
The C

A

Scheduler

by

Thierry Delisle

A thesis

presented to the University of Waterloo

in fulfillment of the

thesis requirement for the degree of

Doctor of Philosophy

in

Computer Science

Waterloo, Ontario, Canada, 2022

© Thierry Delisle 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the Examining

Committee is by majority vote.

External Examiner: Doug Lea

Professor, Computer Science Department

State University of New York at Oswego

Supervisor(s): Peter Buhr

Associate Professor, School of Computer Science

University of Waterloo

Internal Member: Trevor Brown

Assistant Professor, School of Computer Science

University of Waterloo

Internal Member: Martin Karsten

Professor, School of Computer Science

University of Waterloo

Internal-External Member: Patrick Lam

Associate Professor, Department of Electrical and Computer Engineering

University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis, including

any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

User-Level threading (M:N) is gaining popularity over kernel-level threading (1:1) in many

programming languages. The user threading approach is often a better mechanism to express

complex concurrent applications by efficiently running 10,000+ threads on multicore systems.

Indeed, over-partitioning into small work-units with user threading significantly eases load bal-

ancing, while simultaneously providing advanced synchronization and mutual exclusion capa-

bilities. To manage these high levels of concurrency, the underlying runtime must efficiently

schedule many user threads across a few kernel threads; which raises the question of how many

kernel threads are needed and should the number be dynamically reevaluated. Furthermore,

scheduling must prevent kernel threads from blocking, otherwise user-thread parallelism drops.

When user-threading parallelism does drop, how and when should idle kernel-level threads be

put to sleep to avoid wasting CPU resources? Finally, the scheduling system must provide fair-

ness to prevent a user thread from monopolizing a kernel thread; otherwise, other user threads

can experience short/long term starvation or kernel threads can deadlock waiting for events to

occur on busy kernel threads.

This thesis analyses multiple scheduler systems, where each system attempts to fulfill the

requirements for user-level threading. The predominant technique for managing high levels

of concurrency is sharding the ready queue with one queue per kernel-level thread and using

some form of work stealing/sharing to dynamically rebalance workload shifts. Preventing kernel

blocking is accomplished by transforming kernel locks and I/O operations into user-level opera-

tions that do not block the kernel thread or spin up new kernel threads to manage the blocking.

Fairness is handled through preemption and/or ad-hoc solutions, which leads to coarse-grained

fairness with some pathological cases.

After examining, selecting and testing specific approaches to these scheduling issues, a

complete implementation was created and tested in the C

A

(C-for-all) runtime system. C

A

is

a modern extension of C using user-level threading as its fundamental threading model. As one

of its primary goals, C

A

aims to offer increased safety and productivity without sacrificing perfor-

mance. The new scheduler achieves this goal by demonstrating equivalent performance to work-

stealing schedulers while offering better fairness. The implementation uses several optimizations

that successfully balance the cost of fairness against performance; some of these optimizations

rely on interesting hardware optimizations present on modern CPUs. The new scheduler also

includes support for implicit nonblocking I/O, allowing applications to have more user-threads

blocking on I/O operations than there are kernel-level threads. The implementation is based on

io_uring, a recent addition to the Linux kernel, and achieves the same performance and fair-

ness as systems using select, epoll, etc. To complete the scheduler, an idle sleep mechanism

is implemented that significantly reduces wasted CPU cycles, which are then available outside

the application.

iv

Acknowledgements

I would like to thank my supervisor, Professor Peter Buhr, for his guidance through my degree

as well as the editing of this document.

I would like to thank Professors Martin Karsten and Trevor Brown, for reading my thesis and

providing helpful feedback.

Thanks to Andrew Beach, Michael Brooks, Colby Parsons, Mubeen Zulfiqar, Fangren Yu

and Jiada Liang for their work on the C

A

project as well as all the discussions which have helped

me concretize the ideas in this thesis.

Finally, I acknowledge that this has been possible thanks to the financial help offered by the

David R. Cheriton School of Computer Science, the corporate partnership with Huawei Ltd. and

the Natural Sciences and Engineering Research Council.

v

Table of Contents

List of Figures x

List of Tables xii

List of Abbreviations xiii

I Introduction 1

1 Introduction 2

1.1 Scheduling . 3

1.2 C

A

programming language . 5

1.3 Contributions . 6

2 Previous Work 7

2.1 Naming Convention . 7

2.2 Static Scheduling . 8

2.3 Dynamic Scheduling . 8

2.3.1 Explicitly Informed Dynamic Schedulers 8

2.3.2 Uninformed and Self-Informed Dynamic Schedulers 9

2.4 Work Stealing . 9

2.4.1 Theoretical Results . 10

2.5 Preemption . 10

2.6 Production Schedulers . 11

2.6.1 Operating System Schedulers . 11

2.6.2 User-Level Schedulers . 12

vi

3 C

A

Runtime 15

3.1 C Threading . 15

3.2 M:N Threading . 15

3.3 Clusters . 16

3.4 Scheduling . 16

3.5 I/O . 16

3.6 Interoperating with C . 17

II Design 19

4 Scheduling Core 20

4.1 Design Goals . 20

4.1.1 Fairness Goals . 21

4.1.2 Fairness vs Scheduler Locality . 22

4.1.3 Performance Challenges . 22

4.2 Inspirations . 24

4.2.1 Work-Stealing . 24

4.2.2 Relaxed-FIFO . 24

4.3 Relaxed-FIFO++ . 25

4.3.1 Dynamic Entropy . 26

4.4 Work Stealing++ . 26

4.4.1 Redundant Timestamps . 29

4.4.2 Per CPU Sharding . 30

4.4.3 Topological Work Stealing . 32

5 User Level I/O 33

5.1 Kernel Interface . 33

5.1.1 O_NONBLOCK . 33

5.1.2 POSIX asynchronous I/O (AIO) . 35

5.1.3 io_uring . 35

5.1.4 Extra Kernel Threads . 36

5.1.5 Discussion . 36

5.2 Event-Engine . 37

vii

5.2.1 io_uring in depth . 37

5.2.2 Multiplexing I/O: Submission . 39

5.3 Interface . 44

5.3.1 Replacement . 45

5.3.2 Synchronous Extension . 45

5.3.3 Asynchronous Extension . 45

5.3.4 Direct io_uring Interface . 46

6 Scheduling in practice 47

6.1 Manual Resizing . 47

6.1.1 Read-Copy-Update . 48

6.1.2 Readers-Writer Lock . 48

6.2 Idle-Sleep . 49

6.3 Sleeping . 50

6.3.1 pthread_mutex/pthread_cond . 50

6.3.2 io_uring and Epoll . 50

6.3.3 Event FDs . 51

6.4 Tracking Sleepers . 51

6.4.1 Sleepers List . 52

6.4.2 Reducing Latency . 52

III Evaluation 55

7 Micro-Benchmarks 56

7.1 Benchmark Environment . 56

7.2 Experimental setup . 57

7.3 Cycle . 57

7.3.1 Results . 58

7.4 Yield . 61

7.4.1 Results . 61

7.5 Churn . 63

7.5.1 Results . 65

7.6 Locality . 68

viii

7.6.1 Results . 69

7.7 Transfer . 72

7.7.1 Results . 73

8 Macro-Benchmarks 76

8.1 Memcached . 76

8.1.1 Benchmark Environment . 77

8.1.2 Memcached threading . 77

8.1.3 Throughput . 78

8.1.4 Tail Latency . 78

8.1.5 Update rate . 80

8.2 Static Web-Server . 80

8.2.1 NGINX threading . 82

8.2.2 C

A

web server . 82

8.2.3 Benchmark Environment . 83

8.2.4 Throughput . 84

8.2.5 Disk Operations . 85

IV Conclusion & Annexes 88

9 Conclusion 89

9.1 Goals . 90

9.2 Future Work . 91

9.2.1 Idle Sleep . 91

9.2.2 CPU Workloads . 92

9.2.3 Hardware . 92

References 93

Glossary 100

ix

List of Figures

3.1 Overview of the C

A

runtime . 16

4.1 Fairness vs Locality graph . 23

4.2 Base C

A

design . 27

4.3 C

A

design with Moving Average . 28

4.4 C

A

design with Redundant Timestamps . 30

4.5 CPU design with wide L3 sharing . 31

4.6 CPU design with a narrower L3 sharing . 31

5.1 Overview of io_uring . 37

5.2 Partitioned ring buffer . 41

6.1 Specialized Readers-Writer Lock . 49

6.2 Basic Idle Sleep Data Structure . 52

6.3 Improved Idle-Sleep Data Structure . 53

6.4 Improved Idle-Sleep Latency . 54

6.5 Low-latency Idle Sleep Data Structure . 54

7.1 Cycle benchmark . 58

7.2 Cycle Benchmark: Pseudo Code . 59

7.3 Cycle Benchmark on Intel . 59

7.4 Cycle Benchmark on AMD . 60

7.5 Yield Benchmark: Pseudo Code . 62

7.6 Yield Benchmark on Intel . 62

7.7 Yield Benchmark on AMD . 64

7.8 Churn Benchmark: Pseudo Code . 66

7.9 Churn Benchmark on Intel . 66

x

7.10 Churn Benchmark on AMD . 67

7.11 Locality Benchmark: Pseudo Code . 69

7.12 Locality Benchmark on Intel . 70

7.13 Locality Benchmark on AMD . 71

7.14 Transfer Benchmark: Pseudo Code . 72

8.1 Memcached Benchmark: Throughput . 79

8.2 Memcached Benchmark: 99th Percentile Latency 79

8.3 Throughput and Latency results at different update rates (percentage of writes). . 81

8.4 Static web server Benchmark: Throughput . 86

xi

List of Tables

7.1 Transfer Benchmark on Intel and AMD . 74

8.1 Cumulative memory for requests by file size . 85

xii

List of Abbreviations

API Application Programming Interface 5, 36, 39

FIFO First-In, First-Out 13, 16, 24, 101

I/O Input and Output iv, vii, viii, 5, 6, 8, 16, 17, 33–45, 47, 50, 51, 76, 80, 82, 90, 91

NUMA Non-Uniform Memory Access 10, 101

PRNG Pseudo Random Number Generator 26

xiii

Part I

Introduction

1

Chapter 1

Introduction

User-level threading (M:N) is gaining popularity over kernel-level threading (1:1) in many

programming languages, like Go [53], Java’s Project Loom [1] and Kotlin [2]. The user threading

approach is often a better mechanism to express complex concurrent applications by efficiently

running 10,000+ threads on multicore systems. Indeed, over-partitioning into small work units

with user threading significantly eases load balancing, while simultaneously providing advanced

synchronization and mutual exclusion capabilities. To manage these high levels of concurrency,

the underlying runtime must efficiently schedule many user threads across a few kernel threads;

which raises the question of how many kernel threads are needed and should the number be

dynamically reevaluated. Furthermore, scheduling must prevent kernel threads from blocking,

otherwise user-thread parallelism drops. When user-threading parallelism does drop, how and

when should idle kernel-threads be put to sleep to avoid wasting CPU resources? Finally, the

scheduling system must provide fairness to prevent a user thread from monopolizing a kernel

thread; otherwise, other user threads can experience short/long term starvation or kernel threads

can deadlock waiting for events to occur on busy kernel threads.

This thesis analyzes multiple scheduler systems, where each system attempts to fulfill the

requirements for user-level threading. The predominant technique for managing high levels of

concurrency is sharding the ready queue with one queue per kernel thread and using some form

of work stealing/sharing to dynamically rebalance workload shifts. Preventing kernel blocking

is accomplished by transforming kernel locks and I/O operations into user-level operations that

do not block the kernel thread or spin up new kernel threads to manage the blocking. Fairness is

handled through preemption and/or ad hoc solutions, which leads to coarse-grained fairness with

some pathological cases.

After examining, testing and selecting specific approaches to these scheduling issues, a new

scheduler was created and tested in the C

A

(C-for-all) user-threading runtime system. The goal of

the new scheduler is to offer increased safety and productivity without sacrificing performance.

The quality of the new scheduler is demonstrated by comparing it with other user-threading

work-stealing schedulers with the aim of showing equivalent or better performance while offering

better fairness.

Chapter 1 defines scheduling and its general goals. Chapter 2 discusses how scheduler

implementations attempt to achieve these goals, but all implementations optimize some work-

loads better than others. Chapter 3 presents the relevant aspects of the C

A

runtime system that

have a significant effect on the new scheduler design and implementation. Chapter 4 analyses

2

different scheduler approaches while looking for scheduler mechanisms that provide both perfor-

mance and fairness. Chapter 5 covers the complex mechanisms that must be used to achieve

nonblocking I/O to prevent the blocking of kernel-level threads. Chapter 6 presents the mecha-

nisms needed to adjust the amount of parallelism, both manually and automatically. Chapters 7

and 8 present micro and macro benchmarks used to evaluate and compare the new scheduler with

similar schedulers.

1.1 Scheduling

Computer systems share multiple resources across many threads of execution, even on single-

user computers like laptops or smartphones. On a computer system with multiple processors and

work units (routines, coroutines, threads, programs, etc.), there exists the problem of mapping

many different kinds of work units onto many different kinds of processors efficiently, called

scheduling. Scheduling systems are normally open, meaning new work arrives from an external

source or is randomly spawned from an existing work unit1.

In general, work units without threads, like routines and coroutines, are self-scheduling,

while work units with threads, like tasks and programs, are scheduled. For scheduled work-

units, a scheduler takes a sequence of threads and attempts to run them to completion, subject to

shared resource restrictions and utilization. In an open system, a general-purpose dynamic sched-

uler cannot anticipate work requests, so its performance is rarely optimal. Even with complete

knowledge of arrival order and work, creating an optimal solution is a bin packing problem [103].

However, optimal solutions are often not required: schedulers often produce excellent solutions,

without needing optimality, by taking advantage of regularities in work patterns.

Scheduling occurs at discrete points when there are transitions in a system. For example, a

thread cycles through the following transitions during its execution.

ready running

blocked
(waiting)

new halted

(scheduler) (multi-core)

These state transitions are initiated in response to events, e.g., blocking, interrupts, errors:

• entering the system (new → ready)

• scheduler assigns a thread to a computing resource, e.g., CPU (ready → running)

• timer alarm for preemption (running → ready)

• long-term delay versus spinning (running → blocked)

• completion of delay, e.g., network or I/O completion (blocked → ready)

• normal completion or error, e.g., segment fault (running → halted)

1Open systems constrasts to closed systems, where work never arrives from external sources. This definition is

a extension of open/closed systems in the field of thermodynamics.

3

Key to scheduling is that a thread cannot bypass the “ready” state during a transition so the

scheduler maintains complete control of the system, i.e., no self-scheduling among threads.

When the workload exceeds the capacity of the processors, i.e., work cannot be executed

immediately, it is placed on a queue for subsequent service, called a ready queue. Ready queues

organize threads for scheduling, which indirectly organizes the work to be performed. The struc-

ture of ready queues can take many different forms, where the basic two are the single-queue

multi-server (SQMS) and the multi-queue multi-server (MQMS).

SQMS MQMS

global shared ready-queue

processors processors private ready-queue

global shared ready-queue

Beyond these two schedulers are a host of options, e.g., adding a global shared queue to MQMS

or adding multiple private queues with distinct characteristics.

Once there are multiple resources and ready queues, a scheduler is faced with three major

optimization criteria:

1. load balancing: available work is distributed so no processor is idle when work is available.

Eventual progress for each work unit is often an important consideration, i.e., no starvation.

2. affinity: processors access state through a complex memory hierarchy, so it is advantageous

to keep a work unit’s state on a single or closely bound set of processors.

Essentially, all multiprocessor computers have non-uniform memory access (NUMA), with

one or more quantized steps to access data at different levels in the memory hierarchy. When

a system has a large number of independently executing threads, affinity becomes difficult

because of thread churn. That is, threads must be scheduled on different processors to obtain

high processor utilization because the number of threads ≫ processors.

3. contention: safe access of shared objects by multiple processors requires mutual exclusion in

some form, generally locking.2 Mutual exclusion cost and latency increase significantly with

the number of processors accessing a shared object.

At a high-level, scheduling is considered zero-sum game as computer processors normally

have a fixed, maximum number of cycles per unit time.3 This almost invariably leads to sched-

ulers needing to pick some threads over others, opening the door to fairness problems. However,

2Lock-free data-structures do not involve locking but incur similar costs to achieve mutual exclusion.
3Frequency scaling and turbo-boost add a degree of complexity that can be ignored in this discussion without

loss of generality.

4

at a lower-level, schedulers can make inefficient or incorrect decisions leading to strictly worse

outcomes than what the theoretical zero-sum game suggests. Since it can be difficult to avoid

these poor decisions, schedulers are generally a series of compromises, occasionally with some

static or dynamic tuning parameters to enhance specific workload patterns. For example, SQMS

has perfect load-balancing but poor affinity and high contention by the processors, because of

the single queue. While MQMS has poor load-balancing but perfect affinity and no contention,

because each processor has its own queue.

Significant research effort has looked at load balancing by stealing/sharing work units among

queues: when a ready queue is too short or long, respectively, load stealing/sharing schedulers

attempt to push/pull work units to/from other ready queues. These approaches attempt to perform

better load-balancing at the cost of affinity and contention. However, all approaches come at a

cost, but not all compromises are necessarily equivalent, especially across workloads. Hence,

some schedulers perform very well for specific workloads, while others offer acceptable perfor-

mance over a wider range of workloads.

1.2 C

A

programming language

The C

A

programming language [26, 61] extends the C programming language by adding

modern safety and productivity features, while maintaining backwards compatibility. Among its

productivity features, C

A

supports user-level threading [32] as its fundamental threading model

allowing programmers to easily write modern concurrent and parallel programs. My previous

master’s thesis on concurrency in C
A

focused on features and interfaces [31]. This Ph.D. thesis

focuses on performance, introducing API changes only when required by performance consid-

erations. Specifically, this work concentrates on advanced thread and I/O scheduling. Prior to

this work, the C

A

runtime used a strict SQMS ready-queue and provided no nonblocking I/O

capabilities at the user-thread level.4

Since C

A

attempts to improve the safety and productivity of C, the new scheduler presented

in this thesis attempts to achieve the same goals. More specifically, safety and productivity

for scheduling mean supporting a wide range of workloads, so that programmers can rely on

progress guarantees (safety) and more easily achieve acceptable performance (productivity). The

new scheduler also includes support for implicit nonblocking I/O, allowing applications to have

more user-threads blocking on I/O operations than there are kernel-level threads. To complete

the scheduler, an idle sleep mechanism is implemented that significantly reduces wasted CPU

cycles, which are then available outside the application.

As a research project, this work runs exclusively on newer versions of the Linux operating

system and gcc/clang compilers. The new scheduler implementation uses several optimizations

to successfully balance the cost of fairness against performance; some of these optimizations rely

on interesting hardware optimizations only present on modern CPUs. The I/O implementation is

based on the io_uring kernel interface, a recent addition to the Linux kernel, because it purports

to handle nonblocking file and network I/O. This decision allowed an interesting performance and

fairness comparison with other threading systems using select, epoll, etc. While the current

4C/C++ only support I/O capabilities at the kernel level, which means many I/O operations block kernel-level

threads, reducing parallelism at the user level.

5

C

A

release supports older versions of Linux (≥ Ubuntu 16.04) and gcc/clang compilers (≥ gcc

6.0), it is not the purpose of this project to find workarounds in these older systems to provide

backwards compatibility. The hope is that these new features will soon become mainstream

features.

1.3 Contributions

This work provides the following scheduling contributions for advanced user-level threading

runtime systems:

1. A scalable scheduling algorithm that offers progress guarantees.

2. Support for user-level I/O capabilities based on Linux’s io_uring.

3. An algorithm for load-balancing and idle sleep of processors, including NUMA awareness.

4. A mechanism for adding fairness on top of the MQMS algorithm through helping, used both

for scalable scheduling algorithm and the user-level I/O.

5. An optimization of the helping mechanism for load balancing to reduce scheduling costs.

6. An optimization for the alternative relaxed-list for load balancing to reduce scheduling costs

in embarrassingly parallel cases.

6

Chapter 2

Previous Work

As stated, scheduling is the process of assigning resources to incoming requests, where the

common example is assigning available workers to work requests or vice versa. Common

scheduling examples in Computer Science are: operating systems and hypervisors schedule

available CPUs, NICs schedule available bandwidth, virtual memory and memory allocator

schedule available storage, etc. Scheduling is also common in most other fields; e.g., in assembly

lines, assigning parts to line workers is a form of scheduling.

In general, selecting a scheduling algorithm depends on how much information is available to

the scheduler. Workloads that are well known, consistent, and homogeneous can benefit from a

scheduler that is optimized to use this information, while ill-defined, inconsistent, heterogeneous

workloads require general non-optimal algorithms. A secondary aspect is how much information

can be gathered versus how much information must be given as part of the scheduler input.

This information adds to the spectrum of scheduling algorithms, going from static schedulers

that are well informed from the start, to schedulers that gather most of the information needed,

to schedulers that can only rely on very limited information. This description includes both

information about each request, e.g., time to complete or resources needed, and information

about the relationships among requests, e.g., whether some requests must be completed before

another request starts.

Scheduling physical resources, e.g., in an assembly line, is generally amenable to using well-

informed scheduling since information can be gathered much faster than the physical resources

can be assigned, and workloads are likely to stay stable for long periods. When a faster pace is

needed and changes are much more frequent, then gathering information on workloads, up-front

or live, can become much more limiting and more general schedulers are needed.

2.1 Naming Convention

Scheduling has been studied by various communities, concentrating on different incarnations

of the same problems. As a result, there are no standard naming conventions for scheduling

that are respected across these communities. This document uses the term Thread to refer to the

abstract objects being scheduled and the term Processor to refer to the concrete objects executing

these threads.

7

2.2 Static Scheduling

Static schedulers require thread dependencies and costs to be explicitly and exhaustively

specified prior to scheduling. The scheduler then processes this input ahead of time and produces

a schedule the system follows during execution. This approach is popular in real-time systems

since the need for strong guarantees justifies the cost of determining and supplying this informa-

tion. In general, static schedulers are less relevant to this project because they require input from

the programmers that the C

A

programming language does not have as part of its concurrency

semantics. Specifying this information explicitly adds a significant burden to the programmer

and reduces flexibility. For this reason, the C

A

scheduler does not require this information.

2.3 Dynamic Scheduling

Dynamic schedulers detect thread dependencies and costs during scheduling, if at all. This

detection takes the form of observing new threads in the system and determining dependencies

from their behaviour, where a thread suspends or halts dynamically when it detects unfulfilled

dependencies. Furthermore, each thread has the responsibility of adding dependent threads back

into the system once dependencies are fulfilled. As a consequence, the scheduler often has an

incomplete view of the system, seeing only threads with no pending dependencies.

2.3.1 Explicitly Informed Dynamic Schedulers

While dynamic schedulers may not have an exhaustive list of dependencies for a thread, some

information may be available about each thread, e.g., expected duration, required resources,

relative importance, etc. When available, a scheduler can then use this information to direct

scheduling decisions. For example, when scheduling in a cloud computing context, threads will

commonly have extra information that was manually entered, e.g., caps on compute time or

I/O usage. However, in the context of user-level threading, most programmers do not deter-

mine or even predict this information; at best, the scheduler has only some imprecise infor-

mation provided by the programmer, e.g., indicating a thread takes approximately 3–7 seconds

to complete, rather than exactly 5 seconds. Providing this kind of information is a significant

programmer burden, especially if the information does not scale with the number of threads

and their complexity. For example, providing an exhaustive list of files read by 5 threads is an

easier requirement than providing an exhaustive list of memory addresses accessed by 10,000

independent threads.

Since the goal of this thesis is to provide a scheduler as a replacement for C

A

’s existing unin-

formed scheduler, explicitly informed schedulers are less relevant to this project. Nevertheless,

some strategies are worth mentioning.

Priority Scheduling

A common approach to direct the scheduling algorithm is to add information about thread

priority. Each thread is given a priority, and higher-priority threads are preferred to lower-priority

8

ones. The simplest priority scheduling algorithm is to require that every thread have a distinct

pre-established priority and always run the available threads with the highest priority. Asking

programmers to provide an exhaustive set of unique priorities can be prohibitive when the system

has a large number of threads. It can therefore be desirable for schedulers to support threads

with identical priorities and/or automatically set and adjust priorities for threads. Most common

operating systems use some variant on priorities with overlaps and dynamic priority adjustments.

For example, Microsoft Windows uses a pair of priorities [84], one specified by users out of ten

possible options and one adjusted by the system.

2.3.2 Uninformed and Self-Informed Dynamic Schedulers

Several scheduling algorithms do not require programmers to provide additional information

on each thread, and instead, make scheduling decisions based solely on internal state and/or

information implicitly gathered by the scheduler.

Feedback Scheduling

As mentioned, schedulers may also gather information about each thread to direct their deci-

sions. This design effectively moves the scheduler into the realm of Control Theory [100]. This

information gathering does not generally involve programmers, and as such, does not increase

programmer burden the same way explicitly provided information may. However, some feed-

back schedulers do allow programmers to offer additional information on certain threads, to

direct scheduling decisions. The important distinction is whether the scheduler can function

without this additional information.

2.4 Work Stealing

One of the most popular scheduling algorithms in practice (see 2.6) is work stealing. This

idea, introduced by [25], effectively has each worker process its local threads first but allows the

possibility for other workers to steal local threads if they run out of threads. [23] introduced the

more familiar incarnation of this, where each worker has a queue of threads and workers without

threads steal threads from random workers1. Blumofe and Leiserson also prove worst-case space

and time requirements for well-structured computations.

Many variations of this algorithm have been proposed over the years [111], both optimiza-

tions of existing implementations and approaches that account for new metrics.

Granularity A significant portion of early work-stealing research concentrated on Implicit

Parallelism [98]. Since the system is responsible for splitting the work, granularity is a challenge

that cannot be left to programmers, as opposed to Explicit Parallelism[95] where the burden

can be left to programmers. In general, fine granularity is better for load balancing and coarse

granularity reduces communication overhead. The best performance generally means finding a

middle ground between the two. Several methods can be employed, but I believe these are less

relevant for threads, which are generally explicit and more coarse-grained.

1The Burton and Sleep algorithm has trees of threads and steals only among neighbours.

9

Task Placement Another aspect of work stealing that has been studied extensively is the

mapping between thread and processor. In its simplest form, work stealing assumes that all

processors are interchangeable and therefore the mapping between thread and processor is not

interesting. However, in real-life architectures, there are contexts where different processors

can have different characteristics, which makes some mappings more interesting than others. A

common example where this is statically true is architectures with NUMA. In these cases, it can

be relevant to change the scheduler to be cognizant of the topology [91, 58]. Another example is

energy usage, where the scheduler is modified to optimize for energy efficiency in addition/in-

stead of performance [73, 89].

Complex Machine Architecture Another aspect that has been examined is how applicable

work stealing is to different machine architectures. This is arguably strongly related to Task

Placement but extends into more heterogeneous architectures. As C

A

offers no particular support

for heterogeneous architectures, this is also an area that is not examined in this thesis. However,

support for concurrency across heterogeneous architectures is interesting avenue for future work,

at which point the literature on this topic and how it relates to scheduling will become relevant.

2.4.1 Theoretical Results

There is also a large body of research on the theoretical aspects of work stealing. These

evaluate, for example, the cost of migration [81, 33], how affinity affects performance [80, 8, 82]

and theoretical models for heterogeneous systems [59, 20, 36]. Blelloch et al. [22] examines

the space bounds of work stealing and [21] shows that for under-loaded systems, the scheduler

completes its computations in finite time, i.e., is stable. Others show that work stealing applies to

various scheduling contexts [16, 85, 86, 11, 10]. [28] also studied how randomized work-stealing

affects false sharing among threads.

However, as [111] highlights, it is worth mentioning that this theoretical research has mainly

focused on “fully strict” computations, i.e., workloads that can be fully represented with a

direct acyclic graph. It is unclear how well these distributions represent workloads in real-world

scenarios.

2.5 Preemption

One last aspect of scheduling is preemption since many schedulers rely on it for some of

their guarantees. Preemption is the idea of interrupting threads that have been running too long,

effectively injecting suspend points into the application. There are multiple techniques to achieve

this effect, but they all aim to guarantee that the suspend points in a thread are never further apart

than some fixed duration. This helps schedulers guarantee that no threads unfairly monopolize

a worker. Preemption can effectively be added to any scheduler. Therefore, the only interesting

aspect of preemption for the design of scheduling is whether to require it.

10

2.6 Production Schedulers

This section presents a quick overview of several current schedulers. While these schedulers

do not necessarily represent the most recent advances in scheduling, they are what is generally

accessible to programmers. As such, I believe these schedulers are as relevant as those presented

in published work. Both schedulers that operate in kernel space and user space are considered, as

both can offer relevant insight for this project. However, real-time schedulers aim to guarantee

bounded compute time in order to meet deadlines. These deadlines lead to constraints much

stricter than the starvation freedom that is needed for this project. As such real-time schedulers

are not considered for this work.

2.6.1 Operating System Schedulers

Operating System Schedulers tend to be fairly complex, as they generally support some

amount of real time, aim to balance interactive and non-interactive threads and support multiple

users sharing hardware without requiring these users to cooperate. Here are more details on a

few schedulers used in the common operating systems: Linux, FreeBSD, Microsoft Windows

and Apple’s OS X. The information is less complete for closed source operating systems.

Linux’s CFS The default scheduler used by Linux, the Completely Fair Scheduler [4, 47], is

a feedback scheduler based on CPU time. For each processor, it constructs a Red-Black tree

of threads waiting to run, ordering them by the amount of CPU time used. The thread that has

used the least CPU time is scheduled. It also supports the concept of Nice values, which are

effectively multiplicative factors on the CPU time used. The ordering of threads is also affected

by a group-based notion of fairness, where threads belonging to groups having used less CPU

time are preferred to threads belonging to groups having used more CPU time. Linux achieves

load-balancing by regularly monitoring the system state [5] and using some heuristic on the

load, currently CPU time used in the last millisecond plus a decayed version of the previous time

slots [29].

[57] shows that Linux’s CFS also does work stealing to balance the workload of each processor,

but the paper argues this aspect can be improved significantly. The issues highlighted stem from

Linux’s need to support fairness across threads and across users2, increasing the complexity.

Linux also offers a FIFO scheduler, a real-time scheduler, which runs the highest-priority

threads, and a round-robin scheduler, which is an extension of the FIFO scheduler that adds

fixed time slices. [6]

FreeBSD The ULE scheduler used in FreeBSD[74] is a feedback scheduler similar to Linux’s

CFS. It uses different data structures and heuristics but also schedules according to some combi-

nation of CPU time used and niceness values. It also periodically balances the load of the system

(according to a different heuristic) but uses a simpler work stealing approach.

2Enforcing fairness across users means that given two users, one with a single thread and the other with one

thousand threads, the user with a single thread does not receive one-thousandth of the CPU time.

11

Windows (OS) Microsoft’s Operating System’s Scheduler [27] is a feedback scheduler with

priorities. It supports 32 levels of priorities, some of which are reserved for real-time and privi-

leged applications. It schedules threads based on the highest priorities (lowest number) and how

much CPU time each thread has used. The scheduler may also temporarily adjust priorities after

certain effects like the completion of I/O requests.

The scheduling policy is discussed more in-depth in [75], Chapter 1 section 2.3 “Processes,

Threads, and Jobs”. Multicore scheduling is based on a combination of priorities and processor

preference. Each thread is assigned an initial processor using a round-robin policy, called the

thread’s ideal processor. Threads are distributed among the processors according to their priority,

preferring to match threads to their ideal processor and then to the last processor they ran on. This

approach is a variation of work stealing, where the stealing processor restores the thread to its

original processor after running it, but mixed with priorities.

Apple OS X Apple programming documentation describes its kernel scheduler as follows:

OS X is based on Mach and BSD. [...]. It contains an advanced scheduler based

on the CMU Mach 3 scheduler. [...] Mach scheduling is based on a system of run

queues at various priorities.

– Kernel Programming Guide [15]

There is very little documentation on the internals of this scheduler. However, the documen-

tation does describe a feature set that is very similar to the Windows and Linux OS schedulers.

Presumably, this means that the internals are also fairly similar overall.

2.6.2 User-Level Schedulers

By comparison, user-level schedulers tend to be simpler, gather fewer metrics and avoid

complex notions of fairness. Part of the simplicity is due to the fact that all threads have the same

user, and therefore cooperation is both feasible and probable.

Go Go’s scheduler uses a randomized work-stealing algorithm that has a global run-queue

(GRQ) and each processor (P) has both a fixed-size run-queue (LRQ) and a high-priority next

“chair” holding a single element [53, 93]. Preemption is present, but only at safe points [54],

which are detection code inserted at various frequent access boundaries.

The algorithm is as follows :

1. Once out of 61 times, pick 1 element from the GRQ.

2. Otherwise, if there is an item in the “chair” pick it.

3. Else pick an item from the LRQ.

• If it is empty steal (len(GRQ) / #ofP) + 1 items (max 256) from the GRQ

• and steal half the LRQ of another P chosen randomly.

Chapter 7 uses Go as one of its comparison point in this thesis’s performance evaluation.

12

Erlang Erlang is a functional language that supports concurrency in the form of processes:

threads that share no data. It uses a kind of round-robin scheduler, with a mix of work sharing and

stealing to achieve load balancing [51], where under-loaded workers steal from other workers,

but overloaded workers also push work to other workers. This migration logic is directed by

monitoring logic that evaluates the load a few times per second.

Intel® Threading Building Blocks Thread Building Blocks (TBB) is Intel’s task parallelism

[96] framework. It runs jobs, which are uninterruptible threads that must always run to comple-

tion, on a pool of worker threads. TBB’s scheduler is a variation of randomized work-stealing

that also supports higher-priority graph-like dependencies [45]. It schedules threads as follows

(where t is the last thread completed):

1. The task returned by t.execute()

2. The successor of t if t was its last completed predecessor.

3. A task popped from the end of the thread’s own queue.

4. A task with an affinity for the thread.

5. A task popped from approximately the beginning of the shared queue.

6. A task popped from the beginning of another randomly chosen thread’s queue.

– Intel® TBB documentation [45]

Quasar/Project Loom Java has two projects, Quasar [68] and Project Loom [1]3, that are

attempting to introduce lightweight threading in the form of Fibers. Both projects seem to be

based on the ForkJoinPool in Java, which appears to be a simple incarnation of randomized

work-stealing [3].

Grand Central Dispatch An Apple [44] API that offers task parallelism [96]. Its distinctive

aspect is multiple “Dispatch Queues”, some of which are created by programmers. Each queue

has its own local ordering guarantees, e.g., threads on queue A are executed in FIFO order.

While the documentation only gives limited insight into the scheduling and load balancing

approach, [43] suggests a fairly classic approach. Each processor has a queue of threads to

run, called blocks, which are drained in FIFO. GCD also has secondary queues, called Dispatch

Queues, with clear ordering, where executing a block ends up scheduling more blocks. In terms

of semantics, these Dispatch Queues seem to be very similar to Intel® TBB execute() and

predecessor semantics.

The similarity of API and semantics between GCD and Intel® TBB suggest the underlying

scheduling algorithms are similar.

3It is unclear if these are distinct projects.

13

LibFibre LibFibre [49] is a lightweight user-level threading framework developed at the Univer-

sity of Waterloo. It shares a very strong resemblance to Go: using a variation of work stealing

with a global queue that has a higher priority than stealing. Unlike Go, it does not have the

high-priority next “chair” and its work-stealing is not randomized.

Chapter 7 uses LibFibre as one of its comparison point in this thesis’s performance evalua-

tion.

14

Chapter 3

C

A

Runtime

This chapter presents an overview of the capabilities of the C

A

runtime prior to this thesis

work.

3.1 C Threading

C11 introduced threading features, such as the _Thread_local storage class, and libraries

stdatomic.h and threads.h. Interestingly, almost a decade after the C11 standard, the most

recent versions of gcc, clang, and msvc do not support the C11 include threads.h, indicating

no interest in the C11 concurrency approach (possibly because of the recent effort to add concur-

rency to C++). While the C11 standard does not state a threading model, the historical associ-

ation with pthreads suggests implementations would adopt kernel-level threading (1:1) [87], as

C++ does. This model uses kernel-level threads to achieve parallelism and concurrency. In this

model, every thread of computation maps to an object in the kernel. The kernel then has the

responsibility of managing these threads, e.g., creating, scheduling, blocking. A consequence of

this approach is that the kernel has a perfect view of every thread executing in the system1.

3.2 M:N Threading

Threading in C

A

is based on User-level threading, where threads are the representation of

a unit of work. As such, C

A

programmers should expect these units to be fairly inexpensive,

i.e., programmers should be able to create a large number of threads and switch among threads

liberally without many performance concerns.

The C

A

M:N threading model is implemented using many user-level threads mapped onto

fewer kernel-level threads. The user-level threads have the same semantic meaning as a kernel-level

threads in the 1:1 model: they represent an independent thread of execution with its own stack.

The difference is that user-level threads do not have a corresponding object in the kernel; they

are handled by the runtime in user space and scheduled onto kernel-level threads, referred to as

processors in this document. Processors run a thread until it context switches out, it then chooses

a different thread to run.

1This is not completely true due to primitives like futexes, which have a significant portion of their logic in user

space.

15

thread processor clustergenerator/coroutine

Discrete-event

Manager

preemption
timeout

Processors

Ready Threads

Other Cluster(s)User Cluster

Blocked Threads

Figure 3.1: Overview of the C

A

runtime

Threads are scheduled inside a particular cluster and run on the processors that belong to the

cluster. The discrete-event manager, which handles preemption and timeout, is a processor that

lives outside any cluster and does not run threads.

3.3 Clusters

C

A

allows the option to group user-level threading, in the form of clusters. Both threads and

processors belong to a specific cluster. Threads are only scheduled onto processors in the same

cluster and scheduling is done independently of other clusters. Figure 3.1 shows an overview of

the C

A

runtime, which allows programmers to tightly control parallelism. It also opens the door

to handling effects like NUMA, by pinning clusters to a specific NUMA node2.

3.4 Scheduling

The C

A

runtime previously used a FIFO ready-queue with a single lock. This setup offers

perfect fairness in terms of opportunities to run. However, it offers poor scalability, since the

performance of the ready queue can never be improved by adding more hardware threads and

contention can cause significant performance degradation.

3.5 I/O

Prior to this work, the C

A

runtime did not have any particular support for I/O operations.

While all I/O operations available in C are available in C

A

, I/O operations are designed for the

POSIX threading model [41]. Using these 1:1 threading operations in an M:N threading model

2This capability is not currently implemented in C

A

, but the only hurdle left is creating a generic interface for

CPU masks.

16

means I/O operations block processors instead of threads. While this can work in certain cases,

it limits the number of concurrent operations to the number of processors rather than threads. It

also means deadlock can occur because all processors are blocked even if at least one thread is

ready to run. A simple example of this type of deadlock would be as follows:

Given a simple network program with 2 threads and a single processor, one thread

sends network requests to a server and the other thread waits for a response from the

server. If the second thread races ahead, it may wait for responses to requests that

have not been sent yet. In theory, this should not be a problem, even if the second

thread waits, because the first thread is still ready to run and should be able to get

CPU time to send the request. With M:N threading, while the first thread is ready,

the lone processor cannot run the first thread if it is blocked in the I/O operation of

the second thread. If this happens, the system is in a synchronization deadlock3.

Therefore, one of the objectives of this work is to introduce User-Level I/O, which, like

User-Level Threading, blocks threads rather than processors when doing I/O operations. This

feature entails multiplexing the I/O operations of many threads onto fewer processors. The multi-

plexing requires a single processor to execute multiple I/O operations in parallel. This require-

ment cannot be done with operations that block processors, i.e., kernel-level threads, since the

first operation would prevent starting new operations for its blocking duration. Executing I/O

operations in parallel requires asynchronous I/O, sometimes referred to as non-blocking, since

the kernel-level thread does not block.

3.6 Interoperating with C

While I/O operations are the classical example of operations that block kernel-level threads,

the non-blocking challenge extends to all blocking system-calls. The POSIX standard states [42,

§ 2.9.1]:

All functions defined by this volume of POSIX.1-2017 shall be thread-safe, except

that the following functions need not be thread-safe. ... (list of 70+ excluded func-

tions)

Only UNIX man pages identify whether a library function is thread-safe, and hence, may block on

a pthreads lock or system call; hence, interoperability with UNIX library functions is a challenge

for an M:N threading model.

Languages like Go and Java, which have strict interoperability with C[101, 52], can control

operations in C by “sandboxing” them, e.g., a blocking function may be delegated to a kernel-level

thread. Sandboxing may help towards guaranteeing that the kind of deadlock mentioned above

does not occur.

3In this example, the deadlock could be resolved if the server sends unprompted messages to the client. However,

this solution is neither general nor appropriate even in this simple case.

17

As mentioned in Section 1, C

A

is binary compatible with C and, as such, must support all

C library functions. Furthermore, interoperability can happen at the function-call level, inline

code, or C and C

A

translation units linked together. This fine-grained interoperability between C

and C

A

has two consequences:

1. Precisely identifying blocking C calls is difficult.

2. Introducing safe-point code (see Go page 12) can have a significant impact on general

performance.

Because of these consequences, this work does not attempt to “sandbox” calls to C. Therefore,

it is possible calls to an unknown library function can block a kernel-level thread leading to

deadlocks in C

A

’s M:N threading model, which would not occur in a traditional 1:1 threading

model. Since the blocking call is not known to the runtime, it is not necessarily possible to

distinguish whether or not a deadlock occurs. Currently, all M:N thread systems interacting

with UNIX without sandboxing suffer from this problem but manage to work very well in the

majority of applications. Therefore, a complete solution to this problem is outside the scope of

this thesis. 4 Chapter 5 discusses the interoperability with C chosen and used for the evaluation

in Chapter 8.

4C

A

does provide a pthreads emulation, so any library function using embedded pthreads locks is redirected to

C

A

user-level locks. This capability further reduces the chances of blocking a kernel-level thread.

18

Part II

Design

19

Chapter 4

Scheduling Core

Before discussing scheduling in general, where it is important to address systems that are

changing states, this document discusses scheduling in a somewhat ideal scenario, where the

system has reached a steady state. For this purpose, a steady state is loosely defined as a state

where there are always threads ready to run and the system has the resources necessary to accom-

plish the work, e.g., enough workers. In short, the system is neither overloaded nor underloaded.

It is important to discuss the steady state first because it is the easiest case to handle and,

relatedly, the case in which the best performance is to be expected. As such, when the system is

either overloaded or underloaded, a common approach is to try to adapt the system to this new

load and return to the steady state, e.g., by adding or removing workers. Therefore, flaws in

scheduling the steady state tend to be pervasive in all states.

4.1 Design Goals

As with most of the design decisions behind C

A

, an important goal is to match the expectation

of the programmer according to their execution mental model. To match expectations, the design

must offer the programmer sufficient guarantees so that, as long as they respect the execution

mental model, the system also respects this model.

For threading, a simple and common execution mental model is the “ideal multitasking

CPU”:

[The] “ideal multi-tasking CPU” is a (non-existent :-)) CPU that has 100% physical

power and which can run each task at precise equal speed, in parallel, each at [an

equal fraction of the] speed. For example: if there are 2 running tasks, then it runs

each at 50% physical power — i.e., actually in parallel. (Linux CFS[4])

Applied to threads, this model states that every ready thread immediately runs in parallel with

all other ready threads. While a strict implementation of this model is not feasible, programmers

still have expectations about scheduling that come from this model.

In general, the expectation at the centre of this model is that ready threads do not interfere

with each other but simply share the hardware. This assumption makes it easier to reason about

20

threading because ready threads can be thought of in isolation and the effect of the scheduler can

be virtually ignored. This expectation of thread independence means the scheduler is expected

to offer two features:

1. A fairness guarantee: a thread that is ready to run is not prevented by another thread

indefinitely, i.e., starvation freedom. This is discussed further in the next section.

2. A performance goal: given a thread that wants to start running, other threads wanting to

do the same do not interfere with it.

The performance goal, the lack of interference among threads, is only desired up to a point.

Ideally, the cost of running and blocking should be constant regardless of contention, but the

goal is considered satisfied if the cost is not too high with or without contention. How much

is an acceptable cost is obviously highly variable. For this document, the performance experi-

mentation attempts to show the cost of scheduling is at worst equivalent to existing algorithms

used in popular languages. This demonstration can be made by comparing applications built in

C

A

to applications built with other languages or other models. Recall programmer expectation is

that the impact of the scheduler can be ignored. Therefore, if the cost of scheduling is competi-

tive with other popular languages, the goal is considered satisfied. More precisely the scheduler

should be:

• As fast as other schedulers without any fairness guarantee.

• Faster than other schedulers that have equal or stronger fairness guarantees.

4.1.1 Fairness Goals

For this work, fairness is considered to have two strongly related requirements:

Starvation freedom means as long as at least one processor continues to dequeue threads, all

ready threads should be able to run eventually, i.e., eventual progress. Starvation freedom can

be bounded or unbounded. In the bounded case, all threads should be able to run within a fix

bound, relative to its own enqueue. Whereas unbounded starvation freedom only requires the

thread to eventually run. The C

A

scheduler aims to guarantee unbounded starvation freedom. In

any running system, a processor can stop dequeuing threads if it starts running a thread that never

blocks. Without preemption, traditional work-stealing schedulers do not have starvation freedom,

bounded or unbounded. Now, this requirement raises the question, what about preemption?

Generally speaking, preemption happens on the timescale of several milliseconds, which brings

us to the next requirement: “fast” load balancing.

Fast load balancing means that while eventual progress is guaranteed, it is important to mention

on which timescale this progress is expected to happen. Indeed, while a scheduler with bounded

starvation freedom is beyond the scope of this work, offering a good expected bound in the math-

ematical sense [105] is desirable. The expected bound on starvation freedom should be tighter

than what preemption normally allows. For interactive applications that need to run at 60, 90 or

120 frames per second, threads having to wait milliseconds to run are effectively starved. There-

fore load-balancing should be done at a faster pace: one that is expected to detect starvation at

the microsecond scale.

21

4.1.2 Fairness vs Scheduler Locality

An important performance factor in modern architectures is cache locality. Waiting for data

at lower levels or not present in the cache can have a major impact on performance. Having

multiple hardware threads writing to the same cache lines also leads to cache lines that must be

waited on. It is therefore preferable to divide data among each hardware thread1.

For a scheduler, having good locality, i.e., having the data local to each hardware thread,

generally conflicts with fairness. Indeed, good locality often requires avoiding the movement of

cache lines, while fairness requires dynamically moving a thread, and as a consequence cache

lines, to a hardware thread that is currently available. Note that this section discusses internal

locality, i.e., the locality of the data used by the scheduler, versus external locality, i.e., how

scheduling affects the locality of the application’s data. External locality is a much more compli-

cated subject and is discussed in the next section.

However, I claim that in practice it is possible to strike a balance between fairness and

performance because these requirements do not necessarily overlap temporally. Figure 4.1

shows a visual representation of this effect. As mentioned, some unfairness is acceptable; for

example, once the bounded starvation guarantee is met, additional fairness will not satisfy it

more. Inversely, once a thread’s data is evicted from cache, its locality cannot worsen. Therefore

it is desirable to have an algorithm that prioritizes cache locality as long as the fairness guarantee

is also satisfied.

4.1.3 Performance Challenges

While there exists a multitude of potential scheduling algorithms, they generally always have

to contend with the same performance challenges. Since these challenges are recurring themes

in the design of a scheduler it is relevant to describe them here before looking at the scheduler’s

design.

Latency

The most basic performance metric of a scheduler is scheduling latency. This measures the

how long it takes for a thread to run once scheduled, including the cost of scheduling itself. This

measure include both the sequential cost of the operation itself, both also the scalability.

Scalability

Given a large number of processors and an even larger number of threads, scalability measures

how fast processors can enqueue and dequeue threads relative to the available parallelism. One

could expect that doubling the number of processors would double the rate at which threads are

dequeued, but contention on the internal data structure of the scheduler can diminish the improve-

ments. While the ready queue itself can be sharded to alleviate the main source of contention,

1This partitioning can be an explicit division up front or using data structures where different hardware threads

are naturally routed to different cache lines.

22

Figure 4.1: Rule of thumb Fairness vs Locality graph

The importance of Fairness and Locality while a ready thread awaits running is shown as the time

the ready thread waits increases (Ready Time) the chances that its data is still in cache decreases

(Locality). At the same time, the need for fairness increases since other threads may have the

chance to run many times, breaking the fairness model. Since the actual values and curves of this

graph can be highly variable, the graph is an idealized representation of the two opposing goals.

auxiliary scheduling features, e.g., counting ready threads, can also be sources of contention.

In the Chapter 7, scalability is measured as #procs× ns
ops

, i.e., number of processors times total

time over total operations. Since the total number of operation should scale with the number of

processors, this gives a measure how much each additional processor affects the other processors.

Migration Cost

Another important source of scheduling latency is migration. A thread migrates if it executes

on two different processors consecutively, which is the process discussed in 4.1.2. Migrations

can have many different causes, but in certain programs, it can be impossible to limit migration.

Chapter 7 has a benchmark where any thread can potentially unblock any other thread, which can

lead to threads migrating frequently. Hence, it is important to design the internal data structures

of the scheduler to limit any latency penalty from migrations.

23

4.2 Inspirations

In general, a naı̈ve FIFO ready-queue does not scale with increased parallelism from hard-

ware threads, resulting in decreased performance. The problem is a single point of contention

when adding/removing threads. As is shown in the evaluation sections, most production sched-

ulers do scale when adding hardware threads. The solution to this problem is to shard the ready

queue: create multiple sub-queues forming the logical ready-queue. The sub-queues are accessed

by multiple hardware threads without the need for communication.

Before going into the design of C

A

’s scheduler, it is relevant to discuss two sharding solutions

that served as the inspiration for the scheduler in this thesis.

4.2.1 Work-Stealing

As mentioned in 2.4, a popular sharding approach for the ready queue is work-stealing. In this

approach, each processor has its own local sub-queue and processors only access each other’s

sub-queue if they run out of work on their local ready-queue. The interesting aspect of work

stealing manifests itself in the steady-state scheduling case, i.e., all processors have work and no

load balancing is needed. In this case, work stealing is close to optimal scheduling latency: it can

achieve perfect locality and have no contention. On the other hand, work-stealing only attempts

to do load-balancing when a processor runs out of work. This means that the scheduler never

balances unfair loads unless they result in a processor running out of work. Chapter 7 shows that,

in pathological cases, work stealing can lead to unbounded starvation.

Based on these observations, the conclusion is that a perfect scheduler should behave simi-

larly to work-stealing in the steady-state case, i.e., avoid migrations in well balanced workloads,

but load balance proactively when the need arises.

4.2.2 Relaxed-FIFO

A different scheduling approach is the “relaxed-FIFO” queue, as in [13]. This approach

forgoes any ownership between processor and sub-queue, and simply creates a pool of sub-

queues from which processors pick. Scheduling is performed as follows:

• All sub-queues are protected by TryLocks.

• Timestamps are added to each element of a sub-queue.

• A processor randomly tests sub-queues until it has acquired one or two queues, referred to as

randomly picking or randomly helping.

• If two queues are acquired, the older of the two threads is dequeued from the front of the

acquired queues.

• Otherwise, the thread from the single queue is dequeued.

The result is a queue that has both good scalability and sufficient fairness. The lack of ownership

ensures that as long as one processor is still able to repeatedly dequeue elements, it is unlikely any

element will delay longer than any other element. This guarantee contrasts with work-stealing,

where a processor with a long sub-queue results in unfairness for its threads in comparison to a

24

processor with a short sub-queue. This unfairness persists until a processor runs out of work and

steals.

An important aspect of this scheme’s fairness approach is that the timestamps make it possible

to evaluate how long elements have been in the queue. However, processors eagerly search for

these older elements instead of focusing on specific queues, which negatively affects locality.

While this scheme has good fairness, its performance can be improved. Wide sharding is

generally desired, e.g., at least 4 queues per processor, and randomly picking non-empty queues

is difficult when there are few ready threads. The next sections describe improvements I made to

this existing algorithm. However, ultimately the “relaxed-FIFO” queue is not used as the basis

of the C

A

scheduler.

4.3 Relaxed-FIFO++

The inherent fairness and decent performance with many threads make the relaxed-FIFO

queue a good candidate to form the basis of a new scheduler. The problem case is workloads

where the number of threads is barely greater than the number of processors. In these situations,

the wide sharding of the ready queue means most of its sub-queues are empty. Furthermore,

the non-empty sub-queues are unlikely to hold more than one item. The consequence is that

a random dequeue operation is likely to pick an empty sub-queue, resulting in an unbounded

number of selections. This state is generally unstable: each sub-queue is likely to frequently

toggle between being empty and nonempty. Indeed, when the number of threads is equal to the

number of processors, every pop operation is expected to empty a sub-queue and every push is

expected to add to an empty sub-queue. In the worst case, a check of the sub-queues sees all are

empty or full.

As this is the most obvious challenge, it is worth addressing first. The seemingly obvious

solution is to supplement each sharded sub-queue with data that indicates whether the queue is

empty/nonempty. This simplifies finding nonempty queues, i.e., ready threads. The sharded data

can be organized in different forms, e.g., a bitmask or a binary tree that tracks the nonempty

sub-queues, using a bit or a node per sub-queue, respectively. Specifically, many modern archi-

tectures have powerful bitmask manipulation instructions, and, searching a binary tree has good

Big-O complexity. However, precisely tracking nonempty sub-queues is problematic. The reason

is that the sub-queues are initially sharded with a width presumably chosen to avoid contention.

However, tracking which ready queue is nonempty is only useful if the tracking data is dense, i.e.,

tracks whether multiple sub-queues are empty. Otherwise, it does not provide useful informa-

tion because reading this new data structure risks being as costly as simply picking a sub-queue

at random. But if the tracking mechanism is denser than the shared sub-queues, then constant

updates invariably create a new source of contention. Early experiments with this approach

showed that randomly picking, even with low success rates, is often faster than bit manipulations

or tree walks.

The exception to this rule is using local tracking. If each processor locally keeps track of

empty sub-queues, then this can be done with a very dense data structure without introducing a

new source of contention. However, the consequence of local tracking is that the information is

incomplete. Each processor is only aware of the last state it saw about each sub-queue so this

25

information quickly becomes stale. Even on systems with low hardware thread count, e.g., 4 or

8, this approach can quickly lead to the local information being no better than the random pick.

This result is due in part to the cost of maintaining information and its poor quality.

However, using a very low-cost but inaccurate approach for local tracking can still be bene-

ficial. If the local tracking is no more costly than a random pick, then any improvement to

the success rate, however low it is, leads to a performance benefit. This suggests the following

approach:

4.3.1 Dynamic Entropy

[63] The Relaxed-FIFO approach can be made to handle the case of mostly empty sub-queues

by tweaking the Pseudo Random Number Generator that drives the random picking of sub-

queues. The PRNG state can be seen as containing a list of all the future sub-queues that will be

accessed. While this concept is not particularly useful on its own, the consequence is that if the

PRNG algorithm can be run backwards, then the state also contains a list of all the sub-queues

that were accessed. Luckily, bidirectional PRNG algorithms do exist, e.g., some Linear Congru-

ential Generators [99] support running the algorithm backwards while offering good quality and

performance. This particular PRNG can be used as follows:

• Each processor maintains two PRNG states, referred to as F and B.

• When a processor attempts to dequeue a thread, it picks a sub-queue by running its B back-

wards.

• When a processor attempts to enqueue a thread, it runs its F forward picking a sub-queue to

enqueue to. If the enqueue is successful, state of its B is overwritten with the content of its F .

The result is that each processor tends to dequeue threads that it has itself enqueued. When most

sub-queues are empty, this technique increases the odds of finding threads at a very low cost,

while also offering an improvement on locality in many cases.

My own tests showed this approach performs better than relaxed-FIFO in many cases. However,

it is still not competitive with work-stealing algorithms. The fundamental problem is that the

randomness limits how much locality the scheduler offers. This becomes problematic both

because the scheduler is likely to get cache misses on internal data structures and because migra-

tions become frequent. Therefore, the attempt to modify the relaxed-FIFO algorithm to behave

more like work stealing did not pan out. The alternative is to do it the other way around.

4.4 Work Stealing++

To add stronger fairness guarantees to work stealing a few changes are needed. First, the

relaxed-FIFO algorithm has fundamentally better fairness because each processor always moni-

tors all sub-queues. Therefore, the work-stealing algorithm must be prepended with some moni-

toring. Before attempting to dequeue from a processor’s sub-queue, the processor must make

some effort to ensure other sub-queues are not being neglected. To make this possible, proces-

sors must be able to determine which thread has been on the ready queue the longest. Second,

26

Threads
Ready

TS

Array of
Queues

TS

Processors

Figure 4.2: Base C

A

design

It uses a pool of sub-queues, with a sharding of two sub-queue per processor. Each processor

can access all of the sub-queues. Each thread is timestamped when enqueued.

the relaxed-FIFO approach uses timestamps, denoted TS, for each thread to make this possible.

Theses timestamps can be added to work stealing.

Figure 4.2 shows the algorithm structure. This structure is similar to classic work-stealing

except the sub-queues are placed in an array so processors can access them in constant time.

Sharding can be adjusted based on contention. As an optimization, the timestamp of a thread is

stored in the thread in front of it, so the first TS is in the array and the last thread has no TS. This

organization keeps the highly accessed front TSs directly in the array. When a processor attempts

to dequeue a thread, it first picks a random remote sub-queue and compares its timestamp to the

timestamps of its local sub-queue(s). The oldest waiting of the compared threads is dequeued.

In this document, picking from a remote sub-queue in this fashion is referred to as “helping”.

The timestamps are measured using the CPU’s hardware timestamp counters [109]. These

provide a 64-bit counter that tracks the number of cycles since the CPU was powered on. Assuming

the CPU runs at less than 5 GHz, this means that the 64-bit counter takes over a century before

overflowing. This is true even on 32-bit CPUs, where the counter is generally still 64-bit.

However, on many architectures, the instructions to read the counter do not have any partic-

ular ordering guarantees. Since the counter does not depend on any data in the cpu pipeline, this

means there is significant flexibility for the instruction to be read out of order, which limites the

accuracy to a window of code. Finally, another issue that can come up with timestamp counters

is synchronization between hardware threads. This appears to be mostly a historical concern, as

recent CPU offer more synchronization guarantees. For example, Intel supports ”Invariant TSC”

[46, § 17.15.1] which is guaranteed to be synchronized across hardware threads.

27

Threads
Ready

MA

Array of
Queues

TS

Processors

TS

Figure 4.3: C

A

design with Moving Average

A moving average is added to each sub-queue.

However, this naı̈ve implementation has performance problems. First, it is necessary to avoid

helping when it does not improve fairness. Random effects like cache misses and preemption can

add unpredictable but short bursts of latency but do not warrant the cost of helping. These bursts

can cause increased migrations, at which point this same locality problems as in the relaxed-FIFO

approach start to appear.

A simple solution to this problem is to use an exponential moving average[104] (MA) instead

of a raw timestamp, as shown in Figure 4.3. Note that this is more complex than it can appear

because the thread at the head of a sub-queue is still waiting, so its wait time has not ended.

Therefore, the exponential moving average is an average of how long each dequeued thread has

waited. To compare sub-queues, the timestamp at the head must be compared to the current

time, yielding the best-case wait time for the thread at the head of the queue. This new waiting is

averaged with the stored average. To further limit migrations, a bias can be added to a local sub-

queue, where a remote sub-queue is helped only if its moving average is more than X times the

local sub-queue’s average. Tests for this approach indicate the precise values for the weight of

the moving average and the bias are not important, i.e., weights and biases of similar magnitudes

have similar effects.

With these additions to work stealing, scheduling can satisfy the starvation freedom guarantee

while suffering much less from unnecessary migrations than the relaxed-FIFO approach. Unfor-

tunately, the work to achieve fairness has a performance cost, especially when the workload is

inherently fair, and hence, there is only short-term unfairness or no starvation. The problem is

that the constant polling, i.e., reads, of remote sub-queues generally entails cache misses because

the TSs are constantly being updated. To make things worse, remote sub-queues that are very

28

active, i.e., threads are frequently enqueued and dequeued from them, lead to higher chances

that polling will incur a cache-miss. Conversely, the active sub-queues do not benefit much from

helping since starvation is already a non-issue. This puts this algorithm in the awkward situation

of paying for a largely unnecessary cost. The good news is that this problem can be mitigated.

4.4.1 Redundant Timestamps

The problem with polling remote sub-queues is that correctness is critical. There must be

a consensus among processors on which sub-queues hold which threads, as the threads are in

constant motion. Furthermore, since timestamps are used for fairness, it is critical that the oldest

threads eventually be recognized as such. However, when deciding if a remote sub-queue is

worth polling, correctness is less of a problem. Since the only requirement is that a sub-queue

is eventually polled, some data staleness is acceptable. This leads to a situation where stale

timestamps are only problematic in some cases. Furthermore, stale timestamps can be desirable

since lower freshness requirements mean fewer cache invalidations.

Figure 4.4 shows a solution with a second array containing a copy of the timestamps and

average. This copy is updated after the sub-queue’s critical sections using relaxed atomics.

Processors now check if polling is needed by comparing the copy of the remote timestamp instead

of the actual timestamp. The result is that since there is no fencing, the writes can be buffered in

the hardware and cause fewer cache invalidations.

The correctness argument is somewhat subtle. The data used for deciding whether or not to

poll a queue can be stale as long as it does not cause starvation. Therefore, it is acceptable if stale

data makes queues appear older than they are, but appearing fresher can be a problem. For the

timestamps, this means it is acceptable to miss writes to the timestamp since they make the head

thread look older. For the moving average, as long as the operations are just atomic reads/writes,

the average is guaranteed to yield a value that is between the oldest and newest values written.

Therefore, this unprotected read of the timestamp and average satisfies the limited correctness

that is required.

With redundant timestamps, this scheduling algorithm achieves both the fairness and perfor-

mance requirements on most machines. The problem is that the cost of polling and helping is

not necessarily consistent across each hardware thread. For example on machines with multiple

CPUs, cache misses can be satisfied from the caches on the same (local) CPU, or by the caches

on a different (remote) CPU. Cache misses satisfied by a remote CPU have significantly higher

latency than from the local CPU. However, these delays are not specific to systems with multiple

CPUs. Depending on the cache structure, cache misses can have different latency on the same

CPU, e.g., the AMD EPYC 7662 CPUs used in Chapter 7.

Figures 4.5 and 4.6 show two different cache topologies that highlight this difference. In

Figure 4.5, all cache misses are either private to a CPU or shared with another CPU. This means

that latency due to cache misses is fairly consistent. In contrast, in Figure 4.6, misses in the L2

cache can be satisfied by either instance of the L3 cache. However, the memory-access latency

to the remote L3 is higher than the memory-access latency to the local L3. The impact of these

different designs on this algorithm is that scheduling only scales well on architectures with the L3

cache shared across many hardware threads, similar to Figure 4.5, and less well on architectures

29

Threads
Ready

Array of
Queues

TS

Array of

MA

TS

MA

TS

Processors

Timestamp Copies

Figure 4.4: C
A

design with Redundant Timestamps

This design uses an array containing a copy of the timestamps. These timestamps are written-to

with relaxed atomics, so there is no order among concurrent memory accesses, leading to fewer

cache invalidations.

with many L3 cache instances and less sharing, similar to Figure 4.6. Hence, as the number of L3

instances grows, so too does the chance that the random helping causes significant cache latency.

The solution is for the scheduler to be aware of the cache topology.

4.4.2 Per CPU Sharding

Building a scheduler that is cache aware poses two main challenges: discovering the cache

topology and matching processors to this cache structure. Unfortunately, there is no portable way

to discover cache topology, and it is outside the scope of this thesis to solve this problem. This

work uses the cache topology information from Linux’s /sys/devices/system/cpu directory.

This leaves the challenge of matching processors to cache structure, or more precisely, identi-

fying which sub-queues of the ready queue are local to which subcomponents of the cache struc-

ture. Once a match is generated, the helping algorithm is changed to add bias so that processors

more often help sub-queues local to the same cache substructure.2

2Note that like other biases mentioned in this section, the actual bias value does not appear to need precise tuning

beyond the order of magnitude.

30

L3

L2 L2 L2 L2

L1L1L1L1

CORE0 CORE1 CORE2 CORE3

Figure 4.5: CPU design with wide L3 sharing

A CPU with 4 cores, where caches L1 and L2 are private to each core, and the L3 cache is shared

across all cores.

CORE0

L3 L3

L2L2L2L2

L1 L1 L1 L1

CORE1 CORE2 CORE3

Figure 4.6: CPU design with a narrow L3 sharing

A CPU with 4 cores, where caches L1 and L2 are private to each core, and the L3 cache is shared

across a pair of cores.

31

The simplest approach for mapping sub-queues to cache structure is to statically tie sub-

queues to CPUs. Instead of having each sub-queue local to a specific processor, the system

is initialized with sub-queues for each hardware hyperthread/core up front. Then processors

dequeue and enqueue by first asking which CPU id they are executing on, to identify which

sub-queues are the local ones. Processors can get the CPU id from sched_getcpu or librseq.

This approach solves the performance problems on systems with topologies with narrow L3

caches, similar to Figure 4.6. However, it can still cause some subtle fairness problems in systems

with few processors and many hardware threads. In this case, the large number of sub-queues and

the bias against sub-queues tied to different cache substructures make it unlikely that every sub-

queue is picked. To make things worse, the small number of processors means that few helping

attempts are made. This combination of low selection and few helping attempts allow a thread

to become stranded on a sub-queue for a long time until it gets randomly helped. On a system

with 2 processors, 256 hardware threads, and a 100:1 bias, it can take multiple seconds for a

thread to get dequeued from a remote queue. In this scenario, where each processor attempts to

help on 50% of dequeues, the probability that a remote sub-queue gets help is 1
51200

and follows

a geometric distribution. Therefore the probability of the remote sub-queue gets help within the

next 100’000 dequeues is only 85%. Assuming dequeues happen every 100ns, there is still 15%

chance a thread could starve for more than 10ms and a 1% chance the thread starves for 33.33ms,

the maximum latency tolerated for interactive applications. If few hardware threads share each

cache instance, the probability that a thread is on a remote sub-queue becomes high. Therefore,

a more dynamic match of sub-queues to cache instances is needed.

4.4.3 Topological Work Stealing

The approach used in the C

A

scheduler is to have per-processor sub-queues, but have an

explicit data structure to track which cache substructure each sub-queue is tied to. This tracking

requires some finesse, because reading this data structure must lead to fewer cache misses than

not having the data structure in the first place. A key element, however, is that, like the times-

tamps for helping, reading the cache instance mapping only needs to give the correct result often

enough. Therefore the algorithm can be built as follows: before enqueueing or dequeuing a

thread, a processor queries the CPU id and the corresponding cache instance. Since sub-queues

are tied to processors, a processor can then update the cache instance mapped to the local sub-

queue(s). To avoid unnecessary cache line invalidation, the map is only written-to if the mapping

changes.

This scheduler is used in the remainder of the thesis for managing CPU execution, but addi-

tional scheduling is needed to handle long-term blocking and unblocking, such as I/O.

32

Chapter 5

User Level I/O

As mentioned in Section 3.5, user-level I/O requires multiplexing the I/O operations of

many threads onto fewer processors using asynchronous I/O operations. I/O operations, among

others, generally block the kernel-level thread when the operation needs to wait for unavailable

resources. When using user-level threading, this results in the processor blocking rather than the

thread, hindering parallelism and potentially causing deadlocks (see Chapter 3.5). Different oper-

ating systems offer various forms of asynchronous operations and, as mentioned in Chapter 1,

this work is exclusively focused on the Linux operating system.

5.1 Kernel Interface

Since this work fundamentally depends on operating-system support, the first step of this

design is to discuss the available interfaces and pick one (or more) as the foundation for the

non-blocking I/O subsystem in this work.

5.1.1 O_NONBLOCK

In Linux, files can be opened with the flag O_NONBLOCK [65] (or SO_NONBLOCK [9], the equiv-

alent for sockets) to use the file descriptors in “nonblocking mode”. In this mode, “Neither

the open() nor any subsequent I/O operations on the [opened file descriptor] will cause the

calling process to wait” [65]. This feature can be used as the foundation for the non-blocking I/O

subsystem. However, for the subsystem to know when an I/O operation completes, O_NONBLOCK

must be used in conjunction with a system call that monitors when a file descriptor becomes

ready, i.e., the next I/O operation on it does not cause the process to wait.1 This mechanism is

also crucial in determining when all threads are blocked and the application kernel-level threads

can now block.

There are three options to monitor file descriptors (FD) in Linux:2 select [77], poll [69]

and epoll [34]. All three of these options offer a system call that blocks a kernel-level thread

1In this context, ready means some operation can be performed without blocking. It does not mean an operation

returning EAGAIN succeeds on the next try. For example, a ready read may only return a subset of requested bytes

and the read must be issued again for the remaining bytes, at which point it may return EAGAIN.
2For simplicity, this section omits pselect and ppoll. The difference between these system calls and select

and poll, respectively, is not relevant for this discussion.

33

until at least one of many file descriptors becomes ready. The group of file descriptors being

waited on is called the interest set.

select is the oldest of these options, and takes as input a contiguous array of bits, where each

bit represents a file descriptor of interest. Hence, the array length must be as long as the largest

FD currently of interest. On return, it outputs the set modified in-place to identify which of the

file descriptors changed state. This destructive change means selecting in a loop requires re-

initializing the array for each iteration. Another limitation of select is that calls from different

kernel-level threads sharing FDs are independent. Hence, if one kernel-level thread is managing

the select calls, other threads can only add/remove to/from the manager’s interest set through

synchronized calls to update the interest set. However, these changes are only reflected when

the manager makes its next call to select. Note, it is possible for the manager thread to never

unblock if its current interest set never changes, e.g., the sockets/pipes/TTYs it is waiting on

never get data again. Often the I/O manager has a timeout, polls, or is sent a signal on changes

to mitigate this problem.

poll is the next oldest option, and takes as input an array of structures containing the FD

numbers rather than their position in an array of bits, allowing a more compact input for interest

sets that contain widely spaced FDs. For small interest sets with densely packed FDs, the select

bit mask can take less storage, and hence, copy less information into the kernel. However, poll

is non-destructive, so the array of structures does not have to be re-initialized on every call.

Like select, poll suffers from the limitation that the interest set cannot be changed by other

kernel-level threads, while a manager thread is blocked in poll.

epoll follows after poll, and places the interest set in the kernel rather than the application,

where it is managed by an internal kernel-level thread. There are two separate functions: one

to add to the interest set and another to check for FDs with state changes. This dynamic capa-

bility is accomplished by creating an epoll instance with a persistent interest set, which is used

across multiple calls. As the interest set is augmented, the changes become implicitly part of

the interest set for a blocked manager kernel-level thread. This capability significantly reduces

synchronization between kernel-level threads and the manager calling epoll.

However, all three of these I/O systems have limitations. The man page for O_NONBLOCK

mentions that “[O_NONBLOCK] has no effect for regular files and block devices”, which means

none of these three system calls are viable multiplexing strategies for these types of I/O opera-

tions. Furthermore, TTYs (FDs connect to a standard input and output) can also be tricky to use

since they can take different forms based on how the command is executed. For example, epoll

rejects FDs pointing to regular files or block devices, which includes stdin when using shell

redirections [71, § 3.6], but does not reject shell pipelines [71, § 3.2.3], which includes pipelines

into stdin. Finally, none of these are useful solutions for multiplexing I/O operations that do

not have a corresponding file descriptor and can be awkward for operations using multiple file

descriptors.

34

5.1.2 POSIX asynchronous I/O (AIO)

An alternative to O_NONBLOCK is the AIO interface. Using AIO, programmers can enqueue

operations which are to be performed asynchronously by the kernel. The kernel can communicate

completions of these operations in three ways: it can spawn a new kernel-level thread; send a

Linux signal; or userspace can poll for completion of one or more operations. Spawning a new

kernel-level thread is not consistent with working at the user-level thread level, but Section 5.1.4

discusses a related solution. Signals and their associated interrupt handlers can also lead to fairly

complicated interactions between subsystems, and they have a non-trivial cost. This leaves a

single option: polling for completion—this is similar to the previously discussed system calls.

While AIO only supports read and write operations to file descriptors; it does not have the same

limitations as O_NONBLOCK, i.e., the file descriptors can be regular files or block devices. AIO

also supports batching multiple operations in a single system call.

AIO offers two different approaches to polling: aio_error can be used as a spinning form

of polling, returning EINPROGRESS until the operation is completed, while aio_suspend can be

used similarly to select, poll or epoll, to wait until one or more requests have been completed.

Asynchronous interfaces normally handle more of the complexity than retry-based interfaces,

which is convenient for I/O multiplexing. However, even if AIO requests can be submitted

concurrently, aio_suspend suffers from the same limitation as select and poll: the interest

set cannot be dynamically changed while a call to aio_suspend is in progress. AIO also suffers

from the limitation of specifying which requests have been completed, i.e., programmers have

to poll each request in the interest set using aio_error to identify the completed requests. This

limitation means that, like select and poll but not epoll, the time needed to examine polling

results increases based on the total number of requests monitored, not the number of completed

requests. Finally, AIO does not seem to be a popular interface, which I believe is due in part to

this poor polling interface. Linus Torvalds talks about this interface as follows:

AIO is a horrible ad-hoc design, with the main excuse being “other, less gifted

people, made that design, and we are implementing it for compatibility because

database people - who seldom have any shred of taste - actually use it”.

But AIO was always really really ugly.

– Linus Torvalds [90]

Interestingly, in this e-mail, Linus goes on to describe “a true asynchronous system call inter-

face” that does “[an] arbitrary system call X with arguments A, B, C, D asynchronously using

a kernel thread” in “some kind of arbitrary queue up asynchronous system call model”. This

description is quite close to the interface described in the next section.

5.1.3 io_uring

A very recent addition to Linux, io_uring [18], is a framework that aims to solve many

of the problems listed in the above interfaces. Like AIO, it represents I/O operations as entries

35

added to a queue. But like epoll, new requests can be submitted while a blocking call waiting

for requests to complete is already in progress. The io_uring interface uses two ring buffers

(referred to simply as rings) at its core: a submit ring, to which programmers push I/O requests,

and a completion ring, from which programmers poll for completion.

One of the big advantages over the prior interfaces is that io_uring also supports a much

wider range of operations. In addition to supporting reads and writes to any file descriptor like

AIO, it also supports other operations, like open, close, fsync, accept, connect, send, recv,

splice, etc.

On top of these, io_uring adds many extras like avoiding copies between the kernel and user

space using shared memory, allowing different mechanisms to communicate with device drivers,

and supporting chains of requests, i.e., requests that automatically trigger follow-up requests on

completion.

5.1.4 Extra Kernel Threads

Finally, if the operating system does not offer a satisfactory form of asynchronous I/O opera-

tions, an ad hoc solution is to create a pool of kernel-level threads and delegate operations to it to

avoid blocking processors, which is a compromise for multiplexing. In the worst case, where all

threads are consistently blocking on I/O, it devolves into 1-to-1 threading. However, regardless

of the frequency of I/O operations, it achieves the fundamental goal of not blocking processors

when threads are ready to run. This approach is used by languages like Go [53], frameworks

like libuv [56], and web servers like Apache [14] and NGINX [64], since it has the advantage

that it can easily be used across multiple operating systems. This advantage is especially relevant

for languages like Go, which offer a homogeneous API across all platforms. Contrast this to C,

which has a very limited standard API for I/O, e.g., the C standard library has no networking.

5.1.5 Discussion

These options effectively fall into two broad camps: waiting for I/O to be ready, versus

waiting for I/O to complete. All operating systems that support asynchronous I/O must offer an

interface along at least one of these lines, but the details vary drastically. For example, FreeBSD

offers kqueue [7], which behaves similarly to epoll, but with some small quality of life improve-

ments, while Windows (Win32) [83] offers “overlapped I/O”, which handles submissions simi-

larly to O_NONBLOCK with extra flags on the synchronous system call, but waits for completion

events, similarly to io_uring.

For this project, I selected io_uring, in large part because of its generality. While epoll

has been shown to be a good solution for socket I/O ([50]), io_uring’s transparent support for

files, pipes, and more complex operations, like splice and tee, make it a better choice as the

foundation for a general I/O subsystem.

36

TailPush

Submission
Ring Ring

Completion
PushTail Head

Kernel LineS

Head

Kernel

Pop

Application

Pop

S3S2S0 S1

&S2 C0

C1

C2&S0

&S3

Figure 5.1: Overview of io_uring

Two ring buffers are used to communicate with the kernel, one for completions (right) and one for

submissions (left). While the completion ring contains plain data, the submission ring contains

only references. These references are indexes into an array (denoted S), which is created at the

same time as the two rings and is also readable by the kernel.

5.2 Event-Engine

An event engine’s responsibility is to use the kernel interface to multiplex many I/O oper-

ations onto few kernel-level threads. In concrete terms, this means threads enter the engine

through an interface, the event engine then starts an operation and parks the calling threads, and

then returns control to the processor. The parked threads are then rescheduled by the event engine

once the desired operation has been completed.

5.2.1 io_uring in depth

Before going into details on the design of my event engine, more details on io_uring

usage are presented, each important in the design of the engine. Figure 5.1 shows an overview

of an io_uring instance. Two ring buffers are used to communicate with the kernel: one

for submissions (left) and one for completions (right). The submission ring contains Submit

Queue Entries (SQE), produced (appended) by the application when an operation starts and

then consumed by the kernel. The completion ring contains Completion Queue Entries (CQE),

produced (appended) by the kernel when an operation completes and then consumed by the

application. The submission ring contains indexes into the SQE array (denoted S in the figure)

containing entries describing the I/O operation to start; the completion ring contains entries for

the completed I/O operation. Multiple io_uring instances can be created, in which case they

each have a copy of the data structures in the figure.

New I/O operations are submitted to the kernel following 4 steps, which use the components

shown in the figure.

37

1. An SQE is allocated from the pre-allocated array S. This array is created at the same time

as the io_uring instance, is in kernel-locked memory visible by both the kernel and the

application, and has a fixed size determined at creation. How these entries are allocated

is not important for the functioning of io_uring; the only requirement is that no entry is

reused before the kernel has consumed it.

2. The SQE is filled according to the desired operation. This step is straightforward. The

only detail worth mentioning is that SQEs have a user_data field that must be filled to

match submission and completion entries.

3. The SQE is submitted to the submission ring by appending the index of the SQE to the ring

following regular ring buffer steps: buffer[head] = item; head++. Since the head is

visible to the kernel, some memory barriers may be required to prevent the compiler from

reordering these operations. Since the submission ring is a regular ring buffer, more than

one SQE can be added at once and the head is updated only after all entries are updated.

Note, SQE can be filled and submitted in any order, e.g., in Figure 5.1 the submission order

is S0, S3, S2. S1 has not been submitted.

4. The kernel is notified of the change to the ring using the system call io_uring_enter.

The number of elements appended to the submission ring is passed as a parameter and the

number of elements consumed is returned. The io_uring instance can be constructed so

this step is not required, but this feature requires that the process have elevated privilege.

The completion side is simpler: applications call io_uring_enter with the flag

IORING_ENTER_GETEVENTS to wait on a desired number of operations to complete. The same

call can be used to both submit SQEs and wait for operations to complete. When operations

do complete, the kernel appends a CQE to the completion ring and advances the head of the

ring. Each CQE contains the result of the operation as well as a copy of the user_data field

of the SQE that triggered the operation. The io_uring_enter system call is only needed if the

application wants to block waiting for operations to complete or to flush the submission ring.

io_uring supports option IORING_SETUP_SQPOLL at creation, which can remove the need for

the system call for submissions.

The io_uring_enter system call is protected by a lock inside the kernel. This protection

means that concurrent calls to io_uring_enter using the same instance are possible, but there

is no performance gained from parallel calls to io_uring_enter. It is possible to do the first

three submission steps in parallel; however, doing so requires careful synchronization.

io_uring also introduces constraints on the number of simultaneous operations that can be

“in flight”. First, SQEs are allocated from a fixed-size array, meaning that there is a hard limit

to how many SQEs can be submitted at once. Second, the io_uring_enter system call can

fail because “The kernel [...] ran out of resources to handle [a request]” or “The application is

attempting to overcommit the number of requests it can have pending.”. This restriction means

I/O request bursts may have to be subdivided and submitted in chunks at a later time.

An important detail to keep in mind is that just like “The cloud is just someone else’s

computer” [62], asynchronous operations are just operations using someone else’s threads. Indeed,

asynchronous operations can require computation time to complete, which means that if this time

is not taken from the thread that triggered the asynchronous operation, it must be taken from

some other threads. In this case, the io_uring operations that cannot be handled directly in the

38

system call must be delegated to some other kernel-level thread. To this end, io_uring main-

tains multiple kernel-level threads inside the kernel that are not exposed to the user. Three kinds

of operations that can need the kernel-level threads are:

Operations using IOSQE_ASYNC. This is a straightforward case, users can explicitly set the

IOSQE_ASYNC flag on an SQE to specify that it must be delegated to a different kernel-level

thread.

Bounded operations. This is also a fairly simple case. As mentioned earlier in this chapter,

[O_NONBLOCK] has no effect for regular files and block devices. Therefore, io_uring handles this

case by delegating operations on regular files and block devices. In fact, io_uring maintains

a pool of kernel-level threads dedicated to these operations, which are referred to as bounded

workers.

Unbounded operations that must be retried. While operations like reads on sockets can

return EAGAIN instead of blocking the kernel-level thread, in the case these operations return

EAGAIN they must be retried by io_uring once the data is available on the socket. Since this retry

cannot necessarily be done in the system call, i.e., using the application’s kernel-level thread,

io_uring must delegate these calls to kernel-level threads in the kernel. io_uring maintains

a separate pool for these operations. The kernel-level threads in this pool are referred to as

unbounded workers. Once unbounded operations are ready to be retried, one of the workers is

woken up and it will handle the retry inside the kernel. Unbounded workers are also responsible

for handling operations using IOSQE_ASYNC.

io_uring implicitly spawns and joins both the bounded and unbounded workers based on

its evaluation of the needs of the workload. This effectively encapsulates the work that is needed

when using epoll. Indeed, io_uring does not change Linux’s underlying handling of I/O oper-

ations, it simply offers an asynchronous API on top of the existing system.

5.2.2 Multiplexing I/O: Submission

The submission side is the most complicated aspect of io_uring and the completion side

effectively follows from the design decisions made on the submission side. While there is

freedom in designing the submission side, there are some realities of io_uring that must be

taken into account. It is possible to do the first steps of submission in parallel; however, the dura-

tion of the system call scales with the number of entries submitted. The consequence is that the

amount of parallelism used to prepare submissions for the next system call is limited. Beyond

this limit, the length of the system call is the throughput-limiting factor. I concluded from early

experiments that preparing submissions seems to take almost as long as the system call itself,

which means that with a single io_uring instance, there is no benefit in terms of I/O throughput

to having more than two hardware threads. Therefore, the design of the submission engine

must manage multiple instances of io_uring running in parallel, effectively sharding io_uring

instances. Since completions are sent to the instance where requests were submitted, all instances

with pending operations must be polled continuously3. Note that once an operation completes,

3As described in Chapter 6, this does not translate into high CPU usage.

39

there is nothing that ties it to the io_uring instance that handled it — nothing prevents a new

operation, with for example the same file descriptor, from using a different io_uring instance.

A complicating aspect of submission is io_uring’s support for chains of operations, where

the completion of an operation triggers the submission of the next operation on the link. SQEs

forming a chain must be allocated from the same instance and must be contiguous in the Submis-

sion Ring (see Figure 5.1). The consequence of this feature is that filling SQEs can be arbitrarily

complex, and therefore, users may need to run arbitrary code between allocation and submission.

For this work, supporting chains is not a requirement of the C

A

I/O subsystem, but it is still valu-

able. Support for this feature can be fulfilled simply by supporting arbitrary user code between

allocation and submission.

Similar to scheduling, sharding io_uring instances can be done privately, i.e., one instance

per processor, in decoupled pools, i.e., a pool of processors using a pool of io_uring instances

without one-to-one coupling between any given instance and any given processor, or some mix

of the two. These three sharding approaches are analyzed.

Private Instances

The private approach creates one ring instance per processor, i.e., one-to-one coupling. This

alleviates the need for synchronization on the submissions, requiring only that threads are not

time-sliced during submission steps. This requirement is the same as accessing thread_local

variables, where a thread is accessing kernel-thread data, is time-sliced, and continues execu-

tion on another kernel thread but is now accessing the wrong data. This failure is the seri-

ally reusable problem [40]. Hence, allocated SQEs must be submitted to the same ring on the

same processor, which effectively forces the application to submit SQEs in order of allocation.4

From the subsystem’s point of view, the allocation and submission are sequential, greatly simpli-

fying both. In this design, allocation and submission form a partitioned ring buffer, as shown

in Figure 5.2. Once added to the ring buffer, the attached processor has a significant amount

of flexibility with regard to when to perform the system call. Possible options are: when the

processor runs out of threads to run, after running a given number of threads, etc.

This approach has the advantage that it does not require much of the synchronization needed

in a shared approach. However, this benefit means threads submitting I/O operations have less

flexibility: they cannot park or yield, and several exceptional cases are handled poorly. Instances

running out of SQEs cannot run threads wanting to do I/O operations. In this case, the I/O

thread needs to be moved to a different processor, and the only current way of achieving this

is to yield() hoping to be scheduled on a different processor with free SQEs, which is not

guaranteed to ever occur.

A more involved version of this approach tries to solve these problems using a pattern called

helping. Threads that cannot submit I/O operations, either because of an allocation failure or

migration to a different processor between allocation and submission, create an I/O object and

add it to a list of pending submissions per processor and a list of pending allocations, probably

per cluster. While there is still a strong coupling between processors and io_uring instances,

4To remove this requirement, a thread needs the ability to “yield to a specific processor”, i.e., park with the

guarantee it unparks on a specific processor, i.e., the processor attached to the correct ring.

40

Allocated
sqes

sqes
Submitted

Tail

Partition

Head

Figure 5.2: Partitioned ring buffer

Allocated SQEs are appended to the first partition. When submitting, the partition is advanced.

The kernel considers the partition as the head of the ring.

these data structures allow moving threads to a specific processor, when the current processor

cannot fulfill the I/O request.

Imagine a simple scenario with two threads on two processors, where one thread submits an

I/O operation and then sets a flag, while the other thread spins until the flag is set. Assume both

threads are running on the same processor, and the I/O thread is preempted between allocation

and submission, moved to the second processor, and the original processor starts running the

spinning thread. In this case, the helping solution has the I/O thread append an I/O object to the

submission list of the first processor, where the allocation was made. No other processor can

help the thread since io_uring instances are strongly coupled to processors. However, the I/O

processor is unable to help because it is executing the spinning thread. This results in a deadlock.

While this example is artificial, in the presence of many threads, this problem can arise “in the

wild”. Furthermore, this pattern is difficult to reliably detect and avoid. Once in this situation,

the only escape is to interrupt the spinning thread, either directly or via some regular preemption,

e.g., time slicing. Having to interrupt threads for this purpose is costly, the latency can be large

between interrupts, and the situation may be hard to detect. Interrupts are needed here entirely

because the processor is tied to an instance it is not using. Therefore, a more satisfying solution

is for the thread submitting the operation to notice that the instance is unused and simply go

ahead and use it. This approach is presented shortly.

Public Instances

The public approach creates decoupled pools of io_uring instances and processors, i.e.,

without one-to-one coupling. Threads attempting an I/O operation pick one of the available

instances and submit the operation to that instance. Since there is no coupling between io_uring

instances and processors in this approach, threads running on more than one processor can

attempt to submit to the same instance concurrently. Because io_uring effectively sets the

amount of sharding needed to avoid contention on its internal locks, performance in this approach

is based on two aspects:

• The synchronization needed to submit does not induce more contention than io_uring

already does.

41

• The scheme to route I/O requests to specific io_uring instances does not introduce contention.

This aspect is very important because it comes into play before the sharding of instances, and

as such, all hardware threads can contend on the routing algorithm.

Allocation in this scheme is fairly easy. Free SQEs, i.e., SQEs that are not currently being

used to represent a request, can be written-to safely, and have a field called user_data that the

kernel only reads to copy to CQEs. Allocation also does not require ordering guarantees as all

free SQEs are interchangeable. The only added complexity is that the number of SQEs is fixed,

which means allocation can fail.

Allocation failures need to be pushed to a routing algorithm: threads attempting I/O opera-

tions must not be directed to io_uring instances without sufficient SQEs available. Furthermore,

the routing algorithm should block operations upfront if none of the instances have available

SQEs.

Once an SQE is allocated, threads insert the I/O request information and keep track of the

SQE index and the instance it belongs to.

Once an SQE is filled in, it is added to the submission ring buffer, an operation that is not

thread safe, and then the kernel must be notified using the io_uring_enter system call. The

submission ring buffer is the same size as the pre-allocated SQE buffer, therefore pushing to the

ring buffer cannot fail because it would mean an SQE multiple times in the ring buffer, which is

undefined behaviour. However, as mentioned, the system call itself can fail with the expectation

that it can be retried once some submitted operations are complete.

Since multiple SQEs can be submitted to the kernel at once, it is important to strike a balance

between batching and latency. Operations that are ready to be submitted should be batched

together in few system calls, but at the same time, operations should not be left pending for long

periods before being submitted. Balancing submission can be handled by either designating one

of the submitting threads as the thread responsible for the system call for the current batch of

SQEs or by having some other party regularly submit all ready SQEs, e.g., the poller thread

mentioned later in this section.

Ideally, when multiple threads attempt to submit operations to the same io_uring instance,

all requests should be batched together and one of the threads is designated to do the system call

on behalf of the others, called the submitter. However, in practice, I/O requests must be handed

promptly so there is a need to guarantee everything missed by the current submitter is seen by

the next one. Indeed, as long as there is a “next” submitter, threads submitting new I/O requests

can move on, knowing that some future system call includes their request. Once the system call

is done, the submitter must also free SQEs so that the allocator can reuse them.

Finally, the completion side is much simpler since the io_uring system call enforces a

natural synchronization point. Polling simply needs to regularly do the system call, go through

the produced CQEs and communicate the result back to the originating threads. Since CQEs only

own a signed 32-bit result, in addition to the copy of the user_data field, all that is needed to

communicate the result is a simple future [97]. If the submission side does not designate submit-

ters, polling can also submit all SQEs as it is polling events. A simple approach to polling is

to allocate a user-level thread per io_uring instance and simply let the poller threads poll their

respective instances when scheduled.

42

The big advantage of the pool of SQE instances approach is that it is fairly flexible. It does

not impose restrictions on what threads submitting I/O operations can and cannot do between

allocations and submissions. It also can gracefully handle running out of resources, SQEs or

the kernel returning EBUSY. The downside to this approach is that many of the steps used for

submitting need complex synchronization to work properly. The routing and allocation algo-

rithm needs to keep track of which ring instances have available SQEs, block incoming requests

if no instance is available, prevent barging if threads are already queued up waiting for SQEs

and handle SQEs being freed. The submission side needs to safely append SQEs to the ring

buffer, correctly handle chains, make sure no SQE is dropped or left pending forever, notify

the allocation side when SQEs can be reused, and handle the kernel returning EBUSY. All this

synchronization has a significant cost, compared to the private-instance approach which does not

have synchronization costs in most cases.

Instance borrowing

Both of the prior approaches have undesirable aspects that stem from tight or loose coupling

between io_uring and processors. The first approach suffers from tight coupling, causing prob-

lems when a processor does not benefit from the coupling. The second approach suffers from

loose couplings, causing operations to have synchronization overhead, which tighter coupling

avoids. When processors are continuously issuing I/O operations, tight coupling is valuable since

it avoids synchronization costs. However, in unlikely failure cases or when processors are not

using their instances, tight coupling is no longer advantageous. A compromise between these

approaches is to allow tight coupling but have the option to revoke the coupling dynamically

when failure cases arise. I call this approach instance borrowing.5

As mentioned later in this section, this approach is not ultimately used, but here is still an

high-level outline of the algorithm. In this approach, each cluster, see Figure 3.1, owns a pool of

io_uring instances managed by an arbiter. When a thread attempts to issue an I/O operation,

it asks for an instance from the arbiter, and issues requests to that instance. This instance is now

bound to the processor the thread is running on. This binding is kept until the arbiter decides

to revoke it, taking back the instance and reverting the processor to its initial I/O state. This

tight coupling means that synchronization can be minimal since only one processor can use the

instance at a time, akin to the private instances approach. However, it differs in that revocation

by the arbiter means this approach does not suffer from the deadlock scenario described above.

Arbitration is needed in the following cases:

1. The current processor does not hold an instance.

2. The current instance does not have sufficient SQEs to satisfy the request.

3. The current processor has a wrong instance. This happens if the submitting thread context-

switched between allocation and submission: external submissions.

However, even when the arbiter is not directly needed, processors need to make sure that their

instance ownership is not being revoked, which is accomplished by a lock-less handshake.6 A

5While instance borrowing looks similar to work sharing and stealing, I think it is different enough to warrant a

different verb to avoid confusion.
6Note the handshake is not lock-free [107] since it lacks the proper progress guarantee.

43

processor raises a local flag before using its borrowed instance and checks if the instance is

marked as revoked or if the arbiter has raised its flag. If not, it proceeds, otherwise it delegates

the operation to the arbiter. Once the operation is completed, the processor lowers its local flag.

Correspondingly, before revoking an instance, the arbiter marks the instance and then waits

for the processor using it to lower its local flag. Only then does it reclaim the instance and

potentially assign it to another processor.

The arbiter maintains four lists around which it makes its decisions:

1. A list of pending submissions.

2. A list of pending allocations.

3. A list of instances currently borrowed by processors.

4. A list of instances currently available.

External Submissions are handled by the arbiter by revoking the appropriate instance and

adding the submission to the submission ring. However, there is no need to immediately revoke

the instance. External submissions must simply be added to the ring before the next system call,

i.e., when the submission ring is flushed. This means whoever is responsible for the system call

first checks whether the instance has any external submissions. If so, it asks the arbiter to revoke

the instance and add the external submissions to the ring.

Pending Allocations are handled by the arbiter when it has available instances and can directly

hand over the instance and satisfy the request. Otherwise, it must hold on to the list of threads

until SQEs are made available again. This handling is more complex when an allocation requires

multiple SQEs, since the arbiter must make a decision between satisfying requests in FIFO

ordering or for fewer SQEs.

While an arbiter has the potential to solve many of the problems mentioned above, it also

introduces a significant amount of complexity. Tracking which processors are borrowing which

instances and which instances have SQEs available ends up adding a significant synchroniza-

tion prelude to any I/O operation. Any submission must start with a handshake that pins the

currently borrowed instance, if available. An attempt to allocate is then made, but the arbiter can

concurrently be attempting to allocate from the same instance from a different hardware thread.

Once the allocation is completed, the submission must check that the instance is still burrowed

before attempting to flush. These synchronization steps turn out to have a similar cost to the

multiple shared-instances approach. Furthermore, if the number of instances does not match the

number of processors actively submitting I/O, the system can fall into a state where instances

are constantly being revoked and end up cycling the processors, which leads to significant cache

deterioration. For these reasons, this approach, which sounds promising on paper, does not

improve on the private instance approach in practice.

5.3 Interface

The final part of the I/O subsystem is its interface. Multiple approaches can be offered to

programmers, each with advantages and disadvantages. The new C

A

I/O subsystem can replace

44

the C runtime API or extend it, and in the latter case, the interface can go from very similar to

vastly different. The following sections discuss some useful options, using read as an example.

The standard Linux interface for C is:

ssize_t read(int fd, void *buf, size_t count);

5.3.1 Replacement

Replacing the C I/O subsystem is the more intrusive and draconian approach. The goal is to

convince the compiler and linker to replace any calls to read by calls to the C

A

implementation

instead of glibc’s. This rerouting has the advantage of working transparently and supporting

existing binaries without necessarily needing recompilation. It also offers a presumably well

known and familiar API that C programmers can simply continue to work with. However, when

using this approach, any and all calls to the C I/O subsystem, since using a mix of the C and

C

A

I/O subsystems can easily lead to esoteric concurrency bugs. This approach was rejected as

being laudable but infeasible.

5.3.2 Synchronous Extension

Another interface option is to offer an interface different in name only. In this approach, an

alternative call is created for each supported system calls. For example:

ssize_t cfa_read(int fd, void *buf, size_t count);

The new cfa_read would have the same interface behaviour and guarantee as the read system

call, but allow the runtime system to use user-level blocking instead of kernel-level blocking.

This approach is feasible and still familiar to C programmers. It comes with the caveat that

any code attempting to use it must be modified, which is a problem considering the amount of

existing legacy C binaries. However, it has the advantage of implementation simplicity. Finally,

there is a certain irony to using a blocking synchronous interface for a feature often referred to

as “non-blocking” I/O.

5.3.3 Asynchronous Extension

A fairly traditional way of providing asynchronous interactions is using a future mecha-

nism [37], e.g.:

future(ssize_t) read(int fd, void *buf, size_t count);

where the generic future is fulfilled when the read completes, with the count of bytes actually

read, which may be less than the number of bytes requested. The data read is placed in buf. The

problem is that both the bytes count and data form the synchronization object, not just the bytes

read. Hence, the buffer cannot be reused until the operation completes but the synchronization

on the future does not enforce this. A classical asynchronous API is:

future([ssize_t, void *]) read(int fd, size_t count);

45

where the future tuple covers the components that require synchronization. However, this inter-

face immediately introduces memory lifetime challenges since the call must effectively allocate

a buffer to be returned. Because of the performance implications of this API, the first approach

is considered preferable as it is more familiar to C programmers.

5.3.4 Direct io_uring Interface

The last interface directly exposes the underlying io_uring interface, e.g.:

array(SQE, want) cfa_io_allocate(int want);

void cfa_io_submit(const array(SQE, have) &);

where the generic array contains an array of SQEs with a size that may be less than the

request. This offers more flexibility to users wanting to fully utilize all of the io_uring features.

However, it is not the most user-friendly option. It obviously imposes a strong dependency

between user code and io_uring but at the same time restricts users to usages that are compat-

ible with how C

A

internally uses io_uring.

As of writting this document, C

A

offers both a synchronous extension and the first approach

to the asynchronous extension:

ssize_t cfa_read(int fd, void *buf, size_t count);

future(ssize_t) async_read(int fd, void *buf, size_t count);

46

Chapter 6

Scheduling in practice

The scheduling algorithm described in Chapter 4 addresses scheduling in a stable state. This

chapter addresses problems that occur when the system state changes. Indeed the C

A

runtime

supports expanding and shrinking the number of processors, both manually and, to some extent,

automatically. These changes affect the scheduling algorithm, which must dynamically alter its

behaviour.

Specifically, C

A

supports adding processors using the type processor, in both RAII and

heap coding scenarios.

{

processor p[4]; // 4 new kernel threads

... // execute on 4 processors

processor * dp = new(processor, 6); // 6 new kernel threads

... // execute on 10 processors

delete(dp); // delete 6 kernel threads

... // execute on 4 processors

} // delete 4 kernel threads

Dynamically allocated processors can be deleted at any time, i.e., their lifetime exceeds the block

of creation. The consequence is that the scheduler and I/O subsystems must know when these

processors come in and out of existence and roll them into the appropriate scheduling algorithms.

6.1 Manual Resizing

Manual resizing is expected to be a rare operation. Programmers normally create/delete

processors on a cluster at startup/teardown. Therefore, dynamically changing the number of

processors is an appropriate moment to allocate or free resources to match the new state. As

such, all internal scheduling arrays that are sized based on the number of processors need to

be realloced. This requirement also means any references into these arrays, e.g., pointers or

indexes, may need to be updated if elements are moved for compaction or any other reason.

There are no performance requirements, within reason, for act of resizing itself, since it is

expected to be rare. However, this operation has strict correctness requirements, since updating

and idle sleep can easily lead to deadlocks. The resizing mechanism should also avoid, as much

as possible any effect on performance when the number of processors remains constant. This

47

last requirement prohibits naive solutions, like simply adding a global lock to the ready-queue

arrays.

6.1.1 Read-Copy-Update

One solution is to use the Read-Copy-Update pattern [108]. This is a very common pattern

that avoids large critical sections, which is why it is worth mentioning. In this pattern, resizing

is done by creating a copy of the internal data structures, e.g., see Figure 4.4, updating the copy

with the desired changes, and then attempting an Indiana Jones Switch to replace the original

with the copy. This approach has the advantage that it may not need any synchronization to do

the switch, depending on how reclamation of the original copy is handled. However, there is a

race where processors still use the original data structure after the copy is switched. This race not

only requires adding a memory-reclamation scheme, but it also requires that operations made on

the stale original version are eventually moved to the copy.

Specifically, the original data structure must be kept until all processors have witnessed the

change. This requirement is the memory reclamation challenge and means every operation needs

some form of synchronization. If all operations need synchronization, then the overall cost of

this technique is likely to be similar to an uncontended lock approach. In addition to the classic

challenge of memory reclamation, transferring the original data to the copy before reclaiming it

poses additional challenges. Especially merging sub-queues while having a minimal impact on

fairness and locality.

For example, given a linked list, having a node enqueued onto the original and new list is

not necessarily a problem depending on the chosen list structure. If the list supports arbitrary

insertions, then inconsistencies in the tail pointer do not break the list; however, ordering may

not be preserved. Furthermore, nodes enqueued to the original queues eventually need to be

uniquely transferred to the new queues, which may further perturb ordering. Dequeuing is more

challenging when nodes appear on both lists because of pending reclamation: dequeuing a node

from one list does not remove it from the other nor is that node in the same place on the other list.

This situation can lead to multiple processors dequeuing the same thread. Fixing these challenges

requires more synchronization or more indirection to the queues, plus coordinated searching to

ensure unique elements.

6.1.2 Readers-Writer Lock

A simpler approach is to use a Readers-Writer Lock [102], where the resizing requires

acquiring the lock as a writer while simply enqueueing/dequeuing threads requires acquiring

the lock as a reader. Using a Readers-Writer lock solves the problem of dynamically resizing

and leaves the challenge of finding or building a lock with sufficient good read-side perfor-

mance. Since this approach is not a very complex challenge and an ad hoc solution is perfectly

acceptable, building a Readers-Writer lock was the path taken.

To maximize reader scalability, readers should not contend with each other when attempting

to acquire and release a critical section. Achieving this goal requires that each reader have its own

memory to mark as locked and unlocked. The read-acquire possibly waits for a writer to finish

48

void read_lock() {

// Step 1 : make sure no writers in

while write_lock { Pause(); }

// Step 2 : acquire our local lock

while atomic_xchg(tls.lock) { Pause(); }

}

void read_unlock() {

tls.lock = false;

}

void write_lock() {

// Step 1 : lock global lock

while atomic_xchg(write_lock) { Pause(); }

// Step 2 : lock per proc locks

for t in all_tls {

while atomic_xchg(t.lock) { Pause(); }

}

}

void write_unlock() {

// Step 1 : release local locks

for t in all_tls { t.lock = false; }

// Step 2 : release global lock

write_lock = false;

}

Figure 6.1: Specialized Readers-Writer Lock

the critical section and then acquires a reader’s local spinlock. The writer acquires the global

lock, guaranteeing mutual exclusion among writers, and then acquires each of the local reader

locks. Acquiring all the local read-locks guarantees mutual exclusion among the readers and the

writer, while the wait on the read side prevents readers from continuously starving the writer.

Figure 6.1 shows the outline for this specialized readers-writer lock. The lock is nonblocking, so

both readers and writers spin while the lock is held. This very wide sharding strategy means that

readers have very good locality since they only ever need to access two memory locations.

6.2 Idle-Sleep

While manual resizing of processors is expected to be rare, the number of threads can vary

significantly over an application’s lifetime, which means there are times when there are too few or

too many processors. For this work, it is the application programmer’s responsibility to manually

create processors, so if there are too few processors, the application must address this issue. This

leaves too many processors when there are not enough threads for all the processors to be useful.

These idle processors cannot be removed because their lifetime is controlled by the application,

and only the application knows when the number of threads may increase or decrease. While

idle processors can spin until work appears, this approach wastes energy, unnecessarily produces

heat and prevents other applications from using the hardware thread. Therefore, idle processors

are put into an idle state, called Idle-Sleep, where the kernel-level thread is blocked until the

49

scheduler deems it is needed.

Idle sleep effectively encompasses several challenges. First, a data structure needs to keep

track of all processors that are in idle sleep. Because idle sleep is spurious, this data struc-

ture has strict performance requirements, in addition to strict correctness requirements. Next,

some mechanism is needed to block kernel-level threads, e.g., pthread_cond_wait or a pthread

semaphore. The complexity here is to support user-level locking, timers, I/O operations, and all

other C

A

features with minimal complexity. Finally, the scheduler needs a heuristic to determine

when to block and unblock an appropriate number of processors. However, this third challenge

is outside the scope of this thesis because developing a general heuristic is complex enough

to justify its own work. Therefore, the C

A

scheduler simply follows the “Race-to-Idle” [12]

approach where a sleeping processor is woken any time a thread becomes ready and processors

go to idle sleep anytime they run out of work.

An interesting subpart of this heuristic is what to do with bursts of threads that become ready.

Since waking up a sleeping processor can have notable latency, multiple threads may become

ready while a single processor is waking up. This fact raises the question: if many processors

are available, how many should be woken? If the ready threads will run longer than the wake-up

latency, waking one processor per thread will offer maximum parallelization. If the ready threads

will run for a very short time, waking many processors may be wasteful. As mentioned, since a

heuristic to handle these complex cases is outside the scope of this thesis, so the behaviour of the

scheduler in this particular case is left unspecified.

6.3 Sleeping

As usual, the cornerstone of any feature related to the kernel is the choice of system call.

In terms of blocking a kernel-level thread until some event occurs, the Linux kernel has many

available options.

6.3.1 pthread_mutex/pthread_cond

The classic option is to use some combination of the pthread mutual exclusion and synchro-

nization locks, allowing a safe park/unpark of a kernel-level thread to/from a pthread_cond.

While this approach works for kernel-level threads waiting among themselves, I/O operations do

not provide a mechanism to signal pthread_conds. For I/O results to wake a processor waiting

on a pthread_cond means a different kernel-level thread must be woken up first, which then

signals the processor.

6.3.2 io_uring and Epoll

An alternative is to flip the problem on its head and block waiting for I/O, using io_uring or

epoll. This creates the inverse situation, where I/O operations directly wake sleeping processors

but waking blocked processors must use an indirect scheme. This generally takes the form of

creating a file descriptor, e.g., dummy file, pipe, or event fd, and using that file descriptor when

processors need to wake each other. This leads to additional complexity because there can be a

50

race between these artificial I/O and genuine I/O operations. If not handled correctly, this can

lead to artificial files getting delayed too long behind genuine files, resulting in longer latency.

6.3.3 Event FDs

Another interesting approach is to use an event file descriptor[35]. This Linux feature is a file

descriptor that behaves like I/O, i.e., uses read and write, but also behaves like a semaphore.

Indeed, all reads and writes must use word-sized values, i.e., 64 or 32 bits. Writes add their

values to a buffer using arithmetic addition versus buffer append, and reads zero-out the buffer

and return the buffer values so far.1 If a read is made while the buffer is already 0, the read

blocks until a non-0 value is added. What makes this feature particularly interesting is that

io_uring supports the IORING_REGISTER_EVENTFD command to register an event fd to a partic-

ular instance. Once that instance is registered, any I/O completion results in io_uring writing

to the event fd. This means that a processor waiting on the event fd can be directly woken up by

either other processors or incoming I/O.

6.4 Tracking Sleepers

Tracking which processors are in idle sleep requires a data structure holding all the sleeping

processors, but more importantly, it requires a concurrent handshake so that no thread is stranded

on a ready queue with no active processor. The classic challenge occurs when a thread is made

ready while a processor is going to sleep: there is a race where the new thread may not see the

sleeping processor and the sleeping processor may not see the ready thread. Since threads can

be made ready by timers, I/O operations, or other events outside a cluster, this race can occur

even if the processor going to sleep is the only processor awake. As a result, improper handling

of this race leads to all processors going to sleep when there are ready threads and the system

deadlocks.

The handshake closing the race is done with both the notifier and the idle processor executing

two ordered steps. The notifier first makes sure the newly ready thread is visible to processors

searching for threads, and then attempts to notify an idle processor. On the other side, processors

make themselves visible as idle processors and then search for any threads they may have missed.

Unlike regular work-stealing, this search must be exhaustive to make sure that no pre-existing

thread is missed. These steps from both sides guarantee that if the search misses a newly ready

thread, then the notifier is guaranteed to see at least one idle processor. Conversely, if the notifier

does not see any idle processor, then a processor is guaranteed to find the new thread in its

exhaustive search.

Furthermore, the “Race-to-Idle” approach means that there may be contention on the data

structure tracking sleepers. Contention can be tolerated for processors attempting to sleep or

wake up because these processors are not doing useful work, and therefore, not contributing to

overall performance. However, notifying, checking if a processor must be woken-up, and doing

so if needed, can significantly affect overall performance and must be low cost.

1This behaviour is without the EFD_SEMAPHORE flag, which changes the behaviour of read but is not needed for

this work.

51

Idle List
Lock

Idle List
Idle Processor Idle Processor Idle Processor

Event FD Event FD Event FD

Figure 6.2: Basic Idle Sleep Data Structure

Each idle processor is put onto a doubly-linked stack protected by a lock. Each processor has a

private event fd.

6.4.1 Sleepers List

Each cluster maintains a list of idle processors, organized as a stack. This ordering allows

processors at the tail to stay in idle sleep for extended periods while those at the head of the list

wake up for bursts of activity. Because of unbalanced performance requirements, the algorithm

tracking sleepers is designed to have idle processors handle as much of the work as possible.

The idle processors maintain the stack of sleepers among themselves and notifying a sleeping

processor takes as little work as possible. This approach means that maintaining the list is fairly

straightforward. The list can simply use a single lock per cluster and only processors that are

getting in and out of the idle state contend for that lock.

This approach also simplifies notification. Indeed, processors not only need to be notified

when a new thread is readied, but must also be notified during manual resizing, so the kernel-level

thread can be joined. These requirements mean whichever entity removes idle processors from

the sleeper list must be able to do so in any order. Using a simple lock over this data struc-

ture makes the removal much simpler than using a lock-free data structure. The single lock

also means the notification process simply needs to wake up the desired idle processor, using

pthread_cond_signal, write on an fd, etc., and the processor handles the rest.

6.4.2 Reducing Latency

As mentioned in this section, processors going to sleep for extremely short periods is likely in

certain scenarios. Therefore, the latency of doing a system call to read from and write to an event

fd can negatively affect overall performance notably. Hence, it is important to reduce latency

and contention of the notification as much as possible. Figure 6.2 shows the basic idle-sleep data

structure. For the notifiers, this data structure can cause contention on the lock and the event fd

syscall can cause notable latency.

Contention occurs because the idle-list lock must be held to access the idle list, e.g., by

processors attempting to go to sleep, processors waking, or notification attempts. The contention

from the processors attempting to go to sleep can be mitigated slightly by using try_acquire,

so the processors simply busy wait again searching for threads if the lock is held. This trick

52

Atomic

Pointer

Idle List
Lock

Idle List
Idle Processor Idle Processor Idle Processor

Event FD Event FD Event FD

Figure 6.3: Improved Idle-Sleep Data Structure

An atomic pointer is added to the list pointing to the Event FD of the first processor on the list.

cannot be used when waking processors since the waker needs to return immediately to what it

was doing.

Interestingly, general notification, i.e., waking any idle processor versus a specific one, does

not strictly require modifying the list. Here, contention can be reduced notably by having noti-

fiers avoid the lock entirely by adding a pointer to the event fd of the first idle processor, as in

Figure 6.3. To avoid contention among notifiers, notifiers atomically exchange the pointer with

NULL. The first notifier succeeds on the exchange and obtains the fd of an idle processor; hence,

only one notifier contends on the system call. This notifier writes to the fd to wake a processor.

The woken processor then updates the atomic pointer, while it is updating the head of the list,

as it removes itself from the list. Notifiers that obtained a NULL in the exchange simply move

on knowing that another notifier is already waking a processor. This behaviour is equivalent

to having multiple notifiers write to the fd since reads consume all previous writes. Note that

with and without this atomic pointer, bursts of notification can lead to an unspecified number of

processors being woken up, depending on how the arrival notification compares with the latency

of processors waking up. As mentioned in section 6.2, there is no optimal approach to handle

these bursts. It is therefore difficult to justify the cost of any extra synchronization here.

The next optimization is to avoid the latency of the event fd, which can be done by adding

what is effectively a binary benaphore[76] in front of the event fd. The benaphore over the event

fd logically provides a three-state flag to avoid unnecessary system calls, where the states are

expressed explicitly in Figure 6.4. A processor begins its idle sleep by adding itself to the idle list

before searching for a thread. In the process of adding itself to the idle list, it sets the state flag

to SEARCH. If no threads can be found during the search, the processor then confirms it is going

to sleep by atomically swapping the state to SLEEP. If the previous state is still SEARCH, then

the processor does read the event fd. Meanwhile, notifiers atomically exchange the state to the

AWAKE state. If the previous state is SLEEP, then the notifier must write to the event fd. However,

if the notify arrives almost immediately after the processor marks itself idle, then both reads and

writes on the event fd can be omitted, which reduces latency notably. These extensions lead to

the final data structure shown in Figure 6.5.

53

AWAKE

SLEEPSEARCH

CANCEL

CONFIRM

WAKE

Figure 6.4: Improved Idle-Sleep Latency

A three-state flag is added to the event fd.

Atomic

Pointer

Benaphore

Event FD

Benaphore

Event FD

Benaphore

Event FD

Idle List
Lock

Idle List
Idle Processor Idle Processor Idle Processor

Figure 6.5: Low-latency Idle Sleep Data Structure

Each idle processor is put unto a doubly-linked stack protected by a lock. Each processor has a

private event fd with a benaphore in front of it. The list also has an atomic pointer to the event

fd and benaphore of the first processor on the list.

54

Part III

Evaluation

55

Chapter 7

Micro-Benchmarks

The first step in evaluating this work is to test small controlled cases to ensure the basics work

properly. This chapter presents five different experimental setups for evaluating the basic features

of the C

A

, libfibre [48], Go, and Tokio [88] schedulers. All of these systems have a user-level

threading model. The goal of this chapter is to show, through the different experiments, that the

C

A

scheduler obtains equivalent performance to other schedulers with lesser fairness guarantees.

Note that only the code of the C

A

tests is shown; all tests in the other systems are functionally

identical and available both online [30] and submitted to UWSpace with the thesis itself.

7.1 Benchmark Environment

All benchmarks are run on two distinct hardware platforms.

AMD is a server with two AMD EPYC 7662 CPUs and 256GB of DDR4 RAM. The EPYC

CPU has 64 cores with 2 hardware threads per core, for a total of 128 hardware threads per

socket with 2 sockets for a total of 256 hardware threads. Each CPU has 4 MB, 64 MB and

512 MB of L1, L2 and L3 caches, respectively. Each L1 and L2 instance is only shared

by hardware threads on a given core, but each L3 instance is shared by 4 cores, therefore 8

hardware threads. The server runs Ubuntu 20.04.2 LTS on top of Linux Kernel 5.8.0-55.

Intel is a server with four Intel Xeon Platinum 8160 CPUs and 384GB of DDR4 RAM. The

Xeon CPU has 24 cores with 2 hardware threads per core, for 48 hardware threads per socket

with 4 sockets for a total of 196 hardware threads. Each CPU has 3 MB, 96 MB and 132 MB

of L1, L2 and L3 caches respectively. Each L1 and L2 instance are only shared by hardware

threads on a given core, but each L3 instance is shared across the entire CPU, therefore 48

hardware threads. The server runs Ubuntu 20.04.2 LTS on top of Linux Kernel 5.8.0-55.

For all benchmarks, taskset is used to limit the experiment to 1 NUMA node with no

hyperthreading. If more hardware threads are needed, then 1 NUMA node with hyperthreading

is used. If still more hardware threads are needed, then the experiment is limited to as few NUMA

nodes as needed. For the Intel machine, this means that from 1 to 24 processors one socket and

no hyperthreading is used, and from 25 to 48 processors still only one socket is used but with

hyperthreading. This pattern is repeated between 49 and 96, between 97 and 144, and between

56

145 and 192. On AMD, the same algorithm is used, but the machine only has 2 sockets. So

hyperthreading1 is used when the processor count reaches 65 and 193.

The limited sharing of the last-level cache on the AMD machine is markedly different from

the Intel machine. Indeed, while on both architectures L2 cache misses that are served by L3

caches on a different CPU incur a significant latency, on the AMD it is also the case that cache

misses served by a different L3 instance on the same CPU also incur high latency.

7.2 Experimental setup

Each experiment is run 15 times varying the number of processors depending on the two

different computers. All experiments gather throughput data and secondary data for scalability

or latency. The data is graphed using a solid, a dashed, and a dotted line, representing the median,

maximum and minimum results respectively, where the minimum/maximum lines are referred to

as the extremes.2 This graph presentation offers an overview of the distribution of the results for

each experiment.

For each experiment, four graphs are generated showing traditional throughput on the top

row and scalability or latency on the bottom row (peek ahead to Figure 7.3). Scalability uses

the same data as throughput but the Y-axis is calculated as the number of processors over the

throughput. In this representation, perfect scalability should appear as a horizontal line, e.g., if

doubling the number of processors doubles the throughput, then the relation stays the same.

The left column shows results for hundreds of threads per processor, enough to always keep

every processor busy. The right column shows results for very few threads per processor, where

the ready queues are expected to be near empty most of the time. The distinction between many

and few threads is meaningful because the idle sleep subsystem is expected to matter only in the

right column, where spurious effects can cause a processor to run out of work temporarily.

7.3 Cycle

The most basic evaluation of any ready queue is the latency needed to push and pop one

element from the ready queue. Since these two operations also describe a yield operation, many

systems use this operation as the fundamental benchmark. However, yielding can be treated

as a special case by optimizing it away since the number of ready threads does not change.

Hence, systems that perform this optimization have an artificial performance benefit because the

yield becomes a nop. For this reason, I designed a different push/pop benchmark, called Cycle

Benchmark. This benchmark arranges several threads into a ring, as seen in Figure 7.1, where

the ring is a circular singly-linked list. At runtime, each thread unparks the next thread before

parking itself. Unparking the next thread pushes that thread onto the ready queue while the

ensuing park leads to a thread being popped from the ready queue.

1Hyperthreading normally refers specifically to the technique used by Intel, however, it is often used generically

to refer to any equivalent feature.
2An alternative display is to use error bars with min/max as the bottom/top for the bar. However, this approach

is not truly an error bar around a mean value and I felt the connected lines are easier to read.

57

Thread3 Thread4

Thread2

Thread1

Thread5

Unpark

UnparkUnpark

Unpark Unpark

Figure 7.1: Cycle benchmark

Each thread unparks the next thread in the cycle before parking itself.

Therefore, the underlying runtime cannot rely on the number of ready threads staying constant

over the duration of the experiment. In fact, the total number of threads waiting on the ready

queue is expected to vary because of the race between the next thread unparking and the current

thread parking. That is, the runtime cannot anticipate that the current task immediately parks. As

well, the size of the cycle is also decided based on this race, e.g., a small cycle may see the chain

of unparks go full circle before the first thread parks because of time-slicing or multiple proces-

sors. If this happens, the scheduler push and pop are avoided and the results of the experiment

are skewed. (Note, an unpark is like a V on a semaphore, so the subsequent park (P) may not

block.) Every runtime system must handle this race and cannot optimize away the ready-queue

pushes and pops. To prevent any attempt of silently omitting ready-queue operations, the ring of

threads is made big enough so the threads have time to fully park before being unparked again.

Finally, to further mitigate any underlying push/pop optimizations, especially on SMP machines,

multiple rings are created in the experiment.

Figure 7.2 shows the pseudo code for this benchmark, where each cycle has 5 threads. There

is additional complexity to handle termination (not shown), which requires a binary semaphore

or a channel instead of raw park/unpark and carefully picking the order of the P and V with

respect to the loop condition.

7.3.1 Results

Figures 7.3 and 7.4 show the results for the cycle experiment on Intel and AMD, respec-

tively. Looking at the left column on Intel, Figures 7.3a and 7.3c show the results for 100 cycles

of 5 threads for each processor. C

A

, Go and Tokio all obtain effectively the same throughput

performance. Libfibre is slightly behind in this case but still scales decently. As a result of

58

Thread.main() {

count := 0

for {

this.next.wake()

wait()

count ++

if must_stop() { break }

}

global.count += count

}

Figure 7.2: Cycle Benchmark: Pseudo Code

(a) Throughput, 100 cycles per processor (b) Throughput, 1 cycle per processor

(c) Scalability, 100 cycles per processor (d) Scalability, 1 cycle per processor

Figure 7.3: Cycle Benchmark on Intel

Throughput and scalability as a function of processor count, 5 threads per cycle, and different

cycle counts. For throughput, higher is better, for scalability, lower is better. Each series repre-

sents 15 independent runs. The dashed lines are the maximums of each series while the solid

lines are the median and the dotted lines are the minimums.

59

(a) Throughput, 100 cycles per processor (b) Throughput, 1 cycle per processor

(c) Scalability, 100 cycles per processor (d) Scalability, 1 cycle per processor

Figure 7.4: Cycle Benchmark on AMD

Throughput and scalability as a function of processor count, 5 threads per cycle, and different

cycle counts. For throughput, higher is better, for scalability, lower is better. Each series repre-

sents 15 independent runs. The dashed lines are the maximums of each series while the solid

lines are the median and the dotted lines are the minimums.

the kernel-level thread placement, additional processors from 25 to 48 offer less performance

improvement for all runtimes, which can be seen as a flattening of the line. This effect even

causes a decrease in throughput in libfibre’s case. As expected, this pattern repeats between

processor count 72 and 96.

Looking next at the right column on Intel, Figures 7.3b and 7.3d show the results for 1 cycle

of 5 threads for each processor. C

A

and Tokio obtain very similar results overall, but Tokio shows

more variations in the results. Go achieves slightly better performance than C

A

and Tokio, but

all three display significantly worse performance compared to the left column. This decrease

in performance is likely due to the additional overhead of the idle-sleep mechanism. This can

either be the result of processors actually running out of work or simply additional overhead

60

from tracking whether or not there is work available. Indeed, unlike the left column, it is likely

that the ready queue is transiently empty, which likely triggers additional synchronization steps.

Interestingly, libfibre achieves better performance with 1 cycle.

Looking now at the results for the AMD architecture, Figure 7.4, the results are overall

similar to the Intel results, but with close to double the performance, slightly increased variation,

and some differences in the details. Note the maximum of the Y-axis on Intel and AMD differ

significantly. Looking at the left column on AMD, Figures 7.4a and 7.4c, all 4 runtimes achieve

very similar throughput and scalability. However, as the number of processors grows higher,

the results on AMD show notably more variability than on Intel. The different performance

improvements and plateaus are due to cache topology and appear at the expected processor counts

of 64, 128 and 192, for the same reasons as on Intel. Looking next at the right column on AMD,

Figures 7.4b and 7.4d, Tokio and Go have the same throughput performance, while C

A

is slightly

slower. This result is different than on Intel, where Tokio behaved like C

A

rather than behaving

like Go. Again, the same performance increase for libfibre is visible when running fewer threads.

I did not investigate the libfibre performance boost for 1 cycle in this experiment.

The conclusion from both architectures is that all of the compared runtimes have fairly equiv-

alent performance for this micro-benchmark. Clearly, the pathological case with 1 cycle per

processor can affect fairness algorithms managing mostly idle processors, e.g., C

A

, but only at

high core counts. In this case, any helping is likely to cause a cascade of processors running out

of work and attempting to steal. For this experiment, the C

A

scheduler has achieved the goal of

obtaining equivalent performance to other schedulers with lesser fairness guarantees.

7.4 Yield

For completeness, the classic yield benchmark is included. Here, the throughput is domi-

nated by the mechanism used to handle the yield function. Figure 7.5 shows pseudo code for

this benchmark, where the cycle wait/next.wake is replaced by yield. As mentioned, this

benchmark may not be representative because of optimization shortcuts in yield. The only

interesting variable in this benchmark is the number of threads per processors, where ratios close

to 1 means the ready queue(s) can be empty, which again puts a strain on the idle-sleep handling.

7.4.1 Results

Figures 7.6 and 7.7 show the results for the yield experiment on Intel and AMD, respectively.

Looking at the left column on Intel, Figures 7.6a and 7.6c show the results for 100 threads for

each processor. Note that the Y-axis on this graph is twice as large as the Intel cycle graph. A

visual glance between the left columns of the cycle and yield graphs confirms my claim that

the yield benchmark is unreliable. C

A

has no special handling for yield, but this experiment

requires less synchronization than the cycle experiment. Hence, the yield throughput and

scalability graphs have similar shapes to the corresponding cycle graphs. The only difference

is slightly better performance for yield because of less synchronization. Libfibre has special

handling for yield using the fact that the number of ready fibres does not change, and therefore,

bypassing the idle-sleep mechanism entirely. Hence, libfibre behaves very differently in the cycle

61

Thread.main() {

count := 0

for {

yield()

count ++

if must_stop() { break }

}

global.count += count

}

Figure 7.5: Yield Benchmark: Pseudo Code

(a) Throughput, 100 threads per processor (b) Throughput, 1 thread per processor

(c) Scalability, 100 threads per processor (d) Scalability, 1 thread per processor

Figure 7.6: Yield Benchmark on Intel

Throughput and scalability as a function of processor count. For throughput, higher is better,

for scalability, lower is better. Each series represents 15 independent runs. The dashed lines are

the maximums of each series while the solid lines are the median and the dotted lines are the

minimums.

62

and yield benchmarks, with a 4 times increase in performance on the left column. Go has special

handling for yield by putting a yielding goroutine on a secondary global ready-queue, giving

it a lower priority. The result is that multiple hardware threads contend for the global queue

and performance suffers drastically. Hence, Go behaves very differently in the cycle and yield

benchmarks, with a complete performance collapse in yield. Tokio has a similar performance

collapse after 16 processors, and therefore, its special yield handling is probably related to

a Go-like scheduler problem and/or a C

A

idle-sleep problem. (I did not dig through the Rust

code to ascertain the exact reason for the collapse.) Note that since there is no communication

among threads, locality problems are much less likely than for the cycle benchmark. This lack

of communication is probably why the plateaus due to topology are not present.

Looking next at the right column on Intel, Figures 7.6b and 7.6d show the results for 1 thread

for each processor. As for cycle, C

A

’s cost of idle sleep comes into play in a very significant way

in Figure 7.6d, where the scaling is not flat. This result is to be expected since fewer threads mean

processors are more likely to run out of work. On the other hand, when only running 1 thread

per processor, libfibre optimizes further and forgoes the context switch entirely. This results

in libfibre outperforming other runtimes, even more, achieving 8 times more throughput than

for cycle. Finally, Go and Tokio’s performance collapse is still the same with fewer threads.

The only exception is Tokio running on 24 processors, deepening the mystery of its yielding

mechanism further.

Looking now at the results for the AMD architecture, Figure 7.7, the results again show a

story that is overall similar to the results on the Intel, with increased variation and some differ-

ences in the details. Note that the maximum of the Y-axis on Intel and AMD differ less in yield

than cycle. Looking at the left column first, Figures 7.7a and 7.7c, C

A

achieves very similar

throughput and scaling. Libfibre still outpaces all other runtimes, but it encounters a perfor-

mance hit at 64 processors. This anomaly suggests some amount of communication between the

processors that the Intel machine is able to mask where the AMD is not, once hyperthreading

is needed. Go and Tokio still display the same performance collapse as on Intel. Looking next

at the right column on AMD, Figures 7.7b and 7.7d, all runtime systems effectively behave the

same as they did on the Intel machine. At the high threads count, the only difference is Libfibre’s

scaling and this difference disappears on the right column. This behaviour suggests whatever

communication issue it encountered on the left is completely circumvented on the right.

It is difficult to draw conclusions for this benchmark when runtime systems treat yield so

differently. The win for C

A

is its consistency between the cycle and yield benchmarks, making it

simpler for programmers to use and understand, i.e., the C

A

semantics match with programmer

intuition.

7.5 Churn

The Cycle and Yield benchmarks represent an easy scenario for a scheduler, e.g., an embar-

rassingly parallel application. In these benchmarks threads can be easily partitioned over the

different processors upfront and none of the threads communicate with each other.

The Churn benchmark represents more chaotic executions, where there is more communi-

cation among threads but no relationship between the last processor on which a thread ran and

63

(a) Throughput, 100 threads per processor (b) Throughput, 1 thread per processor

(c) Scalability, 100 threads per processor (d) Scalability, 1 thread per processor

Figure 7.7: Yield Benchmark on AMD

Throughput and scalability as a function of processor count. For throughput, higher is better,

for scalability, lower is better. Each series represents 15 independent runs. The dashed lines are

the maximums of each series while the solid lines are the median and the dotted lines are the

minimums.

blocked, and the processor that subsequently unblocks it. With processor-specific ready-queues,

when a thread is unblocked by a different processor, that means the unblocking processor must

either “steal” the thread from another processor or find it on a remote queue. This dequeuing

results in either contention on the remote queue and/or remote memory references on the thread

data structure. Hence, this benchmark has performance dominated by the cache traffic as proces-

sors are constantly accessing each others’ data. In either case, this benchmark aims to measure

how well a scheduler handles these cases since both cases can lead to performance degradation

if not handled correctly.

This benchmark uses a fixed-size array of counting semaphores. Each thread picks a random

semaphore, Vs it to unblock any waiting thread, and then Ps (maybe blocks) the thread on the

64

semaphore. This creates a flow where threads push each other out of the semaphores before

being pushed out themselves. For this benchmark to work, the number of threads must be equal

to or greater than the number of semaphores plus the number of processors; e.g., if there are

10 semaphores and 5 processors, but only 3 threads, all 3 threads can block (P) on a random

semaphore and now there are no threads to unblock (V) them. Note that the nature of these

semaphores means the counter can go beyond 1, which can lead to nonblocking calls to P.

Figure 7.8 shows pseudo code for this benchmark, where the yield is replaced by V and P.

7.5.1 Results

Figures 7.9 and Figure 7.10 show the results for the churn experiment on Intel and AMD,

respectively. Looking at the left column on Intel, Figures 7.9a and 7.9c show the results for 100

threads for each processor, and all runtimes obtain fairly similar throughput for most processor

counts. C

A

does very well on a single processor but quickly loses its advantage over the other

runtimes. As expected, it scales decently up to 48 processors, drops from 48 to 72 processors, and

then plateaus. Tokio achieves very similar performance to C

A

, with the starting boost, scaling

decently until 48 processors, drops from 48 to 72 processors, and starts increasing again to 192

processors. Libfibre obtains effectively the same results as Tokio with slightly less scaling, i.e.,

the scaling curve is the same but with slightly lower values. Finally, Go gets the most peculiar

results, scaling worse than other runtimes until 48 processors. At 72 processors, the results of

the Go runtime vary significantly, sometimes scaling sometimes plateauing. However, beyond

this point Go keeps this level of variation but does not scale further in any of the runs.

Throughput and scalability are notably worse for all runtimes than the previous benchmarks

since there is inherently more communication between processors. Indeed, none of the runtimes

reach 40 million operations per second while in the cycle benchmark all but libfibre reached

400 million operations per second. Figures 7.9c and 7.9d show that for all processor counts,

all runtimes produce poor scaling. However, once the number of hardware threads goes beyond

a single socket, at 48 processors, scaling goes from bad to worse and performance completely

ceases to improve. At this point, the benchmark is dominated by inter-socket communication

costs for all runtimes.

An interesting aspect to note here is that the runtimes differ in how they handle this situation.

Indeed, when a processor unparks a thread that was last run on a different processor, the thread

could be appended to the ready queue of the local processor or to the ready queue of the remote

processor, which previously ran the thread. C

A

, Tokio and Go all use the approach of unparking

to the local processor, while Libfibre unparks to the remote processor. In this particular bench-

mark, the inherent chaos of the benchmark, in addition to the small memory footprint, means

neither approach wins over the other.

Looking next at the right column on Intel, Figures 7.9b and 7.9d show the results for 1

thread for each processor, and many of the differences between the runtimes disappear. C

A

outperforms other runtimes by a minuscule margin. Libfibre follows very closely behind with

basically the same performance and scaling. Tokio maintains effectively the same curve shapes

as C

A

and libfibre, but it incurs extra costs for all processor counts. While Go maintains overall

similar results to the others, it again encounters significant variation at high processor counts.

65

Thread.main() {

count := 0

for {

r := random() % len(spots)

spots[r].V()

spots[r].P()

count ++

if must_stop() { break }

}

global.count += count

}

Figure 7.8: Churn Benchmark: Pseudo Code

(a) Throughput, 100 threads per processor (b) Throughput, 2 threads per processor

(c) Scalability, 100 threads per processor (d) Scalability, 2 threads per processor

Figure 7.9: Churn Benchmark on Intel

Throughput and scalability as a function of processor count. For throughput, higher is better,

for scalability, lower is better. Each series represents 15 independent runs. The dashed lines are

the maximums of each series while the solid lines are the median and the dotted lines are the

minimums.

66

(a) Throughput, 100 threads per processor (b) Throughput, 2 threads per processor

(c) Scalability, 100 threads per processor (d) Scalability, 2 threads per processor

Figure 7.10: Churn Benchmark on AMD

Throughput and scalability as a function of processor count. For throughput, higher is better,

for scalability, lower is better. Each series represents 15 independent runs. The dashed lines are

the maximums of each series while the solid lines are the median and the dotted lines are the

minimums.

Inexplicably resulting in super-linear scaling for some runs, i.e., the scalability curves display a

negative slope.

Interestingly, unlike the cycle benchmark, running with fewer threads does not produce dras-

tically different results. In fact, the overall throughput stays almost exactly the same on the left

and right columns.

Looking now at the results for the AMD architecture, Figure 7.10, the results show a some-

what different story. Looking at the left column first, Figures 7.10a and 7.10c, C

A

, Libfibre

and Tokio all produce decent scalability. C

A

suffers particularly from larger variations at higher

processor counts, but largely outperforms the other runtimes. Go still produces intriguing results

67

in this case and even more intriguingly, the results have fairly low variation.

One possible explanation for Go’s difference is that it has very few available concurrent

primitives, so a channel is substituted for a semaphore. On paper, a semaphore can be replaced

by a channel, and with zero-sized objects passed through the channel, equivalent performance

could be expected. However, in practice, there are implementation differences between the two,

e.g., if the semaphore count can get somewhat high so objects accumulate in the channel. Note

that this substitution is also made in the cycle benchmark; however, in that context, it did not

have a notable impact.

A second possible explanation is that Go may use the heap when allocating variables based

on the result of the escape analysis of the code. It is possible for variables that could be placed

on the stack to instead be placed on the heap. This placement could cause extra pointer chasing

in the benchmark, heightening locality effects. Depending on how the heap is structured, this

could also lead to false sharing. I did not investigate what causes these unusual results.

Looking next at the right column, Figures 7.10b and 7.10d, as for Intel, all runtimes obtain

overall similar throughput between the left and right column. C

A

, Libfibre and Tokio all have

very close results. Go still suffers from poor scalability but is now unusual in a different way.

While it obtains effectively constant performance regardless of processor count, this “sequential”

performance is higher than the other runtimes for low processor count. Up to 32 processors, after

which the other runtimes manage to outscale Go.

In conclusion, the objective of this benchmark is to demonstrate that unparking threads from

remote processors does not cause too much contention on the local queues. Indeed, the fact

that most runtimes achieve some scaling between various processor counts demonstrates migra-

tions do not need to be serialized. Again these results demonstrate that C

A

achieves satisfactory

performance compared to the other runtimes.

7.6 Locality

As mentioned in the churn benchmark, when unparking a thread, it is possible to either unpark

to the local or remote sub-queue.3 The locality experiment includes two variations of the churn

benchmark, where a data array is added. In both variations, before Ving the semaphore, each

thread calls a work function which increments random cells inside the data array. In the noshare

variation, the array is not passed on and each thread continuously accesses its private array. In

the share variation, the array is passed to another thread via the semaphore’s shadow queue (each

blocking thread can save a word of user data in its blocking node), transferring ownership of the

array to the woken thread. Figure 7.11 shows the pseudo code for this benchmark.

The objective here is to highlight the different decisions made by the runtime when unparking.

Since each thread unparks a random semaphore, it means that it is unlikely that a thread is

unparked from the last processor it ran on. In the noshare variation, unparking the thread on the

local processor is an appropriate choice since the data was last modified on that processor. In the

shared variation, unparking the thread on a remote processor is an appropriate choice.

3It is also possible to unpark to a third unrelated sub-queue, but without additional knowledge about the situation,

it is likely to degrade performance.

68

Thread.main() {

count := 0

for {

r := random() % len(spots)

// go through the array

work(a)

spots[r].V()

spots[r].P()

count ++

if must_stop() { break }

}

global.count += count

}

(a) Noshare

Thread.main() {

count := 0

for {

r := random() % len(spots)

// go through the array

work(a)

// pass array to next thread

spots[r].V(a)

a = spots[r].P()

count ++

if must_stop() { break }

}

global.count += count

}

(b) Share

Figure 7.11: Locality Benchmark: Pseudo Code

The expectation for this benchmark is to see a performance inversion, where runtimes fare

notably better in the variation which matches their unparking policy. This decision should lead

to C

A

, Go and Tokio achieving better performance in the share variation while libfibre achieves

better performance in noshare. Indeed, C

A

, Go and Tokio have the default policy of unparking

threads on the local processor, whereas libfibre has the default policy of unparking threads wher-

ever they last ran.

7.6.1 Results

Figures 7.12 and 7.13 show the results for the locality experiment on Intel and AMD, respec-

tively. In both cases, the graphs on the left column show the results for the share variation and

the graphs on the right column show the results for the noshare. Looking at the left column on

Intel, Figures 7.12a and 7.12c show the results for the share variation. C

A

and Tokio slightly

outperform libfibre, as expected, based on their threads placement approach. C

A

and Tokio both

unpark locally and do not suffer cache misses on the transferred array. Libfibre, on the other

hand, unparks remotely, and as such the unparked thread is likely to miss on the shared data.

Go trails behind in this experiment, presumably for the same reasons that were observable in

the churn benchmark. Otherwise, the results are similar to the churn benchmark, with lower

throughput due to the array processing. As for most previous results, all runtimes suffer a perfor-

mance hit after 48 processors, which is the socket boundary, and climb again from 96 to 192

processors.

Looking at the right column on Intel, Figures 7.12b and 7.12d show the results for the noshare

variation. The graphs show the expected performance inversion where libfibre now outperforms

C

A

and Tokio. Indeed, in this case, unparking remotely means the unparked thread is less likely

to suffer a cache miss on the array, which leaves the thread data structure and the remote queue as

the only source of likely cache misses. Results show both are amortized fairly well in this case.

C

A

and Tokio both unpark locally and as a result, suffer a marginal performance degradation

69

(a) Throughput share (b) Throughput noshare

(c) Scalability share (d) Scalability noshare

Figure 7.12: Locality Benchmark on Intel

Throughput and scalability as a function of processor count. For throughput, higher is better,

for scalability, lower is better. Each series represents 15 independent runs. The dashed lines are

the maximums of each series while the solid lines are the median and the dotted lines are the

minimums.

from the cache miss on the array.

Looking at the results for the AMD architecture, Figure 7.13, shows results similar to the

Intel. Again the overall performance is higher and slightly more variation is visible. Looking

at the left column first, Figures 7.13a and 7.13c, C

A

and Tokio still outperform libfibre, this

time more significantly. This advantage is expected from the AMD server with its smaller and

narrower caches that magnify the costs of processing the array. Go still has the same poor

performance as on Intel.

Finally, looking at the right column, Figures 7.13b and 7.13d, like on Intel, the same perfor-

mance inversion is present between libfibre and C

A

/Tokio. Go still has the same poor perfor-

70

(a) Throughput share (b) Throughput noshare

(c) Scalability share (d) Scalability noshare

Figure 7.13: Locality Benchmark on AMD

Throughput and scalability as a function of processor count. For throughput, higher is better,

for scalability, lower is better. Each series represents 15 independent runs. The dashed lines are

the maximums of each series while the solid lines are the median and the dotted lines are the

minimums.

mance.

Overall, this benchmark mostly demonstrates the two options available when unparking a

thread. Depending on the workload, either of these options can be the appropriate one. Since it

is prohibitively difficult to dynamically detect which approach is appropriate, all runtimes much

choose one of the two and live with the consequences.

Once again, these experiments demonstrate that C

A

achieves equivalent performance to the

other runtimes, in this case matching the faster Tokio rather than Go, which is trailing behind.

71

Thread.lead() {

this.idx_seen = ++lead_idx

if lead_idx > stop_idx {

done := true

return

}

// Wait for everyone to acknowledge my leadership

start: = timeNow()

for t in threads {

while t.idx_seen != lead_idx {

asm pause

if (timeNow() start) > 5 seconds { error() }

}

}

// pick next leader

leader := threads[prng() % len(threads)]

// wake everyone

if ! exhaust {

for t in threads {

if t != me { t.wake() }

}

}

}

Thread.wait() {

this.idx_seen := lead_idx

if exhaust { wait() }

else { yield() }

}

Thread.main() {

while !done {

if leader == me { this.lead() }

else { this.wait() }

}

}

Figure 7.14: Transfer Benchmark: Pseudo Code

7.7 Transfer

The last benchmark is more of an experiment than a benchmark. It tests the behaviour of the

schedulers for a misbehaved workload. In this workload, one thread is selected at random to be

the leader. The leader then spins in a tight loop until it has observed that all other threads have

acknowledged its leadership. The leader thread then picks a new thread to be the next leader and

the cycle repeats. The benchmark comes in two variations for the non-leader threads: once they

acknowledged the leader, they either block on a semaphore or spin yielding. Figure 7.14 shows

pseudo code for this benchmark.

The experiment is designed to evaluate the short-term load balancing of a scheduler. Indeed,

72

schedulers where the runnable threads are partitioned on the processors may need to balance the

threads for this experiment to terminate. This problem occurs because the spinning thread is

effectively preventing the processor from running any other thread. In the semaphore variation,

the number of runnable threads eventually dwindles to only the leader. This scenario is a simpler

case to handle for schedulers since processors eventually run out of work. In the yielding vari-

ation, the number of runnable threads stays constant. This scenario is a harder case to handle

because corrective measures must be taken even when work is available. Note that runtimes

with preemption circumvent this problem by forcing the spinner to yield. In C

A

preemption was

disabled as it only obfuscates the results. I am not aware of a method to disable preemption in

Go.

In both variations, the experiment effectively measures how long it takes for all threads to

run once after a given synchronization point. In an ideal scenario where the scheduler is strictly

FIFO, every thread would run once after the synchronization and therefore the delay between

leaders would be given by, NT (CSL+ SL)/(NP− 1), where CSL is the context-switch latency,

SL is the cost for enqueueing and dequeuing a thread, NT is the number of threads, and NP is the

number of processors. However, if the scheduler allows threads to run many times before other

threads can run once, this delay increases. The semaphore version is an approximation of strictly

FIFO scheduling, where none of the threads attempt to run more than once. The benchmark

effectively provides the fairness guarantee in this case. In the yielding version, however, the

benchmark provides no such guarantee, which means the scheduler has full responsibility and

any unfairness is measurable.

While this is an artificial scenario, in real life it requires only a few simple pieces. The

yielding version simply creates a scenario where a thread runs uninterrupted in a saturated system

and the starvation has an easily measured impact. Hence, any thread that runs uninterrupted for

a significant time in a saturated system could lead to this kind of starvation.

7.7.1 Results

Table 7.1 shows the result for the transfer benchmark with 2 processors and all processors on

the computer, where each experiment runs 100 threads per processor. Note that the results here

are only meaningful as a coarse measurement of fairness, beyond which small cost differences

in the runtime and concurrent primitives begin to matter. As such, data points within the same

order of magnitude are considered equal. That is, the takeaway of this experiment is the presence

of very large differences. The semaphore variation is denoted “Park”, where the number of

threads dwindles as the new leader is acknowledged. The yielding variation is denoted “Yield”.

The experiment is only run for a few and many processors since scaling is not the focus of this

experiment.

The first two columns show the results for the semaphore variation on Intel. While there are

some differences in latencies, with C

A

consistently the fastest and Tokio the slowest, all runtimes

achieve fairly close results. Again, this experiment is meant to highlight major differences, so

latencies within 10× of each other are considered equal.

Looking at the next two columns, the results for the yield variation on Intel, the story is

very different. C

A

achieves better latencies, presumably due to the lack of synchronization with

73

Machine Intel AMD

Variation Park Yield Park Yield

processors 2 192 2 192 2 256 2 256

C

A

106 µs 19.9 ms 68.4 µs 1.2 ms 174 µs 28.4 ms 78.8 µs 1.21 ms

libfibre 127 µs 33.5 ms DNC DNC 156 µs 36.7 ms DNC DNC

Go 106 µs 64.0 ms 24.6 ms 74.3 ms 271 µs 121.6 ms 1.21 ms 117.4 ms

Tokio 289 µs 180.6 ms DNC DNC 157 µs 111.0 ms DNC DNC

Table 7.1: Transfer Benchmark on Intel and AMD

Average measurement of how long it takes for all threads to acknowledge the leader thread.

For each runtime, the average is calculated over 100’000 transfers, except for Go which only

has 1000 transfer (due to the difference in transfer time). DNC stands for “did not complete”,

meaning that after 5 seconds of a new leader being decided, some threads still had not acknowl-

edged the new leader.

the yield. Go does complete the experiment, but with drastically higher latency: latency at 2

processors is 350× higher than C

A

and 70× higher at 192 processors. This difference is because

Go has a classic work-stealing scheduler, but it adds coarse-grain preemption, which interrupts

the spinning leader after a period. Neither Libfibre nor Tokio complete the experiment. Both

runtimes also use classical work-stealing scheduling without preemption, and therefore, none of

the work queues are ever emptied so no load balancing occurs.

Looking now at the results for the AMD architecture, the results show effectively the same

story. The first two columns show all runtime obtaining results well within 10× of each other.

The next two columns again show C

A

producing low latencies, while Go still has notably higher

latency but the difference is less drastic on 2 processors, where it produces a 15× difference

as opposed to a 100× difference on 256 processors. Neither Libfibre nor Tokio complete the

experiment.

This experiment clearly demonstrates that C

A

achieves a stronger fairness guarantee. The

semaphore variation serves as a control, where all runtimes are expected to transfer leader-

ship fairly quickly. Since threads block after acknowledging the leader, this experiment effec-

tively measures how quickly processors can steal threads from the processor running the leader.

Table 7.1 shows that while Go and Tokio are slower using the semaphore, all runtimes achieve

decent latency.

However, the yielding variation shows an entirely different picture. Since libfibre and Tokio

have a traditional work-stealing scheduler, processors that have threads on their local queues

never steal from other processors. The result is that the experiment simply does not complete for

these runtimes. Without processors stealing from the processor running the leader, the experi-

ment cannot terminate. Go manages to complete the experiment because it adds preemption on

top of classic work-stealing. However, since preemption is fairly infrequent, it achieves signif-

icantly worse performance. In contrast, C

A

achieves equivalent performance in both variations,

demonstrating very good fairness. Interestingly C

A

achieves better delays in the yielding version

than the semaphore version, however, that is likely due to fairness being equivalent but removing

74

the cost of the semaphores and idle sleep.

75

Chapter 8

Macro-Benchmarks

The previous chapter demonstrated that the C

A

scheduler achieves its equivalent performance

goal in small and controlled thread-scheduling scenarios. The next step is to demonstrate perfor-

mance stays true in more realistic and complete scenarios. Therefore, this chapter exercises both

thread and I/O scheduling using two flavours of web servers that demonstrate that C

A

performs

competitively compared to web servers used in production environments.

Web servers are chosen because they offer fairly simple applications that perform complex

I/O, both network and disk, and are useful as standalone products. Furthermore, web servers are

generally amenable to parallelization since their workloads are mostly homogeneous. Therefore,

web servers offer a stringent performance benchmark for C

A

. Indeed, existing web servers have

close to optimal performance, while the homogeneity of the workload means fairness may not

be a problem. As such, these experiments should highlight the overhead due to any C

A

fairness

cost in realistic scenarios.

The most obvious performance metric for web servers is throughput. This metric generally

measures the speed at which the server answers and relatedly how fast clients can send requests

before the server can no longer keep-up. Another popular performance metric is tail latency,

which indicates some notion of fairness among requests across the experiment, i.e., do some

requests wait longer than other requests for service? Since many web applications rely on a

combination of different queries made in parallel, the latency of the slowest response, i.e., tail

latency, can dictate a performance perception.

8.1 Memcached

Memcached [24] is an in-memory key-value store used in many production environments,

e.g., [17]. The Memcached server is so popular there exists a full-featured front-end for perfor-

mance testing, called mutilate [55]. Experimenting on Memcached allows for a simple test of

the C

A

runtime as a whole, exercising the scheduler, the idle-sleep mechanism, as well as the

I/O subsystem for sockets. Note that this experiment does not exercise the I/O subsystem with

regard to disk operations because Memcached is an in-memory server.

76

8.1.1 Benchmark Environment

The Memcached experiments are run on a cluster of homogeneous Supermicro SYS-6017R-

TDF compute nodes with the following characteristics.

• The server runs Ubuntu 20.04.3 LTS on top of Linux Kernel 5.11.0-34.

• Each node has 2 Intel(R) Xeon(R) CPU E5-2620 v2 running at 2.10GHz.

• Each CPU has 6 cores and 2 hardware threads per core, for a total of 24 hardware threads.

• The machine is configured to run each servers on 12 dedicated hardware threads and uses

6 of the remaining hardware threads for the software interrupt handling [106], resulting in

maximum CPU utilization of 75% (18 / 24 hardware threads)

• A CPU has 384 KB, 3 MB and 30 MB of L1, L2 and L3 caches, respectively.

• The compute nodes are connected to the network through a Mellanox 10 Gigabit Ethernet

port.

• Network routing is performed by a Mellanox SX1012 10/40 Gigabit Ethernet switch.

8.1.2 Memcached threading

Memcached can be built to use multiple threads in addition to its libevent subsystem to

handle requests. When enabled, the threading implementation operates as follows [66, § 16.2.2.8]:

• Threading is handled by wrapping functions within the code to provide basic protection from

updating the same global structures at the same time.

• Each thread uses its own instance of the libevent to help improve performance.

• TCP/IP connections are handled with a single thread listening on the TCP/IP socket. Each

connection is then distributed to one of the active threads on a simple round-robin basis. Each

connection then operates solely within this thread while the connection remains open.

• For UDP connections, all the threads listen to a single UDP socket for incoming requests.

Threads that are currently dealing with another request ignore the incoming packet. One of

the remaining, non-busy, threads reads the request and sends the response. This implemen-

tation can lead to increased CPU load as threads wake from sleep to potentially process the

request.

Here, Memcached is based on an event-based web server architecture [67], using kernel-level

threading to run multiple largely independent event engines, and if needed, spinning up additional

kernel threads to handle blocking I/O. Alternative web server architectures are:

• pipeline [94], where the event engine is subdivided into multiple stages and the stages are

connected with asynchronous buffers, where the final stage has multiple threads to handle

blocking I/O.

• thread-per-connection [14, 92], where each incoming connection is served by a single thread

in a strict 1-to-1 pairing, using the thread stack to hold the event state and folding the event

engine implicitly into the threading runtime with its nonblocking I/O mechanism.

Both pipelining and thread-per-connection add flexibility to the implementation, as the serving

logic can now block without halting the event engine [39].

77

However, kernel-level threading in Memcached is not amenable to this work, which is based

on user-level threading. While it is feasible to layer one user thread per kernel thread, it is not

meaningful as it fails to exercise the user runtime; it simply adds extra scheduling overhead over

the kernel threading. Hence, there is no direct way to compare Memcached using a kernel-level

runtime with a user-level runtime.

Fortunately, there exists a recent port of Memcached to user-level threading based on the

libfibre [49] user-level threading library. This port did all of the heavy-lifting, making it straight-

forward to replace the libfibre user-threading with the user-level threading in C

A

. It is now

possible to compare the original kernel-threading Memcached with both user-threading runtimes

in libfibre and C

A

.

As such, this Memcached experiment compares 3 different variations of Memcached:

• vanilla: the official release of Memcached, version 1.6.9.

• fibre: a modification of vanilla using the thread-per-connection model on top of the libfibre

runtime.

• cfa: a modification of the fibre web server that replaces the libfibre runtime with C

A

.

8.1.3 Throughput

This experiment is done by having the clients establish 15,360 total connections, which

persist for the duration of the experiment. The clients then send read and write queries with

3% writes (updates), attempting to follow a desired query rate, and the server responds to the

desired rate as best as possible. Figure 8.1 shows the 3 server versions at different client rates,

“Target Queries Per Second”, and the actual rate, “Actual QPS”, for all three web servers.

Like the experimental setup in Chapter 7, each experiment is run 15 times, and for each

client rate, the measured web server rate is plotted. The solid line represents the median while

the dashed and dotted lines represent the maximum and minimum respectively. For rates below

500K queries per second, all three web servers match the client rate. Beyond 500K, the web

servers cannot match the client rate. During this interval, vanilla Memcached achieves the highest

web server throughput, with libfibre and C

A

slightly lower but very similar throughput. Overall

the performance of all three web servers is very similar, especially considering that at 500K the

servers have reached saturation, which is discussed more in the next section.

8.1.4 Tail Latency

Figure 8.2 shows the 99th percentile latency results for the same Memcached experiment.

Again, each experiment is run 15 times with the median, maximum and minimum plotted

with different lines. As expected, the latency starts low and increases as the server gets close

to saturation, at which point the latency increases dramatically because the web servers cannot

keep up with the connection rate, so client requests are disproportionally delayed. Because of

this dramatic increase, the Y-axis is presented using a log scale. Note that the graph shows the

target query rate, the actual response rate is given in Figure 8.1 as this is the same underlying

experiment.

78

Figure 8.1: Memcached Benchmark: Throughput

Desired vs Actual query rate for 15,360 connections. Target QPS is the query rate that the clients

are attempting to maintain and Actual QPS is the rate at which the server can respond.

Figure 8.2: Memcached Benchmark: 99th Percentile Latency

99th Percentile of the response latency as a function of desired query rate for 15,360 connections.

79

For all three servers, the saturation point is reached before 500K queries per second, which

is when throughput starts to decline among the web servers. In this experiment, all three web

servers are much more distinguishable than in the throughput experiment. Vanilla Memcached

achieves the lowest latency until 600K, after which all the web servers are struggling to respond

to client requests. C

A

begins to decline at 600K, indicating some bottleneck after saturation.

Overall, all three web servers achieve microsecond latencies and the increases in latency mostly

follow each other.

8.1.5 Update rate

Since Memcached is effectively a simple database, the cache information can be written to

concurrently by multiple queries. And since writes can significantly affect performance, it is

interesting to see how varying the update rate affects performance. Figure 8.3 shows the results

for the same experiment as the throughput and latency experiment but increasing the update

percentage to 5%, 10% and 50%, respectively, versus the original 3% update percentage.

In the end, this experiment mostly demonstrates that the performance of Memcached is

affected very little by the update rate. Indeed, since values read/written can be bigger than

what can be read/written atomically, a lock must be acquired while the value is read. Hence,

I believe the underlying locking pattern for reads and writes is fairly similar, if not the same.

These results suggest Memcached does not attempt to optimize reads/writes using a readers-

writer lock to protect each value and instead just relies on having a sufficient number of keys

to limit contention. In the end, the update experiment shows that C
A

is achieving equivalent

performance.

8.2 Static Web-Server

The Memcached experiment does not exercise two key aspects of the I/O subsystem: accept-

ing new connections and interacting with disks. On the other hand, a web server servicing static

web pages does stress both accepting connections and disk I/O by accepting tens of thousands of

client requests per second where these requests return static data serviced from the file-system

cache or disk.1 The static web server experiment compares NGINX [64] with a custom C

A

-

based web server developed for this experiment. NGINX is a high-performance, full-service,

event-driven web server. It can handle both static and dynamic web content, as well as serve as

a reverse proxy and a load balancer [72]. This wealth of capabilities comes with a variety of

potential configurations, dictating available features and performance. The NGINX server runs

a master process that performs operations such as reading configuration files, binding to ports,

and controlling worker processes. In comparison, the custom C

A

web server was developed

specifically with this experiment in mind. However, nothing seems to indicate that NGINX

suffers from the increased flexibility. When tuned for performance, NGINX appears to achieve

the performance that the underlying hardware can achieve.

1web servers servicing dynamic requests, which read from multiple locations and construct a response, are not as

interesting since creating the response takes more time and does not exercise the runtime in a meaningfully different

way.

80

(a) C

A

: Throughput (b) C

A

: Latency

(c) LibFibre: Throughput (d) LibFibre: Latency

(e) Vanilla: Throughput (f) Vanilla: Latency

Figure 8.3: Throughput and Latency results at different update rates (percentage of writes).

On the left, throughput as Desired vs Actual query rate. Target QPS is the query rate that the

clients are attempting to maintain and Actual QPS is the rate at which the server can respond. On

the right, tail latency, i.e., 99th Percentile of the response latency as a function of desired query

rate. For throughput, higher is better, for tail-latency, lower is better. Each series represent 15

independent runs, the dashed lines are the maximums of each series while the solid lines are the

median and the dotted lines are the minimums.

All runs have 15,360 client connections. 81

8.2.1 NGINX threading

When running as a static web server, NGINX uses an event-driven architecture to service

incoming requests. Incoming connections are assigned a stackless HTTP state machine and

worker processes can handle thousands of these state machines. For the following experi-

ment, NGINX is configured to use epoll to listen for events on these state machines and have

each worker process independently accept new connections. Because of the realities of Linux,

(Subsection 5.1.1), NGINX also maintains a pool of auxiliary threads to handle blocking I/O.

The configuration can set the number of worker processes desired, as well as the size of the

auxiliary pool. However, for the following experiments, NGINX is configured to let the master

process decide the appropriate number of threads.

8.2.2 C

A

web server

The C

A

web server is a straightforward thread-per-connection web server, where a fixed

number of threads are created upfront. Each thread calls accept, through io_uring, on the

listening port and handles the incoming connection once accepted. Most of the implementation

is fairly straightforward; however, the inclusion of file I/O found an io_uring problem that

required an unfortunate workaround.

Normally, web servers use sendfile [78] to send files over a socket because it performs a

direct move in the kernel from the file-system cache to the NIC, eliminating reading/writing

the file into the web server. While io_uring does not support sendfile, it does support

splice [79], which is strictly more powerful. However, because of how Linux implements

file I/O, see Subsection 5.1.1, io_uring must delegate splice calls to worker threads inside the

kernel. As of Linux 5.13, io_uring had no mechanism to restrict the number of worker threads,

and therefore, when tens of thousands of splice requests are made, it correspondingly creates

tens of thousands of internal kernel-level threads. Such a high number of kernel-level threads

slows Linux significantly. Rather than abandon the experiment, the C

A

web server was switched

to sendfile.

Starting with blocking sendfile, C

A

achieves acceptable performance until saturation is

reached. At saturation, latency increases and client connections begin to timeout. As these

clients close their connection, the server must close its corresponding side without delay so the

OS can reclaim the resources used by these connections. Indeed, until the server connection

is closed, the connection lingers in the CLOSE-WAIT TCP state [70] and the TCP buffers are

preserved. However, this poses a problem using blocking sendfile calls: when sendfile

blocks, the processor rather than the thread blocks, preventing other connections from closing

their sockets. The call can block if there is insufficient memory, which can be caused by having

too many connections in the CLOSE-WAIT state.2 This effect results in a negative feedback loop

where more timeouts lead to more sendfile calls running out of resources.

Normally, this problem is addressed by using select/epoll to wait for sockets to have

sufficient resources. However, since io_uring does not support sendfile but does respect non-

2sendfile can always block even in nonblocking mode if the file to be sent is not in the file-system cache,

because Linux does not provide nonblocking disk I/O.

82

blocking semantics, marking all sockets as non-blocking effectively circumvents the io_uring

subsystem entirely: all calls simply immediately return EAGAIN and all asynchronicity is lost.

Switching the entire C

A

runtime to epoll for this experiment is unrealistic and does not

help in the evaluation of the C

A

runtime. For this reason, the C

A

web server sets and resets

the O_NONBLOCK flag before and after any calls to sendfile. However, when the nonblocking

sendfile returns EAGAIN, the C

A

server cannot block the thread because its I/O subsystem

uses io_uring. Therefore, the thread spins performing the sendfile, yields if the call returns

EAGAIN and retries in these cases.

Interestingly, Linux 5.15 io_uring introduces the ability to limit the number of worker

threads that are created through the IORING_REGISTER_IOWQ_MAX_WORKERS option. Presum-

ably, this limit would prevent the explosion of kernel-level threads, which justified using sendfile

over io_uring and splice. However, recall from Section 5.2.1 that io_uring maintains two

pools of workers: bounded workers and unbounded workers. For a web server, the unbounded

workers should handle accepts and reads on sockets, and the bounded workers should handle

reading files from disk. This setup allows fine-grained control over the number of workers needed

for each operation type and presumably leads to good performance.

However, io_uring must contend with another reality of Linux: the versatility of splice.

Indeed, splice can be used both for reading and writing to or from any type of file descriptor.

This generality makes it ambiguous which pool io_uring should delegate splice calls to. In

the case of splicing from a socket to a pipe, splice behaves like an unbounded operation, but

when splicing from a regular file to a pipe, splice becomes a bounded operation. To make

things more complicated, splice can read from a pipe and write to a regular file. In this case,

the read is an unbounded operation but the write is a bounded one. This leaves io_uring in a

difficult situation where it can be very difficult to delegate splice operations to the appropriate

type of worker. Since there is little or no context available to io_uring, it seems to always

delegate splice operations to the unbounded workers. This decision is unfortunate for this

specific experiment since it prevents the web server from limiting the number of parallel calls

to splice without affecting the performance of read or accept. For this reason, the sendfile

approach described above is still the most performant solution in Linux 5.15.

One possible workaround is to create more io_uring instances so splice operations can be

issued to a different instance than the read and accept operations. However, I do not believe this

solution is appropriate in general; it simply replaces my current web server hack with a different,

equivalent hack.

8.2.3 Benchmark Environment

Unlike the Memcached experiment, the web server experiment is run on a heterogeneous

environment.

• The server runs Ubuntu 20.04.4 LTS on top of Linux Kernel 5.13.0-52.

• The server computer has four AMD Opteron™Processor 6380 with 16 cores running at

2.5GHz, for a total of 64 hardware threads.

• The computer is booted with only 8 CPUs enabled, which is sufficient to achieve line rate.

83

• Both servers are setup with enough parallelism to achieve 100% CPU utilization, which

happens at higher request rates.

• Each CPU has 64 KB, 256 KiB and 8 MB of L1, L2 and L3 caches respectively.

• The computer is booted with only 25GB of memory to restrict the file-system cache.

There are 8 client machines.

• A client runs a 2.6.11-1 SMP Linux kernel, which permits each client load generator to run

on a separate CPU.

• It has two 2.8 GHz Xeon CPUs, and four one-gigabit Ethernet cards.

• Network routing is performed by an HP 2530 10 Gigabit Ethernet switch.

• A client machine runs two copies of the workload generator.

The clients and network are sufficiently provisioned to drive the server to saturation and beyond.

Hence, any server effects are attributable solely to the runtime system and web server. Finally,

without restricting the server hardware resources, it is impossible to determine if a runtime

system or the web server using it has any specific design restrictions, e.g., using space to reduce

time. Trying to determine these restrictions with large numbers of processors or memory simply

means running equally large experiments, which take longer and are harder to set up.

8.2.4 Throughput

To measure web server throughput, the server computer is loaded with 21,600 files, sharded

across 650 directories, occupying about 2.2GB of disk, distributed over the server’s RAID-5 4-

drives to achieve high throughput for disk I/O. The clients run httperf [60] to request a set of

static files. The httperf load generator is used with session files to simulate a large number of

users and to implement a partially open-loop system. This permits httperf to produce overload

conditions, generate multiple requests from persistent HTTP/1.1 connections, and include both

active and inactive off periods to model browser processing times and user think times [19].

The experiments are run with 16 clients, each running a copy of httperf (one copy per CPU),

requiring a set of 16 log files with requests conforming to a Zipf distribution. This distribution

is representative of users accessing static data through a web browser. Each request reads a file

name from its trace, establishes a connection, performs an HTTP GET request for the file name,

receives the file data, closes the connection, and repeats the process. Some trace elements have

multiple file names that are read across a persistent connection. A client times out if the server

does not complete a request within 10 seconds.

An experiment consists of running a server with request rates ranging from 10,000 to 70,000

requests per second; each rate takes about 5 minutes to complete. There are 20 seconds of idle

time between rates and between experiments to allow connections in the TIME-WAIT state to

clear. Server throughput is measured both at peak and after saturation (i.e., after peak). Peak

indicates the level of client requests the server can handle and after peak indicates if a server

degrades gracefully. Throughput is measured by aggregating the results from httperf for all the

clients.

84

Table 8.1: Cumulative memory for requests by file size

% Requests 10 30 50 70 80 90 95 100

Memory (MB) 0.5 1.5 8.4 12.2 20.1 94.3 126.5 2,291.6

File Size (B) 409 716 4,096 5,120 7,168 40,960 51,200 921,600

This experiment can be done for two workload scenarios by reconfiguring the server with

different amounts of memory: 25 GB and 2.5 GB. The two workloads correspond to in-memory

and disk-I/O respectively. Due to the Zipf distribution, only a small amount of memory is needed

to service a significant percentage of requests. Table 8.1 shows the cumulative memory required

to satisfy the specified percentage of requests; e.g., 95% of the requests come from 126.5 MB of

the file set and 95% of the requests are for files less than or equal to 51,200 bytes. Interestingly,

with 2.5 GB of memory, significant disk-I/O occurs.

Figure 8.4 shows the results comparing C

A

to NGINX in terms of throughput. These results

are fairly straightforward. Both servers achieve the same throughput until around 57,500 requests

per second. Since the clients are asking for the same files, the fact that the throughput matches

exactly is expected as long as both servers are able to serve the request rate. Once the saturation

point is reached, both servers are still very close. NGINX achieves slightly better throughput.

However, Figure 8.4b shows the rate of errors, a gross approximation of tail latency, where C

A

achieves notably fewer errors once the servers reach saturation. This suggests C

A

is slightly fairer

with less throughput, while NGINX sacrifices fairness for more throughput. This experiment

demonstrates that the C

A

web server is able to match the performance of NGINX up to and

beyond the saturation point of the machine.

8.2.5 Disk Operations

With 25GB of memory, the entire experimental file-set plus the web server and OS fit in

memory. If memory is constrained, the OS must evict files from the file cache, which causes

sendfile to read from disk.3 web servers can behave very differently once file I/O begins and

increases. Hence, prior work [38] suggests running both kinds of experiments to test overall web

server performance.

However, after reducing memory to 2.5GB, the problem with splice and io_uring rears

its ugly head again. Indeed, in the in-memory configuration, replacing splice with calls to

sendfile works because the bounded side basically never blocks. Like splice, sendfile is

in a situation where the read side requires bounded blocking, e.g., reading from a regular file,

while the write side requires unbounded blocking, e.g., blocking until the socket is available for

writing. The unbounded side can be handled by yielding when it returns EAGAIN, as mentioned

above, but this trick does not work for the bounded side. The only solution for the bounded side

is to spawn more threads and let these handle the blocking.

Supporting this case in the web server would require creating more processors or creating a

dedicated thread pool. However, I felt this kind of modification moves too far away from my goal

3For the in-memory experiments, the file-system cache was warmed by running an experiment three times before

measuring started to ensure all files are in the file-system cache.

85

(a) Throughput

(b) Rate of Errors

Figure 8.4: Static web server Benchmark: Throughput

Throughput vs request rate for short-lived connections.

86

of evaluating the C

A

runtime, i.e., it begins writing another runtime system; hence, I decided to

forgo experiments on low-memory performance.

87

Part IV

Conclusion & Annexes

88

Chapter 9

Conclusion

Building the C

A

runtime has been a challenging project. The work was divided between

high-level concurrency design and a user-level threading runtime (Masters’ thesis), and low-level

support of the user-level runtime using OS kernel threading and its (multiple) I/O subsystems

(Ph.D. thesis). Because I am the main developer for both components of this project, there is

strong continuity across the design and implementation. This continuity provides a consistent

approach to advanced control flow and concurrency, with easier development, management and

maintenance of the runtime in the future.

I believed my Masters’ work would provide the background to make the Ph.D. work reason-

ably straightforward. However, I discovered two significant challenges.

First, modern symmetric multiprocessing CPUs have significant performance penalties for

communication, often cache-related. An SQMS scheduler (see Section 1.1), with its processor-

shared ready-queue, has perfect load-balancing but poor affinity resulting in high communication

across processors. An MQMS scheduler, with its processor-specific ready-queues, has poor load-

balancing but perfect affinity often resulting in significantly reduced communication. However,

implementing fairness for an MQMS scheduler is difficult, since fairness requires processors to

be aware of each other’s ready-queue progress, i.e., communicated knowledge. For balanced

workloads with little or no data sharing, i.e., embarrassingly parallel, an MQMS scheduler is

near optimal, e.g., a state-of-the-art work-stealing scheduler. For these kinds of fair workloads,

adding fairness must be low-cost to hide the communication costs needed for global ready-queue

progress or performance suffers. While I was aware of these realities, I underestimated how

little performance margin there is for communication. Several of my attempts at building a

fair scheduler compared poorly to work-stealing schedulers because of the thin communication

margin.

Second, the kernel locking, threading, and I/O in the Linux operating system offer very little

flexibility and are not designed to facilitate user-level threading. There are multiple concurrency

aspects in Linux that require carefully following a strict procedure to achieve acceptable perfor-

mance. To be fair, many of these concurrency aspects were designed 30-40 years ago, when there

were few multiprocessor computers and concurrency knowledge was just developing. Unfortu-

nately, little has changed in the intervening years.

Also, my decision to use io_uring was both positive and negative. The positive is that

io_uring supports the panoply of I/O mechanisms in Linux; hence, the C

A

runtime uses one

89

I/O mechanism to provide non-blocking I/O, rather than using select to handle TTY I/O, epoll

to handle network I/O, and managing a thread pool to handle disk I/O. Merging all these different

I/O mechanisms into a coherent scheduling implementation would require much more work than

what is present in this thesis, as well as detailed knowledge of multiple I/O mechanisms. The

negative is that io_uring is new and developing. As a result, there is limited documentation,

few places to find usage examples, and multiple errors that required workarounds.

Given what I now know about io_uring, I would say it is insufficiently coupled with the

Linux kernel to properly handle non-blocking I/O. It does not seem to reach deep into the kernel’s

handling of I/O, and as such it must contend with the same realities that users of epoll must

contend with. Specifically, in cases where O_NONBLOCK behaves as desired, operations must

still be retried. Preserving the illusion of asynchronicity requires delegating these operations

to kernel threads. This requirement is also true of cases where O_NONBLOCK does not prevent

blocking. Spinning up internal kernel threads to handle blocking scenarios is what developers

already do outside of the kernel, and managing these threads adds a significant burden to the

system. Nonblocking I/O should not be handled in this way. Presumably, this is better handled

by Windows’s “overlapped I/O”, however porting C

A

to Windows is far beyond the scope of this

work.

9.1 Goals

This work focuses on efficient and fair scheduling of the multiple CPUs, which are ubiquitous

on all modern computers. The levels of indirection to the CPUs are:

• The C

A

presentation of concurrency through multiple high-level language constructs.

• The OS presentation of concurrency through multiple kernel threads within an application.

• The OS and library presentation of disk and network I/O, and many secondary library routines

that directly and indirectly use these mechanisms.

The key aspect of all of these mechanisms is that control flow can block, which immediately

hinders any level above from making scheduling decisions as a result. Fundamentally, scheduling

needs to understand all the mechanisms used by threads that affect their state changes.

The underlying goal of this thesis is scheduling the complex hardware components that make

up a computer to provide good utilization and fairness. However, direct hardware scheduling is

only possible in the OS. Instead, this thesis is performing arms-length application scheduling of

the hardware components through a set of OS interfaces that indirectly manipulate the hardware

components. This can quickly lead to tensions when the OS interface has different use cases in

mind.

As C

A

aims to increase productivity and safety of C, while maintaining its performance, this

places a huge burden on the C

A

runtime to achieve these goals. Productivity and safety manifest

in removing scheduling pitfalls from the efficient usage of the threading runtime. Performance

manifests in making efficient use of the underlying kernel threads that provide indirect access to

the CPUs.

This thesis achieves its stated contributions by presenting:

90

1. A scalable low-latency scheduler that offers improved starvation prevention (progress guar-

antee) compared to other state-of-the-art schedulers, including NUMA awareness.

2. The scheduler demonstrates a core algorithm that provides increased fairness through helping,

as well as optimizations which virtually remove the cost of this fairness.

3. An implementation of user-level I/O blocking is incorporated into the scheduler, which achieves

the same performance and fairness balance as the scheduler itself.

4. These core algorithms are further extended with a low-latency idle-sleep mechanism, which

allows the C

A

runtime to stay viable for workloads that do not consistently saturate the system.

Finally, the complete scheduler is fairly simple with low-cost execution, meaning the total cost

of scheduling during thread state changes is low.

9.2 Future Work

While the C

A

runtime achieves a better compromise than other schedulers, in terms of perfor-

mance and fairness, I believe further improvements can be made to reduce or eliminate the few

cases where performance does deteriorate. Fundamentally, achieving performance and starvation

freedom will always be goals with opposing needs even outside of scheduling algorithms.

9.2.1 Idle Sleep

A difficult challenge, not fully addressed in this thesis, is idle sleep. While a correct and

somewhat low-cost idle-sleep mechanism is presented, several of the benchmarks show notable

performance degradation when too few threads are present in the system. The idle sleep mech-

anism could therefore benefit from a reduction of spurious cases of sleeping. Furthermore, this

thesis did not present any heuristic for when processors should be put to sleep and when proces-

sors should be woken up. While relaxed timestamps and topology awareness made notable

performance improvements, neither of these techniques are used for the idle-sleep mechanism.

Here are opportunities where these techniques could be used:

• The mechanism uses a handshake between notification and sleep to ensure that no thread is

missed.

• The handshake correctness is critical when the last processor goes to sleep but could be

relaxed when several processors are awake.

• Furthermore, organizing the sleeping processors as a LIFO stack makes sense to keep cold

processors as cold as possible, but it might be more appropriate to attempt to keep cold CPU

sockets instead.

However, using these techniques would require significant investigation. For example, keeping

a CPU socket cold might be appropriate for power consumption reasons but can affect overall

memory bandwidth. The balance between these approaches is not obvious. I am aware there is a

host of low-power research that could be tapped here.

91

9.2.2 CPU Workloads

A performance consideration related to idle sleep is cpu utilization, i.e., how easy is it CPU

utilization generally becomes an issue for workloads that are compute bound but where the

dependencies among threads can prevent the scheduler from easily. Examining such workloads

in the context of scheduling would be interesting. However, such workloads are inherently more

complex than applications examined in this thesis, and as such warrant it’s own work.

9.2.3 Hardware

One challenge that needed to be overcome for this thesis is that the modern x86-64 processors

have very few tools to implement fairness. Processors attempting to help each other inherently

cause cache-coherence traffic. However, as mentioned in Section 4.4, relaxed requirements mean

this traffic is not necessarily productive. In cases like this one, there is an opportunity to improve

performance by extending the hardware.

Many different extensions are suitable here. For example, when attempting to read remote

timestamps for helping, it would be useful to allow cancelling the remote read if it leads to

significant latency. If the latency is due to a recent cache invalidation, it is unlikely the timestamp

is old and that helping is needed. As such, simply moving on without the result is likely to be

acceptable. Another option is to read multiple memory addresses and only wait for one of these

reads to retire. This approach has a similar effect, where cache lines with more traffic are waited

on less often. In both of these examples, some care is needed to ensure that reads to an address

sometimes retire.

Note that this idea is similar to Hardware Transactional Memory [110], which allows groups

of instructions to be aborted and rolled back if they encounter memory conflicts when being

retired. However, I believe this feature is generally aimed at large groups of instructions. A more

fine-grained approach may be more amenable by carefully picking which aspects of an algorithm

require exact correctness and which do not.

92

References

[1] https://www.baeldung.com/openjdk-project-loom.

[2] https://kotlinlang.org/docs/multiplatform-mobile-concurrency-and-coroutines.html.

[3] https://www.baeldung.com/java-fork-join.

[4] CFS scheduler - the linux kernel documentation. https://www.kernel.org/doc/html/latest/-

scheduler/sched-design-CFS.html.

[5] Reworking CFS load balancing. https://lwn.net/Articles/793427, 2019.

[6] SCHED(7) - Linux Programmer’s Manual, august 2019.

[7] KQUEUE(2) - FreeBSD System Calls Manual, may 2020.

[8] Umut A. Acar, Guy E. Blelloch, and Robert D. Blumofe. The data locality of work

stealing. Theory Comput. Syst., 35(3):321–347, 2002.

[9] accept(2) Linux User’s Manual, March 2019.

[10] Kunal Agrawal, Jeremy T. Fineman, Kefu Lu, Brendan Sheridan, Jim Sukha, and Robert

Utterback. Provably good scheduling for parallel programs that use data structures through

implicit batching. In Guy E. Blelloch and Peter Sanders, editors, 26th ACM Symposium

on Parallelism in Algorithms and Architectures, SPAA ’14, Prague, Czech Republic - June

23 - 25, 2014, pages 84–95. ACM, 2014.

[11] Kunal Agrawal, Charles E. Leiserson, and Jim Sukha. Helper locks for fork-join parallel

programming. In R. Govindarajan, David A. Padua, and Mary W. Hall, editors, Proceed-

ings of the 15th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPOPP 2010, Bangalore, India, January 9-14, 2010, pages 245–256.

ACM, 2010.

[12] Susanne Albers and Antonios Antoniadis. Race to idle: New algorithms for speed scaling

with a sleep state. In Proceedings of the 2012 Annual ACM-SIAM Symposium on Discrete

Algorithms (SODA), pages 1266–1285, January 2012.

[13] Dan Alistarh, Trevor Brown, Justin Kopinsky, and Giorgi Nadiradze. Relaxed schedulers

can efficiently parallelize iterative algorithms. In Proceedings of the 2018 ACM Sympo-

sium on Principles of Distributed Computing, pages 377–386, 2018.

[14] The Apache web server. http://httpd.apache.org. [Online; accessed 6-June-2022].

93

https://www.baeldung.com/openjdk-project-loom
https://kotlinlang.org/docs/multiplatform-mobile-concurrency-and-coroutines.html
https://www.baeldung.com/java-fork-join
https://www.kernel.org/doc/html/latest/scheduler/sched-design-CFS.html
https://lwn.net/Articles/793427
http://httpd.apache.org

[15] Apple Inc. Mach Scheduling and Thread Interfaces - Kernel Programming

Guide. https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/-

KernelProgramming/scheduler/scheduler.html.

[16] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for multi-

programmed multiprocessors. Theory Comput. Syst., 34(2):115–144, 2001.

[17] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Work-

load analysis of a large-scale key-value store. In Proceedings of the 12th ACM SIGMET-

RICS/PERFORMANCE joint international conference on Measurement and Modeling of

Computer Systems, pages 53–64, 2012.

[18] Jens Axboe. Efficient io with io uring. https://kernel.dk/io uring.pdf, March 2019.

[19] Paul Barford and Mark Crovella. Generating representative web workloads for network

and server performance evaluation. In Proc. of ACM SIGMETRICS 1998, Madison, Wis.,

1998.

[20] Michael A. Bender and Michael O. Rabin. Online scheduling of parallel programs on

heterogeneous systems with applications to cilk. Theory Comput. Syst., 35(3):289–304,

2002.

[21] Petra Berenbrink, Tom Friedetzky, and Leslie Ann Goldberg. The natural work-stealing

algorithm is stable. SIAM J. Comput., 32(5):1260–1279, 2003.

[22] Guy E. Blelloch, Phillip B. Gibbons, and Yossi Matias. Provably efficient scheduling for

languages with fine-grained parallelism. J. ACM, 46(2):281–321, 1999.

[23] Robert D. Blumofe. Scheduling multithreaded computations by work stealing. In 35th

Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA,

20-22 November 1994, pages 356–368. IEEE Computer Society, 1994.

[24] Memcached. http://httpd.apache.org, 2003. [Online; accessed 6-June-2022].

[25] F. Warren Burton and M. Ronan Sleep. Executing functional programs on a virtual tree of

processors. In Arvind and Jack B. Dennis, editors, Proceedings of the 1981 conference on

Functional programming languages and computer architecture, FPCA 1981, Wentworth,

New Hampshire, USA, October 1981, pages 187–194. ACM, 1981.

[26] C∀ Features. https://plg.uwaterloo.ca/∼cforall/features.

[27] Kate Chase and Mark E. Russinovich. Windows Internals, chapter Processes, Threads,

and Jobs in the Windows Operating System. Developer Reference. Microsoft Press, 5th

edition edition, June 2009.

[28] Richard Cole and Vijaya Ramachandran. Analysis of randomized work stealing with false

sharing. In 27th IEEE International Symposium on Parallel and Distributed Processing,

IPDPS 2013, Cambridge, MA, USA, May 20-24, 2013, pages 985–998. IEEE Computer

Society, 2013.

[29] Jonathan Corbet. Per-entity load tracking. LWN article, available at: https://lwn.net/-

Articles/531853, 2013.

94

https://developer.apple.com/library/archive/documentation/Darwin/Conceptual/KernelProgramming/scheduler/scheduler.html
https://kernel.dk/io_uring.pdf
http://httpd.apache.org
https://plg.uwaterloo.ca/~cforall/features
https://lwn.net/Articles/531853

[30] Thierry Delisle. Scheduling benchmarks. https://github.com/cforall/Scheduling-

Benchmarks PhD22.

[31] Thierry Delisle. Concurrency in C∀. Master’s thesis, School of Computer Science, Univer-

sity of Waterloo, 2018. https://uwspace.uwaterloo.ca/handle/10012/12888.

[32] Thierry Delisle and Peter A. Buhr. Advanced control-flow and concurrency in C∀. Softw.

Pract. Exper., 51(5):1005–1042, May 2021. https://onlinelibrary.wiley.com/doi/10.1002/-

spe.2925.

[33] Derek L. Eager, Edward D. Lazowska, and John Zahorjan. A comparison of receiver-

initiated and sender-initiated adaptive load sharing. Perform. Evaluation, 6(1):53–68,

1986.

[34] epoll(7) Linux User’s Manual, March 2019.

[35] eventfd(2) Linux User’s Manual, March 2019.

[36] Nicolas Gast and Bruno Gaujal. A mean field model of work stealing in large-scale

systems. In Vishal Misra, Paul Barford, and Mark S. Squillante, editors, SIGMETRICS

2010, Proceedings of the 2010 ACM SIGMETRICS International Conference on Measure-

ment and Modeling of Computer Systems, New York, New York, USA, 14-18 June 2010,

pages 13–24. ACM, 2010.

[37] Robert H. Halstead, Jr. Multilisp: A language for concurrent symbolic programming.

Transactions on Programming Languages and Systems, 7(4):501–538, October 1985.

[38] Ashif Harji. Performance Comparison of Uniprocessor and Multiprocessor Web Server

Architectures. PhD thesis, University of Waterloo, Waterloo, Ontario, Canada, N2L 3G1,

February 2010. http://uwspace.uwaterloo.ca/bitstream/10012/5040/1/Harji thesis.pdf.

[39] Ashif S. Harji, Peter A. Buhr, and Tim Brecht. Comparing high-performance multi-core

web-server architectures. In Proceedings of the 5th Annual International Systems and

Storage Conference, SYSTOR ’12, pages 1:1–1:12, New York, NY, USA, June 2012.

ACM.

[40] IBM. Serially reusable programs. https://www.ibm.com/docs/en/ztpf/1.1.0.15?-

topic=structures-serially-reusable-programs, March 2021.

[41] IEEE and The Open Group. Pthread.h, specifications issue 7, IEEE std 1003.1-2017.

http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html, 2018.

[42] IEEE and The Open Group. 1003.1 Standard for Information Technology – Portable

Operating System Interface (POSIX), Base Specifications, Issue 7, 2017. https://-

pubs.opengroup.org/onlinepubs/9699919799.

[43] Apple Inc. Grand central dispatch, a better way to do multicore. Technical report, August

2009. [Online; accessed 5-August-2022].

[44] Apple Inc. Grand Central Dispatch, 2022. [Online; accessed 5-August-2022].

[45] Intel®. Scheduling Algorithm - Intel® Threading Building Blocks Developer Reference.

[46] Intel® 64 and IA-32 Architectures Software Developer’s Manual, volume 3B: System

Programming Guide, Part 2. Intel®, 2016.

95

https://github.com/cforall/SchedulingBenchmarks_PhD22
https://uwspace.uwaterloo.ca/handle/10012/12888
https://onlinelibrary.wiley.com/doi/10.1002/spe.2925
https://www.ibm.com/docs/en/ztpf/1.1.0.15?topic=structures-serially-reusable-programs
http://pubs.opengroup.org/onlinepubs/9699919799/basedefs/pthread.h.html
https://pubs.opengroup.org/onlinepubs/9699919799

[47] Marty Kalin. CFS: Completely fair process scheduling in linux. https://opensource.com/-

article/19/2/fair-scheduling-linux, February 2019.

[48] Martin Karsten. libfibre: User-Level Threading Runtime. https://git.uwaterloo.ca/-

mkarsten/libfibre. [Online; accessed 2020-04-15].

[49] Martin Karsten and Saman Barghi. User-level threading: Have your cake and eat it too.

Proc. ACM Meas. Anal. Comput. Syst., 4(1):17:1–17:30, 2020.

[50] Martin Karsten and Saman Barghi. User-level Threading: Have Your Cake and Eat It Too.

Proc. ACM Meas. Anal. Comput. Syst., 4(1), June 2020.

[51] Ericsson AB Kenneth Lundin. Inside the erlang vm. In Erlang User Conference, 2008.

[52] The Go Programming Language. cgo. . [Online; accessed 5-August-2022].

[53] The Go Programming Language. Github - the go programming language. https://-

github.com/golang/go.

[54] The Go Programming Language. src/runtime/preempt.go. . [Online; accessed 5-August-

2022].

[55] Jacob Leverich. Mutilate: high-performance memcached load generator. https://-

github.com/leverich/mutilate.

[56] libuv team. libuv: Asynchronous i/o made simple. https://libuv.org/. [Online; accessed

5-August-2022].

[57] Jean-Pierre Lozi, Baptiste Lepers, Justin R. Funston, Fabien Gaud, Vivien Quéma, and

Alexandra Fedorova. The linux scheduler: a decade of wasted cores. In Cristian Cadar,

Peter R. Pietzuch, Kimberly Keeton, and Rodrigo Rodrigues, editors, Proceedings of the

Eleventh European Conference on Computer Systems, EuroSys 2016, London, United

Kingdom, April 18-21, 2016, pages 1:1–1:16. ACM, 2016.

[58] Seung-Jai Min, Costin Iancu, and Katherine Yelick. Hierarchical work stealing on many-

core clusters. In Fifth Conference on Partitioned Global Address Space Programming

Models (PGAS11), volume 625. Citeseer, 2011.

[59] Ravi Mirchandaney, Donald F. Towsley, and John A. Stankovic. Adaptive load sharing in

heterogeneous distributed systems. J. Parallel Distributed Comput., 9(4):331–346, 1990.

[60] David Mosberger and Tai Jin. httperf tool for measuring web server performance. ACM

SIGMETRICS, 26(3):31–37, 1998.

[61] Aaron Moss, Robert Schluntz, and Peter A. Buhr. C∀ : Adding modern programming

language features to C. Softw. Pract. Exper., 48(12):2111–2146, December 2018. http://-

dx.doi.org/10.1002/spe.2624.

[62] Randall Munroe. 908: The cloud. https://xkcd.com/908/, June 2011. [Online; accessed

25-August-2022].

[63] Randall Munroe. 2318: Dynamic entropy. https://xkcd.com/2318/, June 2020. [Online;

accessed 10-June-2020].

[64] NGINX. https://www.nginx.com.

96

https://opensource.com/article/19/2/fair-scheduling-linux
https://git.uwaterloo.ca/mkarsten/libfibre
https://pkg.go.dev/cmd/cgo
https://github.com/golang/go
https://go.dev/src/runtime/preempt.go
https://github.com/leverich/mutilate
https://libuv.org/
http://dx.doi.org/10.1002/spe.2624
https://xkcd.com/908/
https://xkcd.com/2318/
https://www.nginx.com

[65] open(2) Linux User’s Manual, February 2020.

[66] Oracle. Mysql 5.6 reference manual including mysql ndb cluster 7.3-7.4 reference guide.

https://docs.oracle.com/cd/E17952 01/mysql-5.6-en/ha-memcached-using-threads.html.

[Online; accessed 5-August-2022].

[67] Vivek S. Pai, Peter Druschel, and Willy Zwaenepoel. Flash: An efficient and portable

Web server. In Proceedings of the 1999 USENIX Annual Technical Conference, Monterey,

California, U.S.A., June 1999. USENIX Association.

[68] Parallel Universe. Quasar Core - Quasar User Manual.

[69] poll(2) Linux User’s Manual, July 2019.

[70] Jon Postel. Transmission control protocol. Technical report, 1981.

[71] Chet Ramey and Brian Fox. Bash Reference Manual, December 2020.

[72] Will Reese. Nginx: the high-performance web server and reverse proxy. Linux Journal,

2008(173):2, 2008.

[73] Haris Ribic and Yu David Liu. Energy-efficient work-stealing language runtimes. ACM

SIGARCH Computer Architecture News, 42(1):513–528, 2014.

[74] Jeff Roberson. ULE: A modern scheduler for freebsd. In Gregory Neil Shapiro, editor,

Proceedings of BSDCon 2003, San Mateo, California, USA, September 8-12, 2003, pages

17–28. USENIX, 2003.

[75] M.E. Russinovich, D.A. Solomon, and A. Ionescu. Windows Internals. Developer Refer-

ence Series. Microsoft Press, 2009.

[76] Benoit Schillings. Be engineering insights: Benaphores. Be Newsletters, 1(26), 1996.

[77] select(2) Linux User’s Manual, March 2019.

[78] sendfile(2) Linux User’s Manual, September 2017.

[79] splice(2) Linux User’s Manual, May 2019.

[80] Mark S. Squillante and Edward D. Lazowska. Using processor-cache affinity informa-

tion in shared-memory multiprocessor scheduling. IEEE Trans. Parallel Distributed Syst.,

4(2):131–143, 1993.

[81] Mark S. Squillante and Randolph D. Nelson. Analysis of task migration in shared-memory

multiprocessor scheduling. In Tom W. Keller, editor, Proceedings of the 1991 ACM

SIGMETRICS conference on Measurement and modeling of computer systems, San Diego,

California, USA, May 21-24, 1991, pages 143–155. ACM, 1991.

[82] Warut Suksompong, Charles E. Leiserson, and Tao B. Schardl. On the efficiency of local-

ized work stealing. Inf. Process. Lett., 116(2):100–106, 2016.

[83] Synchronous and Asynchronous IO, March 2021. [Online; accessed 5-August-2022].

[84] TaskSettings.Priority property, September 2020. [Online; accessed 5-August-2022].

[85] Marc Tchiboukdjian, Nicolas Gast, and Denis Trystram. Decentralized list scheduling.

Ann. Oper. Res., 207(1):237–259, 2013.

97

https://docs.oracle.com/cd/E17952_01/mysql-5.6-en/ha-memcached-using-threads.html

[86] Marc Tchiboukdjian, Nicolas Gast, Denis Trystram, Jean-Louis Roch, and Julien Bernard.

A tighter analysis of work stealing. In Otfried Cheong, Kyung-Yong Chwa, and Kunsoo

Park, editors, Algorithms and Computation - 21st International Symposium, ISAAC 2010,

Jeju Island, Korea, December 15-17, 2010, Proceedings, Part II, volume 6507 of Lecture

Notes in Computer Science, pages 291–302. Springer, 2010.

[87] Threading Model. Thread (computing). https://en.wikipedia.org/wiki/Thread -

(computing).

[88] Tokio. Tokio asynchronous runtime for Rust. https://tokio.rs.

[89] Christopher Torng, Moyang Wang, and Christopher Batten. Asymmetry-aware work-

stealing runtimes. In 2016 ACM/IEEE 43rd Annual International Symposium on Computer

Architecture (ISCA), pages 40–52. IEEE, 2016.

[90] Linus Torvalds. Re: [patch 09/13] aio: add support for async openat(). https://lwn.net/-

Articles/671657, January 2016. [Online; accessed 6-June-2022].

[91] BRWACRR Vikranth, Rajeev Wankar, and C Raghavendra Rao. Topology aware task

stealing for on-chip numa multi-core processors. Procedia Computer Science, 18:379–

388, 2013.

[92] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Necula, and Eric Brewer.

Capriccio: Scalable threads for internet services. In Proceedings of the 19th ACM Sympo-

sium on Operating Systems Principles, pages 268–281, New York, NY, USA, 2003. ACM

Press.

[93] Dmitry Vyukov. Go scheduler: Implementing language with lightweight concurrency. In

Hydra, 2019.

[94] Matt Welsh, David Culler, and Eric Brewer. SEDA: An architecture for well-conditioned,

scalable internet services. SIGOPS Oper. Syst. Rev., 35(5):230–243, October 2001.

[95] Wikipedia contributors. Explicit parallelism — Wikipedia, the free encyclopedia. https://-

en.wikipedia.org/wiki/Explicit parallelism, 2017. [Online; accessed 23-October-2020].

[96] Wikipedia contributors. Control theory — Wikipedia, the free encyclopedia. https://-

en.wikipedia.org/wiki/Task parallelism, 2020. [Online; accessed 22-October-2020].

[97] Wikipedia contributors. Futures and promises — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Futures and promises, 2020. [Online; accessed 9-February-

2021].

[98] Wikipedia contributors. Implicit parallelism — Wikipedia, the free encyclopedia. https://-

en.wikipedia.org/wiki/Implicit parallelism, 2020. [Online; accessed 23-October-2020].

[99] Wikipedia contributors. Linear congruential generator — Wikipedia, the free ency-

clopedia. https://en.wikipedia.org/wiki/Linear congruential generator, 2020. [Online;

accessed 2-January-2021].

[100] Wikipedia contributors. Task parallelism — Wikipedia, the free encyclopedia. https://-

en.wikipedia.org/wiki/Control theory, 2020. [Online; accessed 22-October-2020].

98

https://en.wikipedia.org/wiki/Thread_(computing)
https://tokio.rs
https://lwn.net/Articles/671657
https://en.wikipedia.org/wiki/Explicit_parallelism
https://en.wikipedia.org/wiki/Task_parallelism
https://en.wikipedia.org/wiki/Futures_and_promises
https://en.wikipedia.org/wiki/Implicit_parallelism
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Control_theory

[101] Wikipedia contributors. Java native interface — Wikipedia, the free encyclopedia. https://-

en.wikipedia.org/wiki/Java Native Interface, 2021. [Online; accessed 5-August-2022].

[102] Wikipedia contributors. Readers-writer lock — Wikipedia, the free encyclopedia. https://-

en.wikipedia.org/wiki/Readers-writer lock, 2021. [Online; accessed 12-April-2022].

[103] Wikipedia contributors. Bin packing problem — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Bin packing problem, 2022. [Online; accessed 29-June-

2022].

[104] Wikipedia contributors. Bin packing problem — Wikipedia, the free ency-

clopedia. https://en.wikipedia.org/wiki/Moving average#Exponential moving average,

2022. [Online; accessed 5-August-2022].

[105] Wikipedia contributors. Expected value — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Expected value, 2022. [Online; accessed 22-November-

2022].

[106] Wikipedia contributors. Interrupt — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Interrupt, 2022. [Online; accessed 24-November-2022].

[107] Wikipedia contributors. Non-blocking algorithm — Wikipedia, the free encyclo-

pedia. https://en.wikipedia.org/wiki/Non-blocking algorithm, 2022. [Online; accessed

22-November-2022].

[108] Wikipedia contributors. Read-copy-update — Wikipedia, the free encyclopedia. https://-

en.wikipedia.org/wiki/Linear congruential generator, 2022. [Online; accessed 12-April-

2022].

[109] Wikipedia contributors. Time stamp counter — Wikipedia, the free encyclopedia. https://-

en.wikipedia.org/wiki/Time Stamp Counter, 2022. [Online; accessed 14-November-

2022].

[110] Wikipedia contributors. Transactional memory — Wikipedia, the free encyclopedia.

https://en.wikipedia.org/wiki/Zipf%27s law, 2022. [Online; accessed 7-September-2022].

[111] Jixiang Yang and Qingbi He. Scheduling parallel computations by work stealing: A

survey. Int. J. Parallel Program., 46(2):173–197, 2018.

99

https://en.wikipedia.org/wiki/Java_Native_Interface
https://en.wikipedia.org/wiki/Readers-writer_lock
https://en.wikipedia.org/wiki/Bin_packing_problem
https://en.wikipedia.org/wiki/Moving_average#Exponential_moving_average
https://en.wikipedia.org/wiki/Expected_value
https://en.wikipedia.org/wiki/Interrupt
https://en.wikipedia.org/wiki/Non-blocking_algorithm
https://en.wikipedia.org/wiki/Linear_congruential_generator
https://en.wikipedia.org/wiki/Time_Stamp_Counter
https://en.wikipedia.org/wiki/Zipf%27s_law

Glossary

Thread Blocking Thread blocking means taking a running thread off a CPU. Unless no other

thread is ready, this action is immediately followed by running another thread.

Synonyms : Parking. 40, 50, 57, 58

Threads Migration Migration refers to the idea of an thread running on a different processor

than the last time it was run. It is generally preferable to minimize migration as it incurs cost

but any load balancing among processor requires some amount of migration.

Synonyms : None. 10, 13, 23, 28, 40

Hardware Threading Threads representing the underlying hardware, e.g., a CPU core or hyper-

thread, if the hardware supports multiple threads of execution per core. The number of hard-

ware threads present is fixed on any given computer.

Synonyms : Core, Hyper-Thread, Processing Unit, CPU. 16, 22, 24, 26, 27, 29, 32, 39,

42, 44, 49, 56, 63, 65, 77, 83, 100, 101

Job Unit of work, often sent to a thread pool or worker pool to be executed. Has neither its own

stack nor its own thread of execution.

Synonyms : Tasks. 101

Kernel-Level Thread Threads created and managed inside kernel space. Each kernel thread

has its own stack and its own thread of execution. Kernel-level threads are owned, managed

and scheduled by the underlying operating system.

Synonyms : OS threads, Hardware threads, Physical threads. iv, 3, 5, 15, 17, 18, 33–37,

39, 49, 50, 52, 60, 77, 78, 82, 83, 101

Processor Entity that executes a thread, i.e., the resource being scheduled by the scheduler. In

kernel-level threading, threads are kernel threads and processors are the hardware threads on

which the kernel threads are scheduled. In user-level threading and thread pools, processors

are kernel threads.

Synonyms : Server, Worker. 7, 10–13, 15–17, 21–27, 29, 30, 32, 33, 36, 37, 40, 41, 43,

44, 47–54, 56–71, 73, 74, 82, 85, 89, 91, 92, 100, 101

100

Ready Queue Data structure holding threads that are ready to run. Often a FIFO queue for

fairness, but can take many different forms, e.g., binary tree and priority queue are also

common. 5

Remote Memory Reference A memory reference to an address not in the current hardware

thread’s cache is a remote reference. Memory references that are in the current hardware

thread’s cache is a local memory reference. For example, a cache line that must be updated

from the any cache on another socket, or from RAM in a NUMA context. 64

Running a thread Running a thread refers to allocating CPU time to a thread that is ready to

run. When representing the scheduler as a queue of threads, running is the act of popping

a thread from the front of the queue and putting it onto a processor. The thread can then

accomplish some or all of the work it is programmed to do.

Synonyms : None. 101

Scheduling a thread Scheduling a thread refers to notifying the scheduler that a thread is ready

to run. When representing the scheduler as a queue of threads, scheduling is the act of pushing

a thread onto the end of the queue. This operation does not necessarily mean the thread is

guaranteed CPU time (Running a thread), e.g., if the program terminates abruptly, scheduled

threads never run.

Synonyms : Unparking. 50, 58, 65, 68, 69, 71, 101

System Load The system load refers to the rate at which threads are scheduled versus the rate

at which they are run. When threads are being scheduled faster than they are run, the system

is considered overloaded. When threads are being run faster than they are scheduled, the

system is considered underloaded. Correspondingly, if both rates are equal, the system is

considered loaded. Note the system is considered loaded only if the rate at which threads are

scheduled/run is non-zero, otherwise the system is empty, i.e., it has no load.

Synonyms : CPU Load, System Load. 11, 20, 77

Thread A thread is an independent sequential execution path through a program. Each thread

is scheduled for execution separately and independently from other threads. Systems offer

one or more concrete implementations of this concept, e.g., kernel-level thread, job, task.

However, most of the concepts of scheduling are independent of the particular implemen-

tations of the thread representation. For this reason, this document uses the term thread to

mean any of these representation that meets the general definition.

Synonyms : Tasks, Jobs, Blocks. 3, 4, 7–13, 15–17, 20–29, 32, 33, 36, 37, 40–43, 48–53,

57–69, 71–74, 76, 77, 82, 83, 91, 92, 100, 101

User-Level Threading Threading model where a scheduler runs in users space and maps threads

managed and created inside the user-space onto kernel-level threads.

Synonyms : User threads, Lightweight threads, Green threads, Virtual threads, Tasks. 2,

5, 6, 15, 17, 33, 56, 78

101

	List of Figures
	List of Tables
	List of Abbreviations
	I Introduction
	Introduction
	Scheduling
	Cforall programming language
	Contributions

	Previous Work
	Naming Convention
	Static Scheduling
	Dynamic Scheduling
	Explicitly Informed Dynamic Schedulers
	Uninformed and Self-Informed Dynamic Schedulers

	Work Stealing
	Theoretical Results

	Preemption
	Production Schedulers
	Operating System Schedulers
	User-Level Schedulers

	Cforall Runtime
	C Threading
	M:N Threading
	Clusters
	Scheduling
	io
	Interoperating with C

	II Design
	Scheduling Core
	Design Goals
	Fairness Goals
	Fairness vs Scheduler Locality
	Performance Challenges

	Inspirations
	Work-Stealing
	Relaxed-FIFO

	Relaxed-FIFO++
	Dynamic Entropy

	Work Stealing++
	Redundant Timestamps
	Per CPU Sharding
	Topological Work Stealing

	User Level io
	Kernel Interface
	ONONBLOCK
	POSIX asynchronous I/O (AIO)
	iouring
	Extra Kernel Threads
	Discussion

	Event-Engine
	iouring in depth
	Multiplexing io: Submission

	Interface
	Replacement
	Synchronous Extension
	Asynchronous Extension
	Direct iouring Interface

	Scheduling in practice
	Manual Resizing
	Read-Copy-Update
	Readers-Writer Lock

	Idle-Sleep
	Sleeping
	pthreadmutex/pthreadcond
	iouring and Epoll
	Event FDs

	Tracking Sleepers
	Sleepers List
	Reducing Latency

	III Evaluation
	Micro-Benchmarks
	Benchmark Environment
	Experimental setup
	Cycle
	Results

	Yield
	Results

	Churn
	Results

	Locality
	Results

	Transfer
	Results

	Macro-Benchmarks
	Memcached
	Benchmark Environment
	Memcached threading
	Throughput
	Tail Latency
	Update rate

	Static Web-Server
	NGINX threading
	Cforall web server
	Benchmark Environment
	Throughput
	Disk Operations

	IV Conclusion & Annexes
	Conclusion
	Goals
	Future Work
	Idle Sleep
	CPU Workloads
	Hardware

	References
	Glossary

