
k-Connectedness and k-Factors in the
Semi-Random Graph Process

by

Hidde Koerts

A thesis
presented to the University of Waterloo

in fulfilment of the
thesis requirement for the degree of

Master of Mathematics
in

Combinatorics and Optimization

Waterloo, Ontario, Canada, 2022

© Hidde Koerts 2022

Author’s Declaration
I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

ii

Abstract
The semi-random graph process is a single-player graph game where the player is initially
presented an edgeless graph with n vertices. In each round, the player is offered a vertex
u uniformly at random and subsequently chooses a second vertex v deterministically ac-
cording to some strategy, and adds edge uv to the graph. The objective for the player is
then to ensure that the graph fulfils some specified property as fast as possible.
We investigate the properties of being k-connected and containing a k-factor. We settle
the open case for 2-connectedness by showing that the player has a strategy to construct a
2-connected graph asymptotically almost surely in (ln 2+ln(ln 2+1)+o(1))n rounds, which
matches a known lower bound asymptotically. We also provide a strategy for building a
k-factor asymptotically almost surely in (β + 10−5)n rounds, where β is derived from the
solution of a system of differential equations.
Additionally, we consider a variant that was recently suggested by Wormald where the
player chooses the first vertex and the second vertex is chosen uniformly at random. We
show that the bounds for k-connectedness for the traditional setting are also tight for this
variant.

iii

Acknowledgements
First of all, I would like to thank my supervisor, Jane Gao, for all her guidance and support
throughout my master’s studies. I am grateful to her for opening my eyes to the world of
random graph theory and helping me take small steps into it.
Next, I would like to thank my readers, Luke Postle and Sophie Spirkl, not only for their
valuable feedback, but also especially for stimulating my enthusiasm for structural graph
theory during the program and shaping my view of graph theory as a whole.
Finally, I would like to thank all my fellow students and friends for making Waterloo such
a welcoming home and an overall amazing experience.

iv

Table of Contents

Author’s Declaration ii

Abstract iii

Acknowledgements iv

List of Figures vii

List of Tables viii

1 Introduction 1

2 Notation 3

3 Pre- and post-positional models 5

4 Tools 7
4.1 Concentration inequalities . 7
4.2 Wormald’s differential equation method . 8
4.3 Min-degree process . 8

5 k-Connectivity 10
5.1 Overview . 11
5.2 Supporting structural results . 11
5.3 Building 2-connected semi-random graphs 16
5.4 Pre-positional model . 22

6 k-Factors 25
6.1 Overview . 26
6.2 Perfect matching . 26
6.3 Terminology . 27
6.4 Running the perfect matching algorithm k times 28
6.5 Issues in extending the perfect matching algorithm 34
6.6 Algorithm for upper bound . 35

v

6.6.1 Setup . 35
6.6.2 Formal description . 38

6.7 Analysis . 41
6.7.1 Random variables and their expected change 41
6.7.2 Differential equations . 41
6.7.3 Applying Wormald’s differential equation method 42
6.7.4 Boundaries and singularities . 43

6.8 Numerical results . 45
6.8.1 Parameter tuning . 45
6.8.2 Results for small k . 46

6.9 Possible improvements . 47
6.10 Large k . 48

References 50

APPENDICES 52

A Wormald’s differential equation method theorem 53

B Expected change in variables for the k-factor algorithm 55

C Differential equations for the k-factor algorithm 66

D Maple code 72

vi

List of Figures

5.1 Illustration of the different structural representations of the block decompo-
sition B(G) of graph G. 13

5.2 Illustration of the balancing moves used in the proof of Proposition 5.7. . . 15

6.1 Illustration of an augmentation as used in the perfect matching algorithm
by Gao, MacRury and Prałat [11]. 27

6.2 Possible move when ut is critical and incident with an augmentation edge. 36
6.3 Illustration of augmentation along a degree-k augmentation edge and the

resulting destruction of priming edges. 37
6.4 Trajectories of the variables for k = 5. 46

vii

List of Tables

6.1 Values used for ϕ. 46
6.2 Comparison of upper bounds on τFk

. 47

viii

Chapter 1

Introduction

The semi-random graph process is a single player game introduced by Ben-Eliezer, Hefetz,
Kronenberg, Parczyk, Shikhelman and Stojaković [4]. In this game, a graph is iteratively
constructed from an empty graph on n vertices. Every round, one edge is added to the
graph. The first endpoint of the edge, u, is chosen uniformly at random (u.a.r.) from all
vertices in the graph. Subsequently, the second endpoint v is chosen deterministically by
the player in accordance with their strategy.
The semi-random graph process is part of a larger category of semi-random processes where
a player has limited deterministic power in an otherwise random process. This category
of combinatorial random processes traces its origins to the work of Azar, Broder, Karlin
and Upfal [1] on placing n balls into n bins. They showed that if the player can choose
from two u.a.r. selected bins rather than just one, there exists a strategy to decrease the
expected number of balls in the fullest bin by an exponential factor. Similar load-balancing
schemes have been investigated by Mitzenmacher [16].
The first semi-random process on graphs was suggested by Dimitris Achlioptas during a
Fields Institute workshop. Instead of adding a single edge picked u.a.r. every round like
in the classical Erdős-Rényi random graph model [7], he suggested that every round the
player is offered two such edges to choose from. Random graph processes where each round
the player is presented with m edges to choose from according to some strategy are now
known as Achlioptas graph processes. These processes were first investigated by Bohman
and Frieze [5], who showed that allowing the player to choose from two edges enables the
player to delay the formation of a giant connected component.
In the seminal paper on the semi-random graph process, Ben-Eliezer, Hefetz, Kronenberg,
Parczyk, Shikhelman and Stojaković [4] provide asymptotic upper and lower bounds on
the number of rounds needed to achieve certain objectives with high probability, including
minimum degree, clique number, and k-connectedness. Additionally, they show how the
semi-random graph process can be used to model other random graph models. Specifically,
they show the ability to couple the process to the Erdős-Rényi random graph model, the
k-out model, and the min-degree process.

1

Subsequent work by Gao, MacRury and Prałat [11] provides further bounds on the mini-
mum number of rounds needed to construct a perfect matching. Similarly, Gao, Kamiński,
MacRury and Prałat [10] show bounds on the number of rounds required to construct a
Hamiltonian cycle.
Further research by Behague, Marbach, Prałat and Rucinski [2] gives tight asymptotic
bounds for the minimum number of rounds needed to construct a subgraph isomorphic
to a fixed graph H. They moreover generalise the semi-random graph process to hyper-
graphs.
In this thesis we consider two graph properties in the semi-random graph process. In
Chapter 5 we show a tight asymptotic upper bound for the number of rounds needed to
ensure the graph becomes 2-connected. Combined with the results of Ben-Eliezer, Hefetz,
Kronenberg, Parczyk, Shikhelman and Stojaković [4], this settles the number of rounds
needed to ensure k-connectivity for all k ∈ N.
In Chapter 6 we extend the work of Gao, MacRury and Prałat [11] on perfect matchings
to the property of containing a k-factor for all fixed k ≥ 2. We introduce and analyse a
strategy that gives an asymptotic upper bound on the number of rounds needed to ensure
the existence of a k-factor for all k ≥ 2.
Additionally, we consider a modification of the semi-random graph process suggested by
Wormald. In this variant, which we introduce in Chapter 3, the strategy for choosing a
vertex each round cannot depend on the vertex randomly selected that same round.

2

Chapter 2

Notation

In this section we will more formally define the semi-random graph process and the notation
we will use in this thesis.
For a graph G, we denote its vertex and edge sets by V (G) and E(G) respectively. We
denote the degree of a vertex v ∈ V (G) in graph G by degG(v). We use δ(G) and ∆(G) to
denote the minimum and maximum degrees of a graph respectively. For a set S ⊆ V (G) of
vertices, we use G[S] for the subgraph induced by set S in graph G. The open and closed
neighbourhoods of a vertex v ∈ V (G) in graph G will be denoted by NG(v) and NG[v]
respectively.
The semi-random graph process is a single-player game in which a multi-graph is iteratively
constructed in a sequence of rounds. Because all the graph properties we consider are
invariant under adding multi-edges and loops, we generally consider the underlying simple
graph. Notably, we define the degree of a vertex in the multi-graph to be the number of
distinct neighbours, not including itself. That is, degG(v) = |NG(v) \ {v}| for each vertex
v ∈ V (G). Moreover, we will use the previously introduced notation for simple graphs for
the graphs generated by the process as well.
In each round in the semi-random graph process, a single edge is added to the graph.
We will denote the graph obtained after ℓ rounds by Gℓ. The initial graph, G0, is an
empty graph with vertex set {1, 2, . . . , n}. We denote the set {1, 2, . . . , k} by [k], and thus
V (G0) = [n]. In the tth round, we construct graph Gt from graph Gt−1 as follows. Let ut be
a vertex picked u.a.r. in graph Gt−1. We say that vertex ut is hit in round t. We then choose
a vertex vt ∈ [n] according to some strategy, and add edge utvt to graph Gt−1 to obtain
graph Gt. Note that if ut = vt the new edge is a loop, and if Gt−1 already contained utvt the
new edge is a multi-edge. Thus, V (Gt) = V (Gt−1) = [n], and E(Gt) = E(Gt−1) ∪ {utvt}.
Additionally, we refer to ut as a square, and vt as a circle in round t, as introduced by Gao,
MacRury and Prałat [11]. Each edge in graph Gt then connects a square and a circle in
the round that it is added.
We denote a graph G having property P by G ∈ P . We say that a graph property P is
monotone if for each graph G ∈ P and each potential edge e ∈ V (G) × V (G) it holds that

3

the graph G′ given by V (G′) = V (G) and E(G′) = E(G) ∪ {e} also has property P . Note
that by this definition, if Gt ∈ P for some t > 0 and a monotone graph property P , it
follows that Gt′ ∈ P for all t′ ≥ t as well.
Moreover, we say an event A = An occurs asymptotically almost surely (a.a.s.) in Gt if
P(An) → 1 as n → ∞. The aim of the game is then to a.a.s. force graph Gt to have specified
monotone graph properties in as few rounds as possible. We refer to this monotone graph
property as the objective property. We are specifically interested in the asymptotic value
of the minimum number of rounds required to ensure Gt has the objective property when
taking n to infinity. Let the history at time t, denoted by Ht, be a record of all events
in the process up to round t (that is, u1, v1, u2, v2, . . . , ut−1, vt−1). A strategy S is then
a sequence of functions f1, f2, . . . such that ft takes history Ht and vertex ut as input,
and gives a probability distribution over [n]. Vertex vt is then chosen according to this
probability distribution in round t.
For an objective property P , a strategy S, and a real number 0 < q < 1, let τP(S, q, n)
be the minimum value t ≥ 0 such that P [Gt ∈ P] ≥ q; recalling that n is the number of
vertices in Gt. If no such value t exists, we say that τP(S, q, n) = ∞. Let τP(q, n) denote
the minimum value of τP(S, q, n) over all possible strategies S. We are interested in the
asymptotic value of τP(q, n) when probability q approaches 1. Therefore, we define

τP := lim
q ↑ 1

lim sup
n→∞

τP(q, n)
n

,

where the limit superior is used to avoid potential issues related to parity and divisibility
conditions.
We note that upper bounds on τP can be obtained by considering explicit strategies. In this
thesis, we will design and analyse various strategies to provide bounds for several properties
P . In this thesis, all the considered objective properties are monotonically increasing. It is
therefore sufficient to construct a graph Gt which contains a spanning subgraph that has
property P . In some rounds, given certain histories and vertex ut, we may choose vertex vt

arbitrarily and not use the edge utvt for the construction of a spanning subgraph of Gt that
has property P . We will consider such a round a failure round. Allowing failure rounds in
some cases leads to algorithms that are easier to analyse.
Unless specified otherwise, all asymptotic notation relates to n, i.e. o(1) implies a function
that tends to 0 as n → ∞.

4

Chapter 3

Pre- and post-positional models

Recently, Nick Wormald proposed (via personal contact) an alternative version of the semi-
random graph process. Instead of the first vertex being chosen u.a.r. in each round and
the second vertex being chosen according to some strategy, he proposed switching this
order. That is, the first vertex in each round is chosen deterministically, and the second
vertex is chosen u.a.r. We refer to this new model as the pre-positional semi-random graph
process, and the original model by Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman
and Stojaković [4] as the post-positional semi-random graph process.
For the pre-positional process we use notation analogous to the post-positional process. A
strategy S for the pre-positional process is a sequence of functions f1, f2, . . ., where each
function ft depends only on history Ht to give a probability distribution over [n]. For a
property P , a strategy S, and probability q, we then define τ ′

P(S, q, n), τ ′
P(q, n), and τ ′

P for
the pre-positional process analogous to τP(S, q, n), τP(q, n), and τP in the post-positional
process respectively.
Lemma 3.1. For any graph property P, τP ≤ τ ′

P .

Proof. Let S be an optimal strategy for property P in the pre-positional process for fixed
n and probability q such that τ ′

P(S, q, n) = τ ′
P(q, n). We note that S is also a valid strategy

for the post-positional process, where the potential dependence on vertex ut in round t is
not used. Hence, τP(S, q, n) ≥ τP(q, n).
We moreover observe that for strategy S not depending on vertex ut in round t, the
probability distribution over all possible edges in round t is equal between the two models.
As a result, τP(S, q, n) = τ ′

P(S, q, n). Thus,

τP(q, n) ≤ τP(S, q, n) = τ ′
P(S, q, n) = τ ′

P(q, n).

Then, as τP(q, n) ≤ τ ′
P(q, n) for all 0 < q < 1 and n ≥ 1, we find

τP = lim
q ↑ 1

lim sup
n→∞

τP(q, n)
n

≤ lim
q ↑ 1

lim sup
n→∞

τ ′
P(q, n)

n
= τ ′

P ,

as desired.

5

Moreover, by similar arguments, if S is an (asymptotically) optimal strategy in the post-
positional process, and S does not depend on vertex ut in round t for all t ≥ 0, it follows
that τP = τ ′

P .
The following question was asked by Wormald.
Question 3.1. For what types of graph properties P does the pre-positional process take
more rounds asymptotically than the post-positional process to obtain a graph on [n] in
P?
Note that there exist properties P such that asymptotically the post-positional process
strictly requires fewer rounds than the pre-positional process. Consider for instance the
following property. Let G1, G2, . . . be a family of graphs on [1], [2], . . . respectively. Let P
be the property of a graph on n vertices containing at least one of the edges in E(Gn). If
we choose the family of graphs such that δ(Gi) ≥ 1 for all i ≥ 2, we can always select vt to
be a neighbour of ut in Gn in the post-positional model. As such, there exists a strategy
for the post-positional model that ensures we obtain a graph in P in exactly 1 round. On
the other hand, we observe that in the pre-positional model the probability of successfully
adding an edge contained in E(Gn) is at most ∆(Gn)/n. Thus, the expected number of
rounds to obtain a graph in P is at least n/∆(Gn). Specifically, for ∆(Gi) ≤ k for all i ≥ 2
for some constant k ≥ 1, the required number of rounds to obtain a graph in P is exactly
1 in the post-positional model, and asymptotically at least linear in n in the pre-positional
model.
In this thesis, we focus on the post-positional process. For k-connectivity, we will addi-
tionally provide tight results for the pre-positional process.
Unless stated otherwise, all results refer to the post-positional model.

6

Chapter 4

Tools

4.1 Concentration inequalities
To analyse the asymptotic behaviour of our algorithms, we make use of concentration
inequalities. Notably, we extensively use Chernoff-Hoeffding bounds for binomial random
variables. For the reader’s convenience, we here include the concentration inequalities we
use most frequently.
Remark 4.1 (Dubhashi and Panconesi, [6, Theorem 1.1]). Let X be a binomial random
variable with success probability p and n trials. Then the following inequalities hold.

• For all t > 0,

P (X > E[X] + t) ≤ exp
(

−2t2

n

)
,

P (X < E[X] − t) ≤ exp
(

−2t2

n

)
.

• For all ϵ > 0,

P (X > (1 + ϵ) · E[X]) ≤ exp
(

−ϵ2

3 · E[X]
)

,

P (X < (1 − ϵ) · E[X]) ≤ exp
(

−ϵ2

2 · E[X]
)

.

• For all t > 2e · E[X],

P (X > t) ≤ 2−t.

7

4.2 Wormald’s differential equation method
First introduced by Wormald [18], the differential equation method is a tool to describe the
trajectories of a set of random variables in a discrete-time random process using a system
of differential equations. For such a process, it uses a system of differential equations
where the derivatives are based on the expected change in the random variables in a single
time-step. Wormald showed that under certain conditions the trajectories of the random
variables converge to the solution of the system of differential equations a.a.s. The system
of differential equations is generally easier to solve or approximate, enabling the analysis
of complex random processes.
Wormald’s differential equation method has been successfully applied to obtain bounds
on a number of objectives in the semi-random graph process, including minimum degree
(Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković, [4]), containing a
perfect matching (Gao, MacRury and Prałat, [11]), and containing a Hamiltonian cycle
(Frieze and Sorkin, [8]; Gao, Kamiński, MacRury and Prałat, [10]; Gao, MacRury and
Prałat, [12]).
One of the theorem formulations of Wormald’s differential equation method is included in
Appendix A for the reader’s convenience.

4.3 Min-degree process
The min-degree process is a variant on the classical random graph process and was in-
troduced and first studied by Wormald [19]. In the min-degree process, G0 is an edgeless
graph on [n]. Given Gt, choose a vertex u of minimum degree in Gt u.a.r., and subsequently
choose a vertex v not adjacent to vertex u in graph Gt u.a.r. Graph Gt+1 is then constructed
by adding edge uv to graph Gt. Wormald used his differential equation method described
in Section 4.2 to prove that the number of rounds the graph process takes to ensure that
graph Gt has minimum degree k for k ≥ 1 is a.a.s. ckn for some specific constant ck. We
denote the graph property of having minimum degree k by Dk.
Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković [4] have since stud-
ied adapted versions of the min-degree process as modelled by the semi-random graph
process. By choosing vt u.a.r. from all vertices of minimum degree not adjacent to ut in
graph Gt, the resulting semi-random graph process is contiguous to the min-degree pro-
cess. That is, asymptotically the two processes are equivalent. We refer to this strategy as
Smin. Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković additionally
considered strategies without the restrictions on vt and ut to be non-adjacent in Gt and ut

and vt to be distinct. They showed that each of these strategies are optimal in ensuring
graph Gt having minimum degree k in as few rounds as possible when taking n to infinity,
and each asymptotically require ckn rounds. Each of these strategies thus obtains a graph
in Dk in asymptotically the same number of rounds as the min-degree process.
We first provide a formal definition of strategy Smin. For each round t, distribution function

8

ft is defined as follows. Let Yt, min = {v ∈ [n] | degGt−1(v) = δ(Gt−1)}. Then, for ut chosen
u.a.r. from [n], if Yt, min \ NGt−1 [ut] = ∅, the round is considered a failure round. Otherwise,
vertex vt is chosen u.a.r. from Yt, min \ NGt−1 [ut]. By this formulation, strategy Smin does
not create loops nor multi-edges.
Let Gmin(n, m) be the graph on n vertices with m edges generated by the min-degree pro-
cess. To show that strategy Smin can be used to model the min-degree process for m = o(n2)
with a.a.s. o(m) failure rounds, Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and
Stojaković [4] look at an auxiliary strategy where vt is chosen u.a.r. from all minimum de-
gree vertices. This strategy thus does not take the neighbourhood of ut into account. They
then show that the number of multi-edges and loops is asymptotically bounded by o(m),
which directly bounds the failure rounds of strategy Smin as well. We note that this auxil-
iary strategy is also valid in the pre-positional process. Hence, the pre-positional process
can also model the min-degree process with a.a.s. o(m) failure rounds.
In this thesis, we will only consider the min-degree process modelled by the semi-random
graph process which avoids loops and multi-edges, as given by strategy Smin. Additionally,
we will use k-min process to refer to using the strategy Smin until all vertices in graph Gt

have degree at least k.

9

Chapter 5

k-Connectivity

A connected graph G is said to be k-connected if it remains connected when removing
fewer than k vertices. In their seminal paper, Ben-Eliezer, Hefetz, Kronenberg, Parczyk,
Shikhelman and Stojaković [4] provide tight asymptotic bounds for the minimum number
of rounds needed for a semi-random graph process to produce an a.a.s. k-connected graph
for all k ≥ 3. Their proof for the upper bound is based on a slightly modified variant
of the k-min process tailored for multigraphs and builds on a proof by Kang, Koh, Ree
and Łuczak [14]. The strategy underlying the modified process is identical to the strategy
for the k-min process as long as the graph is simple, and simplifies the analysis in the
semi-random graph process. The proof shows that the graph resulting from the modified
k-min process is a.a.s. k-connected for all k ≥ 3. This proof cannot be directly extended
to k < 3, as Kang, Koh, Ree and Łuczak [14] showed that the graph resulting from the
k-min process is only a.a.s. connected for k ≥ 3.
We moreover note that the case where k = 1, i.e. being connected, is trivial. Namely, we
observe that one can build a tree containing m ≤ n − 1 edges in exactly m rounds. If the
first vertex chosen u.a.r. in a round is contained in the tree constructed thus far, we pick
a vertex not contained in the tree, and vice versa. Hence, we can build a spanning tree in
n − 1 rounds. We moreover note that this is optimal, as spanning trees are edge-minimal
1-connected. However, the case for k = 1 is not as trivial in the pre-positional model. We
will discuss this further in Section 5.4.
Therefore, this chapter will focus on proving tight asymptotic bounds for the final open
case in the post-positional model, k = 2. The best bound previously known, as observed
by Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković [4], is the tight
upper bound for k = 3. That is, τC2 ≤ τC3 . They also gave a lower bound, based on
the 2-min process. The 2-min process aims to ensure that each vertex has degree at
least two as fast as possible, a prerequisite for 2-connectedness. Using a known result by
Wormald [18, 19] on the min-degree process, they showed that the 2-min process a.a.s.
takes (ln 2+ln(ln 2+1))+o(1))n rounds to complete. Hence, τC2 ≥ ln 2+ln(ln 2+1).
In this chapter we show a novel upper bound, which asymptotically matches the known

10

lower bound.
Theorem 5.1. τC2 = ln 2 + ln(ln 2 + 1).
That is, the minimum number of rounds required for a semi-random process to build a
2-connected graph on n vertices is asymptotic to (ln 2 + ln(ln 2 + 1))n.
Additionally, in Section 5.4, we consider property Ck in the pre-positional process. We
show that all the proofs for the post-positional process extend to the pre-positional process,
resulting in the following theorem.
Theorem 5.2. τ ′

Ck
= τCk

for all k ≥ 1.

5.1 Overview
For the upper bound, our approach differs significantly from the strategy used by Ben-
Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković [4] to prove the tight
upper bounds for k-connectedness for k ≥ 3. Namely, while their approach is predomi-
nantly probabilistic, we use a more structural approach. Our strategy is based on analysing
the structure of the maximal 2-connected components of the graph resulting from the 2-min
process.
In the first phase, we use the 2-min process to obtain a graph in which each vertex has
degree at least 2. We show that a.a.s. most of the vertices in this graph will be contained
in relatively large 2-connected subgraphs. This moreover allows us to conclude that the
graph contains o(n) maximal 2-connected subgraphs.
In the second phase, the aim is to ensure that the graph becomes connected. We bound the
number of components by the number of maximal 2-connected subgraphs, recalling that
the graph has o(n) such subgraphs after the first phase. As such, by adding edges between
connected components, we can quickly ensure the graph becomes connected.
In the third phase, we then want to make the graph 2-connected. We achieve this by
considering a tree structure on the maximal 2-connected subgraphs, and showing that by
balancing this tree, we can efficiently eliminate cut-vertices.
We show that the second and third phases both take o(n) steps a.a.s. Therefore, the first
phase, consisting of the 2-min process, dominates the total number of rounds in the process
of building a 2-connected graph on [n].
In Section 5.2, we first introduce the purely structural definitions and results we will use.
Section 5.3 then builds upon these structural results to analyse the random process given
by our strategy.

5.2 Supporting structural results
In this section we restate the conventional definitions of blocks and block graphs (see for
instance [15]).

11

Definition 5.1 (Block). Let B ⊆ V (G) be a maximal set of vertices such that for any
two vertices x, y ∈ B with xy ̸∈ E(G), in order to separate vertex x from vertex y, it is
necessary to remove at least 2 vertices from G. Then B is called a block.
Note that by this definition, each block in a graph either induces a maximal 2-connected
subgraph, an edge, or an isolated vertex. Moreover, when considering connected graphs on
at least 2 vertices, each block thus induces a maximal 2-connected subgraph or an edge.
Based on this definition, we can then decompose a graph G into such blocks.
Definition 5.2 (Block decomposition). Let B(G) ⊆ P(V (G)) denote the set of all blocks
of graph G. Then B(G) is called the block decomposition of graph G.
We observe that by the definition of blocks, for each edge uv ∈ E(G) in a graph G there
exists a unique block B ∈ B(G) such that u, v ∈ B. Moreover, by the maximality of
the blocks, the block decomposition B(G) is unique. Note that B(G) is generally not a
partition of V (G). However, each pair of blocks shares at most one vertex, as given in the
following proposition.
Proposition 5.3 (Kőnig, [15, Theorem XIV.7]). Let G be a graph. Then, for each pair of
blocks B1, B2 ∈ B(G), it holds that |B1 ∩ B2| ≤ 1.
Definition 5.3 (Block graph). Let G be a graph. Then let GB be the graph defined by
V (GB) = B(G) and E(GB) = {B1B2 | B1 ∩ B2 ̸= ∅}. Then graph GB is called the block
graph of graph G.
For a graph G to be 2-connected, it must hold that B(G) = {V (G)}. We aim to use the
blocks and their relative structure in a graph to identify moves in a semi-random process
which join multiple blocks together into a single larger block. If a semi-random edge utvt

joins two blocks then we call the addition of such an edge an augmentation. A natural
augmentation to consider is to join two blocks Bi and Bj where there is a path between
Bi and Bj in GB. If ut and vt are not themselves cut-vertices, this augmentation will
immediately join all blocks along the path into a single block. To that purpose, we want
to consider a tree structure on the blocks.
The traditional such structure, called the block-cut tree of a graph, was originally intro-
duced independently by Gallai [9], and Harary and Prins [13].
Definition 5.4 (Block-cut tree). Let G be a connected graph, and let S be the set of cut
vertices of graph G. Then, the graph T , given by V (T) = B(G) ∪ S and E(T) = {vB | v ∈
S, B ∈ B(G), v ∈ B}, is a tree and called the block-cut tree of graph G.
We consider a structure similar to the block-cut tree, based on the block graph. Instead
of including the cut-vertices in the tree, we take a spanning tree on the block graph.
This ensures that we only have to work with blocks, while still providing the desired tree
structure. To that aim, we introduce the following definition.
Definition 5.5 (Reduced block tree). Let GB be the block graph of a connected graph G.
Then, a spanning tree TB of graph GB is called a reduced block tree of graph G.

12

G GB TBBlock-cut tree of G

Figure 5.1: Illustration of the different structural representations of the block decomposi-
tion B(G) of graph G.

A reduced block tree can equivalently be constructed recursively. Let v ∈ V (G) be a cut-
vertex in a connected graph G, and let G1 and G2 be the induced subgraphs of graph G
such that V (G1)∪V (G2) = V (G), E(G1)∪E(G2) = E(G), and V (G1)∩V (G2) = {v}. We
note that as vertex v is a cut-vertex, each block B ∈ B(G) is contained in either graph G1
or graph G2. Therefore, B(G1) ∪ B(G2) = B(G). Let TB1 and TB2 be reduced block trees
for graphs G1 and G2 respectively. Then, we can construct a reduced block tree for graph
G with block decomposition B(G) by joining trees TB1 and TB2 with a single edge from a
vertex in TB1 representing a block containing vertex v to a vertex in TB2 also representing
a block containing vertex v. We observe that by Definition 5.5, the reduced block tree of
a graph is generally not unique. This occurs when a vertex is contained in at least three
blocks, and the block graph thus contains a clique of size at least 3.
Proposition 5.4. Let TB be a reduced block tree of a connected graph G. For v ∈ V (G),
the set {B ∈ V (TB) | v ∈ B} induces a (connected) subtree in TB.

Proof. Suppose not. Let S ⊆ V (TB) be the set of all blocks B ∈ V (TB) such that v ∈
B. Then the set S induces a disconnected subgraph in tree TB. Let C1 and C2 be two
components of this induced subgraph TB[S]. Moreover, let P be a shortest path between
sets V (C1) and V (C2) in TB, and let blocks B1, B2 ∈ S be the endpoints of this path P
such that B1 ∈ V (C1) and B2 ∈ V (C2). We note that P has length at least 2. Then, as P
is a shortest such path, none of the internal vertices of P are contained in S. Hence, the
corresponding blocks do not contain vertex v. Let GP be the subgraph of TB induced by
the internal vertices of path P . Additionally, let SP ⊆ V (G) be the set of all vertices of
graph G contained in at least one of the blocks in GP .
We observe that by the definition of path P , subgraph GP contains blocks adjacent to
blocks B1 and B2, respectively, in the tree TB. Therefore, B1 ∩ SP , B2 ∩ SP ̸= ∅. Moreover,
by Proposition 5.3 we find that B1 ∩ B2 = {v}. Therefore, as v ̸∈ SP , there exist vertices
v1 ∈ B1∩SP and v2 ∈ B2∩SP . Then, because blocks B1 and B2 are by definition connected,

13

there exists a v −v1 path P1 in block B1 and a v −v2 path P2 in block B2. Similarly, the set
SP induces a connected subgraph in G, and thus contains a v1 − v2 path P ′. We note that
the union of the paths P1, P2 and P ′ gives a subgraph of G containing a cycle C containing
vertex v. We note that the cycle C is 2-connected and hence is contained in a block BC .
Moreover, as this cycle contains at least 2 vertices of block B1, by Proposition 5.3, we find
that B1 = BC . Analogously, it follows that B2 = BC . However, this implies that B1 = B2,
contradicting these blocks being in different connected components C1 and C2. By this
contradiction, we conclude that the proposition holds.

Proposition 5.5. Let TB be a reduced block tree of a connected graph G with δ(G) ≥ 2.
Let B ∈ B be a block such that B = {u, v}. Then there exist distinct blocks Bu, Bv ∈ B
adjacent to B in TB such that u ∈ Bu and v ∈ Bv.

Proof. Because δ(G) ≥ 2, there exists another edge uw ∈ E(G). Hence, as each edge is
contained in a block, there exists a block B′ ∈ B such that u ∈ B′ and B′ ̸= B. It then
follows from Proposition 5.4 that there exists a block Bu ∈ B such that u ∈ Bu and Bu

adjacent to B in TB. Analogously, there exists a block Bv ∈ B adjacent to B in TB such
that v ∈ Bv. By the maximality of block B, it follows that v ̸∈ Bu and u ̸∈ Bv. Hence,
Bu ̸= Bv, as desired.

Corollary 5.6. Let TB be a reduced block tree of a connected graph G with δ(G) ≥ 2. Then
each leaf in TB corresponds to a 2-connected block in graph G of at least 3 vertices.

Proof. By Proposition 5.5, blocks of size 2 cannot be leaves in TB. Then, by the definition
of blocks, the result follows.

Proposition 5.7. Let G be a connected graph such that |B| < n/4 for all blocks B ∈ B(G),
and let TB be a corresponding reduced block tree. Then there exists a vertex B∗ ∈ V (TB)
and a colouring ϕ : V (TB) \ {B∗} → {red, blue} such that all components of TB − B∗ are
monochromatic and that for Sred = {v ∈ B \ B∗ | B ∈ B, ϕ(B) = red} and Sblue = {v ∈
B \ B∗ | B ∈ B, ϕ(B) = blue} it holds that |Sblue| ≤ |Sred| ≤ 3|Sblue|.

Proof. Firstly, we note by Proposition 5.4 that Sred ∩ Sblue = ∅ and hence V (G) is parti-
tioned by the sets B∗, Sred, and Sblue. Therefore, |B∗| + |Sred| + |Sblue| = n.
Assume that the proposition does not hold. Then, let B∗ ∈ V (TB) and ϕ : V (TB) →
{red,blue} be a vertex and a colouring respectively such that all components of TB − B∗

are monochromatic, |Sred| ≥ |Sblue|, subject to which |Sred| is minimised. We note that as
it concerns a counterexample, we must have |Sred| > 3|Sblue|.
We observe that as |B∗| < n/4, TB − B∗ is non-empty. Therefore, due to |Sred| ≥ |Sblue|,
TB − B∗ contains at least one red component. Suppose that TB − B∗ contains exactly
one red component. Then, because TB is a tree, vertex B∗ has exactly one red neighbour
B′ ∈ V (TB) in TB. Then consider using vertex B′ instead of vertex B∗, uncolouring B′ and
colouring B∗ blue. Let ϕ′ denote the resulting new colouring, and let S ′

red and S ′
blue be the

14

sets of vertices in G corresponding to ϕ′. We note that as blocks B∗ and B′ both contain less
than n/4 vertices, it holds that |S ′

red| > |Sred| − n/4 and |S ′
blue| < |Sblue| + n/4. Moreover,

we note that by the maximality of blocks, B∗ \ B′, B′ \ B∗ ̸= ∅, and hence |S ′
red| < |Sred|

and |S ′
blue| > |Sblue|. If |S ′

red| > |S ′
blue|, the new colouring ϕ′ is more balanced, and thus

contradicts the minimality of |Sred|. Therefore, it holds that |S ′
red| < |S ′

blue|. Because we
assumed that |Sred| > 3|Sblue|, and as |B∗|+|Sred|+|Sblue| = n, it follows that |Sblue| ≤ n/4.
Thus, |S ′

blue| < |Sblue| + n/4 ≤ n/2. But then, as |B′| + |S ′
red| + |S ′

blue| = n, it follows that

|S ′
red| = n − |S ′

blue| − |B′|

> n − n

2 − n

4
= n

4 .

Then, inverting the colours red and blue results in a colouring satisfying all the conditions
of the proposition, contradicting TB being a counterexample.
Hence, we may assume that forest TB − B∗ contains at least 2 red components. Then
let C1, C2, . . . , Cℓ be the red components of TB − B∗, and let S1, S2, . . . , Sℓ be defined by
Si = {v ∈ B \ B∗ | B ∈ Ci} for i ∈ [ℓ]. Then, by Proposition 5.4, the sets S1, S2, . . . , Sℓ

partition set Sred.

B
′

B
∗

B
′

B
∗

B
∗

B
∗

B
∗

B
∗

Figure 5.2: Illustration of the balancing moves used in the proof of Proposition 5.7.

Suppose that there exists an index i ∈ [ℓ] such that |Si| > |Sblue|. Then, recolouring all blue
components red, and recolouring component Ci blue leads to sets S ′

red and S ′
blue such that,

as ℓ ≥ 2, min(|S ′
red|, |S ′

blue|) > min(|Sred|, |Sblue|). Thus, as |S ′
red| + |S ′

blue| = |Sred| + |Sblue|,
by possibly inverting the colours, we find a more minimal counterexample. Hence, we
may assume that |Si| ≤ |Sblue| for all i ∈ [ℓ]. Then, as |Sred| = ∑ℓ

i=1 |Si|, we find that
|Sred| ≤ ℓ|Sblue|. Therefore, as |Sred| > 3|Sblue|, it holds that ℓ > 3.

15

Similarly, suppose that there exists an index i ∈ [ℓ] such that |Si| < (|Sred| − |Sblue|)/2.
Then clearly recolouring component Ci blue contradicts the minimality of |Sred|. Hence, we
may assume that |Si| ≥ (|Sred|−|Sblue|)/2 for all i ∈ [ℓ]. Then, as |Sred| = ∑ℓ

i=1 |Si|, we find
that |Sred| ≥ ℓ · (|Sred| − |Sblue|)/2. It then follows that, because ℓ > 3, |Sred| ≤ ℓ

ℓ−2 |Sblue|.
But then, as ℓ

ℓ−2 < 3 for ℓ > 3, we conclude that vertex B∗ and colouring ϕ do not form a
counterexample. Thus, we conclude that the proposition holds.

5.3 Building 2-connected semi-random graphs
In this section, we describe our strategy and analyse the corresponding process for building
a 2-connected semi-random graph, and obtain the tight upper bound of τC2 as in Theo-
rem 5.1. Our strategy consists of three phases.
In the first phase, we use the 2-min process. Recall from Section 4.3 that the 2-min
process chooses vt to be an isolated vertex until Gt no longer contains isolated vertices.
Subsequently, it chooses vt to be a vertex of degree 1 until δ(Gt) ≥ 2, at which point
the process terminates. The following proposition shows useful properties of the resulting
graph.
Proposition 5.8. Let G be the semi-random graph resulting from the 2-min process. Then,
a.a.s., G contains o(n) vertices that are contained in 2-connected induced subgraphs of order
at most

√
ln n in graph G.

Proof. Let X be the number of vertices contained in 2-connected induced subgraphs of
order at most

√
ln n. We note that it suffices to show that E[X] = o(n). Moreover, let Yℓ

denote the number of 2-connected induced subgraphs of order ℓ for 1 ≤ ℓ ≤
√

ln n. Thus,
by linearity of expectation, E[X] ≤ ∑√

ln n
ℓ=1 ℓE[Yℓ].

For 1 ≤ ℓ ≤
√

ln n, let Zℓ denote the number of induced subgraphs of order ℓ with at least
ℓ edges. Because each 2-connected graph contains at least as many edges as the vertices,
it follows immediately that Yℓ ≤ Zℓ, and thus, E[X] ≤ ∑√

ln n
ℓ=1 E[ℓZℓ]. Hence it suffices to

show that ∑√
ln n

ℓ=1 E[ℓZℓ] = o(n).
Let 1 ≤ ℓ ≤

√
ln n, and fix S ⊆ [n] such that |S| = ℓ. Let pS be the probability that G[S]

contains at least ℓ edges. Note that E[Zℓ] = ∑
S∈([n]

ℓ) pS. Next, we estimate pS.

We first split the 2-min process into two phases. The first phase ends after the step where
the last isolated vertex becomes incident with an edge, and thus the second phase starts
with a graph with minimum degree one. We further split each phase into subphases for
analysis. Specifically, for the first phase we define subphases α1, α2, . . . such that αi consists
of the steps where n

2i < |{v ∈ V (G) | deg(v) = 0}| ≤ n
2i−1 for i ∈ {1, 2, . . .}. We note that

these subphases are well defined, as by the definition of the first phase of the 2-min process,
the number of isolated vertices is strictly decreasing. We then define subphases β1, β2, . . .
of the second phase the 2-min process such that subphase βi consists of the steps where
n
2i < |{v ∈ V (G) | deg(v) = 1}| ≤ n

2i−1 for i ∈ {1, 2, . . .}. Note that some of the subphases

16

might be empty, e.g. subphase β1 is empty if the number of vertices with degree 1 at the
beginning of the second phase is already smaller than n/2. We observe that there are log2 n
subphases of both phases of the 2-min process.

To bound pS, we first choose a set T of ℓ edges from
(

S
2

)
. There are thus

((ℓ
2)
ℓ

)
≤
(

ℓ2

ℓ

)
choices for set T . Then we determine an ordering for the edges in T . There are ℓ! ways
to fix such an ordering. Fixing an ordering e1, . . . , eℓ, we bound the probability that these
edges are added to G in this order. The probability that a specific edge xy ∈ T is added
in a specified step in subphase αi (and βi) is at most 2 · 1

n
· 2i−1

n
= 2i

n2 , since the first vertex
of the edge is chosen uniformly at random, and the second vertex is chosen uniformly from
the isolated vertices, of which there are at most n/2i−1. The factor 2 accounts for whether
x or y is the square or the circle of the edge (note that due to the structure of the 2-min
process, sometimes only one of the two may be relevant).
Let ℓαi

and ℓβi
be the number of edges of e1, . . . , eℓ that are added in subphases αi and

βi respectively. Let ℓα = (ℓαi
)i≥0 and ℓβ = (ℓβi

)i≥0. Note that the number of isolated
vertices decreases by at least 1 in each step of the first phase of the 2-min process. Thus
the number of steps in subphase αi is at most n

2i−1 − n
2i = n

2i . Thus, given ℓα and ℓβ, there
are at most ∏i

(
n/2i

ℓαi

)(
n/2i

ℓβi

)
ways to specify steps in the 2-min process where edges in T are

added. Combining all, we have the following bound on pS:

pS ≤
(

ℓ2

ℓ

)
ℓ!
∑

ℓα,ℓβ

log2 n∏
i=1

(
n/2i

ℓαi

)(
n/2i

ℓβi

)(
2i

n2

)ℓαi +ℓβi

 ,

where the first summation is over all choices for ℓα and ℓβ such that ∑log2 n
i=1 (ℓαi

+ ℓβi
) = ℓ.

Using
(

n/2i

ℓαi

)
≤ (n/2i)ℓαi and

(
n/2i

ℓβi

)
≤ (n/2i)ℓβi , we then obtain

pS ≤
(

ℓ2

ℓ

)
ℓ!n−ℓ

∑
ℓα,ℓβ

1.

The set of {(ℓα, ℓβ) | ∑log2 n
i=1 (ℓαi

+ ℓβi
) = ℓ} corresponds to the set of weak integer composi-

tions of ℓ into 2 log2 n parts of non-negative integers, and thus has cardinality
(

ℓ+2 log2 n−1
2 log2 n−1

)
≤(

ℓ+2 log2 n
ℓ

)
.

Thus, it follows that

E[X] ≤
√

ln n∑
ℓ=1

E[ℓZℓ]

=
√

ln n∑
ℓ=1

ℓ ·
∑

S∈([n]
ℓ)

pS

≤

√
ln n∑

ℓ=1
ℓ

(
n

ℓ

)(
ℓ2

ℓ

)
ℓ!n−ℓ

(
ℓ + 2 log2 n

ℓ

)
.

17

Using
(

n
ℓ

)
≤ nℓ/ℓ!,

(
ℓ2

ℓ

)
≤ (eℓ)ℓ and

(
ℓ+2 log2 n

ℓ

)
≤ (e(ℓ + log2 n)/ℓ)ℓ ≤ (10 log2 n/ℓ)ℓ (as

ℓ ≤
√

ln n), we then obtain

E[X] ≤
√

ln n∑
ℓ=1

ℓ(10e log2 n)ℓ = exp
(√

ln n ln log2 n + O(
√

ln n)
)

= o(n),

as desired.

Corollary 5.9. Let G be the semi-random graph resulting from the 2-min process. Then,
a.a.s., G contains o(n) maximal 2-connected induced subgraphs.

Proof. Consider the set T := {(v, B) : v ∈ B, B ∈ B(G)}. Using the block-cut tree
structure (Definition 5.4), it follows that |T | ≤ n + |B| − 1. Moreover, the sets TB :=
{(v′, B′) ∈ T : B′ = B} for B ∈ B(G) partition T . Let B1, . . . , Bℓ be the set of blocks of
size at least

√
ln n. Then, by Proposition 5.8, ∑1≤i≤ℓ |TBi

| ≤ |T | ≤ n + ℓ + o(n). However,
|TBi

| ≥
√

ln n for every i, and thus it follows then that ℓ
√

ln n ≤ n + ℓ + o(n). Thus it
follows that ℓ = o(n), as desired.

The resulting graph thus contains o(n) blocks of size at least 3. Because we have not
bounded the number of blocks consisting of 2 vertices, we will use Corollary 5.6 and the
other structural results in Section 5.2 to ensure the graph becomes 2-connected.
Let G1 be the graph obtained after the first phase, i.e. the graph resulting from the 2-
min process. In the second phase, we add semi-random edges to make G1 connected.
The following proposition shows that we can achieve this a.a.s. with o(n) additional semi-
random edges.
Proposition 5.10. A.a.s. G1 can be made connected by the addition of o(n) semi-random
edges.

Proof. By Corollary 5.9, G1 contains o(n) maximal 2-connected induced subgraphs. We
claim that each vertex not contained in a 2-connected induced subgraph is contained in a
component that contains a 2-connected induced subgraph. Suppose not. Then let C be a
component of graph G1 not containing 2-connected induced subgraph. Hence, component
C is acyclic, and thus a tree. However, each leaf of the tree has degree 1, contradicting the
result of the 2-min process. Hence the number of components of graph G1 is bounded from
above by the number of maximal 2-connected induced subgraphs, and therefore is o(n).
We moreover note that each round, in a disconnected graph, we can decrease the number
of connected components by 1. Namely, for vertex u being chosen u.a.r., we select vertex
v u.a.r. in a different connected component than vertex u. Hence, a.a.s., in o(n) additional
rounds, we can ensure graph G1 to be connected, as desired.

Let G2 be the graph obtained after the second phase. In the third phase, we ensure that
G2 becomes 2-connected by adding o(n) semi-random edges.

18

Proposition 5.11. A.a.s. G2 can be made 2-connected by the addition of o(n) semi-random
edges.

Proof. Let B be the block decomposition of G2 and TB be a reduced block tree of G2. By
Corollary 5.6, each leaf in TB is a 2-connected block. Thus, by Corollary 5.9, TB a.a.s.
contains o(n) leaves.
First consider the case that B contains a block B∗ such that |B∗| ≥ n/4. We consider the
following strategy. Take an arbitrary enumeration B1, . . . , Bh of all leaf blocks of TB. For
each 1 ≤ j ≤ h, we will add a semi-random edge between B∗ and Bj in increasing order
of j. Suppose these semi-random edges have already been added between B∗ and Bi for
all i < j. Let BjB

′
1B

′
2 . . . B′

ℓB
∗ be the unique path from Bj to B∗ in TB. Moreover, let x

be the unique vertex in Bj ∩ B′
1, and y the unique vertex in B′

ℓ ∩ B∗. Note that possibly
x = y. Then, in each subsequent round t, if the square (i.e. the first vertex) ut is contained
in B∗ \ {y}, we let vt, the circle, be an arbitrary vertex in Bj \ {x}. We note that by the
definitions of x and y, utvt cannot be an edge in G2. If instead square ut is not contained
in B∗ \ {y}, we consider the round a failure.
Note that in each round, the probability of the first vertex landing in B∗ \ {y} is (|B∗| −
1)/n ≥ 1/4 − o(1), and as a.a.s. TB contains o(n) leaves, the number of rounds required to
add semi-random edges between B∗ and all B1, . . . , Bh is o(n) in expectation.
Let G′

2 be the graph resulting from the addition of the h semi-random edges as described
above. Then, for each leaf block B, G′

2 contains two vertex-disjoint paths from B to B∗.
Namely, one path via the blocks on the path between B and B∗ in TB, and the other
being the edge that was added between B and B∗. Because this holds for all leaves, using
Proposition 5.5, the resulting graph is 2-edge-connected. Moreover, as each block is on
a cycle with B∗ and a leaf, and as the blocks of size at least 3 are 2-connected, for each
cut-vertex v it follows that graph G′

2 −v contains one large component containing B∗ \{v},
and all other components are of the form B − v where B ∈ B is a block of size at least 3.
We note that these blocks B such that B − v is a component for some cut-vertex v ∈ [n]
correspond exactly to the blocks that are leaves in the block-cut tree (Definition 5.4), but
not in TB.
By argumentation analogous to that used in the proof of Corollary 5.6, all such blocks B
are 2-connected. Hence, by Proposition 5.9, there are o(n) such blocks. Moreover, each
such a block contains at most one cut-vertex. We then use the following strategy to absorb
these cut-vertices. We iteratively consider each cut-vertex v ∈ [n]. If ut = v, we consider
the round a failure. Otherwise, we choose vt in a different component than ut in the graph
G′

2 − v. Note that thus with probability 1 − o(1) we decrease the number of components
by 1. Once there is a single component left, we continue on to the next cut-vertex. We
note that as there are o(n) such blocks, each of which contains at most one cut-vertex, the
total number of rounds needed to absorb all such cut-vertices is o(n) in expectation.
It thus takes at most o(n) rounds in total in expectation to ensure that the graph becomes 2-
connected. Standard concentration inequalities such as Chernoff bounds then immediately

19

imply that also a.a.s. it takes o(n) rounds to extend G2 to a 2-connected graph (indeed,
if there exists a constants c > 0 and p > 0 such that the number of rounds is at least cn
with probability at least p, this contradicts the final inequality in Remark 4.1).
Hence we may assume that each block B in B is of size strictly smaller than n/4. We use
a different strategy in this case. Instead of adding edges from leaves to a single block, we
will consider balancing the tree into two subforests. We will then add edges between the
leaves in one forest and vertices in the other forest, and vice versa.
Let vertex B∗ ∈ V (TB), colouring ϕ : V (TB) \ {B∗} → {red, blue}, and sets Sred and Sblue
be as given by Proposition 5.7. For each v ∈ B∗ let TB,v denote the components of TB − v
that contain a block containing v. Thus, TB,v denotes the blocks B where v is the last
cut-vertex on the path from B to B∗ in TB. We refer to TB,v as the branch rooted at v.
Moreover, let SB,v denote ⋃B∈V (TB,v) B \B∗. That is, SB,v is the set of all vertices contained
in blocks in TB,v except for vertex v itself. If |SB,v| ≤ n/8, we say branch TB,v is small.
Otherwise we say TB,v is big. Finally, for all leaf blocks B, let vB denote the vertex that
block B has in common with the next block on the path from B to B∗ in TB.
We first consider the leaves of TB contained in small branches. Take two arbitrary enumer-
ations B1, B2, . . . , Bh1 and R1, R2, . . . , Rh2 of all blue and red leaf blocks of TB contained in
small branches respectively. We will iteratively add edges between Sred and Bj in increasing
order of j, and analogously between Sblue and Rj. Suppose that semi-random edges have
already been added between Sred and Bi for all i < j. Let TB,v be the branch containing
leaf Bj. Then, if square ut lands in Sred \ SB,v, we choose circle vt to be an arbitrary vertex
in Bj \ {vBj

}. Because |Bj| ≥ 2, such a choice for vt always exists. Because ut and vt are
in different branches, and as ut, vt ̸∈ B∗, it follows that edge utvt cannot be contained in
G2.
Analogously, for Ri the red leaf in a small branch TB,v with the lowest index that has
not previously received a circle, if square ut is contained in Sblue \ SB,v, we choose vt in
Ri \ {vRi

}. Finally, if square ut is contained in B∗, or in same branch as the considered
leaf, we consider the round a failure.
Then, as tree TB has o(n) leaves, there are o(n) blue and o(n) red leaves. Moreover, by
Proposition 5.7 |Sblue| ≤ |Sred| ≤ 3|Sblue|, and |Sred| + |Sred| ≥ 3n/4. Thus, the probability
that a vertex from Sred \ SB,v is chosen u.a.r. where TB,v a small branch, is at least 3n/8 −
n/8 = n/4. Similarly, the probability that a vertex from Sblue \ SB,v is chosen u.a.r. where
TB,v a small branch, is at least 3n/16−n/8 = n/16. Hence, the expected number of rounds
needed to add edges to all leaf blocks in small branches is o(n).
Next, we consider the leaf blocks in big branches. We first note that there are at most 8
big branches. We use a similar strategy as for the small branches, but drop the require-
ment that ut and vt must be in distinct branches. Again take two arbitrary enumerations
B1, B2, . . . , Bh3 and R1, R2, . . . , Rh4 of all blue and red leaf blocks of TB contained in big
branches respectively. Suppose that semi-random edges have already been added between
Sred and Bi for all i < j. Then, if square ut lands in Sred, we choose circle vt to be an
arbitrary vertex in Bj \{vBj

}. Because |Bj| ≥ 2, such a choice for vt always exists. Because

20

ut and vt are in different colour classes, and as ut, vt ̸∈ B∗, it follows that edge utvt cannot
be contained in G2. If ut lands in Sblue, we analogously choose vt in the considered red leaf
block. If instead ut lands in B∗, we consider the round a failure.
Because the probability that a vertex from Sred is chosen u.a.r. is at least 3n/8, and the
probability that a vertex from Sblue is chosen u.a.r. is at least 3n/16, it also takes o(n)
rounds in expectation to add edges to all leaf blocks in big branches.
After all leaves in both small and big branches have received an edge, there exist two
internally vertex-disjoint paths from each leaf block B to B∗. Namely, as all of the edges
we added have one red and one blue endpoint, each blue leaf has a path which only contains
blue vertices and a vertex in B∗, and a path that starts with the added edge, and then
only contains red vertices and one vertex in B∗. Analogously, there exist two such paths
from each red leaf. As these two paths do not share their endpoint in leaf B, and as each
leaf is 2-connected by Corollary 5.6, set B \ {vB} does not contain any cut-vertices.
We note that again the resulting graph is 2-edge-connected. We then use the same strategy
as in the case where there exists a block of size at least n/4 to eliminate all the cut-vertices
that separate individual blocks from the rest of the graph. Recall that this strategy a.a.s.
takes o(n) rounds. Let G′′

2 be the resulting graph. We then observe that no vertex in [n]\B∗

is a cut-vertex in graph G′′
2. Hence, we consider a cut-vertex v ∈ B∗. First suppose that

the branch rooted at v is empty. We that by Proposition 5.5 it then holds that |B∗| ≥ 3.
But then, B∗ is 2-connected, contradicting v being a cut-vertex. Next suppose that the
branch rooted at v is small. We note that for each vertex in SB,v there exists a path to a
leaf of branch TB,v contained in SB,v. As each such a leaf has an edge to another branch,
and as B∗ is either 2-connected or isomorphic to K2, it follows that G′′

2 − v is connected.
Hence, v is not a cut-vertex.
Finally, suppose that the branch rooted at v is big. In this case v may indeed be a cut-
vertex. Namely, if TB,v contains multiple components of different colours, each of the edges
added to the leafs in the branch could have both endpoints within the branch. To deal with
such cut-vertices, we use a two-step strategy. In the first step, we want to ensure that the
subgraph induced by SB,v becomes connected. We achieve this using the standard strategy
of choosing vt in a different component than ut if ut ∈ SB,v. If ut ̸∈ SB,v, we consider the
round a failure. We note that as each component of TB,v contains at least one leaf of TB,
by Corollary 5.9, TB,v contains at most o(n) components. As |SB,v| > n/8, the probability
of adding successfully adding an edge in this first step is at least 1/8. Then, by standard
concentration inequalities, this step a.a.s. takes o(n) rounds as well. We note that in the
resulting graph, cut-vertex v then separates two components. In the second step of the
strategy, we connect these two components by a single edge. We note that we can place
such an edge successfully if ut ̸= v. As the probability of a failure round is thus 1/n, by
standard concentration inequalities, the number of rounds in this step is O(1). We then
note that there are at most 7 vertices v ∈ B∗ such TB,v is big. Hence, the total number of
rounds to ensure that each of these cut-vertices is absorbed is a.a.s. o(n).
Because the resulting graph then thus no longer contains any cut-vertices, the graph is

21

2-connected. Thus, in any case, we can ensure that graph G2 becomes 2-connected in
a.a.s. o(n) rounds, as desired.

Combining the analysis of these individual phases then results in the following lemma.
Lemma 5.12. τC2 ≤ ln 2 + ln(ln 2 + 1)).

Proof. The lemma directly follows from Propositions 5.8 and 5.11, and the fact that the
2-min process requires (ln 2 + ln(ln 2 + 1)) + o(1))n rounds.

5.4 Pre-positional model
In this section, we consider k-connectedness in the pre-positional model. By Lemma 3.1,
τCk

≤ τ ′
Ck

for all k ≥ 1. The lower bounds for τCk
thus apply to τ ′

Ck
as well.

We observe that the case for k = 1 is not as simple in the pre-positional model as in
the post-positional model. Namely, there is no strategy to guarantee that ut and vt lie in
different connected components (disregarding isolated vertices).
Lemma 5.13. τ ′

C1 = 1.

Proof. We first observe that as τC1 = 1, we have the lower bound τ ′
C1 ≥ 1.

For the upper bound, we consider a strategy S which chooses ut u.a.r. from all vertices
contained in any connected component of minimum order. If vt lands in a different con-
nected component, we add edge utvt. Otherwise we consider the round a failure round.
Each successfully added edge then decreases the number of connected components in the
graph by 1. We analyse the process with this strategy in a number of phases.
Let phase i be defined as the rounds in which the number of connected components in the
graph decreases from n

2i−1 to n
2i . We note that phase i consists of n

2i−1 − n
2i = n

2i non-failure
rounds, and a number of failure rounds. Let Ti be the total number of rounds in phase i,
and let fi be the number of failure rounds in phase i. Thus, Ti = n

2i + fi.
We then observe that the smallest connected component in any round in phase i contains
at most 2i vertices. The probability that a round is a failure round is thus at most 2i/n.
Suppose that Ti ≤ α · n

2i for some fixed α > 1. Then

E[fi] ≤ α · n

2i
· 2i

n
= α = O(1).

Moreover, by Markov’s inequality, it then follows that a.a.s. fi = O(1). Thus, a.a.s.
Ti = n

2i + O(1), validating our assumption that Ti ≤ α · n
2i .

The total number of rounds needed to ensure the graph is connected is then

∑
i>0

Ti =
log2 n∑
i=1

(
n

2i
+ O(1)

)
≤ n + O(log2 n) = (1 + o(1))n.

Therefore, τ ′
C1 ≤ 1, as desired.

22

Thus, asymptotically, τ ′
C1 = τC1 .

To prove the tight upper bound in the post-positional model for k ≥ 3, Ben-Eliezer,
Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković [4] introduce a strategy S∗

min.
This strategy chooses vertex vt u.a.r. from all vertices of V (Gt−1) \ {ut} that have the
smallest number of distinct neighbours. Note that this process generates a multi-graph,
and is therefore not quite equivalent to the min-degree process. They then analyse the
graph resulting from this strategy in the post-positional process to show the tight upper
bounds.
We note that strategy S∗

min can be modelled in the pre-positional process by the following
strategy: we choose ut u.a.r. from all vertices that have the smallest number of distinct
neighbours, and consider the round a failure if ut = vt. The probability of any given round
being a failure round is thus 1/n. Hence, the number of additional rounds needed to cover
the additional failure rounds is a.a.s. o(n). The tight upper bounds for τCk

for k ≥ 3 thus
are also tight upper bounds for τ ′

Ck
. Hence, Lemma 5.14 follows.

Lemma 5.14. τ ′
Ck

= τCk
for all k ≥ 3.

The remaining open case in the pre-positional process is thus k = 2. We will consider the
proof we have given for the tight upper bound for the post-positional case, and give an
outline of how to adapt it for the pre-positional process.
As discussed in Section 4.3, the pre-positional process can be used to model the min-degree
process in a similar fashion to the post-positional model. Hence, it suffices to consider the
phases of the proof where we define and use different strategies.
We first note that connecting the graph in the second phase is not achievable with the same
strategy as in the proof of Proposition 5.10. Instead we use the same strategy defined in
the proof of Lemma 5.13. By analogous analysis, it then follows that Proposition 5.10 also
holds in the pre-positional process.
Next, we consider the third phase, in which we aim to ensure that the graph is 2-connected.
In the proof of Proposition 5.11, there are two cases to examine. If the graph contains a
block B∗ of size at least n/4, we choose ut to be a leaf block in TB that has not yet received
an edge to B∗. We note there is then a probability of at least n/4−o(1) to successfully add
an edge to B∗ similar to in the post-positional argument. To eliminate the remaining cut-
vertices that separate individual blocks from the rest of the graph, we again use a strategy
in the style used in the proof of Lemma 5.13. It then follows by standard concentration
inequalities that it takes o(n) additional rounds to ensure the graph is 2-connected.
If the graph does not contain a block B∗ of size at least n/4, we again use the balanced
colouring to efficiently absorb cut-vertices. We pick ut to be a leaf that has not yet received
an edge, and by the size of the colour classes, there is probability at least c for some constant
c > 0 such that vt lands in the colour class not containing ut. Moreover, for leaves in small
branches, we can additionally require vt to be in a different branch and maintain at least
a constant positive probability of successfully adding an edge. We absorb the cut-vertices
separating individual blocks from the rest of the graph in a similar fashion as the case where

23

there exists a block B∗ of size at least n/4. Finally, we consider the two-step strategy to
absorb cut-vertices in B∗. To connect all components in a big branch, one can again use
the strategy in the style used in the proof of Lemma 5.13. For the second step, we choose
ut in the smaller of the two components of the graph obtained by removing the cut-vertex.
As the success probability is then at least 1/2, we note that this step again a.a.s. takes
O(1) rounds. Thus, overall, also in the case where the graph does not contain a block of
size at least n/4, a.a.s. o(n) rounds suffice to ensure the graph becomes connected.
Hence, we conclude that Proposition 5.11 also holds for the pre-positional process. As
thus all phases of the upper bound algorithm for the post-positional process can be mod-
elled by similar strategies in the pre-positional process, with asymptotically equal results,
Lemma 5.15 follows.
Lemma 5.15. τ ′

C2 = τC2.
Theorem 5.2 then directly follows from Lemmas 5.13, 5.14, and 5.15.

24

Chapter 6

k-Factors

A factor of a graph G is a spanning regular subgraph in G. In this chapter, we consider
the construction of a k-factor, a k-regular factor. A k-factor is thus a subgraph H ⊆ G
such that V (H) = V (G) and degH(v) = k for all vertices v ∈ V (H). Note that a 1-factor
is therefore a perfect matching. We denote the property of a graph containing a k-factor
by Fk.
The property F1 of containing a perfect matchings was first studied in the seminal paper
by Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković [4]. They showed
both upper and lower bounds for τF1 . This problem has since been studied more extensively
by Gao, MacRury and Prałat [11]. They provide stronger upper and lower bounds for τF1 ,
which they refer to as τPM. Specifically, they show 0.93261 ≤ τF1 ≤ 1.20524.
Upper bounds for the case where k is dependent on n follow from the work of Ben-Eliezer,
Gishboliner, Hefetz and Krivelevich [3]. By fixing a family of k-regular spanning graphs,
their Theorem 1.3 shows that τFk

≤ k/2 + o(k) if k = ω(log(n)) and τFk
≤ 3k/2 + o(k)

otherwise. Note that their bound is thus asymptotically tight for k = ω(log(n)).
A related problem is that of constructing a Hamiltonian cycle as fast as possible. Let HAM
denote the property of containing a Hamiltonian cycle. We note that as a Hamiltonian
cycle is a 2-factor, τF2 ≤ τHAM. It was first observed by Ben-Eliezer, Hefetz, Kronenberg,
Parczyk, Shikhelman and Stojaković [4] that τHAM ≤ 3. Further bounds for τHAM were
shown by Gao, Kamiński, MacRury and Prałat [10]. Gao, MacRury and Prałat [12] subse-
quently showed improved bounds. The strongest upper bound currently known was shown
by Frieze and Sorkin [8]. Building on the work of Gao, MacRury and Prałat, they show
that τHAM ≤ 1.85.
Determining the existence and value of τFk

for all fixed k ≥ 1 was posed as Problem 1.6 by
Ben-Eliezer, Gishboliner, Hefetz and Krivelevich [3]. In this chapter we consider a method
for bounding τFk

for all fixed k ≥ 2 from above. We provide explicit upper bounds for a
number of small values for k.
The best known lower bounds for τFk

for general k are the tight asymptotic lower bounds
shown by Ben-Eliezer, Hefetz, Kronenberg, Parczyk, Shikhelman and Stojaković [4] on τDk

25

to bound τFk
from below. Naturally, for a graph G to contain a k-factor, it must hold that

δ(G) ≥ k.

6.1 Overview
Our general strategy for bounding τFk

from above is to describe algorithms that construct
a k-factor in the semi-random graph process. That is, we maintain a spanning subgraph
Ht ⊆ Gt for each round t, where we aim to make Ht become k-regular. In our algorithms,
we will ensure that ∆(Ht) ≤ k at all times. We refer to vertices v ∈ V (Gt) such that
degHt

(v) = k as saturated in round t. Correspondingly, we refer to all vertices v ∈ V (Gt)
such that degHt

(v) < k as unsaturated vertices. Additionally, we refer to vertices v ∈ V (Gt)
such that degHt

(v) = k − 1 as critical vertices.
A natural way of measuring the progress of constructing a k-factor is the difference between
the desired degree k and the actual degree degHt

(v), summed over all vertices v ∈ V (Ht).
We denote this measure, which we refer to as the missing degree sum, by Λk, and define it
formally as

Λk(Ht) =
∑

v∈V (Ht)

(
k − degHt

(v)
)

.

Note that Λk(Ht) ≥ 0 always holds, and that once Λk(Ht) = 0, subgraph Ht is a k-factor
in graph Gt.

6.2 Perfect matching
The proof for the upper bound for τF1 by Gao, MacRury and Prałat [11] is based on
applying Wormald’s differential equation method to a probabilistic algorithm. Their main
tool is that of augmentation paths of length 3. Let u, v ∈ V (Gt) be two saturated vertices
(that is, degHt

(u) = degHt
(v) = 1) connected by an edge in subgraph Ht. Moreover, let

x, y ∈ V (Gt) be two unsaturated vertices. As vertices u and v are already saturated, we
cannot simply add more edges incident with u and v in subgraph Ht. However, if we add
edges ux and vy to subgraph Ht and remove edge uv, the degrees of u and v are not altered.
At the same time, vertices x and y have become saturated. Hence, all four vertices u, v, x,
and y are now saturated. This augmentation technique becomes increasingly relevant as
more vertices become saturated. See Figure 6.1 for an illustration of such an augmentation
as used in the perfect matching algorithm.
We also note that augmentation is not perfect. Because the original edge uv is no longer
considered as part of subgraph Ht, the round it was added in is wasted. The missing
degree sum Λk decreased by 2 because of the augmentation operation, while also taking 2
rounds. However, if we add an edge between two unsaturated vertices, the missing degree
sum decreases by 2 in a single round. Hence, in most cases, augmentation is only utilised
to be able to make some use of rounds where vertex ut is already saturated.

26

Figure 6.1: Illustration of an augmentation as used in the perfect matching algorithm by
Gao, MacRury and Prałat [11].

The algorithm by Gao, MacRury and Prałat [11] adds an edge between two unsaturated
vertices if possible, and otherwise attempts to construct such augmenting paths. By choos-
ing vt strategically based on the number of circles and squares that have hit each vertex,
they achieve the bound τF1 ≤ 1.20524.

6.3 Terminology
We aim to use the same main idea of augmentation paths of length 3 for algorithms
constructing k-factors. To that purpose, we first generalise this concept.
During our algorithm, we will maintain a list of edges E ⊆ E(Ht) that we wish to use for
augmentation. We refer to these edges as augmentation edges. Let uv ∈ E be such an
augmentation edge. As previously noted, we only wish to start creating an augmenting path
if we hit a saturated vertex. Hence, for all uv ∈ E, either vertex u or vertex v is saturated.
Note that this differs from the perfect matching case, where the existence of an edge
necessitates that both endpoints are saturated. Then, for ℓ = min

(
degHt

(u), degHt
(v)
)
,

we refer to uv as a degree-ℓ augmentation edge. Thus, if both u and v are saturated, uv
is a degree-k augmentation edge, and otherwise ℓ is the degree of the unsaturated vertex.
We say that ℓ is the degree of the augmentation edge.
Let x, y ∈ V (Ht) be two unsaturated vertices, distinct from u and v. Suppose that u is a
saturated vertex. If we hit u, we may add an edge connecting u to x. We refer to edge ux
as the priming edge. Moreover, we refer to vertex x as the priming vertex, and to vertex u
as the primed vertex. We note that edge ux is only added to graph Gt and not subgraph
Ht, to maintain degHt

(u) ≤ k. If a priming edge is incident to an augmentation edge, we
say that the augmentation edge is primed. Otherwise, we say the augmentation edge is
unprimed. We refer to unsaturated vertices that are not incident with an augmentation
edge as uncovered vertices.
In some cases, we may no longer wish to consider an edge e ∈ E(Ht) as an augmentation
edge, and hence remove it from set E. We refer to this step as demoting augmentation
edge e. In other cases, we may wish to no longer consider a priming edge e ∈ E(Gt). We

27

refer to this as destroying priming edge p. Note that the incident augmentation edges may
become unprimed as a result.
In accompanying figures, we will colour unprimed augmentation edges red, primed aug-
mentation edges purple, and priming edges blue.

6.4 Running the perfect matching algorithm k times
We note that the disjoint union of k edge-disjoint perfect matchings gives a k-factor. Hence,
one approach for constructing a k-factor for fixed k is to use the perfect matching algorithm
by Gao, MacRury and Prałat [11] k times. However, the resulting perfect matchings are
not necessarily edge-disjoint. In this section, we show that the number of such parallel
edges is bounded. We will then use a clean-up algorithm to obtain a k-factor.
Let GPM, k be the multigraph resulting from running the perfect matching algorithm k times
with spanning subgraph HPM, k such that degHPM, k

(v) = k for all vertices v ∈ V (GPM, k).
Let SPM, k be the set of edges e in E(HPM, k) such that there exists at least one other edge
in E(HPM, k) with the same endpoints.
Proposition 6.1. |SPM, k| = O(1).

Proof. Each iteration of the perfect matching algorithm results in n/2 edges being added to
subgraph HPM, k. Moreover, as the vertices are indistinguishable, each of the

(
n
2

)
possible

edges is equally likely to be added in each iteration. Let Si for 1 ≤ i ≤ k be the set of
edges added to HPM, k in the ith perfect matching iteration. That is, sets S1, S2, . . . , Sk

partition E(HPM, k). Let X be a random variable denoting the number of pairs {e1, e2} ⊆
E(HPM, k) such that e1 and e2 have the same endpoints. Because each pair of edges from
different iterations has a probability of 1/

(
n
2

)
of having identical endpoints, and as there

are
(

kn/2
2

)
− k ·

(
n/2

2

)
such pairs,

E[X] =
((

k · n
2

2

)
− k ·

(
n
2
2

))
· 1(

n
2

)
= kn(kn − 2) − kn(n − 2)

4 · 2
n(n − 1)

≤ k(kn − 2) − k(n − 2)
2(n − 2)

= O(1).

Then, as X is an upper bound for |SPM, k|, the desired result follows.

Next, we describe a generalisation of the clean-up algorithm as used by Gao, MacRury and
Prałat [11]. This clean-up algorithm is used to fix the small number of multi-edges in the
constructed spanning subgraph.

28

Lemma 6.2 (Clean-up Lemma). Suppose that for Ht ⊆ Gt and ϵ = Λk(Ht)/n it holds
that ϵk2 < 10−14 for all n ≥ 1. Then there exists a strategy such that a k-factor H ′

t is
constructed a.a.s. in 10−5 · n additional rounds.

Proof. Let j0 = Λk(Ht) be the missing degree sum. Thus, j0 = ϵn. We may assume that
ϵ = θ(1) by removing additional edges from Ht. Let jℓ = ⌊(4k−1

4k
)ℓj0⌋ for all ℓ ≥ 1. The

clean-up algorithm is an iterative algorithm. In iteration ℓ, the missing degree sum is
decreased by jℓ−1 − jℓ in the following two phases:

(1) We create a set Sℓ of augmentation edges in ⌊
√

3jℓ−1n

4 ⌋ rounds, which is initially
empty. In each of these rounds, if degHt

(ut) = 0, we consider the round a failure
round. Otherwise, pick a neighbour w of ut in Ht. If set Sℓ already contains edge
utw, we also consider the round a failure. If not, we add utw to Sℓ and pick vt u.a.r.
to be an unsaturated vertex not adjacent to ut or w in Ht. We consider utw to be a
primed augmentation edge with priming edge utvt.

(2) The aim for the subsequent rounds is to use the primed augmentation edges created
in the first phase to decrease the missing degree sum. In these rounds, if ut is
unsaturated, we choose vt u.a.r. to be an unsaturated vertex not adjacent to ut in
Ht and add edge utvt to Ht. Any edge in Sℓ for which ut or vt is the priming
vertex is removed from Sℓ. Otherwise, if ut is saturated and incident to a primed
augmentation edge utw ∈ Sℓ such that w is the primed vertex, we choose vt u.a.r.
to be an unsaturated vertex not adjacent to ut and w in Ht and distinct from the
priming vertex for augmentation edge utw. We then augment along augmentation
edge utw, and remove utw from Sℓ. Additionally, we remove every augmentation
edge with vt or the priming vertex of utw as its priming vertex from Sℓ. This phase
terminates once Λk(Ht) ≤ jℓ.

Note that the algorithm as outlined above fails if there is a single unsaturated vertex left.
In this case, a single additional iteration where we allow said unsaturated vertex to become
incident with both endpoints of augmentation edges suffices.
Let Tℓ be the total number of rounds in iteration ℓ of the algorithm. We claim that∑

ℓ≥1 Tℓ ≤ 12
√

ϵk2n a.a.s.

Proposition 6.3. In each iteration ℓ ≥ 1, |Sℓ| ≥
√

3jℓ−1n

5 after phase 1 a.a.s.

Proof. We first aim to bound the probability that a round in phase 1 is a failure round.
We observe that the missing degree sum is an upper bound for the number of unsaturated
vertices, and hence for the number of isolated vertices in Ht. Hence, as jℓ ≤ j0 ≤ ϵn, there
are at most ϵn vertices v such that degHt

(v) = 0.
Moreover, the probability that we hit a non-isolated vertex and choose w such that utw is
already contained in Sℓ is bounded by the probability of hitting a vertex incident with an

29

edge in Sℓ. We can bound this probability in turn by

2 |Sℓ|
n

≤
2 ·

√
3jℓ−1n

4
n

=

√
3
(

4k−1
4k

)ℓ−1
ϵn

2
√

n

<
√

ϵ.

Hence, the probability of adding a new augmentation edge to Sℓ in any given round in
phase 1 is at least 1 − ϵ −

√
ϵ. We then stochastically couple the number of rounds where

an edge is added to Sℓ with the binomial distribution with
√

3jℓ−1n/4 trials and a success
probability of 1−ϵ−

√
ϵ. Thus, let Xℓ ∼ Bin (

√
3jℓ−1n/4, 1 − ϵ −

√
ϵ) be coupled such that

|Sℓ| ≥ Xℓ (that is, we let Xℓ and |Sℓ| be random variables in the same probability space
such that the ith trial of Xℓ is forced to be unsuccessful if no edge is added to Sℓ in the
corresponding round, and otherwise the ith trial is successful with a exactly the probability
needed to ensure that the overall probability of the ith trial being successful is 1 − ϵ −

√
ϵ).

We note that thus P
(

|Sℓ| <

√
3jℓ−1n

5

)
≤ P

(
Xℓ <

√
3jℓ−1n

5

)
. We will bound the latter to

show the desired result.
Using the Chernoff-Hoeffding bound and the fact that ϵ < ϵk2 < 10−14, we find

P
(

Xℓ <

√
3jℓ−1n

5

)
= P

(
Xℓ <

(
1 − 1 − 5ϵ − 5

√
ϵ

5 − 5ϵ − 5
√

ϵ

)
·

√
3jℓ−1n

4 · (1 − ϵ −
√

ϵ)
)

≤ exp

−

(
1−5ϵ−5

√
ϵ

5−5ϵ−5
√

ϵ

)2

2 ·
√

3jℓ−1n

4 · (1 − ϵ −
√

ϵ)

= exp

(
−θ(1)

√
jℓ−1n

)

= exp

−θ(1)

√√√√(4k − 1
4k

)ℓ−1

ϵn2

= O

(
e−n

)
.

Hence, as desired,

P
(

|Sℓ| ≥
√

3jℓ−1n

5

)
= 1 − P

(
|Sℓ| <

√
3jℓ−1n

5

)

≥ 1 − P
(

Xℓ <

√
3jℓ−1n

5

)
= 1 − O

(
e−n

)
.

■

30

Next, we consider a lower bound on the number of edges in set Sℓ during phase 2.

Proposition 6.4. |Sℓ| ≥
√

2jℓ−1n

6 in any round in phase 2 of iteration ℓ.

Proof. Let Yℓ be a random variable denoting the number of edges that are removed from
Sℓ in phase 2 in iteration ℓ. Because there are at least jℓ/k unsaturated vertices in each
round in iteration ℓ, the expected number of augmentation edges for which a vertex v

is a priming vertex is at most
√

3jℓ−1n/4
jℓ/k

. Hence, the expected number of edges to be

removed from Sℓ in a single round in phase 2 is at most 1 +
√

3jℓ−1n/4
jℓ/k

for non-failure
rounds, and 0 for failure rounds. There are (jℓ−1 − jℓ)/2 non-failure rounds in iteration ℓ
to decrease the missing degree sum by jℓ−1 − jℓ. Hence, E[Yℓ] is bounded from above by
(jℓ−1 − jℓ)/2 ·

(
1 +

√
3jℓ−1n/4
jℓ/k

)
.

Let Yℓ,m be a random variable denoting the number of priming edges that get destroyed
in round m in phase 2 of iteration ℓ. This quantity can then be stochastically coupled
with a random variable Y ′

ℓ,m such that Y ′
ℓ,m ∼ Bin

(√
3jℓ−1n

4 , 1
jℓ/k

)
. Moreover, let Y ′

ℓ ∼

Bin
(

jℓ−1−jℓ

2 ·
√

3jℓ−1n

4 , 1
jℓ/k

)
such that ∑m′

m=1 Yℓ,m ≤ Y ′
ℓ where m′ is the number of rounds in

phase 2 of iteration ℓ. Note that by this definition, Yℓ ≤ (jℓ−1 − jℓ)/2 + Y ′
ℓ .

Using the Chernoff-Hoeffding bound with E[Y ′
ℓ] = jℓ−1−jℓ

2 ·
√

3jℓ−1n

4 · 1
jℓ/k

, we then find

P
(

Y ′
ℓ >

3
2 · jℓ−1 − jℓ

2 ·
√

3jℓ−1n

4 · 1
jℓ/k

)
≤ exp

(
−(1/2)2

3 · jℓ−1 − jℓ

2 ·
√

3jℓ−1n

4 · 1
jℓ/k

)

= exp
(

−θ(1) · jℓ−1

4k
·
√

jℓ−1n · 1
jℓ−1 · 4k−1

4k

)

= exp
(

−θ(1) ·
√

jℓ−1n
)

= exp

−θ(1) ·

√√√√(4k − 1
4k

)ℓ−1

ϵn2

= O

(
e−n

)
.

Thus, Yℓ ≤ jℓ−1−jℓ

2 + 3
2 · jℓ−1−jℓ

2 ·
√

3jℓ−1n

4 · 1
jℓ/k

a.a.s.

31

Hence, a.a.s. at the end of phase 2, using Proposition 6.3,

|Sℓ| ≥
√

3jℓ−1n

5 − Yℓ

≥
√

3jℓ−1n

5 − jℓ−1 − jℓ

2 − 3
2 · jℓ−1 − jℓ

2 ·
√

3jℓ−1n

4 · 1
jℓ/k

=
√

3jℓ−1n

5 − jℓ−1

8k
− 3

64 · jℓ−1

jℓ

·
√

3jℓ−1n

≥
√

3jℓ−1n

5 − jℓ−1

8k
− 3

64 · 4
3 ·
√

3jℓ−1n

= 11
80 ·

√
3jℓ−1n − jℓ−1

8k

≥
√

2jℓ−1n

6 ,

where the last step follows from the fact that jℓ−1 ≤ j0 = ϵn ≤ ϵk2n ≤ 10−14n.
Then, no edges are added to set Sℓ in phase 2, the proposition follows. ■

Proposition 6.4 gives a lower bound on the probability of a non-failure round in phase 2.
We then consider the number of rounds in phase 2 for a single iteration of the clean-up
algorithm.

Proposition 6.5. For each iteration ℓ ≥ 1, it a.a.s. holds that Tℓ < 3
2
√

jℓ−1n.

Proof. Let Tℓ,1 and Tℓ,2 denote the number of rounds in phases 1 and 2 of iteration ℓ
respectively. Thus, Tℓ = Tℓ,1 + Tℓ,2. Moreover, by the definition of the clean-up algorithm,
Tℓ,1 = ⌊

√
3jℓ−1n

4 ⌋.
Let Z be a negative binomially distributed random variable with the number of successful
draws being (jℓ−1 − jℓ)/2 and the probability of success for a single draw being

√
2jℓ−1n/6

n
.

Using Proposition 6.4, we then stochastically couple Tℓ,2 with random variable Z such that
Tℓ,2 ≤ Z.

We note that E[Z] =
(√

2jℓ−1n/6
n

)−1
· jℓ−1−jℓ

2 = 6
√

n√
2jℓ−1

· jℓ−1
8k

. We aim to bound the probability
that Tℓ,2 > (3/2) · E[Z]. To that purpose, we note that

P
(

Tℓ,2 >
3
2E[Z]

)
≤ P

(
Z >

3
2E[Z]

)
< P

(
Z ′ <

jℓ−1

8k

)
,

where Z ′ ∼ Bin
(

3
2E[Z],

√
2jℓ−1

6
√

n

)
. We observe that

E[Z ′] = 3
2 · 6

√
n√

2jℓ−1
· jℓ−1

8k
·

√
2jℓ−1

6
√

n
= 3

2 · jℓ−1

8k
.

32

Then, using the Chernoff-Hoeffding bound, we find

P
(

Z ′ <
jℓ−1

8k

)
= P

(
Z ′ <

2
3 · E[Z ′]

)
≤ exp

(
−(1/3)2

2 · E[Z ′]
)

= exp
(

− 1
18 · 3

2 · jℓ−1

8k

)

= exp
−θ(1)

(
4k − 1

4k

)ℓ−1

ϵn

= O

(
e−n

)
.

Hence, it a.a.s. follows that

Tℓ = Tℓ,1 + Tℓ,2

≤
√

3jℓ−1n

4 + 3
2E[Z]

=
√

3jℓ−1n

4 + 3
2 · 6

√
n√

2jℓ−1
· jℓ−1

8k

<

√
3jℓ−1n

4 +
√

jℓ−1n

<
3
2
√

jℓ−1n,

as desired. ■

Finally, we then bound the number of rounds required by the complete clean-up algorithm.
By Proposition 6.5, ∑

ℓ≥1
Tℓ ≤

∑
ℓ≥1

3
2
√

jℓ−1n

=
∑
ℓ≥1

3
2

√√√√(4k − 1
4k

)ℓ−1

ϵn2

= 3
2

√
ϵn · 2k

2k −
√

4k2 − k

≤ 3
2

√
ϵn · 8k

≤ 12
√

ϵkn.

Then, as ϵk2 < 10−14, it follows that a.a.s. Tℓ ≤ 10−5n, as desired.

We can then use the clean-up algorithm to finish the argument for running the perfect
matching algorithm by Gao, MacRury and Prałat [11] k times.

33

Lemma 6.6. τFk
≤ 1.20524 · k + 10−5 for all k ≥ 1.

Proof. The result follows directly from [11, Theorem 1.1], Proposition 6.1, and Lemma 6.2.

We will use this bound as a benchmark for our new method.

6.5 Issues in extending the perfect matching algo-
rithm

Instead of repeatedly using the perfect matching algorithm developed by Gao, MacRury
and Prałat [11], we aim to use its concepts to design a algorithm for general k-factors
leading to stronger bounds. At first glance, it may seem like their strategy for k = 1 is
easily extendable to general k. There are however a number of factors that make this
generalisation non-trivial.
We first observe that each edge in the partial matching Ht can be used as an augmentation
edge. It makes sense to consider all such edges for augmentation, as each of the endpoints
is saturated. This is not generally the case when extending to general k. Namely, for k ≥ 2,
subgraph Ht may contain edges between unsaturated vertices. If an edge in Ht joins two
unsaturated vertices, it is inefficient to consider it as an augmentation edge. Namely, any
edge priming such an augmentation edge could instead be directly added.
Hence, we only consider edges with at least one saturated endpoint for augmentation. The
next question that then arises is whether we should consider all such edges for augmenta-
tion. For each individual edge incident with a saturated vertex, it is useful to consider it
as an augmentation edge when hitting said saturated vertex. However, issues arise if we
consider multiple such edges simultaneously. Consider the number of augmentation edges
a vertex can be incident to. In the perfect matching case, each vertex can only be incident
with one augmentation edge, because it is incident with at most one edge in subgraph Ht.
However, for k > 1, each saturated vertex may be incident with up to k augmentation
edges. Suppose such a saturated vertex is hit, and a priming edge is added. We then have
two options in the design of the algorithm. Either we consider all augmentation edges
incident with said vertex primed, or we assign the priming edge to a specific augmentation
edge.
If we consider all augmentation edges incident with the hit vertex to be primed, issues arise
when an augmentation involving the priming edge occurs. Namely, to analyse the trajectory
of the random variables in the process using Wormald’s differential equation method, we
then need to describe the expected number of augmentation edges of each degree that
become unprimed. If instead the priming edge is associated to a single augmentation
edge, another issue comes up. Namely, one then requires the probability that in a given
round a degree-ℓ augmentation edge becomes primed. This probability is non-trivial due
to the existence of both primed and unprimed augmentation edges of varying degrees.

34

We have not been able to define a set of random variables and accompanying expected
change equations that model these choices. We run into similar issues when considering
multiple priming edges assigned to a single augmentation edge. We then need to track
the distribution of priming edges per type of augmentation edge to describe the number of
primed augmentation edges of each degree.
To avoid these issues, we require that augmentation edges are vertex-disjoint, and that each
augmentation edge is incident with at most one priming edge. Moreover, each priming
edge is incident with exactly one augmentation edge, as otherwise augmentation would
potentially lead to two augmenting edges sharing a common endpoint.

6.6 Algorithm for upper bound
In this section we describe our algorithm for constructing a k-factor. It generalises the
perfect matching algorithm by Gao, MacRury and Prałat [11], while taking into account
the issues outlined in Section 6.5.

6.6.1 Setup
We first provide an informal description of the mechanisms we use in our algorithm. As
described in Section 6.3, we maintain a spanning subgraph Ht and a list E of augmentation
edges. For each of these augmentation edges, we additionally track whether they are
primed, and if so with what priming edge. Every round, we choose vt based on the degree
of ut in Ht, whether ut is an endpoint of an augmentation edge, and the status of the
augmentation edge if ut is incident with one.
We consider three classes of vertices based on their degree. Naturally, we consider saturated
vertices as an important class which we treat differently than unsaturated vertices. We
split the unsaturated vertices into two classes; critical vertices (those of degree k − 1 in
Ht) and those of degree at most k − 2. We make this distinction to have more control
about adding edges incident with vertices that are on the brink of becoming saturated. In
our algorithm, we want to ensure that initially each saturated vertex is incident with an
augmentation edge. Hence, if ut is critical and uncovered, we want to choose vt such that
utvt becomes an augmentation edge.
Generally, if ut is uncovered, we choose vt to be unsaturated as well and add edge utvt to
subgraph Ht. If ut is critical, we additionally want to ensure that vt is not incident with
an augmentation edge, so that utvt can become an augmentation edge. Note that if vt is
critical and uncovered, utvt will also become an augmentation edge.
If ut is unsaturated but incident with an augmentation edge, the strategy depends on the
status of said augmentation edge. If it is unprimed, we choose vt to be unsaturated and
non-critical, and add utvt to Ht. Namely, augmentation edges are a tool to make use of
rounds where a saturated vertex is hit. Hence, we only prime an augmentation edge when
hitting a saturated endpoint. If the augmentation edge is instead primed, we have two

35

options. Either we again choose vt to be unsaturated and non-critical and add edge utvt

to Ht, or we augment along the augmentation edge. Note that as we only prime from
saturated vertices, ut cannot be the primed vertex. We choose either option with a fixed
probability.
We have a separate strategy if ut is critical and incident with an augmentation edge. We
can still choose either of the previous two options, which we again do with fixed probability.
However, there is also a third option. We can choose vt to be critical as well, and incident
with another augmentation edge. Edge utvt is then added to Ht, and as a result both of the
critical vertices become saturated. Moreover, the degree-(k − 1) augmentation edges they
were incident with both become degree-k augmentation edges. This move is illustrated in
Figure 6.2.

⋃
0≤i≤k−2

Yi Yk−1 Yk

⋃
0≤i≤k−2

Yi Yk−1 Yk

Figure 6.2: Possible move when ut is critical and incident with an augmentation edge.

If ut is instead saturated, the focus lies on augmentations. Namely, if ut is not incident
with an augmentation edge, there is no useful edge to be added and we consider the round
a failure. For this reason, our algorithm initially ensures that all saturated vertices are
contained in an augmentation edge. Moreover, if an augmentation is performed along an
augmentation edge, each of the two resulting new edges in Ht is considered an augmentation
edge if at least one of its endpoints is saturated.
If ut is saturated and part of an augmentation edge, the strategy again depends on the
status of the augmentation edge. If it is unprimed, we choose vt from all uncovered vertices,
and prime the augmentation edge with edge utvt. If it is already primed, the strategy
depends on the type of augmentation edge. If the augmentation edge is of degree at most
k − 1, vertex ut must be the primed vertex. Then, as we allow at most one priming edge
per augmentation edge, we also consider the round a failure. If it is instead a degree-k
augmentation edge, there are two possibilities. If ut is the primed vertex, we similarly
consider the round a failure. Otherwise, we augment along the augmentation edge and
choose vt to be an uncovered vertex.
If at any point during the algorithm a vertex becomes saturated, all incident priming edges
are destroyed. Therefore, each priming edge always connects a saturated vertex with an
unsaturated vertex. Moreover, if due to an augmentation a vertex becomes part of an

36

augmentation edge, all incident priming edges are destroyed as well. This is done such
that augmentation edges remain disjoint after future augmentations.
The design of our algorithm satisfies a number of such invariants. The most important
features of the algorithm are the following;

• Augmentation edges are vertex-disjoint.
• Each augmentation edge is incident with at least one saturated vertex.
• Each augmentation edge is incident with at most one priming edge.
• Each priming edge is incident with exactly one augmentation edge.
• Priming edges are only incident with saturated endpoints of augmentation edges, and

have exactly one saturated endpoint.
• Each vertex that becomes saturated is incident with an augmentation edge directly

after.
• Each saturated vertex that is incident with an augmentation edge before an augmen-

tation will be incident with an augmentation edge directly after said augmentation.

⋃
0≤i≤k−2

Yi Yk−1 Yk

⋃
0≤i≤k−2

Yi Yk−1 Yk

Figure 6.3: Illustration of augmentation along a degree-k augmentation edge and the
resulting destruction of priming edges.

As mentioned, initially each vertex that becomes saturated is incident with an augmenta-
tion edge. Moreover, the algorithm as described thus far ensures that saturated vertices
incident with an augmentation edge remain incident with an augmentation edge. How-
ever, this construction gives rise to issues near the end of the algorithm. Namely, as each
augmentation edge is disjoint, the number of augmentation edges of degree at most k − 1
is limited by the number of unsaturated vertices. However, more importantly, as priming
edges cannot be incident with two augmentation edges, once the number of augmentation
edges of degree at most k − 1 equals the number of unsaturated vertices, no more aug-
mentations can take place. Hence, once the ratio of the number of augmentation edges of
degree at most k − 1 over the number of unsaturated vertices becomes to high, we demote
a number of such augmentation edges. The number of augmentation edges we demote is
dependent on the ratio between the number of such augmentation edges, and the number
of unsaturated vertices that are not part of an augmentation edge.

37

6.6.2 Formal description
Next, we describe the algorithm more formally by defining the strategy for each case based
on the degree and augmentation edge status of vertex ut. To that purpose we first define
the following sets of vertices.

Yi(t) for 0 ≤ i ≤ k − 1 All vertices v ∈ V (Ht) such that degHt
(v) = i.

Ai(t) for 0 ≤ i ≤ k − 1 All vertices v ∈ V (Ht) incident with an unprimed
degree-i augmentation edge and degHt

(v) = i.

A′
i(t) for 0 ≤ i ≤ k − 1 All vertices v ∈ V (Ht) incident with an unprimed

degree-i augmentation edge and degHt
(v) = k.

Ak(t) All vertices v ∈ V (Ht) incident with an unprimed
degree-k augmentation edge.

Pi(t) for 0 ≤ i ≤ k − 1 All vertices v ∈ V (Ht) incident with a primed
degree-i augmentation edge and degHt

(v) = i.

P ′
i(t) for 0 ≤ i ≤ k − 1 All vertices v ∈ V (Ht) incident with a primed

degree-i augmentation edge and degHt
(v) = k.

Pk(t) All vertices v ∈ V (Ht) incident with a primed
degree-k augmentation edge.

Note that by the definition of degree-ℓ augmentation edges, A0 = A′
0 = P0 = P ′

0 = ∅. We
still define these variables to simplify notation in further expressions. We do not track the
set of saturated vertices, as it may directly be derived from the sets of unsaturated vertices
of specified degrees.

Event 1 If degHt
(ut) ≤ k − 2, and ut is uncovered, we can directly add an edge to

another unsaturated vertex. We choose vt u.a.r. from
(⋃k−2

i=0 Yi(t)
)
\NHt [ut].

Event 2 If degHt
(ut) ≤ k − 2, and ut is incident with an unprimed augmentation

edge, we can again directly add an edge to another unsaturated vertex.
Hence, we choose vt u.a.r. from

(⋃k−2
i=0 Yi(t)

)
\ NHt [ut].

Continued on next page

38

Event 3 If degHt
(ut) ≤ k − 2, and ut is incident with a primed augmentation edge,

we have two choices. Because the augmentation edge is primed, and the
priming edge is incident with the saturated endpoint of the augmentation
edge, we may choose to add an edge from ut to another unsaturated vertex,
and augment along the primed augmentation edge. We refer to this case
as Event 3.1. For w the priming vertex of the augmentation edge, we then
choose vt u.a.r. in

(⋃k−1
i=0 Yi(t)

)
\ (NHt [ut] ∪ {w}).

Alternatively, we may choose to directly add an edge to another unsatu-
rated vertex. We refer to this case as Event 3.2, where we choose vt u.a.r.
from

(⋃k−2
i=0 Yi(t)

)
\ NHt [ut]. We choose for Event 3.1 with probability

ρdegHt
(u), and otherwise for Event 3.2.

Event 4 If degHt
(ut) = k−1, and ut is uncovered, we create a degree-k augmentation

edge by adding an edge to another vertex of degree k − 1 that is not
incident with any augmentation edge. That is, we choose vt u.a.r. from
Yk−1(t) \ (Ak−1(t) ∪ Pk−1(t)).

Event 5 If degHt
(ut) = k − 1, and ut is incident with an unprimed augmentation

edge, we create two degree-k augmentation edges by adding an edge to
another unsaturated endpoint of a degree-(k −1) augmentation edge. This
gives two choices. Either we add an edge to the endpoint of an unprimed
augmentation edge, or to the endpoint of a primed augmentation edge. We
refer to these cases by Event 5.1 and Event 5.2 respectively. It may seem
sensible to choose u.a.r. over all such vertices. However, this would intro-
duce a singularity in the differential equations when applying Wormald’s
differential equation method. Hence, we assign a probability to each of the
two events.
In case of Event 5.1, we choose vt u.a.r. from Ak−1(t) \ NHt [ut]. We choose
this case with probability σA.
In case of Event 5.2, we then choose vt u.a.r. from Pk−1(t) \ NHt [ut]. We
choose this case with the remaining probability 1 − σA.

Continued on next page

39

Event 6 If degHt
(ut) = k − 1, and ut is incident with a primed augmentation edge,

we have multiple options. Firstly, we can augment along the augmentation
edge. We refer to this case as Event 6.1, and choose this option with
probability ρk−1. We then choose vt u.a.r. from

(⋃k−1
i=0 Yi(t)

)
\ (NHt [ut] ∪

{w}), where w is the priming vertex of the augmentation edge.
Alternatively, we create two degree-k augmentation edges by adding an
edge to another vertex of degree k − 1 incident with an augmentation
edge. This thus happens with probability 1 − ρk−1. In this case, like in
Event 5, this edge may connect to a vertex incident with an unprimed or
a primed augmentation edge, which we refer to by Event 6.2.1 and Event
6.2.2 respectively. We choose for Event 6.2.1 with probability σP and for
Event 6.2.2 with remaining probability 1 − σP . In the case of Event 6.2.1,
we choose vt u.a.r. from Ak−1(t) \ NHt [ut]. Similarly, in the case of Event
6.2.2, we choose vt u.a.r. from Pk−1(t) \ NHt [ut].

Event 7 If degHt
(ut) = k, and ut is incident with an unprimed degree-k

augmentation edge, we add a priming edge by choosing vt u.a.r. in⋃k−1
i=0 (Yi(t) \ (Ai(t) ∪ Pi(t))) \ NHt [ut]

Event 8 If degHt
(ut) = k, and ut is incident with a primed degree-k augmentation

edge, the strategy depends on whether ut is the primed vertex. If ut is the
primed vertex, which we refer to as Event 8.1, we consider the round a
failure round.
Otherwise, we augment along the augmentation edge, which we re-
fer to as Event 8.2. In this case, we choose vt u.a.r. from(⋃k−1

i=0 (Yi(t) \ ((Ai(t) ∪ Pi(t)))
)

\ (NHt [ut] ∪ {w}) where w is the priming
vertex for the augmentation edge.

Event 9 If degHt
(ut) = k, and ut is incident with an unprimed augmentation edge

of degree at most k − 1, we add a priming edge by choosing vt u.a.r. in⋃k−1
i=0 (Yi(t) \ (Ai(t) ∪ Pi(t))) \ NHt [ut].

Event 10 If degHt
(ut) = k, and ut is incident with a primed augmentation edge of

degree at most k − 1, we consider the round a failure round.
Event 11 If degHt

(ut) = k, and ut is not incident with any augmentation edge, we
consider the round a failure round.

If in any of these events the set where vt is to be chosen from is empty, we consider the
round a failure.
Finally, we formally define the demotion procedure. To avoid the previously described
scenario of having each unsaturated vertex being incident with an augmentation edge,
we probabilistically demote a number of such augmentation edges. Specifically, we de-
mote each augmentation edge that is incident with an unsaturated vertex with probability

40

ϕ/
∣∣∣⋃k−1

i=0 (Yi(t) \ (Ai(t) ∪ Pi(t)))
∣∣∣. Observe that the denominator of this probability is ex-

actly the number of uncovered vertices. Moreover, note that there is no point in demoting
degree-k augmentation edges. The factor ϕ, which we refer to as the demotion factor,
should be chosen sufficiently large to ensure that the expected number of demoted aug-
mentation edges is not dominated by the expected number of new such augmentation edges
when the number of remaining uncovered vertices approaches 0. In Section 6.8.1 we will
consider explicit values for demotion factor ϕ.

6.7 Analysis

6.7.1 Random variables and their expected change
By design, the sets Yi(t), Ai(t), A′

i(t), Pi(t), P ′
i(t) for 0 ≤ i ≤ k − 1, and Ak(t) and Pk(t)

are sufficient to completely describe the algorithm’s process. Vertices within these sets are
indistinguishable for the algorithm’s purpose. Hence, for the analysis of the algorithm, it
suffices to track the sizes of these sets.
Let Yi(t) = |Yi(t)|, Ai(t) = |Ai(t)|, and Pi(t) = |Pi(t)| for all 0 ≤ i ≤ k − 1. Additionally,
let Ak(t) = |Ak(t)| /2 and Pk(t) = |Pk(t)| /2. As such, Ak(t) and Pk(t) track the number of
unprimed and primed degree-k augmentation edges respectively, rather than the number
of vertices incident with such edges. Because |Ai(t)| = |A′

i(t)| and |Pi(t)| = |P ′
i(t)|, this

collection of variables suffices to describe the progress of the algorithm.
Initially, for t = 0, as the graph is edgeless, all variables except for Y0(0) are equal to 0.
Naturally, Y0(0) = n.
Using that the algorithm makes a number of choices u.a.r. we can then derive equations
for the expected difference in value in a single round for each variable. These equations are
included in Appendix B. Note that we have excluded A0(t) and P0(t), as both are equal to
0 and are unaffected by all events.

6.7.2 Differential equations
To analyse the equations for general n, we scale each of the variables accordingly. Let
yi(s) = Yi(sn)/n for 0 ≤ i ≤ k − 1. Similarly, let ai(s) = Ai(sn)/n and pi(s) = Pi(sn)/n
for all 0 ≤ i ≤ k.
By substituting these variables into the expected difference equations, and grouping these
equations per variable, we obtain a set of differential equations. We have included these
differential equations in Appendix C.
We claim that these differential equations accurately describe the progress of the variable
using our strategy for n → ∞. We will use Wormald’s differential equation method to
prove as much.

41

6.7.3 Applying Wormald’s differential equation method
Let D ⊆ R3k+1 be the region defined by

{(s, y0, y1, . . . , yk−1, a1, a2, . . . , ak, p1, p2, . . . , pk) | − ϵ0 < s < 2k

∧ −ϵ0 < yi < 1 + ϵ0 for all 0 ≤ i ≤ k − 1
∧ −ϵ0 < ai < 1/2 + ϵ0 for all 1 ≤ i ≤ k

∧ −ϵ0 < pi < 1/2 + ϵ0 for all 1 ≤ i ≤ k

∧
k−1∑
i=0

yi > ϵ1

∧
k−2∑
i=0

yi > ϵ2

∧
k−1∑
i=0

(yi − ai − pi) > ϵ3},

where ϵ0, ϵ1, ϵ2, ϵ3 > 0. We will give explicit values for these variables in Section 6.7.4.
We then claim that our differential equations satisfy the three hypotheses for Wormald’s
differential equation method on region D. Firstly, we consider the boundedness hypothesis.
We note that the direct change in any of the variables in a single round as a result of vertices
ut and vt changing degree, and the resulting augmentations, is at most 2. There are two
other factors that can result in variables changing in value, namely the destruction of
priming edges and the demotion of augmentation edges. We note that in expectation, each
uncovered vertex is incident with at most∑k

j=1 Pj(t)∑k−1
j=0(Yj(t) − Aj(t) − Pj(t))

<
(1 + ϵ0)kn

ϵ3n
= (1 + ϵ0)k

ϵ3

priming edges. Hence, using a Chernoff-Hoeffding bound for binomial variables, we find
that the probability that the number of priming edges destroyed in a single round is
greater than 2 log2 n is at most 2−2 log2 n = n−2 for n sufficiently large such that 2 log2 n >
2 · 2e (1+ϵ0)k

ϵ3
. Similarly, the expected number of augmentation edges to be demoted in a

single round is

ϕ ·∑k−1
j=1(Aj(t) + Pj(t))∑k−1

j=0(Yj(t) − Aj(t) − Pj(t))
<

ϕ · (k − 1) · ((1/2 + ϵ0)n + (1/2 + ϵ0)n)
ϵ3n

= ϕ · (k − 1) · (1 + 2ϵ0)
ϵ3

.

Hence, again using the Chernoff-Hoeffding bound, the probability that the number of
augmentation edges demoted in a single round is greater than 2 log2 n is at most n−2 for
n sufficiently large such that 2 log2 n > 2eϕ·(k−1)·(1+2ϵ0)

ϵ3
. Thus, for β(n) = 2 + 4 log2 n =

θ(log n) and γ(n) = n−2, the boundedness hypothesis is satisfied.

42

Next, we observe that by the definition of the differential equations, the trend hypothesis
holds for λ1(n) = O(1/n).
Finally, for the Lipschitz hypothesis, we observe that all of the right-hand sides of the dif-
ferential equations are rational functions. Moreover, by the boundary definitions of region
D, the denominators in each of the terms of the differential equations are bounded from
below by strictly positive constants, and the numerators are bounded from both above and
below. Hence, each of the right-hand sides of the differential equations are bounded, and
therefore, the functions y0(t), y1(t), . . . , yk−1(t), a1(t), a2(t), . . . , ak(t), p1(t), p2(t), . . . , pk(t)
are Lipschitz continuous on D, as desired.
Because all three of the hypotheses are met, Wormald’s differential equation method ap-
plies. The system of differential equations thus has a unique solution in D that goes
through the initial point (0, 1, 0, 0, . . . 0) and extends arbitrarily close to the boundary of
D. We will denote the functions making up this solution by y⋆

i (s) for 0 ≤ i ≤ k − 1, a⋆
i (s)

for 1 ≤ i ≤ k, and p⋆
i (s) for 1 ≤ i ≤ k.

Moreover, for λ(n) = θ(n−1/4), with probability

1 − O

(
nγ(n) + β(n)

γ(n) exp
(

−nλ(n)3

β(n)3

))
= 1 − O

(
n · n−2 + log n

n−1/4 exp
(

−n(n−1/4)3

(log n)3

))

= 1 − O

(
1
n

+ n1/4 log n exp
(

− n1/4

(log n)3

))
,

and therefore a.a.s.,

Yi(t) = ny⋆
i (t/n) + O(n3/4) for all 0 ≤ i ≤ k − 1

Ai(t) = na⋆
i (t/n) + O(n3/4) for all 1 ≤ i ≤ k

Pi(t) = np⋆
i (t/n) + O(n3/4) for all 1 ≤ i ≤ k.

6.7.4 Boundaries and singularities
To determine the running time of the algorithm, we are interested in the time at which the
solution equations get arbitrarily close to the boundary given by the inequality ∑k−1

j=0 yj >
ϵ1. To this purpose, we first need to establish that the solutions do not hit another border
of region D first.
Naturally, as we are only interested in a positive number of rounds, the boundary −ϵ0 < s
does not pose an issue. Furthermore, because our algorithm is by its design at least as
efficient as running the perfect matching algorithm k times, by Lemma 6.6, the solution
functions will hit the desired boundary before hitting the boundary given by s < 2k. For
the boundaries of D given by the inequalities −ϵ0 < yi < 1 + ϵ0 for 0 ≤ i ≤ k − 1,
−ϵ0 < ai < 1/2 + ϵ0 for 1 ≤ i ≤ k, and −ϵ0 < pi < 1/2 + ϵ0 for 1 ≤ i ≤ k it follows
that they are not hit before the desired boundary by the definitions of the corresponding
variables.

43

This leaves the two boundaries given by ∑k−2
i=0 yi > ϵ2 and ∑k−1

i=0 (yi − ai − pi) > ϵ3. These
two boundaries are included in the definition of D to avoid singularities in the differential
equations. We will show that by choosing appropriate values for ϵ2 and ϵ3 relative to ϵ1,
we can ensure that these boundaries are not hit. We first observe that ϵ2, ϵ3 < ϵ1 must
hold, as otherwise the desired boundary is redundant.
Assume that 2ϵ3 < ϵ0. Suppose that ∑k−1

i=0 (yi(s) − ai(s) − pi(s)) < 2ϵ3 and ∑k−1
i=0 yi(s) > ϵ1

for all s > 0 in D. It then follows that ∑k−1
i=0 (ai(s) + pi(s)) > ϵ1 − 2ϵ3. However, we note

that if we additionally assume that ∑k−2
i=0 yi(s) > ϵ2, it follows that

lim(∑k−1
i=0 (yi(s)−ai(s)−pi(s))

)
↓ 0

(
k−1∑
i=0

(a′
i(s) + p′

i(s))
)

≤ c + lim(∑k−1
i=0 (yi(s)−ai(s)−pi(s))

)
↓ 0

(
− ϕ ·∑k−1

i=0 (ai(s) + pi(s))∑k−1
i=0 (yi(s) − ai(s) − pi(s))

)
,

where c is a constant dependent on ϵ1 and ϵ2. Then, for ϕ > 0,

lim(∑k−1
i=0 (yi(s)−ai(s)−pi(s))

)
↓ 0

(
k−1∑
i=0

(a′
i(s) + p′

i(s))
)

= −∞.

Thus, for ϵ3 sufficiently small, ∑k−1
i=0 (ai(s)+pi(s)) > ϵ1−2ϵ3 cannot hold. Hence, the desired

boundary must be hit before the boundary given by ∑k−1
i=0 (yi(s) − ai(s) − pi(s)) > ϵ3.

Next we consider the boundary given by ∑k−2
i=0 yi(s) > ϵ2. Assume that ∑k−1

i=0 yi(s) > ϵ1
and ∑k−1

i=0 (yi(s) − ai(s) − pi(s)) > ϵ3 hold. Let c > 0 be a constant. We note that by the
design of the algorithm, ∑k−2

i=0 yi(s) is strictly decreasing. Thus, because ∑k−2
i=0 yi(0) = 1,

and as by the design of the algorithm ∑k−2
i=0 yi(s) tends to 0, there exists a unique time

ŝ > 0 such that ∑k−2
i=0 yi(ŝ) = cϵ1. Then, because 0 ≤ yk−1(s) ≤ 1 and cϵ1 ≤ ∑k−2

i=0 yi ≤ 1,
the maximum ratio r̂ = max

0≤s≤ŝ

yk−1(s)∑k−2
i=0 yi(s)

is bounded and well-defined. Let ϵ2 = cϵ1
2r̂

.

We then consider the derivative of (yk−1(s))/(∑k−2
i=0 yi(s)) for s > ŝ. By the quotient

rule,
d

ds

yk−1(s)∑k−2
i=0 yi(s)

=
y′

k−1(s) ·
(∑k−2

i=0 yi(s)
)

+ yk−1(s) ·
(∑k−2

i=0 y′
i(s)

)
(∑k−2

i=0 yi(s)
)2 .

We observe that for c sufficiently small, y′
k−1(s) < 0 for s > ŝ. But then, as also ∑k−2

i=0 yi(s)
is strictly decreasing, it follows that

d

ds

yk−1(s)∑k−2
i=0 yi(s)

< 0,

and hence (yk−1(s))/(∑k−2
i=0 yi(s)) ≤ r̂ for all s ≥ 0 in D. Therefore, our choice of ϵ2 suffices

to ensure that the desired boundary is hit.

44

Finally, the case that the solution approaches both of the boundaries defined by ∑k−1
i=0 (yi −

ai − pi) > ϵ3 and ∑k−2
i=0 yi > ϵ2 simultaneously before approaching the desired boundary

follows from combining the arguments used for the two boundaries individually.
Then, by setting ϵ1 ≤ 10−14

2k2 , and setting the other constants ϵ2 and ϵ3 accordingly, the
solutions extend to the point where ∑k−1

i=0 yi(s) = 2ϵ1. Then, by the Clean-up Lemma
(Lemma 6.2), we obtain the following result.
Theorem 6.7. For each k ≥ 2, τFk

≤ β + 10−5 where β is derived from a system of
differential equations.

6.8 Numerical results
Due to the complexity of the system of differential equations, we do not have analytical
solutions. Instead, we use Maple to obtain numerical solutions. Specifically, we call a
seventh-eighth order continuous Runge-Kutta method, which allows for both fast compu-
tation and error control. See Appendix D for the code used.

6.8.1 Parameter tuning
The algorithm as described in Section 6.6.2 contains constants for which the exact values
were left open. It concerns the parameters ρi for all 0 ≤ i ≤ k − 1, σA, σB, and ϕ. We first
experimentally tune these parameters.
Interestingly, we consistently obtain the best results with ρi = 0 for 0 ≤ i ≤ k − 1 and
σA = σB = 0. This is not entirely unexpected. The parameters ρi define the probability of
choosing to augment along an augmentation edge when there is also the option of directly
adding an edge between two unsaturated vertices. An augmentation along an augmentation
edge is inherently less efficient than directly adding an edge in such a fashion. In some cases
it may be more effective to augment to create new augmentation edges, but clearly this
potential benefit is outweighed by the overall cost in efficiency. For σA and σB, the setting
of σA = σB = 0 most closely mimics the behaviour of choosing vt u.a.r. from all degree-
(k − 1) vertices incident with an augmentation edge in events 5 and 6.2, which was the
natural choice we avoided to not introduce a singularity in the differential equations.
Thus, only demotion factor ϕ remains to be optimised. Due to its important role in
regulating the number of augmentation edges near the end of the process, this parameter
has a strong effect on the final solution. By extensive experimentation, we determined the
optimal first two significant digits for all 2 ≤ k ≤ 20. We then use a linear regression fit on
the relation between k and 1/ϕ to determine likely good values for ϕ for larger k. Table 6.1
includes the values for ϕ we use to generate the bounds for τFk

in Section 6.8.2.
The trajectories of the variables as shown in Figure 6.4 suggest further explanations for the
limited effect of some of the discussed parameters. Namely, they show that there are only
few augmentation edges of degree less than k − 1. As such, the parameters and features

45

k ϕ k ϕ k ϕ
2 0.70 10 0.39 18 0.27
3 0.64 11 0.37 19 0.25
4 0.59 12 0.35 20 0.24
5 0.55 13 0.34 50 0.12
6 0.51 14 0.32 100 0.06
7 0.48 15 0.30 250 0.03
8 0.45 16 0.29 500 0.01
9 0.42 17 0.28

Table 6.1: Values used for ϕ.

of the algorithm controlling these lower-degree augmentation edges are limited in effect as
well.

Figure 6.4: Trajectories of the variables for k = 5.

6.8.2 Results for small k

In Table 6.2 we give an overview of the performance of the upper bound given by our
strategy using the values for the parameters as determined in Section 6.8.1 as compared to
the other known upper bounds for τFk

. We first observe that for k ≥ 3, the bound given
by our Theorem 6.7 outperforms all other known bounds we know of, including running
the perfect matching algorithm by Gao, MacRury and Prałat [11] k times. Interestingly
however, for k = 2, the bound for τHAM by Frieze and Sorkin [8] is significantly better.
We note that their algorithm (and the algorithm it is based upon by Gao, MacRury and
Prałat [12]) allows for each edge in Ht to be an augmentation edge. Moreover, when
a priming edge is added, all incident augmentation edges are considered primed. These
notions are not easily analysable when extended to larger k as discussed in Section 6.5.

46

k Theorem 6.7 Lemma 6.6 [8, Theorem 1.1] [3, Theorem 1.3]
2 2.01382 2.41049 1.85 3.0
3 2.70352 3.61573 - 4.5
4 3.37106 4.82097 - 6.0
5 4.02486 6.02621 - 7.5
6 4.66894 7.23145 - 9.0
7 5.30562 8.43669 - 10.5
8 5.93640 9.64193 - 12.0
9 6.56228 10.84717 - 13.5

10 7.18403 12.05241 - 15.0
11 7.80218 13.25765 - 16.5
12 8.41720 14.46289 - 18.0
13 9.02943 15.66813 - 19.5
14 9.63914 16.87337 - 21.0
15 10.24659 18.07861 - 22.5
16 10.85195 19.28385 - 24.0
17 11.45542 20.48909 - 25.5
18 12.05714 21.69433 - 27.0
19 12.65721 22.89957 - 28.5
20 13.25576 24.10481 - 30.0
50 30.78334 60.26201 - 75.0

100 59.14394 120.52401 - 150.0
250 142.58268 301.31001 - 375.0
500 279.07176 602.62001 - 750.0

Table 6.2: Comparison of upper bounds on τFk

6.9 Possible improvements
We are confident that our bounds are not tight. Additionally, we do not think that the
strategy and analysis used can be tweaked sufficiently to obtain tight bounds for τFk

.
Nevertheless, there are a number of potential improvements to our algorithm that we
discuss here.
It makes intuitive sense to prioritise increasing the degrees of vertices of low degree over
increasing the degree of vertices that are already almost saturated. One could consider
a phased approach where it each phase ensures that the minimum degree of the graph is
raised, similar to the k-min process. Alternatively, one could increase the probability of
choosing a low-degree vertex for vt by using a weighted distribution over the unsaturated
vertices where the weight is inversely proportional to the degree of the vertex. Both of these
suggested approaches would be difficult to analyse with Wormald’s differential equation
method.

47

As found in Section 6.8.1, most parameters in our algorithm are simply set to 0 for the
best results. Potentially, the features of the algorithm these parameters control only have a
positive impact during a small portion of the process, which is outweighed by the negative
impact over the remainder of the process. Should this be the case, better results could
potentially be obtained by making the parameters time-dependent. That is, the parameters
would be functions of time s rather than constants. This would allow for much finer control
of when to apply their effects. This could be especially relevant for the demotion factor,
as demotion of augmentation edges is only required near the end of the process.
The main limitations of our method are the requirements that augmentation edges are
vertex-disjoint and that each priming edge is associated with only one augmentation edge.
While it is straightforward to design strategies that avoid these limitations, their analysis
proves difficult, as discussed in Section 6.5.

6.10 Large k

As previously noted, Ben-Eliezer, Gishboliner, Hefetz and Krivelevich [3] showed that
τFk

≤ k/2 + o(k) for k = ω(log(n)). We note that as a k-factor on n vertices contains
kn/2 edges, and as a single edge is added in each round of the semi-random graph process,
this bound is asymptotically tight. It is natural to consider whether the same asymptotic
behaviour occurs for k → ∞ independent of n. That is, whether τFk

= k/2 + o(k). Such
behaviour seems to be suggested by the results of Theorem 6.7, as included in Table 6.2.
The following result confirms this.
Lemma 6.8. τFk

= k
2 + o(k).

Proof. Consider the Erdős-Rényi random graph G(n, p) on n vertices where each potential
edge is included with probability p = kn/

(
2 ·
(

n
2

))
. By a result of Riordan and Selby [17,

Theorem 2.1], using b = 1/k3, and as k < n, it follows that a.a.s.

∆(G(n, p)) ≤ pn + 1
k3

√
np(1 − p)

= kn

n − 1 + 1
k3

√√√√ kn

n − 1

(
1 − k

n − 1

)

= k + O
(√

k

k3

)
.

48

Similarly, a.a.s.

δ(G(n, p)) ≥ 1 −
(

(1 − p)n + 1
k3

√
np(1 − p)

)

= kn

n − 1 − 1
k3

√√√√ kn

n − 1

(
1 − k

n − 1

)

= k − O
(√

k

k3

)
.

Let G(n, m) be the Erdős-Rényi random graph where m edges are chosen uniformly at
random. Then, for m =

(
n
2

)
p = kn/2, a.a.s. it also holds that ∆(G(n, m)) ≤ k +O(

√
k/k3)

and δ(G(n, m)) ≥ k − O(
√

k/k3).
Moreover, by [4, Proposition 1.1], we can obtain a graph Gt in the semi-random graph
process in (1+o(1))·m rounds such that there exists a spanning subgraph Ht ⊆ Gt such that
Ht ∼ G(n, m). Let Ht be this subgraph for m = kn/2. Thus, a.a.s. ∆(Ht) ≤ k+O(

√
k/k3)

and δ(Ht) ≥ k − O(
√

k/k3).
Then let subgraph H ′

t be obtained from Ht by removing edges incident with vertices of
degree greater than k in Ht until each vertex has degree at most k. We note that a.a.s.

Λk(H ′
t) ≤ 2 · n · O

(√
k

k3

)
= O

(
n ·

√
k

k3

)
.

Hence, by Lemma 6.2, for k sufficiently large, there exists a strategy to construct a k-factor
from H ′

t a.a.s. in 10−5 · n rounds. There thus exists a strategy to construct a k-factor a.a.s.
in (1 + o(1)) · m + 10−5 · n = kn/2 + o(kn) rounds. Therefore, τFk

≤ k/2 + o(k). Note that
as a k-factor contains exactly kn/2 edges, this is tight, as desired.

49

References

[1] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations.
In Proceedings of the twenty-sixth annual ACM symposium on theory of computing,
pages 593–602, 1994.

[2] Natalie C. Behague, Trent G. Marbach, Paweł Prałat, and Andrzej Rucinski. Subgraph
Games in the Semi-Random Graph Process and Its Generalization to Hypergraphs.
arXiv preprint arXiv:2105.07034, 2021.

[3] Omri Ben-Eliezer, Lior Gishboliner, Dan Hefetz, and Michael Krivelevich. Very fast
construction of bounded-degree spanning graphs via the semi-random graph process.
Random Structures & Algorithms, 57(4):892–919, 2020.

[4] Omri Ben-Eliezer, Dan Hefetz, Gal Kronenberg, Olaf Parczyk, Clara Shikhelman,
and Miloš Stojaković. Semi-random graph process. Random Structures & Algorithms,
56(3):648–675, 5 2020.

[5] Tom Bohman and Alan Frieze. Avoiding a giant component. Random Structures &
Algorithms, 19(1):75–85, 2001.

[6] Devdatt P. Dubhashi and Alessandro Panconesi. Concentration of Measure for the
Analysis of Randomized Algorithms. Cambridge University Press, 6 2009.

[7] Paul Erdős and Alfréd Rényi. On random graphs i. Publicationes Mathematicae
Debrecen, 6:290–297, 1959.

[8] Alan Frieze and Gregory B. Sorkin. Hamilton cycles in a semi-random graph model,
2022.

[9] Tibor Gallai. Elementare Relationen bezuglich der Glieder und trennenden Punkte
von Graphen. A Magyar Tudományos Akadémia Matematikai Kutató Intézetének
közleményei, 9:235–236, 1964.

[10] Pu Gao, Bogumił Kamiński, Calum MacRury, and Paweł Prałat. Hamilton cycles in
the semi-random graph process. European Journal of Combinatorics, 99:103423, 2022.

[11] Pu Gao, Calum MacRury, and Paweł Prałat. Perfect Matchings in the Semi-random
Graph Process. arXiv preprint arXiv:2105.13455, 2021.

50

[12] Pu Gao, Calum MacRury, and Paweł Prałat. A Fully Adaptive Strategy for Hamilto-
nian Cycles in the Semi-Random Graph Process, 2022.

[13] Frank Harary and Geert Prins. The block-cutpoint-tree of a graph. Publicationes
Mathematicae Debrecen, 13:103–107, 1966.

[14] Mihyun Kang, Youngmee Koh, Sangwook Ree, and Tomasz Łuczak. The connec-
tivity threshold for the min-degree random graph process. Random Structures and
Algorithms, 29(1):105–120, 8 2006.

[15] Dénes Kőnig. Theorie der Endlichen und Unendlichen Graphen: Kombinatorische
Topologie der Streckenkomplexe. Akademische Verlagsgesellschaft, Leipzig, 1936.

[16] Michael Mitzenmacher. The power of two choices in randomized load balancing. IEEE
Transactions on Parallel and Distributed Systems, 12(10):1094–1104, 2001.

[17] Oliver Riordan and Alex Selby. The maximum degree of a random graph. Combina-
torics, Probability and Computing, 9(6):549–572, 2000.

[18] Nicholas C. Wormald. Differential Equations for Random Processes and Random
Graphs. The Annals of Applied Probability, 5(4):1217–1235, 1995.

[19] Nicholas C. Wormald. The differential equation method for random graph processes
and greedy algorithms. Lectures on approximation and randomized algorithms, 73:73–
155, 1999.

51

APPENDICES

52

Appendix A

Wormald’s differential equation
method theorem

Theorem A.1 (Wormald’s differential equation method, [19, Theorem 5.1]). Let Ht denote
the set of all possible histories Ht. Then, for all 1 ≤ l ≤ a where a is fixed, let yl : Ht → R
and fl : Ra+1 be functions such that for some constant C0 and all 1 ≤ l ≤ a, |yl(Ht)| < C0n
for each Ht ∈ Ht for all n. Let Yl(t) for 1 ≤ l ≤ a denote the random counterpart of yl,
that is, for a single history Ht. Additionally, let D ⊆ Ra+1 be a bounded connected open
set containing the closure of the possible initial points

{(0, z1, z2, . . . , za) |P (Yl(0) = zln, 1 ≤ l ≤ a) > 0 for some n ≥ 1}.

Let stopping time TD be the minimum time t such that (t/n, Y1(t)/n, Y2(t)/n, . . . , Ya(t)/n) ̸∈
D. Moreover, suppose that the following three hypotheses are satisfied.

(i) (Boundedness hypothesis.) For some functions β(n) ≥ 1 and γ(n),

P
(

max
1≤l≤a

|Yl(t + 1) − Yl(t)| ≤ β(n) | Ht

)
≥ 1 − γ(n)

for all t < TD.
(ii) (Trend hypothesis.) For some function λ1(n) = o(1), and for all 1 ≤ l ≤ a,

|E[Yl(t + 1) − Yl(t) | Ht] − fl(t/n, Y1(t)/n, Y2(t)/n, . . . , Ya(t)/n| ≤ λ(n)

for all t < TD.
(iii) (Lipschitz hypothesis.) Each function fl is continuous and satisfies a Lipschitz con-

dition on the set
D ∩ {(t, z1, z2, . . . , za) | t ≥ 0}.

Then, the following two statements are true.

53

(i) For an initial point (0, ẑ1, ẑ2, . . . , ẑa) ∈ D, the system of differential equations

dz1

dx
= f1(x, z1, z2, . . . , za)

dz2

dx
= f2(x, z1, z2, . . . , za)

...
dza

dx
= fa(x, z1, z2, . . . , za)

has a unique solution in D for zl : R → R for all 1 ≤ l ≤ a such that zl(0) = ẑl, and
which extends to points arbitrarily close to the boundary of D.

(ii) Let λ(n) = o(1) be a function such that λ(n) > λ1(n) + C0nγ. For C a suffi-
ciently large constant, it holds uniformly for 0 ≤ t ≤ σ(n)n that with probability
1 − O(nγ(n) + β(n)

λ(n) exp (−nλ(n)3

β(n)3),

Yl(t) = nzl(t/n) + O(λ(n)n)

for all 1 ≤ l ≤ a, where zl(x) is the solution in (i) with initial point
(0, Y1(0)/n, Y2(0)/n, . . . , Ya(0)/n), and function σ(n) is the supremum of those points
x to which the solution can be extended before reaching within ℓ∞-distance Cλ(n) of
the boundary of D.

54

Appendix B

Expected change in variables for the
k-factor algorithm

We will use Y ′
i as shorthand notation for E [Yi(t + 1) − Yi(t) | Ht]. Moreover, in these tables,

we will use Yi to denote Yi(t), and analogously for Ai and Pi.

55

Event 1

Y ′
0 − Y0−A0−P0

n
−

∑k−2
j=0

(
Yj −Aj −Pj

)
n

· Y0∑k−2
j=0

Yj

+ O(1/n)

Y ′
i for 1 ≤ i ≤ k − 2 − Yi−Ai−Pi

n
−

∑k−2
j=0

(
Yj −Aj −Pj

)
n

· Yi∑k−2
j=0

Yj

+
Yi−1−Ai−1−Pi−1

n
+

∑k−2
j=0

(
Yj −Aj −Pj

)
n

·
Yi−1∑k−2
j=0

Yj

+ O(1/n)

Y ′
k−1

Yk−2−Ak−2−Pk−2
n

+

∑k−2
j=0

(
Yj −Aj −Pj

)
n

·
Yk−2∑k−2
j=0

Yj

+ O(1/n)

A′
i for 1 ≤ i ≤ k − 2 −

∑k−2
j=0

(
Yj −Aj −Pj

)
n

· Ai∑k−2
j=0

Yj

+

∑k−2
j=0

(
Yj −Aj −Pj

)
n

·
Ai−1∑k−2
j=0

Yj

+ O(1/n)

A′
k−1

∑k−2
j=0

(
Yj −Aj −Pj

)
n

·
Ak−2∑k−2

j=0
Yj

+ O(1/n)

A′
k

0

P ′
i for 1 ≤ i ≤ k − 2 −

∑k−2
j=0

(
Yj −Aj −Pj

)
n

· Pi∑k−2
j=0

Yj

+

∑k−2
j=0

(
Yj −Aj −Pj

)
n

·
Pi−1∑k−2
j=0

Yj

+ O(1/n)

P ′
k−1

∑k−2
j=0

(
Yj −Aj −Pj

)
n

·
Pk−2∑k−2

j=0
Yj

+ O(1/n)

P ′
k

0

Legend ■ Contribution to expected change due to increase in degree of vertex ut
■ Contribution to expected change due to increase in degree of vertex vt

56

Event 2

Y ′
0 − A0

n
−

∑k−2
j=0

Aj

n
· Y0∑k−2

j=0
Yj

+ O(1/n)

Y ′
i for 1 ≤ i ≤ k − 2 − Ai

n
−

∑k−2
j=0

Aj

n
· Yi∑k−2

j=0
Yj

+
Ai−1

n
+

∑k−2
j=0

Aj

n
·

Yi−1∑k−2
j=0

Yj

+ O(1/n)

Y ′
k−1

Ak−2
n

+

∑k−2
j=0

Aj

n
·

Yk−2∑k−2
j=0

Yj

+ O(1/n)

A′
i for 1 ≤ i ≤ k − 2 − Ai

n
−

∑k−2
j=0

Aj

n
· Ai∑k−2

j=0
Yj

+
Ai−1

n
+

∑k−2
j=0

Aj

n
·

Ai−1∑k−2
j=0

Yj

+ O(1/n)

A′
k−1

Ak−2
n

+

∑k−2
j=0

Aj

n
·

Ak−2∑k−2
j=0

Yj

+ O(1/n)

A′
k

0

P ′
i for 1 ≤ i ≤ k − 2 −

∑k−2
j=0

Aj

n
· Pi∑k−2

j=0
Yj

+

∑k−2
j=0

Aj

n
·

Pi−1∑k−2
j=0

Yj

+ O(1/n)

P ′
k−1

∑k−2
j=0

Aj

n
·

Pk−2∑k−2
j=0

Yj

+ O(1/n)

P ′
k

0

Legend ■ Contribution to expected change due to increase in degree of vertex ut
■ Contribution to expected change due to increase in degree of vertex vt

57

Event 3.1

Y ′
0 −

∑k−2
j=1

(
ρj ·Pj

)
n

· Y0∑k−1
j=0

Yj

−

∑k−2
j=1

(
ρj ·Pj

)
n

· Y0−A0−P0∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

Y ′
i for 1 ≤ i ≤ k − 2 −

∑k−2
j=1

(
ρj ·Pj

)
n

· Yi∑k−1
j=0

Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yi−1∑k−1
j=0

Yj

−

∑k−2
j=1

(
ρj ·Pj

)
n

· Yi−Ai−Pi∑k−1
j=0

(
Yj −Aj −Pj

) +

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yi−1−Ai−1−Pi−1∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

Y ′
k−1 −

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yk−1∑k−1
j=0

Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yk−2∑k−1
j=0

Yj

−

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yk−1−Ak−1−Pk−1∑k−1

j=0

(
Yj −Aj −Pj

) +

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yk−2−Ak−2−Pk−2∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
i for 1 ≤ i ≤ k − 2 −

∑k−2
j=1

(
ρj ·Pj

)
n

· Ai∑k−1
j=0

Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Ai−1∑k−1
j=0

Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yi−1−Ai−1−Pi−1∑k−1

j=0

(
Yj −Aj −Pj

) + ρi·Pi
n

·
Yk−1−Ak−1−Pk−1∑k−1

j=0
Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·

(
1 +

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

)
· Pi∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
k−1 −

∑k−2
j=1

(
ρj ·Pj

)
n

·
Ak−1∑k−1

j=0
Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Ak−2∑k−1

j=0
Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yk−2−Ak−2−Pk−2∑k−1

j=0

(
Yj −Aj −Pj

)
+

∑k−2
j=1

(
ρj ·Pj

)
n

·

(
1 +

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

)
·

Pk−1∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
k

∑k−2
j=1

(
ρj ·Pj

)
n

·
Ak−1∑k−1

j=0
Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Yk−1−Ak−1−Pk−1∑k−1

j=0

(
Yj −Aj −Pj

) +

∑k−2
j=1

(
ρj ·Pj

)
n

·

(
1 +

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

)
· Pk∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
i for 1 ≤ i ≤ k − 2 −

∑k−2
j=1

(
ρj ·Pj

)
n

· Pi∑k−1
j=0

Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Pi−1∑k−1
j=0

Yj

− ρi·Pi
n

−

∑k−2
j=1

(
ρj ·Pj

)
n

·

(
1 +

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

)
· Pi∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
k−1 −

∑k−2
j=1

(
ρj ·Pj

)
n

·
Pk−1∑k−1

j=0
Yj

+

∑k−2
j=1

(
ρj ·Pj

)
n

·
Pk−2∑k−1

j=0
Yj

−

∑k−2
j=1

(
ρj ·Pj

)
n

·

(
1 +

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

)
·

Pk−1∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
k

∑k−2
j=1

(
ρj ·Pj

)
n

·
Pk−1∑k−1

j=0
Yj

−

∑k−2
j=1

(
ρj ·Pj

)
n

·

(
1 +

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

)
· Pk∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

Legend ■ Contribution to expected change due to increase in degree of the priming vertex
■ Contribution to expected change due to increase in degree of vertex vt
■ Contribution to expected change due to creation of augmentation edge by augmentation
■ Contribution to expected change due to creation of additional augmentation edge if vt ∈ Yk−1(t) \ (Ak−1(t) ∪ Pk−1(t))
■ Contribution to expected change due to destruction of priming edges

58

Event 3.2

Y ′
0 −

(∑k−2
j=1

(
(1 − ρj) ·

Pj
n

))
· Y0∑k−2

j=0
Yj

+ O(1/n)

Y ′
i for 1 ≤ i ≤ k − 2 −(1 − ρi) · Pi

n
+ (1 − ρi−1) ·

Pi−1
n

−
(∑k−2

j=1

(
(1 − ρj) ·

Pj
n

))
· Yi∑k−2

j=0
Yj

+
(∑k−2

j=1

(
(1 − ρj) ·

Pj
n

))
·

Yi−1∑k−2
j=0

Yj

+ O(1/n)

Y ′
k−1 (1 − ρk−2) ·

Pk−2
n

+
(∑k−2

j=1

(
(1 − ρj) ·

Pj
n

))
·

Yk−2∑k−2
j=0

Yj

+ O(1/n)

A′
i for 1 ≤ i ≤ k − 2 −

(∑k−2
j=1

(
(1 − ρj) ·

Pj
n

))
· Ai∑k−2

j=0
Yj

+
(∑k−2

j=1

(
(1 − ρj) ·

Pj
n

))
·

Ai−1∑k−2
j=0

Yj

+ O(1/n)

A′
k−1

(∑k−2
j=1

(
(1 − ρj) ·

Pj
n

))
·

Ak−2∑k−2
j=0

Yj

+ O(1/n)

A′
k

0

P ′
i for 1 ≤ i ≤ k − 2 −(1 − ρi) · Pi

n
+ (1 − ρi−1) ·

Pi−1
n

−
(∑k−2

j=1

(
(1 − ρj) ·

Pj
n

))
· Pi∑k−2

j=0
Yj

+
(∑k−2

j=1

(
(1 − ρj) ·

Pj
n

))
·

Pi−1∑k−2
j=0

Yj

+ O(1/n)

P ′
k−1 (1 − ρk−2) ·

Pk−2
n

+
(∑k−2

j=1

(
(1 − ρj) ·

Pj
n

))
·

Pk−2∑k−2
j=0

Yj

+ O(1/n)

P ′
k

0

Legend ■ Contribution to expected change due to increase in degree of vertex ut
■ Contribution to expected change due to increase in degree of vertex vt

59

Event 4

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 −2 ·

Yk−1−Ak−1−Pk−1
n

A′
i for 1 ≤ i ≤ k − 2

Yk−1−Ak−1−Pk−1
n

· 2∑k−1
j=0

(
Yj −Aj −Pj

) · Pi

A′
k−1

Yk−1−Ak−1−Pk−1
n

· 2∑k−1
j=0

(
Yj −Aj −Pj

) · Pk−1

A′
k

Yk−1−Ak−1−Pk−1
n

+
Yk−1−Ak−1−Pk−1

n
· 2∑k−1

j=0

(
Yj −Aj −Pj

) · Pk

P ′
i for 1 ≤ i ≤ k − 2 −

Yk−1−Ak−1−Pk−1
n

· 2∑k−1
j=0

(
Yj −Aj −Pj

) · Pi

P ′
k−1 −

Yk−1−Ak−1−Pk−1
n

· 2∑k−1
j=0

(
Yj −Aj −Pj

) · Pk−1

P ′
k

−
Yk−1−Ak−1−Pk−1

n
· 2∑k−1

j=0

(
Yj −Aj −Pj

) · Pk

Legend ■ Contribution to expected change due to creation of new degree-k augmentation edge
■ Contribution to expected change due to destruction of priming edges

Event 5.1 and Event 5.2

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 −

Ak−1
n

−
Ak−1

n

A′
i for 1 ≤ i ≤ k − 2 0

A′
k−1 −

Ak−1
n

−
Ak−1

n
· σA + O(1/n)

A′
k

Ak−1
n

+
Ak−1

n
· σA + O(1/n)

P ′
i for 1 ≤ i ≤ k − 2 0

P ′
k−1 −

Ak−1
n

· (1 − σA) + O(1/n)

P ′
k

Ak−1
n

· (1 − σA) + O(1/n)

Legend ■ Contribution to expected change due to increase in degree of vertex ut
■ Contribution to expected change due to increase in degree of vertex vt

60

Event 6.1

Y ′
0 −ρk−1 ·

Pk−1
n

· Y0∑k−1
j=0

Yj

−ρk−1 ·
Pk−1

n
· Y0−A0−P0∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

Y ′
i for 1 ≤ i ≤ k − 2 −ρk−1 ·

Pk−1
n

· Yi∑k−1
j=0

Yj

−ρk−1 ·
Pk−1

n
· Yi−Ai−Pi∑k−1

j=0

(
Yj −Aj −Pj

) +ρk−1 ·
Pk−1

n
·

Yi−1∑k−1
j=0

Yj

+ρk−1 ·
Pk−1

n
·

Yi−1−Ai−1−Pi−1∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

Y ′
k−1 −ρk−1 ·

Pk−1
n

·
Yk−1∑k−1
j=0

Yj

−ρk−1 ·
Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

(
Yj −Aj −Pj

) +ρk−1 ·
Pk−1

n
·

Yk−2∑k−1
j=0

Yj

+ρk−1 ·
Pk−1

n
·

Yk−2−Ak−2−Pk−2∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
i for 1 ≤ i ≤ k − 2 ρk−1 ·

Pk−1
n

·
Yi−1−Ai−1−Pi−1∑k−1

j=0

(
Yj −Aj −Pj

) −ρk−1 ·
Pk−1

n
· Ai∑k−1

j=0
Yj

+ ρk−1 ·
Pk−1

n
·

Ai−1∑k−1
j=0

Yj

+ρk−1 ·
Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

· Pi∑k−1
j=0

(
Yj −Aj −Pj

)
+ρk−1 ·

Pk−1
n

· Pi∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
k−1 ρk−1 ·

Pk−1
n

·
Yk−2−Ak−2−Pk−2∑k−1

j=0

(
Yj −Aj −Pj

) −ρk−1 ·
Pk−1

n
·

Ak−1∑k−1
j=0

Yj

+ ρk−1 ·
Pk−1

n
·

Ak−2∑k−1
j=0

Yj

+
ρk−1·Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

+ρk−1 ·
Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

·
Pk−1∑k−1

j=0

(
Yj −Aj −Pj

) +ρk−1 ·
Pk−1

n
·

Pk−1∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
k

ρk−1 ·
Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

(
Yj −Aj −Pj

) +ρk−1 ·
Pk−1

n
·

Ak−1∑k−1
j=0

Yj

+ρk−1 ·
Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

· Pk∑k−1
j=0

(
Yj −Aj −Pj

)
+ρk−1 ·

Pk−1
n

· Pk∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
i for 1 ≤ i ≤ k − 2 −ρk−1 ·

Pk−1
n

· Pi∑k−1
j=0

Yj

+ ρk−1 ·
Pk−1

n
·

Pi−1∑k−1
j=0

Yj

−ρk−1 ·
Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

· Pi∑k−1
j=0

(
Yj −Aj −Pj

) −ρk−1 ·
Pk−1

n
· Pi∑k−1

j=0

(
Yj −Aj −Pj

)
+ O(1/n)

P ′
k−1 −ρk−1 ·

Pk−1
n

−ρk−1 ·
Pk−1

n
·

Pk−1∑k−1
j=0

Yj

+ ρk−1 ·
Pk−1

n
·

Pk−2∑k−1
j=0

Yj

−ρk−1 ·
Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

·
Pk−1∑k−1

j=0

(
Yj −Aj −Pj

)
−ρk−1 ·

Pk−1
n

·
Pk−1∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
k

ρk−1 ·
Pk−1

n
·

Pk−1∑k−1
j=0

Yj

−ρk−1 ·
Pk−1

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

Yj

· Pk∑k−1
j=0

(
Yj −Aj −Pj

) −ρk−1 ·
Pk−1

n
· Pk∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

Legend ■ Contribution to expected change due to increase in degree of the priming vertex
■ Contribution to expected change due to increase in degree of vertex vt
■ Contribution to expected change due to creation of augmentation edge by augmentation
■ Contribution to expected change due to creation of additional augmentation edge if vt ∈ Yk−1(t) \ (Ak−1(t) ∪ Pk−1(t))
■ Contribution to expected change due to destruction of priming edges

61

Event 6.2.1 and Event 6.2.2

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 −

Pk−1
n

· (1 − ρk−1) −
Pk−1

n
· (1 − ρk−1)

A′
i for 1 ≤ i ≤ k − 2 0

A′
k−1 −

Pk−1
n

· (1 − ρk−1) · σP + O(1/n)

A′
k

Pk−1
n

· (1 − ρk−1) · σP + O(1/n)

P ′
i for 1 ≤ i ≤ k − 2 0

P ′
k−1 −

Pk−1
n

· (1 − ρk−1) −
Pk−1

n
· (1 − ρk−1) · (1 − σP) + O(1/n)

P ′
k

Pk−1
n

· (1 − ρk−1) +
Pk−1

n
· (1 − ρk−1) · (1 − σP) + O(1/n)

Legend ■ Contribution to expected change due to increase in degree of vertex ut
■ Contribution to expected change due to increase in degree of vertex vt

Event 7

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 0

A′
i for 1 ≤ i ≤ k − 2 0

A′
k−1 0

A′
k

− 2·Ak
n

P ′
i for 1 ≤ i ≤ k − 2 0

P ′
k−1 0

P ′
k

2·Ak
n

Legend ■ Contribution to expected change due to priming of degree-k augmentation edge

Event 8.1

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 0

A′
i for 1 ≤ i ≤ k − 2 0

A′
k−1 0

A′
k

0

P ′
i for 1 ≤ i ≤ k − 2 0

P ′
k−1 0

P ′
k

0

62

Event 8.2

Y ′
0 − Pk

n
· Y0−A0−P0∑k−1

j=0

(
Yj −Aj −Pj

) − Pk
n

· Y0−A0−P0∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

Y ′
i for 1 ≤ i ≤ k − 2 − Pk

n
· Yi−Ai−Pi∑k−1

j=0

(
Yj −Aj −Pj

) − Pk
n

· Yi−Ai−Pi∑k−1
j=0

(
Yj −Aj −Pj

) + Pk
n

·
Yi−1−Ai−1−Pi−1∑k−1

j=0

(
Yj −Aj −Pj

) + Pk
n

·
Yi−1−Ai−1−Pi−1∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

Y ′
k−1 − Pk

n
·

Yk−1−Ak−1−Pk−1∑k−1
j=0

(
Yj −Aj −Pj

) − Pk
n

·
Yk−1−Ak−1−Pk−1∑k−1

j=0

(
Yj −Aj −Pj

) + Pk
n

·
Yk−2−Ak−2−Pk−2∑k−1

j=0

(
Yj −Aj −Pj

) + Pk
n

·
Yk−2−Ak−2−Pk−2∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
i for 1 ≤ i ≤ k − 2 Pk

n
· 2 ·

Yi−1−Ai−1−Pi−1∑k−1
j=0

(
Yj −Aj −Pj

) + Pk
n

· 2 · Pi∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
k−1

Pk
n

· 2 ·
Yk−2−Ak−2−Pk−2∑k−1

j=0

(
Yj −Aj −Pj

) + Pk
n

· 2 ·
Pk−1∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
k

Pk
n

· 2 ·
Yk−1−Ak−1−Pk−1∑k−1

j=0

(
Yj −Aj −Pj

) + Pk
n

· 2 · Pk∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
i for 1 ≤ i ≤ k − 2 − Pk

n
· 2 · Pi∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
k−1 − Pk

n
· 2 ·

Pk−1∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
k

− Pk
n

− Pk
n

· 2 · Pk∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

Legend ■ Contribution to expected change due to increase in degree of the priming vertex
■ Contribution to expected change due to increase in degree of vertex vt
■ Contribution to expected change due to creation of augmentation edge by augmentation
■ Contribution to expected change due to destruction of priming edges

63

Event 9

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 0

A′
i for 1 ≤ i ≤ k − 2 − Ai

n

A′
k−1 −

Ak−1
n

A′
k

0

P ′
i for 1 ≤ i ≤ k − 2 Ai

n

P ′
k−1

Ak−1
n

P ′
k

0

Legend ■ Contribution to expected change due to priming of degree-i augmentation edge for 1 ≤ i < k

Event 10

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 0

A′
i for 1 ≤ i ≤ k − 2 0

A′
k−1 0

A′
k

0

P ′
i for 1 ≤ i ≤ k − 2 0

P ′
k−1 0

P ′
k

0

Event 11

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 0

A′
i for 1 ≤ i ≤ k − 2 0

A′
k−1 0

A′
k

0

P ′
i for 1 ≤ i ≤ k − 2 0

P ′
k−1 0

P ′
k

0

64

Demotion event

Y ′
0 0

Y ′
i for 1 ≤ i ≤ k − 2 0

Y ′
k−1 0

A′
i for 1 ≤ i ≤ k − 2 −ϕ · Ai∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
k−1 −ϕ ·

Ak−1∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

A′
k

0

P ′
i for 1 ≤ i ≤ k − 2 −ϕ · Pi∑k−1

j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
k−1 −ϕ ·

Pk−1∑k−1
j=0

(
Yj −Aj −Pj

) + O(1/n)

P ′
k

0

Legend ■ Contribution to expected change due to demotion of augmentation edges

65

Appendix C

Differential equations for the k-factor algorithm

We use yi, ai, and pi to denote the functions yi(s), ai(s), and pi(s) respectively.

y′
0 = y0 + p0

−

(∑k−2
j=0 (yj − ρj · pj)

)
· y0∑k−2

j=0 yj

−

(∑k−1
j=1(ρj · pj)

)
· y0∑k−1

j=0 yj

−

((∑k−1
j=1(ρj · pj)

)
+ 2pk

)
· (y0 − a0 − p0)∑k−1

j=0(yj − aj − pj)

66

For all 1 ≤ i ≤ k − 2,

y′
i = − yi + ρi · pi + yi−1 − ρi−1 · pi−1

+

(∑k−1
j=1(ρj · pj)

)
· (−yi + yi−1)∑k−1

j=0 yj

+

(∑k−2
j=0(yj − ρj · pj)

)
· (−yi + yi−1)∑k−2

j=0 yj

+

((∑k−1
j=1(ρj · pj)

)
+ 2pk

)
· (−yi + ai + pi + yi−1 − ai−1 − pi−1)∑k−1

j=0 (yj − aj − pj)

y′
k−1 = yk−2 − ρk−2 · pk−2 − 2yk−1 + 2ρk−1 · pk−1

+

(∑k−1
j=1(ρj · pj)

)
· (−yk−1 + yk−2)∑k−1

j=0 yj

+

(∑k−2
j=0(yj − ρj · pj)

)
· yk−2∑k−2

j=0 yj

+

((∑k−1
j=1(ρj · pj)

)
+ 2pk

)
· (−yk−1 + ak−1 + pk−1 + yk−2 − ak−2 − pk−2)∑k−1

j=0 (yj − aj − pj)

67

For all 1 ≤ i ≤ k − 2,

a′
i = − 2ai + ai−1

+

(∑k−2
j=0(yj − ρj · pj)

)
· (−ai + ai−1)∑k−2

j=0 yj

+

(∑k−1
j=1(ρj · pj)

)
· (−ai + ai−1) + ρi · pi · (yk−1 − ak−1 − pk−1)∑k−1

j=0 yj

+

(∑k−1
j=1(ρj · pj)

)
· (yi−1 − ai−1 − pi−1 + pi) − (yk−1 − ak−1 − pk−1) · 2pi + (yi−1 − ai−1 − pi−1 + pi) · 2pk − ϕ · ai∑k−1

j=0 (yj − aj − pj)

+

(∑k−1
j=1 (ρj · pj)

)
· (yk−1 − ak−1 − pk−1) · pi(∑k−1

j=0 yj

)
·
(∑k−1

j=0 (yj − aj − pj)
)

68

a′
k−1 = ak−2 − 2ak−1 − ak−1 · σA − pk−1 · (1 − ρk−1) · σP

+

(∑k−2
j=0 (yj − ρj · pj)

)
· ak−2∑k−2

j=0 yj

+

(∑k−1
j=1 (ρj · pj)

)
· (−ak−1 + ak−2) + ρk−1 · pk−1 · (yk−1 − ak−1 − pk−1)∑k−1

j=0 yj

+

(∑k−1
j=1 (ρj · pj)

)
· (yk−2 − ak−2 − pk−2 + pk−1) + (yk−1 − ak−1 − pk−1) · 2pk−1∑k−1

j=0 (yj − aj − pj)

+ (yk−2 − ak−2 − pk−2 + pk−1) · 2pk − ϕ · ak−1∑k−1
j=0 (yj − aj − pj)

+

(∑k−1
j=1 (ρj · pj)

)
· (yk−1 − ak−1 − pk−1) · pk−1(∑k−1

j=0 yj

)
·
(∑k−1

j=0 (yj − aj − pj)
)

a′
k = yk−1 − pk−1 + ak−1 · σA − 2ak + pk−1 · (1 − ρk−1) · σP

+

(∑k−1
j=1 (ρj · pj)

)
· ak−1∑k−1

j=0 yj

+

(∑k−1
j=1 (ρj · pj)

)
· (yk−1 − ak−1 − pk−1 + pk) + (yk−1 − ak−1 − pk−1) · 4pk + 2p2

k∑k−1
j=0 (yj − aj − pj)

+

(∑k−1
j=1 (ρj · pj)

)
· (yk−1 − ak−1 − pk−1) · pk(∑k−1

j=0 yj

)
·
(∑k−1

j=0 (yj − aj − pj)
)

69

For all 1 ≤ i ≤ k − 2,

p′
i = − (1 − ρi) · pi + (1 − ρi−1) · pi−1 − ρi · pi + ai

+

(∑k−2
j=0 (yj − ρj · pj)

)
· (−pi + pi−1)∑k−2

j=0 yj

+

(∑k−1
j=1 (ρj · pj)

)
· (−pi + pi−1)∑k−1

j=0 yj

+
−
(∑k−1

j=1 (ρj · pj)
)

· pi − (yk−1 − ak−1 − pk−1 + pk) · 2pi − ϕ · pi∑k−1
j=0 (yj − aj − pj)

+
−
(∑k−1

j=1 (ρj · pj)
)

· (yk−1 − ak−1 − pk−1) · pi(∑k−1
j=0 yj

)
·
(∑k−1

j=0 (yj − aj − pj)
)

p′
k−1 = (1 − ρk−2) · pk−2 − ρk−1 · pk−1 − pk−1 · (1 − ρk−1) − ak−1 · (1 − σA) − pk−1 · (1 − ρk−1) · (1 − σP) + ak−1

+

(∑k−2
j=0 (yj − ρj · pj)

)
· pk−2∑k−2

j=0 yj

+

(∑k−1
j=1 (ρj · pj)

)
· (−pk−1 + pk−2)∑k−1

j=0 yj

+
−
(∑k−1

j=1 (ρj · pj)
)

· pk−1 − (yk−1 − ak−1 − pk−1 + pk) · 2pk−1 − ϕ · pk−1∑k−1
j=0 (yj − aj − pj)

+
−
(∑k−1

j=1 (ρj · pj)
)

· (yk−1 − ak−1 − pk−1) · pk−1(∑k−1
j=0 yj

)
·
(∑k−1

j=0 (yj − aj − pj)
)

70

p′
k = ak−1 · (1 − σA) + pk−1 · (1 − ρk−1) · (2 − σP) + 2ak − pk

+

(∑k−1
j=1 (ρj · pj)

)
· pk−1∑k−1

j=0 yj

+

(∑k−1
j=1 (ρj · pj)

)
· pk − (yk−1 − ak−1 − pk−1 + pk) · 2pk∑k−1

j=0 (yj − aj − pj)

+
−
(∑k−1

j=1 (ρj · pj)
)

· (yk−1 − ak−1 − pk−1) · pk(∑k−1
j=0 yj

)
·
(∑k−1

j=0 (yj − aj − pj)
)

71

Appendix D

Maple code

1 p r i n t l e v e l := 0 ;
2 with (ArrayTools) ;
3 with (L i s tToo l s) ;
4 _EnvTry = ’ hard ’ ;
5

6 k := 5 ;
7 varsy_1based := [y | | (0 . . k) (t)] ;
8 varsa_1based := [a | | (0 . . k) (t)] ;
9 varsp_1based := [p | | (0 . . k) (t)] ;

10 varsy := Array (0 . . k , i −> varsy_1based [i + 1]) ;
11 varsa := Array (0 . . k , i −> varsa_1based [i + 1]) ;
12 varsp := Array (0 . . k , i −> varsp_1based [i + 1]) ;
13

14 rhsy := Array (0 . . k , i −> 0) ;
15 rhsa := Array (0 . . k , i −> 0) ;
16 rhsp := Array (0 . . k , i −> 0) ;
17

18 f o r i from 0 to k do
19 PAD | | i (t) := 0 ;
20 end do ;
21 PAD := Array (0 . . k , i −> PAD | | i (t)) ;
22 SigmaA := t −> 0 ;
23 SigmaP := t −> 0 ;
24

25 demotion_factor := 0 . 5 5 ;
26

27 (∗ EVENT 1 ∗)
28 rhsy [0] += −varsy [0] + varsa [0] + varsp [0] ;
29 rhsy [0] += −add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsy [0] / add

(varsy [j] , j = 0 . . k − 2) ;
30 f o r i to k − 2 do
31 rhsy [i] += −varsy [i] + varsa [i] + varsp [i] ;
32 rhsy [i] += −add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsy [i

] / add (varsy [j] , j = 0 . . k − 2) ;
33 rhsy [i] += varsy [i − 1] − varsa [i − 1] − varsp [i − 1] ;

72

34 rhsy [i] += add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsy [i −
1]/ add (varsy [j] , j = 0 . . k − 2) ;

35 end do ;
36 rhsy [k − 1] += varsy [k − 2] − varsa [k − 2] − varsp [k − 2] ;
37 rhsy [k − 1] += add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsy [k −

2]/ add (varsy [j] , j = 0 . . k − 2) ;
38 f o r i to k − 2 do
39 rhsa [i] += −add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsa [i

] / add (varsy [j] , j = 0 . . k − 2) ;
40 rhsa [i] += add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsa [i −

1]/ add (varsy [j] , j = 0 . . k − 2) ;
41 end do ;
42 rhsa [k − 1] += add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsa [k −

2]/ add (varsy [j] , j = 0 . . k − 2) ;
43 rhsa [k] += 0 ;
44 f o r i to k − 2 do
45 rhsp [i] += −add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsp [i

] / add (varsy [j] , j = 0 . . k − 2) ;
46 rhsp [i] += add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsp [i −

1]/ add (varsy [j] , j = 0 . . k − 2) ;
47 end do ;
48 rhsp [k − 1] += add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 2) ∗ varsp [k −

2]/ add (varsy [j] , j = 0 . . k − 2) ;
49 rhsp [k] += 0 ;
50 pr in t (" Event 1 proce s sed ") ;
51

52 (∗ EVENT 2 ∗)
53 rhsy [0] += −varsa [0] − add (varsa [j] , j = 0 . . k − 2) ∗ varsy [0] / add (varsy [j] ,

j = 0 . . k − 2) ;
54 f o r i to k − 2 do
55 rhsy [i] += −varsa [i] − add (varsa [j] , j = 0 . . k − 2) ∗ varsy [i] / add (varsy [

j] , j = 0 . . k − 2) ;
56 rhsy [i] += varsa [i − 1] + add (varsa [j] , j = 0 . . k − 2) ∗ varsy [i − 1]/ add

(varsy [j] , j = 0 . . k − 2) ;
57 end do ;
58 rhsy [k − 1] += varsa [k − 2] + add (varsa [j] , j = 0 . . k − 2) ∗ varsy [k − 2]/ add

(varsy [j] , j = 0 . . k − 2) ;
59 f o r i to k − 2 do
60 rhsa [i] += −varsa [i] − add (varsa [j] , j = 0 . . k − 2) ∗ varsa [i] / add (varsy [

j] , j = 0 . . k − 2) ;
61 rhsa [i] += varsa [i − 1] + add (varsa [j] , j = 0 . . k − 2) ∗ varsa [i − 1]/ add

(varsy [j] , j = 0 . . k − 2) ;
62 end do ;
63 rhsa [k − 1] += varsa [k − 2] + add (varsa [j] , j = 0 . . k − 2) ∗ varsa [k − 2]/ add

(varsy [j] , j = 0 . . k − 2) ;
64 f o r i to k − 2 do
65 rhsp [i] += −add (varsa [j] , j = 0 . . k − 2) ∗ varsp [i] / add (varsy [j] , j = 0

. . k − 2) ;
66 rhsp [i] += add (varsa [j] , j = 0 . . k − 2) ∗ varsp [i − 1]/ add (varsy [j] , j =

0 . . k − 2) ;
67 end do ;

73

68 rhsp [k − 1] += add (varsa [j] , j = 0 . . k − 2) ∗ varsp [k − 2]/ add (varsy [j] , j =
0 . . k − 2) ;

69 pr in t (" Event 2 proce s sed ") ;
70

71 (∗ EVENT 3.1 ∗)
72 rhsy [0] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsy [0] / add (varsy [j] , j =

0 . . k − 1) ;
73 rhsy [0] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(varsy [0] − varsa [0] −

varsp [0]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
74 f o r i to k − 1 do
75 rhsy [i] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsy [i] / add (varsy [j] ,

j = 0 . . k − 1) ;
76 rhsy [i] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsy [i − 1]/ add (varsy [j

] , j = 0 . . k − 1) ;
77 rhsy [i] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(varsy [i] − varsa [i] −

varsp [i]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
78 rhsy [i] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(varsy [i − 1] − varsa [i

− 1] − varsp [i − 1]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
79 end do ;
80 rhsy [k] += add (PAD[j] ∗ varsp [j] , j = 0 . . k − 2) ∗ varsy [k − 1]/ add (varsy [j] , j

= 0 . . k − 1) ;
81 rhsy [k] += add (PAD[j] ∗ varsp [j] , j = 0 . . k − 2) ∗(varsy [k − 1] − varsa [k − 1]

− varsp [k − 1]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
82 f o r i to k − 2 do
83 rhsa [i] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsa [i] / add (varsy [j] ,

j = 0 . . k − 1) ;
84 rhsa [i] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsa [i − 1]/ add (varsy [j

] , j = 0 . . k − 1) ;
85 rhsa [i] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(varsy [i − 1] − varsa [i

− 1] − varsp [i − 1]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
86 rhsa [i] += PAD[i] ∗ varsp [i] ∗ (varsy [k − 1] − varsa [k − 1] − varsp [k − 1]) /

add (varsy [j] , j = 0 . . k − 1) ;
87 rhsa [i] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(1 + (varsy [k − 1] −

varsa [k − 1] − varsp [k − 1]) /add (varsy [j] , j = 0 . . k − 1)) ∗ varsp [i] / add (
varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;

88 end do ;
89 rhsa [k − 1] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsa [k − 1]/ add (varsy [

j] , j = 0 . . k − 1) ;
90 rhsa [k − 1] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsa [k − 2]/ add (varsy [j

] , j = 0 . . k − 1) ;
91 rhsa [k − 1] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(varsy [k − 2] − varsa [k

− 2] − varsp [k − 2]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
92 rhsa [k − 1] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(1 + (varsy [k − 1] −

varsa [k − 1] − varsp [k − 1]) /add (varsy [j] , j = 0 . . k − 1)) ∗ varsp [k − 1]/
add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;

93 rhsa [k] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsa [k − 1]/ add (varsy [j] , j
= 0 . . k − 1) ;

94 rhsa [k] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(varsy [k − 1] − varsa [k − 1]
− varsp [k − 1]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;

95 rhsa [k] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(1 + (varsy [k − 1] − varsa [k
− 1] − varsp [k − 1]) /add (varsy [j] , j = 0 . . k − 1)) ∗ varsp [k] / add (varsy [j

] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;

74

96 f o r i to k − 1 do
97 rhsp [i] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsp [i] / add (varsy [j] ,

j = 0 . . k − 1) ;
98 rhsp [i] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsp [i − 1]/ add (varsy [j

] , j = 0 . . k − 1) ;
99 rhsp [i] += −PAD[i] ∗ varsp [i] ;

100 rhsp [i] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(1 + (varsy [k − 1] −
varsa [k − 1] − varsp [k − 1]) /add (varsy [j] , j = 0 . . k − 1)) ∗ varsp [i] / add (
varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;

101 end do ;
102 rhsp [k − 1] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsp [k − 1]/ add (varsy [

j] , j = 0 . . k − 1) ;
103 rhsp [k − 1] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsp [k − 2]/ add (varsy [j

] , j = 0 . . k − 1) ;
104 rhsp [k − 1] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(1 + (varsy [k − 1] −

varsa [k − 1] − varsp [k − 1]) /add (varsy [j] , j = 0 . . k − 1)) ∗ varsp [k − 1]/
add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;

105 rhsp [k] += add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗ varsp [k − 1]/ add (varsy [j] , j
= 0 . . k − 1) ;

106 rhsp [k] += −add (PAD[j] ∗ varsp [j] , j = 1 . . k − 2) ∗(1 + (varsy [k − 1] − varsa [
k − 1] − varsp [k − 1]) /add (varsy [j] , j = 0 . . k − 1)) ∗ varsp [k] / add (varsy [
j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;

107 pr in t (" Event 3 .1 proce s sed ") ;
108

109 (∗ EVENT 3.2 ∗)
110 rhsy [0] += −add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsy [0] / add (varsy [j

] , j = 0 . . k − 2) ;
111 f o r i to k − 2 do
112 rhsy [i] += −(1 − PAD[i]) ∗ varsp [i] ;
113 rhsy [i] += (1 − PAD[i − 1]) ∗ varsp [i − 1] ;
114 rhsy [i] += −add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsy [i] / add (

varsy [j] , j = 0 . . k − 2) ;
115 rhsy [i] += add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsy [i − 1]/ add (

varsy [j] , j = 0 . . k − 2) ;
116 end do ;
117 rhsy [k − 1] += (1 − PAD[k − 2]) ∗ varsp [k − 2] ;
118 rhsy [k − 1] += add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsy [k − 2]/ add (

varsy [j] , j = 0 . . k − 2) ;
119 rhsy [k] += 0 ;
120 f o r i to k − 2 do
121 rhsa [i] += −add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsa [i] / add (

varsy [j] , j = 0 . . k − 2) ;
122 rhsa [i] += add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsa [i − 1]/ add (

varsy [j] , j = 0 . . k − 2) ;
123 end do ;
124 rhsa [k − 1] += add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsa [k − 2]/ add (

varsy [j] , j = 0 . . k − 2) ;
125 rhsa [k] += 0 ;
126 f o r i to k − 2 do
127 rhsp [i] += −(1 − PAD[i]) ∗ varsp [i] ;
128 rhsp [i] += (1 − PAD[i − 1]) ∗ varsp [i − 1] ;

75

129 rhsp [i] += −add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsp [i] / add (
varsy [j] , j = 0 . . k − 2) ;

130 rhsp [i] += add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsp [i − 1]/ add (
varsy [j] , j = 0 . . k − 2) ;

131 end do ;
132 rhsp [k − 1] += (1 − PAD[k − 2]) ∗ varsp [k − 2] ;
133 rhsp [k − 1] += add ((1 − PAD[j]) ∗ varsp [j] , j = 1 . . k − 2) ∗ varsp [k − 2]/ add (

varsy [j] , j = 0 . . k − 2) ;
134 rhsp [k] += 0 ;
135 pr in t (" Event 3 .2 proce s sed ") ;
136

137 (∗ EVENT 4 ∗)
138 rhsy [k − 1] += −2∗(varsy [k − 1] − varsa [k − 1] − varsp [k − 1]) ;
139 rhsy [k] += 2∗(varsy [k − 1] − varsa [k − 1] − varsp [k − 1]) ;
140 f o r i to k do
141 rhsa [i] += (varsy [k − 1] − varsa [k − 1] − varsp [k − 1]) ∗2∗ varsp [i] / add (

varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
142 rhsp [i] += −(varsy [k − 1] − varsa [k − 1] − varsp [k − 1]) ∗2∗ varsp [i] / add (

varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
143 end do ;
144 rhsa [k] += varsy [k − 1] − varsa [k − 1] − varsp [k − 1] ;
145 pr in t (" Event 4 proce s sed ") ;
146

147 (∗ EVENTS 5 .1 and 5 .2 ∗)
148 rhsy [k − 1] += −2∗varsa [k − 1] ;
149 rhsy [k] += 2∗ varsa [k − 1] ;
150 rhsa [k − 1] += −varsa [k − 1] − varsa [k − 1]∗ SigmaA(t) ;
151 rhsa [k] += varsa [k − 1] + varsa [k − 1]∗ SigmaA(t) ;
152 rhsp [k − 1] += −varsa [k − 1]∗ (1 − SigmaA(t)) ;
153 rhsp [k] += varsa [k − 1]∗ (1 − SigmaA(t)) ;
154 pr in t (" Events 5 .1 and 5 .2 proce s s ed ") ;
155

156 (∗ EVENT 6.1 ∗)
157 rhsy [0] += −PAD[k − 1]∗ varsp [k − 1]∗ varsy [0] / add (varsy [j] , j = 0 . . k − 1) ;
158 rhsy [0] += −PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [0] − varsa [0] − varsp [0]) /add (

varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
159 f o r i to k − 1 do
160 rhsy [i] += −PAD[k − 1]∗ varsp [k − 1]∗ varsy [i] / add (varsy [j] , j = 0 . . k −

1) ;
161 rhsy [i] += PAD[k − 1]∗ varsp [k − 1]∗ varsy [i − 1]/ add (varsy [j] , j = 0 . . k

− 1) ;
162 rhsy [i] += −PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [i] − varsa [i] − varsp [i]) /add

(varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
163 rhsy [i] += PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [i − 1] − varsa [i − 1] − varsp [

i − 1]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
164 end do ;
165 rhsy [k] += varsp [k − 1]∗PAD[k − 1] ∗ (varsy [k − 1] − varsa [k − 1] − varsp [k −

1]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
166 rhsy [k] += varsp [k − 1]∗PAD[k − 1]∗ varsy [k − 1]/ add (varsy [j] , j = 0 . . k −

1) ;
167 f o r i to k − 1 do

76

168 rhsa [i] += PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [i − 1] − varsa [i − 1] − varsp [
i − 1]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;

169 rhsa [i] += −PAD[k − 1]∗ varsp [k − 1]∗ varsa [i] / add (varsy [j] , j = 0 . . k −
1) ;

170 rhsa [i] += PAD[k − 1]∗ varsp [k − 1]∗ varsa [i − 1]/ add (varsy [j] , j = 0 . . k
− 1) ;

171 rhsa [i] += PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [k − 1] − varsa [k − 1] − varsp [
k − 1]) ∗ varsp [i] / (add (varsy [j] , j = 0 . . k − 1) ∗add (varsy [j] − varsa [j] −

varsp [j] , j = 0 . . k − 1)) ;
172 rhsa [i] += PAD[k − 1]∗ varsp [k − 1]∗ varsp [i] / add (varsy [j] − varsa [j] −

varsp [j] , j = 0 . . k − 1) ;
173 end do ;
174 rhsa [k − 1] += PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [k − 1] − varsa [k − 1] − varsp [

k − 1]) /add (varsy [j] , j = 0 . . k − 1) ;
175 rhsa [k] += varsp [k − 1]∗PAD[k − 1] ∗ (varsy [k − 1] − varsa [k − 1] − varsp [k −

1]) /add (varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
176 rhsa [k] += PAD[k − 1]∗ varsp [k − 1]∗ varsa [k − 1]/ add (varsy [j] , j = 0 . . k −

1) ;
177 rhsa [k] += PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [k − 1] − varsa [k − 1] − varsp [k −

1]) ∗ varsp [k] / (add (varsy [j] , j = 0 . . k − 1) ∗add (varsy [j] − varsa [j] −
varsp [j] , j = 0 . . k − 1)) ;

178 rhsa [k] += PAD[k − 1]∗ varsp [k − 1]∗ varsp [k] / add (varsy [j] − varsa [j] − varsp [
j] , j = 0 . . k − 1) ;

179 f o r i to k − 2 do
180 rhsp [i] += −PAD[k − 1]∗ varsp [k − 1]∗ varsp [i] / add (varsy [j] , j = 0 . . k −

1) ;
181 rhsp [i] += PAD[k − 1]∗ varsp [k − 1]∗ varsp [i − 1]/ add (varsy [j] , j = 0 . . k

− 1) ;
182 rhsp [i] += −PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [k − 1] − varsa [k − 1] − varsp

[k − 1]) ∗ varsp [i] / (add (varsy [j] , j = 0 . . k − 1) ∗add (varsy [j] − varsa [j]
− varsp [j] , j = 0 . . k − 1)) ;

183 rhsp [i] += −PAD[k − 1]∗ varsp [k − 1]∗ varsp [i] / add (varsy [j] − varsa [j] −
varsp [j] , j = 0 . . k − 1) ;

184 end do ;
185 rhsp [k − 1] += −PAD[k − 1]∗ varsp [k − 1] ;
186 rhsp [k − 1] += −PAD[k − 1]∗ varsp [k − 1]∗ varsp [k − 1]/ add (varsy [j] , j = 0 . .

k − 1) ;
187 rhsp [k − 1] += PAD[k − 1]∗ varsp [k − 1]∗ varsp [k − 2]/ add (varsy [j] , j = 0 . . k

− 1) ;
188 rhsp [k − 1] += −PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [k − 1] − varsa [k − 1] − varsp

[k − 1]) /add (varsy [j] , j = 0 . . k − 1) ∗ varsp [k − 1]/ add (varsy [j] − varsa [
j] − varsp [j] , j = 0 . . k − 1) ;

189 rhsp [k − 1] += −PAD[k − 1]∗ varsp [k − 1]∗ varsp [k − 1]/ add (varsy [j] − varsa [j]
− varsp [j] , j = 0 . . k − 1) ;

190 rhsp [k] += PAD[k − 1]∗ varsp [k − 1]∗ varsp [k − 1]/ add (varsy [j] , j = 0 . . k −
1) ;

191 rhsp [k] += −PAD[k − 1]∗ varsp [k − 1] ∗ (varsy [k − 1] − varsa [k − 1] − varsp [k −
1]) ∗ varsp [k] / (add (varsy [j] , j = 0 . . k − 1) ∗add (varsy [j] − varsa [j] −

varsp [j] , j = 0 . . k − 1)) ;
192 rhsp [k] += −PAD[k − 1]∗ varsp [k − 1]∗ varsp [k] / add (varsy [j] − varsa [j] − varsp

[j] , j = 0 . . k − 1) ;
193 pr in t (" Event 6 .1 proce s sed ") ;

77

194

195 (∗ EVENTS 6 . 2 . 1 and 6 . 2 . 2 ∗)
196 rhsy [k − 1] += −2∗varsp [k − 1]∗ (1 − PAD[k − 1]) ;
197 rhsy [k] += 2∗ varsp [k − 1]∗ (1 − PAD[k − 1]) ;
198 rhsa [k − 1] += −varsp [k − 1]∗ (1 − PAD[k − 1]) ∗SigmaP (t) ;
199 rhsa [k] += varsp [k − 1]∗ (1 − PAD[k − 1]) ∗SigmaP (t) ;
200 rhsp [k − 1] += −varsp [k − 1]∗ (1 − PAD[k − 1]) − varsp [k − 1]∗ (1 − PAD[k −

1]) ∗(1 − SigmaP (t)) ;
201 rhsp [k] += varsp [k − 1]∗ (1 − PAD[k − 1]) + varsp [k − 1]∗ (1 − PAD[k − 1]) ∗(1

− SigmaP (t)) ;
202 pr in t (" Events 6 . 2 . 1 and 6 . 2 . 2 proce s sed ") ;
203

204 (∗ EVENT 7 ∗)
205 rhsa [k] += −2∗varsa [k] ;
206 rhsp [k] += 2∗ varsa [k] ;
207 pr in t (" Event 7 proce s sed ") ;
208

209 (∗ EVENT 8.1 ∗)
210 pr in t (" Event 8 .1 proce s sed ") ;
211

212 (∗ EVENT 8.2 ∗)
213 rhsy [0] += −2∗varsp [k] ∗ (varsy [0] − varsa [0] − varsp [0]) /add (varsy [j] − varsa

[j] − varsp [j] , j = 0 . . k − 1) ;
214 f o r i to k − 1 do
215 rhsy [i] += −2∗varsp [k] ∗ (varsy [i] − varsa [i] − varsp [i]) /add (varsy [j] −

varsa [j] − varsp [j] , j = 0 . . k − 1) ;
216 rhsy [i] += 2∗ varsp [k] ∗ (varsy [i − 1] − varsa [i − 1] − varsp [i − 1]) /add (

varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
217 end do ;
218 rhsy [k] += 2∗ varsp [k] ∗ (varsy [k − 1] − varsa [k − 1] − varsp [k − 1]) /add (varsy

[j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
219 f o r i to k do
220 rhsa [i] += 2∗ varsp [k] ∗ (varsy [i − 1] − varsa [i − 1] − varsp [i − 1]) /add (

varsy [j] − varsa [j] − varsp [j] , j = 0 . . k − 1) ;
221 rhsa [i] += 2∗ varsp [k] ∗ varsp [i] / add (varsy [j] − varsa [j] − varsp [j] , j = 0

. . k − 1) ;
222 end do ;
223 f o r i to k − 1 do
224 rhsp [i] += −2∗varsp [k] ∗ varsp [i] / add (varsy [j] − varsa [j] − varsp [j] , j =

0 . . k − 1) ;
225 end do ;
226 rhsp [k] += −varsp [k] ;
227 rhsp [k] += −(2∗ varsp [k]) ∗ varsp [k] / add (varsy [j] − varsa [j] − varsp [j] , j = 0

. . k − 1) ;
228 pr in t (" Event 8 .2 proce s sed ") ;
229

230 (∗ EVENT 9 ∗)
231 f o r i to k − 1 do
232 rhsa [i] += −varsa [i] ;
233 rhsp [i] += varsa [i] ;
234 end do ;
235 pr in t (" Event 9 proce s sed ") ;

78

236

237 (∗ EVENT 10 ∗)
238 pr in t (" Event 10 proce s sed ") ;
239

240 (∗ EVENT 11 ∗)
241 pr in t (" Event 11 proce s sed ") ;
242

243 (∗ DEMOTION EVENT ∗)
244 f o r i to k − 1 do
245 rhsa [i] += −demotion_factor ∗ varsa [i] / add (varsy [j] − varsa [j] − varsp

[j] , j = 0 . . k − 1) ;
246 rhsp [i] += −demotion_factor ∗ varsp [i] / add (varsy [j] − varsa [j] − varsp

[j] , j = 0 . . k − 1) ;
247 end do ;
248 pr in t (" Demotion Event proce s sed ") ;
249

250 (∗ Se t t i ng up ODEs ∗)
251 pr in t (" Se t t i ng up ODEs") ;
252 odesy := seq (d i f f (y | | i (t) , t) = rhsy [i] , i = 0 . . k) ;
253 odesa := seq (d i f f (a | | i (t) , t) = rhsa [i] , i = 0 . . k) ;
254 odesp := seq (d i f f (p | | i (t) , t) = rhsp [i] , i = 0 . . k) ;
255 i n i t i a l _ v a l s _ y := y0 (0) = 1 , seq (y | | i (0) = 0 , i = 1 . . k) ;
256 i n i t i a l _ v a l s _ a := seq (a | | i (0) = 0 , i = 0 . . k) ;
257 i n i t i a l_va l s_p := seq (p | | i (0) = 0 , i = 0 . . k) ;
258

259 (∗ So lv ing ODE system ∗)
260 sol_system := dso lve ([odesy , odesa , odesp , in i t i a l_va l s_y , in i t i a l_va l s_a ,

i n i t i a l_va l s_p] , numeric , method = dverk78 , maxfun = 0 , abse r r =
0.1∗10^(−7) , r e l e r r = 0.1∗10^(−7)) ;

261 with (p l o t s) ;
262 plot_vars := [seq ([t , y | | i (t)] , i = 0 . . k) , seq ([t , a | | i (t)] , i = 1 . .

k) , seq ([t , p | | i (t)] , i = 1 . . k)] ;
263 odep lot (sol_system , plot_vars , 0 . . 2∗k) ;
264 sol_system (2∗k) ;

79

	Author's Declaration
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Notation
	Pre- and post-positional models
	Tools
	Concentration inequalities
	Wormald's differential equation method
	Min-degree process

	k-Connectivity
	Overview
	Supporting structural results
	Building 2-connected semi-random graphs
	Pre-positional model

	k-Factors
	Overview
	Perfect matching
	Terminology
	Running the perfect matching algorithm k times
	Issues in extending the perfect matching algorithm
	Algorithm for upper bound
	Setup
	Formal description

	Analysis
	Random variables and their expected change
	Differential equations
	Applying Wormald's differential equation method
	Boundaries and singularities

	Numerical results
	Parameter tuning
	Results for small k

	Possible improvements
	Large k

	References
	APPENDICES
	Wormald's differential equation method theorem
	Expected change in variables for the k-factor algorithm
	Differential equations for the k-factor algorithm
	Maple code

