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Abstract

Distribution systems are now increasingly becoming more active due to the sustainable
integration of Distributed Energy Resources (DER). While this has enabled a cleaner
and more efficient generation, it has also resulted in new challenges for the operation of
modern power systems. In this context, the operation of isolated microgrids is particularly
challenging, as these systems are characterized by a low inertia and significant renewable
integration, and must be capable of an autonomous operation without the support of other
electrical grids. Thus, the present thesis focuses on the design of an Energy Management
System (EMS) for the reliable and economic operation of modern isolated microgrids.

Isolated microgrid operation requires considering additional aspects typically omitted
in the operation of robust bulk power systems. In particular, as demonstrated in this thesis,
second-to-second renewable power fluctuations need to be considered in the microgrid EMS,
since these fluctuations can have a large impact on the system’s frequency regulation due to
its low inertia. Furthermore, to ensure an economic yet reliable operation, modern flexible
technologies capable of counterbalancing these short-term fluctuations, such as Battery
Energy Storage Systems (BESS) and Demand Response (DR), need to be integrated in the
microgrid EMS. Hence, the present thesis focuses on designing a microgrid EMS model that
integrates short-term renewable power fluctuations, their impact on frequency regulation,
and the role that BESS and DR can play for their management.

In the first part of the thesis, models are presented to characterize short-term renew-
able power fluctuations and their impact on microgrid operations, including the role that
BESS can play to manage power fluctuations and the battery degradation resulting from
providing this service. These models are then used to develop a practical EMS considering
short-term renewable fluctuations and BESS flexibility, which is validated through exhaus-
tive simulations on two realistic test microgrids, showing the operational benefits of the
proposed EMS and highlighting the need to properly model short-term fluctuations and
battery degradation in EMS for isolated microgrids.

In the second part of the thesis, the above EMS model is extended to also incorpo-
rate the impact of short-term power fluctuations on the microgrid’s frequency regulation
performance. For this purpose, accurate linear equations describing the frequency de-
viation and Rate-of-Change-of-Frequency (RoCoF) resulting from these fluctuations are
developed, which are then used to build a frequency-constrained EMS model capable of
guaranteeing an adequate frequency regulation performance in line with current DER oper-
ating standards. Exhaustive transient simulations on a realistic test microgrid considering
detailed frequency dynamic and control models are presented, demonstrating the accuracy
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of the proposed frequency-constrained EMS and the operational benefits resulting from its
implementation.

Finally, the integration of DR techniques for an enhanced microgrid operation is dis-
cussed. In particular, the smart control of Thermostatically Controlled Loads (TCL) is
studied, as these type of loads comprise a significant share of the total residential demand,
and have the capability of managing second-to-second power imbalances without signif-
icantly affecting customer comfort. Since computational limitations prevent the direct
integration of TCLs within operational models, alternative computationally efficient ag-
gregate models representing TCL flexibility and frequency dynamics are proposed, which
are referred to as Virtual Energy Storage Systems (VESS) due to their close resemblance
to Conventional Energy Storage Systems (CESS) such as batteries. The proposed aggre-
gate VESS models are then used to design a practical EMS integrating TCL flexibility,
and study the impact of TCL integration on microgrid operation and frequency control.
Computational experiments using detailed frequency transient and thermal dynamic mod-
els are presented, demonstrating the accuracy of the proposed aggregate VESS models, as
well as the economic and reliability benefits resulting from using these aggregate models
to integrate TCLs in microgrid operation.
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Chapter 1

Introduction

1.1 Motivation

Modern power systems are currently undergoing a paradigm shift motivated by the search
for cleaner and more efficient generation sources. In this context, DER are now being
actively integrated in distribution networks, as these can enhance system efficiency, re-
duce carbon emissions, and improve system reliability. While the potential benefits of an
increased DER integration are clear, directly controlling a large number of DER while
maintaining an adequate security and reliability level in the system is particularly chal-
lenging. Thus, to tackle this, microgrids, which are defined as a collection of loads and
DER that operate together locally as a single controllable entity, have been proposed as a
tool to facilitate the integration and coordination of multiple DER [9].

In practical settings, microgrids typically use a hierarchical control to preserve the
generation-load balance and guarantee a secure system operation. Under this approach,
two control levels are considered: (i) an upper-level, in which the steady-state operational
set-points for the system are determined based on global measurements of the network;
and (ii) a lower-level, in which the set-points from the upper-level are used as inputs
and necessary real-time adjustments are made based on local measurements. In the power
systems literature, the upper-level controller is usually referred to as the EMS or Microgrid
Central Controller, which can follow either a centralized or decentralized approach, with the
former being preferred for isolated microgrids, and the latter for grid-connected microgrids
[10]. This thesis focuses on isolated microgrids, as these face more challenging operation
and control issues due to their lack of access to auxiliary services from the main bulk grid.
Accordingly, centralized EMS are studied in the research presented here.
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Unlike conventional bulk power systems, modern isolated microgrids have a low sys-
tem inertia and significant renewable integration [11], making their operation and control
particularly challenging. As discussed in [12], large second-to-second renewable power
fluctuations can be observed for geographically-close plants, which when combined with
a low system inertia, can result in poor frequency regulation [13]. Thus, modern EMS
need to incorporate short-term power imbalances on their decision-making process, such
that a continuous generation-load balance can be guaranteed on a second-to-second basis.
Furthermore, modern EMS need to consider new modern flexible technologies, such as
Energy Storage Systems (ESS) and DR, and their capability to manage such short-term
imbalances.

ESS are by far one of the most important flexibility assets in a microgrid, as these
possess the capability of shifting energy from one period to another, making them ideal
for managing power imbalances. Nowadays, a wide spectrum of energy storage technolo-
gies are available, including electrochemical (e.g., lithium-ion batteries), mechanical (e.g.,
flywheels), and thermal (e.g., water tanks), amongst others [14]. In this research, these
types of ESS will be referred as CESS, as these can already be found in microgrid applica-
tions and have well defined technical parameters (e.g., power and energy capacity limits).
Furthermore, given the major role that electrochemical batteries play in modern power
systems [7, 15], the term CESS will mainly be used to refer to BESS. However, it should
be noted that the models developed in this research can easily be extended to other types
of CESS.

Another relevant flexibility asset for microgrids is DR, which refers to utilizing available
demand flexibility for an enhanced system operation. In the last years, a series of different
programs and control strategies have been proposed to harvest demand flexibility, which
have shown promising results for the management of power imbalances and the reduction of
operating costs [16]. Within these, the aggregated control of TCL, such as air conditioners
and water heaters, has gained popularity, as TCLs comprise a significant share of the
total residential demand [17], and have the capability to manage fast second-to-second
power imbalances without significantly affecting end-user comfort needs [18]. Although
computational limitations prevent TCLs to be directly incorporated in operational models
such as EMS, recent works have shown that these can be included in the system operation
through the use of computationally efficient virtual battery models [6,19–21], in which the
flexibility of a TCL collection is characterized by a simple yet accurate battery-like model,
thus establishing a direct analogy with CESS. Consequently, this type of load control will
also be referred to as VESS throughout this thesis.

Based on the above discussion, the main objective of this thesis is to design a centralized
EMS model for isolated microgrids that incorporates second-to-second fluctuations and
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their impact on frequency dynamics, as well as the role that CESS and VESS can play to
counter-balance such fluctuations. Although a wide literature can be found for centralized
EMS for microgrids, only a limited amount of works can be found related to embedding
second-to-second power imbalances and their impact on frequency regulation in the EMS’s
decision-making process. Furthermore, unlike previous works, this thesis discusses the
application of VESS for the provision of energy shifting and frequency regulation services,
and the potential benefits and practical challenges resulting from the combined integration
of CESS and VESS in isolated microgrids.

1.2 Literature Review

In this section, a detailed literature review on topics related to EMS models, second-to-
second power fluctuations, and frequency dynamics is presented. Furthermore, a compre-
hensive survey is presented on the incorporation of BESS, DR, and TCL within operational
models, including VESS modeling.

1.2.1 EMS and Short-Term Fluctuations

Several centralized EMS models have been developed for the economic and secure opera-
tion of isolated microgrids, which have integrated advanced features such as phase imbal-
ance [22], demand response [23], CO2 emissions [24], power sharing [25], thermal energy
resources [26], and network representations [27] (see [28] and [29] for a thorough literature
review). In general, these models are deterministic and indirectly handle uncertainty in
renewable generation and demand by means of a Model Predictive Control (MPC) with
pre-definied reserve requirements. While this approach does provide some level of protec-
tion against uncertainty, there are no a-priori guarantees regarding the conservatiness or
cost-efectiveness of such uncertainty management strategy.

To address the above issue, recent EMS models embedding the uncertainty of renew-
able generation and loads have been developed, which have used stochatic [30], robust [31]
and distributionally robust [32] optimization techniques, as well as affine arithmetic tech-
niques [33]. However, these works rely on the assumption that the time-variability and
uncertainty in renewable generation and loads can be captured by assuming a constant,
albeit uncertain, power during each of the dispatch time intervals (usually in the range of
5min to 1h), thus neglecting intra-dispatch fluctuations in the order of seconds. As previ-
ously mentioned, such second-to-second fluctuations are particularly relevant for modern
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isolated microgrids, as these are particularly prone to poor frequency regulation due to
their low-inertia and significant renewable penetration.

A few papers have studied the integration of short-term imbalances in microgrids EMS
models, with these being mostly focused on grid-connected microgrids. In [34] and [35],
two-stage open-loop EMS models are proposed for the management of short-term power
imbalances, in which two decision-making stages are considered: (i) an upper stage with a
low time resolution, in which optimal dispatch set-points are determined; and (ii) a lower
stage with a higher time resolution, in which the dispatch set-points are used as inputs and
short-term power fluctuations are managed. Under this approach, both stages are solved
independently, i.e., in open-loop, and thus have the downside of not ensuring feasibility in
the lower-stage in the presence of large and fast power fluctuations. To address this is-
sue, [36] proposes a two-stage closed-loop EMS model, for which feasible dispatch set-points
are determined by iteratively solving upper and lower stage problems through a constraint
generation method, which adds constraints to the upper stage problem if infeasibilities are
detected in the lower stage problem. Therefore, by following a closed-loop structure, this
approach guarantees that the obtained solutions remain feasible even in the presence of
large and fast power fluctuations. However, this results in a substantial increase in com-
putational demand, as a large number of decision variables is needed for modeling detailed
time resolutions. Accordingly, practical applications for this latter EMS model can only be
found for minute-to-minute power fluctuations, as using a more detailed time resolution in
the order of seconds would result in a computational intractable model. Furthermore, the
EMS models in [34–36] are designed specifically for grid-connected microgrids, in which a
large support and inertia from the main bulk grid is available, making their application to
modern isolated microgrids impractical.

1.2.2 Embedding Frequency Dynamics in Operations

Another relevant aspect to integrate in modern microgrid EMS are frequency dynamics,
as renewable power fluctuations can directly impact the frequency regulation in these
systems [13]. The explicit modeling of frequency dynamics in operational models is a
relatively new research area, with most of the existing literature being focused on the
development of frequency-constrained Unit Commitment (UC) models for low-inertia bulk
power systems (e.g., [37–41]). In general, these UC models are based on adding frequency-
constraints to the optimization problem, such that large frequency excursions resulting
from generator outages are avoided, as these are relatively common in bulk power systems
with a large number of generators. However, none of these works consider the impact of
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short-term renewable power fluctuations on the system’s frequency regulation performance,
which as previously discussed is a particularly relevant topic for isolated microgrids.

It is also important to highlight that none of the microgrid EMS models discussed in Sec-
tion 1.2.1 incorporate frequency dynamics in their decission-making process, nor perform
frequency transient simulations to validate that the obtained EMS dispatch instructions
yield a satisfactory frequency regulation performance. This is particularly relevant issue for
practical microgrid applications, as frequency transients can rapidly and significantly devi-
ate from steady-state values in low-inertia systems with highly variable renewable energy
sources (e.g., [13]).

1.2.3 Embedding BESS in Operations

Existing EMS models for isolated microgrids already incorporate some form of flexibility
associated with BESS in their decision-making process (e.g., [22–32]). Nonetheless, these
EMS models have focused exclusively on the energy shifting capability of BESS, neglecting
their capability to also provide frequency regulation services, which are of particular in-
terest for isolated microgrids due to their low-inertia and significant renewable integration
(see Section 1.1). Furthermore, the degradation resulting from the repeated charging and
discharging of BESS have generally been neglected on existing EMS models, based on the
assumption that such degradation process is negligible on an operational scale. However,
as recently demonstrated in [42,43], BESS degradation can actually play a significant role
in operations, as the repeated charging-discharging of BESS can significantly affect its
lifespan and thus entail a relevant lost opportunity cost.

Based on the above discussion, modern EMS models need to incorporate frequency
regulation services from BESS, while taking into account the degradation costs stemming
from their repeated charging and discharging. Some previous works have integrated degra-
dation costs within operational models; however, most of them have either oversimplified
the degradation model by employing a fixed discharging-charging cost at rated conditions
(e.g., [36,44–46]), or overcomplicated the degradation model by using auxiliary binary vari-
ables to characterize discharging-charging cycles (e.g., [35,47]), resulting in computational
intensive models applicable only to small test systems. Exceptions can be found in the
context of energy, reserve, and secondary frequency regulation markets [42, 48–50], where
a good balance between degradation accuracy and computational tractability is achieved;
however, these models have been developed for bulk power system applications, and thus
need to be adapted for their implementation in microgrid EMS models.
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1.2.4 Embedding DR and TCLs in Operations

The integration of DR within operational models, and in particular EMS, is still an active
research field. Early works on DR integration within operations have used generic modeling
approaches for characterizing load flexibility, which include price-elasticities [51], deferrable
demand [52], load bidding curves [53], saturation curves [54], and neural networks [23],
amongst others. In general, these models are characterized by their capability to describe
a wide range of possible controllable loads; however, this comes at the cost of neglecting
dynamics that are specific to a particular load type. This is a particularly relevant issue
for TCLs, as these loads are directly affected by thermal dynamics, which need to be
incorporated for an accurate modeling in practical implementations [55].

The incorporation of thermal TCL dynamics within operational models is a relatively
new research area, with the direct incorporation of detailed thermal state-space models be-
ing one of the first approaches found in the power system literature (e.g., [56, 57]). While
this approach has the advantage of a high thermal-modeling accuracy, it suffers from com-
putational tractability issues when a large and diverse collection of TCLs is considered,
as a significant number of decision variables and constraints for the corresponding opti-
mization model are required in this case. To address this issue, computationally efficient
VESS models representing the set of reference signals that can be followed by a large and
diverse collection of TCLs have been proposed, which have been successfully implemented
in operational models for bulk power systems [19, 20, 58–60]. However, the VESS models
considered in these works are based on simple first-order thermal models, which can sig-
nificantly differ from the actual thermal dynamics observed in real-life applications [61],
leaving a pending research gap in this regard. Furthermore, these models have been de-
veloped in the context of bulk power systems, and thus need to be adapted to the isolated
microgrids, where low-inertia and significant renewable integration play a major role.

1.2.5 Discussion

Based on the above literature review, modern EMS for isolated microgrids should incor-
porate second-to-second power fluctuations stemming from renewable generation and their
impact on frequency dynamics. In this context, BESS and TCLs present a great flexibil-
ity potential to counter-balance such fluctuations, and thus their capabilities should also
be integrated in microgrid EMS models. Accordingly, the following challenges must be
addressed:

• Second-to-second power fluctuations from renewable energy sources and loads, as
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well as their associated uncertainty, should be integrated in modern EMS models,
as these can have a large impact on isolated microgrids due their low-inertia and
significant renewable penetration. Existing EMS models either neglect short-term
fluctuations, or use computationally demanding models that limit their application
in a second-to-second time scale, leaving a pending research gap in this regard.

• The impact of second-to-second power imbalances on microgrid frequency dynamics
should be incorporated in modern EMS models, as these can play a major role in
isolated microgrids due their inherent fragility in terms of frequency regulation perfor-
mance. While some previous works have studied frequency dynamics in the context
of operations, these have focused exclusively on the frequency excursions caused by
outages in bulk power systems. Thus, new models should be developed to capture
the impact of short-term fluctuations on isolated microgrid frequency dynamics.

• Both energy shifting and frequency regulation capabilities of BESS, as well as the
resulting degradation costs arising from the provision of these services, should be
modeled in modern microgrid EMS. Furthermore, to enable potential practical im-
plementations, emphasis should be put into balancing computational tractability and
degradation modeling accuracy. While some previous works have achieved an ade-
quate balance between these two aspects, they have been developed for bulk power
system applications, and thus need to be adapted for their implementation in isolated
microgrids.

• Both energy shifting and frequency regulation capabilities of TCLs, as well as their in-
herent thermal dynamics, should be modeled in modern EMS for isolated microgrids,
as these type of loads play a significant role in microgrids. Furthermore, to enable
potential practical applications with a large and diverse collection of TCLs, empha-
sis should be put into balancing computational tractability and thermal modeling
accuracy, as existing previous works have either used detailed but computationally
inefficient formulations, or too simplistic approaches that significantly differ from the
actual dynamics observed in practical settings.

• Finally, the joint operation of both BESS and TCLs for the provision of energy
shifting and frequency regulation services should be studied while taking into account
their associated practical challenges. Previous works have either studied BESS and
TCL independently, or neglected the practical challenges of battery degradation,
TCL thermal dynamics, and computational tractability. Thus, the joint operation of
BESS and TCLs taking into account their practical challenges are yet to be analyzed.
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1.3 Research Objectives

Based on the aforementioned literature review, the following objectives have been defined
for the present thesis:

• Develop a mathematical model for characterizing second-to-second power fluctuations
stemming from renewable generation and loads, while taking into account their im-
pact on isolated microgrid operation and frequency regulation. The resulting model
must preserve computational tractability, such that it can be integrated within prac-
tical microgrid EMSs.

• Develop mathematical models to characterize the energy shifting and frequency reg-
ulation capabilities of BESS and TCLs, taking into account the practical issues of
battery degradation, TCL thermal dynamics, and computational tractability.

• Determine optimal operational policies for a centralized EMS in the context of iso-
lated microgrids, taking into account the flexibility and practical issues of BESS and
TCL, while maintaining computational tractability.

• Evaluate the performance of the determined operational policies through simulations
in a realistic test system, gaining insights into the benefits that BESS and TCL can
provide for isolated microgrid operation.

1.4 Thesis Outline

The rest of the thesis is organized as follows:

• In Chapter 2, a thorough review on the background topics relevant to this thesis are
presented, including microgrids and EMS, frequency dynamics and control, BESS
and their degradation, and TCL and virtual battery modeling.

• In Chapter 3, computationally efficient models for representing short-term power
fluctuations and battery degradation are developed, which are then used to design
a practical microgrid EMS model embedding these features. Computational experi-
ments on two realistic isolated microgrids are performed to evaluate the benefits of the
proposed EMS model, highlighting the need for integrating short-term fluctuations
and battery degradation in isolated microgrid operations.
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• In Chapter 4, a frequency-constrained EMS model is proposed, in which the impact of
short-term imbalances on the frequency regulation performance of the microgrid is in-
tegrated. To maintain computational tractability for potential practical applications,
accurate linear equations are used to describe microgrid frequency dynamics, which
include frequency deviations, RoCoF, and regulation provision from DER units. De-
tailed dynamic simulations are performed on a realistic test microgrid to demonstrate
the benefits of the proposed frequency-constrained EMS model, highlighting the need
for integrating frequency dynamics in isolated microgrid operations.

• In Chapter 5, the integration of TCLs within an isolated microgrid EMS model is
studied. For this purpose, practical and precise models representing the flexibility
and dynamics of aggregated TCL control implementations are developed; namely,
a virtual battery model integrating high-order thermal dynamics for TCLs, and a
frequency transient model capturing relevant challenges observed in practical appli-
cations. Computational experiments using detailed frequency transient and thermal
models are performed to demonstrate the accuracy of the proposed aggregated TCL
models, as well as the economic and reliability benefits stemming from their integra-
tion within a microgrid EMS model.

• In Chapter 6, the main conclusions and contributions of the thesis are summarized,
and future research ideas are discussed.

9



Chapter 2

Background

In this chapter, an overview of the concepts and models used in this thesis is presented.
First, microgrids and the role that EMS play in their operation are discussed. CESS and
their different available technologies are then presented, including BESS and their degra-
dation. TCL and existing virtual battery representations are reviewed next, followed by a
discussion of the mathematical models used to describe the frequency dynamics and control
of microgrids. Finally, a summary of the topics discussed in this chapter is presented.

2.1 Microgrids

Microgrids are defined as a collection of loads and DER, such as ESS and renewable
energy sources, that operate locally as a single controllable entity. While small autonomous
microgrids have existed for many decades in remote communities, there has been a recent
growing interest in microgrids, as these systems can facilitate the integration of DER in
modern power systems [9]. Microgrids can have an AC, DC, or hybrid AC-DC topology,
with AC being the most frequent topology found in practical settings [62]. Thus, the
present thesis focuses on AC microgrids, as these are the most common nowadays.

Unlike conventional power systems, microgrids have a set of particular features that
need to be considered for its operation and control; namely, smaller system size, higher
share of renewable energy sources, higher uncertainty in generation and demand, lower
system inertia, higher R/X ratio of the feeders, unbalanced three-phase loading, and limited
short-circuit capacity. All these features directly affect the stability of the microgrid,
making its operation and control particularly challenging [11]. Microgrids can operate in
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either grid-connected or stand-alone modes. In the grid-connected mode, the microgrid is
directly connected to the main bulk grid at a single point of connection commonly referred
as the Point of Common Coupling. In this case, voltage and frequency are mainly imposed
by the main bulk grid and power deficit/excess can be traded with it, facilitating the
operation and control of the microgrid. In contrast, in stand-alone mode, the microgrid
must control voltage and frequency on its own, as well as handle power unbalances within;
thus, microgrid operation in stand-alone mode is a more challenging task. Microgrids that
do not have a Point of Common Coupling, and thus are forced to continuously operate in
stand-alone mode, are referred to as isolated microgrids [10]. The present thesis focuses on
these type of microgrids, as system operation and control is more challenging in this case.

To ensure a secure and efficient operation, microgrids usually employ a hierarchical
control for generation-load balance. Under this approach, microgrid control is divided in
the following three levels, which differ based on the considered time frame and speed of
response [10]:

• Primary control is the fastest of the three levels of controls, and its based exclu-
sively on local measurements, requiring no communication infrastructure. This level
includes output controls, power sharing, and droop controls.

• Secondary control ensures the reliable and economic operation of the microgrid. In
this level, system-wide frequency and voltage regulation is performed, which includes
the UC and dispatch of the microgrid’s DER units. This is the highest level of
control for isolated microgrids and is commonly referred to in the literature as EMS
or Microgrid Central Controller.

• Tertiary control handles the coordination with the main bulk grid and/or other mi-
crogrids. This level of control is only present in grid-connected mode.

The present thesis focuses on the secondary control of isolated microgrids, in particular
in EMS model design. However, the effect of primary control is also considered in this
research, as it plays a major role in the frequency dynamics of the microgrid. Tertiary
control is not discussed in this thesis, since it is not present in isolated microgrids.

2.1.1 Energy Management Systems

EMS in microgrids have the task of determining the schedule and dispatch set-points of
the system’s DER units, while taking into account the microgrid’s unique characteristics.
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EMS can either follow a decentralized or centralized approach for determining and com-
municating the dispatch set-points of the different DER units, which can be described as
follows [10]:

• Under the decentralized approach, the autonomy of the different DER units and
loads is prioritized, and thus the set-points are determined by a distributed decision
making process, making this approach ideal for grid-connect microgrids with multiple
owners and a fast-changing number of DER units.

• Under the centralized approach, a central controller collects global measurements
of the microgrid and determines the corresponding set-points for the different DER
devices. This enables the use of optimization algorithms that directly incorporate
the coupling dynamics between the operation of the different devices, allowing a
reliable system coordination. Thus, this approach is usually preferred in isolated
microgrids, where generation-load balance is critical and the infrastructure of the
network remains relatively fixed.

Given that the focus of this research is in isolated microgrids, a centralized approach is
considered henceforth.

2.1.2 The Unit Commitment Problem

Centralized EMS can be described as a type of UC problem, in which the schedule and dis-
patch set-points of the microgrid’s DER units needs to be determined. This is achieved by
solving an optimization problem within the central controller based on previously collected
global measurements. In general, the UC problem has the following structure [63–65]:

min
x,y

F OBJ (x,y)

s.t. x ∈ {0, 1} , y ≥ 0

F IN(x,y) ≤ 0

F EQ(x,y) = 0

where x are binary decision variables, which are typically related to the ON/OFF dispatch
decisions for thermal generators; y are non-negative continuous decision variables, which
include DER dispatch set-points and line flows; F OBJ(·) is a scalar objective function,
which incorporates relevant operation costs such as fuel, maintenance, start-up, and shut-
down costs; F IN(·) are inequality constraints, which are typically related to DER capacity
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limits; and F EQ(·) are equality constraints, which are usually linked to the physics and
dynamics of the decision variables and parameters (e.g., power flow equations). Typically,
UC models utilize linear expressions for the objective function F OBJ , and constraints F IN

and F EQ, such that a Mixed Integer Linear Programming (MILP) problem is obtained,
allowing the use of highly efficient off-the-shelf solvers, such as Gurobi [66] and CPLEX [67].

2.2 Conventional Energy Storage Systems

ESS are a relevant flexibility asset for isolated microgrids, as these cannot only provide
energy shifting services, but also a series of other relevant auxiliary services, such as fre-
quency and voltage regulation, power quality improvement, and grid-forming capability.
A wide spectrum of different energy storage technologies can be found nowadays, which
include [14,15]:

• Electrochemical storage, in which an electrochemical process is used to transform
and store electrical energy as chemical energy. Within this category, lithium-ion,
lead-acid and flow batteries are the most typical nowadays. This type of storage is
characterized by its great flexibility and widespread application in different fields,
including electric vehicles and power systems.

• Mechanical storage, in which electrical energy is transformed and stored as kinetic or
potential energy. Within this category, pumped hydro, compressed air, and flywheel
energy storage are the most common.

• Thermal storage, in which heat is stored in an insulated repository for space heat-
ing/cooling or hot water production. Within this category, water tanks and ceramic
brick packed-beds are typical.

• Electrical storage, in which electrical energy is stored by means of capacitors and
magnetic fields. Within this category, supercapacitors and superconducting magnetic
energy storage can be found. This type of storage is characterized by high power
capacity, low energy density, and high investment cost, which limits its application
to time frames in the order of seconds.

• Hydrogen storage, in which electricity and hydrogen interact through the use of an
electrolizer and a fuel cell. Unlike other storage technologies, this type of storage
allows seasonal storage.
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In this thesis, these type of energy storage technologies are referred to as CESS, as these
have successfully been implemented in power system applications and have well defined
technical parameters (e.g., power and energy capacity limits). Thus, CESS can be described
by the following discrete-time linear equations ∀t ∈ T [68]:

eBt = eBt−1 +∆t

(
ηB,C cBt − 1

ηB,D
dBt

)
(2.1)

EB ≤ eBt ≤ E
B

(2.2)

cBt ≤ P
B
, dBt ≤ P

B
(2.3)

where ∆t is the time-step size; cBt ≥ 0 and dBt ≥ 0 are the charging and discharging power
at time t; eBt ≥ 0 is the stored energy at the end of period t; T the set of time intervals;

ηB,C and ηB,D are the charging and discharging efficiency; EB and E
B
are the minimum

and maximum energy capacity limit; and P
B
is the maximum rated charging/discharging

power, respectively. Equation (2.1) describes the SoC evolution over time, and equations
(2.2) and (2.3) represent the capacity limits for stored energy and charging/discharging
power, respectively. The present thesis focuses on electrochemical batteries, i.e., BESS, as
it is one of the most flexible and widespread CESS technologies found in power systems
applications [7, 15]. However, modelling of and insights on BESS can readily be extended
for other type of CESS.

2.2.1 Battery Energy Storage Systems

Electrochemical batteries are typically composed by an anode, a cathode, an electrolyte,
and a semipermeable membrane, which are used to trigger a chemical redox process to store
and deliver electric energy, as illustrated in Figure 2.1. A wide spectrum of commercial-
scale electrochemical batteries can be found in practical applications, including Lead-Acid,
Nickel-Metal-Hydride (NiMH), Lithium-Ion (Li-Ion), Sodium-Sulphur (NaS), and Vana-
dium Redox Flow Battery (VRB); each one has its own particular set of features, as shown
in Table 2.1. Due to their high energy/power density, efficiency, and useful life, Li-Ion
batteries are currently the most popular type of BESS found in power systems, having
been applied in the provision of numerous services, such as energy shifting, frequency and
voltage regulation, and transmission/distribution updgrade deferral. Furthermore, Li-Ion
batteries are the main technology for modern electric vehicles; however, their wide-scale
application in power systems is currently still limited due to their high capital costs, which
are expected to decrease in the near-future [7].
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Figure 2.1: Typical discharging (a) and charging (b) process of an electrochemical battery
[1].

2.2.2 Battery Degradation and Aging

As batteries require a high initial investment for their installation, proper quantification
techniques for the battery’s useful life are required to ensure an efficient energy storage
planning and operation. Battery lifetime depends on a series of external stress factors that
degrade and age its components, which include cycle Depth-of-Discharge (DoD), current
rate, average SoC, calendar time, and cell temperature. From an operational point of
view, such degradation translates into a fading of the battery’s original capacity, with a
20% capacity fading being the usual threshold used to define battery end-of-life [43, 69].

In general, existing battery degradation models can be classified into three main cate-
gories, which differ in their degradation modelling accuracy and computational tractability,
as follows:

• Theoretical models focus on modelling the active material and ion-diffusion loss by
means of partial differential equations [70, 71]. These models have the highest accu-
racy in modelling battery degradation, but at the expense of a high computational
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Table 2.1: Main features of common electrochemical batteries [7].

Type Lead-Acid NiMH Li-Ion NaS VRB
Energy density
[Wh/kg]

25-50 60-120 75-200 150-240 10-30

Power density
[W/kg]

75-300 250-1,000 500-2,000 150-230 80-150

Useful life
[n◦ cycles]

200-1,000 180-2,000 1,000-10,000 2,500-4,000 >12,000

Capital cost
[USD/kWh]

100-300 900-3,500 300-2,500 300-500 150-1,000

Round-trip
efficiency [%]

75-87 ∼65 85-97 75-90 75-90

Self
discharge

Low High Medium - Negligible

burden. Thus, these type of models cannot be directly incorporated within opera-
tional models.

• Empirical models are based exclusively on experimental data and statistical analysis,
greatly simplifying the degradation model [48,72,73]. These models are highly com-
putationally efficient, but have the drawback that they are tailored to specific test
conditions, and thus their predictions can be very poor for other battery operating
conditions.

• Semi-empirical models combine theoretical analysis with experimental observations
to tackle the issues of computational tractability and performance under general
battery operating conditions [43, 69]. Under this approach, degradation is modelled
through theoretical stress factor models whose parameters are calibrated with exper-
imental data.

This thesis focuses on the semi-empirical approach, as its computational tractability and
general applicability makes it ideal for operational applications, such as EMS model design.
Under this approach, the degradation is mainly driven by: (i) cycle aging, which captures
the degradation due to the battery’s continuous charging and discharging; and (ii) calendar
aging, which represent the battery’s inherent degradation over time. In general, both cycle
and calendar aging can be described as a function of the cycle’s DoD λ and count ρ, cell
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temperature θC , average SoC ŝB, and time t stress factors, as follows [43]:

F CY C(θC , ŝB,ρ,λ) = Γθ(θC) ΓS(ŝB)
∑
m∈M

ρm Γλ(λm) (2.4)

F CAL(θC , ŝB, t) = Γθ(θC) ΓS(ŝB) ΓT (t) (2.5)

where F CY C(·) and F CAL(·) represent cycle and calendar aging, respectively; and Γ(·) is
the stress factor model representing the effect of the stress factors on the battery’s life,
which are assumed to be multiplicative. Note that the cycles are indexed by m ∈ M =
{1, . . . ,M} and are characterized by their depth λm ≥ 0, and count ρm ∈ {0.5, 1}, for
which ρm = 0.5 corresponds to a half cycle, and ρm = 1 to a full cycle.

Given that the focus of this research its on microgrid operations, the degradation process
described by (2.4) and (2.5) can be simplified to facilitate its integration in microgrid EMS
models. In particular, the presence of external controllers regulating the average SoC ŝB

and cell temperature θC can be assumed, making cycle aging the main driver of battery
degradation [42, 49]. Thus, the degradation caused by battery operation can be described
by the following equation:

F CY C(ρ,λ) =
∑
m∈M

ρm Γλ(λm) (2.6)

where it can be seen that a cycle identification algorithm is needed for determining the
set of cycles M, and their corresponding depth λm and count ρm. In general, such cycle
identification algorithm can be described as a function of the SoC profile sB ∈ [0, 1]n

resulting from battery operation, as follows:

[ρ, λ] = F ID(sB) (2.7)

where λ and ρ are vectors representing the resulting cycle depths and counts, respectively,
with their dimension being equal to the number of cycles, i.e., dim(λ) = dim(ρ) = M .

Cycle identification algorithms based on the rainflow cycle counting method, such as the
ones presented in [74,75], have commonly been used for battery life estimation applications
(e.g., [42, 43, 49]). Under this approach, cycles are identified based on local extremas of
the SoC profile, which are referred to as turning/reversal points. Thus, based on a time
series of such reversal points, cycles are identified and classified either as full (ρm = 1)
or half (ρm = 0.5) cycles, and assigned a corresponding cycle depth λm. An illustrative
example of the application of the rainflow cycle counting algorithm is presented in Figure
2.2, for which the rainflow function in MATLAB [74,76] was used to identify the resulting
charging/discharging cycles. Observe that a total of M = 5 cycles are identified, whose
resulting cycle count and depth are indicated in Table 2.2.
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Figure 2.2: Example of rainflow cycle counting algorithm for cycle identification based on
a battery’s SoC profile (M = 5). Orange circles indicate turning/reversal points.

Table 2.2: Results of the rainflow cycle-counting algorithm example in Figure 2.2 (M = 5).

Reversal points A-B B-C D-E C-F F-G
Cycle depth (λm) 0.3 0.6 0.2 0.6 0.3
Cycle count (ρm) 0.5 0.5 1 0.5 0.5

2.3 Thermostatically Controlled Loads

TCLs encompass air conditioners, refrigerators, electric space heaters, and electric water
heaters, all of which comprise a significant share of the total electric demand at a resi-
dential level [17]. TCLs are characterized by their inherent thermal inertia, which allows
temporary adjusting their electricity consumption without violating end-user temperature
comfort requirements [18]. For residential TCLs, end-user temperature requirements take
the form of a temperature deadband in which the device’s temperature must be maintained
at all times, for which a simple hysteresis ON/OFF control is typically employed in prac-
tice. Accordingly, the following equations have commonly been used in the power systems
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literature to describe TCL dynamics [6, 19,20,77–79]:

CI dθ
I(t)

dt
=

θA − θI(t)

RA
± uTCL(t) ηTCL P

TCL︸ ︷︷ ︸
qTCL(t)

(2.8)

lim
ϵ→0

uTCL(t+ ϵ) =

{
uTCL(t),

∣∣θI(t)− θI,SP
∣∣ < ∆θTCL

1− uTCL(t),
∣∣θI(t)− θI,SP

∣∣ ≥ ∆θTCL
(2.9)

where (2.8) describes the dynamics of the TCL’s inner temperature θI , which is affected by
the ambient temperature θA and the TCL’s ON/OFF status uTCL ∈ {0, 1}; and (2.9) de-
scribes the TCL’s hysteresis ON/OFF control, which ensures the TCL’s inner temperature
θI stays within the deadband defined by the temperature set-point θI,SP and deadband

width ∆θTCL. Parameters CI , RA, ηTCL, and P
TCL

represent the TCL’s inner thermal ca-
pacitance, ambient thermal resistance, coefficient of performance, and rated electric power,
respectively, which depend on the thermal and electric characteristics of the TCL. Further-
more, observe that (2.8) includes a ± sign to differentiate of whether the TCL is operating
in heating (+) or cooling (−) mode. The relatively low mathematical complexity of this
model has allowed its use for simulating a large collection of TCLs (around 1000-2000
TCLs in [6, 19,77–79]).

2.3.1 Aggregated Load Control and Virtual Battery Models

While TCLs cannot provide much flexibility on their own, a coordinated cluster of mul-
tiple TCLs can instead provide a significant amount of flexibility. Consequently, a series
of different aggregated TCL controllers have been proposed, which aim to accurately co-
ordinate a TCL collection to follow an aggregate power reference signal, and are based on
advanced control techniques such as decentralized stochastic control [80], population-bin
linear state-space models [77, 81], and priority-list control [6]. As demonstrated in these
works, if an adequate level of sensing and communications is available, modern aggregated
TCL controllers can achieve a satisfactory signal tracking performance, allowing its imple-
mentation for frequency regulation services. However, these controllers cannot be directly
implemented in operational models, such as EMS, as it would result in a computational
untractable optimization model with too many decision variables and constraints. Thus,
to tackle this issue, computationally efficient VESS models have recently been proposed as
a tool for modeling the flexibility of a TCL aggregation. This alternative representation
is based on characterizing the set of reference signals that can be tracked by aggregated
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TCL controller through an equivalent SoC equation with time-varing and uncertain en-
ergy/power capacity limits [6, 19–21], as follows ∀t ∈ T :

eVt =
(
1− γV∆t

)
eVt−1 −∆t · dVt (2.10)

−EV
t (ξ) ≤ eVt ≤ EV

t (ξ) (2.11)

−P V,C
t (ξ) ≤ dVt ≤ P V,D

t (ξ) (2.12)

where dVt and eVt are the virtual battery’s discharging power and stored energy, respectively,
and γV is the self-discharging rate. Note that, unlike CESS capacity limits (2.2) and (2.3),
the capacity limits (2.11) and (2.12) depend on the time t and uncertainty variable ξ.
Given the similarity of the above virtual battery model to the CESS model (2.1)-(2.3), the
term VESS will be used hereinafter to refer to this representation of the flexibility resulting
from an aggregated TCL control.

2.3.2 High-Order Thermal Models

Existing works on aggregated TCL control and virtual battery representations typically
assume that TCL thermal dynamics are accurately described by (2.8), which corresponds
to a simple first-order thermal model that captures the interaction between the TCL’s
inner temperature θI and ambient temperature θA, as illustrated in Figure 2.3. However,
as demonstrated in [61], these simple first-order dynamics are not sufficiently accurate
to represent the actual dynamics observed in real-life applications, for which additional
relevant aspects need to be incorporated, such as solar irradiance heat gains and wall/floor
heat transfers. Thus, recent works on TCL control such as [82, 83] have proposed the use
of more detailed high-order thermal models that integrate these additional features, which
can be described by the following third-order system of differential equations, as per Figure
2.4:

CI dθ
I(t)

dt
= qTCL(t) + qC +

θA − θI(t)

RC
+

θW (t)− θI(t)

RW/2
+

θF (t)− θI(t)

RF/2
(2.13a)

CW dθW (t)

dt
= qW +

θA + θI(t)− 2θW (t)

RW/2
(2.13b)

CF dθ
F (t)

dt
=

θG + θI(t)− 2θF (t)

RF/2
(2.13c)

where θW and θF are wall and floor temperatures, respectively; qC and qW are the heating
power from the solar radiation onto windows and walls, respectively; RC is the thermal

20



Figure 2.3: Thermal circuit for first-order TCL thermal model.

Figure 2.4: Thermal circuit for third-order TCL thermal model.

resistance of windows; RW and CW are the thermal resistance and thermal capacitance
of walls, respectively; RF and CF are the thermal resistance and capacitance of the floor,
respectively; and θG is the ground temperature. The high modeling accuracy of the above
thermal model has allowed the detailed evaluation of possible practical applications of
small-scale TCL controls (e.g., [82, 83]). However, due to its relatively high mathematical
complexity, it has not been yet applied in studies with a large number of TCLs nor VESS
models.

2.4 Frequency Dynamics and Control

Frequency control plays a fundamental role for ensuring a secure system operation, as
generation units and electric loads need a relatively stable system frequency for their correct
functioning. Frequency deviations are the result of instantaneous generation-load power
imbalances, which stem from diverse sources such as generator/line outages and fast short-
term fluctuations in renewable generation and demand. In general, the instantaneous
frequency deviation ∆f resulting from a power imbalance ∆P IMB can be described by the
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following swing equation [84,85]:

2 INSY S d∆f(t)

dt
+KLD ∆f(t) = ∆P IMB =

∑
g∈G

∆PG
g (t)−∆PL(t) (2.14)

where INSY S is the system’s total rotational inertia; KLD is the system’s total load-
damping stemming from frequency-sensitive loads; ∆PG

g is the change in generator’s g
power; and ∆PL is the change in the system’s load. Thus, an excess of generation
(∆P IMB > 0) will result in a temporary increase in frequency, and a generation short-
age (∆P IMB < 0) will translate in a frequency decay.

To prevent large frequency excursions that could affect the system’s correct operation,
primary frequency controllers are typically included in the generation units of modern
power systems, being the droop control the most common approach found in practical
applications. Under this approach, the power reference of each generator g ∈ G is adjusted
based on the system’s frequency deviation and an specific droop gain κG

g , resulting in the
following linear power-frequency relationship [84,85]:

∆PG,REF
g (t) = − 1

κG
g

∆f(t) (2.15)

where ∆PG,REF
g is the change of generator’s g power reference/set-point. The main ad-

vantage of the above droop control lies in its decentralized nature, for which only local
frequency measurements are required, resulting in a robust yet simple frequency con-
trol method. Furthermore, droop control allows a coordinated steady-state power sharing
amongst the different generators connected to the system, which will be dictated by droop
gain κG

g and rated power of each generator. In practical settings, droop gains are typi-
cally determined based on operation guidelines such as [86], for which maximum allowable
frequency deviations and range of acceptable droop gains are indicated.

With the exception of microgrids with a limited number of generators, local primary
droop controllers are typically supported by an additional supplementary frequency con-
trol. For conventional power systems, such supplementary control takes the form of an
Automatic Generation Control (AGC) scheme, which allows correcting the steady-state
frequency error of a droop-only control. An example of a standard AGC implementation
is illustrated in Figure 2.5, for which an integral component has been considered for the
supplementary frequency control [84, 85]. Note that in the figure, the supplementary con-
trol signal ∆PAGC is distributed amongst the different units based on participation factors
αG
g .
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Figure 2.5: Example of AGC frequency control scheme based on local droop control and
supplementary integral control.

Figure 2.6: Block diagram of diesel generator governor model DEGOV1 [2].

2.4.1 Generator and Battery Dynamic Models

Due their flexibility and low investment cost, diesel generators are by far the most common
type of generator found in microgrids. Thus, in this thesis, a frequency dynamic model for
a diesel generator is considered, which is based on its governor’s response and includes an
Electronic Control Box, Actuator, and Engine as described by Figure 2.6 [2]. Note that in
the figure, a feedback loop for a steady-state frequency-droop response is included.

BESS are also typically found in modern practical microgrids, as these can provide rel-
evant grid services such as frequency regulation and grid-forming capability [7, 15]. Thus,
in this thesis, a frequency dynamic model for BESS is also considered, which is illus-
trated in Figure 2.7 and it is based on WECC’s generic modules REPC A, REEC A,
and REGC A [3]. Note that the presented model captures the frequency response and
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Figure 2.7: Block diagram of battery frequency response model [3].

time lags resulting from the battery’s converter and inner control loops, and includes a
frequency-droop response κB, a virtual inertia component INB, and a SoC limit function
SoC

(
∆PB

)
, which automatically ceases battery (dis)charging if the upper (lower) energy

limit is reached.

2.4.2 Load Model and Voltage Frequency Control

Electric loads can be modelled based on their aggregate sensitivity to frequency and voltage
changes. Typically, the following static load model has been used for representing active
power loads at a distribution level [84, 85]:

PL(t) = PL
0

(
V (t)

)KPV (
1 +KPF ∆f(t)

)
(2.16)

where PL and V are the instantaneous load and voltage, respectively; PL
0 is the nominal

load; and KPV and KPF are voltage and frequency sensitivities of the electric loads,
respectively. Note that the system’s load damping KLD in (2.14) stems from the above
frequency sensitivity, with KLD = PL

0 KPF .

The voltage sensitivity described in (2.16) can also be exploited to provided additional
frequency regulation to isolated microgrids. This can be achieved by installing a Voltage
Frequency Control (VFC) in the microgrid’s diesel generators, which modifies the gener-
ator’s voltage reference based on measured frequency deviations [4]. This results in the
frequency dynamic model illustrated in Figure 2.8, where KV FC and ∆V are the VFC’s
proportional gain and maximum voltage reference change; and V G represents the aggre-
gated dynamic response of the generator’s Synchronous Machine (SM) and Exciter.

2.4.3 Load Shedding and Renewable Curtailment Models

To prevent system collapse in the presence of unexpectedly large and fast power imbalances,
auxiliary Load Shedding (LS) and Renewable Curtailment (RC) controllers are typically
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Figure 2.8: Block diagram of a proportional Voltage Frequency Controller [4].

Figure 2.9: Block diagram of load shedding frequency control scheme.

included in isolated microgrid applications [86, 87]. Thus, in this thesis two simple linear
percentage-based LS and RC controllers are included for frequency transient simulations,
which are depicted in Figures 2.9 and 2.10, respectively. Note that both controllers include
damped percentage gains, which depend on nominal load PL

0 , wind generation PW
0 , and

solar generation P S
0 . Furthermore, observe that in accordance with modern DER operating

standards [86], these controllers are triggered when the upper or lower frequency deviation
limits ±∆f are reached.

2.4.4 Isolated Microgrid Dynamic Model

Based on the aforementioned dynamic models, a transient model to describe the frequency
dynamics of an isolated microgrid can be developed. The resulting dynamic model is
presented in Figure 2.11, which includes blocks for representing the transient response
of diesel generators and batteries, as well as the control response of VFC, LS and RC
controllers. Note that in the figure, continuous-time functions for representing short-term
fluctuations in loads rL(t), wind generation rW (t), and solar generation rS(t) are integrated.
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Figure 2.10: Block diagram of renewable curtailment frequency control scheme.

Figure 2.11: Microgrid’s frequency regulation model.

2.5 Summary

This chapter presented a background review of the concepts and models used through the
present thesis. The review included fundamental aspects related to microgrid operation and
control, including its hierarchical control structure and the use of centralized EMS models
for an efficient and reliable system operation. Furthermore, existing modeling techniques
for representing the flexibility and practical challenges of BESS and aggregated TCL control
techniques were discussed. Finally, existing mathematical models for representing the
frequency dynamics and control of isolated microgrids were presented, including transient
models for diesel generators, batteries, electric loads, and load shedding and renewable
curtailment auxiliary controllers.

26



Chapter 3

Integrating Short-Term Power
Fluctuations and Battery
Degradation in Microgrid Operation

As discussed in Chapter 1, second-to-second power fluctuations can play a relevant role in
the operation and control of isolated microgrids, as these tend to have a low inertia and
significant renewable integration. In this context, modern microgrid EMS model need to
incorporate short-term power fluctuations within their decision-making process to ensure a
reliable and efficient system operation. Furthermore, given the major role that BESS can
play to counterbalance power fluctuations, the energy shifting and regulation capability of
batteries, as well as the resulting battery degradation costs, need to be integrated within
modern EMS models for an enhanced system operation. Hence, a novel EMS embedding
short-term fluctuations and battery degradation is developed in this chapter. Bearing in
mind that computational tractability is a necessary feature for practical EMS implemen-
tations, the models developed here are designed for attaining a suitable computational
efficiency, allowing their direct incorporation into the optimization routines of modern
EMS models. Exhaustive computational experiments on the real Kasabonika Lake First
Nation (KLFN) isolated microgrid and CIGRE benchmark test system show the benefits
resulting from the implementation of the proposed EMS model, highlighting the need to
integrate short-term fluctuations and battery degradation within modern EMS models for
isolated microgrids.

The chapter is organized as follows: In Section 3.1, novel computationally tractable
models describing short-term power fluctuations and battery degradation are presented. In
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Section 3.2, reserves, their modeling, and how these are affected by short-term fluctuations,
are discussed. Based on the models developed in the two previous sections, the proposed
practical EMS model is then presented in Section 3.3. Computational experiments and
their results are discussed in Section 3.4. Finally, a summary of the topics reviewed in this
chapter is presented in Section 3.5.

3.1 Short-Term Fluctuations and Battery Degrada-

tion Models

In this section, precise and computationally efficient models to characterize short-term
fluctuations and battery degradation are described. These models serve as the basis for de-
riving the mathematical expressions that make the computationally tractable EMS model
proposed in this chapter.

3.1.1 Short-Term Fluctuations Model

One of the main challenges of modeling second-to-second power fluctuations within EMS
is computational tractability. As time-variability of renewable generation and demand
is usually captured in EMS models by defining different time intervals, directly using a
detailed time-resolution in the order of seconds would result on a dramatic increase in
the number of decision variables, yielding a computational intractable model. Hence,
a computationally efficient representation of short-term fluctuations is developed here,
which is based on considering two different time frames: one for dispatch (or long) time
intervals h ∈ H = {1, . . . , H}, and another for intra-dispatch (or short) time intervals
j ∈ J = {1, . . . , J}. This allows splitting the generic instantaneous power vector ph

during dispatch time interval h into long and short term components as follows:

ph = [p̂h + χh(ξ)]︸ ︷︷ ︸
long term

1+ rh(ξ)︸ ︷︷ ︸
short term

(3.1)

where ph = [ph,1, . . . , ph,j, . . . , ph,J ]; 1 is a vector of ones of dimension J ; p̂h is the average
power forecast; and χh is the average power forecast error, which is affected by uncertainty
ξ. Thus, short-term fluctuations are described by vector rh = [rh,1, . . . , rh,j, . . . , rh,J ], which
is also affected by uncertainty. Note that p̂h and χh are constant during the dispatch time
interval h, and thus have a time resolution of ∆Th. In contrast, rh depends also on the
short time interval j, and thus has a time step of length ∆τ ≪ ∆Th. Figure 3.1 depicts an
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Figure 3.1: Average powers and short-term fluctuations for a 10 kW wind plant at the
KLFN microgrid [5].

example in which measurements for the KLFN microgrid [5], with a resolution of ∆τ = 1s,
are used to build: (i) average powers p̂h, which are constant during dispatch time intervals
of length ∆Th = 5min ∀h ∈ H; and (ii) short-term fluctuations rh, that oscillate around
the average powers. In this example, forecast errors are not present, i.e., χh = 0 ∀h ∈ H.

Formulation (3.1) allows the formal definition of a novel computationally efficient rep-
resentation of the vector of short-term fluctuations rh, referred to as feature-based repre-
sentation here. The key idea is that instead of directly using the high-dimensional vector
rh in the EMS model (as in [34–36]), only the most relevant features of such vector are con-
sidered, avoiding the need to define decision variables for each short time interval j ∈ J ,
and thus significantly reducing computational burden. Here, the standard deviation (std)
and mean absolute deviation (mad) statistical metrics are selected as the features that
characterize rh, since these can be linked to reserve sizing and reserve utilization, as de-
scribed later in Sections 3.2.2 and 3.3.1. Thus, the feature-based representation of rh is as
follows:

υh =

[
std(rh)
mad(rh)

]
(3.2)

where υh is a vector of dimension equal to 2, which is significantly lower than J = dim(rh).
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Note that this idea can easily be extended to incorporate other possibly relevant features.

3.1.2 Battery Degradation Model

As discussed in Section 2.2.2, the battery degradation caused by cycle aging can be de-
scribed by equations (2.6) and (2.7). These equations, while accurate for describing battery
aging, have the drawback that they are highly non-linear in practical settings, which pre-
vents their direct integration within operational EMS models. Such non-linearity stems
from functions F ID(·) and Γλ(·), being the former non-analytical, and the latter convex
but non-linear in practical settings [43]. Thus, to circumvent the above issue, a piecewise
linear representation based on [42] is proposed here, for which the battery’s cycle depth
range is split into even partitions l ∈ L, resulting in the following expression for describing
the degradation of battery b ∈ B:

F CY C
b (cBb ,d

B
b ) =

∆t

EB
b

∑
t∈T

∑
l∈L

ϕ̂b,l

2

(
ηB,C
b cBb,l,t +

dBb,l,t

ηB,D
b

)
(3.3a)

sBb,l,t − sBb,l,t−1 =
∆t

EB
b

(
ηB,C
b cBb,l,t −

dBb,l,t

ηB,D
b

)
(3.3b)

0 ≤ sBb,l,t ≤ Sb,l ∀b ∈ B, l ∈ L, t ∈ T (3.3c)

where T is a set of generic time intervals t with time-step length ∆t; cBb,l,t is the charging

and dBb,l,t the discharging of battery’s b partition l at time t; EB
b , η

B,C
b , and ηB,D

b are the
battery’s rated energy capacity, charging efficiency, and discharging efficiency, respectively;
and ϕ̂b,l is the piecewise linear degradation coefficient. Note that each battery’s b partition
l has its own SoC sBb,l,t, which is bounded by the partition’s depth range Sb,l. Furthermore,
observe in (3.3a) that unlike [42], half-cycles instead of full-cycles are assumed, so that
both charging and discharging are equally penalized in terms of the resulting degradation.

3.2 Reserves and Regulation Modeling

Based on (3.1), reserves for managing forecast errors and short-term fluctuations are needed
to ensure a secure microgrid operation. Accordingly, in this section, methods for efficiently
sizing and allocating these reserves are discussed. Furthermore, tools for assessing the
security provided by such reserves are presented.
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3.2.1 Forecast Error Reserve

Most EMS models consider reserves to handle forecast errors, which are typically modeled
as a percentage of the expected renewable generation and demand (e.g., [22–27]). This
same principle is used here to determine the forecast error reserve needs. Thus, from (3.1),
one can describe the microgrid’s net load forecast error as follows:

χMG
h (ξ) = P̂L

h χ̃L
h (ξ)− p̂Wh χ̃W

h (ξ)− p̂Sh χ̃
S
h(ξ) (3.4)

where P̂L
h , p̂

W
h , and p̂Sh are the forecast average powers during dispatch time interval h

corresponding to load, wind generation, and solar generation, respectively; and errors
associated with each forecast are described by the normalized zero-mean random scalars
χ̃L
h , χ̃

W
h , and χ̃S

h .

Based on (3.4), and assuming statistical independence, the standard deviation of the
microgrid’s net load can be computed as follows:

std
(
χMG
h

)
=

[(
P̂L
h σ̃

χ,L
h

)2
+
(
p̂Wh σ̃χ,W

h

)2
+
(
p̂Sh σ̃

χ,S
h

)2]1/2
(3.5)

where σ̃χ,L
h = std

(
χ̃L
h

)
, σ̃χ,W

h = std
(
χ̃W
h

)
, and σ̃χ,S

h = std
(
χ̃S
h

)
can be estimated from

normalized historical samples of forecast errors χL
h/P̂

L
h , χ

W
h /p̂Wh , and χS

h/p̂
S
h , respectively.

Hence, the forecast error reserve requirement is given by:

ζχh = ϵχ std
(
χMG
h

)
(3.6)

where the confidence level can be adjusted through the parameter ϵχ.

3.2.2 Regulation Reserve

Conventional EMS models do not explicitly represent short-term fluctuations, nor explic-
itly consider these when computing total reserve requirements (e.g., [22–27]). However,
as discussed in Chapter 1, properly accounting for short-term fluctuations is important
in isolated microgrids with low inertia and significant renewable integration. Thus, un-
like previous EMS models, an especially-dedicated regulation reserve is considered here,
which aims to handle the regulation signal stemming from fast fluctuations of demand and
renewable generation. Hence, from (3.1), such regulation signal can be defined as follows:

rMG
h (ξ) = P̂L

h r̃L
h (ξ)− p̂Wh r̃W

h (ξ)− p̂Sh r̃
S
h (ξ) (3.7)
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where r̃L
h , r̃

W
h , and r̃S

h are zero-mean random vectors representing the normalized short-
term fluctuations stemming from demand, wind generation, and solar generation, respec-
tively.

Based on (3.7), and following a similar procedure as in Section 3.2.1, the standard
deviation of the regulation signal can be computed as:

std
(
rMG
h

)
=

[(
P̂L
h σ̃

r,L
h

)2
+
(
p̂Wh σ̃r,W

h

)2
+
(
p̂Sh σ̃

r,S
h

)2]1/2
(3.8)

where σ̃r,L
h = std

(
r̃L
h

)
, σ̃r,W

h = std
(
r̃W
h

)
, and σ̃r,S

h = std
(
r̃S
h

)
. However, note that in this

case, standard deviations are computed by concatenating normalized historical samples of
rLj,h/P̂

L
h , r

W
j,h/p̂

W
h , and rSj,h/p̂

S
h , since r̃ is a random vector of dimension J . Furthermore,

notice that standard deviations only depend on dispatch time interval h ∈ H, as the short
time interval index j ∈ J is avoided in accordance with the feature-based approach (3.2).

From (3.8), the regulation reserve requirement can directly be defined, as follows:

ζrh = ϵr std
(
rMG
h

)
(3.9)

where the confidence level can be adjusted through the parameter ϵr.

3.2.3 Reserve Allocation

The reserves previously defined in Sections 3.2.1 and 3.2.2 require the definition of their
corresponding upward and downward reserve constraints to ensure enough capacity margins
are kept. Assuming that reserves can be provided by thermal generators g ∈ G and batteries
b ∈ B, the following forecast error χ reserve constraints can be obtained ∀h ∈ H:

ζχh =
∑
g∈G

∆pG,χ,↑
g,h +

∑
b∈B

∑
l∈L

∆pB,D,χ,↑
b,l,h (3.10a)

ζχh =
∑
g∈G

∆pG,χ,↓
g,h +

∑
b∈B

∑
l∈L

∆pB,C,χ,↓
b,l,h (3.10b)

where ∆pG,χ,↑
g,h and ∆pG,χ,↓

g,h are the upward (↑) and downward (↓) forecast error reserve pro-
vided by generator g, respectively; ∆pB,D,χ,↑

b,l,h is the upward forecast error reserve provided

by increasing the discharging power of battery’s b partition l; and pB,C,χ,↓
b,l,h is the downward

forecast error reserve provided by increasing the charging power of battery’s b partition l.
Note that a symmetrical upward/downward reserve requirement ζχh is considered here.
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The regulation r reserve constraints can be defined similarly as follows ∀h ∈ H:

ζrh =
∑
g∈G

∆pG,r,↑
g,h +

∑
b∈B

∑
l∈L

∆pB,D,r,↑
b,l,h (3.11a)

ζrh =
∑
g∈G

∆pG,r,↓
g,h +

∑
b∈B

∑
l∈L

∆pB,C,r,↓
b,l,h (3.11b)

where ∆pG,r,↑
g,h and ∆pG,r,↓

g,h are the upward and downward regulation reserve provided

by generator g, respectively; and ∆pB,D,r,↑
b,l,h and ∆pB,C,r,↓

b,l,h are the upward and downward
regulation reserve provided by battery’s b partition l, respectively. Note that a symmetrical
upward/downward reserve requirement ζrh is also considered here.

The reserve allocation defined by variables ∆p indicate how the mismatches caused
by forecast errors and short-term fluctuations are shared among generators and batteries.
Specifically, power sharing is dictated by the participation factors α, defined as follows:

αG,χ,↑
g,h =

∆pG,χ,↑
g,h

ζχh
, αG,χ,↓

g,h =
∆pG,χ,↓

g,h

ζχh
(3.12a)

αG,r,↑
g,h =

∆pG,r,↑
g,h

ζrh
, αG,r,↓

g,h =
∆pG,r,↓

g,h

ζrh
(3.12b)

αB,χ,↑
b,h =

∑
l∈L ∆pB,D,χ,↑

b,l,h

ζχh
, αB,χ,↓

b,h =

∑
l∈L ∆pB,C,χ,↓

b,l,h

ζχh
(3.12c)

αB,r,↑
b,h =

∑
l∈L ∆pB,D,r,↑

b,l,h

ζrh
, αB,r,↓

b,h =

∑
l∈L ∆pB,C,r,↓

b,l,h

ζrh
(3.12d)

Thus, the participation factors are determined by the share of the total reserve that
is provided by each generator and battery, analogous to the participation factors in an
AGC scheme [85]. From (3.1) and (3.12), the reference instantaneous power provided to
generator g can then be defined as:

pG
g,h =

[
p̂Gg,h + αG,χ,↑

g,h χMG+
h (ξ)− αG,χ,↓

g,h χMG−
h (ξ)

]
1+ αG,r,↑

g,h rMG+
h (ξ)− αG,r,↓

g,h rMG−
h (ξ)

(3.13)
where p̂Gg,h denotes the generation set-point or average power of generator g during dispatch

time interval h; and positive and negative parts are described by χMG+
h = max{χMG

h , 0};
χMG−
h = max{−χMG

h , 0}, which also applies for rMG+ and rMG−. Similarly, the reference
instantaneous power provided to battery b can be described by:

pB
b,h =

[
p̂Bb,h + αB,χ,↑

b,h χMG+
h (ξ)− αB,χ,↓

b,h χMG−
h (ξ)

]
1+ αB,r,↑

b,h rMG+
h (ξ)− αB,r,↓

b,h rMG−
h (ξ)

(3.14)
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where the battery set-point p̂Bb,h is given by p̂Bb,h =
∑

l∈L(d
B
b,l,h − cBb,l,h). It is important to

highlight that (3.13) and (3.14) might violate the capacity limits of generators and batteries
in the presence of unexpectedly large power fluctuations, as discussed next.

3.2.4 Reserve Security Assessment

The reference instantaneous powers provided to generators pG
g,h in (3.13) and batteries pB

b,h

in (3.14) are computed based on estimated reserve needs, which might not be sufficient
in the event of unexpectedly large short-term power variations. As discussed in Chap-
ter 1, this is especially relevant for isolated microgrids, since it would lead to generators
and batteries rapidly hitting their capacity limits, affecting the overall system regulation
performance. Based on this observation, a differentiation is made between: (i) reference
instantaneous powers pG

g,h and pB
b,h, which might violate power and energy capacity lim-

its; and (ii) effectively delivered instantaneous powers p′G
g,h and p′B

b,h, which enforce such
capacity limits.

The aforementioned definitions allow the design of a security assessment metric to
quantify the regulation performance of a particular reserve sizing and allocation method,
which is referred here as Limit-Hit Probability (LHP), and is defined as follows:

LHP = Prob
[(

∃ g : pG
g,h ̸= p′G

g,h

)
∪
(
∃ b : pB

b,h ̸= p′B
b,h

)]
(3.15)

This metric measures the frequency (or probability) that the capacity limits of the DER
units are reached due to insufficient reserve allocation, leading to differences between ref-
erence and delivered instantaneous powers and thus inadequate tracking of the regulation
signal.

3.3 Energy Management System Model

In this section, the definitions and expressions previously derived in Sections 3.1 and 3.2
are used to design a computationally tractable EMS model that incorporates short-term
fluctuations and battery degradation.

3.3.1 Operational Impact of Reserve Provision

Typical EMS models assume that the impact of reserve provision is limited to narrowing
the range of feasible average power set-points (e.g., see [22–27]). For generators, this can
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be modeled using the following constraints:

p̂Gg,h +∆pG,χ,↑
g,h +∆pG,r,↑

g,h ≤ P
G

g uG
g,h ∀g ∈ G, h ∈ H (3.16a)

p̂Gg,h −∆pG,χ,↓
g,h −∆pG,r,↓

g,h ≥ PG
g uG

g,h ∀g ∈ G, h ∈ H (3.16b)

where P
G

g and PG
g are generator g’s steady-state maximum and minimum power; and uG

g,h

is a binary variable indicating the generator’s ON/OFF status. Similarly, for batteries, the
following constraints can be defined:∑

l∈L

(
cBb,l,h +∆pB,C,χ,↓

b,l,h +∆pB,C,r,↓
b,l,h

)
≤ P

B

b ∀b ∈ B, h ∈ H (3.17a)∑
l∈L

(
dBb,l,h +∆pB,D,χ,↑

b,l,h +∆pB,D,r,↑
b,l,h

)
≤ P

B

b ∀b ∈ B, h ∈ H (3.17b)

where P
B

b is the battery b’s maximum charging/discharging power. Furthermore, based on
(3.3), constraints to ensure enough energy is saved for battery reserve provision, assuming
the worst-case scenario of energy requirement for the following dispatch time interval, can
be defined as follows ∀b ∈ B, l ∈ L, h ∈ H:

sBb,l,h−1 +
∆Th η

B,C
b

EB
b

(
cBb,l,h +∆pB,C,χ,↓

b,l,h +∆pB,C,r,↓
b,l,h

)
− ∆Th

EB
b ηB,D

b

dBb,l,h ≤ Sb,l (3.18a)

sBb,l,h−1 −
∆Th

EB
b ηB,D

b

(
dBb,l,h +∆pB,D,χ,↑

b,l,h +∆pB,D,r,↑
b,l,h

)
+

∆Th η
B,C
b

EB
b

cBb,l,h ≥ 0 (3.18b)

In addition to the aforementioned constraints, reserves have additional impacts on op-
eration in practice. As discussed in Section 3.2.3, reserves also dictate how real-time
mismatches are shared among generators and batteries, and thus have an impact on their
instantaneous power outputs. Thus, and unlike previous EMS models, the modeling is here
extended to also include this effect, which in turn influences the expected average thermal
generation, battery SoC, and battery degradation, as described next.

First, based on the feature-based representation (3.2), the novel concept of Expected
Reserve Utilization (ERU) is introduced, which quantifies how much of the allocated reserve
is expected to be deployed on average. This metric is especially relevant for forecast error
reserves and regulation reserves, which, unlike contingency reserves, are continuously being
deployed to handle real-time mismatches. Here, the ERU of forecast error and regulation
reserves is estimated by computing the ratio between the mean absolute deviation (mad)
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and total reserve requirements ζ, as follows:

φχ
h = min

{
1,

mad(χMG
h )

ζχh

}
= min

{
1,

GK(χMG
h )

ϵχ

}
(3.19a)

φr
h = min

{
1,

mad(rMG
h )

ζrh

}
= min

{
1,

GK(rMG
h )

ϵr

}
(3.19b)

where GK (·) = mad (·) /std (·) is Geary’s kurtosis [88]. Note, however, that other methods
for estimating the ERU can also be used.

For thermal generators, the ERU allows modeling the change in the expected average
power of generator g during dispatch time interval h due to reserve provision, as follows:

∆eGg,h =
φχ
h

2

(
∆pG,χ,↑

g,h −∆pG,χ,↓
g,h

)
+ φr

h

(
∆pG,r,↑

g,h −∆pG,r,↓
g,h

)
(3.20)

Observe that φχ
h is multiplied by 1/2, which results from considering two mutually exclusive

outcomes (either upward or downward forecast error reserve deployment) with an equal
probability of 1/2. This is not the case for φr

h, as it is assumed that both upward and
downward regulation reserves will always be deployed for at least for a couple of seconds
during each dispatch time interval h, resulting in both upward and downward regulation
reserve deployment events having a probability of 1.

For batteries, ERU can be used to describe the change in the expected SoC of battery’s
b partition l due to reserve provision, as follows:

∆sBb,l,h =
φχ
h

2

∆Th

EB
b

(
ηB,C
b ∆pB,C,χ,↓

b,l,h −
∆pB,D,χ,↑

b,l,h

ηB,D
b

)
+ φr∆Th

EB
b

(
ηB,C
b ∆pB,C,r,↓

b,l,h −
∆pB,D,r,↑

b,l,h

ηB,D
b

)
(3.21)

Thus, the expected SoC at the end of dispatch time interval h, resulting from both energy
shifting and reserve provision can be described as follows:

sBb,l,h − sBb,l,h−1 =
∆Th

EB
b

(
ηB,C
b cBb,l,h −

dBb,l,h

ηB,D
b

)
+∆sBb,l,h (3.22a)

0 ≤ sBb,l,h ≤ Sb,l ∀b ∈ B, l ∈ L, h ∈ H (3.22b)

The ERU also allows to describe the expected increase in battery degradation due to reserve
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provision as follows:

∆ϕb,l,h =
ϕ̂b,l

2

φχ
h

2

∆Th

EB
b

(
ηB,C
b ∆pB,C,χ,↓

b,l,h +
∆pB,D,χ,↑

b,l,h

ηB,D
b

)

+
ϕ̂b,l

2
φr∆Th

EB
b

(
ηB,C
b ∆pB,C,r,↓

b,l,h +
∆pB,D,r,↑

b,l,h

ηB,D
b

)
(3.23)

where this equation is based on the piecewise degradation model (3.3). Thus, the expected
total battery degradation resulting from energy shifting and reserve provision is:

Φb,l,h =
ϕ̂b,l

2

∆Th

EB
b

(
ηB,C
b cBb,l,h +

dBb,l,h

ηB,D
b

)
+∆ϕb,l,h (3.24)

3.3.2 Renewable Curtailment

Another relevant feature commonly neglected in EMS models is the use of renewable cur-
tailment for short-term fluctuation management (e.g., [22–27]). Since short-term fluctu-
ations are mainly a byproduct of non-dispatchable renewable generation, renewable cur-
tailment can be used to reduce such fluctuations and thus reserve needs. To model this
phenomenon, the high correlation in the resource availability of the microgrid’s renewable
plants is exploited, which stems from the geographical proximity of the microgrid’s units.
Thus, wind and solar generation can be lumped into one equivalent renewable plant for
each, yielding the following equations for the total wind and solar forecast average powers
p̂Wh and p̂Sh :

p̂Wh ≤ P
W

h , p̂Sh ≤ P
S

h ∀h ∈ H (3.25)

where P
W

h and P
S

h are the maximum available wind and solar average powers during
dispatch time interval h, respectively.

Equation (3.25) not only impacts the average power injected by renewable sources, but
also the microgrid’s net load forecast error χMG

h in (3.4)-(3.6) and regulation signal rMG
h

in (3.7)-(3.9). Accordingly, the forecast error and regulation reserve needs ζχh and ζrh are
also a function of wind and solar forecast average powers (p̂Wh , p̂Sh), as follows:

ζχh = ϵχ
[(

P̂L
h σ̃

χ,L
h

)2
+
(
p̂Wh σ̃χ,W

h

)2
+
(
p̂Sh σ̃

χ,S
h

)2 ]1/2
(3.26a)

ζrh = ϵr
[(

P̂L
h σ̃

r,L
h

)2
+
(
p̂Wh σ̃r,W

h

)2
+
(
p̂Sh σ̃

r,S
h

)2 ]1/2
(3.26b)
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which captures the capability of using renewable curtailment to reduce the overall system
reserve needs. Equations (3.26a) and (3.26b) are non-convex in (p̂Wh , p̂Sh), and thus com-

putationally inefficient. To obtain an efficient convex formulation, the fact that P̂L
h σ̃

χ/r,L
h

is large in practical settings is exploited, which allows replacing the non-convex square

root function by a linear interpolation between points (0, 0) and (P
W

h , P
S

h). Thus, a set of
supporting hyperplanes can be used to represent reserve needs ζχh and ζrh, which can be
iteratively updated through a cutting-planes algorithm [89].

It is also important to highlight that due to the dependence of reserve needs ζχh and ζrh
on (p̂Wh , p̂Sh), the ERUs in (3.19) are also affected by (p̂Wh , p̂Sh). To avoid overcomplicating
the model and keep computational tractability, it is assumed that both χMG

h and rMG
h

resemble a normal distribution, and thus GK(·) =
√
2/π ≈ 0.8 regardless of the values of

(p̂Wh , p̂Sh), eliminating the dependence of the ERUs on the deployed capacities.

3.3.3 Frequency Control Mechanism

As discussed in Section 3.1.1, short-term fluctuations describe power oscillations in the
order of seconds. Under this time frame, the microgrid’s frequency control mechanism
might impose limitations on the way power mismatches are shared, making its modeling
relevant. Typically, microgrids have a droop control which may or may not be accompanied
by a supplementary control for frequency recovery [10], similar to AGC. In the case of
a droop-only control, the short-term fluctuations will be shared among generators and
batteries according to their droop κ, requiring the addition of power sharing constraints
∀h ∈ H, as follows [25]:

κB
b

P
B

b

∑
l∈L

∆pB,D,r,↑
b,l,h =

κB
b′

P
B

b′

∑
l∈L

∆pB,D,r,↑
b′,l,h ∀(b, b′) ∈ B × B (3.27a)

κB
b

P
B

b

∑
l∈L

∆pB,C,r,↓
b,l,h =

κB
b′

P
B

b′

∑
l∈L

∆pB,C,r,↓
b′,l,h ∀(b, b′) ∈ B × B (3.27b)

κB
b

P
B

b

ςB,↑
b,g,h =

κG
g

P
G

g

∆pG,r,↑
g,h ∀(b, g) ∈ B × G (3.27c)

κB
b

P
B

b

ςB,↓
b,g,h =

κG
g

P
G

g

∆pG,r,↓
g,h ∀(b, g) ∈ B × G (3.27d)

κG
g

P
G

g

ςG,↑
g′,g,h =

κG
g′

P
G

g′

ςG,↑
g,g′,h ∀(g, g′) ∈ G × G (3.27e)
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κG
g

P
G

g

ςG,↓
g′,g,h =

κG
g′

P
G

g′

ςG,↓
g,g′,h ∀(g, g′) ∈ G × G (3.27f)

ςB,↑
b,g,h = ug,h

∑
l∈L

∆pB,D,r,↑
b,l,h , ςB,↓

b,g,h = ug,h

∑
l∈L

∆pB,C,r,↓
b,l,h (3.27g)

ςG,↑
g,g′,h = ug,h∆pG,r,↑

g′,h , ςG,↓
g,g′,h = ug,h∆pG,r,↓

g′,h (3.27h)

which stem from the droop equation (2.15) described in Section 2.4, and result in additional
limitations on how regulation reserves ∆pr are distributed among generators and batteries.
Note that auxiliary variables representing bilinear terms ς

B,↑/↓
b,g,h and ς

G,↑/↓
g′,g,h are used here, so

that the corresponding constraints can be linearized using standard integer optimization
techniques [90].

Unlike the droop-only case, if a microgrid has a supplementary control like AGC, short-
term fluctuations in the order of seconds are handled by such supplementary control and
power sharing is no longer constrained. Thus, in this case constraints (3.27) are not needed.

3.3.4 Other Constraints

The remaining constraints for the proposed EMS model are presented here. Similar equa-
tions can already be found in the existing EMS literature (e.g., [22–27]). Thus, the power
balance is described as follows:∑

b∈B

∑
l∈L

(
dBb,l,h − cBb,l,h

)
+
∑
g∈G

p̂Gg,h = P̂L
h − p̂Wh − p̂Sh − lsh ∀h ∈ H (3.28)

where the wind and solar average generation comes from (3.25), and lsh indicates average
load shedding during dispatch time interval h.

The logic of commitment variables, and the minimum up/down constraints on thermal
generators are described by the following equations ∀g ∈ G, h ∈ H:

uG
g,h − uG

g,h−1 = vGg,h − wG
g,h (3.29a)

h−1∑
ν=h−MNDN

g

(
1− uG

g,ν

)
∆Tν ≥ MNDN

g vGg,h (3.29b)

h−1∑
m=h−MNUP

g

uG
g,m∆Tm ≥ MNUP

g wG
g,h (3.29c)
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where vGg,h and wG
g,h indicate the start-up/shut-down of generators, and MNUP

g and MNDN
g

are the minimum up/down times.

Additionally, thermal generator ramp constraints are also considered, which can be
defined as follows ∀g ∈ G, h ∈ H:

−RPG
g ∆Th − P

G

g wG
g,h ≤ p̂Gg,h − p̂Gg,h−1 ≤ RPG

g ∆Th + P
G

g vGg,h (3.30)

where RPG
g is the thermal generator’s ramp limit.

Finally, an energy neutrality constraint is included to prevent significant deviations
from the initial battery SoC:

sBb,l,H = S0
b,l ∀b ∈ B, l ∈ L (3.31)

where S0
b,l is the initial battery SoC, and H is the last time index of the set of dispatch

time intervals H = {1, . . . , H}.

3.3.5 Optimization Model and Architecture

Based on the equations described in the previous sections, a novel EMS model with reg-
ulation, battery degradation, renewable curtailment, and power sharing limitations can
be formulated. Thus, the EMS objective function F OBJ(·) is composed of a degradation
component Φ ∈ [0, 1], variable generation costs CG, no-load costs CNL, start-up costs CSU ,
shut-down costs CSD, and load shedding costs CLS, as follows:

F OBJ (x,y) =
∑
h∈H

∑
b∈B

∑
l∈L

EB
b · CRB

b · Φb,l,h +
∑
h∈H

∑
g∈G

CG
g ∆Th

(
p̂Gg,h +∆eGg,h

)
+
∑
h∈H

∑
g∈G

(
CNL

g ∆Th u
G
g,h + CSU

g vGg,h + CSD
g wG

g,h

)
+
∑
h∈H

CLS∆Th lsh

where EB
b is battery’s b rated energy capacity; CBR

b is the battery replacement cost; x =[
uG,vG,wG

]
are the binary decision variables; and y =

[
p̂G, p̂W , p̂S,∆pG,∆pB, sB, cB,dB,

ls, ζ, ς
]
are the continuous decisions variables. This results in the following complete EMS
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Figure 3.2: Proposed EMS architecture.

model:

min
x,y

F OBJ (x,y)

s.t. x ∈ {0, 1} , y ≥ 0

Reserves and power balance: (3.10), (3.11), (3.25), (3.26), (3.28)

Thermal generators: (3.16), (3.20), (3.29), (3.30)

Batteries and degradation: (3.17), (3.18), (3.21)–(3.24), (3.31)

Power sharing: (3.27) if droop-only control

which is a MILP problem that can be solved by off-the-shelf solvers. Note that this opti-
mization problem does not include short-time intervals j ∈ J (1s timescale), considering
only parameters, variables and constraints associated with long-time intervals h ∈ H (5min
timescale). This results in a low-dimensional, and thus computationally efficient, formula-
tion for the EMS optimization problem.

The general architecture of the proposed EMS is described in Fig. 3.2, which is based on
a MPC scheme, as in [22–27]. Under this scheme, optimal dispatch set-points for the first
dispatch time interval of each MPC iteration are regularly re-calculated and broadcasted
to the microgrid’s controllers based on frequently updated forecasts. Note that in the
proposed EMS, participation factors α are computed only if an AGC-like supplementary
control is available, as these are not relevant in the case of droop-only control.
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3.4 Computational Experiments

In this section, computational simulations to evaluate the performance of the proposed
EMS model are presented. First, the general settings of the simulations are presented
in Section 3.4.1. Then, the procedure used to calibrate reserve parameters are presented
in Section 3.4.2. Finally, specific settings, results and discussions, for each of the two
evaluated test systems are presented in Sections 3.4.3 and 3.4.4.

3.4.1 General Settings

The performance of the proposed EMS is evaluated by simulating its implementation during
one full day on the following two test systems [27]: (i) a real isolated microgrid located in
KLFN Ontario-Canada, and (ii) a larger test system based on a CIGRE medium voltage
benchmark system. As in [22–27], simulations are performed considering a MPC scheme
for which average power forecasts and optimal dispatch set-points are updated every 5 min,
resulting in negligible average power forecast errors for the first dispatch time interval of
each MPC iteration, i.e., χMG

1 (ξ) ≈ 0. In each MPC run, a 24h horizon is used, alongside a
variable time-resolution with different time-steps ∆Th: 6 time-steps of 5min, 6 time-steps
of 15min, 6 time-steps of 30min, and 19 time steps of 1h. Reserve requirements are only
considered for the first 18 dispatch time intervals, i.e., next 5h, as it was observed that
enforcing such constraints for the whole 24h horizon resulted in a large computational
burden without significantly improving overall operating costs.

In the simulations, it is assumed that set-points are determined by the EMS, and short-
term fluctuations are managed either by a droop-only frequency control, or an AGC-like
control with both droop and supplementary controls, as specified in each case. Also, it
is assumed that forecast errors and their associated reserves are only defined for dispatch
time intervals h ≥ 2, as χMG

1 (ξ) ≈ 0 in accordance with the EMS’s MPC scheme. Further-
more, it is assumed that all controllers are properly tuned, and thus degraded regulation
performance can only arise from insufficient reserve allocation. In the event of reserve
shortage, it is assumed that auxiliary emergency load shedding and renewable curtailment
controllers are triggered, preventing system collapse.

For comparison purposes, three different EMS and frequency control architectures are
evaluated in the simulations. The first one corresponds to the Base+Derating (B+DRT)
arquitecture, in which a conventional EMS with a droop-only control is considered, similar
to those proposed in [22–27]. In this architecture, uncertain power variations are assumed
to be handled by: (i) a unique total reserve need, with no distinction between forecast errors
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or regulation, which is computed as a percentage of the forecast renewable generation and
demand; and (ii) a power capacity derating of generators and batteries, which is computed
as percentage of the unit’s rating. Note that for this architecture, the change in the
expected thermal average power (3.20) and SoC (3.21), battery degradation (3.24), the
impact of renewable curtailment on reserve needs (3.26), and limitations on the sharing of
short-term fluctuations (3.27) are not represented in the EMS.

The second and third architectures correspond to the Regulation+Droop (R+DRP)
and Regulation+AGC (R+AGC) cases, where both consider the formulation described in
Section 3.3.5 for the EMS, and handle uncertain power variations through forecast error
and regulation reserves, which are computed as a percentage of the forecast renewable gen-
eration and demand. In both cases, 4 even partitions with Sl = 0.2∀l ∈ L are considered
for the piecewise linear degradation model (3.3). A droop-only control is assumed in the
R+DRP case, whereas an AGC-like control is assumed in the R+AGC case. Accordingly,
power sharing constraints (3.27) are considered exclusively in the R+DRP case, with these
being enforced only for the first 5min dispatch time intervals, since it is assumed that droop
controls are reset by re-dispatch signals every 5min, as per the MPC update rate.

The performance of the three architectures is evaluated by implementing the EMS’s
optimal dispatch decisions for the first dispatch time interval, and computing the corre-
sponding reference p and delivered p′ instantaneous powers (see Sections 3.2.3 and 3.2.4).
Delivered instantaneous powers are then used to compute the effective average thermal gen-
eration costs, battery degradation costs, load shedding, renewable curtailment, and total
number of start-ups and shut-downs. Furthermore, security from a regulation perspective
is measured by comparing reference and delivered powers and computing the resulting LHP
(3.15), which indicates the percentage of time that insufficient reserves were allocated.

Reserve sizing parameters were computed based on [8] and [5]. Specifically, standard
deviations of forecast errors σ̃χ

h were quantified by linear interpolations using the 1h-ahead
and 24h-ahead values reported in [8] (see Table 3.1), whereas standard deviations of short-
term fluctuations σ̃r

h were calculated using 6-weeks measurements from KLFN microgrid
with a resolution of ∆τ = 1s (see Table 3.2) [5]. Battery degradation parameters are taken
from [42], and the effective degradation resulting from the simulations is obtained using the
detailed degradation model (2.7), which is then multiplied by the battery’s replacement
costs to obtain the resulting degradation costs. The reduction of the battery’s energy
capacity due to cell capacity fading is not considered in the simulations, as such reduction
is negligible within the simulated daily horizon [42]. All simulations are performed using
the Julia programming language [91], JuMP package [92], and Gurobi solver [66], on a PC
with an Intel Core i7 3.20-GHz processor and 16 GB of RAM under a 64-bit Windows 10
operating system.
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Table 3.1: Standard deviation of forecast errors [8]

Source 1h-ahead [%] 24h-ahead [%]
Wind 14.70 30.92
Solar 10.20 14.02

Demand 11.62 15.78

Table 3.2: Standard deviation of short-term fluctuations [5]

Source 5min [%] 15min [%] 30min [%] 1h [%]
Wind 35.43 39.90 42.35 44.58
Solar 16.69 24.54 27.91 33.21

Demand 3.68 6.27 8.93 12.63

3.4.2 Tuning of Reserve Parameters

To ensure a fair comparison between B+DRT, R+DRP, and R+AGC, reserve needs and
capacity deratings are calibrated in each case study, so that the resulting load shedding
and LHP obtained in the simulations are the same for the three architectures. In the
case of load shedding, total reserve needs for B+DRT, and forecast error reserve needs for
R+DRP and R+AGC, are determined such that a zero load shedding is obtained in all
the case studies. For both KLFN and CIGRE test systems, this is achieved by considering
one standard deviation of the forecast errors (see Table 3.1) when computing the reserve
needs as a percentage of the forecast renewable generation and load, i.e., ϵχ = 1.

In the case of LHP, reserve quantification required a more delicate tuning to ensure
that, for each case study, the same LHP is obtained in the three architectures. On the
one hand, for B+DRT, simulations showed that directly increasing the total reserve needs
did not reduce the LHP, since the basic EMS neglected the effect of droops and typically
dispatched generators at maximum power and left the provision of reserves to the bat-
teries, leaving no room in generators for handling short-term fluctuations. This in turn
meant that the generators’ maximum capacity limit was repeatedly reached, since for a
droop-only control a percentage of the short-term fluctuations are forcedly allocated to
generators based on their droop gains. Thus, for B+DRT, LHP was calibrated by ap-
plying a power capacity percentage derating to generators and batteries. Specifically, the
maximum (minimum) capacity limits of generators and batteries considered in the basic
EMS where reduced (increased) using a percentage of their installed capacity. This way,
some room for handling short-term fluctuations is always left when determining the av-
erage power set-points in the basic EMS. On the other hand, for R+DRP and R+AGC,
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LHP was directly adjusted by increasing the regulation reserves through the parameter ϵr,
greatly simplifying the tuning process due to the explicit modeling of short-term fluctua-
tions. During the simulations, three regulation security levels are evaluated based on the
resulting LHP, which are described next:

• Low: for which a LHP around 10% is required

• Medium: for which a LHP around 5% is required

• High: for which a LHP around 1% is required

3.4.3 KLFN Microgrid: Settings, Results and Discussion

The performance of the proposed EMS is first evaluated on a test system based on the
real-world isolated KLFN microgrid, for which real generation and demand measurements
are used [5]. This microgrid is composed of 3 diesel units with capacities of 1500kW,
1000kW, and 600kW, which are only operated one at a time, as per the utility’s dispatch
rules, and whose parameters are extracted from [27]. For the simulated day, the 600kW
unit is assumed to be ON at the start of the day, and a 1026kW peak demand is reached
during the evening.

Currently, the KLFN microgrid has low renewable penetration (less than 70kW installed
capacity) and no energy storage system; thus, regulation and battery degradation are not
an issue at the present time. Therefore, to better illustrate the features of the proposed
EMS for regulation and battery degradation modeling, a 1000kW/1000kWh lithium-ion
battery is considered, and the renewable installed capacity is increased to reach a 25%
renewable energy share (12.5% wind and 12.5% solar) in the simulated day. Additional
details about the test system are presented in Appendix A.

The capability to reach the Low, Medium and High regulation security levels for the
three EMS models is presented in Table 3.3, which includes the reserve sizing parameters
used in the EMS models, the resulting LHP, and a flag indicating if the EMS was successful
or not in reaching the desired regulation security level. Observe that only a small capacity
derating (≤6%) is needed to reach the desired regulation security levels for the basic EMS
(B+DRT), as the KLFN test system has a medium renewable energy share (25%), and its
generators and battery have a relatively large power capacity compared to the system’s
peak load.

The benefits of implementing the proposed EMS model in the KLFN microgrid can
be observed in the operational results presented in Table 3.4, which includes total costs,
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thermal costs, degradation costs, load shedding, renewable curtailment, and the average
computation time per each MPC iteration. Note that the proposed EMS (R+DRP and
R+AGC) outperforms the basic EMS (B+DRT) for all regulation security levels, as it
reduces total operating costs (1%-9% lower) while keeping sufficiently low computation
times for practical implementations (≤ 1s per MPC iteration). A more thorough analysis
on the results shows that this improved performance is closely related to the following:

• A more efficient BESS operation with reduced battery degradation, confirmed by
comparing the degradation costs presented in Table 3.4. In particular, note that
while the basic EMS uses the battery mostly for energy-shifting (5min timescale), the
proposed EMS instead uses the battery mostly for reserve provision (1s timescale),
as the latter requires shallower charging/discharging cycles relative to the energy
shifting case, resulting in lower battery degradation.

• The strategic use of renewable curtailment for an enhanced system operation, con-
firmed by comparing the renewable curtailment presented in Table 3.4. In particu-
lar, observe that while the basic EMS typically dispatches renewable generation at
its maximum available capacity at all times, the proposed EMS employs renewable
curtailment during some critical operating hours in order to reduce the system’s reg-
ulation/reserve needs, and to prevent deep battery charging/discharging cycles that
would result in a large battery degradation.

It is also worth highlighting that, in terms of operating costs, no significant differences are
observed between using the proposed EMS with a simple droop-only control (R+DRP)
and a more advanced AGC (R+AGC) for the KLFN microgrid.

3.4.4 CIGRE Microgrid: Settings, Results and Discussion

The proposed EMS is evaluated here on a more complex microgrid based on a modified
CIGRE benchmark test system from [27]. This microgrid has a 5755 kW peak demand, and
is composed of 3 diesel generators (4700kW combined capacity) and 2 Combined Heat-and-
Power units (810kW combined capacity). The microgrid also has multiple energy storage
systems, with a total installed capacity of 1324kW/1324kWh, which for simplicity are
modeled as a single lithium-ion battery. Also, the renewable installed capacity is increased
to reach a 50% renewable energy share. Additional details about the test system are
presented in Appendix A.

The simulation results for the CIGRE microgrid are shown in Tables 3.5 and 3.6, in
which regulation security are operational performance results are indicated, respectively.
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Table 3.3: Security compliance results for KLFN system with 25% renewable energy share

Regul.
secur.

EMS
model

Reserve sizing LHP
[%]

Success
flagDerating [%] ϵr

Low
B+DRT 2.0 - 9.9 ✓

R+DRP - 0.215 9.6 ✓

R+AGC - 0.220 9.7 ✓

Medium
B+DRT 3.0 - 5.0 ✓

R+DRP - 0.500 5.1 ✓

R+AGC - 0.600 4.9 ✓

High
B+DRT 6.0 - 0.9 ✓

R+DRP - 1.500 1.0 ✓

R+AGC - 1.300 1.1 ✓

Observe that, unlike the KLFN microgrid, the basic EMS (B+DRT) fails to reach the High
regulation security level, reaching a minimum of 2.3% (instead of 1%) LHP. Furthermore,
note that in this case, a significant derating (≥19%) and load shedding is needed for the
basic EMS to reach the desired LHP, which in turn causes a pronounced increase in total
costs for the medium and high regulation security levels. This poor performance stems
from the large renewable energy share (50%) of the CIGRE test system, alongside the
inadequacy of the basic EMS to properly model large short-term power fluctuations. In
contrast, the proposed EMSs (R+DRT and R+AGC) yield the desired LHP at reduced
costs, since short-term fluctuations are properly modeled in this case.

As also noted for the KLFN microgrid, the proposed EMSs show overall better perfor-
mance for the CIGRE system in terms of total costs and battery degradation while keep-
ing computational tractability, and also use renewable curtailment as a regulation/reserve
management mechanism. However, and unlike the small KLFN microgrid, the use of an
AGC (R+AGC) instead of a simple droop-only control (R+DRP) may yield significant
savings in terms of operating costs for the more complex CIGRE microgrid (3%-18% cost
reduction).

In summary, the proposed EMS model outperforms the conventional EMS model,
achieving reduced operational costs and battery degradation in both test systems for a
wide range of regulation security levels, while maintaining computational tractability. This
overall better performance is the result of explicitly modeling short-term fluctuations and
their impact on regulation/reserve needs, battery degradation, and renewable curtailment.
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Table 3.4: Operational results for KLFN system with 25% renewable energy share

Regul.
secur.

EMS
model

Total
costs

[kUSD]

Thermal
costs

[kUSD]

Degrad.
costs
[USD]

Load
shed.
[kWh]

Renew.
curt.
[kWh]

Comp.
time
[s]

Low
B+DRT 3.08 2.89 195 0 0 0.3
R+DRP 2.81 2.78 27 0 118 0.7
R+AGC 2.81 2.80 12 0 118 0.6

Medium
B+DRT 2.91 2.69 214 0 0 0.3
R+DRP 2.81 2.79 16 0 118 0.7
R+AGC 2.81 2.79 14 0 118 0.6

High
B+DRT 2.85 2.68 167 0 0 0.3
R+DRP 2.81 2.79 17 0 118 0.7
R+AGC 2.80 2.79 11 0 118 0.6

3.5 Summary

Due to the low-inertia and significant renewable generation variability in isolated micro-
grids, short time-scale fluctuations in the order of seconds can play a relevant role in the
microgrid’s operation and control. In this context, the present chapter discussed the design
of a novel EMS model that takes into account the operational impact of the short-term
fluctuations stemming from renewable generation rapid changes, and the role that renew-
able curtailment and batteries, including their degradation, can play to counter-balance
these variations. The proposed EMS was evaluated on two realistic test systems, showing
the benefits of including short-term fluctuations and battery degradation in the EMS’s
decision-making process. Such benefits include the reduction of total operating costs and
battery degradation, while keeping sufficiently low computation times for near real-time
practical applications. The main content of this chapter has been published in [93].
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Table 3.5: Security compliance results for CIGRE system with 50% renewable energy share

Regul.
secur.

EMS
Model

Reserve sizing LHP
[%]

Success
flagDerating [%] ϵr

Low
B+DRT 19.0 - 10.2 ✓

R+DRP - 1.130 10.1 ✓

R+AGC - 1.000 10.4 ✓

Medium
B+DRT 28.5 - 4.8 ✓

R+DRP - 1.500 5.1 ✓

R+AGC - 1.300 4.9 ✓

High
B+DRT 30.0 - 2.3† ✗

R+DRP - 3.000 0.8 ✓

R+AGC - 2.500 0.9 ✓

†1% LHP could not be achieved; instead, the minimum achievable LHP is indicated

Table 3.6: Operational results for CIGRE system with 50% renewable energy share

Regul.
secur.

EMS
Model

Total
costs

[kUSD]

Thermal
costs

[kUSD]

Degrad.
costs
[USD]

Load
shed.
[kWh]

Renew.
curt.
[kWh]

Comp.
time
[s]

Low
B+DRT 8.60 8.44 160 0 79 0.5
R+DRP 8.73 8.60 136 0 2263 3.6
R+AGC 8.48 8.42 58 0 1644 2.5

Medium
B+DRT 11.58 8.92 249 201 416 0.5
R+DRP 9.15 8.98 168 0 4211 4.8
R+AGC 8.43 8.36 74 0 2095 2.8

High
B+DRT 60.88 8.76 331 4316 3301 0.2
R+DRP 10.67 10.53 132 0 10402 7.5
R+AGC 8.71 8.63 71 0 3622 3.0
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Chapter 4

Integrating Frequency-Dynamics in
Microgrid Operation

Chapter 3 presented an EMS embedding short-term power fluctuations and their impact
on operations, as these play a significant role in isolated microgrids due to their low-inertia
and significant renewable energy integration. However, such EMS does not incorporate the
impact of second-to-second fluctuations on the frequency regulation performance of isolated
microgrids, which is particularly relevant given the system’s low-inertia and existing DER
operating standards constraining frequency deviation and RoCoF values (e.g., [86]). Hence,
this chapter presents enhancements to the EMS described in Chapter 3 to consider the im-
pact of short-term power fluctuations on transient frequency dynamics. For this purpose,
accurate linear equations describing frequency excursions and RoCoF values in the pres-
ence of second-to-second power imbalances are developed, which then serve as a basis for
the design of a computationally efficient EMS with frequency and RoCoF limit constraints
suitable for near real-time practical applications. Exhaustive transient simulations on a
realistic test system using detailed frequency dynamic and control models are presented,
demonstrating the modeling accuracy of the proposed frequency-constrained EMS and the
benefits resulting from its implementation in isolated microgrids. Such benefits include the
reduction of total operating cost while keeping an adequate frequency regulation perfor-
mance compliant with current DER operating standards.

The chapter is organized as follows: In Section 4.1, modifications to the EMS for the
inclusion of frequency dynamics are presented. In Section 4.2, computational experiments
and results are presented, demonstrating the relevance and advantages of the proposed
frequency-constrained EMS. Finally, in Section 4.3, a summary of the topics presented in
this chapter is provided.
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4.1 Energy Management System Model

In this section, changes to the EMS model presented in Chapter 3 are presented, which
aim to improve its modeling accuracy and integrate frequency dynamics in its decision
making process. This includes modifications to the equations and constraints of the EMS
optimization model, as well as changes in the general EMS architecture required for its
implementation.

4.1.1 Capacity and Reserve Constraints

First, modifications to the capacity and reserve constraints originally presented in Sections
3.2.3 and 3.3.1 are discussed. In the case of thermal generators, their range of feasible
average power set-points (3.16) can be extended, as the steady-state power capacity limits

P
G

g and PG
g of flexible diesel generators may be temporarily violated for a few seconds [2],

resulting in the following updated capacity constraints ∀g ∈ G:

p̂Gg,h +∆pG,χ,↑
g,h ≤ P

G

g uG
g,h ∀h ∈ Hr (4.1a)

p̂Gg,h −∆pG,χ,↓
g,h ≥ PG

g u
G
g,h ∀h ∈ Hr (4.1b)

p̂Gg,h +∆pG,χ,↑
g,h +∆pG,r,↑

g,h ≤ PT
G

g uG
g,h ∀h ∈ Hr (4.1c)

p̂Gg,h −∆pG,χ,↓
g,h −∆pG,r,↓

g,h ≥ PTG
g uG

g,h ∀h ∈ Hr (4.1d)

p̂Gg,h +∆pG,χ,↑
g,h +∆pG,r,↑

g,h ≤ P
G

g uG
g,h ∀h ∈ H \ Hr (4.1e)

p̂Gg,h −∆pG,χ,↓
g,h −∆pG,r,↓

g,h ≥ PG
g uG

g,h ∀h ∈ H \ Hr (4.1f)

where PT
G

g and PTG
g are generator g’s transient maximum and minimum power, as per

Figure 2.6, with PT
G

g ≥ P
G

g and PTG
g ≤ PG

g . Note that in the above equations, a dis-
tinction is made between the first Hr ⊂ H dispatch time intervals, and the remaining
dispatch time intervals resulting from the set difference H \ Hr. This is related to the
use of growing time-steps in the MPC implementation of the microgrid EMS, for which
the first Hr dispatch time intervals have a time-step equal to the MPC update rate (e.g.,
5min), and the remaining dispatch time intervals H \ Hr have longer time-steps [22–27].
Accordingly, equations for the first Hr time intervals are differentiated from the rest, as
frequency controls regulate the units’ power outputs in this finer time frame, whereas for
the longer time-steps those outputs are changed through re-dispatch signals from the EMS.

In the case of batteries, reserves can be provided not only by increasing charging or
discharging power set-points, as per (3.17), but also by decreasing such set-points, resulting
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in an additional system flexibility [94]. Thus, to capture these effect, additional battery
reserve variables ∆pB,C,χ,↑

b,l,h , pB,C,r,↑
b,l,h , ∆pB,D,χ,↓

b,l,h , and ∆pB,D,r,↓
b,l,h are defined, which are limited

by the following constraints:

∆pB,C,χ,↑
b,l,h +∆pB,C,r,↑

b,l,h ≤ cBb,l,h ∀b ∈ B, l ∈ L, h ∈ H (4.2a)

∆pB,D,χ,↓
b,l,h +∆pB,D,r,↓

b,l,h ≤ dBb,l,h ∀b ∈ B, l ∈ L, h ∈ H (4.2b)

where ∆pB,C,χ,↑
b,l,h and ∆pB,C,r,↑

b,l,h are the upward forecast error and regulation reserves pro-

vided by decreasing the battery’s charging; and ∆pB,D,χ,↓
b,l,h and ∆pB,D,r,↓

b,l,h are the downward
forecast error and regulation reserves provided by decreasing the battery’s discharging,
respectively. The definition of the new battery reserve variables also affects battery energy
requirements (3.18), which are redefined as follows ∀b ∈ B, l ∈ L, h ∈ H:

sBb,l,h−1 +
∆Th η

B,C
b

Eb

(
cBb,l,h +∆pB,C,χ,↓

b,l,h +
1

2
∆pB,C,r,↓

b,l,h

)
− ∆Th

Eb η
B,D
b

(
dBb,l,h −∆pB,D,χ,↓

b,l,h − 1

2
∆pB,D,r,↓

b,l,h

)
≤ Sb,l (4.3a)

sBb,l,h−1 −
∆Th

Eb η
B,D
b

(
dBb,l,h +∆pB,D,χ,↑

b,l,h +
1

2
∆pB,D,r,↑

b,l,h

)
+
∆Th η

B,C
b

Eb

(
cBb,l,h −∆pB,C,χ,↑

b,l,h − 1

2
∆pB,C,r,↑

b,l,h

)
≥ 0 (4.3b)

in which additional battery slack capacities resulting from reduced (dis)charging have
been incorporated. Note that unlike (3.18), regulation reserves ∆pr here include a 1/2
term, since upward (downward) regulation reserves are assumed to be deployed at full
capacity at most for half of the dispatch time interval length ∆Th, based on the zero-mean
characteristic of r in (3.1).

Based on modifications (4.1)-(4.2), the forecast error reserve balance (3.10) can be
redefined as follows ∀h ∈ H:

ζχh =
∑
g∈G

∆pG,χ,↑
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,χ,↑

b,l,h +∆pB,C,χ,↑
b,l,h

)
(4.4a)

ζχh =
∑
g∈G

∆pG,χ,↓
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,χ,↓

b,l,h +∆pB,C,χ,↓
b,l,h

)
(4.4b)

The regulation reserve balance (3.11) can also be redefined in a similar manner, but with
the difference that as in (4.1), the first Hr dispatch time intervals are distinguished from
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the remaining H \ Hr dispatch time intervals, since frequency dynamics and control play
a key role for this type of reserves. In particular, the following constraints are considered
for the first dispatch time intervals, i.e., ∀h ∈ Hr:

ζrh =
∑
g∈G

∆pG,r,↑
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,r,↑

b,l,h +∆pB,C,r,↑
b,l,h

)
+∆pPF,r,↑

h +∆pV FC,r,↑
h (4.5a)

ζrh =
∑
g∈G

∆pG,r,↓
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,r,↓

b,l,h +∆pB,C,r,↓
b,l,h

)
+∆pPF,r,↓

h +∆pV FC,r,↓
h (4.5b)

where additional regulation capabilities ∆pPF,r,↑
h , ∆pPF,r,↓

h , ∆pV FC,r,↑
h and ∆pV FC,r,↓

h , stem-
ming from frequency sensitive loads and VFCs are considered, as discussed in detail in
Section 4.1.3. In contrast, the following constraints are considered for the remaining dis-
patch time intervals, i.e., ∀h ∈ H \ Hr:

ζrh =
∑
g∈G

∆pG,r,↑
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,r,↑

b,l,h +∆pB,C,r,↑
b,l,h

)
(4.6a)

ζrh =
∑
g∈G

∆pG,r,↓
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,r,↓

b,l,h +∆pB,C,r,↓
b,l,h

)
(4.6b)

for which ∆pPF,r,↑
h , ∆pPF,r,↓

h , ∆pV FC,r,↑
h and ∆pV FC,r,↓

h are not considered.

4.1.2 Operational Impact of Reserve Provision

As previously discussed in Section 3.3.1, forecast error and regulation reserves have an
impact on the expected average thermal generation, battery SoC, and battery degradation,
which can be captured through the ERU metric. In (3.19), this metric was computed using
the mean absolute deviation (mad) of power imbalances; however, here the more accurate
truncated absolute expectation (tae) is used instead, which can be defined as follows:

tae(Z, ζ) =

∫ ζ

−ζ

|z|f(z)dz + ζ

[∫ −ζ

−∞
f(z)dz +

∫ ∞

ζ

f(z)dz

]
(4.7)

where Z is a random variable representing uncertain power imbalances, f(z) is its as-
sociated probability density function, and ζ is the available reserve capacity. Note that
this formulation closely resembles mad(Z) = E(|Z|), but with the difference that f(z) is
truncated for |z| ≥ ζ, and the corresponding truncated values are clustered at z = ±ζ.
This alternative definition is motivated by how reserves are deployed in practice, since if
insufficient reserves are available, i.e., |z| ≥ ζ, only a reserve equal to ±ζ will be deployed.
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Based on (4.7), the updated ERU of the forecast error and regulation reserves can then
be computed as follows:

φχ
h =

tae
(
χMG
h , ζχh

)
ζχh

, φr
h =

tae
(
rMG
h , ζrh

)
ζrh

(4.8)

Furthermore, assuming that both χMG
h and rMG

h resemble a normal distribution, and re-
placing (3.6) and (3.9), one has that:

φχ
h =

1

ϵχ

√
2

π

[
1− exp

(
−ϵχ2

2

)]
+ 1− erf

(
ϵχ√
2

)
(4.9a)

φr
h =

1

ϵr

√
2

π

[
1− exp

(
−ϵr2

2

)]
+ 1− erf

(
ϵr√
2

)
(4.9b)

where exp and erf are the exponential and Gauss error functions, respectively.

Based on (4.9), the change in the expected average power of generators (3.20), battery’s
SoC (3.21), and battery degradation (3.23) due to the reserve provision can be adapted as
follows:

∆eGg,h =
φχ
h

2

(
∆pG,χ,↑

g,h −∆pG,χ,↓
g,h

)
+

φr
h

2

(
∆pG,r,↑

g,h −∆pG,r,↓
g,h

)
(4.10)

∆sBb,l,h =
φχ
h

2

∆Th

Eb

ηB,C
b

(
∆pB,C,χ,↓

b,l,h −∆pB,C,χ,↑
b,l,h

)
− φχ

h

2

∆Th

Eb

1

ηB,D
b

(
∆pB,D,χ,↑

b,l,h −∆pB,D,χ,↓
b,l,h

)
+

φr
h

2

∆Th

Eb

ηB,C
b

(
∆pB,C,r,↓

b,l,h −∆pB,C,r,↑
b,l,h

)
− φr

h

2

∆Th

Eb

1

ηB,D
b

(
∆pB,D,r,↑

b,l,h −∆pB,D,r,↓
b,l,h

)
(4.11)
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∆ϕb,l,h =
ϕ̂b,l

2

φχ
h

2

∆Th

Eb

ηB,C
b

(
∆pB,C,χ,↓

b,l,h −∆pB,C,χ,↑
b,l,h

)
+

ϕ̂b,l

2

φχ
h

2

∆Th

Eb

1

ηB,D
b

(
∆pB,D,χ,↑

b,l,h −∆pB,D,χ,↓
b,l,h

)
+

ϕ̂b,l

2

φr
h

2

∆Th

Eb

ηB,C
b

(
∆pB,C,r,↓

b,l,h −∆pB,C,r,↑
b,l,h

)
+

ϕ̂b,l

2

φr
h

2

∆Th

Eb

1

ηB,D
b

(
∆pB,D,r,↑

b,l,h −∆pB,D,r,↓
b,l,h

)
(4.12)

Note that unlike the original equations, and similar to (4.3), additional battery slack capac-
ities resulting from reduced (dis)charging are incorporated, and a 1/2 term is included for
regulation reserves, as it is assumed that both upward and downward regulation reserves
are deployed during half of each dispatch time interval h.

4.1.3 Frequency-Dynamics Constraints

Unlike previous works on microgrid EMS, explicit frequency constraints are considered
here, such that an adequate frequency regulation performance is ensured in daily micro-
grid operations. In the case of thermal generators, their maximum deliverable short-term
regulation is defined by their frequency-droop κG

g , and the maximum frequency deviation

limit ∆f imposed by DER operating standards [86], yielding the following constraint:

∆pG,r,↑
g,h ≤ ∆f

f0

P
G

g

κG
g

∀g ∈ G, h ∈ Hr (4.13a)

∆pG,r,↓
g,h ≤ ∆f

f0

P
G

g

κG
g

∀g ∈ G, h ∈ Hr (4.13b)

where f0 is the microgrid’s nominal frequency in Hz. Similarly, for batteries, the maximum
deliverable short-term regulation is given by the following constraints ∀b ∈ B, h ∈ Hr:∑

l∈L

(
∆pB,D,r,↑

b,l,h +∆pB,C,r,↑
b,l,h

)
≤ ∆f

f0

P
B

b

κB
b

(4.14a)

∑
l∈L

(
∆pB,C,r,↓

b,l,h +∆pB,D,r,↓
b,l,h

)
≤ ∆f

f0

P
B

b

κB
b

(4.14b)
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where κB
b is the battery’s frequency droop.

As previously discussed in Section 2.4.2, loads provide a damping factor stemming from
their frequency sensitivity KPF . This feature is included in reserve regulation balance (4.5)
through variables ∆pPF,r,↑

h and ∆pPF,r,↓
h , which are constrained as follows ∀h ∈ Hr:

∆pPF,r,↑
h ≤ ∆f

f0
KPF

(
P̂L
h − lsh

)
(4.15a)

∆pPF,r,↓
h ≤ ∆f

f0
KPF

(
P̂L
h − lsh

)
(4.15b)

Loads also present a voltage sensitivity KPV , which can be exploited to provide additional
frequency damping through the inclusion of VFCs in diesel generators (see Figure 2.8). This
additional flexibility is incorporated in (4.5) through variables ∆pV FC,r,↑

h and ∆pV FC,r,↓
h ,

which are constrained as follows ∀h ∈ Hr:

∆pV FC,r,↑
h ≤ ∆f

f0
KV FC KPV

(
P̂L
h − lsh

)
(4.16a)

∆pV FC,r,↓
h ≤ ∆f

f0
KV FC KPV

(
P̂L
h − lsh

)
(4.16b)

Another relevant aspect to consider in microgrid frequency regulation is the RoCoF
limit imposed by DER operating standards [86], since excessively large RoCoF values
might lead to operating issues such as loss of synchronism in converters’ phase locked
loops [11]. Accordingly, a RoCoF constraint is also considered here, which is derived
based on the microgrid dynamic model described in Section 2.4.4. Hence, taking into
account that automatic frequency controllers have an inherent time delay and thus are not
immediately available, the instantaneous frequency deviation resulting from short-term
power fluctuations can be described by:

2INSY S d∆f(t)

dt
+KLD ∆f(t) = rW (t) + rS(t)− rL(t). (4.17)

Thus, neglecting load damping KLD, as in [40], one can obtain the following overestimation
for the instantaneous RoCoF:

RoCoF (t) =
1

2INSY S

[
rW (t) + rS(t)− rL(t)

]
. (4.18)
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Additionally, given that the focus of this thesis is on isolated microgrid daily operations, i.e.,
without contingencies, one can assume that the continuous-time short-term fluctuations
r(t) change linearly between each short time interval j ∈ J , as follows:

r(t) =

(
rh,j+1 − rh,j

∆τ

)
︸ ︷︷ ︸

∂rh,j

t ∀t ∈ [0,∆τ ] (4.19)

where rh,j is the short-term power fluctuation at short time interval j within dispatch time
interval h, as per (3.1); ∆τ is the time-step length of short time intervals j ∈ J ; and ∂rhj
is defined as the short-term power fluctuation ramp. Thus, one can replace (4.19) in (4.18)
to obtain:

RoCoF (t) =
1

2INSY S

[
∂rWh,j + ∂rSh,j − ∂rLh,j

]︸ ︷︷ ︸
∂rMG

h,j

t (4.20)

where ∂rMG
h,j is the microgrid’s net short-term fluctuation ramp.

Similar to the forecast error and regulation reserve requirements described in Sections
3.2.1, 3.2.2, and 3.3.2, one can use the microgrid’s net short-term fluctuation ramp to
define a regulation-ramp reserve need ζ∂rh , which serves as a basis for deriving a RoCoF
constraint, and can be defined as follows:

∂rMG
h (ξ) = p̂Wh ∂r̃W

h (ξ) + p̂Sh ∂r̃
S
h (ξ)− P̂L

h ∂r̃L
h (ξ) (4.21a)

std
(
∂rMG

h

)2
=
(
P̂L
h σ̃∂r,L

h

)2
+
(
p̂Wh σ̃∂r,W

h

)2
+
(
p̂Sh σ̃

∂r,S
h

)2
(4.21b)

ζ∂rh = ϵ∂r std
(
∂rMG

h

)
(4.21c)

ζ∂rh = ϵ∂r
[(

P̂L
h σ̃∂r,L

h

)2
+
(
p̂Wh σ̃∂r,W

h

)2
+
(
p̂Sh σ̃

∂r,S
h

)2 ]1/2
(4.21d)

where ∂r̃L
h , ∂r̃

W
h , and ∂r̃S

h are zero-mean random vectors representing the normalized short-
term fluctuation ramps of demand, wind generation, and solar generation, respectively;
σ̃∂r,L
h = std

(
∂r̃L

h

)
, σ̃∂r,W

h = std
(
∂r̃W

h

)
, and σ̃∂r,S

h = std
(
∂r̃S

h

)
; and ϵ∂r is a parameter for

adjusting the desired confidence level. Note that as in (3.26), the regulation-ramp reserve
need constraint (4.21d) can be convexified and thus be represented by a cutting-planes
algorithm [89].

Based on (4.21), a constraint for ensuring a proper RoCoF performance can be derived.
Such constraint is obtained by replacing ∂rMG

h,j in (4.20) by ζ∂rh , and assuming that auto-
matic frequency controllers will not act until t = T FC due to their inherent time delay.
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This yields the following constraint for ensuring RoCoF limit compliance:

ζ∂rh ≤ 2RoCoF

T FCf0

∑
g∈G

uG
g,h IN

G
g︸ ︷︷ ︸

INSY S

∀h ∈ H (4.22)

where ING
g is the synchronous inertia provided by each available generator g, and RoCoF

is the absolute RoCoF limit in Hz/s. Thus, this constraint considers that, as per (4.21),
the amount of renewable generation injected into the microgrid will result in a higher
regulation-ramp reserve need ζ∂rh , ultimately leading to a higher synchronous inertia re-
quirement for the system. It is also worth highlighting that battery virtual inertia INB

is not considered in (4.22), since it is affected by converter control delays and thus not
immediately available for instantaneous RoCoF damping (see Figure 2.7); however, this
assumption can readily be relaxed by adding a virtual inertia component in (4.22).

It is important to highlight that modern frequency-constrained operational models for
bulk power systems typically also consider a frequency nadir constraint to limit frequency
deviations, as such constraint plays a significant role in the presence of stepwise power
disturbances resulting from outages [37–41]. However, such type of constraint is not con-
sidered here, since: (i) this thesis focuses on short-term power fluctuations stemming from
renewable generation and loads, which change in a linear, instead of stepwise, manner; and
(ii) unlike bulk power systems, major contingencies such as large generator outages are
typically not considered in isolated microgrid dispatch models, as including these would
result in impractical large operating costs. The validity of using Quasi-Steady-State (QSS)
frequency constraints (4.13)-(4.16) and RoCoF constraint (4.22) for modeling frequency
and RoCoF dynamics in isolated microgrid daily operations is discussed in Section 4.2.5.

4.1.4 Optimization Model and Architecture

Based on the equations presented in previous sections, an updated EMS optimization model
embedding frequency dynamics can be formulated. The resulting optimization model cor-
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responds to a MILP problem that can be solved by off-the-shelf solvers:

min
x,y

F OBJ (x,y)

s.t. x ∈ {0, 1} , y ≥ 0

Reserves and power balance: (4.4)–(4.6), (3.25), (3.26), (3.28)

Thermal generators: (4.1), (4.10), (3.29), (3.30)

Batteries and degradation: (3.17), (4.2), (4.3), (3.22), (3.24),

(4.11), (4.12), (3.31)

Frequency dynamics: (4.13)-(4.16), (4.21d), (4.22)

where the objective function F OBJ includes thermal generation, battery degradation, and
load shedding costs; x =

[
uG,vG,wG

]
are binary decision variables; and y =

[
p̂G, p̂W , p̂S,

∆pG,∆pB,∆pV FC ,∆pPF , sB, cB,dB, ls, ζ
]
are non-negative continuous decisions variables.

The architecture required to implement the proposed frequency-constrained EMS model
is presented in Figure 4.1. Note that unlike the original architecture presented in Figure
3.2, this architecture allows the incorporation of additional modules for handling other
possibly relevant aspects not modeled in the EMS optimization model. For example, an
additional Optimal Power Flow module with AC power flow equations can be included to
compute reactive power dispatch set-points, as in [22]. It is also worth highlighting that
participation factors are omitted in Figure 4.1, as practical isolated microgrids typically
have a droop-only control for frequency regulation [11,86].

4.2 Computational Experiments

In this section, multiple simulations are carried out to evaluate the performance of the
proposed frequency-constrained EMS model. First, the general settings of the simulations
and case studies are presented in Sections 4.2.1 and 4.2.2. Then, the performance of
the proposed EMS model is evaluated from four different perspectives, namely regulation
security in Section 4.2.3, operational performance in Section 4.2.4, frequency modeling
accuracy in Section 4.2.5, and computational performance in Section 4.2.6.

4.2.1 General Settings

The performance of the proposed frequency-constrained EMS model is evaluated by simu-
lating its implementation during one full day on the modified CIGRE benchmark system
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Figure 4.1: Proposed EMS architecture based on a MPC approach

presented in Section 3.4.4, with a larger 6153 kW peak demand, and a larger 2500kW/
2500kWh lithium-ion battery. As in Chapter 3, simulations are performed using an MPC
scheme with a 5min update rate, 24h horizon, and variable time resolution, with reserves
being enforced only for the first 5h to reduce computational burden without significantly
affecting total operating costs.

Three different EMS models are considered in the simulations for benchmarking pur-
poses. The first model, referred hereinafter as EMS-1, corresponds to a conventional EMS
similar to the ones presented in [22–27], for which frequency dynamics and battery degrada-
tion are not considered, and uncertain power variations are exclusively handled by a unique
total reserve need, without any differentiation for forecast errors or regulation reserve needs.
Note that this model closely resembles the B+DRT model studied in Section 3.4, with the
only difference that the percentage-based capacity derating of generators and batteries is
replaced by a simpler additional total reserve requirement. The second model, referred
hereinafter as EMS-2, corresponds to the EMS model proposed in Chapter 3 (referred as
R+DRP model in Section 3.4), which incorporates battery degradation and uses forecast
error and regulation reserves for power fluctuation management, but does not consider
frequency dynamics nor regulation-ramp reserves. The third model, referred hereinafter as
EMS-3, corresponds to the frequency-constrained EMS model presented in Section 4.1.4,
which considers frequency dynamics and battery degradation, and handles uncertain power
variations through forecast error, regulation, and regulation-ramp reserves. In both EMS-2
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and EMS-3 models, 4 even partitions with Sl = 0.2 ∀l ∈ L are used for representing battery
degradation in a piecewise linear manner, as per (3.3). For the EMS-3 model, constraints
(4.1), (4.5) and (4.13)-(4.16) are defined considering Hr = {1, . . . , 6}, as these are the
dispatch time intervals with a time-step equal to the 5min MPC update rate, in which fre-
quency dynamics and control play a key role. Note that constraint

∑
g∈G ug,h ≥ 1 ∀h ∈ H

is included in all three EMS models, which guarantees that at least one diesel generator
is dispatched, so that there is always some synchronous inertia available in the system for
instantaneous RoCoF damping.

The performance of the three EMS models is evaluated by retrieving the EMS’s optimal
dispatch set-points for the first dispatch time interval of each MPC iteration, and imple-
menting such set-points in the dynamic model described in Section 2.4.4. Thus, transient
simulations are performed iteratively for each dispatch time interval to obtain the evo-
lution of the microgrid’s frequency and DER units’ instantaneous powers resulting from
short-term power fluctuations. These results are then used to compute thermal generation
costs, battery degradation costs, load shedding, renewable curtailment, and the amount of
time that frequency deviation and RoCoF limits are violated. In accordance with IEEE’s
DER operating standard [86], all results and analyses related to the RoCoF are performed
considering an averaging time window of 0.5s.

To ensure a fair comparison between the three EMS models, reserve needs are cali-
brated such that: (i) no load shedding resulting from forecast errors is obtained during
the simulated day, and (ii) a specified frequency performance in the form of frequency
and RoCoF limit compliance is achieved. The first condition is met by considering one
standard deviation of the forecast errors when computing the reserve needs of the three
EMS models, i.e, ϵχ = 1. The second condition is met by considering an additional total
reserve requirement ∆Res in the EMS-1 model, by adjusting ϵr in the EMS-2 model, and
by adjusting both ϵr and ϵ∂r in the EMS-3 model. As in Chapter 3, the standard devi-
ations of forecast errors σ̃χ

h are computed based on the values reported in [8] (see Table
3.1), and the standard deviations of short-term flucuations σ̃r

h and fluctuation-ramps σ̃∂r
h

are estimated using the 6-weeks measurements available from the KLFN microgrid [5] (see
Tables 3.2 and 4.1).

A frequency deviation limit of ∆f = ±1.2Hz, RoCoF limit of RoCoF = ±0.5Hz/s, and
droop of κ = 5% for all DER units, are considered in the simulations, as per [86]. Frequency
and voltage load sensitivities are obtained from the values reported in [95] for residential
loads in North America, with KPF = 0.8, and KPV = 1.5. For RoCoF constraint (4.22), a
frequency controller time delay of T FC = 0.1s is considered, which results from the average
response time observed for the battery and diesel generators in the transient simulations.
For VFC, a voltage limit of ∆V = 0.01pu, and proportional gain of KV FC = 0.2, are
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Table 4.1: Standard deviations of short-term fluctuation-ramps [5]

Source 5min [%] 15min [%] 30min [%] 1h [%]
Wind 8.67 8.16 7.88 7.69
Solar 3.92 3.56 3.23 3.05

Demand 0.71 0.69 0.7 0.68

used based on [4]. Diesel engine governor’s parameters are extracted from [2], which were
slightly tuned to ensure stable system operation.

The battery degradation resulting from the simulations is computed using the same
procedure and parameters described in Section 3.4.1, for which a detailed representation
based on the rainflow cycle counting algorithm is considered. Such degradation is then
multiplied by the battery’s replacement cost to obtain the resulting battery degradation
costs. Load shedding resulting from frequency regulation issues is valuated using a cost of
12 USD/kWh [96], while renewable curtailment is valuated using a cost of 0.07 USD/kWh,
which is based on the wind and solar levelized costs of electricity reported in [97]. All
simulations are performed on a PC with an Intel Core i7 3.20-GHz processor and 16 GB of
RAM under a 64-bit Windows 10 operating system. The EMS optimal dispatch set-points
are computed using the Julia programming language [91], JuMP package [92], and Gurobi
solver [66]. Transient simulations are performed using MATLAB-Simulink [76].

4.2.2 Case Studies and Regulation Security Levels

The three EMS models are evaluated for two different case studies, which aim to illustrate
possible practical frequency control configurations in the CIGRE microgrid. The first
case study corresponds to a “Base” case, which considers the dynamic model presented
in Section 2.4.4, but with the difference that the regulation capability of the VFC has
been removed, i.e., KV FC = 0 in Figure 2.8. The second case study corresponds to a
“Detailed” case, for which the regulation capabilities of the VFC are incorporated, and the
original linear percentage-based load shedding controller (see Figure 2.9) is replaced by a
Under-Frequency Load Shedding (UFLS) scheme [87], whose frequency relay settings are
illustrated in Figure 4.2. In both case studies, three different frequency regulation security
levels are considered, which are based on the amount of time where the frequency deviation
and RoCoF limits are violated, as follows:

• Low: for which frequency limit non-compliance should be around 300s.
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Figure 4.2: UFLS frequency relay setting relative to linear percentage-based load shedding.

• Medium: for which frequency limit non-compliance should be around 30s.

• High: for which Frequency-or-RoCoF (FoR) limit non-compliance should be around
30s, i.e., the total time that either frequency or RoCoF limits are violated is approx-
imately half a minute.

4.2.3 Regulation Security

The capability to reach the Low, Medium, and High regulation security levels is evaluated
for the three EMS models in this section. To accomplish this, the reserve requirements of
the EMS models are gradually increased until either: (i) the desired frequency/FoR non-
compliance is reached, or (ii) an infeasible optimization problem is obtained. The results
of this test for the Base and Detailed cases are shown in Tables 4.2 and 4.3, respectively,
which include the reserve sizing parameters used in the EMS models, the resulting non-
compliance frequency/FoR values, and a flag indicating if the EMS was successful or not
in reaching the desired regulation security level. From these results, it can be observed
that the EMS-1 and EMS-2 models have difficulty reaching high regulation security levels,
as these require large reserves that ultimately lead to infeasible optimization problems. In
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Table 4.2: Security compliance results for Base case

Reg.
sec.

EMS
Model

Reserve sizing Non-compl. [s] Success
flag∆Res

[MW]
ϵr ϵ∂r Freq. FoR

Low
EMS-1 2.25 - - 301 378 ✓

EMS-2 - 1.46 - 298 378 ✓

EMS-3 - 1.45 0.0 295 373 ✓

Med.
EMS-1 2.59∗ - - 94∗ 162∗ ✗

EMS-2 - 3.45 - 29 81 ✓

EMS-3 - 4.10 0.0 25 78 ✓

High
EMS-1 - - - - - ✗

EMS-2 - 4.20∗ - 2∗ 46∗ ✗

EMS-3 - 4.10 9.0 1 32 ✓

∗Desired frequency/FoR non-compliance could not be reached. Instead, the minimum
achievable non-compliance is indicated.

contrast, the proposed frequency-constrained EMS model (EMS-3) can attain all regulation
levels due to the more accurate modeling of short-term power fluctuations and frequency
dynamics, which result in correctly balanced reserve requirements.

4.2.4 Operational Performance

In this section, the operational performance of the three EMS models is evaluated. The
results of this test are shown in Tables 4.4 and 4.5 for the Base and Detailed cases, re-
spectively, which include: (i) operating costs that consider thermal generation, battery
degradation, and load shedding costs; (ii) total costs that include operating and renewable
curtailment costs; and (iii) load shedding and renewable curtailment values. Note that the
infeasible optimization results identified in Section 4.2.3 are omitted in these tables. From
the results, it can be observed that the proposed frequency-constrained EMS model (EMS-
3) also outperforms the EMS-1 and EMS-2 models in terms of operational performance, as
the former exhibits reduced operating and total costs (2%-10% lower). Furthermore, note
that the proposed EMS model tends to reduce the renewable curtailment in the system
(up to 88% lower), which is reflected in the observed reduced costs.

It is also worth highlighting that a more thorough analysis of the results shows that
there is a clear relationship between the desired regulation security level, the amount of
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Table 4.3: Security compliance results for Detailed case

Reg.
sec.

EMS
Model

Reserve sizing Non-compl. [s] Success
flag∆Res

[MW]
ϵr ϵ∂r Freq. FoR

Low
EMS-1 2.00 - - 302 410 ✓

EMS-2 - 0.54 - 298 405 ✓

EMS-3 - 1.00 0.0 295 399 ✓

Med.
EMS-1 2.59∗ - - 62∗ 144∗ ✗

EMS-2 - 3.03 - 30 96 ✓

EMS-3 - 3.33 0.0 30 96 ✓

High
EMS-1 - - - - - ✗

EMS-2 - 4.20∗ - 0∗ 47∗ ✗

EMS-3 - 3.33 9.1 0 32 ✓

∗Desired frequency/FoR non-compliance could not be reached. Instead, the minimum
achievable non-compliance is indicated.

renewable/thermal generation injected into the system, and the number of thermal gener-
ators that are ON during the day. This relationship can be observed by comparing Figures
4.3, 4.4, and 4.5, where the dispatch profiles for the different regulation security levels
and EMS models are illustrated, including renewable generation (RG), thermal generation
(G1-G5), demand (D), battery discharge (BD), and battery charge (BC). Note that as the
regulation security level increases from Low (Figure 4.3) to Medium (Figure 4.4), a sig-
nificant amount of renewable generation is curtailed and replaced by thermal generation,
which as discussed in Section 3.4, is the result of strategically using renewable curtailment
to reduce the system’s regulation/reserve needs. Furthermore, observe that as the regula-
tion security level increases from Medium (Figure 4.4) to High (Figure 4.5), more thermal
generators are turned ON during the day, such that a sufficient amount of synchronous
inertia is available for RoCoF damping.

4.2.5 Frequency Modeling Accuracy

As previously discussed, one of the major advantages of proposed EMS model lies in the
explicit modeling of frequency dynamics. Thus, to further validate the observed results, the
accuracy of the QSS frequency equations (4.13)-(4.16), and RoCoF equations (4.20)-(4.22)
used in the proposed EMS model were also tested. For this test, the instantaneous fre-
quency and RoCoF obtained by transient simulations were compared to the ones estimated
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Table 4.4: Operational results for the Base case

Reg.
sec.

EMS
model

Oper. cost
[kUSD]

Total cost
[kUSD]

Load shed.
[kWh]

Ren. curt.
[MWh]

Low
EMS-1 9.14 9.19 7.6 0.68
EMS-2 9.03 9.08 7.1 0.72
EMS-3 8.60 8.60 9.7 0.08

Med.
EMS-2 10.51 11.02 1.3 7.40
EMS-3 9.66 10.01 0.5 4.98

High EMS-3 11.18 11.97 0.1 11.34

Table 4.5: Operational results for the Detailed case

Reg.
sec.

EMS
model

Oper. cost
[kUSD]

Total cost
[kUSD]

Load shed.
[kWh]

Ren. curt.
[MWh]

Low
EMS-1 11.10 11.13 180.3 0.37
EMS-2 10.18 10.18 130.1 0.05
EMS-3 9.99 9.99 134.5 0.06

Med.
EMS-2 10.50 10.89 40.1 5.66
EMS-3 9.67 9.89 39.6 3.22

High EMS-3 11.24 12.04 6.2 11.47

using (4.13)-(4.16) and (4.20)-(4.22). Figure 4.6 illustrates the actual (Act.) frequency
excursions obtained by the transient simulations, and the estimated (Est.) frequency ex-
cursions using QSS frequency equations (4.13)-(4.16) for a particular simulation case. Note
that both actual and estimated curves exhibit a close resemblance, with more significant
differences being observed in the presence of abrupt frequency jumps.

The close resemblance between actual and estimated values in Figure 4.6 was also
observed in the rest of the simulation cases. This is illustrated in Table 4.6, in which
the Mean Absolute Error (MAE) for all simulations cases is indicated, from where it can
be concluded that the proposed EMS provides an accurate representation of the actual
frequency dynamics of an isolated microgrid during daily operations.

4.2.6 Computational Performance

The computational performance of the three EMS models is evaluated here. This is a rel-
evant aspect to assess, as computation times for the EMS optimization model need to be
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Figure 4.3: Dispatch results for EMS-1 model under a Low regulation security level.

significantly lower than the 5min MPC update rate for near real-time applications [22]. For
this test, the computation times required to solve the optimization problems were recorded
for each MPC iteration, yielding a total of 288 measurements for one full day simulation.
The resulting average and maximum computation times are presented in Table 4.7, where
it can be observed that all three EMS models exhibit low computation times in the order
of seconds, making them suitable for practical applications. This observed computational
efficiency stems from the fact that all three EMS models are linear, and thus result in
computationally efficient MILP optimization problems. Therefore, another relevant con-
tribution of the EMS model proposed in this chapter (EMS-3) is that it incorporates the
impact of frequency dynamics on operations, while keeping a computational performance
on par with the one observed for the simpler EMS-1 and EMS-2 models.

In summary, the proposed frequency-constrained EMS model outperforms existing EMS
models, achieving reduced operational costs and reaching a wider range of frequency regu-
lation security levels. Moreover, this overall better performance is achieved while keeping
computational tractability suitable for near real-time practical applications.
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Figure 4.4: Dispatch results for EMS-2 model under a Medium regulation security level.

4.3 Summary

Short-term power fluctuations stemming from renewable generation can severely degrade
the frequency regulation performance of isolated microgrids, as these have low inertia and,
more commonly nowadays, significant renewable energy integration. Motivated by this, the
present chapter developed a practical frequency-constrained EMS that incorporates short-
term fluctuations and their impact on frequency regulation. The frequency-constrained
EMS presented in this chapter was evaluated and compared to previously proposed EMS
models on a realistic test system using detailed frequency transient models, showing that
it allows reducing total operating costs for a given security level, and achieving higher
frequency regulation security levels in line with modern operating standards for micro-
grids. Furthermore, due to the use of alternative linear equations to describe frequency
dynamics, the proposed frequency-constrained EMS model can be solved with sufficiently
low computation times, making it suitable for near real-time practical applications. The
main content of this chapter has been published in [98].
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Figure 4.5: Dispatch results for EMS-3 model under a High regulation security level.

Table 4.6: Frequency and RoCoF Mean Absolute Errors

Reg.
sec.

EMS
model

Freq. MAE [Hz] RoCoF MAE [Hz/s]
Base Detailed Base Detailed

Low
EMS-1 0.02 0.03 0.04 0.04
EMS-2 0.01 0.03 0.05 0.04
EMS-3 0.02 0.03 0.04 0.05

Med.
EMS-2 0.01 0.02 0.02 0.02
EMS-3 0.01 0.02 0.01 0.02

High EMS-3 0.01 0.01 0.01 0.01
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(HH:MM)

Figure 4.6: Comparison of frequency excursions during different times of the day for the
Base case using the proposed EMS (EMS-3) under a High regulation security level.

Table 4.7: Computation times per MPC iteration

Reg.
sec.

EMS
Model

Average time [s] Maximum time [s]
Base Detailed Base Detailed

Low
EMS-1 0.6 0.6 16.9 17.1
EMS-2 2.0 0.9 21.5 22.2
EMS-3 1.2 1.0 21.9 24.2

Med.
EMS-2 6.5 5.1 56.7 32.5
EMS-3 4.5 3.1 27.1 30.7

High EMS-3 2.9 2.8 18.9 22.7
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Chapter 5

Integrating Thermostatically
Controlled Loads in Microgrid
Operation

To address the issue of a potential degraded frequency regulation performance in isolated
microgrids, Chapter 4 presented an EMS integrating short-term fluctuations and their im-
pact on frequency regulation, in which an strategic use of thermal generators and batteries
was employed to ensure an economic and reliable system operation. However, this EMS ne-
glects the additional flexibility stemming from other currently available technologies, such
as modern load controls. Within these, the aggregate control of TCLs are of particular
interest for isolated microgrids, as TCLs comprise a significant share of the total residen-
tial demand [17], and can counterbalance short-term power imbalances while remaining
non-disruptive to the end-user [18]. Hence, the present chapter studies the integration
of TCLs within microgrid operations through the use of computationally tractable aggre-
gate models, focusing on the role that TCLs can play to manage second-to-second power
fluctuations and their corresponding impact on frequency regulation. In particular, two
computationally efficient and accurate aggregate TCL models are developed:

1. A virtual battery model representing the aggregate flexibility of TCLs, for which
relevant detailed TCL thermal dynamics are incorporated, such as solar irradiance
heat gains and wall/floor heat transfers [61,82,83].

2. A frequency transient model representing the aggregate dynamics of a TCL collection,
for which relevant practical challenges are integrated, such as communication delays
[99], and the presence of model uncertainty and time-variability [21].
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These aggregate TCL models are then used to design a practical EMS integrating TCL
flexibility, and study the impact of TCL integration on microgrid operation and frequency
control. Computational experiments using detailed frequency transient and thermal dy-
namic models are presented, demonstrating the accuracy of the proposed aggregate TCL
models, as well as the economic and reliability benefits resulting from using these aggregate
models to integrate TCLs in microgrid operations.

The chapter is organized as follows: In Section 5.1, the design of the proposed aggregate
TCL models is discussed, for which detailed TCL thermal dynamics and practical chal-
lenges are considered. Then, based on the models developed in the previous section, a novel
EMS integrating TCL flexibility is proposed in Section 5.2. Computational experiments
and associated results are presented in Section 5.2, showcasing the benefits of integrating
TCLs in microgrid operations through the use of proper aggregate TCL models. Finally,
the main contributions and conclusions of this chapter are summarized in Section 5.3.

5.1 Aggregate Modeling of Thermostatically Controlled

Loads

In this section, models needed for the implementation of an aggregate TCL control are
discussed. First, a novel decoupled thermal model is presented in Section 5.1.1, which is
used in Section 5.1.2 to develop virtual battery model capable of accurately describing the
aggregate flexibility of a TCL collection. Then, practical challenges found in aggregate
TCL control implementations, and how these can be modeled, are discussed in Section
5.1.3. Finally, based on the previous modeling techniques, a new transient model for
characterizing the frequency dynamics of an aggregate TCL control is developed in Section
5.1.4.

5.1.1 Decoupled Thermal Model

As previously discussed in Section 2.3.2, one of the main drawbacks of the third-order model
(2.13) is its increased mathematical complexity, which prevents its direct integration in
virtual battery models with a large TCL population. Thus, to tackle this issue, a decoupled
thermal model is proposed here, which captures the high-modeling accuracy of the original
third-order model, while maintaining a low mathematical complexity suitable for virtual
battery model design. The proposed decoupled thermal model is based on (2.13), for which
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a series of simplifications can be made based on the following properties commonly found
in practical settings:

1. Inner household thermal dynamics operate at a relatively fast timescale in the order
of seconds to minutes, whereas wall and floor thermal dynamics operate at a slower
timescale in the order of minutes to hours.

2. Air conditioners automatically regulate the inner household temperature to match
the thermostat’s setpoint θI,SP , resulting in θI ≈ θI,SP .

3. The ground temperature θG remains relatively constant during the day.

These allow characterizing wall/floor thermal dynamics (2.13b) and (2.13c), which operate
at a slower timescale DT , in the following decoupled manner:

CW dθW (t)

dt
≈ qW +

θA + θI,SP − 2θW (t)

RW/2
(5.1a)

0 ≈ θG + θI,SP − 2θF (t)

RF/2
(5.1b)

which results in the following equations for characterizing the wall and floor temperature
evolution over time:

θW (t) ≈ θW,SS +
(
θW,0 − θW,SS

)
exp

(
−αW t

)
(5.2a)

θF (t) ≈ θF,SS =
(
θG + θI,SP

)
/2 (5.2b)

where θW,SS = (θA + θI,SP )/2 + qWRW/4 is the steady-state wall temperature; θW,0 is the
initial wall temperature; θF,SS is the steady-state floor temperature; and αW = 4/(RWCW ).

Inner household thermal dynamics (2.13a), on the other hand, operate at a faster
timescale, for which it can be assumed that wall and floor temperatures remain relatively
constant, resulting in the following decoupled representation:

CI dθ
I(t)

dt
≈ qTCL(t) + qEQ − θI(t)

REQ
(5.3a)

qEQ = qC +
θA

RC
+

θW,DT

RW/2
+

θF,SS

RF/2
(5.3b)

1

REQ
=

1

RC
+

1

RW/2
+

1

RF/2
(5.3c)

θW,DT = θW,SS +

(
θW,0 − θW,SS

)
αWDT

[
1− exp

(
αWDT

) ]
(5.3d)
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where qEQ and REQ are the equivalent heat gain and thermal resistance, respectively, and
θW,DT is the average wall temperature during the DT timescale considered for the slower
wall and floor dynamics. Thus, the following equation can be used to describe the inner
household temperature:

θI(t) ≈ qEQREQ +
(
θI,0 − qEQREQ

)
exp(−αI t) (5.4)

where θI,0 is the initial inner household temperature, and αI = 1/(CIREQ).

Note that the proposed decoupled model (5.1)-(5.4) captures the dynamics of the orig-
inal third-order model (2.13) with reduced complexity, as the differential equations are
decoupled in this case. This not only translates into an improved computational per-
formance, but also serves as a basis for deriving a practical virtual battery model that
incorporates solar heat gains and wall/floor thermal dynamics, as discussed next.

5.1.2 Virtual Battery Model

A new virtual battery model is derived here using the decoupled thermal model presented
in Section 5.1.1. The proposed virtual battery model is based on [6], but adapted to incor-
porate the additional thermal dynamics of detailed high-order household thermal models.

As a first step, (5.3a) has to be rewritten in terms of TCL electric consumption. For
this, the following continuous TCL power model is assumed:

qTCL(t) = ηTCL pTCL(t) = ηTCL
[
pTCL,SS +∆pTCL(t)

]
(5.5a)

0 ≤ pTCL(t) ≤ P
TCL

(5.5b)

where ηTCL is the coefficient of performance; pTCL is the TCL electric power consumption,
which has been split into steady-state baseline consumption pTCL,SS and deviations from

it ∆pTCL; and P
TCL

is the TCL rated electrical power. Thus, replacing (5.5a) in (5.3a),
the following thermal-electric differential equation is obtained:

CI dθ
I(t)

dt
= ηTCL

[
pTCL,SS +∆pTCL(t)

]
+ qEQ − θI(t)

REQ
(5.6a)

pTCL,SS =
1

ηTCL

(
θI,SP

REQ
− qEQ

)
(5.6b)

where the TCL baseline consumption (5.6b) is obtained by assuming a steady-state con-
dition with no TCL power deviations, i.e., dθI/dt = ∆pTCL = 0 and θI = θI,SP .
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Defining the auxiliary variable Θ = CI
(
θI − θI,SP

)
/ηTCL, and re-arraging (5.6), one

has that:
dΘn(t)

dt
= − γTCL

n Θn(t) + ∆pTCL
n (t) (5.7)

where the subsubscript n has been added for representing a particular TCL in the set
of TCLs N = {1, . . . , N}, and γTCL

n = (CI
n R

EQ
n )−1. Thus, based on (5.7), the following

virtual battery model can be defined:

deV (t)

dt
= − γV eV (t)− dV (t) (5.8a)

−EV ≤ eV (t) ≤ EV , −P V,C ≤ dV (t) ≤ P V,D (5.8b)

eV is the virtual battery’s stored energy, which can be linked to Θ in (5.7), and thus to
the temperature offset from the thermostat’s setpoint θI −θI,SP ; dV is the virtual battery’s
discharging power, which can be linked to the deviation from the baseline consumption
∆pTCL in (5.7); and γV is the virtual battery’s self-discharging rate. Maximum capacity
limits are also considered in this virtual battery model, namely, maximum discharging
power P V,D, maximum charging charging power P V,C , and maximum stored energy EV .
While these capacity limits cannot be directly computed, analytical upper/lower bounds
can instead be derived, so that:

P V,D ≤ P V,D ≤ P
V,D

(5.9a)

P V,C ≤ P V,C ≤ P
V,C

(5.9b)

EV ≤ EV ≤ E
V

(5.9c)

The equations necessary to compute these bounds are discussed next, based on derivations
presented in Appendix B.

Upper bounds P
V,D

, P
V,C

, and E
V
can be determined by overestimating the flexibility

available from the TCL collection N , resulting in the following equations:

P
V,D

=
∑
n∈N

pTCL,SS
n (5.10a)

P
V,C

=
∑
n∈N

(
P

TCL

n − pTCL,SS
n

)
(5.10b)

E
V
=
∑
n∈N

(
1 +

|γTCL
n − γV |

γV

)
CI∆θTCL

n

ηTCL
n

(5.10c)
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where ∆θTCL
n is the TCL’s n temperature deadband. On the other hand, lower bounds

can be determined by underestimating the flexibility of the TCL collection. Note, however,
that in this case a range of possible lower bounds are available. In general, any P V,D, P V,C ,
and EV satisfying the following expressions is a valid underestimator of the true virtual
battery capacity limits:

βn P V,D ≤ pTCL,SS
n (5.11a)

βn P V,C ≤ P
TCL

n − pTCL,SS
n (5.11b)

βn EV ≤ CI∆θTCL
n

ηTCL
n

(
1 +

|γV − γTCL
n |

γTCL
n

)−1

(5.11c)

where βn ≥ 0 is a parameter indicating the share of the total regulation provided by
each TCL, with

∑
n∈N βn = 1. For example, setting βn = pTCL,SS

n /
∑

n∈N pTCL,SS
n , which

maximizes P V,D, results in:

P V,D =
∑
n∈N

pTCL,SS
n (5.12a)

P V,C = P̃ V,D min
n∈N

{
P

TCL

n − pTCL,SS
n

pTCL,SS
n

}
(5.12b)

EV = P̃ V,D min
n∈N

{
CI∆θTCL

n

ηTCL
n pTCL,SS

n

(
1 +

|γV − γTCL
n |

γTCL
n

)−1
}

(5.12c)

which are valid underestimators of the exact virtual battery capacity limits. Note that
(5.10) and (5.11), while similar to the equations in Theorems 5 and 6 of [6], differ in
how γTCL

n and pTCL,SS
n are calculated, as these now incorporate the more detailed thermal

dynamics of high-order household models.

5.1.3 Practical Challenges

Another relevant issue to consider for the implementation of an aggregate TCL control are
its inherent practical challenges, as these can hinder its flexibility and regulation capability.
Thus, in what follows, two relevant challenges previously identified in real-life applications
are discussed.

The first challenge relates to the time-variability and uncertainty present in virtual
battery models, which as discussed in [21], stems from their dependence in external factors
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such as ambient temperature. This applies also to the proposed virtual battery model (5.8),
as its energy/power capacity limits P V,D, P V,C , and EV are dependant on solar radiation
heat gains qC and qW , and external temperatures θA and θG (see Sections 5.1.1 and 5.1.2),
all of which vary over the day and are subject to imperfect forecasts. Thus, to model these
additional effects, subscripts for time-intervals h ∈ H and Monte Carlo (MC) scenarios
i ∈ I are considered for the virtual battery capacity limits in (5.9), yielding the following
updated conservative limits:

P V,D,MC
h = min

i∈I
P V,D

h (ξi) (5.13a)

P V,C,MC
h = min

i∈I
P V,C

h (ξi) (5.13b)

EV,MC
h = min

i∈I
EV

h(ξi) (5.13c)

where ξi denotes the sample realization of scenario i, for which different values of qC(ξi),
qW (ξi), θ

A(ξi), and θG(ξi) are generated and then used to estimate the corresponding virtual
battery capacity limits. Note that (5.13) uses a conservative minimum approach to ensure
a reliable model. Furthermore, observe that capacity limits in (5.13) are assumed to remain
constant for time-interval h, as external temperatures have relatively slow dynamics (in
order of minutes to hours), and second-to-second fluctuations in solar radiation are filtered
by the household’s wall and internal thermal capacitances.

A second challenge relates to communication delays, as these directly impact the re-
sponse time of aggregate TCL control implementations. As reported in [99], communication
delays can reach values of up to 1s in real-life applications, making their incorporation in
frequency dynamic models necessary, since the timescale of these dynamics are in the order
of milliseconds to seconds in isolated microgrids. To model this effect, an additional com-
munication delay block is considered in the proposed frequency dynamic model presented
next.

5.1.4 Frequency Dynamic Model

Based on the virtual battery model and practical challenges discussed in Sections 5.1.2 and
5.1.3, a novel transient model for characterizing the frequency dynamics of an aggregate
TCL control is developed here. The proposed model is presented in Figure 5.1, which con-
siders frequency deviation measurements ∆f and virtual battery discharge power output
pV , as well as a Virtual Battery Controller (VBC) and an Actuation Mechanism, which
are described next.
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Figure 5.1: Block diagram of aggregate TCL control model.

The VBC block is composed of: (i) an Energy Limiter block, in which virtual battery
state-of-charge (5.8a) and capacity limits (5.13) are integrated; (ii) an external discharging
power set-point d̂Vh ; (iii) a Frequency-Droop block with droop constant κV

h ; and (iv) a Low-
Pass Filter with time constant T V

F . The Actuation Mechanism represents the change in
dynamics resulting from implementing the virtual battery regulation instruction p̃V across
the different TCLs, and is composed of: (i) a Zero-Order Hold (ZOH) block with sampling
period T V

D , which is used to represent the inherent discrete-time nature of the control, as
residential TCLs typically operate using a ON/OFF switching logic and have short cycling
constraints [6,77,80]; (ii) a First-Order Hold (FOH) block, which is used to represent that
ON/OFF switching signals are intentionally spread across a T V

D time interval to prevent
large step-wise power changes in the system; and (iii) a Communication Delay block with
time delay T V

D (see Section 5.1.3). Note that the parameter T V
D is intentionally chosen to be

consistent in the previous three blocks, so that a coordinated system response is ensured,
as illustrated in Figure 5.2.

5.2 Energy Management System Model

In this section, a novel microgrid EMS embedding the flexibility of an aggregate TCL con-
trol is designed. First, the optimization model considered for the EMS is presented, which
builds on the models previously developed in Section 5.1. Then, the general architecture
needed for implementing the aggregate TCL control and EMS is discussed.
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Figure 5.2: Coordinated TCL actuation mechanism with communication delays.

5.2.1 Optimization Model

As previously discussed, modern EMS models for isolated microgrids require the incorpo-
ration of frequency dynamics in their decisions-making process, since these systems are
particularly prone to poor frequency regulation performance. Thus, the proposed EMS
model builds on the frequency-constrained EMS model described in Chapter 4, which is
adapted here to integrate the flexibility of an aggregate TCL control. The specific changes
made to the the original frequency-constrained EMS model are described next.

Fist, the constraints associated to the virtual battery model (5.8) are defined ∀h ∈ H
as follows:

êVh =
(
1− γV∆Th

)
êVh−1 −∆Th d̂

V
h +∆êVh (5.14a)

−µEV,MC
h ≤ êVh ≤ µEV,MC

h (5.14b)

d̂Vh +∆pV,χ,↑h +∆pV,r,↑h ≤ P V,D,MC
h (5.14c)

d̂Vh −∆pV,χ,↓h −∆pV,r,↓h ≥ −P V,C,MC
h (5.14d)

where ∆Th is the time step of dispatch time-interval h; êVh is the virtual battery’s stored

energy at the end time-interval h; d̂Vh is the discharge power set-point for the VBC during
time-interval h (see Figure 5.1); ∆pV,χ,↑h and ∆pV,χ,↓h are the upward and downward forecast

error reserves provided by the virtual battery, respectively; ∆pV,r,↑h and ∆pV,r,↓h are the
upward and downward regulation reserves provided by the virtual battery, respectively;
and µ ∈ [0, 1] is a safety derating factor to prevent the repeated triggering of the Energy
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Limiter block in the VBC (see Figure 5.1). Note that (5.14) also includes the decision
variable ∆êVh , which represents the expected increase in the virtual battery’s stored energy
due to reserve provision, defined as follows:

∆êVh =
φχ
h

2
∆Th

(
∆pV,χ,↓h −∆pV,χ,↑h

)
+

φr
h

2
∆Th

(
∆pV,r,↓h −∆pV,r,↑h

)
(5.15)

where φχ
h and φr

h are the ERU parameters for forecast error and regulation reserves, re-
spectively (see Sections 3.3.1 and 4.1.2).

To ensure enough energy is saved in the virtual battery for reserve provision, the fol-
lowing additional conservative constraints are also considered ∀h ∈ H:(

1− γV∆Th

)
êVh−1 −∆Th

(
d̂Vh −∆pV,χ,↓h − 1

2
∆pV,r,↓h

)
≤ µEV,MC

h (5.16a)

(
1− γV∆Th

)
êVh−1 −∆Th

(
d̂Vh +∆pV,χ,↑h +

1

2
∆pV,r,↑h

)
≥ −µEV,MC

h (5.16b)

Furthermore, an energy neutrality constraint for the virtual battery is included, as follows:

êVH = EV,0 (5.17)

where EV,0 is the initial stored energy in the virtual battery, and H is the last time index
of the set of time intervals H.

Based on the frequency dynamic controller presented in Section 5.1.4, constraints for
characterizing the maximum deliverable short-term regulation of the virtual battery can
be also defined ∀h ∈ H as follows (see Figure 5.1):

∆pV,r,↑h ≤ ∆f

f0

1

κV
h

(5.18a)

∆pV,r,↓h ≤ ∆f

f0

1

κV
h

(5.18b)

κV
h = κV

/
min

{
P V,D,MC

h , P V,C,MC
h

}
(5.18c)

where f0 is the microgrid’s nominal frequency, and ∆f is the maximum frequency devia-
tion limit imposed by DER operating standards. Note that in (5.18), the frequency-droop
constant κV

h is adjusted based on the virtual battery’s power capacity limits for dispatch
time-interval h, where κV is a fixed droop value in line with modern operating DER stan-
dards [86].
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System power and reserve balances (3.28) and (4.4)–(4.6) are also modified to incor-
porate the additional flexibility stemming from an aggregate TCL control. In the case of
power balance (3.28), one now has the following updated constraint ∀h ∈ H:∑

b∈B

∑
l∈L

(
dBb,l,h − cBb,l,h

)
+
∑
g∈G

p̂Gg,h + d̂Vh = P̂L
h − p̂Wh − p̂Sh − lsh (5.19)

Similarly, for forecast error reserve balance (4.4), the following constraint is instead used
∀h ∈ H:

ζχh =
∑
g∈G

∆pG,χ,↑
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,χ,↑

b,l,h +∆pB,C,χ,↑
b,l,h

)
+∆pV,χ,↑h (5.20a)

ζχh =
∑
g∈G

∆pG,χ,↓
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,χ,↓

b,l,h +∆pB,C,χ,↓
b,l,h

)
+∆pV,χ,↓h (5.20b)

Finally, the regulation reserve balance constraints (4.5) and (4.6) are replaced by the
following updated constraints:

ζrh =
∑
g∈G

∆pG,r,↑
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,r,↑

b,l,h +∆pB,C,r,↑
b,l,h

)
(5.21a)

+ ∆pV,r,↑h +∆pPF,r,↑
h +∆pV FC,r,↑

h ∀h ∈ Hr (5.21b)

ζrh =
∑
g∈G

∆pG,r,↓
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,r,↓

b,l,h ∆pB,C,r,↓
b,l,h

)
+ (5.21c)

+ ∆pV,r,↓h +∆pPF,r,↓
h +∆pV FC,r,↓

h ∀h ∈ Hr (5.21d)

ζrh =
∑
g∈G

∆pG,r,↑
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,r,↑

b,l,h +∆pB,C,r,↑
b,l,h

)
+∆pV,r,↑h ∀h ∈ H \ Hr (5.22a)

ζrh =
∑
g∈G

∆pG,r,↓
g,h +

∑
b∈B

∑
l∈L

(
∆pB,D,r,↓

b,l,h +∆pB,C,r,↓
b,l,h

)
+∆pV,r,↓h ∀h ∈ H \ Hr (5.22b)

Based on the constraints defined above, an updated EMS model integrating TCL flex-
ibility and its associated dynamics can be formulated. The following optimization model
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corresponds to a MILP problem that can be solved using off-the-shelf solvers:

min
x,y,z

F OBJ (x,y)

s.t. x ∈ {0, 1} , y ≥ 0

Reserves and power balance: (5.20)–(5.22), (3.25), (3.26), (5.19)

Thermal generators: (4.1), (4.10), (3.29), (3.30)

Batteries and degradation: (3.17), (4.2), (4.3), (3.22), (3.24),

(4.11), (4.12), (3.31)

Frequency dynamics: (4.13)-(4.16), (4.21d), (4.22)

TCLs and virtual battery: (5.14)–(5.18)

where the objective function F OBJ includes thermal generation, battery degradation, and
load shedding costs; x =

[
uG,vG,wG

]
are binary decision variables; y =

[
p̂G, p̂W , p̂S,

∆pG,∆pB,∆pV ,∆pV FC ,∆pPF , sB, cB,dB, ls, ζ
]
are non-negative continuous decisions vari-

ables; and z =
[
êV , d̂V

]
are free continuous decision variables.

5.2.2 Implementation Architecture

The general architecture required to implement the proposed EMS model embedding aggre-
gate TCL control is illustrated in Figure 5.3. Note that as per [6], the proposed architecture
follows a centralized approach for TCL control, in which direct communication links be-
tween the Aggregate TCL Controller and the different TCLs are needed to ensure a reliable
coordinated control. Furthermore, observe that local frequency measurements are required
for the Aggregate TCL Controller, such that frequency regulation services can be provided
by it.

5.3 Computational Experiments

In this section, simulations to evaluate the benefits of the proposed virtual battery and
EMS models are presented and discussed. First, the general settings considered in the
experiments are described. Then, the proposed decoupled household thermal model and
virtual battery model are benchmarked against the current state-of-art models. Finally,
the implementation of an aggregate TCL control for improved microgrid operations is
simulated, and its benefits quantified.
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Figure 5.3: EMS and aggregate TCL control implementation architecture.

5.3.1 General Settings

The experiments are performed assuming the households used for the priority-stack TCL
control presented in [6] are located in KLFN (53°35’N 88°39’W) during the fall season [5],
given that detailed renewable generation and load data is available for this isolated com-
munity located in Canada. The test microgrid corresponds to the CIGRE-based medium
voltage benchmark system presented in Section 4.2.1, but with a smaller 1324kW/1324kWh
lithium-ion battery.

A collection of N = 1800 air conditioners operating in heating mode is assumed for the
aggregate TCL control, which results from considering KLFN’s population of 914 people, 3
inhabitants per household, and a scaling factor of 5.933 = 6153kW/1037kW based on the
peak loads of the CIGRE-based microgrid used here and the KLFN microgrid from which

renewable generation and load data is extracted. Air conditioner parameters ηTCL, P
TCL

,
and ∆θTCL are extracted from [6], and a thermostat setpoint θI,SP = 21◦C is assumed.
Thermal household parameters RW , RC , RF , CW , CI , CF and variables θA, θG, qW , qC are
calculated using the procedure described in [83], assuming a typical North American house
with a 12m x 9m surface area and 5.4m height (2 floors). To represent heterogeneity
in the TCL population, random samples of house length, width and height, as well as

ηTCL, P
TCL

,∆θTCL, and θI,SP parameters, are generated from independent uniform distri-
butions with a maximum deviation of ±5% around their nominal values.
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Thermal dynamic simulations are run using the Julia programming language [91] and
the DifferentialEquations package [100]. The EMS optimization model is solved in Julia
using the JuMP package [92] and the Gurobi solver [66]. Frequency transient simulations
are run using MATLAB-Simulink [76].

5.3.2 Thermal Model Accuracy

The accuracy of the first-order thermal model (2.8) and the proposed decoupled thermal
model (5.1)-(5.4) is evaluated first. For this, one full day simulation of the thermal dy-
namics of a household is performed, and the inner, wall and floor temperatures resulting
from the different models are compared.

Figure 5.4 illustrates the resulting inner temperature for the simple first-order model
(2.8) and the more-detailed third-order model (2.13), for which a 1s time resolution and
same initial conditions are used. Observe that the first-order model significantly differs
from the highly-accurate third-order model after the 20 minute mark, indicating that the
former is not sufficiently accurate to represent the daily thermal dynamics of a household
in practical settings. This suggests that aggregate TCL control techniques based on a
first-order thermal model would show a degraded performance.

Figure 5.5 illustrates the inner, wall, and floor temperatures for the proposed decoupled
thermal model (5.1)-(5.4) and the highly-detailed third order model (2.13), in which a
DT = 5min timescale is considered for modeling wall/floor dynamics in the decoupled
model. A close resemblance between both models can be observed in this case, indicating
that the proposed decoupled model is adequate for developing more precise aggregate TCL
control techniques, including the proposed virtual battery model presented in Section 5.1.2.

5.3.3 Comparison of Virtual Battery Models

In this section, the virtual battery model presented in Section 5.1.2 is compared against
the current state-of-art model presented in [6] in terms of modeling accuracy. For the
comparison, the implementation of both virtual battery models within an aggregate TCL
controller is simulated, and their corresponding TCL load baseline and capacity limits are
evaluated. TCL load baselines for the proposed and state-of-art virtual battery models
are computed, respectively, from (5.6b) and the following steady-state equation based on
(2.8):

pTCL,SS
0 =

(
θI − θA

)
/ηTCLRA. (5.23)
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Figure 5.4: Comparison of the household’s inner temperature for the first-order and third-
order thermal models.

Capacity limits for the proposed and state-of-art models are calculated based on (5.12) and
the “Maximimize n− (Sufficient)” battery model presented in [6], respectively, with RA =(
1/RC + 1/RW

)−1
and γV = (1/N)

∑
n∈N γTCL

n . Thermal simulations are performed
using the decoupled household thermal model (see Sections 5.1.1 and 5.3.2).

The simulation results for the virtual battery model in [6] are illustrated in Figure
5.6a, for which a 2 MW discharging power is requested from the aggregate TCL controller.
Note that due to an inaccurate TCL load baseline estimation, the controller delivers an
erroneous 2+0.457 MW discharging power. Furthermore, observe that while the virtual
battery operates within its energy capacity limits until Tlim ≈ 12.5min, the controller loses
its tracking capability significantly earlier at Tloss ≈ 9.4min. This indicates an inaccu-
rate virtual battery model, as the controller should lose its tracking capability only after
surpassing the virtual battery’s capacity limit.

The results for the proposed virtual battery model are presented in Figure 5.6b, for
which the same 2 MW discharging signal is requested. Note that in this case, the controller
correctly delivers the 2 MW discharging power, as an accurate baseline estimation is now
used. Furthermore, observe that the controller’s tracking capability is lost at Tloss ≈
13.9min, which is only 1.1min after the virtual battery reaches its energy capacity limit
(Tlim ≈ 12.8min). This is consistent with the conservativeness of the lower bounds (5.12)
used for computing such limits, resulting in a more accurate virtual battery model.
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Figure 5.5: Comparison of the household’s inner (top), wall (middle), and floor (bottom)
temperatures for the third-order and proposed decoupled thermal models.

5.3.4 Integration in Microgrid Operation

The benefits of harvesting TCL flexibility for an enhanced microgrid operation are evalu-
ated in this section. For this purpose, the implementation of two different EMS models is
simulated:

1. The frequency-constrained EMS model presented in Chapter 4, which incorporates
frequency dynamics but neglects TCL flexibility.

2. The novel EMS model presented in Section 5.2.1, which integrates frequency dynam-
ics and the flexibility stemming from a coordinated TCL control.

Simulations are performed for one full day considering the same settings of the Base case in
the computational experiments presented in Section 4.2, which include real measurements
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Figure 5.6: Regulation and stored energy for (a) the virtual battery model in [6], and (b)
the proposed virtual battery model.
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Table 5.1: EMS model comparison

Virtual
Batt.

Comm.
delay [s]

Oper. costs
[kUSD]

Ren. curt.
[kWh]

Load shed.
[kWh]

Total non-
compl. [s]

Comp. time [s]
Mean Max.

No - 17.025 1321 1.15 86 1.4 9.7
Yes 1 16.117 573 1.83 79 1.3 9.4
Yes 0.1 15.986 336 1.06 72 1.3 9.4

from the KLFN microgrid [5], detailed frequency transient models, and frequency and
RoCoF limits in line with modern DER operating standards [86].

For the EMS model integrating TCL control, the transient model presented in Section
5.1.4 is considered, with κV

h = 5% [86], and two different communication delays T V
D = 1 [99]

and T V
D = 0.1 [101], for which the low-pass filter is tuned to ensure a stable system

response, yielding T V
F = 5 and T V

F = 1, respectively. Virtual battery capacity limits (5.13)
are determined using 100 Monte Carlo samples drawn from two independent zero-mean
normal distributions for solar irrandiance and ambient temperature forecast errors, whose
standard deviations are extracted from Table 3.1 and [102], respectively. Note that 100
samples were used since the Monte Carlo simulations converged at that point. A safety
derating factor of µ = 0.95 was considered in EMS constraints (5.14) and (5.16).

The simulation results are presented in Table 5.1, for which the original frequency-
constrained EMS model without TCL flexibility (first row) is compared against the pro-
posed EMS model embedding TCL flexibility with a communication delay of T V

D = 1s
(second row), and T V

D = 0.1s (third row). The table shows total operating costs, including
renewable curtailment and load shedding costs, as well as the total accumulated renew-
able curtailment and load shedding for the simulated day. Moreover, the presented total
non-compliance time measures the amount of time for which either frequency or RoCoF
limits (±1.2Hz and ±0.5Hz respectively) are violated. Furthermore, the mean and maxi-
mum computation times required to solve the optimization problem of an MPC iteration
are also displayed. From the results, it can be observed that the proposed EMS model
integrating TCL flexibility enables daily savings of 908 to 1039 USD (5.3%-6.1%) for a
similar regulation security level (non-compliance ≤ 86s), at sufficiently low computation
times for practical applications (≪ 5min).

The resulting dispatch profiles from the different EMS models are presented in Figure
5.7 for the case with no virtual battery, Figure 5.8 for the case with virtual battery and
T V
D = 1s, and Figure 5.9 for the case with virtual battery and T V

D = 0.1s, depicting
thermal generation (G1-G5), renewable generation (RG), demand (D), battery discharge
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(BD), battery charge (BC), virtual battery discharge (VBD), and virtual battery discharge
(VBD). By comparing the figures, it can be observed that the virtual battery (VBC/VBD)
tends to replace the “conventional” battery (BC/BD), as the former can provide energy
shifting services without incurring into battery degradation costs, while having a sufficiently
large energy capacity (≈ 411 kWh). A similar trend is observed for the reserve provision
service, in which the displacement of battery participation is more notorious due to the
large power capacity of the virtual battery in this case (≈ 3250 kW).

Figure 5.7: Dispatch results for case without TCL flexibility.

5.3.5 Validation of TCL Tracking Capability

In this section, the simulation results of Section 5.3.4 are used to evaluate the tracking
capability of the aggregate TCL controller in practical microgrid operations. For this test,
the TCL regulation signal pV resulting from the frequency transient simulations is used
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Figure 5.8: Dispatch results for case with TCL flexibility (virtual battery) considering a
communication delay of T V

D = 1s.

as an input for the aggregate TCL controller, and the response of each of the 1800 TCLs
composing the TCL aggregation is simulated in detail considering high-order household
thermal dynamics and a deadband ON/OFF control. With these results, the differences
between the estimated TCL regulation considered in the frequency transient simulations,
and actual regulation provided by the TCL population can be calculated.

Figure 5.10 illustrates the resulting mismatches between estimated and actual TCL re-
sponse, considering a communication delay of T V

D = 1s (second row in Table 5.1). Observe
that the TCLs are capable of accurately tracking the requested regulation signal, with a
maximum error of approximately the rated power of one TCL (≈ 6 kW). This demon-
strates the validity of the proposed virtual battery model and frequency transient model
for representing the flexibility and frequency dynamics of an aggregate TCL control.
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Figure 5.9: Dispatch results for case with TCL flexibility (virtual battery) considering a
communication delay of T V

D = 0.1s.

5.4 Summary

The present chapter discussed the integration of TCLs within EMS models for an improved
frequency control and operation of isolated microgrids. For this purpose, two computa-
tionally efficient aggregate TCL models were developed, which describe the flexibility and
frequency dynamics of aggregated TCLs, while taking into account relevant practical chal-
lenges such as high-order household thermal dynamics, communication delays, and the
presence of model uncertainty and time-variability. These aggregate models were then
used to design a practical microgrid EMS incorporating TCLs, and analyze its correspond-
ing impact on microgrid operation and frequency regulation. Computational experiments
on a realistic isolated microgrid using detailed thermal and frequency transient models
demonstrated the high modeling accuracy of the proposed aggregate TCL models, and
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Figure 5.10: Estimated regulation provided by the TCL aggregation and mismatch between
estimated and actually delivered TCL regulation

showed that an EMS embedding TCL flexibility can enable significant daily savings in the
order of 5%-6%, while meeting frequency regulation security levels in line with modern
DER operating standards.
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Chapter 6

Conclusion

6.1 Summary and Conclusions

This thesis focused on the design of a centralized EMS model for isolated microgrids, which,
unlike conventional power systems, are characterized by a low system inertia and significant
renewable integration. To address these challenges, the integration of renewable short-term
power fluctuations within EMS models was studied, including how these fluctuations can
impact the system’s frequency regulation, and how CESS (i.e., BESS) and VESS (i.e., TCL
control) can be used to counter-balance these fluctuations, as highlighted next.

In Chapter 3, computationally efficient models were developed for characterizing re-
newable short-term power fluctuations and BESS, which included the impact of short-term
fluctuations on microgrid operation, and how the battery lifetime was affected due to the
provision of regulation services. These models were then used to develop a first version of
the proposed EMS, which, as demonstrated through simulations on two realistic test mi-
crogrids, outperforms the current industry standard in terms of operating costs and system
reliability, and can be solved within reasonable computation times.

In Chapter 4, a second version of the proposed EMS was developed, for which the
impact of renewable short-term power fluctuations on frequency dynamics was integrated
in the EMS’s decision-making process. This was accomplished through the development
of accurate linear equations describing the frequency deviation and RoCoF resulting from
short-term fluctuations, yielding a more detailed, yet computationally efficient, frequency-
constrained EMS model. The advantages of this EMS model were demonstrated through
detailed transient simulations on a realistic test microgrid, highlighting not only its eco-
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nomic benefits, but also its capability to comply with modern DER operating standards
in terms of frequency regulation performance.

Finally, in Chapter 5, the complete version of the proposed EMS model was presented,
for which the additional flexibility stemming from an aggregate TCL control was integrated
within the microgrid EMS. This was accomplished through the use of VESS models, which
capture the capability and limitations of an aggregate TCL control in a computationally
efficient way, allowing their integration within the optimization routines of EMS models.
Computational experiments using detailed frequency transient and thermal dynamic mod-
els were presented, demonstrating the accuracy of the proposed VESS models and the
operational benefits resulting from using them to integrate TCLs in microgrid operation.

The main conclusions of this thesis can be summarized as follows:

• Second-to-second power fluctuations stemming from wind and solar generation di-
rectly impact the operation and frequency regulation of isolated microgrids, and
thus must be incorporated in modern microgrid EMS. Neglecting these fluctuations
in microgrid EMS can lead to higher operational costs resulting from the inefficient
allocation of system reserves, as well as reduced system reliability.

• Frequency dynamics and regulation, which have been typically neglected in UC and
other operational models, need to be integrated in the design and validation process
of modern EMS for isolated microgrids. Neglecting such dynamics can lead to not
only higher operational costs and lower system reliability, but also in the failure to
meet modern DER operating standards.

• BESS are a key flexibility source for the enhanced operation of isolated microgrids,
and thus should be included in microgrid EMS. However, special attention must be
given in modeling the battery degradation resulting from BESS operation, which, as
demonstrated here, can play a relevant role in reducing system operating costs.

• Aggregate TCL control techniques are a relevant flexibility source for the enhanced
operation of isolated microgrids, making their integration in microgrid EMS relevant.
This can be achieved through the use of computationally efficient VESS models,
which allow integrating the flexibility and limitations of TCLs in the optimization
routines of microgrid EMS. Similar to the case of BESS, special attention must be
given to practical challenges resulting from TCL integration, namely, TCL thermal
dynamics, communication delays, and the presence of VESS model uncertainty and
time-variability.
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• Computational efficiency plays a fundamental role in the design of modern microgrid
EMS models, as sufficiently low computation times are needed for the implementa-
tion of MPC schemes typically found in microgrid EMS. Accordingly, efficient yet
sufficiently accurate mathematical models were developed throughout this thesis.

6.2 Contributions

The main contributions of this thesis are the following:

• Mathematical models characterizing renewable short-term power fluctuation and
their impact on microgrid operation and frequency regulation were developed. Com-
putational efficiency was considered in the design process of these models, allowing
their incorporation in practical microgrid EMS.

• Mathematical models describing the flexibility of BESS and aggregate TCL control
were developed. The proposed models included key practical challenges associated
with both technologies, namely, BESS degradation, TCL thermal dynamics, and the
presence of communication delays in aggregate TCL controls. Furthermore, com-
putational efficiency was considered in the models’ design process, allowing their
incorporation in microgrid EMS.

• A comprehensive microgrid EMS model was developed integrating renewable short-
term fluctuations and the capability of BESS and TCL to counter-balance such fluc-
tuations. The proposed EMS adequately balances modeling detail and computational
efficiency, allowing its practical implementation in MPC schemes.

• Computational experiments using detailed frequency transient and thermal dynamic
models in realistic settings were performed to demonstrate the validity of the models
proposed in this thesis, highlighting the economic and reliability benefits resulting
from their incorporation into EMS for isolated microgrids.

Two IEEE journal papers [93] and [98] have been published based on the content
presented in Chapters 3 and 4. A third journal paper based on the contents presented in
Chapter 5 has been submitted for publication [103].
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6.3 Future Work

Based on the work presented in this thesis, the following topics could be researched in the
future:

• Study second-to-second reactive power fluctuations and their impact on the voltage
dynamics of isolated microgrids. Furthermore, evaluate if these play a significant
role in microgrid operations, and if so, investigate how these could be integrated in
microgrid EMS models.

• Study the use of VESS models for characterizing decentralized TCL control tech-
niques, and investigate how these could be integrated in microgrid EMS models
while preserving computational tractability for practical applications.

• Study how the modeling of renewable short-term power fluctuations would affect
existing microgrid planning models, and how these fluctuations could be incorporated
in their decision-making process.
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[30] D. E. Olivares, J. D. Lara, C. A. Cañizares, and M. Kazerani, “Stochastic-predictive
energy management system for isolated microgrids,” IEEE Transactions on Smart
Grid, vol. 6, no. 6, pp. 2681–2693, Nov. 2015.

[31] J. D. Lara, D. E. Olivares, and C. A. Cañizares, “Robust energy management of
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[98] S. Córdova, C. A. Cañizares, A. Lorca, and D. E. Olivares, “Frequency-constrained
energy management system for isolated microgrids,” IEEE Transactions on Smart
Grid, pp. 1–1, 2022.

[99] V. Lakshmanan, M. Marinelli, J. Hu, and H. W. Bindner, “Provision of secondary fre-
quency control via demand response activation on thermostatically controlled loads:
Solutions and experiences from Denmark,” Applied Energy, vol. 173, pp. 470–480,
2016.

[100] C. Rackauckas and Q. Nie, “Differentialequations.jl–a performant and feature-rich
ecosystem for solving differential equations in julia,” Journal of Open Research Soft-
ware, vol. 5, no. 1, 2017.

106
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Appendix A

Test System Parameters

Additional test system parameters for the computational experiments discussed in Section
3.4 are presented here. For both the KLFN and CIGRE test systems, Li(NiMnCo)O2-based
batteries are considered, which have the following cycle depth stress function:

Γλ(λ) =
(
5.23× 10−3

)
λ2.03

with battery replacement cost of CBR = 300 USD/kWh [42]. Furthermore, the considered
batteries have an initial SoC of 50%, and corresponding limits of 10% and 90%. For the
KLFN test system, a charging and discharging efficiency of ηB,C = ηB,D = 95% is used [42];
on the other hand, for the CIGRE test system, an efficiency of ηB,C = ηB,D = 86% is
used [27].

Generator parameters for the KLFN and CIGRE test systems are presented in Tables
A.1 and A.2, respectively. These parameters are based on [27], with the only difference
that the fuel costs have been linearized to speed-up simulations; note that this linearized
version is highly accurate, having a coefficient of determination greater than 95%. A load
shedding cost of CLS = 12 USD/kWh, as per [96], and droop κ = 3% for all units, as
per [86], are used in all simulations.
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Table A.1: Generator parameters for KLFN test system

Unit
P

G

g

[kW]

PG
g

[kW]

CG
g

[USD/
kW-min]

CNL
g

[USD/
min]

CSU
g

[USD]
CSD

g

[USD]

RPG
g

[kW/
min]

MNUP
g

[min]
MNDN

g

[min]

1 1500 600 0.021017 -0.3184 83.60 13.464 150 30 30
2 1000 400 0.008333 1.4678 36.90 7.304 100 30 30
3 600 180 0.003088 0.5891 13.20 4.664 60 30 30

Table A.2: Generator parameters for CIGRE benchmark test system

Unit
P

G

g

[kW]

PG
g

[kW]

CG
g

[USD/
kW-min]

CNL
g

[USD/
min]

CSU
g

[USD]
CSD

g

[USD]

RPG
g

[kW/
min]

MNUP
g

[min]
MNDN

g

[min]

1 2500 1000 0.003797 0.2493 83.60 13.464 250 60 60
2 1400 600 0.003767 0.3740 39.60 7.304 140 60 60
3 800 350 0.004217 0.1100 13.20 4.664 100 30 30
4 310 60 0.004217 0.0000 6.47 1.267 60 30 30
5 500 100 0.001067 -0.1076 0.83 0.000 100 30 30
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Appendix B

Virtual Battery Capacity Limits

The steps used to determine the energy and power capacity limits of the virtual battery
model are presented here, which are based on the derivation originally made in [6] for simple
first-order household thermal models. For the derivation, (5.7) and (5.8a) are mapped to
the Laplace domain, as follows:

sΘn(s) = − γTCL
n Θn(s) + ∆pTCL

n (s) (B.1a)

s eV (s) = − γV eV (s)− dV (s) (B.1b)

where Θn(0) = eV (0) = 0 assuming θI(0) = θI,SP

B.1 Upper Bounds

Define the virtual battery power discharge as the sum of the TCLs baseline deviation, as
follows:

dV = −
∑
n∈N

∆pTCL
n (B.2)

Combining (B.2) and (B.1), the following expression for the virtual battery’s stored energy
can be obtained:

eV (s) =
∑
n∈N

(
1 +

γTCL
n − γV

s+ γV

)
Θn(s) (B.3)

for which the property Π(s) = X(s)Y (s) ⇒ ∥π(t)∥∞ ≤ ∥x(t)∥1 ∥y(t)∥∞ can be exploited,
where π(t), x(t), and y(t) are the inverse Laplace transforms of Π(s), X(s) and Y (s), re-
spectively. Consequently, the following inequality for the virtual battery’s energy capacity
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limit can be obtained:

∥eV (t)∥∞ ≤
∑
n∈N

(
1 +

|γTCL
n − γV |

γV

)
CI∆θTCL

n

ηTCL
n

(B.4)

since ∥Θn(t)∥∞ = CI∆θTCL
n /ηTCL

n , as residential TCLs typically have a deadband control
with a maximum temperature range of ∆θTCL

n .

The virtual battery’s power capacity limits can then be obtained from combining (5.5)
and (B.2), resulting in:∑

n∈N

(
pTCL,SS
n − P

TCL

n

)
≤ dV ≤

∑
n∈N

pTCL,SS
n (B.5)

B.2 Lower Bounds

The baseline deviation for each TCL can be defined as a share of the total virtual battery
discharge as follows:

∆pTCL
n = −βn d

V (B.6)

where βn ≥ 0 and
∑

n∈N βn = 1. Combining (B.1) and (B.6) yields:

Θn(s) =
∑
n∈N

βn

(
1 +

γV − γTCL
n

s+ γTCL
n

)
eV (s) (B.7)

for which the property Π(s) = X(s)Y (s) ⇒ ∥π(t)∥∞ ≤ ∥x(t)∥1 ∥y(t)∥∞ can again be
exploited, resulting in:

∥Θn(t)∥∞ ≤ βn

(
1 +

|γV − γTCL
n |

γTCL
n

)
EV (B.8)

where the virtual battery’s energy capacity limit EV = ∥eV (t)∥∞ can be chosen such that:

βn EV ≤ CI∆θTCL
n

ηTCL
n

(
1 +

|γV − γTCL
n |

γTCL
n

)−1

(B.9)

in order to guarantee that that TCLs remain within their temperature deadband, i.e.,
∥Θn(t)∥∞ ≤ CI∆θTCL

n /ηTCL
n .
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The virtual battery’s power capacity limits can then be obtained by combining (5.5)
and (B.6), resulting in:

βn P
V,C ≤ P

TCL

n − pTCL,SS
n (B.10a)

βn P
V,D ≤ pTCL,SS

n (B.10b)

which ensures electric power consumption of each TCL will remain within its limits, i.e.,

0 ≤ pTCL
n ≤ P

TCL

n .
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