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Abstract

This thesis investigates the almost-sure stability of the single mode solution of a two
degree-of-freedom, noisy, nonlinear autoparametric system. While only the first mode
is forced in such a system, the nonlinear coupling often transfers energy to the second
mode. Equations of motion of autoparametric systems model the dynamics of a number
of structural and mechanical systems, such as, a randomly excited and initially deformed
shallow arch, a suspended elastic cable driven by planar excitation, or a vessel subject to
longitudinal wave action. To keep things as simple as possible, we consider a very simple
system, namely, a type of autoparametric vibration absorber with randomly excited base
- a pendulum attached to a mass-spring oscillator.

Under the assumption of small random perturbations and small damping, the maximal
Lyapunov exponent which determines the almost-sure stability of the single mode solution
is calculated. Putting the maximal Lyapunov exponent to zero provides the second-order
approximation of the almost-sure stability boundary in terms of the excitation intensity
and the dissipation coefficients. A plot of this stability boundary reveals several trends of
practical importance to engineering applications.
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Chapter 1

Introduction

1.1 Introduction to the Problem

Systems in which the variables of interest, referred to as state variables, evolve with time
according to a governing rule are called dynamical systems. These systems are vastly
studied as they occur in a wide variety of scientific, engineering and mathematical fields,
and even in other technical fields such as economics and finance. Typical examples of state
variables across these fields include the concentration of a chemical in a solution during
a reaction, the population of a species in a given geographical region, the motion of a
physical structure (e.g., a building) under the action of an external driving force (e.g., an
earthquake), or the price of a company’s stocks.

Mathematically, the rules that determine how the state variables of dynamical systems
evolve with time are typically modelled as initial value problems (IVPs) of the form

ẋ(t) = f
(
x(t), t

)
, t ≥ 0, x(0) = x0 ∈ Rn, (1.1)

where f : Rn × R → Rn and x(t) is the state variable. In this thesis, we concern our-
selves with a mechanical dynamical system modelled by a pair of second order differential
equations of the form

q̈1(t) + ζ1q̇1(t) + f1
(
q1(t), q2(t)

)
= β(t)

q̈2(t) + ζ2q̇2(t) + f2
(
q1(t), q2(t)

)
= 0, t ≥ 0.

(1.2)

Here, q1(t) and q2(t) are the modes of the mechanical system and are equivalently known
as the generalized coordinates. It is worth noting that the system of two second order
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differential equations (1.2) is equivalent to four first order differential equations of the
form (1.1). That is, by an appropriate change of variables, (1.2) can be written in the
form of (1.1) with n = 4. Since f1 and f2 are each functions of both q1 and q2, q1 acts
as a parameter in the dynamics of q2 and vice versa. This effect is known as coupling
and systems whose dynamics are modelled by equations such as (1.2) are typically called
autoparametric systems. This type of system often occurs in many branches of physics
and engineering where the constants ζ1 and ζ2 represent damping coefficients and β(t) is
an excitation or forcing given to the system, in particular, to the first mode q1. We are
interested in the situation where f1 and f2 are nonlinear functions, so there is therefore
nonlinear coupling in the system which can lead to a transfer of energy from the forced
mode q1 to the unforced mode q2. In particular, these functions are typically of the form
fi(q1, q2) = ω2

i qi + gi(q1, q2), where ω1 and ω2 are parameters that represent the natural
frequencies of q1 and q2 respectively. As will be explained in more detail shortly, it is
the resonant and commensurable relationships between these natural frequencies that is
the primary cause of the transfer of energy. We are then interested in analyzing how this
energy transfer affects the stability of the system. The techniques used in performing this
analysis depend greatly upon the nature of the excitation β(t).

There have been several studies on periodically excited autoparametric systems; for
example, see [5, 10, 11, 26, 36, 39]. The manner in which the excitation is applied deter-
mines the resonant frequency and hence the mode in resonance. If the mechanical system
is directly excited (i.e., external excitation), then a mode whose natural frequency is close
to the frequency of the excitation, is in resonance. On the other hand, if the effect of
excitation is through modulating a parameter in the system (i.e., parametric excitation),
then a mode is said to be in resonance if the excitation frequency is close to twice the
natural frequency of the mode. In the case of parametric excitation of finite degree-of-
freedom systems, a combination resonance can also occur when the excitation frequency
is close to some linear combination of the natural frequencies of multiple modes. Thus, in
contrast with the case of external excitation for which a small excitation produces a large
response only when the excitation frequency is close to a linear natural frequency, a small
parametric excitation can produce a large response when the frequency of the excitation is
close to twice the natural frequency of any mode or some linear combination of the natural
frequencies of the system.

The two degree-of-freedom nonlinear system (1.2) exhibits another interesting phe-
nomenon under periodic excitation called internal resonance. In such a system, the internal
resonance phenomenon occurs when two or more of the natural frequencies are commen-
surable or nearly commensurable. Depending on the order of the nonlinearity present in
the system, the commensurable relationships of the linear natural frequencies can result
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in strong coupling of the corresponding modes. For a system with quadratic nonlineari-
ties, such as the one studied in this thesis, strong coupling between the modes may exist
when the natural frequencies of the forced and unforced mode are in one-to-two internal
resonance leading to the most fascinating situations. When the amplitude of the periodic
excitation is increased, thereby increasing the energy in the forced mode, it reaches a cer-
tain value at which saturation occurs and the energy is transferred to the unforced mode.
This causes the parametric excitation of the unforced mode which may or may not be
desirable depending on the particular system being modelled by (1.2), and has an effect
on the stability of the system.

In this thesis, we concern ourselves with the scenario where the system is given a
noisy (non-deterministic) excitation. In other words, we are interested in investigating the
random vibrations of a nonlinear, stochastically forced system, where the forcing β(t) is
a stationary random process. In particular, we would like to find out the value of the
intensity of the noisy input at which energy saturation could potentially occur, affecting
the stability of the system. Stability of a random dynamical system can be defined in
different ways, one of the strongest of which is that of almost-sure stability. Although
several papers [1, 23, 30, 31] have dealt with some aspects of these questions, none have
given completely satisfactory answers. This is primarily due to the interactions between
the excitation noise and the nonlinearities, and the manner in which the subsystem is
parametrically excited by the original excitation noise as well as the stationary motion
of the primary system. Sufficient almost-sure stability conditions were derived in [1] for
the stability of the rest mode of a vibration-isolating suspension subjected to a broadband
random base excitation. Onu et al. [31] applied a nonstandard method of stochastic
averaging to reduce the dimension of a randomly-perturbed nonlinear vibration absorber,
and numerically solved for the stationary probability distribution functions for the reduced
Markov process. We would like to derive an analytical expression that states the condition
on the intensity of the noisy input for the random dynamical system (1.2) to be almost-
surely stable.
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1.2 Outline of the Thesis

The following presents the outline for the remainder of the thesis. In Chapter 2, a model
of the system of interest in this thesis is introduced and the equations of the form of (1.2)
that govern the dynamics of this system are derived. A brief exposition into the results
for periodic excitation is then presented. An introduction to the mathematical tools and
techniques fundamental to the analysis of the dynamics and stability of linear stochastic
systems is presented in Chapter 3. These concepts are essential in the study of the response
and stability of dynamical systems subject to random excitations. They are then applied,
in Chapter 4, to the model presented in Chapter 2 to analytically derive the condition for
the almost-sure stability of the single mode solution of the stochastic system. Further, in
Chapter 4, a perturbative technique based on [4, 24, 33] is utilized, which involves solving
a series of partial differential equations to obtain successive terms in the expansion for the
top Lyapunov exponent - a quantity that determines the almost-sure stability of stochastic
systems. Chapter 5 closes the thesis by presenting relevant conclusions.
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Chapter 2

Model of the Autoparametric
Vibration Absorber

This chapter introduces the model being studied in this thesis and presents a derivation of
the equations of motion that govern the dynamics of the system. Equations of motion of
autoparametric systems model the dynamics of several mechanical and structural systems.
In this thesis, the model, presented in Figure 2.1, is that of a simple autoparametric
vibration absorber, just as in [10]. It consists of an oscillator of massmo vertically attached
to a fixed horizontal surface by a spring with stiffness k and a damper with damping
coefficient co. Attached to the oscillator is a pendulum with a massless rod of length l and
a bob of mass mp that makes an angle ϕ with the vertical and has some torsional damping
cp present in the joint where the pendulum is attached to the oscillator. The oscillator is
given a random excitation in the form of a Gaussian white noise process Ξ(t). The response
of the oscillator, represented by y(t) - its displacement from its equilibrium position, will
therefore be random and so will that of the pendulum ϕ(t).

The oscillator can be thought of as representing a car moving on a road with a white
noise profile. As the nonlinear coupling within the system results in autoparametric ex-
citation of the pendulum, it acts as a vibration absorber that reduces the impact of the
oscillations felt by the people in the car. In other words, the mass-spring oscillator repre-
sents the primary system being subjected to a random external excitation in the form of a
Gaussian white noise process, and the pendulum is the parametrically excited absorber of
vibrations from the primary system.
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Figure 2.1: The autoparametric vibration absorber model

2.1 Derivation of Equations of Motion

While one could possibly use the Newtonian approach to derive the equations of motion for
the system in Figure 2.1, the Lagrangian approach employed here is the go-to method for
dealing with more complex systems, particularly those involving pendulums. This approach
requires that we find a quantity creatively known as the Lagrangian L and use the Euler-
Lagrange equation to evaluate the equations of motion of the system. The Euler-Lagrange
equation is given by

d

dt

(
∂L
∂q̇j

)
− ∂L

∂qj
= Λj , (2.1)

where L = T − V

T : Total kinetic energy in the system

V : Total potential energy in the system

qj: Generalized coordinates

Λj: Non-conservative forces in the generalized coordinates.
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The total kinetic energy in the system is

T =
1

2
moẏ

2 +
1

2
mpv

2
p .

The velocity of the bob vp, expressed in terms of its vertical and horizontal components, is

v2p = (ẏ − lϕ̇ sinϕ)2 + (lϕ̇ cosϕ)2

= ẏ2 − 2lẏϕ̇ sinϕ+ l2ϕ̇2.

The total kinetic energy then becomes

T =
1

2
(mo +mp)ẏ

2 +
1

2
mp l

2ϕ̇2 −mp lẏ ϕ̇ sinϕ .

The total potential energy in the system is

V = mp gl(1− cosϕ) +
1

2
ky2.

Note that y represents the displacement of the system from the equilibrium position after
the static deflection of the spring has been accounted for. The Lagrangian then becomes

L = T − V

=
1

2
(mo +mp)ẏ

2 +
1

2
mp l

2ϕ̇2 −mp lẏ ϕ̇ sinϕ−mp gl(1− cosϕ)− 1

2
ky2. (2.2)

The Euler-Lagrange equation (2.1) can now be used to obtain the system equations of
motion by considering each generalized coordinate. Let q1 = y. Equation (2.1) becomes

d

dt

(
∂L
∂ẏ

)
− ∂L

∂y
= Λ1 .

Let us evaluate each term individually. Considering the non-conservative forces in the
system in the generalized y-coordinate, Λ1 = Ξ(t)− coẏ. We have

∂L
∂ẏ

= (mo +mp)ẏ −mplϕ̇ sinϕ

∴
d

dt

(
∂L
∂ẏ

)
= (mo +mp)ÿ −mpl(ϕ̈ sinϕ+ ϕ̇2 cosϕ)

and

∂L
∂y

= −ky .
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Putting it all together, the equation of motion for the generalized coordinate y, which
governs the motion of the oscillator, is obtained as follows:

(mo +mp)ÿ −mpl(ϕ̈ sinϕ+ ϕ̇2 cosϕ) + ky = Ξ(t)− coẏ

(mo +mp)ÿ + coẏ + ky −mpl(ϕ̈ sinϕ+ ϕ̇2 cosϕ) = Ξ(t) . (2.3)

Similarly, letting q2 = ϕ in (2.1) gives

d

dt

(
∂L
∂ϕ̇

)
− ∂L

∂ϕ
= Λ2 .

We again evaluate each term individually. Considering the non-conservative forces in the
system in the generalized ϕ-coordinate, Λ2 = −cpϕ̇. We have

∂L
∂ϕ̇

= mpl
2ϕ̇−mplẏ sinϕ

∴
d

dt

(
∂L
∂ϕ̇

)
= mpl

2ϕ̈−mpl(ẏϕ̇ cosϕ+ ÿ sinϕ)

and

∂L
∂ϕ

= −mplẏϕ̇ cosϕ−mpgl sinϕ .

Once again putting it all together, we obtain the equation of motion for the generalized
coordinate ϕ, which governs the motion of the pendulum, as follows:

mpl
2ϕ̈−mpl(ẏϕ̇ cosϕ+ ÿ sinϕ) +mplẏϕ̇ cosϕ+mpgl sinϕ = −cpϕ̇

mpl
2ϕ̈+ cpϕ̇+mpl(g sinϕ− ÿ sinϕ) = 0 . (2.4)

2.2 Nondimensionalization of Equations of Motion

Nondimensionalization is the process of removing physical dimensions from an equation
using fitting variable substitutions. Doing this is good practice as it aids in performing
analyses and generalizing results irrespective of the original physical units in the system. It
also facilitates the comparison of the magnitude of different parameters in the equation and
their subsequent scaling, if necessary, and oftentimes simplifies the equation by reducing
the number of terms in it.
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The goal of this section is to nondimensionalize the equations of motion (2.3) and (2.4)
of the system, derived in the previous section. We begin by recognizing that the variables
in the system are y, ϕ and t, where only y and t need to be nondimensionalized since ϕ is
already dimensionless. We then define dimensionless parameters

η̂
def
=

y

ys
and τ

def
=

t

ts
, (2.5)

where ys and ts are parameters of such dimension that η̂ and τ , respectively, are dimen-
sionless. Using these definitions and the chain rule, we obtain dimensionless versions of
the derivatives in the equations of motion as follows:

ẏ =
dy

dt
=

dτ

dt

dy

dτ
=

1

ts

d(ysη̂)

dτ
=

ys
ts

dη̂

dτ

ÿ =
d

dt
(ẏ) =

dτ

dt

d

dτ

(
ys
ts

dη̂

dτ

)
=

ys
t2s

d2η̂

dτ 2

ϕ̇ =
dϕ

dt
=

dτ

dt

dϕ

dτ
=

1

ts

dϕ

dτ

ϕ̈ =
d

dt
(ϕ̇) =

dτ

dt

d

dτ

(
1

ts

dϕ

dτ

)
=

1

t2s

d2ϕ

dτ 2
.

(2.6)

Substituting these in (2.3) and normalizing the coefficient of the highest derivative to unity,

(mo +mp)ÿ + coẏ + ky −mpl(ϕ̈ sinϕ+ ϕ̇2 cosϕ) = Ξ(t)

(mo +mp)
ys
t2s

d2η̂

dτ 2
+

coys
ts

dη̂

dτ
+ k ysη̂ −mpl

(
1

t2s

d2ϕ

dτ 2
sinϕ+

(
1

ts

dϕ

dτ

)2

cosϕ

)
= Ξ(t)

η̂′′ +
cots

mo +mp

η̂′ +
kt2s

mo +mp

η̂ − mpl

(mo +mp)ys
(ϕ′′ sinϕ+ ϕ′2 cosϕ)

=
t2s

(mo +mp)ys
Ξ(tsτ) .

Now, let us introduce more definitions:

ys
def
= l, t2s

def
=

mo +mp

k
, ω2

o
def
=

k

mo +mp

=⇒ ts =
1

ωo

. (2.7)
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Substituting these,

η̂′′ +
co

mo +mp

√
mo +mp

k
η̂′ + η̂ − mpl

(mo +mp)l
(ϕ′′ sinϕ+ ϕ′2 cosϕ)

=
1

(mo +mp)l

mo +mp

k
Ξ(τ/ωo)

η̂′′ +
co√

k(mo +mp)
η̂′ + η̂ − mp

mo +mp

(ϕ′′ sinϕ+ ϕ′2 cosϕ) =
Ξ(τ/ωo)

kl
.

At this stage, the equation has been nondimensionalized, however, introducing further
definitions helps simplify it:

2ζ̂o
def
=

co√
k(mo +mp)

, R
def
=

mp

mo +mp

, ξ̂(τ)
def
=

Ξ(τ/ωo)

kl
, θ̂(τ)

def
= ϕ(τ/ωo). (2.8)

For convenience, t will now be used to represent the dimensionless time parameter τ and
the dot notation will be employed for the derivatives. The equation of motion for the
oscillator in dimensionless coordinates then becomes

¨̂η + 2ζ̂o ˙̂η + η̂ −R
(
¨̂
θ sin θ̂ +

˙̂
θ
2

cos θ̂
)
= ξ̂(t) . (2.9)

Following the same procedure for (2.4), we start by replacing the derivatives with their
dimensionless counterparts and normalizing the coefficient of the highest derivative to
unity:

mpl
2ϕ̈+ cpϕ̇+mpl(g sinϕ− ÿ sinϕ) = 0

mpl
2

t2s

d2ϕ

dτ 2
+

cp
ts

dϕ

dτ
+mpl

(
g sinϕ− ys

t2s

d2η̂

dτ 2
sinϕ

)
= 0

ϕ′′ +
cpts
mp l2

ϕ′ +
t2s
l

(
g sinϕ− ys

t2s
η̂′′ sinϕ

)
= 0

ϕ′′ +
cpts
mp l2

ϕ′ +
gt2s
l

sinϕ− ys
l
η̂′′ sinϕ = 0

θ̂′′ +
cp
√
mo +mp

mpl2
√
k

θ̂′ +
gt2s
l

sin θ̂ − η̂′′ sin θ̂ = 0,

where we have used the following previous definitions that were made:

ts
def
=

√
mo +mp

k
, ys

def
= l and θ̂(τ)

def
= ϕ(τ/ωo).
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Introducing more definitions, and remembering that ts has also been equivalently defined

as follows: ts
def
=

1

ωo

,

2ζ̂p
def
=

cp
√
mo +mp

mpl2
√
k

ω2
p

def
=

g

l
and q

def
=

ωp

ωo

∴
gt2s
l

=
ω2
p

ω2
o

= q2 .

(2.10)

Once again, t will be used to represent the dimensionless time and the dot notation will be
employed for the derivatives. The equation of motion for the pendulum in dimensionless
coordinates then becomes

¨̂
θ + 2ζ̂p

˙̂
θ + q2 sin θ̂ − ¨̂η sin θ̂ = 0 . (2.11)

In summary, the equations governing the dynamics of the system in dimensionless
coordinates are

¨̂η + 2ζ̂o ˙̂η + η̂ −R
(
¨̂
θ sin θ̂ +

˙̂
θ
2

cos θ̂
)
= ξ̂(t)

¨̂
θ + 2ζ̂p

˙̂
θ +

(
q2 − ¨̂η

)
sin θ̂ = 0,

where

ω2
p

def
=

g

l
, ω2

o
def
=

k

mo +mp

, q
def
=

ωp

ωo

,

R
def
=

mp

mo +mp

, ζ̂o
def
=

co

2
√
k(mo +mp)

, ζ̂p
def
=

cp
√
mo +mp

2mpl2
√
k

,

ξ̂(t)
def
=

Ξ(t/ωo)

kl
, η̂(t)

def
=

y(t/ωo)

l
, θ̂(t)

def
= ϕ(t/ωo) ,

for all t ≥ 0.
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2.3 Periodic Excitation

For autoparametric systems that are excited periodically, as mentioned in Chapter 1, things
are most interesting when the natural frequencies of the oscillator and the pendulum are
in 2:1 internal resonance (i.e., when q = 1

2
). In resonance, the pendulum is principally

excited by the energy from the oscillator. When the external energy given to the oscillator
by the excitation is small enough, its effect on the hanging pendulum is small compared
to the stability of the same. As the external energy increases, a saturation takes place at
a certain threshold, above which the pendulum noticeably moves. This phenomenon can
be demonstrated by performing numerical simulations on the equations of motion (2.9)

and (2.11) of the system, with ξ̂(t)
def
= A cosµt. We stay close to the point of resonance

by letting the ratio of the natural frequencies of the oscillator and pendulum be close to
the 2:1 ratio for internal resonance, and the excitation frequency be around the natural
frequency of the oscillator (i.e., q ≈ 1

2
and µ ≈ 1). Choosing reasonable values for the

other system parameters (see Table 2.1), the amplitude A of the excitation is progressively
increased and the corresponding amplitudes αo and αp of the steady-state response of each

mode η̂(t) and θ̂(t), respectively, are observed and recorded.

From Figure 2.2, it is clear that saturation occurs at the bifurcation point in the graph
at a critical value Ac of the excitation amplitude. To the left of the bifurcation point is
the single mode solution of the system, where only the oscillator responds to the external
excitation (a locked-mass system). To the right of the same point is the coupled mode
solution where both the oscillator and pendulum are in motion. In the regime of the
single mode solution, the system is effectively a periodically excited linear mass-spring
oscillator. For this type of system, it is well known [14] that the amplitude of the steady-
state response and that of the periodic excitation have a linear relationship. That is,
αo = γA where γ is a constant that depends on the other parameters in the system: ζ̂o
and µ. This relationship is clearly depicted in the figure as αo increases linearly with A.
Although the numerical simulations did not capture it, in the regime of the coupled mode
solution, the oscillator maintains a constant steady-state response amplitude since it is
now saturated with energy. In the subsequent chapters, we seek to analytically find an
analogue of Ac when the excitation ξ̂(t) is a Gaussian white noise process by analyzing the
stochastic stability of the single mode solution.
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Parameter Value Used

ζ̂o 0.02

ζ̂p 0.05
R 1

6

q2 0.26
µ 1.2

Table 2.1: Parameter values based on [10] used for numerical simulation
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Figure 2.2: Variation of steady-state response amplitudes with excitation amplitude for
periodic excitation
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Chapter 3

Dynamics and Stability of Linear
Stochastic Systems

This chapter is aimed at providing a description of the mathematical concepts that are
fundamental to the analysis of the dynamics and stability of linear stochastic systems.
These are the mathematical tools required for the analysis of the system introduced in the
preceding chapter and shall therefore be greatly employed in the subsequent chapter where
this system shall be investigated. It should be noted that only as much detail as is required
for this investigation is covered. Readers interested in seeing more details or proofs are
referred to introductory texts on the subject matter such as [2, 9, 15, 27, 29, 35].

3.1 Fundamental Concepts

3.1.1 Markov and Diffusion Processes

A stochastic process X(t) is said to be a Markov process if, for time instances t1 < t2 <
... < tn,

P
{
X(tn) ≤ xn | X(tn−1) = xn−1, ..., X(t1) = x1

}
= P

{
X(tn) ≤ xn | X(tn−1) = xn−1

}
.

(3.1)

This property is called the Markov property. It states that the probability that the
process takes a value less than xn at time tn depends only on the value of the process at
time tn−1; it is independent of the values at the times tn−2, tn−3, ..., t1. In other words, the
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state of the process at the past times tn−2, tn−3, ..., t1 has no effect on its probable evolution
in the future time tn given that its state at the current time tn−1 is known.

In terms of probability distribution functions, the Markov property implies

F1|n−1(xn, tn|xn−1, tn−1;xn−2, tn−2; ...;x1, t1) = F1|1(xn, tn|xn−1, tn−1)

where the numbers in the subscript of the function denote the number of random variables
being jointly considered. In terms of probability density functions,

p1|n−1(xn, tn|xn−1, tn−1;xn−2, tn−2; ...;x1, t1) = p1|1(xn, tn|xn−1, tn−1).

Consider a Markov process X(t) with initial condition X(t0) = x0. For the second-order
joint density function p2|1, we have

p2|1(x2, t2;x1, t1|x0, t0) = p1|2(x2, t2|x1, t1;x0, t0) p1|1(x1, t1|x0, t0)

= p1|1(x2, t2|x1, t1) p1|1(x1, t1|x0, t0)

where the Markov property was invoked in the second line. In general, for pn|1, we have

pn|1(xn, tn; ...;x1, t1|x0, t0)

= p1|1(xn, tn|xn−1, tn−1) p1|1(xn−1, tn−1|xn−2, tn−2) · · · p1|1(x1, t1|x0, t0)

=
n∏

i=1

p1|1(xi, ti|xi−1, ti−1). (3.2)

So, for a Markov process with a known initial condition, any finite dimensional density
function pn|1 can be written solely in terms of the particular conditioned density function
p1|1. In other words, the probabilistic nature of the Markov process is completely described
by p1|1 which is called the transition density function. Henceforth, we shall simplify the
notation by dropping the subscript; p1|1 ≡ p. The mean and autocorrelation functions of
the process, conditioned on the initial condition, are then given by

µX(t) = E[X(t) | X(t0) = x0]

=

∫ ∞

−∞
x p(x, t|x0, t0) dx, t0 ≤ t, (3.3a)

RXX(t1, t2) = E[X(t1)X(t2) | X(t0) = x0]

=

∫ ∞

−∞

∫ ∞

−∞
x1x2 p(x2, t2|x1, t1) p(x1, t1|x0, t0) dx1dx2, t0 ≤ t1 ≤ t2. (3.3b)
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A Markov process is said to be homogeneous in time if its transition density p(x, t|x0, t0)
is stationary. That is, for all τ ∈ R,

p(x, t+ τ |x0, t0 + τ) = p(x, t|x0, t0).

In other words, the transition density is time-invariant and therefore depends on time only
through the difference t− t0;

p(x, t|x0, t0) = p(x, t− t0|x0, 0), t0 ≤ t. (3.4)

Another common notation is p(t, x0, x)
(
or pt(x0, x)

)
. It represents the probability of

transition from x0 to x in time t, irrespective of the actual position of the interval of length
t on the time axis.

For some time-homogeneous Markov processes, it happens that

lim
(t−t0)→∞

p(x, t|x0, t0) = ps(x), (3.5)

where ps depends only on x and is called the stationary density function. This means that,
if the stationary density function exists, the statistical properties of the process eventually
become static. So, for the stationary mean, we have

µX = lim
(t−t0)→∞

E[X(t) | X(t0) = x0]

=

∫ ∞

−∞
x ps(x) dx.

(3.6a)

And for the stationary autocorrelation,

RXX(t2 − t1) = lim
(t1−t0)→∞

E[X(t1)X(t2) | X(t0) = x0]

=

∫ ∞

−∞

∫ ∞

−∞
x1x2 p(x2, t2 − t1|x1, 0) ps(x1) dx1dx2

∴ RXX(τ) = lim
t0→−∞

E[X(t)X(t+ τ) | X(t0) = x0]

=

∫ ∞

−∞

∫ ∞

−∞
x1x2 p(τ, x1, x2) ps(x) dx1dx2, (3.6b)

where τ = |t2 − t1| and RXX(−τ) = RXX(τ).
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A diffusion process is a special case of a Markov process. Many physical, biological,
economic, and social phenomena are either well approximated or reasonably modelled
by diffusion processes. Also known as a continuous or diffusive Markov process, it is a
Markov process whose sample paths are continuous functions of time. This property can
be expressed as

lim
∆t↓0

1

∆t
P
{∣∣X(t+∆t)−X(t)

∣∣ > ϵ | X(t) = x
}
= 0, ∀ϵ > 0, (3.7)

which indicates that large changes in X(t), of order exceeding a fixed ϵ, are very unlikely
over sufficiently small time intervals. Diffusion processes are completely characterized by
two parameters, known as infinitesimal parameters or characterizing functions, that de-
scribe the mean and variance of the infinitesimal displacements. Denoting the infinitesimal
displacement in time ∆t as ∆X(t) = X(t+∆t)−X(t), we define

lim
∆t↓0

1

∆t
E[∆X(t) | X(t) = x] = b(x, t), (3.8a)

lim
∆t↓0

1

∆t
E[{∆X(t)}2 | X(t) = x] = σ2(x, t). (3.8b)

The function b(x, t) is called the drift coefficient or the infinitesimal mean and σ2(x, t)
the diffusion coefficient or the infinitesimal variance. They are continuous functions of x
and t, and σ2(x, t) ≥ 0. For a time-homogeneous diffusion process, these functions are
independent of t; so, b(x, t) = b(x) and σ2(x, t) = σ2(x).

In the multivariate case where x ∈ Rn, the analog of the infinitesimal relations (3.8a)
and (3.8b) are

lim
∆t↓0

1

∆t
E[∆Xi(t) | X(t) = x] = bi(x, t), i = 1, 2, ..., n, (3.9a)

and

lim
∆t↓0

1

∆t
E[{∆Xi(t)}{∆Xj(t)} | X(t) = x] = aij(x, t)

= σi(x, t)σj(x, t), i, j = 1, 2, ..., n,
(3.9b)

where ∆Xi(t) = Xi(t +∆t)−Xi(t) and x = (x1, x2, ..., xn). b(x, t) is the drift vector and
a(x, t) is the diffusion matrix, which is symmetric and positive definite. Again, they are
independent of t when the vector-valued diffusion process X(t) =

(
X1(t), X2(t), ..., Xn(t)

)
is time-homogeneous.
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3.1.2 The Generator of a Diffusion Process

The generator of a diffusion process is a second-order partial differential operator associated
with it. Let {X(t), t ≥ 0} be a time-homogeneous diffusion process. The infinitesimal
generator G of X(t) is defined by

Gf(x) = lim
t↓0

Ex

[
f
(
X(t)

)]
− f(x)

t
(3.10)

where Ex[·] denotes expectation when the initial value of X(t) is X(0) = x; that is, Ex[•] =
E[•|X(0) = x]. The quantity Gf(x) is interpreted as the mean infinitesimal rate of change
of f

(
X(0)

)
in the case where X(0) = x, and can be formally written for every continuous

twice partially differentiable function f(x). It is determined by the drift and diffusion
coefficients b(x) and σ2(x) and, as such, every diffusion process is uniquely determined by
its generator G. The generator of a time-homogeneous diffusion process, expressed in terms
of the infinitesimal parameters, is

G = b(x)
∂

∂x
+

1

2
σ2(x)

∂2

∂x2
. (3.11)

When X(t) is vector-valued with x ∈ Rn, drift vector b(x) and diffusion matrix a(x), the
generator is

G =
n∑

i=1

bi(x)
∂

∂xi

+
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj

. (3.12)

3.1.3 Evolution Equations for Diffusion Processes

In this section, we introduce equations that determine the time evolution of diffusion
processes. We commence with an important equation for Markov processes known as the
Chapman-Kolmogorov equation:

p(x3, t3|x1, t1) =

∫ ∞

−∞
p(x3, t3|x2, t2) p(x2, t2|x1, t1) dx2, t1 ≤ t2 ≤ t3. (3.13)

It is essentially a consistency condition on the transition density function p for any Markov
process X(t). Based on this equation, one can derive two differential equations for the so-
called “forward” and “backward” time evolution of the transition density p(x, t|x0, t0) of a
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diffusion process. The first, known as the Fokker-Planck or Forward Kolmogorov equation,
is given by

∂

∂t
p(x, t|x0, t0) = − ∂

∂x

[
b(x, t) p(x, t|x0, t0)

]
+

1

2

∂2

∂x2

[
σ2(x, t) p(x, t|x0, t0)

]
. (3.14a)

Given the initial condition p(x, t = t0|x0, t0) = δ(x − x0), it constitutes a t-evolution
equation for p(x, t|x0, t0), for fixed x0 and t0, for the diffusion process with characterizing
functions b(x, t) and σ2(x, t). The second is known as the Backward Kolmogorov equation
and is given by

− ∂

∂t0
p(x, t|x0, t0) = b(x0, t0)

∂

∂x0

p(x, t|x0, t0) +
1

2
σ2(x0, t0)

∂2

∂x2
0

p(x, t|x0, t0). (3.14b)

Given the final condition p(x, t|x0, t0 = t) = δ(x − x0), it constitutes a t0-evolution equa-
tion for p(x, t|x0, t0), for fixed x and t, for the same diffusion process with characterizing
functions b(x, t) and σ2(x, t).

For a time-homogeneous process, since the transition density depends on time only via
the time difference t − t0, it is desirable to express the time derivatives in the evolution
equations with respect to this difference. Let τ = t− t0 so that

p(x, t|x0, t0) = p(x, t− t0|x0, 0) = p(τ, x0, x).

Then, by the chain rule,

∂

∂t
p(τ, x0, x) =

∂

∂τ
p(τ, x0, x)

∂τ

∂t
=

∂

∂τ
p(τ, x0, x)

∂

∂t0
p(τ, x0, x) =

∂

∂τ
p(τ, x0, x)

∂τ

∂t0
= − ∂

∂τ
p(τ, x0, x).

These can now be substituted into (3.14a) and (3.14b) to obtain the evolution equations
for time-homogeneous processes. The forward Kolmogorov equation is

∂

∂τ
p(τ, x0, x) = − ∂

∂x

[
b(x) p(τ, x0, x)

]
+

1

2

∂2

∂x2

[
σ2(x) p(τ, x0, x)

]
(3.15a)

and the backward Kolmogorov equation is

∂

∂τ
p(τ, x0, x) = b(x0)

∂

∂x0

p(τ, x0, x) +
1

2
σ2(x0)

∂2

∂x2
0

p(τ, x0, x). (3.15b)
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If a stationary density exists, then, for the forward equation,

lim
τ→∞

p(τ, x0, x) = ps(x) and lim
τ→∞

∂

∂τ
p(τ, x0, x) = 0, (3.16a)

and for the backward equation,

lim
τ→∞

p(τ, x0, x) = ps(x0) and lim
τ→∞

∂

∂τ
p(τ, x0, x) = 0. (3.16b)

The evolution equations then become

0 = − d

dx

[
b(x) ps(x)

]
+

1

2

d2

dx2

[
σ2(x) ps(x)

]
(3.17a)

and

0 = b(x0)
d

dx0

ps(x0) +
1

2
σ2(x0)

d2

dx2
0

ps(x0). (3.17b)

In general, for a multidimensional time-homogeneous diffusion process X(t) =
(
X1(t),

X2(t), ..., Xn(t)
)
with transition density p(t, x, y); x, y ∈ Rn, the forward and backward

Kolmogorov equations can be concisely written in terms of the generator G of the process
(defined in (3.12)) as

∂p

∂t
= G∗

y p (3.18a)

and
∂p

∂t
= Gx p (3.18b)

respectively. The subscript on the generator represents the variable it operates on, and G∗

is the adjoint of G defined as

G∗f(w) = −
n∑

i=1

∂

∂wi

[
bi(w) f(w)

]
+

1

2

n∑
i,j=1

∂2

∂wi∂wj

[
aij(w) f(w)

]
, w ∈ Rn. (3.19)

For the case when a stationary density ps exists, we have

G∗ps(y) = 0 (3.20a)

and
Gps(x) = 0. (3.20b)
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3.1.4 Stochastic Differential Equations

The concept of stochastic differential equations arises from the study of systems driven
by noise. These systems, known as random or stochastic dynamical systems, are usually
modelled by equations of the form

dX(t)

dt
= f

(
t,X(t), ξ(t)

)
, (3.21a)

where ξ(t) is the underlying random process driving the system. Equation (3.21a) can be
studied by analyzing an equivalent integral equation

X(t)−X(0) =

∫ t

0

f
(
s,X(s), ξ(s)

)
ds. (3.21b)

Here, we are concerned with the particular case where (3.21a) takes the form

dX(t)

dt
= b
(
X(t), t

)
+ σ
(
X(t), t

)
ξ(t), (3.22)

where ξ(t) now specifically represents the white noise process. Although white noise is
just a mathematical abstraction, it serves as a reasonably good approximation of several
random input processes that occur naturally in physical or biological contexts. It can
formally be seen as the derivative of the standard Wiener process (or Brownian motion)
W (t) — formally, because Brownian motion paths, although almost-surely continuous, are
nowhere differentiable. So, using ξ(t) = dW (t)/dt, (3.22) can be written as

dX(t) = b
(
X(t), t

)
dt+ σ

(
X(t), t

)
dW (t). (3.23a)

This is what is known as a stochastic differential equation (SDE). The differential nota-
tion used in SDEs is an informal shorthand notation for the equivalent stochastic integral
equation (SIE)

X(t) = X(0) +

∫ t

0

b
(
X(s), s

)
ds+

∫ t

0

σ
(
X(s), s

)
dW (s) (3.23b)

since, in stochastic calculus, integrals are well defined but not differentials. The stochastic
differential notation makes the rules of stochastic calculus easy to use hence its wide em-
ployment. The solution of an SDE determines a diffusion process with infinitesimal mean
b(x, t) and infinitesimal variance σ2(x, t). The stochastic integral

∫
σ
(
X(t), t

)
dW (t) in-

volved in the solution has two prominent versions namely: the Itô integral (I-integral) and
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the Stratonovich integral (S-integral). More precisely, (3.23a) and (3.23b) constitute an Itô
SDE and SIE, and the solution is an Itô diffusion process. The Stratonovich interpretation
is distinguished by the addition of a circle (◦) before the noise term; that is,

σ
(
X(t), t

)
◦ dW (t) =⇒

∫
σ
(
X(t), t

)
◦ dW (t).

The S-integral has the benefit that, unlike the I-integral, it satisfies most of the con-
ventional rules of ordinary calculus with respect to transformation formulas, such as the
chain rule, making its manipulation easier using familiar operations. This, however, causes
it to suffer the loss of a useful property that the I-integral enjoys, namely: the I-integral is
a martingale. Due to the nice properties of martingales, most theoretical work is generally
done with respect to I-integrals. In fact, manipulations of the S-integral are typically re-
duced to calculations of related I-integrals as the S-integral only differs from the I-integral
by a corrective term. We now state the precise relationship between the two integrals as
follows:

The solution to the Stratonovich SDE

dX(t) = b
(
X(t), t

)
dt+ σ

(
X(t), t

)
◦ dW (t) (3.24)

is the same as the solution to the Itô SDE

dX(t) =

[
b
(
X(t), t

)
+

1

2

∂σ

∂x

(
X(t), t

)
σ
(
X(t), t

)]
dt+ σ

(
X(t), t

)
dW (t). (3.25)

The correction term 1
2
σx σ, discovered by Wong and Zakai [42] and consequently known

as the Wong-Zakai correction, contributes to the drift coefficient. It is therefore clear that
the Stratonovich SDE admits a (Stratonovich) diffusion process with the same diffusion
coefficient as that of the Itô interpretation of the SDE

(
i.e., σ2(x, t)

)
, but with the drift

coefficient being

b(x, t) +
1

2

∂σ

∂x
(x, t)σ(x, t).

Equation (3.22) therefore has two possible solutions depending on the interpretation of the
stochastic integral, and these two solutions behave quite differently. The Stratonovich so-
lution tends to be more natural for modelling of physical systems while that of Itô is more
natural for a wide range of real-world applications, particularly in financial mathemat-
ics. Random dynamical systems describing mechanical or structural engineering systems
parametrically excited by white noise processes (such as the one studied in this thesis) are
interpreted as Stratonovich SDEs as in (3.24). Evidently, if σ(x, t) is independent of x so
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that σx = 0, then the Itô and Stratonovich solutions coincide.

Remark : As SDEs define diffusion processes, the Kolmogorov equations discussed in the
previous section provide a way of characterizing the solution of an SDE by solving a PDE.

Since the transformation properties of the Itô integral are not concordant with the rules
of ordinary calculus, there exists a special formula, analogous to the chain rule of ordinary
calculus, useful for changing variables and evaluating Itô integrals. This transformation
formula, popularly known as Itô’s lemma, is stated below.

Itô’s Lemma: Consider the random process Y (t) = g
(
X(t), t

)
, where X(t) is the solution

of
dX(t) = b

(
X(t), t

)
dt+ σ

(
X(t), t

)
dW (t). (3.26)

Then Y (t) is also an Itô diffusion process with its differential dY (t) given by

dY (t) =
∂g

∂t

(
X(t), t

)
dt+

∂g

∂x

(
X(t), t

)
dX(t) +

1

2

∂2g

∂x2

(
X(t), t

) (
dX(t)

)2
(3.27)

where
(
dX(t)

)2
is computed using

(dt)2 = dt dW (t) = dW (t) dt = 0,
(
dW (t)

)2
= dt. (3.28)

Substituting (3.26) into (3.27) and using (3.28) to compute
(
dX(t)

)2
, we get

dY (t) =

[
∂g

∂t

(
X(t), t

)
+ b
(
X(t), t

) ∂g
∂x

(
X(t), t

)
+

1

2
σ2
(
X(t), t

) ∂2g

∂x2

(
X(t), t

)]
dt

+ σ
(
X(t), t

) ∂g
∂x

(
X(t), t

)
dW (t). (3.29)

In integral form, this is

Y (t) = Y (0) +

∫ t

0

[
∂g

∂s

(
X(s), s

)
+ b
(
X(s), s

) ∂g
∂x

(
X(s), s

)
+

1

2
σ2
(
X(s), s

) ∂2g

∂x2

(
X(s), s

)]
ds+

∫ t

0

σ
(
X(s), s

) ∂g
∂x

(
X(s), s

)
dW (s). (3.30)

In the case where X(t), b(x, t) and σ(x, t) are n-dimensional vectors in Euclidean space
Rn, (3.27) becomes

dY (t) =
∂g

∂t
dt+

n∑
i=1

∂g

∂xi

dXi +
1

2

n∑
i,j=1

∂2g

∂xi∂xj

dXi dXj (3.31)
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where dXi(t) = bi
(
X(t), t

)
dt + σi

(
X(t), t

)
dW (t) and (3.28) still applies. Putting them

together as before, we get

dY (t) =

(
∂g

∂t
+

n∑
i=1

bi
∂g

∂xi

+
1

2

n∑
i,j=1

σiσj
∂2g

∂xi∂xj

)
dt+

n∑
i=1

σi
∂g

∂xi

dW (t). (3.32)

Noting that σiσj = aij, this can be concisely written using the operator defined in (3.12)
as

dY (t) =

(
∂g

∂t
+ Gg

)
dt+ ⟨σ,∇g⟩ dW (t) (3.33)

where ⟨·, ·⟩ represents the inner product which, in this case, is simply the dot product of
the two vectors. In integral form,

Y (t) = Y (0) +

∫ t

0

(
∂g

∂s
+ Gg

)
ds+

∫ t

0

⟨σ,∇g⟩ dW (s). (3.34)

3.1.5 The Feynman-Kac Formula

The backward Kolmogorov equation may also be formulated as follows. Define

u(t, x)
def
= E

[
f
(
X(t)

)
| X(0) = x

]
= Ex

[
f
(
X(t)

)]
, (3.35)

where X(t) is the solution of (3.23a) - an Itô diffusion process. Then, u(t, x) is the unique
solution of

∂u

∂t
= Gu, t > 0, x ∈ Rn

u(0, x) = f(x), x ∈ Rn.
(3.36)

A generalized version of this, known as the Feynman-Kac formula, is stated below:

Consider Caughy’s equation with deterministic forcing and an initial condition

∂u

∂t
= Gu(t, x) + c(t, x)u(t, x) + g(t, x), t > 0, x ∈ Rn

u(0, x) = f(x) x ∈ Rn.
(3.37)

The solution u(t, x) can be represented in the form

u(t, x) = Ex

[
f
(
X(t)

)
exp

{∫ t

0

c
(
t− s,X(s)

)
ds

}
+

∫ t

0

g
(
s,X(s)

)
exp

{∫ s

0

c
(
t− τ,X(τ)

)
dτ

}
ds

]
. (3.38)
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We shall particularly be interested in the situation where the multiplicative term and the
initial condition are both identically zero; that is, c = 0 and f = 0. The Caughy equation
then reduces to

∂u

∂t
= Gu(t, x) + g(t, x), t > 0, x ∈ Rn

u(0, x) = f(x) ≡ 0, x ∈ Rn,
(3.39)

and the solution u(t, x) is given by

u(t, x) = Ex

[∫ t

0

g
(
t− s,X(s)

)
ds

]
. (3.40)

One can then use the integral definition of expectation

Ex

[
f
(
X(t)

)]
=

∫
Rn

f(y) p(t, x, y) dy,

to write the solution in terms of the transition density p(t, x, y) as

u(t, x) =

∫ t

0

∫
Rn

g(t− s, y) p(s, x, y) dy ds. (3.41)

We will make use of the Feynman-Kac formula in the next chapter while calculating the
maximal Lyapunov exponent, which is described in the next subsection.

3.1.6 Stochastic Stability and Lyapunov Exponents

Stability deals with the long-term behaviour of a dynamical system. There are several ways
in which stochastic stability can be defined; for example, stability in probability, almost-
sure sample stability and p-th moment stability, to name a few. A complete exposition
into the available definitions of stochastic stability is provided in [18] for the interested
reader. Based on the definition of stability employed, one can determine conditions on
the system parameter values that dictate the stability properties of the system, and these
conditions vary depending on the choice of stability definition. The stability definitions,
however, are not all equal in strength. We find that the stability regions of the parameter
values determined by weaker definitions are contained within those determined by stronger
definitions. In other words, if stability can be established in terms of a stronger definition,
then the system in question is also stable in terms of any weaker definitions.

The definition utilized in this thesis is that of almost-sure sample stability, which is one
of the strongest definitions. A fixed point of a system is said to be asymptotically stable if
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the state of the system approaches this equilibrium solution as time tends to infinity. For
a stochastic system, a fixed point x̄ is said to be almost-surely stable if all sample functions
of the response, except those belonging to a set of measure zero, converge asymptotically
to x̄ with probability one as time progresses. This can be expressed as

P
{
lim
t→∞

∥X(t)− x̄∥ = 0
}
= 1.

However, since the equilibrium solution is typically taken to be the trivial solution x̄ = 0,
the common definition used for almost-sure stability is

P
{
lim
t→∞

∥X(t)∥ = 0
}
= 1, (3.42)

where this relation is to be satisfied for all x such that X(0) = x.

It was stated earlier that conditions on the system parameters that dictate the stability
properties of the system can be determined based on the stability definition employed. For
almost-sure stability, this is done via a quantity known as the maximal or top Lyapunov
exponent. It is defined by

λ = lim
t→∞

1

t
ln ∥X(t)∥, (3.43)

from which can be deduced,
∥X(t)∥ = lim

t→∞
eλt.

It therefore represents the exponential growth rate of the solution to the stochastic system,
which determines the almost-sure asymptotic stability of the equilibrium solutionX(t) ≡ 0.
It can be seen as the stochastic analogue to the real part of the “maximal” eigenvalue of
the system matrix of the corresponding deterministic system. A necessary and sufficient
condition for almost-sure stability is thus that the top Lyapunov exponent be negative so
that (3.42) holds. If λ > 0, then

P
{
lim
t→∞

∥X(t)∥ = ∞
}
= 1,

which indicates almost-sure sample instability.

We now discuss how the Lyapunov exponent is computed for an n-dimensional linear
stochastic system

ẋ =
(
A+ F (t)

)
x, x ∈ Rn, (3.44)

where A is a constant coefficient n × n matrix and F (t) is a matrix of independent noise
functions fij(t), i, j = 1, ..., n. It is a result of the work of Khas’minskii [16] which has
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proven fundamental to the area of research in the almost-sure asymptotic stability of
stochastic systems. When the noise functions fij(t) are Gaussian white noise processes,
(3.44) can be written as a system of n linear Itô SDEs

dxi(t) =
n∑

j=1

bijxj dt+
n∑

j=1

σijxj dW (t), i = 1, ..., n

which, in matrix form, gives the following n-dimensional Itô SDE

dX(t) = BX(t) dt+ ΣX(t) dW (t), X(0) = x ∈ Rn (3.45)

where B = ∥bij∥ and Σ = ∥σij∥ are constant n × n matrices. The generating differential
operator G associated with this system is given by

Gu = ⟨Bx,∇u⟩+ 1

2
⟨A(x)∇,∇u⟩,

where A(x) = (Σx)(Σx)T is positive semi-definite and also assumed to be non-degenerate
in the sense that there exists a constant m > 0 such that for any arbitrary vector α =
(α1, ..., αn)

T ,
⟨α,A(x)α⟩ ≥ m∥x∥2∥α∥2. (3.46)

Now, we introduce logarithmic-polar coordinates in Rn through the following so-called
Khas’minskii transformation:

ρ
def
= ln ∥x∥ ∈ R+ and ϕ

def
=

x

∥x∥
∈ Sn−1. (3.47)

The angle process ϕ(t) = X(t)/∥X(t)∥ is defined on an (n − 1)-dimensional unit sphere.
This transformation onto a spherical projective space forms the basis for the calculation
of the Lyapunov exponent. Next, we apply Itô’s lemma (3.33) to ρ(t) and ϕ(t) to obtain
expressions for their differentials in Itô form:

dρ
(
X(t)

)
= Gρ

(
X(t)

)
dt+

〈
ΣX(t),∇ρ

(
X(t)

)〉
dW (t)

dϕ
(
X(t)

)
= Gϕ

(
X(t)

)
dt+

〈
ΣX(t),∇ϕ

(
X(t)

)〉
dW (t).

This yields

dρ(t) =

[〈
ϕ(t),

(
B − A(ϕ)

)
ϕ(t)

〉
+

1

2
tr
(
A(ϕ)

)]
dt+

〈
ϕ(t),Σϕ(t)

〉
dW (t), (3.48a)

dϕ(t) =

[(
B − A(ϕ)

)
ϕ(t)−

〈
ϕ(t),

(
B − 3

2
A(ϕ)

)
ϕ(t)

〉
ϕ(t)− 1

2
tr
(
A(ϕ)

)
ϕ(t)

]
dt

+
[
Σϕ(t)−

〈
ϕ(t),Σϕ(t)

〉
ϕ(t)

]
dW (t).

(3.48b)
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Since the drift and diffusion coefficients for the angle process ϕ(t) depend only on ϕ(t), it
generates a time-homogeneous diffusive Markov process on the unit sphere Sn−1 on which
it is defined. If it exists, let ν(ϕ) denote the unique invariant measure of this process
which satisfies the stationary Fokker-Planck equation Gϕ∗ν = 0, where Gϕ denotes the
infinitesimal generator of ϕ(t).

The infinitesimal coefficients of ρ(t) also depend only on ϕ(t). Defining

Q
(
ϕ(t)

) def
=
〈
ϕ(t),

(
B − A(ϕ)

)
ϕ(t)

〉
+

1

2
tr
(
A(ϕ)

)
for the drift coefficient and integrating,

ρ(t)− ρ(0) =

∫ t

0

Q
(
ϕ(τ)

)
dτ +

∫ t

0

〈
ϕ(τ),Σϕ(τ)

〉
dW (τ),

from which can be written

lim
t→∞

ρ(t)− ρ(0)

t
= lim

t→∞

1

t

∫ t

0

Q
(
ϕ(τ)

)
dτ + lim

t→∞

1

t

∫ t

0

〈
ϕ(τ),Σϕ(τ)

〉
dW (τ).

By the martingale property of the Itô integral,

lim
t→∞

1

t

∫ t

0

〈
ϕ(τ),Σϕ(τ)

〉
dW (τ) = 0.

Therefore,

lim
t→∞

1

t
ln ∥X(t)∥ = lim

t→∞

1

t

∫ t

0

Q
(
ϕ(τ)

)
dτ.

Notice that the left-hand side is precisely the definition of the Lyapunov exponent as
introduced in (3.43). Condition (3.46) is sufficient for the process ϕ(t) to be ergodic,
meaning that time averaging is equivalent to ensemble averaging. We can therefore write

λ = lim
t→∞

1

t

∫ t

0

Q
(
ϕ(τ)

)
dτ = E

[
Q
(
ϕ(t)

)]
. (3.49)

So, the Lyapunov exponent can be found using the drift coefficient of ρ(t) and the invariant
measure of ϕ(t) by evaluating the integral

λ =

∫
Sn−1

Q(ϕ) dν =

∫
Sn−1

Q(ϕ)p(ϕ) dϕ, (3.50)
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where p(ϕ) is the stationary density of the angle process ϕ(t) which satisfies the stationary
Fokker-Planck equation Gϕ∗p = 0.

Now, consider, as in [3], the case where the linear stochastic system (3.44) is of the
form

ẋ = A
(
ξ(t)

)
x, x(0) = x0 ∈ Rn, (3.51)

where ξ(t) is a stationary, ergodic Stratonovich diffusion process defined on a smooth
Riemannian manifold M . Application of the Khas’minskii transformation to this system
yields

ρ̇(t) = Q
(
ϕ(t), ξ(t)

)
(3.52a)

ϕ̇(t) = h
(
ϕ(t), ξ(t)

)
(3.52b)

where

Q(ϕ, ξ) = ϕTA(ξ)ϕ

h(ϕ, ξ) =
(
A(ξ)−Q(ϕ, ξ)I

)
ϕ.

As before, by integrating the ρ̇ equation, we get

λ = lim
t→∞

1

t

∫ t

0

Q
(
ϕ(τ), ξ(τ)

)
dτ. (3.53)

If the diffusion process
(
ϕ(t), ξ(t)

)
formed on Sn−1 ×M is ergodic, and if it has a unique

invariant measure ν(ϕ, ξ), then the top Lyapunov exponent is given by

λ =

∫
M

∫
Sn−1

Q(ϕ, ξ) dν =

∫
M

∫
Sn−1

Q(ϕ, ξ) p(ϕ, ξ) dϕ dξ, (3.54)

where p(ϕ, ξ) is the stationary density of the process
(
ϕ(t), ξ(t)

)
which satisfies the sta-

tionary Fokker-Planck equation G(ϕ,ξ)∗p = 0. Equations (3.50) and (3.54) constitute what
is known as the Furstenberg-Khas’minskii formula.

3.1.7 Power Spectral Density

The power spectral density (PSD) SXX(ω) of a wide-sense stationary process X(t) is de-
fined as the Fourier transform of its autocorrelation function RXX(τ). So, SXX(ω) and
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RXX(τ) constitute a Fourier transform pair, and RXX(τ) is obtained as the inverse Fourier
transform of SXX(ω). That is,

SXX(ω) =
1

2π

∫ ∞

−∞
RXX(τ) e

−iωτ dτ, (3.55a)

RXX(τ) =

∫ ∞

−∞
SXX(ω) e

iωτ dω. (3.55b)

These are known as the Wiener-Khintchine relations. For the autocorrelation function, at
τ = 0, we get

RXX(0) = E[X2(t)] =

∫ ∞

−∞
SXX(ω) dω, (3.56)

which shows that SXX(ω) is a frequency decomposition of the expected power in the
process. It provides the spectral distribution of the average energy of a stationary random
process.

Since RXX(τ) is an even function of τ , the imaginary part of the integrand in (3.55a),
namely −RXX(τ) sinωτ , is an odd function of τ and therefore makes no contribution to
the symmetric-limit integral. In short, by the properties of the Fourier transform, the fact
that RXX(τ) is a real, even function of τ means that SXX(ω) is a real, even function of ω.
The Wiener-Khintchine relations can then be equivalently written as

SXX(ω) =
1

π

∫ ∞

0

RXX(τ) cosωτ dτ, (3.57a)

RXX(τ) = 2

∫ ∞

0

SXX(ω) cosωτ dω. (3.57b)

For a mean-square differentiable process X(t), the PSD of the derivative process Ẋ(t) can
be obtained from that of the process itself via the relation

SẊẊ(ω) = ω2SXX(ω). (3.58)

3.2 Linear Oscillator Excited by White Noise

In this section, we study the well-known mass-spring linear oscillator driven by additive
noise. This dynamical system is modelled by the following second-order differential equa-
tion:

Ẍ(t) + 2ζωnẊ(t) + ω2
nX(t) = F (t), X(t0) = X0, Ẋ(t0) = Ẋ0, (3.59)
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where ζ is the damping ratio and ωn is the natural frequency of the system. This equation

can be cast into vector form by introducing the vector X(t) =
(
X(t), Ẋ(t)

)T
, so that it

becomes

Ẋ(t) =

(
0 1

−ω2
n −2ζωn

)
X(t) +

(
0
1

)
F (t). (3.60)

We see that the system has the same form as (3.22) with the vector b being a function
of X(t) only, and σ being a constant vector (which is why the excitation is described as
being additive). We would like to investigate the long-term behaviour of the statistical
properties of the response of the system X(t) to the excitation F (t), where the statistical
properties of the excitation are known.

3.2.1 White Noise

As we are interested in the case where the excitation driving the linear oscillator is white
noise, we commence with a heuristic description of the white noise process and its important
properties. As was mentioned in the discussion about stochastic differential equations,
Brownian motion paths are nowhere differentiable albeit being almost-surely continuous,
and, as such, their time derivative (white noise) can only be viewed in a formal sense
as a generalized stochastic process. Since Brownian motion has mean-zero independent
Gaussian increments, its time derivative ends up being a mean-zero Gaussian process such
that the random variables sampled at different times are independent. In other words,
a white noise process ξ(t) is a stationary Gaussian process with µξ = E[ξ(t)] = 0 and
autocorrelation function of the form Rξξ(τ) = E[ξ(t)ξ(t + τ)] = σ2δ(τ), where σ2 is a
positive constant that can be seen as a sort of “variance”.

A key, and arguably the most prominent, property of white noise is that its power
spectral density is uniformly distributed over all frequencies; a characteristic of white light
hence the name “white noise”. That is,

Sξξ(ω) = S0 ∀ω ∈ R, (3.61)

from which it is readily observed that the process is not physically realizable since the
area under the spectrum is infinite, indicating the process would have infinite energy.
It however serves as a good approximation to several physical processes encountered in
practice because they usually have very flat spectral densities. From (3.55b), and using
the fact that the Dirac delta function can also be represented as

δ(τ) =
1

2π

∫ ∞

−∞
eiωτ dω,
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we obtain the autocorrelation function of the white noise process as

Rξξ(τ) = 2πS0δ(τ). (3.62)

3.2.2 System Response

Let us now derive the response of the linear mass-spring system by finding the solution
of (3.59), focusing on the underdamped case ζ < 1. We begin by employing a change of
variables to simplify the equation. Let

X(t) = e−ζωnty(t).

Then

Ẋ(t) = e−ζωnt
[
− ζωny(t) + ẏ(t)

]
,

Ẍ(t) = e−ζωnt
[
ζ2ω2

ny(t)− 2ζωnẏ(t) + ÿ(t)
]
.

Substituting these into (3.59) yields

ÿ(t) + ω2
dy(t) = eζωntF (t), y(t0) = y0, ẏ(t0) = ẏ0, (3.63)

where ωd = ωn

√
1− ζ2. The solution to this equation can be written as the sum of

a solution for the homogeneous part satisfying the initial conditions, and a particular
solution for the inhomogeneous component. The linearly independent solutions for the
homogeneous equation are

y1(t) = cosωdt and y2(t) = sinωdt,

for which the Wronskian is

W [y1, y2](t) =

∣∣∣∣y1 y2
y′1 y′2

∣∣∣∣ = ∣∣∣∣ cosωdt sinωdt
−ωd sinωdt ωd cosωdt

∣∣∣∣ = ωd.

Using variation of parameters, we seek a particular solution of the form

yp(t) = v1(t)y1(t) + v2(t)y2(t),

where

v′1(t) =
−y2(t) e

ζωntF (t)

W [y1, y2](t)
= −eζωntF (t)

sinωdt

ωd

,

v′2(t) =
y1(t) e

ζωntF (t)

W [y1, y2](t)
= eζωntF (t)

cosωdt

ωd

.
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Integrating these gives

v1(t) = −
∫ t

t0

eζωnτF (τ)
sinωdτ

ωd

dτ,

v2(t) =

∫ t

t0

eζωnτF (τ)
cosωdτ

ωd

dτ.

Hence the particular solution is given by

yp(t) = − cosωdt

∫ t

t0

eζωnτF (τ)
sinωdτ

ωd

dτ + sinωdt

∫ t

t0

eζωnτF (τ)
cosωdτ

ωd

dτ.

The general solution is therefore

y(t) = A cosωdt+B sinωdt+

∫ t

t0

eζωnτF (τ)

ωd

[sinωdt cosωdτ − cosωdt sinωdτ ] dτ,

which can be simplified using a trigonometric identity to give

y(t) = A cosωdt+B sinωdt+

∫ t

t0

eζωnτF (τ)

ωd

sinωd(t− τ) dτ.

The constants A and B are found using the initial conditions y(t0) = y0 and ẏ(t0) = ẏ0.
We have

y0 = A cosωdt0 +B sinωdt0,

ẏ0
ωd

= −A sinωdt0 +B cosωdt0,

which are solved simultaneously to obtain

A = y0 cosωdt0 −
ẏ0
ωd

sinωdt0,

B = y0 sinωdt0 +
ẏ0
ωd

cosωdt0.

Substituting into the general solution and simplifying with trigonometric identities,

y(t) = y0 cosωd(t− t0) +
ẏ0
ωd

sinωd(t− t0) +

∫ t

t0

eζωnτF (τ)

ωd

sinωd(t− τ) dτ.
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We now revert back to the original variable X(t) using:

y(t) = eζωntX(t) =⇒ y0 = X0e
ζωnt0 ,

ẏ0 = (ζωnX0 + Ẋ0)e
ζωnt0 ,

which upon substitution yields

X(t) = g(t− t0)X0 + h(t− t0)Ẋ0 +

∫ t

t0

h(t− τ)F (τ) dτ (3.64)

where

g(t) = e−ζωnt

[
cosωdt+

ζωn

ωd

sinωdt

]
, h(t) =

e−ζωnt

ωd

sinωdt,

ωd =
√

1− ζ2, ζ < 1.

It is clear that this solution is the sum of that of the homogeneous equation associated with
the original equation (3.59), Xh(t), and a particular solution, Xp(t), of the inhomogeneous
equation:

X(t) =

Xh(t)︷ ︸︸ ︷
g(t− t0)X0 + h(t− t0)Ẋ0+

∫ t

t0

h(t− τ)F (τ) dτ︸ ︷︷ ︸
Xp(t)

.

In vibration theory, h(t) is known as the impulse response since it represents the response
of the system, initially at rest, to a unit Dirac delta function δ(t). Any single input single
output linear time-invariant system is completely characterized by its impulse response.

3.2.3 Mean Response

We now proceed to find the mean of the solution (3.64) of the linear mass-spring oscillator.
Let the initial conditions X0 and Ẋ0 be random variables, and the mean of the excitation
be µF (t). We have

µX(t) = E[X(t)] = g(t− t0)E[X0] + h(t− t0)E[Ẋ0] +

∫ t

t0

h(t− τ)µF (τ) dτ.

The integral can be rewritten using the substitution u = t− τ so that we now have

µX(t) = g(t− t0)E[X0] + h(t− t0)E[Ẋ0] +

∫ t−t0

0

h(u)µF (t− u) du.
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When the excitation is stationary, its mean is constant. In that case, we have

µX(t) = g(t− t0)E[X0] + h(t− t0)E[Ẋ0] + µF

∫ t−t0

0

h(u) du.

The integral can now be evaluated as follows∫ t−t0

0

h(u) du =
1

ωd

∫ t−t0

0

e−ζωnu sinωdu du

=
1

ωd

Im

{∫ t−t0

0

e(−ζωn+iωd)u du

}
=

1

ωd

Im

{
e(−ζωn+iωd)(t−t0) − 1

−ζωn + iωd

}
=

1

ω2
n

[
1− e−ζωn(t−t0)

(
cosωd(t− t0) +

ζωn

ωd

sinωd(t− t0)

)]
=

1

ω2
n

[1− g(t− t0)].

So the mean response is now

µX(t) = g(t− t0)E[X0] + h(t− t0)E[Ẋ0] +
µF

ω2
n

[1− g(t− t0)]. (3.65)

Since we are interested in the steady-state behaviour, we obtain the stationary mean by
taking the limit as t0 → −∞. It is clear that g(t − t0) and h(t − t0) tend to zero in this
limit. So,

lim
t0→−∞

µX(t) =
µF

ω2
n

= µX , (3.66)

which shows that the mean response of the system tends to a constant value when driven
by a stationary excitation.

3.2.4 Covariance Response

Now, let us find the covariance function of the solution (3.64) of the linear mass-spring
oscillator. Let the initial conditions X0 and Ẋ0 be uncorrelated with the driving force
F (t) whose covariance function shall be denoted by CFF (t, s). From the definition of the
covariance function,

CXX(t, s) = E[X(t)X(s)]− µX(t)µX(s)

= E[Xh(t)Xh(s)] + E[Xh(t)Xp(s)] + E[Xh(s)Xp(t)]

+ E[Xp(t)Xp(s)]− µX(t)µX(s).
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Evaluating each term individually,

E[Xh(t)Xh(s)] = g(t− t0)g(s− t0)E[X2
0 ] + h(t− t0)h(s− t0)E[Ẋ2

0 ]

+
{
g(t− t0)h(s− t0) + g(s− t0)h(t− t0)

}
E[X0Ẋ0],

E[Xh(t)Xp(s)] = g(t− t0)

∫ s

t0

h(s− τ)E[X0F (τ)] dτ

+ h(t− t0)

∫ s

t0

h(s− τ)E[Ẋ0F (τ)] dτ,

E[Xh(s)Xp(t)] = g(s− t0)

∫ t

t0

h(t− τ)E[X0F (τ)] dτ

+ h(s− t0)

∫ t

t0

h(t− τ)E[Ẋ0F (τ)] dτ,

E[Xp(t)Xp(s)] =

∫ t

t0

∫ s

t0

h(t− τt)h(s− τs)E[F (τt)F (τs)] dτs dτt,

µX(t)µX(s) = g(t− t0)g(s− t0)E[X0]
2 + h(t− t0)h(s− t0)E[Ẋ0]

2

+
{
g(t− t0)h(s− t0) + g(s− t0)h(t− t0)

}
E[X0]E[Ẋ0]

+
{
g(t− t0)E[X0] + h(t− t0)E[Ẋ0]

} µF

ω2
n

[1− g(t− t0)]

+
{
g(s− t0)E[X0] + h(s− t0)E[Ẋ0]

} µF

ω2
n

[1− g(s− t0)]

+
µ2
F

ω4
n

[1− g(t− t0)] [1− g(s− t0)].

Since the initial conditions and the driving force are uncorrelated, the cross terms (i.e., the
E[Xh(·)Xp(·)] terms) vanish. Using the standard definitions of variance and covariance,
the remaining terms can be simplified so that the covariance function of the response reads

CXX(t, s) = g(t− t0)g(s− t0)Var(X0) + h(t− t0)h(s− t0)Var(Ẋ0)

+
{
g(t− t0)h(s− t0) + g(s− t0)h(t− t0)

}
Cov(X0, Ẋ0)

+

∫ t

t0

∫ s

t0

h(t− τt)h(s− τs)CFF (τt, τs) dτs dτt.

(3.67)

Motivated by the fact that we are interested in the steady-state behaviour and we already
know g(t− t0) and h(t− t0) vanish in the long run, we omit the first three terms to simplify
the algebra. The integral can be rewritten using the substitutions ut = t−τt and us = s−τs
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so that the covariance response is

CXX(t, s) =

∫ t−t0

0

∫ s−t0

0

h(ut)h(us)CFF (t− ut, s− us) dus dut. (3.68)

When the excitation is stationary, CFF (τt, τs) = CFF (τs − τt). So we have

CXX(t, s) =

∫ t−t0

0

∫ s−t0

0

h(ut)h(us)CFF (s− t+ ut − us) dus dut. (3.69)

3.2.5 Applying White Noise Properties

Now, let the driving force be white noise. F (t) is then a stationary Gaussian process with

µF = 0, CFF (τ) = RFF (τ) = 2πS0δ(τ).

Given this, it is clear from (3.66) that the stationary mean response µX is also zero.
Substituting CFF (τ) into (3.69),

CXX(t, s) = 2πS0

∫ t−t0

0

∫ s−t0

0

h(ut)h(us) δ(s− t+ ut − us) dus dut

= 2πS0

∫ w−t0

0

h(ut)h(|s− t|+ ut) dut, w = min(t, s).

Taking the limit as t0 → −∞ to obtain the stationary covariance (or equivalently, correla-
tion) function,

RXX(s− t) = lim
t0→−∞

CXX(t, s)

= 2πS0

∫ ∞

0

h(u)h(|s− t|+ u) du

=
2πS0

ω2
d

e−ζωn|s−t|
∫ ∞

0

e−2ζωnu sinωdu sinωd(|s− t|+ u) du.

Letting τ = s− t and evaluating the integral, it can be shown [8] that

RXX(τ) =
πS0

2ζω3
n

e−ζωn|τ |
[
cosωd|τ |+

ζωn

ωd

sinωd|τ |
]
, (3.70)

from which

σ2
X = RXX(0) = E[X2(t)] =

πS0

2ζω3
n

. (3.71)

So, as t → ∞, the probabilistic behaviour of X(t) becomes such that

µX = 0 and σ2
X =

πS0

2ζω3
n

.
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3.2.6 Response Stationary Density

So far, we have shown that, in the long run, the mean and variance of the response of
the linear mass-spring oscillator to the white noise excitation, tend towards stationary
values. Since the input excitation is Gaussian, the output response will also be Gaussian
because the system is linear. Therefore, X(t) has a stationary density which is given by the
density function of a N(0, πS0/2ζω

3
n) random variable. Considering the system in vector

form (3.60), the vector X(t) =
(
X(t), Ẋ(t)

)T
is a Gaussian vector whose stationary density

function can be written explicitly since Gaussian processes are completely characterized
by their mean and variance.

Constructing the stationary density of the vector requires knowledge of the stationary
properties of the derivative process Ẋ(t). The stationary mean is straightforward:

lim
t0→−∞

E[Ẋ(t)] =
dµX

dt
= 0. (3.72)

The stationary covariance functions RXẊ(τ) and RẊẊ(τ) can be derived from RXX(τ)
using the facts

RXẊ(τ) =
d

dτ
RXX(τ) and RẊẊ(τ) = − d2

dτ 2
RXX(τ),

from which it can be shown, by setting τ = 0, that

lim
t0→−∞

E[X(t)Ẋ(t)] = 0 and lim
t0→−∞

E[Ẋ2(t)] = σ2
Ẋ
=

πS0

2ζωn

. (3.73)

So, the mean vector m and covariance matrix C of X(t) are given by

m =

(
0
0

)
, C =


πS0

2ζω3
n

0

0
πS0

2ζωn

 .

The probability density function fZ for a 2-dimensional vector Z ∼ N(m,C) is given by

fZ(z) =
1

2π
√
detC

exp

{
−1

2
(z −m)TC−1(z −m)

}
.

So, the stationary density function p of X(t) is given by

p(X) =
1

2π
√
detC

exp

{
−1

2
XTC−1X

}
,
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from which we obtain

p(X, Ẋ) =
ζω2

n

π2S0

exp

{
−2ζωn

πS0

(
1

2
ω2
nX

2 +
1

2
Ẋ2

)}
. (3.74)

3.2.7 Response Power Spectral Density

We would now like to find the spectral density of the response X(t). Using the definition
of the PSD (3.55a),

SXX(ω) =
1

2π

∫ ∞

−∞
RXX(τ) e

−iωτ dτ

=
1

2π

∫ ∞

−∞

πS0

2ζω3
n

e−ζωn|τ |
[
cosωd|τ |+

ζωn

ωd

sinωd|τ |
]
e−iωτ dτ

=
S0

4ζω3
n

∫ 0

−∞
e(ζωn−iω)τ

[
cosωdτ − ζωn

ωd

sinωdτ

]
dτ

+

∫ ∞

0

e−(ζωn+iω)τ

[
cosωdτ +

ζωn

ωd

sinωdτ

]
dτ,

which upon simplification gives

SXX(ω) =
S0

(ζ2ω2
n − ω2 + ω2

d)
2 + 4ζ2ω2

n ω
2
.

Substituting for ω2
d, we obtain

SXX(ω) =
S0

(ω2
n − ω2)2 + 4ζ2ω2

n ω
2
. (3.75)
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Chapter 4

Stochastic Stability of the
Autoparametric Vibration Absorber

In this chapter, the stochastic stability of the autoparametric vibration absorber intro-
duced in Chapter 2 is analyzed. In particular, we seek to derive an explicit result for the
almost-sure stability of the single mode solution of the system by computing the maximal
Lyapunov exponent. A mathematically rigorous method for the calculation of the maxi-
mal Lyapunov exponent for such a system excited by a multivariate Ornstein-Uhlenbeck
process that represents a generic parametric real noise is presented in [6]. In this chapter,
the focus is to approximate, via a formal expansion, the maximal Lyapunov exponent of
the autoparametric vibration absorber perturbed by small intensity multiplicative real and
white noise processes. The approach adopted here is different from the method developed
in [6]. We follow the perturbation method developed originally by Sri Namachchivaya and
Van Roessel [24] for a four dimensional system parametrically excited by real noise. This
method relies on the Feynman-Kac formula introduced in Chapter 3 that establishes a link
between parabolic partial differential equations and stochastic processes. The work in [6]
also provides the proof of the existence and uniqueness of a certain ergodic invariant mea-
sure that is essential to the calculation of the maximal Lyapunov exponent. Furthermore,
in [6], it is shown that the approximation of the maximal Lyapunov exponent is indeed
asymptotic.
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4.1 Asymptotic Scaling

The equations governing the dynamics of the autoparametric vibration absorber were de-
rived in Chapter 2. They are given, in dimensionless coordinates, by

¨̂η + 2ζ̂o ˙̂η + η̂ −R
(
¨̂
θ sin θ̂ +

˙̂
θ
2

cos θ̂
)
= ξ̂(t) (4.1a)

¨̂
θ + 2ζ̂p

˙̂
θ +

(
q2 − ¨̂η

)
sin θ̂ = 0, (4.1b)

where

ω2
p

def
=

g

l
, ω2

o
def
=

k

mo +mp

, q
def
=

ωp

ωo

,

R
def
=

mp

mo +mp

, ζ̂o
def
=

co

2
√
k(mo +mp)

, ζ̂p
def
=

cp
√
mo +mp

2mpl2
√
k

,

ξ̂(t)
def
=

Ξ(t/ωo)

kl
, η̂(t)

def
=

y(t/ωo)

l
, θ̂(t)

def
= ϕ(t/ωo) .

As we would like to solve the system analytically, we resort to the use of the asymptotic
(or perturbation) solving technique. It is widely employed for tackling challenging problems
as it decomposes the problem of interest into an infinite number of relatively easy ones
which can be solved iteratively to obtain an approximate solution that is accurate up to a
chosen order of accuracy. The first few steps typically reveal the important features of the
solution and the remaining ones give small corrections. The first act in the process is the
introduction of a small positive parameter ε ≪ 1 to scale various important parameters in
the system.

We are interested in analyzing the stability of the fixed point (η̂, θ̂) ≡ 0 of the unper-
turbed system. The important assumption in our asymptotic analysis is that the dissipation
and random perturbations are small and scaled appropriately so that the system undergoes
small random vibrations about the static equilibria η̂ = 0 and θ̂ = 0. We shall therefore
consider these quantities on a finer resolution by letting η̂ and θ̂ be defined by

η̂(t)
def
= εη(t) and θ̂(t)

def
= εθ(t).

Since we are interested in the effect of small random perturbations, we let ξ̂ be of the form

ξ̂(t)
def
= ενξ(t),
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where ξ(t) is a white noise process of “unit variance” and ν is an empirical parameter
that controls the intensity of the noise. Again, we assume dissipation to be small as the
dynamics of the system is most interesting when it is not overdamped. We therefore let ζ̂o
and ζ̂p be of the form

ζ̂o
def
= ζo and ζ̂p

def
= ε2ζp,

where ζo and ζp are positive constants less than 1. This corresponds to letting the damping
of the oscillator (which can be seen, for example, as a car) be of size 1 and that of the
pendulum be of size ε2. We are therefore letting the oscillator (car) maintain its natural
damping while that of the pendulum (vibration absorber added into the car) is made to be
as small as possible to facilitate our asymptotic analysis of its stability. Substituting these
into (4.1), we obtain the dynamics of the system as the following perturbation problem:

η̈ + 2ζoη̇ + η −R
(
θ̈ sin(εθ) + εθ̇2 cos(εθ)

)
= νξ(t) (4.2a)

θ̈ + ε22ζpθ̇ +

(
q2

ε
− η̈

)
sin(εθ) = 0. (4.2b)

The principal feature of this system is, due to the dominant deterministic component of
the dynamics, the deterministic dynamics gives us a place to begin seeking structure in
the midst of the randomness. Once this structure is understood, we can then examine
how various system parameters affect other important quantities. In particular, we want
to derive an expression for the noise intensity ν in terms of the other system parameters,
which states a condition that guarantees the almost-sure stability of the vibration absorber.

4.2 Single Mode Solution

Now, assume that the pendulum initially hangs vertically at rest. Then θ will of course
be identically zero (a locked-mass dynamics) and only the oscillator, excited by νξ, moves
in the vertical direction. This constitutes the single mode solution of the system as only
the mode representing the displacement of the oscillator, and hence the entire rigid body,
from its static equilibrium is active. Equations (4.2) then reduce to

η̈(t) + 2ζoη̇(t) + η(t) = νξ(t), (4.3)

where, since ξ(t) is white noise, µξ = 0 and Sξξ(ω) = S0, so Rξξ(τ) = 2πS0δ(τ). The
statistical properties of the steady-state response η(t) can then be explicitly derived using
the techniques shown in Section 3.2. Its stationary correlation function is given by

Rηη(τ) =
ν2πS0

2ζo
e−ζo|τ |

[
cosωd|τ |+

ζo
ωd

sinωd|τ |
]
, (4.4)
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where ωd =
√
1− ζ2o , ζo < 1. So, for the stationary mean and variance, we have

µη = 0 and σ2
η = Rηη(0) =

ν2πS0

2ζo
. (4.5)

The stationary density can then be obtained as

p(η, η̇) = C exp

{
−γ

(
1

2
η2 +

1

2
η̇2
)}

(4.6)

where

γ =
2ζo

ν2πS0

and C =
ζo

ν2π2S0

.

Finally, the power spectral density is given by

Sηη(ω) =
ν2S0

(1− ω2)2 + 4ζ2oω
2
. (4.7)

Since ξ(t) is of unit variance as in a standard Brownian motion, we have

σ2 = 2πS0 = 1 =⇒ S0 =
1

2π
,

so that now,

σ2
η =

ν2

4ζo
, Sηη(ω) =

1

2π

ν2

(1− ω2)2 + 4ζ2oω
2

γ =
4ζo
ν2

, C =
2ζo
ν2π

.

(4.8)

4.3 Linear Variational Equation

We would like to analyze the stability of the locked mass (i.e., the pendulum) about its
equilibrium state θ̄ = 0 in the single mode solution. This is obtained by giving it a small
perturbation away from the equilibrium state to get a variational equation about this state.
So, remembering θ was already scaled,

θ(t) = θ̄ + ϕ(t), θ̇(t) = 0 + ϕ̇(t), θ̈(t) = 0 + ϕ̈(t).

Substituting these in (4.2b) yields

ϕ̈(t) + ε22ζpϕ̇(t) +

(
q2

ε
− η̈(t)

)
sin(εϕ(t)) = 0.
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Since we are assuming the system undergoes small oscillations, we use the first-order ap-
proximation of sine to linearize the equation. We get the variational equation for the
stability of the pendulum as

ϕ̈(t) + ε22ζpϕ̇(t) +
(
q2 − εη̈(t)

)
ϕ(t) = 0. (4.9)

Stability results for the equation in this form already exist. An explicit expression for the
maximal Lyapunov exponent is derived in [4] where parametric excitation of the random
oscillator via a coloured noise process such as η(t) is treated but will not be valid to deal
with noise of the type η̈(t). In [33], the white noise situation is treated. Instead of leaving
η̈(t) as the parametric excitation, we use the equation (4.3) governing the single mode
solution to rewrite it as

η̈(t) = νξ(t)− 2ζoη̇(t)− η(t) =⇒ εη̈(t) = ενξ(t)− ε2ζoη̇(t)− εη(t),

so that the stability problem then becomes

ϕ̈(t) + ε22ζpϕ̇(t) +
(
q2 − ενξ(t) + ε2ζoη̇(t) + εη(t)

)
ϕ(t) = 0,

where η̈(t) + 2ζoη̇(t) + η(t) = νξ(t).
(4.10)

At this point, we make an interesting observation. The variational equation of the pendu-
lum is now parametrically excited, in the form of multiplicative noise, by

• the Gaussian white noise process ξ(t),

• the coloured noise process η(t) which is driven by the same Gaussian white noise
process ξ(t),

and

• the derivative η̇(t) of the coloured noise process.

Let us write the linear variational equation (4.10) as a system of first-order equations.
We define

u1 = ϕ =⇒ u̇1 = ϕ̇ = u2

u2 = ϕ̇ =⇒ u̇2 = ϕ̈ = −q2u1 − ε22ζpu2 − ε(2ζoη̇ + η)u1 + ενξ(t)u1,

so that the corresponding first order system is(
u̇1

u̇2

)
=

(
0 1

−q2 −ε22ζp

)
︸ ︷︷ ︸

A

(
u1

u2

)
+

(
0 0

−ε(2ζoη̇ + η) 0

)
︸ ︷︷ ︸

B

(
u1

u2

)
+

(
0 0
εν 0

)
︸ ︷︷ ︸

C

(
u1

u2

)
ξ(t). (4.11)
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Let u = (u1, u2)
T . As stated earlier, there are stability results [4] for the system in the

form u̇ = Au+B(η(t))u with only a coloured noise process η(t). In the case of only white
noise, that is, the system in the form u̇ = Au + Cu ξ(t), Khas’minskii [16] presented a
general method for obtaining necessary and sufficient conditions for stability. The novelty
in what is presented in this thesis is that the variational equation is parametrically excited
by both white and coloured noise processes. In particular, the coloured noise is driven by
the same white noise process that is driving the variational equation parametrically. To
that effect, to study the stability of the pendulum, we augment the equation governing the
coloured noise into (4.11). That is, we write (4.3) as a system of first-order equations by
defining

v1 = η =⇒ v̇1 = η̇ = v2

v2 = η̇ =⇒ v̇2 = η̈ = νξ(t)− 2ζov2 − v1,

so that the corresponding first order system is(
v̇1
v̇2

)
=

(
0 1
−1 −2ζo

)(
v1
v2

)
+ ν

(
0
1

)
ξ(t). (4.12)

Now, we can augment (4.12) into (4.11) by making use of the new state variables v1 and
v2 to rewrite u̇2:

u̇2 = −q2u1 − ε22ζpu2 − ε(2ζov2 + v1)u1 + ενξ(t)u1,

so that the full augmented system in a four dimensional state space becomes
u̇1(t)
u̇2(t)
v̇1(t)
v̇2(t)

 =


0 1 0 0

−q2 − ε
(
2ζov2(t) + v1(t)

)
−ε22ζp 0 0

0 0 0 1
0 0 −1 −2ζo



u1(t)
u2(t)
v1(t)
v2(t)



+ ν


0

εu1(t)
0
1

 ξ(t), (4.13)

which is nonlinear due to the parametric excitation of u by v := (v1, v2)
T . This system can

be represented as a stochastic differential equation of the Stratonovich type:
du1

du2

dv1
dv2

 =


u2[

− q2 − ε(2ζov2 + v1)
]
u1 − ε22ζpu2

v2
−v1 − 2ζov2

 dt+ ν


0
εu1

0
1

 ◦ dW (t).
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That is, we have

dX(t) = b̃
(
X(t)

)
dt+ σ

(
X(t)

)
◦ dW (t), X(0) = x =


u1

u2

v1
v2

 , (4.14)

where

b̃(x) =


u2[

− q2 − ε(2ζov2 + v1)
]
u1 − ε22ζpu2

v2
−v1 − 2ζov2

 and σ(x) = ν


0
εu1

0
1

 .

We would like to work with an Itô stochastic differential equation. Therefore, we apply
the Wong-Zakai correction to the drift vector b̃(x) to obtain that of the corresponding Itô
SDE. The correction is given by

bi(x) = b̃i(x) +
1

2

n∑
j=1

∂σi

∂xj

σj(x) ; 1 ≤ i ≤ n.

For i ∈ {1, 3, 4}, σi(x) is a constant. So
∂σi

∂xj

= 0 for all j ∈ {1, 2, 3, 4} and bi(x) = b̃i(x).

For i = 2, we have

b2(x) = b̃2(x) +
1

2

[
∂

∂u1

(εu1) · 0 +
∂

∂u2

(εu1) · εu1 +
∂

∂v1
(εu1) · 0 +

∂

∂v2
(εu1) · 1

]
︸ ︷︷ ︸

=0

.

Therefore, the system (4.13) can be represented by an Itô stochastic differential equation

dX(t) = b
(
X(t)

)
dt+ σ

(
X(t)

)
dW (t), (4.15)

where X(0) = x, b(x) = b̃(x) and σ(x) are as defined in (4.14). The diffusion matrix a(x)
is defined as

a(x) = σ(x)σT (x) = ν2


0
εu1

0
1

(0 εu1 0 1
)
= ν2


0 0 0 0
0 ε2u2

1 0 εu1

0 0 0 0
0 εu1 0 1

 .
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The generator of a time-homogeneous diffusion process is given by

G =
n∑

i=1

bi(x)
∂

∂xi

+
1

2

n∑
i,j=1

aij(x)
∂2

∂xi∂xj

. (4.16)

So, the generator L ε of X(t) is

L ε = u2
∂

∂u1

+
([

− q2 − ε(2ζov2 + v1)
]
u1 − ε22ζpu2

) ∂

∂u2

+ v2
∂

∂v1
− (v1 + 2ζov2)

∂

∂v2

+
ν2

2

(
ε2u2

1

∂2

∂u2
2

+ ε2u1
∂2

∂u2∂v2
+

∂2

∂v22

)
,

which we rewrite as a decomposition in powers of ε:

L ε = L0 + εL1 + ε2L2 , (4.17)

where

L0 = u2
∂

∂u1

− q2u1
∂

∂u2

+ v2
∂

∂v1
− (v1 + 2ζov2)

∂

∂v2
+

ν2

2

∂2

∂v22

L1 = −(2ζov2 + v1)u1
∂

∂u2

+ ν2u1
∂2

∂u2∂v2

L2 = −2ζpu2
∂

∂u2

+
ν2

2
u2
1

∂2

∂u2
2

.

The generator G of the coloured noise process η(t) defined by (4.3) will also be of interest
to us. From the first-order system form (4.12), we have

b(x) =

(
v2

−v1 − 2ζov2

)
and σ(x) = ν

(
0
1

)
for its Itô SDE representation since it follows from the previous calculation that the Wong-
Zakai correction here will also be zero. The diffusion matrix is

a(x) = σ(x)σT (x) = ν2

(
0
1

)(
0 1

)
= ν2

(
0 0
0 1

)
.

So, from (4.16), we have

G = v2
∂

∂v1
− (v1 + 2ζov2)

∂

∂v2
+

ν2

2

∂2

∂v22
, (4.18)

which, upon close observation, we realize constitutes part of L0 defined for the complete
augmented system (4.13).
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4.4 Coordinate Transformation

The basis for the calculation of the Lyapunov exponent is the transformation of the di-
mensions of the system of interest into logarithmic-polar coordinates. Our system (u, v)T

is given by the Itô SDE (4.15). We are interested in the stability of the pendulum, which
corresponds to only the u part of the system. Since the structure of the system is such
that u and v are coupled only via the influence of v on u (and not vice-versa), we can
effectively treat u as a system on its own that is parametrically excited by v, and apply
the coordinate transformation to only u, instead of the entire system (u, v)T , to obtain the
maximal Lyapunov exponent dictating the almost-sure stability condition of just u. To
that effect, as in [4], consider the standard transformation

u1 = r cosφ and u2 = q r sinφ. (4.19a)

We have

ρ(u) := ln |r(u)| where r(u) =

√
u2
1 +

(
u2

q

)2

and φ(u) = tan−1

(
u2

qu1

)
.

(4.19b)

Since u is given by an Itô SDE, we apply Itô’s lemma to ρ(u) and φ(u) to determine the
respective SDEs governing them. The generic formula for a function f(u, v) is

df(u, v) = L εf dt + ⟨∇f, σ⟩ dW (t)

= (L0f + εL1f + ε2L2f) dt+

〈
∂u1f
∂u2f
∂v1f
∂v2f

 ,


0

ενu1

0
ν


〉

dW (t)

=

[
u2

∂f

∂u1

− q2u1
∂f

∂u2

+ v2
∂f

∂v1
− (v1 + 2ζov2)

∂f

∂v2
+

ν2

2

∂2f

∂v22

]
dt

+ ε

[
−(2ζov2 + v1)u1

∂f

∂u2

+ ν2u1
∂2f

∂u2∂v2

]
dt

+ ε2
[
−2ζpu2

∂f

∂u2

+
ν2

2
u2
1

∂2f

∂u2
2

]
dt

+

[
ενu1

∂f

∂u2

+ ν
∂f

∂v2

]
dW (t).

48



However, since ρ and φ are functions of only u, the Itô SDEs for ρ and φ reduce to

dρ =

[
u2

∂ρ

∂u1

− q2u1
∂ρ

∂u2

]
dt+ ε

[
−(2ζov2 + v1)u1

∂ρ

∂u2

]
dt

+ ε2
[
−2ζpu2

∂ρ

∂u2

+
ν2

2
u2
1

∂2ρ

∂u2
2

]
dt+ ενu1

∂ρ

∂u2

dW (t)

(4.20a)

dφ =

[
u2

∂φ

∂u1

− q2u1
∂φ

∂u2

]
dt+ ε

[
−(2ζov2 + v1)u1

∂φ

∂u2

]
dt

+ ε2
[
−2ζpu2

∂φ

∂u2

+
ν2

2
u2
1

∂2φ

∂u2
2

]
dt+ ενu1

∂φ

∂u2

dW (t).

(4.20b)

Computation of the derivatives of ρ and φ requires laborious calculations, the details of
which are shown in Appendix A. The derivatives we require are

∂ρ

∂u1

=
cosφ

r

∂φ

∂u1

= −sinφ

r
∂ρ

∂u2

=
sinφ

qr

∂φ

∂u2

=
cosφ

qr

∂2ρ

∂u2
2

=
cos2 φ− sin2 φ

q2r2
∂2φ

∂u2
2

= −2 sinφ cosφ

q2r2
.

We now substitute these into (4.20) and simplify.

The order 1 drift terms:

Q0(φ, v)
def
= u2

∂ρ

∂u1

− q2u1
∂ρ

∂u2

= qr sinφ
cosφ

r
− q2r cosφ

sinφ

qr
= 0

h0(φ, v)
def
= u2

∂φ

∂u1

− q2u1
∂φ

∂u2

= −qr sinφ
sinφ

r
− q2r cosφ

cosφ

qr
= −q.
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The order ε drift terms:

Q1(φ, v)
def
= −(2ζov2 + v1)u1

∂ρ

∂u2

= −(2ζov2 + v1) r cosφ
sinφ

qr

= −1

q
(2ζov2 + v1) sinφ cosφ

h1(φ, v)
def
= −(2ζov2 + v1)u1

∂φ

∂u2

= −(2ζov2 + v1) r cosφ
cosφ

qr

= −1

q
(2ζov2 + v1) cos

2 φ.

The order ε2 drift terms:

Q2(φ, v)
def
= −2ζpu2

∂ρ

∂u2

+
ν2

2
u2
1

∂2ρ

∂u2
2

= −2ζp qr sinφ
sinφ

qr
+

ν2

2
r2 cos2 φ

cos2 φ− sin2 φ

q2r2

= −2ζp sin
2 φ+

ν2

2q2
cos2 φ(1− 2 sin2 φ)

h2(φ, v)
def
= −2ζpu2

∂φ

∂u2

+
ν2

2
u2
1

∂2φ

∂u2
2

= −2ζp qr sinφ
cosφ

qr
− ν2

2
r2 cos2 φ

2 sinφ cosφ

q2r2

= −2ζp sinφ cosφ− ν2

q2
sinφ cos3 φ.
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The diffusion terms:

QD(φ, v)
def
= νu1

∂ρ

∂u2

= ν r cosφ
sinφ

qr
=

ν

q
sinφ cosφ

hD(φ, v)
def
= νu1

∂φ

∂u2

= ν r cosφ
cosφ

qr
=

ν

q
cos2 φ.

So, the SDEs for ρ(u) and φ(u) are

dρ = Qε(φ, v) dt+ εQD(φ, v) dW (t)

=
[
Q0(φ, v) + εQ1(φ, v) + ε2Q2(φ, v)

]
dt+ εQD(φ, v) dW (t)

(4.21a)

dφ = hε(φ, v) dt+ εhD(φ, v) dW (t)

=
[
h0(φ, v) + εh1(φ, v) + ε2h2(φ, v)

]
dt+ εhD(φ, v) dW (t)

(4.21b)

where

Q0(φ, v) = 0 h0(φ, v) = −q

Q1(φ, v) = −1

q
(2ζov2 + v1) sinφ cosφ h1(φ, v) = −1

q
(2ζov2 + v1) cos

2 φ

Q2(φ, v) = −2ζp sin
2 φ h2(φ, v) = −2ζp sinφ cosφ

+
ν2

2q2
cos2 φ(1− 2 sin2 φ) − ν2

q2
sinφ cos3 φ

QD(φ, v) =
ν

q
sinφ cosφ hD(φ, v) =

ν

q
cos2 φ.

4.5 Furstenberg-Khas’minskii Formula

The process Y (t), formed by φ(t) and v(t), is a diffusion process given by the Itô SDE

dY (t) = b
(
Y (t)

)
dt+ σ

(
Y (t)

)
dW (t), Y (0) = y =

φ
v1
v2

 , (4.22)
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where

b(y) =

h0(φ, v) + εh1(φ, v) + ε2h2(φ, v)
v2

−v1 − 2ζov2

 and σ(y) =

εhD(φ, v)
0
ν

 .

The diffusion matrix a(y) is defined as

a(y) = σ(y)σT (y) =

εhD(φ, v)
0
ν

(εhD(φ, v) 0 ν
)
=

ε2h2
D(φ, v) 0 ενhD(φ, v)
0 0 0

ενhD(φ, v) 0 ν2

 .

So, using (4.16), we write the generator Aε of Y (t) as a decomposition in powers of ε:

Aε = A0 + εA1 + ε2A2 , (4.23)

where

A0 = −q
∂

∂φ
+ v2

∂

∂v1
− (v1 + 2ζov2)

∂

∂v2
+

ν2

2

∂2

∂v22

A1 = −1

q
(2ζov2 + v1) cos

2 φ
∂

∂φ
+

ν2

q
cos2 φ

∂2

∂φ∂v2

A2 =

(
−2ζp sinφ cosφ− ν2

q2
sinφ cos3 φ

)
∂

∂φ
+

ν2

2q2
cos4 φ

∂2

∂φ2
.

If Y (t) is ergodic, then, by the Furstenberg-Khas’minskii formula, the Lyapunov exponent
for u = (u1, u2)

T is given by

λ = E
[
Qε(φ, v)

]
=

∫
v

∫
φ

Qε(φ, v) pε(φ, v) dφ dv,
(4.24)

where pε(φ, v) is the stationary density of Y (t) =
(
φ(t), v(t)

)
that satisfies the stationary

Fokker-Planck equation Aε∗pε(φ, v) = 0.

Computation of the Lyapunov exponent requires Y (t) to be ergodic. Mathematically
rigorous proof that Y (t) is indeed ergodic and has a unique invariant measure µ(φ, v), is
presented in [6] for a multivariate Ornstein-Uhlenbeck process v(t) that represents a generic
parametric noise. The following reasoning is also provided as a means of loosely justifying
the ergodicity of Y (t) since a proof is not provided here. For an ergodic process, time and
ensemble averages are equivalent. Consequently, this means that, after a sufficiently long
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time, a single trajectory in the system’s state space will eventually pass through all possible
points in the space; hence it visits all possible states of the system. Based on knowledge of
a classical linear oscillator excited by white noise, presented in Section 3.2, it is reasonable
to say that v = (v1, v2)

T is, on its own, ergodic. For φ, since the leading order term in the
drift coefficient is a constant that cannot be zero, it will never get trapped anywhere in
the state space. By these arguments, one can hypothesize that Y (t) is an ergodic process.

4.6 Asymptotic Analysis

To calculate the Lyapunov exponent in (4.24), we need to solve for pε(φ, v) using the
Fokker-Planck equation

Aε∗pε(φ, v) = 0.

Instead of doing that, as in [33], we consider the adjoint problem

Aεuε(φ, v) = Qε(φ, v)− λε (4.25)

where
Aε = A0 + εA1 + ε2A2

uε = u0 + εu1 + ε2u2 + · · ·
Qε = εQ1 + ε2Q2

λε = λ0 + ελ1 + ε2λ2 + · · · .
In general, a necessary condition for an equation of the form Au = f (where A is a linear
operator) to have solution(s) is that ⟨f, v⟩ = 0 for all v satisfying A∗v = 0. So, the
solvability condition for (4.25) is〈

Qε(φ, v)− λε, pε(φ, v)
〉
= 0 where Aε∗pε(φ, v) = 0,

and ⟨·, ·⟩ represents the inner product〈
f(φ, v), g(φ, v)

〉
=

∫
v

∫
φ

f(φ, v) g(φ, v) dφ dv.

The principal idea is to solve asymptotically for uε(φ, v)1 while obtaining the terms of λε

via the solvability conditions of the equations at each order of ε. Equation (4.25) can be
written explicitly as

(A0 + εA1 + ε2A2)(u0 + εu1 + ε2u2 + · · · ) = (εQ1 + ε2Q2)− (λ0 + ελ1 + ε2λ2 + · · · ),
1Clearly, this u differs from that which represents the system u = (u1, u2)

T whose top Lyapunov
exponent is being solved for.
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which after expanding and grouping in orders of ε yields the following set of Poisson
equations:

O(1) A0u0(φ, v) = −λ0 (4.26a)

O(ε) A0u1(φ, v) = Q1(φ, v)−A1u0(φ, v)− λ1 (4.26b)

O(ε2) A0u2(φ, v) = Q2(φ, v)−A1u1(φ, v)−A2u0(φ, v)− λ2. (4.26c)

Note that we expand only up to the ε2-order equation as that is the order of accuracy we are
looking to achieve. As shall be seen later, it is at this order we get the first non-vanishing
value in the asymptotic expansion of λε.

4.6.1 The Leading Order Equation

The leading order equation (4.26a) is

−q
∂u0

∂φ
(φ, v) + G u0(φ, v) = −λ0,

where G is the generator associated with the coloured noise oscillator system v = (v1, v2)
T

as defined in (4.18). Its solvability condition is

−
〈
λ0, p0(φ, v)

〉
= 0 where A∗

0p0(φ, v) = 0.

The adjoint (Fokker-Planck) equation is relatively easy to find a solution for. Since A∗
0 is

a linear differential operator, A∗
0p0(φ, v) = 0 is a linear homogeneous partial differential

equation whose solution can be written in the form

p0(φ, v) = Γ(φ) ϱ(v). (4.27a)

Given the composition of A∗
0, we can make informed assumptions on the form of Γ(φ)

and ϱ(v). It is reasonable to hypothesize that Γ(φ) corresponds to the density of the
uniform measure associated with the polar coordinate φ of the undamped, unforced system
u = (u1, u2)

T with frequency q, as evidenced by the differential equation dφ = −q dt in
(4.21b) when ε = 0; (

u̇1

u̇2

)
=

(
0 1

−q2 0

)(
u1

u2

)
.

Perhaps more evidently, ϱ(v) can be reasonably assumed to be the density (4.6) of the
invariant Gaussian measure associated with the coloured noise linear oscillator system
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v = (v1, v2)
T (4.12). So, we have

Γ(φ) =
1

2π
and ϱ(v) = C exp

{
−γ

(
1

2
v21 +

1

2
v22

)}
,

where γ =
4ζo
ν2

, C =
2ζo
ν2π

.

(4.27b)

We proceed to show that this does indeed satisfy the adjoint equation:

A∗
0p0(φ, v) =⇒ ∂

∂φ
(q p0) + G ∗p0

= qϱ(v)
∂Γ

∂φ
+ Γ(φ)G ∗ϱ(v)

=
1

2π

[
− ∂

∂v1

(
v2ϱ(v)

)
+

∂

∂v2

(
(v1 + 2ζov2)ϱ(v)

)
+

∂2

∂v22

(
ν2

2
ϱ(v)

)]
=

1

2π

[
−v2

∂ϱ

∂v1
+ v1

∂ϱ

∂v2
+ 2ζo

∂

∂v2

(
v2ϱ(v)

)
+

ν2

2

∂2ϱ

∂v22

]
,

where

∂ϱ

∂v1
= −γv1ϱ(v)

∂

∂v2

(
v2ϱ(v)

)
= ϱ(v)

(
1− γv22

)
∂ϱ

∂v2
= −γv2ϱ(v)

∂2ϱ

∂v22
= −γϱ(v)

(
1− γv22

)
.

Substitution of these derivatives into the expression yields A∗
0p0(φ, v) = 0, confirming that

the proposed solution is valid. So, from the solvability condition,〈
λ0, p0(φ, v)

〉
= 0

λ0

∫
v

∫
φ

p0(φ, v) dφ dv = 0

∴ λ0 = 0.

Thus the leading order equation (4.26a) has solution u0(φ, v) = K, where K is a constant.
The ε- and ε2-order Poisson equations (4.26b, 4.26c) then become

O(ε) A0u1(φ, v) = Q1(φ, v)− λ1 (4.28a)

O(ε2) A0u2(φ, v) = Q2(φ, v)−A1u1(φ, v)− λ2. (4.28b)
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4.6.2 Poisson Equations and the Feynman-Kac Formula

Consider a generic form of the Poisson equations

A0u(φ, v) = F (φ, v)

with solvability condition〈
F (φ, v), p0(φ, v)

〉
= 0 where A∗

0p0(φ, v) = 0,

so p0(φ, v) is as defined in (4.27a, 4.27b). We seek a solution to this generic form that can
be applied to the Poisson equations as required. It is written explicitly as

− q
∂u

∂φ
(φ, v) + G u(φ, v) = F (φ, v). (4.29)

Introducing an auxiliary time t, the equation becomes [24](
∂

∂t
+ q

∂

∂φ

)
u(t, φ, v) = G u(t, φ, v)− F (φ, v). (4.30)

Since the inhomogeneous term F (φ, v) is independent of t, u(φ, v) is the stationary solution
of (4.30). That is,

u(φ, v) = lim
t→∞

u(t, φ, v).

The goal is to transform the auxiliary equation (4.30) into a standard backward Kolmogorov
equation and use the Feynman-Kac formula to solve it. We employ the transformation [24]

t = (τ + s), φ = q(τ − s) (4.31a)

and let w(τ, s, v) = u
(
t(τ, s), φ(τ, s), v

)
. Since the transformation is nonsingular

(∂(t,φ)
∂(τ,s)

=

−2q ̸= 0
)
, it is invertible and its inverse is given by

τ =
1

2

(
t+

φ

q

)
, s =

1

2

(
t− φ

q

)
(4.31b)

so that u(t, φ, v) = w
(
τ(t, φ), s(t, φ), v

)
. Applying the chain rule, we have

∂u

∂t
=

∂w

∂τ

∂τ

∂t
+

∂w

∂s

∂s

∂t
=

1

2

∂w

∂τ
+

1

2

∂w

∂s
∂u

∂φ
=

∂w

∂τ

∂τ

∂φ
+

∂w

∂s

∂s

∂φ
=

1

2q

∂w

∂τ
− 1

2q

∂w

∂s
.
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Substituting these into (4.30) yields

∂w

∂τ
(τ, v; s) = Gw(τ, v; s) +G(τ, v; s); w(0, v; s) = 0, (4.32)

where G(τ, v; s) = −F
(
φ(τ, s), v

)
and the homogeneous initial condition is used since the

initial condition generally does not affect the stationary solution, which is what we are ul-
timately interested in. This equation constitutes an inhomogeneous backward Kolmogorov
equation parametrized by s. Once it is solved for w(τ, v; s), the solution u(t, φ, v) of the
auxiliary equation (4.30) is obtained by reverting back to the original variables, then, by
taking the limit as t → ∞, we get the solution u(φ, v) to the generic Poisson equation
(4.29). That is,

u(φ, v) = lim
t→∞

u(t, φ, v) = lim
t→∞

w

(
t

2
+

φ

2q
, v;

t

2
− φ

2q

)
.

We now proceed to find the solution of (4.32). According to the Feynman-Kac formula,
this solution is given by

w(τ, v; s) = Ev

[∫ τ

0

G
(
τ − t′, V (t′); s

)
dt′
]
, (4.33)

where the process V (t) =
(
v1(t), v2(t)

)
. This can be written in terms of the transition

density function p(τ, v, v′) of V (t) as

w(τ, v; s) =

∫ τ

0

∫
R2

G(τ − t′, v′; s) p(t′, v, v′) dv′ dt′, (4.34)

so that

u(t, φ, v) =

∫ t
2
+ φ

2q

0

∫
R2

G

(
t

2
+

φ

2q
− t′, v′;

t

2
− φ

2q

)
p(t′, v, v′) dv′ dt′. (4.35)

4.6.3 The ε-Order Equation

The ε-order equation (4.28a) is given by

A0u1(φ, v) = F1(φ, v)

where

F1(φ, v) = Q1(φ, v)− λ1 and Q1(φ, v) = −1

q
(2ζov2 + v1) sinφ cosφ.
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From the solvability condition,〈
Q1(φ, v)− λ1, p0(φ, v)

〉
= 0

∴ λ1 =
〈
Q1(φ, v), p0(φ, v)

〉
=

∫
v

∫
φ

Q1(φ, v) p0(φ, v) dφ dv

= − 1

2πq

∫
R2

∫ 2π

0

(2ζov2 + v1) sinφ cosφϱ(v) dφ dv

= − 1

4πq

∫
R2

(2ζov2 + v1) ϱ(v) dv︸ ︷︷ ︸
E[2ζov2+v1]

∫ 2π

0

sin 2φdφ = 0.

So, by the mean zero and periodic properties of Q1(φ, v), we get that λ1 = 0, meaning that
F1(φ, v) = Q1(φ, v). We have

G1(τ, v; s) = −F1

(
φ(τ, s), v

)
= −F1

(
q(τ − s), v

)
=

1

2q
(2ζov2 + v1) sin 2q(τ − s)

∴ G1(τ − t′, v′; s) =
1

2q
(2ζov

′
2 + v′1) sin 2q(τ − t′ − s).

Then,

G1

(
t

2
+

φ

2q
− t′, v′;

t

2
− φ

2q

)
=

1

2q
(2ζov

′
2 + v′1) sin 2q

(
t

2
+

φ

2q
− t′ − t

2
+

φ

2q

)
=

1

2q
(2ζov

′
2 + v′1) sin(2φ− 2qt′).

Therefore, from (4.35),

u1(t, φ, v) =
1

2q

∫ t
2
+ φ

2q

0

∫
R2

(2ζov
′
2 + v′1) sin(2φ− 2qt′) p(t′, v, v′) dv′ dt′, (4.36)

from which we obtain the steady-state solution u1(φ, v) that solves the ε-order Poisson
equation (4.28a) by taking the limit as t → ∞. So, we have

u1(φ, v) =
1

2q

∫ ∞

0

∫
R2

(2ζov
′
2 + v′1) sin(2φ− 2qt′) p(t′, v, v′) dv′ dt′. (4.37)
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Defining auxiliary variables

K1(v, t
′)

def
=

∫
R2

v′1 p(t
′, v, v′) dv′ and K2(v, t

′)
def
=

∫
R2

v′2 p(t
′, v, v′) dv′, (4.38)

the solution u1(φ, v) can be concisely written as

u1(φ, v) =
1

2q

∫ ∞

0

(
2ζoK2(v, t

′) +K1(v, t
′)
)
sin(2φ− 2qt′) dt′. (4.39)

It turns out that the φ derivative of this function is required in the next stage of the
calculation process. It is given by

∂u1

∂φ
(φ, v) =

1

q

∫ ∞

0

(
2ζoK2(v, t

′) +K1(v, t
′)
)
cos(2φ− 2qt′) dt′. (4.40)

The auxiliary variables defined in (4.38) can be calculated explicitly by recognizing that
they are, by definition, the expectation of v′ = (v′1, v

′
2)

T := v(t′) given the initial condition
v(0) = v = (v1, v2)

T . That is, Ki(v, t
′) = Ev[vi(t

′)], i ∈ {1, 2}. Using standard techniques
[22], v′ can be shown to be given by[

v1(t
′)

v2(t
′)

]
= Φ(t′)

(
v1
v2

)
+

∫ t′

0

Φ(t′ − s)

(
0
ν

)
ξ(s) ds,

where

Φ(t′)
def
= e−ζot′

cosωdt
′ +

ζo
ωd

sinωdt
′ 1

ωd

sinωdt
′

− 1

ωd

sinωdt
′ cosωdt

′ − ζo
ωd

sinωdt
′

 , ωd =
√
1− ζ2o .

The auxiliary variables Ki(v, t
′) are then explicitly given by[

K1(v, t
′)

K2(v, t
′)

]
= Ev

[
v1(t

′)
v2(t

′)

]

=

 e−ζot′
(
cosωdt

′ +
ζo
ωd

sinωdt
′
)
v1 +

(
e−ζot′

ωd

sinωdt
′
)
v2

−
(
e−ζot′

ωd

sinωdt
′
)
v1 + e−ζot′

(
cosωdt

′ − ζo
ωd

sinωdt
′
)
v2

 . (4.41)
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4.6.4 The ε2-Order Equation

The ε2-order equation (4.28b) is given by

A0u2(φ, v) = F2(φ, v)

where
F2(φ, v) = Q2(φ, v)−A1u1(φ, v)− λ2

and

Q2(φ, v) = − 2ζp sin
2 φ+

ν2

2q2
cos2 φ(1− 2 sin2 φ)

= ζp(cos 2φ− 1) +
ν2

4q2

(
1

2
+

1

2
cos 4φ+ cos 2φ

)
A1u1(φ, v) = − 1

q
(2ζov2 + v1) cos

2 φ
∂u1

∂φ
+

ν2

q
cos2 φ

∂2u1

∂φ∂v2

= − 1

2q2
(2ζov2 + v1)(cos 2φ+ 1)

∫ ∞

0

(
2ζoK2(v, t

′) +K1(v, t
′)
)
cos(2φ− 2qt′) dt′

+
ν2

2q2
(cos 2φ+ 1)

∫ ∞

0

(
2ζo

∂K2

∂v2
(v, t′) +

∂K1

∂v2
(v, t′)

)
cos(2φ− 2qt′) dt′.

We use the solvability condition of this equation to find λ2, the first non-zero value in the
asymptotic expansion of the Lyapunov exponent. The solvability condition is〈

Q2(φ, v)−A1u1(φ, v)− λ2, p0(φ, v)
〉
= 0

∴ λ2 =
〈
Q2(φ, v), p0(φ, v)

〉
−
〈
A1u1(φ, v), p0(φ, v)

〉
. (4.42)

We shall treat each of these averages separately, so, let

Λ1 =
〈
Q2(φ, v), p0(φ, v)

〉
and Λ2 =

〈
A1u1(φ, v), p0(φ, v)

〉
.

For Λ1, we recognize that Q2 turns out to be a function of only φ, so that

Λ1 =

∫
v

∫
φ

Q2(φ) p0(φ, v) dφ dv

=
1

2π

∫ 2π

0

Q2(φ) dφ

∫
R2

ϱ(v) dv =
1

2π

∫ 2π

0

Q2(φ) dφ,
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where the integral is calculated as follows:∫ 2π

0

Q2(φ) dφ =

{
0 for Q2(φ) = κ cosnφ

κ 2π for Q2(φ) = κ
; κ ∈ R, n ∈ N.

Therefore,

Λ1 = −ζp +
ν2

8q2
. (4.43)

The evaluation of Λ2 is a lot more involved, and we would like to obtain the results in
terms of power spectral density. We have

Λ2 =

∫
v

∫
φ

A1u1(φ, v) p0(φ, v) dφ dv

=
1

2π

∫
R2

∫ 2π

0

A1u1(φ, v) ϱ(v) dφ dv

= − 1

2π

∫
R2

∫ 2π

0

[
1

2q2
(2ζov2 + v1)(cos 2φ+ 1)∫ ∞

0

(
2ζoK2(v, t

′) +K1(v, t
′)
)
cos(2φ− 2qt′) dt′

]
ϱ(v) dφ dv

+
1

2π

∫
R2

∫ 2π

0

[
ν2

2q2
(cos 2φ+ 1)∫ ∞

0

(
2ζo

∂K2

∂v2
(v, t′) +

∂K1

∂v2
(v, t′)

)
cos(2φ− 2qt′) dt′

]
ϱ(v) dφ dv.

We interchange the integrals to compute the φ integrals first:

Λ2 = − 1

2π

∫
R2

[
1

2q2
(2ζov2 + v1)

∫ ∞

0

(
2ζoK2(v, t

′) +K1(v, t
′)
)

∫ 2π

0

(cos 2φ+ 1) cos(2φ− 2qt′) dφ dt′
]
ϱ(v) dv

+
1

2π

∫
R2

[
ν2

2q2

∫ ∞

0

(
2ζo

∂K2

∂v2
(v, t′) +

∂K1

∂v2
(v, t′)

)
∫ 2π

0

(cos 2φ+ 1) cos(2φ− 2qt′) dφ dt′
]
ϱ(v) dv.
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These phase average terms yield∫ 2π

0

(cos 2φ+ 1) cos(2φ− 2qt′) dφ

=

∫ 2π

0

cos 2φ cos(2φ− 2qt′) dφ+

∫ 2π

0

cos(2φ− 2qt′) dφ︸ ︷︷ ︸
=0

=
1

2
cos 2qt′

∫ 2π

0

dφ︸ ︷︷ ︸
=2π

+
1

2

∫ 2π

0

cos(4φ− 2qt′) dφ︸ ︷︷ ︸
=0

= π cos 2qt′.

Substituting this into the expression for Λ2, we get

Λ2 = − 1

4q2

∫
R2

[
(2ζov2 + v1)

∫ ∞

0

(
2ζoK2(v, t

′) +K1(v, t
′)
)
cos 2qt′ dt′

]
ϱ(v) dv

+
ν2

4q2

∫
R2

[ ∫ ∞

0

(
2ζo

∂K2

∂v2
(v, t′) +

∂K1

∂v2
(v, t′)

)
cos 2qt′ dt′

]
ϱ(v) dv.

Again, we interchange integrals; this time, so that we can compute the v integrals first.
We have

Λ2 = − 1

4q2

∫ ∞

0

[ ∫
R2

(2ζov2 + v1)
(
2ζoK2(v, t

′) +K1(v, t
′)
)
ϱ(v) dv

]
cos 2qt′ dt′

+
ν2

4q2

∫ ∞

0

[ ∫
R2

(
2ζo

∂K2

∂v2
(v, t′) +

∂K1

∂v2
(v, t′)

)
ϱ(v) dv

]
cos 2qt′ dt′.

Now, let us make the following definitions:

R1(t
′)

def
=

∫
R2

(2ζov2 + v1)
(
2ζoK2(v, t

′) +K1(v, t
′)
)
ϱ(v) dv

R2(t
′)

def
=

∫
R2

(
2ζo

∂K2

∂v2
(v, t′) +

∂K1

∂v2
(v, t′)

)
ϱ(v) dv,

(4.44)

then, Λ2 can be written concisely as

Λ2 = − 1

4q2

∫ ∞

0

R1(t
′) cos 2qt′ dt′ +

ν2

4q2

∫ ∞

0

R2(t
′) cos 2qt′ dt′. (4.45)
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The stationary autocorrelation function of a process f
(
V (t)

)
is

Rff (t
′) = E[f

(
V (t)

)
f
(
V (t+ t′)

)
]

=

∫
R2

∫
R2

f(v) f(v′) p(t′, v, v′)ϱ(v) dv dv′. (4.46)

With this in mind, and from the definitions of K1(v, t
′) and K2(v, t

′) given in (4.38), for
R1(t

′), we have

R1(t
′) = 4ζ2o

∫
R2

v2K2(v, t
′)ϱ(v) dv + 2ζo

∫
R2

v2K1(v, t
′)ϱ(v) dv

+ 2ζo

∫
R2

v1K2(v, t
′)ϱ(v) dv +

∫
R2

v1K1(v, t
′)ϱ(v) dv

= 4ζ2o

∫
R2

∫
R2

v2v
′
2 p(t

′, v, v′)ϱ(v) dv dv′ + 2ζo

∫
R2

∫
R2

v2v
′
1 p(t

′, v, v′)ϱ(v) dv dv′

+ 2ζo

∫
R2

∫
R2

v1v
′
2 p(t

′, v, v′)ϱ(v) dv dv′ +

∫
R2

∫
R2

v1v
′
1 p(t

′, v, v′)ϱ(v) dv dv′

= 4ζ2oRv2v2(t
′) + 2ζo

(
Rv2v1(t

′) +Rv1v2(t
′)
)
+Rv1v1(t

′).

The stationary autocorrelation functions for v(t) =
(
v1(t), v2(t)

)T
are given by [22](

Rv1v1(t
′) Rv1v2(t

′)
Rv2v1(t

′) Rv2v2(t
′)

)
= E

[
v1(t)v1(t+ t′) v1(t)v2(t+ t′)
v2(t)v1(t+ t′) v2(t)v2(t+ t′)

]

=
ν2e−ζo|t′|

4ζo

cosωd|t′|+
ζo
ωd

sinωd|t′|
1

ωd

sinωd|t′|

− 1

ωd

sinωd|t′| cosωd|t′| −
ζo
ωd

sinωd|t′|

 . (4.47)

Thus, we have Rv2v1(t
′) +Rv1v2(t

′) = 0, which reduces R1(t
′) to

R1(t
′) = 4ζ2oRv2v2(t

′) +Rv1v1(t
′). (4.48)

For R2(t
′), we have

R2(t
′) = 2ζo

∫
R2

∂K2

∂v2
(v, t′)ϱ(v) dv +

∫
R2

∂K1

∂v2
(v, t′)ϱ(v) dv.

Using the expressions for K1(v, t
′) and K2(v, t

′) obtained in (4.41), we calculate

∂K1

∂v2
(v, t′) =

e−ζot′

ωd

sinωdt
′ and

∂K2

∂v2
(v, t′) = e−ζot′

(
cosωdt

′ − ζo
ωd

sinωdt
′
)
. (4.49)
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Therefore,

R2(t
′) = 2ζoe

−ζot′
(
cosωdt

′ − ζo
ωd

sinωdt
′
)∫

R2

ϱ(v) dv +
e−ζot′

ωd

sinωdt
′
∫
R2

ϱ(v) dv

= e−ζot′
(
2ζo cosωdt

′ +
1− 2ζ2o

ωd

sinωdt
′
)
. (4.50)

Substituting (4.48) and (4.50) into (4.45) yields

Λ2 = − 1

4q2

∫ ∞

0

[
4ζ2oRv2v2(t

′) +Rv1v1(t
′)
]
cos 2qt′ dt′

+
ν2

4q2

∫ ∞

0

e−ζot′
(
2ζo cosωdt

′ +
1− 2ζ2o

ωd

sinωdt
′
)
cos 2qt′ dt′

= − ζ2o
q2

∫ ∞

0

Rv2v2(t
′) cos 2qt′ dt′ − 1

4q2

∫ ∞

0

Rv1v1(t
′) cos 2qt′ dt′

+
ν2ζo
2q2

∫ ∞

0

e−ζot′ cosωdt
′ cos 2qt′ dt′ +

ν2(1− 2ζ2o )

4q2ωd

∫ ∞

0

e−ζot′ sinωdt
′ cos 2qt′ dt′

= − 1

4q2

∫ ∞

0

Rv1v1(t
′) cos 2qt′ dt′ − ζ2o

q2

∫ ∞

0

Rv2v2(t
′) cos 2qt′ dt′

+
ν2ζo
4q2

∫ ∞

0

e−ζot′
[
cos(ωd + 2q)t′ + cos(ωd − 2q)t′

]
dt′︸ ︷︷ ︸

I1

+
ν2(1− 2ζ2o )

8q2ωd

∫ ∞

0

e−ζot′
[
sin(ωd + 2q)t′ + sin(ωd − 2q)t′

]
dt′︸ ︷︷ ︸

I2

.

Using standard integral identities, the integrals I1 and I2 can be shown to simplify to

I1 =
ν2

4q2

[
2ζ2o (1 + 4q2)

(1 + 4q2)2 − (4qωd)2

]
and I2 =

ν2

4q2

[
(1− 2ζ2o )(1− 4q2)

(1 + 4q2)2 − (4qωd)2

]
,

so that Λ2 becomes

Λ2 = − 1

4q2

∫ ∞

0

Rv1v1(t
′) cos 2qt′ dt′ − ζ2o

q2

∫ ∞

0

Rv2v2(t
′) cos 2qt′ dt′

+
ν2

4q2

[
2ζ2o (1 + 4q2) + (1− 2ζ2o )(1− 4q2)

(1 + 4q2)2 − (4qωd)2

]
.
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The power spectral density defined in terms of the cosine function is

Svivi(ω) =
1

π

∫ ∞

0

Rvivi(t
′) cosωt′ dt′. (4.51)

Hence Λ2 can be written in terms of power spectral density functions as

Λ2 = − π

4q2
Sv1v1(2q)−

πζ2o
q2

Sv2v2(2q) +
ν2

4q2

[
2ζ2o (1 + 4q2) + (1− 2ζ2o )(1− 4q2)

(1 + 4q2)2 − (4qωd)2

]
.

The power spectral density functions of v1 and v2 are related as follows:

Sη̇η̇(ω) = ω2Sηη(ω) =⇒ Sv2v2(ω) = ω2Sv1v1(ω), (4.52)

so that Λ2 may be written in terms of only Sv1v1 as

Λ2 = − π

4q2
[
Sv1v1(2q) + 4ζ2o (2q)

2Sv1v1(2q)
]
+

ν2

4q2

[
2ζ2o (1 + 4q2) + (1− 2ζ2o )(1− 4q2)

(1 + 4q2)2 − (4qωd)2

]
= − π

4q2

[
Sv1v1(2q)

(
1 + 16ζ2oq

2
)]

+
ν2

4q2

[
2ζ2o (1 + 4q2) + (1− 2ζ2o )(1− 4q2)

(1 + 4q2)2 − (4qωd)2

]
. (4.53)

Now that we have finally obtained an expression for Λ2, we substitute the expressions in
(4.43) and (4.53), for Λ1 and Λ2 respectively, into equation (4.42) to obtain an expression
for λ2, the second order approximation of the maximal Lyapunov exponent. We have

λ2 = Λ1 − Λ2

= − ζp +
ν2

8q2
+

π

4q2
Sv1v1(2q)

(
1 + 16ζ2oq

2
)

− ν2

4q2

[
2ζ2o (1 + 4q2) + (1− 2ζ2o )(1− 4q2)

(1 + 4q2)2 − (4qωd)2

]
,

(4.54)

where the spectral density function is given explicitly by

Sv1v1(ω) =
1

2π

ν2

(1− ω2)2 + 4ζ2oω
2
.

Since the ultimate goal is to obtain an expression for the noise intensity ν in terms of the
other system parameters, we rewrite (4.54) as

λ2 = − ζp +
ν2

8q2
+

πν2

4q2
Sv1v1(2q)

(
1 + 16ζ2oq

2
)

− ν2

4q2

[
2ζ2o (1 + 4q2) + (1− 2ζ2o )(1− 4q2)

(1 + 4q2)2 − (4qωd)2

]
,

(4.55)

65



where

Sv1v1(2q) =
1

2π

1

(1− 4q2)2 + 16ζ2oq
2

and ωd =
√

1− ζ2o .

Substituting for Sv1v1(2q) and ωd, (4.55) eventually simplifies to

λ2 = −ζp +
2q2ν2

(1− 4q2)2 + 16ζ2oq
2
. (4.56)

4.7 Stability Results

We have found that the maximal Lyapunov exponent that governs the almost-sure stability
of the pendulum in the single mode solution of the system being studied in this thesis is
given by

λ = ε2
[
−ζp +

2q2ν2

(1− 4q2)2 + 16ζ2oq
2

]
+O(ε4), ε → 0. (4.57)

This result agrees perfectly with that of Baxendale and Sri Namachchivaya [6] where math-
ematically rigorous asymptotic results for a multivariate Ornstein-Uhlenbeck process that
represents a generic parametric real noise is presented for the same system. There, fur-
ther analysis is performed to show that the expression (4.57) for the maximal Lyapunov
exponent is indeed asymptotic, and that the higher order terms in it are O(ε4) as ε → 0.

The result also validates those of Onu et al. [31]. There, the variational equation was
considered in the form of (4.9), that is,

ϕ̈(t) + ε22ζpϕ̇(t) +
(
q2 − εη̈(t)

)
ϕ(t) = 0.

Then, based on the results of [4, 33], an explicit expression for the maximal Lyapunov
exponent of the single mode solution was approximated, for the parametric real noise
excitation η̈(t), to be

λ ≈ ε2
(
−ζp +

π

4q2
Sη̈η̈(2q)

)
, (4.58)

where, although its existence was not rigorously shown, the power spectral density function
of η̈ was taken to be

Sη̈η̈(ω) =
1

2π

ω4ν2

(1− ω2)2 + 4ζ2oω
2
.

The logic behind this approximation of Sη̈η̈(ω) is as follows:
Since, for a differentiable real noise process η(t), the power spectral density functions of η
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and η̇ are related by Sη̇η̇(ω) = ω2Sηη(ω), this implies

Sη̈η̈(ω) = ω2Sη̇η̇(ω) = ω4Sηη(ω).

Therefore, combining these ideas, (4.58) is then

λ ≈ ε2
(
−ζp +

π

4q2
· 1

2π

(2q)4ν2

(1− 4q2)2 + 4ζ2o (2q)
2

)
,

which simplifies to

λ ≈ ε2
(
−ζp +

2q2ν2

(1− 4q2)2 + 16ζ2oq
2

)
. (4.59)

This is precisely the second-order approximation of λ as seen in (4.57) obtained via the
calculations presented in this chapter. It is remarkable that the expression that was derived
in this thesis with more rigor matches the approximation presented in Onu et al. [31].

We now use the second-order approximation of the maximal Lyapunov exponent (4.59)
to derive a condition on the white noise excitation intensity ν that guarantees the almost-
sure stability of the pendulum. To do this, let λ = 0 so that

−ζp +
2q2ν2

c

(1− 4q2)2 + 16ζ2oq
2
= 0,

where νc represents the critical noise intensity at the stability boundary. Rearranging for
νc yields

νc =

√
ζp
[
(1− 4q2)2 + 16ζ2oq

2
]

2q2
. (4.60)

The necessary condition for almost-sure stability is λ < 0. Using this, we get that the
necessary condition on the excitation noise intensity for the pendulum to be almost-surely
stable is

ν <

√
ζp
[
(1− 4q2)2 + 16ζ2oq

2
]

2q2
. (4.61)

So, when the excitation noise intensity ν is small, the size of the motion of the oscillator
η is similarly small, and the pendulum undergoes small random motion near the stable
point θ ≡ 0; the system is stable. However, as the excitation noise intensity is further
increased, the top Lyapunov exponent λ becomes positive when ν > νc and the system
becomes unstable.
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To analyze the effects the system’s parameters have on its stability, we consider plots
of (4.60) to observe the behaviour of the almost-sure stability boundary of the single mode
solution. In particular, we are able to see the destabilizing effect of internal resonance by
plotting against the frequency q for different values of the dissipation coefficients of the
primary system (the oscillator) ζo, and of the absorber system (the pendulum) ζp. These
plots are presented in Figures 4.1 and 4.2. In each plot, the region of stability represented
by (4.61) corresponds to the area below the graph and above the horizontal axis.

From the figures, it is evident that the stability boundary curves are centred upon a
key value of the frequency; they all trough at q = 0.5. That is, the minimum point of
each curve occurs at this value of q, meaning that the threshold level of the excitation
intensity parameter ν required to cause instability of the single mode solution is obtained
when q = 0.5. This shows that unstable random motions of the coupled system are most
likely to occur when the natural frequency q of the absorber system is tuned to be in the
vicinity of half of that of the primary system, which, in this case, was normalized to unity.
Therefore, although no particular attention was given to the 1:2 resonance in the analysis
of the linearized system, the stability boundary curves immediately show the significance
of internal resonance in determining the behaviour of the system.

The graphs of the stability boundary also show the effect of the dissipation coefficients
ζo and ζp on the stability region. Increasing the damping in either of the primary or
absorber systems causes the region of stability to increase. In particular, the minimum
point at q = 0.5 where the boundary troughs moves upwards, implying that the threshold
level of the excitation intensity ν that results in instability of the single mode solution is
increased. This effect is clearly more prevalent in Figure 4.1 where the damping of the
absorber system ζp is kept constant while that of the primary system ζo is varied. The
behaviour displayed in this figure mimics that of the instability tongues and transition
curves in the stability chart of Mathieu’s equation with linear viscous damping [17]. This
equation is a linear second-order ordinary differential equation with cosine-type periodic
forcing of the stiffness coefficient as follows:

ẍ(t) + cẋ(t) +
(
δ + a cos t

)
x(t) = 0.

The variational equation of the absorber system has a similar form except that the forcing
of the stiffness coefficient is random. In particular, this forcing consists of the white noise
process that excites the primary system and the real noise processes that represent the
random motion of the primary system generated in response to the white noise excitation.
This variational equation is given, prior to the introduction of asymptotic scaling, by

ϕ̈(t) + 2ζpϕ̇(t) +
(
q2 − νξ(t) + 2ζoη̇(t) + η(t)

)
ϕ(t) = 0.
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Let us first consider the scenario where only the white noise ξ(t) is present in the parametric
forcing. In this case, the second-order approximation of the top Lyapunov exponent is given
by [33]

λξ ≈ ε2
(
−ζp +

ν2

8q2

)
,

and the almost-sure stability boundary is thus given by

νξ
c =

√
8ζpq2.

So, in this scenario, the stability boundary is simply a straight line from the origin whose
slope is determined by ζp. Now, notice that (4.60) can equivalently be expressed as

νc =

√
8ζpq2

(1− 4q2)2 + 16ζ2oq
2

16q4
.

Therefore, the expression for the stability boundary is a product of the contributions of
the white and real noise processes. The white noise has a sort of amplification effect,
introducing ζp as a vertical scaling parameter, the effects of which are evident in Figure
4.2. The fact that the stability boundary is a curve that always troughs at q = 0.5 is the
effect of the real noise. It brings in ζo as a parameter that controls how far up from the
horizontal axis this minimum point occurs, leading to the Mathieu-like behaviour observed
in Figure 4.1.

In summary, because of the nature of the parametric excitation of the variational equa-
tion of the absorber system containing correlated white and real noise processes, the dis-
sipation coefficients of the primary and absorber systems have a similar effect on the
almost-sure stability of the single mode solution of the overall system, but the manner in
which this effect manifests itself depends upon the ratio between the natural frequencies
of the primary and absorber systems, represented by q. As mentioned earlier, increasing
either of these damping parameters results in an increase in stability, which is the similar
effect they both unsurprisingly have. From Figures 4.1 and 4.2, it can be observed that
for a given frequency reasonably far away from q = 0.5, an increase in ζp results in a
significantly larger increase in the maximum intensity required to maintain stability than
a corresponding increase in ζo. In other words, when the frequency q is outside the vicinity
of the 1:2 internal resonance, ζp plays a far more crucial role in stabilizing the vibration
absorber system. This makes sense from a physical point of view as one would expect the
damping in the vibration absorber to be its primary source of stability. However, the story
changes when the frequency q ≈ 1

2
. In this resonance regime, ζo becomes the key stabiliz-

ing parameter because, as mentioned before, it controls how far up the minimum point of
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the stability boundary occurs, which corresponds to the threshold level of the excitation
intensity required to cause instability of the single mode solution in 1:2 internal resonance.
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Figure 4.1: Almost-sure stability boundaries for ζp = 0.1 and different values of ζo
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Figure 4.2: Almost-sure stability boundaries for ζo = 0.1 and different values of ζp
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Chapter 5

Conclusion

In this thesis, the almost-sure stability of the single mode solution of a two degree-of-
freedom autoparametric vibration absorber is studied. Modelled by a pendulum, which
represents the vibration absorber, attached to a mass-spring oscillator excited by a small-
intensity additive white noise, the maximal Lyapunov exponent for the pendulum is com-
puted to obtain the bifurcation points of its equilibrium solution θ̄ = 0 in the parameter
space of the system. The novelty in this work is that the variational equation governing
the stability of the pendulum is parametrically excited by the white noise exciting the
oscillator, as well as the real noise (and its derivative) generated in response to the white
noise excitation. Calculation of the Lyapunov exponent involves taking advantage of the
special structure of the system of equations governing the stability of the single mode so-
lution, and employing perturbative techniques. The asymptotic analysis leads a sequence
of linear Poisson equations to be solved at each order of ε. The solvability condition of
these equations at each order yields the terms in the asymptotic expansion of the Lyapunov
exponent. The asymptotic nature of this expansion is rigorously proven in [6].

Using the second-order approximation of the maximal Lyapunov exponent, the almost-
sure stability boundary with respect to the system parameters is obtained, and several
trends of practical importance to engineering applications are observed. In particular, it
is observed that the damping parameter ζp plays a pivotal role in maintaining the almost-
sure stability of the single mode solution of the vibration absorber, which is logical since
it controls the energy dissipation in the vibration absorber and should therefore have a
direct impact on its stability. The other damping parameter ζo, which controls the energy
dissipation in the primary system represented by the mass-spring oscillator directly excited
by the Gaussian white noise, is the key stabilizing parameter for frequencies close to the
one-to-two internal resonance frequency q = 1

2
at which the almost-sure stability of the
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single mode solution of the vibration absorber is least. In general, increasing either of these
damping parameters increases the stability of the system.

The work presented in this thesis can be complemented by explicit calculations of
other related stability quantities to provide a more complete description of the asymp-
totic behaviour of the randomly excited autoparametric vibration absorber considered.
Closely related to the Lyapunov exponent λ is the rotation number α. Roughly speaking,
whereas λ determines the growth or decay properties of the solutions X(t) =

(
X(t), Ẋ(t)

)
of a stochastic system, α determines the asymptotic rate of rotation of the unit vector
X(t)/∥X(t)∥. It is analogous to the imaginary part of the “maximal” eigenvalue of the
system matrix of the corresponding deterministic system. Another important quantity
is the moment Lyapunov exponent g(p) which describes the exponential growth rate of
E[∥X(t)∥p]. It is therefore a quantity used to characterize the stability of the p-th moment
of a random dynamical system, and it provides insight into the rate of convergence of the
system response towards its steady-state value [21].

It is important to recognize the critical limitation of this study is that the model is not
very robust. This stems from the fact that the random external excitation given to the
mass-spring oscillator in the model is assumed to take the form of a Gaussian white noise
process which, as has been discussed in this thesis, is merely a mathematical abstraction
that is not physically realizable. It serves the purpose of simplifying the analysis while
still providing reasonable results because it is a good approximation to physical processes
encountered in practice that have very flat power spectral density functions. Therefore,
a natural progression of this work is to consider a more realistic external noise excitation
with a non-flat spectral density function. Although the analysis will be more difficult,
the results are likely to be more realistically representative of mechanical and structural
engineering systems subject to random external forcing.
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Appendix A

Derivatives of ρ(u) and φ(u) in
Section 4.4

From the coordinate transformation defined in (4.19), we have

u1 = r cosφ, u2 = q r sinφ (A.1a)

and

ρ(u) := ln |r(u)| where r(u) =

√
u2
1 +

(
u2

q

)2

,

φ(u) = tan−1

(
u2

qu1

)
.

(A.1b)

Differentiation of ρ clearly requires the chain rule. We have
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(A.2)
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We now compute the first-order derivatives of r and φ:
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(A.3)
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(A.4)

The first-order derivatives of ρ are then

∂ρ

∂u1

=
1

r

∂r

∂u1

=
cosφ

r
∂ρ

∂u2

=
1

r

∂r

∂u2

=
sinφ

qr
.

(A.5)

We now compute the second-order derivatives of r:
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The second-order derivatives of ρ are then
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We now compute the second-order derivatives of φ:
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In summary, the derivatives of ρ(u) and φ(u), up to the second order, are
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