
Compiling Equality in an Abstract
Relational Model via Preference
Tables and Translation Tables

by

Ensieh Mollazadeh

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2022

c© Ensieh Mollazadeh 2022

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract

Borgida et al. have introduced a refinement to the relational model (RM) [1] which they
call the abstract relational model (ARM) that extends the former in the following three
ways:

1. the addition of a new abstract domain eid of entity identifiers to Structured Query
Language (SQL) built-in concrete domains;

2. a capacity to resolve reference issues via PRIMARY KEY clauses is replaced by a
new domain specific language for referring expression types; and

3. terms in SQL of the form “v.A” can now have the form “v.A1. · · · .Ak” to more
compactly encode navigation over foreign keys, thus yielding the language SQLP.

They have also proposed an algorithm for mapping ARM schemata to corresponding RM
schemata via referring expression types and to subsequently map SQLP queries over the
former to corresponding SQL queries over the latter, again via referring expression types.
This mapping system relies on introducing so-called preference tables to enable coercion
between alternative primary keys. Such tables, however, fail to account for circumstances
in which explicit translation tables can exist to map between such alternatives in order to
satisfy programmer intentions. In this thesis, we remedy this by extending their algorithm
to enable the generation of such translation tables and their use in compiling SQLP.

iii

Acknowledgements

First and for most, I would like to express my gratitude to Prof. Gran Weddell for his
exceptional supervision of my master’s study. He directed me through all the challenges,
and taught me import academic skills necessary for successful completion of this thesis. I
could have not taken this journey without his support.

Second, I would also like to thank David Toman for his co-supervision, feedback, and
guidance. Furthermore, I am thankful to Tamer Özsu, and Richard Trefler for reviewing
this thesis.

Finally, I would like to express my appreciation to my parents for their unconditional
love and support. I am also very grateful to my husband, Hadi Zibaeenejad, for assisting
me overcome difficulties in my study.

iv

Table of Contents

List of Figures vii

1 Introduction 1

1.1 Contributions . 10

1.2 Thesis Outline . 11

2 On Mapping ARM Schemata and SQLP via Preference Tables 12

2.1 Formal Definitions . 14

2.2 Referring Expression Types . 18

2.2.1 Global Data . 21

2.2.2 ARM to RET Mapping . 24

2.3 On Identity Resolution . 33

2.3.1 A New Form of Ret . 36

2.4 Mapping an ARM schema to an RM schema 42

2.4.1 ARMtoRM on UNIV . 48

3 Adding Translation Tables 53

3.1 ARM-to-RM mapping, considering translation tables 54

v

3.1.1 Identity Resolution with Translation Tables 55

3.1.2 On Reducing the Number of Translation Tables 57

3.2 SQLAtoSQL: Mapping an SQLA query to an SQL query 85

4 Conclusion 127

4.1 Future Study . 128

References 130

Appendices 132

A Table Declarations 133

A.1 Chapter 2, Example 2 UNIV table declarations 133

A.2 Chapter 2 Rets . 134

A.3 Chapter 2, Example 2 concrete table declarations 135

A.4 Chapter 3, Example 1 abstract table declarations 136

A.5 Chapter 3, Example 1 Rets . 137

A.6 Chapter 3, Example 1 concrete table declarations 138

A.7 Chapter 3, Example 1 translation tables: 139

A.8 Chapter 3, Example 2 abstract table declarations 140

A.9 Chapter 3, Example 2 Rets . 141

A.10 Chapter3, Example 2 concrete table declarations 141

A.11 Chapter 3 Example 3 abstract table declarations for EMPLOYEE, PROFESSOR,
STUDENT, VISITOR and CANADIAN . 143

A.12 Chapter 3, Example 3 Rets . 144

A.13 Chapter 3 Example 3 concrete table declarations for EMPLOYEE, PROFESSOR,
STUDENT, VISITOR and CANADIAN . 144

vi

List of Figures

1.1 Concrete table declarations for tables of Σ′1. 2

1.2 Updated concrete table declarations for tables of Σ′1. 3

1.3 Abstract table declarations for tables of Σ1. 5

1.4 Abstract table declarations for tables of an ARM schema, UNIVERSITY. . 6

1.5 Abstract table declarations for tables of Σ2. 8

1.6 Concrete table declarations for tables of Σ′2. 9

2.1 Surface syntax for ARM table clauses. 15

2.2 Integrity Constraints . 16

2.3 UNIV, an ARM schema for a university. 17

2.4 A grammar for an SQLP query language and a grammar for an SQLA query
language. 19

2.5 SUPERVISION, an ARM schema for a university. 21

2.6 A database for SUPERVISION. 21

2.7 SUPERVISION′, the RM version of SUPERVISION. 22

2.8 A database for SUPERVISION′ with eids replaced by strings. 23

2.9 Global data . 25

2.10 Pg for UNIV . 30

vii

2.11 Pkg for UNIV . 30

2.12 Global data for all tables in UNIV . 31

2.13 The correct version of SUPERVISION′ with eids replaced by strings. . . 41

2.14 A call-graph for algorithms and definitions for mapping an ARM schema to
an RM schema. 47

2.15 The concrete relational schema UNIV′ . 51

3.1 Modified global data for PROFESSOR, STUDENT and PERSON. 65

3.2 The concrete relational schema SecondUNIV′. 70

3.3 The relational schema ThirdUNIV′. 71

3.4 The preference graph for ThirdUNIV. 71

3.5 Modified global data for PROFESSOR, STUDENT and PERSON. 72

3.6 The ARM schema UNIVPEOPLE . 77

3.7 The preference graph for UNIVPEOPLE. 77

3.8 Global data for EMPLOYEE, PROFESSOR, STUDENT, VISITOR and CANADIAN. . 80

3.9 The relational schema UNIVPEOPLE′ . 86

3.10 A dependency graph of functions and procedures that are called to map an
SQLA query to an SQL query. 87

3.11 Conversion of an SQLA query over SecondUNIV to an SQL query over
SecondUNIV′. 100

3.12 Procedure and function calls with their result for Section 3.2 Example 1. . 103

3.13 Conversion of an SQLA query Q over ThirdUNIV to an SQL query Q′ over
ThirdUNIV′. 104

3.14 Procedure and function calls with their result for Section 3.2 Example 2. . 111

3.15 Conversion of an SQLA query Q over UNIVPEOPLE to an SQL query Q′

over UNIVPEOPLE′. 113

viii

3.16 Procedure and function calls with their result for Section 3.2 Example 3. . 126

A.1 RTA(T)s for each table T in Σ . 144

ix

Chapter 1

Introduction

The relational model (RM) underlies the predominant means of data management that was
proposed by Ted Codd in 1970 [3]. The model assumes all data is organized as a collection
of tables, and derives from first-order predicate logic. Tables in RM consist of one or
more named columns called attributes, where values occurring in columns are instances of
concrete data types such as integer, string, varchar, and so on. Note that the names of
columns are important in helping a user interpret the contents of the table. The contents
consist of a finite collection of tuples, where each tuple encodes a meaningful relationship.

The standard interface to database systems that adopt RM is SQL. Indeed, the predom-
inant means of data manipulation by deployed applications adopt RM as their underlying
data model and SQL as the language of interaction.

Throughout this thesis, we have numerous occasions to introduce an example RM
schema. In doing so, we will follow a naming protocol for RM tables that appends “-C” to
the table name, as illustrated by our first example in Figure 1.1. This Figure indicates table
declarations for tables that exist in an RM schema Σ′1. One possibility for the contents of
the INSTRUCTOR-C table might be the tuple

(15104763, “David”, 2) .

1

table INSTRUCTOR-C (name string, office integer, department string,
primary key (name, office))

table GRADUATE-C (gnum integer, name string, year integer, primary key (gnum))

table STAFF-C (snum integer, name string, salary integer, primary key (snum))

Figure 1.1: Concrete table declarations for tables of Σ′1.

Indeed, this is a relationship among three concrete data values. However, more particularly,
the primary key clause suggests that the tuple is recording three concrete facts about a
particular instructor, where the first two facts, the name, and office of the instructor
serve the role of (indirectly) identifying a particular instructor by an expression that can
be stated in English as “The instructor whose name is David and whose office number is
325”.

Moreover, GRADUATE-C entities are identified by their graduate numbers gnum and,
STAFF-C entities are identified by their staff numbers snum. A tuple (15104763, “David”,
2) in the GRADUATE-C table can record information about a graduate student whose name
is “David”, studying at the 2nd year of graduate school, and who is identified with his gnum
which is 15104763. There is a possibility that this graduate student is also the instructor
whose office number is 324, as indicated in the first tuple above. Therefore, this example
illustrates the person who can be both a graduate student and an instructor.

On reflection, in a real world, a university member can work with different titles. For
example, a person can be both a graduate student and a university staff member. There-
fore, a data entity representing a person can appear in any combination of INSTRUCTOR,
GRADUATE and STAFF. Now consider the question of finding the names of instructors who
are also graduate students. Since there are different ways to identify graduates and in-
structors, there cannot exist an SQL query to compare them. More precisely, there cannot
exist an SQL query to compare (name, office) with gnum. The same problem occurs for
finding the common entities between every other two tables in Σ′1.

Borgida et al. have proposed an extension to RM and to SQL, called the abstract

2

table INSTRUCTOR-C (name string, office integer, department string,
primary key (name, office))

table GRADUATE-C (disc integer, f string, gnum integer, name string, year integer,
primary key (disc, f))

table STAFF-C (disc integer, f string, snum integer, name string, salary integer,
primary key (disc, f))

Figure 1.2: Updated concrete table declarations for tables of Σ′1.

relational model (ARM) and SQLP, to resolve this issue [1]. In particular, SQLP replaces
SQL’s primary key declarations with a much more general facility for specifying so-called
referring expression types (Rets). We illustrate how their resolution applies in this case
later on, where we give a corresponding ARM schema defined in SQLP. However, for now,
we illustrate the net impact on this RM schema in Figure 1.2. In particular, notice that
two of the tables have two extra attributes: disc and f. To understand the value of disc
and f, we should first visit the concept of total order which Borgida et al. have introduced
in their earlier work [1]. The total order of tables in an RM schema is an ordered list
of tables in the schema. For instance, the total order of Σ′1 is (INSTRUCTOR, GRADUATE,
STAFF). The offset of INSTRUCTOR, GRADUATE and STAFF which is their position in the total
order is 1, 2 and 3 respectively.

The disc value of GRADUATE can be the offset of a table to the farthest left of it in the
total order which here is INSTRUCTOR. In other words, if a graduate student is an instructor,
then the disc attribute of GRADUATE is 1, and if not, then it is 2. The disc attribute of
a staff member who is also an instructor, regardless of being a graduate student, is 1. If
a staff member is not an instructor, but a graduate student, then the disc attribute is 2
and if he/she is neither a graduate student nor an instructor, then it is 3.

The value of the attribute f is the concatenation of attribute(s) of the concrete primary
key of the table whose offset is in the disc column. For example, for those graduate
students who are also instructors, the GRADUATE table contains the disc value of 1 and

3

the f value which is the concatenation of name and office of those instructors, since the
primary key of INSTRUCTOR is (name, office). The following SQL query to “find the
names of instructors who are also graduate students” can now be achieved, via disc and
f:

select distinct i.name from INSTRUCTOR-C i
where exists(select * from GRADUATE-C g

where g.disc = 1
and g.f = Concat(i.name, i.office))

(1.1)

This SQL query resolves the referencing issues and finds the appropriate tuples. However,
the protocol it uses, requires significant discipline and care on the part of programmers,
which is far from ideal. Furthermore, there are various ways for representing and storing
information in a relational database. Querying such information, using the notion of pri-
mary and foreign keys may be challenging for domain experts as they are not familiar with
querying an actual relational schema. Therefore, the challenging level of writing such SQL
queries make them more error-prune.

Borgida et al. have addressed this issue by a simple generalization of the RM schema,
which they have called the abstract relational model (ARM). In particular, an ARM schema
is formed by adding one additional domain for attributes, denoting entities which they have
called entity identifier (eid). All abstract attributes have the domain of eid. Every table
in the ARM schema has the abstract attribute self which functionally determines all
other attributes in the table. Figure 1.3 indicates table declarations of tables in the ARM
schema Σ that corresponds to the tables in Σ′, defined in Figure 1.2.

An abstract tuple (@eid1, “David”, 325, “Computer Science”) records three facts
about the actual instructor itself which is @eid1, the value of column self. We define
the SQL queries over an arbitrary ARM schema as SQLA queries. Figure 2.4 illustrates a
grammar for an SQLP query language and a grammar for an SQLA query language. The
SQLA query below indicates how to “find the names of instructors who are also graduate
students”:

4

table INSTRUCTOR (self eid, name string, office integer, department string,
primary key (name, office))

table GRADUATE (self eid, gnum integer, name string, year integer,
primary key (gnum), preference (INSTRUCTOR))

table STAFF (self eid, snum integer, name string, salary integer,
primary key (snum), preference (INSTRUCTOR, GRADUATE))

Figure 1.3: Abstract table declarations for tables of Σ1.

select distinct i.name from INSTRUCTOR i
where exists(select * from GRADUATE g

where g.self = i.self)
(1.2)

Note that this query is easier and simpler to write than the SQL query in (1.1), due
to a less challenging protocol that the ARM provides. Therefore, SQLA queries are less
error-prone, specially when writing complex conjunctive queries. However, there still exist
challenges to write complex conjunctive queries even with SQLA queries. For this reason,
Borgida et al. have introduced an extension to the standard SQL which they call SQLP
such that it supports the usage of abstract domain attribute and attribute path. SQLP
helps to simplify complex conjunctive queries by allowing implicit foreign key joins in the
form of “path expressions”. Weicong Ma et al. conducted an empirical experiment to test
and evaluate the performance of the ARM and SQLP among undergraduate and graduate
students [8]. There is a significant statistical evidence that SQLP indeed requires less time
for understanding and authoring queries, with no loss in accuracy.

Figure 1.4 illustrates a new ARM schema UNIVERSITY with four tables INSTRUCTOR,
GRADUATE, STAFF and DEPARTMENT, such that they all have primary key clauses, and only
GRADUATE and STAFF have preference clauses. The following indicates an SQLP query over
the UNIVERSITY to find the names of the instructors whose department chair’s name is

5

table INSTRUCTOR (self eid, name string, office integer, department eid,
primary key (name, office), foreign key (department)
references DEPARTMENT)

table GRADUATE (self eid, gnum integer, name string, year integer,
primary key (gnum), preference (INSTRUCTOR))

table STAFF (self eid, snum integer, name string, salary integer,
primary key (snum), preference (INSTRUCTOR, GRADUATE))

table DEPARTMENT (self eid, deptname string, chair eid,
primary key (deptname), foreign key (chair)
references INSTRUCTOR)

Figure 1.4: Abstract table declarations for tables of an ARM schema, UNIVERSITY.

“Tom” :

select distinct i.name
from INSTRUCTOR i
where i.department.chair.name = "Tom"

The SQL version of this SQLP over the RM would be more complex and contains much
more lines. Weicong Ma et al. show different examples of SQLP queries and their equivalent
SQL over the RM [8].

Although ARM has made querying SQL easier, abstract attributes are invisible in
the RM schema and they need to be replaced with concrete ones. In fact, an ARM
schema and SQLA queries written over it need to be mapped to an RM schema and their
corresponding SQL queries over the RM schema respectively. For this purpose, Borgida
et al. have conducted a mapping system between ARM and RM [1]. In particular, they
have implemented a mapping from SQLP to SQLA queries and then from SQLA to SQL
queries over RM. We focus on the mapping of ARM to RM and SQLA to SQL over RM
in this thesis.

6

The domain specific language of Rets mentioned above (for specifying referring ex-
pression types) introduced by Borgida et al. were the means of establishing concrete RM
schemata that correspond to a given ARM schemata via an assignment of such a type to
each table in a given ARM schema. One of our contributions is to introduce a much more
user friendly front-end for specifying such an Ret table assignment by reusing SQL’s PRI-
MARY KEY clause and adding a new PREFERENCE clause. Figure 1.3 illustrates the
use of primary key clauses for three tables INSTRUCTOR, GRADUATE and STAFF in the ARM
schema Σ1, and the use of preference clauses for tables GRADUATE and STAFF. Preference
clauses in Figure 1.3 are replaced with disc and f in Figure 1.2, when Σ1 is converted to
the RM version Σ′1.

A preference table Ti-Tj-C contains three columns disc, f and the primary key of the
right table which is Tj. For instance, since GRADUATE contains a preference clause, including
INSTRUCTOR, there exists a preference table INSTRUCTOR-GRADUATE-C with attributes disc,
f and gnum. The right outer join of GRADUATE-C with INSTRUCTOR-GRADUATE-C on the
column gnum would change the GRADUATE-C table by adding disc and f to it, as shown in
Figure 1.2, and it now has the same number of rows as INSTRUCTOR-GRADUATE-C.

Similarly, STAFF contains a preference clause, over INSTRUCTOR and GRADUATE. There-
fore, there exist two preference tables INSTRUCTOR-STAFF-C and GRADUATE-STAFF-C. The
right outer join of STAFF-C with both INSTRUCTOR-STAFF-C and GRADUATE-STAFF-C on
the column snum would also extend STAFF-C by adding attributes disc and f, as also illus-
trated in Figure 1.2. Consequently, joining preference tables with the table that contains
the preference clause removes the need to explicit tables, and that reduces the required
storage.

This thesis introduces a new concept of translation tables to resolve equality issues when
some preference tables are missing in an schema. For example, Σ1 in Figure 1.3 without
any preference clauses is the same as the ARM schema Σ2 in Figure 1.5. Therefore, the
concrete version of Σ2 which is called Σ′2 does not contain any preference tables with disc
and f attributes, as Σ′1 does in Figure 1.2. Consequently, an SQL query to find “the names
of those instructors who are graduate students” fails to compile. We remedy this issue
by creating three translation tables INSTRUCTOR-GRADUATE-C, INSTRUCTOR-STAFF-C and

7

table INSTRUCTOR (self eid, name string, office integer, department string,
primary key (name, office))

table GRADUATE (self eid, gnum integer, name string, year integer,
primary key (gnum))

table STAFF (self eid, snum integer, name string, salary integer,
primary key (snum))

Figure 1.5: Abstract table declarations for tables of Σ2.

GRADUATE-STAFF-C in Σ′2, as indicated in Figure 1.6.

A translation table is generated between every two pair of non-disjoint tables when
there is no preference table between them, and it contains the intersection of the tables in
the pair by storing their primary key attributes. For example, INSTRUCTOR-GRADUATE-C
contains three columns name, office and gnum, and a tuple ("David", 325, 15104763)
that refers to a graduate student who is also an instructor. Considering the translation
table INSTRUCTOR-GRADUATE-C, the following SQL query finds the names of instructors
who are also graduate students:

select distinct i.name from INSTRUCTOR-C i
where exists (select * from INSTRUCTOR-GRADUATE-C w, GRADUATE-C g

where w.name = i.name
and w.office = i.office
and w.snum = g.gnum)

Furthermore, due to the notion of disc and f, preference tables are not likely to exist in
existing database scenarios and more often, they need to be generated. Translation tables,
however, are much more likely to exist in existing database scenarios, and this reduces
the need to new translation tables. Despite of this advantage, there is a problem with
translation tables that prevents them to fully replace preference tables: Translation tables
result in storage overhead and possible loss of efficiency. The following example helps to
better understand the former:

8

table INSTRUCTOR-C (name string, office integer, department string,
primary key (name, office))

table GRADUATE-C (gnum integer, name string, year int, primary key (gnum))

table STAFF-C (snum integer, name string, salary integer, primary key (snum))

table INSTRUCTOR-GRADUATE-C (name string, office integer, gnum integer,
primary key (name, office), foreign key (name, office)
references INSTRUCTOR, foreign key(gnum) references
GRADUATET)

table INSTRUCTOR-STAFF-C (name string, office integer, snum integer,
primary key (name, office), foreign key (name, office)
references INSTRUCTOR, foreign key (snum) references
STAFF)

table GRADUATE-STAFF-C (gnum integer, snum integer, primary key (gnum),
foreign key (gnum) references GRADUATE,
foreign key (snum) references STAFF)

Figure 1.6: Concrete table declarations for tables of Σ′2.

Suppose an schema with n tables, table Ti (self eid, Ai integer, primary key
(Ai)), where 1 ≤ i ≤ n. Also, each table Ti contains a single tuple (@eid, Ai), where
@eid is the value of column self and it is the same for all n tables. Consider two cases:

1. First, there is a preference table Ti-Tj-C for every two tables Ti and Tj, where i ≤ j.
Therefore, there are n(n− 1)/2 preference tables. However, only (n− 1) preference
tables T1-Ti-C contain columns (disc, f, A1) with a corresponding tuple (1, A1, A1),
and the rest are empty. This implies an O(n) store overhead.

2. Second, suppose there does not exist any preference table, and a compiler would
produce all necessary translation tables Ti-Tj-C, where i ≤ j. There are n(n− 1)/2
of them, each contains a tuple (Ai, Aj), and neither of them is empty. This implies

9

an O(n2) store overhead.

This example indicates the existence of storage overhead in translation tables.

The other advantage of preference tables over translation ones is that joining a prefer-
ence table Ti-Tj-C with Tj-C reduces the number of tables by adding disc and f to Tj-C.
In fact, joining any number of preference tables with Tj-C just adds disc and f to Tj-C.
This removes the need to store preference tables explicitly. However, translation tables,
cannot be joined, since joining them would result in a complex table with a lot of null
values. For example, joining translation tables T1-T4-C, T2-T4-C and T3-T4-C with T4-C
would add the primary keys of T1-C, T2-C and T3-C to T4-C, with some null values.

There are, however, cases in which translation tables can be merged into one table.
For example, consider a translation table Ti-Tj-C, and Ti is the subset of Tj. Then a
left outer join between Ti-Tj-C and Ti-C on the primary key of Ti-C would add another
column to Ti-C which contains the primary key of Tj-C for those Tj-C entities that are also
an Ti-C entity. Chapter 3 contains the details about this optimization along with other
optimization to absorb translation tables.

1.1 Contributions

Our first contribution relates to how Borgida et all. have introduced so-called referring
expression types to generate identity resolution [1]. We introduce a new front-end for
programmers to indirectly specify referring expression types via SQL’s primary key clause
and a new preference clause, and we also define “disc” and “f” attributes to encode SQL’s
primary keys in concrete tables. This has also required revisiting such types, in particular,
replacing “disc” and “f” attributes with their underlying table and attributes names of
abstract tables in order to express verifiable conditions that are sufficient to ensure identity
resolution.

Our second and main contribution involves introducing translation tables. These tables
provide the possibility of converting between referring expressions, such that a larger space

10

of referring expressions are allowed to ensure identity resolution. We demonstrate cases
with the preference and primary key clauses that would fail to be identity resolving, and
adding translation tables would change them to become identity resolving. We also explain
mapping an ARM schema to the RM schema, considering the generation of translation
tables, and illustrate three different examples to clarify this concept. The conversion of
SQLA queries to SQL ones, via the use of translation tables is then defined, and it is shown
on the three mentioned examples

1.2 Thesis Outline

In Chapter 2, we review the work of Borgida et al. which constitutes the definition for
Abstract Relational Model (ARM) and the language SQLP [1]. We also review the concept
of Referring Expression Types (Ret), illustrate it by an example of an ARM schema, and
show different Rets for tables in the schema. We further reuse primary key clauses and
introduce new preference clauses, and illustrate how they can be indirectly used to generate
Rets. Next, we review and explain the topic of identity resolution. Finally, we propose
a mapping from an ARM schema to a RM one and indicate an example to clarify this
method.

In Chapter 3, we introduce translation tables and how they are generated in an RM
schema, and how they can be optimized. We show how identity resolution is extended to
accommodate translation tables, and how a new mapping method from an ARM schema
to an RM schema is accomplished when both preference tables and translation tables are
present. We also explain how to convert an SQLA query to an SQL one by considering
translation tables in the RM schema. Then, we present three case studies that consider
progressively more involved circumstances to illustrate both ARM-to-RM mapping and
SQLA-to-SQL conversion.

In Chapter 4, we review our contributions and discuss a number of future directions of
research.

11

Chapter 2

On Mapping ARM Schemata and
SQLP via Preference Tables

In this chapter, we provide a review of the work by Borgida et al. in which the notion
of abstract relational model (ARM), SQLP and referring expression types (Ret) were
introduced [1]. One of our contribution to the thesis which is also presented in this chapter
is to reuse SQL’s primary key clause and introduce a new preference clause as a much
more user friendly front-end means of indirectly specifying these Rets. To paraphrase our
thesis abstract, ARM extends the RM in the following three ways:

1. adding a new domain eid;

2. replacing the means of resolving reference issues via PRIMARY KEY clauses by a
new domain specific language for referring expression types; and

3. allowing terms in SQL of the form “v.A” to have the form “v.A1. · · · .Ak” to more
compactly encode navigation over foreign keys, thus yielding the language SQLP.

The earlier work by Borgida et al. also proposed a so-called referring expression type (Ret)
assignment to generate an RM schema Σ′ from an ARM schema Σ, and have outlined two
steps in mapping an SQLP query over Σ to an SQL query over Σ′ via Rets [1]:

12

1. map the original SQLP query over Σ to an SQL query also over Σ, which we call an
SQLA1 query in this thesis; then

2. map the SQLA query to a corresponding SQL query over Σ′.

In this chapter, we review the mapping between Σ and Σ′ via Rets, by introducing the
two main procedures ARMtoRET(Σ) and ARMtoRM(Σ), and the mapping of SQLA
queries over Σ to the SQL queries over Σ′.

Furthermore, we present our proposal for a more user friendly means of specifying an
Ret assignment via the reuse of SQL’s primary key clause and the introduction of a new
preference clause. In order to map Σ to Σ′, Borgida et al. have introduced disc as an
additional attribute for a concrete table T-C, when there exists a “;” in the Ret(T) [1].
We extend on this and introduce the string attribute f, in addition to disc, to store the
primary key or the concatenation of all columns in the primary key of the table which
its offset is in the disc column. Therefore, the combination (disc, f) is the primary key
of T-C, when T contains a preference clause with some exceptions which we will explain
further in this chapter.

Finally, this chapter is divided to four sections:

• Section 2.1 introduces ARM schema with a way to define table declaration for each
table and different types of constraints are defined for tables of the ARM schema.

• Section 2.2 introduces referring expression types and explains a procedure to find a
referring expression type for each table in the ARM schema.

• Section 2.3 presents the concept of identity resolution by defining a well-formed RTA,
referring expressions and identity resolving type assignments.

• Section 2.4 illustrates a way of mapping the ARM schema to an RM one.
1SQLA refers to SQL over Abstract schema

13

2.1 Formal Definitions

This section focuses on the ARM schema and explains how tables in the ARM schemata
are declared. It also introduces table constraints in detail and proposes surface syntax used
for ARM table declarations.

Definition 1 (ARM Schema)
Let TAB, AT, and CD be sets of table names, attribute names among which is self, and
domain names CD consisting of the three data types eid, integer and string, where
eid denotes an abstract domain of entities, and where integer and string denote the
respective concrete domains of integers and finite strings. An abstract relational model
(ARM) schema Σ is a set of table declarations of the form.

table T (A1 D1, . . ., Ak Dk, ϕ1, . . ., ϕn),

where T ∈ TAB, Ai ∈ AT, Di ∈ CD, and ϕj are clauses attached to table T . We write
Tables(Σ) to denote all table names declared in Σ, Attrs(T) to denote {A1, . . . , Ak},
Dom(T, Ai) to denote Di, and Abs(T) to denote {Ai ∈ Attrs(T) | Dom(T, Ai) = eid}.
Also, Dom(T, Ai) must be eid when Ai is self.

In addition to attribute declarations “Ai Di”, a table declaration can include clauses
ϕj. A clause can express an integrity constraint such as a foreign key, or resolve reference
issues for entities such as a primary key [1].

T is reified if self ∈ Attrs(T), and the ARM schema Σ is reified if each T ′ ∈
Tables(Σ) is reified. Σ is a simple class-based schema, if there is a single foreign key
constraint for each A ∈ Abs(T), not including self, for every T ∈ Tables(Σ). We write
Ran(T, A) to denote the table that the foreign key A in T references. Finally, Σ is a
relational model (RM) schema if Abs(T) = ∅ for all T ∈ Tables(Σ). �

Figure 2.1 defines surface syntax for constraints from ROSESEED project by Weddell
[10]. The first two constraints are a contribution of this thesis that constitutes a front-end

14

〈preference〉 ::= preference “(” { 〈table-name〉 } “)”

〈primary-key〉 ::= primary key “(” { 〈attribute-name〉 } “)”

〈foreign-key〉 ::= foreign key “(” { 〈attribute-name〉 } “)”
references 〈table-name〉 [“(” { 〈attribute-name〉 } “)”]

〈inclusion-dependency〉 ::= inclusion dependency “(” { 〈attribute-name〉 } “)”
references 〈table-name〉 [“(” { 〈attribute-name〉 } “)”]

〈isa〉 ::= isa “(” { 〈table-name〉 } “)”

〈disjoint-from〉 ::= disjoint from “(” { 〈table-name〉 } “)”

〈cover-by〉 ::= cover by “(” { [not] 〈table-name〉 } “)”

〈path-functional-dependency〉 ::= path functional dependency [with 〈table-name〉]
“(” { 〈attribute-path〉 } “)” determines 〈attribute-path〉

〈nominal〉 ::= nominal

Figure 2.1: Surface syntax for ARM table clauses.

for indirectly specifying the above-mentioned Rets via straightforward extensions to SQL’s
primary key clause and the introduction of a new preference clause. All remaining clauses
in the figure are integrity constraints on data and explained in more detail in Figure 2.2.

15

• Foreign key clauses are integrity constraints matching the semantics supported by
standard SQL, and inclusion dependencies are their standard generalization.

• Inheritance (isa), disjointness or cover constraints are only meaningful when self
occurs as one of the attributes of T and each Ti mentioned in the constraint. For
inheritance constraints, any self-value occurring in T must also occur as a self-
value in Ti, and, for disjointness, any self-value occurring in T may not occur as a
self-value in Ti.
Cover constraints generalize what can be expressed with inheritance and disjointness.
Here, for any self-value e occurring in T , there must exist a Ti mentioned in the
constraint for which, when not precedes Ti, e does not occur as a self-value in Ti,
or, when not does not precede Ti, e does occur as a self-value in Ti.

• Path functional dependencies are a generalization of functional dependencies that
allow attribute paths in place of attributes. An attribute path Pf is either self
or a dot-separated sequence of attribute names excluding self. A path functional
dependency of the form

path function dependency with T ′

(Pf1, . . . , Pfm) determines Pf

is satisfied when any combination of a T -tuple and a T ′-tuple that agree on the value
of each Pfi also agree on the value of Pf. (When not given, table T ′ defaults to table
T .)

• Finally, a nominal constraint occurring in T is satisfied when there is a single tuple
in T .

Figure 2.2: Integrity Constraints

UNIV in Figure 2.3 is an example of an ARM schema with seven tables for a university.
Every abstract attribute is marked with a star (“*”) and every table contains the abstract
attribute self of type eid. Appendix A.1 indicates table declarations for all seven tables.
Except the table PERSON, every other table contains a primary key constraint and only

16

Figure 2.3: UNIV, an ARM schema for a university.

STUDENT and PERSON contain preference clauses.

In addition to the attribute self, there exist other abstract attributes in some tables
which are foreign keys referencing some other tables. For example, the abstract attribute
department in the COURSE and PROFESSOR tables is a foreign key, referencing the self
attributes of the table DEPARTMENT. Both tables PROFESSOR and STUDENT are subsets of
PERSON, since their table declarations contain an “isa PROFESSOR”.

Moreover, there exist disjoint constraints in all tables. For example, COURSE and
DEPARTMENT are disjoint, since an entity can not be both a COURSE and a DEPARTMENT.
In other words, the intersection between the self attributes of the COURSE and the self
attributes of the DEPARTMENT table is empty. Also, PERSON is the only table with the
“cover by” constraint. Thus, the values of self attributes of the PERSON are the union of
the values of self attributes of PROFESSOR and STUDENT. An example of an 〈attribute-path〉

17

would be:

class.professor.department.deptcode.

Observe how this is just a sequence of foreign key joins. An example of a query using this
〈attribute-path〉 is the following:

select e.student, e.mark
from ENROLLMENT e
where e.class.professor.department.deptcode = “CS”

A simple grammar for fragment of an SQLP query is given in Figure 2.4a, and a simple
grammar for fragment of an SQLA query is given in Figure 2.4b. This thesis focuses on
converting an SQLA query to an SQL query.

2.2 Referring Expression Types

Borgida et al. have proposed a variety of SQLP queries as a means of indirectly referring
to eid values, generally called referring expressions, and a referring expression type (Ret),
defined in the following definition, to denote a set of SQLP queries [1]. For an ARM schema
Σ, identification issues are then resolved by indirectly associating an Ret with each table
in Tables(Σ). Here, a resolution of such issues will make it possible to translate any SQLA
query over Σ to an equivalent SQL query devoid of any need to reference or compare eids.

18

〈query〉 ::= select distinct x1.Pf1 [asA1], . . ., xm.Pfm [asAm] 〈body〉
| 〈query〉 union 〈query〉

〈body〉 ::= from T1 x1, . . ., Tn xn [where 〈pred〉]
〈pred〉 ::= x1.Pf1 = x2.Pf2 | x.Pf1 = c | 〈pred〉 and 〈pred〉

| 〈pred〉 or 〈pred〉 | not 〈pred〉 | exists (select * 〈body〉)

(a) An SQLP fragment

〈query〉 ::= select distinct x1.A1 [asA1], . . ., xm.Am [asAm] 〈body〉
| 〈query〉 union 〈query〉

〈body〉 ::= from T1 x1, . . ., Tn xn [where 〈pred〉]
〈pred〉 ::= x1.A1 = x2.A2 | x.A1 = c | 〈pred〉 and 〈pred〉

| 〈pred〉 or 〈pred〉 | not 〈pred〉 | exists (select * 〈body〉)

(b) An SQLA fragment.

Figure 2.4: A grammar for an SQLP query language and a grammar for an SQLA query
language.

Definition 2 (Referring Expression Types, and Assignments)
Let Σ be an ARM schema. A referring expression type (Ret) relative to Σ has the following
form:

T1 → (Pf1,1 = ?, . . . , Pf1,k1 = ?); . . . ; Tk → (Pfk,1 = ?, . . . , Pfk,kk
= ?), (2.1)

consisting of a sequence of “; ” separated components. Each component Ti → (Pfi,1 =
?, . . . , Pfi,ki

= ?) consists in turn of a guard, written Guard(Ret, i), which is the name
“Ti” of a table in Tables(Σ) and the set of attribute paths (Pfi,1, . . . , Pfi,ki

), written
Keypfs(Ti). A referring type assignment for Σ is a mapping RTA from Tables(Σ)
to referring expression types relative to Σ. The RTA(T) for a table T ∈ Tables(Σ) is in
the form (2.1).

�

19

The purpose served by associating an Ret of the form (2.1) with a table T is to denote
a set of SQLP queries that can serve as substitutes for eid values occurring in T ’s self
column which are called referring expressions. The following example illustrates how this
would work.

Consider SUPERVISION, an ARM schema for a university that contains three tables
LECTURER, PROFESSOR and GRAD, such that PROFESSOR has a preference clause, containing
LECTURER. Table GRAD is also disjoint with both LECTURER and PROFESSOR. A table decla-
ration for each table in the SUPERVISION is illustrated in Figure 2.5, and the following
indicates each table’s RTA :

RTA(LECTURER) := LECTURER→ enum =?
RTA(PROFESSOR) := LECTURER→ enum =?; PROFESSOR→ (name =?, office =?)
RTA(GRAD) := GRAD→ (name =?, supervisor. disc =?, supervisor. f =?)

(2.2)

Since there exists an eid foreign key supervisor from GRAD, referencing PROFESSOR, every
GRAD object has a supervisor who is a PROFESSOR entity. The following SQLP query
illustrates how to find “the names of lecturers who are also professors”:

select le.name
from LECTURER le, PROFESSOR pr
where le. self = pr. self

(2.3)

A sample database for SUPERVISION is illustrated in Figure 2.6 with four tuples for each
table. Every eid attribute in LECTURER, PROFESSOR and GRAD can be replaced with a re-
ferring expression, resulting in the RM version of SUPERVISION, called SUPERVISION′,
illustrated in Figure 2.7 and the database for it is indicated in Figure 2.8.

20

table LECTURER (self eid, enum integer, name string, office integer, deptname
string, primary key (enum))

table PROFESSOR (self eid, name string, office integer, deptname string
primary key (name, office),
preference (LECTURER))

table GRAD (self eid, name string, year integer, supervisor eid,
foreign key (supervisor) references PROFESSOR,
primary key (name, supervisor)),
disjoint with (LECTURER, PROFESSOR)

Figure 2.5: SUPERVISION, an ARM schema for a university.

LECTURER (self eid, enum integer, name string, office integer, deptname string){
(@eid1, 1345, “David”, 321, “CS”),
(@eid4, 4654, “Alice”, 264, “CS”),
(@eid8, 5217, “Julia”, ,530, “ECE”),
(@eid9, 2736, “Tom”, 421, “Math”)

PROFESSOR (self eid, name string, office integer, deptname string){
(@eid1, “David”, 321, “CS”),
(@eid2, “Sara”, 512, “Math”),
(@eid3, “Jack”, 105, “ECE”),
(@eid4, “Alice”, 264, “CS”)

GRAD (self eid, name string, year integer, supervisor eid){
(@eid5,“Fred” , 2, @eid1),
(@eid6, ”John”, 3, @eid2),
(@eid7, ”Nancy”, 4, @eid3),
(@eid10, “Mia”, 5, @eid4)}

Figure 2.6: A database for SUPERVISION.

2.2.1 Global Data

This Subsection introduces a set of global data, shown in Figure 2.9, which are used
throughout the thesis. Assuming Σ is an ARM schema and Σ′ is the RM version of Σ,
some of these global data are defined on Σ and some on Σ′. The first global variable is

21

table LECTURER (self string, enum integer, name string, office integer, deptname
string, primary key (enum))

table PROFESSOR (self string, name string, office integer, deptname string
primary key (name, office),
preference (LECTURER))

table GRAD (self string, name string, year integer, supervisor-professor string,
foreign key (supervisor-professor) references PROFESSOR,
primary key (name, supervisor),
disjoint with (LECTURER, PROFESSOR))

Figure 2.7: SUPERVISION′, the RM version of SUPERVISION.

Pk(T) which is defined to be the primary key of a table T ∈ Tables(Σ). The variable
Conc(T) is the concrete view of T ∈ Tables(Σ′). The primary key of Conc(T) is then
illustrated with Pkc(T) which can be computed via the algorithm GenConcretePK(T)
(2). This algorithm is further explained in Section 2.2.2.

Moreover, every table T of Tables(Σ) has a position in the preference order Pro,
which we refer to as the Offset(T). Assuming Offset(T) = i, then Table(i) represents
T . If T contains a preference clause, then the set of offsets of tables in its preference clause
is defined by the Pref(T). The number of offsets of tables in the Pref(T) is defined by
the PrefNum(T). For example, if T has a preference clause, containing three tables in
it, the PrefNum(T) is 3. Next, the variable Disj(T) represents the set of offsets of those
tables which T is disjoint with.

Recalling RTA(T) in the form (2.1), each table name Ti of the ith component, where
1 <= i <= k is called Guard(RTA(T), i) and the set of paths (Pfi,1, . . . , Pfi,ki

) for each
Ti in the ith component is defined as Keypfs(Ti). For example, Guard(RTA(T),
k) is Tk and Keypfs(Tk) is (Pfk,1, . . . , Pfk,kk

). When Pkc(T) is (disc, f), Keypfs(T)
indicates the f value. When the primary key is not (disc, f), Keypfs(T) is the same as
Pkc(T). Also, the variable TableName(T) denotes the string for the name of a table T .

Moreover, variables TT(T) and TTSet(T) which are defined in Definition 12 of Chap-
ter 3, are introduced when translation tables might exist in an schema. TT(T) contains

22

LECTURER (self string, enum integer, name string, office integer, deptname string){
(“select x.self from LECTURER x where x.enum = 1345”, 1345, “David”, 321,
“CS”),
(“select x.self from LECTURER x where x.enum = 4654”, 4654, “Alice”, 264,
“CS”),
(“select x.self from LECTURER x where x.enum = 5217”, 5217, “Julia”, 530,
“Math”),
(“select x.self from LECTURER x where x.enum = 2736”, 2736, “Tom”, 421,
“ECE”)

PROFESSOR (self string, name string, office integer, deptname string){
(“select x.self from LECTURER x where x.enum = 1345”, “David”, 321, “CS”),
(“select x.self from PROFESSOR x where x.name = “Sara” and x.office = 512”
, “Sara”, 512, “Math”),
(“select x.self from PROFESSOR x where x.name = “Jack” and x.office = 105”
, “Jack”, 105, “ECE”),
(“select x.self from LECTURER x where x.enum = 4654”, “Alice”, 264, “CS”)}

GRAD (self string, name string, year integer, supervisor-professor string){
(“select x.self from GRAD x where x.name = “Fred” and x.supervisor.disc = 1
and supervisor.f = 1345”, “Fred” , 2, “select x.self from LECTURER x where
x.enum = 1354”),

(“select x.self from GRAD x where x.name = “John” and supervisor-professor.
disc = 2 and supervisor-professor.f = (“Sara”, 512)”, “John”, 3,
“select x.self from PROFESSOR x where x.name = “Sara” and x.office =
512”),

(“select x.self from GRAD x where x.name = “Nancy” and supervisor-professor.
disc = 2 and supervisor-professor.f = (“Jack”, 105)”, “Nancy”, 4,
“select x.self from PROFESSOR x where x.name = “Jack” and x.office =
105”),

(“select x.self from GRAD x where x.name = “Mia” and supervisor-professor.
disc = 1 and supervisor-professor.f = 4654”, “Mia”, 5,
“select x.self from LECTURER x where x.enum = 4654”)}

Figure 2.8: A database for SUPERVISION′ with eids replaced by strings.

the set of offsets i < Offset(T), where Offset(T ′) = i and there exist translation tables
T ′-T-C. TTSet(Σ) contains the set of all translation tables that exist in Σ.

23

2.2.2 ARM to RET Mapping

As noted earlier, one of our contributions is a proposal for a front-end for referring expres-
sion types in the form of PRIMARY KEY and PREFERENCE clauses which is discussed
in this subsection. Let Σ be an ARM schema such that every table T ∈ Tables(Σ) is
provided with at least one of the two clauses primary key (A1, . . . , Ak) and preference
(T1, . . . , Tm). This subsection introduces a procedure ARMtoRET(Σ) which generates
Rets for Tables(Σ) via the use of provided primary key and preference clauses. Primary
key and preference graphs are part of the translation of primary key and preference clauses
to Rets. They are needed to detect programming errors, and are crucial in defining RTA
that maps tables names to Rets.

Definition 3 (Preference graph (Pg))
The preference graph (Pg) of an ARM schema Σ is a directed graph G = (N, E) in which N
has a node for each T ∈ Tables(Σ) and E has an edge (Ti, Tj), if Ti contains a preference
clause “preference (T1, . . . , Tk)”, where Tj ∈ (T1, . . . , Tk). For a Pg that does not have
any cycles, a preference order Pro = (T1, . . . , Tm) denotes an arbitrary topological sort of
the Pg in a reversed order, and Offset(T) denotes the offset of table T in this order. �

Definition 4 (Primary key graph (Pkg))
The primary key graph (Pkg) of an ARM schema Σ is a directed graph G = (N, E) in
which N has a node for each T ∈ Tables(Σ) and E has an edge (Ti, Tj), if Ti contains a
primary key clause “primary key (A1, . . . , Ak)”, such that there exists an eid attribute
Am in (A1, . . . , Ak), where Ran(Ti, Am) = Tj. Suppose there exists an edge (Ti, Tj) in
E, and there exists a table Tk in Tables(Σ) such that the edge (Tj, Tk) exists in the Pg.
Then, by transitivity, an edge (Ti, Tk) is added to the Pkg. For a Pkg that does not have
any cycles, a primary key order Pko = (T1, . . . , Tn) denotes an arbitrary topological sort
of Pkg in a reversed order in which the most left table T1 only includes incoming edge(s)
and the most right table Tn only contains outgoing edge(s). �

The algorithm ARMtoRET(Σ) and the auxiliary algorithms it calls are defined in the

24

Pk(T): A set of attributes (A1, . . . , Ak),
where “primary key (A1, . . . , Ak)”
is a clause in T .

Conc(T): A concrete view of T containing its concrete
primary key Pkc(T).

Pkc(T): A primary key of the concrete view of T .

RTA(T): A referring type assignment for table T .

Pro: A preference order on the set Tables(Σ), for an ARM schema Σ.

Pro(RTA): A “global” referring expression type.

Offset(T): A position of T in Pro.

Table(i): T ∈ Tables(Σ) such that Offset(T) = i.

Pref(T): A set of offsets i < Offset(T) for which Table(i) exists in T ’s
preference clause. Every offset in Pref(T) includes a possible value
for disc in the table Conc(T).

PrefNum(T): The number of offsets in the Pref(T).

Disj(T): A set of offsets i < Offset(T) such that Table(i)
is disjoint with T .

Guard(RTA(T), i): A table name “Ti ” in the ith component of the RTA(T).

Keypfs(T): A set of path (Pf1, . . . , Pfi), where 1<= i <= k, that is achieved
by converting the Pk(T) to a concrete version.

TableName(T): The string for the name of a table T .

TT(T-C): A set of offsets i < Offset(T) for which there is
a table T ′ for which Offset(T ′) = i, and for which
there is a translation table T ′-T-C.

TTSet(Σ): A set of all translation tables that exist in Σ.

Org-TABS: A global variable defined in Chapter 3 to store every table “T z”
in the “from” clause of the SQL query Q.

Figure 2.9: Global data

25

rest of this Subsection to illustrate how Rets are generated from the provided primary
key and preference clauses.

The algorithm ARMtoRET(Σ) first checks if a Pro and a Pko can be defined
on a preference graph and primary key graph respectively. Then, for every table T

in the Pro, the global data Offset(T), Pk(T), Pref(T), Table(Offset(T)) and
Disj(T) which are defined in Figure 2.9 are generated. Afterwards, ARMtoRET(Σ)
calls GenConcretePK(T) for every T in the Pko to generate the Pkc(T), and calls the
GenRet(T) for every T in the Pro to generate the RTA(T).

Algorithm 1
procedure ARMtoRET (Σ)

if Pro is not defined by the PG of Σ then
return error

if Pko is not defined by the PKG of Σ then
return error

for every T in Pro, find the following global data
if there does not exist any primary key clause in T then

Pref(T) := (1, . . . , m), where “preference (T1, . . . , Tm)” is a clause in T .
if there does not exist any preference clause in T then

Pk(T) := (A1, . . . , Ak), where “primary key (A1, . . . , Ak)” is a clause in T .

else . Both primary key and preference clauses exist
Pk(T) := (A1, . . . , Ak), where “primary key (A1, . . . , Ak)” is a clause in T .
Pref(T) := (1, . . . , m), where “preference (T1, . . . , Tm)” is a clause in T .

• Find the position of T in the Pro and assign the Offset(T) to this integer
• Table(Offset(T)) := T

• Disj(T) := (T ′1,. . . ,T ′k), where T contains the clause “disjoint from (T ′1,. . . ,T ′k).

for every T in the Pko
Call GenConcretePK(T)

for every T in the Pro
Call GenRet(T)

26

Procedure GenConcretePK(T) generates Pkc(T) as well as Keypfs(T).
There are four cases which the algorithm considers:

1. T does not have a primary key clause, but T contains the “isa Tj”
constraint, and Tj is in T ’s preference clause. In this case,
Pkc(T) is the same as Keypfs(T) and they are both the same as Pkc(Tj).

2. T does not have a primary key clause, but T contains the
“cover by (T1, . . . , Tj)” constraint, and the “preference (T1, . . . , Tj)”
clause. In this case, Pkc(T) is (disc, f) and Keypfs(T) is empty.

3. T contains only a primary key and does not have any preference clauses. In this case,
Pkc(T) is the same as Keypfs(T). For each attribute Ai in Pk(T), if Ai is abstract
and Ran(T, Ai) is Tj, for each Pfj in Pkc(Tj),
Ai gets replaced by Ai ◦ Pfj. We introduce the composition operator ◦ as follows:

Pf1 ◦Pf2 ≡


Pf1, if Pf2 is self

Pf2, if Pf1 is self

Pf1 . Pf2, otherwise

4. T contains both a primary key clause and a preference clause. Pkc(T) is then
(disc, f) and the Keypfs(T) is the value of f which is computed as follows: for
each attribute Ai in Pk(T), if Ai is abstract and
Ran(T, Ai) is Tj, for each Pfj in Pkc(Tj), Ai is replaced by Ai ◦ Pfj.

Procedure GenRet(T) finds the RTA(T), according to two checks:
If Pkc(T) is (disc, f), each component of RTA(T) would be built by a table name T ′ and
Keypfs(T ′), where Offset(T ′) exists in Pref(T). Otherwise, RTA(T) is built by the
table name T itself and its Keypfs(T). Function PrintKeypfs(T) prints Keypfs(T ′).

27

Algorithm 2
procedure GenConcretePK (T)

if Pk(T) is empty and T isa Tj and Pref (T) = Offset(Tj) then
Pkc(T) := Pkc(Tj)
Keypfs(T) := Pkc(T)

if Pk(T) is empty and T contains cover by (T1, . . . , Tj) and
Pref(T) = (T1, . . . , Tj) then

Pkc(T) := Concat (Pkc(T), “disc”, “f”)
Keypfs(T) := () . Keypfs is empty

if Pref (T) is empty then
for each column Ai in Pk(T)

if Ai is in Abs(T) and Ran(T, Ai) = Tj then
for each path Pfj in Pkc(Tj)

Pkc(T) := Concat(Pkc(T), Ai ◦ Pfj)
Keypfs(T) = Pkc(T)

else . Concrete attribute
Pkc(T) := Concat(Pkc(T), Ai)
Keypfs(T) := Pkc(T)

else
Pkc(T) = Concat(Pkc(T), “disc”, “f”)
for each column Ai in Pk(T)

if Ai is in Abs(T) and Ran(T, Ai) = Tj then
for each path Pfj in Pkc(Tj)

Keypfs(T) := Concat (Keypfs(T), Ai ◦ Pfj)
else . Concrete attribute

Keypfs(T) := Concat (Keypfs(T), Ai)

Algorithm 3
procedure GenRet (T)

RTA(T) = “”
if Pkc(T) = “(disc, f)” then . T contains a preference clause

x = 0 . number of tables in the preference clause
for each offset i in Pref(T)

Guard(RTA(T), x) := TAB(i)
if x < PrefNum(T) then

RTA(T) := Concat(RTA(T), RTA(TAB(i)), “;”)
else

RTA(T) := Concat(RTA(T), RTA(TAB(i))
x := x + 1

if Keypfs(T) is not empty then . In addition to a preference clause,
T contains a primary key clause

RTA(T) := Concat(RTA(T), “;”, PrintKeypfs(T) . The last component
is T itself

else . T only contains a primary key clause
RTA(T) := Concat(RTA(T), PrintKeypfs(T))

28

Algorithm 4
function PrintKeypfs (T)

RTA(T) := Concat(“T”, “→”, “(”)
for each Pfi in Keypfs(T)

if Pfi is not the last path attribute in Keypfs(T) then
RTA(T) := Concat(RTA(T), Pfi, “= ?”, “,”)

else
RTA(T) := Concat(RTA(T), Pfi, “= ?”)

RTA(T) := Concat(RTA(T), “)”)
return RTA(T)

Considering UNIV in Figure 2.3 again, we illustrate how procedure ARMtoRET(UNIV)
proceeds to find RTA(T) for each T in Tables(UNIV). Table declarations for Tables(UNIV)
are illustrated in Appendix A.1. The only tables with preference clauses are STUDENT and
PERSON and the only table that does not contain any primary key clause is PERSON. Both
tables STUDENT and PROFESSOR are subsets of PERSON and they are also covered by PERSON.

ARMtoRET(UNIV) first generates a preference graph Pg for UNIV, as indicated in
Figure 2.10, where there does not exist any preference cycle. A possible topological sort of
Pg in the reverse order results in the following preference order:

Pro = (COURSE, DEPARTMENT, ENROLLMENT, CLASS, PROFESSOR, STUDENT, PERSON)

Thereafter, ARMtoRET(UNIV) generates a primary key graph Pkg for UNIV, as illus-
trated in Figure 2.11, such that there does not exist any primary key cycle in Pkg either.
A topological sort of Pkg in the reverse order results in the following primary key order:

Pko = (PERSON, PROFESSOR, STUDENT, DEPARTMENT, COURSE, CLASS, ENROLLMENT)

29

Figure 2.10: Pg for UNIV

Figure 2.11: Pkg for UNIV

ARMtoRET(UNIV) then iterates through every table T in Pro to find Pk(T), Pref(T),
Offset(T), Table(Offset(T)), and Disj(T) which are illustrated in Figure 2.12 for
COURSE, DEPARTMENT, ENROLLMENT, CLASS, PROFESSOR, STUDENT and PERSON.

30

Pk(COURSE) = (cnum, department)
Pref(COURSE) = ()
Offset(COURSE) = 1
Table(2) = COURSE
Disj(COURSE) = (DEPARTMENT, ENROLLMENT, CLASS, PROFESSOR, STUDENT, PERSON)

Pk(DEPARTMENT) = deptcode
Pref(DEPARTMENT) = ()
Offset(DEPARTMENT) = 2
Table(1) = DEPARTMENT
Disj(DEPARTMENT) = (COURSE, ENROLLMENT, CLASS, PROFESSOR, STUDENT, PERSON)

Pk(ENROLLMENT) = (student, class)
Pref(ENROLLMENT) = ()
Offset(ENROLLMENT) = 3
Table(4) = ENROLLMENT
Disj(ENROLLMENT) = (COURSE, DEPARTMENT, CLASS, PROFESSOR, STUDENT, PERSON)

Pk(CLASS) = (course, term, section)
Pref(CLASS) = ()
Offset(CLASS) = 4
Table(3) = CLASS
Disj(CLASS) = (COURSE, DEPARTMENT, ENROLLMENT, PROFESSOR, STUDENT, PERSON)

Pk(PROFESSOR) = (name, office)
Pref(PROFESSOR) = ()
Offset(PROFESSOR) = 5
Table(5) = PROFESSOR
Disj(PROFESSOR) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Pk(STUDENT) = (snum)
Pref(STUDENT) = (5)
Offset(STUDENT) = 6
Table(6) = STUDENT
Disj(STUDENT) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Pk(PERSON) = ()
Pref(PERSON) = (5, 6)
Offset(PERSON) = 7
Table(7) = PERSON
Disj(PERSON) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Figure 2.12: Global data for all tables in UNIV

31

Thereafter, ARMtoRET(UNIV) iterates through every table T in Pko and calls proce-
dure GenConcretePK(T) to generate Pkc(T) and Keypfs(T), as illustrated further:

Pkc(PERSON) = (disc, f)
Keypfs(PERSON) = ()

Pkc(PROFESSOR) = (name, office)
Keypfs(PROFESSOR) = (name, office)

Pkc(STUDENT) = (disc, f)
Keypfs(STUDENT) = (snum)

Pkc(DEPARTMENT) = deptcode
Keypfs(DEPARTMENT) = deptcode

Pkc(COURSE) = (cnum, department.deptcode)
Keypfs(COURSE) = (cnum, department.deptcode)

Pkc(CLASS) = (course.cnum, course.department.deptcode, term, section)
Keypfs(CLASS) = (course.cnum, course.department.deptcode, term, section)

Pkc(ENROLLMENT) = (student.snum, class.course.cnum, class.course.department.
deptcode, class.term, class.section)

Keypfs(ENROLLMENT) = (student.snum, class.course.cnum, class.course.department.
deptcode, class.term, class.section)

Then, ARMtoRET(UNIV) iterates through every T in Pro and calls procedure GenRet(T)
to generate RTA(T), as shown below:

32

RTA(COURSE):= COURSE → (cnum = ?, department.deptcode = ?)
RTA(DEPARTMENT):= DEPARTMENT → deptcode = ?
RTA(ENROLLMENT):= ENROLLMENT → (student.disc = ?, student.f = ?, class.

course.cnum = ?, class.course.department.deptcode = ?,
class.term = ?, class.section = ?)

RTA(CLASS):= CLASS → (course.cnum = ?, course.department.deptcode = ?,
term = ?, section = ?)

RTA(PROFESSOR):= PROFESSOR → (name = ?, office = ?)
RTA(STUDENT):= PROFESSOR → (name = ?, office = ?); STUDENT → snum = ?,
RTA(PERSON):= PROFESSOR → (name = ?, office = ?); STUDENT → snum = ?

2.3 On Identity Resolution

Clearly, not all RTA assignments will work. For example, unless the deptcode of DEPARTMENT
is unique, the RTA assignment for DEPARTMENT in Appendix A.3 is insufficient. We now
consider when an RTA assignment qualifies as well-formed. We then show how satisfying
this condition ultimately leads to an intuitive notion of identity resolution, in particular,
the assurance that any SQL query over an ARM schema can be mapped to an equivalent
query over a related RM schema.

Definition 5 (Well-Formed RTA)
Let Σ be an ARM schema and RTA a referring type assignment for Σ. Given a preference
order Pro := (Ti1 , . . . , Tik

) on the set Tables(Σ), define Pro(RTA) as the following
referring expression type:

RTA(Ti1); . . . ; RTA(Tik
)

We say that RTA is well-formed with respect to Pro if the following conditions also hold
for each T ∈ Tables(Σ).

1. RTA(T) = Prune(Pro(RTA), T),

33

2. Σ |= ((cover by {T1, ..., Tn}) ∈ T)), where {T1, ..., Tn} are all tables occurring in the
guards in the RTA(T), and

3. for each component Tj → (Pfj,1 = ?, . . . , Pfj,kj
= ?) of RTA(T), the following also

holds: (i) Pfj,i is well defined for Tj, for 1 ≤ i ≤ kj, and (ensuring strong identi-
fication) (ii) Σ |=((path functional dependency (Pfj,1, . . . , Pfj,kj

) determines self)
∈ Tj).

�

The first condition of a well-formed RTA which is Prune(Pro(RTA), T) is presented
in Algorithm 5. It prunes Pro(RTA) with respect to T , by removing the jth component
“Tj → (Pfj,1 =?, . . . , Pfj,kj) =?)” of Pro(RTA) if one of the following condition is true:

1. Tj is covered by {T1,..., Tj−1}

2. T is covered by {T1,..., Tj−1}

3. T is disjoint from Tj

Algorithm 5
function Prune (Pro(RTA), T)

pruneResult := Pro(RTA)
if (Σ = (cover by {T1,...,Tj−1}) ∈ Tj) or

Σ = (cover by {T1,...,Tj−1}) ∈ T) or
Σ = (disjoint with Tj) ∈ T)) then
remove the jth component “Tj → (Pfj,1 =?, ..., Pfj,kj

= ?)” from pruneResult
return pruneResult

34

The second condition of a well-formed RTA states that when tables {T1, ..., Tn} exist
in the guards of the RTA(T), every self attribute in T must exist in at least one of the
tables in {T1, ..., Tn}. Finally, the third condition of a well-formed RTA contains two parts:

1. Pfj,i must exist as an attribute in Tj. For example, suppose RTA(STUDENT) :=
address = ?, where the attribute address does not exist in STUDENT. Thus, it is not
well defined and RTA(STUDENT) is not then well-formed.

2. Pfj,i must be unique for each self entity. In other words, there should not exist two
self tuples with the same Pfj,i. For example, suppose RTA(STUDENT) := name =
?. There can exist two or more students with the name “David”, so name does not
strongly identify STUDENT and, therefore, RTA(STUDENT) is not well-formed.

Considering UNIV, the following illustrates the Pro(RTA):

Pro(RTA) :=
RTA(DEPARTMENT); RTA(COURSE); RTA(CLASS); RTA(DEPARTMENT);
RTA(PROFESSOR); RTA(STUDENT); RTA(PERSON)

(2.4)

Prune(Pro(RTA), T) for each T in Tables(UNIV) is the same as the RTA(T). For
example, Prune(Pro(RTA), STUDENT) which is indicated as follows, is the same as the
RTA(STUDENT):

35

Prune(Pro(RTA), STUDENT) =
Prune((DEPARTMENT→ deptcode = ?;

COURSE→ (cnum = ?, department.deptcode = ?);
CLASS→ (course.cnum = ?, course.department.deptcode = ?, term = ?,

section = ?);
ENROLLMENT→ (student.snum = ?, class.course.cnum = ?, class.course.

department.deptcode = ?, class.term = ?, class.

section = ?);
PROFESSOR→ (name = ?, office = ?);
PROFESSOR→ (name = ?, office = ?); STUDENT→ snum = ?;
PROFESSOR→ (name = ?, office = ?); STUDENT→ snum = ?), STUDENT) =

PROFESSOR→ (name = ?, office = ?); STUDENT→ snum = ?
(2.5)

Therefore, the first condition of a well-formed RTA is satisfied for UNIV. The second
condition is also met for each T in Tables(UNIV). For example, the table PERSON is
covered by PROFESSOR and STUDENT and these two occur in the guards of the RTA(PERSON)
(Appendix A.1). The third case is satisfied for each T in Tables(UNIV) as well, since the
RTA(T) ensures strong identification.

2.3.1 A New Form of Ret

A new form of (Ret) relative to Σ, where Σ is an ARM schema can be illustrated in the
following form in addition to the already introduced form in (2.1):

Ret ::= Ti → (Condi1 , ..., Condik
)

| Ret; Ti → (Condi1 , ..., Condik
)

Cond ::= Pf =?
| Pf . disc =?, Pf . f =?

(2.6)

36

Considering the ARM schema SUPERVISION,
RTA(GRAD):= GRAD → (name = ?, supervisor.disc = ?, supervisor.f = ?),
is in both the form (2.1) and (2.6). The referring expressions for RTA(GRAD) which have
replaced the self column of GRAD in Figure 2.8, contain “supervisor.disc = c1 and
supervisor.f = c2”, where c1 and c2 are constants. However, Since disc and f do not
exist in the ARM schema Σ, such referring expressions can not be compiled on Σ. There-
fore, for every RTA(T) in Σ, each occurrence of “Pf . disc =?, Pf . f =?” is replaced by
Pf : RTA(Ran(T, Pf)), and the Ret form in (2.6) is changed to another form which is
illustrated in the following definition:

Definition 6 (The New Referring Expression Types)
Let Σ be an ARM schema. A new referring expression type (Ret) relative to Σ has the
following form:

Ret ::= Ti → (Condi1 , . . . , Condik
)

| Ret; Ti → (Condi1 , . . . , Condik
)

Cond ::= Pf =?
| Pf : Ret,

(2.7)

where an Ret consists of a sequence of “; ” separated components. Each component Ti →
(Condi1 , . . . , Condik

) consists in turn of a guard, written Guard(Ret, i), which is the
name Ti of a table in Tables(Σ) and each Cond which is in the form Pf = ? or Pf : Ret.
�

Therefore, the RTA(GRAD) is now updated to the following:
RTA(GRAD) := GRAD →(name = ?,

supervisor-professor : RTA(Ran(GRAD, supervisor-professor)))
:= GRAD → (name = ?,

supervisor-professor : RTA(PROFESSOR)),
:= GRAD → (name = ?,

37

supervisor-professor : (LECTURER → enum = ? ;
PROFESSOR→ (name = ?, office = ?))

Definition 7 (Referring Expressions)
Let DB denotes a database over an ARM schema Σ. Suppose an Ret is a special Ret of the
form (2.7) and Cond is also a special Cond of the form (2.7). A set of referring expressions
for every Ret relative to the DB, written Re(Ret, DB) and Extendcond(Cond, DB)
have the form in Figure 2.8. The Eval(Re, DB) executes a special Re on DB and
returns a table in which the self column contains an eid attribute corresponding to the
Re. For example, if the Re is “select * from LECTURER x where x.enum = 1345”, the
Eval(Re, DB) returns a table with the self column which contains the eid value of a
lecturer whose enum is 1345.

Re(“T → (Cond1, . . . , Condk)”, DB) =
{Q | Q = “select x. self from T x where C1 and . . . and Ck”
where Ci ∈ Extendcond(Condi, DB), 1 <= i <= k,

and | Eval(Q, DB)| = 1},

Re(“Ret′ ; T → (Cond1, . . . , Condk)”, DB) =
Re(Ret′, DB) ∪ {Q2 ∈ Re(“T → (Cond1, . . . , Condk)”, DB)
| not exists Q1 ∈ Re(Ret′, DB) s.t.

Eval(“Q1”, DB) = Eval(“Q2”, DB)},

Extendcond(“ Pf =?”, DB) = {“x. Pf = c” | c occurs as a constant in DB},

Extendcond(“ Pf : Ret′”, DB) = {“x. Pf in (Q)” | Q ∈ Re(Ret′, DB)}.

(2.8)

�

According to the definition of referring expressions, the referring expressions for tables
PROFESSOR and LECTURER of SUPERVISION remain the same as shown in Figure 2.8,

38

whereas the referring expression for GRAD is changed to the following general form below,
where ci is a constant:
Re(RTA(GRAD), DB) =

{“select x.self from GRAD x where x.name = c1 and
x.supervisor-professor in (select x.self from LECTURER x where
x.enum = c2)”

or
“select x.self from GRAD x where x.name = c1 and

x.supervisor-professor in (select x.self from PROFESSOR x where
x.name = c3 and x.office = c4)”}

The actual Re(RTA(GRAD), DB) is then modified as follows:

Re(RTA(GRAD), DB) =
{(“select x. self from GRAD x where x.name = “Fred” and

x.supervisor-professor in (select x. self from LECTURER x where x.enum
= 1345)”),

(“select x. self from GRAD x where x.name = “John” and
x.supervisor-professor in (select x. self from PROFESSOR x where x.name

= Sara and x.office = 512)”),

(“select x. self from GRAD x where x.name = “Nancy” and
x.supervisor-professor in (select x. self from PROFESSOR x where x.name

= Tom and x.office = 418)”),

(“select x. self from GRAD x where x.name = “Mia” and
x.supervisor-professor in (select x. self from LECTURER x where x.enum

= 4654)”)}
(2.9)

39

Therefore, the correct table declarations for LECTURER, PROFESSOR an GRAD in the RM
schema are now illustrated in Figure 2.13. When converting the SQLP query in (2.3) to
an SQLA, the query is not changed and remains the same, since the self columns of type
string now exist in the schema.

Proposition 8 Let Σ be an ARM schema and RTA is a well-formed referring type as-
signment for Σ. For every table T in Tables(Σ) and every database DB over Σ, there
exists exactly one Re in the Re(RTA(T), DB) for each eid occurring in the self column
of T such that the following is true:

Eval(Re, DB) = {(eid)}

Definition 9 (A mapping from eid to string)
Given a database DB, with schema Σ, let M denotes a mapping from eid occurring in
the DB to strings. We also write M(Tab) to denote a table Tab′ obtained from a given
table Tab, where each eid in Tab is replaced by M(eid) and also write M(DB) to denote
a database DB′ with schema Σ′, where Σ′ is obtained from Σ by replacing any occurrence
of the domain eid with the domain string and any table Tab in DB with table M(Tab)

Definition 10 (Identity Resolving Type Assignments)
Let Σ be an ARM schema and DB denotes a database over Σ. A mapping M is identity
resolving if

M(Eval(Q, DB)) = Eval(Q, M(DB)) (2.10)

holds for every SQLA query Q over the DB. �

An identity issue is the problem of compiling any query Q that contains x.A = y.self,
where each side is an eid. In order to compile such queries, each side of the equality should
be replaced by a string which we indicate it as M(x.A) = M(y.self), where M has to be
identity resolving.

Proposition 11 Given a database DB with schema Σ and a well-formed RTA, there
exists an M that is identity resolving.

40

LECTURER (self string, enum integer, name string, office integer, deptname string)
= {(“select x.self from LECTURER x where x.enum = 1345”, 1345, “David”,
321,“CS”),
(“select x.self from LECTURER x where x.enum = 4654”, 4654, “Alice”, 264,
“CS”),
(“select x.self from LECTURER x where x.enum = 5217”, 5217, “Julia”, 412,
“Math”),
(“select x.self from LECTURER x where x.enum = 2736”, 2736, “Tom”, 418,
“ECE”)}

PROFESSOR (self string, name string, office integer, deptname string) = {
(“select x.self from LECTURER x where x.enum = 1345”, “David”, 321,
“CS”),
(“select x.self from PROFESSOR x where x.name = “Sara” and x.office =
512”, “Sara”, 512, “Math”),
(“select x.self from PROFESSOR x where x.name = “Tom” and x.office =
418”, “Tom”, 418, “ECE”),
(“select x.self from LECTURER x where x.enum = 4654”, “Alice”, 264,
“CS”)}

GRAD (self string, name string, year integer, supervisor string) = {
(“select x.self from GRAD x where x.name = “Fred” and
x.supervisor in (select x.self from LECTURER x where x.enum = 1345)”),
“Fred” , 2, “select x.self from LECTURER x where x.enum = 1354”),

(“select x.self from GRAD x where x.name = “John” and
x.supervisor in (select x.self from PROFESSOR x where x.name = “Sara” and
x.office = 512)”, “John”, 3, “select x.self from PROFESSOR x where x.name =
“Sara” and x.office = 512”),

(“select x.self from GRAD x where x.name = “Nancy” and
x.supervisor in (select x.self from PROFESSOR x where x.name = “Tom” and
x.office = 418)”, “Nancy”, 4, “select x.self from PROFESSOR x where
x.name = “Tom” ”),

(“select x.self from LECTURER x where x.enum = 4654”, “Alice”, 264, “CS”’,
“Mia”, 5, “select x.self from LECTURER x where x.enum = 4654”)}

Figure 2.13: The correct version of SUPERVISION′ with eids replaced by strings.

41

The proof is a simple consequence of Proposition 8 such that M maps eids to referring
expressions. In particular, for any eid occurring in a self column of table T in Σ, M(eid)
is the unique referring expression Re in Re(RTA(T), DB) that must exist by Proposition
8, and for which Eval(Re, DB) = {(eid)}.

2.4 Mapping an ARM schema to an RM schema

In Section 2.2, we have illustrated how eids in each table T in an ARM schema Σ are
replaced by referring expressions such that Σ is converted to an RM schema Σ′. Figure
2.13 indicates a new database for SUPERVISION′, where eids in SUPERVISION are
replaced by correct referring expressions. Although the identity issues have been resolved
via the new RM schema that has been achieved by replacing all the eids with referring
expressions, storing such long strings is not efficient. Therefore, in converting an ARM
schema Σ to an RM one, we remove the self column for each T in Tables(Σ) and replace
it with Pkc(T) which can be a combination of disc and f. Also, for any eid foreign key
A that references another table T ′, A is replaced with Pkc(T ′). For example, the following
illustrates a database for SUPERVISION′, where the self columns have been removed,
and columns disc and f are added, as required.

42

LECTURER (enum integer, name string, office integer, deptname string) = {

(1345, “David”, 321, “CS”),

(4654, “Alice”, 264, “CS”),

(5217, “Julia”, 412, “Math”),

(2736, “Tom”, 418, “ECE”)}

PROFESSOR (disc integer, f string, name string, office integer, deptname

string) = {

(1, “1345”, “David”, 321, “CS”),

(2, “Sara 512 ”, “Sara”, 512, “Math”),

(2, “Tom 418 ”, “Tom”, 418, “ECE”),

(1, “4654”, “Alice”, 264, “CS”)}

GRAD (name string, supervisor-disc integer, supervisor-f string, year

integer) = {

(“Fred”, 1, “1345” , 2),

(“John”, 2, “Sara 512”, 3),

(“Nancy”, 2, “Tom 418” 4),

(“Mia”, 1, “4654”, 5)}

In this section, function ARMtoRM(Σ) is introduced in Algorithm 6 to map an ARM
schema Σ to an RM schema Σ′ by finding a table declaration for each table T in Tables(Σ).
ARMtoRM(Σ) calls procedure ARMtoRET(Σ) to generate RTA(T) for each T in
Tables(Σ). Then, if RTA is well-formed for Σ, ARMtoRM(Σ) starts generating a
concrete table declaration for each T in Σ′. First, a primary key clause is generated for T .
Then, every concrete attribute Ai of T , in addition to its domain, are added to the table
declaration of T . If Ai is an eid attribute, and it references another table T ′, string “Ai−”
is concatenated to each element of Pkc(T ′), in addition to the domain of that element,
and the result is then added to the table declaration of T . A foreign key clause is also
generated at this point and added to the table declaration of T .

ARMtoRM(Σ) calls functions GenName(Pf) and PathDom(T, Pf). GenName(Pf)
which is illustrated in Algorithm 8 inputs a path Pf in the form B1. · · · .Bk and converts

43

it to the form B1-. . .-Bk. PathDom(T, Pf) which is displayed in Algorithm 9 inputs
a table T and a path Pf that exists as an attribute in T . Pf is assumed to be in the
form A1. · · · .Aj, and PathDom(T, Pf) finds the domain of Pf and the table that Pf is
referencing.

Function AddNewAttr(Ai, T , Tj) which is indicated in Algorithm 7 inputs an ab-
stract attribute Ai in a table T , such that it references a table Tj. This function concate-
nates “Ai.” with each path Pfj in Pkc(Tj) and generates a new attribute, and adds it to
Attrs(Conc(T)). Next, this function prefixes every path Pfj in Pkc(Tj) with Ai, and
adds the result path, along with the domain type of Pfj to a string called table-decl. A
foreign key clause including the combination of a prefix Ai and each path Pfj in Pkc(Tj) is
also added to table-decl. Figure 2.14 illustrates a graph for both algorithms and definitions
that are introduced to map an ARM schema to an RM schema.

44

Algorithm 6
function ARMtoRM (Σ)

Call ARMtoRET(Σ) to generate RTA(T) for each T in Tables(Σ)
if RTA is well-formed then

RM-table-decl-set := ()
for each table T in Tables(Σ)

table-decl := “(”
if Pkc(T) == (disc, f) then

table-decl := Concat(table-decl, disc, “ integer, ”, f, “ string, ”)
table-decl := Concat(table-decl, “primary key”, “(”, disc, f, “)”)
add (disc, f) to the Attrs(T − C)

else
primarykey = “(”
for each path Pfi in Pkc(T)

primarykey := Concat(primarykey, GenName(Pfi))
table-decl := Concat(table-decl, “primary key”, primarykey, “)”)

for each attribute Ai in Attrs(T)
if Ai is not in Abs(T) then

table-decl := Concat(table-decl, Ai,“ ”, “Dom(T, Ai)”)
add Ai to the Attrs(T − C)

if Ai is in Abs(T) and Ran(T, Ai) = Tj then
if Pkc(Tj) == (disc, f) then

table-decl := Concat(table-decl, (Concat(Ai, “−”, disc, “integer”),
Concat(Ai, “−”, f, “ string”)))

table-decl := Concat(table-decl, “foreign key”, “(”, Ai, “−”,
disc), “, ”, Ai, “−”, f, “)”), “ ”,
“references”, Tj)

add Ai. disc and Ai. f to the Attrs(T − C)
else . primary key of Tj is not (disc, f)

addnew-decl := AddNewAttr(Ai, T, Tj)
table-decl := Concat(table-decl, addnew-decl)

for each path Pfi in Pkc(T)
if Pfi is not in Attrs(T − C) then

table-decl := Concat(table-decl, Pfi, “ ”, Dom(T, Pfi))
add Pfi to the Attrs(T − C)

table-decl := Concat(table-decl, “)”)
add table-decl to the RM-table-decl-set

return RM-table-decl-set

Algorithm 7
function AddNewAttr (Ai, T , Tj)

table-decl = “”
foreignkey = “(”
for each path Pfj in Pkc(Tj)

pathName := GenName(Pfj)
orgT, PfDom := PathDom(Tj, Pfj)
foreignkey := Concat(foreignkey, “Ai”, “−”, pathName)
table-decl := Concat(table-decl, “Ai”, “−”, pathName, “ ”, PfDom)
add Ai. Pfj to the Attrs(Conc(T))

table-decl := Concat(table-decl, “foreign key, foreignkey, “)”, “references”, Tj)
return table-decl

45

Algorithm 8
function GenName (Pf)

for each “.” in Pf, where Pf is of the form B1 . . . Bk

convert “.” to “− ”
return B1 − . . .−Bk

Algorithm 9
function PathDom (T, Pf)

table = T
pathDom = “ ”
if Pf contains only one attribute Aj then

pathDom = “Dom(table, Aj)”
sourceTable = table

else
concrete = Aj . storing the concrete attribute of the path(Aj)
Pfk = A1 . . . Aj−1 . storing the abstract attributes of the path
for each attribute Ak in Pfk

table := Ran(table, Ak)
pathDom := “Dom(table, concrete)”
sourceTable := Ran(T, A1)

return sourceTable, pathDom

Considering UNIV in Figure 2.3, we illustrate how the algorithm AddNewAttr(course,
CLASS, COURSE) proceeds when UNIV is mapped to its concrete version UNIV′. There
exists an abstract attribute course in CLASS which references the table COURSE. The
Pkc(COURSE-C) is (department.deptcode, cnum). The AddNewAttr(course, CLASS,
COURSE) calls the GenName(department.deptcode) which converts the “.” in department.
deptcode to a “-”, and assigns a variable, called pathName to department-deptcode.
Then the algorithm PathDom(COURSE, department.deptcode) is called to find the do-
main type of the department.deptcode which is integer. In order to convert course to
concrete attributes, a new string, called foreignkey is introduced which stores course-
department-deptcode, as indicated below:

foreignkey := Concat(foreignkey, “course”, “-”, department-depcode).

Another string, called table-decl, is also generated to store the course-department-
deptcode, along with its domain type integer:

table-decl := Concat(table-decl, “course”, “-”, department-deptcode, integer).

46

Figure 2.14: A call-graph for algorithms and definitions for mapping an ARM schema to
an RM schema.

Then the new attribute course.department.deptcode is added to the Attrs(CLASS-C).
The same process is iterated for the second attribute of Pkc(COURSE) which is cnum. The
GenName(cnum) returns cnum, since cnum is not a path and the PathDom(COURSE,
cnum) returns the domain type of cnum which is integer. Then the string foreignkey and
table-decl are updated as follows:

foreignkey := Concat(foreignkey, “course”, “-”, cnum),
table-decl := Concat(table-decl, “course”, “-”, cnum, integer).

Then the new attribute course.cnum is also added to the Attrs(CLASS-C). Thereafter, a

47

foreign key clause, using the foreignkey string is generated and added to the table-decl, as
indicated:

table-decl := Concat(table-decl, “foreign key”, foreign key, “references”, COURSE).

Lastly, the AddNewAttr(course, CLASS, COURSE) returns the table-decl which stores
the following string:

table-decl = “course-department-deptcode integer”, “course-cnum integer”,
“foreign key(course-department-deptcode, course-cnum)

references COURSE”.

The next subsection illustrates converting UNIV in Figure 2.3 to UNIV′ via procedure
ARMtoRM(UNIV) and also indicates converting an SQLA query over UNIV to an SQL
one over UNIV′.

2.4.1 ARMtoRM on UNIV

Considering UNIV, the following SQLP query illustrates the “names of professors who are
also students”:

select pr.name
from PROFESSOR pr, STUDENT s
where pr. self = s. self

(2.11)

Attribute name in PROFESSOR is inherited from PERSON, since PROFESSOR is a subset of
PERSON. Therefore, the SQLP query in (2.11) is simplified to the following SQLA:

select pe.name
from PROFESSOR pr, PERSON pe
where pr. self = pe. self
and exists(select ∗ from STUDENT s

where pe. self = s. self)

(2.12)

48

To map the SQLA query in (2.12) over UNIV to an SQL query over a concrete schema
UNIV′, first we need to map UNIV to UNIV′ via procedure ARMtoRM(UNIV).
ARMtoRM(UNIV) first checks if RTA for UNIV is well-formed which is true, as explained
in section 2.3. Then, for each table T in Tables(UNIV), an empty string table-decl is
generated to store the table declaration for T . We explain steps of this procedure for
PROFESSOR and show the table declaration for PROFESSOR-C, STUDENT-C and PERSON-C in
this subsection and Appendix A.3 illustrates the table declarations for all tables in UNIV′.

Since Pkc(PROFESSOR) is (name, office), a primary key clause is added to the table-
decl for PROFESSOR-C, as follows:

table-decl := Concat(table-decl, “primary key”, “(”, name, “,”, office, “)”)

ARMtoRM(Σ) then iterates through Attrs(PROFESSOR) which are office and department∗.
Since office is a concrete attribute, it is added to table-decl along with its data type, as
shown here:

table-decl := Concat(table-decl, office “integer”)

However, since department is an abstract attribute and it references DEPARTMENT and
Pkc(DEPARTMENT) = deptcode, function AddNewAttr(department, PROFESSOR, DEPARTMENT)
is called and returns a new string named addnew-decl. This function generates the new at-
tribute department-deptcode and adds it to Attrs(PROFESSOR-C). department-deptcode
, along with its data type which is integer is stored in addnew-decl, as shown below:

addnew-decl := Concat(addnew-decl, department-deptcode “integer”)

A foreign key clause, including department-deptcode is generated as follows and also
stored in addnew-decl :

addnew-decl := Concat(addnew-decl, “foreign key(”, department-deptcode, “)”,
“references”, DEPARTMENT)

49

AddNewAttr(department, PROFESSOR, DEPARTMENT) then returns addnew-decl which is
concatenated with table-decl. Afterwards, ARMtoRM(Σ) iterates through each attribute
in Pkc(PROFESSOR) = (name, office), and since the attribute name has not existed in
Attrs(PROFESSOR-C)), it is added to table-decl as shown here:

table-decl := Concat(table-decl, name “string”)

Therefore, the table declaration for concrete PROFESSOR-C is as follows:

table PROFESSOR-C (name string, office integer, department-deptcode integer,

primary key (name, office),

foreign key (department-deptcode) references DEPARTMENT)

ARMtoRM(UNIV) then generates the table declaration for STUDENT-C and PERSON-C for
which Pkc is (disc, f). Table declarations for these two tables are shown below:

table STUDENT-C (disc integer, f string, snum integer, year integer

primary key (disc, f))

table PERSON-C (disc integer, f string, sin integer, name string, cellphone

integer, primary key (disc, f))

A concrete relational schema UNIV′ is indicated in Figure 2.15 in which a foreign key
department-deptcode from PROFESSOR referencing DEPARTMENT is indicated by an arrow.
The only tables whose Pkc is (disc, f) are STUDENT and PERSON.

50

Figure 2.15: The concrete relational schema UNIV′

Considering the way Borgida et al. suggest in [1] for converting an SQLA query over
UNIV to a SQL over UNIV′, the disc attribute of PERSON is compared with Offset(PROFE-
SSOR) = 5 and the f attribute of PERSON is compared with Pkc(PROFESSOR) = (name,
office). Also, the disc attribute of STUDENT is compared with Offset(PROFESSOR) = 5
and the f attribute of STUDENT is compared with Pkc(PROFESSOR) = (name, office), as
illustrated by the following SQL query:

51

select pe.name
from PROFESSOR pr
where exists(select ∗ from PERSON pe

where pe.disc = 5
and pe.f = Concat(pr.name, pr.office)
and where exists(select ∗ from STUDENT s

where s.disc = 5
and s.f = Concat(pr.name, pr.office)))

(2.13)

Therefore, the SQLA query in (2.12) is converted to the SQL query in (2.13).

52

Chapter 3

Adding Translation Tables

This chapter introduces the new concept of translation tables to resolve reference issues in
relational databases. At its core, a translation table from table Ti-C to table Tj-C, hereon
named Ti-Tj-C, consists of columns encoding the ultimate primary keys of tables Ti-C and
Tj-C, and will contain a tuple for every eid occurring in common in the self columns of
Ti and Tj. Recall that the use of “-C” for a table T-C implies that it exists in a concrete
schema.

When necessary preference tables do not exist in an RM schema, translation tables
should be generated to solve the equality issues and make the schema identity resolv-
ing. There are two approaches with translation tables. First, a translation table Ti-Tj

is introduced between tables Ti and Tj in the ARM. Second, a translation table Ti-Tj-C
is introduced between tables Ti-C and Tj-C in the RM. This thesis follows the second
approach.

There are two sections in this Chapter:

1. Section 3.1 introduces translation tables and illustrates how they affect mapping an
ARM schema Σ to a RM schema Σ′, via the new ARMtoRM which has been up-
dated from the ARMtoRM in Chapter 2 (Algorithm 6). The concept of identity
resolution is also redefined in this section by considering translation tables. Then,

53

three examples are given to illustrate mapping Σ to Σ′, via the generation of trans-
lation tables when necessary.

2. Section 3.2 illustrates how to map SQLA queries over Σ to SQL ones over Σ′, con-
sidering translation tables, and via the new procedure SQLAtoSQL. The three
examples in 3.1 are recalled here to illustrate how different SQLA queries on Σ are
mapped to SQL ones over Σ′ in different circumstances.

3.1 ARM-to-RMmapping, considering translation ta-
bles

This section introduces the concept of translation tables which is the main contribution
of this thesis. First, we explain how a translation table Ti-Tj-C is defined between two
tables Ti-C and Tj-C, and the global data that is generated for ARM-to-RM mapping with
respect to translation tables. Section 3.1.1 recalls the concept of identity resolution, now
considering translation tables. In this section, we propose an updated version of procedure
Prune(Pro(RTA), T) which we call UpdatedPrune(Pro(RTA), T), which will now
have the option of introducing translation tables. This capability leads to a much larger
variety of database schemata that are identity resolving. Also recall that Pro refers to
a preference order on the tables comprising an ARM schema, and Pro(RTA) refers to a
“global” referring expression type. (See Figure 2.9 and recall Section 2.3.)

New procedures and functions, that now use translation tables are introduced in Section
3.2. For example, function Absorb(Ti-Tj-C) checks whether Ti contains the constraint
“isa Tj” or whether Tj contains the constraint “isa Ti”. Function Replace(Ti-Tj-C)
checks whether the translation table Ti-Tj-C can be computed from the join of two other
translation tables. Furthermore, we propose procedure CompressTTables(Σ) which uses
the information from Absorb(Ti-Tj-C) and Replace(Ti-Tj-C) to reduce the number
of unnecessary translation tables that can be computed via inheritance or the join of
other translation tables respectively. Then, function UpdatedARMtoRM(Σ) indicates

54

how function ARMtoRM(Σ) has been updated to map Σ to Σ′ that can now contain
translation tables. Finally, Section 3.3 includes three examples. The first one illustrates
a scenario in which only translation tables are generated, whereas the second and third
examples indicate different cases in which a combination of both preference and translation
tables exists.

Definition 12 (Translation Table (TT))
A translation table Ti-Tj-C is a table in RM that is generated between tables Ti-C and Tj-C,
where Offset(Ti) < Offset(Tj) in Pro. Ti-Tj-C stores Pkc(Ti-C) and Pkc(Tj-C) for
every common entity between Ti-C and Tj-C, such that Pkc(Ti-Tj-C) is always considered
to be the same as Pkc(Ti). Also, the column(s) in the Ti-Tj-C which store(s) the sequence
of attribute(s) in Pkc(Ti-C) is a foreign key, referencing Ti-C and the column(s), containing
the sequence of attribute(s) in Pkc(Tj-C) is a foreign key, referencing Tj-C.

We have introduced global variables TT(T) and TTSet(Σ) in Figure 2.9 of Chapter
2, that are related to translation tables. More specifically, a TT(T-C) is defined as a set
of offsets k < Offset(T) for which there exists a table T ′ for which Offset(T ′) = k,
and for which there is a translation table T ′-T-C. A TTSet(Σ) is defined as a set of all
translation tables in Σ. We also define ConcRan(Ti-C, Pfj) to denote the table Tj-C
which the foreign key Pfj in the table Ti-C is referencing.

3.1.1 Identity Resolution with Translation Tables

Definition 13 (Well-formed RTA)
Let Σ be an ARM schema and RTA a referring type assignment for Σ. Given a preference
order Pro := (Ti1 , . . . , Tik

) on the set Tables(Σ), define Pro(RTA) as the following
referring expression type:

RTA(Ti1); . . . ; RTA(Tik
)

We say that RTA is well formed if there is some preference order Pro such that the
following conditions hold for each T ∈ Tables(Σ).

55

• RTA(T) = UpdatedPrune(Pro(RTA), T),

• Σ |= ((cover by {T1, ..., Tn}) ∈ T), where {T1, ..., Tn} are all tables occurring in the
guards in the RTA(T), and

• for each component Tj → (Pfj,1 = ?, . . . , Pfj,kj
= ?) of RTA(T), the following also

holds: (i) Pfj,i is well defined for Tj, for 1 ≤ i ≤ kj, and (ensuring strong identifica-
tion) (ii) Σ |=((path functional dependency (Pfj,1, . . . , Pfj,kj

) determines self) ∈ Tj).

�

The first condition of a well-formed RTA contains UpdatedPrune(Pro(RTA), T)
which is indicated in Algorithm 10. It works the same as Prune(Pro(RTA), T)(Algo-
rithm 5), with the difference that if the jth component “Tj → (Pfj,1 =?, . . . , Pfj,kj

=?)” is
not removed from Pro(RTA), and it is not a component of RTA(T), UpdatedPrune-
(Pro(RTA), T) removes it and generates a translation table (Tj − T − C). The second
and third conditions of a well-formed RTA are the same as the ones in Definition 10.

Algorithm 10
function UpdatedPrune (Pro(RTA), T)

pruneResult := Pro(RTA)
if (Σ = (cover by {T1,...,Tj−1}) ∈ Tj) or
(Σ = (cover by {T1,...,Tj−1}) ∈ T) or
(Σ = (disjoint with Tj) ∈ T)) then
remove the jth component “Tj → (Pfj,1 =?, . . . , Pfj,kj

=?)” from pruneResult
if “Tj → (Pfj,1 =?, . . . , Pfj,kj

=?)” is not removed and it is not a component of
RTA(T) then
remove the jth component from pruneResult
add the Offset(T) to the TT(Tj)
add the Offset(Tj) to the TT(T)
add the translation table Tj-T-C to the set TTSet(Σ)

return pruneResult

Definition of identity resolution, regarding translation tables remains the same as the
one in Chapter 2 (Definition 10). Suppose M is an identity resolving mapping in a given
database DB and an ARM schema Σ such that for every eid in the DB, the following is
true:

56

Eval(M(eid), DB) = (@eid).

Now if an @eid exists in both Ti and Tj, where there exists a translation table Ti-Tj-C,
M(eid) is assigned to be the Re in Re(RTA(Ti)), as well as the Re in Re(RTA(Tj), since
Offset(Ti) < Offset(Tj) in Pro.

3.1.2 On Reducing the Number of Translation Tables

As we have observed in UpdatedPrune(Pro(RTA), Tj), if a table Tj is not disjoint with
a table Ti that comes before Tj in the Pro, and there does not exist any preference table
between Ti and Tj, then a translation table Ti-Tj-C is introduced between them to store
common entities between Ti-C and Tj-C. However, Ti-Tj-C can be removed if either of the
following two conditions is satisfied:

1. If “Ti isa Tj” or “Tj isa Ti”

2. If Ti-Tj-C can be composed of joining two other translation tables TT1 and TT2

We introduce a procedure Absorb(Ti-Tj-C) in Algorithm 11 to check the first condi-
tion and a procedure Replace(Ti-Tj-C) in Algorithm 12 to check the second one. The
procedure Absorb(Ti-Tj-C) inputs the translation table Ti-Tj-C and returns “true on the
right”, if the table declaration of Ti contains the clause “isa Tj”. Since every entity in Ti is
an entity in Tj, we say that Ti-Tj-C is absorbed on the right. Now if the table declaration
of Tj contains the clause “isa Ti”, the procedure Absorb(Ti-Tj-C) return “true on the
left”. This means that Ti-Tj-C is absorbed on the left, since every entity of Tj is now an
entity of Ti.

The procedure Replace(Ti-Tj-C) checks whether Ti-Tj-C can be computed from the
join of two other translation tables TT1 and TT2. Consider an ARM schema Σ with a
preference order Pro. Suppose tables Ti, Tj and Tk in Σ such that Ti is positioned before
Tj in Pro. We now consider three different positions for Tk in Pro with respect to Ti and
Tj. We refer to these possibilities as replace possibilities in the remainder of thesis:

57

1. The first possible order can be the order (Ti, Tk, Tj) as part of Pro. Considering
such order, there can exist translation tables Ti-Tk-C, Tk-Tj-C and Ti-Tj-C. We
assume that either Absorb(Ti-Tk-C) is “true on the left” or Absorb(Tk-Tj-C) is
“true on the right”. If the former is the case, then Ti-Tk-C is removed and absorbed
in Ti. Therefore, Ti contains an additional attribute Pkc(Tk) and the right outer join
of Ti with Tk-Tj-C results in Ti-Tj-C. The translation table Ti-Tj-C is then removed
and replaced as follows:

Replace(Ti-Tj-C) = (Ti-Tk-C, Tk-Tj-C)

2. The second possible order is (Tk, Ti, Tj), in which there can exist translation tables
Tk-Ti-C, Tk-Tj-C and Ti-Tj-C. We assume that either Absorb(Tk-Ti-C) is “true
on the right” or Absorb(Tk-Tj-C) is “true on the right”. If the latter is true, then
Tk-Tj-C is removed and absorbed in Tj by adding the additional attribute Pkc(Tk)
to Tj. Then the right outer join of Tj with Tk-Ti-C results in Ti-Tj-C. The translation
table Ti-Tj-C is then removed and obtained as follows:

Replace(Ti-Tj-C) = (Tk-Ti-C, Tk-Tj-C)

3. The third possibility is the order (Ti, Tj, Tk) which can result in translation tables
Ti-Tj-C, Ti-Tk-C and Tj-Tk-C. We assume that either Absorb(Ti-Tj-C) is “true on
the left” or Absorb(Tj-Tk-C) is “true on the left”. If the former is true, then Ti-Tj-C
is removed and absorbed in Ti. Then, Ti contains the additional column Pkc(Tk)
and the right outer join of Ti with Tj-Tk-C results in Ti-Tj-C. The translation table
Ti-Tj-C is, therefore, removed and obtained as follows:

Replace(Ti-Tj-C) = (Ti-Tj-C, Tj-Tk-C)

Procedure CompressTTables(Σ) uses the information from procedures Absorb(Ti-
Tj-C) and Replace(Ti-Tj-C) to optimize the number of translation tables that have been
originally generated by procedure UpdatedPrune(Pro(RTA), Tj). More precisely, pro-
cedure CompressTTables(Σ) removes any translation table TT from TTSet(Σ) if TT

58

is “absorbed on the left” or “absorbed on the right”, or if it can be replaced by two other
translation tables TT1 and TT2. If a translation table Ti-Tj-C is “absorbed on the left”,
Ti-Tj-C is removed from TTSet and each attribute Ak in Pkc(Tj-C) is added to Ti-C.

Function UpdatedARMtoRM(Σ), indicated in Algorithm 14 maps an ARM schema
Σ to an RM schema Σ′, via generating translation tables in Σ′. This function returns the set
RM-table-decl-set which contains a concrete table declaration for each table in Σ′. Similar
to procedure ARMtoRM(Σ) in Algorithm 6, procedure UpdatedARMtoRM(Σ) first
calls ARMtoRET(Σ) to generate RTA(T) for each T in Tables(Σ). ARMtoRET(Σ),
considering translation tables, has not been modified from the one in Chapter 2 (Algorithm
1). After generating Rets, the procedure UpdatedARMtoRM(Σ) checks if the RTA
of Σ is well-formed and if it is, procedure CompressTTables(Σ) is called to update the
TTSet(Σ). Then, a concrete table declaration for each table T in Σ is generated and stored
as the string table-decl, the same way as in ARMtoRM(Σ). Every table-decl for each T

in Σ is added to the RM-table-decl-set. In the last part, function BuildTTs(TTSet(Σ))
is called to generate the table declarations for all existing translation tables. A table
declaration for each translation table in Σ′ is also added to the RM-table-decl-set.

BuildTTs(TTSet(Σ)) generates a table declaration for each translation table TT in
the TTSet(Σ). Function tabLeft(Ti-Tj-C) returns the left table of the translation table
Ti-Tj-C which is Ti-C. Function tabRight(Ti-Tj-C) returns the right table of the trans-
lation table Ti-Tj-C which is Tj-C. This algorithm replaces the translation table Ta-Tb-C
with two other translation tables TT1 and TT2, according to the three cases explained in
replace possibilities. Given a translation table Ti-Tj-C, if Ti is the subset of Tj, the trans-
lation table is said to be “absorbed on the left”, since Ti is on the left side of Ti-Tj-C. If
Tj is the subset of Ti, the translation table is said to be “absorbed on the right”, since Tj

is on the right side of Ti-Tj-C.

59

Algorithm 11
function Absorb (Ti-Tj-C)

if Ti isa Tj then:

return “true on the left”
if Tj isa Ti then:

return “true on the right”
else

return false

Algorithm 12
function Replace (Ta-Tb-C)

. checking Replace case 1
for every Tk ∈ Pro, such that Offset(Ta) < Offset(Tk) < Offset(Tb)

if both Ta-Tk-C and Tk-Tb-C exist in TTSet(Σ) then
if (Absorb(Ta-Tk-C) returns “true on the left”) or (Absorb(Tk-Tb-C)

returns “true on the right”) then
return (Ta-Tk-C, Tk-Tb-C)

. checking Replace case 2
for every Tk ∈ Pro, such that Offset(Tk) < Offset(Ta) < Offset(Tb)

if both Tk-Ta-C and Tk-Tb-C exist in TTSet(Σ) then
if (Absorb(Tk-Ta-C) returns “true on the right”) or (Absorb(Tk-Tb-C)

returns “true on the right”) then
return (Tk-Ta-C, Tk-Tb-C)

. checking Replace case 3
for every Tk ∈ Pro, such that Offset(Ta) < Offset(Tb) < Offset(Tk)

if both Ta-Tk-C and Tb-Tk-C exist in TTSet(Σ) then
if (Absorb(Ta-Tk-C) returns “true on the left”) or (Absorb(Tb-Tk-C)

returns “true on the left”) then
return (Ta-Tk-C, Tb-Tk-C)

return null

60

Algorithm 13
procedure CompressTTables (Σ)

finalTTSet := ()
for every translation table (Ti-Tj-C) in TTSet(Σ) . Absorbed on the left check

if Absorb(Ti-Tj-C) returns “true on the left” then
if Pkc(Tj-C)= (disc, f) then

if Pkc(Ti-C)= (disc, f) then
NewAttr1 := Concate(TableName(Tj-C), “-”, disc)
NewAttr2 := Concate(TableName(Tj-C), “-”, f)
Add the attributes NewAttr1 and NewAttr2 to the Attrs(Ti-C)
ConcRan(Ti-C, (NewAttr1, NewAttr2)) = Tj

else
Add the attributes disc and f to the Attrs(Ti-C)
ConcRan(Ti-C, (disc, f)) = Tj-C

else . Pkc(Tj-C) is not (disc, f)
if Pkc(Tj-C) does not appear as attribute(s) in Attrs(Ti) then

for each path Pfj in Pkc(Tj-C)
Add Pfj to the Attrs(Ti-C)
ConcRan(Ti-C, Pfj) = Tj-C

. Absorbed on the right check
if Absorb(Ti-Tj-C) returns “true on the right” then

if Pkc(Ti-C)= (disc, f) then
if Pkc(Ti-C)= (disc, f) then

NewAttr1 := Concate (TableName (Ti), “-”, disc)
NewAttr2 := Concate (TableName (Ti), “-”, f)
Add the attributes NewAttr1 and NewAttr2 to the Attrs(Conc(Tj))
ConcRan(Tj-C, (NewAttr1, NewAttr2)) = Ti-C

else
Add the attributes disc and f to the Attrs(Tj-C)
ConcRan(Tj-C, (disc, f)) = Ti-C

else . Pkc(Ti) is not (disc, f)
if Pkc(Ti-C) does not appear as attribute(s) in Attrs(Tj) then

for each path Pfi in Pkc(Ti-C)
Add Pfi to the Attrs(Tj-C)
ConcRan(Tj-C, Pfi) = Ti-C

else
finalTTSet := Concat(finalTTSet, Ti-Tj-C)

. Replace check
if Replace(Ti-Tj-C) returns (TT1, TT2) then

if TT1 is not in finalTTSet then
finalTTSet := Concat(finalTTSet, TT1)

if TT2 is not in finalTTSet then
finalTTSet := Concat(finalTTSet, TT2)

else
finalTTSet := Concat(finalTTSet, Ti-Tj-C)

TTSet(Σ) := finalTTSet

61

Algorithm 14
function UpdatedARMtoRM (Σ)

RM-table-decl-set := ()
Call ARMtoRET(Σ) to generate RTA(T) for each T in Tables(Σ)
if RTA is well-formed then

call CompressTTables(Σ) to update TTSet(Σ)
for each table T in Tables(Σ)

table-decl := “(”
if Attrs(T-C) is non-empty then

for each path Pfi in Attrs(T-C)
Tj = ConcRan(T-C, Pfi)
if Pfi contains disc then

table-decl := Concat(table-decl, GenName(Pfi), “ ”, “integer”)
if Pfi contains f then

table-decl := Concat(table-decl, GenName(Pfi), “ ”, “string”)
else

Tq, pfDom := PathDom(Tj, Pfi)
table-decl := Concat(table-decl, GenName(Pfi), “ ”, pfDom)

table-decl := Concat(table-decl, “foreign key”, “(”, Pfi, “)”, “references”, Tj)
if Pkc(T) == (disc, f) then

table-decl := Concat(table-decl, disc, “ integer, ”, f, “ string, ”)
table-decl := Concat(table-decl, “primary key”, “(”, disc, f, “)”)
add (disc, f) to the Attrs(T-C)

else
primarykey = “(”
for each path Pfi in Pkc(T)

primarykey := Concat(primarykey, GenName(Pfi))
table-decl := Concat(table-decl, “primary key”, primarykey, “)”)

for each attribute Ai in Attrs(T)
if Ai is not in Abs(T) then

table-decl := Concat(table-decl, Ai,“ ”, “Dom(T, Ai)”)
add Ai to the Attrs(T-C)

if Ai is in Abs(T) and Ran(T, Ai) = Tj then
if Pkc(Tj) == (disc, f) then

table-decl := Concat(table-decl, (Concat(Ai, “-”, disc, “
integer”), Concat(Ai, “-”, f, “ string”)))

table-decl := Concat(table-decl, “foreign key”, “(”, Ai, “-”,
disc), “, ”, Ai, “-”, f, “)”), “ ”,
“references”, Tj)

add Ai. disc and Ai. f to the Attrs(T-C)
else . primary key of Tj is not (disc, f)

table-dec := AddNewAttr(Ai, Tj, table-decl)
for each path Pfi in Pkc(T)

if Pfi is not in Attrs(T-C) then
table-decl := Concat(table-decl, GenName(Pfi), “ ”, Dom(T, Pfi))
add Pfi to the Attrs(T-C)

table-decl := Concat(table-decl, “)”)
add table-decl to the RM-table-decl-set

TT-table-decl-set := BuildTTs(TTSet(Σ))
add the table declaration for each translation table in the TT-table-decl-set to the RM-table-decl-set
return RM-table-decl-set

62

Algorithm 15
function BuildTTs (TTSet(Σ))

TT-table-decl-set := ()
for each TT in TTSet(Σ)

table-decl = “(”
if Pkc(tabLeft(TT)) == (disc, f) then

table-decl := Concat(table-decl, disc, “ integer ”, f, “ string, ”)
table-decl := Concat(table-decl, “primary key”, “(, disc, f, “)”)
table-decl := Concat(table-decl, “foreign key”, “(”, disc, f, “)”,
“references”, tabLeft (TT))

else
primarykey := “(”
foreignkey := “(”
for each path Pfi in Pkc(tabLeft(TT))

pfName := GenName(Pfi)
primary-key := Concat(primary-key, pfName)
Tq, pfDom := PathDom(tabLeft(TT), Pfi)
table-decl := Concat(table-decl, pfName,“ ”, pfDom)
foreignkey := Concat(foreignkey, pfName)

table-decl := Concat(table-decl, “primary key”, primarykey, “)”)
table-decl := Concat(table-decl, “foreign key ”, foreignkey, “)”, references, Tq)

if Pkc(tabRight(TT)) == (disc, f) then
table-decl := Concat(table-decl, disc, “ integer ”, f, “ string, ”)
table-decl := Concat(table-decl, “foreign key”, “(”, disc, f, “)”,
“references”, tabRight(TT))

else
foreignkey := “(”
for each path Pfi in Pkc(tabRight(TT))

pfName := GenName(Pfi)
Tq, pfDom := PathDom(tabRight(TT), Pfi)
table-decl := Concat(table-decl, pfName,“ ”, pfDom)
foreignkey := Concat(foreignkey, pfName)

table-decl := Concat(table-decl, “foreign key ”, foreignkey, “)”, references, Tq)
table-decl := Concat(table-decl, “)”)
TT-table-decl-set := Concat(TT-table-decl-set, table-decl)

return TT-table-decl-set

Algorithm 16
function tabLeft (Ti-Tj-C)

return Ti-C

Algorithm 17
function tabRight (Ti-Tj-C)

return Tj-C

63

The following three examples illustrate how the algorithms work. The first two use
the ARM schema UNIV, illustrated in Figure 2.3 with different databases, and the third
one uses a new ARM schema called UNIVPEOPLE and indicated in Figure 3.6. Example
1 reflects on the existence of translation tables only, whereas Example 2 and 3 explain a
scenario in which both preference and translation tables exist. The ARM schema UNI-
VPEOPLE in Example 3 provides a more involved and complex situation than the other
two.

Example 1.

This example illustrates a case in which only translation tables are generated and no
preference tables exist, as illustrated in a relational schema in Figure 3.2. The ARM
schema in this example is called SecondUNIV, and it is based on UNIV in Figure 2.3 with
modified table declarations for PROFESSOR, STUDENT and PERSON, such that neither of these
tables contains a preference clause and they all contain primary keys. Both STUDENT and
PROFESSOR are also subsets of PERSON. Table declarations for tables DEPARTMENT, COURSE,
CLASS and ENROLLMENT in SecondUNIV remain the same as the ones in UNIV. Table
declarations of all tables in SecondUNIV are illustrated in Appendix A.4 and Rets are
indicated in Appendix A.5.

Since there does not exist any preference clause in SecondUNIV, translation tables
should be generated to keep the schema identity resolving. This example illustrates how
mapping SecondUNIV to its RM version SecondUNIV′ through the algorithm UpdatedA-
RMtoRM(SecondUNIV) results in the generation of translation tables PROFESSOR-STUD-
ENT-C, PROFESSOR-PERSON-C and STUDENT-PERSON-C. Function UpdatedARMtoRM-
(SECONDUNIV) first calls procedure ARMtoRET(SecondUNIV) to generate Rets for
Table(SecondUNIV). ARMtoRET(SecondUNIV) first generates a preference graph Pg
for SecondUNIV which does not contain any edge, since there does not exist any preference
clause. Therefore, there does not exist any preference cycle and a possible preference order
can be as follows:

Pro = (COURSE, STUDENT, DEPARTMENT, PROFESSOR, ENROLLMENT, CLASS, PERSON)

64

Pk(PROFESSOR) = (name, office)
Pref(PROFESSOR) = ()
Offset(PROFESSOR) = 5
Table(5) = PROFESSOR
Disj(PROFESSOR) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Offset(STUDENT) = 6
Table(6) = STUDENT
Pk(STUDENT) = (snum)
Pref(STUDENT) = ()
Disj(STUDENT) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Offset(PERSON) = 7
Table(7) = PERSON
Pk(PERSON) = (sin)
Pref(PERSON) = ()
Disj(PERSON) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Figure 3.1: Modified global data for PROFESSOR, STUDENT and PERSON.

ARMtoRET(Σ) then generates a Pkg for SecondUNIV which is similar to Pkg of UNIV
in Figure 2.11. As illustrated in Figure 2.11, there is no primary key cycle in Pkg and the
following primary key order can be used:

Pko = (PERSON, PROFESSOR, STUDENT, DEPARTMENT, COURSE, CLASS, ENROLLMENT)

ARMtoRET(SecondUNIV) then iterates through every table T in Pro and finds values
for Pk(T), Pref(T), Offset(T), Table(Offset(T)), and Disj(T) which remain the
same as before for DEPARTMENT, COURSE, CLASS and ENROLLMENT, as indicated in Figure
2.12, and change for PROFESSOR, STUDENT and PERSON, as illustrated in Figure 3.1.

Thereafter, ARMtoRET(SecondUNIV) iterates through every table T in Pko and
calls procedure GenConcretePK(T) to generate a Pkc(T) and Keypfs(T) for each T .
For example, GenConcretePK(PROFESSOR) generates Pkc(PROFESSOR) and Keypfs-
(PROFESSOR), as illustrated here:

65

Pkc(PERSON) = (sin)
Keypfs(PERSON) = (sin)

Pkc(PROFESSOR) = (name, office)
Keypfs(PROFESSOR) = (name, office)

Pkc(STUDENT) = (snum)
Keypfs(STUDENT) = (snum)

(3.1)

The result of calling GenConcretePK(STUDENT) and GenConcretePK(PERSON)
are also illustrated in (3.1). Since neither of tables in SecondUNIV contains a prefer-
ence clause, Pkc of neither of them is of the form (disc, f). Thus, for every T in
Tables(SecondUNIV), Pkc(T) and Keypfs(T) are the same, as indicated in (3.1).

Then, ARMtoRET(SecondUNIV) iterates through every T in Pro and calls proce-
dure GenRet(T) to generate the following RTA(T) for PROFESSOR, STUDENT and PERSON:

RTA(STUDENT) := STUDENT→ snum =?,

RTA(PROFESSOR) := PROFESSOR→ (name =?, office =?)
RTA(PERSON) := PERSON→ (sin =?)

(3.2)

Once Rets are generated by ARMtoRET(SecondUNIV), UpdatedARMtoRM-
(SecondUNIV) checks whether or not the RTA for SecondUNIV is well-formed. As ex-
plained in Definition 13, one of the condition for being a well-formed RTA is satisfying the
following:

RTA(T) := UpdatedPrune(Pro(RTA), T)

However, since PROFESSOR, STUDENT and PERSON are not disjoint and there does not ex-
ist any preference table between them, UpdatedPrune(Pro(RTA), STUDENT) generates
the translation table PROFESSOR-STUDENT-C and UpdatedPrune(Pro(RTA), PERSON)

66

generates the translation tables PROFESSOR-PERSON-C and STUDENT-PERSON-C to make the
RTA for SecondUNIV identity resolving. The other two conditions of being a well-formed
RTA, explained in Definition 13, are also met for SecondUNIV, so the RTA is well-formed.

UpdatedARMtoRM(SecondUNIV) then calls procedure CompressTTables(Secon-
dUNIV) to reduce the number of translation tables if possible. Since PROFESSOR and
STUDENT are subsets of PERSON, the translation tables PROFESSOR-PERSON-C and STUDENT-
PERSON-C are both “absorbed on the left” and can be removed from TTSet(SecondUNIV).
Thus, Pkc(person) which is sin is added to both Attrs(STUDENT-C) and Attrs(PROFE-
SSOR-C), and both ConcRan(STUDENT-C, sin) and ConcRan(PROFESSOR-C, sin) are
set to PERSON.

The translation table PROFESSOR-STUDENT-C can also be computed from the join of
two translation tables PROFESSOR-PERSON and STUDENT-PERSON via case 3 of Replace in
replace possibilities, as shown below:

Replace(PROFESSOR-STUDENT-C) = (PROFESSOR-PERSON-C, STUDENT-PERSON-C)

Since PROFESSOR-PERSON-C and STUDENT-PERSON-C are “absorbed on left”, PROFESSOR-
STUDENT-C can also be computed from the join of two translation tables PROFESSOR-C and
STUDENT-C on the column person, as indicated here:

Replace(PROFESSOR-STUDENT-C) = (PROFESSOR-C, STUDENT-C)

Then, for each table T in SecondUNIV, an empty string table-decl is generated to store
the table declaration of T . Since the Attrs(PROFESSOR-C) already contains the attribute
sin by absorbing PERSON, the table-decl is updated as follows:

table-decl := Concat(table-decl, sin, “integer”)
table-decl := Concat(table-decl, “foreign key”, sin, “refernces”, PERSON-C)

Since Pkc(PROFESSOR) is (name, office), the following primary key clause is added to the
table-decl of PROFESSOR-C:

67

table-decl = Concat(table-decl, “primary key”, “(”, name, “,”, office, “)”)

UpdatedARMtoRM(SecondUNIV) then iterates through Attrs(PROFESSOR) which are
office and department. Since office is a concrete attribute, it is added to the table-decl
along with its data type, as shown here:

table-decl := Concat(table-decl, office “integer”)

However, department is an abstract attribute in PROFESSOR that references DEPARTMENT,
and Pkc(DEPARTMENT) is deptcode. Function AddNewAttr(department, PROFESSOR,
DEPARTMENT) is called to generate a new concrete attribute department-deptcode and add
it to Attrs(PROFESSOR-C). The attribute department-deptcode, along with its data type
which is integer is stored in a new string, called addnew-decl, as shown below:

addnew-decl := Concat(addnew-decl, department-deptcode “integer”))

Then a foreign key clause, including department-deptcode is generated as follows and
also stored in the addnew-decl:

addnew-decl := Concat(addnew-decl, “foreign key(”, department-deptcode, “)”,
“references”, DEPARTMENT))

AddNewAttr(department, PROFESSOR, DEPARTMENT) then returns addnew-decl which
is concatenated with the table-decl. Afterwards, UpdatedARMtoRM(SecondUNIV)
iterates through each attribute in Pkc(PROFESSOR) = (name, office), and since attribute
name has not existed in the Attrs(PROFESSOR-C), it is added to the table-decl, as shown
here:

table-decl := Concat(table-decl, name, “string”)

68

Therefore, table declaration for PROFESSOR-C is as follows:

table PROFESSOR-C (name string, office integer, department-deptcode integer,

sin integer, primary key (name, office),

foreign key (department-deptcode) references DEPARTMENT,

foreign key (sin) references PERSON-C).

UpdatedARMtoRM(SecondUNIV) then generates the table declaration for STUDENT-C
and PERSON-C as follows:
table STUDENT-C (snum integer, year integer, sin integer,

primary key (snum),

foreign key (sin) references PERSON).

table PERSON-C (sin integer, name string, cellphone integer,

primary key (sin)).

The concrete relational schema SecondUNIV′ is indicated in Figure 3.2 in which there are
two arrows going out from PROFESSOR-C, indicating two foreign keys department-deptcode
and sin, referencing the tables DEPARTMENT-C and PERSON-C respectively, and one arrow
from STUDENT-C to PERSON-C, indicating the foreign key sin. Appendix A.6 illustrates
table declaration for all tables in SecondUNIV′.

Example 2.

This example illustrates a case in which a combination of translation tables and pref-
erence tables exists in a relational schema, as illustrated in the relational schema in Figure
3.3. This example introduces an ARM schema, called ThirdUNIV which is based on UNIV
in Figure 2.3 with some changes to the tables PROFESSOR, STUDENT and PERSON, such that
only PERSON contains a preference clause and they all contain primary keys. Both STUDENT
and PROFESSOR are subsets of PERSON. Table declarations for tables in ThirdUNIV are
illustrated in Appendix A.8 and Rets are indicated in Appendix A.9.

Furthermore, we explain how function UpdatedARMtoRM(ThirdUNIV) maps Thir-
dUNIV to its RM version ThirdUNIV′, indicated in Figure 3.3. Since PERSON has a
preference clause containing PROFESSOR and STUDENT, the absorbed translation tables

69

Figure 3.2: The concrete relational schema SecondUNIV′.

PROFESSOR-PERSON-C and STUDENT-PERSON-C that have been generated for SecondUNIV′,
no longer are generated for ThirdUNIV′. However, translation table PROFESSOR-STUDENT-C
should be generated to find the professors who are also students to make ThirdUNIV′ iden-
tity resolving.

UpdatedARMtoRM(ThirdUNIV) first calls procedure ARMtoRET(ThirdUNIV)
to generate Rets for ThirdUNIV. ARMtoRET(ThirdUNIV) first generates a preference
graph Pg for ThirdUNIV with two edges from PERSON to PROFESSOR and STUDENT, as
illustrated in Figure 3.4. Since, there does not exist any preference cycle in Pg, a possible
preference order can be as follows:

Pro = (DEPARTMENT, COURSE, CLASS, ENROLLMENT, PROFESSOR, STUDENT, PERSON)

70

Figure 3.3: The relational schema ThirdUNIV′.

Figure 3.4: The preference graph for ThirdUNIV.

71

Offset(PROFESSOR) = 5
Table(5) = PROFESSOR
Pk(PROFESSOR) = (name, office)
Pref(PROFESSOR) = ()
Disj(PROFESSOR) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Offset(STUDENT) = 6
Table(6) = STUDENT
Pk(STUDENT) = (snum)
Pref(STUDENT) = ()
Disj(STUDENT) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Offset(PERSON) = 7
Table(7) = PERSON
Pk(PERSON) = (sin)
Pref(PERSON) = (5, 6)
Disj(PERSON) = (DEPARTMENT, COURSE, CLASS, ENROLLMENT)

Figure 3.5: Modified global data for PROFESSOR, STUDENT and PERSON.

Afterwards, ARMtoRET(ThirdUNIV) generates a primary key graph Pkg for Thir-
dUNIV, which is the same as UNIV’s Pkg in Figure 2.11, and it does not have any primary
key cycle. Therefore, a possible primary key order can be as follows:

Pko = (PERSON, PROFESSOR, STUDENT, DEPARTMENT, COURSE, CLASS, ENROLLMENT)

ARMtoRET(ThirdUNIV) then iterates through every table T in Pro and finds global
data Pk(T), Pref(T), Offset(T), Table(Offset(T)), and Disj(T) which remain the
same for DEPARTMENT, COURSE, CLASS and ENROLLMENT, as indicated in Figure 2.12, and
are updated for PROFESSOR, STUDENT and PERSON, as shown in Figure 3.5.

Thereafter, ARMtoRET(ThirdUNIV) iterates through every table T in Pko and calls
procedure GenConcretePK(T) to generate Pkc(T) and Keypfs(T) for each T . For
example, GenConcretePK(PERSON) generates Pkc(PERSON) which is of the form (disc,
f) and Keypfs(PERSON) which is sin, as indicated here:

72

Pkc(PERSON) = (disc, f)
Keypfs(PERSON) = (sin)

Pkc(PROFESSOR) = (name, office)
Keypfs(PROFESSOR) = (name, office)

Pkc(STUDENT) = (snum)
Keypfs(STUDENT) = (snum)

(3.3)

The result of GenConcretePK(PROFESSOR) and GenConcretePK(STUDENT) are also
illustrated in (3.3). Then, ARMtoRET(ThirdUNIV) iterates through every T in Pro
and calls procedure GenRet(T) to generate the following RTA(T) when T is PROFESSOR,
STUDENT and PERSON:

RTA(PROFESSOR) := PROFESSOR→ (name =?, office =?)
RTA(STUDENT) := STUDENT→ snum =?
RTA(PERSON) := PROFESSOR→ (name =?, office =?); STUDENT→ snum =?;

PERSON→ sin =?

(3.4)

Once Rets have been generated by ARMtoRET(ThirdUNIV), UpdatedARMtoRM-
(ThirdUNIV) checks whether or not the RTA for ThirdUNIV is well-formed. To satisfy the
first condition of being a well-formed RTA in Definition 13, UpdatedPrune(Pro(RTA),
STUDENT) generates the translation table PROFESSOR-STUDENT-C, since there does not exist
any preference table between PROFESSOR and STUDENT, and these two tables are not disjoint
either. The other two conditions of a well-formed RTA in Definition 13 are also met for
ThirdUNIV, so the RTA is well-formed.

UpdatedARMtoRM(ThirdUNIV) then calls CompressTTables(ThirdUNIV) to
optimize the number of translation tables in TTSet(Σ) if possible. However, the transla-

73

tion table PROFESSOR-STUDENT-C is not absorbed and can not be computed from the join
of other tables. Therefore, PROFESSOR-STUDENT-C remains in the TTSet(Σ). Thereafter,
UpdatedARMtoRM(ThirdUNIV) iterates through each table T in Tables(Σ) and gen-
erates the empty string table-decl to store the table declaration for T . Table declaration
for PROFESSOR-C and STUDENT-C are as follows:

table PROFESSOR-C (name string, office integer, department-deptcode integer,

primary key (name, office),

foreign key (department-deptcode) references DEPARTMENT).

table STUDENT-C (snum integer, year integer,

primary key (snum)).

Since Pkc(PERSON) is (disc, f), a primary key clause is added to table-decl for PERSON-C,
as follows:

table-decl := Concat(table-decl, “primary key”, “(”, disc, “,”, f, “)”)

UpdatedARMtoRM(ThirdUNIV) then iterates through each attribute Ai in Attrs(PER
SON-C) which is the set (disc, f, sin, name, cellphone), and adds each concrete Ai, along
with its data type to table-decl, as follows:

table-decl := Concat(table-decl, disc, “ integer”)
table-decl := Concat(table-decl, f, “ string”)
table-decl := Concat(table-decl, sin, “ integer”)
table-decl := Concat(table-decl, name, “ string”)
table-decl := Concat(table-decl, cellphone, “ integer”)

Thus, the final table-decl for PERSON-C is as indicated:

table PERSON-C (disc integer, f string, id integer, name string,

cellphone integer, primary key (disc, f)).

74

UpdatedARMtoRM(ThirdUNIV) then calls function BuildTTs(TTSet(ThirdUN-
IV)) to generate a table declaration for PROFESSOR-STUDENT-C. BuildTTs(TTSet(Third-
UNIV)) creates an empty string table-decl for PROFESSOR-STUDENT-C which stores its table
declaration. Since tabLeft(PROFESSOR-STUDENT-C) is PROFESSOR and Pkc(PROFESSOR)
is (name, office), table-decl is updated as follows:

table-decl := Concat(table-decl, name, “ string”)
table-decl := Concat(table-decl, office, “ integer”)

The primary key and one of the foreign keys of PROFESSOR-STUDENT-C is then generated
as follows:

table-decl := Concat(table-decl, “primary key ”, “(”, name, office, “)”)
table-decl := Concat(table-decl, “foreign key”, “(”name, office “)”,

“references PROFESSOR”)

Since tabRight(PROFESSOR-STUDENT-C) is STUDENT and Pkc(STUDENT) is snum, table-
decl is modified as indicated:

table-decl := Concat(table-decl, snum, “ integer”)

The second foreign key of PROFESSOR-STUDENT-C is also generated as illustrated:

table-decl := Concat(table-decl, “foreign key”, “(”snum “)”, “references STUDENT”)

The final table declaration for PROFESSOR-STUDENT-C is as follows:

table PROFESSOR-STUDENT-C (name string, office integer, snum integer,

primary key (name, office),

foreign key (name, office) references PROFESSOR-C,

foreign key (snum) references STUDENT-C).

The concrete relational schema ThirdUNIV′ is indicated in Figure 3.3 in which there
exists only one translation table PROFESSOR-STUDENT-C with two foreign keys snum and
(name, office), referencing STUDENT and PROFESSOR respectively.

75

Example 3.

This example introduces a new ARM schema called UNIVPEOPLE which is illustrated
in Figure 3.6, to propose a more in-depth scenario in which both preference and translation
tables exist. UNIVPEOPLE contains five tables EMPLOYEE, PROFESSOR, STUDENT, VISITOR
and CANADIAN, where PROFESSOR is the subset of EMPLOYEE and the only table with a prefer-
ence clause is VISITOR which contains a preference over PROFESSOR and STUDENT in terms.
VISITOR is also disjoint with CANADIAN. Table declarations for Tables(UNIVPEOPLE)
and Rets are indicated in Appendix A.11 and A.12 respectively.

Similar to the previous two examples, we illustrate how function UpdatedARM-
toRM(UNIVPEOPLE) is compiled to map UNIVPEOPLE to its RM version UNIVPEOP-
LE′. UpdatedARMtoRM(UNIVPEOPLE) first calls procedure ARMtoRET(UNIVP)-
EOPLE) to generate Rets for Tables(UNIVPEOPLE). ARMtoRET(UNIVPEOPLE)
first generates a preference graph Pg for UNIVPEOPLE, in which there does not exist
any preference cycle, as illustrated in Figure 3.7. Thus, the following can be a possible
preference order:

Pro = (EMPLOYEE, PROFESSOR, STUDENT, VISITOR, CANADIAN)

76

Figure 3.6: The ARM schema UNIVPEOPLE

Figure 3.7: The preference graph for UNIVPEOPLE.

77

Afterwards, ARMtoRET(UNIVPEOPLE) generates a primary key graph Pkg for
UNIVPEOPLE, in which there does not exist any edge, since none of the tables in UNI-
VPEOPLE contains an abstract attribute in its primary key that references another table.
Therefore, there does not exist any primary key cycle in Pkg and any primary key order
can be picked. One possible order can be as follows:

Pko = (STUDENT, CANADIAN, PROFESSOR, VISITOR, EMPLOYEE)

ARMtoRET(UNIVPEOPLE) then iterates through each table T in Pro and finds
Offset(T), Table(Offset(T)), Pk(T), Pref(T) and Disj(T) for EMPLOYEE, PROFESSOR,
STUDENT, VISITOR and CANADIAN, as indicated in Figure 3.8. Thereafter, ARMtoRET(-
UNIVPEOPLE) iterates through each table T in Pko and calls the procedure GenConcre-
tePK(T) to generate Pkc(T) and Keypfs(T) for each T , as shown here:

Pkc(EMPLOYEE) = (enum)
Keypfs(EMPLOYEE) = (enum)

Pkc(PROFESSOR) = (name, office)
Keypfs(PROFESSOR) = (name, office)

Pkc(STUDENT) = (snum)
Keypfs(STUDENT) = (snum)

Pkc(VISITOR) = (disc, f)
Keypfs(VISITOR) = (visanum)

Pkc(CANADIAN) = (sin)
Keypfs(CANADIAN) = (sin)

Pkc(T) and Keypfs(T) for all tables except VISITOR are the same, since neither of them
has a preference clause. For VISITOR, however, Pkc(T) is the set (disc, f) and Keypfs(T)

78

is visanum. Then, ARMtoRET(UNIVPEOPLE) iterates through each table T in Pro
and calls procedure GenRet(T) to generate RTA(T) for each T , as illustrated here:

RTA(EMPLOYEE) := EMPLOYEE → enum = ?
RTA(PROFESSOR) := PROFESSOR → (name = ?, office = ?)
RTA(STUDENT) := STUDENT → snum = ?
RTA(VISITOR) := PROFESSOR → (name = ?, office = ?);

STUDENT → snum = ?; VISITOR → visanum = ?
RTA(CANADIAN) := CANADIAN → sin = ?

Once Rets have been generated by procedure ARMtoRET(UNIVPEOPLE), function
UpdatedARMtoRM(UNIVPEOPLE) checks whether or not the RTA for UNIVPEO-
PLE is well-formed by checking the following condition for each T in UNIVPEOPLE and
the other two conditions which are all explained in Definition 13.

RTA(T) := UpdatedPrune(Pro(RTA), T)

Function UpdatedPrune(Pro(RTA), EMPLOYEE) returns RTA(EMPLOYEE) which sat-
isfies the above condition. However, UpdatedPrune(Pro(RTA), PROFESSOR) does not
return RTA(PROFESSOR), since there does not exist any preference table between EMPLOYEE
and PROFESSOR, even though they are not disjoint. Therefore, UpdatedPrune(Pro(RTA
)), PROFESSOR) generates the translation table EMPLOYEE-PROFESSOR-C to find the intersec-
tion entities between EMPLOYEE and PROFESSOR and make UNIVPEOPLE identity resolv-
ing. There also does not exist any preference table between EMPLOYEE and STUDENT and
they are not disjoint either, so UpdatedPrune(Pro(RTA), STUDENT) then generates the
translation tables EMPLOYEE-STUDENT-C and PROFESSOR-STUDENT-C. Next, UpdatedPru-
ne(Pro(RTA), VISITOR) only generates the translation table EMPLOYEE-VISITOR-C, since
VISITOR includes a preference clause containing both PROFESSOR and STUDENT. Thereafter,
UpdatedPrune(Pro(RTA), CANADIAN) generates the translation tables EMPLOYEE-CANA-
DIAN-C, PROFESSOR-CANADIAN-C and STUDENT-CANADIAN-C. All these translation tables
are stored in the set TTSet(UNIVPEOPLE), as indicated here:

79

Offset(EMPLOYEE) = 1
Table(1) = EMPLOYEE
Pk(EMPLOYEE) = (enum)
Pref(EMPLOYEE) = ()
Disj(EMPLOYEE) = ()

Offset(PROFESSOR) = 2
Table(2) = PROFESSOR
Pk(PROFESSOR) = (name, office)
Pref(PROFESSOR) = ()
Disj(PROFESSOR) = ()

Offset(STUDENT) = 3
Table(3) = STUDENT
Pk(STUDENT) = (snum)
Pref(STUDENT) = ()
Disj(STUDENT) = ()

Offset(VISITOR) = 4
Table(4) = VISITOR
Pk(VISITOR) = (visanum)
Pref(VISITOR) = (2, 3)
Disj(VISITOR) = (CANADIAN)

Offset(CANADIAN) = 5
Table(5) = CANADIAN
Pk(CANADIAN) = (sin)
Pref(CANADIAN) = ()
Disj(CANADIAN) = (VISITOR)

Figure 3.8: Global data for EMPLOYEE, PROFESSOR, STUDENT, VISITOR and CANADIAN.

TTSet(UNIVPEOPLE) = (EMPLOYEE-PROFESSOR-C, EMPLOYEE-STUDENT-C,
PROFESSOR-STUDENT-C, EMPLOYEE-VISITOR-C, EMPLOYEE-CANADIAN-C,

PROFESSOR-CANADIAN-C, STUDENT-CANADIAN-C)

80

RTA of UNIVPEOPLE also satisfies the condition 2 and 3 of being a well-formed
RTA as explained in Definition 13. UpdatedARMtoRM(UNIVPEOPLE) then calls
procedure CompressTTables(UNIVPEOPLE) to update TTSet(UNIVPEOPLE) by
removing unnecessary translation tables. For example, EMPLOYEE-PROFESSOR-C is “ab-
sorbed on the right”, since PROFESSOR is the subset of EMPLOYEE. Therefore, the attribute
Pkc(EMPLOYEE) which is enum is added to PROFESSOR-C, and EMPLOYEE-PROFESSOR-C is
removed from TTSet(UNIVPEOPLE). Considering the second case of Replace in re-
place possibilities, translation tables PROFESSOR-STUDENT-C and PROFESSOR-CANADIAN-C,
can be removed from TTSet(UNIVPEOPLE) and replaced as follows:

Replace(PROFESSOR-STUDENT-C) = (EMPLOYEE-PROFESSOR-C, EMPLOYEE-STUDENT-C)
Replace(PROFESSOR-CANADIAN-C) = (EMPLOYEE-PROFESSOR-C, EMPLOYEE-CANADIAN-C)

Therefore, CompressTTables(UNIVPEOPLE) updates TTSet(UNIVPEOPLE), as in-
dicated:

TTSet(UNIVPEOPLE) = (EMPLOYEE-STUDENT-C, EMPLOYEE-VISITOR-C,
EMPLOYEE-CANADIAN-C, STUDENT-CANADIAN-C)

Afterwards UpdatedARMtoRM(UNIVPEOPLE) iterates through each table T in UNI-
VPEOPLE and generates the empty string table-decl to store the table declaration for T .
Thus, the table declaration for EMPLOYEE-C is as follows:

table EMPLOYEE-C (enum integer, name string, address string,

primary key (enum))

Since Pkc(EMPLOYEE) which is enum has been already added to Attrs(PROFESSOR-C) by
absorbing EMPLOYEE, table-decl for PROFESSOR-C is updated as follows:

table-decl := Concat(table-decl, enum, “integer”)
table-decl := Concat(table-decl, “foreign key”, enum, “refernces”, EMPLOYEE-C)

Since Pkc(PROFESSOR) is (name, office), a primary key clause is added to the table-decl
for PROFESSOR-C, as follows:

81

table-decl := Concat(table-decl, “primary key”, “(”, name, “,”, office, “)”)

UpdatedARMtoRM(UNIVPEOPLE) then iterates through Attrs(PROFESSOR) which
are name and office. Since they are both concrete attributes, they are added to the
table-decl along with their data types, as shown here:

table-decl := Concat(table-decl, name “string”)
table-decl := Concat(table-decl, office “integer”)

Therefore, the table declaration for PROFESSOR-C is as follows:
table PROFESSOR-C (name string, office integer, enum integer,

primary key (name, office),

foreign key (enum) references EMPLOYEE-C).

The table declaration for STUDENT-C is computed similarly and illustrated below:

table STUDENT-C (snum integer, name string, year integer,

primary key (snum)).

Afterwards, UpdatedARMtoRM(UNIVPEOPLE) generates the table-decl for VISITOR-C.
Since Pkc(VISITOR) is (disc, f), a primary key clause is added to the table-decl, as follows:

table-decl := Concat(table-decl, “primary key”, “(”, disc, “,”, f, “)”)

UpdatedARMtoRM(UNIVPEOPLE) then iterates through each attribute Ai in Attrs-
(VISITOR) which is (vnum, name, address), and adds them to Attrs(VISITOR-C). Each
Ai, along with its data type is also added to table-decl, as follows:

table-decl := Concat(table-decl, vnum, “ integer”)
table-decl := Concat(table-decl, name, “ string”)
table-decl := Concat(table-decl, address, “ string”)

UpdatedARMtoRM(UNIVPEOPLE) iterates through each attribute in Pkc(VISITOR)
which is (disc, f) and, since they do not already exist in Attrs(VISITOR-C), adds them
to Attrs(VISITOR-C). Attributes (disc, f) are also added to table-decl, along with their
data types, as indicated:

82

table-decl := Concat(table-decl, disc, “ integer”)
table-decl := Concat(table-decl, f, “ string”)

Thus, the final table-decl for VISITOR-C is:

table VISITOR-C (disc integer, f string, vnum integer, name string, address string,

primary key (disc disc, f)).

UpdatedARMtoRM(UNIVPEOPLE) generates a table-decl for CANADIAN-C similar to
previous tables:

table CANADIAN-C (sin integer, name string, address string,

primary key (sin)).

UpdatedARMtoRM(UNIVPEOPLE) then calls function BuildTTs(TTSet(UNIVP-
EOPLE)) to generate table declarations for translation tables. BuildTTs(TTSet(UNI-
VPEOPLE)) iterates through each translation table TT in TTSet(UNIVPEOPLE) and
generates an empty string table-decl for each TT to store TT ’s table declaration in it.
BuildTTs(TTSet(UNIVPEOPLE)) first generates an empty string TT-decl for EMPLOYEE-
STUDENT-C which stores its table declaration. Since the left table of EMPLOYEE-STUDENT-C is
EMPLOYEE which is returned by function tabLeft(EMPLOYEE-STUDENT-C), and Pkc(EMPLOYEE)
is enum, TT-decl is updated as follows:

TT-decl := Concat(TT-decl, enum, “ integer”)

Primary key and one of the foreign keys of EMPLOYEE-STUDENT-C is then generated as
shown:

TT-decl := Concat(TT-decl, “primary key ”, “(”, enum, “)”)
TT-decl := Concat(TT-decl, “foreign key”, “(”enum “)”, “references EMPLOYEE”)

Since the right table of EMPLOYEE-STUDENT-C is STUDENT which is returned by function
tabRight(EMPLOYEE-STUDENT-C), and Pkc(STUDENT) is snum, table-decl is modified as
indicated:

83

TTe-decl := Concat(TT-decl, snum, “ integer”)

The second foreign key of EMPLOYEE-STUDENT is also generated as illustrated:

TT-decl := Concat(TT-decl, “foreign key”, “(”snum “)”, “references STUDENT”)

Therefore, the final table declaration for EMPLOYEE-STUDENT-C is computed:

table EMPLOYEE-STUDENT-C (enum integer, snum integer,

primary key (enum),

foreign key (enum) references EMPLOYEE-C,

foreign key (snum) references STUDENT-C).

Table declaration for EMPLOYEE-VISITOR-C, EMPLOYEE-CANADIAN-C and STUDENT-CANADIAN-C
are generated similarly and illustrated:

table EMPLOYEE-VISITOR-C (enum integer, disc integer, f string,

primary key (enum),

foreign key (enum) references EMPLOYEE-C,

foreign key (disc, f) references VISITOR-C).

table EMPLOYEE-CANADIAN-C (enum integer, sin integer,

primary key (enum),

foreign key (enum) references EMPLOYEE-C,

foreign key (sin) references CANADIAN-C).

table STUDENT-CANADIAN-C (snum integer, sin integer,

primary key (snum),

foreign key (snum) references STUDENT-C,

foreign key (sin) references CANADIAN-C).

Final table declarations for all tables are illustrated in Appendix A.11, and UNIVPEOPLE′

is presented in Figure 3.9.

84

3.2 SQLAtoSQL: Mapping an SQLA query to an SQL
query

Recall from Figure 2.4b, the syntax for SQLA queries, that mapping such queries to equiva-
lent formulations over our generated concrete RM schema requires rewriting subexpressions
of the form “x1.A1 = x2.A2”. For example, consider the following SQLA query:

select ∗
from T1 x, T2 y
where x.A = y.B,

where there exists tables Ti and Tj, such that Ran(T1, A) = Ti and Ran(T2, B) = Tj. If
A and B are self attributes, then T1 and T2 are the same as Ti and Tj respectively, and
this SQLA query is changed to the following one:

select ∗
from T1 x, T2 y
where x. self = y. self

We have introduced procedure SQLAtoSQL(x, A, Ti, y, B, Tj) to compile x.A(Ti) =
y.B(Tj) by replacing it with an string which has the following format:

exists (select ∗ from WHERE-TABS
where WHERE-EQS)

Variable WHERE-TABS in this query, stores the table names in the “from” clause, and
variable WHERE-EQS, stores the string in the “where” clause.

Figure 3.10 illustrates a dependency graph of all procedures and functions that are
executed to convert an SQLA query to an SQL query. Every node in this graph illustrates
a procedure/function, and there exists an edge from node A to B if procedure/function
A calls procedure/function B. The node for SQLAtoSQL(Q) in this graph is the only

85

Figure 3.9: The relational schema UNIVPEOPLE′

node without incoming edges, as procedure SQLAtoSQL(Q) only calls other procedures/
functions.

We present pseudo code for each procedure/function together with an overview that out-
lines its purpose and how it executes. A more in-depth explanation of how SQLAtoSQL(Q)
works will then follow by appealing to a sequence of three progressively more involved ex-
amples.

Consider an SQLA query Q over an ARM schema Σ, which has the format in (3.2),
procedure SQLAtoSQL(Q) which is introduced in Algorithm 18 maps Q to an SQL query
Q′ over the RM schema Σ′. SQLAtoSQL(Q) does that by processing as follows:

1. SQLAtoSQL(Q) defines a global variable, called Org-TABS, and adds every table
“T z” in the “from” clause of Q to this set.

2. For every occurrence of “x.A = y.B”, where both A and B are of type eid, SQLAto-

86

Figure 3.10: A dependency graph of functions and procedures that are called to map an
SQLA query to an SQL query.

SQL(Q) generates a set, called E-WHERE-TABS. If “x.A = y.B” exists in an “exists”
clause, every table “T r” in the “from” clause of the “exists” clause is added to E-
WHERE-TABS.

3. SQLAtoSQL(Q) replaces any occurrence of “x.A = y.B” in Q with an SQL query
in the format (3.2), that is computed by function CompileCond(x, A, T1, y, B, T2,
E-WHERE-TABS).

Considering the SQLA query Q in (3.2) again, function CompileCond(x, A, Ran(Fro-
mTab(x, Q), A), y, B, Ran(FromTab(y, Q), B), E-WHERE-TABS) which is defined in
Algorithm 19, is called to compile “x.A = y.B” by replacing it with an SQL query Q′ that
has the format in (3.2). Function calls FromTab(x, Q) and FromTab(y, Q) return tables
T1 and T2 respectively, since Q contains “T1 x” and “T2 y” in its “from” clause.

87

Therefore, CompileCond(x, A, T1, y, B, T2, E-WHERE-TABS) replaces x.A(T1) =
y.B(T2) with an SQL query in the format (3.2), by checking the following conditions:

1. If there exists a translation table between T1 and T2, then function NoPrefJoin(x,
A, T1, y, B, T2, E-WHERE-TABS) or function NoPrefJoin(y, B, T2, x, A, T1,
E-WHERE-TABS) is called, depending on the position of T1 and T2 in Pro.

2. If there is a preference clause between T1 and T2, then function Prefcheck(x.A(T1),
y.B(T2)) is called first to compare primary keys of T1 and T2. However, if Offset(T1)
is not the first offset in Pref(T2) or Offset(T2) is not the first offset in Pref(T1),
then comparing their primary keys is not enough to capture every intersection entity
between T1 and T2, so function Find-K(T1, T2, k) is called, when k is initially set to
0. If k is not 0, then function MaybeYesCheck(k, x, A, T1, y, B, T2, E-WHERE-
TABS) is called to compute any remaining common entities between T1 and T2 and
illustrate them in an SQL query which has the format in (3.2).

Function Find-K(T1, T2, k) which is illustrated in Algorithm 20, inputs two tables T1

and T2, such that Offset(T1) < Offset(T2), and k is an integer, where it is initially set
to 0. This function finds a set, which is called possible-k, and it contains possible table
offsets such that each offset p in this set should have the following conditions:

1. p is greater than k.

2. p is less than Offset(T1).

3. TAB(p) should not be disjoint with T1 and T2.

4. There should exists a translation table between TAB(p) and at least one of T1 or T2.

The minimum p in the possible-k is the new k which is returned by the Find-K(T1, T2, 0).

Function MaybeYesCheck(k, x, A, T1, y, B, T2, E-WHERE-TABS) which is indicated
in Algorithm 21, checks the following three cases for offset k:

88

1. If k is in Pref(T1) and in TT(T2): function PrefJoin(r, self, TAB(k), y, B, T2,
x, A, T1, E-WHERE-TABS) is called to find common entities between three tables
TAB(k), T1 and T2, and returns a WHERE-TABS and a WHERE-EQS for an SQL
query. The input “r” in this function refers to tuples in TAB(k).

2. If k is in Pref(T2) and in TT(T1): function PrefJoin(r, self, TAB(k), x, A, T1,
y, B, T2, E-WHERE-TABS) is called to find common entities between three tables
TAB(k), T1 and T2, and returns a WHERE-TABS and a WHERE-EQS for an SQL
query.

3. If k is in TT(T1) and in TT(T2): function NoPrefJoin(r, self, TAB(k), x, A,
T1, E-WHERE-TABS) is called to find common entities between TAB(k) and T1,
and it returns a WHERE-TABS1 and a WHERE-EQS1 for part of an SQL query.
Then, function NoPrefJoin(r, self, TAB(k), y, B, T2, E-WHERE-TABS) is called
to find common entities between TAB(k) and T2, and it returns a WHERE-TABS2
and a WHERE-EQS2 for part of an SQL query. Strings in WHERE-TABS1 and
WHERE-TABS2 are concatenated and stored as the variable WHERE-TABS and
strings in WHERE-EQS1 and WHERE-EQS2 are concatenated and stored as the
variable WHERE-EQS. The input “r” in these two functions refer to tuples in TAB(k).

Using the WHERE-TABS and WHERE-EQS that are generated by each of the above cases,
an SQL query in the format (3.2) is generated and stored in an string E. Afterwards, this
function calls Find-K(T1, T2, k) to generate a new k. If new k is 0, MaybeYesCheck(k,
x, A, T1, y, B, T2, E-WHERE-TABS) returns E and if not, it calls MaybeYesCheck(k,
x, A, T1, y, B, T2, E-WHERE-TABS) with the new k to do the same process and extends
E.

Considering function TranslationTCheck(g, self, Tk, e, self, Tm, E-WHERE-
TABS, WHERE-TABS) in Algorithm 22, the input “g” refers to tuples in table Tk, and
the input “e” refers to tuples in table Tm. This function is called when there exists a
translation table Tk-Tm-C. It checks for type of Tk-Tm-C, and returns an SQL query that
has the format in (3.2). This algorithm works as follows:

89

1. If Tk-Tm-C is absorbed on the left, common entities between Tk-C and Tm-C are
found by checking the absorbed column(s) in Tk-C which include(s) the primary key
of Tm-C.

2. If Tk-Tm-C is absorbed on the right, common entities between Tk-C and Tm-C are
found by checking the absorbed column(s) in Tm-C which include(s) the primary key
of Tk-C.

3. If Tk-Tm-C can be computed from the join of other two translation tables TT1 and
TT2, NestedReplace(TT1, TT2, E-WHERE-TABS) is called to join TT1 and TT2

via the use of primary keys of tables involved in these translation tables.

4. If Tk-Tm-C is not absorbed and can not be computed from the join of other translation
tables:

(a) If Tk-Tm-C w does not exist in Org-TABS or E-WHERE-TABS, it is added to
the WHERE-TABS.

(b) Join Tk-C and Tm-C with Tk-Tm-C by comparing their primary keys.

Considering function NoPrefJoin(r, C, Tk, z, D, Tm) in Algorithm 23, the input “r”
refers to tuples in table Tk, where the input “C” is a column in Tk, and the input “z”
refers to tuples in table Tm, where the input “D” is a column in Tm. This function is called
when there exists a translation table Tk-Tm-C. It executes as follows and returns strings
WHERE-TABS and WHERE-EQS which are part of an SQL query in the format (3.2).

1. If C is an abstract foreign key referencing Tk, function Prefcheck(r.C(Tk), g.self(Tk))
is called to compile “r.C = g.self” in a relational schema.

2. If each of Tk and Tm does not already exist in Org-TABS or E-WHERE-TABS, it is
added to WHERE-TABS.

3. Call function TranslationTCheck(g, self, Tk, e, self, Tm) to check for special
cases of the translation table Tk-Tm-C.

90

Considering function PrefJoin(r, C, Tk, z, D, Tm, s, E, Tn, E-WHERE-TABS) in
Algorithm 24, the input “r” refers to tuples in table Tk, where the input “C” is a column
in Tk, the input “z” refers to tuples in table Tm, where the input “D” is a column in Tm,
and the input “s” refers to tuples in table Tn, where the input ‘E” is a column in Tn.
This function is called when there exists a translation table Tk-Tm-C, and Tn contains
Pref(Tk). This algorithm joins Tk with Tm and Tn accordingly to find common entities
between them, and it returns an SQL query in the format (3.2) to illustrate such entities.
Detail of how this algorithm executes is as follows:

1. If attribute C is an eid foreign key referencing Tk, function Prefcheck(r.C(Tk),
g.self(Tk)) is called to find entities in Tk which C is referencing. The same holds for
D and E.

2. If each of tables Tk, Tm and Tn does not already exist in E-WHERE-TABS or Org-
TABS, it is added to WHERE-TABS.

3. Find common attributes between Tn and Tk to compile h.self(Tn) = g.self(Tk), by
calling Prefcheck(h.self(Tn), g.self(Tk)).

4. Call function TranslationTCheck(g, self, Tk, e, self, Tm, E-WHERE-TABS)
to check for special cases of the translation table Tk-Tm-C.

Function NestedReplace(TT1, TT2, E-WHERE-TABS) which is presented in Algo-
rithm 25, finds left table of TT1 by calling tabLeft(TT1) and right table of TT1 by calling
tabRight(TT1). This algorithm further calls NoPrefJoin(p, self, tabLeft(TT1), z,
self, tabRight(TT1), E-WHERE-TABS) to join tabLeft(TT1) and tabRight(TT1)
with TT1, and returns a WHERE-TABS1 and WHERE-EQS1 for generating an SQL query.
Then, this algorithm calls NoPrefJoin(s, self, tabLeft(TT2), t, self, tabRight(TT2),
E-WHERE-TABS) to join tabLeft(TT2) and tabRight(TT2) with TT2, and returns a
WHERE-TABS2 and WHERE-EQS2 for generating an SQL query. Thereafter, string in
WHERE-TABS1 is concatenated with string in WHERE-TABS2 and stored in a vari-
able called WHERE-TABS, and string in WHERE-EQS1 is concatenated with string in

91

WHERE-EQS2 and stored in a variable called WHERE-EQS. NestedReplace(TT1, TT2,
E-WHERE-TABS) returns WHERE-TABS and WHERE-EQS for an SQL query in the for-
mat (3.2).

Function Prefcheck(x.A(T1), y.B(T2)) which is introduced in Algorithm 26, compares
Pkc(T1) with Pkc(T2) as follows:

1. If neither T1 nor T2 has a preference clause, each attribute A1, . . . , Ak of Pkc(T1) is
compared with each attribute B1, . . . , Bm of Pkc(T2) in terms.

2. If T1 has a preference clause and T2 does not, disc attribute of T1-C is compared
with Offset(T2) and f attribute of T1-C is compared with concatenation of each
attribute B1, . . . , Bm of Pkc(T2).

3. If T2 has a preference clause and T1 does not, disc attribute of T2-C is compared
with Offset(T1) and f attribute of T2-C is compared with concatenation of each
attribute A1, . . . , Ak of Pkc(T1).

4. If both T1 and T2 have a preference clause, disc and f attributes of T1-C are compared
with disc and f attributes of T2-C respectively.

92

Algorithm 18
procedure SQLAtoSQL (Q)

Org-TABS = ()
for each table T in Q’s “from” clause

Add T GenVarName(T) to the set Org-TABS
while there exists “x.A = y.B”, where Dom(FromTab(x, Q), A) = Dom(FromTab(y, Q), B) = eid

E-WHERE-TABS = ()
if “x.A = y.B” exists in an “exists” clause E then

for each table T in E’s “from” clause
Add T GenVarName(T) to the set E-WHERE-TABS

Replace “x.A = y.B” by CompileCond(x, A, Ran(FromTab(x, Q), A), y, B, Ran(FromTab(y,
Q), B), E-WHERE-TABS)

Algorithm 19
function CompileCond (x, A, T1, y, B, T2, E-WHERE-TABS)

E := “ ”
if Offset(T2) is in TT(T1) then

if Offset(T1) ≤ Offset(T2) then
WHERE-TABS, WHERE-EQS = NoPrefJoin(x, A, T1, y, B, T2,
E-WHERE-TABS)

else
WHERE-TABS, WHERE-EQS = NoPrefJoin(y, B, T2, x, A, T1,
E-WHERE-TABS)
Iterate through each equality statement in WHERE-EQS, and reverse the left
side of it with its right side.

if WHERE-TABS is empty then
E := Concat(E, WHERE-EQS)

else
E := Concat(E, WHERE-EQS)
E := Concat(E, exists(select * from WHERE-TABS

where WHERE-EQS)
else . T1 and T2 are either disjoint or there is preference clause between them.

E := Concat(E, “(”, Prefcheck(x.A(T1), y.B(T2), “)”)
if Offset(T1) is not the first offset in Pref(T2) or Offset(T2) is not the first

offset in Pref(T1) then
k = 0
k := Find-K(T1, T2, k)
if k = 0 then

return E
E := Concat(E, MaybeYesCheck(k, x, A, T1, y, B, T2, E-WHERE-TABS))

return E

93

Algorithm 20
function Find-K (T1, T2, k)

Possible-k := p : p > k
and p < min (Offset(T1), Offset(T2))
and p not in (Disj(T1) ∪ (Disj(T2))
and p in (TT (T1) ∪ TT (T2))

if Possible-k is non-empty then
k := min (Possible-k)

else
k := 0

return k

Algorithm 21
function MaybeYesCheck (k, x, A, T1, y, B, T2, E-WHERE-TABS)

E := “”
if k in Pref(T1) then

r = GenVarName(TAB(k))
WHERE-TABS, WHERE-EQS = PrefJoin(r, self, TAB(k), y, B, T2, x, A, T1, E-WHERE-TABS)

if k in pref (T2) then
r = GenVarName(TAB(k))
WHERE-TABS, WHERE-EQS = PrefJoin(r, self, TAB(k), x, A, T1, y, B, T2, E-WHERE-TABS)

else . k is not in neither Pref(T1) nor Pref(T2)
r = GenVarName(TAB(k))
WHERE-TABS1, WHERE-EQS1 = NoPrefJoin(r, self, TAB(k), x, A, T1, E-WHERE-TABS)
E-WHERE-TABS = Concat(E-WHERE-TABS, WHERE-TABS1)
WHERE-TABS2, WHERE-EQS1 = NoPrefJoin(r, self, TAB(k), y, B, T2, E-WHERE-TABS)
WHERE-TABS := Concat(WHERE-TABS, WHERE-TABS1, WHERE-TABS2)
WHERE-EQS := Concat(WHERE-EQS, WHERE-EQS1, WHERE-EQS2

E := Concat(E, “or exists(select * from WHERE-TABS where WHERE-EQS”)
k = Find-K(T1, T2, k)
if k = 0 then return E
E:= Concat(E, MaybeYesCheck(k, x, A, T1, y, B, T2, E-WHERE-TABS))
return E

94

Algorithm 22
function TranslationTCheck (g, self, Tk, e, self, Tm, E-WHERE-TABS)

WHERE-TABS := “ ”
if Absorb(Tk-Tm-C) is “true on the left” then . (Tk − Tm − C) is absorbed on

the left
WHERE-EQS := Concat(WHERE-EQS, “)”, “and”, “(”, Prefcheck(g.self(Tm), e.self(Tm)),

“)”)

if Absorb(Tk-Tm-C) is “true on the right” then . (Tk − Tm − C) is absorbed
on the right

WHERE-EQS := Concat(WHERE-EQS, “(”, “and”, “(”, Prefcheck(g.self(Tk), e.self(Tk)),
“)”)

if Replace(Tk-Tm-C) == (TT1, TT2) then . (Tk-Tm-C) is replaced by
joining TT1 and TT2

WHERE-TABS1, WHERE-EQS1 := NestedReplace(TT1, TT2, E-WHERE-TABS)
WHERE-TABS := Concat(WHERE-TABS, WHERE-TABS1)
WHERE-EQS := Concat(WHERE-EQS, WHERE-EQS1)

else . Tk-Tm-C is neither absorbed nor replaced
if Tk-Tm-C w is not in (Org-TABS ∪ E-WHERE-TABS) then

WHERE-TABS := Concat(WHERE-TABS, Tk-Tm-C w)
WHERE-EQS := Concat(WHERE-EQS, “(”, Prefcheck(g.self (Tk), w.self(Tk)), “)”, “and”,

“(”, Prefcheck(w.self(Tm), e.self(Tm)), “)”)
return WHERE-TABS, WHERE-EQS

95

Algorithm 23
function NoPrefJoin (r, C, Tk, z, D, Tm, E-WHERE-TABS)

WHERE-TABS = “”
WHERE-EQS = “”

. Checking if D is an eid foreign key referencing Tm

if D<>self then
e = GenVarName(Tm)
WHERE-EQS := Concat(WHERE-EQS, “(”, Prefcheck(z.D(Tm), e.self(Tm)),“)”)

else
e = z

. Checking if C is an eid foreign key referencing Tk

if C<>self then
g = GenVarName(Tk)
WHERE-EQS := Concat(WHERE-EQS, “(”, Prefcheck(r.C(Tk), g.self(Tk)), “)”)

else
g = r

. The next two “If” statements check if Tk and Tm

already exist in the Org-TABS or E-WHERE-TABS
if Tk g is not in (Org-TABS ∪ E-WHERE-TABS) then

WHERE-TABS := Concat(WHERE-TABS, Tk g)
if Tm e is not in (Org-TABS ∪ E-WHERE-TABS) then

WHERE-TABS := Concat(WHERE-TABS, Tm e)
E-WHERE-TABS := Concat(E-WHERE-TABS, WHERE-TABS)
WHERE-TABS1, WHERE-EQS1 = TranslationTCheck(g, self, Tk, e, self, Tm, E-WHERE-

TABS)
WHERE-TABS := Concat(WHERE-TABS, WHERE-TABS1)
WHERE-EQS := Concat(WHERE-EQS, WHERE-EQS1)
return WHERE-TABS, WHERE-EQS

96

Algorithm 24
function PrefJoin (r, C, Tk, z, D, Tm, s, E, Tn, E-WHERE-TABS)

WHERE-TABS = “”
WHERE-EQS = “”

. Checking if D is an eid foreign key referencing Tm

if D<>self then
e = GenVarName(Tm)
WHERE-EQS := Concat(WHERE-EQS, “(”, Prefcheck(z.D(Tm), e.self(Tm)), “)”)

else
e = z

. Checking if C is an eid foreign key referencing Tk

if C<>self then
g = GenVarName(Tk)
WHERE-EQS := Concat(WHERE-EQS, “(”, Prefcheck(r.C(Tk), g.self(Tk)), “)”)

else
g = r

. Checking if E is an eid foreign key referencing Tn

if E<>self then
h = GenVarName(Tn)
WHERE-EQS := Concat(WHERE-EQS, “(”, Prefcheck(s.E(Tn), h.self(Tn)), “)”)

else
h = s

. The next three “If” statements check if Tk, Tm and Tn

already exist in theOrg-TABS or E-WHERE-TABS
if Tk g is not in (Org-TABS ∪ E-WHERE-TABS) then

WHERE-TABS := Concat(WHERE-TABS, Tk g)
if Tm e is not in (Org-TABS ∪ E-WHERE-TABS) then

WHERE-TABS := Concat(WHERE-TABS, Tm e)
if Tn h is not in (Org-TABS ∪ E-WHERE-TABS) then

WHERE-TABS := Concat(WHERE-TABS, Tn h)

. Compiling h.self(Tn) = g.self(Tk), where Tn contains Pref(Tk)
WHERE-EQS := Concat(WHERE-EQS, “(”, Prefcheck(h.self(Tn), g.self(Tk)), “)”)
E-WHERE-TABS := Concat(E-WHERE-TABS, WHERE-TABS)
WHERE-TABS1, WHERE-EQS1 = TranslationTCheck(g, self, Tk, e, self, Tm, E-WHERE-

TABS)
WHERE-TABS := Concat(WHERE-TABS, WHERE-TABS1)
WHERE-EQS := Concat(WHERE-EQS, WHERE-EQS1)
return WHERE-TABS, WHERE-EQS

97

Algorithm 25
function NestedReplace (TT1, TT2, E-WHERE-TABS)

WHERE-TABS = “”
WHERE-EQS = “”
p = GenVarName(tabLeft(TT1))
z = GenVarName(tabRight(TT1))
s = GenVarName(tabLeft(TT2))
t = GenVarName(tabRight(TT2))
WHERE-TABS1, WHERE-EQS1 = NoPrefJoin(p, self, tabLeft(TT1), z,

self, tabRight(TT1), E-WHERE-TABS)
E-WHERE-TABS = Concat(E-WHERE-TABS, WHERE-TABS1)
WHERE-TABS2, WHERE-EQS2 = NoPrefJoin(s, self, tabLeft(TT2), t,

self, tabRight(TT2), E-WHERE-TABS)
WHERE-TABS := Concat(WHERE-TABS, WHERE-TABS1, WHERE-TABS2)
WHERE-EQS := Concat(WHERE-EQS, WHERE-EQS1, WHERE-EQS2)
return WHERE-TABS, WHERE-EQS

Algorithm 26
function Prefcheck (x.A(T1), y.B(T2))

A1,. . . , Ak := Pkc(T1)
B1,. . . ,Bm := Pkc(T2)
if PrefNum(T1) = 0 and PrefNum(T2) = 0 then :

E := Concat(E, x.comp(A, A1),. . . ,x.comp(A, Ak)) =
Concat(y.comp(B, B1),. . . ,y.comp(B, Bm))”

if PrefNum(T1) > 0 and PrefNum(T2) = 0 then:
E := x.comp(A, disc) = Offset(T2) and x.comp(A, f) =
Concat(y.comp(B, B1),. . . ,y.comp(B, Bm))

if PrefNum(T1) = 0 and PrefNum(T2) > 0 then:
E := Offset(T1) = y.comp(B, disc) and Concat(x.comp (A, A1),. . . ,
x.comp(A, Ak)) = y.comp(B, f)”

if PrefNum(T1) > 0 and PrefNum(T2) > 0 then:
E := x.Comp(A, disc) = y.Comp(B, disc) and x.Comp(A, f) =
y.Comp(A, f)

else:
E := False

return E

98

Example 1.

This example uses the same schema, SecondUNIV, as Example 1 of Section 3.1 where
only translation tables are involved. The ARM schema for SecondUNIV is based on UNIV
in Figure 2.3. Table declarations and Rets for SecondUNIV are illustrated in Appendices
A.4 and A.5, respectively. The following SQLP query over SecondUNIV indicates how to
find the names of all professors who are also students:

select pr.name
from PROFESSOR pr, STUDENT s
where pr. self = s. self

This query is then converted to an SQLA query over SecondUNIV, as shown in Figure
3.11a.

The RM version of SecondUNIV is called SecondUNIV′ and to compile the SQLA
query Q in Figure 3.11a and map it to an SQL one over SecondUNIV′, the algorithm
SQLAtoSQL(Q) is called. It first defines a set called Org-TABS, which here is the set
(“PROFESSOR”, “PERSON”). Recall that for every occurrence of “x.A = y.B”, where both A
and B are of type eid, SQLAtoSQL(Q) generates a set called E-WHERE-TABS. If “x.A
= y.B” exists in an “exists” clause, every table “T r” in the “from” clause of the “exists”
clause is added to the E-WHERE-TABS. The variable E-WHERE-TABS for “pr.self =
pe.self” is empty, since it does not exist in an “exists” clause. SQLAtoSQL(Q) replaces
“pr.self = pe.self” with an SQL query that is computed by CompileCond(pr, self,
PROFESSOR, pe, self, PERSON, self), ()), and has the format in (3.2). Since “pe.self =
s.self” exists in an “exists” clause, E-Where-TABS for “pe.self = s.self” is the set
(STUDENT). SQLAtoSQL(Q) then replaces “pe.self = s.self” with an SQL query that
is computed by CompileCond(pe, self, PERSON, s, self, STUDENT, (STUDENT)), and also
has the format in (3.2).

Function CompileCond(pr, self, PROFESSOR, pe, self, PERSON, self), ()) first checks
for the existence of a translation table between PROFESSOR and PERSON. Since the trans-
lation table PROFESSOR-PERSON-C exists, function NoPrefJoin(pr, self, PROFESSOR,

99

select pe.name
from PROFESSOR-C pr, PERSON-C pe
where pr.self = pe.self
and exists(select * from STUDENT-C s

where pe.self = s.self)

(a) An SQLA query Q over SecondUNIV.

select pe.name
from PROFESSOR-C pr, PERSON-C pe
and pr.sin = pe.sin
and exists (select * from STUDENT-C s

where pe.self = s.self)

(b) An intermediate SQL query Q′ over SecondUNIV′.

select pe.name
from PROFESSOR-C pr, PERSON-C pe
where pr.sin = pe.sin
and exists(select * from STUDENT-C s

where pe.sin = s.sin)

(c) An SQL query Q′ over SecondUNIV′

Figure 3.11: Conversion of an SQLA query over SecondUNIV to an SQL query over
SecondUNIV′.

pe, self, PERSON, ()) is called to find the intersection entities between PROFESSOR-C
and PERSON-C, and returns a WHERE-EQS and a WHERE-TABS for an SQL query
in the format (3.2) that illustrates such entities. This function first checks for exis-
tence of tables PROFESSOR and PERSON in either Org-WHERE-TABS or E-WHERE-TABS.
Since both PROFESSOR and PERSON already exist in Org-WHERE-TABS, they are not
added to WHERE-TABS, and WHERE-TABS remains empty. Then, it calls function
TranslationTCheck(pr, self, PROFESSOR, pe, self, PERSON, ()) to check for the type
of translation table PROFESSOR-PERSON-C. Since PROFESSOR-PERSON-C is “absorbed on the
left”, the attribute Pkc(PERSON) = sin is added to PROFESSOR-C, as also explained in
Example 1 of 3.1. TranslationTCheck(pr, self, PROFESSOR, pe, self, PERSON, ()) re-

100

turns an empty WHERE-TABS and WHERE-EQS which illustrates the common entities
between PROFESSOR-C and PERSON-C, as follows:

WHERE-EQS := Prefcheck(pr. self(PERSON), pe. self(PERSON))
WHERE-TABS := “ ”

(3.5)

WHERE-EQS is simplified to the following WHERE-EQS, where NoPrefJoin(pr, self,
PROFESSOR, pe, self, PERSON, ()) returns WHERE-EQS and WHERE-TABS, as follows:

WHERE-EQS := “pr.sin = pe.sin”
WHERE-TABS := “ ”

(3.6)

Thereafter, CompileCond(pr, self, PROFESSOR, pe, self, PERSON, self), ()) returns the
following string:

pr.sin = pe.sin (3.7)

Therefor, the SQLA query in Figure 3.11a is now converted to an intermediate SQL
in Figure 3.11b. The next function CompileCond(pe, self, PERSON, s, self, STUDENT,
(STUDENT)) first checks for the existence of a translation table between STUDENT and PERSON.
Since there exists the translation table STUDENT-PERSON-C, the algorithm NoPrefJoin(s,
self, STUDENT, pe, self, PERSON, (STUDENT)) is called to find the common entities between
PROFESSOR-C and PERSON-C, and returns WHERE-EQS and WHERE-TABS for an SQL
query in the format (3.2) that illustrates such entities. This function first checks for the
existence of tables STUDENT and PERSON in either Org-WHERE-TABS or E-WHERE-TABS.
Since STUDENT already exists in E-WHERE-TABS and PERSON exists in Org-WHERE-
TABS, they are not added to WHERE-TABS, and WHERE-TABS remains empty. Then,
it calls function TranslationTCheck(s, self, STUDENT, pe, self, PERSON, (STUDENT))
to check for the type of translation table STUDENT-PERSON-C. Since STUDENT-PERSON-C is
“absorbed on the left”, the attribute sin is added to STUDENT-C. The following illustrates
common entities between STUDENT-C and PERSON-C that are stored in WHERE-EQS and

101

an empty WHERE-TABS.

WHERE-EQS := Prefcheck(s. self(PERSON), pe. self(PERSON))
WHERE-TABS := “ ”

(3.8)

WHERE-EQS is simplified to the following, where both TranslationTCheck(s, self,
STUDENT, pe, self, PERSON, (STUDENT)) and NoPrefJoin(s, self, STUDENT, pe, self,
PERSON, (STUDENT)) return WHERE-EQS and WHERE-TABS, as follows:

WHERE-EQS := “s.sin = pe.sin”
WHERE-TABS := “ ”

(3.9)

Notice that CompileCond(pe, self, PERSON, s, self, STUDENT, (STUDENT)) should com-
pile pe.self = s.self, but WHERE-EQS in (3.9) is instead s.sin = pe.sin. Therefore,
CompileCond(pe, self, PERSON, s, self, STUDENT, (STUDENT)) reverses the left side of
the equality of the string in WHERE-EQS in (3.9) with the right side, and returns the
following result:

pe.sin = s.sin (3.10)

Therefore, the SQLA query in Figure 3.11a is then converted to an SQL query in Figure
3.11c.

Figure 3.12 illustrates the algorithms that the procedure SQLAtoSQL(Q) calls to
convert the SQLA query in Figure 3.11a to the SQL query in Figure 3.11c by compiling
both pr.self = pe.self and pe.self = s.self. The first column contains a function
or a procedure call with its inputs, and the second column contains what the procedure
produces or what the function returns. Except the first row, every other row contains a
function that is called by a function or a procedure in the previous row.

102

Algorithm name Result
SQLAtoSQL(Q) Figure

3.11c
CompileCond(pr, self, PROFESSOR, pe, self, PERSON, ()) (3.7)

NoPrefJoin(pr, self, PROFESSOR, pe, self, PERSON,
())

(3.6)

TranslationTCheck(pr, self, PROFESSOR, pe,
self, PERSON, ())

(3.6)

Prefcheck(pr.self(PERSON),
pe.self(PERSON))

(3.5)

CompileCond(pe, self, PERSON, s, self, STUDENT,
(STUDENT))

(3.10)

NoPrefJoin(s, self, STUDENT, pe, self, PERSON,
(STUDENT))

(3.9)

TranslationTCheck(s, self, STUDENT, pe,
self, PERSON, (STUDENT))

(3.9)

Prefcheck(s.self(PERSON),
pe.self(PERSON))

(3.8)

Figure 3.12: Procedure and function calls with their result for Section 3.2 Example 1.

Example 2.

This example uses the same schema, ThirdUNIV, as Example 2 of Section 3.1 where
both translation and preference tables are involved. The ARM schema for ThirdUNIV is
based on UNIV in Figure 2.3. Table declarations and Rets for ThirdUNIV are illustrated
in Appendices A.8 and A.9, respectively. This example illustrates how the SQLA query
Q in Figure 3.13a over ThirdUNIV, is mapped to an SQL query Q′ over the RM schema
ThirdUNIV′.

Procedure SQLAtoSQL(Q) is called to map Q to Q′. Recall that SQLAtoSQL(Q)
defines the variable Org-TABS to store every table “T z” in the “from” clause of Q.
Org-TABS here is the set (PROFESSOR, PERSON). As explained earlier in this section, for
every occurrence of “x.A = y.B”, where both A and B are of type eid, SQLAtoSQL(Q)
generates a set called E-WHERE-TABS. If “x.A = y.B” exists in an “exists” clause, every
table “T r” in the “from” clause of the “exists” clause is added to E-WHERE-TABS.

103

select pe.name
from PROFESSOR pr, PERSON pe
where pr.self = pe.self
and exists(select * from STUDENT s

where pe.self = s.self)

(a) An SQLA query Q over ThirdUNIV.

select pe.name
from PROFESSOR-C pr, PERSON-C pe
where pr.5 = pe.disc
and Concat(pr.name, pr.office) = pe.f
and exists (select * from STUDENT s

where pe.self = s.self)

(b) An intermediate SQL query Q′ over ThirdUNIV′.

select pe.name
from PROFESSOR-C pr, PERSON-C pe
where pr.5 = pe.disc
and Concat(pr.name, pr.office) = pe.f
and exists (select * from STUDENT-C s

where pe.disc = s.6
and pe.f = s.snum
or exists (select * from PROFESSOR-STUDENT-C w

where pe.disc = pr.5
and pe.f = Concat(pr.name, pr.office)
and pr.5 = w.5
and Concat(pr.name, pr.office) = Concat(w.name, w.office)
and w.snum = s.snum)

(c) An SQL query Q′ over ThirdUNIV′.

Figure 3.13: Conversion of an SQLA query Q over ThirdUNIV to an SQL query Q′ over
ThirdUNIV′.

Since “pr.self= pe.self” does not exist in an “exists” clause, E-WHERE-TABS is empty
here and SQLAtoSQL(Q) calls function CompileCond(pr, self, PROFESSOR, pe, self,

104

PERSON, ()) to compile and replace “pr.self = pe.self” with an SQL query which has
the format in (3.2). Now consider “pe.self = s.self” where it exists in an “exists”
clause, E-WHERE-TABS is then the set (STUDENT). SQLAtoSQL(Q) then calls function
CompileCond(pe, self, PERSON, s, self, STUDENT, (STUDENT)) to compile and replace
“pe.self = s.self” with an SQL query which has the format in (3.2).

CompileCond(pr, self, PROFESSOR, pe, self, PERSON, ()) first checks for the existence
of a translation table between PROFESSOR and PERSON. However, there does not exist such
translation table, since PERSON contains Pref(PROFESSOR). Since PROFESSOR is the first
table in PERSON’s preference clause, all PROFESSOR entities who are also PERSON entities
can be accessed by only comparing Pkc(PROFESSOR) and Pkc(PERSON), as follows:

Prefcheck(pr. self(PROFESSOR), pe. self(PERSON)) (3.11)

Since PROFESSOR-C does not contain disc and f attributes, a disc attribute for PROFESSOR-
C is considered to be Offset(PROFESSOR) = 5 and an f attribute for PROFESSOR-C is con-
sidered to be the concatenation of columns in Pkc(PROFESSOR) which is Concat(name,
office). Therefore, the following illustrates the result of computation in (3.11), such that
it is returned by CompileCond(pr, self, PROFESSOR, pe, self, PERSON, ()):

pr.5 = pe. disc and Concat(pr.name, pr.office) = pe. f (3.12)

String “pr.self = pe.self” in Figure 3.13a is replaced by the string in (3.12), as shown in
Figure 3.13b.

CompileCond(pe, self, PERSON, s, self, STUDENT, (STUDENT)) first checks if there
exists a translation table between PERSON and STUDENT and, since PERSON contains Pref(-
STUDENT), there does not exist any translation table between them. Since STUDENT is the
second table in PERSON’s preference clause, not all STUDENT entities who are also PERSON
entities can be found by only comparing Pkc(STUDENT) and Pkc(PERSON), as follows:

Prefcheck(pe. self (PERSON), s. self (STUDENT)) (3.13)

105

Since Offset(STUDENT) is 6 and Pkc(STUDENT) is snum, this is simplified to the following:

pe. disc = s.6 and pe. f = s.snum (3.14)

Consider a person entity who is both a professor and a student entity. This entity then
has a disc attribute, which is the same as Offset(PROFESSOR) = 5. Therefore, this
entity is not captured by the comparison in (3.14). To resolve this issue and find all
common entities between STUDENT-C and PERSON-C, “pe.self = s.self” is replaced by an
string E that is a logical disjunction. Therefore, E contains two parts that are separated
by an “or” statement. The first part is simply a comparison between Pkc(PERSON) and
Pkc(STUDENT), as indicated in (3.13) and simplified in (3.14). The second part of E,
including the “or” statement, is an SQL query in the following format:

or exists (select ∗ from WHERE-TABS
where WHERE-EQS)

(3.15)

The above SQL query is computed by function MaybeYesCheck(5, pe, self, PERSON,
s, self, STUDENT, (STUDENT)). This function inputs an integer k which is 5 here. The
variable k is computed by function Find-K(PERSON, STUDENT, k), when k is initially set
to 0. Find-K(PERSON, STUDENT, 0) finds the set possible-k which contains possible table
offsets, such that each offset p in this set should have the following conditions:

1. p is greater than k,

2. p is less than Offset(STUDENT),

3. TAB(p) should not be disjoint with STUDENT and PERSON,

4. p should exist in at least one of the TT(STUDENT-C) or TT(PERSON-C).

The minimum p in possible-k is the new k which is returned by Find-K(PERSON, STUDENT,
0). Since Offset(STUDENT) = 6 and Offset(PERSON) = 7, the only possible offset

106

greater than 0 and less than 6 which is not disjoint with both STUDENT and PERSON,
and exists in (TT(STUDENT-C) ∪ TT(PERSON-C)), is Offset(PROFESSOR) = 5. Therefore,
Find-K(PERSON, STUDENT, 0) returns k = 5.

The following illustrates a hypothetical maybe-yes list for each STUDENT and PERSON:

STUDENT : { no , no , no , no , maybe}
Pro = {DEPARTMENT, COURSE, CLASS, ENROLLMENT, PROFESSOR, STUDENT, PERSON}
PERSON : { no , no , no , no , yes}

(3.16)
For each table T in Pro, such that T is not disjoint with STUDENT and Offset(T) <

Offset(STUDENT), if there exists a translation table T-STUDENT, string “maybe” is added
to the STUDENT’s maybe-yes list at the position of Offset(T). If Pref(STUDENT) contains
Offset(T), then string “yes” is added to the STUDENT’s maybe-yes list, at the position
of Offset(T), and if T is disjoint with STUDENT, string “no” is added at the position of
Offset(T). PERSON’s maybe-yes list is then filled out similarly.

Since STUDENT is disjoint with DEPARTMENT, COURSE, CLASS and ENROLLMENT, string
“no” is added to the position 1, 2, 3 and 4 of the STUDENT’s maybe-yes list. Since STUDENT
entities who are also PROFESSOR entities can be captured through the translation table
STUDENT-PROFESSOR-C, string “maybe” is added to the STUDENT’s maybe-yes list at the
position of Offset(PROFESSOR) which is 5, as shown in (3.16).

Since PERSON is also disjoint with DEPARTMENT, COURSE, CLASS and ENROLLMENT, string
“no” is added to the position 1, 2, 3 and 4 of the PERSON’s maybe-yes list. Since PERSON
contains Pref(PROFESSOR), string “yes” is added to the PERSON’s maybe-yes list at the
position 5, as also indicated in (3.16).

Function MaybeYesCheck(5, pe, self, PERSON, st, self, STUDENT, (STUDENT)) is
then called to compute the second part of E in the format (3.15), via the idea of a maybe-
yes list for each STUDENT and PERSON. This algorithm checks for the relation of PROFESSOR
with both STUDENT and PERSON in three cases :

1. The yes-maybe case: PROFESSOR exists in PERSON’s preference clause, and there is a

107

translation table between PROFESSOR and STUDENT.

2. The maybe-yes case: There exists a translation table between PROFESSOR, and PERSON
and PROFESSOR exists in STUDENT’s preference clause.

3. The maybe-maybe case: There exists a translation table between PROFESSOR and
STUDENT, and between PROFESSOR and PERSON.

Clearly, the first case is true and the other two are false. Therefore, function PrefJoin(pr,
self, PROFESSOR, s, self, STUDENT, pe, self, PERSON, (STUDENT)) is called to join PERSON-C
with PROFESSOR-C and PROFESSOR-STUDENT-C with both PROFESSOR-C and STUDENT-C.

Since all three tables PROFESSOR-C, STUDENT-C and PERSON-C exist in either Org-TABS
or E-WHERE-TABS, neither of them is added to WHERE-TABS and it remains empty.
PrefJoin(pr, self, PROFESSOR, s, self, STUDENT, pe, self, PERSON, (STUDENT)) first finds
the common attributes between PERSON and PROFESSOR and stores them in the following
WHERE-EQS.

WHERE-EQS := Prefcheck(pe. self(PERSON), pr. self(PROFESSOR)
WHERE-TABS := “ ”

(3.17)

They are simplified to the following:

WHERE-TABS := “ ”
WHERE-EQS := (pe. disc = pr.5 and pe. f = Concat(pr.name, pr.office))

(3.18)

Then, PrefJoin(pr, self, PROFESSOR, s, self, STUDENT, pe, self, PERSON, (STUDENT))
calls function TranslationTCheck(pr, self, PROFESSOR, s, self, STUDENT, (STUDENT))
to check for the type of PROFESSOR-STUDENT and join it with both PROFESSOR and STUDENT.

TranslationTCheck(pr, self, PROFESSOR, s, self, STUDENT, (STUDENT)) first checks
whether PROFESSOR-STUDENT-C is absorbed or can be computed from the join of other
tables or neither. Since PROFESSOR-STUDENT-C is not absorbed and can not be com-
puted from the join of other tables, “PROFESSOR-STUDENT-C w” is added to the following

108

WHERE-TABS. The following WHERE-EQS is also generated to contain an string that
joins PROFESSOR-STUDENT-C with both PROFESSOR and STUDENT:

WHERE-TABS := (PROFESSOR-STUDENT-C w)
WHERE-EQS := (Prefcheck(pr). self(PROFESSOR), w. self(PROFESSOR)),

Prefcheck(w. self (STUDENT), s. self (STUDENT)))
(3.19)

The aboveWHERE-EQS is then simplified to the following, and TranslationTCheck(pr,
self, PROFESSOR, s, self, STUDENT, (STUDENT)) returns the following WHERE-TABS and
WHERE-EQS:

WHERE-TABS := (PROFESSOR-STUDENT-C w)
WHERE-EQS := (Concat(pr.name, pr.office) = Concat(w.name, w.office),

w.snum = s.snum)
(3.20)

Thereafter, PrefJoin(pr, self, PROFESSOR, pe, self, PERSON, s, self, STUDENT) con-
catenates WHERE-EQS in (3.17) with WHERE-EQS in (3.20) and returns the following
WHERE-TABS and WHERE-EQS:

WHERE-TABS := (PROFESSOR-STUDENT-C w)
WHERE-EQS := (pe. disc = pr.5

and pe. f = Concat(pr.name, pr.office)
and pr.5 = w.5
and Concat(pr.name, pr.office) = Concat(w.name, w.office)
and w.snum = s.snum)

(3.21)

Afterwards, Find-K(PERSON, STUDENT, 5) is called to find the minimum k. Since
there does not exist any tables in Pro with an offset greater than 5 and less than
Offset(STUDENT) = 6, Find-K(PERSON, STUDENT, 5) returns k = 0. Therefore, MaybeYes-
Check(5, pe, self, PERSON, st, self, STUDENT, (STUDENT)) uses WHERE-TABS and
WHERE-EQS in (3.21) to build the second part of the string E, containing the “or”

109

clause, and returns it, as follows:

or exists(select ∗ from PROFESSOR-STUDENT-C w
where pe. disc = pr.5
and pe. f = Concat(pr.name, pr.office)
and pr.5 = w.5
and Concat(pr.name, pr.office) = Concat(w.name, w.office)
and w.snum = s.snum)

(3.22)

CompileCond(pe, self, PERSON, st, self, STUDENT, (STUDENT)) then concatenates the
string in (3.22) with the comparison in (3.14) and returns the following string:

pe. disc = s.6 and pe. f = s.snum
or exists(select ∗ from PROFESSOR-STUDENT-C w

where pe. disc = pr.5
and pe. f = Concat(pr.name, pr.office)
and pr.5 = w.5
and Concat(pr.name, pr.office) = Concat(w.name, w.office)
and w.snum = s.snum)

(3.23)

Therefore, “pe.self = s.self” in Figure 3.11a is replaced by the string in (3.23) and the
SQLA query in Figure 3.11a is converted to the SQL query in Figure 3.13c. Figure 3.14
illustrates functions that procedure SQLAtoSQL(Q) calls to convert the SQLA query in
Figure 3.13a to the SQL query in Figure 3.13c by compiling “pr.self = pe.self”. The
first column contains a function or a procedure call with its inputs, and the second column
contains what the procedure produces or what the function returns. Except the first row,
every other row contains a function that is called by a function or a procedure in the
previous row.

110

Algorithm name Result
SQLAtoSQL(Q) Figure

3.13c
CompileCond(pr, self, PROFESSOR, pe, self, PERSON,

())
(3.12)

Prefcheck(pr.self (PROFESSOR), pe.self (PERSON)) (3.12)
CompileCond(pe, self, PERSON, s, self, STUDENT,

(STUDENT))
(3.23)

Prefcheck(pe.self (PERSON), s.self (STUDENT)) (3.14)
Find-K(PERSON, STUDENT, 0) k = 5

MaybeYesCheck(5, pe, self, PERSON, s, self,
STUDENT, (STUDENT))

(3.22)

PrefJoin(pr, self, PROFESSOR, s, self,
STUDENT, pe, self, PERSON,
(STUDENT))

(3.21)

Prefcheck(pe.self (PERSON),
pr.self(PROFESSOR))

(3.21)

TranslationTCheck(pr, self,
PROFESSOR, s, self,
STUDENT, (STUDENT))

(3.20)

Prefcheck(pr.self (PROFESSOR),
w.left (PROFESSOR))

(3.21)

Prefcheck(w.self (STUDENT),
s.self, (STUDENT)))

(3.21)

Find-K(PERSON, STUDENT, 5) k = 0

Figure 3.14: Procedure and function calls with their result for Section 3.2 Example 2.

Example 3.

This example uses the ARM schema UNIVPEOPLE in Figure 3.6 that has been in-
troduced in Example 3 of Section 3.1, such that a combination of both translation and
preference tables are generated for the RM version of UNIVPEOPLE which is called
UNIPEOPLE′, as indicated in Figure 3.9. Consider the SQLA query Q in Figure 3.15a
which finds the names of all students who are visitors from other universities in UNIVPEO-
PLE. This Example illustrates how to map Q to an SQL query Q′ over UNIVPEOPLE′.

111

Procedure SQLAtoSQL(Q) is called to map Q to Q′. Recall that SQLAtoSQL(Q)
defines a global variable called Org-TABS, and then it iterates through each table in Q’s
“from” clause and store it in Org-TABS where Org-TABS for this example is the set
(STUDENT, VISITOR). Also recall that for every occurrence of “x.A = y.B”, where both
A and B are of type eid, SQLAtoSQL(Q) generates a set called E-WHERE-TABS.
If “x.A = y.B” exists in an “exists” clause, every table “T r” in the “from” clause of
the “exists” clause is added to E-WHERE-TABS. In this example, SQLAtoSQL(Q)
considers “s.self = v.self” , for which the set E-WHERE-TABS is defined empty, since
“s.self = v.self” does not exist in an “exists” clause. Thereafter, SQLAtoSQL(Q)
calls function CompileCond(s, self, STUDENT, v, self, VISITOR, ()) to compile “s.self
= v.self” and replace it with an string E which has the format in (3.2). This function first
checks for an existence of a translation table between STUDENT and VISITOR. Since STUDENT
exists in VISITOR’s preference clause, there does not exist any translation table between
them. Since STUDENT is the second table in VISITOR’s preference clause, not all STUDENT
entities who are also VISITOR entities can be found by only comparing Pkc(STUDENT) and
Pkc(VISITOR), as shown here:

Prefcheck(s. self(STUDENT), v. self(VISITOR)) (3.24)

Since Offset(STUDENT) is 3 and Pkc(STUDENT) is snum, this computation results in the
following:

s.3 = v. disc and s.snum = v. f (3.25)

112

select s.snum
from STUDENT s, VISITOR v
where (s.self = v.self)

(a) An SQLA query Q over UNIVPEOPLE.

select s.snum
from STUDENT-C s, VISITOR-C v
where (s.3 = v.disc and s.snum = v.f)

(b) An intermediate SQL query Q′ over UNIVPEOPLE′.

select s.snum
from STUDENT-C s, VISITOR-C v
where (s.3 = v.disc and s.snum = v.f)
or exists(select * from EMPLOYEE-C e, EMPLOYEE-STUDENT-C z, EMPLOYEE-VISITOR-C r

where (e.enum = z.enum)
and (z.snum = s.snum)
and (e.enum = r.enum)
and (r.disc = v.disc and r.f = v.f))

(c) An intermediate SQL query Q′ over UNIVPEOPLE′.

select s.snum
from STUDENT-C s, VISITOR-C v
where s.3 = v.disc and s.snum = v.f
or exists(select * from EMPLOYEE-C e, EMPLOYEE-STUDENT-C z, EMPLOYEE-VISITOR-C r

where (e.enum = z.enum)
and (z.snum = s.snum)
and (e.enum = r.enum)
and (r.disc = v.disc and r.f = v.f))

or exists(select * from PROFESSOR-C p, EMPLOYEE-C e, EMPLOYEE-STUDENT-C z
where (v.disc = p.2 and v.f = Concat(p.name, p.office))
and (p.enum = e.enum)
and (e.enum = z.enum)
and (z.snum = s.snum)

(d) An SQL query Q′ over UNIVPEOPLE′.

Figure 3.15: Conversion of an SQLA query Q over UNIVPEOPLE to an SQL query Q′
over UNIVPEOPLE′.

113

Consider a visitor entity who is both a professor and a student entity, this entity has a
disc attribute which is the same as Offset(PROFESSOR) = 2. Therefore, the comparison
in (3.25) fails to find such entity. In order to resolve this issue and find all common entities
between STUDENT-C and VISITOR-C, string “s.self = v.self” should be replaced with an
string E that is a logical disjunction. In particular, E might contain only one “or” clause
or multiple ones. The first part of E before the “or” statement, is simply a comparison
between Pkc(STUDENT) and Pkc(VISITOR), as indicated in (3.24), and simplified in (3.25).
The SQLA query in Figure 3.15a is now converted to an SQL query in Figure 3.15b, such
that it includes the first part of E. The second part of E which includes the “or” statement
is an SQL query in the format (3.15), and it is computed by function MaybeYesCheck(1,
s, self, STUDENT, v, self, VISITOR, ()). This function inputs an integer k which is 1 here.
We further explain how k is computed by function Find-K(STUDENT, VISITOR, k), when
k is initially set to 0. Find-K(STUDENT, VISITOR, 0) finds a set called possible-k which
contains possible table offsets, such that each offset p in this set should have the following
conditions:

1. p is greater than k,

2. p is less than Offset(STUDENT),

3. TAB(p) should not be disjoint with STUDENT and VISITOR,

4. p should exist in at least one of TT(STUDENT-C) or TT(VISITOR-C).

The minimum p in possible-k, is the new k which is returned by Find-K(STUDENT, VISITOR,
0). Since Offset(STUDENT) = 3 and Offset(VISITOR) = 4, possible-k is the set (1, 2),
where TAB(1) is table EMPLOYEE and TAB(2) is table PROFESSOR. Thus, Find-K(STUDENT,
VISITOR, 0) would return k = 1, since, the minimum integer in possible-k is 1.

Similar to the previous example, a hypothetical maybe-yes list is computed for each

114

STUDENT and VISITOR, by considering the offsets in possible-k, as shown in the following:

STUDENT : {maybe, maybe}
Pro = {EMPLOYEE, PROFESSOR, STUDENT, VISITOR, CANADIAN}
VISITOR : {maybe, yes}

(3.26)

For each table T in Pro, such that T is not disjoint with STUDENT and Offset(T) <

Offset(STUDENT), if there exists a translation table T-STUDENT, string “maybe” is added
to the STUDENT’s maybe-yes list at the position of Offset(T). If STUDENT has a preference
clause, containing Offset(T), string “yes” is added to the STUDENT’s maybe-yes list, at
the position of Offset(T), and if T is disjoint with STUDENT, string “no” is added at the
position of Offset(T). VISITOR’s maybe-yes list is then filled out similarly.

Firstly, we explain how STUDENT’s maybe-yes list is filled out:
Consider offset 1 in possible-k, EMPLOYEE entities who are also STUDENT entities can be
achieved through the translation table EMPLOYEE-STUDENT-C. Therefore, an string “maybe”
is added to the STUDENT’s maybe-yes list. Consider offset 2 in possible-k, PROFESSOR
entities who are also STUDENT entities can be achieved through the translation table
PROFESSOR-STUDENT-C, so another string “maybe” is added to the STUDENT’s maybe-yes
list, as indicated in (3.26).

Secondly, we explain how VISITOR’s maybe-yes list is filled out:
Consider offset 1 in possible-k, EMPLOYEE entities who are also VISITOR entities can be
achieved through the translation table EMPLOYEE-VISITOR-C. Therefore, an string “maybe”
is added to the VISITOR’s maybe-yes list. Consider offset 2 in possible-k, there does
not exist any translation table between PROFESSOR and VISITOR, since VISITOR contains
Pref(PROFESSOR). Therefore, an string “yes” is added to the VISITOR’s maybe-yes list, as
shown in (3.26).

Following that Find-K(STUDENT, VISITOR, 0) returns k = 1, CompileCond(s, self,
STUDENT, v, self, VISITOR, ()) calls function MaybeYesCheck(1, s, self, STUDENT,
v, self, VISITOR, ()) to compute the second part of E, containing the “or” clause, in the
format (3.15), via the idea of a maybe-yes list for each STUDENT and VISITOR. This function

115

first checks for the relation of EMPLOYEE with both STUDENT and VISITOR in three cases :

1. The yes-maybe case: EMPLOYEE exists in STUDENT’s preference clause, and there exists
a translation table between EMPLOYEE and VISITOR.

2. The maybe-yes case: There exists a translation table between EMPLOYEE and STUDENT,
and EMPLOYEE exists in VISITOR’s preference clause.

3. The maybe-maybe case: There exist translation tables between EMPLOYEE and STUDENT,
and between EMPLOYEE and VISITOR.

Clearly, the third case is true, since there exist translation tables EMPLOYEE-STUDENT-C
and EMPLOYEE-VISITOR-C, and the other two cases are false. Thus, MaybeYesCheck(1,
s, self, STUDENT, v, self, VISITOR, ()) calls function NoPrefJoin(e, self, EMPLOYEE, s,
self, STUDENT, ()) to find the common entities between EMPLOYEE-C and STUDENT-C and
function NoPrefJoin(e, self, EMPLOYEE, v, self, VISITOR, (“EMPLOYEE”, “EMPLOYEE-
STUDENT-C”))) to find the common entities between EMPLOYEE-C and VISITOR-C. The
former returns a WHERE-TABS1 and a WHERE-EQS1 that are part of an SQL query in
the format (3.2). Since EMPLOYEE does not already exist in Org-TABS or E-WHERE-TABS,
it is added to the following WHERE-TABS1 and E-WHERE-TABS. However, WHERE-
EQS1 is still empty, as follows:

WHERE-TABS1 := (EMPLOYEE-C e)
WHERE-EQS1 := ()

Then, NoPrefJoin(e, self, EMPLOYEE, s, self, STUDENT, ()) calls function
TranslationTCheck(e, self, EMPLOYEE, s, self, STUDENT, (EMPLOYEE)) to check for
the type of EMPLOYEE-STUDENT-C and find the common attributes between EMPLOYEE-C
and STUDENT-C accordingly. Since EMPLOYEE-STUDENT-C is neither absorbed or can be
computed from the join of other tables, it is added to the following TTWHERE-TABS1,
and the common attributes between EMPLOYEE-C and STUDENT-C are stored in the following

116

TTWHERE-EQS1:

TTWHERE-TABS1 := (EMPLOYEE-STUDENT-C z)
TTWHERE-EQS1 := ((Prefcheck(e. self(EMPLOYEE), z. self(EMPLOYEE))) and

(Prefcheck(z. self(STUDENT), s. self(STUDENT))))

TranslationTCheck(e, self, EMPLOYEE, s, self, STUDENT, (EMPLOYEE)) returns TTWHERE-
EQS1 and TTWHERE-TABS1 as part of an SQL query in the format (3.2), and compu-
tation in TTWHERE-EQS1 is simplified as follows:

TTWHERE-TABS1 = (EMPLOYEE-STUDENT-C z)
TTWHERE-EQS1 = (e.enum = z.enum and z.snum = s.snum)

(3.27)

NoPrefJoin(e, self, EMPLOYEE, s, self, STUDENT, ()) would then concatenate WHERE-
TABS1 with TTWHERE-TABS1 and concatenate WHERE-EQS1 with TTWHERE-EQS1,
as follows:

WHERE-TABS1 = (EMPLOYEE-C e, EMPLOYEE-STUDENT-C z)
WHERE-EQS1 = (e.enum = z.enum and z.snum = s.snum)

(3.28)

Since TTWHERE-TABS1 in (3.27), will be included in an “exists” clause of an SQL
query in the form (3.2), it is added to E-WHERE-TABS. Function NoPrefJoin(e, self,
EMPLOYEE, v, self, VISITOR, (“EMPLOYEE”, “EMPLOYEE-STUDENT-C”))) returns WHERE-
TABS2 and WHERE-EQS2 that are part of an SQL query in the format (3.2). Since
both EMPLOYEE and VISITOR already exist in Org-TABS and E-WHERE-TABS, they are
not added to WHERE-TABS. Then, this function calls function TranslationTCheck(e,
self, EMPLOYEE, v, self, VISITOR, (“EMPLOYEE”,“EMPLOYEE-STUDENT-C”)) to check for the
type of EMPLOYEE-STUDENT-C and find the common attributes between EMPLOYEE-C and
VISITOR-C accordingly. Since EMPLOYEE-VISITOR-C is neither absorbed or can be replaced
by other tables, it is added to the following TTWHERE-TABS2, and common attributes
between EMPLOYEE-C and VISITOR-C are stored in the following TTWHERE-EQS2:

117

TTWHERE-TABS2 := (EMPLOYEE-VISITOR-C r)
TTWHERE-EQS2 := (Prefcheck(e. self(EMPLOYEE), r. self(EMPLOYEE))), and,

(Prefcheck(r. self(VISITOR), v. self(VISITOR))))

TranslationTCheck(e, self, EMPLOYEE, v, self, VISITOR, (“EMPLOYEE”,“EMPLOYEE-
STUDENT-C”)) returns TTWHERE-TABS2 and TTWHERE-EQS2 that are part of an SQL
query in the format (3.2) and computation in TTWHERE-EQS2 is simplified to the fol-
lowing:

TTWHERE-TABS2 := (EMPLOYEE-VISITOR-C r)
TTWHERE-EQS2 := ((e.enum = r.enum) and (r. disc = v. disc and r. f = v. f))

(3.29)

NoPrefJoin(e, self, EMPLOYEE, v, self, VISITOR, (“EMPLOYEE”, “EMPLOYEE-STUDENT-C”)))
then returns WHERE-TABS2 and WHERE-EQS2 which are the same as TTWHERE-
TABS2 and TTWHERE-EQS2. Thereafter, MaybeYesCheck(1, s, self, STUDENT, v,
self, VISITOR, ()) concatenates WHERE-TABS1 and WHERE-TABS2 which results to
the following WHERE-TABS, and concatenates WHERE-EQS1 and WHERE-EQS2 which
results to the following WHERE-EQS:

WHERE-TABS := (EMPLOYEE-C e, EMPLOYEE-STUDENT-C z, EMPLOYEE-VISITOR-C r)
WHERE-EQS := ((e.enum = z.enum) and(z.snum = s.snum)),

((e.enum = r.enum) and (r.disc = v.disc and r.f = v.f))

MaybeYesCheck(1, s, self, STUDENT, v, self, VISITOR, ()) uses theses WHERE-TABS
and WHERE-EQS to generate the second part of E which is in the format (3.15), as shown

118

here:

or exists(select ∗ from EMPLOYEE-C e, EMPLOYEE-STUDENT-C z, EMPLOYEE-VISITOR-C r
where (e.enum = z.enum)
and (z.snum = s.snum)
and (e.enum = r.enum)
and (r. disc = v. disc and r. f = v. f))

(3.30)

The SQLA in Figure 3.15a is now converted to the intermediate SQL in Figure 3.15c.
Thereafter, MaybeYesCheck(1, s, self, STUDENT, v, self, VISITOR, ()) calls function
Find-K(STUDENT, VISITOR, 1) to find the next k. possible-k is now the set (2), so k
= 2 is returned, where TAB(2) is PROFESSOR. The hypothetical maybe-yes list for both
STUDENT and VISITOR, in relation to PROFESSOR, has been introduced in (3.26). Us-
ing k = 2 as an input, MaybeYesCheck(1, s, self, STUDENT, v, self, VISITOR, ())
calls MaybeYesCheck(2, s, self, STUDENT, v, self, VISITOR, ()) to compute another
“or” clause in the format (3.15), by finding the intersection between PROFESSOR and both
STUDENT and VISITOR. Therefore, this function first checks for the relation of PROFESSOR
with both STUDENT and VISITOR in three cases :

1. The yes-maybe case: PROFESSOR exists in the STUDENT’s preference clause, and there
exists a translation table between PROFESSOR and VISITOR.

2. The maybe-yes case: There exists a translation table between PROFESSOR and STUDENT,
and PROFESSOR exists in the VISITOR’s preference clause.

3. The maybe-maybe case: There exist translation tables between PROFESSOR and
STUDENT, and between PROFESSOR and VISITOR.

Clearly, the second case is true, since Pref(VISITOR) contains offset 2 and there exists
translation table PROFESSOR-STUDENT-C, and the other two cases are false. Therefore,
MaybeYesCheck(2, s, self, STUDENT, v, self, VISITOR, ()) calls function PrefJoin(p,
self, PROFESSOR, s, self, STUDENT, v, self, VISITOR, ()) to join VISITOR with PROFESSOR

119

and PROFESSOR-STUDENT-C with both PROFESSOR and STUDENT, and illustrate the result as
WHERE-TABS and WHERE-EQS for an SQL query in the format (3.2). The following
WHERE-EQS illustrates common attributes between VISITOR-C and PROFESSOR-C. Since
PROFESSOR does not exist in either Org-Tabs or E-WHERE-TABS, it is added to the
following WHERE-TABS:

WHERE-EQS := (Prefcheck(v. self(VISITOR), p. self(PROFESSOR)))
WHERE-TABS := (PROFESSOR-C p)

The computation in the WHERE-EQS is simplified as follows:

WHERE-EQS := (v. disc = p.2 and v. f = Concat(p.name, p.office))
WHERE-TABS := (PROFESSOR-C p)

(3.31)

Thereafter, E-WHERE-TABS is updated to be (PROFESSOR), and PrefJoin(p, self,
PROFESSOR, s, self, STUDENT, v, self, VISITOR, ()) calls function TranslationTCheck(p,
self, PROFESSOR, s, self, STUDENT, (PROFESSOR)) to check for the type of PROFESSOR-
STUDENT-C which can be replaced as follows:

Replace(PROFESSOR-STUDENT-C) = (EMPLOYEE-PROFESSOR-C, EMPLOYEE-STUDENT-C)

TranslationTCheck(p, self, PROFESSOR, s, self, STUDENT, (PROFESSOR)) then calls
function NestedReplace(EMPLOYEE-PROFESSOR-C, EMPLOYEE-STUDENT-C, (PROFESSOR))
to find the common attributes between EMPLOYEE-C and PROFESSOR-C, via NoPrefJoin(e,
self, EMPLOYEE, p, self, PROFESSOR, (PROFESSOR)), and common attributes between
EMPLOYEE-C and STUDENT-C, via NoPrefJoin(e, self, EMPLOYEE, s, self, STUDENT,
(PROFESSOR, EMPLOYEE)).

NoPrefJoin(e, self, EMPLOYEE, p, self, PROFESSOR, (PROFESSOR)) returns WHERE-
TABS1 and WHERE-EQS1 for an SQL query in the format (3.2). Since EMPLOYEE does
not already exist in E-WHERE-TABS or Org-TABS, it is added to both E-WHERE-TABS

120

and WHERE-TABS1 as follows, and WHERE-EQS1 is still empty, as shown here:

WHERE-TABS1 := (EMPLOYEE-C e)
WHERE-EQS1 := ()

(3.32)

E-WHERE-TABS is then updated to be the set (PROFESSOR, EMPLOYEE).
NoPrefJoin(e, self, EMPLOYEE, p, self, PROFESSOR, (PROFESSOR)) then calls function
TranslationTCheck(e, self, EMPLOYEE, p, self, PROFESSOR, (PROFESSOR, EMPLOYEE))
to check for the type of EMPLOYEE-PROFESSOR-C and find common attributes between
EMPLOYEE-C and PROFESSOR-C accordingly. Since EMPLOYEE-PROFESSOR-C is absorbed on
PROFESSOR and PROFESSOR already exists in E-WHERE-TABS, this function returns empty
TTWHERE-TABS1 and the following TTWHERE-EQS1 to illustrate common attributes
between EMPLOYEE-C and PROFESSOR-C:

TTWHERE-TABS1 := ()
TTWHERE-EQS1 := (Prefcheck(p. self(EMPLOYEE), e. self(EMPLOYEE))))

Computation in TTWHERE-EQS1 is simplified as follows:

TTWHERE-TABS1 := ()
TTWHERE-EQS1 := (p.enum = e.enum)

(3.33)

TTWHERE-TABS1 and TTWHERE-EQS1 are then concatenated to WHERE-TABS1
andWHERE-EQS1 respectively, and NoPrefJoin(e, self, EMPLOYEE, p, self, PROFESSOR,
(PROFESSOR)) returns the following WHERE-TABS1 and WHERE-EQS1:

WHERE-TABS1 := (EMPLOYEE-C e)
WHERE-EQS1 := (p.enum = e.enum)

(3.34)

Then NestedReplace(EMPLOYEE-PROFESSOR-C, EMPLOYEE-STUDENT-C, (PROFESSOR))
calls NoPrefJoin(e, self, EMPLOYEE, s, self, STUDENT, (PROFESSOR, EMPLOYEE)) which
returns WHERE-TABS2 and WHERE-EQS2 for an SQL query in the format (3.2). This

121

function calls function TranslationTCheck(e, self, EMPLOYEE, s, self, STUDENT,
(PROFESSOR, EMPLOYEE)) to check for the type of EMPLOYEE-STUDENT-C and find com-
mon attributes between EMPLOYEE-C and STUDENT-C accordingly. Common attributes be-
tween EMPLOYEE-C and STUDENT-C are stored in the following TTWHERE-EQS2. Since
EMPLOYEE-STUDENT-C is neither absorbed or can be replaced by other tables, it is stored
in the following TTWHERE-TABS2:

TTWHERE-EQS2 := (Prefcheck(e. self(EMPLOYEE), z. self(EMPLOYEE)))
and (Prefcheck(z. self(STUDENT), s. self(STUDENT)))

TTWHERE-TABS2 := (EMPLOYEE-STUDENT-C z)

Computation in TTWHERE-EQS2 is simplified to the following:

TTWHERE-EQS2 := ((e.enum = z.enum) and (z.snum = s.snum))
TTWHERE-TABS2 := (EMPLOYEE-STUDENT-C z)

(3.35)

TTWHERE-TABS2 and TTWHERE-EQS2 are then concatenated to WHERE-TABS2
and WHERE-EQS2 respectively, and NoPrefJoin(e, self, EMPLOYEE, s, self, STUDENT,
(PROFESSOR, EMPLOYEE)) returns WHERE-TABS2 andWHERE-EQS2 which are the same
as TTWHERE-TABS2 and TTWHERE-EQS2 respectively.

Afterwards, NestedReplace(EMPLOYEE-PROFESSOR-C, EMPLOYEE-STUDENT-C,
(PROFESSOR)) returns NWHERE-TABS and NWHERE-EQS for an SQL query in the for-
mat (3.2). NWHERE-TABS is computed by concatenating the WHERE-TABS1 in (3.34)
and TTWHERE-TABS2 in (3.35), and NWHERE-EQS is computed by concatenating
WHERE-EQS1 in (3.34) and TTWHERE-EQS2 in (3.35), as illustrated:

NWHERE-TABS := (EMPLOYEE-C e, EMPLOYEE-C-STUDENT-C z)
NWHERE-EQS := ((p.enum = e.enum)

and (e.enum = z.enum) and (z.snum = s.snum))
(3.36)

TranslationTCheck(p, self, PROFESSOR, s, self, STUDENT, (PROFESSOR)) returns the

122

same WHERE-TABS and WHERE-EQS as NWHERE-TABS and NWHERE-EQS respec-
tively. PrefJoin(p, self, PROFESSOR, s, self, STUDENT, v, self, VISITOR, ()) also returns
WHERE-TABS which is computed by concatenating WHERE-TABS in (3.31) and (3.36),
and WHERE-EQS is computed by concatenating WHERE-EQS in (3.31) and (3.36), as
illustrated:

WHERE-TABS := (PROFESSOR-C p, EMPLOYEE-C e, EMPLOYEE-STUDENT-C z)
WHERE-EQS := ((v. disc = p.2 and v. f = Concat(p.name, p.office))

and (p.enum = e.enum)
and (e.enum = z.enum) and (z.snum = s.snum))

(3.37)

MaybeYesCheck(2, s, self, STUDENT, v, self, VISITOR, ()) uses above WHERE-TABS
and WHERE-EQS to compute the second “or” clause of E in the format (3.15), as indicated
here:

or exists(select ∗ from PROFESSOR-C p, EMPLOYEE-C e, EMPLOYEE-STUDENT-C z
where (v. disc = p.2 and v. f = Concat(p.name, p.office))
and (p.enum = e.enum)
and (e.enum = z.enum)
and (z.snum = s.snum)

(3.38)
Thereafter, this function calls Find-K(STUDENT, VISITOR, 2) which returns k = 0.
MaybeYesCheck(1, s, self, STUDENT, v, self, VISITOR, ()) concatenates the first “or”
clause of E in (3.30) with the second in (3.38) and returns the following “or” clauses:

123

or exists(select ∗ from EMPLOYEE-C e, EMPLOYEE-STUDENT-C z, EMPLOYEE-VISITOR-C r
where (e.enum = z.enum)
and (z.snum = s.snum)
where (e.enum = r.enum)
and(r. disc = v. disc and r. f = v. f))

or exists(select * from PROFESSOR-C p, EMPLOYEE-C e, EMPLOYEE-STUDENT-C z
where (v. disc = p.2 and v. f = Concat(p.name, p.office))
and (p.enum = e.enum)
and (e.enum = z.enum)
and (z.snum = s.snum)

(3.39)

CompileCond(s, self, STUDENT, v, self, VISITOR, ()) concatenates the first part of E
in (3.25) with the “or” clauses in (3.39) and returns the following string:

s.3 = v. disc and s.snum = v. f
or exists(select ∗ from EMPLOYEE-C e, EMPLOYEE-STUDENT-C z, EMPLOYEE-VISITOR-C r

where (e.enum = z.enum)
and (z.snum = s.snum)
where (e.enum = r.enum)
and(r. disc = v. disc and r. f = v. f))

or exists(select * from PROFESSOR-C p, EMPLOYEE-C e, EMPLOYEE-STUDENT-C z
where (v. disc = p.2 and v. f = Concat(p.name, p.office))
and (p.enum = e.enum)
and (e.enum = z.enum)
and (z.snum = s.snum)

(3.40)

Therefore, SQLAtoSQL(Q) replaces “s.self = v.self” with the string in Figure 3.40
and returns the SQL query in Figure 3.15d.

Figure 3.16 illustrates functions that procedure SQLAtoSQL(Q) calls to convert the

124

SQLA query in Figure 3.15a to the SQL query in Figure 3.15d by compiling “s.self =
v.self”. The first column contains a function or a procedure call with its inputs, and the
second column contains what the procedure produces or what the function returns. Except
the first row, every other row contains a function that is called by a function or a procedure
in the previous row.

125

Algorithm name Return
SQLAtoSQL(Q) Figure

3.15d
CompileCond(s, self, STUDENT, v, self, VISITOR, ()) (3.40)

Prefcheck(s.self(STUDENT), v.self(VISITOR)) (3.24)
Find-K(STUDENT, VISITOR, 0) k = 1
MaybeYesCheck(1, s, self, STUDENT, v, self, VISITOR, ()) (3.39)

NoPrefJoin(e, self, EMPLOYEE, s, self, STUDENT, ()) (3.28)
TranslationTCheck(e, self, EMPLOYEE, s, self, STUDENT,

(EMPLOYEE))
(3.27)

NoPrefJoin(e, self, EMPLOYEE, v, self, VISITOR, (EMPLOYEE,
EMPLOYEE-STUDENT-C))

(3.29)

TranslationTCheck(e, self, EMPLOYEE, v, self, VISITOR,
(EMPLOYEE, EMPLOYEE-STUDENT-C))

(3.29)

Find-K(STUDENT, VISITOR, 1) k = 2
MaybeYesCheck(2, s, self, STUDENT, v, self, VISITOR, ()) (3.38)

PrefJoin(p, self, PROFESSOR, s, self, STUDENT, v, self,
VISITOR, ())

(3.37)

TranslationTCheck(p, self, PROFESSOR, s, self,
STUDENT, (PROFESSOR))

(3.36)

NestedReplace(EMPLOYEE-PROFESSOR-C, EMPLOYEE-
STUDENT, (PROFESSOR))

(3.36)

NoPrefJoin(e, self, EMPLOYEE, p, self,
PROFESSOR,(PROFESSOR))

(3.34)

TranslationTCheck(e, self, EMPLOYEE,
p, self, PROFESSOR,

(PROFESSOR, Employee))

(3.33)

NoPrefJoin(e, self, EMPLOYEE, s, self,
STUDENT, (PROFESSOR, EMPLOYEE))

(3.35)

TranslationTCheck(e, self, EMPLOYEE,
s, self, STUDENT,

(PROFESSOR, EMPLOYEE))

(3.35)

Find-K(STUDENT, VISITOR, 2) k = 0

Figure 3.16: Procedure and function calls with their result for Section 3.2 Example 3.

126

Chapter 4

Conclusion

Our first contribution relates to how identity resolution is accomplished in Borgida et al.[1]
via so-called referring expression types. Primarily, this involved the introduction of a new
front-end for programmers to specify such types via SQL’s PRIMARY KEY clause and a
new PREFERENCE clause as well as the introduction of new “disc” and “f” attributes to
encode SQL’s primary keys in concrete tables. This has also required revisiting such types,
in particular, replacing “disc” and “f” attributes with their underlying table and attributes
names of abstract tables in order to express verifiable conditions that are sufficient to ensure
identity resolution.

Our main contribution is to introduce translation tables. Such tables provide an ex-
plicit way to convert between referring expressions, and enable a larger space of possible
referring expression types that ensure identity resolution. We illustrate situations in which
programmer supplied PREFERENCE and PRIMARY KEY clauses would fail to be iden-
tity resolving, and adding translation tables would result in the identity resolution. Map-
ping an ARM schema to the RM schema, considering the generation of translation tables
is also well-explained and three different examples are given to clarify this concept. We
then illustrate converting SQLA queries to SQL ones on the three mentioned examples,
via the use of translation tables.

127

4.1 Future Study

There are two directions to the future study which we introduce briefly:

1. This thesis takes a top-down approach to mapping ARM schemata to RM schemata,
by introducing preference and translation tables on demand. More precisely, when
An ARM schema is not identity resolving, due to a missed preference clause, we
have added a translation table to keep the schema identity resolving. However, a
compliment to this approach is a bottom-up approach in which specific preference
and translation tables are already given. The complexity in this approach appears
when a translation table is absorbed or it can be replaced by two translation tables.
For example, if a translation table Ti−Tj is absorbed on the Ti, only Ti is given with
an additional column which stores the Pkc(Tj). Using this column, the intersection
between Ti and Tj can be found. If Ti− Tj can be replaced by two translation tables
TT1 and TT2, in the RM schema of a bottom-up approach, only TT1 and TT2 are
given and Ti−Tj does not exist. Thus, for an identity-resolution check, Ti−Tj should
be computed via the existence of TT1 and TT2. Otherwise, the identity resolution
conditions are not met.

2. The definition of identity resolution in this thesis requires all SQLA queries to map
to SQL queries that compute the same result on a generated RM schema. More
precisely, a mapping M between eid and string, has been defined to be identity
resolving, if for every SQLA query Q and any database DB, the following holds:

M(Eval(Q, DB)) = Eval(Q, M(DB)) (4.1)

Another direction for future work would be to relax this “full” or “complete” notion
of identity resolution to something, called partial identity resolution. In this new
approach, M can be partial identity resolving for some SQLA queries. Therefore,
not all SQLA queries require to map to their corresponding SQL queries. A possible
definition for partial identity resolution can be as follows:

128

There exists a subset of tables S, where there exists M such that, for all SQLA queries
Q only mentioning tables in S and all databases DB, the following holds:

M(Eval(Q, DB)) = Eval(Q, M(DB)). (4.2)

Both directions are important in the context of the problem of structured data inte-
gration. This is the problem of a data server that aims to provide a client with access to
a collection of structured data sources via an integrating schema.

129

References

[1] Alexander Borgida, David Toman, and Grant Weddell. On referring expressions in
information systems derived from conceptual modelling. In International Conference
on Conceptual Modeling, pages 183–197. Springer, 2016.

[2] Alexander Borgida, David Toman, and Grant Weddell. On referring expressions in
query answering over first order knowledge bases. In Fifteenth International Confer-
ence on the Principles of Knowledge Representation and Reasoning, 2016.

[3] EF E, F. Codd. Derivability, redundancy and consistency of relations stored in large
data banks. ACM SIGMOD Record, 38(1):17–36, 2009.

[4] Ramez Elmasri and Shamkant B Navathe. Fundamentals of database systems. 2016.

[5] Georg Gottlob, Stanislav Kikot, Roman Kontchakov, Vladimir Podolskii, Thomas
Schwentick, and Michael Zakharyaschev. The price of query rewriting in ontology-
based data access. Artificial Intelligence, 213:42–59, 2014.

[6] Terry Halpin. Modeling of linguistic reference schemes. International Journal of
Information System Modeling and Design (IJISMD), 6(4):1–23, 2015.

[7] Lina Lubyte and Sergio Tessaris. Automatic extraction of ontologies wrapping re-
lational data sources. In International Conference on Database and Expert Systems
Applications, pages 128–142. Springer, 2009.

130

[8] Weicong Ma, C Maria Keet, Wayne Oldford, David Toman, and Grant Weddell. The
utility of the abstract relational model and attribute paths in sql. In European Knowl-
edge Acquisition Workshop, pages 195–211. Springer, 2018.

[9] Abraham Silberschatz, Henry F Korth, Shashank Sudarshan, et al. Database system
concepts, volume 4. McGraw-Hill New York, 1997.

[10] Grant Weddell. ROSESEED: Sqlp to sql.

131

Appendices

132

Appendix A

Table Declarations

A.1 Chapter 2, Example 2 UNIV table declarations

table DEPARTMENT (self eid, deptcode integer, deptname string,

primary key (deptcode))

disjoint with (COURSE, CLASS, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

table COURSE (self eid, cnum integer, cname string, department eid,

primary key (cnum, department),

foreign key (department) references DEPARTMENT),

disjoint with (DEPARTMENT, CLASS, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

table CLASS (self eid, course eid, term integer, section integer, professor eid

primary key (course, term, section),

foreign key (course) references COURSE),

foreign key (professor) references PROFESSOR),

disjoint with (DEPARTMENT, COURSE, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

133

table ENROLLMENT (self eid, student eid, class eid, mark integer,

primary key (student, class),

foreign key (student) references STUDENT),

foreign key (class) references CLASS),

disjoint with (DEPARTMENT, COURSE, CLASS, PROFESSOR, STUDENT, PERSON))

table PROFESSOR (self eid, office integer, department eid

primary key (name, office),

isa(PERSON),

foreign key (self) references PERSON,

foreign key (department) references DEPARTMENT)

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

table STUDENT (self eid, snum integer, year integer

primary key (snum),

preference (PROFESSOR),

isa(PERSON),

foreign key (self) references PERSON)

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

table PERSON (self eid, sin integer, name string, cellphone integer,

preference (PROFESSOR, STUDENT),

covered by (PROFESSOR, STUDENT),

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

A.2 Chapter 2 Rets

RTA(DEPARTMENT):= DEPARTMENT → deptcode = ?
RTA(COURSE):= COURSE → (deptcode = ?, cnum = ?)

134

RTA(CLASS):= CLASS → (deptcode = ?, cnum = ?, term = ?, section = ?)
RTA(ENROLLMENT):= ENROLLMENT → (snum = ?, deptcode = ?, cnum = ?, term = ?,

section = ?)
RTA(PROFESSOR):= PROFESSOR → (name = ?, office = ?)
RTA(STUDENT):= PROFESSOR → (name = ?, office = ?); STUDENT → snum = ?,
RTA(PERSON):= PROFESSOR → (name = ?, office = ?); STUDENT → snum = ?

A.3 Chapter 2, Example 2 concrete table declarations

table DEPARTMENT-C (deptcode integer, deptname string,

primary key (deptcode))

table COURSE-C (cnum integer, cname string, department-deptcode integer,

primary key (cnum, department-deptcode),

foreign key (department-deptcode) references DEPARTMENT)

table CLASS-C (course-department-deptcode integer, course-cnum integer, term integer,

section integer, professor-name string, professor-office integer,

primary key (deptcode, cnum, term, section),

foreign key (name, office) references PROFESSOR)

table ENROLLMENT-C (student-disc integer, student-f string, class-course-department-

deptcode integer, class-course-cnum integer, class-term integer,

class-section integer,

primary key (student-disc, student-f, class-course-department-

deptcode, class-course-cnum, class-term, class-section),

foreign key (class-course-department-deptcode, class-course-cnum,

class-term, class-section) references CLASS,

foreign key (student-disc, student-f) references STUDENT)

135

table PROFESSOR-C (name string, office integer, department-deptcode integer,

primary key (name, office),

foreign key (department-deptcode) references DEPARTMENT)

table STUDENT-C (disc integer, f string, snum integer, year integer

primary key (disc, f))

table PERSON-C (disc integer, f string, sin integer, name string, cellphone integer

primary key (disc, f))

A.4 Chapter 3, Example 1 abstract table declarations

table DEPARTMENT (self eid, deptcode integer, deptname string,

primary key (deptcode))

disjoint with (COURSE, CLASS, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

table COURSE (self eid, cnum integer, cname string, department eid,

primary key (cnum, department),

foreign key (department) references DEPARTMENT),

disjoint with (DEPARTMENT, CLASS, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

table CLASS (self eid, course eid, term integer, section integer, professor eid

name string, office integer,

primary key (course, term, section),

foreign key (course) references COURSE),

foreign key (professor) references PROFESSOR),

disjoint with (DEPARTMENT, COURSE, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

136

table ENROLLMENT (self eid, student eid, class eid, mark integer,

primary key (student, class),

foreign key (student) references STUDENT),

foreign key (class) references CLASS),

disjoint with (DEPARTMENT, COURSE, CLASS, PROFESSOR, STUDENT, PERSON))

table PROFESSOR (self eid, office integer, department eid,

primary key(name, office),

isa (PERSON),

foreign key (self) references PERSON,

foreign key (department) references DEPARTMENT

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

table STUDENT (self eid, snum integer, year integer,

primary key(snum),

isa (PERSON),

foreign key (self) references PERSON

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

table PERSON (self eid, sin integer, name string, cellphone integer,

primary key (sin),

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

A.5 Chapter 3, Example 1 Rets

RTA(DEPARTMENT):= DEPARTMENT → deptcode = ?
RTA(COURSE):= COURSE → (deptcode = ?, cnum = ?)
RTA(CLASS):= CLASS → (deptcode = ?, cnum = ?, term = ?, section = ?)

137

RTA(ENROLLMENT):= ENROLLMENT → (snum = ?, deptcode = ?, cnum = ?, term = ?,
section = ?)

RTA(PROFESSOR):= PROFESSOR → (name = ?, office = ?)
RTA(STUDENT):= STUDENT → snum = ?
RTA(PERSON):= PERSON → sin = ?

A.6 Chapter 3, Example 1 concrete table declarations

table DEPARTMENT-C (deptcode integer, deptname string,

primary key (deptcode))

table COURSE-C (cnum integer, cname string, deptcode integer,

primary key (cnum, deptcode),

foreign key (deptcode) references DEPARTMENT)

table CLASS-C (deptcode integer, cnum integer, term integer, section integer,

name string, office integer,

primary key (deptcode, cnum, term, section),

foreign key (name, office) references PROFESSOR)

table ENROLLMENT-C (snum integer, deptcode integer, cnum integer,

term integer, section integer,

primary key (snum, deptcode, cnum, term, section),

foreign key (department, cnum, term, section) references CLASS,

foreign key (snum) references STUDENT)

table PROFESSOR-C (office integer, deptcode integer, sin integer,

primary key (name, office),

foreign key (sin) references PERSON,

foreign key (deptcode) references DEPARTMENT-C)

138

table STUDENT-C (snum integer, year integer, sin integer

primary key (snum),

foreign key (sin) references PERSON-C)

table PERSON-C (sin integer, name string, cellphone integer,

primary key (sin))

A.7 Chapter 3, Example 1 translation tables:

table PERSON-STUDENT-C (id integer, snum integer,

primary key (id),

foreign key (id) references PERSON-C,

foreign key (snum) references STUDENT-C)

table PERSON-PROFESSOR-C (id integer, name string, office integer,

primary key (id),

foreign key (id) references PERSON-C,

foreign key (name, office) references PROFESSOR-C)

table STUDENT-PROFESSOR-C (snum integer, name string, office integer

primary key (id),

foreign key (id) references PERSON-C,

foreign key (snum) references STUDENT-C)

139

A.8 Chapter 3, Example 2 abstract table declarations

table DEPARTMENT (self eid, deptcode integer, deptname string,

primary key (deptcode))

disjoint with (COURSE, CLASS, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

table COURSE (self eid, cnum integer, cname string, department eid,

primary key (cnum, department),

foreign key (department) references DEPARTMENT),

disjoint with (DEPARTMENT, CLASS, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

table CLASS (self eid, department eid, cnum integer, term integer, section integer,

name string, office integer, primary key (department, cnum, term, section),

foreign key (name, office) references PROFESSOR),

disjoint with (DEPARTMENT, COURSE, ENROLLMENT, PROFESSOR, STUDENT, PERSON))

table ENROLLMENT (self eid, snum integer, department eid, cnum integer,

term integer, section integer,

primary key (snum, department, cnum, term, section),

foreign key (department, cnum, term, section) references CLASS),

foreign key (snum) references STUDENT),

disjoint with (DEPARTMENT, COURSE, CLASS, PROFESSOR, STUDENT, PERSON))

table PROFESSOR (self eid, office integer, department eid

primary key (name, office),

isa (PERSON),

foreign key (self) references PERSON,

foreign key (department) references DEPARTMENT

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

140

table STUDENT (self eid, snum integer, year integer,

primary key (snum),

isa (PERSON),

foreign key (self) references PERSON

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

table PERSON (self eid, sin integer, name string, cellphone integer

primary key (sin),

preference (PROFESSOR, STUDENT),

disjoint with (DEPARTMENT, COURSE, CLASS, ENROLLMENT))

A.9 Chapter 3, Example 2 Rets

RTA(DEPARTMENT):= DEPARTMENT → deptcode = ?
RTA(COURSE):= COURSE → (deptcode = ?, cnum = ?)
RTA(CLASS):= CLASS → (deptcode = ?, cnum = ?, term = ?, section = ?)
RTA(ENROLLMENT):= ENROLLMENT → (snum = ?, deptcode = ?, cnum = ?, term = ?,

section = ?)
RTA(PROFESSOR):= PROFESSOR → (name = ?, office = ?)
RTA(STUDENT):= STUDENT → snum = ?
RTA(PERSON):= PROFESSOR → (name = ?, office = ?); STUDENT → snum = ?;

PERSON → sin = ?

A.10 Chapter3, Example 2 concrete table declara-
tions

table DEPARTMENT-C (deptcode integer, deptname string,

primary key (deptcode))

141

table COURSE-C (cnum integer, cname string, deptcode integer,

primary key (cnum, deptcode),

foreign key (deptcode) references DEPARTMENT)

table CLASS-C (deptcode integer, cnum integer, term integer, section integer,

name string, office integer,

primary key (deptcode, cnum, term, section),

foreign key (name, office) references PROFESSOR)

table ENROLLMENT-C (snum integer, deptcode integer, cnum integer,

term integer, section integer,

primary key (snum, deptcode, cnum, term, section),

foreign key (department, cnum, term, section) references CLASS,

foreign key (snum) references STUDENT)

table PROFESSOR-C (name string, office integer, deptcode integer,

primary key (name, Office),

foreign key (deptcode) references DEPARTMENT-C)

table STUDENT-C (snum integer, year integer,

primary key (snum))

table PERSON-C (disc integer, f string, id integer, name string, cellphone integer

primary key (disc, f))

table PROFESSOR-STUDENT-C (name string, office integer, snum integer

primary key (name, office),

foreign key (name, office) references PROFESSOR-C),

foreign key (snum) references STUDENT-C))

142

A.11 Chapter 3 Example 3 abstract table declara-
tions for EMPLOYEE, PROFESSOR, STUDENT, VISITOR

and CANADIAN

table EMPLOYEE (self eid, enum integer, name string, address string

primary key (enum))

table PROFESSOR (self eid, name string, office integer,

primary key (name, office),

isa (EMPLOYEE))

table STUDENT (self eid, snum integer, name string, year integer,

primary key (snum))

table VISITOR (self eid, vnum integer, name string, address string

primary key (vnum),

disjoint from CANADIAN,

preference (PROFESSOR, STUDENT))

table CANADIAN (self eid, sin integer, name string, address string

primary key (sin),

disjoint from VISITOR))

143

A.12 Chapter 3, Example 3 Rets

RTA(EMPLOYEE):= EMPLOYEE → enum = ?
RTA(PROFESSOR):= PROFESSOR → (name = ?, office = ?)
RTA(STUDENT):= STUDENT → snum = ?
RTA(VISITOR):= PROFESSOR → (name = ?, office = ?); STUDENT → snum = ?;

VISITOR → visanum = ?
RTA(CANADIAN):= CANADIAN → sin = ?

Figure A.1: RTA(T)s for each table T in Σ

A.13 Chapter 3 Example 3 concrete table declara-
tions for EMPLOYEE, PROFESSOR, STUDENT, VISITOR

and CANADIAN

table EMPLOYEE (enum integer, name string, address string,

primary key (enum))

table PROFESSOR (name string, office integer,

primary key (name, office))

table STUDENT (snum integer, name string, year integer,

primary key (snum))

table VISITOR (disc integer, f string, vnum integer, name string, address string,

primary key (disc, f))

table CANADIAN (sin integer, name string, address string,

primary key (sin))

144

	List of Figures
	Introduction
	Contributions
	Thesis Outline

	On Mapping ARM Schemata and SQLP via Preference Tables
	Formal Definitions
	Referring Expression Types
	Global Data
	ARM to RET Mapping

	On Identity Resolution
	A New Form of Ret

	Mapping an ARM schema to an RM schema
	ARMtoRM on UNIV

	Adding Translation Tables
	ARM-to-RM mapping, considering translation tables
	Identity Resolution with Translation Tables
	On Reducing the Number of Translation Tables

	SQLAtoSQL: Mapping an SQLA query to an SQL query

	Conclusion
	Future Study

	References
	Appendices
	Table Declarations
	Chapter 2, Example 2 UNIV table declarations
	 Chapter 2 Rets
	Chapter 2, Example 2 concrete table declarations
	Chapter 3, Example 1 abstract table declarations
	 Chapter 3, Example 1 Rets
	Chapter 3, Example 1 concrete table declarations
	Chapter 3, Example 1 translation tables:
	Chapter 3, Example 2 abstract table declarations
	Chapter 3, Example 2 Rets
	Chapter3, Example 2 concrete table declarations
	Chapter 3 Example 3 abstract table declarations for EMPLOYEE, PROFESSOR, STUDENT, VISITOR and CANADIAN
	Chapter 3, Example 3 Rets
	Chapter 3 Example 3 concrete table declarations for EMPLOYEE, PROFESSOR, STUDENT, VISITOR and CANADIAN

