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Abstract

This thesis explores the composition of ratio sets, the subsets of the rationals derived
from the quotients of two sets of natural numbers, and examines a variety of specific
examples where the comprising sets of natural numbers have specific properties. I present
a general algorithm that decides the inclusion of a rational number in a specific ratio set
if the comprising sets of natural numbers are a regular language when represented in a
given base. I also present an algorithm for deciding the inclusion of a rational number
in the ratio set of a few select sets of natural numbers that are not a regular language
when represented in any base, namely, the set of natural numbers with representations
in a specific base that are palindromes or antipalindromes. Using those algorithms, I
examine some of the rational numbers in specific ratio sets and then prove several results
regarding the composition of those ratio sets. As well, I present algorithms for computing
approximations to real numbers using elements of some specific ratio sets.
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Chapter 1

Introduction

This thesis primarily explores ratio sets, the subsets of the rationals derived from the
quotients of two sets of natural numbers, and examines a variety of specific examples
where the comprising sets of natural numbers have specific properties. In service of this
goal, I present several di↵erent algorithms for testing inclusion in a given ratio set and
compare their e↵ectiveness and e�ciency. As well, I present algorithms for computing
approximations to real numbers using elements of some specific ratio sets.

The primary contributions of this thesis are divided into two broad categories. Chapter
2 discusses a general framework for calculating ratio sets when the comprising sets of
natural numbers can be expressed as regular languages over the digits of a given base
and presents several results regarding such ratio sets. Chapter 3 focuses on ratio sets of
natural numbers that have representations in a specific base which are palindromes and
antipalindromes, two properties that cannot be expressed as a regular language.

Each algorithm presented was implemented in Python and those implementations and
all computed datasets used in this thesis are available in a selection of repositories on my
GitHub. There are links to specific repositories and files wherever relevant throughout the
remainder of this thesis.
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1.1 Preliminaries

1.1.1 Words and Representations

A fundamental concept for this thesis is the notion of a word, frequently known in the
literature as a string. A word is a sequence of symbols from a set of symbols called an
alphabet. In this thesis, all words and alphabets are finite. A language is a finite or
infinite set of words over an alphabet. For an alphabet ⌃, the language ⌃⇤ is the set of all
finite words over the alphabet ⌃. Similarly, the language ⌃+ is the set of all non-empty
finite words over the alphabet ⌃. This thesis primarily studies words over the alphabet
⌃k = {0, 1, . . . , k � 1} for some natural number k � 2 and we occasionally refer to those
symbols as digits. We take special notice of ⌃2 = {0, 1}, which we call the binary alphabet.

Let x = x0x1 · · · xi and y = y0y1 · · · yj be words. The number of symbols of x is written
as |x| and referred to as the length of x. The word with length zero is called the empty

word and denoted by ✏. For 0  m  n  i, we call x[m..n] = xmxm+1 · · · xn a factor or
subword of x. We also define x[n..n] = x[n] = xn. If n < m, then we define x[m..n] = ✏.
We denote the reverse of x as x

R = xixi�1 · · · x0 and define ✏
R = ✏. Also, we denote the

concatenation of x and y as xy = x0x1 · · · xiy0y1 · · · yj. Given a natural number n, we write
the concatenation of n copies of x as xn and define x

0 = ✏.

This thesis is mainly concerned with natural numbers with specific properties when
viewed as words, so we need to formalize a correspondence between words and natural
numbers. We have an intuitive interpretation of a word x = xixi�1 · · · x0 over the alphabet
⌃10 = {0, 1, . . . , 9}. For example, we interpret the word “4956” as the natural number
4 · 103 + 9 · 102 + 5 · 101 + 6 · 100. More generally, we understand x to refer to the natural
number

iX

j=0

xj · 10j.

We call this the most-significant-digit-first base-10 representation since the base of each
exponent is 10 and the largest exponent corresponds to the first digit reading left to right.

The base-10 representation can be generalized by interpreting a word x = xixi�1 · · · x0

over ⌃k as the natural number
iX

j=0

xj · kj
.

Here we are viewing x as a most-significant-digit-first base-k representation. When k = 2,
we call this representation binary. If we interpret the word “1101” as binary, then we get

2



the natural number

1 · 23 + 1 · 22 + 0 · 21 + 1 · 20 = 8 + 4 + 0 + 1 = 13.

However, if we view the word “1101” as a most-significant-digit-first base-3 representation,
then we would get the natural number

1 · 33 + 1 · 32 + 0 · 31 + 1 · 30 = 27 + 9 + 0 + 1 = 37.

To resolve this ambiguity, we write [x]k when we want to interpret the word x as a most
significant first base-k representation of a natural number. Hereafter, we omit quotation
marks when discussing words as distinguishing between words and natural numbers should
be clear from context. For example, we have that [1101]2 is the natural number 13 and
[1101]10 is the natural number 1101 but the 1101 within each pair of square brackets
is a word. Given a language L ✓ ⌃k, we define the subset of natural numbers [L]k =
{[x]k | x 2 L}.

For a word x = xixi�1 · · · x0 over some ⌃k, we call xi the leading digit. We note
that we have multiple words corresponding to the same natural number when viewed as
a most-significant-digit-first base-k representation. For words over the alphabet ⌃2 and
j � 0,

[1101]2 = [01101]2 = [0j1101]2 = 13.

To resolve this ambiguity, we call words with non-zero leading digit canonical represen-

tations. Each natural number n has a unique canonical most-significant-digit-first base-k
representation that we write as hnik. For example, the canonical most-significant-digit-first
base-2 representation of 13 is the word h13i2 = 1101.

Note that for all natural numbers k � 2, we define the canonical representation h0ik = ✏.
Given a subset of the natural numbers A, we define the language hAik = {hnik | n 2 A}.
Given a word x = xixi�1 · · · x0 2 ⌃⇤

k, typically a base-k representation, we define the
complement of x as x = xi xi�1 · · · x0 where � = k � 1� � for � 2 ⌃k.

There is another basic way to create maps between words and natural numbers. A
word x = xixi�1 · · · x0 is a least-significant-digit-first base-k representation for the natural
number

iX

j=0

xj · ki�j
.

For example, we have that

[231]5 = 2 · 52 + 3 · 51 + 1 · 50 = 50 + 15 + 1 = 66,

3



but the word 231 is a least-significant-digit-first base-5 representation for the natural num-
ber

2 · 50 + 3 · 51 + 1 · 52 = 2 + 15 + 25 = 42.

The canonical least-significant-digit-first base-k representation of a natural number is the
unique least-significant-digit-first base-k representation that has a non-zero final digit.
Analogously, we define the canonical least-significant-digit-first base-k representation of
0 to be ✏. We can convert between most-significant-digit-first base k representation and
least-significant-digit-first base k representation with the same k by simply reversing the
representation. Hereafter, we assume all representations are most-significant-digit-first
unless otherwise specified.

A natural extension to the typical base-k representation is to allow more symbols than
the usual ⌃k. Loxton and van der Poorten examined base-4 representations with the stan-
dard alphabet ⌃4 replaced by ⌃ =

�
1, 0, 1, 2

 
, which we call the “Awful” representation

[19]. Here, 1 is a more convenient symbol for �1. They note that every natural number has
an “Awful” representation, though some di↵er wildly from the standard base-4 representa-
tion. For example, the natural number 10 is written as 22 in the “Awful” representation,
which is identical to the usual base-4 representation. The typical base-4 representation of
11 is 23 but 3 is not a valid symbol in the “Awful” representation. Hence, the “Awful”
representation of the natural number 11 is written as 11 1 since

1 · 42 + (�1) · 41 + (�1) · 40 = 16 + (�4) + (�1) = 11.

Another non-standard representation relevant to this thesis is the Fibonacci represen-

tation. Recall the Fibonacci numbers where F0 = 0, F1 = 1, and Fn = Fn�1 + Fn�2. The
Fibonacci representation uses the binary alphabet but instead the word x = xixi�1 · · · x0

corresponds to the natural number

iX

j=0

xj · Fj+2

which we denote by [x]F . For example, we have that

[10101]F = 1 · F6 + 0 · F5 + 1 · F4 + 0 · F3 + 1 · F2 = 8 + 3 + 1 = 12.

Some natural numbers have multiple Fibonacci representations such as

8 = [10000]F = [1100]F = [1011]F .
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However, Fibonacci representation is unique with the additional requirement that rep-
resentations have no adjacent ones [17, 36]. Fibonacci representation also inspires the
definition of the Fibbinary numbers. The Fibbinary numbers are the natural numbers
that do not have adjacent ones in their binary representation. We denote the set by
FIB = {0, 1, 2, 4, 5, 8, 9, 10, 16, 17, . . .}. The Fibbinary numbers form sequence A003714 in
the On-Line Encyclopedia of Integer Sequences (OEIS).

1.1.2 Automata, Languages, and Decision Problems

An important classification for languages is the notion of a regular language. Regular
languages are often defined in terms of regular expressions, but for the purposes of this
thesis it is beneficial to define regular languages in terms of deterministic finite automata.

Definition 1. A deterministic finite automaton is a 5-tuple M = (Q,⌃, �, q0, F ) where

• Q is a set of states,

• ⌃ is a finite set called the input alphabet,

• � : Q⇥⌃ ! Q is a function called the transition function. We also define �(q, xy) =
�(�(q, x), y) for words x, y 2 ⌃+,

• q0 2 Q is called the initial state, and

• F ✓ Q is a subset called the accepting states.

We say a word x = x0x1 · · · xi over ⌃ is accepted by a deterministic finite automaton
M if �(q0, x) 2 F . Otherwise, we say the word x is rejected. Define L(M) as the language
of words accepted by an automaton M . We say that M recognizes L(M). A language L is
a regular language if and only if there exists an deterministic finite automaton such that
L = L(M). We define the size of an automaton M as its number of states |Q| and we
denote the quantity as |M |. We occasionally draw an automaton as a directed graph called
a transition diagram. An example of such a drawing is given in Figure 1.1. We allow � to
be a partial function. In these cases, we implicitly reject any input where the result of � is
undefined at any step.

Example 2. We construct an automaton to recognize the language

hFIBi2 = {✏, 1, 10, 100, 101, 1000, 1001, 1010, 10000, 10001, . . .} .

5
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q �(q, 0) �(q, 1)
q0 q3 q1

q1 q2 q3

q2 q2 q1

q3 q3 q3

Table 1.1: Transition table of � for the automaton that recognizes the language hFIBi2.

q1

q0

q2 q3

1 0

0

1

0

1

0,1

Figure 1.1: Transition diagram for the automaton that recognizes the language hFIBi2.

Consider the automaton

M = ({q0, q1, q2, q3} , {0, 1} , �, q0, {q0, q1, q2}),

where � is given by Table 1.1. Every non-empty word in ⌃⇤
2 that starts with 1 and does

not contain the factor 11 is accepted by M . As well, M accepts the empty word, which
is necessary as h0i2 = ✏ does not contain the factor 11. Therefore, L(M) = hFIBi2 and
hFIBi2 is regular.

We also define a generalization of deterministic finite automata, nondeterministic finite

automata.

Definition 3. A nondeterministic finite automaton is a 5-tuple M = (Q,⌃, �, q0, F ) where

• Q is a set of states,

• ⌃ is the input alphabet,

• q0 2 Q is the initial state, and

6



• F ✓ Q are the accepting states,

definitions that are identical to Definition 1. The notable change is that we define the
transition function � as

� : Q⇥ (⌃ [ {✏}) ! 2Q

where 2Q denotes the power set of Q.

We say that a word x = x0x1 · · · xi over ⌃ is accepted by a nondeterministic finite
automata if there is a sequence y = y0y1 · · · yj over ⌃ [ {✏} and a sequence of states
s0, s1, . . . , sj+1 such that x = y and

• s0 = q0,

• s`+1 2 �(s`, y`) for 0  `  j, and

• sj+1 2 F .

Otherwise, we say that x is rejected. For a nondeterministic finite automata M , we define
L(M) as the set of words accepted by M . Nondeterminism is useful, as it can simply
the construction of an automaton that recognizes a language. For example, consider the
language L of words over {0, 1} that end with the factor 000 or 111. Figure 1.2 is the
transition diagram for a deterministic finite automaton that recognizes L. We can simply
the construction with nondeterminism, which gives us Figure 1.3. We note without proof
some useful results on nondeterministic and deterministic finite automata [31]:

Theorem 4. Let L be a language.

1. Every nondeterministic finite automaton has an equivalent deterministic finite au-

tomaton.

2. The language L is regular if and only if there exists a nondeterministic finite automa-

ton that recognizes L.

3. If L is recognized by a nondeterministic finite automaton with n states, then there

exists a deterministic finite automaton with at most 2n states that recognizes L.

Lastly, we briefly define a few terms to clarify our discussions of computability. A
decision problem is a problem where we are given a problem instance of a fixed form and
we want to answer some yes or no question about it. We can encode problem instances as

7



q0

q1 q2 q3

q4 q5 q6

0

1

0

1

0

1

0

1

0

1

0

1

0

1

Figure 1.2: Transition diagram for a deterministic finite automaton that recognizes the
language of words that end with factor 000 or 111.

q0

q1 q2 q3

q4 q5 q6

0

1

0, 1

0 0

1 1

Figure 1.3: Transition diagram for a nondeterministic finite automaton that recognizes the
language of words that end with factor 000 or 111.
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strings and view a decision problem as a language where a specific string is included in the
language if and only if the answer to the decision problem question is yes for the problem
instance encoded in the string. For example, consider the following decision problem:

IS FIBBINARY
Instance: A natural number n.
Question: Does the binary representation of n have repeated 1s?

If we encode a problem instance as the binary representation of the natural number
n, the language associated with IS FIBBINARY is the language hFIBi2. However, we often
discuss decision problems instead of languages as reasoning about mathematical objects
instead of a complicated string encoding can be significantly easier.

A decision problem is called decidable if there exists an algorithm that answers the
decision problem question correctly for every problem instance. A decision problem is
called Turing-recognizable if there exists an algorithm that answers the decision problem
question correctly for every problem instance where the answer is “yes”. If the answer is
“no” for the given problem instance, the algorithm can either answer “no”, or fail to come
to an answer. These two definitions also apply to languages as we can easily interpret a
language as a decision problem with problem instance “A string x” and question “x 2 L?”
Similarly, we can describe sets of natural numbers as decidable or Turing-recognizable by
viewing inclusion in the set as a decision problem analogously to languages. We typically
formalize these algorithms as Turing Machines, but we omit a formal definition here, as it
is not a primary component of this thesis.

1.2 Ratio Sets and Previous Work

Let Q+ denote the non-negative rationals. Let N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, . . .} denote
the natural numbers. Let A,B ✓ N be two subsets of the natural numbers. Define the
ratio set

R(A,B) =
n
a

b

��� a 2 A, b 2 B, b 6= 0
o
✓ Q+

and define R(A) = R(A,A). The ratio set R(A,B) is sometimes known as a quotient set

or denoted by A/B in the literature [1, 3, 4, 6, 9, 12–14, 16, 22, 23, 29, 30]. When the ratio
set R(A,B) we are discussing is clear, we denote the smallest a and b such that a/b = p/q,
a 2 A, and b 2 B for a given p/q as a(p/q) and b(p/q) respectively.

9



A preliminary question regarding ratio sets is the cardinality of R(A) for a finite set A.
Many results on the cardinality of finite ratio sets resulted from work extending previous
results regarding

• sum sets A+ A = {a1 + a2 | a1, a2 2 A},

• di↵erence sets A� A = {a1 � a2 | a1, a2 2 A}, and

• product sets A · A = {a1 · a2 | a1, a2 2 A}.

Chu extended previous work examining finite sets A where |A+ A| > |A� A| to prove
that the proportion of subsets A of {1, 2, · · ·n} where |A · A| > |R(A)| approaches 0 when
n ! 1 [6]. Roche-Newton [25] and Shkredov [30] examined how ratio sets can be used to
probe the Erdős-Szemerédi conjecture [10]. Cilleruelo and Guijarro-Ordóñez [7], as well as
Sanna [28], investigated the cardinality of R(A) when A is randomly constructed according
to a distribution. This thesis does not explore finite sets and instead examines ratio sets
of infinite sets and explores their density in R+ and N.

Let R+ denote the non-negative reals. We say a set C ✓ R+ is dense in R+ if for
every r 2 R+ and ✏ > 0 there exists c 2 C such that |c� r| < ✏. Let A,B ✓ N. We are
interested in when R(A,B) is dense in R+. When R(A) is dense in R+ we say that A is
(R)-dense. For example, if A = N then R(A) = Q+, which is dense in R+ so we have that
N is (R)-dense. Several more sparse subsets of N were proven to be (R)-dense, such as
P↵ = {p↵i | pi 2 P} for natural numbers ↵ > 0 where P = {p1 = 2, p2 = 3, p3 = 5, . . .} is
the set of primes [35]. More generally, {p↵i

i | i � 1} is (R)-dense when ↵i = O(i
3
8 ) [5].

We say that A ✓ N has the property (S), so named for Steinhaus, if for each ↵ 2 R+

there exists sequence a1, a2, . . . such that ai  ai+1, ai 2 A, and

lim
i!1

ai

i
= ↵.

Some useful su�cient conditions for (R)-density derived from the property (S) are due to
Narkiewicz and Šalát [24]:

Theorem 5. Let A = {a1 < a2 < · · · } ✓ N.

1. If A has the property (S), then A is (R)-dense.

2. A has the property (S) if and only if

lim
n!1

an+1

an
= 1.
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Šalát then later proved the following theorem [27]:

Theorem 6. A set A ✓ N has the property (S) if and only if R(A,B) is dense in R+
for

every infinite set B ✓ N.

Another focus of this thesis is the relationship between (R)-density and a similar con-
cept, asymptotic density. Given a subset A ✓ N, let A(n) = |{a  n | a 2 A}|. We first
define upper asymptotic density

d(A) = lim sup
n!1

A(n)

n
,

and lower asymptotic density

d(A) = lim inf
n!1

A(n)

n
.

If d(A) = d(A) we call the value d(A) = d(A) = d(A) the asymptotic density. Equivalently,
we can define d(A) as

d(A) = lim
n!1

A(n)

n

when the limit exists. Asymptotic density gives a useful criterion for (R)-density, as was
first proved by Šalát [26, Thm. 4]:

Theorem 7. For every A ✓ N, if the asymptotic density d(A) > 0 then A is (R)-dense.

Šalát’s bounds [26, Thm. 1] were later improved by Strauch and Tóth [33, Thm. 1] to
the following:

Theorem 8. For every A ✓ N, if the lower asymptotic density d(A) � 1
2 then A is (R)-

dense. Conversely, if 0  � <
1
2 then there exists A ⇢ N such that d(A) = � and A is not

(R)-dense.

Let A = {a1, a2, . . .} ✓ N where ai < ai+1 for i � 0. Consider the sequence

a1

a1
,
a1

a2
,
a2

a2
,
a1

a3
,
a2

a3
,
a3

a3
, . . . ,

a1

ai
,
a2

ai
, . . . ,

ai

ai
, . . .

which we can split into blocks A1, A2, . . . where

Ai =

✓
a1

ai
,
a2

ai
, . . . ,

ai

ai

◆
.
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We call A1, A2, . . . the block sequence. We also define the dispersion of a block

D(Ai) = max

⇢
a1

ai
,
a2 � a1

ai
,
a3 � a2

ai
, . . . ,

ai � ai�1

ai

�

which is the largest distance between the terms of a block. The dispersion of A is defined
as

D(A) = lim inf
i!1

D(Ai).

Bukor and Csiba provided a few bounds on D(A) and some methods for estimating the
dispersion of a given set. More relevant to our purposes, Filip, Mǐśık, and Tóth worked on
relating dispersion to (R)-density.

Theorem 9 ([34]). Let A ✓ N.

1. If D(A) = 0, then A is (R)-dense.

2. If A is (R)-dense, then D(A)  1
2 .

The same three authors worked to relate dispersion to asymptotic density.

Theorem 10 ([11]). Let A ✓ N.

1. If d(A) > 0, then D(A) = 0.

2. If d(A) < d(A), then

D(A)  (1� �)(1� ↵)

�(1� ↵)

where ↵ = d(A) and � = d(A).

Finally, we briefly mention some previous work on ratio sets that is more tangential to
this thesis. Mǐśık has extended the asymptotic density conditions for (R)-density [33] to
logarithmic density [20] and then later derived more unique conditions for (R)-density in
terms of logarithmic density along with Tóth [21]. There is a variety of work exploring
the density of ratio sets in the context of p-adic numbers [1, 9, 12, 13, 22, 23, 29]. Ratio
sets have also been generalized to higher dimensions through k-directions sets, which were
explored by Leonetti and Sanna [18] and Antony et al. [2].
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1.3 Goals of this Thesis

We use many of the theorems presented in Section 1.2 to better understand the ratio sets
R(A,B) that we examine in Chapter 2 and Chapter 3. However, these theorems are not
powerful enough to completely characterize a specific ratio set, especially when A 6= B.
Consider the odd natural numbers A = {2i+ 1 | i 2 N} ⇢ N. We know that d(A) = 1

2 so
Theorem 7 gives us that R(A) is (R)-dense. Since A is (R)-dense, Theorem 9 tells us that
D(A)  1

2 . However, a brief inspection of R(A) reveals that R(A) \ N = A, which is a
simple but notable result not immediately obvious from the density results.

When presented with sets A,B ✓ N, the main questions we ask in this thesis are:

1. What elements are in R(A,B)?

2. How precisely can we describe the elements of R(A,B)?

3. If an element is in R(A,B), how many ways can they be represented as a/b for a 2 A

and b 2 B?

4. How large is the smallest representation a/b for a given element of R(A,B) and how
e�ciently can we find it?

5. How well can we approximate an r 2 R+ with elements from R(A,B)?

In short, we want to characterize R(A,B) with the most simplified, e�cient, and compre-
hensive description possible. We attack this problem from a computational perspective,
as opposed to the largely mathematical analysis in the literature. The first step towards a
complete description is to attempt to answer the following decision problem:

RECOGNIZABLE RATIO SET MEMBERSHIP
Instance: Two Turing-recognizable sets A,B ✓ N encoded as Turing machines TA and TB

that enumerate A and B respectively, and non-negative rational p/q 2 Q
+.1

Question: Is p/q 2 R(A,B)?

A naive approach to try to answer RECOGNIZABLE RATIO SET MEMBERSHIP is to sys-
tematically generate the entire ratio set by brute force. We can prove that RECOGNIZABLE

1A set is Turing-recognizable if and only if there is a Turing machine that enumerates it [Thm. 3.21
31].
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RATIO SET MEMBERSHIP is Turing-recognizable by enumerating R(A,B). We accomplish
this by simulating TA and TB to get some enumeration of A = {a1, a2, . . .} and B =
{b1, b2, . . .}. Whenever we get a new ai and bi, we continue the enumeration of the se-
quence

c1,1, c1,2, c2,1, c2,2, c1,3, c2,3, c3,1, c3,2, c3,3, . . . , c1,i, c2,i, . . . , ci�1,i, ci,1, ci,2, . . . , ci,i, . . . (1.1)

where ci,j = ai
bj
. We note that this is not necessarily the same as the block sequence,

because the ai and bi are not guaranteed to be enumerated by TA and TB in ascending
order. When enumerating, we skip ci,j if bj = 0 and we also skip any ci,j that as already
appeared previously in the enumeration. This enumerated sequence is precisely R(A,B),
which means that RECOGNIZABLE RATIO SET MEMBERSHIP is Turing-recognizable.

To attempt to decide if a specific p/q 2 R(A,B) one could simulate the enumeration of
(1.1) and check if each entry is equal to p/q. If p/q 2 R(A,B), then p/q appears somewhere
in the enumeration and the algorithm eventually terminates. However, if p/q /2 R(A,B),
then p/q is not in the sequence and this algorithm runs indefinitely. In other words, this
algorithm provides us no way to prove that p/q /2 R(A,B).

Another issue is that enumerating (1.1) to try and answer RECOGNIZABLE RATIO SET
MEMBERSHIP can be extremely ine�cient, even if it does eventually terminate. For example,
consider n = 77 and R(FIB). For this case, we assume that FIB is enumerated in ascending
order for the purposes of computing (1.1). We have that 77 2 R(FIB) since 77 · 133 =
10241 and 133, 10241 2 FIB. We could have come to that result by enumerating (1.1) for
A = B = FIB, but 77 first appears as the 355785th term in the enumeration. We revisit
R(FIB) in greater depth in Section 2.3, but first we make a stronger, though somewhat
obvious, statement about RECOGNIZABLE RATIO SET MEMBERSHIP:

Proposition 11. RECOGNIZABLE RATIO SET MEMBERSHIP is not decidable.

Proof. Assume for the sake of contradiction RECOGNIZABLE RATIO SET MEMBERSHIP is de-
cidable. Let A be a set that is Turing-recognizable but not decidable.2 Clearly, {1} is also
Turing-recognizable. If RECOGNIZABLE RATIO SET MEMBERSHIP was decidable, we would
be able to decide if n/1 = n is contained in R(A, {1}) = A for all n 2 N. If so, A is
decidable, a contradiction.

Since RECOGNIZABLE RATIO SET MEMBERSHIP is generally intractable, this thesis in-
stead examines some restricted versions of the problem. Chapter 2 examines the related,

2Sets with this property do exist [31, Thm. 4.11].
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though still general, decision problem:

REGULAR RATIO SET MEMBERSHIP
Instance: A natural number k 2 N, two sets of natural numbers A,B ✓ N such that hAik
and hBik are regular languages, and non-negative rational p/q 2 Q+.
Question: Is p/q 2 R(A,B)?

We occasionally call a ratio set R(A,B) where A and B satisfy the condition in REGULAR
RATIO SET MEMBERSHIP a regular ratio set. We expect that A and B are encoded as
automata MA and MB such that [L(MA)]k = A and [L(MB)]k = B. Section 2.1 builds
up the decision procedure for REGULAR RATIO SET MEMBERSHIP that is the primary tool
of analysis for the remainder of the results in Chapter 2. Chapter 3 presents several
specialized algorithms built for deciding inclusion in R(A,B) when A and B are sets of
natural numbers that have representations that are palindromes or antipalindromes in a
given base. The language of palindromes and the language of antipalindromes are both
not regular, so they are beyond the scope of the algorithms in Chapter 2. However, the
concepts introduced in Chapter 2 still inform our approach to the more general problems
of Chapter 3.
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Chapter 2

Ratio Sets of Regular Languages

2.1 A Decision Procedure Based on Deterministic Fi-

nite Automata

Our goal in this section is to prove the following result:

Theorem 12. REGULAR RATIO SET MEMBERSHIP is decidable in O(k2(p+ q) · |MA| · |MB|)
time, for the given instance of REGULAR RATIO SET MEMBERSHIP: k 2 N, p/q 2 Q+

, and

A,B ✓ N encoded as automata MA and MB such that [L(MA)]k = A and [L(MB)]k = B.

We decide REGULAR RATIO SET MEMBERSHIP by building an automaton that accepts
the representation ha, bik of all pairs (a, b) where a 2 A, b 2 B, and p/q = a/b for a
given p/q 2 Q

+ and then examining what, if any, inputs are accepted. When we constrain
this general algorithm to a specific problem, we fix a specific k and have a constant-sized
automata description of A and B. This results in the complexity to answer a rational
p/q 2 R(A,B) for a regular ratio set R(A,B) to be O(p + q) time, or in the case of a
natural number n 2 R(A,B), linear time O(n). We begin by building simple automata
that answer parts of REGULAR RATIO SET MEMBERSHIP and then present the full automata
and proof of Theorem 12 in Subsection 2.1.5.

2.1.1 Finite-State Transducers

The first step on the path to deciding REGULAR RATIO SET MEMBERSHIP is to build au-
tomata that can multiply natural numbers. A crucial insight is that n = a/b if and only
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if b · n = a. Hence, we can avoid computing quotients by reinterpreting the problem as
multiplication. In order to build intuition for the more complicated automata later in the
section, we briefly introduce another extension to deterministic finite automata: finite-state
transducers.

Definition 13. A finite-state transducer, or simply a transducer, is a 5-tuple M =
(Q,⌃, �, q0,�,�), where

• Q is a set of states,

• ⌃ is the input alphabet,

• � : Q⇥ ⌃ ! Q is a transition function defined as usual, and

• q0 2 Q is the initial state,

definitions that are identical to Definition 1. Instead of a set of accepting states F , we
have an output alphabet � and an output function � : Q⇥⌃ ! �. Instead of accepting or
rejecting an input x = x0x1 · · · xi, a finite-state transducer produces an output y0y1 · · · yi,
where yj = �(�(q0, x[0..j � 1]), xj). In other words, at each step of the input, a finite-state
transducer adds a symbol to the output in addition to the usual transition. We can draw a
finite-state transducer in a similar transition diagram to a deterministic finite automaton
where we label the transition from q to �(q, �) with �/�(q, �) for the appropriate q 2 Q

and � 2 ⌃. An example of such a drawing is given in Figure 2.1.

Example 14. Let A = {1, 5, 9, 17, 21, 37, 41, 65, 69, 73, . . .} be the odd elements of FIB.
A minor fact is that A = {4n+ 1 | n 2 FIB}. We can build a finite-state transducer to
convert between hFIBi2 and hAi2. Consider the finite-state transducer

M = ({q0, q1, q2, q3} , {0, 1} , �, q0, {0, 1} ,�),

where � and � are given by Table 2.1. The transducer M requires that the input n 2 FIB is
given in least-significant-digit-first binary representation. As well, the output is typically
longer than the input. Take for example converting 4 7! 17, |h4i2| = |100| = 3 but
|h17i2| = |10001| = 5. In fact, all output words are two symbols longer than the input,
so for natural number n we pad the most-significant-digit-first binary representation of n
with two zeroes at the front and then reverse the string so taken together we input to
the transducer (00hni2)R. Returning to the example 4 7! 17, we input into M the word
(00h4i2)R = (00100)R = 00100. The list of states we pass through is

q0 7! q3 7! q3 7! q1 7! q0 7! q3,
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q �(q, 0) �(q, 1) �(q, 0) �(q, 1)
q0 q3 q1 1 1
q1 q0 q2 0 0
q2 q0 q2 1 1
q3 q3 q1 0 0

Table 2.1: Transition table of � and � for the finite-state transducer between FIB and the
odd natural numbers in FIB.

which results in output word

�(q0, 0)�(q3, 0)�(q3, 1)�(q1, 0)�(q0, 0) = 10001 = (10001)R = (h17i2)R.

2.1.2 Multiplication Transducers

Let us examine the calculation 7625·38 using the typical long multiplication algorithm. We
view this calculation as the “input” 7625 to the algorithm “multiplication by 38” resulting
in the “output” 38 · 7625 = 289750. In this case, we call 7625 the multiplicand and 38 the
multiplier. Recall the typical long multiplication algorithm where we view 38 · 7625 as

7 · 103 · 38 + 6 · 102 · 38 + 2 · 101 · 38 + 5 · 100 · 38 (2.1)

We often express Equation (2.1) graphically; we supply such a drawing for 7625 · 38 in
Figure 2.2a. There are four important observations we take from this process:

Observation 15.

1. This algorithm functions identically in other bases. We simply demonstrated the
algorithm in base 10 for the simplicity of explanation.

2. In each step, we use exactly one digit from the input to compute the value we add
to the partial sum.

3. After step n, the n least significant digits of the partial sum are fixed for the remainder
of the algorithm and they correspond to the n least significant digits of the final result.

4. While the final step fixes multiple digits of the final output, we can reinterpret this
as multiple implicit steps where we add 10i · 0 · 38 = 0 to the partial sum and fix a
single additional digit.

18



q0

q2

q3

q1

0/1

1/1

0/0

1/00/1

1/1

0/0

1/0

Figure 2.1: Transition diagram for the finite-state transducer between FIB and the odd
natural numbers in FIB.

We call the component of the partial sum that is not fixed at each step the carry. We
can extend the multiplication algorithm by expressing each step in terms of the carry and
new symbol and by explicitly including the implicit steps described in Observation 15.4.
We call this the extended long multiplication algorithm and we can formally define it as a
series of equations.

Definition 16.

• Let k � 2 be the base wherein we implement the algorithm.

• Let n � 1 be the multiplier.

• Let a = [aiai�1 · · · a0]k and b = [bibi�1 · · · b0]k such that n · b = a. (We typically
assume that the smaller of a or b is padded with zeroes while the longer one starts
with a non-zero character.)

• Let c0, c1, . . . , ci+1 2 N be the carries, where cj is the carry after step j of the
algorithm.
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7 6 2 5
⇥ 3 8

0
+ 1 9 0 (= 100 · 5 · 38)

1 9 0
+ 7 6 0 (= 101 · 2 · 38)

9 5 0
+ 2 2 8 0 0 (= 102 · 6 · 38)

2 3 7 5 0
+ 2 6 6 0 0 0 (= 103 · 7 · 38)
2 8 9 7 5 0

(a) Long multiplication with partial
sums.

0 0 7 6 2 5
⇥ 3 8

0 (first carry, c0)
+ 1 9 0 (= 5 · 38)

1 9 0

1 9 (second carry, c1)
+ 7 6 (= 2 · 38)

9 5

9 (third carry, c2)
+ 2 2 8 (= 6 · 38)

2 3 7

2 3 (fourth carry, c3)
+ 2 6 6 (= 7 · 38)
2 8 9

2 8 (fifth carry, c4)
+ 0 0 (= 0 · 38)
2 8

2 (sixth carry, c5)
+ 0 (= 0 · 38)
0 2

2 8 9 7 5 0

(b) Extended long multiplication algo-
rithm.

Figure 2.2: Long multiplication of 7625 · 38.
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Step j of the extended long multiplication algorithm is the equation

n · bj + cj = cj+1 · k + aj, (2.2)

where 1  j  i. We call Equation (2.2) the carry equation. We note that aj and cj+1 are
defined such that

aj ⌘ n · bj + cj (mod k) (2.3)

and 0  aj  k � 1. We also say that the carry equations starting from c0 and with the
index of cj increasing are the least significant digit carry equations. We sometimes refer
to the unchecked carry equation calculating cj of smallest index j as the least significant

digit carry equation. Similarly, the carry equations starting from ci+1 and with the index
of cj decreasing are the most significant digit carry equations. We sometimes refer to the
unchecked carry equation calculating cj of largest index j as the least significant digit carry
equation. We do not define a specific subset of the carry equations as the most significant
digit or least significant digit carry equations. Instead, we use this terminology to aid
our discussion when we describe verifying the series of equations from a specific direction,
either upwards or downwards in terms of index.

Figure 2.2b presents the extended long multiplication algorithm applied to 7625 · 38
with the carry cj after each step in bold and the new digit aj of the output in italics. To
keep the series of equations general, we include c0 = 0 for the first step and we note that
the last step results in an unused carry ci+1 = 0. The following property of the carries is
important to the construction of our transducers and automata:

Lemma 17. Each carry 0  cj < n for 0  j  i+ 1.

Proof. We prove the lemma by induction on j. By definition we have c0 = 0 so 0  c0 < n,
which forms the base case for our induction.

We then assume for the sake of induction that 0  cj < n. Step j of the extended long
multiplication algorithm is

n · bj + cj = cj+1 · k + aj.
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We can rewrite this as

cj+1 =
n · bj + cj � aj

k

 n · (k � 1) + cj � 0

k

<
n · (k � 1) + n

k

<
n · (k � 1 + 1)

k

<
n · k
k

< n,

as required.

As well, we have that n · bj + cj � 0 so if cj+1 < 0, then aj � (�cj+1) · k � k, which is
a contradiction.

Using the carry equation, we can review what is required during one step of the extended
long multiplication algorithm. We use the carry cj and symbol bj along with the given n

to compute a new carry cj+1 and a single symbol aj. A process that takes as input a single
symbol and uses some constant quantity of saved information to output another single
symbol is a process that can be cleanly modeled with a finite-state transducer. This leads
us to the definition of a multiplication transducer.

Definition 18. Given natural numbers k, n 2 N, the base-k multiplication transducer for
n is a finite-state transducer

M = ({q0, q1, . . . , qn�1} , {0, 1, . . . , k � 1} , �, q0, {0, 1, . . . , k � 1} ,�),

where
�(qi, j) ⌘ j · n+ i (mod k)

and �(qi, j) = qi0 for

i
0 =

j · n+ i� �(qi, j)

k
.

The transducer M implements the extended long multiplication algorithm using � and
� to calculate the carry equation after each input and using the current state to store the
carry after each step. It starts in q0 as the first carry c0 = 0. The function � calculates the
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next output symbol according to Equation (2.3). Using the result from � along with the
input and current carry from the current state, the function � calculates the next carry.

One important note is that since the extended long multiplication algorithm starts from
the least significant digit, the multiplication transducer calculates n·b for b = [b`b`�1 · · · b0]k
by computing b0b1 · · · b` 7! (hn · bik)R. In short, multiplication transducers assume least-
significant-digit-first representation. This b`b`�1 · · · b0 must be suitably padded with zeroes,
as the transducer M outputs exactly as many symbols as it reads. The required padding
is the di↵erence in length between hbik and hn · bik, which is either blogk nc or dlogk ne but
it can depend on b.

Example 19. Figure 2.3 is a base-3 multiplication transducer for n = 5. Take for example,
input b = 19. Our input is (0dlog3 5eh19i3)R = (00201)R = 10200. The list of states we pass
through is

q0 7! q1 7! q0 7! q3 7! q1 7! q0,

which results in output word 21101 = (h95i3)R.

Example 20. Figure 2.1 is a base-2 multiplication transducer for n = 4 but modified
to begin with an implicit carry of 1 since the objective of the transducer is to perform
b 7! 4b+ 1.

Multiplication transducers can be used directly as a tool to analyze some specific ratio
sets. Let k � 2 be a natural number and {d0, d1, . . . , di} ✓ ⌃k. We define the restricted

digit sets

S(k, {d0, d1, . . . , di}) = {n | n 2 N, hnik 2 {d0, d1, . . . , di}⇤} ,
which is the natural numbers that have base-k representation using digits exclusively in
{d0, d1, . . . , di}.

Let A = S(k, {d0, d1, . . . , di}) and B = S(k, {c0, c1, . . . , cj}) be restricted digit sets. Let
Mn be the base-k multiplication transducer for n We can develop a procedure to decide
n 2 R(A,B) by examiningMn. We start withMn and then delete every transition fromMn

where that transition involves reading a symbol that is not in {c0, c1, . . . , cj} or outputting
a symbol that is not in {d0, d1, . . . , di}. Call the resulting transducer M 0

n. Walks through
the new transducer are still valid multiplications, but only a subset of the possible inputs
are permitted. The input natural numbers that are permitted satisfy the requirements of
our restricted digit sets. This means that that n 2 R(A,B) if and only if there is a circuit
q0 7! ... 7! q0 in M

0
n. (We ignore the trivial circuit that is the self-loop q0 7! q0.)

Example 21. Let A = S(3, {0, 1}) and B = S(3, {0, 2}). Consider the question of if
5 2 R(A,B). We can edit the base-3 multiplication transducer for 5 given in Figure 2.3
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q0

q2

q3

q1

q4

0/0

1/2

2/1

0/1

1/0

2/2

0/2

1/1

2/0

0/0
1/2

2/1

0/1

1/0

2/2

Figure 2.3: Base-3 multiplication transducer for 5.
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q0

q2

q3

q1

q4

0/0

2/1

0/1

0/2
2/0

0/0

2/1

0/1

Figure 2.4: Base-3 multiplication transducer for 5 with input restricted to S(3, {0, 2}) and
output restricted to S(3, {0, 1}).

by deleting every transition where we read the symbol 1 or output the symbol 2. The
resulting transducer is given in Figure 2.4. We note that q0 7! q3 7! q1 7! q0 is a valid
walk, which corresponds to [002]3 · 5 = [101]3. This gives us that 5 = 10

2 , 10 2 A, and
2 2 B, so 5 2 R(A,B).

Example 22. Let A = S(3, {0, 1}) and B = S(3, {1, 2}) = N. Consider the question of if
5 2 R(A,B). We can edit the base-3 multiplication transducer for 5 given in Figure 2.3
by deleting every transition where it reads the symbol 0 or outputs the symbol 2. The
resulting transducer is given in Figure 2.5. There is no walk q0 7! · · · 7! q0. Therefore,
5 /2 R(A,B).

Sisneros-Thiry preformed a more detailed analysis of the ratio sets of restricted digit
sets from a purely multiplication transducer approach [32].
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q0

q2

q3

q1

q4

2/1

1/0

1/1

2/0

2/1

1/0

Figure 2.5: Base-3 multiplication transducer for 5 with input restricted to S(3, {1, 2}) and
output restricted to S(3, {0, 1}).

26



2.1.3 Multiplication Automata

We want to expand the analysis of ratio sets to ratio sets of subsets of the natural numbers
that are more complicated than what can be expressed by removing edges from transducers.
Furthermore, we want to make stronger claims about specific solutions (a, b) to n · b = a.
In order to do so, we build automata that emulate the functionality of multiplication
transducers. Multiplication transducers implement the carry equation n·bj+cj = cj+1·k+aj

by first computing aj using bj and cj and then afterwards using aj, bj, and cj to compute
cj+1. The core change moving from transducers to automata is that we must read aj and
bj simultaneously and verify their validity and only afterward computing the next carry.
The (aj, bj) pair is valid for a given cj if

aj ⌘ n · bj + cj (mod k). (2.4)

If Equation (2.4) is satisfied, then the automaton computes cj+1 and includes the transition
to the next state. If Equation (2.4) is not satisfied, then the automaton does not include
the transition with the (aj, bj) pair.

In order to do the checks on (aj, bj) pairs, we need to define some method of encoding
a and b so that the correct pairs are read by the automaton at the correct time.

Definition 23. We define an encoding ha, bik 2 (⌃k ⇥ ⌃k)⇤.

• Let haik = aiai�1 · · · a0 and hbik = bjbj�1 · · · b0.

• Let m = max {i, j}.

• Let a` = 0 for i < `  m and b` = 0 for j < `  m.

Then
ha, bik = (am, bm)(am�1, bm�1) · · · (a0, b0),

where (a`, b`) 2 (⌃k ⇥ ⌃k). Note that this encoding is analogous to most-significant-digit-
first representation, as the first symbol (am, bm) contains the most significant digit of a or
b. If am is the most significant digit of a, then the remaining symbol bm is either the most
significant digit of b or a zero padded in front of the most significant digit. Similarly, if bm
is the most significant digit of b, then am may be a zero padded before the most significant
digit of a. In either case, at least one of am and bm is non-zero.

We can build an automaton for n 2 N that is nearly identical to the base-k multiplica-
tion transducer for n that can accept (ha, bik)R where b · n = a.
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Definition 24. Given natural numbers k, n 2 N, the base-k least-significant-digit-first

multiplication automaton for n is an automaton

M = ({q0, q1, . . . , qn�1} , {0, 1, . . . , k � 1}⇥ {0, 1, . . . , k � 1} , �, q0, {q0}),

where �(qi, (ja, jb)) = qi0 for

i
0 =

n · jb + i� ja

k

if and only if
ja ⌘ n · jb + i (mod k).

Otherwise, �(qi, (ja, jb)) is undefined. We reject any input that leads to an undefined delta.

Example 25. Figure 2.6 is a base-3 least-significant-digit-first multiplication automaton
for n = 5. It is essentially identical to Figure 2.3 except for the edge labels. One accepted
input is

(2, 1)(1, 0)(1, 2)(0, 0)(1, 0) = ((1, 0)(0, 0)(1, 2)(1, 0)(2, 1))R = (h95, 19i3)R.

The list of states we pass through in evaluating (h95, 19i3)R is

q0 7! q1 7! q0 7! q3 7! q1 7! q0,

which is identical to the input b = 19 in Example 19.

The definition of base-k least-significant-digit-first multiplication automata is useful
for understanding the automata constructed for non-regular ratio sets in Chapter 3. We
could use these automata as the basis for our solution to REGULAR RATIO SET MEMBERSHIP
though one deficiency still present is that the input must still be given as least-significant-
digit-first representations. This is because in this case, the extended long multiplication
algorithm is evaluated from least significant digit to most significant digit. If the input
were most-significant-digit-first, then a simple breath-first-search of the automata for the
accepting state would find the smallest pair of natural numbers proving that the original n
is in the ratio set. In order to accomplish this, we reformulate the carry equation to allow
us to use cj+1 to find cj.

Definition 26. Given natural numbers k, n 2 N, the base-k most-significant-digit-first

multiplication automaton for n is an automaton

M = ({q0, q1, . . . , qn�1} , {0, 1, . . . , k � 1}⇥ {0, 1, . . . , k � 1} , �, q0, {q0}),
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(1,0)
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Figure 2.6: Base-3 least-significant-digit-first multiplication automaton for 5.
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where �(qi, (ja, jb)) = qi0 for
i
0 = i · k + ja � n · jb

if and only if 0  i
0  n � 1. Otherwise, �(qi, (ja, jb)) is undefined. We reject any input

that leads to an undefined delta.

Example 27. Figure 2.7 is a base-3 least-significant-digit-first multiplication automaton
for n = 5. It is essentially identical to Figure 2.6 except for each transition being reversed.
One accepted input is

(1, 0)(0, 0)(1, 2)(1, 0)(2, 1) = h95, 19i3.

The list of states we pass through in evaluating h95, 19i3 is

q0 7! q1 7! q3 7! q0 7! q1 7! q0,

which is the reverse of the list for the input (h95, 19i3)R in Example 19.

We reject when i
0
< 0 or i

0 � n. While we are verifying the extended long multipli-
cation algorithm in reverse, if we were to verify a multiplication as usual from the least
significant digit onwards, then the carries are not smaller than zero or larger than our
initial n. Therefore, we can enforce those constraints on the carry and keep the automaton
description finite. We can also run a breadth first search starting from q0 searching for q0,
ignoring the (0, 0) loop, to get the smallest representation. In Example 27, we can find
that the shortest path is (1, 0)(2, 1) = h5, 1i3. This automaton is what we use as the basis
for the more complicated alterations.

2.1.4 Extension to Rational Numbers

Before integrating the verification of inclusion in a regular language into our multiplication
automata, we generalize the carry equations to rationals so we can verify p/q = a/b and
determine if a rational is included in a regular ratio set. To do so, we need to further gen-
eralize our understanding of the extended long multiplication algorithm to find automata
that implement multiplication for rational numbers. This is because a naive replacement of
the multiplier in the extended long multiplication algorithm with a rational quickly violates
the properties of the algorithm that we require. Figure 2.8 is the long multiplication of
147 · 38/3 using (38/3) as the multiplier, which demonstrates how the long multiplication
algorithm may not calculate increasing large factors of the output when the multiplier is
a rational.
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q2

q3
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q4

(0,0)

(2,1)

(1,2)

(1,0)
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Figure 2.7: Base-3 most-significant-digit-first multiplication automaton for 5.

1 4 7
⇥ 1 2 . 6 6 · · ·

0
+ 8 8 . 6 6 · · · (= 100 · 7 · 38/3)

8 8 . 6 6 · · ·
+ 50 6 . 6 6 · · · (= 101 · 4 · 38/3)

5 9 5 . 3 3 · · ·
+12 6 6 . 6 6 · · · (= 102 · 1 · 38/3)
1 8 6 2

Figure 2.8: Naive rational long multiplication with partial sums.
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The machines we defined so far check the multiplication b ·n = a, because that equality
holds if and only if n = a/b. Analogously, the equality b · p = a · q holds if and only if
p/q = a/b. The key insight is that we can simultaneously check b · p = m and a · q = m for
some m 2 N, with each equation using their own set of carry equations and carries. We can
accomplish this without knowing m. We only need to check that b ·p and a ·q agree on each
digit. However, we end up with add more ambiguity with this type of automaton. This
is because the process does not calculate an a for a given b, only verifies that a pair (a, b)
is valid. For each previous automaton and transducer, at each step there was a unique aj

for each bj such that (aj, bj) lead to a valid state. This property does not persist in the
automata we build for checking inclusion of rationals in a regular ratio set.

Definition 28. We extend the carry equations to rational numbers:

• Let k 2 N,

• let p/q 2 Q+,

• let a = [aiai�1 · · · a0]k,

• let b = [bibi�1 · · · b0]k, and

• let ca,0, ca,1, . . . , ca,i+1, cb,0, cb,1, . . . , cb,i+1 2 N be two sets of carries.

Step j begins by asserting that b · p and a · q agree on the next digit, which means that

p · bj + cb,j ⌘ q · aj + ca,j (mod k).

If they do agree, then we define that digit as 0  mj  k � 1 and we can determine the
carries

cb,j+1 =
p · bj + cb,j �mj

k

and

ca,j+1 =
q · aj + ca,j �mj

k

with the usual carry equation for each carry. We can unify the two sets of carries into one
set that relates to both a and b. Let cj = cb,j � ca,j. We can compute cj+1 as

cj+1 = cb,j+1 � ca,j+1

cj+1 =
p · bj + cb,j �mj

k
� q · aj + ca,j �mj

k

k · cj+1 = p · bj + cb,j �mj � q · aj � ca,j +mj

k · cj+1 = p · bj � q · aj + (cb,j � ca,j) + (mj �mj)

k · cj+1 = p · bj � q · aj + cj. (2.5)
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We call Equation 2.5 the rational carry equation.

Corollary 29. Each carry �q < cj < p for 0  j  i+ 1.

Proof. Lemma 17 gives us that 0  ca,j < q and 0  cb,j < p. Therefore, the carry
cj = cb,j � ca,j is less than p� 0 = p. Similarly, the carry cj is greater than 0� q = �q.

Since the rational carry equation is just simplification of two di↵erent sets of carry
equations merged together, it retains the property that one more digit is verified after
each step. This resolves the concerns raised by the naive attempt to modify the extended
long multiplication algorithm. However, the rational carry equation is di�cult to display
graphically in an analogous method to the extended long multiplication algorithm. Simi-
larly to the carry equations, the rational carry equations give the desired result b · p = a · q
if each equation is valid and c0 = cj+1 = 0. We can incorporate this new system into a new
set of automata. We could create most-significant-digit-first automata or least-significant-
digit-first automata with the rational carry equations analogously to the multiplication
automata, but we only present most-significant-digit-first automata here, as all of the re-
maining results on regular ratio sets are based o↵ of most-significant-digit-first automata.

Definition 30. Given natural number k 2 N and rational p/q 2 Q
+, the base-k most-

significant-digit-first multiplication automaton for p/q is an automaton

M = ({q�q+1, q�q+2, . . . , q�1, q0, q1, . . . , qp�1} , {0, 1, . . . , k � 1}⇥{0, 1, . . . , k � 1} , �, q0, {q0}),

where �(qi, (ja, jb)) = qi0 for
i
0 = i · k + q · ja � p · jb

if and only if �q + 1  i
0  p � 1. Otherwise, �(qi, (ja, jb)) is undefined. We reject any

input that leads to an undefined delta.

This new construction remains general to natural numbers, as n = n/1 is a valid rational
and the automaton constructed for n/1 simply checks b · n = a · 1 = a.

Example 31. Figure 2.9 is the base-2 most-significant-digit-first multiplication automata
for 2/3. One accepted input is

(0, 1)(1, 0)(1, 1)(1, 0)(0, 1) = h14, 21i2.

Another notable property of this automata is that q0 and q�1 both have 3 transitions out
of them, an example of the case where there is not a unique factor ajaj�1 · · · a0 for a given
partial input bjbj�1 · · · b0.
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q0 q1

q�2 q�1

(0,0)

(0,1)

(1,1)
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(1,1)
(1,0)

Figure 2.9: Base-2 most-significant-digit-first multiplication automaton for 2/3.

2.1.5 Restricting to a Regular Language

We return to the core decision problem of this chapter, REGULAR RATIO SET MEMBERSHIP.
We assume that when given an instance of REGULAR RATIO SET MEMBERSHIP, we are also
given automata MA and MB that accept words that are base-k representations of natural
numbers in A and B respectively. We can assume without loss of generality that MA and
MB also accept representations that are padded with zeroes. This is important, as the
encoded input ha, bik typically includes one of haik or hbik being padded with zeroes up to
the length of the other. We can determine if p/q 2 R(A,B) by combining the base-k most-
significant-digit-first multiplication automaton for p/q with MA and MB. We essentially
apply the typical algorithm that builds an automaton to accept the intersection of two
regular languages based on the automata that accept them. The main di↵erence with our
constructed automata is that we move through MA based on the first element of every
(aj, bj) pair and move through MB with the second element.

Definition 32.

• Given natural number k 2 N,

• sets A,B ✓ N,

• deterministic finite automaton MA = (QA,⌃k, �A, qA,0, FA) where [L(MA)]k = A,
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• deterministic finite automaton MB = (QB,⌃k, �B, qB,0, FB) where [L(MB)]k = B,
and

• rational p/q 2 Q
+,

the base-k R(A,B) automaton for p/q, M(k,R(A,B), p/q), is an automaton

M(k,R(A,B), p/q) = (Q,⌃, �, (q0, qA,0, qB,0), F ),

where

• Q = {q�q+1, q�q+2, . . . , qp�1}⇥QA ⇥QB,

• ⌃ = ⌃k ⇥ ⌃k, and

• F = {q0}⇥ FA ⇥ FB.

We define � as

�((qi, qA,↵, qB,�), (ja, jb)) = (qi0 , �A(qA,↵, ja), �B(qB,�, jb)),

for
i
0 = i · k + q · ja � p · jb

if and only if �q + 1  i
0  p � 1, �A(qA,↵, ja) is defined, and �B(qB,�, jb)) is defined.

Otherwise, �(qi, (ja, jb)) is undefined. We reject any input that leads to an undefined delta.

A word ha, bik is accepted by M(k,R(A,B), p/q) if and only if each of the primitive
automata, the base-k most-significant-digit-first multiplication automaton for p/q, MA,
and MB, all accept their part of the input. This occurs exactly when a/b = p/q, MA

accepts a, and MB accepts b. In this case, we have found a 2 A and b 2 B such that
a/b = p/q. Therefore, p/q 2 R(A,B) if and only if M(k,R(A,B), p/q) has some accepting
path.

The automata M(k,R(A,B), p/q) has (p + q � 1) · |MA| · |MB| states. Each state has
at most k

2 transitions out of it. Therefore, we can perform a breadth first search on
M(k,R(A,B), p/q) in

O(k2(p+ q � 1) · |MA| · |MB|+ (p+ q � 1) · |MA| · |MB|) = O(k2(p+ q) · |MA| · |MB|)
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Set Ak,1 First terms d(Ak,1) OEIS number
A3,1 {1, 3, 4, 5, 9, 10, 11, 12, 13, 14, . . .} 1/2 A132141
A4,1 {1, 4, 5, 6, 7, 16, 17, 18, 19, 20, . . .} 1/3 A053738
A5,1 {1, 5, 6, 7, 8, 9, 25, 26, 27, 28, . . .} 1/4 Not in OEIS
A6,1 {1, 6, 7, 8, 9, 10, 11, 36, 37, 38, . . .} 1/5 Not in OEIS

Table 2.2: Sets of natural numbers whose base-k representations start with 1.

time. This breadth first search of M(k,R(A,B), p/q) is a decision algorithm for REGULAR
RATIO SET MEMBERSHIP. Notably, this breadth first search also finds the smallest a and b

such that ha, bik is accepted.

This algorithm serves as a proof for Theorem 12 from the beginning of this chapter.
The given worst-case time complexity O(k2(p+ q) · |MA| · |MB|) is achievable using a two-
dimensional array of size k

2 ⇥ (p+ q � 1) · |MA| · |MB| to store the transition table of the
constructed automata and then searching through the table with a breadth first search.
However, in practice this approach is ine�cient and extremely memory intensive. I have
implemented this algorithm in the programming language Python and used it to compute
all of the results in the rest of this chapter. The automata constructed by my Python
program is stored in a Python dictionary, which is itself implemented by a hash table.
This implementation gives the algorithm an asymptotically slower worst-case time bound.
In practice, the code runs faster, uses significantly less memory, and becomes significantly
easier to analyze and store. The algorithm and all computed results can be found on
GitHub.

2.2 Representations Starting with One

We begin our explorations of specific ratio sets with a simple problem previously examined
by Brown et al. [4]. Let Ak,i = {n | n 2 N, hnik[0] = i} be the set of natural numbers
whose base-k representations start with the digit i. In this section we are exploring sets
Ak,1 for k � 3. Table 2.2 contains examples of the first few sets Ak,1. Brown et al. prove
the following theorem:

Theorem 33. The set Ak,1 is (R)-dense for k = 2, 3, 4 but not for k � 5.

The sets A2,1 = N and A3,1 are (R)-dense, due to Theorem 7 regarding the relationship
between (R)-density and asymptotic density. However, determining if Ak,1 is (R)-dense for
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q0 q1

0

1

0, 1, . . . , k � 1

Figure 2.10: Automata that recognizes Ak,1.

k � 4 is more complicated. We add to the understanding of R(Ak,1) by using our REGULAR
RATIO SET MEMBERSHIP algorithm to compute a portion of N\R(Ak,1) for k � 3. We use
that data to lead us to a more general result and subsequently our own proof of Theorem
33. All the raw data discussed in this subsection and the code used to generate it is
available on GitHub. We examine the data extensively in this subsection in order explore
the various ways the REGULAR RATIO SET MEMBERSHIP algorithm can be used to lead us
to useful results.

Figure 2.10 is an automaton that accepts strings that begin with the digit 1, potentially
padded with zeroes. This automaton serves as the encoding for Ak,1 that we incorporate
into the multiplication automata.

Example 34. Figure 2.11 depicts the automaton M(3, R(A3,1), 5) that accepts ha, bi3 such
that a/b = 5 and a, b 2 A3,1. (To simplify the drawing, the transition diagram in Figure
2.11 only includes accepting states and states that can lead to an accepting state.) Since
the automaton in Figure 2.10 has q1 as its only accepting state, the only accepting state
in Figure 2.11 is (0, 1, 1). It is not surprising that there is an accepting path, as h5, 1i3 is
accepted since h5i3 = 12. However, using automata has the advantage of allowing us to
easily extract various properties of the valid solutions ha, bi3. For example, we can deduce
that [12202(1022)i]3 and [01011(0021)i]3 is a valid a and b pair for each i � 0. Similarly,
since [1221i001]3 and [0101i102]3 is a valid a and b pair for each i � 0, we have a pair of
solutions that each contain precisely n ones for each n � 2.

While examination of all the pairs ha, bik such that n = a/b, a 2 A, and b 2 B for some
ratio set R(A,B) is interesting, the typical first step along to path of understanding a ratio
set is to simply examine many n and attempting to deduce a pattern. We consider the
question of if natural number n 2 R(Ak,1) for k = 3, 4, 5, 6 up to approximately n = 50000.
Table 2.3 contains the first few elements n where the REGULAR RATIO SET MEMBERSHIP
algorithm tells us that n is not an element of the ratio set. We note that every examined
n  59048 = 310 � 1 was an element of A3,1. The data suggests that the natural numbers
n 2 N that are not an element of R(A4,1) are of the form 2 · 4i for i � 0. However, the
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Figure 2.11: Automaton M(3, R(A3,1), 5).
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Ak,1 First natural numbers n < 50000 not an element of R(Ak,1)
A3,1 {}
A4,1 {2, 8, 32, 128, 512, 2048, 8192, 32768}
A5,1 {2, 10, 11, 12, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 250, 251, 252, . . .}
A6,1 {2, 3, 12, 13, 14, 15, 16, 17, 18, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, . . .}

Table 2.3: First natural numbers n < 50000 not an element of R(Ak,1).

R(A4,1) R(A5,1) R(A6,1)
n a(n) b(n) n a(n) b(n) n a(n) b(n)

1 1 1 1 1 1 1 1 1
3 18 6 3 27 9 4 36 9
9 261 29 13 637 49 19 1311 69
33 4125 125 63 15687 249 109 46761 429
129 65661 509 313 390937 1249 649 1680261 2589
513 1049085 2045 1563 9767187 6249 3889 60470061 15549
2049 16779261 8189 7813 244148437 31249 23329 2176805661 93309

Table 2.4: Natural numbers n 2 R(Ak,1) such that b(n) > b(n0) for each n
0
< n.

data is more complicated for A5,1 and A6,1 so we examine some related properties to try
and gain further insight.

Another interesting metric is the n such that b(n) is larger than b(n0) for all n0
< n.

These are the “worst cases” for trying to upper bound the size of the smallest representation
n = a/b. We examine these n for R(A4,1), R(A5,1), R(A6,1) in Table 2.4. We omit R(A3,1)
but note that every n examined had smallest b 2 {1, 4, 5}. A notable observation from
these tables is that the worst case n are always slightly more than 1

2 · k
i for some i 2 N.

Furthermore, the b(n) for the worst cases n seem to be consistently slightly less than 2 · ki.

Drawing a parallel between Table 2.3 and Table 2.4, it appears that the worst cases
seem to occur directly after a run of natural numbers that are not elements of R(Ak,1).
In this case, we can reformulate Table 2.3 by specifically examining the runs of natural
numbers not in the ratio set. This leads us to Table 2.5, which contains the size and
starting index of runs of natural numbers that are not elements of R(Ak,1). Each of the
runs begins at 2 · ki and ends at

⌅
k
2 · k

i
⇧
for some i 2 N. We also include Table 2.6, which

contains every run of consecutive n 2 N that have the same b(n) for R(A6,1). (We denote
the case where there is no accepted b with b(n) = �1.) We observe that each b(n) is of
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R(A4,1) R(A5,1) R(A6,1)
Size of gap Starting n Size of gap Starting n Size of gap Starting n

1 2 1 2 2 2
1 8 3 10 7 12
1 32 13 50 37 72
1 128 63 250 217 432
1 512 313 1250 1297 2592
1 2048 1563 6250 7777 15552

Table 2.5: Gaps in N \R(Ak,1).

the form 2 · 6k � i for i 2 {1, 2, . . . , 5}. Informed by the intervals and patterns presented
in these tables, we come to the following theorem:

Theorem 35. Let k � 4.

N \R(Ak,1) = (N \ {0}) \
1[

i=1

[2 · ki
,
k

2
· ki].

Furthermore, if n 2 N \R(Ak,1), then there exists a, b 2 Ak,1 such that n = a/b and b = 1
or b = 2 · ki � � for � 2 {1, 2, . . . , k � 1} and i � 1.

Proof. We begin by dividing each interval [ki
, k

i+1) into several disjoint intervals.

⇥
k
i
, k

i+1
�
=
⇥
k
i
, 2 · ki

�
[

2 · ki

,
k

2
· ki

�
[

1[

j=1

(
k�1[

`=1


k
j+1

2 · kj � `
· ki

,
k
j+1

2 · kj � (`+ 1)
· ki

◆)

We consider the natural numbers in each interval separately.

The natural numbers n 2 [ki
, 2 · ki)\N are the natural numbers with base-k represen-

tations that start with 1. These are clearly in R(Ak,1), as n = n
1 and n, 1 2 Ak,1.

The natural numbers n 2 [2 · ki
,
k
2 · k

i] \ N are not in R(Ak,1). If there was such an n,
we would have that n = a

b for some a, b 2 Ak,1 but

a = n · b 2

2 · ki · ki0

,
k

2
· ki · 2 · ki0

◆
=
h
2 · ki+i0

, k
i+i0+1

⌘

since b 2 [ki0
, 2 · ki0) for some i0 2 N. Therefore, the base-k representation of a begins with

a symbol other than 1 so a /2 Ak,1, which is a contradiction.
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Size of run b(n) Starting n

1 1 1
2 �1 2
1 9 4
1 8 5
6 1 6
7 �1 12
1 69 19
2 11 20
2 10 22
3 9 24
4 8 27
5 7 31
36 1 36
37 �1 72
1 429 109
2 71 110
1 70 112
2 69 113
2 68 115
1 67 117
12 11 118
14 10 130
18 9 144
24 8 162
30 7 186
216 1 216
217 �1 432
1 2589 649
2 431 650
1 430 652
2 429 653
1 428 655
2 427 656
9 71 658

Table 2.6: Runs of n 2 R(A6,1) that have the same b(n).

41



Lastly, we consider intervals
h

kj+1

2·kj�` · k
i
,

kj+1

2·kj�(`+1) · k
i
⌘
for i � 1, j � 1, ` 2 {1, 2, . . . , k�

1}. We fix a specific i, j, ` and consider the natural numbers n in that range. We consider
n multiplied by 2 · kj � ` and observe that

n · (2 · kj � `) 2


k
j+1

2 · kj � `
· ki · (2 · kj � `),

k
j+1

2 · kj � (`+ 1)
· ki · (2 · kj � `)

◆

2

k
i+j+1

,
(2 · kj � `)

2 · kj � (`+ 1)
· ki+j+1

◆
✓ [ki+j+1

, 2 · ki+j+1).

This gives us that n = n·(2·kj�`)
2·kj�` , where n · (2 · kj � `), (2 · kj � `) 2 Ak,1.

Furthermore, we get the following corollary:

Corollary 36. Let k � 4. For each real number

r 2 R+ \
1[

j=�1

(2 · kj
,
k

2
· kj) = R

0

and ✏ > 0 there exists p/q 2 R(Ak,1) such that |r � p/q| < ✏.

Proof. Choose i such that k�i+1
< ✏. Let r0 = br · kic. We note that

��r � r0

ki

�� < ✏
k .

If r0 = 0 then 0 < r < k
�i

< ✏. We have that k
�i 2 R(Ak,1), as 1, ki 2 Ak,1 and

k
�i = 1/ki. We then observe that |r � k

�i| < ✏, as required. Therefore, we can assume
without loss of generality that r0 > 0.

Given our restriction on r, we get that r0 is a natural number such that

r
0 2 N \

1[

j=�1

(2 · kj · ki
,
k

2
· kj · ki).

Therefore, either r0 = p/q for some p, q 2 Ak,1, r0 = 2 · k` for some ` 2 N, or r0 = k
2 · k

` for
some ` 2 N.

If r0 = p/q for some p, q 2 Ak,1, then

r
0

ki
=

p

q · ki
2 R(Ak,1)
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since q · ki 2 Ak,i if and only if q 2 Ak,i. In this case, we get that
����r �

p

q · ki

���� < ✏

as desired.

If r0 = 2 · k`, then r = 2 · k`�i since 2 · k`�i +m /2 R
0 for 0 < m < k

�i. We have that
[1(k � 1)`]k 2 Ak,1 and

r � [1(k � 1)`]k
ki

=
2 · k`

ki
� [1(k � 1)`]k

ki

=
2 · k` � [1(k � 1)`]k

ki

=
1

ki
= k

�i
< ✏.

If r
0 = k

2 · k` for some ` 2 N, then r = k
2 · k`�i + m for m  ✏

k . We have that

[1(k � 1)`+1]k 2 Ak,1. Let s =
k`+1

[1(k�1)`+1]k
2 R(Ak,1). Then

s� (r �m) =
k
`+1

[1(k � 1)`+1]k
� k

`+1

2 · ki

=
2 · ki · k`+1

2 · ki · [1(k � 1)`+1]k
� [1(k � 1)`+1]k · k`+1

2 · ki · [1(k � 1)`+1]k

=
(2 · ki � [1(k � 1)`+1]k) · k`+1

2 · ki · [1(k � 1)`+1]k

=
1 · k`+1

2 · ki · [1(k � 1)`+1]k

<
k
`+1

2 · ki · 2 · k`+1

<
k
`+1

4 · ki+`+1

<
k
`+1�i�`�1

4

<
k
�i

4

< k
�i

<
✏

k
.

Therefore, |r � s| < 2✏
k < ✏, as required.
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Corollary 36 shows that R(A4,1) is (R)-dense since (2 · 4i, 42 · 4
i) = ;. Similarly, it shows

that R(Ak,1) is not (R)-dense for k � 5 since (2 · ki
,
k
2 · k

i) 6= ;. This is our generalization
of Theorem 33.

2.3 Fibbinary Numbers

We now return to the analysis of Fibbinary numbers FIB = {0, 1, 2, 4, 5, 8, 9, 10, 16, 17, . . .},
which form sequence A003714 in the OEIS. We have already shown that hFIBi2 is regular,
so the ratio sets R(FIB,N) and R(FIB) are tractable for analysis with our REGULAR RATIO
SET MEMBERSHIP algorithm.

Example 37. To buildM(2, R(FIB,N), p/q), we need an automaton that recognizes hFIBi2
and hN \ {0}i2. We have already seen Figure 1.1, which is an automaton that recognizes
hFIBi2. We use that automaton except that we omit q3 so that transitions that lead to
q3 are implicit failures. This slightly simplifies M(2, R(FIB,N), p/q). We also note that
hN\{0}i2 is accepted by the automaton in Figure 2.10 when we set k = 2. These are all we
need for M(2, R(FIB,N), p/q). We give an example of such a construction in Figure 2.12,
which is the automaton M(2, R(FIB,N), 3). By examining the transition diagram, we can
easily conclude that b(3) = 3.

Example 38. Figure 2.13 is the transition diagram of the automaton M(2, R(FIB), 5)
restricted to states that could lead to an accepting state. The full automaton has 11
states. By examining the automaton, we find that every a and b such that a, b 2 FIB and
a/b = 5 are of the form hai2 = 101(00⇤101)⇤0⇤ and hbi2 = 001(00⇤001)⇤0⇤.

Before we examine the ratio sets, we present a few facts about Fibbinary numbers and
their ratio sets:

Observation 39.

1. The Fibbinary numbers

FIB ✓
1[

i=0


2i,

4

3
· 2i
◆
.

2. Given Item 1, we get that

R(FIB) ✓
1[

i=0

✓
3

4
· 2i, 4

3
· 2i
◆
.
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(0, 0, 0) (1, 1, 0)

(2, 2, 0) (1, 2, 1)

(2, 1, 1) (2, 2, 1) (1, 1, 1)

(0, 2, 1)(0, 1, 1)

(0, 0)

(1, 0)

(0, 0)

(0, 0)

(1, 0)(0, 0)

(0, 0)

(0, 0)

(1, 1)

(0, 1)

(0, 1)

(1, 1) (0, 1)

(1, 1)

Figure 2.12: Automaton M(2, R(FIB,N), 3).

(0, 0, 0)

(1, 1, 0) (2, 2, 0) (0, 1, 1) (0, 2, 2)

(1, 1, 2)(2, 2, 2)

(0, 0)

(1, 0)

(0, 0)
(0, 0)

(1, 0)

(0, 0)

(0, 0)

(1, 1)

(1, 1)

Figure 2.13: Automaton M(2, R(FIB), 5).
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3. A natural number n 2 N has the property n 2 R(FIB) if and only if 2n 2 R(FIB).

4. For n 2 N, if n ⌘ 3 (mod 4), then n /2 R(FIB).

Observation 39.1 shows that FIB has many gaps in the natural numbers, which limits the
e↵ectiveness of the (R)-density theorems presented in Section 1.2. However, Observation
39.3 is useful, as it means we only need to characterize the odd natural numbers in R(FIB)
to understand all the natural numbers in R(FIB).

All the raw data discussed in this section and the code used to generate it is available on
GitHub. Before we examine R(FIB), we briefly note that the data computed for R(FIB,N)
suggests the following conjecture:

Conjecture 40. For all n 2 N, we have that n 2 R(FIB,N).

The data for R(FIB) was more complicated and included many natural numbers n

where n /2 R(FIB). However, those natural numbers followed a particular pattern and led
to the following conjecture:

Conjecture 41. Every natural number in the ratio set R(FIB) has a base-2 representation
of one of the following forms:

1. 10⇤

2. 11(0, 1)⇤010⇤

3. 10(0, 1)⇤010⇤ where the factor 11 does not appear before the factor 100 reading left
to right.

This is exactly every natural number n in the interval

1[

i=0

✓
3

4
· 2i, 4

3
· 2i
◆

except for natural numbers n = 2j ·m for m ⌘ 3 (mod 4).

Upon hearing this conjecture, Kevin Hare suggested an algorithm that approximates
real numbers

r 2
1[

i=�1

✓
3

4
· 2i, 4

3
· 2i
◆

with elements of R(FIB) [15]. We use that algorithm to prove the following theorem:
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Theorem 42. For each natural number

n 2 N \
1[

j=0

✓
3

4
· 2j, 4

3
· 2j
◆

and positive real number ✏ > 0, there exists a/b 2 R(FIB) such that |n� a/b| < ✏.

Proof. Let

n 2 N \
1[

j=0

✓
3

4
· 2j, 4

3
· 2j
◆

be the natural number we want to approximate. Define an f -prefix x of a natural number
a 2 N as a prefix x = hai2[0..(` � 1)] of hai2 with associated word y, such that either
x = y001⇤ or x = y for some [y]2 2 FIB, or x = 1⇤, in which case we define y = ✏.

We build a sequence
a1

b1
,
a2

b2
, . . . ,

ai

bi
, . . . (2.6)

such that ai/bi = n, bi+1 > bi, bi 2 FIB, and ai has longest f -prefix xi such that |haii2| �
|xi|  |hni2|. We can use ai/bi to get an approximation a

0
i/bi 2 R(FIB) to n of arbitrary

precision. Assume Sequence (2.6) exists. Let xi be the longest f -prefix of ai with associated
word yi.

If xi = yi, then xi = yi = haii2 and we have found an exact solution. Otherwise, we
would have that xia[|xi|] is a longer f -prefix of a. In the case that xi = yi, we have that
ai/bi = n 2 R(FIB) and |n� ai/bi| = 0 < ✏ for any ✏ > 0.

So instead, assume that xi = y001⇤ or xi = 1⇤. In either case, we have ai = xizi for
some zi 2 ⌃⇤

2 such that |zi|  |hni2|. As well, we have that [xi]2 + 1 2 FIB in either case,
since adding 1 removes the 1⇤ su�x of xi and the zeroes in front of the 1⇤ su�x ensures
that the addition does create a new set of repeated 1 symbols. Let a0i = ([xi]2 + 1) · 2|zi|.
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We get that
����n� a

0
i

bi

���� =
����
ai

bi
� a

0
i

bi

����

=

����
ai � a

0
i

bi

����

=

����
([xi]2 · 2|zi| + [zi]2)� (([xi]2 + 1) · 2|zi|)

bi

����

=

����
[zi]2 � 2|zi|

bi

����

 2|zi|

bi

 2|hni2|

bi
.

However, we know that 2|hni2| is constant, whereas bi ! 1 as i ! 1. Therefore, we have

that
���n� a0i

bi

���! 0 as i ! 1 and can find an approximation for any ✏ > 0.

All that remains is to prove that Sequence (2.6) exists in all cases. We compute a
sequence ai and bi iteratively, beginning with a1 = n and b1 = 1. At each step, we choose a
natural numbermi 2 N, and then usemi to compute ai+1 = ai·2mi+n and bi+1 = bi·2mi+1.
Clearly this generates a sequence ai/bi with the property that bi · n = ai. The properties
bi+1 > bi and bi 2 FIB both hold for the sequence we compute as long as mi � 2 for all i.

To aid our proof, we reframe our understanding of the mi through a visual aid:

1 1 1 0 0 1 0 0 0 (a1 · 23)
+ 1 1 1 0 0 1 (n)
1 0 0 0 0 0 0 0 0 1 0 0 0 0 (a2 · 24)

+ 1 1 1 0 0 1 (n)
1 0 0 0 0 0 0 1 0 0 1 0 0 1 (a3)
↵ � �

Figure 2.14: The calculation ([111001]2 · 23 + [111001]2) · 24 + [111001]2.

We can view the operation ai 7! ai · 2mi + n as adding n to ai with the leading digit of
n at a specific index. We can then simply track the changes to bi and otherwise ignore it,
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instead focusing on where precisely we add n to ai. Under this interpretation, the chosen
mi at each step is the di↵erence between the indices where we add the leading digit of
n in step i � 1 and i. For example, Figure 2.14 depicts a few iterations of the algorithm
with n = [111001]2, a1 = [111001]2, b1 = 1, m1 = 3, m2 = 4. We view the index of the
↵ column as the index of the leading digit of n added into ai for an implicit step 0. We
observe that m1 is the di↵erence in index between the � column and ↵ column and that
m2 is the di↵erence in index between the � column and � column. Therefore, we proceed
by describing where the algorithm adds n to ai at each step and the di↵erence between
that index and where n is added in the next step. If this is always at least two symbols
later, then we have that mi  2 for all i.

Additionally, we must verify that the factor of each ai not contained in its longest f -
prefix xi has length at most |hni2|. When we add n into ai, we always have some symbols
of n that trail past the least significant digit of ai. Therefore, if the f -prefix xi+1 of ai+1

includes symbols up until the index of the leading digit of the n that we add, then the
number of symbols of hai+1i2 not included in the f -prefix xi+1 must be less than the length
of hni2. This is the property we desire, so we show for each case that the f -prefix is
extended past where we add in n.

We now analyze the two broad cases of n. We know that

n 2 N \
1[

j=0

✓
3

4
· 2j, 4

3
· 2j
◆
.

If

n 2
✓
3

4
· 2j, 2j

◆

for some j, then hni2 = 11z for some z 2 ⌃⇤
2. We refer to this as the (11) case. We note

that in this case, we have that n itself has an f -prefix of length at least 2. This ensures
that our required properties are satisfied for i = 1. Otherwise, we have that

n 2

2j,

4

3
· 2j
◆

for some j. In this case, our natural number n has binary representation hni2 = 10z for
some z 2 ⌃⇤

2 with the restriction that the factor 11 does not appear before the factor 100
when reading hni2 left to right. We refer to this as the (10) case. In this case, we have
that n has an f -prefix of length at least 3. Therefore, the Sequence (2.6) properties hold
for i = 1 in all cases.
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We begin by describing the (11) case. Let hni2 = 11n2n3 · · ·n`. At each step in this
case, we add n into ai immediately after the f -prefix xi of ai. Let ai = xizi, xi = yi001k,
and zi = z0z1 · · · zj. Consider the addition ai · 2mi + n, which we draw in Figure 2.15.

yi 0 0 1k 0 z1 z2 z3 · · ·
+ 1 1 n2 n3 · · ·

yi 0 ↵0 ↵1 ↵2 ↵3 ↵4 ↵5 · · ·

Figure 2.15: The addition ai · 2mi + n for the (11) case.

Recall that we need to verify that the next place we add n is at least two indices later
than where we add it here, which is the ↵2 column. As well, we need to ensure that the
longest f -prefix includes at least up to the ↵3 column. Since we always add n immediately
after the f -prefix, showing that the f -prefix xi of ai+1 includes up to ↵3 su�ces to prove
both conditions. If there is no carry from the addition in the ↵3 column, then ai+1 has prefix
y
0001k11, which is a valid f -prefix. So assume that there is a carry from the ↵3 column. In

this case, we have that ai+1 has prefix y
0010k0↵3, which is an f -prefix regardless of ↵3 2 ⌃2.

Therefore, in the (11) case, we can build a valid Sequence (2.6) and find an arbitrarily good
approximation for n.

We now turn to the (10) case. This case is divided in to two subcases, which depend
on the two last symbols of the f -prefix xi. Since xi is the longest f -prefix of ai, the next
symbol after xi is always zero. We refer to the case where the f -prefix xi of ai ends with
the factor 11 as the (10 � 11) case. In this case, we add n to ai by adding the leading
digit of n to the column of the last symbol of xi. This is one symbol earlier than the other
cases, and is what complicates the analysis of the (10) case. We refer to the case where
the f -prefix xi of ai ends with the factor 01 as the (10� 01) case. In this case, we add n to
ai by adding the leading digit of n to the column directly after the f -prefix of xi. This is
the same reletive index wherein we add n in the (11) case. An important observation from
the two subcases is that we exclusively add n to an index which has preceeding digit 1.

We first consider the (10�11) case. Let hni2 = 10n2n3 · · ·n`. Let ai = xizi, xi = yi001k,
k � 2, and zi = 00z2z3 · · · zj. Consider the addition ai · 2mi + n, which we draw in Figure
2.16.

yi 0 0 1k�1 1 0 z1 z2 · · ·
+ 1 0 n2 n3 · · ·

yi 0 1 0k�1 0 ↵3 ↵4 ↵5 · · ·

Figure 2.16: The addition ai · 2mi + n for the (10� 11) case.
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The f -prefix condition is always satisfied, since yi010k�10↵3 is a valid f -prefix for any
↵3 2 ⌃2. We must ensure that the next index where we add n is at least the index of the
column of ↵4. As we previously observered, in the (10) case, we never add n to an index
preceeded by a zero. Therefore, the earliest in ai+1 we could add n is ↵4, which means that
the (10� 11) case also generates a valid Sequence (2.6).

Lastly, we consider the (10 � 01) case, which we draw in Figure 2.17. As before, let
hni2 = 10n2n3 · · ·n`. Let ai = xizi, xi = yi001. We note that zi = 01z2z3 · · · zj, since any
other two initial symbols for zi would contradict the fact that xi is the longest f -prefix of
ai.

yi 0 0 1 0 1 z2 z3 · · ·
+ 1 0 n2 n3 · · ·
yi 0↵0 ↵1 ↵2 ↵3 ↵4 ↵5 · · ·

Figure 2.17: The addition ai · 2mi + n for the (10� 01) case.

This case is determined by the ↵4 column. If the ↵4 column addition does not have a
carry, then ai+1 has f -prefix yi001k11 which has increased past the ↵2 column, which is the
column where we add n. This means that the f -prefix property is satisfied when the ↵4

column does not have a carry. We must verify that the next location where we add n is at
least ↵4, since the leading digit of n is in the ↵2 column. If the ↵4 column does not have a
carry, then the only time we would add n before ↵4 is if ↵4↵5 = 00, in which case we would
implement the (10 � 11) case procedure and add n to ai+1 at ↵3. However, if ↵4↵5 = 00
and there was not a carry from the ↵4 column, then z2, z3, n2, n3 = 0 as well. This is a
contradiction, because if z2 and z3 are both zero, then yi0010100z4 is a longer f -prefix of
ai than xi. Lastly, we consider what happens if the ↵4 column addition does result in a
carry. In this case, we have that ai+1 has the f -prefix yi01000↵4, which is su�cient to
satisfy the f -carry property. We once again invoke the property of the (10) case, and note
that we would only add n into ai+1 at the ↵5 column or later, which satisfies the minimum
distance between indicies where we add n that is required to keep bi 2 FIB.

Therefore, in all cases, we can build the Sequence (2.6) and find arbitrarily close ap-
proximations to n.

Furthermore, we get the following corollary:
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Corollary 43. For each real number

r 2
1[

i=�1

✓
3

4
· 2i, 4

3
· 2i
◆

= R
0

and ✏ > 0, there exists a/b 2 R(FIB) such that |r � a/b| < ✏.

Proof. Let r 2 R
0 be the real number we wish to approximate. Choose i such that 2�i+1

< ✏.
Let r0 = br · 2ic. We note that

��r � r0

2i

�� < ✏
2 .

If r0 = 0 then 0 < r < k
�i

< ✏. We have that 2�i 2 R(FIB), as 1, 2i 2 FIB and
2�i = 1/2i. We then observe that |r � 2�i| < ✏, as required. Therefore, we can assume
without loss of generality that r0 > 0.

We note that

r
0 2 N \

1[

j=0

✓
3

4
· 2j, 4

3
· 2j
◆
,

given the restrictions on r. We can now invoke Theorem 42, and get an approximation
a/b 2 R(FIB) such that |r0 � a/b|  ✏

2 . We note that b · 2i 2 FIB if and only if b 2 FIB.
Therefore, we have that

���r �
a

b · 2i
��� 

����
r
0

2i
+

✏

2
� a

b · 2i

����  ✏

and a/(b · 2i) 2 R(FIB).

2.4 Open Problems

We conclude this chapter by briefly noting several open problems related to the content of
this chapter.

1. Develop a heuristic search for finding accepting inputs, but not necessarily shortest
inputs, more e�ciently in M(k,R(A,B), p/q).

2. Characterize N \R(Ak,i) for k � 3 and 2  i  k � 1

3. Characterize Q+ \R(Ak,i) for k � 3 and 2  i  k � 1.

4. Characterize Q+ \R(FIB,N).
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5. Prove or disprove Conjecture 40.

6. Characterize Q+ \R(FIB).

7. Prove or disprove Conjecture 41.
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Chapter 3

Ratio Sets of Palindromes and

Antipalindromes

In this chapter, we examine some ratio sets that we are not able to utilize the REGULAR
RATIO SET MEMBERSHIP algorithm to compute. We say that a word x is a palindrome if
x = x

R. If the word x 2 ⌃k for some k � 2, then we say that x is an antipalindrome if
x = x

R. Recall that x is the complement, where � = k� 1� � for � 2 ⌃k. We can extend
this notion to a natural number n 2 N by examining the base-k representation of n. We
say that a natural number n is a palindrome in base k, or simply base-k palindrome, if

hnik = (hnik)R.

We also note that the base-k representation of a palindrome in base k must not end in
zero, since the leading digit of a base-k representation is always non-zero. We say that a
natural number n is an antipalindrome in base k, or simply base-k antipalindrome, if

hnik = (hnik)R.

Analogously, the base-k representation of an antipalindrome in base k must not end with
the symbol k�1, since the leading digit is also always non-zero. We note that it is impossible
to determine if word is a palindrome or antipalindrome using a finite automaton. Therefore,
it is also impossible to determine if a natural number n is a palindrome in base k or an
antipalindrome in base k using a finite automaton.

We begin with Section 3.1, wherein we compare several di↵erent algorithms for de-
termining the smallest multiple of a natural number n that is either a palindrome or
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antipalindrome in base k. Section 3.2 focuses on reformulating the automata developed in
Section 2.1 to decide membership in ratio sets entirely comprised of sets of palindromes in
base k or sets of antipalindromes in base k.

3.1 Palindromic and Antipalindromic Multiples

The results and algorithms in this section are based on my joint paper in preparation [8].

3.1.1 Palindromes

We denote the set of palindromes in base k by PALk ✓ N. For example, the set

PAL10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, . . .}

is the set of palindromes in base 10 and is sequence A002113 in the OEIS. Similarly, the
set

PAL2 = {0 = [✏]2, 1 = [1]2, 3 = [11]2, 5 = [101]2, 7 = [111]2, 9 = [1001]2, 15 = [1111]2,

17 = [10001]2, 21 = [10101]2, 27 = [11011]2, . . .}

is the set of palindromes in base 2 and is sequence A006995 in the OEIS. Let ' be the
Euler phi-function, where '(n) = |{m | m 2 N, 0 < m < n, gcd(m,n) = 1}|. We now state
a result of Je↵rey Shallit [8]:

Theorem 44. Let n � 1 and k � 2. Then there exists b � 1 such that bn is a palindrome

in base k if and only if k - n.

Proof. One direction is easy: if k | n, then hnik ends in a 0 and hence a multiple cannot
be a palindrome.

For the other direction, assume k - n, and let S be the set of primes that divide both
k and n:

S = {p : p prime and p | k and p | n}.

For j 2 N and prime p, let ⌫p(j) be the largest power of p that divides j.
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Split n = ms into a product of parts not relatively prime to k and relatively prime to
k, as follows:

m :=
Y

p2S

p
⌫p(n)

s :=
Y

q 62S

q
⌫q(n).

We note that gcd(s, k) = 1.

Let i be the smallest natural number such that m | ki. Write x = hmik. Since m  k
i,

we have |x|  i except if m = k
i. In this latter case k | n, a contradiction. So |x|  i.

Let b = d i+|x|
'(s) e, where ' is the Euler phi-function. Note that b'(s) � i + |x|. Set

` = b'(s) � 2|x|; then from the previous paragraph we have ` � i � |x| � 0. Define
y = x

R(0`)x, so that |y| = b'(s). Clearly y is a palindrome, and since k - m, the
string x does not end in a 0 and so x

R does not begin with a 0. Set u = [y]k. Then
u = h · k`+|x| +m ⌘ 0 (mod m), where h = [xR]k.

Now let t = kbs'(s)�1
kb'(s)�1

. Since

t = k
(s�1)b'(s) + · · ·+ k

2b'(s) + k
b'(s) + 1,

the base-k representation of t is (10b'(s)�1)s�11. Since gcd(k, s) = 1, by Euler’s theorem
we know that k

'(s) ⌘ 1 (mod s). Hence k
i'(s) ⌘ 1 (mod s) for all i � 0 and hence

t ⌘ 0 (mod s).

Finally, consider tu. We have htuik = y
s. This is a palindrome since y is a palindrome.

On the other hand, t ⌘ 0 (mod s) and u ⌘ 0 (mod m). So tu ⌘ 0 (mod n), since n = ms.

We can use Theorem 44 to acquire a bound on b(n) for R(PALk,N):

Corollary 45. Let n � 1 and k � 2 be such that k - n. Let b � 1 be the smallest natural

number such that hbnik is a palindrome. Then b < k
n2+2n log2(n)�n+1

.

Proof. Let tu be constructed as in the previous proof. Since htuik = y
s, we have that

|htuik| = |y| · s. Note that y = x
R(0`)x and ` = b'(s)� 2|x|. Hence

|y| = `+ 2|x| = b'(s)� 2|x|+ 2|x| = b'(s).
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Additionally, we have that

b =

⇠
i+ |x|
'(s)

⇡
 i+ |x|

'(s)
+ 1.

Multiplying both sides by '(s) shows us that b'(s)  i + |x| + '(s)  2i + '(s) since
|x|  i.

An alternative characterization of i is that i is the largest
l
⌫p(m)
⌫p(k)

m
for p 2 S. The

largest possible case for i is when ⌫p(k) = 1 and ⌫p(m) is maximized. Note that ⌫p(m) is
maximized when p = 2 and ⌫2(m) = log2(m) so we have that i  log2(m).

Finally, '(s)  s� 1, m  n, and s  n. Therefore,

|htuik| = |y| · s
= b'(s) · s
 (2i+ '(s)) · s
 (2 log2(m) + s� 1) · s
 2n log2(n) + n

2 � n.

Hence tu < k
n2+2n log2(n)�n+1.

When gcd(k, n) = 1, we have a significantly better bound:

Corollary 46. Let n � 1 and k � 2 be such that gcd(k, n) = 1. Let b � 1 be the smallest

natural number such that hbnik is a palindrome. Then b  k'(n)�1
n , where ' is the Euler

phi-function.

Proof. If b = k'(n)�1
n , then b · n = k

'(n) � 1, which is a palindrome in base k. We have that
b 2 N from Euler’s theorem, since

k
'(n) � 1 ⌘ 1� 1 ⌘ 0 (mod n).

3.1.2 Palindrome Algorithms

We briefly present four algorithms for determining inclusion in R(PAL2,N), and compare
their e↵ectiveness. To simplify our time complexity analysis, we assume that n · m and
n/m have time complexity O((log n)(logm)). Let b = b(n).
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Algorithm 1-P

The simplest algorithm is to search for b by brute force. We simply enumerate each
natural number m in ascending order and see if hn · mi2 is a palindrome. This takes
O(b · (log b) · (log n)) time.

Algorithm 2-P

An alternative method is to instead enumerate base-2 palindromes m, and check if n | m.
Once we find such an m, we get that b = m/n. There are O(

p
2log(b·n)) palindromes smaller

than b ·n, so this algorithm takes O(
p
2log(b·n) · (log b) · (log n)) = O(

p
n · b · (log b) · (log n))

time.

Algorithm 3-P

A more complicated solution is a dynamic programming approach. We repeat the following
procedure for ` � blog nc, until we find b:

Let
si = 2`�1�i + 2i

for 0  i  b`/2c � 1. If ` is odd, then let

si = 2`�1�i

for i = b`/2c. Let j = b(`/2)� 1c. For every subset S ✓ s1, s2, . . . , sj,

s0 +
X

s2S

s

is a palindrome in base 2, with base-2 representation of length `. Let

sS ⌘ s0 +
X

s2S

s (mod n).

If we can find a subset S such that

sS ⌘ 0 (mod n),

then we have found a multiple of n that is a palindrome in base 2.
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To find the desired S, we begin with a list L containing only s;. For each 1  i  j in
descending order, we compute

sS[{i} ⌘ si + sS (mod n)

for each sS in L. If sS[{i} is not already in the list L, then we append the natural number
sS[{i} to the list and note that S [ {i} is the set that corresponds to the new addition to
the list. If sS[{i} ⌘ 0 (mod n), then we return

b =

s0 +
P

s2S[{i}
s

n
.

If we go through all of 1  i  j without finding an sS equivalent to 0 modulo n, then
we repeat the process for `+ 1.

Each iteration takes O(j · n) time, since we can at most have n natural numbers 0 
sS < n in the list L. We must iterate until ` = blog(b · n)c, so finding b with this algorithm
takes O(n · log(b · n)) time.

Algorithm 4-P

The last approach is based on automata. Consider the automaton M = (Q,⌃2, �, q0, F )
where

• Q = {q0} [ {(i, j) | 0  i < n, 0  j < n},

• �((i, j), �) = (i0, j0) for i ⌘ 2 · i+ (j + 1) · � (mod n) and j
0 ⌘ 4 · j (mod n), and

• F = {(0, j) | 0  j < n}.

The component i of each state pair (i, j) represents that the input word x that lead to this
state is such that [xR

x]2 ⌘ i (mod n). We take everything modulo n because we only want
it to be some multiple of n, and it puts a limit on the number of states. Note that this
means that each new symbol being read is appended to each side of the word x

R
x. We use

j to track how much a new 1 symbol being appended to the front of xR
x a↵ects the string

when interpreted as a number in base 2. We need to account for the unknown middle
symbol �, so we use the special start state q0 to jump to each possibility. We have an ✏

transition from q0 to each of (0, 2), (0, 4), and (1, 4) which corresponds to middle symbol
✏, 0, and 1 respectively.
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i Runtime of Algorithm i-P Optimal range b = b(n)
1 O(b · (log b) · (log n)) b  n

2 O(
p
n · b · (log b) · (log n)) n  b  n

3

3 O(n · log(b · n)) n
3  b  n · 2n

4 O(n2) n · 2n  b

Table 3.1: Comparison of optimal algorithm to find b(n) for R(PAL2,N) by the ratio of b(n)
to n.

i Ni \ [1, 10000000) |Ni \ [1, 10000000)|
1 {1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 25, 27, 29, 33, 35, 37, . . .} 4999526
2 {23, 31, 49, 59, 63, 69, 71, 81, 83, 85, 87, 93, 123, 125, 127, . . .} 427
3 {47, 179, 329, 379, 453, 573, 1095, 3813, 5223, 5461, 178101, . . .} 33
4 {3937, 11811, 14329, 19685, 23715, 27559, 40005, 43307, . . .} 14

Table 3.2: Comparison of e↵ectiveness of algorithms that find b(n) for R(PAL2,N).

We find our base-2 palindrome b = [xR
�x]2 that is a multiple of n by doing a breadth

first search through M . We do need that the leading digit of xR
�x is non-zero, so we search

for an accepting state of M that we reached by taking an edge labeled with 1. This takes
O(n2) time since there are O(n2) states in M .

Combined Algorithm and Comparison

The Table 3.1 presents the values of b in terms of n where each algorithm is asymptotically
the fastest. Since we do not know the size of b for a given n, each algorithm presented
in this subsection could be advantageous. Therefore, our full algorithm runs all 4 of the
presented algorithms in parallel. Once one algorithm terminates, we returns the answer
it computed and note which algorithm finished first. I implemented these algorithms in
Python. The data examined in this subsection and code to generate it is available on
GitHub. Let Ni be the set of natural numbers n where Algorithm i-P was the fastest
algorithm to find b(n). We compare Ni for i 2 {1, 2, 3, 4} in Table 3.2. The vast majority
of n  10000000 use Algorithm 1-P. However, the remaining algorithms are still beneficial
in some circumstances.
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3.1.3 Antipalindromes

We denote the set of antipalindromes in base k by APALk ✓ N. If n is an antipalindrome
and has odd length in base k, then � = � where � is the middle symbol of the base-k
representation of n. We note that � = � if and only if � = k�1

2 . This means that � = �

can only occur when k is odd, as when k is even k�1
2 is not a natural number. Therefore, all

antipalindromes in even bases have representations that are of even length. For example,
the set

APAL10 = {0, 18, 27, 36, 45, 54, 63, 72, 81, 90, 1098, 1188, 1278, . . .}

is the set of antipalindromes in base 10. Note that 0 is an antipalindrome in base k for all
k, because h0ik = ✏. The set

APAL3 = {0 = [✏]3, 1 = [1]3, 4 = [11]3, 6 = [20]3, 13 = [111]3, 21 = [210]3, 34 = [1021]3,

40 = [1111]3, 46 = [1201]3, 60 = [2020]3, 66 = [2110]3, 72 = [2200]3, 97 = [10121]3}

is the set of antipalindromes in base 3. This set contains natural numbers that have
base-k representations of odd length. In this subsection, we mainly examine R(APAL2,N).
However, we first prove a general result about R(APALk,N).

Theorem 47. Let n � 1 and k � 1. Then there exists b � 1 such that hbnik is an

antipalindrome.

Proof. Split n = ms as in previous theorem. We once again have gcd(s, k) = 1.

Let i be the smallest natural number such that m | ki. Let b = d i
'(s)e, where ' is the

Euler phi-function. Note that b'(s) � i. Define y = (hk � 1ik)b'(s)0b'(s). This y has that
|y| = 2b'(s). Set u = [y]k. Then u = (kb'(s) � 1) · kb'(s) ⌘ 0 (mod m) since m | kb'(s).

Now let t = k2bs'(s)�1
k2b'(s)�1

. Since

t = k
2(s�1)b'(s) + · · ·+ k

4b'(s) + k
2b'(s) + 1,

the base-k representation of t is 1(02b'(s)�1)s�11. Since gcd(k, s) = 1, by Euler’s theorem
we know that k

'(s) ⌘ 1 (mod s). Hence k
i'(s) ⌘ 1 (mod s) for all i � 0 and hence

t ⌘ 0 (mod s).

Finally, consider tu. We have htuik = y
s. This is an antipalindrome since y is an

antipalindrome. On the other hand, t ⌘ 0 (mod s) and u ⌘ 0 (mod m). So tu ⌘ 0 (mod n),
since n = ms.
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3.1.4 Antipalindrome Algorithms

We present four algorithms analogous to the four algorithms in Subsection 3.1.2.

Algorithm 1-A

Algorithm 1-A is completely identical to Algorithm 1-P, except for the obvious change that
we check if n ·m is an antipalindrome in base 2.

Algorithm 2-A

Similarly, Algorithm 2-A is identical to Algorithm 2-P, except that we list antipalindromes,
of which there are the asymptotically the same number compared as palindromes.

Algorithm 3-A

Algorithm 3-A is the most significantly modified algorithm compared to palindromes. We
still preform the algorithm in iterations where we choose a length `. Antipalindromes in
base 2 have binary representations of even length, so we only consider even `.

Instead of each step potentially adding si = 2`�1�i + 2i for 0  i  b`/2c � 1, we have
to decide between adding 2`�1�i or adding 2i. An antipalindrome has exactly one of those
two powers of two for each i. This is a bit di↵erent, but can reduce this problem back
to a standard subset sum by adjusting the goal value g. For antipalindromes, we define
si = 2`�1�i � 2i for 0  i  (`/2)� 1. We define sS for S ✓ {s1, s2, . . . , sj} analogously to
the palindrome case. For palindromes, we wanted our subset sum to be equivalent to zero
modulo n. For antipalindromes, our goal is to find S such that

sS ⌘ g ⌘
(`/2)X

i=0

2i (mod n).

If we have such an S, then we can derive an antipalindrome in base 2 that is a multiple of
n. If si, then we have implicitly added 2`�1�i since the �2i part of si cancelling out the 2i

in g. If we exclude si, then g implicitly includes the 2i that is not cancelled out.

This algorithm takes the same asymptotic quantity of iterations and the same amount
of time on each iteration. Therefore, Algorithm 3-A also achieves the same asymptotic
runtime bound as Algorithm 3-P.
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i N
0
i \ [1, 2727120) |N 0

i \ [1, 2727120)|
1 {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, . . .} 1631979
2 {45, 85, 90, 120, 135, 173, 176, 180, 191, 225, 235, . . .} 111350
3 {189, 198, 297, 360, 378, 387, 396, 409, 424, 429, 453, . . .} 983772
4 {99, 2993, 8750, 21705, 25226, 356075, 589815, 907729, . . .} 17

Table 3.3: Comparison of algorithms that find b(n) for R(APAL2,N).

Algorithm 4-A

The construction of M for Algorithm 4-A is even easier in comparison to Algorithm 4-P,
though largely identical. We have no valid middle symbol, so we have the unique starting
state q0 = (0, 2), which corresponds to the central symbol ✏ starting point for palindromes.
The only additional change is that the transition function � is instead defined as

�((i, j)�) = (i0, j0)

for i0 ⌘ 2 · i+ � · j + (1� �) (mod n) and j
0 ⌘ 4 · j (mod n).

Since the set of states is the same, we end up with the same asymptotic runtime bounds
once again.

Combined Algorithm and Comparison

We note that Table 3.1 is also correct for the antipalindrome algorithms. Similarly to
palindromes, we can combine all four algorithms into a single algorithm by running them
in parallel. As before, once one algorithm terminates, we returns the answer it computed
and note which algorithm finished first. I also implemented these algorithms in Python.
The data used in this subsection and code to generate it is available on GitHub. Let N 0

i

be the set of natural numbers n where Algorithm i-A was the fastest algorithm to find
b(n). We compare N

0
i for i 2 {1, 2, 3, 4} in Table 3.3. In comparison to palindromes, far

fewer n  2727120 use Algorithm 1-A. Algorithm 1-A is the fastest algorithm for 59.84%
of n  2727120. This di↵erence is still striking compared to palindromes in binary where
99.99% of odd n  10000000 used Algorithm 1-P. However, this is not unexpected, as
there are many more palindromes in binary compared to antipalindromes in binary since
palindromes in binary have less restrictions on the middle symbol. Antipalindromes in
base k for even k are also all of even length, which further restricts the possibilities for
b(n).
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3.2 Ratio Sets of Palindromes and Antipalindromes

The results in this section are based on results from my joint paper [3]. Some of the text
is taken almost verbatim or verbatim.

In this section, we build a specialized version of the REGULAR RATIO SET MEMBERSHIP
algorithm designed specifically for deciding inclusion in R(PALk). Similarly to Section 2.1,
we begin by building an automaton for a given natural number n and base k that accepts
some encoding of natural numbers a and b that are palindromes in base k. Afterwards, we
extend the construction of the automata to rational numbers p/q. We then further extend
the automaton construction that verifies p/q 2 R(A,B) to accommodate A = APALk or
B = APALk. We denote the automaton we construct for a given n by M(k,A,B, n) where
A,B 2 {PALk, APALk}.

Since the base-k representations of PALk and APALk are not regular languages, the au-
tomata M(k,A,B, p/q) that we construct here are significantly di↵erent from the usual
REGULAR RATIO SET MEMBERSHIP automata. Recall the carry equation (2.2) and ratio-
nal carry equation (2.5) from Section 2.1. Our new automaton M(k,A,B, n) still im-
plements the carry equations but needs several modifications in order to ensure that the
carry equations are being satisfied by palindromes. The main di↵erence in comparison to
multiplication automata is that M(k,A,B, n) checks the carry equations from the least
significant digit carry equation and the most significant digit carry equation simultane-
ously and then moving inward from both directions at once. In this sense, M(k,A,B, n)
is simultaneously simulating a least-significant-digit-first multiplication automaton and a
most-significant-digit-first multiplication automaton. We begin the path to the construc-
tion of M(k, PALk, PALk, n) by defining an input encoding for palindromes in base k that
the automata designed in this section can understand.

3.2.1 Input Encoding

There are two main challenges regarding the input specification when trying to design an
automaton that ensures that the inputs are palindromes. The first challenge is, of course,
that it is impossible to recognize a palindrome with a finite automaton. To remedy this
issue we take, as input, half of a palindrome and implicitly determine the other half. We
build a new encoding h↵, �i of base-k palindromes a and b. We note that the ↵ and � in
this encoding are words and the encoding h↵, �i in this section is distinct from the encoding
ha, bik defined in previous sections. A naive approach is to interpret the input pair h↵, �i
as referring to a = [↵↵R] and b = [��R] and to the multiplication [↵↵R]k = [��R]k · n.
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This approach has the property that all even-length palindromes in base k have an
associated encoding that is a valid input to our automaton. However, this does not cover
the case of odd-length palindromes. Therefore, on input h↵, �i, the automaton we construct
simultaneously checks each multiplication [↵�↵↵

R]k = [����
R]k · n where �a, �b 2 {✏} [

⌃k. If any of the multiplications are valid, then the automaton accepts the input. We
accomplish this using nondeterminism, which is a major distinction between the automata
constructed in this section and the automata constructed in Section 2.1. This makes
discussions of the relationship between h↵, �i and a and b di�cult, as each a and b pair has
a specific associated encoding h↵, �i but that encoding does not refer to a unique a and b.
For this reason, we primarily discuss ↵ and � and leave a and b largely ambiguous while
we discuss the construction of M(k, PALk, PALk, n). However, we can still talk about the
specific carry equations where a given ↵` appears. The only concern is around the middle
indices that we have to implicitly guess. We handle this with nondeterminism, which we
describe in the next subsections.

Let a and b be palindromes in base k such that b · n = a. The second challenge is
that the strings haik and hbik have, in general, di↵erent lengths. Furthermore, as noted
in Subsection 2.1.2, the di↵erence in length between them could be either the floor or
the ceiling of logk n. This is a more serious concern for M(k, PALk, PALk, n) since it must
also keep track of the alignment of haik and hbik that it is implicitly constructing o↵ of
↵ and �. To accommodate both possibilities of logk n, the automaton M(k, PALk, PALk, n)
begins by nondeterministically guessing the di↵erence in length between haik and hbik. We
assume |haik| > |hbik| and discuss the haik = hbik case briefly later, as it skips a few steps
described in the next subsection. Given our assumption, it follows that |↵| � |�|. It is
possible that there is a satisfying ↵ and � where |↵| = |�| even if haik 6= hbik. However, in
general we need to pad � to provide it as input to the automaton simultaneously with ↵.
Previously, we padded the input with zeroes when there was a mismatch in size between
two input natural numbers. Here, we use X as a padding character to indicate the end
of input for �. A unique character is necessary, as palindromes in base k require a more
complicated alignment procedure compared to multiplication automata. The automata in
this section need to know when they have examined the entirety of the input � so they can
use them with the correct symbols of ↵, whereas standard multiplication automata can
simply read zeros and process them without having to know if the representation of b has
been completely input.

Let ↵ = ↵0↵1 · · ·↵i and � = �0�1 · · · �j be words in the language ⌃⇤
k. We formally

define the encoding h↵, �i = (↵0, �0)(↵1, �1) · · · (↵i, �i) where �` = X for j < `  i.
This means that h↵, �i is a word over the alphabet ⌃k ⇥ (⌃k [ {X}). The automaton
M(k, PALk, PALk, n) immediately rejects the input if ↵0 = 0 or �0 = 0. An input that had
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a zero as either component of the first symbol would be a representation that was not
canonical, which could create a false positive acceptance. We do however, permit the first
symbol to be (↵0, X) for ↵0 2 ⌃k, as this is the situation where |hbik| = 1. As well, the
automaton M(k, PALk, PALk, n) rejects any input not of the form xy where x 2 (⌃k ⇥⌃k)⇤

and y 2 (⌃k ⇥ {X})⇤. We do not require x nor y to be non-empty. Every h↵, �i is of valid
form xy, which means that every accepted input is some encoding h↵, �i. It is meaningful
to consider the input h↵, �i as being split into the first component x and second component
y, as the automaton acts very di↵erently between the two stages of input. We describe the
processing of each component x and y in the next two subsections respectively.

3.2.2 The First Component of the Input

Let h↵, �i = (↵0, �0)(↵1, �1) · · · (↵i, �i). Note � = �0�1 · · · �j for some j  i and �` = X for
j < `  i. Let haik = ai0ai0�1 · · · a0 = ↵�↵↵

R for some �↵ 2 ⌃k. Let hbik = bj0bj0�1 · · · b0 =
����

R for some �� 2 ⌃k. We define b` = 0 for j0 < `  i
0 as the usual padding for the carry

equations. In this subsection, we describe the process of M(k, PALk, PALk, p/q) reading the
component x 2 (⌃k ⇥ ⌃k)⇤ of the input ha, bi = xy. Since the input h↵, �i is providing
digits on the most significant side and least significant side of a and b simultaneously, we
need to simultaneously check two carry equations after each input symbol.

The automaton is able to directly check the equations and compute the carries for the
least signifiant digit carry equations. Since a0 = ↵0 and b0 = �0, the first input symbol
(↵0, �0) has all the information required to check

a0 ⌘ n · b0 + c0 (mod k)

and then compute the first carry equation

n · b0 + c0 = c1 · k + a0.

The carry c0 = 0 as usual and afterwards, the automaton saves the carry c1 for the next
equation. On receiving each input (↵`, �`) = (a`, b`) for `  j, the automaton is able to
check the equation

a` ⌘ n · b` + c` (mod k)

and compute the carry equation

n · b` + c` = c`+1 · k + a`.

This is exactly the process implemented by the least-significant-digit-first base-k multipli-
cation automata in Subsection 2.1.3. The only information that M(k, PALk, PALk, n) must

66



preserve between states in order to verify these equations is the current value of the carry.
Since we need to simultaneously check multiple carry equations, we call this saved carry
the right carry to disambiguate the multiple values that the automaton saves after each
input.

The most significant digit carry equations require more careful handling to compute.
We begin with the equations that include b` where ` > j

0. Since haik is a palindrome and
there is a di↵erence in length between it and hbik, we have that ai0 = ↵0 and bi0 = 0.
Therefore, the first input symbol (↵0, �0) = (ai0 , bj0). As defined in the extended long
multiplication algorithm, the carry ci0+1 = 0. Hence, the automaton can compute the
carry equation

ci0 = ci0+1 · k + ai0 � n · bi0 = 0 · k + ai0 � n · 0 = ai0 .

This carry ci0 we denote as the left carry. After the next inputs (↵`, �`) = (ai0�`, bj0�`) for
1  ` < i

0 � j
0, the automaton proceeds with calculating ci0�` with the equation

ci0�` = k · ci0�`+1 + ai0�` � n · bi0�` = k · ci0�`+1 + ai0�`

since bj0�` = 0. This is exactly the process implemented by the most-significant-digit-first
base-k multiplication automata in Subsection 2.1.3. The carry equation using ↵` = ai0�` to
compute the left carry is computed concurrently with the corresponding least significant
digit carry equation that includes ↵` = a` to compute the right carry. We call this portion
of the input processing the loading phase.

Once we reach ` = i
0 � j

0 the handling becomes more complicated. At this step,
M(k, PALk, PALk, n) needs bj0 = �0 along with aj0 = ↵i0�j0 to compute the most significant
digit carry equation

cj0 = k · cj0+1 + aj0 � n · bj0 .
In order to compute an equation requiring information contained in di↵erent input sym-
bols, the automaton must save some additional information beyond the two carries after
each step. After the first input symbol (↵0, �0) is read and the right and left carries are
computed, the automaton M(k, PALk, PALk, n) preserves �0 to be used in the computation
of cj0 , which occurs m steps later. After the automaton has computes cj0 it discards the
saved symbol �0, as it is not needed for any other calculations. Similarly, to compute cj0�`,
the automaton needs �`, which gets preserved after reading input symbol (↵`, �`) and dis-
carded after computing cj0�`. We note that at the step where the most significant digit
carry equations are computing cj0�`, the least significant carry equations are computing
c`+1 using input symbol (↵`+1, �`+1) as usual, since they require no additional information.
This process of using, discarding, and then subsequently replacing a saved symbol contin-
ues while the input symbols are of the form (↵`, �`) for �` 6= X. (This means that this
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phase continues until we have seen all of �.) We call the section of computation where
M(k, PALk, PALk, n) consumes and discards saved symbols while still saving new ones the
shifting phase.

The number of symbols of � that need to be saved at any given time is at most the
di↵erence in length between haik and hbik. The maximum number of symbols saved is
achieved at the end of the loading phase. The number of symbols saved stays constant
for the shifting phase. As stated previously, this di↵erence can vary between the floor and
ceiling of logk n. To accommodate both possibilities, M(k, PAL2, PAL, n) nondeterministi-
cally assumes that the di↵erence is a fixed value m and the loading phase saves that many
symbols of � before starting to consume and replace them in the shifting phase. We call
the currently saved section of � the queue of saved symbols since at each step we read the
first-in symbol of the queue for the most significant digit carry equation.

Each state of M(k, PALk, PALk, n) is therefore identified by the  m symbols saved,
the number m itself, the left and right carries, and what phase the automaton is in. The
automaton also has a special start state, with an ✏ transition to the two states with no
symbols saved, left and right carries set to 0, and each possibility for m. For all other
states, the automaton has a transition to a new state corresponding to the updated carries
and queue of saved symbols for each possible input, as long as the least significant digit
carry equation modular equivalence is verified and correct for that input. If the associated
equation of the least significant digit carry equations for a given input symbol is not
verified, or the most significant carry equation results in a carry larger than n, then the
transition is omitted. These are the conditions on transitions such that the equations
verified and calculated by most-significant-digit-first base-k multiplication automata and
least-significant-digit-first base-k multiplication automata are e↵ectuated simultaneously.
The loading stage is characterized by having less than m saved symbols and the shifting
phase having exactly m saved symbols that it cycles through.

3.2.3 The Second Component of the Input

Once M(k, PALk, PALk, n) has seen all of the input �, the input symbols change to being of
the form (↵`, X). We call this final section of processing the unloading phase. Any transi-
tion with an input of the form (↵`, X) pushes the automaton directly into the unloading
phase. This can lead to not having m saved symbols in the queue of saved symbols despite
having read all of �. This can occur when � is shorter than the di↵erence in length between
a and b. If this occurs, M(k, PALk, PALk, n) implicitly pads the front of the queue of saved
symbols with enough zeroes to have m saved symbols. At this point the automaton has all
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of the digits of hbik, except for the central symbol �b, and has yet to examine the middle
section of haik that corresponds to the remainder of ↵. This middle section of haik lines
up with the queue of saved symbols to supply the � symbols that are no longer coming
from the input. When the automaton reads a symbol (↵`, X), we use ↵` = a` = ai0�` for
both the most significant digit and least significant digit carry equations as usual.

The automaton must now contend with the possibility that hbik has odd length and
that there may be a symbol of hbik not given in �. It nondeterministically decides what
the central symbol �� 2 ⌃k [ {✏} is for hbik. If �b 6= ✏, then the automaton proceeds using
the input ↵` as the symbol of haik for both the least significant digit and most significant
digit carry equations. However, the automaton uses the chosen symbol �b as the symbol
of hbik for the least significant digit carry equations since we have already processed the
entire least significant half of hbik that corresponds to �

R. Since the automaton chooses
�b nondeterministically, the states where the choice of �b must be made have transitions
labeled (↵`, X) to each state that is the result of some choice of �b. The most significant
digit carry equation uses the first-in symbol of the queue of saved symbols as usual, but
nothing is added to the queue since there is no new �`. The left and right carries are
updated as usual and the automaton continues with the queue of saved symbols reduced
by one. If M(k, PALk, PALk, n) nondeterministically chose that �� = ✏, then it skips the
step described in this paragraph and proceeds directly with the subsequent steps.

At this point, the automaton M(k, PALk, PALk, n) consumes both ends of the queue of
saved symbols to compute the left carry and right carry for the most significant digit carry
and least significant digit equations respectively. The first-in symbol is used along with ↵`

to compute the most significant digit carry equation as usual. However, the least significant
carry equation instead takes from the last-in end of the queue since the least significant
digit carry equations have already used all of � on their side and instead start using the
first half of hbik that was saved in the queue. This proceeds, consuming two symbols from
the queue of saved symbols each time. Once the automaton has less than two symbols left,
there are two remaining cases. If there are 0 saved symbols remaining and the left and
right carries are equal, then the automaton accepts the input. In this case, the entire series
of carry equations are satisfied and the input represents a valid a/b = n with haik and hbik
palindromes. Alternatively, if the automaton has one saved symbol left, then this is the
case where haik has an odd number of symbols. If there is an assignment for the middle
symbol �↵ that results in the carries being equal after computing one final, central, carry
equation, then the automaton accepts the input.
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3.2.4 Extension to Rational Numbers

We can extend the definition of M(k, PALk, PALk, n) to automata M(k, PALk, PALk, p/q) that
accept an encoding of base-k palindromes a and b such that a/b = p/q. We once again
assume that p > q, as we can use the fact that p/q = a/b if and only if q/p = b/a in
order to decide inclusion in the ratio for p/q where q < p. We replace the carry equations
computed by M(k, PALk, PALk, n) with rational carry equations. We do this analogously to
the modification we presented to multiplication automata in Subsection 2.1.4. We directly
defined how the rational carry equations can be implemented for a most-significant-digit-
first base-k multiplication automata. We use that process directly for the most significant
digit carry equations in M(k, PALk, PALk, p/q) and this requires the same left carry and
queue of saved symbols that are used in the natural number case.

We did not define least-significant-digit-first multiplication automata for rational num-
bers, so we briefly explain how it works here. We define the unified carry c` = cb,` � ca,`,
analogously to how we previously defined the unified carry for the rational multiplication
automata. So upon reading input symbol (↵`, �`), our automaton verifies the equation

p · b` + c` ⌘ q · aj (mod k)

and then computes

c`+1 =
p · b` + c` � q · a`

k

to ensure that the least significant digit carry equations hold. Therefore, the automaton
M(k, PALk, PALk, p/q) still has a single right carry.

The rational carry equation carries c` have the bound �q < c` < p for the given p/q

so the left and right carry each have the same bound �q < c` < p. The queue of saved
symbols required has length either the floor or ceiling of logk(p/q), which can be zero. We
still require p > q but p/q < k is permitted. The construction as presented still works in
this case, the automaton constructed simply has no loading or unloading phase. It simply
remains in the shifting phase until the input is complete, and has acceptance conditions
analogous to the loading phase at the point when the queue of saved symbols is depleted.

The Bai et al. paper [3], where the description of M(k, PALk, PALk, p/q) first appears,
has a more complicated description of the automata M(k, PALk, PALk, p/q). In the paper
[3], the automaton M(k, PALk, PALk, p/q) tracks two distinct right carries in addition to the
unified left carry. This resulted in a slightly worse complexity bound than what appears
in this thesis.
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3.2.5 Extension to Antipalindromes

Once we have constructed M(k, PALk, PALk, p/q), it is relatively simple to generalize the
construction to antipalindromes in base k. We denote the automaton accepting pairs
of base-k antipalindromes a and b such that a/b = p/q as M(k, APALk, APALk, p/q). If
A = APALk, then the ↵ component of h↵, �i is interpreted as a = [↵�↵↵

R]k where �↵ 2
{✏, (k � 1)/2}\⌃k. Similarly, if B = APALk, then the � component of h↵, �i is interpreted
as b = [����

R
]k where �� 2 {✏, (k � 1)/2} \ ⌃k. This mainly changes the handling of the

least significant digit carry equations, wherein ↵` or �` is interpreted as the complement.
The only other di↵erence is that the nondeterministic choice of central digit of haik and hbik
is restricted to {✏, (k � 1)/2} \ ⌃k. Otherwise, the construction is identical and achieves
all associated complexity bounds.

3.2.6 Implementation and Complexity

I implemented this algorithm in Python. The algorithm and all data computed is available
on GitHub. Similarly to the REGULAR RATIO SET MEMBERSHIP algorithm, we can perform
a graph search on the automaton M(k,A,B, p/q) in order to decide inclusion in R(A,B)
for A,B 2 {PALk, APALk}. The first question in determining the time complexity of our new
algorithm is to find a bound on the number of states in M(k,A,B, p/q). As we discussed,
each state in M(k,A,B, p/q) needs to track the left and right carries �q < cl < p and
�q < cr < p, as well as the queue of saved states, which is m symbols in ⌃k where
m 2 {blogk(p/q)c , dlogk(p/q)e}. Therefore, tracking the basic information required needs
at most

(p+ q � 1)2 · kdlogk(p/q)e

states. However, we noted that the automaton must track of which of the three phases it
is currently executing. As well, at the beginning of the execution the automaton nonde-
terministically chooses between m = blogk(p/q)c and m = dlogk(p/q)e. Hence, the total
number of states is

|M(k,A,B, p/q)|  3 · 2 · (p+ q � 1)2 · kdlogk(p/q)e  6 · (p+ q � 1)2 · k · p
q
2 O(kp3/q)

as p > q.

If we simply want to decide if p/q 2 R(A,B) then we can accomplish this with a simple
breath first search of M(k,A,B, p/q) for an accepting state, which takes O((k2 · (kp3/q))+
(kp3/q)) = O(k3

p
3
/q) time since each state has at most |⌃k ⇥ ⌃k| transitions out of it.
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However, given the nondeterministic choices that the automaton can make, this breadth
first search is insu�cient for finding the smallest a and b such that a/b = p/q. Instead,
we use a modified Dijkstra’s algorithm to find shortest paths, in terms of the implicit a

and b instead of simply h↵, �i, to each state with some careful processing of the possible
middle symbols. We then find the shortest path to any accepting state. Therefore, our
implementation for finding the smallest a and b instead takes

O(((k2 · (kp3/q)) + (kp3/q)) · log(kp3/q)) = O((k3
p
3
/q) · log(kp3/q))

time.

We can put a slightly better bound on the worst case size of the smallest a for a given
p/q.

Theorem 48. Let k � 2 be the base and let A,B 2 {PALk, APALk}. If there exists a and b

such that a/b = p/q, a 2 A, and b 2 B, then,

a  k
2·
⇣
dlogk(p/q)e+(p+q�1)2·kdlogk(p/q)e+

l
logk(p/q)

2

m⌘
+1
.

Proof. We can get this bound through analysis of each phase of processing in the automaton
M(k,A,B, p/q) and determining the maximum size of ↵ for input h↵, �i.

The algorithm begins by nondeterministically choosing m 2 {blogk(p/q)c , dlogk(p/q)e}
and then loading at most m symbols into the queue of saved symbols. The worst case is
when m = dlogk(p/q)e. Therefore, the loading phase is at most m symbols (↵`, �`).

The unloading phase consumes two symbols from the queue of saved symbols each time
an input symbol (↵`, X) is read. Therefore, we read at most

⇠
dlogk(p/q)e

2

⇡
=

⇠
logk(p/q)

2

⇡

symbols of ↵ in this phase. However, we also accommodate the possibility of an implicit
central digit of haik in this phase, so our final count on the digits of a can include one
additional digit past the digits in ↵.

It is theoretically possible that the shortest accepting path for any input goes through
every single possible state in the shifting phase. This case would mean reading (p + q �
1)2 · kdlogk(p/q)e symbols (↵`, �`).

Taken together, we get that

|↵|  dlogk(p/q)e+ (p+ q � 1)2 · kdlogk(p/q)e +

⇠
logk(p/q)

2

⇡
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and

|haik|  2 ·
✓
dlogk(p/q)e+ (p+ q � 1)2 · kdlogk(p/q)e +

⇠
logk(p/q)

2

⇡◆
+ 1.

3.2.7 Binary Palindromes

In this subsection, we examine the ratio set R(PAL2). The natural numbers

N \R(PAL2) = {0, 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 27, . . .}

form sequence A305468 in the OEIS. We have the following theorem on the (R)-density of
R(PAL2).

Theorem 49. The set PAL2 is (R)-dense.

Proof. Let PAL2 = {a0 < a1 < · · · } be the set of palindromes in base 2 listed in increasing
order. Consider the base-2 palindrome haiik = ↵�↵↵

R. We get that

a
0
i = [h[↵]2 + 1ik�↵(h[↵]2 + 1ik)R]2  ai + 21+|�↵↵R|

is also a palindrome in base 2. Let ai+1 be the smallest palindrome in base 2 larger than
ai. We have that

ai+1

ai
 ai + 21+|�↵↵R|

ai
= 1+

21+|�↵↵R|

ai
 1+

21+j+|�↵|

22·i+|�↵|�1
= 1+21+j+|�↵|�2·j�|�↵|+1 = 1+2�j+2

where j = |↵|. However, we get that j ! 1 as i ! 1 since we consider progressively
larger palindromes, which in turn have longer base-2 representations. Therefore,

lim
i!1

ai+1

ai
= 1

since 2�j+2 ! 0 as i ! 1. This means we can use Theorem 5, which gives us that PAL2
has the property (S) described in Section 1.2 and PAL2 is (R)-dense.

We note that since APAL2 only contains even numbers and PAL2 only contains odd
numbers, the ratio sets R(PAL2, APAL2) and R(APAL2, PAL2) contain no natural numbers.
However, we have the following corollary:
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Corollary 50. The ratio sets R(PAL2, APAL2) and R(APAL2, PAL2) are dense in R+
.

Proof. We have from Theorem 49 that PAL2 has the property (S). Theorem 6 gives us that
R(PAL2, B) is dense in R+ for all infinite sets B ✓ N. Therefore R(PAL2, APAL2) is dense
in R+. This gives us that the ratio set R(APAL2, PAL2) is also dense in R+ since R(A,B) is
dense in R+ if and only if R(B,A) is dense in R+.

A natural question is to first ask how many natural numbers are in R(PAL2). Table 3.4
contains the amount of natural numbers with binary representation of each length i that
are in R(PAL2). The trend appears to be exponential but we have no proof of this beyond
the numerical data we computed with the algorithm presented in this section. We also
examined the n 2 R(PAL2) that set new records for b(n). We include the data in Table 3.5.
We also examined the rational numbers p/q 2 R(PAL2). These were di�cult to explore,
as a(p/q) and b(p/q) were frequently extremely large. For example, the smallest base-2
palindromes a and b such that a/b = 979/765 are

a = 435964577851526887677597179561025269848009167916543881959761365529045212378773108135544954987

and

b = 340666907105636434191380840004274087266319727738668099794910566526782009672892163149838499045.

The data did suggest the following conjecture:

Conjecture 51. For all odd numbers p > 1, p 6= 23, there exists an odd number q < p

such that there exists base-2 palindromes a and b where p/q = a/b.

We experimentally showed that this conjecture holds up for p < 1000 but further
computation for this conjecture is computationally expensive.

The ratio set R(PAL2) is further examined by Bai et al. [3], which lead to a few more
notable conclusions:

Theorem 52.

1. There are ⌦(2i/2) i-bit natural numbers representable as the quotient of palindromic

numbers. [3, Thm. 6]

2. The lower asymptotic density of natural numbers not contained in R(PAL2) is d(N \
R(PAL2)) > 1/40. [3, Cor. 11]

3. If there exists base-2 palindromes a and b such that n = a/b, then there are infinitely

many pairs of base-2 palindromes a
0
and b

0
such that n = a

0
/b

0
. [3, Thm. 13]
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i |N \R(PAL2) \ [2i�1
, 2i)|

1 1
2 1
3 2
4 4
5 5
6 10
7 17
8 33
9 55
10 98
11 165
12 309
13 571
14 985

Table 3.4: Number of i-bit natural numbers in the ratio set of palindromes in base 2.

N A B

1 1 1
11 33 3
13 65 5
19 513 27
53 3339 63
71 54315 765
79 888987 11253
149 5887437 39513
319 224725611 704469
575 147606740625 256707375
1823 394070635302093 216166009491
2597 96342506397593044197 37097615093412801
5155 324903223321029232798074465 63026813447338357477803
10627 9300753824529071312360470246068903 875200322247960036921094405389
22331 79377444895975693055708664734623129867563975 3554585325152285748766677029001080554725

Table 3.5: Natural numbers n 2 R(PAL2) such that b(n) > b(n0) for n0
< n.

75



i |N \R(APAL2) \ [2i�1
, 2i)|

1 1
2 0
3 2
4 1
5 8
6 4
7 24
8 17
9 75
10 50
11 247
12 165
13 903

Table 3.6: The amount of natural numbers with binary representation of length i in
R(PAL2).

3.2.8 Binary Antipalindromes

In this subsection, we investigate the ratio set R(APAL2). The natural numbers

N \R(APAL2) = {0, 1, 5, 6, 15, 17, 18, 19, 20, 21, . . .}

form sequence A351172 in the OEIS Table 3.6 contains the amount of natural numbers
of binary representation of each length i that are elements of R(PAL2). Similarly to PAL2,
this trend appears to be exponential but we also have no proof of this pattern beyond the
numerical results. We also examined the n 2 R(APAL2) that set new records for b(n). We
include the data in Table 3.7. We note that the numbers in Table 3.7 are even larger than
in Table 3.5.

Theorem 53. There are infinitely many natural numbers in R(APAL2).

Proof. Natural numbers of the form n = 22i+1 � 2i = [1i+10i]2 are elements of R(APAL2).
We have that a/b = n for a = 22i+2 � 2i+1 = [1i+10i+1]2 and b = 2 = [10]2, which are both
antipalindromes.

Theorem 54. There are infinitely many natural numbers n 2 N such that there are in-

finitely many base-2 antipalindromes a and b where n = a/b.
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N A B

5 10 2

15 150 10

18 936 52

59 52140188 883732

66 65099232 986352

83 206712630902722 2490513625334

343 841469573210301602 2453264061837614

835 180616526119856633856230 216307216910007944738

991 200428779760870700728006297372550 202249020949415439685172853050

1268 75547761517760569279087608058268904 59580253562902657160163728752578

1290 4395923940796125166581803114404301293837667532540 3407692977361337338435506290235892475843153126

1952 1586681992762659022973996447792006955471260017904473853156544 812849381538247450294055557270495366532407796057619801822

4091 102232724919890518755288528068181989159740544137704480818962816 24989666321166100893495118080709359364395146452628814670976

4460 388987104335534771520764071813224655554298718228899978912430000 87216839537115419623489702200274586447152178975089681370500

4640 85112365674283227507265261996365447811182320230460498 18343182257388626617945099568182208579996189704840624
83220363630941564530051147747252794193043200 74831974920461544079752402531735515989880

4848 16307148112492799707206815760673202828585190069605262924 33636856667683167712885346040992580091966151133674222204
53647949068964670350753495389303768493316355031391840704 07689663921131745773006384878926915208985880840329704424

83231286976 1590612

5840 43493875233140378950672024766781801439773086758844870 74475813755377361216904151997914043561255285545967244
87734362685028948495519190020221259652712554180379503 65298566241487925506026010308598047350535195514348464

2037061443716557960233120 389907781458314719218

6624 33301854653004018709445764603598238453897624842252171 50274539029293506505805804051325843076536269387457987
14065184395426890419279201949902950413217648251363098 83310966780535764521858698595867980696282681538893566
49496826284424060000589698848419903839832345753230313 56849073497016998793160777247010724395882164482533686
683200744371137665623242712430446372631626633794372416 11594315273420541307856689678509416158156194715334

Table 3.7: Natural numbers n 2 R(APAL2) such that b(n) > b(n0) for n0
< n.
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Proof. Let n = 22`+1 � 2` for some ` � 1. Define

bi = [1(0`+21`+2)i0]2 = 22`i+4i+1 + (2`+2 � 1) ·
i�1X

j=0

22`j+4j+1

for i � 0. Clearly bi is an antipalindrome in base 2. We now compute ai = n · bi.

n · bi = (22`+1 � 2`) ·
 
22`i+4i+1 + (2`+2 � 1) ·

i�1X

j=0

22`j+4j+1

!

= (22`i+4i+2`+2 � 22`i+4i+`+1) + (23`+3 � 22`+2 � 22`+1 + 2`) ·
 

i�1X

j=0

22`j+4j+1

!

= (22`i+4i+2`+2 � 22`i+4i+`+1) + (22`+3 � 2`+2 � 2`+1 + 1) · 2` ·
 

i�1X

j=0

22`j+4j+1

!

= (22`i+4i+2`+2 � 22`i+4i+`+1) + (22`+3 � 2`+2 � 2`+1 + 1) ·
 

i�1X

j=0

22`j+4j+`+1

!

= [1`+102`i+4i+`+1]2 + [1`010`1]2 · [(102`+3)i�110`+1]2

= [1`+102`i+4i+`+1]2 + [(1`010`10)i�11`010`10`+1]2

= [1`+10(1`010`10)i�11`010`10`+1]2

= [1`+1(01`010`1)i0`+1]2
= ai.

Thus ai is also an antipalindrome in base 2 for each i � 0. Therefore, we have an infinite
set of base-2 antipalindromes ai and bi such that ai/bi = n for each n = 22`+1 � 2`.

Theorem 55. There are exactly 2i�1
pairs of base-2 antipalindromes a and b such that

n = a/b for n = 4i + 1.

Proof. Let n = 4i + 1 = [102i�11]2. Consider a base-2 antipalindrome b. Let hbik = � =
�1�2 · · · �` and note |�| = `.

If � has length ` < 2i, then hbnik = haik = �02i�`
�. Since antipalindromes in base 2

have binary representations of even length, if the center of haik is at least two zeros, then
a is not an antipalindrome in base 2. Therefore, our a here is not an antipalindrome in
base 2.
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If � has length ` = 2i, then hbnik = haik = ��. Here, a is an antipalindrome since

(��)R = �
R
�
R
= ��.

If � has length ` > 2i, then hbnik can be viewed as the binary addition of [�02i]2+ [�]2.
Since � was su�ciently long, there is some non-trivial overlap in the addition. Let j = 2i�`.
The overlap has length `� j and there are j symbols of � on each side of the overlap.

�1�2 · · · �j �j+1�j+2 · · · �` 0j

+ 0j �1�2 · · · �`�j �`� j + 1�`�j+2 · · · �`

Figure 3.1: Piecewise addition of [�02i]2 + [�]2.

Since b is an antipalindrome in base 2, we get that �1�2 · · · �j = �`�j+1�`�j+1 · · · �`
R
.

This means that for [�02i]2 + [�]2 to be an antipalindrome the overlap region must not
overflow to the left. We have additional information that further constrains this addition.
We know that �1 = 1, which implies that �` = �1 = 0. Additionally, we know that the
overlap region cannot overflow so �j+1 = 0, which subsequently implies that �`�j = �j+1 =
1. As well, the remaining addition [�j + 2�j + 3 · · · �`�1]2 + [�2�3 · · · �`�j�1]2 must not
overflow either.

�1�2 · · · �j 0 �j+2�j+3 · · · �`�1 0 0j

+ 0j 1 �2�3 · · · �`�j�1 1 �`�j+1�`� j + 2 · · · �`

= �1�2 · · · �j 1 �
0 1 �`�j+1�`+j+1 · · · �`

Figure 3.2: Piecewise addition of [�02i]2 + [�]2 with constraints.

From the result of the addition we see that we have a 1 at j+1 symbols from the front
and a 1 at j + 1 symbols from the back. Therefore, this cannot be an antipalindrome in
base 2.

Overall, given a base-2 antipalindrome b, we have that bn is an antipalindrome in base
2 if and only if hbik has length 2i. There are 2i�1 antipalindromes in base 2 of length 2i,
so for n = 4i + 1 there are exactly 2i�1 solutions to n = a/b for base-2 antipalindromes a
and b.

As with R(PAL2) before, the ratio set R(APAL2) is further examined by Bai et al. [3]:

Theorem 56.
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1. The set APAL2 is (R)-dense. [3, Thm. 14]

2. The lower asymptotic density of natural numbers not contained in R(APAL2) is d(N \
R(APAL2)) > 1/60. [3, Thm. 20]

As well, examining rational numbers p/q 2 R(APAL2) lead to a similar conjecture to
palindromes:

Conjecture 57. For all p � 4 there exists q < p such that p/q = A/B has a solution in
antipalindromes.

The smallest base-k antipalindromes a(p/q) and b(p/q) are generally even larger than
for palindromes in base k. For example, the smallest antipalindromes in binary a and b

such that a/b = 960/527 are a =

1234883355213990975204467140683475994799335003626682427756930130658317

0577845541101597875372665385744362733254798839009872167396310323997903

5640547077917392804795250182028753800174169116477800361082899344465944

5560841114705454770902394470289417027557405950223685182751710075724367

6048238590480983878073501486368624181821560779594741108091349800844282

5679592833678865846036391335428845975712764583827139150178213891564696

4718825426930262288729775928481863474655184300859716583115484263497126

2961706100246193708891656878945533178186000927736300244493837237642640

9349549969820438753161560915890436797199051312068851515357512387981254

4604809069807177738058155380014435541831993909182136704602824634226568

3451444571619483682225669077170879824401082095216563292486986361198314

2620371328966957512364597567158981492432747694245025717455343991855418

3265938974040814493629275353847375559776274838299843008368743842579023

9993356699741468657156369097163207591351729526813712761138142291367822

0794954727600533534516312312331038829749723349859042215544591191317981

8600650852792742320291709382397741664309047654075764338087057307850282

7509649077719055308633225064218430763198619435136533732460140152765958

4251780426995592541451396343086191791838699791485099128013340230974422

4295888043536875650860208149665479650685364073997568860181548161096442

1040420056468998183952438585617409445628800
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and b =

6778995085393471290966189407710331763117182780325642077373981029759719

6817964585005646670014527690492491254429989459981277418935995216113491

4401753229817354251323925478428679715539449212331258232194666193057841

4693367369268486086099602977526278890862009747582105117814075103195226

3306476428994567747340992534544426498124609696316964207959805677551426

1803598159882940633970606601781269054173197246634399293165820008902031

6737718749919252355839499107395229699409188818261152492727710488156099

5633532446143167547769824741711416509416900926219064883835960669142414

2991800355160116905376485444523543667957292098544632797848010713188761

4653483122795652791215082138204245109848549897281104617975922731639599

1446992596286123963884662538219309036035106918532592241048352211994912

6676413441308193843918155394716492151167271196532589094780898788622973

5220310826244887897319042827891322083355175414416846514690916719157767

1630197716289103982514651189635525006691265214904444011664593620321273

2905636890057095548855172797900598575813585472663700495749995394006004

5859822910643491695768029630454269344696542851020081314290408346219781

3516511082895230704684475092115760543809087940801596635484311046954792

6048836302361221555675894508400240357281195730340075421489898976286673

1290968738999306958368017654934455999074863197882487388704957092685676

966980593499127128065557431896223726923310.

3.2.9 Ternary Palindromes and Antipalindromes

While the majority of our investigation concerns PAL2 and APAL2, our approach is functional
in any base k. To give a brief example of the extensibility to other bases and future
examination possible, we compare the ratio sets R(A,B) for A,B 2 {PAL3, APAL3}. In
base 3 we have that N \ R(PAL3, APAL3) 6= ;. This is in contrast to R(PAL2, APAL2), which
contains no natural numbers. As well, the set APAL3 has antipalindromes in base 3 n with
base-3 representations hni3 of odd length since the middle symbol can be non-empty in an
antipalindrome in an odd base. Table 3.8 contains the number of natural numbers with
base-3 representations of length i in the ratio sets R(A,B) for A,B 2 {PAL3, APAL3}.
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i |N \R(PAL3, PAL3) \ [3i�1
, 3i)| |N \R(PAL3, APAL3) \ [3i�1

, 3i)|
0 2 2
1 4 4
2 11 9
3 25 23
4 67 62
5 176 129
6 450 348
7 1072 848

i |N \R(APAL3, PAL3) \ [3i�1
, 3i)| |N \R(APAL3, APAL3) \ [3i�1

, 3i)|
0 2 1
1 5 3
2 16 9
3 40 21
4 108 58
5 240 122
6 682 368
7 1637 803

Table 3.8: The amount of natural numbers with base-3 representation of length i in the
ratio sets of palindromes in base 3 and antipalindromes in base 3.
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3.3 Open Problems

We conclude by briefly noting several open problems related to the content of this chapter.

1. Derive sub-exponential bounds on b(p/q) for R(PALk,N) and R(APALk,N), or prove
that none exist.

2. Improve the bound in Theorem 48.

3. Design multiplication automata analogous toM(k, PALk, PALk, p/q) for squares, words
x that can be written as x = yy for some word y, or antisquares, words x that can
be written as x = yy for some word y.

4. Design multiplication automata analogous to M(k, PALk, PALk, p/q) for a context-
sensitive, but not context-free, language.

5. Prove or disprove Conjecture 51.

6. Prove or disprove d(N \R(APAL2)) > 0.

7. Prove or disprove Conjecture 57.

8. Examine d(N \R(A,B)) and d(N \R(A,B)) for k � 3 and A,B 2 {PALk, APALk}.
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