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Abstract

This thesis covers the role of explicit and hidden symmetries in some selected topics on
the properties and excitations of black hole spacetimes. To this end, the symmetries of
classical physics in Lorentzian manifolds are reviewed. In particular, explicit and hidden
symmetries are presented from the Hamiltonian phase space perspective, and then, their
role in the separability and integrability of geodesics and field equations is covered.

Next, I present some applications of hidden symmetries and separability of fields on
black hole backgrounds. Specifically this is divided into three parts. First, the intrinsic
separability of the conformal wave equation is characterized for the entire conformal class
of Kerr–NUT–(Anti)-de Sitter spacetimes in all dimensions. Second, the separability of the
Maxwell and Proca equations is demonstrated two examples of spacetimes, beyond general
relativity, which posses these hidden symmetries. The results are applied in the four
dimensions, to compare the unstable quasi-normal modes of the Proca field in the Kerr–
Sen example to that of ordinary Kerr–Newman black holes of general relativity. Third, I
present a new class of slowly rotating black holes which can be applied to many theories
beyond general relativity and are the first physically motivated example of spacetimes
which posses more hidden symmetries than explicit.

Finally to conclude, I very briefly mention some possible future directions for separa-
bility of physical equations and fields in rotating black hole spacetimes.
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Chapter 1

Introduction

Physics, at its heart, is the study of symmetries, be it conservation of momentum in bil-
liards, or gauge “symmetry” in classical and quantum Yang–Mills theories. In particular
Noether’s theorem [1, 2] linking a symmetry of a given system to a conserved quantity is
one of the deepest insights and guiding principles of physics. Historically symmetry played
an important role in reducing the dynamics of physical systems to tractable equations of
motion, and this is preserved in e.g. undergraduate mechanics when making a physical as-
sumption of conservation of energy (ignoring friction) or translational invariance (ignoring
full Newtonian gravity)1. Or complementarily, by imposing certain (in a sense arbitrary)
symmetry properties, new solutions to equations of motion may be obtained—the physical
relevance of which is to be determined later.

This latter approach has played an extremely important role in General Relativity
where the full nonlinear Einstein equations2

Gab + Λgab = 8πTab (1.1)

are extremely hard to solve even numerically and analytic solutions are few and far be-
tween. Requiring spherical symmetry reduces the ten coupled nonlinear equations in the
independent variables of the metric to two functions. This, and the assumption of time
independence, lead directly to the Schwarzschild black hole solution [5], found just the

1See also spherical cows [3].
2Here as usual the Einstein tensor Gab = Rab− 1

2Rgab is given by the Ricci tensor and scalar curvatures,
Rab = Rdadb and R = Raa respectively, built from the Riemann curvature Rabcd of the metric gab. Also, Λ
is the cosmological constant, and Tab is the stress energy tensor of the matter fields—I will follow Wald’s
conventions [4] and as usual set the physical constants G = c = ~ = 1 unless otherwise stated.

1
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following year after Einstein published his field equations. What’s more, the Birkoff the-
orem [6, 7] shows that this is the unique solution to the (vacuum) field equations with
just the assumption of spherical symmetry alone—time independence then falls out as a
consequence of the field equations.

The case of exact solutions is not always so easy. In fact, even just relaxing spherical
symmetry in the metric to axial symmetry (i.e. one rotational symmetry axis), while keep-
ing the assumption of time independence (stationarity), complicated the situation so much
it took almost another fifty years for the Kerr solution [8], representing a rotating black
hole, to be found. This was achieved by looking for an algebraically special (Petrov type
type D [9,10]) solution to the vacuum Einstein equations (see [11] for the historical build
up). Soon after, the Kerr solution was generalized to include electromagnetic charge [12,13].
However, it is still (perhaps) the most important vacuum spacetime we know, being both
the unique solution with these (and a couple of other) assumptions [14–19] and astrophys-
ically relevant3. For example, the Kerr spacetime provides one starting point for modeling
gravitational wave emission in black hole merger events detected by LIGO [20,21].

Moreover this spacetime turns out to have an extra “hidden” symmetry encoded in
Carter’s constant [22,23] for particle motion. This was shown to arise as the contraction of
a Killing tensor with two momentum vectors along the particle’s trajectory [24,25]. In fact,
for the Kerr spacetime the Killing tensor is the square of a Killing–Yano [26] two form [27].
Carter also generalized this construction to the Kerr–Newman–Unti-Tamburino–(Anti)-de
Sitter (Kerr–NUT–(A)dS) type D spacetime [28] which includes an arbitrary cosmological
constant and the NUT parameter [29,30]. This parameter adds a “twist” to the spacetime
due to the presence rotating “Misner strings” along the north-south pole axis leading to
conical singularities.

Subsequently the complete class of type D spacetimes was found to be characterized by
the Plebaǹski–Demiaǹski [31] group of metrics which also include acceleration (see [32] for
an examination of these metrics in coordinates where the nature of the type D solutions and
their subclasses is clear). In fact, all type-D spacetimes without acceleration (encoded in a
conformal factor) admit Killing–Yano tensors [33]. However, due to this conformal factor
the generic Plebaǹski–Demiaǹski class only possesses conformal Killing and Killing–Yano
tensors.

Ultimately, much later it was shown that the fundamental object underlying the hidden
symmetry properties of the Kerr–NUT–(A)dS spacetime is the principal tensor [34–36]—
the Hodge dual of the Killing–Yano tensor. These hidden symmetries lead to a much richer
structure in higher dimensions and their applications will form the body of this thesis. It

3At least the uncharged version.
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is important to stress that these extra symmetries are not just mathematical niceties—as
a starting point for studying physical properties of black holes it is extremely useful to
take advantage of them (see for instance the review article [37] and the references therein).
Essentially the corresponding conserved quantities allow one to completely integrate the
geodesic equations for the motion of particles. This enables the study of e.g. the shadow
of black holes [38] which have recently been imaged for the first time [39].

Following the discovery of Carter’s constant the classical age of separatists came. That
is, the separation of variables to find the mode functions was achieved for many differ-
ent field equations. Teukolsky [40, 41] separated the equations for the electromagnetic
and gravitational perturbations and obtained a master equation for spin 0, 1, 2 perturba-
tions. Additionally, the decoupling of the spin 1/2 case of massless neutrinos was achieved
by Unruh [42] and Teukolsky [41], and the massive Dirac field by Chandrasekhar [43]
and Page [44]. Further applications are found in the study of emission rates of black
holes via Hawking radiation [45–47]. The Teukolsky equation continues to be exploited
in gravitational wave analysis, the study of quasinormal modes [48], superradiance phe-
nomena [49–53], and also with applications to the recent proof of the stability of black
holes [54–56].

While we appear to live in 4 spacetime dimensions there are good motivations for study-
ing higher dimensions. First, there are many higher dimension black hole solutions which
come from Supergravity and String Theory inspired models [57–63]. These present new
features and more general horizon topologies [63]. By understanding the consequences of
these features one can search for deviations from General Relativity. Second, understanding
physics in higher dimensions can allow one to make progress in four dimensions by taking
advantage of, for example, large D limits [64–66]. Third, the symmetry structure becomes
much more apparent and can lead to new insights in four dimensions. In particular, one
example is the higher dimensional Schwarzschild black hole, discovered by Tangherlini [67].
It is contemporaneous with the Kerr spacetime and is the most general solution with an
SO(D − 1) symmetry group.

The Kerr spacetime itself was found in arbitrary dimensions by Myers and Perry [68,
69]—again it was achieved by using symmetry, notably the group structure of the multiple
axes of rotation. It was then generalized to include cosmological constant [70] and NUT
parameters by Chen, Lü, and Pope [71]. Unfortunately as yet there is no higher dimensional
exact solution for the Plebaǹski–Demiaǹski class and more surprisingly there is not even
a generalization of the Kerr–Newman black hole for the Einstein–Maxwell equations to all
dimensions. Here one can, for example, construct weakly charged solutions to the Maxwell
equations on the Kerr–NUT–(A)dS background [72] but one cannot “backreact” these by
modifying the metric functions as was the case in 4 dimensions [28,73].

3



The form of the metric in [71] is actually a generalization of Carter’s canonical form [28]
and the hidden symmetry structure is manifest [36, 74, 75]. It is the unique spacetime to
possess the above mentioned principal tensor [76–78]. This principal tensor generates the
tower of hidden and explicit symmetries, i.e. Killing tensors, and Killing vectors. It is this
object that lead to the separatist renaissance and underlies all of the separability results
that have been achieved4, e.g. geodesics [79–82], spin 0 [80, 83–85], spin 1/2 [86–88], spin
1 [89–93] amongst other results [94–96]. The principal tensor has also been generalized to
a version with torsion [97–102], which finds application in the separability of equations on
the Kerr–Sen [57] and Chong–Cvetič–Lü–Pope [60] black holes.

At its heart, understanding the symmetries of spacetimes in generalD dimensions allows
one to characterize when it is possible to separate these physical field equations and is still
an ongoing mathematics program. Generally, one needs to have D conserved quantities for
geodesic motion [103,104] and D “symmetry operators” for the particular field equation in
question (see e.g. [105–109]). The separability of geodesic motion [110–112] and the scalar
(Klein–Gordon) field [83, 84, 113, 114] is completely characterized for generic spacetimes.
We shall call these Benenti spacetimes of which the D dimensional Kerr–NUT–(A)dS
metric is a member. On the other hand, for field equations of higher spins only certain
cases are understood [115–120] and the problem of the separability of gravitational (spin
2) perturbations is only partially understood for rotating black holes [121–124].In higher
dimensions, particularly, the question is open [125, 126] although progress can be made
when there is no rotation [127] or when the rotation parameters are restricted [128–131].

To complete this understanding it is important to have a good language for describing
explicit and hidden symmetries. There are many such languages to study classical mechan-
ics, symmetries and Noether’s theorem depending on one’s perspective and desired level of
mathematical sophistication. On the higher end, I refer the reader to the excellent text-
books of J.-M. Souriau [132] or (for a relatively modern treatment of symplectic geometry
treatment of classical mechanics) J.E. Mardsen and T.S. Ratiu [133], and also, to the set
of lecture notes by M.J. Gotay et al. [134,135] for a multi-symplectic jet bundle approach
to covariant field theory.

However, this thesis will on focus three main applications of separability and hidden
symmetries: separating the conformally coupled Klein–Gordon equation in the Kerr–NUT–
(A)dS class, separating the massless (Maxwell) and massive (Proca) vector field equations
in the Kerr–Sen [57] and Chong–Cvetič–Lü–Pope [60] black holes, and finally studying
hidden symmetries for generic slowly rotating black holes. So, for our purposes here we

4For a detailed review of the history here including the steps towards higher dimensional integrability
and separability see [37].
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will not need all the details in [132–135]. In the next section I will try to introduce, in
a self contained manner, the necessary tools for the following chapters where I present
the applications to black hole physics. In particular it will be necessary to introduce
the symplectic picture of Hamiltonian mechanics on phase space to talk about hidden
symmetries, integrability, and separability. I will assume a working knowledge of manifolds,
Lie groups and General Relativity (and refer readers to [4,136] for the essential definitions).

1.1 Symmetries and Motion in Spacetimes

As mentioned above, although there are many different (equivalent) descriptions of motion,
the most useful one for our purposes will be the Hamiltonian phase space. So in this section
I present the symplectic structure and discuss symmetries, Noether’s theorem, integrability
and separability, and the properties of higher dimensional rotating black holes.

1.1.1 Phase Space and Hamiltonian Mechanics

Let us begin by recalling the standard undergraduate Hamiltonian description of the dy-
namics of a point particle in R3 subject to a potential V (q). One begins by writing the
total energy of the system, i.e. the Hamiltonian H, in terms of the position and momentum

H(q,p) =
1

2m
p2 + V (x) , (1.2)

which is related to the Lagrangian L by the Legendre transformation

L = p · d
dt
q−H(q,p) . (1.3)

The equations of motion follow from the variation of the action S =
∫ tf
ti
dtL with respect

to the position and momentum5 yielding

dqi

dt
=
∂H
∂pi

,
dpi
dt

= −∂H
∂qi

. (1.4)

5Writing the Lagrangian in the form of (1.3) explicitly in terms of the positions and momenta is known
as the first order formalism. Boundary conditions are only specified for the initial and final positions
q(ti) = qi, q(tf ) = qf , and not on the momenta.
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Thus the second order system is reduced to a first order system. This is one advantage of
the Hamiltonian formulation. Another we will encounter later on is that it allows us to
deal with more general kinds of symmetries.

How does Hamiltonian mechanics generalize to manifolds? Consider a spacetime (M, g),
i.e. a D dimensional manifold M equipped with a (mostly minus) Lorentzian signature
metric6 g and coordinates xa. For a relativistic point particleM plays the role of config-
uration space, that is the space of all possible trajectories. While the co-tangent bundle
P ≡ T ∗M, with coordinates (xa, pb), defines the phase space—this is of course 2D dimen-
sional and has a canonical projection π : P →M, (xa, pb) 7→ xa.

In this thesis lower case roman letters a, b, . . . will stand for indices onM while capital
letters A,B, . . . will be indices on P . We will not distinguish abstract indices from coor-
dinate indices as this is mostly clear from context—see [4, 138] for a discussion of these.
Smooth functions will be denoted by C∞(N ), sections of tangent vectors X(N ), and Λn(N )
the antisymmetric n-th tensor product, of the manifold N .

Here, as suggested by the label, the coordinates pb play the role of momentum, so that
given a trajectory (curve) γ : R → M, t 7→ xa(t), pa(t) defines the momentum along
γ. Note that t is now a parameter along the curve describing the internal time of the
system. Now, since the Lorentzian spacetime M already has a time direction, we are
over-counting the degrees of freedom—for a point particle its motion must be time-like (or
null7 ) and likewise for the momentum. Thus P is in fact the extended phase space and
we should properly be speaking of the constrained dynamics (see e.g. [133] for a discussion
of this). The constraints are related to time reparametrization invariance and that the
Hamiltonian is conserved, i.e. constant H(xa, pb) = −m2/2, on phase space. For our
purposes it is enough to fix this at the end by working with proper time and normalizing
the momentum.

The phase space forms a symplectic manifold, i.e., has a closed nondegenerate8 two-form
Ω, so that for X, Y ∈ TP

dΩ = 0 , Ω(X, Y ) = 0 =⇒ X = 0 . (1.5)

which governs the dynamics of the system. A symplectic manifold need not arise as the
cotangent bundle to some base space. It simply needs to be a 2D manifold with such a two

6I will not make assumptions about the topology/causal structure of the manifold in this section and
be explicit when it is necessary to do so. For a discussion of these properties I refer the reader to the
classic work by Hawking and Ellis [137].

7I.e. its norm vanishes, gabẋaẋb = 0. All light-rays are null vectors. The causal structure of a spacetime
is determined by whether events (points) can be connected by null geodesics, see ref. [137] for details.

8Again we are ignoring constraints and the degenerate directions they introduce.
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form. Moreover, in canonical (Darboux) coordinates the symplectic form takes the simple
expression

Ω = dpa ∧ dxa . (1.6)
In these coordinates Ω is exact being the (phase space) exterior derivative of the canonical
one form Ω = dθ,

θ = padx
a , (1.7)

sometimes known as the Cartan one-form or symplectic potential. Being a 2-form Ω on P
provides a volume on the phase space by taking D wedge products of itself. In Darboux
coordinates the volume reads

Ω∧
D ≡ 1

D!
Ω ∧ Ω · · · ∧ Ω︸ ︷︷ ︸

D times

=
D∏
i=1

dpi ∧ dxi . (1.8)

This has applications in statistical mechanics, where one is concerned with ensembles of
configurations, since it provides a measure on the phase space [132].

The observables of the theory are scalar functions of the phase space, i.e. F :M→ R,
(x, p) 7→ F (x, p), from which Hamiltonian vector fields can be constructed by using the
inverse symplectic form Ω−1 ∈ Λ2(TP)9. That is,

XF = Ω−1 · dF ⇐⇒ Ω(XF , ·) = −dF . (1.9)

Explicitly this is

XF =
∂F

∂pa

∂

∂xa
− ∂F

∂xa
∂

∂pa
. (1.10)

The integral curves of these generate flows in phase space that whichpreserve the symplectic
form. That is to say, (at the infinitesimal level) the Lie derivative along XF of Ω vanishes,

LXFΩ = iXF (dΩ) + d(iXFΩ) = iXF (0) +−d2F = 0 . (1.11)

Here, we used Cartan’s magic formula for the Lie derivative of forms LX(·) = iX(d ·) +
d(iX ·), the fact that Ω is closed, and (1.9). Often (1.11) is used to define a Hamiltonian
vector.

In particular the time evolution in phase space is generated by some specified Hamil-
tonian H which does not depend on t. The integral curves, γ(t), associated with the
Hamiltonian vector XH of H specify the dynamical trajectories. That is,

γ̇(t) = ẋa
∂

∂xa
+ ṗa

∂

∂pa
≡ XH . (1.12)

9Since Ω is nondegenerate its inverse exists and is unique. This means that Ω · Ω−1 = 1 ∈ T ∗P
⊗
TP

and the symplectic structure provides an natural isomorphism between TP and T ∗P
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Thus Hamilton’s equations of motion

ẋa =
∂H
∂pa

, ṗa = − ∂H
∂xa

, (1.13)

are recovered by comparing this to (1.10). In fact for any function F (xa, qa) on the phase
space this construction of the evolution of F is generated by the flow of the Hamiltonian
vector field,

Ḟ ≡ XH(F ) = Ω(XH, XF ) =
∂H
∂pa

∂F

∂xa
− ∂H
∂xa

∂F

∂pa
. (1.14)

Notice (1.14) defines also the Poisson bracket10 of F and H, or more generally of any
two functions F,G on P ,

{F,G} = Ω−1(dF, dG) = −Ω(XF , XG) =
∂F

∂xa
∂G

∂pa
− ∂F

∂pa

∂G

∂xa
. (1.15)

Note that in Darboux coordinates we recover the canonical Poisson brackets for the coor-
dinate functions themselves

{xa, pb} = δab , {xa, xb} = 0 = {pa, pb} . (1.16)

The Poisson bracket has some important algebraic properties. Along with the bi-
linearity and the anti-symmetry in F and G, the Jacobi identity is satisfied for the Poisson
bracket,

{{F,G}, H}+ {{F,G}, H}+ {{F,G}, H} = 0 , (1.17)

which follows from the closed-ness of the symplectic form by evaluating

iXF iXGiXHdΩ = 0 . (1.18)

It also obeys a Leibniz identity, as any derivation does,

{FG,H} = F{G,H}+ {F,H}G . (1.19)

Together these four properties actually can be used to define a Poisson structure and hence
Poisson manifold, i.e. a manifold P with a bracket, {·, ·} : C∞(P) × C∞(P) → C∞(P),

10A note on conventions. Most people seem to take the sign convention as in the rightmost equality of
(1.15) as the definition for the Poisson bracket. However, the symplectic form often takes the opposite
sign Ω = −dθ = dxa ∧ dpa. To compensate for this the Poisson bracket is defined by the bi-vector Π such
that Π · Ω = −1. This also changes the sign in of the second equation in (1.9).
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such that the four properties are satisfied. Every symplectic manifold is Poisson, but,
the converse is not necessarily true (because the Poisson Bracket is not required to be
nondegenerate). Furthermore, the Lie bracket between the Hamiltonian vector fields of
arbitrary functions on phase space takes the nice form[

XF , XG

]
= −X{F,G} . (1.20)

That is, the Lie bracket is a representation of the Poisson algebra11. Poisson manifolds
are very useful when discussing gauge theories where the degenerate directions of the (now
pre-)symplectic form correspond to gauge transformations [139, 140]. Poisson manifolds
are foliated by leaves (orbits) which are symplectic. Then “symplectic reduction” [133–135,
139,140] provides a mathematical way to get to physical configurations.

Finally, in Hamiltonian mechanics one often talks about canonical transformations
Φ : P → P , (xa, pb) 7→ Φ(xa, pb) = (Xa(xa, pb), P

a(xa, pb)), which preserve the Pois-
son brackets of the phase space variables, i.e. Hamilton’s equations. In the symplectic
language these transformations have a natural geometric formulation—they are symplec-
tomorphisms. That is, they preserve the form of the symplectic structure

Φ∗Ω = Ω , ⇐⇒ Ω = dpa ∧ dxa = dPa ∧ dXa . (1.21)

If Φ is generated by some XΦ then the infinitesimal version of (1.21) is

LXΦ
Ω = 0 . (1.22)

Consequently, canonical transformations preserve the phase volume (1.8) and every Hamil-
tonian vector field is a generator of one (see (1.11)).

These canonical transformations can be induced by a generating function that is a
function of the old and new coordinates F = F (xa, pb, X

c, Pd; t). For example, if one takes
F = F (xa, Xb; t) then one can show in order to preserve Hamilton’s equations

[ẋa , ṗa] =

[
∂H
∂pa

,− ∂H
∂xa

]
→
[
Ẋa , Ṗa

]
=

[
∂H′

∂Pa
,− ∂H

′

∂Xa

]
(1.23)

F must satisfy

pa =
∂F

∂xa
, Pa = − ∂F

∂Xa
, H′ = H +

∂F

∂t
. (1.24)

11Actually, they are anti-isomorphic due to the minus sign [133].
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If we can find a particular generating function S such that the new Hamiltonian is
identically zero H′ = 0, then the solution to the equations of motion (1.23) is immediate—
it is just the level sets of the new coordinates, i.e.,

Xa(t) = Aa = const. , Pa(t) = −Ba = const. (1.25)

The middle equation in (1.24) becomes a consistency relation for S(xa, Aa, t) which can in
principle be inverted:

Pa = − ∂S

∂Xa
, ⇐⇒ Ba =

∂S(xb, Ac, t)

∂Aa
, ⇐⇒ xa = xa(Aa, Bb, t) . (1.26)

Then we are left with two equations: if we substitute the first, pa = ∂S
∂xa

into the second
H + ∂S

∂t
= 0 we obtain the Hamilton–Jacobi equation:

H(xa,
∂S

∂xa
, t) +

∂S

∂t
= 0 . (1.27)

This is one partial differential equation (PDE) for Sm which is called Hamilton’s principal
function and is related to the action as a function of the (final) coordinates S = S(xa, t) =∫ t
ti
dt′[ẋapa − H(xa, pb)]. This and the Hamilton–Jacobi equation play a key role in the

notion of integrability and separation of variables as we will see later. In the case of a time
independent Hamiltonian we can write S(xa, t) = −J0

2
t+ S(xa) and (1.27) reduces to

H(xa,
∂S

∂xa
, t) =

J0

2
. (1.28)

Covariant formulation

These statements above are coordinate dependent and given that we are working on a
Lorentzian Manifold with metric g (and metric connection ∇12 such that ∇agbc = 0) we
have a natural way to promote these to covariant statements. This presentation will largely
follow refs [81, 85] where it was introduced.

12Recalling that in components for a mixed tensor Xa1...ap
b1...bq

, ∇cX
a1...ap

b1...bq
= ∂cX

a1...ap
b1...bq

+

Γa1dcX
d...ap

b1...bq
+ · · · − Γdb1cX

a1...ap
d...bq

, where Γabc = 1
2g
am(∂bgmc + ∂cgbm − ∂mgbc) is the Christoffel

symbol. Also, recall that the Riemann tensor is defined by the failure of the covariant derivative to
commute

[∇a,∇b]Xc = RcdabX
d .
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Things are relatively simple for derivatives in the momentum direction since these are
taken in a fixed co-tangent space T ∗xM of a point x. Thus, the space is linear in the
momentum and we have for the change pa → pa + εfa, the derivative in the direction fa is

fa
∂F

∂pa
=

d

dε
F (xa, pb + εfb)

∣∣∣
ε=0

, (1.29)

which generalizes to any tensor on P . To construct the derivative in the position direction
we make use of the extra structure of the metric connection to parallel transport objects
from one co-tangent space T ∗xM to another T ∗xεM, where xaε = xa + εua. That is, defining
p̄ε to be the parallel transported co-vector13 in T ∗xεM of pa, the covariant derivative in the
ua direction is

ua
∇aF

∂x
=

d

dε
F (xε, p̄ε)

∣∣∣
ε=0

. (1.30)

In particular, this is generating a splitting of a given direction X in the tangent to the
phase space X ∈ TP into a direction ua tangent to the configuration space u ∈ TM, and
a direction tangent to the momentum direction fa ∈ T ∗M, see Figure 1.1. Note that ua
is canonically defined by the pushforward π∗ : TP → TM of the projection π : P → M,
i.e. u = π∗X. Given a curve, z(t) = [x(t), p(t)] in P , and u(t) the part tangent to the
configuration direction, then the momentum direction is the covariant derivative of p(t)

fa =
∇
dt
pa = ṗa − ucΓbca . (1.31)

As an example consider any phase space variable of the form F (x, p) = φa1a2...(x)pa1pa2 . . . .
Then the covariant derivative in phase space is simply

∇b

∂x
F = ∇b(φ

a1a2...)pa1pa2 . . . ,
∂

∂pb
F = φba2...pa2 · · ·+ φa1b...pa1 . . . . (1.32)

More generally, for an arbitrary tensor on Aa...b... the derivative in the direction X ∈ TP
tangent to the curve [x(t), p(t)] is,

∇
dt
∇XA

a...
b... = uc

∇c

∂x
Aa...b... + fa

∂

∂pa
Aa...b... . (1.33)

In other words, for each of these cases, (1.29), (1.30), we can identify the derivatives
themselves (since the objects are linear and ultra-local in f and u) as the mixed tensors

∇A
a

∂x
∈ TP ⊗ T ∗M ,

∂A

∂pa
∈ TP ⊗ TM , (1.34)

13This simply means u · ∇p = 0 along the curve xε.
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Figure 1.1: Covariant cotangent space splitting: Here the vector X in phase space
is decomposed into its position and momentum directions (shown in blue). Let zA(t) =
[xa(t), pb(t)] be the integral curve of X (shown in red) connecting [x, p] to [xε, pε]. The
dashed lines represent the parallel transporting of various objects using the connection ∇
on M, e.g., p̄ε is the parallel transport of p from [x, p] to [xε, pε] and p̂ε is the parallel
transport of pε in the opposite direction from [xε, pε] to [x, p]. The direction f then points
from p to p̂ε. The covariant projections of X into x and p directions are shown in dark
green.

which are a generalization of the phase space coordinate vectors ( ∂
A

∂xa
, ∂

A

∂pa
). Of course we

can introduce the dual quantities Da
Ax and ∇Apa (corresponding to the coordinate forms

dAx
a and dApa) such that

∇A
a

∂x
Db
Ax = δab =

∇A

∂pa
∇Bpb ,

∇A
a

∂x
∇Bpb = 0 =

∂A

∂pa
Db
Ax , (1.35)
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with the completeness relation

Da
Ax
∇B
a

∂x
+∇Apa

∂B

∂pa
= δ B

A . (1.36)

The differential Da
Ax is the push-forward of the canonical projection π∗ : TP → TM—c.f.

above. That is, if XA ∈ TP is tangent to the phase space then Da
Ax projects out the

component in the tangent fibre Da
Ax : T[x,p]P → TxM, ua = XADa

Ax.

This construction can also used to define the canonical lift ] : X(M) → X(P) of a
vector field on the configuration space XM ∈ X(M) to a vector field on X]

M ∈ X(P). For
brevity we just present the covariant coordinate form (see [133] for the index free language
formulation). Explicitly this is

X]
M = Xa

M
∇a

∂x
+ (∇aX

b
M)pb

∂

∂pa
. (1.37)

The new derivatives and differentials being related to the coordinate forms means that
the symplectic and Hamiltonian structures introduced in the previous section can pre-
dictably be written in this language. In particular, the Hamiltonian vector (1.10), Hamil-
tonian equations (1.13), and Poisson bracket (1.15) become14

XA
H =

∂H
∂pa

∇A
a

∂x
− ∇

A
aH
∂x

∂A

∂pa
, (1.38)(

ẋa,
∇
dt
pa

)
=

(
∂H
∂pa

,−∇aH
∂x

)
, (1.39)

{F,G} =
∇aF

∂x

∂G

∂pa
− ∂F

∂pa

∇aG

∂x
. (1.40)

Finally, the Schouten–Nijenhuis (SN) [·, ·]SN [141, 142] bracket arises naturally in this
setting by considering the Poisson brackets between observables which are monomials in
the momenta. That is given A = αa1...appa1 . . . pap and B = βb1...bqpb1 . . . pbq then their
Poisson bracket defines the SN bracket in the following way

{A,B} ≡ −[α, β]
c1...cp+q−1

SN pc1 . . . pcp+q−1 , (1.41)

where one can check from (1.40) that the explicit expression,

[α, β]
a1...ap−1cb1...bq−1

SN ≡ pα(da1...ap−1∇d β
cb1...bq−1) − qβd(b1...bq−1∇d α

ca1...ap−1) , (1.42)
14There are extra terms which appear if one considers a connection onM which has torsion, see [85] for

details.
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follows.

Note, the following two results: first, if α and β are vectors then the SN bracket is just
their Lie bracket ((1.20)). Second, if α is a vector and β an arbitrary contravariant tensor
then,

[α, β]SN = Lαβ , (1.43)

i.e. the SN bracket is the Lie derivative of β along α. Based on these statements one can
think of the SN bracket as a generalization of the Lie derivative to tensors and it will be
very useful later when discussing symmetries, constants of motion, and integrability and
separability.

1.1.2 Noether’s Theorem and Explicit and Hidden Symmetries

The nice thing about working on the phase space with a symplectic manifold is that the
role of symmetries and conserved quantities in Noether’s theorem can be reversed. That
is to say, one uses the symplectic structure to convert a conserved quantity of a given
Hamiltonian H into a symmetry flow on phase space.

Specifically, suppose J = J (xa, pb) is conserved along the flow generated by H,

J̇ = {J ,H} = 0 . (1.44)

In other words J is an integral of motion. Then, using the symplectic structure, we have
a symmetry flow on phase space generated by the Hamiltonian vector associated with J ,

XJ = Ω−1(·, dJ ) . (1.45)

By (1.20) this implies
[XJ , XH] = 0 . (1.46)

This commutation means that a given dynamical trajectory (a solution of the equations of
motion of the Hamiltonian) can be Lie dragged by the flow generated by J and remain a
dynamical trajectory. Thus, these conserved quantities generate symmetries of the equa-
tions of motion. Notice that the symmetry flow is now in phase space which allows for
more general symmetries than just those of the manifold/configuration spaceM.

If C commutes with all functions on the phase space, {C, F} = 0 for all F : P → R,
then C is called a Casimir, and the space of C is the centre of the Poisson algebra. For
a symplectic manifold this implies (by the nondegeneracy of Ω) dC = 0, whereas, if P is

14



a Poisson manifold then the centre can be nontrivial even when the cohomology of P is
trivial.

Suppose J1 and J2 are conserved along the flow of H then by the Jacobi identity we
can generate another conserved quantity J3 = {J1,J2}. However J3 need not be new and
independent from J1,J2—one must separately check that it is functionally independent.
Again, using (1.20), we can make similar statements about the flows XJ3 = X{J1,J2}.

Formally what we have done here is essentially introduce the concept of a momen-
tum map which underlies the previously mentioned symplectic reduction. Again this is
important when considering symmetries resulting from the action of a Lie group. For ex-
ample, in gauge theories and constrained systems, see e.g. [133–135, 139, 140] for details
and applications.

To be more precise, consider the left action, Φ : G×P → P , z 7→ (g, z) 7→ Φg(z) = g ·z,
of a Lie group G on (P ,Ω). At the Lie algebra level, for ξ ∈ LieG, the infinitesimal
generator of the action in the tangent space of P , ξP ∈ X(P), is given by15

ξP(z) =
d

dt
[exp(tξ) · z]

∣∣∣
t=0

, (1.47)

and the flow along ξP is ϕt = Φexp tξ.

Suppose that the action is canonical on P , i.e. for any g ∈ G the symplectic structure
is preserved

Φ∗exp tξΩ = Ω , ⇐⇒ LξPΩ = 0 . (1.48)

Suppose further that ξP globally Hamiltonian, i.e. when we can write

XJ (ξ) = ξP , (1.49)

for some function J (ξ) on P (note that on a connected symplectic manifold this defines
J (ξ) uniquely up to a constant). On a Poisson manifold J is uniquely defined up to the
Casimirs. This map is linear in ξ on the left hand side and the right hand side can be also
made linear—this is called the co-momentum map. Since J : LieG → F(P) is linear we
can construct its dual. This defines the momentum map J ∗ : P → LieG∗16

〈J ∗(z), ξ〉 = J (ξ)(z) . (1.50)
15This map is a Lie algebra anti-homomorphism between the Lie bracket on TP and LieG. That is,

[ηP , ξP ] = −[η, ξ]P for η, ξ ∈ LieG.
16Here LieG∗ is the dual Lie algebra defined by the inner product on LieG, 〈·, ·〉.
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One can check that we have the following algebraic relation between the charges at the
level of the Hamiltonian vectors

X{J (η),J (ξ)} = XJ ([η,ξ]) . (1.51)

If this holds at the level of the Poisson brackets then the Poisson brackets (i.e. “charge
algebra”) of J (ξ), ξ ∈ LieG, form a linear representation of the algebra LieG, i.e.

{J (η),J (ξ)} = J ([η, ξ]) , (1.52)

and the momentum map is called equivariant. This holds for symplectic manifolds. But for
Poisson manifolds the left and right side can differ by a Casimir, see [133] for details. This
has important consequences when one tries to quantize these charge algebras (see [139,140]
for a classical discussion with references to quantization) but will not concern us here.

Finally, we can now formally state

Theorem 1.1.1 (Noether [1, 2, 133]) If the Lie algebra LieG acts canonically as above,
(1.48), on the symplectic manifold P with Hamiltonian H, and admits a momentum map
J ∗ : P → LieG∗, such that H is LieG invariant (i.e. LξPH = ξP [H] = 0) for all ξ ∈ LieG,
then J ∗ is a constant of motion for H. That is, if ϕt is the flow generated by XH then

J ∗ ◦ ϕt = J ∗ ⇐⇒ {J (ξ),H} = 0 . (1.53)

Explicit and Hidden Symmetries

Given a vector field on phase space X ∈ X(P) one can ask if it is projectable back to
the configuration space. That is, is π∗X ∈ X(M)? Roughly speaking working with the
covariant splitting introduced above where XA(x, p)∂A = ua(x, p)∇

A
a

∂x
+ fa(x, p) ∂

A

∂pa
the

pushforward of the projection acts (like before) as

(π∗X)a = ua(x, p) . (1.54)

We can see that in order for ua to be well defined on the whole bundle TM, and not just
point-wise for a given fibre, it must be independent of p.

Suppose that, as in Noether’s theorem 1.1.1, we have a left acting Lie algebra LieG
on P , with co-momentum map J (ξ) and associated Hamiltonian vector XJ (ξ) = ξP(z) ∈
X(P), such that H is LieG invariant. An explicit symmetry is one which can be projected
down to the configuration space i.e.

π∗XJ (ξ) = π∗ξP = ξM ∈ X(M) . (1.55)
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This also means that the Lie algebra G on acting on P can be projected down to a
subalgebra acting onM.

Similarly, one can start from a Lie algebra acting on M, use the canonical lift (1.37)
to raise the vectors to X(P), and then ask if they are symmetries of the Hamiltonian.
These are of course then explicit symmetries. For example, one could have isometries of
the metric on the configuration space. That is, directions/rotations which preserve the
metric17 and are generated by Killing vectors k,

(Lkg)ab = 0 ⇐⇒ ∇ k(a b) = 0 . (1.56)

These lead to symmetries of any Hamiltonian built out of invariants of the metric. In fact
in such cases the co-momentum map is canonically defined,

J (k) ≡ ikθ = kapa , (1.57)

and is equivariant (in the sense of (1.52) when k is viewed as a representation of the algebra
of isometries): see [133] for details.

On the other hand Hidden symmetries are those which cannot be projected to the
configuration space. Hidden symmetries are often called dynamical symmetries because
they depend on the dynamics (momentum) of the particular trajectory on which they are
evaluated. An early example of this is the Laplace–Runge–Lenz vector which underlies the
in integrability of orbital motion and Kepler’s laws [143].

To be concrete, let us now focus on a particular Hamiltonian of interest, that for point
particles undergoing geodesic motion. That is,

H = −1

2
gabpapb . (1.58)

Applying the covariant form of Hamilton’s equations (1.39) one immediately finds the
geodesic equation for the velocity ẋa,

∇
dt
pa = ẋb∇bpa = 0 , ẋa = −gabpb . (1.59)

Notice at the price of all the notation in the covariant formulation writing the equations
of motion is extremely easy.

The simplest conserved quantity one could imagine is one that is linear in momentum
J (k) = ka(x)pa. As above, demanding its conservation leads to the Killing vector equation

{J ,H} = ∇ ka bp
apb = 0 ⇐⇒ ∇ k(a b) = 0 , (1.60)

17E.g. the Poincaré group for Minkowski spacetime.
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where we use the covariant Poisson brackets (1.40). The Hamiltonian vector field of J (k)
follows from (1.38)

XJ (k) = ka(x)
∇a

∂x
− (∇ak

b)pb
∂

∂pa
, (1.61)

which is clearly projectable (being the canonical lift (1.37) of k) as it should be for a Killing
vector/isometry.

One should then consider arbitrary monomials in the momenta J (K) = Ka1...aq(x)pa1...aq

where Ka1...aq is an arbitrary symmetric tensor onM. Again we demand conservation of
J but now this leads to the Killing tensor equation

{J (K),H} = 0 ⇐⇒ ∇ K(a b1...bq)
= 0 , (1.62)

where again we use (1.40). This time the Hamiltonian vector field is not projectable

XJ (K) = qKab1...bq−1pb1 . . . pbq−1

∇a

∂x
− (∇aK

b1...bq)pb1 . . . pbq
∂

∂pa
, (1.63)

since the first term depends on the momentum. Thus Killing tensors correspond to Hidden
symmetries! Notice also that the Killing vector and tensor equations are captured by the
SN bracket (1.42), that is

∇ K(a b1...bq) =
[
K, g−1

]ab1...bq . (1.64)

By the Leibniz property of the Poisson bracket (1.19) the product of two conserved
charges, J3 = J1J2 is also a conserved charge, and in the case of those built from Killing
tensors, this implies that the symmetrized product of two Killing tensors Ka1...apb1...bq

3 =

K1 K
(a1...ap b1...bq)

2 is also a Killing tensor. Such Killing tensors are of course not independent
and are called reducible. Since the Poisson bracket of two conserved quantities generates
a new one (as mentioned above) so the SN bracket of two Killing tensors is a new one
K
a1...ap−1b1...bq−1

3 = [K1, K2]
a1...ap−1b1...bq−1

SN . This time it is not clear if K3 is reducible or in
fact an independent quantity.

One can construct a general polynomial of these monomial conserved quantities of
different degrees. Then one calls an inhomogeneous Killing tensor to be the formal sum
of Killing tensors of these different ranks corresponding to the degrees of the monomials.
Such objects then form a Lie algebra under the Schouten–Nijenhuis bracket.

There are two final extensions of these hidden symmetries to introduce: the Killing–
Yano tensor and its conformal generalization mentioned in the opening. Suppose one
has an antisymmetric q-form fa1...aq , and we demand conservation of the (q − 1)-form
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Fa1...aq−1 = fa1...aq−1bp
b along the geodesic trajectory then f must satisfy the Killing–Yano

equation
Ḟ = 0 =⇒ ∇(afa1)a2...aq = 0 . (1.65)

Any two Killing–Yano forms f1, f2 “square” to a Killing tensor. That is,

Kab
f = f

(a
1 c2...cq

f
b)c2...cq

2 (1.66)

is a Killing tensor. Killing–Yano (KY) tensors find use in the parallel transport of frames [144–
147].

To consider the generalization one can decompose the covariant derivative of an ar-
bitrary q-form ∇aωa1...aq [37, 148]. This generically splits into an anti-symmetric (exact)
part, a divergence part, and a “twistor” part (here we will, for brevity, consider only those
forms for which this vanishes; see [37] for details). These forms satisfy the conformal
Killing–Yano (CKY) equation

∇aωa1...aq = ∇ ω[a a1...aq ]
+

p

D − p+ 1
g ∇b
a[a1

ω|b|a2...aq ]
. (1.67)

We have already dealt with the CKY forms which are divergence free—these are just KY
forms. The other important case is those forms h which are closed Conformal Killing–Yano
(CCKY) forms, i.e. dh = 0, so that

∇aha1...aq =
p

D − p+ 1
g ∇b
a[a1

h|b|a2...aq ]
. (1.68)

When h is a two-form hab this equation defines the principal tensor of the Kerr–NUT–(A)dS
class of spacetimes.

All of these equations are very strong and impose certain “integrability” requirements
relating their second derivatives to the curvature of the spacetime—e.g. in general a metric
will not even possess a Killing vector. One way to see this is to consider the second
derivative of, for example, the Killing vector equation and use the Bianchi identity to find,

∇a∇bkc = −Rd
abckd . (1.69)

See ref. [149] for more information on the Killing tensor equation and [37] for a discussion
of these in the context of all the Killing objects and in particular the principal tensor.

Killing vectors and Killing tensors can also be generalized to conformal versions. I
summarize all the hidden symmetry objects and their abbreviations in appendix A (see
also the review [37] for an extensive exposition of their properties). For now note that the
Hodge dual of a CCKY form f = ?h is a KY form and vice versa; the wedge product of
any two CCKY forms h1∧h2 is also a CCKY form; and a certain h will play a fundamental
role for the Kerr–NUT–(A)dS class of spacetimes.
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1.1.3 Integrability of Hamiltonian Systems, Geodesic Motion, and
Separability of Fields

We have now introduced all the necessary concepts to talk about complete integrability
and separability for Hamiltonian systems and will discuss how this is very similar to the
separability of fields. Recall, the time-independent Hamilton–Jacobi equation (1.28)

H
(
xa,

∂S

∂xa
, t

)
=
J0

2
,

whose corresponding trajectories are given by

dxa

dt
= (π∗XH)a =

∂H(xb, pc)

∂pa

∣∣∣
pa= ∂S

∂xa

. (1.70)

The integrability of the trajectories is characterized by the following:

Theorem 1.1.2 (Liouville–Arnold [103,104]) A Hamiltonian system with D degrees
of freedom (living on a 2D phase space) and with D independent integrals of motion Ji in
involution, i.e.,

{Ji,Jj} = 0 , i, j = 0, . . . D − 1 , (1.71)

is completely integrable—a solution to the equations of motion can be obtained by quadra-
tures, i.e. a finite number of integrations and algebraic manipulations

Integrable systems represent a great simplification since the equations of motion can be
formally solved. See [104] but for extended discussions of this in the context of classical
and celestial mechanics.

Related to this is the stronger concept of separability. That is, a system is separable
when there are coordinates in which a solution to the time independent Hamiltonian–Jacobi
equation can be solved by the additive separation of variables, i.e.,

S =
D∑
a=1

Sa(x
a,J) , (1.72)

where J = (J0, . . . JD−1). Moreover, for each of the constants of motion we get another
equation for S, i.e.

Ji
(
xa,

∂S

∂xb

)
= Ji . (1.73)
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In the time independent case J0 corresponds to the Hamiltonian and, for the geodesic par-
ticle (1.58), J0 = −m2 is the energy. Finally (1.73) is actually a set of ordinary differential
equations (ODEs) using (1.72). That is we have taken the PDE (1.27) and turned it into
D ODEs in D variables

Ji
(
xa,

dSb
dxb

)
= Ji , (no sum over b) . (1.74)

This is the explicit sense of separability. Any separable systems is completely integrable
but the converse is not always true.

Of course such a separable system of ODEs, (1.74), can be easily solved (in principle)
formally, or numerically, or more rarely analytically in closed book form. In any case
(1.74) represents a very tractable system which greatly aids in studying motion in different
spacetimes.

Separability Structures for the Hamilton–Jacobi equation

One can ask when geodesic motion is separable, i.e. what kind of spacetimes (M, g) allow
for a separation of variables solution to the Hamilton–Jacobi equation. The character-
ization of this problem goes back a long time, notably to 1904 when Levi-Civita [150]
provided the following condition on the Hamiltonian (see also [151, 152]). The time inde-
pendent Hamilton–Jacobi equation (1.28) admits a separable solution if and only if

∂a∂bH ∂aH ∂bH + ∂a∂bH ∂aH ∂bH− ∂a∂bH ∂aH ∂bH− ∂a∂bH ∂aH ∂bH = 0 ,

(a 6= b, no sum) (1.75)

where ∂a = ∂/∂xa, ∂a = ∂/∂pa. Notice that this is a condition on the spacetime geometry
whenever H depends on the metric, e.g. as in the geodesic Hamiltonian (1.58).

This horrible equation was solved explicitly for the geodesic Hamiltonian (1.58) and
geometrically characterized by S. Benenti [110–112] and M. Francaviglia [114] in terms of
a separability structure. The statement is as follows.

Theorem 1.1.3 (Benenti) A D-dimensional manifold (M, g) admits a separation of
variables solution to the Hamilton–Jacobi equation if and only if it has a separability struc-
ture. That is, the following conditions hold:

1. There exist r independent commuting Killing vectors X(j)

[X(j), X(k)] = 0 , j = 0, . . . , r − 1. (1.76)
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2. There exist D − r independent Killing tensors K(µ), µ = 1, . . . D − r , which satisfy
the relations

[K(µ), K(ν)]SN = 0 , [X(j), K(µ)]SN = 0 , (1.77)

3. The Killing tensors K(µ) share D − r eigenvectors m(µ) such that

[m(µ),m(ν)] = 0 , [m(µ), X(j)] = 0 , g(m(µ), X(j)) = 0 . (1.78)

Here independence means that the r linear charges J (X(j)) associated with the Killing
vectors and the D − r quadratic charges J (K(µ)) associated with the Killing tensors are
functionally independent and commute with respect to Poisson brackets.

This separability structure implies the existence of a normal separable coordinate system
xa = (xµ, ψj)

18. The ψj coordinates are Killing coordinates corresponding to the directions
preserved by the Killing vectors, i.e.

∂j g
ab ≡ ∂

∂ψj
gab = 0 . (1.79)

The xµ correspond to non-ignorable coordinates. The Greek indices µ, ν, · · · will label
these directions while the Latin indices i, j, . . . label the Killing (ignorable) directions.

In these normal separable coordinates the metric can generically be written as19

(
∂

∂s

)2

=
D−r∑
µ=1

gµµ
(

∂

∂xµ

)2

+
r∑

j,k=1

gjk
∂

∂ψj

∂

∂ψk
. (1.80)

where by inserting (1.80) into (1.75) one gets differential equations for gµµ and gjk. The
general solution to these equations is:

gµµ = (A−1)µ(1) , gµa = 0 (a 6= µ) , gjk =
m∑
µ=0

Bjk(µ)(A
−1)µ(1) , (1.81)

where m = D − r, (A−1)µ(1) (µ = 1, · · · ,m) is the 1-st row of the inverse of an m × m
Stäckel matrix A, i.e., (A−1)µ(ρ)A(ρ)

ν = δµν , and Bjk(µ) is the (j, k)-element of an r × r

18Note the index placement here is just a label of the particular coordinate.
19Here we use a slightly non-standard notation for the inverse metric

(
∂
∂s

)2 ≡ gab ∂
∂xa

∂
∂xb , c.f. the

notation ds2 = gabdx
adxb for the metric.
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symmetric matrix B(µ) which is a function of the single variable xµ. A Stäckel matrix is an
m×m matrix such that each element A(µ)

ν depends only on xν .

Moreover, in normal separable coordinates, the same M and N matrices determine all
the Killing tensors of the separability structures. Explicitly these are given by

Kµµ
(ν) = (A−1)µ(ν) , Kµa

(ν) = 0 (a 6= µ) , Kjk
(ν) =

m∑
µ=1

Bjk(µ)(A
−1)µ(ν) , (1.82)

where the metric is the trivial first Killing tensor, i.e., K(1) = g.

Thus, the separability of geodesics is fully characterized mathematically. Later we will
show how this applies to the physically motivated case of rotating black holes. Notice the
integrability is only explicit in this particular set of coordinates.

Separability of Field Equations

Another physically relevant question is that of the separability20 of test fields on background
spacetimes. Typically one is interested in fields of various spin (scalar, spinor, vector, and
tensor) as these represent (linear) perturbations to these spacetimes and can be used to
study the stability of, for example, black holes to disturbances. One is also often interested
in quantizing these fields, and in either case, to find analytic or numerical solutions to the
field equations is a challenging task. However, when separation of variables applies the
task becomes much simpler.

Typically the problem consists of a linear differential operator D on the D-dimensional
background spacetime (M, g) acting on a field Ψ (where we suppress the indices21),

DΨ = 0 . (1.83)
20That is when can make a separation of variables ansatz for the field. This time it is a multiplicative

separation of variables, i.e., a product of functions of one variable.
21In practical terms what one typically does is to either construct some scalar invariants of the particular

field à la the Newman-Penrose formalism [153] in, e.g., the Teukolsky equation [40], or to make separation
of variables ansatz like below in (1.84) and have the tensor structure carried by a prefactor depending
on the separation constants. E.g., for the electromagnetic field in Minkowski space one writes Aa(xb) =

Aa(k)eikbx
b

. Sometimes the prefactor is geometric in origin and also depends on the coordinates e.g. as
in [43, 87, 90]. In this case often such an ansatz is made to convert the tensor equation into an equation
for a scalar potential.
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In this context the analogue of integrability/separability is to make a separation of variables
ansatz, i.e.,

Ψ(xa) =
D∏
i=1

Ψi(x
i) , (1.84)

where Ψi(x
i) is a function of only the i-th coordinate xi.

This kind of ansatz is possible when one has a set of D mutually commuting operators
(see e.g. [105–109]). That is K(i), such that K(0) = D, and for all i, j[

K(i),K(j)

]
= K(i) ◦ K(j) −K(j) ◦ K(i) = 0 . (1.85)

Any operator that commutes as above with a field equation is known as a symmetry
operator. This commutation relation implies that one can find a basis which diagonalizes
all the K(i) simultaneously

K(i)Ψ = CiΨ , (1.86)

for some constants Ci known as the separation constants. It is this basis in which the
separation of variables (1.84) is possible. Thence one ends up with a system of D ODEs
depending on the D functions Ψi and D separation constants Ci. The question of when this
is possible for generic operators is not fully characterized and is a difficult problem. See
refs. [121–123] for some general discussions on and characterizations of symmetry operators
for different field equations in various contexts. Even when this kind of separation of
variables is possible it may only be obvious in certain coordinate systems.

In the case of the Klein–Gordon equation for a minimally coupled scalar field Φ

K(0)Φ ≡
(
−∇ag

ab∇b

)
Φ = −m2Φ , (1.87)

the problem is well understood. In fact, in analogy with the Hamiltonian for a free particle,
making the heuristic classical to quantum substitution of the momentum pa → −i~∇a one
obtains the Klein–Gordon equation (typically one sets ~ = 1)22. Thus it is natural to
consider first order operators of the form X(i) = −iXa

(i)∇a and second order operators
of the form K(µ) = −∇aK

ab
(µ)∇b for some vectors X(i) and symmetric tensors K(µ). It

is straightforward to show that the X(i) must be independent Killing vectors in order to
commute with (1.87).

22Alternatively, one can recover the Hamilton–Jacobi equation (1.27) in a semi-classical approximation
to the Klein–Gordon equation (1.87). Specifically one makes an ansatz of the form Φ = exp

(
i
~S
)
and

expands to lowest order in the limit ~→ 0.
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Moreover, Carter [154], (see also [155, 156]) showed that in order for any operator, of
the form K(µ) = −∇aK

ab
(µ)∇b, to commute with (1.87), not only must Kab

(µ) be a Killing
tensor, but also satisfy the geometric property

1

3
∇b(K

c
a R

b
c −R c

a K
b
c ) = 0 . (1.88)

Carter and McLenaghan [157] showed that this condition is automatically satisfied when
K is the square of a Killing–Yano tensor. See also [155–158] for a characterization of the
commutation relation (1.85) between the second order operators built out of two nontrivial
Killing tensors. Generically this mutual commutation between all operators is a much
stronger geometric requirement [158].

However, for spacetimes with a separability structure and normal separable coordinates
(1.88) is automatically satisfied as one can show that the Ricci tensor has the same eigen-
vectors as the Killing tensors [155,156] and hence they commute as matrices. This mutual
eigenvector basis also guarantees the commutation relations (1.85) are satisfied [155, 156]
and thus these spacetimes admit a separation of variables ansatz for the Klein–Gordon
equation. Based on the classical/quantum relationship between the Klein–Gordon and
Hamilton–Jacobi equation it is perhaps not surprising that their integrability properties
are intimately connected.

In this thesis, I will present some applications of this separability: in chapters 2 and
3 I will characterize the separability of the conformally coupled Klein–Gordon equation
in rotating black hole spacetimes. Moreover, in chapters 4 and 5 the separability of the
Proca equation is demonstrated for two example spacetimes beyond General Relativity and
in the four dimensional case used to study the unstable quasinormal modes of the Proca
field. Finally, in chapters 6 and 7 I present a new class of physically motivated spacetimes
which possesses more hidden symmetries than explicit and allow exact separability and
integrability of the Hamiltonian–Jacobi and Klein–Gordon equations. In the final chapter
I mention some future directions and the landscape (as I see it) for separability of physical
fields in rotating black hole spacetimes.

At this point it is time to see some physical examples of spacetimes with separability
structures.
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1.1.4 Rotating Black Holes and the Killing Tower

Kerr Black Holes

As mentioned in the introduction one of the most interesting solutions to the Einstein
equations is the Kerr metric discovered in 1963 [8]. It represents a black hole of mass M
and angular momentum J = Ma23. In asymptotically flat spacetimes its line element reads

Figure 1.2: Kerr black hole: Schematically shown above is the Kerr black hole rotating
about the symmetry axis (θ = 0, π) corresponding to the line between the north and south
poles. Special regions are indicated in different colours. The ergo-surface where an observer
can no longer remain stationary and must rotate is depicted in blue. The outer horizon
is shaded grey. Then comes the inner ergo-surface and the inner horizon indicated by the
dashed and solid yellow lines respectively. Finally the ring singularity at r = 0 is shown
by the red dashed line.

ds2 = −
(

1−2Mr

ρ2

)
dt2 − 4Mra sin2 θ

ρ2
dt dφ+

Σ sin2 θ

ρ2
dφ2 +

ρ2

∆r

dr2 + ρ2 dθ2 , (1.89)

23These charges can be calculated in many ways, e.g. the Arnowitt–Deser–Misner formalism [159–161].
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where the metric functions are

ρ2 = r2 + a2 cos2 θ , ∆r = r2 − 2Mr + a2 , Σ = (r2 + a2)2 −∆r a
2 sin2 θ . (1.90)

There are many interesting properties of the spacetime and I will only mention a few
here, see e.g. the text book expositions [4, 161, 162] for (many) more details. Pertinent
to this work and as mentioned above it has two explicit symmetries; the Killing vectors
ta = (∂t)

a and φa = (∂φ)a, plus the hidden Killing tensor Kab (see a little later for its
explicit form).

The spacetime rotates for a zero angular momentum asymptotic observer (ZAMO) with
angular velocity given by24

Ω =
dφ

dt
= − gtφ

gφφ
. (1.91)

Of particular note are the ergoregions, horizons, and the singularity. The ergoregions are
defined as the place where the time–like vector ta = (∂t)

a becomes null, i.e.

gabt
atb = 0 =⇒ r±E = M ±

√
M2 + a2 cos2 θ . (1.92)

Since massive particles must travel along time–like trajectories inside the ergoregions they
start to rotate in this region, i.e. pick up an angular component in the φa direction.

However, there are still outward pointing time-like vectors that can escape the ergore-
gion (i.e. those with angular velocity). The horizon occurs when any time-like vector
becomes null, and represents the point at which nothing can escape the black hole classi-
cally. For the Kerr black hole this occurs when ∆r = 0, i.e.,

r± = M ±
√
M2 − a2 . (1.93)

Notice (see Figure 1.2) there are two horizons that collapse to one, for an extremal black
hole, when a = M . Note also that if a > M there is no horizon which means the ring-
shaped curvature singularity at ρ = 0, signaled by the divergence of curvature scalars is
visible. That is the quantity known as the the Kretschmann scalar25

I ≡ RabcdR
abcd , (1.94)

(1.95)

24Zero angular momentum means L = ẋagabφ
b = ṫgtφ + φ̇gφφ = 0

25Note that the Kretschmann scalar is regular at the horizon indicating that the apparent singularity
indicated by ∆r = 0 is only a coordinate artifact. In fact one can construct infalling/Painlevé coordinates
which are manifestly regular across the horizon.
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diverges

I ∼ 48m2(r2 − a2 cos2 θ)(ρ4 − 16a2r2 cos2 θ)

ρ12
, as ρ→ 0 . (1.96)

The Cosmic Censorship Conjecture [163] assumes that this singularity must be hidden
behind a horizon (e.g. there are no extremal black holes) and is the subject of ongoing
debate (see e.g. [164]).

Moreover, the outer horizon has some very important properties. It rotates with angular
velocity

ΩH = Ω|r=r+ =
a

r2
+ + a2

, (1.97)

and is generated by the Killing vector ξa = ta + ΩHφ
a. Its surface area is

AH = 4π(r2
+ + a2) (1.98)

and has surface gravity defined by ξa∇aξ
b = κξb representing the acceleration of a particle,

as measured asymptotically, required to remain at rest on surface of the horizon without
falling in. This is explicitly given by

κ =
∆′r(r+)

2(r2 + a2)
. (1.99)

Notice that the surface gravity is constant across the Horizon— this is the zeroth law of
black hole mechanics [165].

The mass, M , angular momentum, J , and horizon area A satisfy the Smarr rela-
tion [166]

M = 2

(
ΩHJ +

κ

2π

A

4

)
, (1.100)

and the first law of black hole mechanics for a variation of the parameters M,J

δM =
κ

2π
δ

(
A

4

)
+ ΩHδJ . (1.101)

Thus we see that in analogy with the first law of thermodynamics that the area plays the
role of entropy [167] and the surface gravity the role of temperature. Both this (1.101) and
the Smarr relation (1.100) arise more generically as conservation laws [168]—in particular,
the entropy is a Noether charge like the mass and angular momentum, and the (1.100) is
the integrated version of the first law (1.101).
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Moreover one can show a second law: that the area of the horizon only grows δA ≥ 0
as matter falls in [169]. Finally the third law is that the surface gravity can never be
reduced to zero within a finite time [170]. These four laws of black hole mechanics become
a concrete a thermodynamic relation through Hawking radiation [171,172] where the black
hole actually has a temperature proportional to the surface gravity. This is a fruitful and
on going line of research providing insight into the microscopic degrees of freedom and
macroscopic consequences of a possible quantum theory of gravity.

The ergoregion is responsible for the Penrose process [161, 173] where the additional
angular velocity the particle picks up allows energy to be extracted from black holes.
Ultimately it is responsible for the superradiance phenomena of fields [49]. Heuristically
superradiance is when a wave with frequency ω = ωR + iωI is scattered off a potential
barrier and picks up energy. As usual the wave is partially transmitted through the barrier
but unusually the reflection coefficient is greater than 1—meaning that the reflected wave
has a larger amplitude than the incoming due to a kick from the potential (see e.g. [162]
for detailed but introductory discussion). For integer spin fields with azimuthal angular
momentum number mφ this superradiance occurs when 0 < ωRmφ < ΩH and again the
field gains energy from the rotation of the black hole [174]. If the bosonic particle has mass
it can form bound states around the black hole and can be characterized by a complex
frequency. These states which will grow if ωI > 0 triggering an instability [50–52]. This
provides an intriguing avenue for the detection of (massive bosonic) dark matter [175].

There are many different coordinates that highlight different features of the Kerr ge-
ometry (see e.g. [4, 161, 176]) and, as mentioned above, the separability of the physical
equations is a coordinate dependent statement. Carter’s form [28] turns out to be the
natural setting for separability and has become known as the canonical form [37].

It is obtained by the following coordinate transformation: set y = a cos θ , ψ = φ/a , τ =
t− aφ, and ∆y = a2 − y2:

ds2 = Σ

[
dr2

∆r

+
dy2

∆y

]
+

1

Σ

[
−∆r(dτ + y2dψ)2 + ∆y(dτ − r2dψ)2

]
(1.102)

The metric functions can be generalized to include cosmological constant Λ and the NUT
parameter N ,

∆r = (r2 + a2)(1− Λr2/3)− 2Mr , (1.103)
∆y = (a2 − y2)(1 + Λy2/3)− 2Ny . (1.104)

Notice the symmetric form of the metric and metric functions. In fact this is in Be-
nenti [110–112] form, where, the Stäkel matrix and coordinate Br = Br(r) and By = By(y)
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matrices are [37, 114]

A =

(
r2

∆r

y2

∆y

− 1
∆r

1
∆y

)
, Br = − 1

∆2
r

(
r4 r2

r2 1

)
By =

1

∆2
y

(
y4 −y2

−y2 1

)
. (1.105)

Moreover, due to generality of the Benenti form of the metric, the Killing vectors and
tensors hold for arbitrary “off-shell” ∆r(r) and ∆y(y). Thus the separability of both the
Hamilton–Jacobi and Klein–Gordon equations is guaranteed. Of course, as stated earlier,
the higher spin fields separate as well but it is not a straightforward consequence of the
separability structure and Benenti’s theorem 1.1.3 [110–112].

In fact, as mentioned in the opening, actually the separability properties descend from
the principal tensor h—in Carter’s form it is generated by the potential b = −1

2
(r2 −

y2)dτ + r2y2dψ,
h = db = ydy ∧ (dτ − r2dψ)− rdr ∧ (dτ + y2dψ) (1.106)

This satisfies the defining CCKY equation

∇ahbc = gab ξc − gac ξb , ξ = ∂τ , (1.107)

and again its Hodge dual f = ?h is a Killing–Yano tensor,

f = rdy ∧ (dτ − r2dψ) + ydr ∧ (dτ + y2dψ) . (1.108)

The Killing tensor is then kab = f c
a fbc

kabdx
adxb =

1

Σ

[
y2∆r(dτ + y2dψ)2 + r2∆y(dτ − r2dψ)2

]
+ Σ

[
r2dy2

∆y

− y2dτ 2

∆r

]
, (1.109)

and the last symmetry l = −∂ψ is generated from kab and ξ

la = kabξ
b . (1.110)

Clearly in 4 dimensions the principal tensor does not aid much. However it is everything
in higher dimensions.

Finally, it is this form of the Kerr–NUT–(A)dS metric (1.102) which best generalizes
to arbitrary dimensions. Typically this is done in a Wick rotated Euclidean form r → ir
and M → iM . Thus in the next section we will work with a Riemannian metric.
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Canonical Metric for Higher Dimensional Rotating Black Holes

We now turn to the higher dimensional Kerr geometry. In canonical coordinates the off-
shell Kerr–NUT–(A)dS geometry in D = 2n+ ε dimensions (with ε = 0 in even and ε = 1
in odd dimensions) takes the form [71]

ds2 =
n∑
µ=1

[
Uµ
Xµ

dx2
µ +

Xµ

Uµ

( n−1∑
j=0

A(j)
µ dψj

)2
]

+
εc

A(n)

( n∑
k=0

A(k)dψk

)2

. (1.111)

As before the coordinates ya = {xµ, ψk} naturally split into two sets: Killing coordinates ψk
(k = 0, . . . , n−1+ε) associated with the explicit symmetries l(k) = ∂ψk , and (Wick rotated)
radial and longitudinal coordinates xµ (µ = 1, . . . , n). For a discussion of the connection
to the original Myers–Perry [68] coordinates and the ranges of these coordinates see the
review article [37]. The functions A(k), A(j)

µ , and Uµ are “symmetric polynomials” of the
coordinates xµ, and are defined by:

A(k) =
n∑

ν1,...,νk=1
ν1<···<νk

x2
ν1
. . . x2

νk
, A(j)

µ =
n∑

ν1,...,νj=1
ν1<···<νj
νi 6=µ

x2
ν1
. . . x2

νj
,

Uµ =
n∏
ν=1
ν 6=µ

(x2
ν − x2

µ) , U =
n∏

µ,ν=1
µ<ν

(x2
µ − x2

ν) = det
(
A(j)
µ

)
, (1.112)

where we have fixed A(0) = 1 = A
(0)
µ . Being off-shell each metric function Xµ is an unspec-

ified function of a single coordinate xµ:

Xµ = Xµ(xµ) . (1.113)

And finally c is a free constant parameter appearing only in odd dimensions. The square
root of the determinant of the metric reads√

|g| =
(
cA(n)

) ε
2 U . (1.114)

In addition the inverse metric takes the form:(
∂

∂s

)2

=
n∑
µ=1

Xµ

Uµ
∂2
xµ +

Uµ
Xµ

(
n−1+ε∑
k=0

(−x2
µ)n−1−k

Uµ
∂ψk

)2
+ ε

1

cA(n)
∂2
ψn .
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From which one can show that the Stäkel matrix A and coordinate matrices B(µ) are given
by [177]

A(j)
µ =

(−1)jx
2(n−j−1)
µ

Xµ

, (A−1)µ(j) =
A

(j)
µ Xµ

Uµ
, (1.115)

Bk`(µ) =
(−x2

µ)2(n−1)−(k+`)

X2
µ

+ ε
δnkδn`
cx2

µXµ

. (1.116)

Thus (1.115) and the Kerr–NUT–(A)dS spacetimes are again exactly in Benenti form.
Hence, it follows from (1.80), (1.82) and a certain identity (which we will make heavy use
of)26 of the symmetric polynomials

∑
µ

A
(j)
µ

x2
µUµ

=
A(j)

A(n)
, (1.117)

that the Killing tensors are expressed as

k(j) =
n∑
µ=1

A(j)
µ

Xµ

Uµ
∂2
xµ+

Uµ
Xµ

(
n−1+ε∑
k=0

(−x2
µ)n−1−k

Uµ
∂ψk

)2
+ ε

A(j)

cA(n)
∂2
ψn , (1.118)

for (j = 0, . . . , n−1). Fitting within the class of metrics with a separability structure they
all mutually Schouten–Nijenhuis commute (see [37] for details):[

l(i), k(j)

]
SN

= 0 ,
[
l(i), l(j)

]
SN

= 0 ,
[
k(i), k(j)

]
SN

= 0 . (1.119)

The Riemann and Ricci curvatures of the complicated metric are explicitly calculated
in [178]. This is best done in an orthonormal basis for the metric (eµ, êµ, ê0), µ = 1, . . . n,
i.e.

g =
n∑
µ=1

(eµeµ + êµêµ) + εê0ê0 , (1.120)

where we define Qµ = Xµ/Uµ,

eµ =
dxµ√
Qµ

, êµ =
√
Qµ

∑
k

A(k)
µ dψk , e0 =

√
c

A(n)

∑
k

A(k)dψk , (1.121)

26See appendix D of the review [37] for this and many more identities of the symmetric polynomials.
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and the inverse basis is

eµ =
√
Qµ∂xµ , êµ =

1√
Qµ

n−1+ε∑
k=0

(−x2
µ)n−1−k

Uµ
∂ψk , e0 =

√
1

cA(n)
∂ψn . (1.122)

Also in this basis the Killing tensors are diagonal too (as they should be based on the
Benenti Theorem 1.1.3),

k(j) =
n∑
µ=1

A(j)
µ [eµeµ + êµêµ] + εA(j)e0e0 . (1.123)

This means that they commute as matrices; for any i, j = 0, . . . , n− 1

ka(i) bk
b
(j) c − ka(j) bkb(i) c = 0 . (1.124)

In fact, then the Ricci tensor is also diagonal [37, 178] (again as it should be due to
Benenti)

Ric = −
∑
µ

r̂µ (eµeµ + êµêµ)− εr̂0e
0e0 , (1.125)

where we have introduced

r̂µ =
X̂ ′′µ +

εX̂′µ
xµ

2Uµ
+
∑
ν 6=µ

xνX̂
′
ν − xµX̂ ′µ − (1− ε)(X̂ν − X̂µ)(

x2
ν − x2

µ

)
Uν

,

r̂0 =
∑
ν

X̂ ′ν
xνUν

, X̂µ = Xµ + εc/x2
µ . (1.126)

One can then calculate the remarkably simple Ricci scalar

R =
n∑
µ=1

rµ
Uµ

, rµ = −X ′′µ −
2εX ′µ
xµ
− 2εc

x4
µ

. (1.127)

Importantly, each rµ only depends on a single variable xµ.

Imposing the vacuum Einstein equations, Gab + Λgab = 0, the metric functions Xµ

become rational functions of xµ:

Xµ(xµ) =
n∑
k=ε

ckx
2k
µ − 2bµx

1−ε
µ − εc

x2
µ

. (1.128)
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Here cn represents the cosmological constant Λ = 1
2
(−1)n(d− 1)(d− 2)cn, while the other

parameters ck, bµ, c are related to rotations, mass, and NUT charges. Fixing these one
obtains on-shell Kerr–NUT–(A)dS metrics constructed by Chen, Lü, and Pope [71]. How-
ever, as the separability properties do not require the Einstein equations we stick with the
general off-shell Kerr–NUT–(A)dS metrics unless otherwise specified.

Killing Tower

The generalization of the Kerr metric to all dimensions is best understood as a symmetry
requirement that is stronger than the requirement to be in Benenti form. That is, demand-
ing the existence of the aforementioned principal tensor [35, 36] (a CCKY form) uniquely
determines the metric to be the off-shell Kerr–NUT–(A)dS spacetime [76–78]27.

The principal tensor [35, 36] is a nondegenerate closed conformal Killing–Yano 2-form
h, i.e. it obeys c.f. (1.68), (1.107)

∇ahbc = gab ξc − gac ξb , ξa =
1

D − 1
∇bh

ba . (1.129)

The nondegeneracy implies that h has the maximum number28 n of eigenvalues xµ which
are moreover required by assumption to be functionally independent and so these form local
coordinates. The remaining coordinates ψk are the Killing coordinates. Thus the canonical
coordinates {xµ, ψk} are completely determined by the principal Killing–Yano tensor.

Now, the principal tensor takes the form (i.e. is simultaneously diagonalized with the
metric (1.120), c.f. Darboux coordinates.)

h =
n∑
µ=1

xµe
µ ∧ êµ . (1.130)

It generates towers of explicit and hidden symmetries, see [37]. That is by taking wedge
products we obtain the following tower of closed conformal Killing–Yano tensors:

h(j) =
1

j!
h ∧ · · · ∧ h︸ ︷︷ ︸

j times

. (1.131)

27This uniqueness is proved in the Wick rotated Riemannian case. When going back to Lorentzian
signature there are some interesting limits in the null directions which can generalize this statement [179]

28Being antisymmetric the eigenvalues of h come in pairs corresponding to each block diagonal part—
thus in odd dimensions there is in fact an extra final 1× 1 block with zero eigenvalue. So more precisely
h is as nondegenerate as possible.
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Their Hodge duals are Killing–Yano tensors f (j) = ∗h(j), whose square gives rise to a tower
of rank-2 Killing tensors:

kab(j) =
1

(d− 2j − 1)!
f (j)a

c1...dd−2j−1
f (j)bc1...cd−2j−1 . (1.132)

which finally generate the Killing vectors:

l(j) = k(j) · ξ = ∂ψj . (1.133)

There is an additional Killing vector in odd dimensions, l(n) = ∂ψn . Note that the j = 0
Killing tensor is just the inverse metric (1.115), and the zeroth Killing vector is the primary
Killing vector, l(0) = ξ = ∂ψ0 .

Since all of the symmetries are generated by this single object h, it ultimately underlies
the separability properties of the field equations. In particularly when dealing with field
equations beyond scalars it is especially useful for constructing the symmetry operators [88,
180]. However, it is an open question as to the role of the principal tensor in separability
of gravitational perturbations.

We now have all the material ready to turn to the body of this thesis. In the next part
we discuss the separability of the conformally coupled Klein–Gordon equation, then we
look at the Proca equations in the Kerr–Sen [57] and Chong–Cvetič–Lü–Pope [60] black
holes, and finally present new solutions for slowly rotating black holes which have more
hidden than explicit symmetries.
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Part I

Separability of Conformally Coupled
Scalar Fields
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This part is derived (or lifted from) the two works [181, 182] in which we demonstrate
separability of conformally coupled scalar field equation in general (off-shell) Kerr–NUT–
AdS spacetimes arbitrary D dimensions.

In the first chapter of this part we perform calculations in the canonical coordinates
and demonstrate that the separability is characterized by the existence of a complete set
of mutually commuting operators that can be constructed from the principal Killing–Yano
tensor. The separability also works for any Weyl rescaled (off-shell) metrics and especially
interesting in four dimensions where it guarantees separability of a conformally coupled
scalar field in the general Plebański–Demiański spacetime. Moreover, by employing the
WKB approximation we derive the associated Hamilton–Jacobi equation with a scalar
curvature potential term and show its separability in the Kerr–NUT–AdS spacetimes.

In the second chapter we show that the symmetry operators have a covariant expression
constructed from the principal Killing–Yano tensor, its “symmetry descendants”, and the
curvature tensor. We next discuss the general theory of “conformal quantization”, how
these operators give fit into this theory, and rise to a full set of conformally invariant
mutually commuting operators. For the conformally rescaled spacetimes this underlies the
R-separability of the conformal wave equation.
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Chapter 2

Conformally Coupled Scalar in Rotating
Black Hole Spacetimes

As mentioned in the introduction the entire higher-dimensional off–shell Kerr–NUT–(A)dS
family of vacuum black holes [68,70,71,76,77] admits a hidden symmetry of the principal
Killing–Yano tensor, a non-degenerate closed conformal Killing–Yano 2-form [36], which
in its turn generates towers of explicit and hidden symmetries and implies separability of
a number of test field equations in these backgrounds [37].

The purpose of the current chapter is to extend the result on separability of the massive
scalar equation demonstrated in [80,83] and show that also the equation for a conformally
coupled scalar,

�RΦ ≡
(
�− ηR

)
Φ = 0 , η =

1

4

D − 2

D − 1
, (2.1)

separates in the general off-shell Kerr–NUT–(A)dS spacetime. Here, D stands for the
number of spacetime dimensions, R is the Ricci scalar of the background metric g, and
prefactor η is chosen so that the equation enjoys conformal symmetry, see e.g. Appendix
D in [4]. The equation (2.1) is of fundamental importance and has a number of applica-
tions, see e.g. recent study of the asymptotic structure of Kerr spacetime via conformal
compactification [183]. Exploiting the conformal symmetry, the separability remains valid
for any Weyl rescaled metrics and in particular implies the separability of the conformal
scalar equation in the general class of four-dimensional Plebański–Demiański spacetimes.

Moreover, applying the WKB approximation we derive a Hamilton–Jacobi from (2.1)
with an extra scalar curvature potential term,

gab∂aS ∂bS + ηR = 0 , (2.2)
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and demonstrate its separability in the Kerr–NUT–(A)dS spacetimes. The equation (2.2)
has a long history, going back at least to a paper by DeWitt [184] which considers quantum
Hamiltonians arising from classical systems. Therein, couplings to the geometrical objects
can naturally arise. In a similar vein, the extra term we find in the Hamiltonian can arise
due to ambiguities in operator ordering when quantizing non-linear systems [185]. It has
also found use when considering the quantum mechanics of the motion of a free particle
constrained to a Riemannian surface [186,187]. Here we understand it as a purely classical
equation that describes certain modification of the free particle motion in a curved space.

2.1 Separability of Conformal Wave Equation

2.1.1 Conformal Operators

In order to separate the conformally coupled scalar field equation (2.1), let us first consider
the following operators:

K̂(j) = ∇ak
ab
(j)∇b , (2.3)

whose explicit action on a scalar Φ reads

K̃(j)Φ = ∇ak
ab
(j)∇bΦ =

1√
|g|
∂a

(√
|g|kab(j)∂bΦ

)
. (2.4)

To find the coordinate form of these operators, we use (1.118) to obtain

K̂(j)Φ =
n∑
µ=1

1√
|g|
∂µ

(√
|g|A

(j)
µ Xµ

Uµ
∂µΦ

)
+

n∑
µ=1

A
(j)
µ

UµXµ

(n−1+ε∑
k=0

(−x2
µ)n−1−k∂k

)2

Φ + ε
A(j)

A(n)
∂2
nΦ ,

(2.5)

where we have abbreviated ∂µ = ∂xµ , ∂k = ∂ψk , and ∂n = ∂ψn . Employing the expression
for the metric determinant (1.114) and the fact that neither A(j)

µ nor

U/Uµ =

∏n
ν,ρ=1
ρ<ν

(x2
ρ − x2

ν)∏n
ν=1
σ 6=µ

(x2
σ − x2

µ)
= (−1)µ

n∏
ρ,ν 6=µ
ρ<ν

(x2
ρ − x2

ν) (2.6)
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depend on coordinate xµ, we have

1√
|g|
∂µ

(√
|g|A

(j)
µ Xµ

Uµ
∂µΦ

)
=
A

(j)
µ

Uµ

∂µ

((
cA(n)

) ε
2Xµ∂µΦ

)
(
cA(n)

) ε
2

=
A

(j)
µ

Uµ

[
∂µ
(
Xµ∂µΦ

)
+ ε

Xµ

xµ
∂µΦ

]
.

(2.7)

Finally using the now familiar identity (1.117) we arrive at the following explicit form of
these operators:

K̂(j)Φ =
n∑
µ=1

A
(j)
µ

Uµ
K̂(µ)Φ , (2.8)

where each K̂(µ) involves only one coordinate xµ and reads

K̂(µ) = ∂µ
(
Xµ∂µ

)
+

1

Xµ

(n−1+ε∑
k=0

(−x2
µ)n−1−k∂k

)2

+
ε

cx2
µ

∂2
n + ε

Xµ

xµ
∂µ , (2.9)

which is the form derived in [83].

Now introducing the following scalar functions

R(j) =
n∑
µ=1

A
(j)
µ

Uµ
rµ , (2.10)

which are reminiscent of the Ricci scalar and where rµ is the same as in (1.127). One can
now upgrade the operators K̂(j) above to the following “conformal operators”:

K(j) = K̂(j) − ηR(j) . (2.11)

We immediately find

K(j) =
n∑
µ=1

A
(j)
µ

Uµ
K(µ) , (2.12)

where

K(µ) = ∂µ
(
Xµ∂µ

)
+

1

Xµ

(n−1+ε∑
k=0

(−x2
µ)n−1−k∂k

)2

− ηrµ +
ε

cx2
µ

∂2
n + ε

Xµ

xµ
∂µ . (2.13)
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2.1.2 Separability

Since K(0) = �R, the conformally coupled scalar field equation (2.1) can be written as

K(0)Φ = 0 . (2.14)

Although it breaks the conformal invariance, for generality, we can include a mass term
and consider the equation (

K(0) −m2
)
Φ = 0 . (2.15)

To separate this equation we seek the solution in the multiplicative separated form,

Φ =
n∏
µ=1

Zµ(xµ)
n−1+ε∏
k=0

eiΨkψk , (2.16)

where Ψk are (Killing vector) separation constants and each of the Zµ is a function of the
single corresponding variable xµ only. With this ansatz we have

∂kΦ = iΨkΦ , ∂µΦ =
Z ′µ
Zµ

Φ , ∂2
µΦ =

Z ′′µ
Zµ

Φ , (2.17)

which allows us to rewrite (2.14) in the following form:

Φ(x)
n∑
µ=1

Gµ

Uµ
= 0 , (2.18)

where Gµ = Gµ(xµ) are functions of one variable only

Gµ = Xµ

Z ′′µ
Zµ

+X ′µ
Z ′µ
Zµ
− 1

Xµ

(n−1+ε∑
k=0

(−x2
µ)n−1−kΨk

)2

ηrµ −
ε

cx2
µ

Ψ2
n + ε

Xµ

xµ

Z ′µ
Zµ
−m2(−x2

µ)n−1 .

(2.19)

Here we have used the another identity (see [80])

1 =
n∑
µ=1

(−x2
µ)n−1

Uµ
. (2.20)

Now let us use the following result due to Frolov, Krtouš, and Kubizňák [80,188]
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Lemma 2.1.1 (FKK separability) The most general solution of

n∑
µ=1

fµ(xµ)

Uµ
= 0 , (2.21)

where Uµ is defined in (1.112), is given by

fµ =
n−1∑
k=1

Ck(−x2
µ)n−1−k , (2.22)

where Cj are arbitrary (separation) constants.

Thus, we see that the most general solution of (2.18) is

Gµ =
n−1∑
k=1

Ck(−x2
µ)n−1−k . (2.23)

That is, the equation (2.15) is satisfied for our ansatz (2.16) provided the functions Zµ =
Zµ(xµ) satisfy the following ordinary differential equations (ODEs):

Z ′′µ + Z ′µ

(X ′µ
Xµ

+
ε

xµ

)
− Zµ
X2
µ

(n−1+ε∑
k=0

(−x2
µ)n−1−kΨk

)2

− Zµ
Xµ

(
ηrµ +

ε

cx2
µ

Ψ2
n +

n−1∑
k=0

Ck(−x2
µ)n−1−k

)
= 0 , (2.24)

where we have set C0 = m2. When the coefficient η is set to zero, we recover the result
from [80] on separability of the massive Klein–Gordon equation in the off-shell Kerr–NUT–
(A)dS spacetime in canonical coordinates. On the other hand, setting m = 0 we have
successfully separated the conformal equation (2.1) in these spacetimes.

2.1.3 Commuting Operators

In a similar manner to [83] it is possible to show that the above separability descends
from the existence of a complete set of mutually commuting operators—this is exactly the
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situation described in the introduction. To construct such a set, one can take the conformal
operators K(j) and the Killing vector operators L(j),

K(j) = ∇ak
ab
(j)∇b − ηR(j) , (2.25)

L(j) = −i la(j)∇a . (2.26)

It is easiest to demonstrate their mutual commutation by considering their explicit coor-
dinate form

L(j) = −i ∂

∂ψj
, (2.27)

K(j) =
n∑
µ=1

A
(j)
µ

Uµ
K(µ) , (2.28)

where K(µ) were derived above and are given by equation (2.13). Obviously, we have[
K(k),L(l)

]
= 0 ,

[
L(k),L(l)

]
= 0 . (2.29)

since the operators K(j) and L(l) do not depend on the Killing coordinates ψk. Furthermore,
to show that the Killing tensor operators commute,[

K(k),K(l)

]
= 0 , (2.30)

we can re-apply the methodology presented in [83]. First, note that for µ 6= ν we have
[K(µ),K(ν)] = 0 because these operators depend on different xµ 6= xν and so any deriva-
tives terms will commute. Next we can employ the first of the following expressions [80],
which are nothing more than the fact than Stäkel matrix and its inverse (1.115) multiplied
together to give the identity matrix:

n−1∑
k=0

A(k)
ν

(−x2
µ)n−1−k

Uµ
= δνµ ,

n∑
µ=1

(−x2
µ)n−1−k

Uµ
A(j)
µ = δjk . (2.31)

This relationship “inverts” the expression in (2.28) so one can write

K(µ) =
n−1∑
k=0

(−x2
µ)n−1−kK(k) . (2.32)

Hence, using the fact that K(µ) only involves functions and derivatives of the single coor-
dinate xµ, it is clear that [K(µ), (−x2

ν)
n−1−l] = 0 when µ 6= ν. One can finally express the
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commutation of the K(µ)’s as

0 = [K(µ),K(ν)] =
n−1∑
k,l=0

(−x2
µ)n−1−k(−x2

ν)
n−1−l[K(l),K(k)] . (2.33)

In particular as the (−x2
µ)n−1−k are non-vanishing in general this shows that [K(k),K(l)] = 0,

as required.

Of course, following the logic of the introduction, the separated solution (2.16) is noth-
ing else than the common eigenfunction of these operators and the separation constants
{Ψk, Cj} are the corresponding eigenvalues. That is, for our solution (2.16) obeying (2.24)
we have

K(j)Φ = CjΦ , L(j)Φ = ΨjΦ . (2.34)

To see the first equality (the second following immediately) we write

1

Φ(x)
K(j)Φ(x) =

1

Φ(x)

n∑
µ=1

A
(j)
µ

Uµ
K(µ)Φ(x) =

n∑
µ=1

A
(j)
µ

Uµ

(
Gµ +m2(−x2

µ)n−1
)

=
n∑
µ=1

A
(j)
µ

Uµ

n−1∑
k=0

Ck(−x2
µ)n−1−k =

n−1∑
k=0

Ck

n∑
µ=1

A
(j)
µ

Uµ
(−x2

µ)n−1−k

=Cj . (2.35)

Here, the definition (2.28) has been applied, then one uses the separability Lemma and
(2.23), and finally applies the second identity (2.31).

2.2 Separability of Associated Hamilton–Jacobi Equa-
tion

Now we can turn to study the natural extension (2.2) of the Hamiltonian–Jacobi equation
that arises from the the geometric optics (WKB) approximation of the conformal wave
equation. Consider the following α-modified conformal wave equation:(

α2�− ηR
)
Φ = 0 . (2.36)

Then, upon employing the geometric optics ansatz

Φ = Φ0 exp
( i
α
S
)
, (2.37)
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while taking the WKB limit α → 0, we arrive at the corresponding Hamilton–Jacobi
equation:

gab∂aS∂bS + ηR = 0 . (2.38)

This equation is obviously not conformally invariant. However, it is consistent with the
particle Hamiltonian,

H = gabpapb + ηR , (2.39)

where this kind of coupling to the Ricci scalar can arise from quantum corrections to the
particle motion [184,185]. The equations of motion, (1.39), for this Hamiltonian yield the
following modified geodesic equation

dpa
dτ

= −η∂aR . (2.40)

Let us stress that the procedure of deriving (2.38) is similar to how one arrives at the
massive Hamilton–Jacobi equation starting from the massive (α-modified) Klein–Gordon
one, e.g. as in the introduction with the heuristic correspondence −i~∇ ↔ p [83]. There
is, however, a fundamental difference. Namely, the α-modified equation (2.36) is not
conformally invariant, unless α = 1. This is the reason why the WKB limit α → 0 does
not produce a conformally invariant Hamilton–Jacobi equation. If instead, one started with
the conformal wave equation, setting α = 1 in (2.36), the WKB approximation would then
yield the massless Hamilton–Jacobi equation, which of course is conformally invariant.

In what follows we consider the Hamilton–Jacobi equation (2.38) of potential physical
interest and show its separability in the off-shell Kerr–NUT–(A)dS spacetimes. Let us
make an additive separation ansatz like in the introduction, (1.72):

S =
n∑
µ=1

Sµ(xµ) +
∑
k

Ψkψk . (2.41)

Using the form of the inverse metric given by (1.118) for j = 0, the Hamilton–Jacobi
equation (2.38) takes the following explicit form:

n∑
µ=1

Xµ

Uµ
S ′2µ +

1

UµXµ

(
n−1+ε∑
k=0

(−x2
µ)n−1−kΨk

)2
+ ε

1

cA(n)
Ψ2
n + η

n∑
µ=1

rµ
Uµ

= 0 , (2.42)

Again (using (1.117)) we can rewrite the previous equation as∑
µ

Gµ

Uµ
= 0 , (2.43)
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where

Gµ = XµS
′2
µ +

1

Xµ

(
n−1+ε∑
k=0

(−x2
µ)n−1−k Ψk

)2

+ ε
Ψ2
n

cx2
µ

+ ηrµ . (2.44)

To proceed, once more we use the FKK separation lemma 2.1.1 and so we find n first
order ODEs in the n functions Sµ

XµS
′2
µ +

1

Xµ

(
n−1+ε∑
k=0

(−x2
µ)n−1−kΨk

)2

+ ε
Ψ2
n

cx2
µ

+ ηrµ =
n−1∑
k=1

Ck(−x2
µ)n−1−k . (2.45)

Inverting this expression and identifying the canonical momenta p = dS the corre-
sponding constants of motion of the modified geodesic equation (2.40) are given by

Cj = k
(j)
ab p

apb + ηR(j) , (2.46)

where R(j) are given by (3.9). It would be interesting to understand what these constants
of motion represent physically, e.g. in the quantum systems [184, 185], as this would give
a natural interpretation for the functions R(j).

Now with the separability of the conformal wave and corresponding modified Hamilton–
Jacobi equation guaranteed we can turn to applications involving metrics conformally
related to the general metric (1.111).

2.3 Separability in Weyl rescaled metrics

The equation (2.1) enjoys a conformal symmetry. This means that under a Weyl scaling
of the metric,

g → g̃ = Ω2g , (2.47)

we have [4] (
�̃− ηR̃

)[
Ω1−D/2Φ

]
= Ω−1−D/2(�− ηR)Φ . (2.48)

In other words, provided Φ is a solution to the equation (2.1) in the spacetime with metric
g,

Φ̃ = Ω1−D/2 Φ , (2.49)

is a solution of (2.1) in the spacetime with metric g̃.
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In particular, this implies that in any spacetime g̃ related to the off-shell Kerr–NUT–
(A)dS metric by the Weyl transformation, we can find a solution of the corresponding
conformal equation (2.1) in the form (2.49), where Φ is the separated solution (2.16) and
functions Zµ obey (2.24). Strictly speaking, due to the pre-factor Ω1−D/2 the corresponding
solution (3.11) is no longer formally written in a multiplicative separation form and the
corresponding separability is called R-separability.

Let us also note that this result is non-trivial as the principal tensor no longer exists in
the Weyl scaled metrics and consequently only towers of conformal hidden symmetries (as
opposed to full hidden symmetries) exist in the Weyl rescaled spacetimes. Specifically, if
ω is a conformal Killing–Yano p-form in spacetime with g, then ω̃ = Ωp+1ω is a conformal
Killing–Yano p-form in spacetime with g̃. In particular

h̃ = Ω3h (2.50)

is a new principal conformal Killing–Yano tensor, which however need no longer be closed
and is a much weaker structure. This implies, in turn, that each Killing tensor, generated
from j copies of h with j + 1 contractions with the inverse metric, c.f. (1.132), becomes a
conformal Killing tensor:

K̃ab
(j) = Kab

(j) , (2.51)

and the former explicit symmetries become conformal Killing vectors, l̃a(j) = la(j). In the
next chapter we will derive the underlying geometrical properties which guarantee the
separability of conformal wave equations in these spacetimes.

2.4 Four-Dimensional Examples

2.4.1 Carter’s Spacetime

To apply the above machinery, let us now specify to d = 4 dimensions. Recall from the
introduction that, upon the Wick rotation of one of the xµ coordinates,

ψ0 = τ , ψ1 = ψ , x1 = y , x2 = ir , (2.52)

and setting

X1 = −∆y , X2 = −∆r , U2 = Σ = r2 + y2 = −U1 , (2.53)

with arbitrary
∆r = ∆r(r) , ∆y = ∆y(y) , (2.54)
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the off-shell Kerr–NUT–(A)dS spacetime yields the off-shell Lorentzian Carter’s metric [23],
(1.102)

ds2 = −∆r

Σ

(
dτ + y2dψ

)2
+

∆y

Σ

(
dτ − r2dψ

)2
+

Σ

∆r

dr2 +
Σ

∆y

dy2 ,

and the following Ricci scalar:

R = −
∆′′r + ∆′′y

Σ
. (2.55)

The conformal scalar field equation (2.1) reduces to

(
�− R

6

)
Φ = 0 . (2.56)

Its solution can be found in a separable form,

Φ = Z(r) Y (y) eiωτeiΨψ , (2.57)

where functions Z and Y satisfy the following ordinary differential equations:

(∆rZ
′)
′

+ Z
( 1

∆r

(Ψ + r2ω)2 +
∆′′r
6
− C

)
= 0 , (2.58)

(∆yY
′)
′

+ Y
(
− 1

∆y

(Ψ− y2ω)2 +
∆′′y
6

+ C
)

= 0 . (2.59)

Of course, this result remains valid for the on-shell Carter spacetime [23], a solution to
the Einstein–Maxwell–Λ theory, for which

∆r =
(
r2 + a2

) (
1− Λr2/3

)
− 2mr + e2 + g2 , (2.60)

∆y =
(
a2 − y2

) (
1 + Λy2/3

)
+ 2Ny . (2.61)

Here, e and g are electric and magnetic charges, andM,a,N are related to mass1, rotation,
and NUT charge parameters, while the metric is accompanied by the U(1) gauge potential

A = −er
Σ

(
dτ + y2 dψ

)
− gy

Σ

(
dτ − r2 dψ

)
. (2.62)

1I use lowercase m here as with the cosmological constant Λ it is no longer exactly equal to the
asymptotic mass M .
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2.4.2 Plebański–Demiański Class

Another, more general, class of 4-dimensional black hole spacetimes is encoded in the
Plebański–Demiański spacetime [31]. The off-shell metric is given by

g̃ = Ω2g , (2.63)

where g is given in (1.102) and the conformal prefactor takes the following form:

Ω =
1

1− yr
. (2.64)

By the above theory, this spacetime admits a solution of the conformal equation (2.56),
which can be found in the R-separated form

Φ =
1

Ω
Z(r)Y (y)eiωτeiΨψ , (2.65)

where functions Z and Y obey the ordinary differential equations (2.58).

One particular example of a spacetime in this class is the original on-shell Plebański–
Demiański metric [31], for which the metric functions ∆r and ∆y take the following specific
form:

∆r = k + e2 + g2 − 2mr + εr2 − 2Nr3 − (k + Λ/3)r4, (2.66)
∆y = k + 2Ny − εy2 + 2my3 −

(
k + e2 + g2 + Λ/3

)
y4 , (2.67)

where e, g, N , k, m, and ε are free parameters that are related to the electric and magnetic
charges, NUT parameter, rotation, mass, and acceleration. Due to the conformal invariance
of Maxwell equations in 4d, the gauge potential remains given by (2.62). In this special
case, the separability of the conformal scalar equation follows from the results presented
in [189], see also [115] for its intrinsic characterization.

Another example of a spacetime which belongs to the off-shell Plebański–Demiański
class is the hairy black hole solution constructed in [190, 191]. See also [192] for a more
general spacetime that can be written in the form (2.63) with a more general conformal
pre-factor.

2.5 Summary

In this chapter we have separated the conformal wave equation in general off-shell Kerr–
NUT–(A)dS spacetimes in all dimensions, generalizing the work [80] on separability of the
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massive Klein–Gordon equation in these spacetimes. Let us emphasize that although the
two results formally coincide in vacuum with cosmological constant—for the on-shell Kerr–
NUT–(A)dS spacetime [71]—they are very different for a more general matter content.

We have also introduced a modified Hamilton–Jacobi equation for a single particle with
a Ricci scalar potential term. This equation naturally arises from the WKB limit of the
“α-modified” conformal wave equation. This limit breaks the conformal invariance and
the resulting equation no longer enjoys conformal symmetry. We have shown that this
equation also separates in the Kerr–NUT-AdS spacetimes – the corresponding non-trivial
constants of motion are given by the Killing tensors and the scalar functions R(j), giving
a natural setting for the interpretation of the latter. For the future one possible avenue is
study to the physical context and implications of the newly derived (non-minimal coupling)
Hamilton–Jacobi equation.

We have further shown that the demonstrated separability can be characterized by
a complete set of mutually commuting operators. To the leading order in derivatives,
these operators are constructed from Killing tensors and Killing vectors generated from
the hidden symmetry of the off-shell Kerr–NUT–(A)dS spacetime encoded in the principal
Killing–Yano tensor. The second order operators also pick up an “anomalous” absolute
term, see (2.10) and (2.11), which in the case of the original conformal wave operator is
simply given by the Ricci scalar of the spacetime and guarantees the conformal invariance
of the corresponding equation. In the next chapter we will study the intrinsic geometric
nature of these operators and how they fit within the theory of symmetry operators.

We have also discussed the Weyl rescaled metrics and shown how our results imply sep-
arability of the conformal wave equations in those spacetimes. As a concrete application we
have considered the most general type D spacetime described by the Plebański–Demiański
family and constructed the associated R-separated test field solution of the conformal wave
equation. We expect that this construction applies to a wide class of solutions with various
matter content, similar to what happens in four dimensions [31,190–192].

The obtained separated solution (2.16) is general – it depends on D − 1 separation
constants {Ψk, Cj} – any solution to the conformal scalar equation can be written as a
superposition of these separated modes. Note, however, that this chapter we have used
the canonical “symmetric gauge” (1.111), where the (Wick rotated) radial and longitudinal
coordinates xµ are treated on the same footing and there is no clear distinction between the
time and angle Killing coordinates both being encoded in ψk. Consequently, the resultant
ordinary differential equations (2.24) all “look the same”. In order to apply our result to
study the behavior of the scalar field in the black hole vicinity, one needs to transform to
the “physical space”. See [37] where this is explicitly done.
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Upon this one of the separated equations (2.24) becomes a (distinguished) radial equa-
tion while the other equations are the angular ones. In order to solve this system (which
is only coupled through parameters of the solution and separation constants), one needs
to impose the regularity conditions on the axes, as well as proper boundary conditions for
the radial modes. This then distinguishes various physical modes one wants to study. For
example, the quasinormal modes are characterized by ingoing boundary conditions on the
horizon together with the appropriate asymptotic conditions, this will become relevant in
chapter 5.

This in turn restricts the admissible values of the separation and integration constants,
and poses the “non-linear eigenvalue problem”, see e.g. [91, 193, 194] for how this is done
in similar settings. In particular, a similar approach to [91,195] (where comparable ODEs
were obtained by exploiting the hidden symmetries for the case of massive vector fields)
can be used to numerically analyze the quasinormal modes arising from the coupled ODEs
(2.58) in the physically interesting Plebański–Demiański family of spacetimes. See the next
part of the the thesis for an application to the massive vector field equations in the Kerr–
Sen spacetime. We now turn the the geometric interpretation of the symmetry operators
for the conformal wave equations
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Chapter 3

Geometric Characterization of
Conformal Symmetry Operators

The purpose of the present chapter is to further our understanding of the conformal wave
equation (2.1) in the Kerr–NUT–(A)dS spacetime —filling some important gaps in the
previous analysis. In particular, we want to intrinsically and geometrically characterize the
obtained separability by finding an explicit covariant form of the corresponding symmetry
operators. It turns out that these operators can be written in terms of the principal Killing–
Yano tensor, its symmetry descendants, and the curvature tensor. Moreover, following
[118], such operators can be lifted to conformal operators and guarantee R-separability of
the conformal wave equation in any conformally related spacetime (2.47).

In the previous chapter (derived from [181]) the separability of the conformal wave
equation arose from the symmetry operators of (2.1) which were found to be

K(j) = ∇ak
ab
(j)∇b − ηR(j) , L(j) = −i la(j)∇a . (3.1)

where the functions R(j) take the following coordinate form

R(j) =
n∑
µ=1

A
(j)
µ

Uµ
rµ , (3.2)

Here rµ are the Ricci scalar functions appearing in (1.127). The commutation of these
operators with the conformal wave equation (i.e. K(0) and (2.1)) is a special case of the
result presented in [154,155]. Therein, it is shown that the commutation of any operators,[

�+ g,∇aK
ab∇b + f

]
= 0 , (3.3)
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where f, g ∈ C∞(M) and Kab is a Killing tensor is guaranteed provided

∇af = K b
a ∇ag −

1

3
∇b(K

c
a R

b
c −R c

a K
b
c ) . (3.4)

This is of course a generalization of (1.88).

In the case of the off-shell Kerr–NUT–(A)dS metrics the final term on the right hand
side vanishes as the Killing and Ricci tensors are diagonal in the same basis [37, 178] (see
(1.125) and (1.123)). Thus, this equation reduces to a relationship between R(j) and the
Ricci scalar. Hence these functions R(j) can be understood geometrically as follows. Let
us define the following 1-forms κ(j):

κ(j)
a = k b

(j) a ∇bR . (3.5)

Then, (3.4) with g = R and f = R(j) implies that, R(j) must be potentials for the 1-forms:

κ(j) = dR(j) . (3.6)

To verify this explicitly one starts with (3.2) and (1.127) to find the derivative of R(j);

∇aR(j)
a=ν
=

n∑
µ=1

∂νrµA
(j)
µ

Uµ
+ 2xνA

(j)
ν

∑
µ6=ν

rν
Uν

+ rµ
Uµ

x2
µ − x2

ν

=
r′ν A

(j)
ν

Uν
+ 2xνA

(j)
ν

∑
µ6=ν

rν
Uν

+ rµ
Uµ

x2
µ − x2

ν

. (3.7)

Then calculating the left hand side of (3.5) (using (1.118)) one recovers (3.5)

k b
(j) a ∇bR

a=ν
=
∑
µ

A(j)
ν ∂ν

rν
Uν

=
r′ν A

(j)
ν

Uν
+ 2xνA

(j)
ν

∑
µ 6=ν

rν
Uν

+ rµ
Uµ

x2
µ − x2

ν

= ∇aR(j) , (3.8)

exactly as required.

However if we want to know how the operators (3.1) transform under a Weyl re-scaling
g → Ω2g we need an expression for them built entirely from geometric quantities not just
their derivatives. Here we amend this situation. That is to say, we show in the appendix B.1
that R(j) are given in terms of the principal Killing–Yano tensor, its symmetry descendants,
and the curvature tensor by the following covariant formula:

R(j) = kab(j)Rab +
D − 4

2(D − 2)
�Tr

(
k(j)

)
+ αjk

ac
(j−1)hc

b (dξ)ab − βjla(j−1) ξa

= kab(j)Rab +
D − 4

2(D − 2)
�Tr

(
k(j)

)
− kab(j−1)

(
αjha

c (dξ)cb + βjξa ξb

)
, (3.9)
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where ξ = l(0) is the primary Killing vector, for j = 0 we defined k(−1) ≡ 0 ≡ l(−1), and the
constants αj and βj are given by

αj =
(n− j + ε

2
)

(n− 1 + ε
2
)

βj = 2
(n− j + ε

2
)

(n− 1 + ε
2
)
(2j − 3) . (3.10)

3.1 Symmetry Operators in Conformally Related Space-
times

As mentioned in section 2.3, the wave equation (2.1) is conformally invariant. That is,
provided we have a solution Φ in the spacetime g, then

Φ̃ = ΩwΦ , w = 1−D/2 (3.11)

is a solution of the same equation in the conformally rescaled spacetime

g̃ = Ω2g . (3.12)

Notice in this way we can think of the conformal wave equation as scaling as an operator
(under the transformation (3.12)) in the following sense (c.f. (2.48))

�̃R = Ωw−2 ◦�R ◦ Ω−w . (3.13)

It is interesting to ask if such R-separability can also be intrinsically characterized
by some complete set of mutually commuting operators. In what follows we explicitly
construct such operators and discuss their properties. First, starting from the special
conformal frame with Ω = 1, we scale the operators {K(j),L(j)} to construct a complete
set of mutually commuting operators for the metric g̃, (3.12). Second, following [118], we
show that such operators can in fact be lifted to conformally invariant operators. Thence,
providing a complete set of, conformally invariant, mutually commuting operators for the
conformal wave equation (2.1), in any spacetime related to the Kerr–NUT–(A)dS metric
by a conformal transformation.

3.1.1 Mutually Commuting Operators

Starting from the mutually commuting operators {K(j),L(j)} in the special frame with
Ω = 1, let us define new operators {Õ(j), P̃(j)} for general Ω by requiring the following
conformal rescaling properties.

Õ(j) ≡ Ωw ◦ K(j) ◦ Ω−w , P̃(j) ≡ Ωw ◦ L(j) ◦ Ω−w . (3.14)
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By construction such operators mutually commute, as we have[
Õ(i), Õ(j)

]
= Ωw ◦

[
K(i),K(j)

]
◦ Ω−w = 0 , (3.15)[

Õ(i), P̃(j)

]
= Ωw ◦

[
K(i),L(j)

]
◦ Ω−w = 0 , (3.16)[

P̃(i), P̃(j)

]
= Ωw ◦

[
L(i),L(j)

]
◦ Ω−w = 0 . (3.17)

Moreover, it follows that when Φ satisfies the eigenvalue problem (2.34) in the spacetime
g, Φ̃ = ΩwΦ given by (2.49) obeys the associated eigenvalue problem:

Õ(j)Φ̃ = CjΦ̃ , P̃(j)Φ̃ = ΨjΦ̃ , (3.18)

in the conformal spacetime g̃. In other words, the operators {Õ(j), P̃(j)}, (3.14), intrinsically
characterize the separability of the conformal wave equation in the conformal spacetime
(3.12).

The only difficulty with (3.14) is that the new operators {Õ(j), P̃(j)} remain expressed
in terms of the old connection ∇a, the old Ricci tensor Rab, and other objects associated
with the metric g rather than the conformally rescaled metric g̃. Ideally we would like
to write this in a frame independent way. However, using the well known transformation
properties of the connection and curvature tensor, one can straightforwardly amend this
situation.

For example, let us define the following tilded objects:1

k̃ab(j) = Ω−2kab(j) , h̃ab = Ω2hab , l̃a(j) = Ω−2la(j) , (3.19)

and raise or lower their indices with the metric g̃ and its inverse. We further denote by ∇̃a

the covariant derivative in the spacetime g̃ and by R̃ab its Ricci tensor.
1We stress that these objects are not the conformal symmetries of the spacetime g̃, although it is

possible to define such symmetries. Namely, (as mentioned in the previous chapter) the following objects:

kab(j>0) , Ω3hab , la(j≥0) ,

are the conformal Killing tensors, conformal Killing–Yano 2-form, and conformal Killing vectors of the
spacetime g̃. Notice that in doing this, necessarily k(0) = g transforms differently to the rest of the Killing
tensors. One could, of course, use these objects to define the transformed operators, leading to different
(seemingly more complex) expressions. We will adopt this strategy for the Killing tensors at least in the
next section (3.1.2).
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Using these definitions, and adding (the identically zero in the Ω = 1 frame2) quantities

∇̃b

[
k̃ab(j) +

1

2
k̃c(j) cg̃

ab

]
and ∇̃al̃

a
(j) (3.20)

to the operators in (3.1), we find that operators (3.14) can be expressed as follows (see
appendix B.2 for details):

Õ(j) :=Ω2

(
K̃(j) + η

[(
∇̃a∇̃b

(
k̃ab(j) +

1

2
k̃c(j) cg̃

ab
))])

, (3.21)

P̃(j) :=Ω2

(
L̃(j) −

w

D − 2
∇̃al̃

a
(j)

)
, (3.22)

where K̃(j) and L̃(j) are given by the expressions (3.1) and (3.9), with all the objects
replaced by the tilded ones.

Moreover, Õ(0) is just a conformally rescaled K̃(0),

K̃(0) = Ω−2 ◦ Õ(0) = Ωw−2 ◦ K(0) ◦ Ω−w , (3.23)

highlighting the conformal invariance of this operator. The other operators, however, take
a more complicated form, as is to be expected from the privileged role of the conformal
frame with Ω = 13. Also one needs to know which conformal frame one is in to be able to
write (3.21) and (3.22). Ideally one can characterize things in a totally frame independent
manner. This is the subject of the next subsection.

3.1.2 Conformal Symmetry Operators

Conformal symmetry operators for the conformal wave equation in general settings have
been studied for many years, see e.g. [115, 121, 154, 156, 197–202]. This work culminated
in ref. [118] where a complete and constructive theory was finally formulated. Our goal
for the remainder of this chapter is to review this theory in a more physics community
oriented language, and briefly discuss how it applies to the problem at hand.

Essentially the work [118] deals with the process of a “quantization map” which takes
any symmetric tensor and promotes it to an operator. In fact it deals with conformally

2These extra quantities vanish when the Killing vector and tensor equations (1.60), (1.62) hold, which
is only when Ω = 1.

3This is the only frame where the spacetime admits full (not only conformal) Killing tensors [196] and
the Ricci tensor is diagonal in the natural orthonormal frame.
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invariant quantization maps which do this in a conformally invariant way. Let us now
include a few technical details before returning to the problem at hand. To be precise we
will follow the notation/definitions of [118].

The best, well most “invariant”, way to deal with the conformal rescaling we have been
talking about is to promote scalar functions to scalar densities of weight λ and talk about
operators mapping between different weights. That is to say, if Fλ(M) denotes the space of
scalar densities then given, φ ∈ C∞(M) consider the isomorphism f : C∞(M)→ Fλ(M)
defined by,

f : φ 7→ φλ ≡ |g|λ/2φ . (3.24)

Then consider conformally invariant linear differential operators between scalar densities
of different weights λ, µ,

Dλ,µ : Fλ → Fµ . (3.25)

Notice that by using the square root of the metric determinant a scalar density of weight
λ transforms, under a Weyl rescaling gab → g̃ab = Ω2gab as

φ̃λ = ΩλD/2φλ . (3.26)

Thus by working with the one object (the scalar densities) one can deal with the entire
conformal class at once. In particular, in this language the conformal Laplacian �R :
Fλ0 → Fµ0 maps scalar densities φλ0 → φµ0 of weights λ0 = −w/D , µ0 = (2− w)/D .

Fλ(M)
Dλ,µ // Fµ(M)

C∞(M)

|g|λ/2
OO

|g|−µ/2◦Dλ,µ◦|g|λ/2
// C∞(M)

|g|µ/2
OO

Figure 3.1: Commuting diagram representing how to construct conformally invariant op-
erators from maps between scalar densities of different weights.

If D is an operator in the space of differential operators of order k, Dkλ,µ(M), then one
can consider the principal symbol of D. This is a map σk : Dkλ,µ(M) → Sδ(M), where
Sδ(M) is the space of symmetric tensor densities of weight δ = µ − λ, such that if the
highest order term of D is, in local coordinates, Da1...ak∂a1 . . . ∂ak

σk(D) = Da1...ak . (3.27)

57



Then a quantization map Qλ,µ, of order k, is the linear bijection between the space of
differential operators Dkλ,µ such that

σk (Qλ,µ (S)) = S . (3.28)

Finally, it has been proved that there exists a unique such quantization map [199] that
is natural (ie. respects the pushforward of any diffeomorphisms on M) and conformally
invariant. See [118] for the explicit construction of first and second order quantization
maps and the proofs of the following statements exploiting the conformal geometry.

In any case, this whole process of constructing densities (3.26) defines a commutative
diagram (see Figure 3.1) and so one can naturally use the Dλ ,µ to define a differential
map between functions. That is to say, set Dsµ,sλ ≡ |g|−µ/2 ◦ Dλ ,µ ◦ |g|λ/2, which thence
transforms as:

D̃sλ,sµ ≡ Ωsµ ◦Dsλ,sµ ◦ Ωsλ (3.29)

when gab → g̃ab = Ω2gab and where sµ = −Dλ, sµ = −Dµ. Thus we can use the quantiza-
tion map at the level of operators between functions (even if this may not be the natural
mathematical setting).

In what follows, we are going to concentrate on conformal operators of equal weights,
s1 = s2 = s, acting on scalars. In particular, as shown in [118]4 the previously mentioned
conformal quantization map, now with weight s, that is built out of a symmetric tensor
Kab is given by5

Qs(K) =∇aK
ab∇b +

(
γ1[∇aK

ab] + γ2[∇b TrK]
)
∇b + γ3(∇a∇bK

ab) + γ4(�TrK)

+ γ5RabK
ab + γ6R TrK + f . (3.30)

Here f ∈ C∞(M) so does not scale under conformal transformation, and we assume also
that K̃ab = Kab, and the coefficients are

γ1 = 2γ2 = −(2s+D)

D + 2
, γ3 =

(s− 1)s

(D + 1)(D + 2)
, γ4 =

s(D + 2s− 1)

2(D + 1)(D + 2)
,

γ5 =
s(D + s)

(D − 2)(D + 1)
, γ6 = − 2s(D + s)

(D − 2)(D − 1)(D + 1)(D + 2)
. (3.31)

Similarly, given a vector La, the corresponding conformal operator is given by

Qs(L) = La∇a −
s

D
(∇a La) . (3.32)

4In [118] they deal with the general case, of unequal weights, which we do not need.
5Since we deal with differential operators on functions we use the symbol Q here rather than Q.
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In particular, we consider conformal operators of weight w = 1−D/2, c.f. (3.11),

Q̃w = Ωw ◦Qw ◦ Ω−w , (3.33)

that are symmetry operators of the conformal wave operator K(0), that is, they satisfy the
following relation:

K(0) ◦Qw = D ◦ K(0) , (3.34)

for some operator D; in fact, it is easy to see that the conformal invariance implies D ≡
D−2+w. Note that the equation (3.34) obviously preserves the kernel of K(0).

To find such symmetry operators we can use the following theorem [118]:

Theorem 3.1.1 (Michel, Radoux, Şilhan) Let Kab be a (special) Killing tensor of the
metric g, so that the following conformally invariant geometric obstruction built from the
Weyl tensor Cabcd:

Obs(K)a =
2(D − 2)

3(D + 1)

(
∇bK

cdCb
cda −

3

D − 3
Kcd∇bC

b
cda

)
(3.35)

is exact, that is,
Obs(K) = −2df . (3.36)

Then (3.30) with f given by (3.36) (up to a constant) is a symmetry operator for the
conformal wave operator and in fact satisfies

K(0) ◦Qw(K) = Q−2+w(K) ◦ K(0) . (3.37)

WhenKab is a Killing tensor we can simplify the operator given by (3.30) via the Killing
equation,

∇ K(a bc) = 0 , (3.38)

however this will only hold for a particular metric of the conformal class. For this particular
metric, we then have

Qw(K) = Qw−2(K)

= ∇aK
ab∇b −

(D − 2)

8(D + 1)
[�TrK]− (D + 2)

4(D + 1)
RabK

ab +
R TrK

2(D + 1)(D − 1)
+ f .

(3.39)
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In this case, therefore the corresponding symmetry operator (3.34) actually commutes
with the conformal wave equation [

Qw,K(0)

]
= 0 , (3.40)

and more generally, we have the conformal commutation[
Q̃w, Ω2 K̃(0)

]
= 0 , (3.41)

valid in any conformal frame.

In particular, taking the Killing tensors k(j) (j > 0) in the Kerr–NUT–(A)dS metric g,
we find that they satisfy the obstruction condition (3.36) with f(j) given by

f(j) =
1

4(1−D2)

[
2Dkab(j)Rab + 3�Tr k(j) + (D + 1)(D − 2)kab(j−1)

(
αjha

c (dξ)cb + βjξa ξb

)
− 2R Tr k(j)

]
. (3.42)

It can then easily be checked that6 the corresponding operators, from (3.30), given by

K(j)
w ≡ Qw(k(j)) , (3.43)

coincide with the operators K(j), (2.25),

K(j)
w = K(j) . (3.44)

Since all of these operators commute with one another for Ω = 1, their conformal versions
K̃(j)
w , (3.33) also mutually commute in the spacetime g̃. Of course, these are nothing else

than the operators Õ(j), (3.14), this time, however, written in a conformally invariant way
(3.30)7. The remaining commutation relations are then guaranteed by (3.41), since we
define for j = 0

K̃(0)
w ≡ Õ(0) = Ω2K̃(0) , (3.45)

reflecting the fact that the metric transforms differently than the other Killing tensors
under the conformal transformation.

6Of course, the expression (3.35) is only defined in this coordinate invariant way in the Ω = 1 frame
although its coordinate expression will be unchanged no matter the frame.

7Although the formulae (3.21) and (3.30) look rather different, they represent the same operators, and
in particular, the coordinate expressions for the operators Õ(j) and K̃(j)

w will coincide in any conformal
frame. The apparent differences arise from how we choose to scale the Killing tensors.
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Similarly one can define a quantization map for first order operators built out of vec-
tors [118]. This will take L(j), (2.26), to the conformal ones (as in (3.32) and c.f. (3.22)
where the Killing vectors transform differently)

L(j)
w = −i la(j)∇a + i

w

D
(∇a la(j)) , (3.46)

where the second term identically vanishes in the frame Ω = 1 when la(j) are now (full
not conformal) Killing vectors. Of course, these will coincide with P̃(j), (3.22), in any
coordinate system.

To summarize, we have found a conformally invariant generalization {K(j)
w ,L(j)

w } of the
symmetry operators (2.25) and (2.26), with the two being equal in the Kerr-NUT–AdS
conformal frame g. Writing Φ̃ = ΩwΦ in any conformal frame g̃, these operators obey the
following eigenvalue problem:

K̃(j)
w Φ̃ = CjΦ̃ , L̃(j)

w Φ̃ = ΨjΦ̃ , (3.47)

guaranteeing R-separability of Φ̃ in any of these frames.

3.2 Summary

In this chapter we have found covariant forms of the symmetry operators (2.25) and (2.26)
of the conformal wave equation in the Kerr–NUT–(A)dS background (1.111). These oper-
ators are built out of the principal Killing–Yano tensor, its symmetry descendants, and the
curvature tensor. Moreover their commutativity descends naturally from the commutation
properties of the Killing tensors and the special character of the Ricci scalar functions
R(j), (3.9). We then showed how to lift these to a full set of conformally invariant mutually
commuting symmetry operators {K(j)

w ,L(j)
w } that guarantee R-separability of the conformal

wave equation in any conformally related spacetime g̃, providing thus a highly non-trivial
example to the beautiful theory developed in [118].

The conformal wave equation (2.1) is characterized by a specific value of η. In principle
one can consider more general wave equations, where η takes any value. It is easy to see
that all such equations still separate in the Kerr–NUT–(A)dS backgrounds; the operators
(2.25) and (2.26) commute for any value of η. However, for general η the corresponding
wave equations are not conformally invariant and will not separate in a generic conformally
related spacetime. In this case, one could use the conformal properties outlined in appendix
B.2 to construct an equation which separates in the conformal spacetime. However there is
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no clear physical interpretation for such an equation. One other possible future direction
is to use these results (and e.g. [117]) to understand separability of conformal fields with
higher spin.
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Part II

Separability of Vector Fields in Rotating
Black Holes beyond General Relativity
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This material in this part is derived (and taken) from the papers [203, 204] in which
we separate the massive vector field equations (corresponding to ultralight vector bosons)
in two spacetimes with a generalization of the principal tensor. Namely, we consider
the Chong–Cvetič–Lü–Pope black hole spacetime of D = 5 minimal gauged supergravity
(SUGRA) and also the low-energy heterotic string theory inspired D = 4 Kerr–Sen black
hole. In each case the spacetime possesses a torsion generalization of the principal Killing–
Yano tensor. Although this is a weaker object than the full principal tensor it still underlies
the separability properties of these spacetimes. In particular, we are able to apply the
Lunin–Frolov–Kubizňák–Krtouš ansatz employing the principal tensor with torsion.

I also present results comparing the superradiant instability modes of these ultralight
massive vector bosons for weakly charged rotating black holes in Einstein–Maxwell gravity
(the Kerr–Newman solution) to those of the Kerr–Sen black hole. The ordinary differential
equations from the separation of variables are solved numerically, thanks to Ó.J.C Dias
and J.E. Santos, to find the most unstable modes of the Proca field in the two backgrounds
and compared to the vacuum (Kerr black hole) case.
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Chapter 4

Separability of Vector Equations with
Torsion

As mentioned in the introduction, the classical age of separatists followed the discovery of
Carter’s constant in the late ’60s and ’70s. This saw a flurry of separable solutions for the
Kerr black hole. Similarly in the mid ’00s, after the generalization of Kerr geometry to
higher dimensions by Myers and Perry [68], the renaissance came, and there was a string
of integrability and separability results for geodesic motion [79], and test scalar [34] and
spinor [86] fields to arbitrary dimensions—all thanks to the principal tensor. However,
the appropriate separation scheme for vector and tensor in dimensions D > 4 remained
elusive, due to the fact that the methods of Teukolsky [40, 41] do not generalize to higher
dimensions [205, 206]. Moreover, for massive vectors fields they do not even work in four
dimensions [207,208].

The motivation for studying massive vector fields comes from their potential physical
relevance as ultralight bosons. Ultralight bosons feature in many different extensions of
the standard model, such as string theory [209], and provide compelling candidates for
explaining dark matter [210]. One particular model for these ultralight bosons is a massive
spin-1 particle known as the Proca field. Considered first by Proca [211] as a way to
understand short-range nuclear forces in flat spacetime (see also [212, 213]), the Proca
equation is presently an integral part of the Standard Model where it is used for describing
the massive spin-1 Z and W bosons, as well can be generalized to curved spacetime,
e.g. [214].

A breakthrough for massless vector fields came in 2017 when Lunin [89] demonstrated
the separability of Maxwell’s equations in Myers–Perry-(A)dS geometry [70]. Lunin’s ap-
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proach was novel in that it provided a separable ansatz for the vector potential rather than
the field strength, a method that had previously seen success in D = 4 dimensions [40,41].
In 2018, Frolov, Krtouš, and Kubizňák showed that Lunin’s ansatz can be written in a
covariant form, in terms of the principal tensor [90–92], allowing them to extend Lunin’s
result to general (possibly off-shell) Kerr–NUT–(A)dS spacetimes [71]. The separation of
massive vector (Proca) field perturbations in these spacetimes (an achievement previously
absent even for the four-dimensional Kerr geometry) followed shortly after that [91], see
also [93, 215,216].

The separability of the vector field hinges on the existence of the principal tensor.
Such a tensor: i) determines the canonical (preferred) coordinates in which the separation
occurs; ii) generates the towers of explicit and hidden symmetries linked to the symmetry
operators of the separated vector equation; and iii) explicitly enters the separation ansatz
for the vector potential P . Namely, this ansatz can be written in the following covariant
form:

P a = Bab∇bZ , Bab(gbc + iµhbc) = δac , (4.1)

where, as shown, the tensor B is determined by the principal tensor h and the metric g,
with µ a separation constant.

The solution for the scalar functions Z is then sought in a standard multiplicative
separable form, e.g. (1.84). We will denote the ansatz with the B tensor (4.1) as the
Lunin–Frolov–Krtouš–Kubizňák (LFKK) ansatz. Remarkably, the LFKK ansatz works
equally well for both massless and massive vector perturbations. It is also valid in any
dimension, even or odd. Finally, the corresponding symmetry operators for the scalar
potential Z were also recently found [180] thus completing this story1.

The goal of this section is to apply this ansatz to massive vector fields in spacetimes
that possess only the weaker structure of the principal tensor with torsion [100, 102, 218].
In this first chapter we will consider the mathematical separability for massive vector fields
while in the next chapter we will motivate this physically with an example application. We
will discus this in more detail below but let us now briefly review how the LFFK ansatz
works in the Kerr–NUT–(A)dS spacetimes.

1See also [96] for the extension to p-forms and [217] for an alternative way of separating the Maxwell
equations in the Wahlquist metrics.
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4.1 Separability of Proca Equation in Kerr–NUT–(A)dS
Spacetimes

Although the original work only presented the results in even dimensions we will display
the formulae in arbitrary even or odd dimensions so that we may then compare the five-
dimensional Kerr–NUT–(A)dS result to the five-dimensional SUGRA black hole. As usual
we work in D = 2n+ ε dimensions and now are interested in finding a general solution of
the Proca equation [211]

∇aF
ab −m2P b = 0 , (4.2)

in the background (1.111), where F = dP . This equation represents a massive vector
field. Due to the mass term the equation no longer has the usual U(1) gauge symmetry
P → P + dλ. However an immediate consequence of (4.2) is the “Lorenz condition”,

∇aP
a = 0 , (4.3)

following from the antisymmetry of F .

Employing the LFKK ansatz (4.1) we seek the solution in the separated form

Z =
n∏
ν=1

Rν (xν) exp
(
i
n−1+ε∑
j=0

Ljψj

)
. (4.4)

Following [90,91], one can show the Lorenz condition (4.3) provides an explicit linear ODE
for the functions Rν(xν) appearing in the separation ansatz (4.4). Namely,

0 = ∇aP
a =

Z

A

n∑
ν=1

Aν
Uν

1

Rν

DνRν , (4.5)

where2

A =
n∏
µ=1

qµ , Aµ =
n∏

ν 6=µ

qν , and, qν = 1− µ2x2
ν . (4.6)

2Notice A and Aµ are generating functions for the symmetric polynomials (1.112) that enter the met-
ric (1.111). That is,

A(j) = (−1)j
dj

d(µ2)j
A , and, A(j)

µ = (−1)j
dj

d(µ2)j
Aµ .

So that
A =

∑
j=0

(−µ2)jA(j) Aµ =
∑
j=0

(−µ2)jA(j)
µ .
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The differential operator Dν is given by

Dν =
qν
xεν
∂ν

[Xνx
ε
ν

qν
∂ν

]
− 1

Xν

[n−1+ε∑
j=0

(−x2
ν)
N−1−jLj

]2

+ µ
( 2

qν
+ ε− 1

)n−1+ε∑
j=0

(−µ2)j+1−nLj + ε
L2
nqν
c2x2

ν

. (4.7)

The Lorenz condition (4.3) can be solved if the differential operators satisfy

DνRν = fνRν , (4.8)

where the polynomials fν are given by

fν =
n−1∑
k=0

Ck(−x2
µ)n−2−k , (4.9)

and are characterized by (n − 1) separation constants Cj, j = 0, . . . , n − 2. In this case,
using (2.31), ∇aP

a = 0 implies
n∑
ν=1

Aνfµ
Uν

=
n∑
j=0

(−µ2)j
n−1∑
k=0

Ck

n∑
ν=1

A
(j)
ν (−x2

ν)
n−2−k

Uν
=

n−1∑
j=0

Cj(−µ2)j = 0 . (4.10)

That is, the separation constants are subject to the constraint
n−1∑
j=0

Cj(−µ2)j = 0 . (4.11)

One can further show (in a coordinate independent manner) that the Proca equation
takes the form [90,93]

∇bF
ba −m2P a = Bab∇bJ , (4.12)

where the scalar J is given by

J = �Z − 2iµξaB
ab∂bZ −m2Z . (4.13)

Note here the � operator is the ordinary scalar ∇ag
ab∇a wave operator that we saw in the

previous section and has the explicit expression (2.7). Plugging everything in yields the
following explicit coordinate dependent formula for J :

J = Z

[
−m2 +

n∑
ν=1

1

UνRν

DνRν

]
. (4.14)
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Then substituting (4.8) and (4.9) into (4.14) implies

m2 −
n−1∑
k=0

Ck

n∑
ν=1

(−x2
ν)
n−1−k

Uν
= 0 . (4.15)

Finally, using the identities (2.31) this is zero if and only if we have

C0 = m2 . (4.16)

To summarize, the solution of the Proca equation (4.2) in the general Kerr–NUT–(A)dS
spacetimes in all dimensions can be found in the LFKK form (4.1), (4.4), for the mode
functions Rν satisfying the ordinary differential equations (4.8). Such a solution is gen-
eral in that it is characterized by (D − 1) independent separation constants {µ,Cj, Lk};
the constant C0 is not independent and is fixed by the mass of the vector according to
equation (4.16). Moreover, in four dimensions all three massive polarizations can be ex-
tracted from this solution [215]. It remains to be seen whether the same remains true in a
general dimension D, that is, whether all D − 1 polarizations of the massive and (D − 2)
polarizations of the massless vector field are encoded in this solution.

However useful the above results are, they have one drawback: the existence of the
principal tensor is limited to the off shell Kerr–NUT–(A)dS metrics [77]. For this reason
various generalizations of the notion of hidden symmetries, that would allow for more gen-
eral spacetimes while preserving integrability features of the symmetry, have been sought.
One such generalization, that of the Killing–Yano tensor with torsion [97–99], turns out to
be quite fruitful. Such a symmetry exists in a number of supergravity and string theory
spacetimes, where the torsion can be naturally identified with a defining 3-form of the the-
ory. Although less restrictive, the principal tensor with torsion still implies the essential in-
tegrability features of its torsion-less cousin and underlies separability of Hamilton–Jacobi,
Klein–Gordon, and torsion-modified Dirac equations on the black hole background.

With this in mind a natural question arises: is the vector field separability described
above limited to the vacuum spacetimes? It is the purpose of the present section to show
that it is not so. To this end, we first concentrate on a prototype non-vacuum black
hole spacetime known to admit the principal tensor with torsion [99], the Chong–Cvetič–
Lü–Pope black hole [60] of D = 5 minimal gauged supergravity. In the next chapter we
consider the Kerr–Sen black hole [57]. We will show that the LFKK ansatz can be used
for separability of the (properly torsion modified) vector equation in these background.
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4.2 Killing–Yano Tensors with Torsion

Let us start by briefly recapitulating a “torsion generalization” [99–102] of Killing–Yano ten-
sors which has applications for a variety of supergravity black hole solutions (See also [219]
for a discussion Killing tensors in supergravity spacetimes).

In what follows we assume that the torsion is completely antisymmetric and described
by a 3-form T , with the standard torsion tensor given by T dab = Tabcg

cd, where g is the
metric. The torsion connection ∇T acting on a vector field X is, in this context, defined
as

∇T
a X

b = ∇aXb +
1

2
T bacX

c , (4.17)

where ∇ is the Levi-Civita (torsion-free) connection. The connection ∇T satisfies the
metricity condition, ∇Tg = 0, and has the same geodesics as ∇. It induces a connection
acting on forms. Namely, let ω be a p-form, then

∇T
Xω = ∇Xω −

1

2

(
X · T

)
∧
1
ω , (4.18)

where we have used a notation of contracted wedge product introduced in [101], defined
for a p-form α and q-form β as

(α ∧
m
β)a1...ap−mb1...bq−m =

(p+ q − 2m)!

(p−m)!(q−m)!
αc1...cm[a1...ap−mβ

c1...cm
b1...bq−m]. (4.19)

Equipped with this, one can define the following two operations:

dTω ≡ ∇T ∧ ω = dω − T ∧
1
ω , (4.20)

δTω ≡ −∇T · ω = δω − 1

2
T ∧

2
ω . (4.21)

Note that in particular, for ω = T , we have δTT = δT .

A conformal Killing–Yano tensor with torsion k is a p-form which for any vector field
X satisfies the following equation [97–99]:

∇T
Xk −

1

p+ 1
X · dTk +

1

D − p+ 1
X ∧ δTk = 0 , (4.22)

where D stands for the total number of spacetime dimensions. In analogy with the Killing–
Yano tensors defined with respect to the Levi-Civita connection, a conformal Killing–Yano
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tensor with torsion f obeying δTf = 0 is called a Killing–Yano tensor with torsion, and
a conformal Killing–Yano tensor with torsion h obeying dTh = 0 is a closed conformal
Killing–Yano tensor with torsion.

These conformal Killing–Yano tensors with torsion possess many remarkable properties
of which the following three are especially important for generating other symmetries and
separability of test field equations (see [99,100] for the proof and other properties):

1. The Hodge star ? maps conformal Killing–Yano with torsion p-forms to conformal
Killing–Yano with torsion (D − p)-forms. In particular, the Hodge star of a closed
conformal Killing–Yano with torsion p-form is a Killing–Yano with torsion (D − p)-
form and vice versa.

2. Closed conformal Killing–Yano tensors with torsion form a (graded) algebra with
respect to a wedge product. Namely, let h1 and h2 be a closed conformal Killing–
Yano tensor with torsion p-form and q-form, respectively, then h3 = h1 ∧ h2 is a
closed conformal Killing–Yano with torsion (p+ q)-form.

3. Let h and k be two (conformal) Killing–Yano tensors with torsion of rank p. Then

Kab = h(a|c1...cp−1|kb)
c1...cp−1 (4.23)

is a (conformal) Killing tensor of rank 2.

In what follows, we shall concentrate on a principal tensor with torsion, h, which is a
non-degenerate closed conformal Killing–Yano with torsion 2-form. It obeys (c.f. with the
principal CCKY tensor (1.129))

∇T
Xh = X ∧ ξ , ξ = − 1

D − p+ 1
δTh . (4.24)

One key difference between this and the previously defined principal tensor is that, as
we have seen, the existence of the principal tensor uniquely determines the Kerr–NUT–
(A)dS class of black hole spacetimes [76–78] (see also [179]), but no full classification is
available for spacetimes with torsion. Nor is it clear if such spacetimes have to admit any
isometries (i.e. Killing vectors; in particular ξ need not be a Killing vector) [102]. On the
other hand, several explicit example solutions with a principal tensor where the torsion is
naturally identified with a 3-form of the particular theory (from which they are derived)
are known. Among them, the D-dimensional Kerr–Sen spacetimes [100] and black holes of
D = 5 minimal gauged supergravity [99] are what we focus on here.

71



Starting from one such tensor, one can generate (via the three properties above) the
towers of Killing tensors, and (closed conformal) Killing–Yano tensors with torsion. In their
turn, as for the torsion free case such symmetries can typically be associated with symmetry
operators for a given field operator. For example, the principal tensor with torsion in
the Chong–Cvetič–Lü–Pope and Kerr–Sen black hole guarantees the integrability of the
geodesic motion [220–222], as well as separability of scalar [100, 220, 223] and modified
Dirac [220], [100, 224, 225] equations. Our aim is to show that it also guarantees the
separability of properly torsion modified (massive) vector field equations.

4.3 Black holes in Minimal Gauged Supergravity

The bosonic sector ofD = 5 minimal gauged supergravity is governed by the Lagrangian [60]

£ = ?(R + Λ)− 1

2
F ∧ ?F+

1

3
√

3
F ∧ F ∧ A , (4.25)

where Λ is the cosmological constant, A is the U(1) gauge field and F its field strength.
This yields the following set of Maxwell and Einstein equations:

dF = 0 , d ? F − 1√
3
F ∧ F = 0 , (4.26)

Rab −
1

2

(
FacF

c
b −

1

6
gabF

2
)

+
1

3
Λgab = 0 . (4.27)

In this case the torsion can be identified with the Maxwell field strength according to [99]

T = − 1√
3
? F . (4.28)

Having done so, the Maxwell equations can be written as

δTT = 0 , dTT = 0 . (4.29)

In other words, the torsion T is “T -harmonic”. Here, the first equality follows from the
fact that δTT = δT , while the second is related to the special property in five dimensions
(with Lorentzian signature),

dTω = dω + (?T ) ∧ (?ω) , (4.30)
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which valid for any 3-form ω. The principal tensor equation (4.24) can now explicitly be
written as

∇chab = 2gc[aξb] +
1√
3

(?F )cd[ah
d
b] ,

ξa =
1

4
∇bh

ba − 1

2
√

3
(?F )abchbc . (4.31)

A general doubly spinning charged black hole solution in this theory has been con-
structed by Chong, Cvetič, Lü, and Pope [60]. It can be written in a symmetric Wick-
rotated form [99]:

g =
∑
µ=1,2

(
eµeµ + êµêµ

)
+ ê0ê0 , (4.32)

A =
√

3c(A1 + A2) , (4.33)

where the orthonormal basis and metric functions are given by

e1 =

√
U1

X1

dx1 , ê1 =

√
X1

U1

(dψ0 + x2
2dψ1) ,

e2 =

√
U2

X2

dx2 , ê2 =

√
X2

U2

(dψ0 + x2
1dψ1) ,

ê0 =
ic

x1x2

[
dψ0+(x2

1+x2
2)dψ1+x2

1x
2
2dψ2−x2

2A1−x2
1A2

]
,

A1 = − e1

U1

(dψ0 + x2
2dψ2) , A2 = − e2

U2

(dψ0 + x2
1dψ1) ,

U1 = x2
2 − x2

1 = −U2 . (4.34)

The solution is stationary and axisymmetric, corresponding to three Killing vectors
∂ψ0 , ∂ψ1 , ∂ψ2 , and possesses two non-trivial coordinates x1 and x2. Here we choose x2 >
x1 > 0 and note that the metric written in this form has det g < 0. We have also used a
“symmetric gauge” for the U(1) potential; the electric charge of the Maxwell field F = dA
depends on a difference (e1 − e2).

In order to satisfy the Einstein–Maxwell equations, the metric functions take the fol-
lowing form:

X1 = A+ Cx2
1 −

Λ

12
x4

1 +
c2(1 + e1)2

x2
1

,

X2 = B + Cx2
2 −

Λ

12
x4

2 +
c2(1 + e2)2

x2
2

, (4.35)
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where of the four free parameters A,B,C, c only three are physical (one can be scaled away)
and are related to the mass and two rotations. As usual, the separability property shown
below does not need the special form (4.35) and occurs off-shell, for arbitrary functions

X1 = X1(x1) , X2 = X2(x2) . (4.36)

As shown in [99], the spacetime admits a principal tensor with torsion, which takes the
form

h =
∑
µ=1,2

xµe
µ ∧ êµ . (4.37)

Interestingly, the torsion (4.28) in Chong–Cvetič–Lü–Pope spacetimes is very special as it
satisfies the following conditions:

(?F )d[abh
d
c] = 0 , (?F )abch

bc = 0 . (4.38)

This implies that the tensor is not only dT -closed (as it must be), but it is also d-closed
and obeys:

dTh = dh = 0 , ξ = −1

4
δTh = −1

4
δh = ∂ψ0 . (4.39)

Therefore it can be locally written in terms of a potential

h = db , b = −1

2

[
(x2

1 + x2
2)dψ0 + x2

1x
2
2dψ1

]
. (4.40)

Using the properties of closed conformal Killing–Yano tensors with torsion, the principal
tensor generates a Killing–Yano with torsion 3-form ?h, and a rank-2 Killing tensor

Kab = (?h)acd(?h) cd
b = hach

c
b −

1

2
gabh

2 . (4.41)

Such symmetries are responsible for separability of the Hamilton–Jacobi, Klein–Gordon,
and torsion-modified Dirac equations in these spacetimes.

4.4 Separability of Vector Perturbations

4.4.1 Troca Equation

Let us now proceed and consider a test massive vector field P on the above background.
It is reasonable to expect that, similar to the Dirac case [99,101], the corresponding Proca
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equation will pick up the a torsion generalization. In what follows we shall argue that the
natural sourceless massive vector equation to consider is

∇ · F −m2P = 0 , (4.42)

where m is the mass of the field, and the field strength F is defined via the torsion exterior
derivative,

F ≡ dTP = dP − P · T . (4.43)
Being a torsion generalization of the Proca equation (4.2), we shall refer to the equation
(4.42) as a Troca equation3. It implies the “Lorenz condition”

∇ · P = 0 . (4.44)

To motivate the above form of the Troca equation, we demand that it is linear in
P , reduces to the Proca equation in the absence of torsion, and would obey the current
conservation in the presence of sources. We have three natural candidates for generalizing
the Maxwell operator ∇ · dP , namely:

O1 = ∇ · dTP , O2 = ∇T · dP , O3 = ∇T · dTP . (4.45)

However, the last two do not obey the current conservation equation. Indeed, due to
∇T · (∇T ·ω) 6= 0 (for any form ω), we have ∇ ·O2 = ∇T ·O2 6= 0, and similarly for O3. So
we are left with O1 which, when extended to the massive case, yields the Troca equation
(4.42).

Let us also note that the choice of operator O1 is “consistent” with the Maxwell equation
for the background Maxwell field. Namely, due to the identity

X · ?ω = ?(ω ∧X) , (4.46)

valid for any vector X and any p-form ω, the field equations (4.26) can be written as

0 = d ? F − 1√
3
F ∧ F = d ? dA− d

( 1√
3
F ∧ A

)
= d ? dA+ d ?

(
A · 1√

3
? F
)

= d ? dTA . (4.47)

That is, identifying A with the Proca field in the test field approximation gives

∇ · dTP = 0 , (4.48)

which is the massless Troca equation (4.42) (upon treating the torsion as an independent
field).

3Thanks to L.T. for the naming.
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4.4.2 Separability

Having identified the Troca equation (4.42), let us now find its general solution in the
supergravity background (4.32). To this purpose we employ the LFKK ansatz (4.1) and
seek the solution in a separated form

Z =
∏
ν=1,2

Rν (xν) exp
[
i

2∑
j=0

Ljψj

]
, (4.49)

where {µ, L0, L1, L2} are four separation constants.

As in the case without torsion, it is useful to start with the Lorenz condition (4.44).
We find

∇aP
a = Z

∑
ν=1,2

1

Uν

DνRν

qνRν

, (4.50)

where the differential operator Dν is now given by

Dν =
qν
xν
∂ν

(
Xνxν
qν

∂ν

)
− 1

Xν

( 2∑
j=0

(−x2
ν)

1−jLjν

)2

+
2µ

qν

2∑
j=0

(−µ2)j−1Ljν +
L2

2qν
c2x2

ν

, (4.51)

and we have defined
qν = 1− µ2x2

ν , Ljν = Lj(1 + δj2eν) . (4.52)

The latter definition is essentially the only difference when compared to the five-dimensional
torsion-less case, c.f. (4.7).

In order to impose the Lorenz condition, this time we will use the LFKK separability
lemma 2.1.1 from chapter 2. Thus, demanding ∇aP

a = 0, using the expression (4.50), and
the above lemma for n = 2 and fν = DνRν/(qνRν), yields the separated equations

DνRν = qνfνRν , (4.53)

where fν is given by (2.22) with n = 2, that is, fν = C0.

With this at hand, let us now turn to the Troca equation (4.42). Using the ansatz (4.1)
and the Lorenz condition (4.44), the L.H.S. of the Troca equation takes the following form:

∇bF ba −m2P a = Bab∇bJ , (4.54)

where the scalar J is, as in the Kerr–NUT–(A)dS case [90,91], c.f. (4.13), given by

J = �Z − 2iµξaB
ab∂bZ −m2Z , (4.55)
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or more explicitly,

J = Z
∑
ν=1,2

1

UνRν

[
Dν −m2

(
−x2

ν

)]
Rν . (4.56)

One can then repeat the argument presented above for the Maxwell case with n = 2 to
find4

C0 = m2 , C1 =
m2

µ2
. (4.57)

Again C0 is not an independent separation constant and, in the case of massless vectors,
we can set m = 0 = C0.

To summarize, we have shown that one can apply a separation of variables for the Troca
equation (4.42) in the Chong–Cvetič–Lü–Pope black hole spacetime. The solution can be
found in the form of the LFKK ansatz (4.1), where the scalar function Z is written in the
multiplicative separated form (4.49), and the modes Rν satisfy the ordinary differential
equations (4.53) with C1 = m2/µ2. The obtained solution is general in that it depends
on four independent separation constants {µ, L0, L1, L2}. It remains to be seen if, similar
to the Kerr–NUT–(A)dS case [215], all polarizations (four in the case of massive field and
three for m = 0) are captured by our solution.

4.5 Summary

The principal tensor is a very powerful object and proves key to separating the vector
equations. In particular, one needs to concentrate not on the field strength (as previously
thought) but rather employ a new LFKK separability ansatz (4.1) for the vector potential
itself. The leads to new insights for massive vector fields in four dimensions where the
previously much used Teukolsky methods using the Newman–Penrose formalism fails.

In this chapter we have shown that the applicability of the LFKK ansatz goes far beyond
the realm previously expected. Namely, we have demonstrated the separability of the vector
field equation in the background of the Chong–Cvetič–Lü–Pope black hole of minimal
gauged supergravity. Such a black hole no longer possesses a principal tensor. However,
upon identifying the Maxwell 3-form of the theory with torsion, a weaker structure, the
principal tensor with torsion, is present. Remarkably, such a structure enters the LFKK
ansatz in precisely the same way as the standard (vacuum) principal tensor and allows
one to separate the naturally torsion modified vector (Troca) field equations: “principal

4There is actually a misapplication of the separability lemma 2.1.1 in the paper [203] stating C0 = m2/µ2

which I fix here.
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tensor strikes again”. This result opens future horizons for applicability of both the LFKK
ansatz and the torsion modified principal tensor. In the next chapter we consider a physical
application of this separability to the Kerr–Sen black hole.
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Chapter 5

Massive Vector Fields in Kerr–Sen and
Kerr–Newman Spacetimes

Although direct detection of dark matter proves to be very difficult, recently a new line
of investigation has opened up with a flurry of papers considering the interplay of these
ultralight bosons and superradiance from black holes [53,175,226–229]. In particular, it has
been shown that the instabilities from these superradiant modes can, in principle, be used
to detect beyond Standard Model particles [175] and put bounds on the potential masses of
dark matter candidates, e.g. [227]. For example, in the LIGO/LISA era ultralight bosons
and superradiance can leave signatures in the signals of detected gravitational waves [226,
230–232]; see [53] for recent fully relativistic calculation of the resulting gravitational wave
signals. The first step towards studying these instabilities is to consider test fields on a
background spacetime. Naturally, almost all the previous studies have focused on the Kerr
rotating black hole of Einstein’s general relativity likely to be the most astrophysically
relevant.

However, taking seriously the low energy limits of string theory leads to new kinds of
black holes, and, if one is extending the Standard Model to include ultralight bosons it is
a natural question to ask how the superradiant instabilities generated by these particles
are modified by extensions to general relativity. Such extensions lead to black holes that
typically carry extra fields and charges. In the astrophysical D = 4 dimensions the Kerr–
Sen geometry [57] arises from the low energy limit of heterotic string theory. It represents
a black hole with massM and U(1) charge Q and contains two extra background fields; the
scalar dilaton Φ and the 3-form H. In the limit where these two fields vanish the spacetime
reduces to the Kerr black hole.
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On the other hand, this spacetime should be compared to the Kerr–Newman solu-
tion [13] which is the unique stationary black hole solution to the Einstein equations with
U(1) charge (it can also be understood as a solution of N = 2, D = 4 supergravity).
Both Kerr–Newman and Kerr–Sen black holes are stationary and axisymmetric space-
times, possessing two Killing vectors that aid in understanding the behaviour of test fields
in these backgrounds. In the Kerr–Newman case there exists an additional hidden symme-
try of the principal Killing–Yano tensor, which gives rise to Carter’s constant for charged
geodesics [37]. For the Kerr–Sen spacetime only a generalized principal tensor with torsion
exists, which is a weaker but still rather useful structure [100]. However as we have seen
in the previous chapter this still proves very useful for the integrability of geodesics and
separability of fields.

The aim of this chapter is to present results on the superradiant instabilities of the
Kerr–Sen and Kerr–Newman black holes, as triggered by the ultralight massive bosons.
These are well understood in the case of massive scalar fields, see [233] and [234], but
the corresponding study for massive vectors is currently missing. The reason is simple,
since as mentioned previously, the methods of Teukolsky did not work [205,206]. Even for
vacuum (Kerr) black holes, the corresponding Proca equations have only recently been sep-
arated [89] and the corresponding instabilities studied [91]. As a consequence the problem
was investigated either using approximations [207,208,227] or employing serious numerical
analysis [50, 51,228].

However, as we have seen in the previous chapter there is a new window into the
separability for vector fields due to the LFKK ansatz (4.1) by Lunin [89], and simplified and
written in covariant form by Frolov–Krtouš–Kubizňák [90, 91]. We also saw that this can
be applied to study the Proca equations in the background of the Chong–Cvetič–Lü–Pope
black hole of D = 5 minimal gauged supergravity [60] where, as for Kerr–Sen, the principal
tensor must be generalized to the case with torsion and is a weaker construction [99,
149]. Despite these significant differences, the LFKK ansatz still applies and the (torsion)
modified Proca equations decouple and separate [203].

In this chapter, we will apply the LFKK ansatz to separate the Proca equations in the
Kerr–Sen black hole background. Similar to the black hole of minimal gauged supergravity,
the corresponding Proca equations have to be modified in the presence of torsion, now
naturally identified with the 3-form field H. Again we will call this the Troca equation. To
account for the dilaton field Φ, we work in the string frame. The corresponding unstable
superradiant modes were studied numerically by Ó.J.C Dias and J.E. Santos in ref. [204]
from which this chapter is derived. This was done in an astrophysically viable situation
where the black holes are fast spinning (close to extremal) and weakly charged [235, 236].
Here I reproduce the most relevant figure and physical discussion, but not the numerical
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details, as I was not involved in this work. The interested reader is referred to the original
paper [204] for the details.

5.1 Kerr–Sen and Kerr–Newman Black Holes

In this section we present the Kerr–Sen and the Kerr–Newman metrics, the background
spacetimes in which we will study the instability modes of the Proca equation. The two
metrics we consider both describe rotating and charged black hole spacetimes. However,
there are some key differences in the Kerr–Sen case due to modifications of general relativity
coming from the low energy heterotic string theory effective action.

5.1.1 Kerr–Newman Geometry

The Kerr–Newman solution [13] is the most general solution of the Einstein–Maxwell equa-
tions for an asymptotically flat, stationary and axisymmetric black hole. Its line element
and vector potential read:

ds2 =− ∆

ρ2

(
dt− a sin2θdφ

)2
+
ρ2

∆
dr2 +

sin2θ

ρ2

[
a dt− (r2 + a2)dφ

]2

+ ρ2dθ2 ,

A =− Qr

ρ2

(
dt− a sin2θdφ

)
, (5.1)

where
ρ2 = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 +Q2 . (5.2)

The solution describes a black hole with mass M , charge Q, angular momentum J = Ma,
and a magnetic dipole moment µg = Qa. Notice that this is only a minor modification of
the Kerr metric (1.89).

The metric possesses a curvature singularity at ρ2 = 0, which is protected by an event
horizon at r = r+ ≡ M +

√
M2 − a2 −Q2 provided that a2 + Q2 ≤ M2. As for the Kerr

black hole, discussed in the introduction, when the equality holds we have an extremal
black hole. Likewise, the rotation of the Kerr–Newman black hole also causes inertial
frame dragging whose extreme manifestation is the existence of the ergosphere, for r+ <
r < rE ≡ M +

√
M2 −Q2 − a2 cos2 θ. In this region the time-like vector ∂t becomes null

and therefore any massive particle must rotate. As before, it is this region that leads to
superradiant emission and is responsible for the instability modes for perturbations on this
spacetime.
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The black hole horizon rotates with angular velocity

ΩH = − gtφ
gφφ

=
a

r2
+ + a2

, (5.3)

and can be assigned the following Hawking temperature, entropy, and electrostatic poten-
tial:

TH =
∆′(r+)

r2
+ + a2

=
r2

+ − a2 −Q2

4πr+(r2
+ + a2)

, S = π(r2
+ + a2) , φH =

Qr+

r2
+ + a2

. (5.4)

These quantities satisfy the first law of black hole thermodynamics

δM = THδS + ΩHδJ + φHδQ , (5.5)

as well as the associated Smarr relation, M = 2(THS + ΩHJ) + φHQ . Notice this is
exactly the same as the first law (1.101) but with an additional work term related to the
electromagnetic charge and potential. In fact this is the most general first law one can
find in asymptotically flat spacetimes (see e.g. [168]). Relaxing the asymptotic flatness
condition leads to a much richer thermodynamic structure (see e.g. [237–244])

The Kerr–Newman metric continues to admit a hidden symmetry of the principal tensor
(PT), which is a non-degenerate closed conformal Killing–Yano 2-form h, obeying the usual
CCKY equation (1.107). In these Boyer–Lindquist coordinates it explicitly reads

h = r(dt− a sin2θ dφ) ∧ dr − a cos θ
[
a dt− (r2 + a2)dφ

]
∧ d cos θ , (5.6)

and gives rise to the associated Killing tensor

Kab = hach
c
b −

1

2
gabh

2 . (5.7)

This now generates the generalized Carter’s constant for charged geodesics. It also yields
the two independent isometries of the spacetime: ξa in (1.107) and ηa = Kabξb [37].

Let us now compare this to the Kerr–Sen spacetime.

5.1.2 Kerr–Sen Geometry

The Kerr–Sen black hole [57] is an exact classical solution of the low-energy effective theory
describing heterotic string theory given by the following action:

S =
1

16π

∫
d4x
√
−g eΦ

(
R + gab∂aΦ∂bΦ− FabF ab − 1

12
HabcH

abc

)
, (5.8)
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where gab represents the metric in the string frame, Φ is the dilaton field, F = dA is the
Maxwell field strength, and H = dB − 2A ∧ F is a 3-form defined in terms of the vector
potential A and a 2-form potentialB1. The action is invariant under a U(1) transformation
A → A + dλ provided we also send B → B + 2λF and the corresponding equations of
motion for the background fields A and H are,

∇a
[
eΦ(Fab −HabcA

c)
]

= 0 , ∇a(eΦHabc) = 0 . (5.9)

These will be important in section 5.2 where we motivate a generalization of the Proca
equation to this background. The full set of equations of motion is supplemented by the
Einstein and dilaton equations. Since these will not play any role in the further discussion
we do not write them here explicitly and refer the interested reader to for example [100].

In any case, the Kerr-Sen metric in the standard Boyer–Lindquist-type coordinates and
the string frame reads [57,100,223]:

ds2 =e−Φ
{
−∆b

ρ2
b

(
dt− a sin2θ dφ

)2
+
ρ2
b

∆b

dr2 +
sin2θ

ρ2
b

[
a dt− (r2 + 2 b r + a2)dφ

]2

+ ρ2
bdθ

2
}
,

B =
2 b r

ρ2
b

a sin2 θdt ∧ dϕ , A=−Qr
ρ2
e−Φ
(
dt− a sin2θdφ

)
, e−Φ =

ρ2

ρ2
b

, (5.10)

where the metric functions are given by

ρ2 = r2 + a2 cos2 θ , ρ2
b = ρ2 + 2br , ∆b = r2 − 2(M − b)r + a2 . (5.11)

The 3-form H reads

H = −2 b a

ρ4
b

dt ∧ dφ ∧
[(
r2 − a2 cos2θ

)
sin2θ dr − r∆b sin 2θdθ

]
. (5.12)

Note that, the transformation gab → eΦgab can be implemented to go from the string frame
to the Einstein frame. Our choice for the string frame is guided by the fact that, in the
context of separability, the string frame seems to be more fundamental than the Einstein
one, as are the hidden symmetries present in the Kerr–Sen spacetime, see [100]2.

1Note that we have rescaled the vector potential A → 2
√

2A so that the Maxwell Lagrangian has the
canonical prefactor [57].

2However, perhaps a generalization of the conformal techniques presented in the previous part of the
thesis would allow the separability (of certain) fields to continue to hold in the Einstein fame.
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As mentioned in the introduction, the solution describes a black hole with mass M ,
U(1) charge [57]3

Q =
1

4π

∫
S2
∞

eΦ ? (F − A ·H) , (5.13)

angular momentum J = Ma, and magnetic dipole moment µg = Qa. When the “twist
parameter”4

b =
Q2

2M
(5.14)

is set to zero, the solution reduces to the Kerr geometry. The horizon of the Kerr–Sen black
hole is located at r = r+ ≡ M − b+

√
(M − b)2 − a2 when the inequality M − b ≥ |a|

holds. As in the Kerr–Newmann case the ergosphere is present and responsible for the
instability modes but it is now located at r+ < r < re ≡ M − b+

√
(M − b)2 − a2 cos2 θ.

Moreover, the Kerr-Sen black hole also obeys the first law, (5.5), where now the (Einstein
frame) thermodynamic quantities are given by

ΩH =
a

r2
+ + 2br+ + a2

, φH =
Qr+

r2
+ + 2br+ + a2

,

TH =
r2

+ − a2

4πr+(r2
+ + 2br+ + a2)

, S = π(r2
+ + 2br+ + a2) . (5.15)

The spacetime no longer possesses the hidden symmetry of the principal tensor. How-
ever, as shown in [180] a weaker structure of the principal tensor with torsion exists [99].
This obeys the generalized principal tensor equation of the previous chapter (4.24). More
explicitly we have

∇T
c hab = gcaξb − gcbξa , ξa =

1

3
∇T
c h

ca . (5.16)

Here the torsion is simply identified [180] with the 3-form H, (5.12),

Tabc = Habc . (5.17)

In these coordinates the principal tensor with torsion reads,

h = e−Φ
[
r(dt− a sin2θdφ) ∧ dr − a cos θ

[
a dt− (r2 + 2br + a2)dφ

]
∧ d cos θ

]
. (5.18)

3That this is the conserved charge of the system follows from the equation of motion (5.9) for F . See
for instance [245] for an explicit calculation of the charges in the Kerr–Sen spacetime.

4This is distinct from, and not to be confused with, the NUT parameter(s). Kerr–Sen black holes can
have these see [100] and appendix C.
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Despite being a weaker structure, the principal tensor with torsion still gives rise to stan-
dard Killing tensor, via (5.7). This can be generalized to all dimensions and has the
corresponding Killing tower. However, the isometries (Killing vectors) of the spacetime are
no longer straightforwardly generated from h [180].

5.2 Separability of Proca Equations

In this section, in a similar manner, to the previous chapter we motivate the new form of
the Proca equations for the Kerr–Sen spacetime. We then outline our ansatz and resulting
separated equations using the (generalized) hidden symmetries of these two spacetimes.
As the methods are, more or less, the same as the previous chapter the full details are
relegated to appendix C.

5.2.1 Proca in Kerr–Newman Spacetime

The separability of the Proca equation in the Kerr–Newmann background was demon-
strated in [91]—the Kerr–Newman metric being a special case of the D = 4 canonical
metric for which the separability was shown there. In Boyer–Lindquist type coordinates
the scalar potential Z entering the LFKK anastaz (4.1) assumes the standard multiplicative
separation form,

Z = R(r)S(θ) eimφφ e−iωt , (5.19)

where mφ and ω are the eigenvalues of i∂t and −i∂φ. Note that φ has period 2π, and
regularity of the spherical harmonics S(θ) eimφφ requires that mφ ∈ Z.

Since the details of the separation follow the same form as the previous chapter we
just present the result here and refer the reader to the original material [90, 91]. With
this ansatz, the Proca equation (4.2) reduces to two differential equations in r and θ,
respectively, which only couple to each other via their dependence on the Killing parameters
{ω,mφ}, the separation constant µ, the Proca mass parameter m, and the black hole
parameters {M,Q, a}. These equations take the explicit form in Boyer-Lindquist type
coordinates,

d

dr

[
∆

qr

dR

dr

]
+

[
K2
r

∆ qr
+

2− qr
q2
r

σ

µ
− m2

µ2

]
R = 0 , (5.20a)

1

sin θ

d

dθ

[
sin θ

qθ

dS

dθ

]
−
[

K2
θ

qθ sin2 θ
+

2− qθ
q2
θ

σ

µ
− m2

µ2

]
S = 0 , (5.20b)
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where
Kr = amφ − (a2+r2)ω , Kθ = mφ − aω sin2 θ ,

qr = 1 + µ2r2 , qθ = 1− µ2a2 cos2 θ ,

σ = aµ2 (mφ − aω) + ω ,

(5.21)

and ∆ is as in (5.2).

This separation depends crucially on the existence of the principal tensor in a, by now
hopefully familiar, number of ways. First, the separation occurs in geometrically preferred
coordinates determined by the principal tensor – coordinates r and cos θ are related to
the eigenvalues of the principal tensor, e.g. [37]. Second, the principal tensor explicitly
enters the separation ansatz (4.1) via the polarization tensor B. Third, the principal
tensor gives rise to a complete set of mutually commuting operators that guarantee this
separability [90, 180, 217]. Namely, apart from the (trivial) ones connected with Killing
vectors, the following two (2nd order) operators directly link to the separation ansatz:

ĝ = ∇a(g
ab∇b)− 2iµVag

ab∇b , K̂ = ∇a(K
ab∇b)− 2iµVaK

ab∇b , (5.22)

where Kab is the Killing tensor (4.41) and V a = ξbB
ba. See appendix C for more details.

5.2.2 Generalized Proca in Kerr–Sen Spacetime

Test fields in the Kerr–Sen background naturally pick up modifications due to the presence
of background fields φ,A, and H. See for example [99–101] for a modification of the Dirac
equation. To motivate the generalized Proca equation, we assume, as in the previous
chapter (and ref. [203]), that the massive vector field P couples to the background fields
Φ and H in analogy to the massless Maxwell field already present in the Kerr–Sen action
(5.8). Moreover, we also require that the modified Proca equation be linear in P , reduce to
the Proca equation in the absence of the background fields, and obey current conservation
in the presence of sources.

It follows that there are two key modifications to the Proca equation in the Kerr–Sen
background. First, in the string frame the dilaton enters the field equation, now called the
Troca equation

∇a
(
eΦFTab

)
−m2eΦPb = 0 . (5.23)

Second, the 3-form Habc = Tabc contributes to the field strength in a torsion-like fashion

FTab = (dTP )ab = ∇aPb −∇bPa − P cHcab , (5.24)
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where dT is the torsion generalization of the exterior derivative, dT = ∇T∧5. With this
definition and using the equation of motion for H, (5.9), the Troca field equation (5.23)
takes the same form as the equation of motion of the Maxwell field with the addition of
the standard mass term. (5.23) also implies a modified “Lorenz condition”

∇a(e
ΦP a) = 0 . (5.26)

To separate the Troca equation (5.23) in the Kerr–Sen background we exploit the same
machinery as for the Kerr–Newman case, with the only difference that the principal tensor
(5.6) is now replaced with the principal tensor with torsion (5.18). Upon this, the LFKK
ansatz (4.1) continues to work (see appendix C) and we recover the following separated
equations:

d

dr

[
∆b

qr

dR

dr

]
+

[
K2
r

∆b qr
+

2− qr
q2
r

σ

µ
− m2

µ2
−4brωµ

q2
r

]
R = 0 , (5.27a)

1

sin θ

d

dθ

[
sin θ

qθ

dS

dθ

]
−
[

K2
θ

qθ sin2 θ
+

2− qθ
q2
θ

σ

µ
− m2

µ2

]
S = 0 , (5.27b)

where
Kr = amφ − (a2+r2 + 2rb)ω , Kθ = mφ − aω sin2 θ ,

qr = 1 + µ2r2 , qθ = 1− µ2a2 cos2 θ ,

σ = aµ2 (mφ − aω) + ω ,

(5.28)

which are to be compared to the Proca equations in the Kerr–Newman spacetime (5.20),
and upon setting b = 0 reduce to the those in the Kerr spacetime. Note that the angular
equation in all three cases is exactly the same, while the radial one picks up some small
modifications.

Similar to the Kerr–Newman case, the separability is underlain by a complete set of
mutually commuting symmetry operators, one of which is constructed from the generalized
principal tensor,

ĝ = e−Φ∇a(e
Φgab∇b)− 2iµVag

ab∇b , K̂ = e−Φ∇a(e
ΦKab∇b)− 2iµVaK

ab∇b . (5.29)

See appendix C for more details.
5Note that, again, of the 3 possible generalizations of the Maxwell operator ∇ · dP :

O1 = ∇ · (dTP ) , O2 = ∇T · dP , O3 = ∇T · (dTP ) , (5.25)

it is only the first one which obeys the current conservation equation and (upon including the dilatonic
modification) consequently appears in (5.23).
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Now that we have shown the separated the Proca and Troca equations for the Kerr–
Newman and Kerr–Sen black holes we can present some of the results of the numerical
investigations in ref. [204]. Again we will not discuss the numerical details and refer the
original work.

5.3 Finding Unstable Modes

5.3.1 Setting up the Problem—Boundary Conditions

To begin the numerical analysis it is important to choose the appropriate boundary con-
ditions. Then one can employ the methods outlined in [204] and the references therein6 to
numerically solve the resulting ODEs (5.20) and (5.27).

In any case, it is useful to parameterize things in terms of the horizon radius and
work with compact coordinates. For example, on can use ∆(r+) = 0 (for Kerr–Newman)
or ∆b(r+) = 0 (for Kerr–Sen) to solve for M as a function of the outer horizon radius
parameter r+. Next we can define y ∈ [0, 1] and a nicer polar coordinate by

r =
r+

1− y2
, cos θ = 2x− 1 . (5.30)

Then the horizon is located at y = 0 and asymptotic infinity is at y = 17.

Let us now consider the appropriate boundary conditions for the radial and angular
functions R(y) and S(x)8. We are seeking modes that can trigger superradiance instabilities
as these will determine the signatures of the Proca fields in gravitational wave signals (e.g.
[53]). In order to be bound states, these modes must have frequencies whose real part is
smaller than the potential barrier height set by the Proca field mass, Re(ω) < m (see the
discussion in the introduction). A Frobenius analysis at asymptotic infinity y = 1 then
indicates that unstable modes must decay as

R
∣∣
y→1
∼ e

−
√
m̃2−ω̃2

1−y2 (1− y2)Σ , where Σ ≡ i (1 + ã2 + Q̃2)
(m̃2 − 2ω̃2)

2
√
m̃2 − ω̃2

. (5.31)

6Or ask collaborators kindly!
7For intermediate numerical calculations one also works with dimensionless quantities

{ã = a/r+ , Q̃ = Q/r+ , m̃ = mr+ , ω̃ = ω r+ , µ̃ = µ r+} .

8Many more details of this can be found in [246,247] and pedagogically described in [194].
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Here, we have already imposed a boundary condition that eliminates a solution that grows
unbounded at infinity as e

√
m̃2−ω̃2/(1−y2).

At the horizon, regularity of the perturbation in ingoing Eddington–Finkelstein coor-
dinates requires that we impose the boundary condition,

R
∣∣
y→0
∼ y

−i
ω−mφΩH

2πTH , (5.32)

where ΩH and TH are the horizon angular velocity and temperature, given in see (5.3),
(5.4) and (5.15), respectively. This condition excludes outgoing modes, yi (ω−mφΩH)/(2πTH),
at the horizon.

We need to consider north and south poles of the S2 for the angular function S(x).
Here, regularity of the perturbations requires that mφ be an integer. We are interested
in unstable modes which must co-rotate with the black hole because these will extract
energy from the black hole (see also the discussion in the introduction). Thus we must
have mφ > 0. Under these conditions, regularity requires that the perturbations behave as

S
∣∣
x→0
∼ x

1
2
|mφ| , S

∣∣
x→1
∼ (1− x)

1
2
|mφ| , (5.33)

which eliminates irregular modes that would diverge as x−
1
2
|mφ|(1− x)−

1
2
|mφ|.

The boundary conditions (5.32) and (5.33) are straightforwardly imposed if we define
the new functions qi, i = 1, 2, as

R(y) = e
−
√
m̃2−ω̃2

1−y2 (1− y2)Σy
−i

ω−mφΩH
2πTH q1(y) , S(x) = x

1
2
|mφ|(1− x)

1
2
|mφ| q2(x) , (5.34)

and search numerically for regular functions q1(y) and q2(x) [204]. Our pair of Proca ODEs
are coupled only via the eigenvalues ω and µ, but this is a non-linear eigenvalue problem
for ω and µ. Finally we mention that all the results that we present in the next section
are accurate at least up to the 11th decimal digit [204].

5.3.2 Parameter Space for the Proca System

The Proca-black hole system has various scales; e.g. for the black hole: angular momentum,
mass, and charge; and for the Proca field: frequency, mass, and angular eigenvalue. So we
present the dimensionless physical quantities measured in black hole mass units, namely9

{J/M2, Q/M,mM,ωM, µM} . (5.35)
9Confusingly, in the natural units we are using, the black hole mass is measured in units length as can

be seen in (5.11). Hence the black hole mass multiplied by the Proca mass is dimensionless [Mm] = 0.
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Note that J = Ma so the dimensionless rotation a/M also gives the dimensionless angular
momentum of the black hole: J/M2 = a/M .

We are considering non-extremal black holes which reduce to the (non-extremal) Kerr
black hole when the charge is switched off. Thus we have a 3-parameter phase space
parameterized by the Proca mass the black hole angular momentum, and the electric
charge, which respectively satisfy

mM ≥ 0 , 0 ≤ J/M2 ≤ 1 , 0 ≤ Q/M ≤ Q/M
∣∣
ext . (5.36)

For Kerr–Newman and the Kerr–Sen black hole extremality (i.e. zero temperature) for a
given a/M is attained at

Q/M
∣∣
ext =

√
1− J2/M4 , Q/M

∣∣
ext =

√
2
√

1− J/M2 , (5.37)

respectively.

In this thesis, I will present just the following case. We consider a fixed angular momen-
tum J/M2 = a/M of the black hole and the Proca mass mM also fixed. Then I reproduce
the plot in [204] which shows the change of the frequency ωM and angular eigenvalue µM
as the asymptotic U(1) charge of the Kerr-Newman and Kerr–Sen black holes are varied
0 ≤ Q/M ≤ Q/M

∣∣
ext. The qualitative features for other values of J/M2 and mM are

similar. In four dimensions Proca fields have three polarization degrees of freedom, see the
discussion in [90,91] and particularly [215] for how to extract these from the LFKK ansatz.
Here, we will only discuss the most unstable polarization. For the same reason, we also
only consider its lowest radial eigenvalue and lowest azimuthal number mφ = 1.

5.3.3 Instabilities of Proca Fields in Kerr–Newman and Kerr–Sen
Black Holes

Generically we find that the Kerr system, Q/M = 0, is unstable due to the rotation.
However we want to distinguish the effect of the charge in the Kerr–Sen and Kerr–Newman
black holes. Thus it is appropriate to consider Proca masses such that the instability effect
is maximized. This happens when the Compton wavelength is comparable to the size of
the black hole [215], i.e. restoring the physical units

GM

c2
/

(
~
mc

)
∼ O(1) . (5.38)

This fixes the Proca mass to be m . 10−11×M�/MeV which fits within the recent model
with a mass of 10−22eV [248]. Thus we choose the mass such that mM = 0.51. We find
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this to give a significant instability in the Kerr spacetime. To see the full discussion and
numerical work to find appropriate parameter ranges I refer the reader to our work [204].
I will now display the results for the unstable modes of the Kerr–Newman and Kerr–Sen
black holes in Figure 5.1.

The brown diamond here in Figure 5.1 represents the Kerr black hole which has J/M2 =
a/M = 0.998 and mM = 0.51, for which one finds that:

ωM ' 0.42212572826 + 0.00041466190852 i ,

µM ' −0.83369985496− 0.00080656941824 i . (5.39)

Then Figure 5.1 plots the (real and imaginary parts of) frequency and angular eigen-
value for this particular Proca–Kerr solution with Q/M = 0, J/M2 = 0.998,mM = 0.51
as the charge increases from the Kerr limit Q/M = 0 all the way up to the extremal
limit Q/M = Q/M

∣∣
ext. The upper frames show the imaginary (left) and real part (right)

of the dimensionless frequency ωM , while the lower frames give the imaginary (left) and
real (right) parts of the dimensionless angular eigenvalue µM . The red disks describe the
solution in the Kerr–Newman background while the black squares describe the unstable
Troca modes in the Kerr–Sen black hole.

We indicate the extremal limit by the vertical black dashed line which occurs at Q/M =
0.063213922517 for Kerr–Newman and at Q/M = 0.063245553203 for the Kerr–Sen black
hole (these are very close so the two extremal locations cannot be distinguished in the
plots).

The most important plot is the left-upper plot where we display the imaginary part
of the frequency. As discussed above, the system is already unstable (Im(ωM) > 0)
in the Q/M = 0 Kerr limit (brown diamond). We then see that as the electric charge
Q/M is turned on, Im(ωM) decreases monotonically, in the Kerr–Newman and Kerr–Sen
black holes, until it reaches a (positive) minimum at extremality. Thus the electric charge
decreases the strength of the superradiant instability. The upper left plot of Figure 5.1
moreover shows that, in the parameter space range where both co-exist, Kerr–Sen black
holes are more unstable than Kerr–Newman black holes10. The other panels of Fig. 5.1
show similar behaviour in that they have start at the expected Proca–Kerr solution and
show a monotonic decrease as the charge increases.

10One needs to be a little cautious in interpreting these results regarding the use of the string vs. the
Einstein frame (see e.g the discussion in [249]). Namely, our calculation for the Kerr–Sen black hole
has been carried out in the string frame, where the Troca equations decouple and separate. It is an
open question whether this can be directly compared to the Kerr–Newman case where the dilaton field
identically vanishes.
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Figure 5.1: Kerr–Sen vs. Kerr–Newman black holes: effect of charge. [204] The
unstable Proca modes are plotted with, mass mM = 0.51 and mφ = 1 and angular momen-
tum J/M2 = a/M = 0.998, for Kerr–Newman (red disks) and Kerr–Sen (black squares)
black holes as a function of the dimensionless hole charge Q/M . The upper frames describe
the imaginary and real part of the dimensionless frequency ωM , while the lower panels
give the imaginary and real parts of the dimensionless angular eigenvalue µM . Larger
imaginary parts of ωM signal higher instabilities. The brown diamond at Q/M = 0 de-
scribes the Kerr solution. The vertical black dashed line signals extremality, which occurs
at Q/M = 0.063213922517 for Kerr–Newman and at Q/M = 0.063245553203 for the Kerr–
Sen black hole (so the two extremal vertical lines cannot be distinguished in the plots).
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These plots illustrate in a clear way the main properties of unstable Proca fields in
Kerr–Newman and Kerr–Sen black holes and other combinations of the parameters J/M2

and mM (for which the instability is already present in the Kerr limit) would show similar
qualitative features as those illustrated in Fig. 5.1.

5.4 Summary

In this chapter we have shown that the LFKK ansatz can be used to separate the Troca
equations in the Kerr–Sen black hole background of the low energy heterotic string theory.
This happens for a (well motivated) modification of these equations and in the string
frame. As for the previous chapter, this is an extension beyond the usual bounds of the
LFKK ansatz and makes use of the much weaker principal tensor with torsion. Since the
principal tensor with torsion applies to the D dimensional Kerr–Sen black hole, and it
generates the tower of hidden symmetries. These results suggest that it should be possible
to separate both test Maxwell and the Troca fields in the general dimension case. One
possible difficulty with this is that the explicit symmetries are no longer generated.

We have then used the resulting separated ordinary differential equations to study
the corresponding instability modes of the Troca field in the Kerr–Sen background and
compared them to the instability modes in the Kerr and Kerr–Newman backgrounds.
This is the first study of the Proca instability modes around rotating black holes that
considered the possibility of weakly charged solutions. Moreover we have considered an
astrophysically viable setting where the black holes are highly spinning (close to extremal)
and weakly charged. Our results allow one to compare the prediction of the two theories:
the Einstein–Maxwell theory (represented by the Kerr–Newman solution) and the low
energy heterotic string theory (with the corresponding Kerr–Sen black hole). Our findings
indicate that, at equal asymptotic charges i.e. M and Q, Kerr-Newman black holes are
more stable than Kerr–Sen ones.

93



Part III

The Hidden Symmetries of Slowly
Rotating Black Holes
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This part is derived (or lifted from) the two works [250, 251] and constructs a new
class of solutions with exact Killing tensors. Namely, we pick up the threads on a recent
extension [252,253] to the well known Lense–Thirring spacetime, which describes a field of
a slowly rotating body. These spacetimes and solve the field equations to linear order in
the rotation parameter and admit an exact Killing tensor. We show that this result can
be extended to a very general metric representing slowly rotating black holes.

In the first chapter we focus on the the mathematical structure of the new metric: in
particular, its rich (exact) hidden symmetry structure, and its manifest regularity at the
horizon, being able to be put in Painlevé–Gullstrand form. We also show these symme-
tries are inherited from the principal Killing–Yano tensor of the exact rotating black hole
geometry in the slow rotation limit. This provides a missing link as to how the exact
hidden symmetries emerge as rotation is switched on. Remarkably, in higher dimensions
the novel generalized Lense–Thirring spacetimes feature a rapidly growing number of ex-
act irreducible rank-2, as well as higher-rank, Killing tensors—giving a first example of a
physical spacetime with more hidden than explicit symmetries.

In the second chapter, we present a few applications of this result showing how it
encapsulates the slow rotation limits of black holes we have already seen in this thesis: the
Einstein–Maxell Kerr–Newman, supergravity Chong–Cvetič–Lü–Pope, and the Kerr–Sen
black holes. Each of these cases demonstrates certain features of the new Lense–Thirring
metrics. Moreover we present a theorem derived in [251] (largely due to calculations of R.A.
Hennigar) which demonstrates that the standard form of the (vacuum) Lense–Thirring
metric is unique to Einstein gravity. That is, in Einstein gravity, the Lense–Thirring
spacetime is fully characterized by a single metric function of the corresponding static
(Schwarzschild) solution. However, this is the only non-trivial theory amongst all up to
quartic curvature gravities that admits a Lense–Thirring solution characterized by a single
metric function.
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Chapter 6

Slowly Rotating Black Holes with Exact
Killing Tensor Symmetries

As we have discussed many times in the thesis rotating black holes are very special and
have many interesting properties. Of particular importance (at least for our purposes here)
are the integrability and separability properties linked to their hidden symmetry structure.
When one considers static black holes these properties arise directly from the isometries
(time translation and rotational invariance) of the spacetime and there are no nontrivial
hidden symmetries. It is then an interesting question as to how these arise as rotation is
switched on. This is especially true in the context of the Newman-Janis trick [12] wherein
a complex coordinate transformation can take a static spacetime to a rotating one. To
investigate this we will consider here some slowly rotating black holes.

First let us recall the Kerr metric, and its hidden symmetries, in Boyer–Lindquist
coordinates for context. Its line element reads

ds2 = −
(

1−2Mr

ρ2

)
dt2 − 4Mra sin2 θ

ρ2
dt dφ+

Σ sin2 θ

ρ2
dφ2 +

ρ2

∆r

dr2 + ρ2 dθ2 , (6.1)

and is algebraically special (i.e. type D). It has fundamental hidden symmetry, encoded in
the principal Killing–Yano tensor h, which obeys (1.107), and is explicitly given by h = db ,
where

2b = r2
(
dt− a sin2θ

dφ

Ξ

)
− a2 cos2θ

(
dt− adφ

Ξ

)
. (6.2)

The corresponding irreducible Killing tensor, constructed from h according to Kab =
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(?h)ac(?h) c
b , reads:

K =
a2 cos2θ

∆Σ

(
(r2 + a2)∂t + aΞ∂φ

)2

− a2 cos2θ∆

Σ
(∂r)

2

+
r2

ΣS sin2θ
(a sin2θ∂t + Ξ∂φ)2 +

Sr2

Σ
(∂θ)

2 . (6.3)

Together with the two explicit symmetries, ∂t and ∂φ, it guarantees the complete integra-
bility of geodesic motion in these spacetimes [23,28].

Now let us consider slowly rotating objects, i.e. ones for which the dimensionless
rotation parameter a � 1. The prototypical solution for slowly rotating black holes in
Einstein gravity in four dimensions is the well-known Lense–Thirring metric [254], and was
discovered very soon after the Schwarzschild black hole and nearly fifty years before the
Kerr solution. Its metric reads

ds2 = −fdt2 +
dr2

f
+ 2a(f − 1) sin2 θdtdφ+ r2(sin2 θdφ2 + dθ2) ,

f = 1− 2M

r
. (6.4)

It solves the vacuum Einstein equations to leading order in the rotation parameter a, and
describes spacetime outside of a rotating body. The metric also arises as the slow rotation
(a→ 0) limit of the Kerr metric [8].

A simple observation about the Lense–Thirring metric (6.4), which will be relevant
in the second chapter of this section, is that it is completely characterized by the static
Schwarzschild solution: the metric component gtφ is written in terms of the static metric
function f . In the context of four-dimensional Einstein gravity, this point underlies to an
extent the Newman–Janis trick [12]. The fact that the full Kerr solution (1.89) can be
generated from the “seed” static solution of course implies that the Lense–Thirring metric
is obtained when the trick is truncated at O(a).

Of course, the spacetime inherits the hidden symmetries of the full solution which solve
their respective equations to the linear order in a. These are given by

2b = r2dt− ar2 sin2θdφ+O(a2) , (6.5)

K = 2a∂t∂φ +
1

sin2θ
(∂φ)2 + (∂θ)

2 +O(a2) . (6.6)

Note that since the metric is stationary and axisymmetric, the first term in (6.6) is trivial
being just a product of Killing vectors and can be excluded.

97



A tempting possibility is to truncate the O(a2) terms in (6.4), and treat the resultant
fields as “exact” (not necessarily a solution of the field equations). However, the spacetime
has several “drawbacks”. Namely, as exact metric, it is singular on what would be the black
hole horizon f = 0, noting for example that the Kretschmann scalar (1.94) diverges there
at O(a2). If one wants to interpret this spacetime as that of a slowly rotating black hole
then it is crucial to have a regular horizon. Although these divergences come in at second
order nonetheless one cannot say a divergence is negligible. Second, both (truncated to
O(a)) hidden symmetries (6.5) and (6.6) remain only approximate. Finally, the metric
cannot be cast in the PG form [252].

6.1 Generalized Lense–Thirring metric

To fix the above “drawbacks”, let us instead consider the following modification due to
Baines et al. [252,253] of the above slowly rotating solution:

ds2 = −fdt2 +
dr2

f
+ r2 sin2θ

(
dφ+

a(f − 1)

r2
dt
)2

+r2dθ2 , . (6.7)

with metric function f given in (6.4). In what follows, we shall call it the generalized Lense–
Thirring solution. Formally, it can be obtained by “completing the square” in the truncated
solution i.e. adding extra O(a2) terms. As such, it still solves the Einstein equations to
O(a), as well as admitting the approximate hidden symmetries (6.5) and (6.6).

However, when understood as an exact (filled with matter) spacetime1, It is a much
better approximation for a slowly rotating black hole than the above truncated solution
since it is regular on the horizon – the curvature scalars, such as I (1.94), no longer diverge
at f = 0 and the metric can be cast (at least in the vicinity of the horizon) in the manifestly
regular PG form [252]. It also has an ergosphere and will feature superradiant phenomena,
e.g. [49]. Most remarkably, the generalized Lense–Thirring spacetime (6.7) falls into a
class of the Benenti metrics [110–112]. This means that not only does the metric posses an

1One should be a bit cautious about the physicality of the extra matter supporting the (modified)
Lense–Thirring spacetimes. In particular, when Q = 0 = Λ, the tetrad component of the Einstein tensor,
G0̂0̂ = − 1

2R = −(3aM sin θ/r4)2, yielding a negative energy density [252]. This is partly amended in the
presence of the additional ordinary matter—for example in our case the EM field dominates near infinity
and guarantees there positive energy density (see e.g. (7.4) in the next chapter). However, we expect that
the generic Lense–Thirring spacetimes will be (at least partly) supported by exotic matter violating the
standard energy conditions.
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exact Killing tensor, the separability of the scalar wave equation and integrability of the
geodesics are guaranteed2.

The corresponding exact Killing tensor is given by

K =
1

sin2θ
(∂φ)2 + (∂θ)

2 , (6.8)

and can be understood as a slow rotation (truncated) version of the approximate Killing
tensor (6.6). Interestingly, this Killing tensor can be written in the following suggestive
form:

K = L2
x + L2

y + L2
z , (6.9)

where Lz = ∂φ is a Killing vector of (6.7) and vectors Lx and Ly are given by

Lx = + cot θ cosφ∂φ + sinφ∂θ ,

Ly = − cot θ sinφ∂φ + cosφ∂θ , (6.10)

which upon recovering the spherical symmetry (a→ 0) would be the remaining two SO(3)
Killing vectors. Since Lz and ∂t are the only two Killing vectors present in the spacetime
(6.7), it can be checked that the above Killing tensor is irreducible.

6.2 Higher-Dimensional Lense–Thirring Spacetimes

Interestingly the Lense–Thirring metrics can be generalized to higher dimensions, including
rotations in multiple planes. To illustrate this, let us start from the full Kerr-AdS metric
in d spacetime dimensions. Throughout this section we will use d = 2m + 1 + ε, where
ε = 1, 03. The reason is due to the constraint on the angular variables in Myers–Perry

2In particular, one can check that Carter’s criterion [154] ∇a(kγ
[αRβ]γ)=0 is satisfied. Interestingly,

one can also check that the criteria required for separability of the conformally coupled scalar equation are
not satisfied, even though this equation does separate for Kerr–NUT–(A)dS spacetimes [182].

3Compare this to the previous parts where D = 2n + ε and ε = 0, 1 in even and odd dimensions
respectively.
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coordinates. To be precise, in Boyer–Lindquist type coordinates the metric reads [255]:

ds2 = −W (1 + r2/`2)dt2 +
2M

U

(
Wdt+

m∑
i=1

aiµ
2
i dφi

Ξi

)2

+
m∑
i=1

r2 + a2
i

Ξi

(
µ2
i dφ

2
i + dµ2

i ) +
Udr2

V − 2M
+ εr2dν2

+
1

W (l2 − r2)

( m∑
i=1

r2 + a2
i

Ξi

µidµi + εr2νdν
)2

, (6.11)

where

W =
m∑
i=1

µ2
i

Ξi

+ εν2 , V = rε−2(1 + r2/`2)
m∏
i=1

(r2 + a2
i ) ,

U =
V

1 + r2/`2

(
1−

m∑
i=1

a2
iµ

2
i

r2 + a2
i

)
, Ξi = 1− a2

i

`2
. (6.12)

Here, ε = 1, 0 for even, odd dimensions, m =
[
d−1

2

]
(where [A] denotes the whole part of

A), and the coordinates µi and ν obey a constraint

m∑
i=1

µ2
i + εν2 = 1 . (6.13)

The metric admits [35,37] a principal Killing–Yano tensor, h = db,

2b =
(
r2 +

m∑
µ=1

a2
iµ

2
i (1 +

r2 + a2
i

`2Ξi

)
dt+

m∑
i=1

aiµ
2
i

r2 + a2
i

Ξi

dφi , (6.14)

which generates the towers of explicit and hidden symmetries, see [37].

Expanding to linear order in ai we following slowly rotating generalized Lense–Thirring
solution (written now in non-rotating at infinity coordinates): Lense–Thirring metric reads
[256].

ds2 = −fdt2 +
dr2

f
+

m∑
i=1

µ2
i ai(f − 1)dtdφi + r2(

m∑
i=1

dµ2
i + µ2

i dφ
2
i ) + εr2dν2 , (6.15)
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for m = bd−1
2
c independent rotation parameters ai, where bAc denotes the whole part of

A, and

f = 1− 16πM

(d− 2)Ωd−2rd−3
(6.16)

with M the mass of the rotating body, and Ωd the volume of the d-dimensional sphere. In
the above, the coordinates µi and ν obey the following constraint:

m∑
µ=1

µ2
i + εν2 = 1 , (6.17)

where ε = 1, 0 in even, odd dimensions.

The metric (6.15) solves the d-dimensional Einstein equations to O(a) in the rotation
parameter, and is still characterized completely by the static metric function. It has m+ 1
Killing vectors ∂t and ∂φi and the approximate Killing tensors inherited from the full
Myers–Perry black hole (which are of course best seen in the canonical coordinates used
previously—see the review [37] for how to translate between the two systems).

The same remains true even in the presence of a cosmological constant Λ, where f
above is replaced with4 [255]:

f = 1− 16πM

(d− 2)Ωd−2rd−3
+
r2

`2
, Λ = −(d− 1)(d− 2)

2`2
, (6.18)

and ` is known as the AdS radius5.

6.3 Improved Lense–Thirring spacetimes

The higher dimensional version (6.15) has the same drawbacks as the four dimensional
case, i.e. the Kretschmann scalar diverges at the horizon, there are no regular infalling
coordinates, and the hidden symmetries are approximate. Given this, it is natural to ask

4This higher-dimensional case is less obviously equivalent to the Newman–Janis trick, as, to the best
of our knowledge, it is not yet known whether such a trick exists for arbitrary rotations in arbitrary
dimensions—see [257] for the singly spinning Kerr–Newman metric in all dimensions, and [258] for the
general five dimensional Myers–Perry case, and a discussion of the problems of further generalization.
Nonetheless, it is clearly in the same spirit.

5This works equally for positive cosmological constant, sending `→ i`, i.e. for asymptotically de Sitter
black holes.
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if we can find an improved version à la refs. [252, 253]. Moreover, thus far, variants of the
Lense–Thirring spacetime considered in the literature have focused on vacuum Einstein
gravity. And as mentioned in the opening of this chapter, the Einstein form has a number
of very special properties, for which there is no good reason to expect those properties to
hold in general.

Allowing for general functions entering the mixed time and azimuthal directions, gtφi ,
and then completing the square of (6.15) we take the following as a generalized Lense–
Thirring ansatz (6.15) for multiply-spinning black holes:

ds2 = −Nfdt2 +
dr2

f
+ r2

m∑
i=1

µ2
i

(
dφi +

∑m
j=1 pijaj

r2
dt
)2

+ r2(
m∑
i=1

dµ2
i ) + εr2dν2 . (6.19)

Obviously, the metric possesses the same “freedom” as the metric (6.15). The functions
f,N, pij are functions of the radial coordinate r, and the coordinates µi are ν obey the
constraint (6.17). It reduces to this Einstein form when

N = 1 , pij = (f − 1)δij , (6.20)

As we shall see below, this apparently small modification has far reaching consequences
for the properties of the corresponding spacetime.

First, the metric admits a Killing horizon generated by the following Killing vector:

ξ = ∂t +
m∑
i=1

Ωi∂φi , Ωi = −
m∑
j=1

pijaj
r2

∣∣∣
r=r+

, (6.21)

where r+ is the location of the horizon—the largest root of f(r+) = 0. The horizon is
surrounded by the ergoregion, inside of which the Killing vector ∂t has negative norm. Due
to this ergoregion, the metric will exhibit superradiant phenomena [49]. It also possesses
the m angular Killing vectors ∂φi .

Second, the metric is regular on the horizon, and near its vicinity admits the Painlevé–
Gullstrand form. Under the following coordinate transformation:

dt = dT −
√

1− f
N

dr

f
,

dφi = dΦi +

∑
j pijaj

r2

√
1− f
N

dr

f
, (6.22)
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we recover

ds2 = −NdT 2 +
(
dr +

√
N(1− f)dT

)2

+ r2

m∑
i=1

µ2
i

(
dΦi +

∑
j pijaj

r2
dT
)2

+r2(
m∑
i=1

dµ2
i ) + εr2dν2 , (6.23)

which is manifestly regular on the horizon, and the T = const. slices are manifestly flat.6

6.4 New Hidden Symmetries

Most importantly, the metric (6.23) also admits a rapidly growing tower of Killing tensors.
These can be generated as follows. Define the set S = {1, ..,m} and let I ∈ P (S) where
P (S) is the power set of S. Then we may define the following objects:

2b(I) ≡ r2(dt+
∑
i∈I

aiµ
2
i dφi) , h(I) ≡ db(I) , (6.24)

f (I) ≡
√
N

(|I|+ 1)!
∗
(
h(I) ∧ · · · ∧ h(I)︸ ︷︷ ︸

|I|+1 times

)
, (6.25)

where |I| denotes the size of the set I. These potentials correspond to various limits on
the rotation parameters in the principal tensor (6.14).

In turn these f (I) generate the following exact rank-2 Killing tensors:

K
(I)
ab =

(∏
i∈I.

ai
)−2

(f (I) · f (I))ab , K
(I)
(ab;c) = 0 , (6.26)

where we have defined
(ω1 · ω2)ab =

1

p!
ωac1...cpωb

c1...cp (6.27)

for any (p+ 1)-forms ω1, ω2.
6If the O(a2) corrections are considered to have physical effects, then it should be noted that the stress

tensor associated with them fails to satisfy the classical energy conditions. Of course, this does not affect
the results below concerning the hidden symmetry structure of the metrics, and moreover the falloff of the
O(a2) terms is sufficiently fast that inclusion of classical matter, e.g. an electromagnetic field, restores the
energy conditions.
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Explicitly, these Killing tensors can be written as:

K(I) =
m−1+ε∑
i 6∈I

[(
1− µ2

i −
∑
j∈I

µ2
j

)
(∂µi)

2 − 2
∑

j 6∈I∪{i}

µiµj ∂µi∂µj

]
+

m∑
i 6∈I

[
1−

∑
j∈I µ

2
j

µ2
i

(∂φi)
2

]
.

(6.28)

See appendix D.2 for details of the Killing tensors in the orthonormal frame.

Of course, in a given dimension, not all of these are non-trivial. In fact, it is only
K(∅) which exists in all dimensions d ≥ 4, and is given by the formula (6.8). It turns out,
however, that

∑m−3
i=0

(
m
i

)
of these are reducible, leaving in total

k =
m−2+ε∑
i=0

(
m

i

)
−

m−3∑
i=0

(
m

i

)
=

1

2
m(m− 1 + 2ε) (6.29)

irreducible rank-2 Killing tensors in d dimensions.

Note that this tower increases quadratically with the number of dimensions, contrary
to the tower of rank-2 Killing tensors in exact Kerr–NUT–(A)dS spacetimes [37], which
only grows linearly with d. For example, already in d = 8 we have (for distinct rotation
parameters) 6 irreducible rank-2 Killing tensors and only m + 1 = 4 independent Killing
vectors—that is the number of hidden symmetries exceeds the number of the explicit ones
(more so once we also count higher rank Killing tensors obtained by various combinations
of SN brackets—see below). However, this is still much smaller than the maximum possible
number of rank-2 Killing tensors in a given dimension d, which for rank-p Killing tensor
(p ≥ 1) reads, e.g. [149]:

kmax =
1

d

(d+ p
p+ 1

)(d+ p− 1
p

)
, (6.30)

and for d = 8 and p = 2 gives kmax = 540.

Moreover, this construction “coincides” with the one for the full Kerr-AdS geometry [37],
replacing the principal Killing–Yano tensor h with its appropriate limits h(I) at the relevant
order of the small rotation parameters expansion. However these potentials in (6.24) and
(6.25) are not even approximate CCKY and KY forms respectively.

Let us also stress that all the above hidden symmetries exist regardless of the form of
the functions pij = pij(r) and N = N(r). In particular, when all pij vanish,

pij = 0 , (6.31)
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or alternatively, when all ai are zero, we recover the static spherically symmetric metric
and all of the above Killing tensors become reducible—given as sums of products of subsets
of rotational Killing vectors.

In addition to the above rank-2 Killing tensors, one can also generate (potentially
irreducible) higher-rank Killing tensors via the SN brackets (1.42). Our construction thus
provides a physically well motivated example in the long-standing search for spacetimes
with higher-rank Killing tensors [259–261]. In particular, we have verified up to d = 13
that the SN bracket of any two Killing tensors vanishes if the intersection of the two labels
equals the first. That is,

[K(I1), K(I2)]SN = 0 , (6.32)

if I1 ∩ I2 = I1. Otherwise, a new Killing tensor is generated. We expect this to remain
true also in higher dimensions. In particular, in d dimensions this implies (taking into
account explicit symmetries and the metric as well) the existence of d mutually commuting
symmetry objects—a necessary requirement for complete (and again exact) integrability
of geodesic motion in the spacetime (6.19). In fact in the orthonormal frame one can
show exactly which set of d Killing tensors are diagonal in the same frame, guaranteeing
separability of the Hamilton–Jacobi equations for geodesics—see appendix D.2. Moreover,
Carter’s condition (1.88) is satisfied so Klein-Gordon equation for scalar fields separates.
Interestingly however, one can check that the geometric obstruction to separating the
conformal wave equation (see chapter 3) in the theorem of ref. [118] is not exact. Therefore
the conformal wave equation is not guaranteed to separate exactly.

Finally we close by illustrating the above construction in d = 6 dimensions. In this
case k = 3 and we have the following irreducible rank-2 Killing tensors:

K(∅) =
1

µ2
1

(∂φ1)2 +
1

µ2
2

(∂φ2)2 + (1− µ2
1)(∂µ1)2

−2µ1µ2(∂µ1)(∂µ2) + (1− µ2
2)(∂µ2)2 ,

K(1) =
1− µ2

1

µ2
2

(∂φ2)2 − (1− µ2
1 − µ2

2)(∂µ2)2 , (6.33)

K(2) =
1− µ2

2

µ2
1

(∂φ1)2 − (1− µ2
1 − µ2

2)(∂µ1)2 .

Their SN brackets are

[K(∅), K(1)]SN = 0 = [K(∅), K(2)]SN , M = [K(1), K(2)]SN , (6.34)
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where M is the new rank-3 Killing tensor with the following components:

Mµ1µ2µ2 = −4µ1(µ2
1 + µ2

2 − 1)

3
= µ2

2M
φ2φ2µ1 ,

Mµ1µ1µ2 =
4µ2(µ2

1 + µ2
2 − 1)

3
= µ2

1M
φ1φ1µ2 . (6.35)

Provided no additional irreducible rank-2 Killing tensors exist in this spacetime, M is also
irreducible. This tensor further generates rank-4 Killing tensors via SN brackets with K(1)

and K(2), and so on.

6.5 Summary

Starting in four dimensions, we have seen how a “small modification” of the linear in a
expansion of the exact Kerr–(A)dS black hole solution gives rise to an, in many ways,
preferred slowly rotating geometry. This generalized Lense–Thirring spacetime, is (when
taken as an exact metric) manifestly regular on the black hole horizon and admits an exact
Killing tensor.

This observation fills an important gap in understanding as to how the exact hidden
symmetries of the full Kerr geometry emerge as the rotation is switched on. While the
non-rotating (spherical) solution admits an exact principal Killing–Yano and Killing tensor,
these are trivial, the latter being reducible—given by a product of Killing vectors derived
from the rotational symmetry (and possibly time independence). Adding a small rotation to
O(a) breaks the full rotational symmetry and the approximate hidden symmetries become
non-trivial. Remarkably a simple modification of the metric at O(a2) yields a spacetime
which in 4 dimensions is of the Benenti class of spacetimes [110–112] in which separability
of the Klein–Gordon and Hamilton–Jacobi equations is guaranteed. The exact irreducible
Killing tensor can be understood as a (truncated) version of the approximate Killing tensor
generated from the approximate principal Killing–Yano tensor.

Naturally, a similar construction also works in higher dimensions, which we have ex-
plicitly demonstrated for Kerr–AdS spacetimes in all dimensions, however the structure is
much richer. The corresponding generalized Lense–Thirring spacetimes admit a rapidly
growing tower of exact rank-2 and higher-rank Killing tensors, that is a “slow rotation
seed” of the associated (much smaller) tower of rank-2 Killing tensors for the full Kerr-AdS
geometry. Although the higher-dimensional Lense–Thiring spacetime (6.19) is not explic-
itly in the Benenti form, there are enough mutually commuting ones to guarantee the
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exact integrability and separability of the Hamilton–Jacobi and Klein–Gordon equations.
It is an open question regarding higher spin fields and moreover whether these improved
Lense–Thirring spacetimes can be put into canonical form. Intriguingly the tower of Killing
tensors grows faster than the number of Killing vectors—-providing the first example of a
physically interesting spacetime with larger number of hidden symmetries than the explicit
ones.

It remains an interesting open direction whether similar construction would also work
for higher order expansions in rotation parameters, providing thus even a more complete
link between the generalized Lense–Thirring spacetimes and the exact black hole solutions
and perhaps signaling how to do the Newman–Janis trick in new settings.
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Chapter 7

Generalized Lense–Thirring Metrics:
Applications

Although a number of exact solutions with rotation are known in Einstein gravity [8, 12,
57, 60, 255, 256], for general theories of gravitation (or in the presence of various matter
fields) they are quite difficult to obtain. On the other hand slowly rotating solutions are
somewhat easier to come by, as we saw in the previous chapter, in the context of Einstein
gravity.

Perhaps the nicest example is that of Lovelock gravity, where the slowly rotating so-
lution for a (single) rotation parameter has been known for some time [262, 263], and the
equations of motion can be solved exactly1. There are other interesting higher-curvature
theories, beyond Lovelock gravity, which have been the focus of some study—examples
appear in Einstein Gauss–Bonnet gravity in d = 4 and d = 5 [268]. Moreover, the slowly
rotating solutions of Einsteinian Cubic Gravity were studied in [269], while the case of five-
dimensional cubic and quartic quasi-topological gravities were studied in [270], allowing
for two independent rotation parameters in five dimensions. These cases are interesting
examples where theories that generally have fourth-order equations of motion reduce to
second-order equations of motion for a particular case of interest.

However, in each case the slowly rotating solutions must be obtained numerically, and
are more complicated than the corresponding Einstein gravity solutions. More general
solutions have been obtained in the context of four-dimensional effective field theory, see

1Attempts to analytically push beyond the slowly rotating regime have generally been met with failure,
except in certain special cases [264–266], though numerical studies suggest the full rotating solutions
exist [267].
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e.g. [271], [272–274], and dynamical Chern–Simons gravity [275,276]. Even within the realm
of Einstein-Maxwell gravity, exact charged solutions are not known in higher dimensions, or
even in four dimensions when non-linear generalizations of Maxwell’s theory are considered.
Here one of our aims is to study slowly rotating solutions in more general theories of gravity,
and also with matter.

The purpose of this chapter is to take the general slowly rotating template presented
in (6.19) and see how it fits within these examples of non-vacuum or non Einstein space-
times. We will also state the theorem proved in ref. [251] from which this chapter (and
parts of the previous chapter are derived). This theorem, due to explicit calculations of R.
A. Hennigar, demonstrates how special Einstein gravity is and what one needs to relax if
one seeks to potentially construct rotating solutions beyond the bounds of ordinary (vac-
uum) general relativity. We will then present three examples demonstrating that (6.19)
fits all of these known examples and shows why its form needs to be generic.

7.1 Einstein Slowly Rotating Black Holes are Special

For completeness we now summarize one of the main results in the original work [251] from
which this chapter is based. The Einstein-like form (6.20) of any slowly rotating black hole
is very special, and will not be generic enough to remain a solution to the field equations
when higher-curvature terms and/or matter are added to the action.

Theorem 7.1.1 In d = 4 dimensions, Einstein gravity is the only nontrivial gravitational
theory up to powers quartic in the Riemann curvature tensor, whose (vacuum) generalized
Lense–Thirring solutions (6.19) are of the form (6.20).

The proof of this essentially follows from direct calculations. One considers all the
possible independent curvature scalars up to quartic power in the curvature [277] (at this
order there are 26 such terms). One then substitutes the ansatz (6.19) into the equations
of motion and imposes the Einstein like form. Then one constructs an asymptotic solution
and finds, by going to high enough powers in a 1/r expansion, that the requirement for
pi = (1− f) identically fixes the relevant extra coupling constants2 in the extended action
to zero. Thus the only theories that are left are the trivial ones.

But what does trivial mean in this context? Here nontrivial means theories that lead
to genuine corrections to the metric, rather than simply admitting the Einstein gravity

2Strictly speaking it is the independent combinations that are not related by curvature identities.
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solution as one possible solution. There are a few different kinds of theories that we lump
into the term “trivial”. For example:

1. There are dimension-dependent identities for the Riemann tensor that force certain
terms to vanish identically for all metrics below a critical dimension. For example,
the cubic Lovelock density vanishes identically in five and lower dimensions.

2. There are certain terms that are topological invariants and so make no dynamical
contributions to the field equations in certain dimensions. For example, this is the
case for the kth Lovelock Lagrangian in d = 2k.

3. There are certain combinations of curvature tensors that, while not identically zero
for all metrics, may make no contribution to a certain class of metrics, but are not
topological invariants.

4. Theories that are constructed solely from the Ricci curvature. Such theories, in the
asymptotically flat case, will admit the Einstein gravity solution as one particular
solution to the equations of motion.

In higher dimensions there are other nontrivial theories that admit solutions of the
form (6.20). Examples include Lovelock gravity in all dimensions, and a subset of quartic
generalized quasi topological gravities [278] in five dimensions. When matter is included,
one easily finds examples with more general N or pij. As we shall see in Sec. 7.2, an
especially interesting example is that of a slowly rotating black hole in minimal gauged
supergravity where the “Chern–Simons” term mixes rotation parameters in various rotation
2-planes, resulting in distinct pij in each of the planes.

This theorem implies that the regular Newman–Janis trick, which generates slowly
rotating solutions (valid to linear order in the rotation parameter) in four dimensions,
will only work for Einstein gravity (or these trivial extensions). This is because the trick
preserves the Einstein form (6.20). However, in higher dimensions or with matter, it may
be possible to generate such slowly rotating solutions via the trick. Of course, this does
not immediately extend to the construction of fully rotating solutions in these theories,
but one may wonder if the construction of full rotating solutions is easier in these theories
than in the general case.
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7.2 Generalized Lense–Thirring Solutions with Matter

To demonstrate the required versatility of the improved Lense-Thirring metric (6.19) let
us apply it to a few examples. Namely, we write down the (Maxwell) charged Kerr-
AdS solutions (example 1), the slowly rotating Kerr–Sen solution (example 2), and the
solution of the d = 5 minimal gauged supergravity (example 3). These three examples are
illustrative of the following features.

• Example 1 shows that even with matter fields, one may still find solutions in the
form (6.20).

• Example 2 provides an example of the generalized Lense–Thirring spacetime with
non-trivial N .

• Example 3 shows the possibility of having distinct metric functions pij (distinct also
from f − 1) and illustrates a very interesting effect of mixing of rotation parameters,
induced by the Chern–Simons coupling.

The latter two examples are constructed by taking the slow rotation limit of the full exact
black hole solutions.

7.2.1 Example 1: Charged Kerr-AdS in All Dimensions

Importantly we can actually find slowly rotating but (possibly strongly) charged solutions
of Einstein–Maxwell theory:

LM =
1

16π

(
R− FabF ab +

(d− 1)(d− 2)

`2

)
. (7.1)

Let us begin in 4 dimensions and perform the linear in a expansion to the exact Kerr–
Newman–(A)dS metric (5.1). This yields, upon completing the square, the following ap-
proximate to O(a) solution of the Einstein–Maxwell-Λ equations:

ds2 = −fdt2 +
dr2

f
+ r2 sin2θ

(
dφ+

a(f − 1)

r2
dt
)2

+r2dθ2 ,

A = −q
r

(
dt− a sin2θdφ

)
+O(a2) , (7.2)
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where
f = 1− 2M

r
+
q2

r2
+
r2

`2
. (7.3)

Thus we see the 4D Einstein Maxwell systems has the special property (6.20). Let us
finally mention that we have the following asymptotic charges:

M = m, J = ma , Q = q
(

1 +
2a2

3`2

)
, (7.4)

and (7.2) is surrounded by (charged) matter. To linear order in a, the corresponding first
law of black hole thermodynamics coincides with that of the spherical charged AdS black
hole, e.g. [237].

Moreover, we may define the following 2-form:

h(0) = db(0) 2b(0) = r2dt , (7.5)

obtained by the a→ 0 limit of the 2-form (6.5). While this is not a principal tensor even
to the linear order in a, it yields the above exact Killing tensor (6.8). We also note that

ξ(0) = −1

3
∇ · h(0) = ∂t + a

( q2

3r4
− 1

`2

)
∂φ , (7.6)

which is an exact Killing vector when q = 0.

Interestingly, the property (6.20) holds in all dimensions, and the solution takes the
form (6.19), with N = 1 and

pi = f − 1 = − m

rd−3
+

q2

r2(d−3)
+
r2

`2
, (7.7)

where m and q are parameters related to mass and charge, respectively. The metric is
accompanied by the Maxwell field, F = dA, where the vector potential A takes the following
form:

A = −

√
d− 2

2(d− 3)

q

rd−3

[
dt−

m∑
i=1

(
aiµ

2
i dφi −

a2
iµ

2
i pi

r2f
dr
)]
, (7.8)

where the last term was introduced in order that the field invariant FabF ab be finite on
the horizon, f = 0. Note, that there is no known higher dimensional version of the Kerr–
Newman spacetime but perhaps novel insights can be found from these new slowly rotating
solutions.
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7.2.2 Example 2: Slowly Rotating Kerr–Sen Spacetime

Let us next consider the 4-dimensional Kerr–Sen [57] low-energy effective heterotic string
theory rotating black hole solution, of chapter 5, which in the standard Boyer–Lindquist-
type coordinates and the string frame reads [57,100] (see also (5.10)):

ds2 =e−Φ
(
−∆b

ρ2
b

(
dt− a sin2θdφ

)2
+
ρ2
b

∆b

dr2 +
sin2θ

ρ2
b

[
adt− (r2 + 2 b r + a2)dφ

]2

+ ρ2
bdθ

2
)
,

B =
2abr

ρ2
b

sin2 θdt ∧ dφ , A=−Qr
ρ2
b

(
dt− a sin2θdφ

)
, e−Φ =

ρ2

ρ2
b

, (7.9)

where the metric functions are given by (5.11) (see also (5.12))in chapter 5. Again M is
the mass of the black hole, Q its charge, a its rotation parameter, and b = Q2/(2M) is the
twist parameter.

Taking the O(a) expansion, and completing the square we recover the following gener-
alized Lense–Thirring solution with non-trivial N and p:

ds2 = −Nfdt2 +
dr2

f
+ r2 sin2θ

(
dφ+

ap

r2
dt
)2

+ r2dθ2 ,

A = − Q

r + 2b

(
dt− a sin2θdφ

)
,

B =
2ab

r + 2b
sin2θdt ∧ dφ , eΦ = 1 +

2b

r
, (7.10)

where
f = 1− 2(M − b)

r
, N =

(
1 +

2b

r

)−2

, p = N
(
f − 1− 2b

r

)
. (7.11)

Being in the similar Benenti form as the 4D Einstein and Einstein Maxwell case the cor-
responding exact Killing tensor is the same as above in (6.8).

7.2.3 Example 3: Chong–Cvetič–Lü–Pope Solution

Finally, let us consider the d = 5 minimal gauged supergravity Chong–Cvetič–Lü–Pope
solution [60] of chapter 4:

L =
1

16π

(
∗(R− 2Λ)− 1

2
F ∧ ∗F +

1

3
√

3
F ∧ F ∧ A

)
, (7.12)
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where F = dA. Contrary to the original paper and chapter 4, we write it in a coordinate
system that rotates at infinity as follows:

ds2 = dγ2 − 2qνω

Σ
+
σω2

Σ2
+

Σdr2

∆
+

Σdθ2

S
,

A =

√
3qω

Σ
, (7.13)

where we have defined

ν =
ab

`2
dt− b sin2θdφ− a cos2θdψ , ω = dt+

a sin2θdφ

Ξa

+
b cos2θdψ

Ξb

,

dγ2 =
sin2θ

Ξa

[
(r2 + a2)dφ2 − 2a

`2
(r2 + a2)dtdφ− dt2

`2

(
ρ2 − (r2 + a2)

a2

`2

)]
+

cos2θ

Ξb

[
(r2 + b2)dψ2 − 2b

`2
(r2 + b2)dtdψ − dt2

`2

(
ρ2 − (r2 + b2)

b2

`2

)]
, (7.14)

and

S = Ξa cos2 θ + Ξb sin2 θ , ∆ =
(r2 + a2)(r2 + b2)ρ2/`2 + q2 + 2abq

r2
− 2m,

Σ = r2 + a2 cos2 θ + b2 sin2 θ , ρ2 = r2 + `2 ,

Ξa = 1− a2

`2
, Ξb = 1− b2

`2
, σ = 2mΣ− q2 +

2abq

`2
Σ . (7.15)

The black hole rotates in two different directions, corresponding to the rotation parameters
a and b, while the parameter q is related to the black hole charge3, andm to its mass. As we
have seen in detail, the spacetime admits a principal Killing–Yano tensor with torison [99],
which generates an exact Killing tensor.

Taking the linear O(a) and O(b) limit, and completing the square we obtain the fol-
lowing generalized Lense–Thirring solution:

ds2 = −fdt2 +
dr2

f
+ r2dθ2 + r2 sin2θ

(
dφ+

apaa + bpab
r2

dt
)2

+ r2 cos2θ
(
dψ +

bpbb + apba
r2

dt
)2

,

A =

√
3q

r2

(
dt− a sin2θdφ− b cos2θdψ +

a[apaa + bpab] sin2θ + b[bpbb + apba] cos2θ

r2f
dr
)
,

(7.16)

3Compare the form of the metric (4.32), and to the symmetric gauge used previously for the poten-
tial (4.33).
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where
f = 1− 2m

r2
+
q2

r4
+
r2

`2
, paa = f − 1 = pbb , pab =

q

r2
= pba . (7.17)

This solution provides a unique example where the presence of Chern–Simons charge mixes
the rotation parameters in the metric functions pab, which are distinct from each other and
distinct from (f − 1). The spacetime admits the following Killing tensor

K =
1

sin2θ
(∂φ)2 +

1

cos2θ
(∂ψ)2 + (∂θ)

2 , (7.18)

inherited from the approximate Killing–Yano tensor with torsion.

7.3 Summary

In this chapter we have explored the generalized Lense–Thirring metric of (6.19) in various
different settings to demonstrate that, it is not just a nice mathematical spacetime, but
also forms a good ansatz for slowly rotating black holes. In particular we have stated
the theorem of [251] which shows how special the Einstein form (6.20) is. Moreover,
we have considered slowly rotating approximations to a number of known exact solution
rotating black holes that include matter. In doing so, we have provided examples where
each additional term in the generalized ansatz is non-trivial.

Finally, for future work, it would be interesting to expand on the calculation of R.A.
Hennigar to go beyond the asymptotic (1/rn) solutions in [251] and construct the full gen-
eralized Lense–Thirring solutions in higher curvature gravities. At the same time, it would
be interesting to extend our considerations to other effective theories with matter fields, for
example, involving a metric and a scalar. In this context, it is known that the Horndeski
theory corresponding to the four-dimensional limit of Gauss-Bonnet gravity [279–281] al-
lows for a Lense–Thirring metric characterized by the static metric function [282]. One
may then wonder if this is the unique Horndeski theory with that property.
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Chapter 8

Summary and Outlook

The work presented here is the culmination of six different projects, on three related
themes, exploiting and exploring hidden symmetries in black holes spacetimes. Thus, this
thesis is naturally divided into three parts: part I on the separability of the conformal
wave equation [181, 182], part II on the separability of massive vector fields in spacetimes
beyond Einstein gravity [203,204], and part III on the hidden symmetries of rotating black
holes [250,251].

The first two themes presented here arose as the results of two Perimeter Scholars
International Winterschool (PSI) projects which I co-supervised along with my advisor
D. Kubizňák and naturally involved collaboration. This is similar to the second chapter
of the third theme. This collaboration, and chance for supervision, has been one of the
most beneficial and fruitful aspects of my PhD and I am grateful for the multiple ongoing
opportunities I have had. Having said that all the content presented here, except where
explicitly stated, is my own original work or arising as a result of these collaborations and
having been checked by me.

I now summarize the main results before turning to some possible future directions in
the web of hidden symmetries, separability, and integrability.

8.1 Recapitulation of Main Results

The first part of the thesis was devoted to demonstrating separability of the conformally
coupled scalar field equation in general (off-shell) Kerr–NUT–(A)dS spacetimes in arbitrary
D dimensions. At first we presented calculations in the canonical coordinates, in which
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the separability properties for these spacetimes are manifest, and demonstrated that the
separability is characterized by the existence of a complete set of mutually commuting op-
erators. Importantly these can be constructed from the principal Killing–Yano tensor. The
associated Hamilton–Jacobi equation with a scalar curvature potential was also separated.

Then we saw that the symmetry operators have a covariant expression constructed from
the principal Killing–Yano tensor, its “symmetry descendants”, and the curvature tensor.
Also, using this covariant construction we demonstrated these operators fit into the general
theory of symmetry operators, and give rise to the full set of conformally invariant mutually
commuting operators. This underlies the R-separability of the conformal wave equation in
the entire conformal class of the Kerr–NUT–(A)dS spacetimes.

The second part was devoted to applying the LFKK ansatz 4.1 to separate the massive
vector field (Proca) equations (corresponding to ultralight vector bosons) in two spacetimes
beyond general relativity. Importantly, these spacetimes only possess a weaker version of
the principal tensor from which the usual separability properties are derived. Specifically,
we considered the Chong–Cvetič–Lü–Pope black hole spacetime of D = 5 minimal gauged
supergravity (SUGRA) and the low-energy heterotic string theory inspired D = 4 Kerr–
Sen black hole posses a torsion generalization of the principal Killing–Yano tensor. Here
the torsion is identified with an inherent 3-form in the spacetime. In each case, this torsion
modifies the Proca equations and it is these equations that separate using the LFKK
ansatz. Then, as a physical application of the formal frame work we saw a comparison of
the superradiant instability modes of the Proca fields for the Kerr–Newman to the Kerr–Sen
black hole. This showed the Kerr–Sen black holes are more unstable than Kerr–Newman
ones.

The final part of the thesis constructs of a new class of solutions with exact Killing
tensors. That is, we considered a very general extension of the long standing Lense–
Thirring spacetime, which describes a field of a slowly rotating body. These spacetimes,
solve the field equations to linear order in the rotation parameters and admit an exact
Killing tensor. The improved spacetimes feature many benefits compared to the old Lense–
Thirring templates. In the first chapter we focused on these benefits, in particular, its
rich (exact) hidden symmetry structure, and ability to be put in Painlevé–Gullstrand form
(which also implies manifest regularity at the horizon). It is this feature which allows them
to be interpreted as slowly rotating black holes not just massive bodies. This is the first
example of a physically motivated spacetime with more hidden than explicit symmetries.
Next with the theorem derived in [251] we demonstrated that the standard form of the
(vacuum) Lense–Thirring metric is unique to Einstein gravity. Finally, we discussed a few
applications of this result to show how it reflects the slow rotation limits of known solutions
beyond the vacuum Einstein equations. Each of these cases required a particular facet of

117



the new Lense–Thirring metrics.

8.2 Outlook and Future Directions

As remarkable and powerful as the principal tensor is, so is it restrictive. In fact as
mentioned previously, it uniquely determines the Kerr–NUT–(A)dS class of spacetimes.
Moreover, its best known generalization (the case with torsion we encountered in part II)
only fits a couple of known examples and does not have a general characterization. Thus
one may wonder how much further can we push these results, and, how seriously should
we take such particular spacetimes?

The answer to the second part, I hope, is apparent at this stage given the number
of astrophysically relevant and mathematically interesting examples we have seen in the
introduction and discussed in detail in the thesis. So I shall try to address the second
question with what I believe to be a fruitful road map as a separatist.

First and foremost (and most concretely) we should aim to close the gaps that yet
remain for physical equations in the Kerr–NUT–(A)dS class of black holes. In particular,
while it is known for this class of black holes how the principal tensor allows for the
complete integrability of supersymmetric spinning particles in all dimensions [94], it is
not clear how this applies to the case of classical spinning particles [283–285]. This area
is currently undergoing a renaissance as it has become relevant for the extreme mass
ratio formalism for inspiral processes in gravitational wave generation (e.g. [286]). The
integrability of spinning particles beyond linear order (in the spin vector) remains an open
question particularly, in higher dimensions. In a similar vein, the separability of geodesic
deviation has be solved by the principal tensor [95], but one may wonder if this leaves any
effects in the asymptotic regime. That is, is there some extra memory type effect around
Kerr black holes due to Carter’s constant (or more directly the principal tensor)? Finally,
and most pressing in this direction, is the question of tensor perturbations. Can we use the
principal tensor (in some kind of generalization of the LFKK ansatz (4.1)) to understand
the separability of gravitational waves on the Kerr spacetime? In four dimensions this
seems to be a straightforward next step but the general dimension case is (of course) much
more involved.

Going beyond the Kerr–NUT–(A)dS class of spacetimes must also be at the forefront
of new directions. If I may speculate there seem to be three natural directions to follow.
First, near horizons and null surfaces, in general, there are many extra symmetries that
emerge for generic spacetimes. So do hidden symmetries and the principal tensor manifest

118



themselves in some way for spacetimes that are approximately Kerr like? Second, can we
find a way to fully classify à la ref. [102] the torsion extension of the principal tensor? Third,
the Benenti class of spacetimes which admit a separability structure is much larger than
the Kerr–NUT–(A)dS one, so does this class admit more physically interesting spacetimes.

Ultimately the separatist must be asking: can we mathematically characterize the kind
of spacetimes which allow for the separation of variables for the most interesting kinds of
physical fields, i.e. spinor, vector, and tensor perturbations?
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Appendix A

Killing objects

Here as a reference for completeness I list the plethora of Killing objects and their acronyms
which appear in the text. Recalling the motivation comes from the particle motion governed
by the Hamiltonian H = −1

2
gµνpµpν and geodesics equations of motion pµ∇µpν = 0.

• Linear charge ⇐⇒ Killing vector (KV) equation: Projectable Hamiltonian vector
(Explicit)

J (k) = kapa ⇐⇒ ∇ k(a b) = 0 , π∗(XJ (k)) = ka
∇a

∂x
. (A.1)

• Higher order ⇐⇒ Killing tensor (KT) equation

J (K) = Ka1...aspa1 . . . pas ⇐⇒ ∇ K(a a1...as)
= 0 (A.2)

Not projectable ⇐⇒ Dynamical/Hidden

π∗(XJ (K)) = sKaa1...as−1pa1 . . . pas−1

∇a

∂x
(A.3)

• Killing–Yano (KY) forms fa1...ap :

∇afa1...ap = ∇[afa1...ap] (A.4)

which square to Killing tensors

Kf
ab = fac1...cs−1f

c1...cs−1

b (A.5)
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We can also generalize these symmetries to the conformal class of spacetimes g → Ω2g:

• Conformal Killing vectors (CKVs)

∇ k(a a) = αgab (A.6)

• Conformal Killing tensors (CKTs)

∇ K(a a1...as)
= g(aa1αa2...as) (A.7)

• Conformal Killing-Yano tensor (CKYTs)

∇afa1...ap = ∇[afa1...ap] +
p

D − p+ 1
ga[a1∇bf|b|a2...ap−1]

Closed-Conformal-Killing-Yano (CCKY) forms also satisfy df = 0. Any two Confor-
mal Killing–Yano forms f1, f2 “square” to a conformal Killing tensor. That is,

Kab
f = f

(a
1 c2...cq

f
b)c2...cq

2 (A.8)

is a CKT.

• The Principal tensor h that uniquely determines the Kerr–NUT–(A)dS class of space-
times is a non degenerate closed conformal Killing–Yano (CCKY) 2 form

∇ahbc = gabξc − gacξb (A.9)

(A.9) =⇒ ξ is a Killing vector.
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Appendix B

Conformal Symmetry Operator
Calculations

In this appendix we find the covariant form of functions R(j) appearing in the symmetry
operators that guarantee the separability of the conformal wave equation in Kerr–NUT–
(A)dS spacetimes. We also calculate their conformal behaviour.

B.1 Covariant Form of R(j)

To start recall the Ricci tensor (1.125) and Killing tensors (1.123) are diagonal in the same
orthonormal basis (1.121). A natural guess is that these functions depend on the Ricci
tensor so we can calculate the difference R(j) − kab(j)Rab making use of another identity for
the symmetric polynomials [37];

∑
ν 6=µ

A
(j)
µ − A(j)

ν

x2
ν − x2

µ

= (n− j)A(j−1)
µ . (B.1)
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Then we have

R(j) − kab(j)Rab =
∑
µ

[
ε
A

(j−1)
µ xµX̂

′
µ

Uµ
+ 2

∑
ν 6=µ

A
(j)
µ

x2
ν − x2

µ

(
xµX̂

′
µ − (1− ε)X̂µ

Uµ
+
xνX̂

′
ν − (1− ε)X̂ν

Uν

)]

=
∑
µ

[
ε
A

(j−1)
µ xµX̂

′
µ

Uµ
+ 2

xµX̂
′
µ − (1− ε)X̂µ

Uµ

∑
ν 6=µ

A
(j)
µ − A(j)

ν

x2
ν − x2

µ

]

= 2
∑
µ

A
(j−1)
µ

Uµ

(
[n− j + ε/2]xµX̂

′
µ − (n− j)(1− ε)X̂µ

)
. (B.2)

Moreover it is also natural to expect that R(j) may depend on the Killing vectors
themselves. Since they satisfy ∇ l

(j)
(a b) = 0 the only information in their derivatives is

contained in their exterior derivative. In particular, since in the orthonormal basis (1.121)

l(j) =
∑
µ

A(j)
µ

√
Qµê

µ + εA(j)

√
c

A(n)
e0 , (B.3)

we have that

dl(j) =
∑
µ

[(
A(j)
µ Qµ

X ′µ
Xµ

− ε 2

xµ

cA(j)

A(n)
+ 2xµ

∑
ν 6=µ

QµA
(j)
µ +QνA

(j)
ν

x2
ν − x2

µ

]
eµ ∧ êµ

+ε2xµ
√
Qµ

√
c

A(n)
A(j−1)
µ eµ ∧ e0 +

∑
ν 6=µ

2xν
√
QµQν

A
(j)
µ − A(j)

ν

x2
ν − x2

µ

eν ∧ êµ
)
. (B.4)

Furthermore, introducing the Killing co-potential

(D − 2j − 1)ω
(j)
ab = k n

(j) ahnb =
∑
µ

A(j)
µ xµe

µ ∧ êµ . (B.5)

which generates the Killing tensors [37]

la(j) = ∇b ω
ba
(j) , (B.6)

we can calculate

k a
(j)nh

nb dl
(k)
ab = 2

∑
µ

1

Uµ

A(j)
µ A

(k)
µ xµX̂

′
µ +

∑
ν 6=µ

2X̂µ(A
(j)
µ A

(k)
µ x2

µ − A
(j)
ν A

(k)
ν x2

ν)− εcA
(j)
µ

(
A

(k)
ν

Uν
− A

(k)
µ

Uµ

)
x2
ν − x2

µ

 .

(B.7)
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Notice the last term proportional to is ε and vanishes when k = 0. Finally let us calculate
�Tr

(
k(j)

)
. First, we have

Tr
(
k(j)

)
= εA(j) +

∑
µ

2A(j)
µ = (2(n− j) + ε)A(j) . (B.8)

Since this expression only depends on xµ we can use the form of the wave operator (2.7)
to write

∇a(k
ab
(j)∇b Tr

[
k(j)

]
) =

∑
µ

A
(j)
µ

Uµ

[
Xµ∂

2
µ Tr

(
k(j)

)
+ ∂µ Tr

(
k(j)

)(
X ′µ +

ε

xµ
Xµ

)]

= 4
∑
µ

A
(j)
µ A

(j−1)
µ

Uµ
[n− j +

ε

2
]
(
xµX

′
µ + (1 + ε)Xµ

)
. (B.9)

Putting this together we have

αjk
a

(j−1)nh
nb dl

(0)
ab − βjl

a
(j−1) l

(0)
a +

D − 4

2(D − 2)
�Tr

(
k(j)

)
= 2

∑
µ

1

Uµ

(
A(j−1)
µ

([
αj +

(D − 4)(n− j + ε
2
)

D − 2

]
xµX̂

′
µ −

[
βj
2
−

(D − 4)(n− j + ε
2
)(1 + ε)

D − 2

]
X̂µ

)

−2αjX̂µ

∑
ν 6=µ

A
(j)
µ − A(j)

ν

x2
ν − x2

µ

)

= 2
∑
µ

A
(j−1)
µ

Uµ

([
αj +

(D − 4)(n− j + ε
2
)

D − 2

]
xµX̂

′
µ

−
[
βj
2

+ 2(n− j)αj −
(D − 4)(n− j + ε

2
)(1 + ε)

D − 2

]
X̂µ

)
. (B.10)

Thus, using the fact that ε = {0, 1} we can choose the coefficients to be

αj =
2(n− j + ε

2
)

D − 2
, (B.11)

βj =
4(n− j + ε

2
)

D − 2
(D − 3− 2(n− j +

ε

2
)) . (B.12)

Thence we obtain our covariant expression for R(j)

R(j) =kab(j)Rab +
D − 4

2(D − 2)
�Tr

(
k(j)

)
+ αjk

a
(j−1)nh

nb dl
(0)
ab − βjl

a
(j−1) l

(0)
a , (B.13)

which matches the form in chapter 3, (3.9), upon noting l0 = ξ and D = 2n+ ε.
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B.2 Conformal Transformations

Given the spacetime (M, g) we now consider a conformal transformation of the metric,
Killing tensors, and scalar field (k(j) → Ω−2k(j), Φ → ΩwΦ for w = 1 − D/2) to the
conformal spacetime (M, g,Ω). The goal of this section is to find a conformally covariant
form of our wave operators(

K̂(j) − ηR(j)

)
Φ , K̂(j) = ∇ak

ab
(j)∇b , η =

1

4

D − 2

D − 1
. (B.14)

Using the conformal properties of the Ricci tensor and covariant derivatives, we find
the following transformations

Ω2 K̂(j)Φ→

Ωw
(
K̂(j) + w∇a(k

ab
(j)∇b log Ω)

+w(w − 2 +D)∇a log Ω kab(j)∇b log Ω
)

Φ (B.15)

and

Ω2 kab(j)Rab →
kab(j)Rab −

[
(D − 2)kab(j) + kc(j) cg

ab
]
∇a∇b log Ω

+ (D − 2)
[
kab(j) − kc(j) cgab

]
∇a log Ω∇b log Ω . (B.16)

Thence we have

Ω2
(
K̂(j)Φ− ηkab(j)RabΦ

)
/Φ→

(K̂(j)Φ− ηkab(j)RabΦ)/Φ + w(∇ak
ab
(j))∇b log Ω + ((w + η(D − 2))kab(j)+ηk

c
(j)cg

ab) [∇a∇b log Ω]

+ (w(w − 2 +D)− (D − 2)η)kab(j) + (D − 2)ηkc(j)cg
ab) [∇a log Ω∇b log Ω]

=
(
K̂(j)Φ− ηkab(j)RabΦ

)
/Φ + w(∇ak

ab
(j))∇b log Ω− ηD k̂ab(j) [(D − 2)∇a log Ω∇b log Ω +∇a∇b log Ω] .

(B.17)

Here we have introduced the traceless Killing tensor k̂ab(j) = kab(j) − kc(j) cgab/D. Clearly this
vanishes when j = 0 so the first operator is conformally invariant. Notice that the last
term contains two derivatives of the conformal factor, so consider the identically zero term
(following from the Killing tensor equation (4.41))

∇a∇b

(
kab(j) +

1

2
kc(j) cg

ab

)
≡ 0 . (B.18)
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Under the transformation k(j) → Ω2k(j) this becomes

Ω2∇a∇b

(
kab(j) +

1

2
kc(j) cg

ab

)
→ ∇a∇b

(
kab(j) +

1

2
kc(j) cg

ab

)
+ (D + 2)(∇ak

ab
(j))∇b log Ω

+D k̂ab(j) [(D − 2)∇a log Ω∇b log Ω +∇a∇b log Ω] . (B.19)

So we have

Ω2

(
K̂(j)Φ− η

[
kab(j)Rab −

{
∇a∇b

(
kab(j) +

1

2
kc(j) cg

ab

)}]
Φ

)
/Φ→(

K̂(j)Φ− η
[
kab(j)Rab −

{
∇a∇b

(
kab(j) +

1

2
kc(j) cg

ab

)}
+ (D − 4)(∇ak

ab
(j))∇b log Ω

]
Φ

)
/Φ .

(B.20)
Note that, as the covariant derivatives and Killing tensors in the second line are in the
Ω = 1 frame, we have
(D− 4)(∇ak

ab
(j))∇b log Ω = −(D− 4)/2 (∇ak

c
(j) c)∇b log Ω. Thus this term will be cancelled

by the transformation of �Tr
(
k(j)

)
. That is,

D − 4

2(D − 2)
�Tr

(
k(j)

)
→ Ω−2

(
D − 4

2(D − 2)
�Tr

(
k(j)

)
+
D − 4

2
∇a

[
Tr
(
k(j)

)]
∇a log Ω

)
.

(B.21)
We now consider the conformal transformation of the final piece;

R(j) := αjk
a

(j−1)nh
nb dl

(0)
ab − βjl

a
(j−1) l

(0)
a . (B.22)

Now, if k(j) → Ω−2k(j) consistency demands that h → Ω2h and that la(j) → Ω−2la(j). That
is, one can show on a p form ? → Ωd−2p?. Assuming h → Ωrh; hj → Ωjrhj then f (j) =
?hj → Ωd−4j+jrf (j). So

k
(j)
ab ∝ fac1...cD−2j−1

f
c1...cD−2j−1

b → Ω2(d−4j+jr)+2(D−2j−1)k
(j)
ab = Ω2+2j(−2+r)k

(j)
ab . (B.23)

Hence demanding for all j that k(j)
ab → Ω2k

(j)
ab fixes r = 2. Then, we are left with R(j) as a

scalar density of weight −2:
R(j) → Ω−2R(j) . (B.24)

Thus putting this all together we have

Ω2

[(
K̂(j) − η

[
R(j) −

{
∇a∇b

(
kab(j) +

1

2
kc(j) cg

ab

)}])
Φ

]
/Φ→[(

K̂(j) − η
[
R(j) −

{
∇a∇b

(
kab(j) +

1

2
kc(j) cg

ab

)}])
Φ

]
/Φ , (B.25)

which gives us the form we use in the chapter 3.
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Appendix C

Separation of Proca equations in
Kerr–Sen background

C.1 Carter Form of the Metric

The separation of the modified Proca equation (5.23) in the Kerr–Sen background is easiest
when the metric is expressed in the pseudo-Euclidean Carter-like coordinates (ψ0, ψ1, x1, x2)
[37]. In fact, in these coordinates a more general solution to the heterotic string theory
action (5.8), which includes a NUT parameter, can easily be written and reads [100]:

ds2 =
U1

X1

dx2
1 +

U2

X2

dx2
2 +

X1

U1

A2
1 +

X2

U2

A2
2 , eΦ =

Um
U1

,

A =
2 c s

Um

(
m1x1(dψ0 + x2

2 dψ1)−m2x2(dψ0 + x2
1dψ1)

)
,

B =
s

c

(
dψ0 − c0dψ1

)
∧ A , (C.1)

with the field strengths F = dA and H = dB− A ∧ F .1 Here

U1 = x2
2 − x2

1 = −U2 , Um = x2
2 − x2

1 − 2m1s
2x1 + 2m2s

2x2 ,

A1 =
U1

Um

[
dψ0 + dψ1(x2

2 + 2m2x2s
2)
]
, A2 =

U1

Um

[
dψ0 + dψ1(x2

1 + 2m1x1s
2)
]
, (C.2)

1To recover the notations in the main text, one has to set A → A/
√

2. The other fields Φ, B, and H
are unchanged but the coupling between H and A picks up a factor of 2 to compensate the redefinition of
A, that is, H → dB − 2A ∧ F = H.
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and the metric functions take the following form:

X1 = c0 − 2m1x1 + x2
1 , X2 = c0 − 2m2x2 + x2

2 . (C.3)

Here, s = sinh δ, c = cosh δ, and c0,m1,m2, δ are arbitrary constants, related to the
rotation parameter, mass and NUT charges, and the twist parameter.

The Kerr–Sen solution in the main text is recovered upon the following change of
coordinates and parameters:

(ψ0, ψ1, x1, x2) = (t− a φ, φ/a, i r, a cos θ) . (C.4)

Here we also send m1s
2 → ib, im1 → (b −M) , turn off the NUT parameter by setting

m2 = 0, and send c0 → −a2. Thence the metric functions become

X1 = 2r(M − b)− r2 − a2 ≡ −∆b , X2 = −a2 sin2 θ , (C.5)
U1 = r2 + a2cos2θ = ρ2 , Um = ρ2

b = ρ2 + 2br . (C.6)

In what follows we shall work with the more general metric (C.1)–(C.3). In fact, as
already observed for the Kerr–NUT-(A)dS metrics [90,91], the separability actually works
for a more general class of off-shell metrics where

Xµ = Xµ(xµ) (C.7)

are arbitrary functions of one variable. Thence in what follows we shall leave Xµ(xµ)
arbitrary.

The off-shell metric admits a generalized principal tensor with torsion, which reads [180]

h = x1 dx1 ∧ A1 + x2 dx2 ∧ A2 , (C.8)

and obeys the defining equation (5.16) with

ξ = eΦ∂ψ0 , (C.9)

and the torsion identified with the 3-form H,

T = H =
s

c
F ∧ ξ = −

(
∂Φ

∂x1

dx1 ∧ A1 +
∂Φ

∂x2

dx2 ∧ A2

)
∧ ξ . (C.10)

The associated irreducible Killing tensor is given by

Kab = hach
c
b −

1

2
gabh

2 . (C.11)
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C.2 Separability of Proca Equations

Let us now apply the LFKK ansatz to separate the Proca equations in the generalized
beckground (C.1). As argued in Sec. 5.2 the Proca equation in this background reads

∇n
(
eΦFna

)
−m2eΦP a = 0 , (C.12)

and implies the corresponding Lorenz condition

∇a
(
eΦP a

)
= 0 . (C.13)

In order to separate these equations, we employ the LFKK ansatz [89–92],

P a = Bab∇bZ , Bab(gbc + iµhbc) = δac , (C.14)

where as before µ is a complex parameter, hbc in the generalized principal tensor (C.8),
and the potential function Z is written in the multiplicative separated form

Z = R1(x1)R2(x2)eiL0ψ0eiL1ψ1 . (C.15)

Similar to refs. [90, 91] we first concentrate on the Lorenz condition (C.13), for which
the ansatz (C.14) yields:

∇a
(
eΦP a

)
= eΦ Z

q1q2

(
q2

U1

1

R1(x1)
D1R1(x1) +

q1

U2

1

R2(x2)
D2R2(x2)

)
, (C.16)

where the differential operators are given by

Dµ = qµ
∂

∂xµ

[
Xµ

qµ

∂

∂xµ

]
− 1

Xµ

[
(−x2

µ − 2mµs
2xµ)L0 + L1

]2

− 2− qµ
µqµ

[
L0 + (−µ2)L1

]
− 4µL0mµs

2xµ
qµ

, (C.17)

and
qν = 1− µ2x2

ν . (C.18)

The Lorenz condition (C.13) will be satisfied provided the mode functions Rν obey the
separated equations

DνRν = (C1 − x2
νC0)Rν . (C.19)
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Here C0 and C1 are two new separation constants. Then expression in (C.16) reduces to

∇a(eΦP a) = eΦ Z

q1q2

[
C0 + C1 (−µ2)

]
, (C.20)

and we see that the Lorenz condition holds provided we fix

C1 =
C0

µ2
. (C.21)

At this stage we are left with one new separation constant C0 but this will be fixed by
solving the full Proca equations.

The results of [90] can be also used to find the representation of the Proca equa-
tion (C.12) for the ansatz (C.14). Employing the Lorenz condition (C.13) one finds

∇n
(
eΦFna

)
−m2eΦP a = eΦBam∇mJ . (C.22)

Here we have introduced the object (c.f. (4.13))

J = e−Φ∇a(e
Φgab∇bZ)− 2iµξaB

ab∇bZ −m2Z . (C.23)

At this stage, by employing the LFFK ansatz and enforcing the Lorenz condition, the
Proca equation has been reduced to solving a scalar “wave equation”.

In particular this “wave equation” may be written as an eigenvalue problem

ĝZ = m2Z , (C.24)

where
ĝ = e−Φ∇a(e

Φgab∇b)− 2iµVag
ab∇b , V a = ξbB

ba . (C.25)

In this suggestive form, where we consider the metric tensor as the trivial Killing tensor
K

(0)
ab = gab, one can guess from the Kerr–Newman case that this operator can be generalized

to the two commuting operators in 4 dimensions, which are enough to guarantee the
separability of this equation. Thus we define

K̂ = e−Φ∇a(e
ΦKab∇b)− 2iµVaK

ab∇b , (C.26)

where Kab is the Killing tensor generated from the principal tensor (C.11). Then one can
explicitly check that these two operators commute, i.e.[

ĝ, K̂
]

= 0 , (C.27)
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and that the solution Z is also an eigenvector of K̂

K̂Z =

(
m2

µ2
+
L0

µ
+ µL1

)
Z . (C.28)

These operators are just a torsion generalization of those presented in [90,180,217] and we
expect that this construction can be generalized to all dimensions.

Thus the separability of J (C.23) is guaranteed and in fact J separates in the form

J = Z

n∑
ν=1

1

Uν

1

Rν

[
Dν −m2(−x2

ν)
]
Rν , (C.29)

where Dν is same the operator defined in (C.17). In the above expression we have used
the identity,

n∑
ν=1

1

Uν
(−x2

ν)
1−j = δj0 (C.30)

for j = 0, to rewrite the mass term. This identity further ensures J = 0, provided the
modes Rν(xν) obey separated equations (C.19) and additionally the extra free separation
constant C0 is given by the Proca mass,

C0 = m2 . (C.31)

Summarizing, the Proca equation (C.12) for the vector field P in the off-shell Kerr–Sen–
NUT background (C.1) can be solved by using the LFKK ansatz (C.14), (C.15), where
the mode functions Rν satisfy ODEs (C.19). Moreover the separation constant C0 is given
by (C.31) and µ satisfies (C.21). To translate our separation (C.19) back into the Boyer–
Lindquist form presented in the main text, (5.27), we perform the map outlined above in
(C.4), (C.5). Furthermore, we need to modify the eigenvalues L0 and L1, to the eigenvalues
of i∂t and −i∂φ, ω and mφ. This is simply done via the linear map

L0 = −ω , L1 = a(mφ − aω) . (C.32)
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Appendix D

Some Details of the Slowly Rotating
Black Holes

D.1 Regular Slow Rotation Expansion of Kerr

In this appendix we attempt to physically motivate the improved Lense–Thirring form of
the metric (6.19). To do this, we construct a slowly rotating variant of the Lense–Thirring
solution starting from the Kerr metric, writing it in Kerr ingoing coordinates, expanding
to linear order in the rotation parameter a, and returning back to the Boyer–Lindquist
coordinates. This yields a metric that is a vacuum solution of Einstein equations to linear
order in the rotation parameter a, and that is manifestly regular on the horizon when taken
‘as is’. Since the transformation between Kerr and Boyer–Lindquist coordinates involves
the rotation parameter, this metric carries certain O(a2) corrections, slightly distinct,
however, from the improved Lense–Thirring solution (6.19).

Let us start from the Kerr metric written in the standard Boyer–Lindquist coordinates:

ds2 = −∆

Σ
(dt− a sin2θdφ)2 +

Σ

∆
dr2 + Σdθ2 +

sin2θ

Σ

[
adt− (r2 + a2)dφ

]2

,

Σ = r2 + a2 cos2θ , ∆ = r2 + a2 − 2mr , (D.1)

and perform the following coordinate transformation to Kerr coordinates {v, χ, r, θ}:

dv = dt+
r2 + a2

∆
dr , dχ = dφ+

a

∆
dr . (D.2)
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By expanding the resultant metric to linear order in a we obtain:

ds2 = −fdv2 + 2dvdr − 4Ma

r
sin2θdvdχ− 2a sin2θdχdr + r2 sin2θdχ2 + r2dθ2 ,

f = 1− 2M

r
. (D.3)

Using now the inverse transform to linear order in a:

dv = dt+
dr

f
, dχ = dφ+

a

r2f
dr , (D.4)

we thus recover the following metric:

ds2 = −fdt2 +
dr2

f
+ r2dθ2 + r2 sin2θ

(
dφ+

a(f − 1)

r2
dt
)2

−a
2 sin2θ

r2f 2

(
f(1− f)dt+ dr

)2

. (D.5)

Note that the first line is the improved Lense–Thirring metric (6.19), while dropping all
O(a2) terms gives the ordinary Lense-Thirring metric.

D.2 Improved Lense–Thirring Spacetimes: Further Con-
siderations

D.2.1 Orthonormal Frame

Consider the following generalized Lense–Thirring metric (6.19) with a slight change of
notation: rather than denoting by ν, the constrained coordinate in even dimensions, we
use µm+ε, then the metric and constraint simplify to

ds2 = −Nfdt2 +
dr2

f
+ r2

m∑
i=1

µ2
i

(
dφi +

m∑
j=1

ajpij
r2

dt
)2

+ r2

m+ε∑
i=1

dµ2
i , (D.6)

and
m+ε∑
i=1

µ2
i = 1 . (D.7)
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Then one can calculate the orthonormal vielbeins eA = eAa dx
a which satisfy

gab = ηABe
A
a e

B
b . (D.8)

We find

et̂ =
√
Nfdt , er̂ =

dr√
f
, eφ̂i = rµi

(
dφi +

m∑
j=1

ajpij
r2

dt

)
,

eµ̂i =
r√

µ2
m+ε +

i−1∑
j=1

µ2
j


√√√√µ2

m+ε +
i∑

k=1

µ2
k dµi +

m−(1−ε)∑
l>i

µiµldµl√
µ2
m+ε +

∑i
k=1 µ

2
k

 , (D.9)

with the following inverse eA = eaA∂a

et̂ =
1√
Nf

(
∂t −

m∑
j=1

ajpij
r2

∂φj

)
, er̂ =

√
f∂r , eφ̂i =

1

rµi
∂φi ,

eµ̂i =

√
µ2
m+ε +

i−1∑
j=1

µ2
j

r

 ∂µi√
µ2
m+ε +

∑i
k=1 µ

2
k

−

(
µi

µ2
m+ε +

∑i−1
k=1 µ

2
k

)
i−1∑
l=1

µl∂µl√
µ2
m+ε +

∑i
k=1 µ

2
k

 .

(D.10)

D.2.2 Killing Tensors

The separability and integrability of the spacetime requires m Killing tensors1 in addition
to the 1 + (m+ ε) Killing vectors ∂t and ∂φj . Now, we have seen the the metric (6.19) has
a fast growing (with the number of dimensions) tower of exact Killing tensors. Explicitly,
as a reminder let us recall the following: given the set S = {1, ..,m}, let I ∈ P (S) where
P (S) is the power set of S, then we have the exact rank-2 Killing tensors c.f (6.28):

K(I) =
m−1+ε∑
i 6∈I

[(
1− µ2

i −
∑
j∈I

µ2
j

)
(∂µi)

2 − 2
∑

j 6∈I∪{i}

µiµj ∂µi∂µj

]
+

m∑
i 6∈I

[
1−

∑
j∈I µ

2
j

µ2
i

(∂φi)
2

]
.

(D.11)

1One of these is, of course, the trivial Killing tensor, i.e. the metric.
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Moreover, we have verified up to d = 13 that the SN bracket (1.42) of any two Killing
tensors vanishes if the intersection of the two set labels equals one of the two. That is, if
I1 ∩ I2 = I1 or if I1 ∩ I2 = I2,

[K(I1), K(I2)]SN = 0 . (D.12)

In particular, we find there is a subset of these Killing tensors that are diagonal in the
orthonormal basis. Let us denote m̃ = m− (1− ε), and then define Q ⊂ P (S) by2

Q =
{
∅, {m̃}, {m̃, m̃− 1}, . . . , {m̃, m̃− 1, m̃− 2, . . . , 2}

}
. (D.13)

Then for all J ∈ Q

K(J) = r2

(
1−

∑
j∈J

µ2
j

)(
m̃∑
i 6∈J

eµ̂ieµ̂i +
m∑
i 6∈J

eφ̂ieφ̂i

)
. (D.14)

Since these elements of Q satisfy the following nesting property:

∅ ⊂ {m̃} ⊂ {m̃, m̃− 1} ⊂ · · · ⊂ {m̃, m̃− 1, m̃− 2, . . . , 2} , (D.15)

these Killing tensors all mutually Schouten–Nijenhuis (SN) commute by (D.12), guaran-
teeing the separability of the Hamilton–Jacobi equation [37].

Moreover, one can check they satisfy Carter’s criterion [154] ∇a(kγ
[αRβ]γ) = 0. Hence

they define commuting operators

K(J) ≡ ∇aK
(J)
ab ∇

b (D.16)

with the Klein–Gordon operator ∇agab∇b for scalars. That is,[
K(J),∇agab∇b

]
= 0 . (D.17)

Thus, we have now d commuting operators for the Klein–Gordon equation (including Lj =

ξ
(j)
a ∇a for the Killing vectors ξ(j) = ∂t, ∂φj). Therefore we know the Hamilton–Jacobi and
Klein–Gordon equations separate in these spacetimes [37].

2Note that there are exactly m− 1 elements in Q – one from each ‘level’ of subsets in P (S)\S.
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