensitive to changes in the robot’s heading. Imagine

1The terminology for interactions is from the robot’s point-of-view.
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a simple avoidance manoeuvre where the robot swerves right to indicate its intention.
During the manoeuvre, the interaction line would rotate towards the robot and possibly
pass through it. Orienting the line to be orthogonal to the vector pointing from the robot
to its goal, as shown in (c) overcomes these issues. The robot can reason on its motion
with respect to a passing side, be it left/right or front/back depending on the configuration,
while the interaction line remains robust to changes in either agent’s heading.

(a) Agent oriented (b) Robot oriented (c) Robot-goal oriented

Figure 3.2: Comparison of different methods to orient the interaction line.

Formally, at time t and with pR(t) ̸= gR, define the unit vector

Figure 3.3: Interaction line segmented into its collision segment IC (magenta) and two
rays, IL and IR (blue) representing passing on the left and right respectively.
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e(t) :=

[︃
0 −1
1 0

]︃(︃
gR − pR(t)

∥gR − pR(t)∥

)︃
(3.1)

and the real one-dimensional subspace

V(t) := span {e(t)} ,

then the interaction line is the time-varying one-dimensional affine subspace

I(t) := {v + pA(t) : v ∈ V(t)} . (3.2)

The time-to-interaction (TTI) at time t is defined to be the infimum (possibly infinite)
time it would take the robot R to reach the interaction line assuming the robot and other
agent continue at their current velocities and I(t) translates with A.

Definition 3.2.1 (Navigation interaction). Robot R is said to be interacting with agent
A if ∥pR(t)−pA(t)∥ ≤ dsense, the interaction line separates R from its goal gR and the TTI
is less than or equal to a pre-defined maximum interaction time tmax

I > 0.

In order to define the interaction goals, the interaction line is segmented into passing
and collision regions as shown in Figure 3.3. The collision line segment, IC , is defined as
the intersection between the closed disc centered at pA of radius rC and the interaction
line

IC(t) := I(t) ∩
{︁
p ∈ W : ∥p− pA(t)∥ ≤ rC

}︁
. (3.3)

Each passing interaction, IR and IL, is described by an open ray starting at the collision
segment’s endpoints, extending in the direction opposite to the other agent. The left
passing side is defined as

IL(t) :=
{︁
pA(t) + αe(t) : α > rC

}︁
(3.4)

and the right passing side is defined as

IR(t) :=
{︁
pA(t)− αe(t) : α > rC

}︁
. (3.5)

These three interaction goals, denoted by the collection G =
{︁
IL, IC , IR

}︁
, represent

dynamic goal regions fixed to the other dynamic agent. The passing interaction goals are
specifically denoted by GP :=

{︁
IL, IR

}︁
.

Remark 1 (Role of the Global Goal). The robot’s global goal point, gR ∈ W , is not an
interaction goal, i.e. gR ̸∈ G. This matches reality, where the observer does not try to
make an inference on the robot’s motion using an inferred global goal, but rather uses the
interaction goal.
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3.3 Robot and Observer Motion Models

The goal and trajectory inferences presented in Section 2 are made based on the observer’s
model of the robot’s behavior. For example, if the observer expects the robot to be a
rational agent acting efficiently, they might model the robot so as to always choose the
trajectory of shortest length. Another observer might instead model the robot’s behavior
to be more aggressive, thus promoting swerving as opposed to slowing down to minimize
the time-to-goal. We assume the observer expects the robot to be a rational agent seeking
to move efficiently in the environment. As such, the observer’s model of the robot’s motion
minimizes the cost functional

c[ξ] = (tf − ts)
2, (3.6)

where c : T → R≥0 maps robot trajectories ξ ∈ T to the square of its duration.

The interaction goals defined in (3.3), (3.4) and (3.5) are dynamic and translate accord-
ing to the other agent’s motion. Evaluating the costs of trajectories ξ ∈ T will therefore
require a trajectory prediction model. This is still an active area of research [81], where
there has recently been a significant amount of progress amongst the computer vision
community [3, 37, 82, 68, 36, 58]. These prediction models are, however, not trained on
trajectories in which a robot is involved. This new and relatively less researched area has
shown that humans exhibit different navigation strategies when interacting with a robot
than with another human [97, 22]. Although this field is continuing to expand, very few
approaches consider the effect of including robots in the environment [80].

Given a prediction model chosen by the designer, the robot predicts the interaction
goal from I(t) at the current time to the end of the interaction at time tf with

ˆ︁It→tf = prediction(ξAs→t, I(t)), (3.7)

where ˆ︁It→tf ∈ G is the predicted interaction in the closed interval [t, tf ] and ξAs→t is an
observed segment of the other agent’s trajectory.

3.4 Legibility and Predictability of Navigation Inter-

actions

Given a robot trajectory ξs→t up to time t, we model the observer’s legibility inference
function (2.1) as returning the most likely interaction goal I(t) from the finite collection
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of possible goals G(t):
fL(ξs→t) = argmax

I(t)∈G(t)

P (I(t) | ξs→t). (3.8)

We compute the above posterior probability following the derivations in [24], as was re-
viewed in Section 2.3. This involves using Bayes’ theorem to obtain the likelihood of I,
which we model using a Boltzmann policy whose partition function (an infinite integral
over T appearing in the denominator) is approximated using Laplace’s method as derived
in [25]. Assuming a quadratic cost functional c, the posterior of interaction I ∈ G can be
approximated by

P (I | ξs→t) ≈
exp

(︂
β
(︁
c[ξ⋆

s→ˆ︁I ]− cˆ︁I [ξs→t]
)︁)︂∑︁

Ī∈G P
(︁
ξs→t | Ī

)︁
P
(︁
Ī
)︁ P (I), (3.9)

where the denominator is a normalizer over goals I ∈ G, ξ⋆
t→ˆ︁I = argminξ

t→ˆ︁I∈T c[ξt→ˆ︁I ] is
the optimal cost to reach the predicted interaction goal, cˆ︁I is the cost to reach ˆ︁I through
ξs→t and the optimal trajectory ξ⋆

t→ˆ︁I , P (I) ∈ [0, 1] represents the prior on interaction I(t)
with

∑︁
I∈G P (I) = 1 and β≥0 acts as a rationality parameter [7]. To adhere to social

norms, a larger prior could be assigned to the customary passing side.

Let us now assume the robot’s interaction goal region at time t, I⋆(t) is known to the
observer. We model the observer’s predictability inference function (2.3) as the most likely
trajectory ξt→I⋆ from the set of possible trajectories T in the following sense:

fP (I⋆(t)) = argmax
ξt→I⋆(t)∈T

P (ξt→I⋆(t) | I⋆(t)). (3.10)

At the start, i.e. ξ(ts) = s, the observer’s predictability inference (3.10) is the same
as was proposed in [24]. Modeling fP with (3.10) allows us to consider the inference of
partial trajectories. As a result, the notion of predictability becomes well-suited for motion
planning in dynamic environments. It should be noted that this is more closely related
to the notion of t-predictability from [33]. However, rather than inferring a sequence of
actions, we consider a trajectory.

To compute the trajectory inference (3.10), we model P (ξt→I⋆) as a Boltzmann policy
and again approximate its partition function using Laplace’s method to obtain:

P (ξt→I⋆ | I⋆) ≈ exp
(︂
β
(︁
c[ξ⋆

t→ˆ︁I⋆ ]− c[ξt→I⋆ ]
)︁)︂

. (3.11)

Remark 2 (Other Agent’s Motion Model). Solving the goal inference (3.9) and the trajec-
tory inference (3.11) require the computations of the optimal trajectories to the dynamic
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interaction regions, namely ξ⋆
s→ˆ︁I and ξ⋆

t→ˆ︁I , subject to c. In this work, the other agent’s
motion is modeled using the constant velocity model (CVM). This is reasonable as it has
recently been shown to perform comparatively well, and in some cases outperform, state-
of-the-art learning-based pedestrian prediction methods [83].

Figure 3.4: Optimal trajectories for single integrator dynamics, ξ⋆t→IR, ξ
⋆
t→IC and ξ⋆t→IL,

from the robot’s current position t to the predicted passing on the right, collision and passing
on the left interaction regions respectively.This configuration corresponds to the first case
in (3.21).

3.5 Deriving the Optimal Costs for the CVM

The cost of the optimal trajectory to the predicted interaction, c[ξ⋆
t→ˆ︁I ], appears in both

the trajectory (3.9) and goal (3.11) conditionals. It should be noted that alternate costs
to (3.6) can be chosen. Depending on the chosen prediction model in (3.7), this cost risks
being a computationally heavy trajectory optimization problem. To improve efficiency, ex-
isting prediction models often make simplifying assumptions, such as assuming the other’s
behavioral states are static within the observation and prediction horizon [60]. To over-
come high dimensionality when predicting multiple future trajectories, they can also be
approximated through sampling [54].
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Computing the conditionals from Section 3.4 in real-time for dynamic goals is more
challenging than when considering static goals. An initial attempt at simplifying this
computation is to model the other agent as a static obstacle. This is akin to early reactive-
based navigation approaches, which, by assuming a sufficiently fast update frequency, seek
to capture the other agent’s dynamics. To illustrate this, let us consider a single goal point
translating at constant velocity, represented by the gray line in Figure 3.5. The optimal
trajectories, shown in purple, to reach the goal from different start locations were obtained
using CasADi [6]. The robot and the goal’s speeds are constrained to the same value. These
trajectories illustrate the robot’s attempt at attaining the goal’s instantaneous position,
rather than an eventual position. From each of the three starting locations, the robot ends
up trailing the goal from behind, failing to intercept it. This illustrates how modelling the
goal as a static obstacle can result in a poor approximation of the optimal trajectory to
reach a dynamic goal.

Optimal Trajectory with
Static Goal Modeling

Goal

Robot

(a) Absolute coordinates

Optimal Trajectory with
Static Goal Modeling

Goal

Robot

(b) Goal-relative coordinates

Figure 3.5: Optimal trajectories with static goal modeling to reach the moving goal in
absolute (a) and goal-relative (b) coordinates from different start locations.

To improve the approximation of the optimal trajectory to reach the goal, let us model
the goal’s motion using its current position and velocity, rather than just its current posi-
tion. The optimal trajectories obtained with dynamic modelling are shown in Figure 3.6.
Since the goal is translating at a constant velocity, the optimal solution is the shortest
straight path resulting in an interception. This is also shown in the goal’s coordinate
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frame in Figure 3.6 (b). For each of the robot’s starting positions, its motion is directly
aligned to intercept the goal. Here, the bearing angle is maintained constant, which was
not the case with static modelling 3.5 (b).

Optimal Trajectory with
Dynamic Goal Modeling

Goal

Robot

(a) Absolute coordinates

Optimal Trajectory with
Dynamic Goal Modeling

Goal

Robot

(b) Goal-relative coordinates

Figure 3.6: Optimal trajectories with dynamic goal modeling to reach the moving goal in
absolute (a) and goal-relative (b) coordinates from different start locations.

In the above example, the robot’s speed was fixed to that of the goal. However, in
practice, the robot should be able to adjust its speed, allowing it to slow down to avoid
a collision and accelerate when there are no nearby obstacles. The cost function in (2.5)
should be carefully chosen. An initial attempt to capture the robot’s efficiency would be to
use its trajectory length as the cost. However, since the goal is dynamic, it’s possible the
robot will stop and wait for the goal to come, thus minimizing the cost. This would result
in undesirable behavior since the robot would make very little progress in an environment
with nearby goals. Alternatively, a time-based cost function would be better suited for
dynamic goals. As such, the robot would seek to minimize the time taken to reach the
goals. This cost will ensure efficient motion while encouraging continued progress in the
environment.

We approximate the costs of the optimal trajectories appearing in (3.9) and (3.11) as
the minimum time to reach each of the three interaction regions assuming the other agent
follows the CVM. These are calculated by building on the idea of constant bearing control
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from [12] for a single integrator robot and by translating the interaction line at time t along
with the other agent’s predicted trajectory. To find the optimal costs to each interaction
region, one need only compute the minimal times to reach the endpoints of the collision
line segment, IC , and the interaction line (see Figure 3.4). We denote the positions of the
passing on the right and left interaction rays’ endpoints by

pIR(t) := pA(t)− rCe(t) (3.12)

and
pIL(t) := pA(t) + rCe(t) (3.13)

respectively.

To compute the minimal time taken by the robot to reach the point pI , I ∈ {IR, IL},
we use the constant bearing angle. The goal is to determine the optimal trajectory from the
robot’s position to the dynamic goal point, assuming each agent travels at constant velocity.
For this tracking strategy, the robot must match its perpendicular velocity component, vR⊥ ,
to that of the interaction point vI∥ . Given the robot’s maximum speed, vmax

R , an eventual
interception is only guaranteed if vmax

R ≤ |vI |. The constant bearing strategy is illustrated
in Figure 3.7, where the bearing angle β, determined by the angle between the robot’s
heading and the vector directed from the robot to the interaction point I, can be seen to
remain constant at each configuration along the trajectory. Since the point’s position and
velocity are known, it remains to find the direction to which the robot should travel to
match the interaction point’s perpendicular velocity component vI⊥ while navigating at its
maximum speed.

We begin by setting the perpendicular component of the robot’s velocity to that of the
interaction point’s:

vR⊥ = vI⊥ . (3.14)

Since the distance between pR and pI is known and their perpendicular velocity compo-
nents are equal, we compute the interception time using the parallel components of the
velocities:

tpR,pI =
∥pR − pI∥
vR∥ + vI∥

. (3.15)

It should be noted that vI∥ is a signed speed, where a positive value indicates a velocity
that is directed towards the robot (as is the case in Figure 3.7), whereas a negative value
indicates a velocity that is pointed outwards. Since we’re only concerned with the optimal
time to reach pI , we ignore the negative speed vR∥ corresponding to the other velocity vR

matching vI⊥ given by β > π
2
. Since the interaction point’s velocity vI is known, the sign
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Figure 3.7: Constant bearing strategy to intercept the interaction point I from pR.

of its parallel component vI∥ is given when projecting onto the vector pointing from pI to
pR. The parallel speed of the robot is given by:

vR∥ = vR cos β, (3.16)

where, by the assumption in (3.14),

β = arcsin

(︃
vI⊥
vR

)︃
. (3.17)

Substituting (3.17) into (3.16) we get:

vR∥ = vR cos

(︃
arcsin

(︃
vI⊥
vR

)︃)︃
= vR

√︄
1−

(︃
vI⊥
vR

)︃2

.

(3.18)

Finally, if we set the robot’s speed to its maximum vmax
R , we can substitute (3.18) into (3.15)
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to obtain the optimal time taken by the robot to reach the interaction point:

t⋆pI
(t, I) = ∥pR(t)− pI(t)∥

vmax
R

√︃
1−

(︂
vI⊥ (t)

vmax
R

)︂2

+ vI∥(t)

, I ∈ GP (t). (3.19)

Computing the minimal time to reach the interaction line is simpler, and is given at each
time t by:

t⋆I(t) =
∥(pR(t)− pA(t))

⊺ q̂(t)∥
vmax
R + v⊺

A(t)q̂(t)
, (3.20)

where q̂ = (gR − pR)/∥gR − pR∥ is a unit vector normal to the interaction line.

The three minimal times computed in (3.19) and (3.20) are assigned to the three inter-
action regions as follows:

(t⋆IR , t
⋆
IC , t

⋆
IL) =

⎧⎪⎨⎪⎩
(t⋆I , t

⋆
pIR

, t⋆pIL
) if t⋆pIR

< t⋆I < t⋆pIL

(t⋆pIR
, t⋆pIL

, t⋆I) if t⋆pIL
< t⋆I < t⋆pIR

(t⋆pIR
, t⋆I , t

⋆
pIL

) otherwise.

(3.21)

For example, in Figure 3.4, the minimal time to reach the interaction line, t⋆I , is associated
with the trajectory perpendicular to the interaction line, ξ⋆t→IR , whereas the optimal costs
to each ray’s endpoint, tIR and tIL , are associated with ξ⋆t→IC and ξ⋆t→IL respectively.

3.6 Goal and Trajectory Conditionals of Primitives

To trade-off between legibility and predictability, the robot queries the scores from its set
of motion primitives P . Each motion primitive ρi ∈ P has the same duration δt. At each
planning cycle, the trajectory (3.9) and interaction (3.11) conditionals are computed for
each primitive with respect to each goal. To adapt more quickly in dynamic environments,
we set the trajectory’s starting position in (3.9) to a receding position of finite time-horizon
tp, as the interaction progresses. Specifically, at each new planning horizon, we redefine ts
as max(ts, t − tp). Intuitively, this means the robot will reason about the legibility of its
more recent trajectory segments, rather than over its entire trajectory from the beginning
of the interaction. The trajectory conditional for primitive ρi and interaction goal I ∈ G(t)
becomes

P (I | ξs→ρi
) ≈

exp
(︂
− β

(︁
c[ξ⋆

s→ˆ︁I ]− cˆ︁I [ξs→ρi
]
)︁)︂∑︁

Ī∈G P
(︁
ξs→ρi

| Ī
)︁
P
(︁
Ī
)︁ P (I), (3.22)
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where ξs→ρi
= ξs→t + ξt→ρi

and ρi is the robot’s position after completing primitive ρi.

In previous works [24], the robot’s goal remains unchanged. In contrast, to adapt to the
other agent’s behavior, we make no such assumption and allow the robot to dynamically
switch its intended passing side. During an interaction, the robot continuously updates I⋆
to be the goal region which is most likely, i.e., we set I⋆ = argmaxI∈G P (I | ξs→t). The
goal conditional for trajectory ξt→ρi

becomes:

P (ξt→ρi
| I⋆) ≈ exp

(︂
β
(︁
c[ξ⋆t→I⋆ ]− cI⋆ [ξt→ρi

]
)︁)︂

. (3.23)

Unlike the trajectory conditional (3.22), for the goal conditional (3.23), it is important
that the underlying interaction be set. To illustrate this, let us consider the two motion
primitives, ρ1 and ρ2, highlighted in Figure 3.8. Let us assume that ρ1 and ρ2 are perfectly
aligned with the optimal trajectory from the robot’s current position to the right and
left interaction regions respectively. Without having set an underlying interaction, each
optimal trajectory, ξ⋆

ρ1→ˆ︁IR
and ξ⋆

ρ2→ˆ︁IL
, will have probability one when conditioned on the

interaction region to which they attain. Since both solutions are optimal and equally likely,
without implementing a tie-breaker condition, the robot will oscillate between between each
interaction region. To mitigate this behavior, the robot instead conditions the trajectories
on the goal region to which it is most legible, as explained above.

Figure 3.8: Visualization of two motion primitives, ρ1 and ρ2, when each are aligned
with the optimal trajectory to different interaction regions.
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Caution should be taken when evaluating motion primitives that intersect the inter-
action region. When the primitive crosses the interaction line, only the portion up to
the intersection should be considered in the cost. For example, in Figure 3.9, the dashed
portion of the primitive has already reached the right interaction region. The solid por-
tion of the primitive should be included in the cost, whereas the dashed portion has zero
cost. Therefore, depending on whether or not primitive ρ crosses the interaction line, the
interaction cost, cI [ξt→ρ], appearing in (3.22) and (3.23) is expanded as follows:

cI [ξt→ρ] =

{︄
c[ξt→ρ] + c[ξ⋆ρ→I ] if ρ ∩ I = ∅
c[ξρt→I ] otherwise,

(3.24)

where ξρt→I is the partial primitive along ρ up to the intersection with the interaction region
and c[ξρt→I ] ≤ c[ξt→ρ].

Figure 3.9: A motion primitive intersecting the interaction line.

3.7 Optimizing Legibility and Predictability

In planning motion, the robot must balance between the objectives of legibility and pre-
dictability. Strictly optimizing for one of the objectives may lead to behaviors that are
too unpredictable [27] or will not sufficiently express intent. It is therefore important to
consider both objectives in the optimization scheme. Ideally, the robot should indicate its
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intention when its motion is unclear to the observer, otherwise, the robot should proceed
predictably. However, without any means of communication, detecting how the other agent
perceives the robot’s motion is not an easy task. Since the trajectory (3.22) and goal (3.23)
conditional are of different scales, we can generate the Pareto front, to which an efficient
primitive can be selected. The Pareto front is the set of all Pareto efficient solutions. A
Pareto efficient solution is a primitive ρi ∈ P to which there exists no primitive ρj ∈ P
with improved trajectory and goal conditional. In other words, an objective can only be
improved at the expense of worsening another. An example of the Pareto front of the
robot’s primitives P during a swap scenario is shown in Figure 3.10. An optimal primi-
tive can be selected from the Pareto front by trading-off between the goal and trajectory
conditional.

(a) Robot (purple) and other agent (gray) trajectories
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Pareto Front of Motion Primitives at time t

(b) Pareto optimal primitives

Figure 3.10: Pareto front (b) from the set of robot motion primitives P for the configu-
ration in (a).

Choosing an efficient primitive from the Pareto front works well in the single agent case.
However, as will be explained in the next section, the Pareto front quickly degenerates to
the entire set of primitives P in the multi-agent case. A first attempt to balance between
the objectives of legibility and predictability is to scalarize the objectives and take a convex
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combination of these inferences as follows:

ρ⋆ = argmax
ρi∈P,I∈GP

(1− λ(t))P (I | ξs→ρi
) + λ(t)P (ξt→ρi

| I⋆), (3.25)

where λ : [ts, tf ] → [0, 1]. Here, λ monotonically increases with time and does not depend
on the interaction itself. In cases where the robot is not interacting with another agent, as
per Section 3.2, the robot simply optimizes for its global goal gR ∈ W .

The effect of different values of λ on the robot’s trajectories is illustrated in Figure 3.11.
Small values of λ weigh the trajectory conditional more heavily. For these smaller values,
the trajectory more clearly expresses the robots intended passing side. Larger values of λ
weigh the goal conditional more heavily. In this case, more efficient trajectories are favored,
as shown by the straighter paths.

−3 −2 −1 0 1 2 3
x (m)

−1.5

−1.0

−0.5

0.0

y
(m

)

Figure 3.11: Trajectories during a navigation interaction for λ ∈ {0.1, 0.2, . . . , 0.5}.

Rather than blindly increasing lambda in (3.25), we choose to track the ambiguity as the
interaction progresses and set lambda accordingly. Certain scenarios are more ambiguous
than others; the authors in [27] state that scenarios where the legibility of the predictable
trajectory is lower are more ambiguous. In order to promote legible motion when the
robot’s intentions are ambiguous and predictable motion otherwise, we set

λ(I, ξs→t) = max

(︃
0,min

(︃
1,

α(I, ξs→t)− aL
aP − aL

)︃)︃
(3.26)

where α(I, ξs→t) = |P (IL | ξs→t) − P (IR | ξs→t)| and aL and aP are scalar parameters
that determine the values of α at which the robot should strictly optimize legibility or
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predictability. Predictability is often required to convey intent [27]. In fact, strictly op-
timizing the legibility functional can lead to arbitrarily unpredictable motions [84]. We
recommend setting aL < 0 < aP to safeguard the robot from becoming too unpredictable.
Therefore, when a passing side is much more likely than the other, λ approaches 1 (weigh-
ing primitives that match expectation more heavily), whereas if they are approximately
equal, λ approaches 0 (weighing primitives that convey a passing side more heavily).

The motion planner for the single-agent case is outlined in Algorithm 1. At each
iteration, the robot first passes its motion primitives P through a collision checker. Since
our problem is formulated with convex agents, this allows the use of a linear-time collision
detection algorithm. The interaction line is then updated and used to predict the time-to-
interaction using (3.20). If the agent is interacting, as defined in 3.2.1, the planner proceeds
to find the optimal primitive for the interaction. After making a prediction over the horizon
tp of the other agent’s position, the goal and trajectory conditionals are computed for each
primitive ρ ∈ P⋆ using (3.22) and (3.23) respectively. The weighting parameter λ is then
computed using (3.26) to obtain the optimal primitive for the interaction in (3.25). If,
on the other hand, the robot was not interacting with the other agent, it would simply
optimize for its global goal gR ∈ W , i.e. ρ⋆ = argminρi∈P∥gR − ρi∥.

3.8 Multi-Agent Adaptation

Although generating the Pareto front works well in the single agent case, it is not as
effective in the multi-agent case. With two objectives (trajectory and goal conditional) for
each additional agent in the environment, the Pareto front quickly degenerates to the entire
set of primitives. Intuitively this makes sense since the Pareto front can only increase or
remain the same with additional agents. With many agents, a primitive is less likely to be
Pareto dominated, that is, there exists another primitive with improved objectives for all
the agents.

Here, we propose an adaptation that extends (3.25) to multiple dynamic agents; the
adaptation reduces to (3.25) when optimizing over a single agent. We assign to each agent
A in the set of interacting agentsA, its own corresponding interaction regions IA(t) ∈ GA(t)
and lambda parameter λA(t). To penalize robot motions that are illegible to others, we
optimize over A by maximizing the minimum score:

ρ⋆ = argmax
ρi∈P

{︄
min
A∈A

{︂
max
IA∈GA

(1− λA)P (IA | ξsA→ρi
) + λAP (ξt→IA | IA)

}︂}︄
. (3.27)
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Algorithm 1: Motion Planner

Input: robot R, set of motion primitives P , other agent A, maximum interaction
time tImax, robot goal gR, prediction horizon tp

Output: optimal primitive ρ⋆

1 P⋆ ←getCollisionFree(P , R,A)
2 I ←updateInteractionLine(R,A, gR)

3 ˆ︁t←predictInteraction(R,A, I) // computes (3.20)

4 if isInteracting(ˆ︁t, tImax, R, P, gR) // as per Definition 3.2.1

5 then

6 ˆ︁A←predictPos(A, tp) // depends on (3.10)

7 sL ←getLegibilityScore(P⋆, ˆ︁A) // computes (3.22)

8 sP ←getPredictabilityScore(P⋆, ˆ︁A) // computes (3.23)
9 λ←getLambda(R,A, I, sL, sP) // computes (3.26)

10 ρ⋆ ←getOptPrim(P⋆, sL, sP , λ) // computes (3.25)

11 else
12 sG ←getGoalScore(gR,P⋆)

13 ρ⋆ ←getOptPrim(P⋆, sG)

14 end
15 return ρ⋆
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To determine the set of interacting agents, the robot uses their current velocities to pre-
dict the time to complete the interactions. Any agent for which the predicted time-to-
interaction falls below a predefined value tI will be considered interacting. The interaction
is complete once the robot crosses the interaction line.

We should note that other strategies to deal with multiple agents could also be used.
A simple open loop strategy could make an initial estimate of the interaction duration,
and use this to linearly increment λ. The added complexity in the environment motivates
other interesting strategies that could incorporate feedback of each agent’s motion in the
interaction. Doing so would allow the robot to reason about the other agent’s inference. For
example, given that its legibility score is not above a specified threshold, it would attempt to
further increase its legibility before optimizing predictability. Another interesting strategy
would be to detect at which point in the interaction the other agent acknowledges the
robot’s intention, that is, the point in which the robot’s true interaction intention I⋆
becomes known. Again, if we assume the other agent cannot directly communicate this,
one method to detect the other agent’s acknowledgment of the robot’s intention would be
to watch for changes in its velocity, indicating cooperation in the interaction. A bang-bang
control strategy could then use the intention’s detection time to switch from optimizing
legibility to predictability by changing λ = 0 to λ = 1.

Further improvements include an environment-dependent optimization strategy. This
would allow the robot to adapt its behavior based on the crowd density and the surrounding
obstacles in the environment. For example, more importance could be placed on nearby
agents. In doing so, illegible motions would be penalized more heavily for nearby agents
than for far away agents. The interaction, as defined in Section 3.2, could also take into
account the structure of the environment. For example, the collision radius, rC , could be
made adaptable to the density of the crowd. In low-density spaces, the collision radius is
increased to give more clearance to nearby agent, which has been shown to correlate to an
increased feeling of comfort [70]. In high-density crowds, the collision radius is decreased
to allow the robot to make continued progress in the environment. In the results that
follow, we make rC from (3.3) adapt to the density of the crowd.
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Chapter 4

Results

Existing works that claim to generate legible navigation often validate their motion through
qualitative results and user studies. In order to compare against other approaches, they
resort to some of the more classical planning metrics. These include path efficiency, col-
lision rate and success rate. The average acceleration along a trajectory and complexity
index have also been used in an attempt to capture legibility. The lack of standardized
legibility and predictability metrics make it difficult to compare the degree to which leg-
ible and predictable motion is generated across frameworks. In this section, we suggest
how the goal and trajectory inferences derived in 3.4 can be used to quantify the legibility
and predictability of navigation interactions. We then evaluate the extent to which our
approach (LPSNav) promotes legible behavior in ambiguous scenarios and predictable be-
havior in unambiguous scenarios. We also evaluate the multi-agent performance with a
varying number of agents in randomly generated scenarios.

4.1 Post Hoc Trajectory Evaluation

Recall from Section 2.1, legibility is a time-dependent property of motion. The earlier
the global goal is inferred, the more legible the trajectory. To compute (3.9) and (3.11)
in practice, we discretize the trajectories by uniformly sampling the interval [ts, tf ] with
time-step ∆t. A discrete-time trajectory is therefore given by the vector of configurations

ξs→t = [pR0 ,pR1 , . . . ,pRN
]⊺, where N :=

⌊tf−ts⌋
∆t

and pRk
= pR(ts+k∆t), k ∈ {0, 1, . . . , N}.

Although the trajectory and goal conditionals are used to model the observer’s inferences,
they don’t directly express how legible or predictable a trajectory is. For this reason, it
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would be desirable to have a score for each of these properties, allowing us to evaluate
either partial or entire trajectories. These scores are obtained by tracking (3.9) and (3.11)
along a robot’s trajectory. We adopt a discrete version of the legibility score proposed
in [24], where goals are now considered to be dynamic interaction regions. The legibility
of a trajectory with respect to the interaction I ∈ G(t) is given by:

legibilityI(ξs→t) =

∑︁N
k=0 P (I | ξ0:k)(N − k)∑︁N

k=1 (N − k)
, (4.1)

where ξ0:k denotes the discretized trajectory from ts to ts + k∆t. The above score can
be used to evaluate either partial or complete trajectories and uses a discount in time to
weigh earlier parts of the trajectory more heavily. Since predictability does not evolve with
time, we use (3.11) to evaluate the predictability of a trajectory segment with respect to
an interaction region I(t) ∈ G(t):

predictabilityI(ξs→t) = exp
(︂
β
(︁
c[ξ⋆

s→ˆ︁I ]− cˆ︁I [ξs→t]
)︁)︂

. (4.2)

An illustrative example is given in Figure 4.1. Computing (4.1) for each passing interac-
tion in Figure 4.1a gives legibilityIR(ξs→f ) = 54% and legibilityIL(ξs→f ) = 44%. Similarly,
computing (4.2) gives predictabilityIR(ξs→f ) = 70% and predictabilityIL(ξs→f ) = 1%.

4.2 Implementation Details

We compare our framework to the following approaches:

• Optimal Reciprocal Collision Avoidance (ORCA) [95]: a collision-free navigation
framework (assuming homogeneous agents) that minimizes the effort spent by mini-
mally adjusting each agent’s velocity,

• Social Force Model (SFM) [42]: a model that captures social interactions as a sum
of forces resulting from the environment,

• Social Momentum (SM) [65]: a planning framework aimed at generating motion that
clearly communicates an agent’s intended collision avoidance strategy,

• SA-CADRL [20]: state-of-the-art socially aware DRL collision avoidance navigation
framework,
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(a) Trajectories for an interaction between a robot (purple) and inattentive human (gray).
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(b) Goal and trajectory inferences for passing the human on the right and on the left.

Figure 4.1: Observer’s inferences tracked along an interaction where each marker in (b)
corresponds to one of the linearly sampled positions in (a).

• GA3C-CADRL [29]: adaptation of [20] to deal with an arbitrary number of agents.

Agents are simulated as either inattentive, where they take the straight path to goal at
their maximum speed, or as attentive, modeled using the ORCA framework [95], allowing
cooperation in the interaction. The mobile robot is modeled as a second-order unicycle [53]:

ẋ = v cos θ, v̇ = ua

ẏ = v sin θ, ω̇ = uα

θ̇ = ω,

(4.3)

with u = [ua, uα]
⊺ the translational and angular acceleration inputs respectively. We

constrain |ua| ∈ [0, umax
a ] and |uα| ∈ [0, umax

α ] where umax
a and umax

α are finite bounds,
which we set to 3m/s2 and 5rad/s2 respectively. The simple unicycle model is shown in
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Figure 4.2. The set of motion primitives P is discretized by n speeds and m headings as
shown in Figure 4.3.

Figure 4.2: Simple unicycle model.

Figure 4.3: Robot’s set of motion primitives P, discretized by n speeds and m headings.

The LPSNav agents are configured with rC ∈ [0.35, 0.65]m, ts = 2s, aL = −0.02 and
aP = 0.5. Passing on the right is given a higher prior to adhere to social norms. The
robot’s motion primitives have a fixed duration of 1s and are discretized by 5 speeds in the
range [0m/s, 1m/s] and 31 headings in the range [−π

4
, π
4
].
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4.3 Qualitative Results

4.3.1 Basic Scenarios

Six basic scenarios with an inattentive agent (gray) are overlaid in Figure 4.4. To emulate
initially ambiguous and unambiguous scenarios, the first four scenarios are initialized on a
collision course whereas the last two are not. The overtake scenario is considered ambigu-
ous, however, differs from the others in that the robot is not initialized in the other agent’s
field of vision. We omit the ORCA and SFM trajectories to avoid cluttering the plots, but
report their performance in the next section.

Across all ambiguous scenarios, our policy and SM indicate their intention early. Our
approach respects the passing side convention in the swap scenario and maintains a more
conservative behavior in the t-junction by passing from behind. The DRL approaches ex-
hibit a more aggressive swerve later in the interaction to avoid a collision, which specifically
in the t-junction results in roundabout trajectories. This could be due to their encoding
of other agents’ cooperativeness.

In the t-junction scenario, we note that our policy becomes predictable much quicker
than in the swap scenario. The reason for this is the rate at which the λ parameter is
increased in (3.26). Here, the ratio between the conditionals of passing in behind to in
front increases much more rapidly than the ratio of passing on the right to passing on the
left in the swap scenario.

Although the overtake scenario is initialized on a collision course, the robot is not
in the other’s field of vision. Our policy and SA-CADRL exhibit similar behaviors and
overtake the other agent in a predictable manner. SM is shown to swerve unnecessarily
wide, whereas GA3C-CADRL has a more aggressive swerve later to overtake.

In the unambiguous scenarios, our policy chooses the straight path to goal, suggesting
predictable behavior. The other policies compromise their goal-efficiency by needlessly
seeking to increase their legibility, which in the split scenario reduces the legibility to the
third agent. Since a passing side is initially sufficiently likely in both scenarios, our policy
strictly optimizes predictability.

4.3.2 Antipodal Circle Swap

Our next set of experiments evaluate how well the proposed method performs in complex
scenarios, such as the congestion that arises in homogeneous antipodal circle swaps. We
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Figure 4.4: Overlay of the trajectories resulting from basic scenarios for the LPSNav
(purple), SM (blue), SA-CADRL (yellow) and GA3C-CADRL (orange) policies with an
inattentive agent (gray).The circles, who’s sizes match the agents’ radii, darken as the
simulation progresses.
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report the trajectories for 4, 5, 8 and 13 agent configurations in Figure 4.5. Since our
policy places a higher prior for passing on the right than on the left, it produces a counter
clockwise avoidance strategy in each configuration. Our policy and GA3C-CADRL are
able to resolve the congestion in an efficient manner across the varying number of agents.
SM is less efficient in the 13 agent configuration than in the fewer agent configurations.
SA-CADRL struggles to deal with the 8 and 13 agent configurations. It is limited in that
its trained network can accept at most 3 nearby agents, which explains the degradation in
performance as the number of agents increases.

4.4 Quantitative Results

To quantify the trade-off between legibility and goal-efficiency, we would ideally need access
to the underlying inference being run by the observer on the robot’s avoidance strategy.
Since we cannot determine this in simulation, we use a combination of the minimal pre-
dicted distance (MPD) [75] and the extra distance traveled beyond the straight path as
a proxy for this trade-off. The MPD is a continuous function of time, where at instant
t, MPD(t) represents the minimum distance attained between the agents if they were to
continue at their current velocities

MPD(t) = argmin
u
∥ˆ︁pR(t)− ˆ︁pA(t)∥, (4.4)

where ˆ︁pi(t) = pi(t)+(u− t)vi(t), i ∈ {R,A} and u is a time parameter. In [75], they found
that humans adapt their motion only if it is required, that is, when the MPD falls below
a threshold of 1m.

4.4.1 Basic Scenarios

We track the MPD (Figure 4.6) and measure the average extra distance and minimum
distance to the other agent (Table 4.1) across 100 random configurations with an attentive
agent centered around the basic scenarios from Figure 4.4.

In the ambiguous swap scenario, LPSNav and SM have the largest initial deviation to
express their intent, as indicated by the rapid increase in the MPD. SA-CADRL, GA3C-
CADRL and SFM exhibit more subtle initial deviations and are required to perform a last
minute avoidance maneuver, as indicated by the late peak in MPD. Although ORCA also
has a subtle initial deviation, it does not swerve late and passes very close to the other
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Figure 4.5: Trajectories from circle scenarios with 4, 5, 8 and 13 homogeneous agents.
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Table 4.1: The average extra distance and minimum distance to the other agent over 100
random swap and pass scenarios.

Policy
Extra Distance (m) Minimum Distance (m)

Swap Scenario Pass Scenario Swap Scenario Pass Scenario

ORCA 0.04 0.03 0.06 0.66
SFM 0.32 0.05 0.45 0.80
SM 0.22 0.13 0.35 1.08
CADRL 0.23 0.04 0.29 0.67
GA3C 0.23 0.07 0.22 0.85
LPSNav 0.25 0.03 0.46 0.72

agent (0.06m on average in the swap scenario as shown in Table 4.1). These findings are
similarly observed in the obtuse scenario. In the t-junction scenario, although LPSNav
and SM have the largest initial deviation, the peak in the MPD is lower than in the swap
scenario. When considering the overtake scenario, SM and SA-CADRL have noticeably
different behaviors. Even though the robot is not initialized in the other’s field of vision,
SM and SA-CADRL exhibit large initial deviations. SM specifically, continues to deviate
and passes by the other agent with the largest clearance.

In the unambiguous pass scenario, the MPD is initially at an acceptable value accord-
ing to [75]. LPSNav, ORCA and GA3C-CADRL are the most predictable as suggested
by a smaller extra distance in Table 4.1 and relatively constant MPD value. However,
GA3C-CADRL counterintuitively decreases its MPD, suggesting a decrease in legibility
with respsect to its passing side. SA-CADRL and SM unnecessarily increase the MPD,
something that was also observed in the overtake scenario. In the split scenario, SA-
CADRL and GA3C-CADRL increase the MPD to one agent while decreasing it to the
other, thus confirming the findings from the qualitative results.

We also compute the legibility and the predictability of the randomly generated basic
scenarios using (4.1) and (4.2) respectively, and take an average over the 100 configurations.
We performed the Mann-Whitney U test with a 95% confidence interval between LPSNav
and each baseline. The p-values for the legibility and the predictability are reported in
Table 4.2 and Table 4.3 respectively. LPSNav and SM are the most legible in the ambiguous
swap and obtuse scenarios. In the ambiguous t-junction scenario, LPSNav and CADRL
are the most legible. Furthermore, LPSNav, along with ORCA are the most predictable
across the unambiguous scenarios.
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Table 4.2: P-values resulting from the Mann-Whitney U test (95% CI) of the legibility
between LPSNav and each baseline. Statistically significant values are shown in bold.

Policy Swap T-Junction Pass Split Obtuse Overtake

ORCA 0.00 0.00 0.60 0.99 0.00 0.00
SFM 0.00 0.01 0.97 0.96 0.00 0.03
SM 0.02 0.01 0.00 0.96 0.64 0.00
CADRL 0.00 0.55 0.00 0.78 0.00 0.00
GA3C 0.00 0.00 0.24 0.46 0.00 0.00

Table 4.3: P-values resulting from the Mann-Whitney U test (95% CI) of the predictability
between LPSNav and each baseline. Statistically significant values are shown in bold.

Policy Swap T-Junction Pass Split Obtuse Overtake

ORCA 0.00 0.00 0.30 0.63 0.00 0.77
SFM 0.00 0.00 0.00 0.00 0.00 0.00
SM 0.23 0.14 0.00 0.84 0.32 0.00
CADRL 0.00 0.02 0.00 0.00 0.00 0.00
GA3C 0.51 0.00 0.24 0.00 0.31 0.07

4.4.2 Randomly Generated Multi-Agent Scenarios

To evaluate the multi-agent performance, we generate 100 random configurations by set-
ting the starts and goals within an 8m × 8m area for 3, 5, 7 and 9 agents and by setting
their maximum speed by randomly sampling vmax

i ∼ N (1.42, 0.26)m/s [13]. We report the
average extra distance travelled beyond the euclidean distance-to-goal, the failure rate, the
minimum time-to-collision and the minimum distance to another agent in Figure 4.7. Our
approach has a competitive goal-efficiency and scales well with the number of agents. Our
approach furthermore remains collision free across all configurations. Although ORCA is
the most goal-efficient, it had the smallest minimum distance to the other agents, suggest-
ing a more aggressive behavior. As a proxy for legibility and safety, we also report the
minimum time-to-collision (TTC). By indicating its intent early, our policy maintains a
high minimum TTC with a varying number of agents. This, combined with an elevated
minimum distance to the other agents suggests safe behavior.
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Figure 4.6: The minimal predicted distance (MPD) aggregated over 100 randomized basic
scenarios.
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agents.
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Chapter 5

Conclusions and Future Research

In this chapter, we summarize the contributions of this work. Afterwards, we discuss its
main limitations and possible directions for future work.

5.1 Summary

In this thesis, we presented an approach for representing social navigation interactions
as dynamic goals with which a motion planner can use to reason on its legibility and
predictability with respect to a passing side. Existing navigation frameworks claiming
to generate legible motion have done so by evaluating their approach through the use
of user studies. Furthermore, existing works which employ the notions of legibility and
predictability as derived in [24] have assumed fixed goal points. In this work, we generalized
these scores to dynamic goal regions. The interaction regions, as defined in Section 3.2, are
represented by a segmented line which translates according to the other agent’s motion.
Unlike in the static case, generalizing the trajectory (3.9) and goal (3.11) conditionals to
dynamic regions requires a motion prediction model.

Given a prediction model chosen by the designer, in Section 3.5, we show how the
optimal costs appearing in (3.9) and (3.11) can be obtained using the constant bearing
strategy. In Section 3.6, we suggest how the legibility and predictability scores can be
queried from a set of motion primitives for use in a motion planner. In the single agent
case, we gave a solution which computed the Pareto front to optimize the scores. Since the
Pareto front was shown to degenerate in the multi-agent case, we provided an improved
strategy which chooses the primitive that maximizes the minimum score over all agents.
This strategy penalizes motions with are illegible to other agents in the environment.
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Our approach represents navigation interactions as dynamic goals with which a motion
planner can use to reason on its legibility and predictability with respect to a passing
side. In Chapter 4, these properties of motion were used to promote legible behavior in
ambiguous scenarios and predictable behavior otherwise. We also tested our framework’s
multi-agent performance, where it is competitive with state-of-the-art approaches in terms
of goal-efficiency while remaining collision-free in randomly generated scenarios.

5.2 Future Work and Open Problems

5.2.1 User Study and Hardware Implementation

Future work includes a user study to validate our framework in real-world human-robot
navigation scenarios. This would allow us to analyze the legibility and goal-efficiency
trade-off in human-shared environments. The main body of this work is focused on the
theoretical development of social navigation interactions. Although we provide the neces-
sary generalizations to quantify legibility and predictability during navigation, our work is
limited in that we only validate in a simplified simulation environment.

State-of-the-art human motion models struggle to accurately capture human behavior
during locomotion. Nonetheless, we should note that our framework does not assume that
all agents are homogeneous. Furthermore, our framework does not rely on learning naviga-
tion behaviors from simulated agents. Although training on simulated agents can provide
promising results in simulation, deploying into the real-world can result in significantly
different behaviors. In cases where the human model does not accurately capture hu-
man behavior, deployment into the real-world could degrade the performance. Testing our
framework through user-studies in real-world scenarios would incorporate the complexities
of social navigation which cannot be captured in simulation.

A few extra measures should be taken to deploy our approach in practice. The first of
which is the integration with a global planner. Our work focuses on the robot’s behavior
while interacting with nearby agents during navigation. More specifically, we presented
a local trajectory planner which chooses the optimal motion primitive for the robot’s
immediate actions. This motion planner, as outlined in Algorithm 1, does not currently
have the ability to deal with obstacles in the environment. For example, if we consider
the scenario in Figure 5.1, where a wall separates the robot from its goal, the robot will
get stuck and be unable to reach its goal. A successful deployment into the real-world
therefore requires a global planner in addition to our local planner. One such solution is a
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global planner responsible for setting way-points leading to the robot’s global goal. Having
reached a way-point, a new one is set to which our local planner will consider to be its new
goal. This is illustrated in Figure 5.1, where g1 is the intermediate way-point for which
the local planner is currently considering. The global planner chooses the way-points g1,
g2 and g3 such that they circumvent the wall, allowing the robot to reach its global goal
g⋆ while employing our local planner.

Figure 5.1: Effect of employing a global planner or not. Without a global planner, the
robot goes directly towards its goal, g⋆, resulting in a stuck state behind the wall. With a
global planner, intermediate way-points are set such that they circumvent the wall. In the
figure, the local planner is currently considering the way-point g1 as its global goal, allowing
it to employ our local planner while making further progress towards its global goal g⋆.

Secondly, a hardware implementation should require a software framework suitable for
robot software development. Currently, our framework is implemented in Python, which is
suitable for theoretical and prototyping purposes. The Robot Operating System (ROS) [79]
has become the de facto standard to build robot applications. Its first iteration was widely
used for research development. With a focus on security, its second generation, ROS2,
was redesigned to allow reliable deployment in real-world robot applications [63]. ROS2
Navigation (Nav2) [62] would facilitate the implementation of our planner onto hardware.
Its modular design allows the designer to choose an existing global planner, known as a
planner plugin, alongside an implementation of our local planner, as a controller plugin.
Since ROS is widely used, this implementation would allow others to easily incorporate
our framework into their applications.
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Figure 5.2: Comparing the trajectory segments while accounting for the other agent’s
cooperation or not.

5.2.2 Directions for Future Development

To consider humans as the other dynamic agents in the environment, an improved mo-
tion prediction model could aid the transition from simulation to real-world deployment.
Existing learning-based prediction models use human data-sets to learn complex social in-
teractions during navigation. That being said, caution should be taken when choosing such
approach as there are potential pitfalls in training pedestrian prediction models [83]. Fur-
thermore the complexity of social navigation also makes it difficult to extract the strategies
which are learned. As opposed to a learning-based approach, explicit modelling of navi-
gation interactions could be used to improve the prediction model. As humans navigate
amongst one another, they also seek to generate motion that is legible to others.

Using our generalizations of legibility and predictability from Section 3.4, the human’s
cooperation in the interaction could be incorporated into the prediction model in (3.7). As
a result, the robot would reason on its legibility and predictability while accounting for
the human’s cooperation. To illustrate what sort of behavioral changes this would cause,
let us consider the swap scenario in Figure 5.2. The lighter agents represent the expected
behavior assuming our the robot follows our current implementation using the CVM as the
prediction model. Without taking into account the other’s cooperation in the interaction,
our policy would exhibit an aggressive swerve early on to indicate its intention. However,
by taking into account the others cooperation (as indicated by the darker agents), the right
passing inference would become more likely sooner. The robot would therefore deviate less
since less aggressive motion primitives would be as intent expressive in the cooperative
case as the more aggressive motion primitives in the non-cooperative case. Specifically, the
λ parameter in (3.26) would increase more rapidly if the robot were to model the other
agent’s cooperation.

Implementing a cooperation model into our framework would require additional pre-
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cautions. For example, it would be unreasonable to assume that each human the robot
encounters would cooperate equally in a navigation interaction. Furthermore, the human
could also be inattentive, in which case it will not cooperate in the interaction. Explicitly
modelling social navigation should therefore be able to adapt to the environment and detect
to what degree another human is expected and willing to participate in the interaction.

It remains unknown as to what degree a mobile robot should exhibit human-like nav-
igation behavior. Although our work is not directly focused on generating human-like
motion, it respects social conventions such as a preferred passing side. A key property
of our framework is that the robot should indicate its intention early to disambiguate its
navigation strategy to an observer. This is accomplished by setting λ in (3.26) depending
on the goal and trajectory inferences. An alternate approach would be to learn how λ
varies during human navigation from pedestrian data-sets. In doing so, λ could be set
accordingly to generate motion that more closely matches that of humans.

The definition of a navigation interaction is also left unclear. For example, in our work,
we use a pre-defined maximum interaction time, tmax

I , which determines an interaction
interval (i.e. when two agents are considered to be interacting with each other). However,
in practice, this is not a fixed value. For example, in social environments, humans are
likely to engage in a navigation interaction with another human much sooner in a sparse
environment than in a dense crowd. The multi-agent behavior of our approach could
therefore be improved by making tmax

I adaptive to the environment.

In Section 3.8, we made rC from (3.3) adapt to the density of the crowd. Additional
insight could be taken into account to redefine the interaction line. In our work, the
collision segment is defined as the intersection between the closed disc centered at the
agent’s position and the interaction line. Existing works have shown that humans seek to
maintain a surrounding area taking the form of an ellipse, rather than a circle [39]. In
light of these findings, we could instead redefine the collision segment using a closed ellipse
centered at pA and rotated such that its major axis is aligned with vH :

IC(t) := I(t) ∩
{︁
p ∈ W : ∥p− pA(t)∥ ≤ dC(t)

}︁
, (5.1)

where

dC(t) =
ab√︁

(b cos θ(t))2 + (a sin θ(t))2
(5.2)

and a and b are the ellipse’s major and minor axes respectively and θ(t) is the angle
measured from vH(t) to e(t). As a result, the left passing side is redefined as

IL(t) :=
{︁
pA(t) + αe(t) : α > dC(t)

}︁
(5.3)
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Figure 5.3: Redefinition of the interaction line with an elliptical personal space.

and the right passing side is redefined as

IR(t) :=
{︁
pA(t)− αe(t) : α > dC(t)

}︁
. (5.4)

An example of the interaction line as defined with an elliptical personal space is shown in
Figure 5.3.

The authors from [39] also found that the elliptical personal space was adjusted ac-
cording to different environmental factors, such as the certainty in the other agents motion
as well as its speed. Taking these findings into account, we could set the ellipsis’ axes, a
and b, dynamically in order to adapt to such environmental factors. Assuming a > b as
was determined in [39], our policy would give more space when passing in front than when
passing on the side.

Further improvement to our framework includes a new cost function (3.6) for the ob-
server’s model of the robot’s motion. First, the exact cost of the optimal trajectory to the
interaction line can be computed as opposed to the approximation provided in Section 3.5.
An exact solution would account for the interaction line’s rotation in addition to its trans-
lation at the expense of additional computation. A drawback of our current approximation
can be seen in the t-junction scenario in Figure 4.4 (b). Since the approximation does not
account for the interaction line’s rotation, the robot gets too close to the human, at which
point the collision checker causes it to swerve downwards later. Second, an improved cost
function could capture additional social costs. Social navigation is a complex task with
many external factors which can influence behavior. For example, motions that require the
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robot to switch from its current passing side would incur a larger cost. In fact, the Social
Momentum [65] cost is a good candidate to accomplish this as it represents the certainty
over the pairwise avoidance strategies between agents.

Improvements can also be made directly to the trajectory inference (2.3). In our work,
the prior over the interaction goals, P (I), I ∈ G, is set assuming a certain passing side
is preferred over the other to respect social conventions. However, in reality, there are
additional social navigation factors in the environment which can influence these priors.
For example, certain candidate global goals in the environment are more frequented than
others. The prior over the interaction goals could therefore be set such that goals leading to
common areas have a higher probability. These global goals such as doorways and charging
stations would then influence the priors on the interaction goals.

5.2.3 Legibility and Predictability

In Section 5.2.2, we suggested that our framework could benefit from an improved cost
function. This also becomes apparent when comparing the legibility and predictability of
different trajectories. Let us consider a passing scenario (see Figure 5.4 (a) for an example
initial configuration). Figure 5.4 (b) is a heatmap representing the difference between the
right and left passing inferences for various initial configurations relative to the other agent.
Given our existing time-based cost function (3.6), we notice the difference between passing
inferences is small when the agents are far apart. Intuitively, this makes sense since the
optimal times to reach each of the passing sides are relatively close. As a result, computing
the legibility for trajectories of different initial deviations when the agents are far apart
will also yield similar scores.

The two robot trajectories in Figure 5.5 are drastically different, yet their legibility
as computed by (4.1) gives 54% and 60%. To make these scores more representative of
the visual difference between the trajectories, we would need a new cost function for the
observer’s model of the robot’s motion. As previously discussed, this depends on the ob-
server’s previous experience with robotic application and will likely incorporate additional
social costs, rather than a simple time-based cost function. For example, the observer
might model the robot such that it penalizes motions which cross its path in order to
switch sides. An example of what such a candidate social cost function could look like is
shown in Figure 5.4 (c). Recomputing the legibility with this candidate cost function of
the trajectories in Figure 5.5 would result in a more noticeable difference between scores.

Our work is mainly focused on the legibility and predictability of a navigation interac-
tion for the two-agent case. In Section 3.8, we propose an adaptation to the multi-agent
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Figure 5.4: Difference between passing inferences for various passing scenarios using our
current cost function (b) and a candidate social cost function (c).

case. In doing so, we provide an optimization strategy that maximizes the minimum score,
as computed using (3.9) and (3.11) which were originally defined for the single-agent case.
We have not encountered scenarios in which the robot becomes unstable while employing
the proposed multi-agent optimization scheme. A formal analysis would be required to
guarantee stability.

The notions of legibility and predictability when simultaneously considering multiple
agents remains an open problem. As outlined in our work, the multi-agent behavior is left
up to the designer. When navigating a crowd, certain trade-offs have to be made. For
example, in a dense crowd, it is very likely the robot will encounter a configuration to
which it cannot be legible to any of the agents. In this case, it is up to the designer to
choose whether the robot should strictly optimize predictable motion or perhaps continue
to try and be legible to a select few of the other agents.
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