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Abstract

Ridesourcing platforms operated by transportation network companies are becoming
increasingly popular. Municipal transit agencies have rapidly launched integrated systems
with ridesourcing vehicles to extend the reach of their fixed-route transit networks and
as a response to changes in the transportation system. These integrated systems have
not been critically evaluated, and agencies are implementing ridesourcing systems without
much precedence or guidance concerning the integration of transit and ridesourcing. Past
research on demand-responsive transport assumed the majority of trips were booked a day
or more in advance using subscriptions. This research considers how ridership may change
due to the immediacy and convenience of app-based booking for on-demand transit.

The objective of this research is to determine the spatial characteristics of transit-
integrated ridesourcing networks that best support and encourage use of the greater tran-
sit network. A series of spatial attributes were identified based on literature and existing
systems, which formed the basis of the research. A recent transit-integrated ridesourcing
pilot in Waterloo, Ontario was evaluated for competitiveness with other alternatives and
to observe changes in spatial and temporal characteristics. Through this evaluation, a trip
typology was developed that other transit agencies can use to evaluate the spatial compet-
itiveness of their transit-integrated ridesourcing systems. The findings of the evaluation
indicate that the trips taken in the pilot were mostly complementary to transit, and that
the pilot was both growing in weekly ridership and trending towards trips that do not
compete with fixed-route transit.

A revealed-preference/stated-preference survey was conducted in the same geographical
area as the former pilot to determine the combinations of spatial attributes that would best
entice residents. 230 responses were gathered from the survey. Qualitative questions from
the survey revealed that COVID-19 was not perceived as a deterrent for fixed-route transit
or transit-integrated ridesourcing, that car ownership and bicycle ownership correlated with
the respective likelihood of driving or cycling, and that fare card or pass ownership did not
correlate with the likelihood of taking transit. The lack of familiarity among respondents
with the pilot that had previously operated in the area indicates that poor advertising of
the service may have been a contributor to ridership not meeting agency targets.

A non-linear Bayesian mixed logit model was estimated using the stated-preference
portion of the survey, using 2990 best and worst observations (13 scenarios from each of
the 230 respondents). The model was applied to a series of representative trips through
scenario analysis to determine how mode share would change under various combinations of
spatial and operational characteristics. Respondents were found to have similar perceptions
of transit-integrated ridesourcing and fixed-route transit. For time attributes (e.g., total,
wait, walk), respondents showed the highest sensitivity in the 5-10 minute range. Adjusting
the demand patterns of the transit-integrated ridesourcing service to be more permissive
of different origin-destination pairs considerably increased the expected mode share for
transit-integrated ridesourcing, but may require caution due to the negative impacts in
some scenarios for fixed-route transit. The largest shifts in mode share came from directly
charging for parking, where the mode share for auto dropped from over 90% to under 50%
in most cases.
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Chapter 1

Introduction

1.1 Shared Mobility

Shared mobility is a broad and expanding category of mobility services, encompassing

delivery sharing, vehicle sharing, and passenger ride sharing (Shaheen & Chan, 2016).

Terminology for different forms of shared mobility services are beginning to mature, and

often differ between academic literature and public discourse. Reviewing this terminology

may seem trivial, but it is essential in understanding the nuance between different modes.

Figure 1.1 depicts the growing definitions of different forms of shared mobility. Shaheen

and Chan (2016) consider shared mobility to be a set of as-needed mobility options that

users share with each other, and use the terminology to reference private-sector services,

specifically excluding publicly-owned and operated demand-responsive transport (DRT).

Feigon and Murphy (2016; 2018) adopt a broader definition across their reports, defin-

ing it as any form of shared-use service, including publicly-owned and operated demand-

responsive transport (DRT) and conventional fixed-route public transit.

Passenger modes that fall in the broad definition of shared mobility can be differenti-

ated by several attributes, as shown in Table 1.1. Modes whose vehicles and systems are

operated by an individual, or private transport (e.g. user-owned personal auto, walking,

user-owned bicycles), and conventional fixed-route public transit are included for compar-

ison. Ownership differentiates whether the mode is offered through a private agency, a

public agency, the user, or a driver. Ridesourcing and ridesplitting services specifically use

driver-owned vehicles with a privately-owned dispatching system. OD flexibility indicates

the degree of origin and destination personalization. Personal modes allow passengers to

pick up users at or near their origin and destination, while limited modes only allow for
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Figure 1.1: Definitions for forms of shared transportation modes, adapted from (Feigon
& Murphy, 2016, 2018; Kittelson & Associates et al., 2013; Shaheen & Chan, 2016; Teal
et al., 2020; Vuchic, 2007)
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travel between a flexible set of locations or drop-off zones in a network. The directness of

the route is indicated by how personal the route is and whether the ride is shared or not.

Partially personal routing indicates that the route of the trip is influenced by the passenger

and other passengers or system design characteristics (e.g., routes that slightly deviate).

Shared rides require the passenger to accept that rides could be shared with strangers,

which introduces some deviations between a passenger’s origin and destination as other

passengers are picked up or dropped off. Modes can also be offered to the public, or have

limitations on who is able to use it. Modes that are offered privately are typically as part

of a service with a list of registrants or are provided at the discretion of the owner.

Table 1.1: Characteristics of shared mobility passenger modes

Mode Vehicle /
System Owner

OD
Flexibility

Routing Shared
Ride

Availability

Private Transport User Personal Personal No Private (owner discretion)
Accessible
Paratransit

Public agency Personal Partially
personal

Yes Public (mobility limitations)

Dial-a-Ride Public agency Personal or
limited

Partially
personal

Yes Public (booked in advance)

Flexible Transit Public agency Limited Partially
personal,
fixed area

Yes Public

Microtransit Private agency Limited Partially
personal

Mixed Private (service)

Ridesharing Driver Personal Personal Yes Private (owner discretion)
Ridesourcing Driver and

private agency
Personal Personal No Private (service)

Ridesplitting Driver and
private agency

Personal Partially
personal

Yes Private (service)

Taxis Driver or
private agency

Personal Personal No Public

Vehicle Sharing Public or
private agency

Personal Personal No Private (service)

Conventional
Fixed-Route
Public Transit

Public agency None Fixed Yes Public

Similar to the use of ‘shared mobility’, paratransit and DRT have evolved to have

two intended meanings. The broad definition of paratransit is a suite of services that fall

between private transport and conventional public transport (Vuchic, 2007). A narrow

definition uses paratransit as a colloquial synonym for accessible paratransit, which is a

publicly-operated personalized service available to people with mobility limitations (City of

Regina, n.d.). The narrow definition is used predominantly in municipal transit agencies,

in part because most transit agencies are legally mandated to offer it under human rights

legislation (National Aging and Disability Transportation Center, n.d.), or voluntarily offer
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it to as a way of meeting accessibility needs (Ontario Human Rights Commission, n.d.).

Even among individuals that follow the broader definition, the use tends to be limited to

publicly provisioned services or taxis in practice, ignoring newer forms of shared mobility.

The broad definition of DRT includes taxis, ridesourcing, microtransit, and other modes

that are traditionally operated to some extent through private partnership, because when

those modes are integrated with a transit-agency they have similar passenger-facing char-

acteristics to dial-a-ride transit (DART) (Teal et al., 2020). The narrow definition of DRT

tends to be more prevalent (previously referred to in this thesis as ‘publicly-owned and

operated DRT’), and only refers to on-demand service provided as part of a public transit

network (Kittelson & Associates et al., 2013). This includes DART, accessible paratran-

sit, and flexible transit (e.g. route-deviated, request stops), which are all offered through

a public agency with shared rides and personalized or partially personalized routing and

origins/destinations. The narrowest use of DRT refers only to dial-a-ride transit (DART)

service, which is somewhat synonymous with DRT in the same way that paratransit is

synonymous with accessible paratransit. Dial-a-ride transit is increasingly becoming a

somewhat antiquated term, since many DART services may be booked through an app or

website like other on-demand services, but is still one of the most common ways to refer

to this mode of transport due to convenience.

Furthermore, the term ridesharing is often applied to many forms of shared passenger

rides, from informal carpooling between friends to app-based driver-passenger matching

services. The latter services are differentiated in literature as ‘ridesourcing’ (Curtis et al.,

2019; Shaheen & Chan, 2016), and the companies that tend to offer ridesourcing services

through digital platforms are referred to as transportation network companies (TNCs).

Because of the overlapping and somewhat complex definitions of these terms, partic-

ularly for paratransit, this thesis uses ‘shared mobility’ to refer to the broad spectrum

of modes and mobility options between private transport and conventional public transit,

which all require some sharing of the vehicle or ride, but have some element of flexibility in

service. The use of the term ‘paratransit’ is avoided, in favour of more descriptive modes

(e.g. accessible paratransit), and ‘DRT’ is used where necessary in the broader sense to

refer to shared modes that are integrated in some way with the transit system. Finally,

‘ridesourcing’ is used to discuss individual ridesourcing (non-shared rides) and ridesplitting

(shared rides) through a TNC-style booking system, unless a distinction is required. Other

terms introduced in the figure and table are not directly relevant to this research, but are

included for completeness and are defined in the glossary.

4



1.2 Growth of Ridesourcing

Municipal transit agencies are experimenting with integrating different forms of shared

mobility in an effort to increase their transit reach into suburban areas, which are harder

to service, in ways that complement existing public transit networks (Feigon & Murphy,

2016). Traditional efforts to expand service have been through DRT, typically either

through flexible transit or DART for general service, and through accessible paratransit

for people with mobility limitations. The success of these traditional DRT services has

been limited, as the bulk of travel has been done through personal auto or conventional

public transit for the past few decades in Canada. Part of this may be because limited

technology available for dispatching vehicles in older DRT services meant that rides often

needed to be booked well in advance (often up to 24 hours), while regular transit service

and personal auto tended to be predictable and instantaneous.

With the advent of more immediate and connected technology, primarily due to smart-

phones, transit agencies have considered a wider range of modes to integrate with transit.

Ridesourcing is one of the newer shared mobility options that transit agencies have piloted

in their networks, in part due to the reliability of their routing algorithms, the quality of

their mobile apps, and their immediate service, which have made ridesourcing more popu-

lar than DART. Some cities in North America have entered into partnerships with TNCs,

who operate app-based platforms connecting passengers and drivers through a standard-

ized fare structure and set of policies. There is belief that ridesourcing, along with other

shared mobility services, can help potential passengers more easily connect to the existing

transit system (Shaheen & Chan, 2016). Ridesourcing service that is integrated into the

public transit agency is referred to in this research as transit-integrated ridesourcing (TIR).

TIR falls in the same family of modes as DRT. While traditional forms of DRT rely

on pre-scheduled trips typically booked at least a day in advance (Rodman, 2022), transit-

integrated ridesourcing uses app-based booking to schedule on-demand ridesourcing-style

service operated through partnership with a transit agency. Ridesourcing that operates

privately originally differed from taxis in a similar way: TNCs that operate ridesourc-

ing services invested heavily in quick and easy-to-use apps that users preferred over taxi

dispatch services. The simpler and more immediate methods for receiving service may

positively influence the desirability of ridesourcing as part of the transit system. Rides-

ourcing can be provisioned either as a private travel mode or pooled with other passengers,

which is sometimes differentiated by the term ridesplitting (Section 1.1). Throughout this

thesis, TIR is considered a ridesplitting service integrated with public transit. In practice,

this results in characteristics similar to DART (Table 1.1), but without requiring advance
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booking.

Although some cities have integrated ridesourcing into their networks, or in some cases,

have built entire networks around ridesourcing (Town of Innisfil, 2019), there are few

independent analyses of the trip patterns in ridesourcing systems, particularly TIR systems.

As a result, the success or failure of these services is often reported by the public agency or

the private operator, who often do not share the corresponding individual trip data with

external parties. Part of the success or failure includes understanding how TIR impacts

the greater transportation system. The influence TIR has on public transit ridership,

auto deterrence, private ridesourcing, taxis, and active transportation is still not fully

understood.

1.3 Problem Statement

Ridesourcing platforms operated by TNCs have experienced rapid growth over the past

decade, prompting transit agencies in North America to consider integrated service with

TNCs of some form, either due to competition concerns or a belief that ridesourcing may

provide new ways of expanding the reach of public transit, specifically in suburban or

lower-density regions. Several transit agencies have launched pilots to integrate ridesourc-

ing with existing fixed-route transit service (e.g., the Region of Waterloo), and in some

cases, have completely relied on ridesourcing. While integration on some degree may ex-

pand use of public transit, most agencies are implementing ridesourcing pilots without

much precedence or guidance on how TIR systems can be implemented to encourage rid-

ership. The design of TIR networks should ensure changes in mode share that improve the

share of active transportation and public transit, yet the characteristics that lead to these

outcomes are poorly understood. If transit agencies integrate ridesourcing into their net-

works without considering behavioural factors and mode competitiveness, transit agencies

could be responsible for contributing to lower fixed-route transit and active transportation

use, inequitable communities, and ineffective projects.

1.4 Research Objectives

The goal of this research is to determine which spatial characteristics of TIR best support

and encourage use of the greater transit network in regions with suburban densities and

travel patterns. A suburban area of the Region of Waterloo with former TIR service is
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used as the focus of this research, to best understand how similar areas would respond

to different spatial characteristics of TIR. To achieve this goal, a series of objectives are

defined:

1. Document and propose TIR system types based on existing integrations, literature-

based proposals, and unstudied combinations of individual attributes

2. Collect spatial, temporal, and passenger characteristics of existing TIR trips

3. Assess the current trip characteristics of existing TIR trips and develop a typology of

trip types based on their competitiveness with public transit and active transporta-

tion

4. Design and conduct a revealed-preference/stated-preference (RP-SP) survey compar-

ing various forms of public transit, TIR, private ridesourcing, and active transporta-

tion

5. Estimate a discrete mode choice model from the survey data

6. Quantify the range of mode share impacts of TIR under different system configura-

tions

7. Determine the TIR system characteristics that maximize active transportation, tran-

sit ridership, and TIR mode shares

8. Propose guidelines supporting policies and regulations aimed at increasing the prob-

ability of positive external impacts for TIR systems

Each objective was achieved through different methods. A literature review was con-

ducted for the first objective. Travel data from a former TIR pilot was used for the second

and third objectives. An RP-SP survey in the former pilot area was used for the fourth

and fifth objectives. A sensitivity analysis was used for the sixth and seventh objectives.

To complete the research, the eighth objective was met by synthesizing the findings of the

other objectives to understand how best to encourage system integration and ridership.

1.5 Scope

This research focuses on TIR models for suburban areas in Ontario. Specifically, the Region

of Waterloo is used as a study area. Grand River Transit (GRT), which is the regional
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transit agency, operated a series of three flexible transit pilots in 2019, one of which was

a TIR service operated through RideCo in a low-density suburban neighbourhood (Grand

River Transit, 2019c). The core of GRT’s conventional transit network is a north-south light

rail transit (LRT) line, which connected to the TIR pilot, and a series of recently redesigned

east-west express bus routes. While an exhaustive understanding of TIR impacts would

incorporate detailed studies on every suburban region in the province, the intent of this

research is use the study in Waterloo to develop terminology and practices for consideration

in other regions, and as a starting point for understanding how residents in Ontario may

perceive attributes of TIR in comparison with other modes.

The inspiration for this research comes partly from autonomous vehicles, which are

a frequently discussed form of future shared mobility in passenger transportation. Au-

tonomous vehicles are not the focus of this research, but the application of these results to

autonomous vehicles may be valid with minimal changes to the parameters. Autonomous

vehicles without a driver are discussed in literature as operating similarly to existing rides-

ourcing systems: the passenger hails the vehicle from a TNC, the vehicle picks them up

and takes them to their destination, then the vehicle drops them off and moves on to the

next passenger (Jin et al., 2018; Nazari et al., 2018; Hyland & Mahmassani, 2018). The

only practical difference to the passenger in TIR is that there is no driver present if the

service is automated, but passengers are still likely to ‘source’ rides from TNCs, which is

a minor shift from the current model of sourcing rides from drivers working for TNCs.

If the characteristics of active transporation and transit-positive TIR can be determined,

then there is some direction toward how an automated version of this service would best

be integrated to positively support other modes.

1.6 Thesis Structure

This thesis consists of five chapters. Chapter 1 introduces the research. A brief introduction

to the growth of ridesourcing and its relationship to public transit is provided. The problem

identified is a lack of understanding on which characteristics of ridesourcing integrated with

public transit best support fixed-route transit networks, leading to the objectives of this

research and the scope of the project.

Chapter 2 reviews the relevant literature in the topics of shared mobility, the historical

basis for integrating shared modes with transit, the state of ridesourcing and how it has

shifted perceptions of transit integration, recent Canadian TIR systems, the current un-

derstanding of preferences and attributes for TIR, and the synthesis of TIR characteristics
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in the form of system types. The gaps in the literature show that while there are recent

advances in understanding TIR, and there are many precedents for how to integrate shared

modes into conventional transit networks, attempts to integrate ridesourcing with transit

networks have key differences from traditional DRT that require new behavioural analy-

ses and a detailed and rigorous evaluation of the impact on other modes under various

scenarios.

Chapter 3 analyzes the 903 Flex TIR pilot that operated in the Region of Waterloo

from 2018-2019. 4536 completed trips were reviewed, covering the entirety of the pilot’s

operation. Trips were compared to the closest public transit, cycling, and walking alterna-

tives for competitiveness. A trip typology is proposed which identifies TIR trips based on

their competitiveness with public transit alternatives. Trip types, users, and alternatives

are assessed spatially and temporally to understand the impacts of the pilot.

Chapter 4 discusses the design, dissemination, and findings of a RP-SP survey that

studied attributes of TIR. The survey was conducted in the same area as the 903 Flex

pilot, to understand which organizations of TIR would best serve residents in the area.

Respondents were asked to compare TIR, auto, fixed-route transit, cycling, and private

ridehailing using varying attribute levels, and were asked additional questions before and

after the stated-preference (SP) section. General survey completion and uptake statistics,

demographics, COVID-19 influences, and the revealed-preference (RP) section are assessed.

Chapter 5 continues from the survey results, presenting the methodology and results

of a mode choice model calibrated from the SP section of the survey. A system evaluation

is conducted using elasticities determined from the findings of the model, and a sensitivity

analysis of scenarios that consider multiple design objectives and existing system types.

The sensitivity analysis connects the attribute elasticities from the survey findings to the

expected impacts of different TIR system types, to determine which types best meet a

variety of different goals.

Chapter 6 concludes the research and proposes guidelines for implementing TIR in

suburban areas like the 903 Flex area. Thesis contributions are identified and future work

items are suggested.
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Chapter 2

Literature Review

2.1 Evolution of Demand-Responsive Transport

Fixed-route conventional public transit typically focuses on urban mass travel along high-

density corridors. While providing high-frequency, high-coverage transit in dense urban

areas is cost-effective for a transit agency, providing adequate coverage in suburban areas

can be challenging due to the lower ridership and increased operating cost per passenger

(Aex, 1975). Demand-responsive modes that offer door-to-door or personalized service,

like taxis, have been active in some form since the sixteenth century, when hackneys and

fiacres first operated in European cities (Vuchic, 2007). In the context of new on-demand

pilots and services, a review of prior DRT systems is essential to understand the prior

technologies, successes, and failures in on-demand transit.

The integration of demand-responsive modes with conventional public transit was not

seriously explored until the 1970s. Flexible transit that blends elements of fixed-route

transit and DRT (e.g., route deviation) also became more common in the 1970s, further

developing in the following decades (Koffman, 2004). Increased environmental awareness,

social concerns about the quality of life in urban areas, and high oil prices caused by an

energy crisis sparked a desire to shift users away from auto-dependency (Higgins, 1976;

US Transportation Systems Center & US Technology Sharing Program Office, 1974). At

the time, fixed-route transit and taxis were the dominant non-auto vehicle-based modes.

Public transit was economically restricted to higher densities, and taxis offered a high

quality of service but at a high user cost, leaving a gap in the low-density, low-cost shared

mobility space. The rapid spread of suburbs throughout the preceding decades further

contributed to the increased importance of finding ways to service low-density areas. Many
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agencies turned to transit-integrated DRT to reach transit-poor areas, which combined the

occupancy efficiency of public transit with the flexibility of taxis. DRT services were

intended to feed into the fixed-route transit service, replace low-performing fixed-route

services in off-peak hours, and shift users from auto.

Dial-a-ride transit (DART), where a user calls a centralized dispatch service to book

a ride, was one of the most common integrated DRT innovations in the 1970s (US Trans-

portation Systems Center & US Technology Sharing Program Office, 1974). The develop-

ment of DART in this period varied between the United Kingdom, the United States, and

Canada. British systems were first offered as small off-peak specialized services, then as

regular intensive urban services with formalized control offices and high passenger loads.

Both types of systems were unsuccessful and most did not last more than a few years. A

third type found more success, as a rural system providing connectivity to urban areas.

Generally, DART was found to have longer staying power if they were a niche marginal

service, the transit agency found ways to provide the service at a lower cost, or the systems

filled a niche that could not be served by fixed-route transit (Oxley, 1980). In the United

States, because of the lower density and transit usage, there was more effort to develop

long-lasting DART systems, although these systems tended to have lower productivity and

higher subsidies than British ones (Oxley, 1980). The Canadian DART experience fell

somewhere between the British and American experiences, with better productivity than

American systems (Oxley, 1980) and higher success due to harsher winters and lower car

ownership than in the United States (Higgins, 1976). The most successful system was the

Regina Telebus, which operated for over a decade. The system operated using presched-

uled service like other DART systems, and was first used to replace fixed routes with the

highest operating subsidies (Tasker, 1973). Riders were charged an extra fare (10 cents

on top of the fixed-route 25 cent fare), and the end goal was to replace all high-subsidy

fixed-route service with the Telebus.

Ultimately, even with the Telebus’s success, the system was cancelled in the 1980s

(Scott, 2010), as were most other DART systems. A notable failure was the Santa Clara

County DART, which provided an early set of warnings for other operators considering

DRT systems (Carlson, 1976). The Santa Clara system was started in 1974, after the

Santa Clara County Transit District (SCCTD) took over all bus operations and set a goal

of covering 97% of the population. After under six months, the DART was discontinued

for four main reasons. First, passenger communication was poor, with potential passengers

needing to call multiple times over multiple hours to successfully book a ride. Second, the

entire county was included on the service on the first day, so smaller issues like booking

and routing problems became much larger because of the scale of operation. Third, a 5-10
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minute wait time standard was set (requiring 334 buses during peak service) but only 40-50

buses were available, so wait times were much longer in practice. Passengers therefore only

ended up using the service if it was booked well in advance and they had a long enough

time window to get a return trip. Fourth, shortly after service started, the Santa Clara

County Superior Court ruled that the SCCTD was illegally operating the DART service

in competition with the existing taxis, requiring the agencies to buy out the competing

companies immediately or discontinue service. The DART service was discontinued before

negotiations with taxi companies ended. The primary takeaways for transit agencies were

to begin small, manage passenger expectations around service quality, ensure processes

were tested and clear, and consider the impact on other modes including taxis.

In a retrospective of British DART systems, Nutley (1990) identified high labour costs,

low ridership potential, low potential for fare increases, poor diversion from auto versus

other modes, and poor coordination with fixed-route transit as the main failures of their

DARTs systems. In many cases, DART systems were replaced by flexible minibuses with

route deviation and hailed stops that connected the origin-destination pairs with the high-

est demand from the on-demand service. The replacement flexible minibuses then tended

to have higher ridership with lower operating costs, and in turn many of these minibuses

slowly were replaced with conventional transit. Enoch et al. (2004) evaluated the cause

of failure for a series of Australian and British DRT systems, finding the main issues to

be poor partnerships with private partners and taxis, ineffective marketing, too much flex-

ibility in trips, lack of commitment, and poorly budgeted long-term financing. In some

cases, DRT worked better in lower-density, suburban land uses, but some systems still had

challenges in areas with highly transit-hostile designs (i.e., challenging layouts to serve in

a timely fashion).

The state of practice on providing suburban transit service between the popularity of

DART and the advent of ridesourcing may be best reflected through reports from the

Transit Cooperative Research Program (TCRP), an American-based research program

operated jointly by the Transportation Research Board (TRB), the Federal Transit Agency

(FTA), and the American Public Transportation Association (APTA). Their first guidelines

on suburban mobility in 1999 reviewed existing cases of suburban transit provision and

proposed recommendations and warnings based on these experiences (Urbitran Associates

et al., 1999). Among the recommendations were controlling cost, choosing vehicle types

of appropriate size, and ensuring that shared mobility options like DART provided good

linkages with fixed routes. There was also acknowledgement that DRT services with a

lack of zonal structure or linkage to fixed-route transit resulted in prohibitive costs. An

update to these guidelines (Urbitran Associates et al., 2006) found that flexible transit
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options like deviated fixed-route services were proving less popular with passengers, and

more flexible options like DART, airport shuttles, and specialized accessible transit were

more favourable. Incorporating accessible paratransit into generalized DRT services was

also seen as one method of keeping down costs by removing the need to maintain two

DRT services. A separate review of flexible transit options (Potts et al., 2010) found that

while implementation methods varied for different users, there was a prevailing conclusion

among agencies that flexible transit of any form was useful for transitioning away from full

demand-responsive service in areas with common destinations, and that flexible services

were a good way to integrate suburban residents into the fixed-route network.

2.2 Transit-Integrated Ridesourcing

With the advent and growth of ridesourcing, transit agencies have placed renewed efforts

into exploring on-demand transit service including TIR (Section 1.2). In its most literal

form, TIR is a publicly-integrated, shared, on-demand service using an app-based platform

to immediately book rides from drivers in driver-owned vehicles (typically cars). The

primary difference from DART is the ability to immediately book service in a more user-

friendly fashion. Many systems are comparable to TIR, and are categorized as such in this

research. Comparable systems are specifically integrated into a public transit agency, open

to the general population, able to be booked immediately using a mobile app, and default

to shared rides.

2.2.1 Demand Patterns

One of the clearer distinctions between TIR systems is the set of permitted demand patterns

in the system. Figure 2.1 reviews the most common permitted demand patterns for TIR

systems and spatially demonstrates sample trips that could be made using each pattern.

The simplest pattern is many-to-one (Figure 2.1, A), where riders can make trips starting

or ending at a central location, to or from any location in the service zone, which is typically

a major transit hub offering intercity service (Klumpenhouwer, 2020). If the transit agency

has more locations (generally less than 10) that they have identified as important hubs,

they may use a many-to-few pattern (Figure 2.1, B), where riders can make trips starting

or ending at the designated hubs, to or from any location in the zone (US Transportation

Systems Center & US Technology Sharing Program Office, 1974). In both the many-to-

one and many-to-few configurations, trips must start or end at the hub(s). Other riders
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fixed route stop / hub

virtual stop

origin / destination

access/egress to/from stop

travel by TIR
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E

Figure 2.1: Differences in transit-integrated ridesourcing travel across permitted demand
patterns. A: many-to-one, B: many-to-few, C: many-to-many (fixed-route stops), D: many-
to-many (virtual stops), E: many-to-many (door-to-door)
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may be picked up on the way to the hub, and multiple riders may be dropped off in

one trip when leaving the hub, if riders are all in a generally similar travel path between

the first/final location in the route and the hub. These systems are generally used for

first/last-mile commuter service connecting to higher-order, fixed-route urban or intercity

transit; smaller towns with highly monocentric travel patterns (e.g., an older, dense ‘Main

Street’ surrounded by rural housing); or large, rural regions with multiple smaller towns

or population centres.

Systems may also choose a many-to-many pattern, where TIR trips can be made be-

tween any two eligible locations in the network (Klumpenhouwer, 2020). The most restric-

tive pattern allows travel only between stops that support existing fixed-route transit, like

bus stops (Figure 2.1, C). This may be convenient for agencies that want to use TIR as a

replacement for fixed-route service in off-peak hours (e.g. late night service), and want to

keep the stop locations the same in both fixed-route and on-demand service to minimize

rider confusion. Transit agencies may choose add virtual stops (Figure 2.1, D), which are

locations that are only serviced by the on-demand service but not by the fixed-route ser-

vice. Virtual stops can be placed in locations that are relatively far from fixed-route stops

to minimize access and egress time to the on-demand network for riders. Finally, a system

may choose to not have any official stops, and allow complete door-to-door service (Figure

2.1, E). Each pattern has its own advantages: both the fixed stop and virtual stop many-

to-many patterns allow for simpler and more direct routing compared to the door-to-door

service, because there are a finite and deliberate number of origin-destination pairs, while

the door-to-door many-to-many pattern eliminates access and egress time.

2.2.2 Recent Canadian Systems

TIR has rapidly expanded within Canadian transit agencies (Table 2.1), particularly in the

last three years. Some systems are operated through an upper-tier regional (R) or county

(C) government, but most are operated by lower-tier or single-tier local governments (pri-

marily cities). Most of the recent TIR systems were launched with the intent of replacing

fixed-route service in low-ridership routes. The growing market of TNCs with quick, im-

proved, and established routing algorithms has lowered the barrier for transit agencies to

consider adding TIR to their networks.

Pantonium, RideCo, Spare, and Via tend to be the most popular TNCs for TIR in

Canada, and have provided the platform for most new systems. In a prior TIR system,

Airdrie Transit used Cowboy Taxi, which was an upstart TNC based out of Airdrie. The
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Table 2.1: Recent Canadian transit-integrated ridesourcing systems

Start End Location Vehicle Platform Many-to Fare Weekday Weekend / Holiday

2015 2016 Milton, ON Car RideCo One (door) Lower Peak None
2017 2019 Airdrie, AB Unknown Cowboy

Taxi
Few (virtual) Same Unknown Unknown

2017 – Innisfil, ON Car Uber Mixed (door)a N/A 24-hour 24-hour
2018 – Belleville, ON Bus Pantonium Many (fixed) Same Night Sat (eve-night),

Sun (morn, eve-night)
2018 – Longueuil, QC Car Via Many (virtual) Same Peak None
2018 2019 Waterloo (R), ON Car RideCo Many (virtual) Same All-day None
2018 – York (R), ON Car Routematch Mixedb Same Mixedb Mixedh

2019 2019 Bowen Island, BC Minibus DoubleMap Mixedc Same Eve Morn-aft
2019 – Calgary, AB Van RideCo Many (virtual) Same All-day Sat (all-day),

Sun/Hol (mid, aft)
2019 – Cochrane, AB Minibus RideCo Many (virtual) N/A All-day Sat (mid)
2019 – Okotoks, AB Minibus RideCo Many (door) N/A All-day All-day
2020 – Barrie, ON Bus RideCo Many (virtual) Same Morn-aft Sat (morn-aft)
2020 – Chatham-Kent, ON Minibus Spare Many (virtual) Same Eve-night

or all-day
Sunday (morn-aft)

2020 – Durham (R), ON Van Spare Many (mixed)d Same All-day Sat, Sun (all-day)
2020 – Medicine Hat, AB Bus Spare Many (virtual) Same Eve Sun (All-day)
2020 – Niagara (R), ON Van Via Many (door) Same All-day Sat (all-day)
2020 – Regina, SK Bus Pantonium Many (fixed) Same Eve-night None
2020 – St. Albert, AB Bus Pantonium Many (fixed) Same Eve-night Sat (eve-night),

Sun (morn-aft)
2021 – Cobourg, ON Bus RideCo Many (virtual) N/A All-day Sat (all-day), Sun (mid)
2021 – Edmonton, AB Minibus Via Many (virtual) Samee All-day Sat (all-day), Sun (morn-

aft)
2021 – Fort Erie, ON Van Pantonium Many (virtual) N/A All-day Sat (all-day)
2021 – Guelph, ON Minibus RideCo Many (virtual) Same Morn-aft Holiday (morn-aft)
2021 – Hamilton, ON Bus Spare Many (virtual) Same All-day All-day
2021 – Leduc, AB Minibus RideCo Many (virtual) Lowerf Morn-aft None
2021 – Milton, ON Minibus Spare Many (virtual) Same All-day Sat (all-day)
2021 – North Bay, ON Bus Via Many (virtual) Same Eve-night Sat (eve), Sun (all-day)
2021 – Saskatoon, SK Bus Spareg Many (fixed) Same Morn-aft None
2021 – Sault Ste. Marie, ON Bus Via Many (fixed) Same None Sat, Sun (eve-night)
2021 – Spruce Grove, AB Minibus RideCo Many (virtual) Lowerf All-day None
2021 – St. Thomas, ON Minibus Via Many (virtual) Same All-day Sat (all-day), Sun (morn-

aft)
2021 – Winnipeg, ON Bus Via Many (virtual) Same Eve-night Sat (peak or morn-aft),

Sun (morn-aft or all-day)
2022 – Airdrie, AB Minibus RideCo Many (door) Same Morn-aft Sat (all-day), Sun (morn-

aft)
2022 – Quebec, QC Van Via Many (virtual) Same All-day All-day
2022 – Strathcona (C), AB Bush Spare Many (fixed) Same Eve-night Sat, Sun (all-day)
2022 – Waterloo (R), ON Minibus Spare Many (virtual) Same Peak None
2022 – Welland, ON Bus RideCo Mixedi Higher All-day Sat (all-day), Sun (mid,

aft)

a Innisfil Transit uses many-to-many (door-to-door) at a flat discount from a standard Uber rate, but uses many-to-few
(door-to-door) for flat fare trips

b York Region Transit uses many-to-one (door-to-door), many-to-few (door-to-door), many-to-many (door-to-door), and
many-to-many (fixed-route stops) at widely varying times and days of operation depending on the zone

c Translink used many-to-many (door-to-door) on weekends and many-to-one (door-to-door) on weekdays
d Durham Region Transit uses virtual stops in the urban zone and door-to-door in the rural zone
e No payment on board but expected to pay on prior/following fixed-route service trip
f Leduc Transit and Spruce Grove Transit run intercity routes that are charged at higher rates
g Saskatoon Transit was switching to Spare from Pantonium at the time of writing
h Strathcona Transit plans to move to minibuses if pilot is successful
i Welland Transit uses many-to-many door-to-door service in a rural zone and many-to-one door-to-door service from the
rural zone to the central transit station
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system’s failure was primarily attributed to issues with Cowboy Taxi’s provincial licencing,

resulting in Airdrie having to shift to a more expensive routing system (MacIssac, 2019).

Translink used a service from DoubleMap for their pilot on Bowen Island, and York Region

Transit uses Routematch, which was owned by Uber until recently. Uber and Lyft, the

more dominant TNCs, have primarily explored transit integrations in the United States.

In Canada, Uber has a partnership with Innisfil to provide their service and a generally

larger presence in the Canadian ridesourcing market, and Lyft has some limited service in

Vancouver and the Greater Toronto Area (Lyft, 2022). Both companies have purchased

transportation software companies, and in some areas have added public transit routing

to their apps.

Most Canadian TIR systems operate using a many-to-many pattern, typically with

virtual stops. Virtual stops tend to be placed with the rider-facing goal of having low

access/egress times, while minimizing the number of potential trip pairs and deviations

that need to be made by the on-demand service. Systems that use fixed-route stops tend

to also use full-sized buses. Agencies with these systems may choose this pattern-vehicle

combination because it requires minimal infrastructure investment, since it uses the existing

stops and buses from the fixed-route service, so it is easier for agencies to pilot before

committing fully. A small number of agencies use door-to-door service instead of virtual

stops.

Some current systems do not operate using a many-to-many pattern. Durham Region

has multiple many-to-many zones: urban areas have small zones surrounding neighbour-

hoods or city centres with virtual stops, and the entire rural area in the region operates

using door-to-door service. Fixed-route service connects between different urban zones and

some rural zones. Innisfil uses many-to-few for seven major destinations or hubs ($4.00-
$6.00 per trip), and offers a $4.00 subsidy on Uber rates for many-to-many travel within

the town. To minimize cases where riders book two subsequent many-to-few trips to save

costs (from an origin to a hub, then immediately from the hub to a destination), Innisfil

places a limit on the number of trips riders can make each month (Pentikainen & Cane,

2019). York Region uniquely offers a variety of targeted services in small zones throughout

the region under their Mobility On-Request banner that have varying permitted demand

patterns, which include many-to-one, many-to-few, and many-to-many with fixed-route

stops and door-to-door service. Welland uses fixed-route transit in the central urban area,

and TIR in the outer regions. Service operates many-to-many in the outer area, but is

many-to-one to access the central transit station.

For systems that have fixed-route transit in addition to TIR, there are typically no
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differences in fare between the two services. Two TIR systems have cheaper fares than

fixed-route transit (Leduc and Spruce Grove), although the fixed-route routes are intercity

buses, and one system (Welland) has more expensive fares than fixed-route transit. Service

hours vary greatly among the systems. Innisfil’s system is the only one that operates with

24-hour service. Many of the other systems operate either using all-day service (from

morning to evening or late night) or only evening and late night service. Evening and late

night service tends to be on systems that are replacing fixed-route service in less popular

hours.

2.3 Preferences and Attributes of Importance

2.3.1 Attributes in Algorithms

One of the primary areas of research in DRT systems is the dial-a-ride problem (DARP).

The DARP aims to design demand-responsive routes that balance minimizing passenger

inconvenience and operating costs (Cordeau & Laporte, 2007). Algorithms used in prior

DARPs use varying attributes to represent passenger inconvenience. While applications of

the DARP are outside of the scope of this research, the attributes used in the objective

functions and constraints of DARP algorithms can indicate what prior research considers

valuable in a passenger’s utility function for on-demand transit.

Two of the earliest DARP algorithms were CARS and ADAR (Haines & Wolff, 1982),

developed at MIT in the late 1970s and early 1980s. CARS used a linear objective function

that added new trip requests to the DRT vehicle that would have the lowest travel time

increase for on-board passengers and passengers waiting for a pick-up. The function was

constrained by the value of three attributes: wait time, in-vehicle travel time (IVTT), and

total time (i.e., the time between booking a vehicle and drop-off, which is the combination

of wait time and IVTT). ADAR was later developed to overcome shortcomings in the CARS

algorithm, and used a quadratic objective function with five attributes: wait time, IVTT,

total time, pick-up deviation, and drop-off deviation (the differences between expected

and actual pick-up and drop-off time, respectively), which was considered a more realistic

solution to DRT dispatching.

Since then, many new algorithms have been developed. Cordeau and Laporte (2007),

Ho et al. (2018), and Molenbruch et al. (2017) collectively review the state of DARP

research and algorithms since the 1980s, and further explain DARPs. Cordeau and Laporte

(2007) identify total distance, wait time, IVTT, and drop-off deviation as common DARP
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passenger criteria, either in the objective function or in the constraints of DARPs, and

identify the ability in many algorithms to allow for time windows, which are boundaries

on the expected pick-up and drop-off times (in a way, representing maximum allowable

deviations and wait times). Larger time windows make it easier for the operator to schedule

passengers but can be perceived as decreased service quality, since the passenger must plan

for a wider possible range of pick-up or drop-off times (Bruun, 2014). Ho et al. (2018) and

Molenbruch et al. (2017) further support the commonality of IVTT, wait time, and time

windows. Most research focuses on pure on-demand service (i.e., single-ride DRT trips

without the use of fixed-route transit), but some DARPs include service integrated with

fixed-route transit that account for transfers (Häll et al., 2009; Posada et al., 2017).

2.3.2 Related Models and Surveys

Previous mode choice models that considered DRT did not fully account for new ways

to integrate on-demand service like ridesourcing into a public transit system, but provide

some hints about potential responses. Earlier stated-preference surveys and models found

that the ability to book DRT closer to the desired departure time indicated a positive

preference for the mode. The ability to book 2 hours before leaving instead of 24 hours

was considered significant or would be expected to improve the share of DRT (Ben-Akiva

et al., 1996; Benjamin et al., 1998), and the marginal benefit of booking 15 minutes before

leaving was assumed to be due low to doubts about the system’s ability to dispatch service

quickly enough (Ben-Akiva et al., 1996). The ability of a system to provide 15 minute

booking would not be a major concern in current ridesourcing services. Considerable

increases in ridership were also estimated when the return trip was also available within

15 minutes of receiving a return call. However, the booking of traditional DRT systems

is different in nature from how ridesourcing systems function, and residents may have

different perceptions of TIR than what could be extrapolated from earlier literature.

Some recent literature has explored how residents perceive ridesourcing or TIR. Yan

et al. (2019) authored one of the only studies to consider mode choice modelling specifically

for TIR, but their study was limited in focus to a fairly homogeneous population of univer-

sity students and staff without consideration of fares or monetary costs. Yan et al. (2021)

later conducted a survey with predominantly lower-income residents comparing the exist-

ing fixed-route-only transit systems with a combined fixed-route and TIR system, finding

stronger support for TIR from respondents who were male, lived in transit-poor areas, did

not own a car, and were younger than 40. This was not a stated-preference survey, but did

consider TIR. Sweet (2021) used driverless and human-driven transit, ridesourcing-style
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vehicles, and a combined alternative similar to TIR in a stated-preference survey, find-

ing the cost penalty for sharing the vehicle was not statistically significant for the TIR

alternative (suggesting an indifference in paying more to not share for this mode), and a

higher preference for the mode among respondents who were not male. Alonso-González

et al. (2020) conducted a survey in the Netherlands comparing direct on-demand, last-mile

on-demand, and fixed-route only service to understand how respondents valued time and

reliability, but did not include other modes that may compete with the service like auto or

cycling. Saxena et al. (2020) compared respondents’ existing travel choice (either auto or

transit) with a new TIR mode using pivoted stated-preference experiments, finding interest

in the mode for work trips but less interest for non-work trips.

A wider body of literature has explored the ways that ridesourcing is perceived, but not

necessarily as an integrated part of the transit system. Perceptions in some cases vary for

some attributes. Individuals have been found to be more open to shared rides, including

ridesplitting, if they were young adults (Azimi & Jin, 2022; Kang et al., 2021; Lavieri &

Bhat, 2019; Young & Farber, 2019), seniors (Alonso-González et al., 2021), male (Kang et

al., 2021), female (Alonso-González et al., 2021), had lower-incomes (Azimi & Jin, 2022), or

had a higher willingness to pay for lower travel times (Alemi et al., 2019). For ridesourcing

as a whole, individuals have been found to be more open when they are young adults

(Asgari & Jin, 2020; Lavieri & Bhat, 2019; Shoman & Moreno, 2021), had lower-incomes

(Asgari & Jin, 2020), had higher-income (Lavieri & Bhat, 2019; Shoman & Moreno, 2021),

or had no children (Azimi & Jin, 2022). Liu et al. (2019) found that ridesplitting was

perceived worse than ridesourcing, and both were perceived worse than public transit.

Ridesourcing has also been found to be used more often for non-work trips (Acheampong

et al., 2020; Feigon & Murphy, 2018; Young & Farber, 2019). In summary, our current

understanding of these emerging modes is still in its infancy and user perceptions may be

heterogeneous and evolving over time, as evidenced by the contradictory research findings

in the literature to date.

Table 2.2 reviews recent relevant models. The included models were estimated using the

results of preferential surveys that included a variant of TIR. Models were either purely SP,

providing all respondents the same series of trip scenarios, or were SP with an RP reference

from which the model pivoted. In most cases, models were either simple multinomial logit

(MNL) or mixed logit with classical estimation and linear attributes. Models typically

considered home-based work (HBW) trips, but some models also considered other trip

purposes like leisure or shopping. Even though some models have multiple alternatives, the

corresponding survey did not always show all alternatives to each respondent. Some surveys

used scenarios, where different alternatives were shown in each scenario, or compared an
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Table 2.2: Recent dial-a-ride and transit-integrated ridesourcing preferential models

Authors Modela Size Type Alternatives Trip Purpose

A C RH RS T TIR W Work Other

Abe (2021) MNL,
mixed

1708 RP-SPb Xc Xc – – Xc X Xc X Leisure

Alonso-
González
et al.
(2020)

MNL,
mixed

1006 SP – – – X X X – X Leisure

Chavis and
Gayah
(2017)

MNL,
NL

177 SP – – Xd Xd X Xd – X –

Ryley et al.
(2014)

Mixed 409 SP Xc – – – Xc X – Unspecified

Saxena
et al.
(2020)

Latent
class

176 RP-SPb Xc – – – Xc X – X School,
social,
medical,
shopping,
other

Sweet
(2021)

Mixed 1684 SP X X – X X X – X Shopping,
restaurants

Yan et al.
(2019)

Mixed 1163 RP-SPb X X – – X X X X –

Zgheib
et al.
(2020)

Mixed 392 SP X – – – Xc Xce – X –

a All models used classical estimation with linear attributes
b RP component is a reference trip for SP pivot
c Alternative in survey dependent on scenario or on respondent’s reference trip or choice
d General alternatives used that included these alternatives in the descriptions (‘flexible
route’, ‘individual’)

e TIR options included ridesourcing, ridesplitting, service, and taxis to get to and from
the BRT
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alternative of study against the respondent’s reference trip from an RP section of the

survey. Fixed-route transit (T) was an available alternative in every survey. Auto (A,

which includes drivers and passengers) was another common alternative. Cycling (C),

ridehailing (RH, which includes private ridesourcing and taxis), ridesplitting (RS), and

walking (W) were also alternatives used in these surveys and the resulting models.

Table 2.3 reviews the attributes used in the models in Table 2.2. The most common

time attributes measured in models were wait time, walk time (i.e., access and egress time),

and either IVTT or total time. Total time does not differentiate between types of time,

and is presented as a more general estimate of how long the respondent would take to

travel from the origin to destination. Other time attributes included the time to transfer,

for trips with multiple legs, and the time to park for auto. Costs were typically measured

as fares. Operating cost per unit distance or time, parking, and fuel costs were used for

auto modes in some of the models’ corresponding surveys. Other attributes included the

autonomy of the vehicle, the number and relationship of additional passengers, the number

or time impact of additional stops, reliability of the travel time or the pickup time, the

number of transfers, and whether passenger-facing map apps used GPS augmentation.

2.4 System Types

DRT is a broad transportation mode covering a variety of implementation techniques. The

methods for implementing DRT, specifically TIR, can be categorized into system types.

System types describe the macro-scale, spatial attributes of a TIR system. The primary

attributes that differentiate these systems are access/egress distance, zonal patterns, per-

mitted demand patterns, and directness. Access/egress distance determines how far a

passenger must travel from their true origin or destination to reach the nearest TIR service

pick-up or drop-off location. Permitted demand patterns describe the permitted trip types

(Section 2.2.1) and bound the number of possible origin-destination pairs in the system.

Zonal patterns identify if the trips and/or the TIR vehicles are limited to zones in the

greater service area. Directness indicates if the ride is shared or unshared. Shared rides

would be less direct than unshared rides, since other passengers would be picked up or

dropped off between the passenger’s origin and destination.

Table 2.4 relates the system type attributes with the expected passenger impacts. By

connecting system type attributes to passenger impacts, respondents to passenger-facing

surveys can answer questions about impacts they are most sensitive to, and these prefer-

ences can be translated to understand how different system types would appeal to different
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Table 2.3: Attributes in recent demand-responsive transport and transit-integrated rides-
ourcing preferential models

Authors Attributes (Time) Attributes (Other)

Total Wait Walk IVTT Other Costs Other

Abe (2021) X X X Transfera Fare Passenger relation
Alonso-
González et al.
(2020)

X X Transfer Fare Reliability
(alternative
estimates)

Chavis and
Gayah (2017)

X X X Fare GPS location in
maps

Ryley et al.
(2014)

X X Fare,
operating,
parking

Pickup reliability

Saxena et al.
(2020)

X X Fare Additional
passengers,
transfers

Sweet (2021) X Parking,
fare

Automation,
additional
passengers

Yan et al.
(2019)

X X X Xb Park — Transfers,
additional pickups

Zgheib et al.
(2020)

X X X Fuel,
parking,
fare

a Transfer time directly measured as ‘frequency’ of following trip leg
b Attribute measured in model but not directly asked in survey
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populations. Service that uses virtual stops instead of providing door-to-door service would

be expected to have higher access/egress times, since travel does not connect to the pas-

senger’s true origin or destination, and lower wait times, since vehicles could travel along

quicker routes between a finite number of origin-destination pairs. Fixed-route stops would

be expected to have even longer access/egress times and shorter wait times since they are

not always placed within a short walking distance to everyone in a service area, and there-

fore further limit the distance a vehicle may need to travel to reach a new passenger.

Systems with zone-limited trips would be expected to require more transfers and have

higher transfer times, because trips across an entire service area would require transfers

between zones. Zone-limited vehicles could have lower wait times, due to the lower max-

imum distance needed to travel from dropping off one passenger to picking up another

one, but could be negatively impacted by the number of vehicles allocated to each zone.

Across permitted demand patterns, less restrictive systems (like many-to-many) minimize

the potential number of transfers, since passengers can more directly reach their destina-

tions. Shared systems are less direct, since other passengers interrupt trips with pick-ups

and drop-offs in between other passengers’ trips, so from a passenger perspective, more

stops would be expected with longer general IVTT.

Table 2.5 relates additional attributes with the expected passenger impacts. Transfer

intergration and fares do not change the spatial configuration of a TIR system, but do

change how the passenger perceives the system. Transfers between a TIR vehicle and

fixed-route transit can be integrated, to minimize the time a passenger spends waiting at a

transfer location. This would shift a passenger’s trip later, adding wait time at the expense

of lower transfer times. Different fare systems can also be considered, which change the

cost for the passenger. Using the fare structures from fixed-route transit (Vuchic, 2004),

systems could be configured to use free transfers, flat surcharges, zonal surcharges, or

sectional surcharges on top of the fixed-route transit system, each of which would have

variable impacts on out-of-pocket cost.

Recalling the characteristics of shared mobility passenger modes (Table 1.1), these

attributes consider different cases in endpoint flexibility (through access/egress distance,

zonal, and permitted demand patterns) and different cases in routing and shared ride cases

(through directness). The public system ownership of the mode and the publicly-available

use of the service are maintained in all cases. Each endpoint flexibility, routing, and shared

ride combination introduces tensions. More endpoint flexibility via more permitted demand

patterns, larger zones, and shorter access/egress distance is desirable for the passenger but

increases the cost of the system. More personalized routing and the ability to have non-

shared rides is also desirable to the passenger, but also requires higher costs because of
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Table 2.4: System type attributes and expected passenger impacts

Category Value Expected Passenger Impact

Access/egress
distance

Door-to-door service (0 m) Base case
Virtual stops (>0 m) ↑ access and/or egress time, ↓ wait

time
Fixed stops (>0 m) ↑↑ access and/or egress time, ↓↓

wait time

Zonal
patterns

No zones Base case
Only trips limited to zones ↑ number of transfers, transfer time
Trips and vehicles limited to zones ↑ number of transfers, transfer

time, variable impact on wait time,
depending on trip-per-vehicle ratio

Permitted
demand
patterns

Many-to-one Base case
Many-to-few ↓ number of transfers, transfer time
Many-to-many ↓↓ number of transfers, transfer

time

Directness Unshared ride Base case
Shared ride ↑ additional stops, in-vehicle travel

time

Table 2.5: Additional attributes and expected passenger impacts

Category Value Expected Passenger Impact

Transfer
integration

Ad-hoc (not timed with other
vehicles)

Base case

Timed transfer ↑ wait time, ↓ transfer time
Fares Free transfer (no additional fare) Base case

Flat surcharge ↑ out of pocket cost
Zonal surcharge ↑ out of pocket cost (lower than

flat with shorter trips, higher than
flat with longer trips)

Sectional surcharge (fare by
distance)

↑ out of pocket cost (much lower
than flat with shorter trips, much
higher than flat with longer trips)

25



service duplication.

2.5 Literature Gaps

While shared mobility research is increasing, there are key gaps that are not fully addressed

in the existing literature:

• The unique characteristics and appeal of ridesourcing requires guidelines on DRT,

specifically TIR with app-based immediate booking, to evolve to accommodate for

these factors

• Transit agencies are incorporating ridesourcing projects, but with little guidance

on the best ways to integrate these services to create mode shifts that encourage

desirable modes (fixed-route transit and active transportation)

• Much behaviour-focused research examines ridesourcing as a completely separate

alternative to transit. There is also little research on how TIR specifically competes

with or complements transit, while the ridesourcing base of comparable literature is

quite large.

• The body of literature examining mode choice models for TIR is quite small (Tables

2.2 and 2.3), with many opportunities available to determine how people perceive

different forms of integration. Existing research does not always consider TIR as a

complete alternative to current alternatives, does not include a complete selection of

alternatives, focuses on a more transit-captive demographic, or does not account for

attributes that vary between system types.

This research aims to make progress toward filling these gaps, by connecting how oper-

ational characteristics impact behaviour, expanding the body of literature for TIR mode

choice models, and developing a typology for trips based on fixed-route transit proximity.

Chapter 3 reviews an existing pilot and explores competitiveness using a newly developed

trip typology. Chapter 4 conducts a survey with a complete set of alternatives and a set

of attributes relevant to system type impacts. Chapter 5 builds a mode choice model from

the survey results and applies the results back to finding preferences for the system types

identified in the literature. Chapter 6 outlines guidelines for how agencies may consider

implementing TIR in the future.
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Chapter 3

Trip Typology and 903 Flex Analysis

The first output of this research is a trip typology, which categorizes transit-integrated

ridesourcing trips based on their competitiveness with active transportation modes and

public transit. The typology was then applied to an analysis of the trips from a transit-

integrated ridesourcing pilot in Waterloo. Changes in user and trip characteristics were

measured using the trip typology and other relevant factors available in the data set.

The trip typology is a new method for assessing the spatial competitiveness of transit-

integrated ridesourcing systems, which may be used for assessment of other systems to

determine how transit-integrated ridesourcing spatially competes with alternative modes.

The analysis of the transit-integrated ridesourcing pilot, which incorporates the typology,

is the first comprehensive spatial analysis of a transit-integrated ridesourcing system.

3.1 Background and Data

In 2018, the Region of Waterloo launched three one-year pilot projects to test shared

mobility options through its transit agency, GRT. Figure 3.1 depicts the service areas for

each of the pilots and the route for the ION, the Region’s LRT line. One project was

launched in each of the three cities in areas with high requests for transit but no plans to

introduce regular fixed service before 2021 (Grand River Transit, 2019d). In Kitchener,

the largest city, a weekday bus (901 Flex) connects three fixed stops around a mall with

three on-demand stops that must be booked in advance (Grand River Transit, 2019a).

In Cambridge, the more suburban of the three cities, a subsidized taxi (902 Flex) offered

in conjunction with a local taxi company was offered 7 days a week as both a scheduled

shuttle-like service and a service connecting users between any two flexible stops in the
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service area (Grand River Transit, 2019b). In Waterloo, the smallest of the cities, but

with two large universities (Waterloo and Laurier) and hence a large student presence,

a partnership with RideCo was formed to offer weekday ridesourcing (903 Flex) during

specified hours in an under-serviced transit area west of the universities. Initially offered

surrounding peak hours, the service expanded to operate from 7:30 am to 10:00 pm, and

trips could be made between any two of the supporting stops for the same price as a bus

fare, with free transfers to the fixed-route bus service (Grand River Transit, 2019c). Due

to low weekly ridership, the Cambridge subsidized taxi ended in August 2019, and the

Waterloo ridesourcing pilot ended in December 2019 (Grand River Transit, 2019e). The

Kitchener service continued to operate until 2022 (Grand River Transit [@grt row], 2022),

and two more flexible-stop buses were introduced in other parts of the region. GRT also

designed a demand-responsive transit service in Breslau in a partnership with Metrolinx

(Grand River Transit, 2020a), which launched in 2022. This analysis focuses on the 903

Flex, which was the ridesourcing service in Waterloo.

During the 903 Flex’s operation, GRT made a series of changes to the pilot in response

to feedback from users. Table 3.1 outlines the changes made to the pilot and the transit

network over the pilot’s operation. Three broad operating periods are defined, which are

used for the remainder of this research. The first period covers pilot trips taken between

the launch of the pilot service and the launch of the ION. The ION’s first full weekday

of service also coincided with changes to almost every bus route in the regional transit

network. The first period is broken down into three sub-periods, capturing trips taken

between milestones where the pilot underwent further changes. Due to the relatively low

trip count in each sub-period, these sub-periods were combined into one larger period for

temporal analysis. The second period covers the launch of the ION to the end of August

2019, during which users adjusted to the new fixed-route transit network that interfaced

with the pilot. The third period starts at the final service change, where capacity was added

intermittently during the peak-hour, and some stops were adjusted. The third period is

split into two sub-periods (3a and 3b) that are both used for temporal analysis, due to the

high volume of trips taken in the final four months of the service.

GRT provided the trip database, which contained all 4536 ridesourcing trips (rides)

made by 178 unique users during the 903 Flex’s operation. The attributes used for analysis

included pick-up and drop-off locations (to generate trip alternatives), pick-up time (for

time-of-day analysis and trip alternative generation), travel time (for comparison against

other modes), unique user IDs (for temporal user analysis), shared ride status, and payment

methods (for inferences into multimodal transit use). The database also included driver

identifiers, driver rating, and notes from the customer or RideCo, which were not used in
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Figure 3.1: ION light rail transit route and 2018 pilots areas in the Region of Waterloo
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Table 3.1: 903 Flex operating periods, including major milestones and trip counts

Period Start Date Milestone Trip Count

1a 26 November 2018 First week of service 63
1b 11 March 2019 Conversion from peak hour service to continu-

ous all-day service, 2 bus stops added
341

1c 6 May 2019 Service hours adjusted later, 5 virtual stops
added, 5 bus stops added

657

2 24 June 2019 First full weekday of light rail transit service,
transit network reorganized

1334

3a 3 September 2019 Variable peak-hour service temporarily
reintroduced, 2 virtual stops added, 1 bus
stop added, 1 bus stop moved

1117
3b 4 November 2019 1024

End 20 December 2019 Final day of service

the analysis.

Figure 3.2 shows desire lines between the origin–destination (O-D) pairs representing

all rides in the pilot, separated by operating period (1, 2, 3a, and 3b). GRT placed virtual

stops (white circles) to achieve a maximum 5min access and egress walk to the transit

network in northwest Waterloo, which increased coverage in areas where existing fixed-

route services (grey lines) were poor. Some bus stops (black circles) were made a part of

the 903 Flex pilot. The blue desire lines for each period connect virtual stops and bus

stops in the network, with thickness weighted by trip frequency throughout the operating

period. The top five most popular stops in each period are identified in larger circles with

their share of trip origins/destinations.

Of the 4536 rides in the dataset, 2828 rides did not have pick-up and drop-off times

that matched the reported ride time (i.e., the in-vehicle time). To find the available transit

alternatives and conduct ride time comparisons, a cleaning procedure was developed and

used to match the departure and arrival times to the reported ride times. A detailed

breakdown of the process is outlined in Appendix A. Generally, the reported ride time was

assumed to be correct and the times were adjusted to match the ride time to better compare

rides with potential alternatives. Preserving the actual departure time was prioritized

where possible since it was used in more analyses.
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Figure 3.2: Ridesourcing pilot trips for different operating periods in northwest Waterloo.
Base layer using OpenStreetMap imagery, GIS layers partly sourced from the Region of
Waterloo (Grand River Transit, 2019c; OpenStreetMap contributors, 2019; Region of Wa-
terloo, 2019)

3.2 Methods

This analysis consists of three major steps. First, multimodal alternatives to the pilot

rides were generated, which were used to determine the competitiveness of a user’s other

travel options at the time of their ride. Second, a spatial characterization framework was

developed and applied for all trips in the pilot, which was used to determine whether the

pilot encouraged integration or competition with fixed-route transit. Third, temporal user-

level trip-making behaviour and changes in spatial characteristics, trip frequency, and other

available ride characteristics were measured, to comprehensively examine what factors may

have influenced user trip-making frequency and trip types throughout the pilot.
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3.2.1 Generating Walking, Cycling, and Transit Alternatives

Multimodal alternatives were generated for each ride to temporally assess the most com-

petitive options that each user could have taken instead of using the ridesourcing pilot.

The alternative trips provide insight into the options available to the user at the time

they booked their ride. A standardized process and trip pattern (Figure 3.3) were used to

generate each alternative trip, including the arrival time for each mode.

estimated walking or cycling trip

estimated transit trip

observed ridesourcing trip (ride)

egressaccess

1

1

1

2

2

2

3 4
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Figure 3.3: Trip terminology and pattern for ridesourcing, transit, walking, and cycling

Two assumptions were made when generating alternative trips. First, it was assumed

that the origin and destination for both walking and transit trips would be the same as

the ride’s origin and destination (i.e., the virtual origin and destination). Setting the

origins and destinations equal for each mode effectively assumes that the user first travels

to the virtual origin, then decides to make a trip using ridesourcing, transit, cycling, or

walking. After the trip is completed, the user then walks or takes transit from the virtual

destination to their true destination for each alternative. The travel between the true

and virtual origins and destinations (points 1 to 2 and points 5 to 6 in Figure 3.3) were

not modelled in this analysis, as the true origins and destinations for each user were not

observed.

The second assumption is that the departure time for each alternative trip is equal to

the requested ride departure time or the actual ride departure time, whichever is earlier.

The requested time indicates when the user was intending to take the trip, since the
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ridesourcing service offers the ability to book trips in advance. However, a user picked up

earlier than the requested time means the user was ready to make the trip and therefore

would have been able to use one of the alternative modes (transit, cycling, or walking) at

that time to complete their trip.

The implications of these assumptions are important for interpreting the results of

the research: by using the ride’s virtual origin and destination for alternative modes, the

effectiveness of the ridesourcing option is presented with favourable conditions since every

other mode needs to deviate to the virtual stops; by choosing the requested or actual ride

departure time, it is assumed that the user needs to make the trip at the same time they

took the ride.

Trip times for transit, walking, and cycling alternatives were generated with Open-

TripPlanner 1.4.0 using GTFS files from OpenMobilityData for transit stop, route, and

schedule data (Grand River Transit, 2020b), OpenStreetMap for road and trail network

layers, and Python 3.6 for API requests. Five GTFS feeds were used, corresponding to

GRT’s seasonal schedules. OpenTripPlanner required the coordinates of the start and end-

ing points of the journey, the date of the journey, and the time the user had requested to

be picked up.

Preliminary versions of this work used two more laborious methods to generate alterna-

tives. The first method involved hand-entering the active transportation origin-destination

pairs into Google Maps and using a spreadsheet to search through transcribed transit sched-

ules. This manual technique worked well with the small set of trips originally provided

by GRT (585 out of 4536 total trips), but was unmanageable for the whole dataset. The

second method replaced the hand-coded spreadsheet with a Python script that searched

through GTFS files. This was quicker and less prone to human error, but was ultimately

less effective than using OpenTripPlanner, which is designed to find the most effective trip

option in the same way as a typical user. For the remainder of the research, OpenTrip-

Planner replaced both of the previous methods for estimating all trip alternatives.

Transit Trips: Transit alternatives were generated using the default settings in Open-

TripPlanner to produce transit trip components, including access time, travel time (includ-

ing transfers), and egress time. Walking times for transit access and egress use a walking

speed of 1.33m/s, which converts to 400m over 5min, and empirically aligns with aver-

age walking speeds in this area from other trip planners like Google Maps. If more than

one itinerary was returned, the preferred transit alternative was selected by minimizing

the combined access and egress walking time (which in turn reduced walking distance),

reflecting the trip that would be most spatially competitive with the pilot ride. A maxi-
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mum number of transit transfers was not set because spatial characteristics were of greater

importance in this study. Driving itineraries were generated from the virtual origin to the

virtual destination, and the virtual origin to transit origin (Section 3.2.2, for determining

trip types with no reasonable transit alternative.

Walking and Cycling Trips: Walking alternatives used a walking speed of 1.33m/s.

Cycling alternatives used the ‘balanced’ option in OpenTripPlanner, which equally weighs

bike-friendliness, speed, and elevation when generating a cycling itinerary. This option was

selected because the preferences of users were unknown, making the most balanced option

the least presumptive.

Trip components from the generated transit alternatives were used to characterize the

transit context operationally and spatially. The number of transfers taken, wait times,

and travel times were extracted from OpenTripPlanner for transit service analysis. For

active transportation alternatives, travel time was the only trip component extracted and

analyzed. Access and egress walking times are key descriptors of the transit context and

can be spatially characterized like ridesourcing trips.

Headways for the transit trips were calculated by emulating the process used in the

OpenTripPlanner web interface. Three trips were used: the preferred transit alternative,

and a previous and next trip using the same route number(s). Previous trips were found by

setting the arrival time 1.5min earlier than the preferred transit alternative, and following

trips were found by setting the departure time 1.5min later than the preferred transit

alternative. Due to limitations in the route filtering parameters, previous and next trips

may arrive at the same location but in the other direction of a transit route (e.g. the

original trip was southbound and the next trip uses the northbound direction). Some trips

in the GTFS feed also arrived only a few minutes after a previous trip on routes with

typically longer headways, but it was unclear whether this was an error or a trip with a

genuinely shorter headway. Because of these limitations, estimated headways therefore may

be shorter than the true headway of the trip, but in aggregate should provide a reasonable

sense of how frequently buses would have arrived for users in the pilot had they instead

used transit.

It is important to emphasize that the alternatives generated were not always desirable.

In some cases, walking, cycling, or transit trips could be over an hour long, which most

passengers would not accept as an alternative for these trip lengths. However, including

all alternatives in the choice set is essential in understanding the full suite of cases where

transit-integrated ridesourcing was the selected alternative. Including only cases where

walking or cycling were competitive (e.g., where walking or cycling trips were close to

34



the same length of time as transit-integrated ridesourcing) would mask the undesirability

of these alternatives for more arduous trips. While walking and cycling are encouraged

at shorter trip lengths, and transit is encouraged at longer trip lengths, there were cases

where the existing network did not support these alternatives. By showing all possible

alternatives, these alternative-poor scenarios can be identified and ideally improved in

future transportation infrastructure improvements.

3.2.2 Spatial Characterization Typology

Once multimodal alternatives were generated for each ride, sets of statistics and charac-

teristics for each trip could be generated. Each ride was assigned a competitive alternative

mode depending on which alternative arrived at the virtual destination first. The time

savings or loss from using ridesourcing were calculated based on the difference between

the arrival time from the competitive alternative mode and the actual arrival time of the

ride. For all trips, the transit alternative’s headway was recorded to determine whether

there was correlation between headway and ridesourcing usage. Time ratios comparing

walking, cycling, and transit to ridesourcing were generated using a modified version of

the calculation used in TCRP studies (Feigon & Murphy, 2016). In the report, time ratios

are calculated using average wait times and actual travel times. In this research, walking,

cycling, and transit alternative time ratios were calculated using the actual waiting times

and actual travel times for each trip.

Four distance measures were tracked in relation to the competitive transit trip: access

distance, egress distance, minimum access/egress distance, and maximum access/egress

distance. Access and egress distance refer to the travel distance from the virtual origin to

the competitive transit trip’s origin stop, and from the competitive transit trip’s destination

stop to the virtual destination, respectively. The minimum and maximum access/egress

distance are the minimum and maximum of the two distances, respectively, which are

valuable for analyzing large numbers of trips at once. A low minimum distance indicates

that at least one of the virtual stops is close to their nearest transit stop, whereas a high

minimum distance indicates that both virtual stops are far from their nearest transit stop.

In contrast, a low maximum distance indicates that both virtual stops are close to the

nearest transit stop, whereas a high maximum distance indicates that at least one of the

virtual stops is far from their nearest transit stop.

Trips were then categorized into types, based on transit access/egress characteristics us-

ing these four distance measures. Figure 3.4 presents the proposed typology, which includes
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Figure 3.4: Ridesourcing trip types based on transit access/egress distances
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the major trip types that are identified as non-transit trips, feeders, transit replacements,

inconvenient trips, and remote trips, based on the combination of access/egress distances

to/from a virtual stop to a transit stop. Each trip type is based on the categorization of

access and egress distances. Access and egress distances fall within four categorizations: at

a transit stop (a negligible walk), convenient (400m away or less by walking), inconvenient

(401m to 800m away by walking), and remote (more than an 800m walk away). Distance

bins are based on generally accepted distances users are willing to walk to reach transit:

every 400m represents an estimated 5min of walking time. Trip types are a useful tool for

describing how the ridesourcing trip competes with or complements transit. For example,

transit replacements imply a duplication of services, remote trips imply poor transit access,

and direct feeders imply that service connects immediately to the nearest transit stop. In

addition, trip types are useful when analyzing user choices over time, effectively connecting

user preferences with ridesourcing services.

Trips with a medium or long maximum transit access/egress distance (top two rows in

Figure 3.4) include rides that have at least one ridesourcing stop that is far from transit

(greater than 5min). Indirect feeders are rides that connect a virtual stop to a transit stop

that is not one of the closest transit stops. Indirect feeders may still integrate the user

into the transit system but could also potentially compete with existing transit options.

Inconvenient trips are rides where one virtual stop is 5min to 10min (401m to 800m)

away from the nearest transit stop, and the other is some distance away from the nearest

transit stop, up to 800m, representing trips that more dedicated transit users with longer

acceptable access/egress distances may be willing to make, but that some users may find

too difficult. Remote trips are rides where one virtual stop is more than 10min (800m)

away, and the other is some distance away from the nearest transit stop. Remote trips

are inconvenient for effectively all users on at least one of the ends, because the access or

egress time (or both) is very long. Inconvenient and remote trips are further categorized as

single-ended and double-ended, indicating whether both sides fall into the same category of

inaccessibility (e.g., a single-ended remote trip may be 1000m from the nearest transit stop

on one end, but 500m away on the other, so only one end is ‘remote’). Users taking these

transit poor trips are expected to shift from driving. For single-ended inconvenient trips,

some users who are more walking-friendly may shift from transit. Users taking remote

indirect feeders are expected to shift from driving and boost transit service, since they

connect to the transit network. Users taking inconvenient indirect feeders are expected

to shift from transit if they are walking-friendly, and to take more transit if they are

walking-averse.

Trips with a short maximum transit access/egress distance (third and fourth rows in
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Figure 3.4) are categorized as transit replacements. Direct transit replacements are rides

connecting two transit stops, and therefore directly compete with transit. Indirect transit

replacements are rides that connect a transit stop to a virtual stop that is within a 5-minute

(400 metre) walking distance from another transit stop, which is not as strongly connected

as two transit stops, but still competes with transit. Transit replacements are most likely

to shift users from transit.

Trips with no transit alternative (bottom row in Figure 3.4 are special cases that don’t

neatly fit within the developed typology. Direct feeders are rides that connect a virtual

stop to the nearest transit stop, which have no transit alternatives and compete only with

active transportation and driving. Non-transit trips are rides that connect a virtual stop

to another virtual stop, with the same characteristics of having no transit alternatives and

competing only with active transportation and driving. In addition to access and egress

times, these trips were given an additional qualifier based on driving distance. The driving

distance qualifier addresses the incorrect categorization of trips as transit replacements or

indirect feeders when the nearest transit stop by walking was different than the nearest

transit stop by driving (because of vehicle-free routes such as pedestrian trails). A qualifier

for direct feeders and non-transit trips comparing driving distance to the nearest transit

stop with driving distance to the destination reduces these mischaracterizations, and cases

in which users are taking a trip between two spots in the same neighbourhood. This follows

the original intent of the typology, which is to determine whether users are making transit-

supportive trips. If a user is unable to walk to the nearest transit stop, then a ‘good’

trip for the user to take would be the one that is nearest by driving (i.e., by ridesourcing)

because transit is not accessible. Generally, the categorization scheme for non-transit trips

and direct feeders is restrictive and represents a conservative estimate of trips that have no

transit option. Users taking either of these trip types are expected to shift from walking

and cycling on shorter trips, and from driving on longer trips. Direct feeders are also

expected to boost transit service since they connect users directly to transit stops.

3.2.3 User Classification

Users were classified by trip-making frequency to identify trip-making behaviours and pat-

terns throughout the ridesourcing pilot. The three user groups include frequent, average,

and infrequent users, which represent three levels of pilot adoption and corresponding trip

sample sizes. Criteria for user groups were chosen using engineering judgment to ensure

that characterizations of user groups reflected sustained trip making behaviours and con-

sidered sample sizes within each group. Frequent users (53 users, 3697 trips) include those
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who took an average of at least one ridesourcing trip per week over a period of at least two

months, ensuring they had some regularity in their ridership over a length of time roughly

equivalent to the shortest periods (3a and 3b). Infrequent users (56 users, 75 trips) include

anybody who has two trips or less throughout the entire pilot, which was about a third of

the riders. Average users (69 users, 764 trips) include everybody in between; that is, users

who took three or more trips throughout the pilot but did not meet frequent user criteria.

This research analyzes trip type and frequency changes over time using these user

groups. First, total trips taken by each user group were split based on trip type. Compar-

ing the trip-type splits of user groups can reveal whether certain trip types were typical

or appealing for more frequent users. Second, the analysis examines whether trip types

changed over time; that is, whether unique users changed trip-making behaviours. This

analysis only tracks trips made by the frequent user group because the average and in-

frequent groups do not have enough trips per unique individual to support an analysis

across periods. Since frequent users capture a larger sample of trips per unique user, this

group better represents behaviours over time than more infrequent user groups. Third,

another longitudinal analysis of frequent users seeks to understand whether individual trip

frequency increased as the pilot progressed. The number of trips made by frequent users

were compared across pilot periods (including 1a, 1b, and 1c) to understand how many

users increased, decreased, or stabilized their use over time. The time of day that 903

Flex trips were taken was analyzed to make inferences about temporal user behaviour.

Trip times were binned into 6 categories corresponding to rush hours and peak periods for

Waterloo, ON based on the time the vehicle picked up the user from the origin: morning

rush hour (7:30 a.m. to 8:29 a.m.), morning peak period (6:30 a.m. to 7:29 a.m. and 8:30

a.m. to 9:29 a.m.), midday off-peak (9:30 a.m. to 2:29 p.m.), afternoon peak period (2:30

p.m. to 4:29 p.m.), afternoon rush hour (4:30 p.m. to 5:29 p.m.), and evening off-peak

(5:30 p.m. to 10:00 p.m.).

3.3 Results

3.3.1 Spatial and Temporal Trip Characteristics

Table 3.2 lists a summary of ridership and time statistics for the 903 Flex, as well as the

most competitive transit, walking, and cycling alternatives. Trips are divided into periods

(Table 3.1). Daily ridership spiked in period 2, then remained relatively constant after-

wards. Shared rides and multiple users per booking identify two different ride statistics: a
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shared ride indicates that multiple bookings used the same ride, while multiple users per

booking indicates a shared ride through one booking. The share of shared rides and the

average daily ridership were small in period 1, but larger in the later periods. Users tended

to book multiple users per booking at the same rate (10-14%), no matter the period in

which they were using the service. Ride times and alternative trip times did not change

greatly over the pilot: the mean ride time and cycling alternative trip time were fairly

consistent (about 7min), the mean walking alternative trip time was slightly longer in

period 2, and the mean transit alternative trip time with or without estimated wait time

was shorter at the start of the pilot. Median trip times were also calculated, but showed

similar results, falling within a maximum 8% change from the mean value.

Table 3.2: Ridership and temporal statistics for 903 Flex and alternatives by period

1 2 3a 3b Total

903 Flex Pilot
Period length (operational days) 143 49 43 35 270
Unique users 68 103 88 68 178
Daily ridership, mean (bookings/day) 7.37 33.4 26.0 30.1 25.5
Shared rides (%) 20.2 35.8 25.5 30.9 28.5
2+ users per booking (%) 14.0 9.67 12.4 11.9 11.9
Ride time, mean (min) 7.21 7.07 7.05 6.95 7.08

Competitive alternatives
Transit trip time, no wait time, mean (min) 22.5 26.5 28.2 27.8 26.2
Transit trip time, with wait time, mean (min) 34.6 38.4 36.7 36.9 36.7
Cycling time, mean (min) 12.9 13.9 12.8 12.7 13.1
Walking time, mean (min) 46.4 49.6 46.0 45.3 47.0

The times users were picked up across 903 Flex periods was relatively uniform across

all periods (Figure 3.5). Off-peak trips were very dominant across all periods, consistently

representing two-thirds of trips taken in each period. Midday off-peak trips were the most

popular (33-44%), followed by evening off-peak trips (25-31%). For periods 1b-3b, these

were also the longest segments in the day (5 hours for midday, 3.25 to 4 hours for evening).

Trips during peak hours accounted for 10-16% of trips in each period.

Table 3.3 lists the shares of trip types over time for each period. Indirect feeders con-

sisted of over half of 903 Flex rides in periods 1 and 2 and remained the primary trip type

in the latter periods. Transit replacements, which are the most transit-competitive types,

peaked in period 2, and were relatively stable in the other periods, with a very slight decline
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Figure 3.5: Pick-up times by time of day by period

toward period 3b. The peak in period 2 could have been due to free trips that were made

available during the period with the introduction of the LRT service (see Table 3.1). Addi-

tionally, during that time period, free coupons were handed out to users, which may have

also contributed to transit replacements being taken more frequently. Direct feeders, non-

transit trips, inconvenient trips, and remote trips, which are the least transit-competitive

types, increased from 19% of all trips in period 1 to 45-51% of all trips in periods 3a and

3b. Notably, 85% of non-transit trips were taken by the second-most frequent user in the

pilot between the same O-D pair (Rock Elm / Pasture Rose and Columbia Forest Long

Term Care). One of the more popular stops (Hagey / Columbia) shifted location after

period 2, causing some former indirect feeders to turn into inconvenient or remote trips,

but this shift was not solely responsible for the increase; the combined total of transit poor

trip types (indirect feeders, inconvenient trips, and remote trips) grew from 65% in period

2 to 76% in period 3a.

The access, egress, minimum access/egress, and maximum access/egress distances for

each transit alternative, which form the basis for trip types, were separately assessed

(Figure 3.6). Results were placed into bins of distances between the virtual stop and the

nearest transit stop. A time of 0m (i.e., the virtual stop was located at a transit stop)

was a common value, warranting separation from the rest of the bins. Over 80% of rides

began or ended at a transit stop (i.e., minimum access/egress of 0m). Eight percent of
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Table 3.3: Competitive transit alternative trip types for each operating period

1 2 3a 3b Total

Ride type No. % No. % No. % No. % No. %

Transit replacement, direct 35 3.3 188 14.1 26 2.3 37 3.6 286 6.3
Transit replacement, indirect 116 10.9 163 12.2 120 10.7 87 8.5 486 10.7
Indirect feeder, inconvenient 371 35.0 317 23.8 123 11.0 95 9.3 906 20.0
Indirect feeder, remote 334 31.5 348 26.1 279 25.0 342 33.4 1303 28.7
Inconvenient, single-ended 44 4.1 26 1.9 41 3.7 85 8.3 196 4.3
Inconvenient, double-ended 14 1.3 33 2.5 64 5.7 55 5.4 166 3.7
Remote, single-ended 118 11.1 113 8.5 273 24.4 202 19.7 706 15.6
Remote, double-ended 8 0.8 30 2.2 71 6.4 37 3.6 146 3.2
Direct feeder 9 0.8 4 0.3 12 1.1 16 1.6 41 0.9
Non-transit trip 12 1.1 112 8.4 108 9.7 68 6.6 300 6.6

Total 1061 1334 1117 1024 4536

rides began and ended at a transit stop (i.e., maximum access/egress of 0m).

3.3.2 Users and Trip-Making Frequencies

The weekly ridership for the 903 Flex for the pilot duration (November 2018 to December

2019) steadily grew over time (Figure 3.7). Ridership was separated into new and unique

users per week. The first user took their first trip in the last week of December 2018, and

starting in mid-January 2019, there was at least one user per week. The number of weekly

unique users increased rather steadily, starting in March 2019, and peaking in November

2019. This increase was paired with a regular cadence of new users, which stabilized to

between two to four new users weekly. The largest spikes in new users occurred in April

2019 (midway through period 1b, 13 users) and three times in period 2 (11-12 users each

time).

Figure 3.8 shows the number of rides taken per unique user, during the whole operation

of the pilot, expressed in percentiles. Many users took very few rides during the pilot’s

operation: 20% of users had taken only one trip, and 50% had taken less than eight. 12

users (7%, above the 93rd percentile) took over 100 trips over the year. These dominant

users accounted for 44% of all the rides in the pilot. Most of the dominant users took at

least one trip in each period and tended to have a small consistent set of preferred origin-

destination pairs. The user with the highest ridership took 359 rides and was the only user

to take more than one ride per operational day on average. The frequent, average, and

infrequent categories are not considered here because they do not perfectly align with the
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Figure 3.6: Access, egress, minimum, and maximum distances between virtual stops and
nearby transit stops by period

Figure 3.7: 903 Flex weekly ridership statistics
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number of rides taken by a user, but generally the more frequent users were in the higher

percentiles and infrequent users were in the lower percentiles.

Figure 3.8: Number of rides taken by users in percentiles

Trip types evolved across users with different trip-making frequencies over time (Figure

3.9). The shares for all users for each period are given in Table 3.3. Users were binned

into frequent (53 users), average (69 users), and infrequent (56 users), based on their trip-

making frequency and their total number of trips. Total rides for each column are listed

in brackets along the bottom axis (e.g., 16 total rides by infrequent users in period 1)

to provide scale for comparison. Remote trips consist of single-ended and double-ended

remote trips, and inconvenient trips consist of single-ended and double-ended inconvenient

trips. Frequent users took a smaller share of transit replacements compared to the other

two user bins (7-20% vs. 11-52% of trips per period), infrequent users took a smaller

share of indirect feeders (0-22% vs. 39-72% of trips per period), and average users took

a smaller share of inconvenient and remote trips (6-26% vs. 16-62% of trips per period).

Excluding period 1, frequent users took a larger share of direct feeders and non-transit

trips (9-12% vs. 0-6% of trips per period). Generally, frequent users took a higher share of

more transit-supportive trip types (i.e., trips that are not transit replacements) than users

in the less frequent user bins, and had a significantly different share of transit-supportive

trip types from average users (X2(1, N = 4461) = 240.04, p =< .001) and from infrequent

users (X2(1, N = 3772) = 67.07, p =< .001).

Changes in trip magnitude over each period were assessed for frequent users, because

they took enough trips over a sufficiently long period (eight weeks or more with at least

an average of one trip per week) to reveal changes in trip patterns. In Figure 3.10, user
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Figure 3.9: Trip types by trip-making frequency by period

behaviour is categorized in each period based on the percent change in trips from the previ-

ous period. ‘Start’ indicates that a user took trips in the current period but made no trips

in the previous period. ‘Stop’ includes users who took no trips in the current period but

made a trip in the previous period (i.e., a drop of 100% since the previous period). ‘Stable’

indicates a user had a percent change between -50% and 50%, and ‘Decrease/Increase’

represents values below or above those thresholds, respectively. Period 2 represented the

largest number of individuals reducing their trip frequency, but few users stopped using

the service completely. In periods 3a and 3b, most frequent users continued to increase or

stabilize their number of trips.

Changes in trip types for frequent users was also studied but did not reveal substantial

changes in trip type over time. 55% of frequent users maintained the same dominant trip

type, and 89% of frequent users maintained the same trip type class (medium-high distance

from transit, low distance to transit, or no transit).

Figure 3.11 shows the trend in trip types per user, over each operating period. Like

in Figure 3.10, period 1 is broken down into the three constituent subperiods. Compared

to previous statistics that showed the percent of trips taken overall, this figure weights
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Figure 3.10: Changes in trip magnitude for frequent users by period

trips taken by the number of unique users in that period, broken down by trip type. For

example, the average user took 3.44 inconvenient indirect feeders in period 1b. The trip-

type shares on a per-user basis correlate with the percent changes (Table 3.3), while also

demonstrating the general increase in user attachment. Other than period 1a, each period

has a similar number of operational days, yet the number of trips per user continued to

increase. The increase in trips per user continued despite Period 2 having the highest

number of unique users and daily bookings, and the number of unique users decreasing in

both Periods 3a and 3b. Much of the per-user growth was due to increases in trips with

high distances to transit on at least one end.

Payment methods used varied greatly, both by users with different trip-making fre-

quencies and across each period (Figure 3.12). Stored-value transit cards were launched

in March 2019 (period 1) and became more common across all three user bins. In pe-

riod 2, two promotions (one for the LRT launch, one targeted at the 903 Flex) resulted

in free trips being the dominant ‘payment’ method. Other forms of payment, which in-

clude cash, credit card and missing payment methods, were a larger share for infrequent

users and almost negligible for frequent users. Transfers were present across all periods

for all user bins: infrequent users paid with transfers at a significantly higher share of

their trips in periods 1 and 3 (period 1-2: X2(1, N = 49) = 14.71, p =< .001; period

2-3: X2(1, N = 42) = 6.96, p = .008), average users used them at a fairly consistent

rate with no significance between periods other than for period 2 (period 1-2: X2(1, N =

498) = 13.49, p =< .001; period 2-3a: X2(1, N = 352) = 12.30, p =< .001; period 3a-3b:
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Figure 3.11: Trip types per user for each operating period

Figure 3.12: Payment methods by trip-making frequency by period
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X2(1, N = 266) = 2.70, p = .100; period 3b-1: X2(1, N = 412) = 3.90, p = .048), and

frequent users used transfers more in later periods at significantly higher levels (period 1-2:

X2(1, N = 1848) = 107.50, p =< .001; period 2-3a: X2(1, N = 2048) = 66.31, p =< .001;

period 3a-3b: X2(1, N = 1849) = 105.51, p =< .001). Payments using transfers is an

indicator of connectivity with transit: a transfer payment suggests that the ride was part

of a greater trip chain that includes fixed-route transit, and that it was likely these trips

came after the fixed-route transit trip in the chain, since the users already had the transfer.

3.3.3 Intermodal Competitiveness

Alternative trip times were compared to determine the competitiveness between rides and

alternative trip options using transit, walking, and cycling (Table 3.4). Transit and walking

alternatives were almost never faster than the ride, although for very short rides, walking

was potentially faster if the ride wait time is considered. Cycling was the only alternative

that was faster than ridesourcing for a noticeable share of trips, which increased after period

1. Even though walking was the slowest option, there were more cases in periods 3a and

3b where it was faster than taking transit even without transit trip wait time considered.

When transit trip wait time is considered, walking was faster for a sizable percent of

trips, especially in the first and fourth periods. In periods 1 and 2, cycling was slightly

less competitive against transit when removing wait time, which was due to the specific

spatial/temporal characteristics of trips going to one transit stop (Hagey/Columbia). This

stop was moved for other reasons in periods 3a and 3b, resulting in the same percentage

for those periods. When wait time is considered, cycling was faster than transit for almost

every trip.

The headways for transit alternatives, rounded to the nearest 5 min for each operat-

ing period, were estimated to understand the frequency of available transit trips (Figure

3.13). Trips without a transit alternative and trips where a headway could not be cal-

culated are excluded, but together accounted for 10% of trips or less depending on the

period. Headways for trips at most 800 m away or 400 m away from the nearest tran-

sit stop are included to depict any variance between maximum 10 min and maximum 5

min access/egress scenarios, where users are more likely to take transit. In the first two

periods, headways were mostly divided between 15 min and 30 min headways. In later

cases, the distribution shifted more strongly to 15 min headways. Although each of the

cases generally had a similar distribution, shorter access/egress distance limits tended to

correlate with trips with longer headways, meaning that for trips with reasonable walking

distances, buses arrived less frequently.
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Table 3.4: Intermodal competitiveness statistics by period

Trips where Mode 1 is faster (%)

Mode 1 Mode 2 1 2 3a 3b Total

All trips 1061 1334 1117 1024 4536
Cycling 903 Flex 4.9 8.0 8.5 6.9 7.2
Walking 903 Flex 0.0 0.0 0.0 0.0 0.0

Trips with transit alternatives 1040 1218 997 940 4195
Transit (no wait) 903 Flex 0.5 0.0 0.0 0.0 0.1
Transit (with wait) 903 Flex 0.0 0.0 0.0 0.0 0.0
Cycling Transit (no wait) 96.5 97.5 100.0 100.0 98.4
Cycling Transit (with wait) 100.0 99.9 100.0 100.0 100.0
Walking Transit (no wait) 0.7 0.2 2.8 3.8 1.7
Walking Transit (with wait) 20.6 16.3 20.3 25.3 20.3
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Figure 3.13: Estimated headways for transit alternatives for each operating period
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Figure 3.14 shows the cumulative distribution function of time ratios for walking, cy-

cling, and transit alternatives compared with the observed ride times across the entire pilot.

Ride times did not include waiting, so these ratios represent the expected best case scenario

for ridesourcing. Transit trips were only compared to trips that had a transit alternative

(4195 of the 4536 trips). A value greater than 1.0 indicates that rides were shorter, and

a value less than 1.0 indicates that walking, cycling, or transit trips were shorter. The

majority of walking and transit trips were shown to be at least twice as long as taking a

ride. Cycling trips were much more competitive, as half of cycling trips were at worst twice

as long as a ride. Most walking trips were over four times as long as a ride. Four transit

time ratios are presented, to provide comparisons between theoretical assumptions. The

first ratio (blue solid line) compares the ride times against the equivalent transit trips as

calculated by OpenTripPlanner, which includes the actual wait times. The second ratio

(light grey dashed line) assumes the wait time is equal to half the estimated headway,

representing a user’s average waiting time. The third ratio (dark grey dashed line) also

uses average wait times but adjusts headways to a 15 min maximum, representing a hy-

pothetical high frequency network. The fourth ratio (black dotted line) compares the ride

time with a situation in which the user always catches the bus right on time (i.e., the wait

time is always 0 min), representing the best-case transit scenario for that trip alternative.

Only in the fourth scenario does the wait time assumption make a large difference in the

time ratios.
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Figure 3.14: Time ratios for walking, cycling, and transit alternatives compared with base
rides
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Figure 3.15 shows the trip types taken in each period, separated by the number of

transfers required for the transit alternative. No alternative transit trip required more

than 1 transfer. Direct feeders and non-transit trips were excluded since those trip types

have no transit alternatives. The greatest difference between trip categories was that trips

requiring a transfer had a significantly higher share of transit replacements (13-63% vs.

6-23% of trips per period), X2(1, N = 512.13) = 3.84, p =< .001. Trip types in the 0-

transfer case generally mirror the overall results since trips with 0 transfers made up 82%

of the overall transit alternative trips in the pilot.

Figure 3.15: Trip types by number of transfers required by period

3.4 Discussion

Daily ridership increased in the later periods of the pilot, suggesting that not only were

users making more bookings in aggregate, but existing users were making more frequent

trips over time. Consistent with previous findings (Gonzales et al., 2019), user trips ap-

peared to fluctuate less in later periods as users adapted to the pilot’s operating parameters.

Although individual frequent user trip types did not change greatly, frequent users as a

whole shifted toward less transit-competitive trip types, while average and infrequent users
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had a sporadic but generally larger share of more transit-competitive trip types. The higher

share of transit replacements among less frequent groups could be due to sporadic temporal

issues more than spatial ones: users may have just missed a transit connection, or their

bus may have been out of service, and they were looking for the next best option. These

findings suggest that the 903 Flex may have gained success over time if it was continued,

but ultimately it was not meeting the desired ridership levels of 7-14 user boardings per

hour (Grand River Transit, 2019e).

Rides and their alternatives had fairly stable trip times across all periods of the pilot.

The biggest change occurred after the transit network redesign (which coincided with the

launch of the LRT system) at the start of period 2, which changed the frequency and trip

types, but the lengths of those trips remained fairly constant. The shift from peak-hour

service to all-day service in period 1 appeared to introduce a sharp increase in ridership,

which makes sense when considering that most trips were taken during off-peak midday and

evening service. Users may have been using the 903 Flex during periods when transit was

less frequent, which indicates the pilot may have been valuable for non-work trip making.

Spatially, trip types trended away from indirect feeders and more toward transit-supportive

or complementary modes, suggesting that most 903 Flex trips competed less with transit

network over time. There was a sharp increase in transit replacements in period 2, which

is likely due to the number of free promotions that were available during the period.

Trips that would have been made with one transfer using transit had a much higher

share of transit replacements than those requiring no transfers. This finding suggests that

transfers may be a large driver in transit replacement trips, since they extend the wait

time between routes and introduce uncertainty in travel times. This finding is consistent

with other literature (Yan et al., 2019), which indicates that transfers substantially deter

transit use.

23% of users paid with transfers, suggesting that these users were connecting from

transit. The high incidence of transfers among infrequent and average users suggests

these users were using ridesourcing to address a gap in the transit system. Over time,

frequent users began to pay with transfers more frequently, further suggesting these trips

are specifically part of a fixed-route transit trip chain. 60% of all users paid with transit

passes in period 1, shifting to 20-30% per period in the later periods, which may indicate

that the initial user base consisted of more frequent transit users, and that from periods

2 and on, the pilot was able to reach users who may not have regularly used fixed-route

transit in the past.

Across multimodal alternatives, transit trip times were not competitive with rides.

52



Cycling times were competitive with 5-10% of rides and were consistently faster than the

corresponding walking and transit alternatives. Walking was not a feasible alternative to

rides in most cases, and variably competed with transit. Improved cycling infrastructure

in this area could potentially improve connectivity to transit.

It is important not to extrapolate the time ratio statistics as representative of all travel

in the pilot area. Ride times included in the time ratio only used actual departure to actual

arrival (i.e., wait times for the ridsourcing vehicles were not included), biasing the time

ratios in favour of ridesourcing. The time ratios for individual pairs will not change and are

accurate for a specific origin-destination pair at a given time. However, the contribution to

the percent-share in trips, as presented in Figure 3.14, will further bias toward trips that

use ridesourcing, particularly because some pairs are counted multiple times, depending

on the popularity of that trip in the dataset. This indicates that for the rides made during

this study period, ridesourcing was usually a rational mode choice. Almost no trips had

time ratios below or equal to 1.0: transit and walking were faster than taking a ride for

less than 1% of trips, and cycling was faster for just under 3% of trips. In cases where a

mode is cheaper, a time ratio between 1.0 and 2.0 may indicate that the cheaper mode is

still viable, since a user may take a slightly longer trip to save cost. Walking and cycling

are the cheapest modes, so alternatives with time ratios between 1.0 and 2.0 (1% of all

walking trips and 51% of all cycling trips) could be viable options. The low number of

walking trips at any value below 2.0 suggests that many of the trips where walking is more

competitive in this range are already made through walking (unobserved in these data) or

are trips where another mode replaced walking. The out-of-pocket cost of taking a ride is

the same as taking the equivalent bus, since the fare is the same, so even though 1-4% of

transit trips were up to two times longer than ridesourcing, there is less incentive for a user

to intentionally take a longer bus ride. Higher transit use can be encouraged in cases where

transit is more competitive by introducing a higher charge for ridesourcing, which would

encourage users to use ridesourcing only when it is worth the additional cost. However,

increasing the fare should be done with caution, since users who previously drove (instead

of taking transit) may just return to driving.

It is unsurprising that many trips are indirect feeders, given the length of the routes and

the pilot area’s size. The average trip was 4 km long, and some trips were up to 9 km long,

stretching from one corner of the pilot area to the other. If the pilot area had expanded,

caution would have been needed to avoid encouraging very long rides. One option could

have been to limit each virtual stop to a set of other virtual stops and bus stops around

them, so that riders are encouraged to feed into the existing bus network. A limitation

to this approach could be the infrequent headways on some of the buses that served the

53



pilot area, since many of the alternative transit trips operated at 30-minute headways.

Without reliable, higher frequency service, users would likely transition to more expensive,

non-integrated ridesourcing options instead.

In some cases, a transit agency may consider replacing low-frequency routes entirely

with TIR. Agencies should be cautious about complete replacement of fixed-route services

in cases where the ridership on the low-frequency routes is high, since the replacement

ridesourcing service may not attract enough ridership or minimize costs to sufficiently jus-

tify the replacement. These decisions may require an understanding of the costs associated

with operating each option and of mode preferences in the impacted areas.

3.4.1 Limitations

One limitation of the trip alternative generation method was that alternatives assumed

users would take the trip with the least amount of walking time overall, which may not

reflect true user preferences. For cycling alternatives an equal weighting was given to speed,

bike friendliness, and elevation, which may not reflect all users’ preferences.

There was an inherent selection bias among users who were attracted to the pilot,

limiting the generality of conclusions about travel behaviour more broadly. Demographic

data about 903 Flex users was unavailable outside of a voluntary survey. Metrics such as the

age of users, gender, income, and disability status would have been useful in understanding

the extent to which these factors influenced user behaviour.

This study assumed that all trips started and ended at virtual stops. ‘Real’ trip alter-

natives would likely be based off users’ true origins and destinations. Because the pilot was

restricted to one neighbourhood, there was also an inherent limit to which trips could be

made. Although this pilot suggests that transit replacements were in the minority of trip

types despite users having no restrictions on their trip making behaviour, this characteristic

may not apply to larger pilots where a greater service area is implemented.

3.5 Conclusions of 903 Flex Analysis

Ridesourcing is being considered as an extension of fixed-route transit networks, helping

transit agencies broaden their coverage into traditionally poorly serviced areas. This re-

search proposed and applied a typology to assess the competitiveness of TIR with other

modes. This typology can be implemented by other agencies that have overlapping fixed-

route and TIR networks (Figure 2.1), to assess their spatial competitiveness. Using the
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903 Flex pilot data, a spatial and longitudinal analysis of users was conducted, considering

a proposed series of trip types using the typology, payment methods, behavioural changes,

and competitiveness with other modes.

The data suggest that most trips taken within the pilot duration were complementary

to the transportation network and progressed toward more transit-supportive trip types.

Although the trends from the 903 Flex pilot were generally positive, over 16% of trips

competed with transit, peaking during the promotional period. Agencies should take care

in the future to avoid duplication in services, and to avoid detracting users away from

existing transit infrastructure.

Ridesourcing projects show potential as supplementary services that can integrate with

existing public transportation systems to expand mobility options. Better accounting

for multimodal journeys, motivations for increasing user adoption over time, the spatial

resolution, and expanding the temporal scope of study would improve the transit agency’s

understanding of how to best implement ridesourcing projects.
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Chapter 4

RP-SP Survey

This chapter describes the design, implementation, and results of an RP-SP survey con-

ducted in northwest Waterloo in 2021. The survey was used to develop an understanding

of how residents of this area perceive various TIR systems, which allows for ridership im-

pacts to be estimated for different system types. Because the survey was focused on what

a transit agency could do to improve the positive impacts of different system types, the

SP experiments prioritized changing attributes of transit or TIR that could be translated

into spatial differences of systems.

Section 4.1 details the survey design, following a process adapted from Hensher et al.

(2015). Section 4.2 outlines the process for sharing the survey with the target residents.

Section 4.3 provides general statistics for how the survey operated, outlines the filtering pro-

cess for removing outliers, and summarizes the process for administering the appreciation

draw. Section 4.4 presents and discusses the findings of the RP parts of the survey, de-

mographic questions, survey statistics, and questions concerning COVID-19 comfort. Full

model findings from the SP section are provided in Section 5.2.1 as part of the evaluation

component of the thesis.

The survey uniquely contributes to preference literature. Cost, time, and common

alternatives have not been included together in previous transit-integrated ridesourcing

surveys. The revealed-preference portion uses automatic RP attribute collection, which

is uncommon in preferential surveys. The population base for this survey was a general

population in an area previously identified as ideal for on-demand transit. The results

of the survey and the anonymized dataset will be of use to researchers and other regions

implementing their own transit-integrated ridesourcing systems.
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4.1 Design

The general process for designing SP experiments was adapted from Hensher et al. (2015).

The stages are somewhat cyclical in nature, but are generally presented in the order in

which they are first introduced into the design process. The first stage is refining the prob-

lem, where the socioeconomic and travel characteristics of the study area are explored, the

full list of potential alternatives and attributes are identified, and large-scale exploratory

questions are studied to understand what specific questions should be answered through

the research and which techniques should be used to answer these questions. The second

stage is refining the stimuli, which are the alternatives, attributes, and attribute levels.

In this stage, the final list of stimuli is narrowed by considering which stimuli are most

necessary for answering the research question and which can be removed to minimize re-

spondents’ decision fatigue and survey completion time. The third stage is considering the

design elements of the experiment, which include the expected utility functions and the

number of choice experiments. The fourth stage is generating the experimental design,

where the SP experiments are created and estimated required sample sizes are determined.

The fourth stage also includes three additional stages from Hensher et al. (2015) (‘generate

choice sets’, ‘allocate attributes to design columns’, and ‘randomize choice sets’), which are

performed automatically by the chosen survey software. Because of the automated nature

of how the design is generated, the three omitted stages are included in this stage. The

fifth and final stage is constructing the survey instrument, which includes the pre- and

post-SP elements. The fifth stage is quite extensive, so it is split into two sections in this

chapter (one for before the SP section, which had predominantly RP questions, and one

for after, which had demographic and COVID-19 questions).

4.1.1 Problem Refinement

The intended area for conducting the survey was the same part of Waterloo where the 903

Flex previously operated (recall Figure 3.2). This area was previously identified by GRT

as an ideal area in Waterloo for TIR service, due to the high number of transit requests

but relatively low population density and ridership potential. The survey was intended

to capture the same population as the 903 Flex’s service area to determine how different

configurations of TIR may have performed in this area.

Multiple data sources were used to profile the residents in the study area. Figure 4.1

depicts the combination of traffic analysis zones (TAZs), forward sortation areas (FSAs),

and census aggregate dissemination areas (ADAs) that overlap with the study area (Data
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Figure 4.1: Aggregate dissemination areas (A), forward sortation areas (B), and traffic
analysis zones (C) overlapping with the study area
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Management Group, 2016; Statistics Canada, 2017a, 2017b). TAZs are used by the Trans-

portation Tomorrow Survey (TTS) for aggregating traffic flows into manageable sizes.

FSAs, which form the first half of Canadian postal codes, are geographical units used by

Canada Post to route mail to the correct region, and are used by Canadian census for

some demographic statistics. ADAs are also used by census for demographic statistics, but

cover different boundaries than FSAs. FSAs and census ADAs were used to gather census

demographics on residents in the study area.

For FSAs, N2V, N2T, and N2L overlap with the study area. All FSAs have portions

that are not part of the survey area to varying degrees (N2V with Northfield, N2T with a

neighbourhood south of the survey boundary, and N2L with the area around the Univer-

sity of Waterloo, Wilfrid Laurier University, and Uptown Waterloo). N2T was assumed to

be the most representative because it had the most overlap with the study area or neigh-

bourhoods with similar characteristics, and N2V was also included because most residents

lived within the study area. The non-target population in N2L would greatly outweigh the

target population, so N2L was excluded from the background statistics.

For census ADAs, three areas overlap with the study area: 35300019, which was mixed

with the neighbourhoods around the Grand River Conservation Area, 35300013, which

was mixed with Uptown Waterloo, and 35300027, which was mixed with student neigh-

bourhoods around the universities. Because ADA 35300019 has relatively few residents

living outside of the study area and covered a majority of the study area, it was considered

representative enough to represent the intended population.

TAZs were easier to include or remove, since they have the smallest sizes and overlap

less with areas outside of the study area. TAZs 7238-7239, 7241-7249, and 7251-7257 were

determined to best overlap with the study area. In general, TAZs and FSAs were the

primary data sources due to the variety of their associated data, and ADAs were used as

supplementary data for comparison.

TAZs were used for estimating existing mode shares (Table 4.1). Origin-destination

pairs were filtered from the TTS database to start or end in one of the target zones. The

origin-only case is also presented for comparison, since both assumptions could be valid:

trips that start or end in the area could both reflect people that live in the study area (e.g.

a trip ending in one of the zones could be a trip back home from work). In either scenario,

the general mode shares were similar, with slightly more walking trips and less driving or

transit trips for trips that started in the target zones. Personal vehicle travel, by driving

or as a passenger, was the dominant mode in this area (around 85%), and transit, walking,

and cycling also had shares over 1%. Rideshare was listed as a general mode in the TTS,
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but the only rideshare system operating in Waterloo in 2016 was Uber, so all rideshare

rides are assumed to be Uber rides.

Table 4.1: Estimated mode share for trips taken by study area residents

Mode Share, origin or destination (%) Share, only origin (%)

Auto (driver) 70.0 68.2
Auto (passenger) 15.7 15.9
Cycling 2.0 1.9
Transit 4.9 4.3
- Local 4.8 4.2
- Local + GO 0.1 0.1
- GO 0.0 0.0
School bus 2.2 2.7
Rideshare (Uber) 0.1 0.1
Taxi 0.2 0.2
Walking 4.9 6.6
Motorcycle 0.1 0.1
Other 0.0 0.0

For commutes, ADAs revealed that 84% of HBW trips were made by driving from the

study area, 8% as a passenger in a private vehicle, 5% by transit, 2% by walking, and 2%

by other modes. The share of walking and transit was slightly lower in this area than in

the Region of Waterloo as a whole, and driving and commuting as a passenger were higher.

In the two ADAs that overlap with Uptown Waterloo and the University, the share of auto

is much lower and the share of transit, walking, and cycling is much higher, so it is possible

that the share of those modes may be a little higher, but likely not much higher than the

estimates for the whole region.

TAZs were also used to estimate additional transportation-related statistics for indi-

viduals (Figure 4.2). Because these statistics are not the primary output of the TTS, the

scaling method used in cross-tabulation tends to not provide the same level of accuracy as

the primary outputs like mode share, but are the best publicly available estimates for these

statistics and are likely within the correct order of magnitude. Driver’s licence possession

and free parking at work estimates are shown for residents 16 years old or older (since

residents need to be 16 years old to work or drive). Transit pass possession estimates are

provided for all ages and for residents aged 16 years old or older for comparison. About

88% of the eligible population was estimated to have a driver’s licence, which is fairly high

and indicates most of the population was able to drive to some degree. Of those who

work, most were estimated to have free parking at their workplace, although a consider-
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able minority of people do not. Transit pass possession did not change greatly between

the 16 years old or older population versus the general population, and in both cases most

people were estimated not to have a transit pass. About a tenth of the population was

estimated to have a local transit pass, which is about double the estimated share of transit

in the area (Table 4.1). The much higher estimated share of passes may be due to the

high share of post-secondary transit passes in the region, most of which are included in

full-time students’ fees.

Driver’s Licences (16+)

10%
2%

88%

Yes
Unknown
No

Transit Passes (all ages)

89%

0%
2%

9%

GRT Pass or Other 
TTC / Presto / Dual Pass 
Unknown
None

Free Parking at Work (16+)

12%
7%

41%

39%

Yes
N/A
Unknown
No

Transit Passes (16+)

86%

1%
3%

11%

GRT Pass or Other 
TTC / Presto / Dual Pass 
Unknown
None

n = 23977  
(expanded from 1155)

n = 23977  
(expanded from 1155)

n = 23977  
(expanded from 1155)

n = 30296  
(expanded from 1421)

Figure 4.2: Driver’s licence possession, free parking at work shares, and transit pass pos-
session estimates from TTS

Figure 4.3 depicts age, gender, and household income as reported by FSA in the 2016

census, supplemented by ADA data. The 2016 census tables did not separate out genders

other than male or female (e.g., non-binary), so other genders are not presented in the table.

Compared to the region, there is a slightly higher concentration of people aged 15-24 and

45-54 (∼2%), and a slightly lower concentration of seniors (65 and older). The income of

this area is also much higher than the region – incomes below $100 000 are progressively

lower than the regional average (under $45 000 is 26% of the regional population) and

incomes above $124 999 are progressively higher than the average (over $200 000 is 7%

of the regional population), and the median income for the study area is estimated to be

$112 896, while the median income for the region is $77 530. Generally, this area is slightly

younger and considerably higher-income than the average Waterloo area.
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Figure 4.3: Age, gender, and income ranges from 2016 census

Additional factors were considered that may impact how people travel in the study area.

Work and school were likely high motivators for travel, since those are regular mandatory

trips. COVID-19 was likely a depressor on travel, since many businesses and destinations

were closed during the pandemic. Recreational and social trips have in some cases been

found to be prominent use cases for TIR or other ridesourcing services (Feigon & Murphy,

2016), so a study exploring ridesourcing-based options should consider non-work trips.

For active modes (walking and cycling), trip volumes would likely be seasonal. Finally,

inclement weather may also be a factor in choosing a sheltered mode versus a non-sheltered

mode.

Table 4.2 lists the range of attributes for each existing alternative and TIR from Table

4.1. In the table, ‘moto’ is short for motorcycle. Past research identified walk time, wait

time, ride time, cost, pickup deviation, drop-off deviation, and either IVTT or total time as

important factors in DRT objective functions (Section 2.3.1) and past relevant SP surveys

and models (Table 2.3). Additionally, different system type configurations (Table 2.4)

and other design attributes (Table 2.5) of TIR can cause direct changes in some of these

attributes.

4.1.2 Stimuli Refinement

With the full set of eligible alternatives and attributes generated, the next step of the

survey design process is to refine the number of alternatives and attributes to minimize

decision fatigue and survey length. The full list of alternatives is presented in Table 4.3.

In SP surveys, it is recommended to have all alternatives available to decision makers to

best reflect their real-world decision-making. However, alternatives are often removed to
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Table 4.2: Attributes for existing alternatives and transit-integrated ridesourcing

Attribute Auto
(drive),
Moto.

Auto
(pass.)

Walk Transit School
bus

Cycle Taxi,
Uber

TIR

In-vehicle timea X X X X X X X
Wait timeab X X X X X
Time to park X
Pickup dev. X X X X X
Drop-off dev. X X X X X X X X
Access timea X X X
Egress timea X X X
Walk time X
Fareb X X X
Parking fee X
Transfer timeab X X
No. of transfersa X X
Additional stopsa X

a Attribute has a direct change based on system type
b Attribute has a direct change based on other design attributes

avoid decision fatigue, especially if they are unlikely options or alternatives that can be

combined with each other to form a larger alternative.

Some alternatives in the existing set were subject to exclusions: choosing auto as a

driver requires that the respondent has a driver’s licence, and choosing auto as a passenger

indicates the respondent has access to a driver. The high share of driving in the study area

also suggested most people would pick driving, if given the option between the two modes.

Therefore, the driver and passenger modes were assumed to be mutually exclusive, and

were combined into one mode (auto), where the respondent would decide whether being a

driver or a passenger was their more likely mode. While passengers would be less sensitive

to some of the attributes, like parking cost, it was more feasible to offer the same set of

attributes to both drivers and passengers. Motorcycle riders and auto drivers have the

same set of attributes, as do taxi passengers and Uber passengers, so each set of modes

was combined into auto (driver) and private ridehailing, respectively.

School buses are only available for students in grade school, and children taking school

buses are generally already captive to their mode. Additionally, whether children take

school buses or not, they generally don’t have decision-making power for making trips, so

the decision was made to eliminate grade school trips from the survey, school buses as an

alternative, and children from the respondent set.
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Table 4.3: Alternative selection

# Alternative Priority Exclusions Priority reasoning

1 TIR Required No Focus mode of the research
2 Transit

(GRT bus
and ION)

Required No Primary comparative mode

3a Auto
(driver)

High Yes Majority of trips taken in this area are
by driving a car (70%)

3b Auto
(passenger)

High Yes Second-most common mode of travel
in this area (16%)

4 Cycling Medium-high No Fairly competitive option time-wise,
but not a popular mode currently

5 Private
ridehailing
(taxi/Uber)

Medium No Merged taxi and Uber together,
similar attributes. May be similar to
TIR, useful for comparison but may
be less popular.

- Walking Medium No As popular as taking transit in this
area (5%), but not likely for longer
trips

- School bus Low Yes Unlikely to compete with TIR,
eliminate school trips from study

- Motorcycle Low No Unnecessary and takes up a minimal
share, merge into auto (driver)
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Finally, of the six remaining modes, walking was eliminated in an effort to minimize

respondent burden, reduce the required sample size, and because it was considered the

least competitive for trips made by TIR. A restriction was added to survey to exclude trips

that would be made by walking and focus on longer trips. While both cycling and private

ridehailing were less popular than walking in this area, they are more competitive for the

longer trips for which TIR would be expected to be more popular.

Attributes to use in the survey were also refined, starting with the full list of attributes

from Table 4.2. The selection process is outlined in Table 4.4. A target of three to

eight attributes was used as a starting guideline, following industry guidance for gaining

useful trade-offs between alternatives without having the respondent default to simplified

decision-making schemes (Qualtrics, 2022). Because the primary focus of the survey was

to determine sensitivity to different TIR system types, attributes that could be influenced

by system types were prioritized (Table 2.4). The number of passengers attribute was

removed first because a ridesourcing service offered through transit would be shared by

nature, and it made explaining TIR to the respondents easier. Walk time, access time,

and egress time were all valuable, and were combined into one metric based on time spent

walking. Parking fees and reliability were originally removed, but were reintroduced later

to avoid auto domination in responses. Without these two attributes, the only attribute

for auto and cycling was IVTT. When conducting survey pilots, test respondents indicated

the auto mode was extremely desirable given the shown attributes, and there was no

reason to choose other modes. Other researchers in the SP experiment field proposed that

adding auto deterrents could help counter auto dominance in the experiments (J. M. Rose,

personal communication, 2021, February 24). Finally, while the number of additional stops

is influenced by the system type, it was removed because it could be represented in choice

experiments by giving longer IVTT time options.

The final part of stimuli refinement is deciding on the levels for each attribute. Table 4.5

lists the final attribute levels used in the survey. Industry guidance recommends at most

seven levels for each attribute (Qualtrics, 2022) to minimize the number of experiments

needed to get acceptable utility estimates, and literature recommends that at least the

endpoints (minimum and maximum values) should be included (Hensher et al., 2015).

Utility estimates can only apply between the endpoint values measured in the study, so

it is desirable to have the widest realistic range possible so that the estimates are widely

applicable. Extra levels are added in between at points either where inflection points are

expected or at other points of interest to the modeller. More attribute levels were originally

chosen but were removed either due to concerns over auto dominance in the choice set or to

minimize the number of design experiments. The eliminated attribute levels are discussed
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Table 4.4: Attribute selection

# Attribute Priority Reasoning

1 In-vehicle time Required System type correlated
2 Wait time Required System type correlated
3 Transfer time Required System type correlated
4 Walk time Required Walking mode version of IVTT. Combine with

access and egress time
5a Fare Required Valuable design attribute component
5b Parking fee Medium Useful for auto comparison to fare. Most parking is

free in Waterloo. Combined with fare to make auto
less desirable in some scenarios for utility balance

6 Number of
transfers

Required System type correlated

7 Reliability Medium Perceived qualitative reliability of the system.
Originally removed, but added as quantitative
margin of error for total time to balance out auto
alternatives

- Access time Required System type correlated, merged with walk
- Egress time Required System type correlated, merged with walk
- Time to park Medium Useful for auto. Generally low search time for

parking in Waterloo
- Pickup deviation Medium Accuracy may impact willingness to choose mode.

Merged with reliability
- Drop-off

deviation
Medium Accuracy may impact willingness to choose mode.

Merged with reliability
- Additional stops High System type correlated, but could be combined into

ride time. Removed and considered as part of
IVTT and the sharedness of TIR.

- Number of
passengers

Low Implied in sharedness, most transit agencies would
not offer private rides. Used to distinguish from
‘private ridehailing’
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in Appendix B.

Table 4.5: Final attribute levels chosen

Attribute TIR Transit Private
ridehailing

Cycling Auto

In-vehicle time (min) GAPIa

(1x, 2x,
3x)

GAPIa

(1x, 2x,
3x)

GAPIa GAPIc GAPIa

Wait time (min) 3, 5, 10, 30 3, 5, 10, 30 3, 5, 10, 30 – –
Transfer time (min) 0, 5, 10, 30 0, 5, 10, 30 – – –
Walk time (min) 0, 5, 10, 30 0, 5, 10, 30 – – –
Fare / parking ($) 0, 1, 3.5, 8 0, 2, 3.5, 5 GAPIa

(1x, 2.5x,
5x, 10x)

– 0, 1, 3, 15

Number of transfers 0, 1, 2, 3 0, 1, 2, 3 – – –
Reliability GAPIa

(+/- 5%,
10%, 15%,

20%)

GAPIa

(+/- 5%,
10%, 15%,

20%)

GAPIa

(+/- 5%,
10%, 15%,

20%)

GAPIc

(+/- 5%,
10%, 15%,

20%)

GAPIa

(+/- 5%,
15%, 25%,

50%)

a Drive time determined from Google API
c Cycle time determined from Google API

For IVTT, instead of using a series of static sample drive and cycle times, respondents

entered their origin destination pair into a form, which returned actual drive and cycle times

from the Google Directions and Distance Matrix APIs (process outlined in Section 4.1.5).

IVTTs in the SP experiments for transit and TIR were then pivoted around the drive

times from the Google API to reduce the hypothetical nature of the questions, improve

how relevant the scenarios felt for the respondent, and improve the estimated accuracy

of the results (J. M. Rose et al., 2019). Because the IVTTs were based around the auto

time, IVTT was expressed as a ratio in the transit and TIR utility functions, where the

ratio indicates how much longer in multiples the transit or TIR IVTT was versus driving

IVTT (e.g., 2x indicates a trip with IVTT twice as long as driving). The range of IVTT

ratios for transit and TIR were based on the actual range of transit times in the Region of

Waterloo in comparison to driving alternatives, simulating the effects of less direct transit

and TIR (reduced from 4x to minimize auto dominance).

A wait time of 3 minutes represented effectively instant service, and 30 minutes generally

reflected the worst headway in the existing network in the study area. A transfer time of

0 minutes assumed instant transfers, and 30 minutes assumed the highest expected wait

time, following the same logic used for wait times. A walk time of 0 minutes assumed door-
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to-door service, and 30 minutes represented the practical maximum for combined access

or egress in the study area (reduced from 60 minutes to minimize auto dominance).

The transit fare structure was pivoted around the existing transit fare ($3.50), with
$0.00 chosen as the minimum to represent a free transit scenario, and $5.00 chosen as the

maximum (reduced from $7.00 to reduce auto dominance). The TIR fares were chosen

using a pivoting structure off of transit as inspiration ($0.00, Transit-$1.00, same as tran-

sit, Transit+$3.00), representing different fare structures seen in TIR pilot projects ($0.00,
$2.00, $3.50, $5.00 transit fares resulted in $0.00, $1.00, $3.50, $8.00 TIR fares). Levels

could not be directly pivoted off of the transit fare in the choice experiment, since alterna-

tives in experiments are typically not correlated. The resulting TIR fare options ensured

that respondents were provided with TIR fares that were free, cheaper than current transit,

equal to current transit, and more expensive than current transit cases, no matter how the

experiments were arranged individually.

For parking, $0.00 represented the common free parking case, and $15.00 was chosen

to represent an extreme hourly parking charge over multiple hours, and in part to find the

point at which people who typically chose auto would switch to other modes.

For private ridehailing fares, the best and worst cases used a combination of taxi and

UberX rate formulas, reflecting surge pricing cases and other pricing differences between

the services. UberX rates needed to be calculated empirically since the formula was not

publicly available. Rates were applied per the minutes of auto IVTT in the experiment.

Because fares are based on combinations of time and distance for Uber, but only time

was captured for the trip entered into the Google API, finding realistic rates required an

assumed average speed. The best case assumption assumed a speed of 1.2 min/km (50

km/h), and the worst case assumption assumed a speed of 2 min/km (30 km/h). Applying

these ranges to taxi and Uber base fares in the Region of Waterloo, the lowest base rate

was found to be just over $1.00 per min (best case Uber), and the highest base rate was

found to be $4.20 per min (worst case taxi). Because Uber employs dynamic pricing that

has historically had multipliers upward of 9.9x the existing rate (Vedantam et al., 2016),

a 10x option was chosen as the maximum surge price. 2.5x and 5x options were chosen to

cover more of the lower end of the range of fares.

The range for the number of transfers in each experiment started at 0, representing a di-

rect trip, and ended at 3, representing the generally largest number of transfers empirically

found in the region (reduced from 4 to minimize auto dominance).

Reliability was expressed as a deviation of the IVTT. Because the attribute was intro-

duced primarily to minimize auto dominance, the range for auto was higher than the ranges
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for the other modes. Increments of 5% were used for TIR, transit, private ridehailing, and

cycling; and a range from 5% to 50% was used for auto. Cycling was a percentage of the

cycle time found in the Google API, and other modes percentage of the drive time in the

Google API. It is worth emphasizing that the deviations for TIR and transit were based off

of the original drive time (i.e., the IVTT for auto and private ridehailing), not the IVTT

presented in the experiment for these modes, resulting in a smaller range for the shared

mode reliability metric.

4.1.3 Experimental Design Consideration

After refining the alternative, attribute, and attribute level sets, the expected utilities

and the minimum number of required choice tasks can be determined. The first decisions

were made around the intended experimental structure. Labelled experiments were chosen,

where instead of having generic alternatives defined only by attributes, the alternatives are

named and have their own coefficients (alternative-specific constants or mode constants)

in a utility function. Labelled experiments are the norm in transportation surveys, and

the labels in these surveys are the different mode alternatives. In the survey, the five labels

are easily understandable descriptions of the five modes: TIR, transit (GRT bus and

ION), taxi/Uber, cycling, and either driving or passenger in a private vehicle. Because of

the expected dominance of auto alternatives, the survey used a best-worst case 3 choice-

sequence structure, where respondents were asked both the best and worst option among

the labelled alternatives. Best-worst tasks were represented in the survey by multiplying

the worst task design matrix by -1 (Sawtooth Software, 2022). The structure of the survey

was intended to result in a D-efficient mixed logit model. D-efficiency is discussed in Section

4.1.4 and the choice of a mixed logit model is discussed in Section 5.1.1.

The expected utility functions (V ) for each of the alternatives, assuming all attributes
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except mode constants are linear, are:

VTIR =β4
IV TTTIR

IV TTA

+ β5WTTTIR + β6TTTIR + β7WKTTIR

+ β8FTIR + β12NTIR + β13RTIR

(4.1)

VT =β0 + β4
IV TTT

IV TTA

+ β5WTTT + β6TTT + β7WKTT

+ β9FT + β12NT + β13RT

(4.2)

VRH =β1 + β5WTTRH + β10FRH + β13RRH (4.3)

VA =β2 + β11FA + β14RA (4.4)

VC =β3 + β15RC (4.5)

where β0-β3 are the mode constants for each mode, β4 is the IVTT ratio coefficient

for shared modes, β5 is the wait time (WTT ) coefficient, β6 is the transfer time (TT )

coefficient, β7 is the walk time (WKT ) coefficient, β8-β11 are the fare (F ) coefficients

for each mode, β12 is the number of transfers (NT ) coefficient, β13-β15 are the reliability

deviation (R) coefficients (which differ for cycling and auto), and the subscripts for TIR,

transit, private ridehailing, auto, and cycling are TIR, T , RH, A, and C, respectively.

Reliability is quantified as the magnitude of the % deviation, so a +/-20% deviation on

the auto IVTT would have a value of R = 20. Typically, one of the mode constants is set

to 0 and the others are estimated relative to that alternative. Hence, the utility function

for TIR (Equation 4.1) omits a mode constant. However, due to the way Lighthouse Studio

outputs non-linear coefficients like mode constants (Section 5.1.1), all five coefficients have

non-zero values in the estimated models. Using linear coefficients and mode constants

requires 16 coefficients to be estimated.

Non-linear utility functions are much longer since each attribute level has its own co-

efficients. As a sample of the larger set of non-linear utility functions, the non-linear auto

utility function has the form:

VA =β2 + β11aF$0.00,A + β11bF$1.00,A + β11cF$3.50,A

+ β14aR5%,A + β14bR15%,A + β14cR25%,A

(4.6)

where β11a-β11c are the coefficients for each level of auto fare, and β14a-β14c are the co-

efficients for each level of auto reliability. The highest levels of each attribute are omitted

for the same reason why the mode constant was removed in Equation 4.1 (i.e., statistical
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identification). Utility functions for other modes follow the same conversion and treat-

ments as auto when moving from linear to non-linear utility functions. As a result, using

completely non-linear coefficients, 41 coefficients require estimation. Both the linear and

non-linear cases assumed main-effects only.

The minimum number of choice experiments is based on the number of parameters

to be estimated, or the degrees of freedom (Hensher et al., 2015). The choice of linear

or non-linear coefficients greatly impacts the minimum number of experiments because of

the greater number of non-linear coefficients. The minimum number of choice experiments

required for parameter estimation follows the relationship:

S(J − 1) ≥ H (4.7)

where S is the number of choice experiments required, J is the number of alternatives in

each choice experiment, and H is the number of parameters to be estimated. Even though

best-worst surveys ask respondents for two answers per experiment (one best and one

worst), experimental size calculations were performed conservatively assuming each best-

worst case was only one choice experiment. Table 4.6 demonstrates the minimum choice

experiments required in each scenario using Equation 4.7. Combinations of four level

treatments and four interaction treatments were analyzed: level treatments considered 3,

4, and 5 level cases for non-linear attributes and a 2 level case (i.e., linear attributes), and

interaction treatments considered non-linear AB interactions, linear AB interactions, and

no interactions (main-effects only). AB interactions are also called two-way interactions,

and are interaction effects between only two attributes (e.g. wait time and IVTT). The 3-5

level cases did not change the levels for modes and IVTT ratio, which were respectively

fixed at 5 and 3 levels. Because of how transfers and transfer time were programmed

into the software (Section 4.1.4), interaction effects could not be estimated between these

two attributes and are not included in any of the parameter counts in the cases with

interactions. Another interaction treatment was considered, where only interactions for

attributes used in TIR were explored, but most attributes were in the TIR mode already

so these estimates would not be meaningfully different from the scenarios with all AB

interactions considered. Because of the large number of attributes included in the model,

including only the AB interactions greatly increased the number of model parameters

to estimate (i.e., the main effects and the interaction terms) and the minimum required

number of experiments. It was decided in the end to only design for scenarios where no

interaction effects were estimated, leaving the last four options in the table as design goals.

It was decided to leave a buffer between the minimum number required and the final
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number of experiments asked, to conservatively ensure that reliable estimates could be

found. Using 4 levels was considered a reasonable target that would minimize respondent

burden while enabling enough experiments to properly model non-linear attributes, since

only 10 experiments were required at minimum. Using a 7 to 15 minute guideline for the

total length of the survey (Qualtrics, 2020), the number of experiments in this scenario

was considered acceptable.

Table 4.6: Minimum choice experiments required for each scenario. Chosen scenario in
bold.

Scenario S (minimum) J H

Non-linear attributes, non-linear AB interactions, 5 levels 111 5 442
Non-linear attributes, non-linear AB interactions, 4 levels 68 5 270
Non-linear attributes, non-linear AB interactions, 3 levels 35 5 140
Non-linear attributes, linear AB interactions, 5 levels 20 5 78
Non-linear attributes, linear AB interactions, 4 levels 17 5 67
Non-linear attributes, linear AB interactions, 3 levels 14 5 56
Linear attributes, AB interactions 11 5 44
Non-linear attributes, no interactions, 5 levels 13 5 50
Non-linear attributes, no interactions, 4 levels 10 5 39
Non-linear attributes, no interactions, 3 levels 7 5 28
Linear attributes, no interactions 4 5 16

4.1.4 Generate Experimental Design

With much of the broader experimental design choices decided, the next stage is to de-

termine how to build the experiments. Four options were considered for building the

experiments: Ngene, Qualtrics, R, and Lighthouse Studio from Sawtooth Software. Ap-

pendix C discusses the software alternatives in greater detail, from which Lighthouse Studio

was ultimately selected. Within Lighthouse Studio, four design options were available in

the survey design: Complete Enumeration, Shortcut, Balanced Overlap, and Random.

Each option reflected a different approach to the generally accepted design principles of

minimal level overlap (choosing the same attribute level as infrequently as possible in one

task), level balance (showing each attribute level the same number of times throughout the

experiments), and orthogonality (choosing levels independently of other attribute levels)

(Sawtooth Software, 2022). Random and Balanced Overlap were quickly removed from the

set of options. Random designs are only recommended for studies focusing on interaction

effects as the primary outcome, and Balanced Overlap designs incorporate some overlap
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between levels, making a trade-off between academically-ideal designs and improving per-

formance for interactions. This left the two remaining options: Complete Enumeration,

which follows all three of the generally accepted design principles, and Shortcut, which

uses a less accurate tracking mechanism for level balance to build the design in a much

shorter time compared to Complete Enumeration.

Sample size was another important factor in deciding which design to use. There

is no consensus on accepted minimum sample sizes when generating stated choice data

(Hensher et al., 2015), and there are multiple formulas proposed for finding sample sizes.

Two assumptions have a wider basis (Orme & Chrzan, 2021): a general industry baseline

indicates that at least 300 respondents is ideal or 200 respondents per analyzed subgroup,

and the formula:

nta

c
≥ 1000 (4.8)

where n is the sample size, t is the number of choice experiments, a is the number of

alternatives in the experiment, and c is the maximum number of levels for any attribute.

Applying Equation 4.8 to this study, the estimated sample size would conservatively be

anywhere between 84 and 125 respondents, using a range of 10 to 15 choice experiments,

assuming the number of alternatives is 5 and the maximum number of levels is 4. A

third assumption used by Sawtooth Software is to use a random-answer simulated set of

respondents, and generate designs that show standard errors below 0.05 for main effects

on attributes used across every alternative, and 0.10 for alternative-specific attributes.

J. M. Rose and Bliemer (2013) suggest that designs that are S-efficient or D-efficient can

substantially minimize the sample size required to obtain reliable estimates. S-efficient

designs minimize the sample size required to gain significant parameter estimates, and

D-efficient designs minimize variances and covariances across all estimates.

The design philosophy for this study was to maximize D-efficiency and minimize the

standard error across parameters for specific sample size levels, using the simulated respon-

dent base method. Because the survey area population is relatively small, the expected

sample size was also relatively small, so it was important for the final design to have rea-

sonably good estimates at small sample sizes. Table 4.7 summarizes a series of test runs

using simulated data sets for the Complete Enumeration and Shortcut methods. First,

two test cases were generated using the Shortcut method to test the difference between

including 12 or 13 random experiments. These cases did not include IVTT attributes, but

were still valuable for determining the impact of additional experiments, which showed

minimal decreases in standard error but a larger improvement in D-efficiency. 13 random
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experiments were chosen, since the addition of one task would not have a very negative

impact on respondent burden but would have a notable increase in D-efficiency. The next

four runs measured the relationship between the number of survey designs (or versions)

and the sample size. Sample sizes of 120 respondents and 300 respondents were used rep-

resenting a lower-end and higher-end expectation of the final sample size, with the true

sample size expected to be somewhere in between the two numbers. Under these scenarios,

sample size had a much stronger improvement on the D-efficiency of the design and the

standard error. With 120 respondents, the D-efficiency was slightly lower if there were

300 versions instead of 120 versions, and the standard error occupied a wider range, where

the minimum was slightly lower but the maximum was slightly higher. The drop in effi-

ciency was expected, since the respondent base would only be answering a portion of the

total number of versions, so it is less likely respondents would be exposed to a balanced

set of scenarios. With 300 respondents, the D-efficiency and standard errors were slightly

improved when using 300 versions instead of 120. Because the sample size was expected

to fall somewhere in between, it was decided to keep 120 versions and err on the side of

caution.

Finally, tests were completed using Complete Enumeration. Complete Enumeration

follows a more academically rigorous approach to experimental design, and Sawtooth Soft-

ware recommends using Shortcut only if Complete Enumeration can not build a functional

design. Three different design seeds were used, and the third case had the highest D-

efficiency and competitive standard errors. In all cases, the standard errors would be a

little too high with only 120 respondents, but would be well within the desirable range

with 300 respondents, so a respondent base of 200 or more was considered sufficient to

obtain acceptable standard errors. In the Complete Enumeration scenarios, the number of

transfers variable did not have perfect balance. A prohibition was placed on the 0 transfer

case appearing with transfer times over 0 minutes, so the 0 transfer case appeared less often

in the choice experiments than the other cases. Because a usable design was still able to

be generated, Complete Enumeration was still chosen, but interaction effects between the

number of transfers and transfer time were not able to be estimated due to the prohibition.

The final result was a SP section with 1 fixed and 13 random experiments. Figure 4.4

shows a sample experiment. The order of alternatives was randomized to minimize order

bias between participants. Because IVTT may not be as intuitively useful as the total

amount of time travelling, total time was presented in the experiments instead, using a

composite of IVTT, wait time, walk time, number of transfers, and transfer time. It was

decided not to include both estimates in the table at the same time to minimize burden due

to the large number of experiments each respondent would need to complete. Respondents

74



Table 4.7: Summary of design test runs in Lighthouse Studio

Design Tasks Versions N D-Efficiency SE (min) SE (max)

Shortcut (test)a 12 120 300 416.04739 0.03317 0.07378
Shortcut (test)a 13 120 300 455.38912 0.03178 0.07093
Shortcut 13 120 120 172.20565 0.04983 0.11447
Shortcut 13 300 120 173.82193 0.04920 0.11535
Shortcut 13 120 300 433.25650 0.03171 0.07423
Shortcut 13 300 300 436.21948 0.03150 0.07123
Complete Enum. (1)b 13 120 120 174.24134 0.05027 0.11410
Complete Enum. (1)b 13 120 300 436.11873 0.03165 0.07273
Complete Enum. (2)b 13 120 120 171.96680 0.05003 0.11394
Complete Enum. (2)b 13 120 300 433.07433 0.03175 0.07363
Complete Enum. (3)b 13 120 120 174.25270 0.04996 0.11684
Complete Enum. (3)b 13 120 300 437.86970 0.03188 0.07055

a Null IVTT variables included
b Imperfect level balance for 0 transfer case

could estimate the in-vehicle time by subtracting the other components if desired, and a

description of each of the times was provided at the bottom of each experiment page to help

respondents determine the relationship between each time attribute. Reliability was also

explained on each page to help respondents interpret the presented values and understand

why a deviation in travel time might occur.

The SP section assumed a traditional trip-based approach, which comes with well-

known limitations. In practice, trips can form parts of ‘tours’ or trip chains, where multiple

smaller trips are made between when a person leaves returns home. The purpose of other

trips in the chain can influence the mode taken for the assessed trip. For example, a

person taking their child to school before work or getting groceries after work may be more

inclined to drive, even if the standalone work trip is conducive to other modes. These travel

patterns are captured by more complex activity-based modelling approaches (Systematics

et al., 2012), with the caveat that these can be more challenging to ask in choice-based

surveys, particularly with smaller populations. Trip-based models are still used in other

current research and practice (Section 2.3.2), and were chosen as the intended output

and the design philosophy behind this survey in order to balance survey complexity with

respondent uptake.
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Figure 4.4: Sample stated-preference experiment
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4.1.5 Construct Survey Instrument (Pre-Stated-Preference)

It is preferred to have the respondent complete the SP section as early as possible since

it was the most essential part of the survey. However, some questions need to be asked

before the SP experiments. Following research ethics guidelines, consent needs to be given

by the respondent upon reading the information letter at the very start of the survey. If

the respondent is not in the target group, they should be filtered out before spending too

much time on the survey. Respondents should be familiarized with the required terminology

prior to taking the survey. Their existing travel patterns should be validated before they

are exposed to the SP scenarios, so that their scenarios can best match their real-world

situation as closely as possible, and their travel times can be used to calibrate the SP time

estimates.

The first questions provided to the respondent surrounded consent and inclusion. Re-

spondents must be provided with a set of standardized information about taking surveys,

their responsibilities, and their rights, and the respondent must agree before continuing.

Three questions were then asked to filter out non-target respondents. First, they must

have been at least 16 years old. As identified in section 4.1.2, parents tend to make travel

decisions for children. Children under 16 also require parental permission for participat-

ing in research, which would have been challenging to secure due to anonymous nature of

the survey. Second, the respondent must have lived in the City of Waterloo, and had to

identify the ward in which they lived. The ward was used as a crude filter to differentiate

people who live in the study area (wards 1, 2, and 6). Because of how Canada Post routes

are designed (discussed in 4.2), people may live in Waterloo and receive a postcard, but

not live in the study area. It was decided to keep anyone’s data who lives in the City of

Waterloo, and optionally filter later depending on the response rate. Third, the respondent

must have taken a trip that meets six criteria: the trip must normally be made outside of

the COVID-19 pandemic, start at their home, end within the Region of Waterloo, not be

to grade school, not be made by walking, and the respondent must have decision-making

power over their mode choice. Trips outside of the COVID-19 pandemic better reflect

regular trip patterns. Intracity trips were ideal since TIR is more applicable within cities

and regions, and transit alternatives were simpler to generate. Removing the walking al-

ternative followed the alternative refinement in section 4.1.2 and allowed for focusing on

longer trips that were more competitive with driving, cycling, and transit. Respondents

without the freedom to decide which mode they choose would likely be captive and give

poor utility estimates that are less sensitive to the attributes. Removing grade school

trips was required for similar reasons to the age boundary, because grade school trips are
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typically made by either school bus (if the student lives in a bused zone), by walking (if

the student lives close to the school), or as a passenger (if the student lives in between or

if the parent chooses to drive them). In these cases, the student typically does not choose

their mode, and removing grade school trips allows school buses to be removed from the

alternatives list. Respondents that did not meet the age, residency, and trip characteristic

criteria terminated the survey.

Respondents were then provided a one-page explainer on TIR (Figure 4.5), which pro-

vided them with a concise and direct explanation of the main elements of the mode.

Differentiating this mode from general fixed-route transit and private ridehailing was im-

portant for ensuring the respondents made accurate decisions in the SP section of the

survey. Respondents were also asked if they were familiar with the 903 Flex service that

had previously operated in the survey area, which determined both the general familiarity

and use of the former service.

The next phase was the RP section. Since IVTT elements would pivot around a re-

spondent’s actual trips, it was decided to use an external API to calculate the trip times

automatically. Google Maps and OpenTripPlanner were used in earlier stages of this re-

search (Chapter 3), and were natural candidates. Google’s APIs that drive Google Maps

were chosen due to the relatively accurate travel time estimates across driving, cycling, and

transit modes, and the ease of integrating them into the survey. The Google Directions

API, which is one of the two Google APIs used in this research, has also been previously

been used by Saxena et al. (2020) for automated collection during surveys. Google Cloud,

which provides access to these APIs, is also free for projects with low numbers of API

requests per month. Two advantages came from automatically calculating trip times for

respondents. First, the risk of the respondent entering incorrect times or leaving the sur-

vey due to the manual steps required is greatly reduced, which had been identified as an

issue in prior studies (Yan et al., 2019). Second, trip metrics for each trip can be quickly

determined, including steps of the transit trip, which allows for measuring their existing

preferred trip against trip alternatives.

A front-end page was designed to translate a respondent’s home, destination, and de-

parture time to a series of travel times and characteristics (Figure 4.6). Figure 4.7 outlines

the process for converting the respondent’s data to a series of variables. Respondents

were reminded of the guidelines for their trip, to ensure they picked an appropriate origin-

destination pair. For privacy reasons, the home and destination addresses could not be

stored in the survey, so a process was developed to ensure that data was kept as privately

as possible while the respondent was on the page, and that no identifiable location data
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Figure 4.5: Survey page explaining transit-integrated ridesourcing to respondents

79



was remaining once the respondent moved to the next question. Home and destination

addresses were determined using the Places API using Autocomplete, and were temporar-

ily stored in JavaScript as LatLng objects. A departure time was generated representing

the typical time the respondent took the trip, to the nearest 15 minutes, and was stored

as the next opportunity the trip would occur (e.g. the following Thursday at 3:30 p.m.).

Once the respondent pressed ‘Find travel times’, the LatLng locations and departure time

were sent to the Directions API to find transit trip components, and the Distance Matrix

API for driving and cycling times. Text would update on the page for the respodnent to

indicate that a time had been found, and the responses from the Directions and Distance

Matrix APIs would be processed as variables and stored. The final suite of stored values

is given in Figure 4.6 (b). Three status values were also included (transitStatus, driveSta-

tus, cycleStatus) which indicated whether each trip was able to be found successfully for

research purposes. From the transitStatus values, it was determined that headway was not

regularly stored for GRT trips in Google’s database, so the wait time was typically stored

as 0 minutes and was subsequently not usable for further analysis.

After finding respondents’ real-world estimated travel times, respondents indicated their

preferred mode for their trip and the trip’s purpose. Respondents that chose modes other

than driving or passengers in private vehicles were asked a follow-up question to pick

one or the other as their most likely car-based alternative, which was used as one of the

alternatives in the SP section. A wide range of purposes were provided to respondents, as

well as an ‘other’ field to type in their own cases, which could then be aggregated later as

needed depending on how many trips were submitted under each purpose. It was decided

to leave the purpose open to the respondent to gather work and non-work cases at the

respondent’s discretion. Respondents were also asked if their trips were for caring work

(i.e., to help children or dependants), which would indicate the trip is primarily for helping

another individual and not for the respondent’s individual needs.

4.1.6 Construct Survey Instrument (Post-Stated-Preference)

Generally, it is desirable to leave demographic or personal questions until the end of the

survey, since respondents are more likely to leave the survey early when more personal ques-

tions are asked (Qualtrics, 2020). The remaining questions for the survey were presented

after the SP section. Questions in this part were either less immediate or were more sensi-

tive, so are best saved until after the respondent has invested time in the remaining parts

and has developed some trust in the survey’s questions. The post-SP section consisted of

four main parts: ownership, COVID-19, demographics, and feedback and appreciation.
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A

B

Figure 4.6: Sample survey entry (A) and corresponding stored variables (B)
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Driving time Transit times, 
routes, transfers

LatLng: 
Home

Date: 
departureTime

LatLng: 
Destination

Start

End

Enter home address

Google: Places API - 
Autocomplete

Enter destination address

Google: Places API - 
Autocomplete

Enter departure time

findTravelTimes()

Google: DistanceMatrix 
API - Driving

Google: DistanceMatrix 
API - Cycling

Google: Directions 
API - Transit

Cycling time

Survey response 
database

Figure 4.7: Simplified process for finding and storing travel variables using Google APIs
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The ownership questions aimed to assess what respondents already own for travel pur-

poses, which may influence their travel choices. Respondents were asked if they owned a

bicycle, how many personal vehicles their household owns, and how they would most likely

pay for a GRT fare. There were 10 options provided for the transit question, including

unlimited-use passes (U-Pass, college, corporate, veteran, Ontario Works), discount passes

(seniors, grade school students), fare cards (adult, reduced fare), or no card or pass, where

respondents would have to pay by cash or ticket instead. If respondents indicated their

household owns two or more vehicles, a follow-up question asked if the household would

consider owning fewer vehicles if their area had improved transit or TIR. Respondents were

also able to provide explanations for why they would not be willing to reduce their vehicle

ownership in an open-entry box. A respondent that owns a bicycle was expected to be

more open to choosing cycling, and a respondent that has access to a household vehicle

was expected to be more open to choosing driving or being a passenger in a private vehi-

cle. Respondents with transit cards of any kind were expected to be more open to taking

transit, since they had previously decided to buy a card, and respondents with unlimited

passes were expected to be less sensitive to transit fares, since the fare would not be felt

immediately.

Although the survey was conducted during COVID-19 pandemic restrictions, respon-

dents were asked to consider how they would travel outside of the pandemic. Even with

this reminder, it is possible that respondents may have biases or influences for or against

different modes because of how the pandemic influenced travel patterns. A 3-level Likert

question asked whether respondents were more or less likely to take each of the five modes

after the pandemic was over, to understand how opinions may change after the pandemic

and to see if there was correlation between the most chosen modes and the modes people

were more likely to take.

The last part of the Sawtooth-hosted part of the survey asked about demographics.

Respondents were asked for their age, gender, and estimated gross household income,

all of which are common demographic identifiers in transportation models. Bins were

aggregated based on other sources’ ranges to maintain privacy for respondents, while having

enough specificity to be able to differentiate utility differences between groups within a

demographic attribute. Age bins were aggregated from the census, which used bins of

5 years. Gender options included male, female, and a free-form other field to capture

other gender identities including non-binary respondents. Income bins were based on a

combination of census bins, which used variable bins with more specificity at lower incomes,

the median and average household incomes in the region (around $110 000), and the

wealthier nature of some of the surveyed neighbourhoods.
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It is also common to provide appreciation to respondents after they complete the survey.

The appreciation portion of the survey is secondary to the academic contributions provided

by the remainder of the survey, and is discussed further in Appendix E.

4.2 Dissemination

Survey dissemination was complicated by COVID-19. The original strategy was to deliver

an online survey that would be advertised through GRT channels, in-person sessions at

community centres, university/college posters, neighbourhood associations, and munici-

pal and regional resident feedback email groups. Door-to-door outreach was going to be

employed to improve the response rate of the survey once it was delivered. Because of

pandemic restrictions by the time the survey was ready to be delivered, in-person outreach

plans were cancelled. Additionally, there was some concern about the response rate that

could be achieved using GRT’s own channels.

A new strategy was developed that helped minimize COVID-19 contact challenges, and

took advantage of opportunities from the lockdown. Instead of doing in-person sessions

and contacts, postcards were delivered through Canada Post to all neighbourhoods in the

study area, with a brief description of the survey, the appreciation for completing it, and

a survey link and QR code (Figure 4.8). An advantage of the postcard method was that

neighbourhoods could be included or excluded using postal routes, so that postcards were

only delivered to people living specifically in the study area. A disadvantage of using

postcards was the expense associated with it in comparison to purely online or labour-

driven approaches like door-to-door contact, so efforts were made to minimize expenses

while maximizing the benefits of the approach. The smallest postcard option was chosen

(5 inches by 7 inches), since the printing was cheapest, and the cheapest direct mail option

was chosen (Neighbourhood Mail) to minimize delivery costs.

Neighbourhood Mail is unaddressed and is targeted using postal routes. Postal routes

do not perfectly line up with the study area, so routes were included or excluded based

on the likelihood that the route was mostly capturing the correct residents. Houses and

apartments along these routes were included, and farms and businesses were excluded.

Figure 4.9 compares the chosen delivery routes with the intended study area. The missing

areas on the west side of the map were almost all part of one larger mail route that extended

far into the townships outside of the city boundary, with a considerable number of rural

homes that would not meet the criteria to complete the survey. Some areas to the east

of the study area were included because they were relatively small components of a route
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PARTICIPANTS INVITED FOR
TRANSIT SERVICE RESEARCH

This study has been reviewed and received ethics clearance through a University of
Waterloo Research Ethics Board (ORE#42587).

A

We are looking for residents in northwest Waterloo to fill out a survey on transit service
options. As a participant in this study, you would be asked to fill out a 10-15 minute
survey where you indicate your preferred mode of travel in a series of scenarios to a
place of your choosing in Waterloo Region. This study will help transportation
researchers understand the factors influencing mode travel in areas like yours.

Each person in your household who is 16 years old or older is invited to complete the
survey. Other criteria for eligibility are outlined on the survey website.

In appreciation for your time, you may enter into a draw for:
• 1 of 10 PC, Sobeys, or Metro-Food Basics gift cards (valued at $50 each), or
• 1 of 10 Grand River Transit swag bags (valued at $10 each)

For more information about this study, please contact:

Prof. Chris Bachmann
Department of Civil and Environmental Engineering
519-888-4567 ext. 31303 | chris.bachmann@uwaterloo.ca

To participate in this survey, scan the QR code or visit:

uwaterlootir.sawtoothsoftware.com

B

Figure 4.8: Postcard mailed to residents with survey information and link (A: front, B:
back)
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that was mostly in the study area, or predominantly consisted of non-residential space,

including parking lots and parks.

Figure 4.9: Chosen Canada Post delivery routes compared with the intended study area
(Canada Post Corporation, 2020; OpenStreetMap contributors, 2019). North compass and
scale not provided in the original map.

One of the previously identified challenges (Section 4.1.3) was achieving a good sample

size. The TTS was used as a point of comparison since it is a similar type of survey with

more resources. In the 2016 TTS, a sample test of different survey methods found no

major response difference between unaddressed mail and addressed mail, which supported

the decision to use Neighbourhood Mail, nor a major difference for people who received a

detailed instruction sheet versus those that did not (A. Rose, 2018). While this may not

apply in all areas or for all types of surveys, the TTS operates in within this area and

surrounding regions. Therefore, the additional cost of addressed mail was not considered

worth the potentially marginal improvement in sample size. Phone call follow-ups for
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incomplete survey responses were also used to improve response rates, but that option

was not available in this survey due to the nature of how responses were anonymized and

collected. In the corresponding TAZs, 1421 residents had completed the 2016 TTS, 70%

of which completed it online and 29% by phone (Data Management Group, 2016). The

expectation for this survey was a sample size much lower than 1421, since the TTS operates

with much larger resources and formal government affiliation. The predicted sample size

was expected to be closer to 200-600 respondents, based on mail engagement rates provided

by Canada Post.

The final survey reached 10 968 households across 20 mail routes, and were delivered

on the week of 3 May 2021. 14 neighbourhood and home associations in the area were also

contacted to share the survey with their members. Some of these associations confirmed

that they posted the survey on their Facebook groups, and this was confirmed by the

participants’ User-Agent strings from their web browsers.

4.3 Survey Statistics and Filtering

The survey ran from 30 April 2021 to 31 July 2021, with most respondents completing

the survey in May, and no respondents participating after 8 July (Figure 4.10). 396 re-

spondents interacted with the survey overall, representing a ∼3.6% engagement rate from

the postcard and neighbourhood association outreach campaign, which is lower than the

address-only sample of the TTS. Considering the TTS mail campaign is personalized to

the resident’s address and is formally affiliated with multiple government and transit agen-

cies, the response rate for this survey, with only a University of Waterloo affiliation and

a general postcard, was considered successful. 267 respondents completed the survey, 114

respondents started the survey, but did not finish, and 15 respondents were disqualified in

the filtering questions at the start of the survey (10 for not having a qualifying trip, and 5

for not providing consent).

Of the respondents that did not finish, the most common departure points from the

survey were the home-destination question in the RP section (46 respondents), the filtering

questions at the start of the survey (34 respondents), at various points across the SP section

(20 respondents), and the page explaining TIR (10 respondents). There are some possible

explanations for why the home-destination question was a common drop-off point. First,

although the question was clear about home or destination addresses not being stored

(only the travel times and general transit characteristics were stored), respondents may

have felt uncomfortable due to privacy concerns. Second, this was the first question in
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the survey that required text-entry, which may have resulted in a higher than expected

cognitive load compared to a survey with only radio buttons. Third, the respondent needed

to consider a trip using the six trip criteria from the filtering questions (home-destination

trips, within the Region of Waterloo, not by walking, freedom to decide how to travel, and

not attending grade school, and assume it’s made outside of COVID-19). It is possible that

some respondents found this experiment onerous or could not think of a trip easily that met

these criteria, even though most criteria were asked earlier in the survey. For the filtering

questions, the most likely reasoning for respondents leaving was self-disqualification upon

realizing they likely would not qualify after answering the questions.

The device the respondents were using to answer the survey may have also contributed

to the number of incomplete surveys. 205 respondents engaged using an Android phone or

iPhone (mobile respondents), and the remaining 191 respondents used either a tablet or

desktop computer (large-screen respondents). 73 mobile respondents did not complete the

survey (36%) while only 41 large-screen respondents did not complete the survey (21%),

indicating that mobile respondents were more likely to not finish the survey. This could be

due to either mobile respondents expecting shorter engagement time or finding the survey

more onerous to complete while on a small screen. Questions with considerably higher

shares of departures from mobile respondents were the filtering questions (24 mobile ver-

sus 10 large screen), the page explaining TIR (8 mobile versus 2 large screen), and the SP

section (13 mobile versus 6 large screen). While the true reasoning for departures is un-

known, some theories can be proposed. The filtering questions required scrolling through

three questions, and some respondents may have opened the link to the City of Waterloo’s

ward map and left the survey. The page explaining TIR, while explained as concisely as

possible, still had considerable text and a diagram that may have not have been as easy

to read for some mobile respondents. The SP section required the respondent to swipe be-

tween alternatives, using Sawtooth Software’s default responsive survey formatting, which

they may have found more tiring than the large-screen respondents that had all experi-

ments visible at once. Surprisingly, the home-destination question in the RP section had a

roughly even share of departures between mobile and large-screen respondents, indicating

departures on this question may have been more due to the nature of the question than

device interaction challenges.

As part of the filtering process, respondents were asked which ward they lived in (Figure

4.11). Ward 1, 2, and 6 were the target wards since they overlapped with the 903 Flex

service area. Of these wards, Ward 2 overlapped most strongly. The high share of Ward 2

responses and considerable share of Ward 1 and 6 responses meant most responses should

represent the survey area. Enough responses were pulled from Wards 1, 2, and 6 to
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calibrate mode choice models (Section 5.2.1), so the 267 complete responses were filtered

to 232 responses for subsequent analysis.

The 232 remaining responses were reviewed for random responses and to understand

non-traders who did not change their best and worst alternatives in any experiment. Ran-

dom responses were evaluated based on a previously established technique for cleaning

responses through Sawtooth Software surveys (Orme, 2019). A batch of 300 random-

ized responses were generated, and the root-likelihood of the randomized responses were

compared against the actual respondent set. The 95th percentile value for the random

respondents was 0.314, and the respondent with the minimum root-likelihood had a value

of 0.323; thus no responses were removed based on randomness. Finally, non-traders were

reviewed. 26 of the remaining respondents did not switch their best choice (3 transit, 12

auto, 11 cycling), and 14 did not switch their worst choice (1 transit, 6 private ridehailing,

7 cycling). Only two of these respondents did not switch both their best and worst choices.

Although modes were ordered differently for different respondents, the modes would ap-

pear in the same order within a respondent’s experiments. It is therefore challenging to

know whether these two respondents were ‘straightlining’ or just had strong attachment to

these modes, and it is possible they may have been simultaneously highly captive to their

best mode and strongly against their worst mode. Further investigation revealed both re-

spondents also had very fast SP completion times (less than 40% of the median completion

time) and total survey completion times, so they were removed from further analysis, leav-

ing 230 total responses. This final set of 230 respondents was used for the remainder of the

research. Some other respondents also answered fairly quickly, but there was not enough

supplementary evidence to suggest they were oversimplifying their decision-making.

Similarly, the fixed experiment was used to determine if some respondents would con-

sider modes other than auto or cycling. For people that chose auto or cycling as their best

modes, they were either already non-traders or were often only choosing between those

two modes. Similarly, for people who chose TIR, transit, or private ridehailing as their

worst modes; they were typically choosing between those three modes across their other

experiments. Surprisingly, in some experiments a few respondents chose a different mode

as their worst mode. In both the best and worst cases, people with surprising mode choices

in the fixed experiment versus their other experiments spent a similar amount of time on

each experiment as other respondents did, so these decisions could be due to forgetting

how they answered earlier experiments or other unobserved factors.
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Figure 4.10: Survey accesses by week
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Figure 4.11: Respondents by ward (complete responses only), with desired wards high-
lighted

90



4.4 Results and Discussion

This section presents the primary findings of the pre- and post-SP sections of the survey.

SP findings are discussed in Section 5.2.1.

4.4.1 Demographics

Figure 4.12 summarizes the demographics of the 230 remaining survey respondents by

age, gender, and household income; and the estimated share using the 2016 Canadian

census (adapted from Figure 4.3). Overall shares of male and female respondents were

fairly equal, with a few respondents choosing not to answer or identifying as non-binary.

Compared to the census estimates, respondents aged 25-34 were generally oversampled,

particularly for female respondents, as were 16-24 year old female respondents, which

resulted in undersampling for almost all other age groups. Similarly, respondents with

household incomes between $45 000 to $69 999 and $125 000 to $149 999 were undersampled

versus the census estimates while other income bins were similar to the estimates. Enough

respondents were included in each bin that future model applications could effectively

weight responses by socioeconomic variables.
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Figure 4.12: Age, gender, and income ranges for survey respondents and estimated share
from 2016 census

Respondents were also asked in the survey if they had any familiarity with the 903

Flex service. Across wards, RPs, age bins, genders, and income brackets, most people (144

respondents) were unaware the service existed when it had been running. Of the people
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who were aware of it, a similarly small fraction of respondents across each segment had

ever taken it (11 had taken it before versus 73 who were aware but had not).

4.4.2 Revealed Preferences

Respondents were asked to reveal a trip, and their typical mode and purpose for the trip.

137 respondents chose a driving trip (drivers), 66 chose a transit trip (transit riders), 11

chose a trip where they were a passenger in a private vehicle or in a private ridehailing

vehicle (passengers), and 16 chose a cycling trip (cyclists). For trip purpose, 20 respon-

dents chose home-based school (HBS) trips, 87 chose HBW trips, and the remainder chose

home-based other (HBO) trips, which were predominantly shopping, entertainment, and

visits. Caring trips were concentrated in the HBO category (14% of HBO trips), and the

remaining 2 caring trips were HBW trips. Figure 4.13 compares the time ratios of cycling

and transit alternatives versus the driving alternatives, for each RP segment of respon-

dents. A time ratio of 2 indicates a cycling or transit alternative was twice as long as the

driving alternative. Most cycling alternatives were 1-2 times longer than the driving alter-

native, with cyclists tending to have the most competitive cycling alternatives and drivers

having the least competitive. Transit trips mostly ranged from 2-4 times longer than the

driving alternative, with transit riders having the most competitive transit alternatives and

either cyclists or passengers having the least competitive, depending on the length of the

alternative trip. The time ratios for each segment suggest that the time competitiveness

of each trip alternative has an influence on which mode respondents in this area typically

chose for their travel.
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Figure 4.13: Time ratios for cycling and transit alternatives compared to driving alterna-
tives, by respondents’ revealed-preferences
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Figure 4.14 compares the total walking time, number of transfers, and average time per

transfer for transit alternatives for each RP bin. Walking time was typically a combination

of access and egress time, but could also include walking between transfer points in some

cases. Walk times were binned into under 5 minutes, which guarantees that both access

and egress were 5 minutes or less, 5-10 minutes, where the average of access/egress would

be 5 minutes, 10-20 minutes, where the average of access/egress would be 10 minutes,

and over 20 minutes, where the walk time would be onerous for most users. As expected,

transit riders had the most competitive combined access and egress times. Respondents

across the remaining bins were generally split between 5-10 minutes or 10-20 minutes for

the bulk of their alternatives, which in design guidelines have been shown to be large drop-

off points in utility and transit mode share (Ontario Ministry of Transportation, 2012).

Most respondents would have had no transfers in the transit scenario, although transit

riders had slightly more direct alternatives and drivers had slightly less. Although the

passenger respondent base was small, they had the highest number of 2-transfer cases. No

respondents had a 3-transfer case or higher. When considering the average time spent per

transfer, transit riders again had more desirable transfer cases, with most transfers falling

under 10 minutes on average. Drivers and cyclists had the worst average times per transfer,

with most transfers falling above 10 minutes on average, and some drivers having average

transfer times over 20 minutes.
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Figure 4.14: Walk times, number of transfers, and average transfer times for transit alter-
natives, by respondents’ revealed-preferences

Figure 4.15 shows different segments of vehicle and transit pass ownership by the RP

modes identified by respondents. Most respondents have at least one car in their household.
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Almost every driver or transit rider has at least one household car, which is less common

for passengers or cyclists. Most drivers have two household cars, and most transit riders

have one. Similarly, outside of passengers, most respondents personally own a bicycle.

Outside of drivers, most respondents also have at least one form of fare card or pass for

the transit system. Surprisingly, just over half of the transit riders surveyed had any form

of fare card or pass, most of whom were using fare cards. Respondents with no cards or

passes indicated they would use cash or tickets if they needed to take transit.
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Figure 4.15: Vehicle and pass ownership by respondents’ revealed preferences

131 respondents indicated their household owned multiple vehicles. 62 of these respon-

dents indicated they were willing to sell at least one of their vehicles. Of the respondents

who were willing to sell, the most common barriers were dissatisfaction with transit at-

tributes (primarily access/egress, schedules, and travel time), far travel distances for work

or leisure, and issues around scheduling and sharing with other household drivers. Respon-

dents that were not willing to sell also primarily cited far travel distances and scheduling

and sharing issues, but also had general satisfaction from the convenience and flexibility

of driving.

The willingness of almost half the respondents with multiple vehicles to reduce their car

ownership is promising, since car ownership tends to be a primary driver in increasing the

auto mode share (Kitamura, 1989). While transit agencies do not have complete control

over the reasons people choose to use cars, some of the barriers would be addressable by

transit agencies. Access and egress time and distance, frequencies, schedules, and total

travel time are in some ways addressable by the agency, particularly in the area where this

survey was administered. Naturally, some agencies may struggle do this in low-density

areas where the ability to pay for provisioning the service becomes harder. For residents
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with long travel distances, improved connectivity with intercity transit may be helpful for

addressing some of their hesitance in shifting to transit. It is unclear whether transit pass

ownership had a large impact on which modes people habitually chose in this area or if it

is a consequence of taking transit frequently.

4.4.3 COVID-19

Figure 4.16 bins preferences for different modes after COVID-19 by the modes identified

by respondents in their RP section. For auto, cycling, and TIR, most respondents across

each bin indicated no change in preference due to COVID-19. Across all bins, respondents

with a change in preference for auto or cycling were more likely to choose those modes

after COVID-19, whereas respondents with a change in preference for TIR were less likely

to choose it after COVID-19. Shares for TIR were unexpectedly similar for each bin, which

may be because respondents had minimal exposure to this mode previously. Transit had

mixed preferences after COVID-19: no change was the most common response in each

of the bins, but cyclists were less likely to consider taking transit after COVID-19, while

transit riders and passengers leaned toward more likely. Private ridehailing was clearly the

most negatively impacted mode, with almost no respondents being more likely to choose it

after COVID-19, and at least a third of respondents in each bin being less likely to choose

it.

Understanding how respondents perceived these modes after COVID-19 has two bene-

fits. First, the findings contribute to the growing body of literature that aims to understand

how COVID-19 temporarily or permanently may change people’s perceptions of different

modes. If long-term travel patterns are impacted after the pandemic subsides, then these

findings provide evidence of the underlying behavioural responses. If travel patterns even-

tually return to normal, then the findings will help understand how people may react in

future pandemics or public health emergencies, not only from a direct mode share perspec-

tive, which would be evidenced by observed travel patterns, but from a mental perspective,

indicating modes where people have negative perceptions because of the pandemic.

Second, the SP experiments asked residents to consider how they travel outside of the

pandemic, but it is possible that their perspective of how they would travel was biased to

some degree because of the situational factors at the time they completed the survey. A

positive bias toward a mode after COVID-19 may indicate more preference in the exper-

iments than they would otherwise have, and similarly a negative bias could indicate less

preference than they would otherwise have. The general increased likelihood for taking
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Figure 4.16: Likelihood of choosing a mode after COVID-19 by respondents’ revealed-
preferences

auto and cycling after COVID-19, and general decreased likelihood for private ridehailing,

may be due to the isolated versus shared nature of those modes, respectively. Auto and

cycling are generally completely unshared modes, or at least are shared within a household

unit, whereas taxis and Ubers are shared with drivers in a small vehicle. Transit and TIR

are also shared modes, but preferences may have been less strong against these modes since

some or all of the trip is in a larger vehicle. It is also possible that due to the positive

correlation between how modes were perceived in the SP experiments with the likelihood of

choosing the mode after COVID-19 (Section 5.2.1), respondents may have subconsciously

correlated future likelihood with their existing preference for the mode.

4.5 Conclusions of RP-SP Survey

This survey aimed to capture the demographics of a suburban population with high interest

in transit with low levels of existing service. Respondents were screened by age, ward, and

trip type to ensure their demographics matched the decision-making capability, location,

and medium to long distance trip that was being assessed. A total of 230 respondents

were used for the remainder of the research, filtered from 267 complete responses. These
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responses were demographically similar to the 2016 census in the same area, indicating

a generally similar fit and validity of the base of respondents. The dataset of responses

provides a unique set of variables aimed at better understanding transit-integrated rides-

ourcing, uniquely combining cost, important time attributes, and common alternatives

(driving, passenger, cycling, and ridehailing), which have not all been included together

in recent transit-integrated ridesourcing surveys. The dataset (Terry & Bachmann, 2022)

may also provide useful to other researchers aiming to conduct other research using the

results of the survey.

While the SP portion and mode choice findings are analyzed in the following chap-

ter, the surrounding parts of the survey provided interesting initial findings. Comparing

respondents’ chosen modes against their real-world alternatives, people tended to choose

modes that were the most competitive, even without necessarily having full knowledge

of the travel times for their alternatives. Specifically, cyclists had the most competitive

cycling time ratios, and transit riders had the most competitive transit time ratios. These

findings confirm travellers are behaving rationally, at least with respect to travel time.

Most respondents in the area had no transfers for their transit trips, and no respondents

had more than 2, so the decision to cap the number of transfers for transit and TIR in the

SP portion at 3 was reasonable.

Unsurprisingly, drivers had the highest share of car ownership and the highest share

of multiple cars per household, and cyclists were the only RP bin with complete bicycle

ownership. However, barely half of self-identified transit riders used any form of fare card

or pass, which may indicate that there is a considerable population for which increased

transit ridership may not be correlated with pass ownership. Many respondents indicated

COVID 19 did not impact their views of transit or TIR meaningfully, suggesting there is

future potential for these modes as the pandemic subsides. Transit agencies would also

benefit from stronger marketing of their TIR pilots, since many respondents were not aware

of the previous pilot that ran in their neighbourhoods.
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Chapter 5

System Evaluation

The final contribution of this research extends the findings of the RP-SP survey in Chap-

ter 4 to quantitatively evaluate different TIR system types. A mode choice model was

estimated using the SP results of the survey to determine sensitivities to modes and their

attributes. Elasticities for attributes were determined and applied in a sensitivity analysis,

which assessed predicted impacts under different system types and policy scenarios.

Mode choice models in transportation tend to use classical logit models with linear

attributes. This model advances mode choice literature by incorporating Bayesian esti-

mation, non-linear time and cost attributes, and transit-integrated ridesourcing, which

have not been combined in previous models. This combination of characteristics allows for

measurement of sensitivity to transit-integrated ridesourcing across combinations of indi-

vidual respondents at smaller sample sizes, and for measuring differences between major

attribute levels. The model may be transferable to other areas using established trans-

ferability techniques. The marginal effects and elasticities produced by the model are of

interest to researchers interested in transit-integrated ridesourcing. The mode share anal-

ysis of different system configurations, and the resulting understanding of the impact of

attributes on those configurations, has allowed for the first design guidance applicable to

real-world transit-integrated ridesourcing projects.
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5.1 Methods

5.1.1 Model Estimation

Mode choice models can be generated using survey panel data. The most common model is

the MNL model (Train, 2009), which assumes systematic utility functions (e.g., Equations

4.1 to 4.5) with random error terms that are independent and identically distributed (i.i.d.)

Gumbel. The probability of choosing an alternative k (Pk) under MNL is given by,

Pk =
eVk∑
j e

Vj
(5.1)

where Vk is the utility of alternative k and Vj is the utility of each alternative j in

the choice set. This assumption is made for mathematical convenience but leads to the

independence from irrelevant alternatives (IIA) property and associated limitations (e.g.,

proportional shifting). The MNL model also has no ability to account for preference and

scale heterogeneity (Hensher et al., 2015). Mixed logit models attempt to improve on the

MNL model in specific applications, in part by assuming each systematic utility parameter

is drawn from a distribution of values, allowing for some distribution of preferences across

the population.

Mixed logit models can be estimated using classical statistics or Bayesian statistics,

and the Bayesian form is often referred to as Hierarchical Bayes (HB) (Sawtooth Software,

2021). HB models consist of two parts: lower-level MNL models for each respondent

in the sample (consisting of their preference coefficients), and an upper-level distribution

which informs the lower-level MNL models. The upper-level uses a multivariate normal

distribution with the form,

βi ∼ Normal(α,D) (5.2)

where βi is the vector of coefficients for respondent i, α is the vector of means of

the coefficients across all respondents in the model, and D is a matrix of variances and

covariances across individuals. The lower-level model uses the same form as the standard

MNL (Equation 5.1).

Estimation is done through sequential iterations: β and D are used to estimate α, β and

α are used to estimate D, and α and D are used to estimate β. This procedure is explained

in detail in the technical paper published by Sawtooth Software (2021). An effect of this
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type of model is that lower-level individual models are influenced by the distribution of

all respondents, which can be calibrated to allow for lower-level models to adhere more

or less strongly to the upper-level distribution. Bayesian estimation avoids the need to

maximize a simulated likelihood function and enables consistent and efficient estimates

under more relaxed conditions, but it is more challenging for a modeller to determine if

convergence has been achieved (Train, 2009). Huber and Train (2001), and later, Elshiewy

et al. (2017) showed that both classical and Bayesian estimation should be able to produce

similar results for finding individual-level utilities.

Three draft mode choice model specifications were generated using Lighthouse Stu-

dio: a classical linear MNL model, a Bayesian mixed logit model with primarily linear

coefficients (i.e., linear mixed logit), and a Bayesian mixed logit model with non-linear

coefficients (i.e., part-worth mixed logit). The linear MNL model was provided for com-

parison to traditional mode choice models in transportation that use classical estimation.

The Bayesian specifications were used to determine if any attributes in the model have

non-linear effects on utility.

Each of the models were prepared using similar techniques. Survey responses were

checked for speeder behaviour, including straight-lining or pattern responses, and non-

trader behaviour, where respondents stick with one alternative, which can influence mode

constants (S. Hess et al., 2010). Furthermore, in the mixed-logit models, individual re-

spondents’ root-likelihood (RLH) were compared against a set of 1 000 random computer-

generated respondents to ensure their responses were not random. The 230 responses

analyzed were from respondents that completed the survey and self-identified as living in

one of the three wards that overlapped with the study area. For the mixed logit models, 10

000 draws were pulled to reach convergence during estimation, and another 10 000 draws

were used to estimate coefficients for the respondents. All models also used the best and

worst tasks: worst tasks are automatically coded as a negative response, so were treated

as an inverse of a best task. In the linear MNL and linear mixed logit models, all attribute

levels were coded linearly except for the mode constants. No attributes were constrained

to have negative or positive coefficients, but well-known relationships like price and time

negativity were checked to ensure they met real-world expectations. In the part-worth

mixed logit model, attribute levels did not need to be coded into the software. Utilities for

non-linear attribute levels were automatically scaled to sum to 0 within attributes before

estimation using effects coding.

The mean estimate and t-stat for each attribute were generated for the linear MNL

model. Using a 95% confidence interval, t-stats that fell within -1.96 and 1.96 indicated that
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the variable was not found to be statistically significant. For the mixed logit models, three

parameters were generated for each model attribute. The mean value, which represents the

estimated α, is equal to the average of the β coefficients from the individual (lower-level)

MNLs and is the utility estimate for the upper-level model. The 95% confidence interval

indicates the upper bound (97.5th percentile) and the lower bound (2.5th percentile) of

the possible values for the mean. For part-worth attributes, if multiple levels within an

attribute have overlapping confidence intervals, then the attributes must be tested further

to assess the likelihood that the values fall on one side of the other level’s mean estimate.

Estimates for one level’s α are compared to the estimates of α for the other level in

each draw from the mixed logit estimation process. The share of draws where the α

of one value is less than the α of the other value indicates the confidence that the first

level is significantly less than the other (Orme & Chrzan, 2021). The individual standard

deviation is also calculated, which is the standard deviation of β coefficients for the lower-

level MNLs, indicating the level of heterogeneity in the β coefficients among respondents.

Upon estimation, two measures of fit were evaluated. Percent certainty, or McFadden’s

rho-squared, indicates where the log likelihood lies between a completely chance model (the

null model, with a percent certainty of 0.000) and a perfect fit (a log-likelihood of 0, with

a percent certainty of 1.000). The log likelihood and percent certainty was automatically

generated for the linear MNL model. Individual log-likelihoods were converted from the

individual respondents RLH for the other models, then summed across all respondents to

find the total log-likelihood.

Using the linear and part-worth mixed logit models, a final mixed logit model was

generated based on the part-worth model. This final model converted the part-worth

attributes that were not found to have non-linear relationships to linear attributes, and

removed attributes that were not significant at a 95% confidence interval.

Segments for different ages, genders, household incomes, and destinations were gener-

ated and compared with the final model. Age and gender bins were retained from those

included in the survey. Household income was aggregated into two bins: households with

under $100 000 in income and households with $100 000 or greater. Destination was aggre-

gated from the multiple trip purposes provided in the survey. For home-based trips, trips

were separated into home-based work (HBW), home-based school (HBS), and home-based

other (HBO).

Although respondent utilities are often demographically weighted in logit models, Saw-

tooth Software does not provide the ability to weight respondent utilities when using

Bayesian estimation. This restriction is supported by prior research from Sawtooth Soft-
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ware that indicated there were minimal effects on the utilities (Howell, 2007). Weighting

was considered in later mode share simulations (Section 5.1.2) of different TIR configura-

tions.

5.1.2 Model Validation and Calibration

After estimating the mode choice model, the model was validated using real-world mode

shares and calibrated by adjusting the alternative-specific constants (ASCs) and the scale

factor. As identified in Chapter 4, SP models tend to be good for determining trade-offs,

but poor at replicating real-world equilibria due to the choice of attributes tested and the

decision-making of respondents when completing surveys versus making real-world deci-

sions (Hensher et al., 2015). By adjusting the SP model to replicate RP mode shares,

analyses can be conducted with the model that should result in reasonably accurate es-

timates of real-world changes in mode share. This process consisted of five steps. First,

real-world estimates were determined, providing target values that the SP model should

replicate by the end of the process. Second, a representative base trip was designed with

attributes close to the RP median for each mode, in order to find the base SP shares before

calibration. Third, respondents were weighted to match their RP declared mode choice

with survey data from TTS. Fourth, the scale factor and alternative-specific constants

(ASCs) were adjusted to ensure that when TIR was added, it would have an accurate

mode share. Finally, TIR was added to determine the initial mode share for scenario

analyses.

The most reliable estimates for real-world mode shares come from the TTS, which was

previously used in the survey design phase to determine the most popular modes (Table

4.1 in Chapter 4). Because the survey, and by extension, the resulting model used a

narrower field of potential trips, the TTS statistics were updated to reflect the boundaries

of the study. Specifically, trips were included in the mode share estimates from the TTS

if the origin was in one of the survey TAZs, the destination was anywhere in the Region

of Waterloo, and the trip was made by someone aged 16 years or older. Trips were then

filtered by purpose to ensure any grade-school trips were removed. The second set of shares

used was the RP shares that respondents provided within the survey.

While trips in the survey area are fairly heterogeneous, a single trip was used for

validation and calibration of the SP results. The trip, which forms the base case, has

attributes falling near the median value among all the trips provided in the RP part of

the survey. A comparison of the attributes of the base case and the median is provided in
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Appendix F. The SP shares under the base case, TTS shares, and RP shares are shown

in Figure 5.1. If SP shares matched the TTS shares, no further steps would be required.

In this case, without calibration, the SP shares over-represent transit and cycling and

under-represent ridesharing and auto, compared to the TTS shares.

RP Shares
2.2%7.0%

28.7%

62.2%

Auto Transit Cycling Ridesharing

TTS Shares
0.3%

2.0%4.2%

93.4%

SP Shares
0.2%9.4%

13.9%

76.4%

Figure 5.1: SP shares under base case, TTS shares for the associated TAZs, and RP shares
from survey respondents

Three techniques were used to adjust the SP shares to match the TTS shares: weight-

ing, adjusting the scale factor, and adjusting the ASCs. Recognizing that the RP modes

provided by respondents will not perfectly align with their SP preferences, adjusting re-

spondent weights is one way to ensure that respondents who are suspected to be over-

represented or under-represented are appropriately scaled in the model. The scale factor

(λ) represents the relative scale for the parameters of the SP model when compared to the

RP model. This also equals the ratio between the size of the SP variance compared to the

RP variance. There are established ways to accomplish scaling with classical MNL models,

including the nested-logit ‘trick’ (Hensher et al., 2015), which may not be as simple to

compute for Bayesian models where individual-level models are still maintained. Guidance

from Sawtooth Software recommends practitioners not adjust their models, but if they

chose to do so, to change the scale factor (identified as the ‘exponent’) to achieve shares

closer to the target values (Orme, 2006). Then, ASCs can be adjusted to account for any

remaining individual changes needed to match shares.

The first step was re-weighting respondents to achieve closer shares to the target. Re-

spondents were binned to compare the shares in SP, RP and the TTS. Unlike the survey

chapter, auto passengers were binned with drivers, because both respondent categories
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use the auto mode. Auto passengers were also not binned separately because only 6 re-

spondents chose ‘passenger in a private vehicle’ as their RP mode, requiring a very large

weighting (∼4.8) to match the share of auto passengers in the real-world. Weights were

calculated by dividing the RP share by the TTS share, to ensure that each bin has the

same weight in the model as the corresponding share in the TTS. While the auto mode has

a weight almost 11 times the size of the ridehailing weight, which is higher than typically

recommended (Sawtooth Software, 2022), the final weights are considered valid due to the

sheer dominance of auto travel in the survey area. Tests of the flexibility of the model (by

applying extremely high scale factors to the model to force a higher auto share) revealed

that scale factor alone would not be able to provide an auto share over 90%, indicating

that people who strongly prefer cycling or transit are over-sampled in the respondent base.

Demographic weights were also tested (as proposed in Section 4.4), but actually skewed

the SP model more disproportionately toward cycling and transit, so were not considered

in the final model. Applying the RP weights to the SP model resulted in a series of shares

closer to the TTS shares, but that still required further adjustment.

The second step was finding the appropriate scale factor (λ), which was done in tandem

with the third step (adjusting ASCs). While some SP models can be used for sensitivity

analysis without adjusting for RP shares (a method originally considered for this analysis),

the presence of a new mode (TIR) in the SP case means the ASCs for the existing modes

need to be accurate to ensure TIR is not over- or under-weighted once it is added. The

method used to adjust the scale factor and ASCs was to find the value of λ that minimized

the required ASC adjustments to reach the correct shares on average. ASC adjustments

were calculated by Lighthouse Studio when the software was provided a scale factor value.

The mean absolute error for the ASCs for auto, cycling, transit, and ridehailing was the

metric minimized to find the final λ, which was equal to:

MAE =
|AdjA|+ |AdjC |+ |AdjT |+ |AdjRH |

λ
(5.3)

which is the sum of the absolute values of the adjustments divided by the scale factor

λ. This is mathematically equivalent to whichever λ resulted in the ASC adjustment for

ridehailing being 0, because ridehailing had the highest absolute change in mode share for

each unit change in λ, compared to other modes. Because of how small ridehailing’s share is

in the real-world, being able to accurately predict it relative to other modes was considered

valuable. The final scale factor was 0.5897, which falls in the general range identified by

practitioners for surveys designed through Lighthouse Studio (Sawtooth Software, 2022).

Table 5.1 shows the respondent count, weighting, shares, adjusted ASCs for each mode

104



to shift from the model shares at λ = 0.5897 to the TTS shares, and the final share once

transit-integrated ridesourcing is added. After finding the ASC adjustments, TIR was

added using the 903 Flex parameters as a base (discussed in Section 5.1.4), resulting in a

starting case where TIR has a 0.98% share. This share is higher than what was observed in

the TIR pilot in Chapter 3, based on the number of observed trips, but the model assumes

residents have perfect knowledge of the choice sets. The survey results indicated that most

residents were unaware of the service (Section 4.4.1), which may have been a contributing

factor to the lower real-world share.

Table 5.1: Respondent count, weighting, adjusted shares, and alternative-specific constant
adjustments

Mode Model
Share
(SP)

Count RP Wt. Model
Share

(RP Wt.)

Model
Share
(λ =

0.5897)

ASC
Adj.

Post
Adj.

Share

Final
Share

Auto 76.44% 143 1.503 86.27% 83.19% 1.433 93.44% 92.76%
Cycling 9.70% 16 0.291 5.18% 6.22% -0.980 2.03% 2.01%
Transit 14.40% 66 0.148 8.43% 9.80% -0.453 4.24% 3.95%
Ridehailing 0.60% 5 0.137 0.11% 0.79% 0.000 0.30% 0.29%
TIR – – – – – 0.000 – 0.98%

5.1.3 Model Application: Marginal Effects and Elasticities

Using the validated and calibrated model, marginal effects and elasticities were calculated

to determine the impact each attribute has on the base case trip. Marginal effects and

elasticities are a common way of reporting model results in literature (Hensher et al., 2015).

Elasticities represent the percent change in quantity per percent change in an attribute. In

this research, the quantity is represented by mode share. The two main types of elasticities

are point elasticities and arc elasticities. Point elasticities measure the percent change in

mode share from one of the two endpoint attribute levels over which the change is being

measured, while arc elasticities are measured from the midpoint of the two attribute levels.

Arc elasticities are useful when the point elasticities at each endpoint are not similar, and

are used throughout this research. The arc elasticity is given by:

Ei,i+1 =
δQi,i+1

δxi,i+1

× x̄i,i+1

Q̄i,i+1

(5.4)
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where E is the elasticity between levels i and i + 1, Q is the mode share (quantity), x is

the attribute being changed (often price), Q̄ is the mean of the mode share at points i and

i+ 1, and x̄ is the mean of the attribute levels xi and xi+1.

Marginal effects are easier to visually interpret because they represent the absolute

change in quantity per unit change in an attribute. Marginal effects are calculated by:

Mi,i+1 =
δQi,i+1

δxi,i+1

(5.5)

where M is the marginal effect between levels i and i+ 1, and the other variables are the

same as they are in Equation 5.4. Marginal effects are reported in this research in units of

mode share change (as a percent) per unit of the attribute being changed. For example,

if a transit fare increased from $1.00 to $2.00, and the mode share for transit decreased

from 3.0% to 2.5%, the marginal effect would be -0.5% mode share per $1.00 increase in

fare price, or simply -0.5. Marginal effects are specifically reported in absolute units, not

in relative units. In this case, marginal effects represent a change in mode share, which is

a percentage, but if the number of trips were chosen as the quantity unit, then marginal

effects would be measured in the change in the number of trips per unit of the attribute.

In classical logit models, marginal effects and elasticities are generally the same at any

attribute level for linear attributes. This is because classical logit models are solving for

one ‘individual’, which represents the aggregate views of the respondents that provided

their trade-offs to the modeller. Hence, there is only one set of mode shares to be adjusted

and therefore one relationship of utilities to manipulate. In Bayesian logit models, because

an individual choice model is estimated for each respondent, mode shares are calculated

at each combination of attribute levels by averaging the mode shares of each weighted

individual respondent. For an individual, a shift from one attribute level to another may

cause a different proportional change in mode share compared to another individual, so the

marginal effects and elasticities may differ depending on where they are estimated between

two levels, even if they are connected via a linear relationship. For simplicity, marginal

effects and elasticities used the survey endpoints for linear attributes (i.e., for IVTT ratio),

and were calculated for each interval of attribute levels for non-linear attributes (e.g. from 0

transfers to 1 transfer, then from 1 transfer to 2 transfers). Marginal effects and elasticities

were only calculated for the base case (instead of the full suite of trip cases in Section 5.1.4).
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5.1.4 Model Application: Trip Cases

Different types of trips that might be made using TIR were then evaluated under different

system configurations. Figure 5.2 depicts each of the trips and Table 5.2 lists the concepts

for each trip case. Origin and destination locations are given in Appendix F.

Trip case 1a and 1b represent the peak and off-peak variants of the median trip, where

all attributes fall near the median value. Trip cases 2a and 2b represent trips with a

similar length to trip cases 1a and 1b, but worse transit access. The IVTT ratio, access

time, egress time, number of transfers, and average transfer times are higher in the transit

alternative, and IVTT ratio and egress time are higher in the TIR alternative compared

to trip cases 1a and 1b.

Trip cases 3 and 4 represent long trips. Trip case 3 uses a long trip with many transfers

close to fixed-route transit. The IVTT ratio is similar to trip cases 2a and 2b, but there

are more transfers, shorter access/egress times, and middling average transfer times. Trip

case 4 uses a trip that has some of the most undesirable characteristics for intraregional

travel, and was designed to test the least transit and TIR friendly boundaries of the TIR.

The wait time, combined access/egress time, IVTT ratio, number of transfers, and average

transfer time are higher in trip case 4 than in any other case.

Many respondents had RP trips with high access/egress times but low IVTT ratios and

short distances. Although distance is not considered in the model, trip case 5 uses a trip

that replicates the high access/egress times and low IVTT ratio of those trips. Trip case 1a

has some of the most transit and TIR friendly attribute levels, and trip case 5 allows for a

competitive best-case scenario where the IVTT ratio is lower and number of TIR transfers

is lower, but the combined access/egress time is higher.

Using the typology developed in Chapter 3, trip cases 1a and 1b are inconvenient

indirect feeders, trip cases 2a and 2b are double-ended remote trips, trip case 3 is an

indirect transit replacement, and trip cases 4 and 5 are single-ended remote trips. These

trip types cover most of the popular types from the 903 Flex, except for trips without

transit like non-transit trips and direct feeders. Therefore, trip case 6 was designed to use

a trip where there is no competitive transit alternative available. The trip goes between

a former 903 Flex virtual stop and a bus stop, so is considered a direct feeder with an

access/egress time of 0 minutes. Trip case 6 could be hypothesized as a best-case scenario

for TIR, because there is no transit and the TIR trip is very competitive.

Table 5.3 outlines the transit and TIR settings used for each trip case. These settings

are used as the default values for each trip case.
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Figure 5.2: Transit trip cases for system evaluation and 903 Flex survey area

Table 5.2: Concept for each trip case

Case Concept Dist.
(km)

Transit
Proximity

Schedule

1a Median 6.5 Near Peak
1b Median 6.5 Near Off-peak
2a Median remote 9.5 Far Peak
2b Median remote 9.5 Far Off-peak
3 Long 29 Near Peak
4 Long remote 39.5 Far Off-peak
5 Short with low IVTT 3 Far Peak
6 No transit alternative 3 N/A N/A
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Table 5.3: Trip case transit and transit-integrated ridesourcing settings

Case Mode Wait
(min)

Access
(min)

Egress
(min)

IVTT Ratio Transfers Avg Transfer
Time (min)

1a Transit 7.5 7 3 1.5x 0 0
TIR 5 1 3 1x 1 7.5

1b Transit 15 7 3 1.5x 0 0
TIR 5 1 3 1x 1 15

2a Transit 7.5 15 13 2.1x 1 15
TIR 5 0 13 1.7x 1 7.5

2b Transit 15 15 13 2.1x 1 7.5
TIR 5 0 13 1.7x 1 15

3 Transit 7.5 3 1 2.1x 2 12.5
TIR 5 0 1 2.1x 2 12.5

4 Transit 30 19 9 2.5x 3 15
TIR 5 5 9 2.4x 3 21.5

5 Transit 7.5 11 5 1x 0 0
TIR 5 4 0 1x 0 0

6 TIR 5 0 0 1x 0 0

5.1.5 Model Application: Configuration Scenarios

TIR configuration scenarios were designed to cover three categories of changes to TIR

systems: operational adjustments, permitted demand patterns, and changes in monetary

costs. Scenarios are rooted in the system types found in the literature review (Tables 2.4

and 2.5 in Chapter 2). This subsection discusses each scenario and the changes made to

the trip case variables. While settings for most modes are fairly simple, some of the TIR

settings specific to each case require further explanation and are outlined in Appendix G.

Scenario results were calculated using the Share of Preference format (i.e., the standard

logit equation) in Lighthouse Studio’s simulator mode.

Table 5.4 presents the scenarios with operational adjustments. Operational adjustments

involve small-scale differences in levels of service quality. Since additional stops were re-

moved as a survey attribute (Table 4.4 in Chapter 4), additional stops can be modelled

by adjusting IVTT ratios. The ‘more stops’ scenario adds 0.5x to each case’s IVTT ratio,

representing additional stops slowing the service down due to either more popularity or a

lower vehicle-to-rider ratio. On the other hand, the ‘IVTT same as auto’ scenario considers

the extreme case where no stops are made along any leg of the trip. The ‘synced transfers’

case explores the trade-off between wait time and transfer time. Instead of picking up

the user as quickly as possible and taking them to the next leg of the trip at a time that
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may not sync with a transfer, the driver times the pick-up time to ensure that the rider

arrives within 5 minutes of the scheduled transfer, resulting in longer wait times compared

to a non-synced case. Transfer time was reduced to 2.5 minutes for the first transfer point

(the maximum transfer time divided by 2) and the transfer time adjustment between the

original time and 2.5 minutes was added to the wait time. The average transfer time was

recalculated assuming the remaining legs had their original transfer times, if there was

more than one transfer.

The next scenarios explored include different permitted demand patterns, which relate

to the spatial attributes of system types. Table 5.5 presents the scenarios with different

permitted demand patterns. In the many-to-many scenarios, it is assumed the service

covers the entire region (i.e, that there are no service zones). Three variants are analyzed

where TIR does pick-ups and drop-offs at fixed-route stops, at virtual stops, or provided

door-to-door service. In all three cases, the IVTT ratio is dropped to 1x, since there is no

fixed-route transit with mandatory stops. Wait times are increased to 10 minutes to reflect

the expected longer waits for service since the service area is larger and trips are open to

hundreds of locations across the region. By nature of the many-to-many structure, there

are no transfers. The difference between the three variants is the walk time: for fixed-

route stop service the walk time is adjusted to the walk time for the transit alternative,

for virtual stop service the walk time is not changed from the starting case (i.e., the 903

Flex case), and for door-to-door service the walk time is changed to 0 minutes.

The ‘nearest fixed stop’ scenarios in Table 5.5 considers a transit-supportive variant

where TIR feeds the rider directly to the closest fixed-route stop on their transit alternative

trip. In the access variant, this service is only offered from their origins to the access stop.

In the access and egress variant, the destination end also has feeder service, and is synced

to have a TIR vehicle waiting (a 0-minute transfer). In both variants, the IVTT ratio

and average transfer time is recalculated using the TIR and transit legs. The number

of transfers at minimum is the same as the number of transit transfers. If the origin or

destination of the case’s trip is within a 5-minute walk, no service is offered to the nearest

stop, and therefore no transfer is required at that end of the trip.

Two more scenarios consider less common permitted demand patterns. In one scenario,

a many-to-few service similar to one of Innisfil Transit’s permitted demand patterns was

modelled, where service is only provided to or from the major transit hubs in the Region of

Waterloo (listed in Appendix G). A 30-minute transfer penalty applies to taking another

TIR trip once at one of the hubs to discourage users from using the service as a somewhat

inconvenient many-to-many service. For the first leg, the virtual rider in each case takes

110



Table 5.4: Scenarios for different operational adjustments

TIR

IVTT
ratio

Wait
(min)

Walk
(min)

Transfers Avg.
transfer

time (min)

More stops +0.5x — — — —
IVTT same as auto 1x — — — —
Synced transfers — +Transfer

time adj.
— — 2.5*

* Cases with more than 1 transfer only had the first transfer adjusted to 2.5 minutes

Table 5.5: Scenarios for different permitted demand patterns

TIR

IVTT
ratio

Wait
(min)

Walk
(min)

Transfers Avg.
transfer

time (min)

Many-to-many (fixed) 1x 10 Transit
walk time

0 0

Many-to-many (virtual) 1x 10 — 0 0
Many-to-many (door) 1x 10 0 0 0
Nearest fixed stop, access Inc.a — 0-5b Transit

transfers
+0-1b

Var.a

Nearest fixed stop,
access and egress

Inc.a — 0-5b Transit
transfers

+0-2b

Var.a

Many-to-few, 30 min
transfer

Var.c — 0 (access),
Var.

(egress)c

0 or 1c 30 or
transit
waitc

Zonal service, 5 km
zones, door-to-door

1x — 0 1 per whole 5
km

2.5

a IVTT ratio and transfer time average recalculated to account for TIR and transit
portions (IVTT ratio always increases)

b Service not provided on the access or egress leg if the walk time is under 5 minutes
c Under many-to-few, the second leg of the trip may be via transit or via TIR
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service to the hub that is closest to their destination. For the second leg, the rider chooses

whichever trip has a higher likelihood of getting to their destination faster: either waiting

for the 30 minute penalty and taking TIR again from the hub, or waiting for fixed-route

transit and taking it to their destination. In another scenario, 5 km zones apply to the

entire region with many-to-many door-to-door service. Thus, every 5 km the rider needs

to transfer to another TIR vehicle that arrives within 5 minutes.

Table 5.6 lists a series of scenarios exploring changes in monetary costs. Zonal, sectional,

and flat upcharge fare scenarios are explored representing different ways of treating TIR

based on fare types typically used in public transit (Vuchic, 2004). Zonal fares have a base

fare plus a fee for each zonal boundary crossed. Sectional fares (or ‘distance-based fares’)

have a base fare plus a fee for each unit of distance travelled. Flat upcharge fares charge

a flat fare on top of the base fixed-route transit fare. Fare regimes for zonal and sectional

are chosen so that the maximum fare is $8.00, which is the upper end of the fare range

assessed in the SP survey. The zonal demand pattern is used for the zonal fare case to

explore how zonal pricing might change the desirability of a zonal system. Scenarios for

free transit, free TIR, and the combination of the two are analyzed, with the latter scenario

exploring the impacts on all modes when both services are free and allowing comparison

with the individual scenarios. Scenarios at each parking fee level above $0.00 are explored

to compare each level’s impact to other studied scenarios. Finally, at the $15.00 parking

level, three extra scenarios are considered: first, combining it with only free transit-based

alternatives; second, with free transit-based alternatives and a more expensive ridehailing

fee; and third, free transit-based alternatives with many-to-many door-to-door service.
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Table 5.6: Scenarios for different monetary costs

RH Auto Transit TIR

Rate
($/

min)

Park.
($)

Fare
($)

IVTT
ratio

Wait
(min)

Walk
(min)

Trans-
fers

Avg.
transfer

time
(min)

Fare
($)

Zonal service
and pricing

— — — 1x — 0 1 per
whole
5 km

2.5 1 + 1
per

trans-
fer

Sectional — — — — — — — — 0.2 +
0.2 per
whole

km
Flat upcharge — — — — — — — — 5
Free transit — — — — — — — — 0
Free TIR — — 0 — — — — — —
Free transit
and TIR

— — 0 — — — — — 0

$1.00 parking — 1 — — — — — — —
$3.00 parking — 3 — — — — — — —
$15.00 parking — 15 — — — — — — —
+ free transit
and TIR

— 15 0 — — — — — 0

+ free transit
and TIR,
$2.50/min
ridehail

2.5 15 0 — — — — — 0

+ free transit
and TIR,
many-to-many
(door)

— 15 0 1x 10 0 0 0 0
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5.2 Results

5.2.1 Mode Choice Model

Table 5.7 presents the estimated utilities for the linear MNL, linear mixed logit, part-worth

mixed logit, and final mixed logit models. For all non-linear attributes, the coefficients are

reported as zero-centred (i.e., utilities above zero represent more preference for that level

within the attribute, and utilities below zero represent less preference for that level within

the attribute, compared to the average).

Table 5.7: Model results for linear multinomial logit, linear mixed logit, part-worth mixed
logit, and final mixed logit specifications

Attribute / Level Linear MNL Linear Mixed Part-Worth Mixed Final Mixed

Mean t-stat Mean 95% CI σ Mean 95% CI σ Mean 95% CI σ

TIR -0.58 -17.29 -3.84 -4.71, -3.02 5.48 -2.55 -3.03, -2.07 3.10 -2.02 -2.42, -1.64 2.38

Transit (T) -0.49 -14.64 -3.30 -4.26, -2.31 6.49 -2.19 -2.76, -1.60 3.86 -1.64 -2.11, -1.20 2.97

Taxi/Uber (RH) -1.59 -45.90 -10.78 -12.21, -9.27 7.76 -6.20 -6.76, -5.64 3.25 -4.77 -5.22, -4.32 2.46

Auto (A) 1.91 56.25 13.19 11.70, 14.57 7.09 7.97 7.29, 8.64 3.88 6.17 5.63, 6.70 3.04

Cycling (C) 0.74 20.88 4.73 3.51, 5.95 8.15 2.98 2.23, 3.73 5.01 2.26 1.68, 2.85 3.83

IVTT ratio (T/TIR)

1x auto -0.41 -12.12 -2.73 -3.30, -2.21 1.81 1.63 1.34, 1.91 0.98 -1.23 -1.45, -0.99 0.82

2x auto -0.11 -0.36, 0.17 0.61

3x auto -1.52 -1.77, -1.26 1.06

IVTT deviation (A)

+/-5% 0.00 0.38 0.02 -0.04, 0.07 0.16 -0.36 -0.70, 0.02 0.48 – – –

+/-15% -0.06 -0.47, 0.36 0.74

+/-25% 0.21 -0.26, 0.73 0.61

+/-50% 0.21 -0.20, 0.57 0.63

IVTT deviation (T/TIR/RH)

+/-5% auto 0.00 1.05 0.02 -0.05, 0.09 0.27 0.00 -0.25, 0.23 0.68 – – –

+/-10% auto -0.14 -0.38, 0.11 0.61

+/-15% auto -0.17 -0.41, 0.08 0.71

+/-20% auto 0.31 0.05, 0.62 0.72

IVTT deviation (C)

+/-5% -0.01 -1.41 -0.06 -0.15, 0.02 0.24 0.21 -0.34, 0.58 0.77 – – –

+/-10% 0.07 -0.34, 0.40 0.88

+/-15% -0.23 -0.58, 0.05 0.47

+/-20% -0.05 -0.52, 0.46 0.49

Wait time (T/TIR/RH)

3 min -0.03 -14.39 -0.19 -0.25, -0.13 0.21 1.20 0.93, 1.48 0.95 0.85 0.59, 1.10 0.69

5 min 1.06 0.78, 1.35 0.76 0.80 0.59, 1.02 0.63

10 min -0.12 -0.38, 0.13 0.77 -0.01 -0.22, 0.19 0.55

30 min -2.14 -2.48, -1.81 1.15 -1.64 -1.92, -1.41 0.94

Walk time (T/TIR)

0 min -0.04 -15.33 -0.24 -0.30, -0.18 0.23 1.93 1.56, 2.31 1.30 1.58 1.30, 1.86 1.06

5 min 1.23 0.84, 1.58 0.87 0.92 0.64, 1.18 0.69

10 min -0.58 -0.95, -0.20 0.87 -0.50 -0.75, -0.25 0.61

continued on next page
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Table 5.7: (continued)

Attribute / Level Linear MNL Linear Mixed Part-Worth Mixed Final Mixed

Mean t-stat Mean 95% CI σ Mean 95% CI σ Mean 95% CI σ

30 min -2.58 -2.92, -2.22 1.08 -2.00 -2.27, -1.75 0.90

Transfers (T/TIR)

0 -0.42 -15.76 -2.78 -3.11, -2.44 1.71 3.15 2.61, 3.69 1.40 2.39 2.09, 2.68 1.12

1 0.43 0.16, 0.77 0.58 0.43 0.17, 0.72 0.51

2 -1.20 -1.53, -0.80 0.78 -0.97 -1.20, -0.75 0.66

3 -2.38 -2.79, -1.98 1.14 -1.85 -2.13, -1.57 0.85

Time per transfer (T/TIR)

0 min -0.06 -22.84 -0.45 -0.52, -0.37 0.31 3.79 3.24, 4.32 1.52 2.91 2.60, 3.22 1.09

5 min 1.85 1.49, 2.19 1.20 1.45 1.13, 1.74 0.99

10 min -1.15 -1.54, -0.81 0.85 -1.02 -1.26, -0.77 0.70

30 min -4.48 -5.01, -4.04 1.59 -3.34 -3.70, -2.98 1.26

Parking cost (A)

$0.00 -0.14 -22.18 -1.06 -1.20, -0.90 0.58 3.75 3.04, 4.40 1.37 2.89 2.41, 3.39 0.87

$1.00 2.29 1.84, 2.83 1.00 1.85 1.45, 2.26 0.87

$3.00 0.27 -0.22, 0.69 0.80 0.16 -0.27, 0.50 0.65

$15.00 -6.31 -6.95, -5.65 2.09 -4.90 -5.37, -4.45 1.47

Fare (T)

$0.00 -0.11 -4.97 -0.54 -0.80, -0.29 0.94 1.46 0.98, 2.01 0.87 0.90 0.60, 1.22 0.68

$2.00 0.25 -0.12, 0.69 0.75 0.16 -0.13, 0.44 0.51

$3.50 -0.65 -0.93, -0.35 0.70 -0.27 -0.55, 0.00 0.52

$5.00 -1.06 -1.47, -0.71 0.92 -0.79 -1.16, -0.45 0.46

Fare (TIR)

$0.00 -0.09 -6.85 -0.58 -0.74, -0.40 0.66 1.48 0.99, 1.84 1.02 0.87 0.52, 1.13 0.74

$1.00 0.79 0.41, 1.19 0.90 0.51 0.17, 0.89 0.70

$3.50 -0.61 -1.06, -0.07 0.73 -0.05 -0.41, 0.27 0.65

$8.00 -1.66 -2.03, -1.29 1.10 -1.33 -1.77, -0.90 0.68

Fare (RH)

$1.00 per min -0.23 -19.35 -2.35 -2.72, -1.99 1.72 5.87 5.12, 6.52 2.02 4.36 3.96, 4.81 1.55

$2.50 per min 1.26 0.90, 1.71 1.16 1.16 0.66, 1.62 0.92

$5.00 per min -2.31 -2.77, -1.82 1.24 -1.73 -2.15, -1.36 0.98

$10.00 per min -4.83 -5.48, -4.31 1.76 -3.78 -4.30, -3.34 1.41

Sample size (n) 230 230 230 230

LL -5956.79 -1689.02 -1427.31 -1815.81

LL (null) -9624.44 -9624.44 -9624.44 -9624.44

% Cert. .3811 .8245 .8517 .8113

IVTT deviation was not significant under any of the models. Under linear MNL,

the t-stat was between -1.96 and 1.96. Under linear mixed logit, the 95% confidence

interval of mean estimates overlapped with 0, and draw tests indicated that none of the

attributes reached 90% confidence to be above or below 0. Under part-worth mixed logit,

the confidence intervals for every level overlapped with at least one other level, and draw

tests identified that none of the levels reached 95% confidence to be higher or lower than

all the other levels in the attribute except for 20% deviation for shared modes (transit,

TIR, and taxi or Uber), which was significantly different enough from two of the three
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other levels. Because these attributes were not significant, they were removed from the

final mixed logit model.

For all remaining attributes, each of the three draft models indicated a statistically

significant linear or non-linear relationship. Individual coefficients fell within a wider range

of values for mode constants versus any other attributes, which is evident from the larger

individual standard deviations for these levels versus any other attribute or level set, due

to the heterogeneity of modal preferences. Specifically, cycling had the highest degree of

variation, which was expected since some respondents felt very positively about cycling

while others did not. The constants for TIR and transit have considerable overlap at the

95% confidence interval, indicating that these modes are viewed similarly. Other modes

have no overlap with each other, which signifies a clearer order in preferences for other

modes in comparison to TIR and transit.

Figure 5.3 compares the part-worth mixed logit model with a linearized equivalent. The

linear approximation was constructed from endpoints of the part-worth model, which was

easier to overlap with the part-worth utilities than applying the linear model directly. The

IVTT ratio multiplier for transit and TIR over auto shows a clear linear relationship, with

the part-worth utility being nearly indistinguishable from the linearized equivalent. Taxi

and Uber fares show the greatest deviation, with a clear non-linear relationship between

levels. Wait time shows minimal differences between the utilities at the 3 minute and

5 minute levels, indicating that on a whole the population did not consider them to be

meaningfully different. Most other attributes primarily deviate at one of the midpoints

and have somewhat linear relationships between the midpoint and the endpoints. For the

purposes of the final mixed logit model, attributes were kept non-linear except for the

IVTT ratio multiplier over auto, since it showed a highly linear relationship.

Table 5.8 shows how the mean estimates of the final model specification vary across

different demographic and characteristic segments in the sample. Segmented models were

generated for age, gender, household income, and destination. Some respondents chose

not to reveal their gender or household income, and were removed from these segmen-

tation models. For gender, non-binary respondents were also removed because only two

respondents identified as non-binary, which were not enough responses to represent how

non-binary residents would differ versus a broader population. While the absolute value of

utilities can not be directly compared between segments, the changes of level utilities within

an attribute can be compared for each segment. This table also only presents the mean

values, which does not represent the full distribution of estimated means corresponding to

individual respondents. Recall that the estimated utilities for each segment are influenced
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by the upper-level distribution that considers all segments, so real-world differences among

segments may be even more pronounced.

The ordering of mode constants did not change with any segmentation, with auto

always being the most preferred mode, followed by cycling, transit, TIR, and finally taxis

and Uber vehicles. Auto and cycling were also always preferred more than average and

the other modes were preferred less than average. Older groups tended to have near

equivalent preferences for TIR and transit. Respondents who were younger, female, had

lower household incomes, or were taking an HBS trip preferred TIR and transit, although

had a stronger preference for transit over TIR compared to other segments. Compared to

other modes, cycling was more preferred when respondents were younger, male, had lower

household incomes, or taking an HBS trip.

For time attributes, wait time generally had the lowest impact and transfer time had the

highest impact on utility, for all segments. Female respondents had a higher sensitivity to

changes in wait time and at low levels compared to male respondents, but lower sensitivity

to changes in walk time and the number of transfers at low levels. Preference for 3-minute

wait times and 5-minute wait times were fairly close in all segments, and in some segments

5-minutes showed an average higher preference than 3 minutes, which is likely due to

overlapping confidence intervals for the mean estimates. It is more likely that respondents

in these groups do not perceive changes in utility when shifting from 3-minute to 5-minute

waits. Respondents who were younger or taking an HBS trip were less sensitive to shorter

walk times and transfers, but more sensitive to longer walk times. Respondents who were

female or had higher household incomes were less sensitive to 5-minute transfer times, but

every group had roughly the same proportional drop in utility with 10-minute transfer

times.

For cost attributes, parking cost and taxi and Uber fares had the highest impact. Taxi

and Uber fares having a high impact was expected since they had the highest absolute

range of fares, but parking cost having a similarly high impact was not expected since

it peaked at only $15.00. Changes in parking cost and taxi and Uber fares caused fairly

similar proportional drops in utility across all segments. For transit fares, seniors were

more sensitive to the shift from free transit to $2.00 fares, and respondents taking an

HBS trip were less sensitive to the shift from $2.00 to $3.50 fares. TIR fares had the

highest variation among segments. Respondents aged 16-24 years old or taking HBS trips

preferred $3.50 trips over $1.00 trips in the model, although the difference was not large

and, similarly to the wait time case, may indicate that these respondents were indifferent

to the difference in price at these levels. Conversely, the difference between free TIR and

118



Table 5.8: Means across age, gender, household income, and destination segmented models

Attribute / Level Total Age Gender HH Inc. ($) Destination

16-24 25-34 35-49 50-64 ≥65 F M Low High HBS HBW HBO
n 230 41 56 59 47 27 122 103 86 110 20 87 123

TIR -2.02 -1.39 -2.16 -2.17 -2.18 -2.08 -1.76 -2.43 -1.46 -2.56 -1.36 -2.33 -1.91
Transit (T) -1.64 -0.68 -1.74 -1.64 -2.15 -2.00 -1.28 -2.23 -0.85 -2.25 -0.52 -2.04 -1.54
Taxi/Uber (RH) -4.77 -5.54 -4.53 -4.83 -4.73 -4.01 -4.91 -4.59 -4.87 -4.61 -4.88 -4.53 -4.91
Auto (A) 6.17 4.98 6.03 6.14 7.00 6.87 6.00 6.39 5.01 6.81 4.34 6.22 6.43
Cycling (C) 2.26 2.63 2.40 2.50 2.06 1.21 1.96 2.86 2.17 2.62 2.42 2.68 1.94

IVTT ratio (T/TIR) -1.23 -1.03 -1.29 -1.28 -1.31 -1.11 -1.16 -1.32 -1.04 -1.38 -1.04 -1.41 -1.12
Wait time (T/TIR/RH)
3 min 0.85 0.86 0.96 0.79 0.87 0.71 0.90 0.84 0.82 0.93 0.83 0.94 0.80
5 min 0.80 0.70 0.86 0.80 0.77 0.88 0.76 0.86 0.76 0.86 0.77 0.93 0.72
10 min -0.01 -0.11 -0.01 0.01 0.01 0.06 -0.09 0.05 -0.12 0.05 -0.15 -0.05 0.04
30 min -1.64 -1.46 -1.81 -1.61 -1.65 -1.64 -1.58 -1.75 -1.45 -1.85 -1.45 -1.82 -1.55
Walk time (T/TIR)
0 min 1.58 1.24 1.65 1.62 1.63 1.75 1.51 1.69 1.45 1.78 1.28 1.80 1.47
5 min 0.92 0.93 0.91 0.86 1.04 0.83 0.96 0.90 0.77 1.02 0.90 1.02 0.85
10 min -0.50 -0.30 -0.49 -0.53 -0.64 -0.47 -0.49 -0.51 -0.40 -0.60 -0.30 -0.64 -0.42
30 min -2.00 -1.87 -2.07 -1.96 -2.04 -2.11 -1.98 -2.08 -1.81 -2.21 -1.88 -2.17 -1.90
Transfers
0 2.39 2.06 2.47 2.46 2.49 2.38 2.32 2.52 2.07 2.72 1.87 2.68 2.26
1 0.43 0.45 0.37 0.48 0.47 0.35 0.40 0.49 0.36 0.48 0.59 0.48 0.37
2 -0.97 -0.88 -0.95 -1.07 -0.94 -0.95 -0.93 -1.04 -0.84 -1.08 -0.89 -1.04 -0.93
3 -1.85 -1.63 -1.88 -1.87 -2.02 -1.77 -1.79 -1.97 -1.58 -2.11 -1.57 -2.12 -1.70
Time per transfer (T/TIR)
0 min 2.91 2.61 3.04 2.92 3.01 2.88 2.87 3.02 2.74 3.15 2.53 3.16 2.80
5 min 1.45 1.25 1.59 1.45 1.49 1.38 1.34 1.63 1.16 1.70 1.15 1.59 1.40
10 min -1.02 -0.91 -1.15 -1.01 -1.05 -0.93 -0.97 -1.12 -0.92 -1.18 -0.86 -1.20 -0.93
30 min -3.34 -2.95 -3.49 -3.36 -3.46 -3.33 -3.24 -3.53 -2.97 -3.67 -2.82 -3.54 -3.27
Parking cost (A)
Free ($0.00) 2.89 3.19 2.77 2.85 2.91 2.68 2.94 2.83 2.88 2.85 3.03 2.81 2.92
$1.00 1.85 1.97 1.79 1.79 1.99 1.68 1.90 1.79 1.75 1.87 1.75 1.73 1.95
$3.00 0.16 0.05 0.25 0.14 0.14 0.22 0.15 0.17 0.16 0.19 -0.08 0.23 0.15
$15.00 -4.90 -5.21 -4.82 -4.79 -5.04 -4.58 -4.99 -4.78 -4.79 -4.92 -4.69 -4.77 -5.02
Fare (T)
Free ($0.00) 0.90 1.00 0.90 0.83 0.90 0.91 0.93 0.83 0.88 0.85 0.71 0.86 0.96
$2.00 0.16 0.09 0.24 0.22 0.16 0.02 0.15 0.21 0.19 0.17 0.12 0.21 0.14
$3.50 -0.27 -0.24 -0.34 -0.30 -0.23 -0.20 -0.28 -0.26 -0.22 -0.29 0.01 -0.34 -0.27
$5.00 -0.79 -0.85 -0.80 -0.75 -0.83 -0.73 -0.80 -0.78 -0.85 -0.73 -0.84 -0.73 -0.83
Fare (TIR)
Free ($0.00) 0.87 0.96 1.06 0.77 0.77 0.72 0.90 0.82 1.09 0.77 1.05 0.90 0.82
$1.00 0.51 0.17 0.52 0.49 0.69 0.70 0.46 0.54 0.50 0.50 0.02 0.56 0.55
$3.50 -0.05 0.20 -0.13 0.00 -0.15 -0.21 -0.05 -0.03 -0.10 -0.04 0.19 -0.06 -0.09
$8.00 -1.33 -1.33 -1.45 -1.27 -1.32 -1.20 -1.31 -1.33 -1.49 -1.24 -1.25 -1.40 -1.29
Fare (RH)
$1.00 per min 4.36 4.40 4.33 4.37 4.56 3.98 4.35 4.42 4.09 4.57 4.17 4.40 4.36
$2.50 per min 1.16 0.95 1.17 1.25 1.23 1.12 1.11 1.24 0.94 1.32 0.89 1.25 1.14
$5.00 per min -1.73 -1.72 -1.76 -1.77 -1.78 -1.54 -1.74 -1.74 -1.56 -1.85 -1.64 -1.83 -1.68
$10.00 per min -3.78 -3.63 -3.73 -3.86 -4.01 -3.57 -3.72 -3.92 -3.46 -4.03 -3.43 -3.82 -3.81
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$1.00 was minimal for older respondents, while dropping back to a similar proportion to

other segments at $3.50.

5.2.2 Marginal Effects and Elasticities

Table 5.9 shows the marginal effects and elasticities for the base case (trip case 1a). The

marginal effects demonstrate relationships similar to those of the SP model’s utilities (Ta-

bles 5.7 and 5.8). Direct elasticities and marginal effects, which are changes in a mode’s

share due to changes in the same mode’s attributes, are identified in bold. All other val-

ues are cross elasticities and marginal effects, which are changes in a mode’s share due

to changes in another mode’s attributes. Of note is the 3-5-minute wait time window in

the transit, TIR, and ridehailing cases, which show unintuitive relationships (an increase

in wait time resulting in an increase in mode share), which was attributed in the model

results in Section 5.2.1 to an indifference among the respondent base between 3-minute and

5-minute wait times. Otherwise, the relationships are as expected. The greatest marginal

effects are for parking, where adding a $1.00 parking fee from $0.00 results in a 4.07%

loss to the auto share, and each additional $1.00 increase in parking fees results in further

2.8-3.2% losses in auto share. Other large marginal effects include the IVTT ratio for tran-

sit, which had a 1.33% loss in transit share for each 1x increase in the ratio, and adding

one transfer from the zero transfer case, which results in a drop of 1.41% mode share for

transit and 1.31% mode share for TIR. Because of ridehailing’s small starting share, few

attributes had ridehailing marginal effects over 0.01%. Changing the per-minute rate had

the greatest effect, with an expected drop in 0.15% share for every $1.00/min increase

between $1.00/min and $2.50/min. Similarly, because cycling had no direct attributes in

the model, only attribute levels that caused very large changes in utility overall have a

larger marginal effect. Parking costs has the greatest impact, with the $0.00-$1.00 region

predicting a 1.51% increase in cycling share, and every $1.00 increase after that predicting

a 0.71-0.84% increase.

5.2.3 Operational Adjustments

Figure 5.4 shows the absolute changes in mode shares when the TIR service has many more

stops (a higher IVTT ratio by 0.5x), the same IVTT ratio as auto (a ratio of 1x, which

is perfectly direct), and synced transfers. In the ‘IVTT same as auto’ scenario, trip cases

1a, 1b, 5, and 6 are shaded because the base TIR cases are already set to a ratio of 1x

(i.e, these configurations do not affect these trip cases). Similarly, in the synced transfers
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Table 5.9: Case 1a marginal effects and elasticities for mode attributes (direct in bold)

Attribute Mode Min Max Marginal effects Elasticities

A C T RH TIR A C T RH TIR

IVTT ratio Transit 1x 3x 1.13 0.04 -1.33 0.02 0.14 0.02 0.04 -0.74 0.12 0.27
TIR 1x 3x 0.21 0.01 0.08 – -0.30 0.01 0.01 0.04 0.02 -0.86

Wait Transit 3 5 – 0.01 – -0.01 -0.01 – 0.03 0.00 -0.08 -0.05
5 10 0.16 0.01 -0.18 – 0.02 0.01 0.03 -0.34 0.12 0.12
10 30 0.05 – -0.05 – – 0.01 0.02 -0.35 0.05 0.08

TIR 3 5 -0.03 – 0.01 – 0.02 – 0.00 0.01 -0.02 0.10
5 10 0.06 – 0.01 – -0.07 0.01 0.01 0.02 0.03 -0.64
10 30 – – – – -0.01 – 0.00 0.02 0.01 -0.39

Ridehailing 3 5 -0.01 – – 0.01 – – – – 0.13 -0.01
5 10 0.03 – – -0.03 – – 0.01 0.01 -1.08 0.01
10 30 – – – – – – – – -0.70 –

Walk Transit 0 5 0.31 0.01 -0.30 – -0.03 0.01 0.02 -0.11 0.03 -0.07
5 10 0.35 0.01 -0.38 – 0.01 0.03 0.06 -0.59 0.13 0.09
10 30 0.07 – -0.09 – 0.01 0.02 0.03 -0.58 0.08 0.25

TIR 0 5 0.05 – 0.01 – -0.06 – – 0.01 0.01 -0.13
5 10 0.04 – – – -0.04 – – -0.01 0.01 -0.31
10 30 0.01 – 0.01 – -0.02 – 0.01 0.05 0.02 -0.85

Transfers Transit 0 1 1.27 0.05 -1.41 0.02 0.06 0.01 0.01 -0.22 0.03 0.03
1 2 0.64 0.03 -0.90 0.01 0.22 0.01 0.02 -0.65 0.06 0.28
2 3 0.20 0.01 -0.26 – 0.04 0.01 0.01 -0.43 0.02 0.08

TIR 0 1 1.07 0.03 0.20 0.01 -1.31 0.01 0.01 0.03 0.03 -0.40
1 2 0.32 0.01 0.16 0.01 -0.50 0.01 0.01 0.06 0.03 -1.02
2 3 0.13 – 0.02 – -0.15 – – 0.01 0.02 -0.95

Transfer time Transit 0 5 0.15 0.01 -0.17 – 0.01 – 0.01 -0.20 0.02 0.02
5 10 0.08 – -0.13 – 0.04 0.01 0.02 -0.71 0.05 0.27
10 30 0.01 – -0.01 – – – – -0.24 0.01 0.05

TIR 0 5 0.25 0.01 0.05 – -0.31 0.01 0.01 0.04 0.04 -0.28
5 10 0.21 0.01 0.07 – -0.29 0.02 0.02 0.13 0.11 -1.70
10 30 0.01 – – – -0.01 – – 0.01 0.01 -0.54

Fare Transit $0.00 $2.00 0.66 – -0.76 – 0.10 0.01 – -0.15 0.01 0.11
$2.00 $3.50 0.12 0.01 -0.16 0.01 0.02 – 0.02 -0.11 0.05 0.07
$3.50 $5.00 0.50 0.03 -0.58 0.01 0.05 0.02 0.06 -0.70 0.09 0.20

Fare TIR $0.00 $1.00 0.38 0.02 0.15 0.01 -0.55 – – 0.02 0.01 -0.14
$1.00 $3.00 0.18 – 0.15 – -0.33 – – 0.08 0.01 -0.50
$3.00 $8.00 0.07 – 0.02 – -0.10 – 0.01 0.03 0.03 -0.72

Rate / min Ridehailing $1.00 $2.50 0.12 0.01 0.01 -0.15 0.01 – 0.01 0.01 -1.44 0.01
$2.50 $5.00 0.01 – – -0.02 – – – – -1.46 –
$5.00 $10.00 – – – – – – – – -1.10 –

Parking Auto $0.00 $1.00 -4.07 1.51 1.76 0.21 0.60 -0.02 0.27 0.18 0.27 0.23
$1.00 $3.00 -2.80 0.84 1.17 0.16 0.63 -0.07 0.39 0.34 0.48 0.57
$3.00 $15.00 -3.20 0.71 1.39 0.45 0.64 -0.45 0.68 0.76 1.15 0.87

Direct elasticities and marginal effects in bold, cross elasticities and marginal effects otherwise. Dash indicates a value that

falls between -0.01 and 0.01.
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scenario, trip cases 5 and 6 have no transfers to sync. Across all three scenarios, the change

in mode share is less than 1% for any mode in any case, except for the more stops scenario,

where cases 5 and 6 have a drop of 2% and 2.4% in TIR, respectively. Although the drop is

higher for these cases in the more stops scenario, these trip cases also have a much higher

base share for TIR. In other cases where the IVTT ratio is adjusted, the change in mode

share is minimal. Even though the starting share of TIR is low in trip cases 3 and 4 (0.4%

and 0.2%, respectively; other starting shares in Appendix F) and the IVTT ratio is over

2x, the share of TIR only increases by at most 0.2% when the IVTT ratio is reduced to 1x,

so realistically does not make TIR a more competitive option. An interesting finding from

the model is the synced transfers scenario, where transfer time is reduced to 2.5 minutes

and the wait time is increased by the same amount. In the longer trips, there is no change

in mode share, but in the shorter trips there is a positive shift toward TIR, confirming that

the respondents in the model are more sensitive to transfer time than wait time.
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Figure 5.4: Changes in mode shares due to operational adjustments in transit-integrated
ridesourcing

5.2.4 Permitted Demand Patterns

Figure 5.5 shows the changes in mode shares for three different many-to-many configu-

rations: travel between fixed-route stops, travel between virtual stops, and door-to-door

travel. For trip cases 1a-4, the TIR mode share increases, and in trip cases 5 and 6 the

mode share decreases. For the latter cases, the decrease is because the trips were already

direct but now have an increase in wait time from 5 minutes to 10 minutes. In cases

1a and 1b, where transit is more competitive, each configuration negatively impacts the
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share of transit. The fixed-route configuration has the lowest impact on TIR and auto

and the door-to-door configuration has the highest impact. Although the impact on TIR

and auto progressively increased from the fixed-route configuration to the door-to-door

configuration, the impact on transit changes only minimally.
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Figure 5.5: Changes in mode shares for many-to-many transit-integrated ridesourcing con-
figurations

Figure 5.6 shows the changes in mode shares for the scenario where TIR takes the

rider to the nearest fixed-route stop, both when only the access point has TIR and when

both the access and egress points offer this service. Trip cases 1a and 1b only use TIR for

the access side in both cases, because the trip ends too close to a fixed-route stop. Trip

cases 3 and 6 have a complete drop in TIR, because case 3’s trip is too close to existing

fixed-route transit and case 6 has no transit alternative. Trip case 4 has more transfers

than the survey’s range covered, so this case’s scenario uses extrapolation past the survey

range boundaries. While extrapolation is not recommended past attribute level endpoints

(Hensher et al., 2015), the findings for the transfer attribute in the high transfer cases are

similar to the 3 transfer case. For the remaining cases, TIR mode share changes by the

same amount for both the access and access/egress scenarios, except for trip case 5.

Figure 5.7 shows the changes in mode shares for the less common many-to-few and

zonal service configurations. In the many-to-few configuration, trip cases 1a, 1b, 5, and 6

uses TIR for the first leg of the trip, then uses fixed-route transit for the second leg since

it is faster than waiting for the transfer penalty to end. The trips for trip cases 2a, 2b,

and 4 assume the rider waits for the 30-minute transfer penalty before directly going to

the final destination, since it is faster than any alternative, and trip case 3 conveniently
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Figure 5.6: Changes in mode shares for transit-integrated ridesourcing configurations con-
necting to the nearest fixed-route stop

ends at one of the many-to-few locations, so it has no transfers. Consequently, trip case 3

shows a high increase in TIR share at the expense of auto, and to a lesser extent, transit

and cycling. Trip case 4 shows a very slight increase for TIR, and trip cases 5 and 6 show

a high decrease. In the extra case where an extra stop was added in the middle of the

former 903 Flex area, only trip case 5 uses the stop, and there is a slightly less negative

impact on TIR with the extra stop.

For zonal service, results for trip cases 3 and 4 again extrapolate past the attribute

endpoints on the transfer attribute since the trips for these trip cases have five and seven

transfers, respectively. Trip cases 1a-2b’s trips have one transfer and trip case 5 has

no transfer. In all trip cases, there is an increase in TIR share at the expense of auto,

primarily. While this seems unexpected due to the high number of transfers, the elimination

of access/egress time (due to door-to-door travel) may have outweighed any losses due to

transfers.

5.2.5 Changes in Monetary Costs

The final scenarios analyze changes in monetary costs for all modes. The first set of

scenarios consider transit-like pricing scenarios (Figure 5.8), including zonal, sectional,

and flat upcharge pricing. As expected, shorter trips show a small increase in preference

for TIR (around 0.5%) compared to the flat fare zonal service, while longer trips show a

small decrease. In general, across all trip cases there is still a net increase in preference for
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Figure 5.7: Changes in mode shares for less conventional transit-integrated ridesourcing
configurations

TIR using zonal systems, even with zonal pricing that reaches $8.00 for the ride in longer

trip cases. Sectional pricing results in slightly cheaper fares for shorter trips and similar

fares to zonal for longer trips. In the flat upcharge scenario, the $5.00 fare for TIR ($1.50
higher than fixed-route transit) results in a small drop (20-30% lower mode share than the

base case) for all trip cases, which is more pronounced for trip cases 5 and 6 because of

the larger starting share of TIR.
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Figure 5.8: Changes in mode shares for zonal, sectional, and flat surcharge pricing scenarios
for transit-integrated ridesourcing
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Figure 5.9 shows the next set of scenarios, which consider free transit and/or free TIR.

In the free transit case, trip case 6 is not evaluated because no transit trips are available.

In the other trip cases, transit increases primarily at the expense of auto. Depending on

which other modes are more popular in each case, those other modes also lose some share

(TIR in cases 1a-2b and 5, ridehailing in cases 2b and 3, cycling in case 1b). In the free

TIR case, the share of TIR doubles in trip cases 1a-4 (which all have starting shares of 1%

or less), and increases by less pronounced but still large margins in trip cases 5-6. In some

cases where transit has a higher starting share, the share of transit decreases by a up to

1%. Specifically, in case 1a, the drop in transit (0.5%) is close in magnitude to the drop in

auto (0.8%), indicating that for this case there is potential to disproportionately negatively

impact transit share in an attempt to pull more people from auto. In the scenario where

both modes are free, transit and TIR experience no losses in mode share under any case,

indicating that for ridership purposes, this is a benefit for both modes. In cases 1b, 5, and

6, cycling has a 0.1-0.2% drop, which is a relatively small impact compared to the starting

shares (1.8-2.1%).
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Figure 5.9: Changes in mode shares for free transit and transit-integrated ridesourcing

Figure 5.10 shows the changes in mode shares due to different parking fee levels. By far,

parking has the single-largest impact on the share of TIR and auto mode share. At $1.00
parking, every case has a drop in auto share from 2.7-6.0%. Every other mode benefits

across all cases. In cases 1a and 1b, cycling and transit share the majority of mode share

increases. In cases 2a-4, cycling is the single-largest beneficiary. For cases 5 and 6, TIR

has the largest benefit, and where transit is available, it has a similar increase in share

to cycling. At only $1.00 parking, the benefit to cycling and ridehailing is larger than
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any other studied scenario, and the impacts on auto, transit, and TIR vary around the

average to larger end of changes. At $3.00 parking, the impacts polarize more strongly,

with TIR showing massive benefits in mode share in cases 5-6 of over 10% at the expense of

auto, and cycling and transit showing higher shares in the other cases. At $15.00 parking,

auto loses 32-61% of its share across all cases, and the other modes further entrench their

growing shares in the cases they respectively were leading in in the $1.00 and $3.00 parking

scenarios. This is the only scenario where auto drops below a 50% share. Although cycling,

transit, and ridehailing have the best positive impacts with $15.00 parking, TIR does not

always have its highest measured mode share in this scenario: cases 1b-4 have higher TIR

shares in other scenarios (many-to-many door-to-door service and many-to-few).
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Figure 5.10: Changes in mode shares with different parking fees

Finally, three further scenarios are considered that incorporate the $15.00 parking at-

tribute. Figure 5.11 shows the change in mode share from the $15.00 parking scenario.

When free transit and TIR are included, transit has a much higher absolute increase than

the free transit and TIR scenario without $15.00 parking, while TIR has minimal further

gains. When comparing the first two scenarios, which only differ by the inclusion of a

more expensive ridehailing rate ($2.50/min vs. $1.00/min), ridehailing has a large drop

in share, over half of which shifts to auto with the remainder going somewhat evenly to

the other modes. A composite scenario combining free transit, TIR, and many-to-many

door-to-door service on top of $15.00 parking is also considered, which pushes the auto

share lower than all other scenarios. In this scenario, TIR has a share between 50-62%

for all cases. Cycling and transit are minimally impacted for case 5, but sees much larger

drops (between one-third and one-half the free transit and TIR case with $15.00 parking).
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Figure 5.11: Changes in mode shares for with $15.00 parking fees and additional pricing
changes for other modes

5.3 Discussion

Bayesian models are uncommon in transportation, particularly for traditional transporta-

tion mode choice modelling. As a result, the findings of this model are challenging to

directly compare with other transportation models, since the coefficients and other calcu-

lated shares are determined differently than in classical models. IVTT ratio specifically is

challenging to compare since it was measured differently than in many other studies, as a

ratio of transit or TIR IVTT versus auto IVTT. Compared to a previous review of trans-

portation elasticities, the transit fare sensitivities fall in the range of previously determined

values, and the transit access/egress values fall between the range of previous train and

bus elasticities (Hensher, 2008), indicating that on a whole the elasticities and marginal

effects may be within a realistic range.

Although non-linearity is not often discussed in transportation literature, the findings

across the attribute utilities, marginal effects, and scenario analyses suggest that there is

value in considering the non-linearity of many transportation attributes. By considering

where the largest drops in mode share occur for different attribute levels, transit agencies

and municipal transportation planners can set targets for networks that minimize the

likelihood of reaching a level with higher proportional drops in mode share, and worry less

about negligible mode share drops. For example, this model suggests no great benefit in a

3 minute wait time versus a 5 minute wait time for transit, TIR, or ridehailing. Similarly,

replacing free parking with a $1.00 parking fee has a bigger proportional impact than
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each additional extra $1.00 increase (an auto decrease of 4% versus 2.8-3.2%), so even

introducing a small parking fee with TIR service may cause a notable mode shift.

Even at the $1.00 level, the mode share impacts across all modes are similar to the

middle to upper end of impacts experienced in other scenarios, which demonstrates the

power of direct pricing on the auto mode. Part of this is due to the dominance of auto in

the existing shares: since it started at 86-97%, depending on the trip case, even a drop of a

few percent causes a more dramatic change in mode shares in other modes than a drop in

transit or TIR does. At higher parking levels, the dominance of other modes in some cases

is extreme: in the more TIR friendly cases (5 and 6), the combined transit and TIR shares

are over 60%. Although parking fees are able to produce strong responses from the model

in specific cases, other cases with worse transit or TIR service (2a-4) have more resilient

auto shares that would require additional changes to push the share of auto below 50%,

since the alternatives to auto were not nearly as quick or desirable. It should be noted

that even in these less desirable cases, TIR still has a mode share high enough to likely be

worth operating from a ridership perspective, with a 2.2% share at worst.

Although the IVTT ratio has a relatively large marginal effect on the transit case, it

is not as strong on TIR, likely due to the smaller starting shares in case 1a. While the

negative impact of higher ratios is felt strongly in cases with higher starting TIR shares

(cases 5 and 6), cases with less competitive TIR options do not have very large increases in

TIR share when reducing the ratio to 1x. Operationally, synchronizing one of the transfers

(decreasing one transfer’s time and increasing wait time by the same amount) has a more

positive effect for TIR for trips that are closer to the median.

Part of the intention of exploring preferences was to understand how preferences would

impact ridership of different system type attributes (Table 2.4). Directness was not fully

explored since it was assumed in the design of the survey (Section 4.1.2) that TIR would be

shared by default. Preferences for combinations of access/egress distance, zonal patterns,

and permitted demand patterns were still able to be predicted based on the model results.

Use of different permitted demand patterns have, in some cases, very large impacts to the

mode shares of each trip case. In the many-to-many case with no service zones, apart from

wait time related issues for cases 5 and 6, other cases show very high increases in mode

share for TIR (1-6% for fixed-route stops, 2.5-8% for virtual stops, 6-8.5% for door-to-door

service). The many-to-few system, which also has no zones but has more restricted trip

patterns than the 903 Flex, only benefits cases where the passenger would be going to

one of the transfer hubs (∼10% increase in case 3) or be taking a long trip where multiple

transfers are required (∼0.5% share increase in case 4). Some shorter trips are less desirable
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under the many-to-few system (∼7-10% share decreases in cases 5-6). The addition of zonal

service across the entire region, which has a considerable number of transfers in the longer

trip cases, still results in an increase in TIR mode share when using door-to-door service

(1-4%). The caveat with using a many-to-many system, particularly one with door-to-

door pickups, is the potential for high costs, lower reliability, and erosion of fixed-route

ridership that is cheaper to service. Lower reliability would be likely due to the much higher

number of origin-destination pairs that could be serviced, pushing the service further from

operating along route-like paths to servicing riders on an ad-hoc basis. The elimination of

zones, which benefits longer trips, would also add time to servicing riders in more remote

locations in the region.

In the nearest fixed stop cases, where TIR operates only a transit-supportive feeder,

the expected share of TIR is lower and in some cases is not available because there is no

transit alternative for the trip. The corresponding increase in fixed-route transit service

is often not as high as the drop in TIR or the increase in auto, indicating that while a

feeder-only service is an admirable goal in terms of supporting a fixed-route network, it

may not achieve all of the goals of the system and, in some cases, may just cause people

to continue taking auto modes.

The sustainability of making any of these choices should also be considered. Although

these impacts were not directly measured as part of the model, inferences and caution

concerning environmentally preferable modes, ridership, coverage, and utility may be made

based on the findings. From a ridership perspective, a transit agency would want to ensure

that their service has maximized ridership. The marginal effects and scenarios indicate that

a free many-to-many service with no zones but controlled wait times and synced transfers

in an environment with expensive parking and free transit would have significant uptake

in TIR. Although the share of fixed-route transit is lower with door-to-door service, the

increase in TIR share appears to overtake the losses in fixed-route transit. If the agency

was more concerned about ensuring fixed-route transit still had a strong mode share, using

a less competitive many-to-many system (like a fixed-route stop or virtual stop variant)

would have higher shares of fixed-route transit while still having more riders take TIR than

in the starting cases. The virtual stop variant is a good middle ground that benefits transit-

poor residents more than transit-rich ones (since the TIR stop for transit-rich users is often

the transit stop near their home), which better solves the issue of transit-poor residents

having worse transit alternatives. From a coverage standpoint, TIR offered through virtual

stops or door-to-door service would be the best option, since it would ensure everyone is

within desirable walking distances (generally considered 400 m or 5 minutes) from transit

or TIR.
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From an environmental perspective, there are nuances between alternatives, but gen-

erally cycling is preferable, since it is an active transportation mode with a small physical

footprint. Auto is discouraged, even with electric vehicles, since it has a large physical

footprint and requires much more infrastructure to service the same number of people.

Fixed-route transit, ridehailing, and TIR fall in the middle, within which fixed-route tran-

sit most efficiently moves large numbers of people. Therefore, combinations that prioritize

cycling, then transit, then TIR and ridehailing, then auto would likely lead to better envi-

ronmental outcomes. $15.00 parking, with no other changes, had the highest cycling share

and a competitively low auto share, with higher transit, TIR, and ridehailing shares than

the base cases. Including free transit and TIR continues to shift the share away from auto

and only minimally from cycling and ridehailing, suggesting that the pricing alone could

lead to very high environmental improvements.

Agencies should be careful to weigh the costs of additional service (particularly TIR)

against the ridership benefits to ensure that enough people join the system to justify the

increased levels of service. Systems with small zones (e.g., 903 Flex-like systems, direct

feeder service) may more easily to provide lower wait times and more consistent service

than systems with very large, region-wide zones. Configurations that greatly shift fixed-

route transit to TIR would also reduce the cost efficiency of the fixed-route service, which

may be more expensive for an agency to operate depending on how many people come to

transit or TIR from other modes. Pricing mechanisms that greatly improved the ridership,

like higher parking fees, could potentially also be used to help pay for improved transit

service.

Finally, a comparison of the tested configurations to the original 903 Flex system is

worth exploring. The 903 Flex operated using a many-to-many system with virtual stops,

restricted to a specific zone with shared trips, with no transfer integration and a free

transfer (with no additional charge). The appeal of the 903 Flex system’s configuration

was expected to be higher than it was in the pilot phase for some shorter trips. The lack

of familiarity most respondents had with the system (Section 4.4.1) suggests that one of

the biggest shortcomings in its existing configuration was a need for better awareness and

marketing. The model and scenario results suggest that synced transfers, the removal of

zones, and door-to-door service, could all improve the ridership of TIR to some degree,

with potentially negative impacts on existing fixed-route service. Some of these changes,

particularly region-wide many-to-many service of any kind, would be expected to increase

the ridership considerably compared to the real-world service, shifting expected mode share

of TIR closer to 10%. However, most of these changes were small in comparison to auto

deterrents like parking, which could be combined with other changes specific to TIR to
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greatly expand the boundary of possible ridership growth. Although parking fees alone

did not always expand TIR to a greater degree than other changes, the combination of

parking fees with other changes resulted in a synergistic effect on TIR mode share. The

much greater impacts of directly applying costs to auto versus tweaking transit and older

forms of DRT has been observed even in older literature (D. B. Hess, 2001), where parking

again had greater predicted impacts than other operational changes would be expected to

have.

5.3.1 Limitations

By the nature of how SP surveys are designed, there are attributes that weren’t considered

in the survey and consquently the final model. Notably, because of the low significance

of the reliability attribute, cycling was only represented by an ASC. The primary focus of

this model is on TIR, and ensuring that attributes associated with TIR could be properly

adjusted as needed. Hence, attributes specific to other modes were less necessary. Other

factors that may have been useful for cycling specifically, but were not included due to

the extra complexity of the choice sets provided to respondents, were weather impacts,

seasonality, and quality of nearby cycling infrastructure. Cycling would be expected to

have a much lower share in the winter than in the summer, in rainy conditions versus

sunny conditions, and in areas with no dedicated infrastructure versus areas with cycle

tracks (Flynn et al., 2012; Henao et al., 2015; Saneinejad et al., 2012). The restrictions set

on the types of trips that could be made may also limit the impacts of the model findings:

walking trips in particular are a competitive mode for very short trips, and for the cases

covering much shorter scenarios (5 and 6, which were around 3 km long), walking may

have had a non-zero share.

Market awareness and how well respondents understand each mode in real-world situ-

ations should also be considered when interpreting the results. Respondents are not likely

to fully consider each of the five modes for every trip they make, and as a result modes

that they were open to in the survey may not be fully considered or evaluated in real life.

Lighthouse Studio allows for using a survey variable as a flag for product awareness, which

can be used to scale the results (Sawtooth Software, 2022). One question in the survey

asked about whether respondents were aware of or had taken the 903 Flex, and using this

variable as a flag for product awareness was briefly explored. It was decided in the end to

consider how respondents would choose each mode assuming they had full awareness of the

alternatives, which is the regular assumption in discrete choice modelling. The importance

of properly advertising new modes should be appreciated by transit agencies looking to try
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any new TIR systems, considering the low previous awareness of 903 Flex in the survey

(Chapter 4).

Similarly, there are other barriers to choosing modes that could not be captured in the

final survey. While transit-integrated ridesourcing was fully explained to respondents in the

survey (Figure 4.5), older respondents may have challenges understanding the nature of how

the mode operated due to a lack of familiarity with modern mobile apps and the booking

process for similar modes like private ridesourcing. Safety is often a concern, particularly

for shared modes, which may impact the response to transit-integrated ridesourcing in this

survey. While COVID-19 was not directly found to have an impact on transit-integrated

ridesourcing in Chapter 4, lingering effects from the pandemic like concerns over sanitation

and airflow may still be factors that impact this mode.

A small caveat was indicated on some of the scenario analyses due to extrapolation

being needed to calculate the mode shares. Specifically, the zonal service cases and the

nearest fixed-route cases required more transfers than was in the model for cases 3 and 4

due to the length of these trips. While the results shown in the scenarios should still be

relatively accurate, it is important to identify that extrapolating variables past the model

boundaries can only give some prediction of what will happen based on the relationships

from within the boundaries.

Assumptions had to be made about how to scale the RP modes to ensure that they

reflected real-world shares and so TIR was introduced at the proper starting share. It

is generally recommended not to adjust the ASCs for new modes like TIR, since no RP

data can be used to calibrate the constant (Hensher et al., 2015). There may be other

assumptions about the scale factor and relative ASCs for other modes that may have

resulted in different shares of TIR.

Finally, the model results may require interpretation to be applicable to other regions.

Municipalities and agencies can use a simpler approach, where major thresholds are trans-

ferred qualitatively from this research and the results of the analysis are used to infer which

changes cause greater or lesser impacts on mode share, and to what relative magnitude.

More complex approaches, like transfer scaling, are well detailed in literature and could

also be applied to assess new transit-integrated ridesourcing systems in the planning stages

(Systematics et al., 2012).

133



5.4 Conclusions of System Evaluation

Transit agencies are looking to ridesourcing as a possible extension of their fixed-route

networks, and while it has been piloted in existing transit networks, little was known about

how residents perceive TIR. In this chapter, a Bayesian mixed-logit model was constructed

with the results of the survey from Chapter 4. This is the first TIR model that includes

real-world attributes for time and cost with a full suite of competitive alternatives and

estimated on a representative population. A series of trip cases were built representing

trips with multiple combinations of attributes, to provide appropriate coverage of the types

of trips that may be taken by residents in this area. With a fairly representative sample

of the population, this study found that respondents had similar preferences to TIR as

they do for fixed-route transit, both of which had much higher preferences than private

ridesourcing options or taxis, even when accounting for their wariness of different modes

due to COVID-19. The part-worth model revealed that the gap between 5-10 minutes for

wait times, transfer times and walk times has the strongest drop in utility of the assessed

time windows, so configurations of TIR may be most desirable if these times can be kept

to 5 minutes or less. Marginal effects for the most representative base case confirmed these

windows had the largest expected drop in mode share for TIR.

The single largest impact in the model was the introduction of parking fees, especially

at higher parking fee levels. Only by changing parking fees was auto able to be reduced

below 80% share under any case. Parking fees alone did not greatly benefit TIR, but highly

benefited cycling, fixed-route transit, and ridehailing. Offering many-to-many service,

particularly using door-to-door travel, was one of the most effective ways to improve the

share of TIR, but this had some negative impacts on fixed-route transit. Thus, there are

multiple options to consider depending on the aims of the agency. The most effective

way to reduce auto share and elevate the most environmentally sustainable modes (cycling

and fixed-route transit) would likely be to introduce direct costs like parking fees on auto

and reduce the cost of fixed-route transit, which combined had greater impacts than most

other combinations of alternatives. Agencies should consider exploring other direct pricing

schemes for auto (like congestion or vehicle kilometres travelled (VKT) pricing) to most

effectively reduce the share of auto and provide a more competitive environment for other

modes to increase their shares. Other areas may also consider applying the model (e.g.,

using transfer scaling) so their agencies can assess their own planned transit-integrated

ridesourcing systems before implementation.
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Chapter 6

Conclusions and Recommendations

On-demand transit has been explored in previous decades for low-density areas like suburbs,

where fixed-route transit is expensive to provide on a per-rider basis due to lower ridership.

In previous decades, there has been considerable effort to try DRT systems like DART,

but they found limited success, in part due to the long advance booking times. With

the advent of TNCs offering ridesourcing, the possibility of an immediate app-based DRT

mode like transit-integrated ridesourcing may have more success in attracting ridership in

car-dependent areas. While a large body of literature has given attention to the impacts

of private ridesourcing, there has been little attention to ridesourcing that is specifically

provisioned as a shared mode through the public transit system.

This thesis expanded this body of literature through three phases. First, a typology

was developed to explain spatial competitiveness with fixed-route transit, and was applied

through a full analysis of a recent transit-integrated ridesourcing pilot. Second, a RP-

SP survey was developed that contrasted transit-integrated ridesourcing with a list of

common alternatives, exploring the sensitivity respondents had to different time and cost

attribute levels. Third, a model was estimated and applied to a series of sample trip cases

to determine how ridership would be expected to change for different configurations of

transit-integrated ridesourcing.

6.1 Summary of Chapters

Chpater 1 introduced the concepts of shared mobility and transit-integrated ridesourc-

ing. Chapter 2 followed with a review of former DRT services. This context emphasized

the developments preceding ridesourcing-based DRT. Recent Canadian transit-integrated
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ridesourcing systems (since 2015) were reviewed to provide context to the common vehicle

types, platforms, permitted demand patterns, fares, and hours of operation. Because of

the rapidly evolving nature of transit-integrated ridesourcing and how recently many of

these pilots started, this was the most complete summary of Canadian transit-integrated

ridesourcing systems to date. Common permitted demand patterns and system attributes

were determined from existing systems, DRT algorithms, surveys, and models; culminat-

ing in a summary of system types and their expected impact on passengers. A primary

motivator for this research was the gap in the literature of how people perceive newer,

more immediate forms of DRT like transit-integrated ridesourcing.

Chapter 3 analyzed all 4536 trips from the 903 Flex pilot in the Region of Waterloo,

which operated from 2018-2019. Trips were characterized using a new trip typology, which

sorted trips into 1 of 10 types based on proximity to transit. Transit, walking, and cycling

alternatives were generated for each transit-integrated ridesourcing trip using OpenTrip-

Planner using GTFS feeds, using the origin and destination from the transit-integrated

ridesourcing ride. Users were classified into frequent, average, or infrequent users based on

how often they used the service, and were separately analyzed to determine differences in

trends between user classifications. Changes in weekly ridership, trip types, pick-up times,

trip magnitude, headways, and payment methods were explored to determine if there were

trends over the four main periods of operation.

Chapter 4 introduced the RP-SP survey that was conducted from 30 April to 31 July

2021 in the same area where the 903 Flex previously operated. The design of the survey

was described through the starting demographics, selection of alternatives and attributes,

expected utilities, and formal design. The pre-SP portion, which included automated RP

collection, and the post-SP portion, which included demographics questions, were also

reviewed. Strategies for how to disseminate the survey were discussed, resulting in the

final decision to use postcards targeted to residents living in the former 903 Flex area.

267 respondents completed the survey, from which 230 responses were used for analysis.

Analysis of the survey in this chapter included demographic comparisons against the census,

travel time competitiveness of cycling and transit alternatives, perceptions of modes due

to COVID-19, vehicle and pass ownership, and a breakdown of RP trip times. Users

were classified based on the mode they chose for their RP trip (drivers, transit riders,

passengers, and cyclists), and findings were broken down by these 4 categories to see how

findings changed for each group.

Chapter 5 extended the findings of the survey, describing the development of a Bayesian,

non-linear, mixed logit mode choice model. The model allowed for estimating sensitivities
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to modes and their attributes. Linear and non-linear variants of models were estimated, and

the utilities for each attribute were compared to test for non-linearity. A final model was

estimated using a mixture of statistically significant linear and non-linear attributes. The

model was segmented by age, gender, household income, and destination (HBS, HBW, and

HBO). The model was then validated using real-world mode shares and calibrated using

a representative trip as a base case. From that base case, marginal effects and elasticities

were calculated. Seven further trip cases were developed to test boundaries of attribute

level combinations based on real-world trips that could be taken from the study area. A

series of system configuration scenarios were applied to the eight trip cases to determine

how mode shares would be expected to change in the system types identified in Chapter 2.

6.2 Key Findings

The review of DRT literature, transit-integrated ridesourcing systems, and existing pref-

erential research (Chapter 2) led to four major conclusions:

• The immediate response and ease of access for transit-integrated ridesourcing, in

comparison to the booking process of traditional DRT, requires renewed research to

understand how preferences may have changed with the advent of ridesourcing-style

booking.

• Transit agencies have poor guidance on the best ways to integrate transit-integrated

ridesourcing in a way that encourages positive mode shifts and effective increases in

ridership.

• Current research tends to focus on ridesourcing as a competitive alternative to transit

(often through companies like Uber and Lyft), instead of exploring how transit-

integrated ridesourcing could compete with or complement fixed-route transit.

• Existing mode choice models that consider transit-integrated ridesourcing (Tables

2.2 and 2.3) have limited attributes, alternatives, or demographics. A more general

mode choice model that considers all types of travel in suburban areas is required to

better understand the role of TIR.

Developing the trip typology for transit-integrated ridesourcing trips and exploring the

spatial and temporal characteristics of the 903 Flex pilot (Chapter 3) led to three major

conclusions:
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• TIR trips can be characterized by their spatial attributes to determine their compet-

itiveness with fixed-route transit systems. An automated process is used to charac-

terize these trips and can be transferred to other areas conducting similar analyses.

• Trips taken during the 903 Flex pilot were largely complementary to the transporta-

tion network (primarily consisting of indirect feeders and remote trips) and progressed

toward more transit-supportive trip types.

• Over 16% of trips competed with transit, and had the highest share during the free

transit promotional period. Agencies should be cautious about duplicating services,

to avoid pulling users from existing fixed-route infrastructure.

Designing and administering an RP-SP survey for transit-integrated ridesourcing in the

former 903 Flex area (Chapter 4) led to four major conclusions:

• Respondents tended to choose the RP mode that was most competitive from a travel

time perspective, even without necessarily having perfect knowledge of the alterna-

tives’ travel times.

• Respondents who chose driving had the highest share of car ownership and number

of cars per household, and cyclists had the highest rate of bicycle ownership, but

choosing transit did not correlate with owning fare cards or passes.

• COVID-19 did not impact perceptions of fixed-route transit or transit-integrated

ridesourcing meaningfully, suggesting that drops during the pandemic are likely to

bounce back afterwards. Auto and cycling had positive perceptions due to COVID-

19, so the existing strong share of auto may be strengthened due to ongoing pandemic

concerns or new pandemics in the future.

• Agencies should be aware of how effective their advertising is for new services, since

most respondents were not aware the 903 Flex previously operated in their area.

Estimating the mode choice model from the survey data and applying it to a series of

trip cases (Chapter 5) led to four major conclusions:

• Respondents had similar preferences for transit-integrated ridesourcing and fixed-

route transit, both of which were preferred to private ridesourcing and taxis. Transit-

integrated ridesourcing may, therefore, be viewed as an on-demand extension of ex-

isting transit service from a resident’s perspective.
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• The 5-10 minute windows for wait time, transfer time, and walk time were the most

sensitive to drops in utility and mode share, so configurations of transit-integrated

ridesourcing should be sensitive to times that fall in or above this range.

• Parking fees had a substantial impact on mode shares, greatly reducing the predicted

share of auto and shifting that share predominantly to cycling, fixed-route transit,

and ridehailing. Other direct costs on auto should also be explored to consider

whether they have similarly large expected impacts on the overall mode share.

• Many-to-many demand patterns for transit-integrated ridesourcing and door-to-door

travel resulted in larger increases in the transit-integrated ridesourcing mode share,

with some negative impacts to fixed-route transit. Benefits of moving to more per-

missive demand patterns and closer stops should be weighed against the negative

impacts on fixed-route transit to determine what is overall preferable for a given

system.

6.3 Agency Recommendations

Throughout the analysis of transit-integrated ridesourcing pilots, a series of best practices

formed that may help guide agencies planning transit-integrated ridesourcing services in

suburban areas. For agencies with fixed-route alternatives, agencies should characterize

on-demand trips in their network, to determine how spatially distant the trips are from

existing fixed-route transit service. Using the typology:

• Transit replacements spatially satisfy the need of a rider, and require either temporal

changes (e.g., shorter headways, faster in-vehicle times) or more directness in the

local fixed route to encourage a shift to existing fixed-route transit. Agencies should

consider the feasibility of these changes to these existing routes to further attract

riders to fixed-route transit.

• Indirect feeders have one end that is far for most people to access for transit. Riders

may be taking these to cut one leg out of their trip (e.g., the first bus in a multi-

bus trip) or because their true destination is near the transit-integrated ridesourcing

destination. Agencies should consider looking more closely at the true origins and

destination of riders using indirect feeders to assess the reasoning for taking these

trip types to understand how to appropriately address the missing gap in existing

service.
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• Inconvenient and remote trips are challenging to serve using existing fixed-route

transit, because the stops are located far from the rider’s origins and destinations.

Inconvenient trips may be taken by more transit-averse people or those with mobility

concerns, while transit-friendly people would likely be willing to take the existing

fixed-route service. Remote trips have a very poor transit alternative that most

riders likely do not consider as an alternative due to the high access/egress time. If

the trips are single-ended, then only one side has access/egress challenges, but the

rider is also choosing to not take a feeder trip to the nearest stop and take the bus

route. Agencies should consider the temporal competitiveness of the bus route, and

whether there are incentives for riders to skip the route altogether (e.g. the transit-

integrated ridesourcing service can just take them to their true destination anyway

for the same fare).

• Direct feeders and non-transit trips are not able to be spatially satisfied with exist-

ing fixed-route service. Agencies should monitor for high numbers of direct feeders

and non-transit trips between specific origin-destination pairs, which may indicate

potential for future fixed-route service in the future.

From the model findings:

• Agencies should explore synchronizing transfers between transit-integrated ridesourc-

ing and fixed-route transit, which increases wait time but lowers transfer time. In

the model, each minute of wait time was perceived less negatively than each minute

of transfer time.

• Agencies should consider system improvements that make the highest marginal im-

provements for each attribute. Specifically:

– There are diminishing returns for wait times below 5-minutes. Agencies that

can reliably achieve a 5-minute wait time should allocate further efforts into

other system improvements.

– The decrease in utility per minute for transit-integrated ridesourcing for the

wait time, walk time, and transfer time attributes is larger between 5 minutes

and 10 minutes than any other range of attribute levels, and the decreases in

mode shares in this range are also larger or competitive with the largest decrease.

Agencies with times in this window could prioritize small improvements to these

times (e.g., from 8 minute transfer times to 5 minute transfer times) to maximize

benefits.
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– The change from 0 transfers to 1 transfer similarly has the highest decrease in

mode share. Agencies should consider whether transfer-free transit-integrated

ridesourcing systems (like many-to-many) are viable in suburban areas, but be

cautious of how it impacts fixed-route service (e.g., by only offering it in transit-

poor areas).

– Introducing parking costs increase the shares of all other modes greatly, partic-

ularly transit and active transportation. Because of how dominant auto is in

suburban areas, a small decrease in auto share can have a much larger propor-

tional increase for other modes. Municipalities should consider introducing or

increasing parking fees to best support transit and active transportation. Other

direct costs for auto should be considered by the appropriate governments to

further discourage driving.

6.4 Contributions

This thesis makes five major contributions to transit research. The first contribution (an-

alytical) is the first comprehensive trip analysis of a transit-integrated ridesourcing service

from start to finish. The detail in the trip database allowed for user-level behavioural

changes to be measured across the lifecycle of the pilot. By assessing the complete spatial

and temporal characteristics of the 903 Flex, future agencies considering transit-integrated

ridesourcing may hopefully have more specific takeaways from the conduct of the pilot

project.

The second contribution (methodological) is the trip typology developed for the pilot

analysis, which characterizes the spatial competitiveness of transit-integrated ridesourcing

trips in comparison with fixed-route transit. The typology may be of use to agencies

looking to characterize trips made in their own pilot projects, to determine whether their

on-demand service heavily overlaps with existing fixed-route service, and if changes to the

fixed-route service (like increased headways or more direct routes) may benefit if trips meet

the right characterization (i.e., if they are transit replacements).

The third contribution (analytical) is the design and implementation of an RP-SP sur-

vey, which was one of only a few preference surveys that includes a modern app-based

version of transit-integrated ridesourcing. The survey results are novel due to the com-

bined inclusion of cost and most other common alternatives (driving, passenger, cycling,

ridehailing), which have not been included together in transit-integrated ridesourcing sur-

veys. While not the first survey to use automated RP attribute collection, it is still rare
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to automatically collect RP attributes (in this case, directly from the Google APIs) in-

stead of asking respondents to fully enter the attributes. The survey was also conducted

in an area that was previously identified as an ideal candidate area for on-demand transit,

previously had a pilot service to which any new system configuration could be compared,

and covers a general population without any strong biases toward a specific age, gender, or

income range. By asking a general population about their preferences across a wide range

of attributes, the results of the survey are likely similar to other areas with similar land

uses, transit access, and car dependence. The anonymized results will also be provided in a

database of user preferences, which will be contribute to the larger body of transit-relevant

datasets.

The fourth contribution (methodological) is the mode choice model developed using

Bayesian estimation and non-linear time and cost attributes, and used to estimate transit-

integrated ridesourcing mode shares. Few models have considered modern DRT service,

and to date none of these models have used Bayesian estimation or non-linear attributes for

time and cost. The model is uniquely able to consider how the combination of individual

respondents shifts the mode share across different attribute levels, and the non-linearity

allows for understanding the varied impacts of different levels in contrast with linear models,

which assume increases in time or cost have the same per minute or per dollar impact.

This model may also be transferable to other areas of interest, following one of the many

transferability techniques established in literature (Systematics et al., 2012).

The fifth contribution (analytical) is the assessment of how mode share changes across

different system configurations. Using the combination of non-linear attributes and individual-

level models from Bayesian estimation, a unique analysis was conducted of how mode share

may be impacted by various changes to transit-integrated ridesourcing systems, and how

other modes can impact transit-integrated ridesourcing provision in suburban areas in

Waterloo and other areas with similar characteristics. The use of non-linear attributes

allowed for the identification of thresholds denoting sharp changes in perceived utility for

the studied attributes.

6.5 Future Work

As with most research, there are opportunities to further extend what was completed in

this thesis:

• Trip typology in other areas and systems: The trip typology in Chapter 3
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was only applied to the 903 Flex pilot in Waterloo. Future research may explore

applying this typology to a series of other new transit-integrated ridesourcing systems

in Canada to compare the competitiveness of other systems with fixed-route transit,

cycling, and walking.

• Trip analyses with true origins and destinations: The analysis in Chapter 3

made inferences on trip competitiveness by using 903 Flex origins and destinations,

which are not the passenger’s true origins and destinations (Figure 3.3). While the

typology used is helpful for understanding the competitiveness of transit-integrated

ridesourcing trips versus fixed-route transit trips, it may be possible to have more

complete insights into the available alternatives for passengers if the complete trips

are studied. For example, the 903 Flex trip database contains no transfers and all

trips end within the service zone, but some passengers may have only used the 903

Flex for one leg of their trip, then transferred to another service (like fixed-route

transit) for the remainder of their trip. There are opportunities in future research to

work with agencies to conduct intercept surveys or use other techniques to determine

the origins and destinations of the complete trips for trips taken in other transit-

integrated ridesourcing systems that are still operating.

• Seasonal, weather, and cycling infrastructure attributes in future transit-

integrated ridesourcing surveys: Respondents to the survey in Chapter 4 identi-

fied seasonality and weather as factors that would have impacted their mode choice.

While this is most obvious for cycling, which is less popular in winter and adverse

weather, transit-integrated ridesourcing options that require longer periods of walk-

ing may also be less desirable to some people in these conditions. The change in

ridership of transit-integrated ridesourcing in these conditions is not certain, since

this would also depend on how people respond to seasonality and weather in other

modes like cycling. Recognizing that there are established categories for cyclists

based on the quality of infrastructure (Geller, 2006), incorporating types of cycling

infrastructure could also be a valuable attribute to add to test how cycling treatments

would impact the trade-off between cycling and transit-integrated ridesourcing. Fu-

ture research should consider ways to incorporate these factors into transit-integrated

ridesourcing preferential surveys.

• Walking as an alternative to transit-integrated ridesourcing: Walking was

removed from the survey in Chapter 4 to minimize decision fatigue in the SP exper-

iments. While walking was considered the least competitive alternative compared to
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other modes that were kept in the survey, there is room to explore the competitive-

ness of transit-integrated ridesourcing to walking for shorter trips, like some of the

trips identified in the 903 Flex pilot (Chapter 3).

• Preferences in transit-free areas: The survey in Chapter 4 and resulting model in

Chapter 5 were conducted in an area with existing fixed-route transit. A possibility

for future study would be to conduct a full analysis and survey in an area without

a fixed-route transit alternative, since transit-integrated ridesourcing in these areas

would not compete or integrate with fixed-route transit.

• Direct costs for auto: In the model developed in Chapter 5, parking costs were

identified as the primary way to increase the shares of alternative modes (cycling,

fixed-route transit, ridesourcing) and as a synergistic factor for increasing transit-

integrated ridesourcing share in conjunction with other changes. Other direct costs

for auto should be explored in future studies with transit-integrated ridesourcing,

to determine if they would also have similarly sized impacts. Other options would

allow for alternative ways to lower auto share if large increases in parking are too

politically unrealistic in a specific area.

• Alternative reliability metrics in transit-integrated ridesourcing: In the

model developed in Chapter 5, the reliability metric used was not found to be sta-

tistically significant. The specific metric used was a deviation in minutes from the

provided IVTT, which was calculated as a percent change from the auto or cycling

times. While this specific implementation of reliability was not significant in the

model, other measurements of deviation or travel time reliability may be more suc-

cessful. One option may include providing a series of IVTT estimates, as done in

Alonso-González et al. (2020).
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Appendix A

Ride Time Cleaning for 903 Flex

This section outlines the process for cleaning ride times in the 903 Flex dataset, which is
used for Chapter 3. Of the 4536 rides in the dataset, 2828 rides did not have departure
(pick-up) and arrival (drop-off) times that matched the reported ride time (i.e., the in-
vehicle time). To find the available transit alternatives and conduct ride time comparisons,
a cleaning procedure was developed and used to match the pick-up and drop-off times to
the reported ride times. An inspection of the data suggested that the reported ride times
were more reliably accurate, but the pick-up and drop-off times provided were not, so
the reported ride time was assumed to be true and the pick-up and drop-off times were
modified using a cascading series of educated assumptions. In cases where multiple times
are provided by number, time 1 is the earliest time in the sequence and higher numbers
indicate later times.

Four travel times were provided in the dataset: predicted pick-up time, actual pick-
up time, predicted drop-off time, and actual drop-off time. Predicted times are when
the operator believed the passenger would be picked up or dropped off. Each of these
times were considered differently for analysis. Predicted pick-up time was used as the
earliest time that a user may have wanted to take a trip. For comparison against other
alternatives, predicted pick-up time was the time the user intended to start travelling (i.e.,
the start of ‘wait time’ for ridesourcing and transit, and the start of the trip for walking
and cycling). Actual pick-up and drop-off times were used to find when a trip truly started
and ended. Predicted drop-off was not used in the analysis, but was incorporated in the
cleaning procedure to ensure accuracy in time cleaning. The calculated ride time which
was compared with the reported ride time was set to the duration between actual pick-up
time and actual drop-off time.

Table A.1 lists the cleaning cases considered and the actions taken to clean the data in
each case. Actual pick-up time was considered the most essential time value for analysis,
and was able to be left unchanged in 81% of cases. In the dataset, 1708 records had
equal calculated and reported ride times (within a tolerance of 1 minute, cases 1a-1b).
593 of these trips had no changes applied (case 1a), 7 of which had no reported ride time
to compare to. The other trips had a predicted drop-off time that was earlier than the
predicted pick-up time (case 1b). The predicted pick-up time was set to equal actual pick-
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up time, since that was the next closest accurate value. Of the 2828 rides with mismatched
trips, 1971 of them were edited using one of two quicker assumptive procedures. The first
procedure was cases where the predicted times were logically ordered but the ride times
mismatched (case 2). In this case, actual drop-off time was modified to be the actual
pick-up time plus the reported ride time. The second procedure was cases where neither
the predicted times were ordered correctly nor the ride times matched (case 3). This case
was a combination of cases 1 and 2, so both actions from those cases were applied.

Table A.1: Ride time cleaning cases and counts (RRT: reported ride time)

Case Total Pick-up req. Pick-up act. Drop-off req. Drop-off act.

1a 593 No change No change No change No change
1b 1115 Pick-up act. No change No change No change
2 364 No change No change No change Pick-up act. + RRT
3 1607 Pick-up act. No change No change Pick-up act. + RRT
4a 39 Time 1 Time 3 Time 2 Time 3 + RRT
4b 12 Time 1 Time 3 Time 2 Time 3 + RRT
4c 697 Time 1 Time 3 Time 2 Time 3 + RRT
4d 59 Time 1 Time 3 Time 2 Time 3 + RRT
5a 1 No change No change Pick-up act. + RRT Pick-up act. + RRT
5b 3 No change Time 1 Time 2 Time 1 + RRT
5c 36 No change Pick-up req. No change Pick-up req. + RRT
5d 2 Time 1 Time 1 Time 2 Time 1 + RRT
5e 2 No change No change No change Pick-up act. + RRT
6 6 No change No change Pick-up act. + RRT Pick-up act. + RRT

The remaining 857 trips (cases 4a-6) went through a sequence of more specific proce-
dures. In trips with 3 unique times (cases 4a-4d), the actual pick-up and drop-off times
were the same, and the request times were different. The patterns included late requested
pick-up and early requested drop-off (case 4a), early requested pick-up and late requested
drop-off (case 4b), early requested pick-up and middle requested drop-off (case 4c), and
middle requested pick-up and low requested drop-off (case 4d). Case 4c was the most
common, and appeared in large sequential blocks, so was likely an issue with how RideCo
was saving the data for each trip. None of the pairs of times formed a duration that was
equal to the reported ride time, so drop-off time was set to the reported ride time plus the
actual pick-up time as in other cases. The desired strategy of keeping actual pick-up time
the same was not used in these cases since the times were rarely saved in a logical order.
Requested pick-up was set to time 1, so that it would be earliest, and actual pick-up was set
to time 3, assuming worst-case wait times for comparison against alternative modes. Trips
with 2 unique times (cases 5a-5e) differed by high actual pick-up (case 5a), low requested
times (case 5b), low requested pick-up (case 5c), low requested drop-off (case 5d), and high
requested drop-off (case 5e). In each of these cases, the highest priority was keeping actual
pick-up the same unless there was a logical disagreement (as in cases 5b-5d), in which cases
it was set to the earlier of the times. The final case was trips where all 4 times were the
same (case 6), where the drop-off times were modified to match the reported ride time.
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Appendix B

Eliminated Attribute Levels

This section reviews the eliminated attribute levels in the survey. The initial set of attribute
levels chosen is provided in Table B.1, with the eliminated or modified attributes indicated
in bold.

Table B.1: Initial attribute levels chosen

Attribute TIR Transit Private
ridehailing

Cycling Auto

In-vehicle time (min) GAPIa

(1x, 2x,
3x, 4x)

GAPIa

(1x, 2x,
3x, 4x)

GAPIa GAPIc GAPIa

Wait time (min) 3, 5, 10,
15, 30

3, 5, 10,
15, 30

3, 5, 10,
15, 30

– –

Transfer time (min) 0, 5, 10,
15, 30

0, 5, 10,
15, 30

– – –

Walk time (min) 0, 5, 10,
30, 60

0, 5, 10,
30, 60

– – –

Fare / parking ($) 0, 1, 3.5,
6, 12

0, 2, 3.5,
5, 7

GAPIa

(1x, 2.5x,
5x, 10x)

– 0, 1, 3,
7.5, 15

Number of transfers 0, 1, 2, 3,
4

0, 1, 2, 3,
4

– – –

Reliability GAPIa

(+/- 5%,
10%, 15%,

20%)

GAPIa

(+/- 5%,
10%, 15%,

20%)

GAPIa

(+/- 5%,
10%, 15%,

20%)

GAPIc

(+/- 5%,
10%, 15%,

20%)

GAPIa

(+/- 5%,
15%, 25%,

50%)

a Drive time determined from Google API
c Cycle time determined from Google API

For IVTT, the original maximum ratio was 4x, based on the highest ratio found in
empirical tests of travel times in the region. The 4x case was removed due to concerns
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over auto dominance, and the maximum was reduced to 3x. Similar modifications were
made to other attributes in cases where transit or TIR were not competitive enough in the
experiments, and the assumption was made that at points between the old and new max-
imums (e.g., between 3x and 4x for IVTT), there would be minimal change in preference
as people who had chosen transit or TIR at that point were already fairly captive, and
people who had not chosen those modes would not be expected to switch modes.

For the remaining attributes, five levels were initially chosen to minimize the design
size, and the least essential level was removed from each attribute to minimize the number
of choice experiments needed, resulting in a maximum of 4 levels for each attribute in the
final design. If the value was a midpoint, it was assumed that interpolation could be used
between the preceding and following values. If the value was an endpoint, like in the IVTT
case, then the same assumptions about captive respondents was made.

For wait time and transfer time, 15 minutes was removed since 5 and 10 minute cases
were more interesting for analysis and were expected to be greater inflection points. For
walk time, 60 minutes represented the real-world maximum for combined access or egress
in the study area. 60 minutes was assumed to be highly undesirable, so 30 minutes was
chosen as the new maximum, and it was assumed that people willing to walk 30 minutes
would be a fairly small share of the respondent base.

$7.00 was initially chosen as the maximum transit fare because it was double the existing
fare. $7.00 was removed to improve the desirability of transit in the experiments, because
another fare already represented a value higher than the current fare, and because it was
unlikely the GRT fare was going to reach that level in the foreseeable future. The TIR fares
were chosen using a pivoting structure off of transit as inspiration ($0.00, Transit-$1.00,
same as transit, Transit+$1.00, Transit+$5.00), representing different fare structures seen
in TIR pilot projects ($0.00, $2.00, $3.50, $5.00, $7.00 transit fares resulted in $0.00, $1.00,
$3.50, $6.00, $12.00 TIR fares). The $12.00 TIR fare was removed due to the loss of the
top transit fare and to reduce auto dominance, and the $6.00 fare was replaced with $8.00,
representing a Transit+$3.00 case in between the two original cases.

For parking, one of the middle parking fees ($7.50) was removed. No changes were
made to private ridehailing fares or to the reliability metric.

The original range for the number of transfers in each experiment had a maximum of
4, representing the generally largest number of transfers empirically found in the region.
Cases with 4 transfers were removed to make transit options more competitive. In an
extensive literature review of people’s perceptions of transfers, transfer times were found
to be one of the main deterrents to taking transit (Chowdhury & Ceder, 2016), further
supporting a lowered maximum number of transfers to minimize the impacts of transfer
time.
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Appendix C

Survey Software Selection

This section reviews the selection of the survey software. Four options were considered for
building the experiment (Table C.1): Ngene, Qualtrics, Lighthouse Studio from Sawtooth
Software, and R. Some R packages that were considered for design included AlgDesign and
acebayes, which included some of the desired design functions. Surveys need to be designed
and hosted, so options without hosting would additionally require a hosting platform.
The design ethos for each option reflects how designs are constructed: model-first options
use utility functions as the basis for generating the design, and attribute-first options use
combinations of attributes as the basis. Qualtrics and R were removed earlier in the process:
the appropriate Qualtrics packages were much more expensive than the alternatives, and
generating designs in R had a higher learning curve with minimal benefit and no hosting.
Lighthouse Studio offered an academic grant to graduate students that use their software for
research, which brought the price to $0. Between Lighthouse Studio and Ngene, Lighthouse
Studio was able to host and generate designs, while Ngene would still require a separate
hosting account. It is possible to import Ngene designs into Lighthouse Studio, but Ngene
would therefore need to be noticeably better than Lighthouse Studio’s built-in functions to
make this worthwhile. Both software aim to make a D-efficient surveys: Lighthouse Studio
uses D-efficiency as one of the test metrics, and Ngene more explicitly designs surveys to
be as D-efficient as possible. Lighthouse Studio was chosen in the end due to the lower
cost and convenience of hosting and designing, and less restrictions on where the software
could be installed.

Sawtooth Software also provides a second option, Discover, that was considered as an
alternative to Lighthouse Studio. Lighthouse Studio is desktop software that works with a
hosting platform, while Discover is a completely web-based platform. The main disadvan-
tage with Discover was that it did not allow for free-format questions or customization of
level labelling, which would not allow for the Google API integration or customizing lev-
els around the Google-derived travel times. Therefore, between the two software options,
Lighthouse Studio was confirmed as the software of choice.
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Table C.1: Evaluation of stated-preference design software

Attribute Ngene Qualtrics
package

Lighthouse
Studio

R packages

Price US$550 US$2000 free
(academic
grant)

free

Restrictions 1 licence,
locked to
computer

12-month
subscription

until end of
project

no licence

Hosting No Yes Yes No
Design ethos Model-first Attribute-first Attribute-first Either
Variability in designs High Unknown Moderate Low to

moderate
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Appendix D

Survey Questions

Before you start the survey, we want to check that you are eligible to continue.

1. Are you older or younger than 16 years old?

• I am 16 years old or older

• I am 15 years old or younger

2. Which City of Waterloo ward do you live in?

• Ward 1 (Southwest)

• Ward 2 (Northwest)

• Ward 3 (Lakeshore)

• Ward 4 (Northeast)

• Ward 5 (Southeast)

• Ward 6 (Central-Columbia)

• Ward 7 (Uptown)

• I live outside of the City of Waterloo

If you aren’t sure which ward you’re in, you can look it up on the City of Waterloo website at

www.waterloo.ca/en/government/city-council.aspx.

3. This survey addresses trips that you would normally make outside of the COVID- 19
pandemic. Trips must:

• start at your home and end at another location in the Region of Waterloo

• not be trips to grade school (K-12) as a student

• not be trips where you would walk for the entire trip

• be trips where you had freedom to decide how you travelled (in other words,
you chose whether you biked, drove, took a taxi, etc.)
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Have you made at least one trip that meets this criteria?

• Yes, I have made one trip that meets all four of these criteria

• No, I have not made a trip that meets all of these criteria

4. Two paths depending on previous answers:

(a) If respondent chose ‘I am 15 years old or younger’, ‘I live outside of the City
of Waterloo’, or ‘No, I have not made a trip that meets all of these criteria’:
Termination page due to not meeting criteria

(b) All other respondents: TIR description page, Figure 4.5, continue to question 5

5. The 903 Flex service that ran in your area from November 2018 to December 2019
was one possible configuration of transit-integrated ridesourcing. You may have had
it installed on your phone and it would have had an app icon that looked like the
image on the right.

Did you use the 903 Flex service when it operated in 2018/2019?

• Yes, I took at least one trip using the 903 Flex service

• No, but I was aware of it

• No, and I did not know about it

6. (Also depicted in Figure 4.7) In this survey, we will ask you questions about a trip
you would normally make outside of COVID-19. To make the survey more appli-
cable to your trip, we will generate driving and cycling times using your home and
destination locations to personalize your survey.

Enter the home and destination location for a trip you have taken:

• from your home to another location within Waterloo Region

• that was not made by walking

• where you had freedom to decide how you would travel to your destination

• that was not for attending grade school (K-12) as a student

Choose a departure day and time that represents the most likely day and time you
would consider making this trip.

• Home: *text-entry field

• Destination: *text-entry field

• Departure time: *four selection menus for days, hours, minutes in 15 incre-
ments, and a.m./p.m.

Drive times: Not found yet/Found (depending on respondent progress)

Cycle times: Not found yet/Found (depending on respondent progress)
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We do not store or know your home and destination locations. These locations are input directly

into Google Maps to generate driving and cycling times. You also do not need to enter your exact

home address, you can enter another address near yours and the times should still be accurate. A

transit trip will also be generated which will help us understand your existing transit situation.

7. Which travel option do you typically choose when making this trip?

• Driving

• Passenger in a private vehicle

• Transit (GRT bus and ION)

• Taxi or Uber

• Cycling

• Other (please specify) *text-entry field

8. What is the purpose of your trip?

• Daycare

• Entertainment

• Escorting a passenger

• Post-secondary school

• Shopping

• Visits

• Work

• Other (please specify) *text-entry field

If you have many reasons for making this trip, pick the most common one.

9. Would you say this trip is care-related? (i.e., this trip is taken mostly to assist
children or dependents?)

• Yes, my main purpose is care-related

• No, my main purpose is not care-related

Some examples of care-related trips or caring work include escorting, buying food or other items,

and other tasks you do primarily for others that depend on you like children or dependent adults.

10. (If respondent did not choose ‘Driving’ or ‘Passenger in a private vehicle’) You in-
dicated that you don’t normally make this trip using a private vehicle.

For this trip, if you had to use a private vehicle (car, truck, etc.), would you be more
likely to drive the vehicle or be a passenger in another person’s vehicle?

• More likely to drive a vehicle

• More likely to be a passenger in a vehicle
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This will impact whether ‘driving’ or ‘passenger in private vehicle’ is provided as an option in the

survey.

–

Now, we will walk you through a sequence of situations where you are making the trip
you previously entered.

You will consider five travel options in each scenario. The cost and time for each trip
will change in each question for transit, TIR, and taxi/Uber. Consider the costs and times
carefully before deciding. In each case, indicate which option you would choose in this
scenario (your ‘Best’ option) and which option you would be least likely to choose (your
‘Worst’ option).

Some of the scenarios you see will not reflect how fast/slow your options are currently,
but we want you to imagine that, in each scenario, these are your only options.

Definitions for some terms are provided below each scenario on every page. Remember
that you can not go back to a previous scenario once you press Next.

Stated preference scenarios follow, tailored to each respondent, similar to Figure 4.4

–

We’re almost done. We have a couple more pages of quick questions for you about your
demographics and other perspectives on transportation.

1. Do you own a bicycle?

• Yes

• No

2. How many personal vehicles does your household own? *text-entry field

3. Do you have any of the following GRT fare passes or cards? (Or would you have one
of these outside of the pandemic?) If you have more than one, choose the one you
are more likely to use.

• U-Pass (on a Waterloo WatCard or Laurier OneCard)

• College pass (on a Conestoga ONE Card)

• Corporate pass (through a TravelWise affiliated workplace)

• Veteran’s pass

• TAPP pass (through Ontario Works)

• Senior’s reduced monthly pass

• Elementary or secondary student reduced monthly pass

• EasyGO fare card (adult fare)

• EasyGO fare card (reduced fare for seniors, elementary and secondary students)
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• I have none of the previous options, and would pay with cash or tickets

4. Are you more or less likely to take the following modes after the COVID-19 pandemic
than you were before? *Respondents chose ‘Less likely’, ‘No change’, or ‘More likely’
for each mode

• Taxi/Uber

• Cycling

• Transit-integrated ridesourcing

• Driving or passenger in a private vehicle *presented option depends on respon-
dent’s answer to question 10 in pre-SP section

• Transit (GRT bus and ION)

5. (If respondent entered two or more vehicles for ‘How many personal vehicles does your
household own?’) You indicated your household owns multiple personal vehicles.

If your area had improved transit or TIR, would your household consider owning
fewer cars, trucks, and/or vans?

• Yes, we would likely consider having less personal vehicles

• No, we would want to keep all of our existing personal vehicles

6. (If respondent entered two or more vehicles for ‘How many personal vehicles does
your household own?’) What is the primary reason your household would not be
able or willing to reduce the number of vehicles you own? (max. 500 characters)
*text-entry field

7. Finally, we have a few questions about your demographics, which will help us use the
results for modelling. How old are you?

• 16-24

• 25-34

• 35-49

• 50-64

• 65 or older

• Prefer not to answer

8. What is your gender?

• Female

• Male

• Other *text-entry field

• Prefer not to answer
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Where we use this: Gender may help determine if there are unexplained gender-based reasons

why someone may choose to avoid or prefer a specific mode.

9. What is your estimated gross household income (before-tax)?

• Under $45 000

• $45 000 to $69 999

• $70 000 to $99 999

• $100 000 to $124 999

• $125 000 to $149 999

• $150 000 to $199 999

• Over $200 000

• Prefer not to answer

Where we use this: Some previous studies indicate income is related to travel choices. This

information will be used to determine whether these earlier studies apply to your neighbourhood.

10. Do you have any other comments before you end the survey? *text-entry field
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Appendix E

Survey Appreciation and Draw

This section outlines the survey appreciation and draw, which are secondary to the main
findings of the survey, but are included here to complete the documentation of the survey
design and implementation process.

Surveys often provide feedback and appreciation. Appreciation can be one way to thank
people for completing the survey, and can manifest as a guarantee or chance for some form
of remuneration. In this survey, a draw for appreciation was chosen instead of providing
something to every respondent, in part because the uncertainty of the final size of the
sample meant a draw would have a more stable budget. Gift cards and swag bags from
GRT were the draw prizes. Grocery store gift cards were chosen as the draw prizes because
they have the widest appeal. Loblaw, Sobeys, and Metro franchises were identified as the
primary grocery stores in the area, so each were given as options for potential winners.
10 gift cards valued at $50 each were selected. GRT promised 10 swag bags later in the
process, which contained promotional items including pens, buildable train models, and
socks.

A Qualtrics survey was prepared to process the draw entries and mailing list subscrip-
tions for people who were interested in the survey results (Figure E.1). At the end of the
Sawtooth survey, a link was provided to send respondents to the Qualtrics survey. By
using two separate surveys, their primary survey responses were fully detached from their
name and contact information, so that their responses were not identifiable. Qualtrics
was chosen for the feedback and appreciation survey because basic Qualtrics surveys are
free for University of Waterloo researchers, and Qualtrics has more developed tools for
ensuring valid email addresses and phone numbers are submitted than Sawtooth’s online
surveys. Respondents were asked for their preferred grocery store, in case they won a gift
card, their preference for receiving survey updates when results were published, and their
contact information so they can be reached for either the draw or results.

Techniques for securing the Qualtrics survey from fraudulent responses were consid-
ered. Built-in solutions that were employed included flagging suspected multiple entries,
detecting bots with reCAPTCHA, and blocking the survey from search engine indexing.
An additional method considered was to only accept responses if their previous page was
the Sawtooth survey, to prevent link sharing. Unfortunately, web browsers pass HTTP
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Figure E.1: Qualtrics survey used for remuneration

my $datestring="";

$datestring = time();

$datestring = reverse $datestring;

$datestring = $datestring + 123456789;

return $datestring;

Figure E.2: Perl code for timestamping Qualtrics survey referrals

referrers differently from each other, and in test runs respondents could not always gain
access to the Qualtrics survey depending on the browser they used. The decision was made
to not include a referrer, and rely on a system using a check value (Figure E.2). The check
value was a reversed version of the Unix time when the respondent opened the Qualtrics
survey using a referral plus a modifier number to scramble the timestamp, which would
result in unique identifiers for every time the Qualtrics survey was opened using the Saw-
tooth redirect. The check value was reviewed afterwards to ensure winning entries were
valid and associated with a legitimate, unique entry. Using the check value, six responses
were removed in the final draw, five because of re-entry (likely accidental or to update
erroneous contact information in the initial entry) and one because it was a second person
using the same survey entry, as verified by the timestamp.

The appreciation draw was administered after the end of the survey period. Three
draws were administered: the first on 6 August 2021, the second on 30 August 2021, and
the third on 7 September 2021. Each draw was conducted using the RANDBETWEEN
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function in Excel, where the random numbers fell in the same range as the respondent ID
numbers. Numbers were re-rolled if there were duplicates or if the number had already
been drawn in a previous draw. The first draw was used to pull 20 respondents from the
list (10 for the gift cards and 10 for the swag bags). Winners were emailed and given until
23 August to reply. Two gift card winners and one swag bag winner did not reply, so three
more entries were pulled in the second draw. The second draw winners were emailed and
given until 6 September to reply. One of the gift card winners in the second draw did not
reply, so one more entry was pulled in the third draw. Draw winners received their gifts
on 9 August, 30 August, 7 September, or 14 September depending on the agreement made
with the winner.

168



Appendix F

Evaluation Trip Cases

Table F.1 compares the attributes for case 1 (a and b) against the median values reported
in the RP trips. Because headways weren’t provided when trips were pulled from Google’s
API, the wait time of the RP trips is unknown. However, inspection of the trips revealed
that the most popular transit alternatives were weekday morning peak trips on Route 13
(Laurelwood), so the same trip was used to generate an alternative for case 1. The first and
third quartile values are also provided to indicate the range of values around the median.

Additional information follows concerning trip cases that was not required for the anal-
ysis, but may be of interest. All peak trips were generated in the future from the time of
analysis using Wednesday, 3 August 2022 at 8:00 a.m. as the departure date and time,
and all off-peak trips were generated using Sunday, 7 August 2022 at 1:00 p.m. as the
departure date and time.

• Case 1:

– Origin (neighbourhood): 540 Willow Wood Drive - east of Woodrow Dr at
Willow Wood Dr (Laurelwood)

– Destination: Willison Hall (Wilfrid Laurier University)

– Route: 13

– Nearest 903 Flex stop: Woodrow / Willow Wood

• Case 2:

– Origin (neighbourhood): Erbsville Rd at Regal Pl (Erbsville)

– Destination: Westmount Golf and Country Club

– Routes: 13, then 12

– Nearest 903 Flex stop: Regal / Erbsville

• Case 3:

– Origin (neighbourhood): Beechlawn Dr at Stillmeadow Cir (Beechwood)
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– Destination: Cambridge Centre

– Routes: 201, then 301, then 302

– Nearest 903 Flex stop: Beechlawn / Stillmeadow

• Case 4:

– Origin (neighbourhood): Sundew Park (Vista Hills)

– Destination: Paul Peters Park

– Routes: 13, then 301, then 206, then 54

– Nearest 903 Flex stop: Sundew / Walking Fern

• Case 5:

– Origin (neighbourhood): Interlaken Park (Clair Hills)

– Destination: Spice Bush St at Red Osier Rd

– Route: 13

– Nearest 903 Flex stop: Freiburg / Keats Way

• Case 6:

– Origin (neighbourhood): Avens St at Wild Calla St (Vista Hills)

– Destination: Westside Marketplace

– Route: N/A

– Nearest 903 Flex stop: Avens / Wild Calla

Starting shares for each of the trip cases are given in Table F.2.
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Table F.1: Case 1 attributes versus median attributes

Attribute Case 1 Median (25%-75%)

Auto time (min) 12 11 (8-14)
Cycle time (min) 19 20.5 (15-29)
Wait time (min) a: 7.5, b: 15 Unknown
Walk time (min) 10 10 (7-16.75)
Transit IVTT (min), ratio 18, 1.5x 17 (9-25), 1.4x (1.1x-1.9x)
Transit transfer time (min) 0 0 (0-6.25)
Transit number of transfers 0 0 (0-1)

Table F.2: Starting shares for each trip case

Mode 1a (%) 1b (%) 2a (%) 2b (%) 3 (%) 4 (%) 5 (%) 6 (%)

Auto 92.8 93.8 96.2 96.4 96.4 97.0 87.0 86.9
Cycling 2.0 2.1 2.1 2.1 2.2 2.2 1.8 1.8
Transit 4.0 3.3 0.5 0.6 0.7 0.3 3.2 0.0
Ridehailing 0.3 0.3 0.3 0.4 0.4 0.4 0.2 0.2
TIR 1.0 0.5 0.8 0.5 0.4 0.2 7.8 11.1
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Appendix G

Evaluation Scenario Settings

Settings for auto, ridehailing, transit, and cycling are identified in Chapter 5. In some
cases, simulator settings for transit-integrated ridesourcing require more explanation than
can be easily provided by a table, and these are outlined in this appendix. The hubs used
in the region for the many-to-few case are also provided.

In many-to-few systems, travel is generally oriented toward major destinations that
people want to travel to, and can access from any other location in the system. While
there are no many-to-few systems in the Region of Waterloo, there are major transit hubs
identified by GRT that were used as destination hubs for the theoretical many-to-few
system in Chapter 5. Figure G.1 shows the hub locations throughout the region, which
were based off of the major transfer locations identified in GRT’s system map and the two
downtown locations without a hub, and an additional location (hub 13) used in a modified
version of Case 5 that was at a popular destination in the 903 Flex pilot:

1. Conestoga Station

2. University of Waterloo Station

3. The Boardwalk

4. Uptown Waterloo (Waterloo Public Square Station)

5. Downtown Kitchener (Frederick Station)

6. Sunrise Centre

7. Fairway Station

8. Sportsworld Station

9. Stanley Park Mall

10. Conestoga College (Doon Campus)

11. Cambridge Centre Station
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Figure G.1: Many-to-few hub locations
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12. Ainslie Terminal

13. Columbia / Fischer-Hallman

In the many-to-few analysis, riders were taken to the closest hub to their destination.
The transfer hubs used were:

• University of Waterloo Station (cases 1a, 1b)

• The Boardwalk (cases 2a, 2b, 5, 6)

• Cambridge Centre Station (case 3)

• Ainslie Terminal (case 4)

Table G.1 lists the settings for the transit-integrated ridesourcing alternative under
each scenario in Chapter 5. For the many-to-many fixed-route stop scenario, case 6 has
no transit trip so uses the nearest fixed route stops as the access and egress points for the
service.

Table G.1: Transit-integrated ridesourcing settings for operational adjustment scenarios

Scenario Case IVTT
ratio

Wait
(min)

Walk
(min)

Transfers Avg.
transfer

time
(min)

Fare

More stops 1a 1.5x 5 5 1 7.5 3.5
1b 1.5x 5 5 1 15 3.5
2a 2.2x 5 15 1 7.5 3.5
2b 2.2x 5 15 1 15 3.5
3 2.6x 5 0 2 12.5 3.5
4 2.9x 5 15 3 21.5 3.5
5 1.5x 5 5 0 0 3.5
6 1.5x 5 0 0 0 3.5

IVTT same as auto 2a 1x 5 15 1 7.5 3.5
2b 1x 5 15 1 15 3.5
3 1x 5 0 2 12.5 3.5
4 1x 5 15 3 21.5 3.5

Synced transfers 1a 1x 10 5 1 2.5 3.5
1b 1x 17.5 5 1 2.5 3.5
2a 1.7x 10 15 1 2.5 3.5
2b 1.7x 17.5 15 1 2.5 3.5
3 2.1x 10 0 2 9.75 3.5
4 2.4x 30 15 3 12 3.5

(continued on next page)
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(continued from previous page)

Scenario Case IVTT
ratio

Wait
(min)

Walk
(min)

Transfers Avg.
transfer

time
(min)

Fare

Many-to-many (fixed) 1a 1x 10 10 0 0 3.5
1b 1x 10 10 0 0 3.5
2a 1x 10 30 0 0 3.5
2b 1x 10 30 0 0 3.5
3 1x 10 5 0 0 3.5
4 1x 10 30 0 0 3.5
5 1x 10 15 0 0 3.5
6 1x 10 10 0 0 3.5

Many-to-many (virtual) 1a 1x 10 5 0 0 3.5
1b 1x 10 5 0 0 3.5
2a 1x 10 15 0 0 3.5
2b 1x 10 15 0 0 3.5
3 1x 10 0 0 0 3.5
4 1x 10 15 0 0 3.5
5 1x 10 5 0 0 3.5
6 1x 10 0 0 0 3.5

Many-to-many (door) 1a 1x 10 0 0 0 3.5
1b 1x 10 0 0 0 3.5
2a 1x 10 0 0 0 3.5
2b 1x 10 0 0 0 3.5
3 1x 10 0 0 0 3.5
4 1x 10 0 0 0 3.5
5 1x 10 0 0 0 3.5
6 1x 10 0 0 0 3.5

Nearest fixed stop, access 1a 1.6x 5 0 1 7.5 3.5
1b 1.6x 5 0 1 15 3.5
2a 2.2x 5 0 2 11.25 3.5
2b 2.2x 5 0 2 11.25 3.5
4 2.6x 5 0 4 18 3.5
5 1.3x 5 0 1 7.5 3.5

Nearest fixed, access/egress 1a 1.6x 5 0 1 7.5 3.5
1b 1.6x 5 0 1 15 3.5
2a 2.3x 5 0 3 7.5 3.5
2b 2.3x 5 0 3 7.5 3.5
4 2.7x 5 0 5 14.4 3.5
5 1x 5 0 2 3.75 3.5

Many-to-few, 30 min transfer 1a 1 5 4 1 7.5 3.5
1b 1 5 4 1 15 3.5

(continued on next page)
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(continued from previous page)

Scenario Case IVTT
ratio

Wait
(min)

Walk
(min)

Transfers Avg.
transfer

time
(min)

Fare

2a 1.3 5 0 1 30 3.5
2b 1.3 5 0 1 30 3.5
3 1 5 0 0 0 3.5
4 1.2 5 0 1 30 3.5
5 3 5 5 1 7.5 3.5
6 2.6 5 2 1 7.5 3.5

Zonal service, 5 km zones,
door-to-door

1a 1x 5 0 1 2.5 3.5

1b 1x 5 0 1 2.5 3.5
2a 1x 5 0 1 2.5 3.5
2b 1x 5 0 1 2.5 3.5
3 1x 5 0 5 2.5 3.5
4 1x 5 0 7 2.5 3.5
5 1x 5 0 0 2.5 3.5
6 1x 5 0 0 2.5 3.5

Zonal service and pricing 1a 1x 5 0 1 2.5 2
1b 1x 5 0 1 2.5 2
2a 1x 5 0 1 2.5 2
2b 1x 5 0 1 2.5 2
3 1x 5 0 5 2.5 6
4 1x 5 0 7 2.5 8
5 1x 5 0 0 2.5 1
6 1x 5 0 0 2.5 1

Sectional 1a 1x 5 5 1 7.5 1.4
1b 1x 5 5 1 15 1.4
2a 1.7x 5 15 1 7.5 2
2b 1.7x 5 15 1 15 2
3 2.1x 5 0 2 12.5 6
4 2.4x 5 15 3 21.5 8
5 1x 5 5 0 0 0.8
6 1x 5 0 0 0 0.8

Flat upcharge ($5 TIR) 1a 1x 5 5 1 7.5 5
1b 1x 5 5 1 15 5
2a 1.7x 5 15 1 7.5 5
2b 1.7x 5 15 1 15 5
3 2.1x 5 0 2 12.5 5
4 2.4x 5 15 3 21.5 5
5 1x 5 5 0 0 5

(continued on next page)
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(continued from previous page)

Scenario Case IVTT
ratio

Wait
(min)

Walk
(min)

Transfers Avg.
transfer

time
(min)

Fare

6 1x 5 0 0 0 5
Free transit 1a 1x 5 5 1 7.5 3.5

1b 1x 5 5 1 15 3.5
2a 1.7x 5 15 1 7.5 3.5
2b 1.7x 5 15 1 15 3.5
3 2.1x 5 0 2 12.5 3.5
4 2.4x 5 15 3 21.5 3.5
5 1x 5 5 0 0 3.5
6 1x 5 0 0 0 3.5

Free TIR 1a 1x 5 5 1 7.5 0
1b 1x 5 5 1 15 0
2a 1.7x 5 15 1 7.5 0
2b 1.7x 5 15 1 15 0
3 2.1x 5 0 2 12.5 0
4 2.4x 5 15 3 21.5 0
5 1x 5 5 0 0 0
6 1x 5 0 0 0 0

Free transit and TIR 1a 1x 5 5 1 7.5 0
1b 1x 5 5 1 15 0
2a 1.7x 5 15 1 7.5 0
2b 1.7x 5 15 1 15 0
3 2.1x 5 0 2 12.5 0
4 2.4x 5 15 3 21.5 0
5 1x 5 5 0 0 0
6 1x 5 0 0 0 0

Parking ($1.00, $3.00, $15.00) 1a 1x 5 5 1 7.5 3.5
1b 1x 5 5 1 15 3.5
2a 1.7x 5 15 1 7.5 3.5
2b 1.7x 5 15 1 15 3.5
3 2.1x 5 0 2 12.5 3.5
4 2.4x 5 15 3 21.5 3.5
5 1x 5 5 0 0 3.5
6 1x 5 0 0 0 3.5

+ free transit and TIR 1a 1x 5 5 1 7.5 0
1b 1x 5 5 1 15 0
2a 1.7x 5 15 1 7.5 0
2b 1.7x 5 15 1 15 0
3 2.1x 5 0 2 12.5 0

(continued on next page)
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(continued from previous page)

Scenario Case IVTT
ratio

Wait
(min)

Walk
(min)

Transfers Avg.
transfer

time
(min)

Fare

4 2.4x 5 15 3 21.5 0
5 1x 5 5 0 0 0
6 1x 5 0 0 0 0

+ free transit and TIR,
$2.50/min RH

1a 1x 5 5 1 7.5 0

1b 1x 5 5 1 15 0
2a 1.7x 5 15 1 7.5 0
2b 1.7x 5 15 1 15 0
3 2.1x 5 0 2 12.5 0
4 2.4x 5 15 3 21.5 0
5 1x 5 5 0 0 0
6 1x 5 0 0 0 0

+ free transit and TIR, many
(door)

1a 1x 10 0 0 0 0

1b 1x 10 0 0 0 0
2a 1x 10 0 0 0 0
2b 1x 10 0 0 0 0
3 1x 10 0 0 0 0
4 1x 10 0 0 0 0
5 1x 10 0 0 0 0
6 1x 10 0 0 0 0
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Glossary

accessible paratransit

A transit mode where passengers with disabilities may request an accessible vehicle
for transportation purposes as a supplement or replacement for conventional fixed-
route transit service, often used as the narrow definition of paratransit.

bikesharing

A mode enabling sharing of a bicycle where an agency maintains a fleet of bicycles
that may be used for a short period of time, typically on an hourly rate.

carpool

A mode enabling sharing of a passenger ride, where the driver offers a ride to pas-
sengers on the driver’s terms.

carsharing

A mode enabling sharing of a vehicle where an agency maintains a fleet of cars or
a network of individually-owned cars that may be used for a short period of time,
which differs from rental cars which operate in the transportation network more like
private auto transport.

demand-responsive transport

Also ‘demand-responsive transit’, which can refer to a) an on-demand transit service
that is operated publicly or privately (e.g. taxis), b) an on-demand service that is
offered in partnership with the public sector, or c) dial-a-ride service

dial-a-ride

Also ‘dial-a-ride transit’, a transit mode where agency-owned and operated vehicles
are booked hours or days in advance for subsidized shared passenger rides.

flexible transit

A variation of conventional transit routes where routes or stops deviate to accommo-
date variances in passenger demand.
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microtransit

A mode enabling sharing of a passenger ride, typically operated through the private
sector, where an employed driver operates a large van that can operate on fixed or
flexible routes. A North American evolution of jitneys and vanpools.

ridesourcing

A mode enabling sharing of a passenger ride, where a driver ‘sources’ a passenger
through a matching service, often through transportation network companies (e.g.
UberX, Lyft). Typically less regulated and centralized than a taxi.

ridesplitting

A variant of ridesourcing where rides can be shared between strangers (e.g. UberPool,
Shared Lyft).

taxi

Amode enabling sharing of a passenger ride, offering licensed and regulated passenger
transport.

transit-integrated ridesourcing

A ridesourcing service typically operated as a partnership between a private sector
transportation network company and a public sector transit agency that is designed
to integrate with fixed-route transit service. Differentiates from traditional demand-
responsive transport by having an immediate booking platform through a digital
interface.

vanpool

A mode enabling sharing of a passenger ride, similar to carpooling, but with larger
vehicles and typically through a more centralized operating mechanism where an
agency or employer provides the van.
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