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Abstract 

Whooping cough, also referred to as pertussis, is a highly contagious bacterial respiratory 

tract disease. At Sanofi Pasteur, the fermentation step in the manufacturing of the vaccine for 

pertussis involves a sequence of reactors of increasing volume in which the final cell population 

from one reactor in the train is used to inoculate the following reactor. A main challenge with this 

operation is that the yield of the vaccine antigens can be highly variable. In particular, pertactin, 

which is generated in low levels and is highly variable relative to that of the other antigens of the 

vaccine, has a highly variable production rate thus posing a major bottleneck to the overall 

productivity. Based on the findings of previous studies by our group (Zavatti, 2019), oxidative 

stress appears to be related to the variability in productivity of antigens and pertactin in particular. 

To explain the observed variability of the process, we also hypothesize that the time profiles of 

dissolved oxygen, pH, temperature and aeration rates during fermentation may not accurately 

capture the presence of highly stressed cells within the cell population since they only reflect 

averaged measures of the cell population at any given time. Instead, only cytometric analysis of 

the heterogeneity of the cell population can provide a correct measure of the level of stress and its 

impact on productivity. Also, based on the hypothesis that population heterogeneity influences 

overall productivity, it was further hypothesized that the evolution of the fermentation process 

depends on the heterogeneity of the inoculum used to start the fermentation process. Then, it is 

argued that the process can be improved by using an inoculum that is tailored by means of cell 

sorting. 
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The current work focuses on the impact of oxidative stress and the growth profile of 

Bordetella pertussis and heterogeneity of intracellular concentrations for four main areas of 

application: 

1. investigation of the possible origins of the oxidative stress in the manufacturing process. 

2. development of a metabolic model describing the effect of oxidative stress on the growth 

of B. pertussis. 

3. development of a coupled population balance-oxidative stress model to relate the 

heterogeneity of intracellular concentrations to B. pertussis growth profiles. 

4. development of a protocol to sort B. pertussis on the basis of surface antigen concentration 

with the purpose of re-culturing. 

Zavatti (2017) found that a high reactive oxidative species (ROS) at the beginning of the 

fermentation is associated with a low pertactin yield. One of the purposes of developing a 

mechanistic model is to determine whether the low growth rate is caused by high ROS levels or 

the two are merely correlated. This information could help to identify operating conditions that 

lead to high ROS. The model of Himeoka and Kaneko (2017) was developed to describe the 

explain the general behaviour during the lag, exponential growth, stationary and death phases 

without resorting to detailed mechanisms. In this study, we have adapted and extended this model 

to understand and describe the relation between cell growth, oxidative stress and NADPH under 

different oxidative conditions during the pertussis vaccine production. In view of the differences 

between B. pertussis to other bacteria, a main goal of the study is to assess via flask studies and 

model predictions whether the ROS level is the key determinant of growth under different ROS-

inducing conditions rather than other factors such as substrate (glutamate) inhibition. Evaluation 

of the root-mean-square-error (RMSE) and Akaike information index (AIC) showed that the fit of 
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this new oxidative stress model to the experimental data was considerably better than that of a 

Contois-based model. The AIC is a particularly useful measure of the trade-off between model 

dimensionality and predictability in this case since the oxidative stress model involves a greater 

number of parameters than the Contois model. Also, the model and experimental data verified that 

high ROS levels at the beginning of flask culture is correlated to low growth profiles but is 

probably not the cause of the reduced biomass concentration. 

Population balance models (PBMs) were formulated to describe the evolution in time of 

the cell population in terms of growth and oxidative stress. Flow cytometry data was used to gain 

insight into the distribution of important quantities (e.g., cell size, intracellular concentrations of 

metabolites) over the entire cell population. A coupled population balance-oxidative stress model 

was developed to predict distributions in cell size and intracellular glutamate, ROS, NADPH and 

NADP+ concentrations in shake flask cultures of B. pertussis. The major advantage of using a 

PBM is that it accounts for the distributions and can predict the heterogeneity of the cell population 

with respect to experimental conditions that are averaged out in bulk models. When comparing the 

coupled population balance – oxidative stress model to the bulk oxidative stress model, it is 

apparent that the PBM provides much better predictions of the intracellular ROS concentration. 

We hypothesize that due to the nonlinear relations between cell growth and oxidative stress, 

intracellular and cell surface quantities can be better modeled with population balance models. 

Flow cytometry sorting is an extension of flow cytometry that enables cells to be sorted 

based on any property measured via flow cytometry. The actual sorting operation occurs 

downstream from the detectors that measure the light scattering and fluorescence energy. One of 

the hypotheses of the current work was that productivity can be enhanced by sorting a population 

of highly producing cells followed by cultivation of the sorted population. To avoid a lengthy a 
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validation of the manufacturing process by mutating B. pertussis cells to find a high pertactin-

producing strain, a sort based on epigenetics was analyzed. However, the sorted cell populations 

were not able to maintain the properties for which they were selected, although the protocol was 

able to select B. pertussis cells which grew at a faster rate than the control seed provided by Sanofi. 



ix 

 

Acknowledgements 

First and foremost, I would like to show my sincerest gratitude to my supervisor Professor 

Hector Budman. He continuously supported me, provided guidance and used his invaluable time 

to help me throughout my PhD. His dedication to his research is inspiring and his work ethic 

towards supervising his students is exceptional. Thank you for taking me on as a student; you are 

an amazing role model. 

I gratefully acknowledge Dr. Melih Tamer for supporting me throughout my PhD program. 

His role at Sanofi as my supervisor was instrumental and he always provided me resources and 

help for my research.  I would like to thank Professor Mark Pritzker for his help conceptualizing 

our work and his amazing editorial skills for writing the thesis and manuscripts. 

Thank you to my colleagues especially Piyush Agarwal, Xin Shen and Mariana Carvalho, 

for sharing their experience and who have been key to support me during my PhD. 

Without the support of my family members, this work would not have been possible. My 

endless gratitude towards my parents, Joe and Cindy for bestowing their unconditional love and 

affection. Also, thank you to my siblings Steven and Alyssa, for their support and friendship. I 

would also like to thank my partner Etta Gunsolus for her support and encouragement. 

I would also like to thank Professor Evelyn Yim, Professor Marc Aucoin, Professor Maud 

Gorbet and Professor Mario Jolicoeur who graciously accepted to be my thesis readers. Their 

insight, comments, and corrections are greatly appreciated. 

Lastly, I would like to thank Natural Science and Engineering Research Council (NSERC) 

and Sanofi Pasteur for funding my research.



x 

 

Table of Contents 

 
List of Figures .............................................................................................................................. xiii 

List of Tables .............................................................................................................................. xxii 

Chapter 1 Introduction .................................................................................................................... 1 

Chapter 2 Literature Review ........................................................................................................... 6 

2.1 Vaccines and Whooping Cough............................................................................................ 6 

2.2 Oxidative Stress .................................................................................................................... 8 

2.3 Fluorescence-Activated Cell Sorting (FACS) ...................................................................... 9 

2.3.1 Isolation of naturally occurring cell sub-populations .................................................. 13 

2.3.2 Isolation of artificially induced cell subpopulations .................................................... 20 

2.3.3 Cell surface display systems ........................................................................................ 24 

2.3.4 Flow Cytometry Droplet Sorting ................................................................................. 27 

2.3.5 Microfluidic FACS (µFACS) ...................................................................................... 28 

2.4 Population Balance Models ................................................................................................ 30 

Chapter 3 Materials and Methods ................................................................................................. 35 

3.1 Media formulation .............................................................................................................. 35 

3.2 Shake flask fermentations ................................................................................................... 36 

3.3 Sample measurements ......................................................................................................... 37 

3.3.1 Optical density (OD600) ................................................................................................ 37 

3.3.2 Glutamate concentration .............................................................................................. 37 

3.4 Fluorescence spectroscopy .................................................................................................. 37 

3.4.1 Equipment .................................................................................................................... 37 

3.4.2 NADPH measurement ................................................................................................. 38 

3.5 Flow cytometry ................................................................................................................... 40 

3.5.1 Equipment .................................................................................................................... 40 

3.5.2 B. pertussis gating ........................................................................................................ 40 

3.5.3 Viability stain ............................................................................................................... 41 

3.5.4 Oxidative stress ............................................................................................................ 43 

3.5.5 Surface pertactin antigen concentration ....................................................................... 43 

Chapter 4 Modeling the Effect of Oxidative Stress on B. pertussis Fermentations ..................... 46 

4.1. Introduction ........................................................................................................................ 46 



xi 

 

4.2 Model Outline ..................................................................................................................... 50 

4.3 Materials and Methods ........................................................................................................ 57 

4.3.1 B. pertussis batch fermentations .................................................................................. 57 

4.3.2 Optical density (OD) .................................................................................................... 58 

4.3.3 Glutamate concentration .............................................................................................. 58 

4.3.4 Fluorescence spectroscopy ........................................................................................... 59 

4.3.5 Flow cytometry ............................................................................................................ 59 

4.3.6 Model fitting ................................................................................................................ 61 

4.4 Results and Discussion ....................................................................................................... 63 

4.4.1 Trends of the control B. pertussis flask culture ........................................................... 63 

4.4.2 Glutamate and substrate inhibition of B. pertussis ...................................................... 68 

4.4.3 Effect of initial OD on oxidative stress in B. pertussis ................................................ 69 

4.4.4 Effect of starvation on the growth rate of B. pertussis ................................................ 71 

4.4.5 Effect of seed batches .................................................................................................. 74 

4.4.6 Calibration and validation of the oxidative stress model ............................................. 75 

4.4.7 Comparison of oxidative stress model to Contois growth model ................................ 97 

4.8 Oxidative stress model development .............................................................................. 99 

4.9 Modeling biomass production in train of reactors ........................................................ 103 

4.5 Conclusions ....................................................................................................................... 108 

Chapter 5 Modeling Heterogeneity Using a Coupled Population Balance-Oxidative Stress Model

..................................................................................................................................................... 109 

5.1 Introduction ....................................................................................................................... 109 

5.2 Model Outline ................................................................................................................... 112 

5.2.1 Population balance general form ............................................................................... 112 

5.2.2 Model Formulation .................................................................................................... 114 

5.2.3 Coupling of the population balance and oxidative stress models .............................. 118 

5.3 Materials and Methods ...................................................................................................... 123 

5.3.1 B. pertussis batch fermentations ................................................................................ 123 

5.3.2 OD, glutamate and ROS measurements..................................................................... 124 

5.3.3 Model fitting .............................................................................................................. 124 

5.3.4 Probability density function ....................................................................................... 126 

5.4 Results and Discussion ..................................................................................................... 128 

5.4.1 Trends of the flow cytometry distributions ................................................................ 128 



xii 

 

5.4.2 Characteristic curves .................................................................................................. 131 

5.4.3 Re-binning and projection grid .................................................................................. 135 

5.4.4 Calibration and validation of population balance model ........................................... 139 

5.4.5 Comparison of bulk and population balance models ................................................. 157 

5.4.6 PBM and train of reactors .......................................................................................... 163 

5.6 Conclusions ....................................................................................................................... 168 

Chapter 6 Flow Cytometry Sorting of B. pertussis ..................................................................... 169 

6.1 Introduction ....................................................................................................................... 169 

6.2 Materials and Methods ...................................................................................................... 172 

6.2.1 Streptomycin resistant B. pertussis seed .................................................................... 172 

6.2.2 Flow cytometry sorting protocol ................................................................................ 173 

6.2.3 Re-Culture Protocol ................................................................................................... 173 

6.2.4 Sample Measurements ............................................................................................... 174 

6.3 Results ............................................................................................................................... 175 

6.3.1 Oxidative stress of antibiotic resistant strain of B. pertussis ..................................... 175 

6.3.2 Flow cytometry sorting .............................................................................................. 176 

6.3.3 Epigenetic effects of re-cultured cells ........................................................................ 178 

6.4 Discussion ......................................................................................................................... 181 

6.5 Conclusions ....................................................................................................................... 183 

Chapter 7 Conclusions and Future Work .................................................................................... 185 

7.1 Conclusions ....................................................................................................................... 185 

7.1.1 Oxidative stress in flask experiments ........................................................................ 185 

7.1.2 Oxidative stress model ............................................................................................... 187 

7.1.3 Coupled population balance – oxidative stress model ............................................... 188 

7.1.4 Flow cytometry sorting of epigenetic populations ..................................................... 190 

7.2 Next Steps ......................................................................................................................... 190 

References ................................................................................................................................... 193 

Appendices .................................................................................................................................. 217 

Appendix A Method of Characteristics .................................................................................. 217 

Appendix B Population Balance Model and Experimental Contours .................................... 219 

 

 



xiii 

 

List of Figures 
 

 

2-1   Schematic of flow cytometry sorting operation………………………………………....12 

2-2 Application map for isolating a cell type of interest from heterogeneous samples. Pre-

treatment of the sample may include dissociation and debris removal. Cells are then 

suspended and stained, most commonly by surface markers. The sorted cells can be used 

in a variety of applications including disease modeling, drug testing and characterization 

(i.e., lineage and gene expression) ……………………………………………...……….14 

2-3 Application map for isolating a cell type of interest from artificially induced cell 

populations. Pre-treatment of the sample may include library creation using mutagenesis. 

Most commonly the markers are inserted intracellularly via a plasmid. The sorted cells 

can be used in a variety of applications including screening for high producing cell lines 

or desired gene editing and for studying metabolic networks…………….…...…………21 

2-4 Cell surface display……………………………………………………………...……....24 

2-5 Application map for sorting via surface display. Cells are incubated with the marker 

library and commonly sorted based on binding affinity. The desired markers can be used 

in a variety of applications including screening vaccine or antibody candidates and marker 

selection for further testing………………………………………………….……..……25 

2-6 Water/ oil/ water droplet creation……………………………………...………………..27 

3-1 Raw fluorescence of (a) control B. pertussis fermentation supernatant sample and (b) 

blank sample of phosphate buffered saline (PBS, 10 nM, pH 7.2)………………..…….38 

3-2 Filtered fluorescence spectra for control B. pertussis fermentation supernatant samples at 

(a) 24 hours and (b) 48 hours………………………………………….…………….…..39 

3-3 Gating protocol for B. pertussis flow cytometry measurements. The dates are used as 

follows: (a) noise exclusion gate, (b) size inclusion gate and (c) doublet exclusion 

gate…………………………………………………………………………….……...…41 



xiv 

 

3-4 Viability staining of a Bordetella pertussis sample……………………………….……..43 

3-5 Flow cytometry of (a) unstained Bordetella pertussis, (b) negative stain of Bordetella 

pertussis with a control antibody conjugated to FITC and (c) B. pertussis stained with 

pertactin surface binding antibody conjugated to FITC. ……………………………..…45 

4-1 Schematic representation of the mechanism described in the model. Adapted from 

Himeoka and Kaneko (2017) …………………………………………….…...........……51 

4-2 Glutathione reductase pathway for reducing oxidative stress in the form of hydrogen 

peroxide………………………………………………………………….……………...54 

4-3 Evolution of (a) optical density (OD), (b) extracellular glutamate, (c) extracellular 

NADPH and (d) intracellular ROS concentrations in a B. pertussis flask culture with an 

initial OD of 0.28 and initial glutamate concentration of 9.8 

g/L……………………………………………………………………….……..………..64 

4-4 Change in extracellular NADPH concentration per unit biomass of a control B. pertussis 

flask culture with an initial OD of 0.28 and initial glutamate concentration of 9.8 

g/L………………………………………..…………………………………………...…65 

4-5 Viability PI-based staining of a control Bordetella pertussis flask culture with an initial 

OD of 0.28 and initial glutamate concentration of 9.8 g/L after a) 24 hours, b) 36 hours, 

c) 42 hours, and d) 48 hours………………………………..……………………………67 

4-6 Variation of OD during fermentation at different initial glutamate concentrations over the 

(a) full 50 hours and (b) first 18 hours of 

incubation……………………………………………………………………....……….69 

4-7 Biomass growth curves obtained in control and 12-hour starved secondary flasks with 

media initially containing (a) 10.1 g/L and (b) 6.6 g/L glutamate……………….……...72 

4-8 Viability staining of a control and starved Bordetella pertussis flask cultures with an initial 

glutamate concentration of 10.1 g/L: a) control - 0 hours, b) starved - 0 hours, c) starved - 

6 hours, d) starved - 24 hours, e) starved – 36 hours, and f) starved - 48 hours……..….73 

4-9 Comparison of B. pertussis seeds batches made in 2015 and 2018. a) Biomass (OD600) 

comparison, b) intracellular ROS comparison, c) viability of the 2015 batch seed and d) 

viability of the 2018 batch seed……….…………………….…………………..………75 



xv 

 

4-10 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.28 and initial glutamate concentration of 10.1 g/L………………………….....80 

4-11 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.36 and initial glutamate concentration of 9.8 g/L………………………………81 

4-12 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.13 and initial glutamate concentration of 10.7 g/L………………………….…82 

4-13 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.14 and initial glutamate concentration of 8.6 g/L……………………………….83 

4-14 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.27 and initial glutamate concentration of 12.0 g/L………………………..……84 

4-15 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.12 and initial glutamate concentration of 12.4 g/L…………………………..…85 

4-16 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.38 and initial glutamate concentration of 6.6 g/L……………………………….86 

4-17 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.16 and initial glutamate concentration of 6.6 g/L……………………………….87 

4-18 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis seed (2015) culture with 

an initial OD of 0.10 and initial glutamate concentration of 10.0 g/L…………………...88 

4-19 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis seed (2015) culture with 

an initial OD of 0.08 and initial glutamate concentration of 10.3 g/L…………………...89 



xvi 

 

4-20 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a B. pertussis seed (2018) culture with 

an initial OD of 0.11 and initial glutamate concentration of 10.6 g/L…………………...90 

4-21 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a starved (12 hours) B. pertussis 

culture with an initial OD of 0.32 and initial glutamate concentration of 9.3 g/L……….91 

4-22 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, (c) 

extracellular NADPH, and (d) intracellular ROS of a starved (12 hours) B. pertussis 

culture with an initial OD of 0.28 and initial glutamate concentration of 9.6 g/L……….92 

4-23 Model validation of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.14 and initial glutamate concentration of 8.6 g/L……………………………….93 

4-24 Model validation of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH and (d) intracellular ROS of a B. pertussis culture with an initial 

OD of 0.25 and initial glutamate concentration of 10.7 g/L………………………….…94 

4-25 Model validation of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH and (d) intracellular ROS a starved (12 hours) B. pertussis 

culture with an initial OD of 0.31 and initial glutamate concentration of 6.8 g/L………95 

4-26 Comparison of the biomass-substrate model and starved B. pertussis experimental results 

for OD600……………………………………...…………………………………………98 

4-27 Sanofi production process for whooping cough vaccine. A seed flask is used to inoculate 

a train of reactors of sizes 20 L, 200 L and 2000 L…………………………………….104 

4-28 Model prediction of Sanofi process (train of seed flask and three increasing sized reactors) 

for two B. pertussis seed batches. Biomass curve of a) seed flask, b) 20 L bioreactor, c) 

200 L bioreactor and d) 2000 L bioreactor. Glutamate concentration curve of e) seed flask, 

f) 20 L bioreactor, g) 200 L bioreactor and h) 2000 L bioreactor………………………106 

4-29 Model prediction of Sanofi process (train of seed flask and three increasing sized reactors) 

for B. pertussis cultures with media of 10 g/L and 10.5 g/L glutamate. Biomass curve of 

a) seed flask, b) 20 L bioreactor, c) 200 L bioreactor and d) 2000 L bioreactor. Glutamate 



xvii 

 

concentration curve of e) seed flask, f) 20 L bioreactor, g) 200 L bioreactor and h) 2000 L 

bioreactor………………………………………………………………………………107 

5-1 Gridding the cell volume and ROS concentration flow cytometry data of B. pertussis flask 

culture experiments for initial conditions in the population balance model. The shaded 

region contains 940 cells with 7-8 intensity cell volume and 0.06-0.07 intensity ROS 

concentration…………………………………………………………..........................123 

5-2 Effect of distribution (a) mean and (b) standard deviation on the dependence of probability 

density function 𝑓(𝑋) on cell volume………………………………………………….128 

5-3 Comparison of the dependence of the partitioning rate on cell volume according to a 

normal distribution (red and yellow) and fitted interpolated function (blue) for the 

probability density function……………………………………………………………129 

5-4 B. pertussis flask culture measurements: (a) optical density (OD), (b) extracellular 

glutamate concentration, (c) average cell volume, (d) average intracellular ROS 

concentration, (e) cell volume distributions and (f) extracellular ROS concentration 

distributions of a culture with an initial OD of 0.28 and initial glutamate concentration of 

9.8 g/L……………………………………………………………………….…………131 

5-5 Characteristic curves: (a) cell volume, (b) intracellular glutamate concentration, (c) 

intracellular NADPH concentration and (d) intracellular ROS concentration for different 

initial cell sizes at the same initial ROS concentration intensity of 0.055………………133 

5-6 Characteristic curves: (a) cell volume, (b) intracellular glutamate concentration, (c) 

intracellular NADPH concentration and (d) intracellular ROS concentration for different 

initial ROS concentrations with cells with the same initial size (8.5)…………………..134 

5-7 Characteristic curves for the same initial value of B = 0.055 and same initial values of A, 

S and C and for different initial values of cell size X: variation of (a) cell volume and (b) 

size ratio with time……………………………………………………………………..135 

5-8 Characteristic curves with the same initial concentration of ROS (𝐵𝑜 = 0.105): (a) cell 

volume and (b) number of cells to examine the effect of the partitioning rate on cells in 

the characteristic curve…………………………………………………………………136 



xviii 

 

5-9 Projection window and moving window characteristic curves for cell volume and 

intracellular ROS concentration over 6 hours………………………………………….138 

5-10 Re-binning characteristic curves after 6 hours onto the projection window…………...139 

5-11 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration and (c) 

average intracellular ROS concentration for a B. pertussis culture with an initial OD of 

0.28 and initial glutamate concentration of 10.1 g/L………………………………...…140 

5-12 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration and (c) 

average intracellular ROS concentration of a B. pertussis culture with an initial OD of 

0.12 and initial glutamate concentration of 12.4 g/L..………………………………….141 

5-13 Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration and (c) 

average intracellular ROS concentration of a B. pertussis culture with an initial OD of 

0.13 and initial glutamate concentration of 10.1 g/L………………………………...…142 

5-14 Model validation of (a) optical density (OD), (b) extracellular glutamate concentration and 

(c) average intracellular ROS concentration of a B. pertussis culture with an initial OD of 

0.14 and initial glutamate concentration of 8.6 g/L…………………………………….143 

5-15 Model and experimental flow cytometry distributions of cell volume for a B. pertussis 

shake flask culture with 10.1 g/L glutamate in the media and starting optical density of 

0.28 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and (g) 36 hours of 

incubation……………………………………………………………………………...147 

5-16 Model and experimental flow cytometry distributions of intracellular ROS concentration 

for a B. pertussis shake flask culture with 10.1 g/L glutamate in the media and starting 

optical density of 0.28 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and 

(g) 36 hours of incubation..…………………………………………………………….148 

5-17 Model and experimental flow cytometry distributions of cell volume for a B. pertussis 

shake flask culture with 12.4 g/L glutamate in the media and starting optical density of 

0.12 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and (g) 36 hours of 

incubation..…………………………………………………………………………….149 

 

 



xix 

 

5-18 Model and experimental flow cytometry distributions of intracellular ROS concentration 

for a B. pertussis shake flask culture with 12.4 g/L glutamate in the media and starting 

optical density of 0.12 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and 

(g) 36 hours of incubation..……………………………………………………….........150 

5-19 Model and experimental flow cytometry distributions of cell volume for a B. pertussis 

shake flask culture with 10.1 g/L glutamate in the media and starting optical density of 

0.13 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and (g) 36 hours of 

incubation..………………………………………………………………………….…151 

5-20 Model and experimental flow cytometry distributions of intracellular ROS concentration 

for a B. pertussis shake flask culture with 10.1 g/L glutamate in the media and starting 

optical density of 0.13 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and 

(g) 36 hours of incubation..…………………………………………………………....152 

5-21 Model validation and experimental flow cytometry distributions of cell volume for a B. 

pertussis shake flask culture with 8.6 g/L glutamate in the media and starting optical 

density of 0.14 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and (g) 36 

hours of incubation..…………………………………………………………………...153 

5-22 Model validation and experimental flow cytometry distributions of intracellular ROS 

concentration for a B. pertussis shake flask culture with 8.4 g/L glutamate in the media 

and starting optical density of 0.14 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, 

(f) 30 and (g) 36 hours of incubation…………………………………………………..154 

5-23 Model flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 10.1 g/L glutamate in the media 

and starting optical density of 0.25 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours…………………………………………………………………………………...156 

5-24 Experimental flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 10.1 g/L glutamate in the media 

and starting optical density of 0.25 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours.…………………………………………………………………………………..157 

 



xx 

 

5-25 Comparison in model fitting between bulk and PBM of (a) optical density (OD), (b) 

extracellular glutamate concentration and (c) average intracellular ROS for a B. pertussis 

culture with an initial OD of 0.25 and initial glutamate concentration of 10.1 

g/L……………………………………………………………………………………...161 

5-26 Comparison in model fitting between bulk and PBM of (a) optical density (OD), (b) 

extracellular glutamate concentration and (c) average intracellular ROS for a B. pertussis 

culture with an initial OD of 0.12 and initial glutamate concentration of 12.4 

g/L……………………………………………………………………………………...162 

5-27 Comparison in model fitting between bulk and PBM of (a) optical density (OD), (b) 

extracellular glutamate concentration and (c) average intracellular ROS for a B. pertussis 

culture with an initial OD of 0.13 and initial glutamate concentration of 10.1 

g/L……………………………………………………………………………………...163 

5-28 Comparison in model validation between bulk and PBM of (a) optical density (OD), (b) 

extracellular glutamate concentration and (c) average intracellular ROS for a B. pertussis 

culture with an initial OD of 0.14 and initial glutamate concentration of 8.6 

g/L……………………………………………………………………………………...164 

5-29 Population balance model prediction of Sanofi process (train of seed flask and three 

increasing sized reactors) for B. pertussis cultures with media of 10 g/L and 10.5 g/L 

glutamate. Evolution of biomass coming from a) seed flask, b) 20 L bioreactor, c) 200 L 

bioreactor and d) 2000 L bioreactor. Evolution of glutamate concentration coming from 

e) seed flask, f) 20 L bioreactor, g) 200 L bioreactor and h) 2000 L bioreactor………..167 

5-30 Population balance model prediction of Sanofi process (train of seed flask and three 

increasing sized reactors) for B. pertussis cultures with media of 10 g/L and 10.5 g/L 

glutamate. Distributions of cell volume and intracellular ROS concentration coming from 

a) seed flask, b) 20 L bioreactor, c) 200 L bioreactor and d) 2000 L bioreactor for a media 

with 10 g/L glutamate. Distributions of cell volume and intracellular ROS concentration 

coming from e) seed flask, f) 20 L bioreactor, g) 200 L bioreactor and h) 2000 L bioreactor 

for a media with 10.5 g/L glutamate……………………………………………….…..168 

6-1 Comparison between control and streptomycin-resistant (strepR) strains of B. pertussis: 

(a) number distribution of initial ROS concentration and (b) evolution of growth of 

secondary cultures………………………………………………………………….…..177 



xxi 

 

6-2 Sorting gates of B. pertussis for (a) side scattering (R9 – low SSC, R10 – high SSC) and 

(b) PRN antibody concentration (R9 – low PRN, R10 – high PRN)……………….…..178 

6-3 Tryptic soy agar plated with low PRN surface concentration population………………179 

6-4 Plate properties of (a) side scattering distribution and (b) surface PRN concentration of 

sorted cell colonies.…………………………………………………………………….180 

6-5 Growth of secondary cultures for control and sorted B. pertussis……………………..182 

B-1 Model flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 12.4 g/L glutamate in the media 

and starting optical density of 0.12 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours…………………………………………………………………………………...221 

B-2 Experimental flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 12.4 g/L glutamate in the media 

and starting optical density of 0.12 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours.…………………………………………………………………………………..222 

B-3 Model flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 10.1 g/L glutamate in the media 

and starting optical density of 0.13 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours…………………………………………………………………………………...223 

B-4 Experimental flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 10.1 g/L glutamate in the media 

and starting optical density of 0.13 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours..………………………………………………………………………………….224 

B-5 Model validation of flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 8.6 g/L glutamate in the media 

and starting optical density of 0.14 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours…………………………………………………………………………………...225 

B-6 Experimental flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 8.6 g/L glutamate in the media 

and starting optical density of 0.14 at (a) 6 , (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours…………………………………………………………………………………...226 



xxii 

 

List of Tables 
 

 

2-1 Studies on sorting of heterogeneous cell populations including their gating strategies…17 

2-2 Studies that use surface display and flow cytometry sorting……………………………26 

2-3 Studies based on droplet flow cytometry sorting………………………………………..28 

3-1 Media components and normalized concentration……………………………..………..35 

3-2 Growth factor components and normalized concentration………………………………35 

4-1 Definitions of concentrations used in the model…………………………………………35 

4-2 Parameters defined in model. The numerical values of the parameters are determined using 

the model and calibration set in section 4.4……………………………………………...57 

4-3 Comparison of OD and ROS levels and biomass doubling time over the first 12 hours of 

fermentation at different initial glutamate concentrations……………………………….69 

4-4 Comparison of OD and ROS levels over the first 12 hours of fermentation at different 

initial concentrations of glutamate and half the initial OD level…………….…………..71 

4-5 List of calibration conditions for B. pertussis oxidative stress model…………………..76 

4-6 List of validation conditions for B. pertussis oxidative stress model…………………....76 

4-7 Parameter estimation of oxidative stress model…………………………………………77 

4-8 Root mean-squared error of measured variables for model calibration and validation. The 

range of each variable is also shown to compare with the RMSE……………………….96 

4-9 Parameter estimation for Contois model………………………………………………...98 

4-10 Comparison between Contois kinetic and oxidative stress models……………………...99 

4-11 Comparison of the fit, robustness and predictability of the Contois and Monod models and 

exponents on the flux for optimal oxidative stress……………………………………..102 



xxiii 

 

4-12 Initial conditions of intracellular NADPH and ROS concentrations of the seed flasks to 

model the seed batches from 2015 and 2018 in the train of reactors…………………..105 

5-1 General form population balance model definitions……………………………………114 

5-2 Population balance model parameter definitions………………………………………121 

5-3 Initial concentrations of intracellular components……………………………………..123 

5-4 Calibration and validation conditions for coupled population balance and oxidative stress 

model…………………………………………………………………………………..124 

5-5 Root-mean-squared-error (RMSE) of measured variables for model calibration and 

validation. The range of each compound is also shown to compare with the RMSE….144 

5-6 Adjusted root mean-squared error (RMSE) of averages and standard deviations of the cell 

volume and intracellular ROS distributions for model calibration and validation and the 

range of values and error……………………………………………………………….145 

5-7 Kullback-Liebler divergence based on the 2D cell volume and intracellular ROS 

distributions at all time points………………………………………………………….155 

5-8 Parameter estimates of bulk and PBM oxidative stress models……………………….158 

5-9 Comparison of RMSE between bulk oxidative stress and coupled PB models……….159 

6-1 Flow cytometry sorting population averages and ranges for side scattering and PRN 

surface concentration…………………………………………………………………..178 

6-2 Average plate properties of sorted cell colonies 2 days after plating the sorted 

populations……………………………………………………………………………..181 

 

 

 



1 

 

Chapter 1 Introduction 

Whooping cough, also referred to as pertussis, is a highly contagious bacterial respiratory 

tract disease. Although it can be prevented through vaccination at an early age, it is one of the 

world’s leading causes of vaccine-preventable death (Dominguez et al., 2017). The vaccine 

produced by Sanofi Pasteur, called 5-component pertussis, is an acellular vaccine which contains 

5 antigens: types 2 and 3 fimbriae, filamentous hemagglutinin, pertactin and pertussis toxin.  

The fermentation step in the manufacturing of the vaccine involves a train of reactors of 

increasing volume in which the final cell population from one reactor in the sequence is used to 

inoculate the following reactor. One of the problems with this operation is that the yield of the 

vaccine antigens can be highly variable. In particular, the production of pertactin which is low and 

highly variable relative to that of the other antigens of the vaccine poses a major bottleneck to the 

overall productivity. Based on the findings of previous studies by our group (Zavatti, 2019), 

oxidative stress appears to be related to the variability in productivity of antigens and pertactin in 

particular. Oxidative stress can be generally quantified by the total amount of reactive oxidative 

species (ROS) which include different forms of oxidative species such as super-oxides and 

hydrogen peroxide. Zavatti observed a correlation between the ROS levels and growth rate of 

Bordetella pertussis and argued that the productivity of antigen production is reduced in the 

presence of high ROS levels due to a slower growth rate. In the current work, we hypothesize that 

mathematical modelling of ROS formation in the presence of changing conditions in the process 

combined with measurements of ROS can provide a basis for optimizing operating conditions to 

mitigate the levels of ROS and their impact on the process. The results of Zavatti (Zavatti, 2019) 

did not indicate whether ROS is the direct cause for the changes in growth and productivity or 
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whether the ROS level and antigen growth rate are merely correlated. Furthermore, Zavatti could 

not clearly identify which conditions in the manufacturing process cause high ROS levels. We 

hypothesize in the current study that a mathematical model can serve to clarify these questions and 

help to identify operating conditions that lead to low ROS. 

Mathematical models that involve ROS have been reported, particularly in the context of 

antibiotic resistance (Farha and Brown, 2013; Kohanski et al., 2010; Yang et al., 2019). A bulk 

metabolic model describing the effect of oxidative stress on the growth of B. pertussis is presented 

in Chapter 5. The model has been developed based on a previous theoretical model by Himeoka 

and Kaneko (2017) focused on the effect of starvation and the stationary growth phase of cells. To 

assess the validity of the mathematical model for this specific B. pertussis pathway, we have 

conducted an experimental flask study under different conditions of oxidative stress induced by 

high initial glutamate concentrations, low initial inoculum and secondary culturing following 

exposure to starvation conditions.  

To explain the observed variability of the process, we also hypothesize that the evolution 

profiles of dissolved oxygen, pH, temperature and aeration rates during fermentation may not 

accurately capture the presence of highly stressed cells within the cell population since they only 

reflect averaged measures of the cell population at any given time. Instead, only cytometric 

analysis of the heterogeneity of the cell population can provide a correct measure of the level of 

stress and its impact on productivity. Thus, we hypothesize that quantifying and possibly 

manipulating the cell population heterogeneity is crucial in order to monitor and optimize process 

productivity. Flow cytometry is a sensitive and powerful tool that uses fluorescence and light 

scattering to simultaneously measure the physical and chemical properties of cells suspended in a 

fluid. Since cytometry is a high throughput process that characterizes individual cells at very high 
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rates, it has the capability to detect rare events in real time. Several parameters per cell can be 

measured simultaneously depending on the number of detectors available. Fluorescence-activated 

cell sorting (FACS) is a particular type of flow cytometry that enables cells to be sorted 

downstream from the detectors based on the measured scattering or fluorescence energy. It is 

possible to sort cells based on any parameter that can be measured by flow cytometry, including 

oxidative stress (Boone et al., 2017; Llufrio et al., 2018), cell viability (Huizer et al., 2017; 

Sánchez‐Luengo et al., 2017) and cell surface markers (Yuan et al., 2015; Yim et al., 2014). 

Since flow cytometry can capture the distribution of important quantities (e.g., cell size, 

intracellular oxidative species) over the entire cell population, we have extended the bulk oxidative 

stress model to a population balance-based one to describe the evolution of these distributions over 

time which are then correlated to the growth to elucidate the effect that population heterogeneity 

has on the process. Population balance models contain a set of equations which describe the 

behavior of a population of particles based on the analysis of behavior of single particles in the 

cell population.  In a bioreactor, these models provide a deterministic description of the dynamic 

evolution of cell distributions (Fredrickson et al., 1967). Furthermore, we hypothesize that the 

propagation of this population heterogeneity across the train of bioreactors composing the 

manufacturing process may be an additional factor in the growth and associated final productivity 

of the process. In Chapter 5, we present a coupled population balance – oxidative stress model to 

relate the distributions of cell volume and intracellular reactive oxidative species (ROS) to the 

growth of B. pertussis. 

Following the recognition that the propagation of cell population heterogeneity is a crucial 

measure of the variability of the process, we suggest that the ability to control the inocula by cell 

sorting may help improve the process outcomes and optimize the productivity of pertactin. B. 
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pertussis has a regulon system that involves the Bvg+ phase characterized by expression of 

adhesins and toxins and the Bvg- phase where virulence factors are not expressed. In a study done 

by Sanofi, it was determined that the surface antibody concentration of pertactin is much higher 

during the batch phase than the fed-batch phase of the fermentation, reflecting a change from a 

Bvg+ to Bvg- phase (Martinez de Tejada et al., 1998; Moon et al., 2017). In Chapter 6, we sort 

cells based on surface pertactin concentration in the stationary phase to determine whether the 

epigenetic phenotype is maintained in the daughter cells of the sorted populations which could 

potentially lead to a new cell line of higher pertactin-producing cells. Also, based on reports that 

cell scattering is correlated to oxidative stress and that the latter affects or correlates with growth, 

we sort a cell sub-population based on scattering and re-culture it to assess the effect of this sorting 

procedure on cell growth. 

The overall goal of the current work is to identify sources of variation in the yield of 

pertactin in the manufacturing process at Sanofi Pasteur. Following from the above discussion, 

this work pursues the following research objectives: 

1. investigation of the following possible origins of the oxidative stress in the manufacturing 

process:  i) differing concentrations of media components, ii) differing levels of initial 

biomass and iii) different seed batches. 

2. development of a bulk metabolic model describing the effect of oxidative stress on the 

growth of B. pertussis. The model includes a mechanism for inhibition of B. pertussis 

growth by ROS (inhibitor) and the role of NADPH (byproduct) as a quencher of ROS. 

3. development of a coupled population balance-oxidative stress model to relate the 

distributions of cell properties of interest (e.g., oxidative stress and cell size) to the growth 

of B. pertussis in shake flasks. 



5 

 

4. development of a protocol to sort B. pertussis with the purpose of re-culturing. This 

protocol will be used to sort particular populations (e.g., cells with high surface 

concentration pertactin) to determine whether the epigenetic phenotype is maintained in 

the daughter cells of the sorted populations. 

Following the above objectives, the novel contributions of this work are as follows: 

1. development and solution of a bulk oxidative stress model to describe the relation between 

cell growth, oxidative stress and NADPH under different oxidative conditions. 

2. formulation and solution of a population balance model with the method of characteristics 

and a re-binning time interval aimed at fitting the distributions of cell size and intracellular 

ROS concentration obtained from flow cytometry. 

3. development of a coupled population balance – oxidative stress model to determine 

whether the inclusion of heterogeneity in the ROS concentration improves the 

predictability of the model. 

4. development of a protocol to sort sub-populations of B. pertussis based on scattering and 

cell surface antigen and testing the potential of this procedure for enhancing growth or 

productivity. 
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Chapter 2 Literature Review 

 Section 2.3 contains parts of a published review paper on flow cytometry sorting (Vitelli 

et al., 2021). 

2.1 Vaccines and Whooping Cough 

Vaccines are biological substances that provide active immunity against particular 

diseases. They provide the immune system with an agent which resembles the disease-causing 

microorganism. By imitating infection, they pre-emptively tune the immune system to develop 

antibodies to protect against the disease. Thus, vaccines are administered to induce the immune 

system memory function. The types of currently available vaccines can be grouped into four 

categories: inactivated (polio), attenuated (tuberculosis), acellular (whooping cough) and mRNA 

(covid19). Inactivated vaccines use inactivated microorganisms which have been destroyed by 

chemicals or radiation. Attenuated vaccines contain live microorganisms that have been cultured 

under conditions that disable their virulence. Acellular vaccines contain protein subunits called 

antigens which adhere and interact with a specific target cell. Antigens are targeted and bound by 

specifically tailored antibodies produced by the immune system of the organism. Once antibodies 

for a particular antigen are produced by the immune system, they are translated whenever the 

antigen is reintroduced into the organism. In the case of mRNA vaccines, the mRNA instructs the 

body’s cells to spike the antigen found on the surface of the target cell. The rest of the process is 

the same as acellular vaccines once the antigen is translated. 

 Whooping cough, also referred to as pertussis, is a highly contagious respiratory tract 

disease. The causative agent of this illness is the gram-negative bacterium B. pertussis, which was 
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first isolated by Bordet and Gengou in 1906. Symptoms of whooping cough initially resemble the 

common cold followed at a later stage of the disease by uncontrollable violent coughing fits that 

are discernable by a typical "whoop" sound made while inhaling air. Without treatment, the 

duration of the disease can range from several weeks to several months; severe complications can 

lead to pneumonia, seizures, brain damage or death. Since children less than 1 year in age are more 

likely to suffer the worst symptoms and consequences, whooping cough remains one of the world's 

leading causes of vaccine-preventable deaths (Dominguez et al., 2017). An estimated 50 million 

cases and 300,000 deaths are reported every year (World Health Organization). 

The acellular pertussis vaccine produced by Sanofi Pasteur is referred to as five-component 

pertussis which are the antigens fimbriae (types 2 and 3), filamentous hemagglutinin, pertactin and 

pertussis toxin. Fimbriae are submicroscopic proteinaceous appendages that protrude from the cell 

surface. They are comprised of two major subunits that bind to sulphonated sugars located in the 

respiratory tract (Babu et al., 2001). Filamentous hemagglutinin is a main appendage of B. 

pertussis and facilitates adherence of the cells to the respiratory epithelial cells. Pertactin is an 

outer membrane protein from the autotransporter family, which is also involved in adhesion to the 

host cell. Autotransporter secretion is one of the mechanisms developed by gram-negative bacteria 

and occurs when the protein is able to transport autonomously through the outer cell membrane 

(Leo et al., 2012). Pertussis toxin is one of the major protein toxins secreted by B. pertussis and 

glycoconjugate molecules on the surface of target cells (Witvliet et al., 1989). These antigens have 

been selected because they are able to elicit a strong immune response in both human and animal 

models (Locht, 1999; Noofeli, 2007). 
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2.2 Oxidative Stress 

Oxidative stress occurs when an imbalance occurs between the production of free radicals 

and the capacity of the system to counteract these compounds (Zheng et al., 2009). The free 

radicals are reactive oxidative species (ROS) such as singlet oxygen, hydroxyls, superoxides, 

peroxides, hydroperoxides and the non-radical hydrogen peroxide which are continuously 

produced during aerobic metabolism (Eruslanov and Kusmartsev, 2010). Whether ROS functions 

as signaling molecules or causes oxidative damage depends on the delicate equilibrium between 

its production and scavenging (Sharma et al., 2012). ROS also serves as second messengers (i.e., 

intracellular signaling molecules secreted by the cell in response to exposure to extracellular 

signaling molecules) in a variety of cellular processes including those that help to tolerate various 

environmental stresses; however, in excess it can be harmful to proteins, lipids and DNA 

(Eruslanov and Kusmartsev, 2010). 

NADPH is important for aerobic organisms to survive since it is a source of reducing 

equivalents that serve to protect against ROS. The enzymes NAD+ kinase and NADP+ phosphatase 

are known to regulate the levels of NAD+ and NADP+ and therefore play pivotal roles in 

controlling the communication between metabolic networks that produce NADH and NADPH and 

are involved in the mechanism of diffusing oxidative stress (Singh et al., 2007). Oxidative stress 

has also been found to promote NADPH production which in turn tends to diminish oxidative 

stress by facilitating reactions that promote a reducing environment (Singh et al., 2007; Grose et 

al., 2006). 

Nutrient excess has been shown to cause oxidative stress in mammalian cells and bacteria 

(Wellen and Thompson, 2010; Wang and Levin, 2009). The tricarboxylic acid (TCA) cycle oxide 
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nutrients and the resulting electrons are transferred to produce NADH and FADH2. The electrons 

are eventually donated to molecular oxygen via the electron transport chain (ETC) where 

incomplete reduction produces superoxides. Therefore, when the breakdown of components from 

the TCA cycle exceeds the capacity of the electron chain cycle (as is the case with excess 

nutrients), ROS production increases and can lead to oxidative stress (Wellen and Thompson, 

2011). 

 

2.3 Fluorescence-Activated Cell Sorting (FACS) 

Flow cytometry is a sensitive and powerful tool that uses fluorescence and light scattering 

to simultaneously measure the physical and chemical properties of cells suspended in a fluid. 

Cytometry is a high throughput process that characterizes individual cells at very high rates and 

thus can detect rare events in real time. Several cellular parameters can be measured 

simultaneously depending on the number of detectors available. The determination of these 

parameters is based on the availability of a wide range of fluorescent dyes and the ability to 

conjugate antibodies to fluorophores. Flow cytometry can characterize gene expression (Wylot et 

al., 2015; von Recum-Knepper et al., 2015; Finegersh and Homanics, 2016), cell viability (Huizer 

et al., 2017; Sánchez‐Luengo et al., 2017; Arias-Fuenzalida et al., 2017), target binding affinity 

(Wilson et al., 2017; He et al., 2018), cell surface markers (Yuan et al., 2015; Crouch and Doetsch, 

2018; Brooks and Seagroves, 2018), status of the cell in the cell cycle (Ferullo  et al., 2009; ter 

Huurne et al., 2017) and oxidative stress (Boone et al., 2017; Llufrio  et al., 2012). The main 

disadvantages of flow cytometry are that many dyes exhibit similar emission spectra (Jahan-Tigh 



10 

 

et al., 2012) and RNA integrity and cell viability may be compromised by the toxicity of these 

dyes (Jager et al., 2018; Ramesh et al., 2015). 

Cell samples are usually subjected to a pre-treatment which can include centrifugation, 

tissue dissociation and/or resuspension in a buffer. The suspended cell samples are then stained 

with fluorescent conjugated antibodies and/or dye(s) and introduced into the flow cytometer. Flow 

cytometers typically contains two fluids travelling in the same direction toward a flow cell: one 

containing the cell suspension and the other containing sheath fluid. Hydrodynamic focusing 

occurs as the slower stream containing the cell suspension is confined within the faster flowing 

sheath fluid stream to produce a laminar flow profile for the cells. Ideally, the particles in the cell 

suspension line up in single file to be characterized one at a time by focusing a laser beam on each 

passing cell and measuring the energy re-emitted as fluorescence by the excited fluorophores to 

detectors located downstream.  

The detectors are most commonly photomultiplier tubes (PMT) which convert the emitted 

or scattered light into amplified electrical pulses that are processed by appropriate electronics to 

extract information such as pulse’s height, width and area. Forward and side scattering are related 

to particle size and cell membrane complexity (granularity), respectively. The emitted light is made 

up of fluorescence usually from antibodies conjugated to fluorophores, naturally fluorescent 

molecules or externally added fluorescent dyes. The fluorophores may be located intracellularly 

or on the cell membrane. More than one fluorophore may be monitored simultaneously; the total 

number depends on the number of detection channels that are available. Since multi-colour 

detection can be complicated by fluorescence spillover from one channel to another, correct 

compensation for this effect is crucial for accurate measurement. A significant amount of literature 

on this subject is available (Szalóki and Goda, 2015; Nguyen et al., 2013). 
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 Flow cytometry sorting is an extension of flow cytometry that enables cells to be sorted 

downstream from the detectors that measure the fluorescence energy. Figure 2-1 shows a 

schematic of the flow cytometry sorting operation. In this operation, the stream is broken into 

droplets at the breakoff point just downstream from the detection region. The drop delay is the 

time it takes for a cell to go from the detection region to the breakoff point. This is carefully chosen 

so that the droplets containing the cells of interest will be properly identified for sorting. Shortly 

after passing by the detector, a charge is acquired by the cells that have the properties of interest 

for sorting as they traverse a charging ring or adapter. The charged droplets are then separated into 

different collection bins by passing them through an electrostatic field applied by an electrostatic 

deflection system consisting of charged plates. Droplets may contain no cells, a single cell or 

several cells. Droplets that do not contain cells will not be measured by the detectors and will pass 

into the waste located directly below the incoming stream. Droplets that have more than one cell 

are classified as doublet events. In order to describe rare cell events, it is important to properly 

discriminate doublet events from true single cells (Stadinski and Huseby, 2020; Cossarizza et al., 

2019). Also, droplets containing cells may be too close together to be properly separated. In order 

to maintain purity, if droplets containing cells are too close together (i.e. droplets containing 

intensity measurements) the charger will choose not to charge the droplets and they will be passed 

into the waste bin, leading to some loss of product. 



12 

 

 

Figure 2-1: Schematic of flow cytometry sorting operation 
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 Flow cytometry sorting has become a powerful tool to monitor, screen and separate cells 

based on any chemical or physical property that can be measured by flow cytometry. This has led 

to many applications of cell sorting such as isolation of particular cell types from mixtures, 

screening of mutant libraries or specific antibodies and determination of the likelihood for viability 

in a particular cell environment. One of the objectives of the research described in this thesis is to 

identify potential uses of cell sorting to improve the fermentation process of B. pertussis. Toward 

this goal, this section discusses established and cutting-edge methods and applications of flow 

cytometry sorting, with particular focus on their use in the pharmaceutical industry. The 

applications to be reviewed can be grouped as follows: i) cell type isolation, ii) high throughput 

screening, iii) cell surface display, iv) droplet FACS and v) microfluidic FACS. Each of the 

following sub-sections is devoted to one of these applications followed by a final sub-section 

discussing potential future applications. 

2.3.1 Isolation of naturally occurring cell sub-populations 

A major application of flow cytometry sorting is the isolation of sub-populations from 

heterogeneous samples. For example, tissues can be carefully dissociated into single cells for 

sorting of sub-populations. Common downstream practices with sorted cells include further 

culturing or transcriptomic evaluation. In this section, we outline recent studies that have employed 

FACS to target cells for further use and discuss separation strategies used to isolate sub-

populations, as shown schematically in Figure 2-2. 
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Figure 2-2: Application map for isolating a cell type of interest from heterogeneous samples. Pre-

treatment of the sample may include dissociation and debris removal. Cells are then suspended 

and stained, most commonly by surface markers. The sorted cells can be used in a variety of 

applications including disease modeling, drug testing and characterization (i.e., lineage and gene 

expression).  

Cell sorting can be used as a pre-treatment process to isolate a homogeneous cell type or sub-

population for further culturing. This is particularly relevant to this thesis where one of the goals 

is to sort cells on the basis of a particular property and inoculate a fermenter with the sorted 

population in order to increase the productivity of biomass growth and potentially antigen 

production. In this application, the key challenge is that the exposure of cells to stressful operating 

conditions imposed by flow cytometry sorting may compromise cell viability and the ability to 

grow in subsequent culturing steps. This has turned out to be a main challenge for the cell sorting 

work conducted in this thesis, as shown in Chapter 6. While many cells are insensitive to the 
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sorting procedure (Mollet et al., 2007; Andra et al., 2020), the shear stress caused by the volumetric 

fluid flow and nozzle can cause significant cellular damage (Mollet et al., 2008; Ma et al., 2002). 

The effect of shear stress in bioreactors on cell viability has been widely studied. For example, 

Lange et al. (2001) conducted experiments in capillary tubes under different controlled shear 

conditions and found that microorganism viability is significantly reduced when subjected to a 

shear stress above a certain threshold. Specific methods can be followed to assess the fluid shear 

stress produced by the sorting protocol. For example, a sensor developed by Varma et al. (2015) 

can be used to measure fluid shear stress pathway activation and evaluate its impact on the 

experimental protocol including the equipment used for sorting and the assay of interest. Other 

experimental conditions to consider include the sample flow rate which can affect the precision of 

the measurements (Cossarizza et al., 2019) and stain concentration which can cause cell damage 

if excessive (Fried et al., 1982). Furthermore, surface markers that are used for sorting may induce 

apoptosis, e.g., anti-Sialec F in eosinophils (Zimmermann et al., 2008). Careful selection of the 

buffer can improve sorting outcomes such as the integrity of RNA post-sorting (Kunnath-

Velayudhan et al., 2018; Nilsson et al., 2014). 

Optimization of the protocol to be used for cell sorting is a lengthy and technical procedure 

that involves many variables including sample preparation, fluorescent dye or fluorescent 

conjugated antibody selection and concentration, sample concentration, sample flow rate, buffer 

selection, gating procedure and compensation if more than one fluorophore is detected. For this 

reason, cell sorting protocols are reported regularly in great detail (Póvoa et al., 2020; Buehler et 

al., 2012; Abujarour et al., 2013; Lv et al., 2016). A protocol for B. pertussis will be developed in 

this work and presented in Chapter 6. 
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Stem cells which can differentiate along lineage pathways and self-renew in vivo are ideally 

suited for critical applications in the treatment of injuries and disease (Wang et al., 2018). Thus, 

procedures to separate viable pure stem cell or progenitor cell populations by use of flow cytometry 

sorting are popular and continue to evolve quickly. Protocols are continually being improved in 

terms of digestion techniques, available markers and pre-treatments to remove materials that have 

adverse effects on sorting pure populations (Wylot et al., 2015; Ishii et al., 2017; Maesner et al., 

2016). 

Instead of tissue samples, flow cytometry sorting can be used to sort antibody-producing white 

blood cells (B-cells) from blood samples. For example, Sadreddini et al. (2016) investigated the 

effect of cell sorting on the transformation efficiency of antibody-producing memory B-cells. The 

B-cells were transformed by the Epstein-Barr virus into immortal lymphoblastoid cells that 

proliferated indefinitely (Price and Dave, 2013). The researchers were able to effectively isolate 

human memory B-cells using surface markers for B-cells conjugated to fluorophores. They further 

evaluated the efficiency of the sorting procedure based on the responses of the sorted cells to 

tetanus neurotoxin. The combination of Epstein-Barr virus transformation and cell sorting was 

found to have very low efficiency for large scale antibody production and so other strategies such 

as antibody engineering and display technology were proposed as preferred methods for large scale 

production. 

Many studies have been concerned with the effects of the flow cytometry sorting procedure on 

cellular metabolism, integrity and viability. Richardson et al. (2015) detected short-term 

transcriptional artifacts, while Finegersh et al. (2016) found that intracellular staining which 

requires fixation and permeabilization of cells can compromise the integrity of RNA. Fortunately, 

options are available to address some of these problems. Kunnath-Velayhudan et al. (2018) 
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reported that the use of a high salt buffer and then a buffer-containing RNase inhibitor allowed the 

RNA to remain intact for fixed and permeabilized murine T cells. 

 Table 2-1 summarizes the literature on cell sorting of homogeneous cell types or sub-

populations from heterogeneous mixtures. The most common sorting strategies make use of 

surface marker antibodies since different cell types and even sub-populations of cell types have 

surface markers that are lineage-specific. Once the lineage markers are determined, sorting to yield 

high purity cells is possible following optimization of the pre-treatment procedure and sorting 

protocol. In Chapter 6, a sorting procedure based on the surface antigen concentration of pertactin 

will be used to assess whether the epigenetic phenotype is maintained in the daughter cells of the 

sorted populations. 

Table 2-1: Studies on sorting of heterogeneous cell populations including their gating strategies. 

Sorted Cell Sample Sorting Strategy Purpose Reference 

Motor neuron Induced 

pluripotent 

stem cell 

Surface marker 

antibodies and 

intracellular 

fluorescent protein 

ALS disease 

modeling and 

drug testing 

(Toli et al., 

2015) 

 

Rod shaped 

ventricular 

myocytes 

Adult mouse 

heart tissue 

Viability dye and 

surface marker 

antibodies 

Analysis of 

proteins 

(López et al., 

2017) 

 

Endothelial 

cells 

Mouse CNS 

tissue 

Surface marker 

antibodies and 

viability dye 

Protocol for 

sorting pure 

endothelial cells 

(Wylot et al., 

2015) 

 

Mesenchymal 

stem cells 

Bone marrow 

and adipose 

tissue 

Surface marker 

antibody linked to 

VEGF expression 

Control of 

desired level of a 

transgene 

(Helmrich et 

al., 2018) 
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T cells Murine 

splenocyte 

(spleen tissue) 

Surface marker 

antibodies and 

viability dye 

Buffer effects on 

RNA integrity 

(Kunnath-

Velayudhan et 

al., 2018) 

 

Satellite glial 

cells (SGCs) 

Rat dorsal root 

ganglion 

(neuron) 

Antibodies against 

intracellular epitopes 

of SGC specific 

proteins 

Function and 

changes 

following 

disease or injury 

(Jager et al., 

2018) 

 

Skeletal muscle 

satellite cells 

Mouse skeletal 

muscle 

Surface marker 

antibodies 

Comparison of 

muscle digestion 

techniques 

(Ishii et al., 

2017) 

 

T and B cell 

subpopulations 

Horse blood Surface marker 

antibodies 

Lineage gene 

expression 

analysis 

(Tomlinson et 

al., 2018) 

 

Neurospheriodal 

cells 

Glioblastoma 

cell line 

Forward/ side scatter 

and viability dye 

Characterization 

of minor 

populations in 

cell lines 

(Immanuel et 

al., 2018) 

 

Eosinophils Mouse lungs Viability dye and 

surface marker 

antibodies 

Isolation strategy 

not involving 

apoptotic 

markers 

(Geslewitz et 

al., 2018) 

 

Endothelial 

cells and 

pericytes 

Mouse brain 

tissue 

Surface marker 

antibodies 

Comparison of 

functional 

differences 

(Crouch and 

Doetsch, 2018) 

 

Hematopoietic 

progenitor, 

circulating 

endothelial, and 

outgrowth 

endothelial cells 

Peripheral 

blood and 

umbilical cord 

blood samples 

Surface marker 

antibodies, viability 

dye, and front/side 

scatter 

Gene expression 

of 

subpopulations 

and analysis of 

markers 

(Huizer et al., 

2017) 
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Keratinocytes, 

and T cell 

subpopulations 

Human skin 

cell samples 

Surface marker 

antibodies 

Sequencing of 

cell 

subpopulations 

(Ahn et al., 

2017) 

 

Satellite cells Adult mouse 

skeletal muscle 

tissue 

Surface marker 

antibodies and 

viability dye 

Gene expression 

profile and 

regenerative 

property 

(Maesner et 

al., 2016) 

 

Primitive 

endoderm and 

epiblast cells 

Embryonic 

stem cells 

Surface marker 

antibodies and 

viability dye 

Protocol and 

gating strategy 

(Hölzenspies et 

al., 2015) 

 

Non-pericytic 

adipose 

progenitor cells 

Mouse 

subcutaneous 

inguinal white 

adipose tissue 

Surface marker 

antibodies 

Investigation of 

self-renewal 

properties 

(Frazier et al., 

2016) 

 

Medium spiny 

neurons 

Nucleus 

accumbens 

Intracellular 

fluorescent protein 

Study of 

epigenetic 

mechanisms 

(Finegersh and 

Homanics, 

2016) 

 

Circulating 

tumor cells 

Gastric cancer 

patients 

Surface marker 

antibodies 

Comparison of 

biological 

behaviour 

between gastric 

cancer patients 

and cell line 

(Yuan et al., 

2015) 

 

Dendritic cell 

subpopulations 

Atherosclerotic 

plaques  

Surface marker 

antibodies 

Evaluation of 

cell liberation 

from plaques 

(Van Brussel 

et al., 2015) 
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2.3.2 Isolation of artificially induced cell subpopulations 

In this sub-section, we outline recent studies in which flow cytometry sorting has been used 

to screen and sort out valuable mutants induced by artificially induced sub-populations based on 

different methods such as random mutagenesis and nuclease genome editing. High throughput 

screening strategies have been established to improve the performance of industrial 

microorganisms. Advances in flow cytometry sorting and other microfluidic techniques have 

significantly improved the screening efficiency (Zeng et al., 2020). The critical advantages of flow 

cytometry sorting are that the screening scale (i.e. number of cells analyzed) can be much higher 

than that attained by other sorting methods and it has the ability to carry out measurements on 

individual cells. Another high throughput method with similar advantages is automated colony 

picking. However, colony pickers are better suited for applications for secreted products as flow 

cytometry sorting measures productivity based on surface protein expression which is not always 

strongly correlated to secreted levels (Nakamura and Omasa, 2015). Also, flow cytometry sorting 

is a more technically difficult method than colony picking since optimization of the protocol plays 

a large role in the outcome of cell sorting, as previously discussed in section 2.3.1. However, 

colony picking is not suited to protein engineering applications (Fabritius et al., 2018) and has a 

much slower screening efficiency than flow cytometry sorting (Zeng et al., 2020). Applications 

where sub-populations are artificially induced by either random mutagenesis or nuclease genome 

editing are discussed separately below. Figure 2-3 provides a roadmap of the typical strategy used 

for sorting sub-populations of interest. 
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Figure 2-3: Application map for isolating a cell type of interest from artificially induced cell 

populations. Pre-treatment of the sample may include library creation using mutagenesis. Most 

commonly the markers are inserted intracellularly via a plasmid. The sorted cells can be used in a 

variety of applications including screening for high producing cell lines or desired gene editing 

and for studying metabolic networks. 

2.3.2.1 Random mutagenesis 

Random mutagenesis is a powerful tool to modify enzymes, proteins or metabolic 

pathways in order to improve their function (Labrou, 2018). By physical (e.g. ultraviolet (UV) 

irradiation) or chemical means (Ghatnekar, 1964; Kodym and Afza, 2003), it introduces into the 

genome random mutations that can vary in terms of the number of mutations and location where 

they occur. To screen for mutants resulting from physical mutagenesis sources, sorting for viable 

cells by flow cytometry sorting can greatly decrease the size of the library. Flow cytometry sorting 

can also be used to directly recover desired mutants by using a fluorescent dye specific to the 

property of interest (Liu et al., 2016).  
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Chemical mutagenesis is much more common. The error-prone polymerase chain reaction 

(PCR) utilizes a polymerase that lacks proof-reading ability and so can cause mutations to occur 

for a gene of interest. The locations of mutations are determined by the upstream and downstream 

PCR primer-binding sites on the gene (McCullum et al., 2010) and the number of mutations per 

template gene depends on the number of doublings (Wilson and Keefe, 2005). Site saturation 

mutagenesis is used to determine residue-function relationships and probe the biochemical 

mechanism of an enzyme/protein. In this case, mutations occur at either a single or a set of residues 

located at catalytic sites of an enzyme. The residues are randomized to produce all possible amino 

acids at a chosen position and generate protein variants that cannot be produced naturally (Siloto 

and Weselake, 2012). 

 The size of the library of mutants can be increased by combining mutagenesis methods. 

Prodrugs which are widely used in cancer medicine are inert when administered but become highly 

cytotoxic when activated (Denny, 2003). Copp et al. (2014) developed a high-throughput 

screening platform to design prodrug-activating enzymes using site saturation and error-prone 

PCR mutagenesis methods. They fused a fluorescent protein to a SOS promoter which becomes 

activated when DNA is damaged. The amount of this fluorescent protein served as a measure of 

the amount of DNA damage caused by the prodrug in E. coli through activation by nitroreductase. 

Copp et al. (2017) later used this flow cytometry sorting protocol to select enhanced cancer 

prodrug activation variants. 

Other forms of random mutagenesis can be used to induce genes to participate in specific 

reaction pathways. Random transposon mutagenesis allows genes to be transferred into a host 

organism. In this case, these genes can cause mutations by interrupting or modifying the function 

of the extant gene on a chromosome (Simon et al., 1983). 
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Sorting mutant cells with the purpose of re-culturing is an important aspect of disease 

modeling but flow cytometry sorting protocols can compromise viability. Instead of re-culturing 

sorted cells, Ramesh et al. (2015) developed a recovery method to directly isolate plasmid DNA 

from flow cytometry-sorted populations which expressed the desired phenotype for subsequent 

transformation. This protocol was used to screen two E. coli libraries and led to a 5-fold increase 

in the recovery of the plasmid compared to recovering the sorted cells. 

2.3.2.2 Nuclease Genome Editing 

Nuclease genome editing enzymes such as zinc finger nucleases (ZFN) and transcription 

activator-like effector nucleases (TALEN) and clustered regularly interspaced short palindromic 

repeats (CRISPR-Cas9) are powerful tools to add or remove genes from the genome of cells (Gai 

et al., 2013). These protocols rely on nucleases that are engineered to cut specific genomic target 

sequences. Flow cytometry sorting is widely used to screen for cells that have been successfully 

edited with these techniques to improve the rate of gene editing in cells (Yumlu et al., 2017) and 

isolate cells which have been edited successfully (He et al., 2015). Cells that over-express or under-

express genes of interest may have undesirable effects such as compromised viability. It is essential 

to ensure that the nucleases are expressed within a sufficient fraction of cells so that the desired 

amount of the genome is edited since it has been observed that transfection levels can vary more 

than 100-fold (from CRISPR-Cas9 system) within cell populations in programmable nuclease 

constructs (Lonowski et al., 2017). 
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2.3.3 Cell surface display systems 

Cell surface display systems utilize expressed recombinant proteins that are incorporated 

into the host cell membrane to display a protein of interest on the surface of the cell. The 

recombinant DNA encodes an anchoring motif (carrier protein) fused to the protein of interest 

(passenger protein) and uses the machinery of the host cell to translate and fold the proteins. A 

schematic showing the steps of the cell surface display procedure explained above is shown in 

Figure 2-4. The carrier protein, usually a membrane protein with a filamentous structure (Wan et 

al., 2002), anchors to the cell membrane to allow the fused passenger protein to point outside the 

cell membrane for easy extracellular targeting. 

 

Figure 2-4: Cell surface display 

Flow cytometry sorting is a very efficient high-throughput method to screen cells with 

desired antibody-protein affinities. A major advantage of using flow cytometry sorting in 

combination with the surface display approach is that it is easy to label the passenger protein by 

fluorescence since it is located on the cell surface. Figure 2-5 provides a roadmap of the typical 

strategy used in surface display applications. 
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Figure 2-5: Application map for sorting via surface display. Cells are incubated with the marker 

library and commonly sorted based on binding affinity. The desired markers can be used in a 

variety of applications including screening vaccine or antibody candidates and marker selection 

for further testing. 

 The efficiency of surface display systems is strongly affected by the characteristics of the 

carrier protein, passenger protein and host cell and the fusion method (Sandkvist and Bagdasarian, 

1996). The display of a phage surface was the first surface display system developed (Smith, 1985). 

The application of this procedure to bacteria rather than phages has the advantages of being easier 

to cultivate with selection markers without contamination, displaying random peptides using the 

flagella occurring in bacteria and facilitating screening by flow cytometry since they are larger in 

size (Lunder et al., 2005; Hu et al., 2018). However, despite the advantages of cell display in 

bacteria, phage surface display has been more commonly utilized because of its ability to select 

more effective sequences for binding peptides and generate larger libraries (Lunder et al., 2005; 

Hu et al., 2018). The display of a yeast surface display was developed as an alternative to that of 

prokaryotic cells since it solved the problem of expression biases against some eukaryotic proteins 

and led to more efficiently folded proteins (Boder and Wittrup, 1997). Cell-display technology has 

many applications, which include vaccine development (Chen et al., 2018; Xu et al., 2016), 

antibody library screening (Sun et al., 2016; Yim et al., 2014) and enzyme library screening 
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(Deweid et al., 2018; Chen et al., 2011). Table 2-2 outlines some of the literature using flow 

cytometry and surface display. 

Table 2-2: Studies that use surface display and flow cytometry sorting. 

Display Type Sorting Strategy Purpose Reference 

Yeast surface 

display 

Fluorescent antibody Vaccine candidate (Chen et al., 2018) 

 

Bacterial (E. coli) 

surface display 

Fluorescent antibody Screen potential antibodies 

for H1N1 

(Yim et al., 2014) 

Bacterial (E. coli) 

surface display 

Fluorescent antibody Screen antigen-specific 

antibodies 

(Xu et al., 2016) 

Bacterial 

(straphylococcal) 

surface display 

Fluorescent antibody Screen for therapeutics 

against various cancers 

(Åstrand et al., 

2016) 

Yeast surface 

display 

Fluorescent antibody Screening hapten-specific 

antibodies 

(Sun et al., 2016) 

Bacterial 

(straphylococcal) 

surface display 

Fluorescent antibody Affibody screening for 

amyloid β peptide 

(Lindberg et al., 

2015) 

Hybridoma surface 

display 

Fluorescent antibody Screening for hybridoma 

cells that can produce 

hapten-specific antibodies 

(Dippong et al., 

2017) 

Yeast surface 

display 

Fluorescent antibody Increase sortase A binding 

affinity and activity 

(Chen  et al., 2011) 

Yeast surface 

display 

Fluorescent antibody Optimize enzyme activity (Deweid et al., 

2018) 

Yeast surface 

display 

Fluorescent antibody Optimize designed receptor 

for p21-activated kinase I 

(Butz et al., 2014) 
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2.3.4 Flow Cytometry Droplet Sorting 

 The measurement of secreted products by flow cytometry sorting has been previously used 

to determine the concentration of intracellular species since the cells are separated from the 

supernatant following the sorting operation. When active transport processes are involved in the 

secretion of the product, its intracellular concentration will not be highly correlated to the total 

productivity as it is preferentially retained by the cell. A technique has been developed to 

encapsulate single cells in a water-oil-water (w/o/w) double emulsion where the inner water- phase 

contains the media and secreted products (Caen et al., 2018; Baret et al., 2009). This has been 

accomplished by a microfluidics device that injects a fast-moving aqueous phase containing the 

cells into a slower-traveling oil phase to encapsulate the latter, as shown in Figure 2-6. 

 

Figure 2-6: Water/ oil/ water droplet creation 

The major advantage of double emulsion encapsulation is that it prevents the secreted 

metabolites or products from being transported away from the cells and traps them within the 

droplet for detection. Table 2-3 outlines the literature using droplet sorting. 
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Table 2-3: Studies based on droplet flow cytometry sorting. 

Display Type Sorting Strategy Purpose Reference 

Yarrowia lipolytica Riboflavin 

autofluorescence 

Screen high producer of 

riboflavin 

(Wagner et al., 

2018) 

Lactococcus lactis Riboflavin 

autofluorescence 

Investigate cause of 

increased riboflavin 

production 

(Chen et al., 2017) 

Saccharomyces 

cerevisiae 

Enzymatic reaction  Enrichment of cellulase 

expressing cells 

(Ostafe et al., 

2013) 

Saccharomyces 

cerevisiae 

Enzymatic reaction Screen high confusing 

xylose strains 

(Wang et al., 2014) 

Escherichia coli Enzymatic reaction Screen high producers of L-

lactate 

(Zhou et al., 1997) 

Saccharomyces 

cerevisiae 

Fluorescent reporter 

protein 

Detailed description of 

genotypes and phenotypes 

(Terekhov et al., 

2017) 

Dye only Fluorescent dyes Screen suitable markers for 

w/o/w droplets 

(Hai and Magdassi, 

2004) 

Escherichia coli Enzymatic cleavage Screen for potential 

antibodies, enzymes, or 

proteins 

(Ma et al., 2016) 

 

2.3.5 Microfluidic FACS (µFACS) 

Cell sorting has also been accomplished using miniaturized devices, some of which carry 

out FACS by taking advantage of a range of physical properties. These smaller devices are termed 

microfluidic FACS (FACS) and fall within the category of lab-on-a-chip technologies. The use 

of FACS has several advantages over that of conventional FACS in that it eliminates potentially 

biohazardous aerosols, sample loss and cross-contamination due to the closed-platform designs 

and disposable chips. In addition, FACS devices are portable, sample processing protocols are 
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simplified, reagent and equipment costs are lower and rapid analysis is possible, making them very 

attractive for both industrial and healthcare (point-of-care) applications. 

Broadly, FACS techniques can be organized into four overarching categories based on 

the physical principles exploited for cell manipulation (Shields et al., 2015): i) electrokinetic (e.g.; 

Wang et al., 2010), ii) acoustophoretic (e.g., Li et al., 2019; Mutafopulos et al., 2019; Ren et al., 

2018), iii) optical (e.g., Wu et al., 2012) and iv) mechanical (Cheng et al., 2017; Cho et al., 2010). 

Similar to traditional FACS, the operation of these devices involves serial interrogation by laser 

light, real-time classification and command-driven sorting. Recently, comprehensive reviews 

specific to microfluidic cell sorting have been published by Shields et al. (2015) and Shen et al. 

(2019).  

Many of the FACS technologies are still at the proof-of-concept or prototype stage and 

only a few have demonstrated the performance or validation required for integration into clinical 

practice. For example, Cheng et al. (2017) tested the validity of a FACS chip with piezoelectric 

actuators to enrich GFP-expressing HeLa cells from a population including non-fluorescent HeLa 

cells. Cho et al. (2010) also used a FACS chip with a piezoelectric actuator to enrich fluorescent 

human erythroleukemic cells from a mixture containing stained and unstained erythroleukemic 

cells. In another proof-of-concept experiment, Wu et al. (2012) used pulse laser-triggered FACS 

to sort nalm-6 human pre-B cells and B lymphoma Ramos cells with high viability and purity. 

Although promising, FACS requires further development before it can be used commercially. 

Some of the limitations include low throughput rates since the devices usually consist of a single 

channel and have short lifespans due to clogging. 
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FACS has the potential to directly affect health care, particularly for personalized 

medicine in cancer treatment. Hirai et al. (2015) presented a µFACS for bladder cancer diagnosis. 

The µFACS system was able to meet requirements for use in biological and clinical applications 

and has several advantages over existing methods since it can be operated by non-specialist 

researchers, provides early and non-invasive cancer diagnostics and can isolate cancer cells from 

low-grade and low-stage cancers. Ma at al. (2017) demonstrated a benchtop µFACS system that 

made use of a highly focused traveling surface acoustic wave beam to sort cells upon fluorescence 

interrogation. The acoustic µFACS system was used to isolate fluorescently labeled MCF-7 breast 

cancer cells from diluted whole blood samples with high purity and extremely high viability after 

sorting. 

 

2.4 Population Balance Models 

Most biotechnological processes are regulated through closed loop control of lumped or 

average quantities such as dissolved oxygen, average substrate concentration or pH. However, due 

to the heterogeneity of the cell population, e.g., variability in cell size, cell age, intracellular 

concentrations, control approaches that are based on only the average culture properties may not 

guarantee consistent process outcomes. Population balance models are one approach to describe 

the heterogeneity of the cell population and its effect on culture growth and productivity. By 

correlating the evolution of the cell population to productivity and inputs that can be manipulated, 

these models have the potential to improve and optimize processes. 

Population balance models contain a set of equations which describe the behavior of a 

population of particles from the analysis of behavior of single particles. In a bioreactor, these 
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models provide a deterministic description of the dynamic evolution of cell distributions. 

Population balance models can be mass-based if the properties used to describe the state of the cell 

follow the conservation of mass or age-based if the age of cells is used to differentiate each cell 

within the population. The general form of a population balance model assuming that cell death is 

negligible and that cells grow in one stage is shown in Eqn (2.1) (Fredrickson et al., 1967; 

Ramkrishna, 1979).  

 

𝛿𝑁(𝐱, 𝑡)

𝛿𝑡
+ ∇𝐱(𝐫(𝐱, 𝑠)𝑁(𝐱, 𝑡)) + 𝛾(𝐱, 𝑡)𝑁(𝑥, 𝑡) + 𝐷𝑁(𝐱, 𝑡)

= 2 ∫ 𝛾(𝐱, 𝑡)𝑝(𝐱, 𝑦, 𝑧)𝑁(𝐱, 𝑡)𝑑𝑥

𝑥𝑚𝑎𝑥

𝑥

 

(2.1) 

The number of cells from the entire population at each physiological state is described as the time-

dependent variable 𝑁(𝐱, 𝑡). The first term on the left-hand side corresponds to the accumulation 

of cells at a level of physiological properties (𝐱) where the latter can be one or more cell properties 

of interest such as levels of growth, oxidative stress, DNA content, etc. The second term accounts 

for the rate of gain/loss of cells with the physiological state due to chemical reactions and to 

changes in cell volume. Correspondingly, the chemical reactions rates or growth of cells are 

represented by 𝑟(𝐱, 𝑆) which depends on the available substrate concentration and the 

physiological state of the individual cells. The third term accounts for the rate of loss of cells due 

to cell division leading to the birth of smaller cells and depends on the partitioning rate 𝛾(𝐱, 𝑡). 

The fourth term on the LHS is the dilution rate which represents the rate at which cells leave the 

bioreactor. The right-hand side term represents the rate of birth of cells with the physiological 

property level from the division of larger cells. This birth process is a function of a partition 

probability density function 𝑝(𝐱, 𝐲, 𝑆). 
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One of our objectives in the current thesis is to compare the predictability of a population 

balance model with a similar bulk kinetic model that uses average cell properties. However, this 

section discusses other uses of population balance models focusing on the solution of the partial 

differential equation, physiological properties of cells used in the models and the impact of 

including heterogeneity in the model. 

 The solution of population balance models typically is numerically challenging since the 

model consists of a system of coupled partial integro-differential equations and ordinary 

differential equations. For example, Mantzaris et al. (1999) derived a general mass-based 

population balance model that can consider any number of cellular components of interest and can 

be applied with equal or unequal partitioning among the components and fixed or changing 

substrate concentration. The limitation of this model was the high computational time and memory 

required for its solution when using a time-explicit finite difference method consisting of a hybrid 

of leapfrog and Lax-Friedrichs schemes. However, due to the continuous improvements in 

computational power, the use of population balance models to describe cell state distributions has 

shown a recent upsurge. Solutions have been reported using a number of numerical techniques 

including finite differences methods (Mantzaris et al., 2001a), finite element methods (Mantzaris 

et al., 2001b) and hybrid methods such as a combination of the method of partial characteristics 

and method of moments (Durr and Waldherr., 2018). 

The greatest value of population balance models is to capture the heterogeneity of cell 

populations and thereby effectively predict experimental outcomes for cases where the effects of 

heterogeneity are significant. For example, Morchain et al. (2017) presented a population balance 

model for bioreactor dynamics that combined liquid-cell mass transfer and population 

heterogeneity and was subsequently compared to experimental data. The advantage of the model 
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was that the specific growth rate varied across the cell population. The authors proposed a law for 

the probability that cells growing at a specific rate produce daughter cells with a different growth 

rate. The actual growth rate of individual cells was based on a comparison between substrate 

uptake and micro-mixing characteristic times. Simulated results for situations of a pulse addition 

of substrate in a fed-batch culture and the transition from batch to continuous mode were in 

quantitative agreement with experimental observations.  

Population balance models have also been used to formulate hypotheses about a system. 

For example, Durr et al. (2016) investigated the influence of cell-to-cell variability on the 

maximum virus yield. The multi-dimensional population balance model was composed of a 

detailed description of the intracellular viral replication cycle and also accounted for the expected 

heterogeneity in the host cell population. The simulations suggested that modifying the cell lines 

(e.g. gene knockout) would increase maximum virus concentration and reduce the time needed to 

achieve the maximum concentration. However, the predictions of this study were not verified by 

comparison to experimental data. 

Cell growth is a very important and heavily studied modeling parameter in many biological 

systems. With population balance models, it is possible to determine how cells uptake the available 

substrate to gain weight and engage in cell division. Quedeville et al. (2018) reported a 2-

dimensional population balance model able to distinguish between growth based on cell number 

and growth based on cell mass when equilibrium is disrupted. In this model, cell division is driven 

by the cell size. This model was solved using a first order finite-volume method and a Monte-Carlo 

algorithm. The authors were able to demonstrate that growth in mass and growth and number are 

only equivalent at steady state in a continuous bioreactor and at the exponential growth phase 

during a batch process. 
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Flow cytometry can be used to measure heterogeneity within cell cultures. However, due 

to experimental limitations it may be difficult to measure many subsets from a process. Durr et al. 

(2015) proposed a procedure to incorporate limited measurement information from small scale 

culture experiments into a multidimensional population balance model. Their algorithm was based 

on an efficient moment approximation and a numerical solution of the corresponding population 

balance model with the method of characteristics. The authors were able to apply the algorithm to 

the production of poly(3-hydroxybutyrate) (PHB) in bacterial cultures using three reaction rates 

(cell growth, PHB synthesis and PHB metabolization). This model algorithm is only applicable in 

cases where cell death and cell division are negligible.  

 Although many population models have been based on the assumption of time-invariant 

concentrations of key metabolites, the population balance equations can be coupled with equations 

describing time-varying cell metabolism to improve predictability. For example, Pigou and 

Morchain (2015) coupled a hydrodynamic model, population balance model for growth rate and 

metabolic model which predicts the reaction rates depending on the state of individual cells. The 

cells were distinguished in terms of the capabilities by which daughter cells inherit their growth 

rate. A discretization method was used to solve the population balance equation which was applied 

to predict acetate production of batch and fed-batch cultures. The authors showed that coupling 

the metabolic and population balance models strongly improves the prediction of acetate 

production compared to the metabolic model alone. 
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Chapter 3 Materials and Methods 

3.1 Media formulation 

Sanofi Pasteur makes 2X concentrated media and 100X concentrated growth factor 

solutions used in the fermentations of B. pertussis. The normalized formulation of media and 

growth factor solutions used at Sanofi Pasteur are found in Tables 3-1 and 3-2. The solutions for 

the shake flask experiments contain 0.5 volume fraction of the media solution and 0.01 of the 

growth factor solution. The concentration of monosodium glutamate was varied between 6.6 – 

12.4 g/L to assess its effect on oxidative stress and biomass. 

Table 3-1: Media components and concentration for a 2X concentrated solution 

Media Components Concentration 

(normalized)  

monosodium glutamate 20 g/L 

sodium chloride 0.25 

potassium phosphate monobasic 0.05 

magnesium chloride 0.01 

potassium chloride 0.02 

tris base 0.15 

casamino acid 1 

 

Table 3-2: Growth factor components and concentration for a 100X concentrated solution 

Growth Factor Components Concentration 

(normalized) 

L-cysteine HCl 0.04 

nicotinic acid 0.004 

ascorbic acid 0.4 

reduced glutathione 0.15 

heptakis beta cyclodextrin 0.01 

FeSO4(H2O)7 1 

CaCl2(H2O)2 0.02 

 



36 

 

3.2 Shake flask fermentations 

B. pertussis fermentations were carried out in 250 mL flasks (polycarbonate, sterile, with 

a vented cap having 0.22 µm pore-size PTFE membrane from VWR, Canada) with a working 

volume of 60 mL by incubation at 36°C and 200 rpm for various times depending on the 

experiment. The compositions of media and growth factor components used are listed in section 

3.1. The primary flasks were inoculated with 0.6 mL of a working batch seed (provided by Sanofi 

Pasteur), while the secondary flasks were inoculated with product from the primary flasks through 

dilution resulting in an OD600 in the range between 0.1 – 0.4. Samples were collected at various 

times from the flasks to measure biomass via optical density, glutamate concentration via 

BioProfile, NADPH via fluorescence spectroscopy and ROS via flow cytometry. After measuring 

optical density, the cells and supernatant were separated by centrifugation at 10,000 G for 3 

minutes. 

Shake flask experiments were conducted as part of two different studies: i) determination 

of the relation between cell growth, oxidative stress and NADPH levels under different oxidative 

conditions using bulk and population balance models and ii) assessment of the impact of sorting 

populations via FACS of high/low cell complexity and surface PRN antibody concentration on 

growth and potential antibody yield. 
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3.3 Sample measurements 

3.3.1 Optical density (OD600) 

 Each sample collected from the shake flask culture was diluted 20-fold in a 0.9% saline 

solution and its OD level was determined via optical spectrophotometry by measurement of its 

absorbance at 600 nm. 

3.3.2 Glutamate concentration 

The supernatant obtained after centrifugation (section 3.2) was collected in order to 

determine the glutamate concentration (after 20-fold dilution) using the chemistry module of a 

BioProfile FLEX Analyzer (Nova Medical). Glutamate was measured using an amperometric 

electrode containing immobilized enzymes in its membrane (Derfus et al., 2009). In the presence 

of oxygen, the enzyme membranes produce hydrogen peroxide which is then oxidized at a 

platinum anode held at constant potential. The resulting current is proportional to the sample 

concentration. 

 

3.4 Fluorescence spectroscopy 

3.4.1 Equipment 

Analysis of the supernatant for extracellular NADPH concentration by fluorescence 

excitation-emission spectroscopy was carried out with a Cary Eclipse Fluorescence 

Spectrophotometer (Agilent Technologies). The supernatant samples were diluted 20 times and 
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analyzed using polymethylmethacrylate cuvettes having a slit width of 5 nm and PMT 

(photomultiplier tubes) of 800 V for the peak measurements.  

3.4.2 NADPH measurement 

 Determination of the NADPH concentration involved measurement in the excitation and 

emission ranges of 330-370 nm (10 nm intervals) and 300-600 nm (1 nm intervals), respectively, 

(Figure 3-1a). The blank used contained phosphate buffered saline (PBS, 10 nM, pH 7.2) and its 

spectra was subtracted from the sample spectra (Figure 3-1b). The large intensity peaks occurring 

in every emission involve first-order Rayleigh scattering which occurs when the emission 

wavelength of oscillating molecules is close to the excitation wavelength of the incident light 

frequency. To eliminate this effect, we replaced the fluorescence intensity with values of 0 over a 

range of 20 nm centered at the excitation frequency (Andersen 2005). The results of this method 

to eliminate the effects of Rayleigh scattering is shown when comparing Figure 3-1b and Figure 

3-2a.  

 

Figure 3-1: Raw fluorescence of (a) control B. pertussis fermentation supernatant sample and (b) 

blank sample of phosphate buffered saline (PBS, 10 nM, pH 7.2). 
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The filtered fluorescence spectra for two B. pertussis fermentation supernatant samples is 

shown in Figure 3-2. NADPH absorbs at two excitation wavelengths: 260 nm and 340 nm; both 

of these excitations produce an emission at 460 nm. The excitation at 260 nm occurs because of 

the adenine group and the excitation at 340 nm arises due to the absorption by the pyridine ring 

(Rover et al., 1998). However, since NADH also fluoresces at an excitation wavelength of 260 nm 

(Lakowicz, 2006), we used the peak at an excitation wavelength of 340 nm for detection of 

NADPH in this work. Another peak within the measured range is located at the excitation/ 

emission pair of 370/480 nm. Since many compounds such as flavins involved in redox reactions 

fluoresce in this range (Croce and Bottiroli, 2014), we did not use this peak in any of the models 

in this work. 

 

Figure 3-2: Filtered fluorescence spectra for control B. pertussis fermentation supernatant samples 

at (a) 24 hours and (b) 48 hours. 
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3.5 Flow cytometry 

3.5.1 Equipment 

Flow cytometry was conducted using an S3e Cell Sorter (Bio Rad). This instrument has 2 

excitation lasers at 488 nm (primary) and 640 nm (secondary) with emission filters to detect 

forward scattering (FSC) and side scattering (SSC) and four channels to detect fluorescence 

emission (526/48 (FL1), 593/40 (FL2), 670/30 (FL3) and 700 LP (FL4)). All flow cytometry 

measurements use a total of 20,000 events per sample at a rate of 1000 events per second. 

3.5.2 B. pertussis gating 

 Prior to obtaining flow cytometry data, a gating strategy must be implemented to eliminate 

noise, collect B. pertussis cells and exclude doublets. Figure 3-3 depicts the flow cytometric gating 

protocol used during measurements of single B. pertussis cells. In the first gate (Figure 3-3a), the 

side scattering area is plotted along the x-axis and the fluorescent area in the FL1 detector is plotted 

along the y-axis. The goal of this gate is to eliminate events which contribute to the scattering 

intensity but not to fluorescence. The second gate (Figure 3-3b) plots the area of forward scattering 

along the x-axis and the area of side scattering along the y-axis. This gate locates the region of B. 

pertussis size and complexity and also roughly checks the sample for contamination. Since other 

bacteria present may have a similar size and complexity, it is critical to ensure they are not 

collected. This is done by plating on Bordet-Gengou (BG) agar on which B. pertussis can grow 

and Tryptic (Trypticase) Soy Agar (TSA) plates on which B. pertussis cannot. The last gate (Figure 

3-3c) is used to exclude droplets that contain more than one cell. The width of the side scattering 

is plotted along the x-axis and the height of the side scattering is plotted along the y-axis. The 

sample solution is dilute (OD600 = 0.05) and therefore a narrow gate can be used at the location 
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where most cells are located. Any cells with a larger side scattering width are considered to contain 

more than one cell since the height of the side scattering peak will not change with multiple cells 

in a droplet but the side scattering width will be about double the size for a droplet containing 2 

cells. The cells found in Figure 3-3b must pass through the gate found in Figure 3-3a and the cells 

found in Figure 3-3c must pass through both gates in Figures 3-3a and b. Therefore, the 20,000 

events collected for measurements of viability, oxidative stress and surface antigen concentration 

have already been subjected to the gating protocol in Figure 3-3.  

 

Figure 3-3: Gating protocol for B. pertussis flow cytometry measurements. The gates are used as 

follows: (a) noise exclusion gate, (b) size inclusion gate and (c) doublet exclusion gate. 

3.5.3 Viability stain 

Viability was measured using SYTO9 (Invitrogen, Thermo Fisher Scientific, USA) and 

propidium iodide (PI, Invitrogen Thermo Fisher Scientific, USA). SYTO9 is a green fluorescent 
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nucleic acid dye and can stain live and dead cells, while PI is a red nucleic acid dye that is only 

able to enter the cells if the membrane has been damaged. Re-suspended cells (1 mL) were stained 

with 0.12 µM of SYTO9 and 3 µM of PI and then incubated in the dark for 10 min prior to 

measurement. 

The fluorescent emissions from SYTO9 and PI were measured using the green 

fluorescence FL1 and red fluorescence FL3 detectors, respectively. SYTO9 and PI exhibit 

excitation/emission pairs at 483/503 nm and 530/625 nm, respectively. A sample viability stain is 

shown below in Figure 3-4. The fluorescence signal from SYTO9 is shown in FL1 and plotted 

along the x-axis, while the fluorescence signal from PI is shown in FL3 and plotted along the y-

axis. The plot of FL3 area versus FL1 area is divided into four quadrants: Q1 represents dead cells, 

Q2 represents live membrane-damaged cells, Q3 represents the live healthy cells and Q4 has no 

meaning. The gates are determined by comparing the fluorescence of a dead cell culture (cells 

treated with 70% ethanol and placed in the freezer for 10 minutes) and a live cell culture. Cells 

that fall into Q4 are technically live cells. This occurs because a small difference in the 

fluorescence intensity exists from sample to sample. However, because the wavelength ranges 

selected as gates are fixed, some live cells will fall outside the Q3 quadrant. The goal is to locate 

the gates at wavelengths that minimize the amount of cells that fall in this quadrant.   
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Figure 3-4: Viability staining of a B. pertussis sample. 

3.5.4 Oxidative stress 

Oxidative stress was measured using the fluorescein derivative carboxy-2',7'-

dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) from Sigma-Aldrich (Canada). A 

solution containing 1 mM of this reagent was prepared by dissolution in DMSO and added to the 

samples to yield a final concentration of 50 µM. The reagent is non-fluorescent and cell-permeable 

but is deacetylated by esterases intracellularly and converted to the fluorescent DCF when it reacts 

with hydrogen peroxide and other oxygen derivatives (Halliwell and Whiteman, 2004). To 

measure the ROS distribution, the FL1 diode was used for DCF emission (green fluorescence) 

which fluoresces at an excitation/ emission pair of 503/523 nm. 

3.5.5 Surface pertactin antigen concentration 

 To measure the surface concentration of pertactin, an antibody provided by Sanofi (PRN 

3-16) was conjugated to FITC for fluorescence detection. A FITC conjugation kit (Abcam, 

Canada) was used to conjugate the antibody to the fluorophore. The antibody was diluted to a 
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concentration of 1 µg/ml in DMSO and 1 µL modifier reagent was added to 10 µL antibody 

solution and mixed gently. The resulting solution was added into FITC-lyophilized material, mixed 

and incubated in the dark for 15 minutes. After incubation, 1 µL Quencher reagent was added to 

every 10 µL of antibody used and mixed gently. The conjugated antibody was stored in the dark 

in a -20oC freezer. 

A 1 mL sample was taken from the shake flask and diluted to an OD600 of 0.05. The sample 

was then centrifuged at 4,000 G for 4 minutes and the supernatant discarded. A 25 µL of antibody 

solution (1µg/mL) was then added to each tube and incubated for 1 hour in the dark at 4°C. Then 

1 mL of 1x PBS was added to each tube and centrifuged at 4,000 G for 4 minutes to wash the 

sample. The supernatant was discarded and the pellet re-suspended in 400 µL PBS. 

Along with the PRN 3-16 antibody, a negative control was also conjugated to FITC. This 

antibody does not attach to B. pertussis and is used to check for nonspecific binding of the 

conjugation. Figure 3-5 shows the unstained B. pertussis cells, negative control stain and PRN 3-

16 antibody staining. As shown in Figure 3-5b, no cells after the negative control stain are located 

in Q3 representing the PRN-positive region, reflecting that the negative control does not attach to 

B. pertussis. 
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Figure 3-5: Flow cytometry of (a) unstained B. pertussis, (b) negative stain of B. pertussis with a 

control antibody conjugated to FITC and (c) B. pertussis stained with pertactin surface binding 

antibody conjugated to FITC.  
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Chapter 4 Modeling the Effect of Oxidative 

Stress on B. pertussis Fermentations 

4.1. Introduction 

Whooping cough is a highly contagious respiratory tract disease. The causative agent of 

this illness is the gram-negative bacterium B. pertussis, which was first isolated by Bordet and 

Gengou in 1906 (Bordet and Gengou, 1906). Early symptoms of whooping cough resemble the 

common cold, but then evolve into uncontrollable violent coughing fits, discernable by the 

"whoop" sound made as air is inhaled. Prevention of this disease relies on early vaccination.  

The acellular pertussis vaccine produced by Sanofi Pasteur contains five antigens: fimbriae 

(types 2 and 3), filamentous hemagglutinin, pertactin and pertussis toxin. The manufacturing 

process of this vaccine is divided into two main stages: i) upstream comprising two parallel trains 

of three consecutive reactors of increasing volume where the bacteria are grown and ii) 

downstream purification of the five target antigens in several steps. In a previous study, the causes 

of batch-to batch variation in the production of the antigens were identified in the upstream 

fermentation process (Zavatti, 2014). High levels of nicotinamide adenine dinucleotide phosphate 

(NADPH) were detected in the supernatant of low antigen-producing fermentations. Since 

NADPH is known to be involved in detoxification reactions required to combat oxidative stress, 

it was hypothesized that the occurrence of high oxidative stress may negatively affect the 

productivity (Singh et al., 2007). To further corroborate this point, Zavatti (2019) conducted a 

series of 2 L and 20 L bioreactor experiments in which the oxidative stress was induced by either 
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the addition of hydrogen peroxide or a low inoculum dose. These experiments further confirmed 

that high oxidative stress is correlated to high levels of NADPH, low cell growth and low 

productivity (Zavatti et al., 2019).  

Oxidative stress results when an imbalance occurs between the formation of free radicals 

from oxygen and the capacity of the system to safely counteract these compounds (Zheng et al., 

2009). Reactive oxidative species (ROS) cause oxidative stress and are found as singlet oxygen, 

hydroxyls, superoxides, peroxides, hydroperoxides and the non-radical hydrogen peroxide which 

are continuously produced during aerobic metabolism (Eruslanov and Kusmartsev, 2010; Fasnacht 

and Polacek, 2021). Whether ROS function as signaling molecules or cause oxidative damage 

depends on the delicate equilibrium between its production and scavenging (Sharma et al., 2012). 

ROS also serves as second messengers (i.e., intracellular signaling molecules secreted by the cell 

in response to exposure to extracellular signaling molecules) in a variety of cellular processes 

including those that promote the tolerance of various environmental stresses; however, when 

present in excess, they can be harmful to proteins, lipids and DNA (Eruslanov and Kusmartsev, 

2010; Storz 1999).  

Living organisms utilize counteracting mechanisms involving enzymes (catalase and 

superoxide dismutase), small proteins (thioredoxin and glutaredoxin), and molecules (glutathione) 

(Kashmiri and Mankar, 2014) to protect themselves against oxidative stress. The presence of 

NADPH is important for aerobic organisms to survive oxidative stress since it is a reducing agent 

that serves to protect against ROS. The enzymes NAD+ kinase and NADP+ phosphatase are 

capable of regulating the levels of NAD+ and NADP+, play pivotal roles in controlling the 

communication between metabolic pathways that produce NADH and NADPH and are involved 

in the mechanism of diffusing oxidative stress (Singh et al., 2007). For example, glutathione 
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reductase can detoxify ROS and use NADPH to replenish its reducing power (Lushchak, 2001). 

Oxidative stress has also been found to promote NADPH production which in turn tends to 

diminish oxidative stress by promoting reactions that produce a reductive environment (Singh et 

al., 2007; Grose et al., 2006). 

Mathematical models that involve ROS have been reported, particularly in the context of 

antibiotic resistance (Farha and Brown, 2013; Kohanski et al., 2010; Yang et al., 2019). 

Additionally, models have been used to study the effect of oxidative stress on culture outcomes. 

For example, a model was developed to predict the amount of ROS production in Escherichia coli. 

This model showed that ROS generation can be increased in Escherichia coli and lead to higher 

bacteria susceptibility to oxidative attack via antibiotics (Brynildsen et al., 2013). In another study 

focused a mechanism that enables the rapid increase in NADPH by exposing Escherichia coli to 

hydrogen peroxide (Christodoulou et al., 2018). This study revealed inhibition of the pentose 

phospahe pathways which occurs due to the inactivation of glyceraldehyde 3-phosphate 

dehydrogenase by ROS and allosteric inhibition of the first pentose phosphate pathway enzyme 

by NADPH. Oxidative stress was also induced to increase industrial triacylglycerol (TAG) 

production in Rhodococccus opacus PD630 (Sundararaghavan et al., 2020).  

Several studies on bacteria have reported that the inhibition of glycolysis allows cells to 

divert flux into the pentose phosphate pathway to promote NADPH synthesis and enhance the 

protection against oxidative stress (Christodoulou et al., 2018; Sundararaghavan et al., 2020; 

Mullarky, 2015). On the other hand, B. pertussis has been shown to behave differently than other 

bacteria and consequently is expected to respond differently to oxidative stress. For example, 

gluconeogenesis is driven by glutamate as the main nutrient in B. pertussis rather than by 

glycolysis. In fact, it has been shown that B. pertussis can synthesize most amino acids and be 
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grown in media containing mostly glutamate and proline which is also converted to glutamate 

(Stainer and Scholte, 1970). Also, NADPH is produced from the conversions of isocitrate and 

glutamate to alpha-ketoglutarate and malate to pyruvate, but it is not generated in the pentose 

phosphate pathway as in Escherichia coli (Kanehisa and Goto, 2000). 

This chapter presents a metabolic model describing the effect of oxidative stress on the 

growth of B. pertussis. The model is based on a previous theoretical one developed by Himeoka 

and Kaneko (2017) focused on the effect of starvation and the stationary growth phase of cells. It 

should be emphasized that the theoretical model of Himeoka and Kaneko was proposed as a 

generic description of growth inhibition due to the interplay between promoters of growth 

(ribosomes) and waste products (misfolded or mistranslated proteins). In the current study, we 

adapt the model to describe a particular mechanism of inhibition of B. pertussis growth by ROS 

(inhibitor) and the role of NADPH (byproduct) as a quencher of ROS. To assess the validity of 

this model for this specific B. pertussis pathway, we have conducted an experimental flask study 

in which ROS, NADPH, glutamate and biomass concentrations are measured by flow cytometry, 

spectro-fluorescence, Bioprofile and spectrophotometry, respectively. The experiments are 

conducted under different conditions of oxidative stress induced by high initial glutamate 

concentrations, low initial inoculum and secondary culturing following exposure to starvation 

conditions. Variability in inoculum size or initial glutamate concentration occurs commonly in the 

manufacturing process due to measurement errors, fluctuations in media composition including 

casamino acids and differences in seed batches. Also, the behavior of the culture following 

exposure to starvation conditions is of particular industrial interest since the vaccine is 

manufactured in a fermentation train of bioreactors of increasing volume. Consequently, the 

exposure to starvation conditions in one bioreactor may have a significant impact on the following 
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bioreactors in the train. The main goal of the proposed model is to understand and describe the 

relations between cell growth, oxidative stress and NADPH under different oxidative conditions. 

In view of the differences between B. pertussis to other bacteria, a main goal of the study is to 

assess via flask studies and model predictions whether the ROS or another factor such as substrate 

(glutamate) inhibition level is the key determinant of growth under different ROS-inducing 

conditions. 

Other potential uses of this model include: i) model-based optimization of cell growth, ii) 

identification of possible sources of ROS by combination with models describing other metabolic 

pathways that are known to produce oxidative stress and iii) model-based estimation of ROS levels 

that is difficult to determine from online measurements of biomass and NADPH.  

The remainder of the chapter is organized as follows. Section 4.2 presents the mathematical 

model and its application to the oxidative stress pathway in B. pertussis. Section 4.3 describes both 

the experimental and theoretical methods used in the work and the materials used in the 

experiments. Section 4.4 presents results including comparison of experimental data and model 

predictions and possible implications of the model on the manufacturing process. Section 4.5 

presents conclusions.  

 

4.2 Model Outline 

The general model of Himeoka and Kaneko (2017) was developed to describe the 

behaviour during the lag, exponential growth, stationary and death phases without resorting to 

detailed mechanisms. It includes the formation of a complex between the following two types of 

components: component A which autocatalytically promotes cell growth and component B which 
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inhibits the autocatalytic process by forming a complex (component C) with component A. This 

process is shown schematically in Figure 4-1. In the original version of the model, Himeoka and 

Kaneko hypothesized that component A may correspond to ribosomes. Ribosomes are a well-

studied autocatalytic species that promote growth through the synthesis of proteins (Maitra and 

Dill, 2015; Scott et al., 2010). Component B may represent waste products (i.e. misfolded or 

mistranslated proteins) or other molecules that are produced with the aid of component A but do 

not facilitate growth. For example, the production of proteins in E. coli related to the stationary 

phase such as HPF and YfiA is induced under stress conditions such as starvation (Maki et al., 

2000; Ueta et al., 2008). 

 

Figure 4-1: Schematic representation of the mechanism described in the model. Adapted from 

Himeoka and Kaneko (2017). 

 Once cells enter the stationary phase, a certain time span known as the lag time is generally 

required for growth to recover after resources are supplied. The originally reported model was 

used to quantitatively relate the lag time to both the starvation time and the maximal growth rate 

and satisfy the already-known growth laws in the exponential phase. It also described the 

dependence of lag time on the intensity of the starvation process. For example, if the external 

concentration of the substrate is reduced quickly, the lag time is short compared to a situation 

where the external concentration is reduced more slowly. The fact that some of the phenomena 
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explained by the model of Himeoka and Kaneko were also observed in our experimental studies 

for B. pertussis (e.g. longer lags following long starvation periods) motivated the use of a modified 

version of this model in the current work. 

Bacteria are consistently challenged to adapt to changes in nutrient availability and stress 

conditions. The manner in which bacteria adapt to stasis caused by lack of nutrients or other 

stressful conditions has led to the idea that defenses against increased levels of intracellular 

oxidative stress are essential traits for non-growing cells (Dukan and Nystrom, 1998). In non-

growing cells, the ROS concentration should accumulate since they are not diluted by an increase 

in cell volume (McDougald et al., 2002). Cells with an elevated concentration of ROS should be 

much more sensitive to additional oxidative stress imposed by external factors. It has been reported 

that a major overlap exists between the cell use of global regulators to deal with both starvation 

and oxidative stress (McDougald et al., 2002). One pathway of adaptation to starvation in bacteria 

involves the intracellular signal guanosine tetraphosphate which accumulates in response to 

nutritional deficiency and controls the macromolecular synthesis for entry into starvation and non-

growth (Chatterji and Ojha, 2001). One pathway of adaptation to starvation in bacteria involves 

the intracellular signal guanosine tetraphosphate which accumulates in response to nutritional 

deficiency and controls the macromolecular synthesis for entry into starvation and non-growth 

(Chatterji and Ojha, 2001). Guanosine tetraphosphate metabolism is mediated by two global 

regulatory proteins: ribosome-associated enzymes that respond to a lack of amino acids and 

bifunctional enzyme-inhibiting enzymes responsible for the breakdown of guanosine 

tetraphosphate (Cashel et al., 1996; Cashel, 2000). Increased amounts of guanine tetraphosphate 

activates the synthesis of RNA polymerase sigma (Gentry et al., 1993) which controls genes 

essential for the starvation stress defense in many bacterial species (Hengge-Aronis, 1996). For 
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example, RNA polymerase sigma regulates the gene bolA. This gene is involved in the 

morphological adaptation of starved E. coli cells that affects the membrane structure and therefore 

plays a role in osmotic shock and oxidative stress (Santos et al., 1999). 

NADPH is extremely important to reduce oxidative stress through reactions that produce a 

reductive environment (Grose et al., 2006). To avoid reactive oxygen intermediates produced 

during the respiratory burst, bacteria produce enzymes, such as catalase and superoxide dismutase, 

which detoxify peroxides by transforming superoxide radicals into hydrogen peroxide and oxygen 

(Farr and Kogoma, 1999). NADPH also contributes to the proper functioning of enzymes such as 

superoxide dismutase, glutathione peroxidase and catalase. B. pertussis produces a catalase and a 

Fe-superoxide dismutase (Khelef et al., 1996). NADPH is known to be tightly bound to catalase 

and to offset the ability of the hydrogen peroxide which is the substrate of catalase to convert the 

enzyme to an inactive state. In the process, the bound NADPH becomes NADP+ and is replaced 

by another molecule of NADPH (Kirkman et al., 1999). Another method of reducing oxidative 

stress in B. pertussis is through reduced glutathione. Reduced glutathione scavenges superoxide 

and hydroxyl radicals non-enzymatically and serves as an electron donor to several enzymes 

involved in ROS detoxification (Pannala et al., 2013). NADPH is then used to replenish the 

glutathione to its reduced state, as shown in Figure 4-2. 
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Figure 4-2: Glutathione reductase pathway for reducing oxidative stress in the form of hydrogen 

peroxide 

NADPH is not only vital for the anti-oxidative defense mechanisms of most organisms, 

but it is also the driving force of most biosynthetic enzymatic reactions, including those responsible 

for the biosynthesis of all major cell components such as DNA and lipids (Arnér and Holmgren, 

2000; Koh et al., 2004; Singh et al., 2008;). NADPH is produced during the metabolism of 

glutamate entering the TCA cycle and in the conversions of isocitrate to alpha-ketoglutarate and 

malate to pyruvate. While NADPH is used only for biosynthetic reactions and cannot be used to 

generate ATP, B. pertussis contains transhydrogenase (Parkhill et al., 2003) which converts 

NADPH into NADH. NADH can be converted into ATP via the electron transport chain. Also, 

ATP production via oxidative phosphorylation is not effective in the absence of NADPH (Singh 

et al., 2007). 

Considering the relationship between starvation and oxidative stress as well as the role 

NADPH plays in the synthesis of major cellular components and quenching of ROS, we propose 

a modified version of the model of Himeoka and Kaneko to describe the interplay between the 

main nutrient (glutamate), ROS and NADPH. Since component A promotes growth and is used to 

quench component B in their general model, we hypothesize that NADPH (quencher) can be 
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defined as component A and ROS (inhibitor) as component B. As discussed above, NADPH is 

instrumental in quenching the cell of ROS and promoting cell growth (Singh et al., 2007). Since 

component C is the product of the reaction of NADPH with ROS and NADPH is converted to 

NADP+ by quenching ROS, we denote NADP+ in the model as component C. Lastly, glutamate is 

defined as S since it is the major substrate in the media.   

We have modified and adapted the model reported by Himeoka and Kaneko (2017) to our 

study by including the following additional elements: a substrate inhibition term, exponents in the 

expressions for the fluxes of A and B defining their dependence on the intracellular substrate 

concentration, a degradation term for ROS and a mass transfer coefficient for the transport of 

NADPH into the supernatant. The substrate inhibition term involving glutamate and exponents on 

the fluxes were determined by calibration of the model to experimental data that we collected (see 

sections 4.2 and 4.6, respectively). The degradation of ROS is included since these species react 

very rapidly with other compounds if not quenched by an antioxidant. The mass transfer term has 

been added to account for the secretion of NADPH into the supernatant. A reported pathway 

involving the secretion of catalase bound to NADPH into the environment (Wan et al., 2017) 

supports the inclusion of the mass transfer term.  

The model given by Eqns (4.1) – (4.10) below is based on transient mass balances of 

species and rate expressions for the reactions described schematically in Figure 4-1. Table 4-1 

summarizes the definitions of the symbols used for the concentrations of various species, while 

Table 4-2 defines the model parameters. It should be noted that glutamate (substrate S) contributes 

to both the production of NADPH (A) and ROS (B) through the terms 𝐹𝐴𝐴 (equal to the growth 

𝜇) and 𝐹𝐵𝐴, respectively, in this model. Both these terms introduce autocatalytic effects on A 

(NADPH) by which a higher level of NADPH promotes further growth (𝜇) and substrate 
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consumption. Both the terms 𝐹𝐴 and 𝐹𝐵 are functions of the intracellular substrate concentration 

S. The term 𝑘𝑝𝐴𝐵 accounts for the co-metabolism of NADPH and ROS. 

 𝑑𝑆𝑒𝑥𝑡
𝑑𝑡

= −
𝜇𝑋

𝑌𝑥/𝑠
 

(4.1) 

 
𝑑𝑋

𝑑𝑡
= 𝜇𝑋 − 𝐷𝑋 

 

(4.2) 

 𝑑𝑆

𝑑𝑡
= −𝐹𝐴𝐴 − 𝐹𝐵𝐴 + 𝛼𝐴(𝑆𝑒𝑥𝑡 − 𝑆) − 𝜇𝑆 

(4.3) 

 𝑑𝐴

𝑑𝑡
= 𝐹𝐴𝐴 − 𝑘𝑝𝐴𝐵 + 𝑘𝑚𝐶 − 𝜇𝐴 − 𝐾𝑚𝐴 

(4.4) 

 𝑑𝐴𝑒𝑥𝑡
𝑑𝑡

= (𝐾𝑚 + 𝐷)𝐴𝑋 
(4.5) 

 𝑑𝐵

𝑑𝑡
= 𝐹𝐵𝐴 − 𝑘𝑝𝐴𝐵 + 𝑘𝑚𝐶 − 𝜇𝐵 − 𝑑𝐵𝐵 

(4.6) 

 𝑑𝐶

𝑑𝑡
= 𝑘𝑝𝐴𝐵 − 𝑘𝑚𝐶 − 𝜇𝐶 

(4.7) 

 

𝐹𝐴 =

(
𝑣

1 + 𝑆 𝐾𝑠𝑖
⁄

)𝑆

𝐾𝑋 + 𝑆
(

𝑆

𝐾𝑡 + 𝑆
)
1.5

 

(4.8) 

 

𝐹𝐵 =

(
𝑣

1 + 𝑆 𝐾𝑠𝑖
⁄

)𝑆

𝐾𝑋 + 𝑆
(
𝐾𝑡

𝐾𝑡 + 𝑆
)
1.5

 

(4.9) 

 
𝜇 = 𝛼𝐹𝐴𝐴 

(4.10) 

 

Table 4-1: Definitions of concentrations used in the model. 

Compound Model Variable 

X Biomass (B. pertussis) intensity 

S  Intracellular glutamate concentration (mmol/L) 

Sext Extracellular glutamate concentration (mmol/L) 

A Intracellular NADPH concentration (mmol/L) 

Aext Extracellular NADPH concentration (mmol/L) 

B ROS concentration (mmol/L) 

C NADP+ concentration (mmol/L) 
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Table 4-2: Parameters defined in model. The numerical values of the parameters are determined 

using the model and calibration set in Section 4.4.  

Symbol Meaning Units 

𝜇 rate constant for biomass growth 
1

ℎ𝑟
 

Yx/s yield coefficient 
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒
 

D rate constant for biomass death 
1

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ℎ𝑟
 

FA flux of substrate conversion into A 
1

ℎ𝑟
 

FB flux of substrate conversion into B 
1

ℎ𝑟
 

kp rate constant for A+B → C 
1

𝑚𝑀 ℎ𝑟
 

km rate constant for C → A + B 
1

ℎ𝑟
 

𝑑 rate of degradation of B (ROS) 
1

ℎ𝑟
 

v rate constant for the generation of NADPH 
𝑚𝑀

ℎ𝑟
 

Ksi rate constant for inhibition 
1

ℎ𝑟
 

K saturation constant for FA and FB 𝑚𝑀 

Kt phenomenological constant changing A/B balance 𝑚𝑀 

Km 
transport function for A across the cell membrane into 

the supernatant 

1

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ℎ𝑟
 

α unit conversion constant (=1) 
1

𝑚𝑀
 

 

 

4.3 Materials and Methods 

4.3.1 B. pertussis batch fermentations 

B. pertussis fermentations were carried out in 250 mL flasks (polycarbonate, sterile, with 

a vented cap having 0.22 µm pore-size PTFE membrane from VWR, Canada) with a working 

volume of 60 mL by incubation at 36°C and 200 rpm for 48-60 hrs. Each experiment was carried 
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out with two flasks operating in parallel under identical conditions. The formulation of media and 

growth factor components used are found in section 3.1 in Chapter 3. The manipulated variables 

that have been found to affect the oxidative stress in the culture include the initial concentration of 

cells, initial concentration of glutamate, duration of starvation time prior to inoculation and 

changes in B. pertussis working seeds produced approximately every 3 months from a seed bank 

(Zavatti 2014; Wellen and Thompson, 2010). The two seeds used in this work were generated in 

different years – 2015 and 2018. Two separate 1 mL samples were collected at a time for 

measurement during the course of the fermentations. Each of the 1 mL samples was measured for 

its OD, glutamate, NADPH and ROS concentrations. The data shown are averages over the four 

measurements obtained on each of the 1ml-samples collected from the two identical flasks at each 

time. The cells and supernatant were separated by centrifugation at 10,000 G for 3 minutes. 

Glutamate and NADPH concentrations were measured by BioProfile and fluorescence 

spectroscopy, respectively. The cells were re-suspended in 1 mL phosphate buffered saline (PBS, 

10 nM, pH 7.2) and diluted to an OD of 0.05 for flow cytometry measurements of the ROS level. 

Cell growth was monitored by optical density. 

4.3.2 Optical density (OD) 

 The sample was diluted by a factor of 20 in 0.9% saline solution and OD obtained using 

optical spectrophotometry by measurement of the absorbance at 600 nm. 

4.3.3 Glutamate concentration 

The supernatant from the centrifugation step above was collected to determine the 

glutamate concentration (after 20-fold dilution) using the chemistry module of a BioProfile FLEX 

Analyzer (Nova Medical). Glutamate was measured using an amperometric electrode that contains 
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immobilized enzymes in its membranes (Derfus et al., 2009). In the presence of oxygen, the 

enzyme membranes reduce glutamate to produce hydrogen peroxide which is then oxidized at a 

platinum anode held at constant potential. The resulting flow of electrical current is proportional 

to the sample concentration. 

4.3.4 Fluorescence spectroscopy 

Analysis of the supernatant for extracellular NADPH concentration by fluorescence 

excitation-emission spectroscopy was carried out with a Cary Eclipse Fluorescence 

Spectrophotometer (Agilent Technologies). Each of the supernatant samples was diluted 20 times 

and analyzed in polymethylmethacrylate cuvettes using a slit width of 5 nm and PMT of 800 V for 

the peak measurements. Each sample was analyzed over the excitation and emission ranges of 

330-370 nm (at 10 nm intervals) and 300-600 nm (at 1 nm intervals). The blank used was 

phosphate-buffered saline (PBS, 10 nM, pH 7.2). It should be noted that the region of fluorescence 

analyzed is generally correlated to the amount of extracellular NADPH present (Rover et al., 

1998).  

4.3.5 Flow cytometry 

Oxidative stress was measured using the fluorescein derivative carboxy-2',7'-

dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) from Sigma-Aldrich (Canada). A 

solution containing 1 mM of this reagent was prepared by dissolution in DMSO and then added to 

the samples to yield a final concentration of 50 µM. The reagent is non-fluorescent and cell-

permeable but is deacetylated by esterases intracellularly and converted to the fluorescent DCF 

when it reacts with hydrogen peroxide and other oxygen derivatives (Halliwell and Whiteman, 

2004). 
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Viability was measured using SYTO9 (Invitrogen, Thermo Fisher Scientific, USA) and 

propidium iodide (PI, Invitrogen Thermo Fisher Scientific, USA). SYTO9 is a green, fluorescent 

nucleic acid dye and can stain live and dead cells while PI is a red nucleic acid dye that is only 

able to enter the cells if the membrane has been damaged. Re-suspended cells (1 mL) were stained 

with 0.12 µM of SYTO9 and 3 µM of PI and then incubated in the dark for 10 min prior to 

measurement. 

Flow cytometry was conducted using an S3e Cell Sorter (Bio Rad). This instrument has 2 

excitation lasers at 488 nm (primary) and 640 nm (secondary) with emission filters to detect 

forward scattering (FSC) and side scattering (SSC) and four channels to detect fluorescence 

emission (526/48 (FL1), 593/40 (FL2), 670/30 (FL3) and 700 LP (FL4)). To measure the ROS 

distribution, the FL1 diode was used for DCF emission (green fluorescence) which fluoresces at 

an excitation/emission pair of 503/523 nm. This measurement involved a total of 20,000 events 

per sample at a rate of 1000 events per second. The average value obtained from 20,000 events 

was used in the model. Fluorescence emission for SYTO9 was measured using the green 

fluorescence FL1 detector and for PI using the red fluorescence FL3 detector. SYTO9 and PI have 

excitation/emission pairs at 483/503 nm and 530/625 nm, respectively. The same total events 

(20,000) and rate (1000 events per second) was used for each sample. Viability was included in 

the model by only considering cells that had not experienced membrane damage. Dead cells were 

considered to be PI-positive. The percentage of PI-positive cells in the 20,000 events was 

determined and the OD was adjusted to only include viable cells. The details regarding the gating 

procedure used to measure oxidative stress and viability can be found in section 3.5 in Chapter 3. 
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4.3.6 Model fitting 

 The model given in Eqns (4.1) – (4.10) was calibrated using the fmincon subroutine in 

MATLAB. This function is designed to find the minimum of a nonlinear multivariate function. 

For the problem in this study, the sum of the root mean-square error (RMSE) of the measured 

variables (biomass, extracellular glutamate concentration, intracellular ROS concentration and 

extracellular NADPH concentration) was minimized. To ensure that all four variables have 

comparable effects on the outcome of the model, the RMSE of each variable was standardized by 

dividing it by its corresponding mean, as shown in the following expression: 

 
𝑅𝑀𝑆𝐸 =∑

√∑ (𝑦𝑖 − 𝑦𝑖̂)2
𝑛
𝑖=1

𝑛
𝜇𝑖

 
(4.11) 

where 𝑦𝑖 is the measured value, 𝑦̂𝑖 is the predicted variable, n is the number of calibration samples 

and 𝜇𝑖 is the mean of each variable. 

The model was calibrated with 115 samples obtained under 13 different flask conditions 

and validated with 26 samples collected from an additional 3 conditions. The OD, glutamate, 

NADPH, and ROS concentrations were measured for each of these samples. The parameters 

obtained by fitting the model to the experimental data include the various rate constants (kp, km, 

D, d, 𝜈, Yx/s), mass transfer coefficient of A (Km), substrate inhibition constant for glutamate (Ksi), 

saturation constants (K, Kt), initial concentration of component A (intracellular NADPH) and the 

ROS and NADPH concentration factors to convert their measurement intensities into 

concentration units. Since the intracellular NADPH concentration is not measured, it is not 

possible to specify its initial level and so is included among the parameters to be fitted in the model. 

These terms are defined in Table 4.2 appearing in section 4.2.  
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Selection criteria are important tools to obtain a model that simultaneously has the 

appropriate structure and dimensionality. These criteria assess whether a fitted model maintains 

an optimal balance between its predictive accuracy and number of fitting parameters. The Akaike 

information criteria (AIC) introduced by Akaike (1973) estimates the prediction error from the 

extension of the maximum likelihood principle, i.e.,   

 𝐴𝐼𝐶 = − log(𝐿) + 2𝑘 (4.12) 

where L is the maximum likelihood function and k is the number of predicted model parameters 

in the model. The lower the value of the AIC, the better the model fitting is in terms of structure 

and predictability. Assuming normal errors, the maximum likelihood function can be replaced by 

the residual sum-of-squares (RSS) (Cavanaugh and Neath, 2019), i.e.,  

 𝐴𝐼𝐶 = −𝑛 log (
𝑅𝑆𝑆

𝑛
) + 2𝑘 (4.13) 

where n is the number of samples to which the model is fit. However, this AIC may become 

inaccurate when the sample size is small (n/p<40 with p representing the number of fitted 

parameters) (Yang, 2019). In this case, the corrected version of AIC shown below in Eqn (4.14) 

can be used.  

 𝐴𝐼𝐶 = −𝑛 log (
𝑅𝑆𝑆

𝑛
) + 2𝑘 +

2𝑘(𝑘 + 1)

𝑛 − 𝑘 − 1
 (4.14) 
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4.4 Results and Discussion 

4.4.1 Trends of the control B. pertussis flask culture 

 Control conditions were used to mimic those in the first reactor in the train at the Sanofi 

production facility. These conditions were run using the Sanofi media formulation containing 9.8 

g/L of glutamate. This involved inoculating a secondary flask with cells collected during the 

exponential growth phase from the primary flask. Figure 4-3 shows the (a) OD, (b) glutamate, (c) 

extracellular NADPH and (d) intracellular ROS concentrations measured over the 48 hours of 

reaction time.  
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Figure 4-3: Evolution of (a) optical density (OD), (b) extracellular glutamate, (c) extracellular 

NADPH and (d) intracellular ROS concentrations in a B. pertussis flask culture with an initial OD 

of 0.28 and initial glutamate concentration of 9.8 g/L.  

A short lag phase in this culture is observed because the inoculating cells are taken from 

the exponential growth phase of the primary culture. It is noteworthy that the ROS concentration 

exhibits a spike rise during the lag phase. In a study by Rolfe et al. (2012), it was suggested that 

oxidative damage in the lag phase is caused by a combination of increased intracellular iron 

concentration (found in media) and newly available oxygen. Also, the rate of hydrogen peroxide 

generation was found to be 5 to 10 times greater when a bacterial culture shifts from the lag to 

exponential growth phase (González-Flecha and Demple, 2001). In general, when the amount of 
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NADH and FADH generated by the TCA cycle exceed the capacity of the electron transport chain, 

this leads to high ROS concentration levels (Zhao et al, 2019).  

During the exponential growth phase, the ROS concentration drops to its lowest value 

where it remains constant. Figure 4-4 shows the change in extracellular NADPH concentration per 

unit biomass with time. As shown in this figure, the amount of NADPH excreted per cell remains 

constant after the lag phase. 

 

Figure 4-4: Change in extracellular NADPH concentration per unit biomass of a control B. 

pertussis flask culture with an initial OD of 0.28 and initial glutamate concentration of 9.8 g/L. 

 During the stationary phase (after ~30 hours), the concentration of ROS builds up again 

(Figure 4-3d). This results in oxidative damage, particularly to DNA, lipids and proteins 

(Eruslanov and Kusmartsev, 2010; Storz 1999). Stationary cells are particularly vulnerable to 

oxidizing conditions when they lack energy and material to repair or replace the damaged 

molecules (Schurig-Briccio et al., 2009) or to oxidative stress when ROS cannot be quenched. For 

example, it has been shown that growth under starvation conditions generates oxidative stress. The 

increased level of ROS comes from the imbalance between ROS production and antioxidant 
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mechanisms (Aubron et al., 2012). Figure 4-5 shows the viability of B. pertussis cells of the control 

culture during the exponential growth, stationary and death phases as measured with flow 

cytometry. An explanation on how to read the flow cytometry figures is discussed in section 3.5.3 

in Chapter 3. The different quadrants in Figure 4-5 correspond to different ranges of cell viability 

values according to their PI values. As shown in Figure 4-5a, almost all the cells are viable during 

the exponential growth phase (when the growth rate is equivalent to the maximum growth rate) 

and so they are found in quadrant 3. However, when the cells are in the stationary phase (Figures 

4-5b and c), the numbers of both dead cells (quadrant 1) and membrane-damaged live cells 

(quadrant 2) increase. When the cells reach the death phase (Figure 4-5d), the amount of PI-

positive cells rises; 50.9% of the cells have membrane damage and 21.4% of cells are dead after 

48 hours into the incubation. At the 36-hour and 42-hour time points, the intracellular 

concentration of ROS rises sharply (Figure 4-3d), possibly due to lipid damage in the membrane, 

as has been observed in previous experiments conducted under starvation conditions (Arts et al., 

2015). The decrease of RO during the death phase may be due to its reaction with other cellular 

components or due to a severely damaged membrane which allows it to leak into the extracellular 

environment. 
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Figure 4-5: Viability PI-based staining of a control B. pertussis flask culture with an initial OD of 

0.28 and initial glutamate concentration of 9.8 g/L after a) 24 hours, b) 36 hours, c) 42 hours, and 

d) 48 hours. 

 

 

 



68 

 

4.4.2 Glutamate and substrate inhibition of B. pertussis 

As shown in Figure 4-6 and Table 4-3, the growth rate of biomass increases as the initial 

concentration of glutamate in the media decreases. For example, the doubling time of the bacteria 

is shortened by ~0.86 hours when the initial concentration of glutamate is reduced from 11.6 g/L 

to 6.6 g/L as shown in Table 4-3. Also, the intracellular ROS concentration during the lag and 

early exponential phases rises as the initial concentration of glutamate increases (Table 4-3). Since 

a larger lag appears between the start of the fermentation and the time that glutamate is first 

consumed at the higher glutamate concentration, we hypothesize that glutamate inhibition is 

occurring. Accordingly, we have added a substrate inhibition term into the mathematical model to 

account for this experimental observation. Oxidative stress caused by nutrient excess has been 

reported in both mammalian and bacterial cells (Wellen and Thompson, 2010; Wang and Levin, 

2009). The tricarboxylic acid (TCA) cycle nutrients and the resulting electrons are transferred to 

produce NADH and FADH2. The electrons are eventually donated to molecular oxygen via the 

electron transport chain (ETC), but incomplete reduction can lead to the production of superoxides. 

Therefore, when the breakdown of components from the TCA cycle exceeds the consumption rate 

capacity of the electron chain cycle as is the case when nutrients are in excess, ROS production 

increases and can lead to oxidative stress (Wellen and Thompson, 2011). It has also been shown 

that high levels of NADH and FADH may inhibit the fluxes in the TCA cycle (Vemuri et al., 

2006). Since glutamate is consumed primarily in the TCA cycle, this process will be inhibited if 

the resulting NADH and FADH reach high enough levels.  

On the other hand, the data in Figure 4-6 indicate that the amount of biomass produced at 

higher initial glutamate concentrations eventually catches up and surpasses the level attained when 

the glutamate concentration is lower. Such a result is not unexpected since larger overall glutamate 



69 

 

consumption should yield a higher level of biomass production. The practical implication of this 

observation is that a fed-batch operation would be best to increase the growth rate of B. pertussis 

by reducing the impact of initial substrate inhibition by glutamate which is the main carbon source 

in this process. 

 

Figure 4-6: Variation of OD during fermentation at different initial glutamate concentrations over 

the (a) full 50 hours and (b) first 18 hours of incubation. 

Table 4-3: Comparison of OD and ROS levels and biomass doubling time over the first 12 hours 

of fermentation at different initial glutamate concentrations 

Initial glutamate 

concentration 

(g/L) 

OD600 (intensity) 

Average ROS 

(intensity) Doubling 

time (hrs) 

Growth Rate 

(biomass/hr) 0 h 6 h 12 h 0 h 6 h 12 h 

6.6  0.38 0.61 1.63 101 102 85 5.37 0.1291 

8.6  0.27 0.57 1.42 138 123 87 6.01 0.1152 

10.1  0.28 0.53 1.35 155 136 87 6.10 0.1137 

11.6  0.27 0.51 1.25 174 141 96 6.23 0.1112 

 

4.4.3 Effect of initial OD on oxidative stress in B. pertussis  

 Experiments carried out with lower initial density cultures of B. pertussis (i.e., small size 

inoculum) exhibited higher oxidative stress during the lag phase and early portion of the 
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exponential growth phase (Table 4-4) although had a higher biomass growth rate. The difference 

in oxidative stress with respect to the control conditions described in the previous section was 

unexpected since the intracellular concentration that can generate stress should be independent of 

inoculum size for the same extracellular nutrient concentration. Also, no clear correlation is 

observed between the oxidative stress and biomass growth for conditions with different initial 

biomass concentrations. The phenomenon of quorum sensing provides a possible explanation for 

the increased stress in low inoculum cultures and the small impact of oxidative stress on growth. 

Quorum sensing is the regulation of gene expression in response to fluctuations in cell population 

density and involves quorum-sensing bacteria that produce and release chemical signal molecules 

called auto-inducers (Miller and Bassler, 2001). Even minute amounts of an auto-inducer can alter 

gene expression. Most quorum sensing-controlled processes are unproductive when undertaken by 

an individual bacterium acting alone but become beneficial when carried out simultaneously by a 

large number of cells (Waters and Bassler, 2005). B. pertussis is reportedly able to use quorum 

sensing (Serra et al., 2008; Van Beek et al., 2018) although no evidence exists that they use quorum 

sensing in response to oxidative stress. However, other bacteria have been reported to use quorum 

sensing as a protective mechanism against oxidative stress. For example, Burkholderia 

pseudomallei uses quorum sensing to regulate the response to oxidative stress (Lumjiaktase et al., 

2006). A non-specific DNA-binding protein DpsA was found to play a key role in protecting B. 

pseudomallei from oxidative stress mediated by organic hydroperoxides. Such protective action 

could explain the observation of higher stress in low inoculum cultures when the secretion of a 

smaller amount of protective protein would be expected than when the inoculum level is higher. It 

has also been reported that oxidative stress drives the selection of quorum sensing mutants 

in Staphylococcus aureus populations (George et al., 2019). Inhibition with respect to biomass 
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concentration has been added in the model in Eqns (4.7) and (4.8) to account for the effect of 

inoculum size on oxidative stress levels. 

Table 4-4: Comparison of OD and ROS levels over the first 12 hours of fermentation at different 

initial concentrations of glutamate and half the initial OD level. 

Initial glutamate 

concentration 

(g/L) 

OD600 (intensity) Average ROS 

(intensity) Growth Rate 

(biomass/hr) 0 h 6 h 12 h 0 h 6 h 12 h 

8.4 0.14 0.27 0.70 159 121 83 0.1392 

8.6  0.27 0.57 1.42 138 123 87 0.1152 

10.4 0.13 0.25 0.64 171 141 85 0.1412 

10.1  0.28 0.53 1.35 155 136 87 0.1137 

 

4.4.4 Effect of starvation on the growth rate of B. pertussis 

 In order to simulate starvation conditions that may occur in a train of fermenters, the growth 

of a culture was continued in a primary flask for approximately 10 hours after glutamate had been 

completely depleted. The culture collected at that time was then transferred to a secondary flask 

for sampling and testing. Figure 4-7 presents comparisons between the growth curves in the starved 

secondary flasks with those obtained in a control flask operated with the same media at initial 

glutamate concentrations of 10.1 and 6.6 g/L. As shown in Figure 4-7, the lag phase (taken as the 

time duration for the initial biomass population to double) in the case of the starved flask is 

approximately 36 hours longer at both glutamate levels. However, given that the OD in the starved 

case remains very low and does not vary over the lag phase, we infer that the growth rate is 

negligible and so the death rate must also be very small. Interestingly, the initial concentration of 

glutamate in the media does not affect the lag phase of the starved cases.  
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Figure 4-7: Biomass growth curves obtained in control and 12-hour starved secondary flasks with 

media initially containing (a) 10.1 g/L and (b) 6.6 g/L glutamate. 

Figure 4-8 depicts the PI-based viability of the culture obtained under control and starved 

conditions at a glutamate concentration of 10.1 g/L. Compared to the control, the culture obtained 

under starved condition exhibits a larger percentage of dead cells (53.4% compared to 1.19%) and 

membrane-damaged live cells (20% compared to 3.65%). Over the next 6 hours in the starved 

condition (Figure 4-8c), the membrane-damaged cells are either repaired or die, as shown by the 

decrease in the population of cells in Q2 and the simultaneous increase in the percentage of cells 

in Q1 and Q4. As the 24-hour and 36-hour points are reached, a larger percentage of cells becomes 

viable (Figures 4-8d-e), as reflected by the increase of the population in Q3. When the biomass 

concentration begins to increase at the end of the lag phase, 90.1% of the cells have become viable 

(Figure 4-8f). 
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Figure 4-8: Viability staining of a control and starved B. pertussis flask cultures with an initial glutamate concentration of 10.1 g/L: a) 

control - 0 hours, b) starved - 0 hours, c) starved - 6 hours, d) starved - 24 hours, e) starved – 36 hours, and f) starved - 48 hours.
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4.4.5 Effect of seed batches 

 Two seed batches have been compared to assess the batch-to-batch variability as well as 

the effect of the length of time that the seed batches are stored in a ˗80oC environment prior to 

incubation. The procedure followed to generate these seed batches is as follows. A library seed 

was re-suspended in a 6 mL flask, plated for 4 days and inoculated in another flask with a working 

volume of 1 L for 24 hours. Glycerol was then added to the resulting culture (10% by volume) and 

2 mL aliquots were placed in a ̠ 80oC freezer for storage. The OD600 and number of colony-forming 

units were measured several times during the protocol for quality control. Figures 4-9a and b depict 

the growth curves, intracellular concentration of ROS of the seeds using the Sanofi media 

composition. Seed 2 (produced in 2018) has a shorter lag phase than seed 1 (2015) which can be 

explained by the difference in viability between the seeds. Seed 2 contains 24.9% more live cells 

than seed 1 (comparison of Figures 4-9c and 4-9d). This could be due to some unknown difference 

in the procedures followed to obtain the seed batches or the fact that seed 1 was stored at ˗80oC 

for three years longer than seed 2. Since exposure to cryogenic temperatures slows down 

deterioration but does not prevent it entirely, the viability of cells likely decreases the longer they 

are stored prior to incubation (Walters et al., 2004). The rate of deterioration depends on several 

factors including the species involved, protocol, aging and additives (Walters et al., 2014; 

Hubalek, 2003; Simione, 1992).  
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Figure 4-9: Comparison of B. pertussis seeds batches made in 2015 and 2018. a) Biomass (OD600) 

comparison, b) intracellular ROS comparison, c) viability of the 2015 batch seed and d) viability 

of the 2018 batch seed. 

4.4.6 Calibration and validation of the oxidative stress model  

 The oxidative stress model has been calibrated by fitting to experimental data obtained 

under 13 flask conditions and validated with data from an additional 3 conditions. The calibration 

and validation conditions are listed in Tables 4-5 and 4-6, respectively.  
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Table 4-5: List of calibration conditions for B. pertussis oxidative stress model 

Trial OD 

Glutamate 

concentration (g/L) 

Length of Primary 

(hr) Seed Batch 

1 0.28 10.1 48 1 

2 0.36 9.8 48 1 

3 0.13 10.7 48 1 

4 0.14 8.6 48 1 

5 0.27 12.0 48 1 

6 0.12 12.4 48 1 

7 0.38 6.6 48 1 

8 0.16 6.6 48 1 

9 0.10 10.0 N/A 1 

10 0.08 10.3 N/A 1 

11 0.11 10.6 N/A 2 

12 0.32 9.3 60 1 

13 0.28 9.6 60 1 

 

Table 4-6: List of validation conditions for B. pertussis oxidative stress model 

Trial OD 

Glutamate 

concentration (g/L) 

Length of Primary 

(hr) Seed Batch 

1 0.27 8.4 48 1 

2 0.25 10.7 48 1 

3 0.31 6.8 60 1 

 

The system of equations (Eqns (4.1) – (4.10)) comprising the model is found in section 4.2, 

while the definition of each parameter obtained by fitting the model is given in Table 4-2. The 

numerical values of the parameters so estimated are listed in Table 4-7. The fitting procedure is 

described in section 4.3.6. This mechanism has not been previously applied to the growth of B. 

pertussis and therefore the parameter values cannot be compared to those obtained in other studies. 

However, the initial concentration of NADPH (𝐴𝑜) and intracellular ROS concentration (Table 4-

7) are similar to values found in the literature for other bacteria. For example, a starved culture of 

Corynebacterium glutamicum exhibited a NADPH concentration in the range of 0.127 – 0.185 

mM and increased to 0.313 mM after the addition of glucose (Goldbeck et al., 2018), while the 
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concentration range in 3 strains of E. coli was found to be 0.25 – 0.45 mM (Shen et al., 2021). The 

difference in starved NADPH concentration may be due to a difference in the duration in starved-

nutrient conditions. In the experiments presented in this section, the period of starvation is ~10 

hours while the period is not reported by Goldbeck et al. (2018). If the starvation period in this 

earlier study was shorter, one would expect the initial NADPH concentration to be higher than that 

obtained here (Table 4-7).  Intracellular ROS in E. coli, predominantly found as H2O2, was found 

to have an intracellular concentration <0.1 µM and substantially below 1 µM when toxic 

conditions exist (Seaver and Imlay, 2001). According to our model, the generation of extracellular 

NADPH comes from cell lysis rather than excretion. This conclusion is reached by examination 

of the two terms contributing to the extracellular accumulation of NADPH that appear on the right-

hand side of Eqn (4.5). A comparison of the fitted numerical values of the rate constant D for lysis 

and the coefficient KM for mass transfer of NADPH into the supernatant shows that the excretion 

rate is several orders of magnitudes smaller than the death rate. Therefore, the secretion pathway 

was removed from the model to reduce the number of parameters. 

Table 4-7: Parameter estimation of oxidative stress model 

Parameter Value 

𝑣 16.0 
𝑚𝑀

ℎ𝑟
 

𝐾 1.72 𝑚𝑀 

𝐾𝑡 1.73 𝑚𝑀 

𝑘𝑝 0.536 
1

𝑚𝑀 ℎ𝑟
 

𝑘𝑚  0.001
1

ℎ𝑟
 

𝑌𝑥/𝑠  0.643 
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒
   

𝐷 0.0099 
1

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ℎ𝑟
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𝐾𝑠𝑖 0.126 𝑚𝑀 

𝑑𝐵 0.109 
1

ℎ𝑟
 

𝐾𝑀  1.42E-8 
1

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ℎ𝑟
 

𝐴𝑜 (secondary) [0.5-0.787] 𝑚𝑀 

𝐴𝑜 (starved) [0.004-0.01] 𝑚𝑀 

𝐴𝑜 (seed 1) 0.112 𝑚𝑀 

𝐴𝑜 (seed 2) 0.350 𝑚𝑀 

 

A comparison of the experimental and model calibration curves for the evolution of OD, 

extracellular glutamate concentration, extracellular NADPH and intracellular ROS concentrations 

over time is given in Figures 4-10 – 4-22. A comparison of the experimental and model validation 

curves is provided in Figures 4-23 – 4-25. The following paragraphs provide a discussion of the 

common behaviour in the experimental and model results, success of the model fitting and 

implications of the observed trends.  

 The concentration of ROS increases sharply as the growth of B. pertussis leaves the lag 

phase and enters the exponential growth phase (Figure 14-10c). The culture experiences oxidative 

stress as it is transferred from a stationary-phase environment to a fresh oxygenated medium which 

affects the growth rate and duration of the lag phase (Cuny et al., 2007). In Figure 4-10c, another 

increase in ROS is observed later during the stationary phase. This pattern is consistent in all of 

the experiments involving a 48-hour primary flask and seed flasks. Starvation of an essential 

nutrient triggers the production of catalases and other oxidative stress proteins. Therefore, 

oxidative damage to biomolecules increases during the stationary phase as the defense mechanism 

against oxidative stress eventually fails (Dukan and Nyström, 1999). In Figure 14-21a, the cells in 

the starved condition experience a very long lag phase but they eventually recover. High 
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concentrations of ROS are observed at the beginning of the fermentation when the cells begin to 

recover (Figure 4-21c). It is hypothesized that cells starved for a long period in the primary flask 

must alter their DNA superstructure, restructure their cellular morphology, reorganize their global 

metabolism and repair oxidatively damaged biomolecules in order to begin to divide again 

(Bertrand, 2019).  A comparison of the experimental and model validation curves is provided in 

Figures 4-23 – 4-25. The validation experimental results shown found in Figures 4-23 – 4-25 

exhibit a good fit between the experimental and model data, similar to that observed with the 

calibration sets. 
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Figure 4-10: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial OD of 

0.28 and initial glutamate concentration of 10.1 g/L. 
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Figure 4-11: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial OD of 

0.36 and initial glutamate concentration of 9.8 g/L. 
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Figure 4-12: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial OD of 

0.13 and initial glutamate concentration of 10.7 g/L. 
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Figure 4-13: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial OD of 

0.14 and initial glutamate concentration of 8.6 g/L. 
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Figure 4-14: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial OD of 

0.27 and initial glutamate concentration of 12.0 g/L. 
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Figure 4-15: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial OD of 

0.12 and initial glutamate concentration of 12.4 g/L. 
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Figure 4-16: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial OD of 

0.38 and initial glutamate concentration of 6.6 g/L. 
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Figure 4-17: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis culture with an initial OD of 

0.16 and initial glutamate concentration of 6.6 g/L. 
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Figure 4-18: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis seed (2015) culture with an 

initial OD of 0.10 and initial glutamate concentration of 10.0 g/L. 
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Figure 4-19: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis seed (2015) culture with an 

initial OD of 0.08 and initial glutamate concentration of 10.3 g/L. 
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Figure 4-20: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a B. pertussis seed (2018) culture with an 

initial OD of 0.11 and initial glutamate concentration of 10.6 g/L. 
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Figure 4-21: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a starved (12 hours) B. pertussis culture 

with an initial OD of 0.32 and initial glutamate concentration of 9.3 g/L. 
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Figure 4-22: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration, 

(c) extracellular NADPH, and (d) intracellular ROS of a starved (12 hours) B. pertussis culture 

with an initial OD of 0.28 and initial glutamate concentration of 9.6 g/L. 
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Figure 4-23: Model validation of (a) optical density (OD), (b) extracellular glutamate 

concentration, (c) extracellular NADPH and (d) intracellular ROS of a B. pertussis culture with an 

initial OD of 0.14 and initial glutamate concentration of 8.6 g/L. 
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Figure 4-24: Model validation of (a) optical density (OD), (b) extracellular glutamate 

concentration, (c) extracellular NADPH and (d) intracellular ROS of a B. pertussis culture with an 

initial OD of 0.25 and initial glutamate concentration of 10.7 g/L. 
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Figure 4-25: Model validation of (a) optical density (OD), (b) extracellular glutamate 

concentration, (c) extracellular NADPH and (d) intracellular ROS a starved (12 hours) B. pertussis 

culture with an initial OD of 0.31 and initial glutamate concentration of 6.8 g/L. 

 The total root-mean squared errors (RMSE) for the fits of the calibrated and validated 

values are presented in Table 4-8 below. The RMSE for all conditions are summed and calculated 

separately for each measured variable (i.e., OD600, extracellular glutamate concentration, 

intracellular ROS concentration and extracellular NADPH concentration. The RMSE for the 

calibration and validation are very similar indicating that the noise is not over-fitted in the 

calibration step. The model provides good fits for the OD, glutamate and NADPH concentrations 

for all experimental conditions, but poorer fits for ROS concentration. The RMSE for OD, 

glutamate and NADPH concentrations is less than 10 % of the experimental data ranges for these 
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variables while the RMSE for ROS concentration is equivalent to 11.8% of the full range of 

experimental data values that this quantity spans over the course of the incubation. On the other 

hand, the model does not fit the behaviour during the starvation experiments as well, as shown in 

Figures 4-21c and 4-25. Following exposure to starvation conditions in the primary flask, the 

concentration of ROS is very high at the beginning of the secondary flask step presumably leading 

to many membrane-damaged cells. The fit of the model could be improved by adding a term for 

ROS generation in the death phase or when cells experience membrane-damage. However, this 

was not done to avoid over-parameterization of the model and to maintain a focus on the other 

phases of the model. Also, the model is not able to predict the amplitude of the ROS increase 

during the stationary phase after glutamate is depleted since it does not include any mechanism to 

form ROS other than the S→B step (Figure 4-1) and little glutamate is available to be converted 

into ROS during starvation. 

Table 4-8: Root mean-squared error of measured variables for model calibration and validation. 

The range of each variable is also shown to compare with the RMSE. 

 

OD600 

(intensity) 

Extracellular 

glutamate 

concentration 

(g/L) 

Intracellular 

ROS 

concentration 

(intensity) 

Extracellular 

NADPH 

concentration 

(intensity) 

RMSEC 0.524 0.495 0.047 0.136 

RMSEV 0.387 0.622 0.054 0.130 

Range [0-7] [0-12.5] [0-0.4] [0-1.4] 

 

Flow cytometry enables single cell measurements to determine the distribution of the 

population with respect to the measured variables. While the current work only considers the mean 

of the ROS distribution, it is possible to use the cytometry data to model the evolution of the 

distribution, but this is beyond the scope of the model presented in this chapter. A population 
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balance model presented later in the thesis is combined with the model presented in this chapter to 

describe such a ROS distribution across the cell population.  

4.4.7 Comparison of oxidative stress model to Contois growth model 

 Contois growth kinetics is one the most widely used mathematical models for predicting 

the growth of microorganisms by considering the growth rate to be a function of the substrate 

concentration and population density of the culture (Contois, 1952). One approach to assess the 

usefulness of the oxidative stress model proposed in this study is to compare it to a conventional 

substrate-biomass model with Contois kinetics that does not contain the mechanisms associated 

with oxidative stress. The equations associated with this biomass-substrate model are given in 

Eqns (4.15) – (4.17). The same technique described in section 4.3.6 is used to calibrate and validate 

the Contois model (i.e. fmincon subroutine to minimize the RMSE of OD and glutamate 

concentration). Terms for substrate inhibition of glutamate and cell death have been included for 

consistency between the models. The Contois model parameters and values are shown in Table 9. 

As shown in Figure 4-26, this simplified model is not able to predict growth following starvation 

since it does not have a mechanism in place to generate the extended lag phase of starved cells. 

The key reason that the proposed model is able to predict the longer lag is that NADPH is mostly 

depleted at the end of the primary flask following starvation. Then, a larger time is needed in the 

secondary flask to build up the necessary amount of NADPH to start growth according to the 

autocatalytic effect included in Eqn (4.10). Data obtained from the 60-hour primary flask (see 

Tables 4-5 – 4-6) were not used to calibrate and validate the Contois kinetic growth model because 

the error associated with the starvation experiments is so high the fit of the other experiments is 

affected to minimize the total error.  
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 𝑑𝑋

𝑑𝑡
= (𝜇𝑀 − 𝐷)𝑋 

(4.15) 

 𝑑𝑆

𝑑𝑡
= −

𝜇𝑀𝑋

𝑌𝑥/𝑠
 

(4.16) 

 

𝜇𝑀 =

(
𝑣

1 + 𝑆 𝐾𝑠𝑖
⁄

)𝑆

𝐾𝑀𝑋 + 𝑆
 

(4.17) 

 

Table 4-9: Parameter estimation for Contois model 

Parameter Value 

𝑣 0.1743 
𝑚𝑀

ℎ𝑟
 

𝐾𝑀 0.7554 𝑚𝑀 

𝐾𝑠𝑖 54.87 𝑚𝑀 

𝑌𝑥/𝑠  0.8083 
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒
   

𝐷 0.0236 
1

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ℎ𝑟
 

 

 

Figure 4-26: Comparison of the biomass-substrate model and starved B. pertussis experimental 

results for OD600. 
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 The oxidative stress model and simple biomass-substrate model are compared on the basis 

of the standard RMSE for the extracellular glutamate concentration and biomass (OD600) as well 

as AIC, as shown in Table 4-10. The oxidative stress model improves the predictability of both the 

biomass and the extracellular glutamate concentration. The improved fit of the oxidative stress 

model is particularly significant regarding the extracellular glutamate concentrations as reflected 

by the significant reduction of the RMSE compared to that obtained using the Contois model. The 

AIC criterion (Eqn (4.14)) is used to assess the trade-off between model dimensionality and 

predictability. As shown in Table 4-10, the AIC is much lower for the oxidative stress model, 

indicating that the additional parameters and mechanism included in this model are needed to 

improve the predictability of the model compared to the simple biomass-substrate model. This 

further supports the hypothesis that the mechanism of oxidative stress is needed to predict the 

culture behavior when exposed to starvation conditions. 

Table 4-10: Comparison between Contois kinetic and oxidative stress models 

Model 

OD600 (intensity) 
Extracellular Glutamate 

Concentration (g/L) 
AIC 

RMSE 

calibration 

RMSE 

validation 

RMSE 

calibration 

RMSE 

validation 

Contois 0.667 0.490 0.984 0.969 -121.4 

Oxidative Stress 0.542 0.387 0.495 0.622 -496.9 

 

4.8 Oxidative stress model development 

 The development of the oxidative stress model went through many iterations in order to 

obtain the model structure with the best predictability and robustness. For example, we 

hypothesized that different type of kinetics (Contois vs Monod) can be used to describe the rate of 

reaction of the substrate. Also, it was of interest to test whether the model should include a direct 

effect of oxidative stress on cell growth and death rates. The selection of the initial guesses for the 
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model parameters also has a large impact on the final estimates listed in Table 4-7 as some lead to 

saddle points (local minima model solutions) for summed RMSE found in Eqn (4.11) or physically 

impossible solutions (i.e., solutions with negative concentrations or complex numbers). Therefore, 

we carried out numerous iterations in which the model equations with different initial guesses were 

solved to obtain the best fit to the experimental data based on the summed RMSE for model 

parameter estimates converging to an absolute minimum.  

The Monod model relates the specific growth rate to substrate concentration (Monod, 

1949). In comparison, the Contois model adds an additional term to the relationship as the specific 

growth rates are functions of substrate concentration and population density (Contois, 1952). Both 

model variations are widely used to describe bacterial growth in bioreactors. The fluxes to convert 

substrate in NADPH and ROS in Eqns (4.8) and (4.9) are functions of the glutamate concentration. 

The last term in Eqns (4.8) and (4.9) enables the flux to be affected as more glutamate is converted 

into NADPH (at high intercellular glutamate concentrations) or ROS (at low intracellular 

glutamate concentrations). The level of conversion can be controlled by raising the substrate 

concentration to an exponent in this term. We changed this exponent from the original value of 1 

used by Himeoka and Kaneko (2017) in their model because a comparison of the model predictions 

and experimental data suggests that the flux from S → B has to yield a bigger spike in the 

concentration of B when S is low in order to fit the experimental data better. This exponent was 

varied arbitrarily from 1 to 3. Table 4-11 shows the predictability and robustness of the oxidative 

stress mechanism using Monod and Contois equations as well as the different exponents in the 

expressions of the fluxes from glutamate to NADPH and ROS (Eqns (4.8) and (4.9)). Contois 

kinetics fit better than Monod kinetics regardless of the exponent used for glutamate as shown by 

the lower magnitude of the AIC values. The exponents have less effect on the predictability of the 
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model as shown by similar standard errors across the measured variables and similar AIC. 

However, when the exponent becomes 3 or higher, the model performs less well as shown by the 

increase in AIC and increase of standard errors associated with the intracellular ROS 

concentration. 

 The inclusion of additional terms was explored in the oxidative stress model to determine 

if the intracellular ROS concentration has a greater inhibitory effect on growth or an impact on the 

death rate of cells. The adjustments to the death rate and growth rate are shown in Eqns (4.18) and 

(4.19), respectively. The effect on the death rate of cells can be evaluated by comparing the results 

presented earlier in this communication with those obtained by setting the parameter kd
 associated 

with the dependency of death rate on intracellular ROS concentration to zero. The death rate was 

not affected by ROS concentration because the fit of the model yielded a value of zero for kd when 

minimizing the RMSE of the measured variables the solution. The effect on cell growth can be 

determined by setting the parameter KB (associated with the inhibition of growth due to 

intracellular ROS concentration) to increasing values. Based on the AIC values obtained from 

these simulations, we conclude that intracellular ROS only has an indirect effect on the growth 

rate by participating in a competitive side reaction that consumes some of the NADPH that 

otherwise would be available for cell growth. 

 𝐷 = 𝐷𝑜 + 𝑘𝑑𝐵 (4.18) 

 
𝜇 =

𝐹𝐴𝐴

1 +
𝐵
𝐾𝐵

 (4.19) 
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Table 4-11: Comparison of the fit, robustness and predictability of the Contois and Monod models and exponents on the flux for 

optimal oxidative stress. 

Model Exponent AIC 

OD600 (intensity) 

Intracellular 

glutamate 

concentration (g/L) 

Extracellular 

NADPH 

concentration 

(intensity) 

Intracellular ROS 

concentration 

(intensity) 

RMSEC RMSEV RMSEC RMSEV RMSEC RMSEV RMSEC RMSEV 

Monod 1 -448.3 0.590 0.461 0.551 0.731 0.149 0.121 0.050 0.062 

Contois 1 -493.0 0.506 0.374 0.449 0.864 0.133 0.147 0.052 0.068 

Contois 1.5 -496.9 0.524 0.387 0.495 0.622 0.136 0.130 0.047 0.054 

Monod 2 -451.3 0.586 0.434 0.527 0.769 0.141 0.126 0.056 0.062 

Contois 2 -488.3 0.518 0.407 0.476 0.728 0.139 0.135 0.052 0.052 

Contois 3 -473.5 0.522 0.412 0.488 0.770 0.141 0.132 0.060 0.053 

Contois 

with Eqn 

(4.19) 

1.5 -386.2 0.638 0.567 0.594 0.893 0.158 0.142 0.086 0.072 
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4.9 Modeling biomass production in train of reactors 

Batch-to batch variation in the production of antigens in the upstream fermentation process 

is a well-known problem. The trends observed in the case of fermentations that exhibit a low 

pertactin yield include an increase in the concentration of ROS at the beginning of the culture 

(Zavatti, 2019) and low OD600 (Agarwal, 2021). Variability in inoculum cell density or initial 

glutamate concentration are common occurrences in the manufacturing process due to 

measurement errors, media composition including casamino acids and differences in seed batches. 

The oxidative stress model can be used to predict the effects of different seeds and initial glutamate 

concentration on the biomass during the train of reactors used in the Sanofi operation (or any other 

process for that matter) of the whooping cough vaccine to gain insight on potential sources for 

antigen variation. The fermentation process of B. pertussis includes two parallel trains of three 

consecutive reactors of increasing volume which are inoculated by seed flasks, as shown in Figure 

4-27. Differences in flask and bioreactor culture kinetics may arise due to the imperfect control of 

agitation, aeration and pH in the bioreactors. In addition, this will lead to some inaccuracy in the 

values of the parameters estimated by fitting the model to experimental data. An ideal way to 

examine some of these effects is to apply the oxidative stress model presented in this chapter. This 

provides a nice example of an important use of this model. 
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Figure 4-27: Sanofi production process for whooping cough vaccine. A seed flask is used to 

inoculate a train of reactors of sizes 20 L, 200 L and 2000 L. 

 The B. pertussis seeds (seed 1 generated in 2015 and seed 2 generated in 2018) were 

compared in Figure 4-28 for biomass and glutamate concentration in the train of reactors process 

using the set of parameters found in Table 4-7. The difference between these two seeds is captured 

by a difference in the initial concentration of intracellular NADPH and ROS. The initial ROS 

concentration was measured via flow cytometry and the NADPH concentration was determined 

for both cases by calibrating the oxidative stress model. These initial values are shown in Table 4-

12. The length of the lag phase in the 2015 seed is longer than the 2018 seed due to the higher 

initial concentration of ROS and lower initial concentration of NADPH (Table 4-12). This resulted 

in a lower concentration of biomass and higher concentration of glutamate at the end of the seed 

flask (Figures 4-28a and e). However, the model simulations show that the difference in growth 

between the two seeds diminishes as the seeds continue down the train of reactors. By the 2000 L 

reactor, almost no difference is observed in the biomass of the two seeds. It should be noted that a 

major assumption made in carrying out these simulations is that the two seeds exhibit the same 

growth rates which of course may not be correct. Further experiments should be completed to 

assess this assumption. 

 The media composition can also vary from batch to batch. While measurement errors can 

occur, another source of increased glutamate concentrations can come from casamino acids found 
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in the media. A comparison of the effect of two media compositions with initial glutamate 

concentrations of 10 g/L and 10.5 g/L on the biomass and glutamate concentration in the train of 

reactors process is shown in Figure 4-29. Although this difference in initial concentration is small, 

it is typical of the batch-to-batch variability that would occur in an industrial setting. The condition 

with 10.5 g/L glutamate in the media yields a lower biomass in all the reactors of the train; 

however, by the end of the 2000 L bioreactor, the biomass produced matches that achieved when 

the initial glutamate concentration is 10.0 g/L. It has been shown in a previous study that the area 

under the growth curve has a greater effect on pertactin production than the final biomass 

concentration (Agarwal, 2021). Therefore, the glutamate concentration of the media may be one 

of the major causes of variation found in the upstream process at Sanofi. 

Table 4-12: Initial conditions of intracellular NADPH and ROS concentrations of the seed flasks 

to model the seed batches from 2015 and 2018 in the train of reactors  

Seed Year 

Initial Intracellular 

NADPH Concentration 

(mmol/L) 

Initial Intracellular ROS 

Concentration 

(intensity) 

2015 0.112 0.0623 

2018 0.345 0.0456 
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Figure 4-28: Model prediction of Sanofi process (train of seed flask and three increasing sized reactors) for two B. pertussis seed 

batches. Biomass curve of a) seed flask, b) 20 L bioreactor, c) 200 L bioreactor and d) 2000 L bioreactor. Glutamate concentration 

curve of e) seed flask, f) 20 L bioreactor, g) 200 L bioreactor and h) 2000 L bioreactor. 
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Figure 4-29: Model prediction of Sanofi process (train of seed flask and three increasing sized reactors) for B. pertussis cultures with 

media of 10 g/L and 10.5 g/L glutamate. Biomass curve of a) seed flask, b) 20 L bioreactor, c) 200 L bioreactor and d) 2000 L 

bioreactor. Glutamate concentration curve of e) seed flask, f) 20 L bioreactor, g) 200 L bioreactor and h) 2000 L bioreactor.
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4.5 Conclusions 

A metabolic model to predict the growth of B. pertussis that accounts for oxidative stress 

was calibrated and validated against data collected during flask fermentation experiments. The 

conditions analyzed in these experiments cover a range of initial glutamate concentrations, initial 

OD and starvation conditions. The experimental data gave clear evidence for substrate inhibition 

due to glutamate and the resulting increase in oxidative stress. The model was able to describe 

different scenarios of oxidative stress conditions and the effects of glutamate levels on substrate 

inhibition and oxidative stress. The experiments also show that oxidative stress has a low impact 

on the growth rate of B. pertussis. Quorum sensing may explain this effect when the inoculum size 

is small. Following the comparison of different model structures and comparisons of model 

predictions to data, it was concluded that intracellular ROS only has an indirect effect on the cell 

growth rate by reacting with NADPH and thereby reducing the amount of NADPH otherwise 

available for growth. It is shown that a simple substrate-biomass model cannot describe the 

evolution of the substrate and biomass especially during the secondary fermentation that follows 

a starvation period in the primary fermentation. The ability of the model to describe the impact on 

growth following starvation periods makes it suitable to describe and possibly optimize the 

operation of a train of fermenters used in the vaccine manufacturing process. The predictive ability 

of the model for ROS and extracellular NADPH may be further enhanced by more accurate 

modelling of the ROS levels during starvation periods.



109 

 

Chapter 5 Modeling Heterogeneity Using a 

Coupled Population Balance-Oxidative Stress 

Model 

5.1 Introduction 

Heterogeneous conditions within a cell population is a common occurrence in bioreactors 

and is typically caused by the processing of cell cultures in vessels of varying sizes, initial process 

and operating conditions and effects of mixing. Cell populations in bioreactors are commonly 

heterogeneous in properties such as size, yield and growth due to spatial gradients in culture 

conditions such as the dissolved gas concentration, pH, nutrient concentration and shear rate (Lara 

et al., 2006). These spatial gradients typically arise because of deficient mixing or the location of 

aeration and nutrient inlets, especially in large-scale operations. When cultured in a heterogeneous 

environment, cells are exposed to varying conditions as they travel through the various zones of a 

bioreactor. Such changes can affect cell metabolism, yield and kinetics of the reactions of interest. 

Heterogeneity of the cell population may also arise in well mixed operations due to heterogeneity 

in the initial conditions, e.g. intracellular concentrations, cell size, stage within the cell cycle of 

growth, etc. Due to this heterogeneity, each cell in the population is at a different stage in its life 

cycle at any particular time and so contains different quantities of proteins, DNA, RNA and other 

components. 
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Most biotechnological processes are generally regulated through closed loop control of 

lumped or average quantities such as dissolved oxygen, average substrate concentration or pH. 

However, due to the heterogeneity of the cell population, control approaches that are based on only 

the average culture properties may not necessarily guarantee consistent process outcomes. Several 

studies (e.g. Le et al., 2012, Enfors et al., 2001) have shown that bioprocesses operated under 

precise dissolved oxygen and pH control may still yield significantly different final biomass and 

product titers due to metabolic shifts resulting from minute variations in either initial or 

environmental conditions. Due to this sensitivity, it is imperative to understand the nature and 

causes of the cell heterogeneity since relatively minor differences in the distribution of the cell 

population may lead to large variability in the resulting levels of growth and productivity. 

For example, the whooping cough (B. pertussis) vaccine manufacturing operation at Sanofi 

involves a train of reactors of increasing volume in which the final cell population from one step 

is used to inoculate the next reactor in the sequence. We hypothesize in this work that the 

variability in cell population may propagate and be even amplified moving down the train of 

bioreactors, especially in the presence of metabolic shifts. Population balance models (PBMs) can 

be formulated to describe the evolution in time of these distributions which can then be correlated 

to the final productivity. PBMs contain a set of equations which describes the heterogeneous 

behavior of a population of particles from analysis of the behavior of single particles. In a 

bioreactor, such analysis provides a deterministic description of the dynamic evolution of cell 

distributions. Since flow cytometry measures the properties of individual cells, the distributions 

obtained in flow cytometric measurements can then be used to calibrate a population balance 

model. The flow cytometry data can be used to gain insight into the distributions of important 

quantities (e.g., cell size, intracellular concentrations of metabolites) over the entire cell 
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population. The resulting PBM can then be used to predict the heterogeneity of the cell population 

with respect to experimental conditions that were not used to calibrate the model.  

Recently, interest in applying population balance models to describe cell state distributions 

has grown. Quedeville et al. (2018) used a population balance model to differentiate between 

growth in mass from growth in the number of cells. The cell length and the rate of anabolism were 

chosen as the physiological properties in the population balance model. This model was able to 

demonstrate that growth in mass and cell number are only equivalent at steady state in a continuous 

bioreactor and during the exponential growth phase in a batch culture. Durr et al. (2016) analyzed 

the influence of cell-to-cell variability on important process variables for influenza vaccine 

production. Jerono et al. (2021) used a population balance model to determine parameters related 

to kinetics and cell division in a batch fermentation of yeast. The model revealed a good agreement 

between the model predictions and measurements of biomass, glucose and ethanol. 

The objective of the current study is to present a population balance model that makes use 

of flow cytometry data to predict distributions in cell size and intracellular glutamate, ROS 

(reactive oxidative species), NADPH and NADP+ in shake flask cultures of B. pertussis. Our focus 

on oxidative stress related properties is motivated by our hypothesis that ROS is a main cause of 

variability in productivity of antigens observed in the whooping cough vaccine manufacturing 

process. The population balance model is then coupled to the oxidative stress model presented in 

Chapter 4 based on a reaction mechanism that relates glutamate concentration, extracellular 

NADPH levels and growth to oxidative stress levels. Flow cytometric data for cell size and 

intracellular ROS concentration collected from the cell cultures are used to calibrate the model. 

Since ROS is known to have a significant effect on protein synthesis, this model should be useful 

in predicting the production of antigens when the culture is exposed to different oxidative stress 
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conditions. Although a quantitative correlation between ROS and specific antigen productivity for 

each cell is not available at this point, the model can be used to improve our understanding of the 

fermentation conditions that favor the propagation of cells under conditions of lower ROS 

concentration which are expected to be superior producers of antigens than cells subject to higher 

ROS levels. This could be ultimately used to minimize fluctuations in the production of the desired 

antigen in the upstream process and provide means of increasing the final yield of the entire 

process.  

The remainder of this chapter is organized as follows. Section 2 presents the development 

and coupling of the population balance model and oxidative stress model. Section 3 describes the 

materials and methods used during the experiments and algorithm used to fit the model to the 

experimental data. Section 4 presents the flow cytometry distributions obtained from the 

experiments, analysis of experiments and model predictions, comparison of the population balance 

and bulk model predictions and possible implications of the model on the manufacturing process. 

Finally, the conclusions from this phase of the project are given in section 5. 

 

5.2 Model Outline 

5.2.1 Population balance general form 

The general form of a population balance equation is a partial differential equation as 

shown below in Eqn (5.1) (Fredrickson et al., 1967; Ramkrishna, 1979). The definitions of the 

parameters appearing Eqn (5.1) are given in Table 5-1. The population balance model calculates 

the distributions of cell properties of interest. Examples of such properties can be the location of 
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the cell in the bioreactor (considering mixing and the concentration within the space), 

physiological properties such as the intracellular concentration of components or the size of the 

cell. In this work, cell size and the intracellular concentrations of glutamate, NADPH, ROS, and 

NADP+ are the physiological properties to be determined by the PBM. 

𝛿𝑁(𝐱, 𝑡)

𝛿𝑡
+ ∇𝐱(𝐫(𝐱, 𝑠)𝑁(𝐱, 𝑡)) + 𝛾(𝐱, 𝑡)𝑁(𝑥, 𝑡) + 𝜃𝑁(𝐱, 𝑡)

= 2 ∫ 𝛾(𝐱, 𝑡)𝑝(𝐱, 𝑦, 𝑧)𝑁(𝐱, 𝑡)𝐝𝐱

𝑥𝑚𝑎𝑥

𝑥

 

(5.1) 

 

Four terms appear on the LHS of Eqn (5.1). The 5 physiological properties of interest in the current 

problem (i.e., intracellular molecules of glutamate, NADPH, ROS, and NADP+ and cell size) make 

up the vector x. The first term in Eqn (5.1) accounts for the accumulation of the number of cells N 

at a specific level x of the physiological state. The second term accounts for the gain (or loss) of 

the number of cells N with a physiological state x due to reactions occurring as the cells evolve 

through the cell cycle. The third term accounts for the loss of cells with physiological state x due 

to cell division leading to the birth of smaller cells. The fourth term is the dilution rate due to cells 

with physiological state x leaving the bioreactor. The term on the RHS of Eqn (5.1) represents the 

rate of birth of cells with the physiological state x arising from the division of each cell into 2 

daughter cells. 

The population balance model typically consists of a first order partial integro-differential 

equation as shown in Eqn (5.1) coupled to a set of ordinary differential equations that describe the 

temporal evolution of the vector. The solution to this system of the PDE and ODE equations can 

be obtained using with a variety of numerical methods. Mantzaris et al. (2001) compared several 

finite difference algorithms for the solution of the general formulation of the PDE. In this chapter, 
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we proposed a novel approach for solving the model based on the method of characteristics which 

offers some computational advantages as described below. The population balance model was 

calibrated and validated using data collected during flask inoculation experiments on B. pertussis. 

Table 5-1: General form population balance model definitions 

Variable Definition 

𝐱(𝑡) 
X(t) 

Vector of physiological property of cells 

Size of the cell (intensity) 

𝑡 time (hr) 

𝑆(𝑡) substrate concentration (mmol/L) 

𝑁(𝐱, 𝑡) number of cells with state x at time t (cells) 

𝐫(𝐱, 𝑆) Vector of reaction rates of individual cell 

components 

𝛾(𝐱, 𝑡) partitioning rate (hr-1) 

𝜃 dilution rate (hr-1) 

𝑝(𝐱, 𝑦, 𝑧) probability density function for cell division 

 

5.2.2 Model Formulation 

 For the development of the model and its calibration with the data from fermentation flask 

experiments, we make the following assumptions: 

1. Each parent cell splits the physiological property x evenly between two daughter cells. 

Since the physiological properties involving intracellular species (glutamate, NADPH, 

ROS and NADP+) are split evenly, the concentration of these components in the daughter 

cells will be the identical to those in the mother cell. The cell size of the mother cell will 

be divided evenly between the 2 daughter cells. Therefore, the term for the birth of cells in 

the physiological state level is simplified as shown in Eqn (5.2), i.e.,  

 2 ∫ 𝛾(𝐱, 𝑡)𝑝(𝐱, 2𝐱, 𝑆)𝑁(𝐱, 𝑡)𝐝𝐱

𝑥𝑚𝑎𝑥

𝑥

= 4𝛾(𝟐𝐱, 𝑡)𝑁(𝟐𝐱, 𝑡) (5.2) 
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Equal partitioning simplifies the birth of cells with physiological property x because instead 

of a probability that any cell with a higher level of physiological property (from levels of 

x to xmax) dividing into a cell with physiological property level of x, the birth rate of cells 

in now limited to cells that have twice the physiological property (2x). This eliminates the 

integral, probability density function and determines that the cells with 𝑁(𝟐𝐱, 𝑡) divide into 

cells with property x. The probability density function (𝑝(𝐱, 2𝐱, 𝑆)) can be a variety of 

function depending on the assumptions made (Mantzaris et al., 2001a).   

2. Since flask experiments are conducted in batch operating mode, no dilution term appears, 

i.e., 

 𝜃 = 0 (5.3) 

 

3. Cell death is negligible. This assumption which has been made to simplify the 

computations, is also very reasonable since the experiments discussed in Chapter 4 show 

that during the exponential growth phase the percentage of the total number of cells that 

are dead is <3 %. 

4. The various species involved in biomass production over the course of the incubation react 

according to the mechanism described in the oxidative stress model presented in Chapter 

4. The process for coupling the population balance model and oxidative stress model is 

shown in section 5.2.3. 

5. The cell growth rate is proportional to its size, i.e.,  

 𝒓(𝒙, 𝑆) = 𝜇𝑋(𝑡) (5.4) 
 

where the proportionality factor 𝜇 is the growth rate .  

6. The partitioning rate contains a probability density function 𝑓(𝑥) that is a function on the 

size of the cell (X(t)) (Mantzaris et al., 1999):  
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 𝛾(𝐱, 𝑡) =
𝑓(𝑋)

1 − ∫ 𝑓(𝑋)𝑑𝑋
𝑋

0

𝜇𝑋(𝑡) (5.5) 

where f(X) is the division probability density function only on cell size. The probability 

density function is taken to be a left-hand side truncated Gaussian distribution with a mean 

and standard deviation. It is renormalized in the denominator in order to be a probability 

density function (Eakman et al., 1966). The division rate depends on the substrate 

concentration through the growth rate function (Tsuchiya et al., 1966).  

Simplification of Eqn (5.1) based on these assumptions yields the population balance 

equation in the form of the PDE given in Eqn (5.6), subject to the initial conditions 𝑁(𝐱, 𝑡 = 0) =

𝑁𝑜.  

 
𝛿𝑁(𝐱, 𝑡)

𝛿𝑡
+ ∇𝐱(𝐫(𝐱, 𝑠)𝑁(𝐱, 𝑡)) + 𝛾(𝐱, 𝑡)𝑁(𝐱, 𝑡) − 4𝛾(2𝐱, 𝑡)𝑁(2𝐱, 𝑡) = 0 (5.6) 

To complete the model, equation (5.6) is coupled to a set of ordinary differential equations 

that describe the reaction rates of the various species. Generally, systems involving a PDE coupled 

to a set of ODEs is computationally expensive when treated by finite differences methods. 

Consequently, we propose to solve the system of equations by the method of characteristics in this 

study. This method is a technique for solving first order partial differential equations by 

transforming the PDE in Eqn (5.6) into a family of ordinary differential equations. The goal is to 

transform coordinates from (x, t) to a new system of coordinates in which the partial differential 

equation becomes a system of ordinary differential equations that yield the solution along 

trajectories in the x-t plane that are referred to as characteristic curves. The transformation of our 

model using the method of characteristics is shown below in Eqn (5.7) – (5.9). To simplify the 

presentation of the method here, we assume the vector 𝐱 consists of a single component 𝑥(𝑡), i.e., 

a one-dimensional problem. In the next section, the presentation will be extended to account for a 
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multi-dimensional problem. In Eqns (5.7) – (5.9), the physiological property 𝑥(𝑡) is transformed 

into a family of characteristic curves 𝐶𝑥(𝑡), the number of cells from 𝑁(𝑥, 𝑡) into 𝑣(𝑡) and the 

number of cells with double the physiological property 2𝑥(𝑡) from 𝑁(2𝑥, 𝑡) into 𝑣2(𝑡) as follows 

in Eqns (5.7) – (5.9). The full derivation using the method of characteristics is shown in Appendix 

A. 𝐶𝑥(𝑡) is the solution of x(t) for a particular initial condition 𝑥𝑜. Since the system involves a 

distribution of initial states 𝑥𝑜, the model determines a family of solutions 𝐶𝑥(𝑡) corresponding to 

the different values of 𝑥𝑜. Therefore, the method transforms the original PDE into the solution of 

many ODEs defined by Eqn (5.7) where each ODE is solved with a different value of 𝑥𝑜. Since 

the method of characteristics applied in the current study is used to solve the problem for each 

initial condition in a moving system of coordinates with velocity 𝑟(𝑥, 𝑠), then it can be shown that 

∇𝑥(𝑟(𝑥, 𝑠)𝑁(𝑥, 𝑡)) = 0 (Lim, 2005). This latter term represents the convection of the quantity 

𝑁(𝑥, 𝑡) with a velocity 𝑟(𝑥, 𝑠). Since the relative velocity with respect to a system of coordinates 

that moves with velocity 𝑟(𝑥, 𝑠) is zero, the corresponding convection term is zero in the moving 

system of coordinates. The elimination of this term is a key advantage of the method of 

characteristics over other PDE solution methods since this convection term often causes numerical 

stability problems. 

  
𝑑𝐶𝑥(𝑡)

𝑑𝑡
= 𝑟(𝐶𝑥(𝑡), 𝑡);  𝐶𝑥(0) = 𝑥𝑜 (5.7) 

 𝑣(𝑡) = 𝑁(𝐶𝑥(𝑡), 𝑡);  𝑣2(𝑡) = 𝑁(2𝐶𝑥(𝑡), 𝑡) (5.8) 

 
𝑑𝑣(𝑡)

𝑑𝑡
+ (𝛾(𝐶𝑥(𝑡), 𝑡))𝑣(𝑡) − 4𝛾(2𝐶𝑥(𝑡), 𝑡)𝑣2(𝑡) = 0       𝑣(0) = 𝑁(𝑥𝑜 , 𝑡) (5.9) 

The set of equations to solve the population balance model is shown in Eqns (5.10) – (5.13). 

Along the characteristic curves the number of cells at a particular state dependent only on time and 

on the initial condition, as shown in Eqns (5.11) – (5.12). The total biomass is defined in Eqn 
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(5.10) as the weighted sum of the number of cells of a particular volume. The consumption of the 

substrate in the bulk is a function of the total biomass, as shown in Eqn (5.11). The substrate 

consumption rate also includes a substrate inhibition term found in the study of B. pertussis flask 

cultures with differing glutamate concentration in the media, as shown in section 4.4.2 in Chapter 

4. Eqn (5.12) describes the change in the cell size X(t) according to the growth rate 𝜇. Finally, Eqn 

(5.13) describes one of the ODEs obtained from the method of characteristics according to Eqn 

(5.9) for a particular characteristic curve with initial condition 𝐶𝑥(0) = 𝑥𝑜. The growth rate 𝜇 in 

Eqns (5.12) and (5.13) depends on all the variables of the problem and so couples the population 

balance model with the oxidative stress model to be presented in section 5.2.3. Table 5-2 lists the 

parameter definitions for the population balance model. 

 𝑁𝑏(𝑡) =∑𝑋(𝑡)𝑣(𝑡) (5.10) 

 𝑑𝑆𝑒𝑥𝑡
𝑑𝑡

= −
1

𝑌

(

 
 
 
 (

𝑣𝑏

1 +
𝑆𝑒𝑥𝑡(𝑡)

𝐾𝑠𝑖
⁄

)𝑆𝑒𝑥𝑡(𝑡)

𝑘𝑁𝑏(𝑡) + 𝑆𝑒𝑥𝑡(𝑡)

)

 
 
 
 

𝑁𝑏(𝑡) 
(5.11) 

 𝑑𝑋

𝑑𝑡
= 𝜇𝑋(𝑡) 

(5.12) 

 

𝑑𝑣

𝑑𝑡
= −𝜇(

𝑓(𝑋(𝑡))

1 − ∫ 𝑓(𝑋(𝑡))𝑑𝑋
𝑋

0

𝑋(𝑡))𝑣(𝑡)

+ 4𝜇 (
𝑓(2𝑋(𝑡))

1 − ∫ 𝑓(𝑋(𝑡))𝑑𝑋
2𝑋

0

2𝑋(𝑡)) 𝑣2(𝑡) 

(5.13) 

 

5.2.3 Coupling of the population balance and oxidative stress models 

 The method of characteristics presented in the previous section requires solving the 

characteristic curves for each of the variables in the state vector x with ODEs of the type of Eqn 
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(5.7). Since x in this problem contains five state variables, i.e., intracellular glutamate, NADPH, 

NADP+ and ROS concentrations and cell size, a family of characteristic curves must be generated 

for each of these variables. The oxidative stress model presented in Chapter 4 is used to generate 

these curves. To summarize the phenomena described by this model, it describes the reactions by 

which glutamate is consumed by the cell and used for the production of NADPH (A) or ROS (B). 

The relative fluxes of glutamate for these two pathways depends on the concentration of glutamate 

inside the cell. If the glutamate concentration is high, the flux to produce NADPH dominates; if 

the glutamate concentration is low, the flux for ROS dominates. As discussed in Chapter 4, 

NADPH promotes cell growth, while ROS inhibits growth by reacting with NADPH to form 

NADP+ and lowers the amount of NADPH available for growth. Eqns (5-14) – (5-24) present the 

coupled population balance and oxidative stress model. Table 5-2 lists the definitions of the 

parameters used in these equations. 

 

 𝑁𝑏(𝑡) =
∑𝑋𝑣

∑𝑋𝑜𝑣𝑜
𝑂𝐷600,𝑖𝑛𝑖𝑡𝑖𝑎𝑙 (5.14) 

 𝑑𝑆𝑒𝑥𝑡
𝑑𝑡

= −
1

𝑌

(

 
 
 
 (

𝑣𝑏

1 +
𝑆𝑒𝑥𝑡

𝐾𝑠𝑖
⁄

)𝑆𝑒𝑥𝑡

𝑘𝑁𝑏 + 𝑆𝑒𝑥𝑡

)

 
 
 
 

𝑁𝑏 (5.15) 

 𝑑𝑋

𝑑𝑡
= 𝜇𝑋 (5.16) 

 𝑑𝑆

𝑑𝑡
= −𝐹𝐴𝐴 − 𝐹𝐵𝐴 + 𝐴(𝑆𝑒𝑥𝑡 − 𝑆) − 𝜇𝑆 (5.17) 

 𝑑𝐴

𝑑𝑡
= 𝐹𝐴𝐴 − 𝑘𝑝𝐴𝐵 + 𝑘𝑚𝐶 − 𝜇𝐴 (5.18) 
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 𝑑𝐵

𝑑𝑡
= 𝐹𝐵𝐴 − 𝑘𝑝𝐴𝐵 + 𝑘𝑚𝐶 − 𝜇𝐵 − 𝑑𝐵𝐵 (5.19) 

 𝑑𝐶

𝑑𝑡
= 𝑘𝑝𝐴𝐵 − 𝑘𝑚𝐶 − 𝜇𝐶 (5.20) 

 
𝑑v

𝑑𝑡
= −𝜇 (

𝑓(𝑋(𝑡))

1 − ∫ 𝑓(𝑋(𝑡))𝑑𝑋
𝑋

0

𝑋)v + 4𝜇 (
𝑓(2𝑋(𝑡))

1 − ∫ 𝑓(𝑋(𝑡))𝑑𝑋
2𝑋

0

2𝑋) v2 (5.21) 

 

𝐹𝐴 =

(
𝑣𝑚𝑎𝑥

1 + 𝑆 𝐾𝑠𝑖
⁄

)𝑆

𝐾𝑁𝑏 + 𝑆
(

𝑆

𝐾𝑡 + 𝑆
)
1.5

 

(5.22) 

 

𝐹𝐵 =

(
𝑣𝑚𝑎𝑥

1 + 𝑆 𝐾𝑠𝑖
⁄

)𝑆

𝐾𝑁𝑏 + 𝑆
(
𝐾𝑡

𝐾𝑡 + 𝑆
)
1.5

 

(5.23) 

 𝜇 = 𝐹𝐴𝐴 (5.24) 

 

Eqns (5.16) – (5.24) are solved for every set of initial conditions, i.e., 

𝐱 = [𝑋(0)   𝑆(0)   𝐴(0)  𝐵 (0) 𝐶(0) ]𝑻           𝑣(0) = 𝑁(𝐱(𝟎)) 
 

Table 5-2: Population balance model parameter definitions 

Variable Definition Units 

𝑁𝑏 total biomass concentration 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

𝑡 time ℎ𝑟 
𝑆𝑒𝑥𝑡 extracellular substrate concentration 𝑚𝑚𝑜𝑙/𝐿 

𝑋 cell size 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 

𝑆 intracellular glutamate concentration 𝑚𝑚𝑜𝑙/𝐿 

𝐴 intracellular NADPH concentration 𝑚𝑚𝑜𝑙/𝐿 

𝐵 intracellular ROS concentration 𝑚𝑚𝑜𝑙/𝐿 

𝐶 intracellular NADP+ concentration 𝑚𝑚𝑜𝑙/𝐿 

𝑣 
number of cells with a certain size X and 

intercellular concentrations of components 
𝑐𝑒𝑙𝑙𝑠 

𝑣2 
number of cells with double the size of v with the 

same intercellular concentration of components 
𝑐𝑒𝑙𝑙𝑠 
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𝜇 growth rate of individual cells 
1

ℎ𝑟
 

𝑓(𝑋(𝑡)) 
probability density function for the partition rate of 

cells of size X 
- 

𝑌 yield coefficient 
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒
 

𝑣𝑏 maximum specific growth rate for biomass 
1

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ℎ𝑟
 

𝑘 half saturation constant 
1

ℎ𝑟
 

𝐾𝑠𝑖 rate constant for substrate inhibition 
1

ℎ𝑟
 

𝐹𝐴 flux of substrate conversion into A 
1

𝑚𝑀 ℎ𝑟
 

𝐹𝐵 flux of substrate conversion into B 
1

ℎ𝑟
 

𝑘𝑝 rate constant of A+B → C 
1

ℎ𝑟
 

𝑘𝑚 rate constant of C → A + B 
𝑚𝑀

ℎ𝑟
 

𝑑 rate of degradation of B (ROS) 
1

ℎ𝑟
 

𝑣𝑚𝑎𝑥 rate constant for the generation of NADPH 𝑚𝑀 

𝐾 saturation constant of FA + FB 𝑚𝑀 

𝐾𝑡 A and B balance constant 
1

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 ℎ𝑟
 

 

 In the population balance model, Eqns (5.16) – (5.20) determine the distributions arising 

from the heterogeneities occurring in the population of cells. These equations generate the 

characteristic curves, each with their own set of initial conditions. Flow cytometry is used to 

measure the individual cell volumes and intracellular ROS concentrations. Figure 5-1 shows the 

contour of the number of cells with a particular combination of cell volume and ROS 

concentration. In order to simplify the number of different initial conditions, the cells were 

classified into discrete groups represented by the grid in Figure 5-1. All the cells contained within 

each square grid, referred to as a bin, were summed and the values corresponding to the middle 

point of the grid were defined as the initial cell volume and ROS concentration. For example, 940 
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cells lie within 7-8 intensity cell volume and 0.06-0.07 intensity ROS concentration (highlighted 

on figure). All 940 cells found in this bin are considered to have initial conditions of 7.5 for cell 

volume and 0.065 for ROS concentration. A total of 462 initial conditions combining 21 different 

initial cell volumes and 22 initial ROS concentrations were considered. Since the initial 

concentrations of intracellular glutamate, NADPH and NADP+ were not measured in these 

experiments, each was assumed to be the same in all 462 initial bins in the model. Thus, these 

initial concentrations were assumed to be the same in all of the cells regardless of size and ROS 

level. The initial concentrations of these components are summarized in Table 5-3 and the model 

solves only for the initial concentrations of NADPH and NADP+. The initial concentration of 

glutamate assumed was the value obtained in the primary flask by the bulk oxidative stress model 

shown in Chapter 4. 

 

Figure 5-1: Gridding the cell volume and ROS concentration flow cytometry data of B. pertussis 

flask culture experiments for initial conditions in the population balance model. The shaded region 

contains 940 cells with 7-8 intensity cell volume and 0.06-0.07 intensity ROS concentration. 
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Table 5-3: Initial concentrations of intracellular components 

Component Initial Concentration (mmol/L) 

S 0.104 

A 0.2780 

C 0.0420 

 

 

5.3 Materials and Methods 

5.3.1 B. pertussis batch fermentations 

The data from B. pertussis flask experiments used to develop the oxidative stress model in 

Chapter 4 are also used in the development of the population balance model. The experimental 

procedure is briefly described here for clarity. B. pertussis fermentations were carried out in 250 

mL flasks (polycarbonate, sterile, with a vented cap having 0.22 µm pore-size PTFE membrane 

from VWR, Canada) with a working volume of 60 mL by incubation at 36°C and 200 rpm for 36 

hrs. Two 1-mL samples were collected every six hours to measure OD via spectrophotometry, 

glutamate concentration via BioProfile and ROS concentration via flow cytometry. Four 

experiments were conducted (3 for model calibration and 1 for model validation). The differences 

in the conditions for these cultures include the starting OD and glutamate concentration in the 

media. Table 5-4 lists the conditions used for the calibration and validation of the model. 

Table 5-4: Calibration and validation conditions for coupled population balance and oxidative 

stress model 

Trial 

Set OD600 

(intensity) 

Glutamate 

concentration (g/L) 

1 Calibration 0.28 10.1 

2 Calibration 0.13 10.7 

3 Calibration 0.12 12.4 

4 Validation 0.14 8.6 
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5.3.2 OD, glutamate and ROS measurements 

A detailed description of the methods used for these measurements is provided in Chapter 

3. Two sets of measurements (OD, glutamate and ROS concentrations) were made based on the 

two 1-ml samples collected at each interval. Thus, each data point shown represents an average of 

four measurements, i.e., duplicate samples from each of the two flasks. Following are summaries 

of the experimental methods used. 

To measure OD, the sample was diluted by a factor of 20 using a 0.9% saline solution and 

OD was obtained using optical spectrophotometry by measurement of the absorbance at 600 nm. 

The supernatant was collected after centrifugation at 10,000 G for 3 minutes in order to determine 

the glutamate concentration (after 20-fold dilution) using the chemistry module of a BioProfile 

FLEX Analyzer (Nova Medical).  

Oxidative stress was measured using the fluorescein derivative carboxy-2',7'-

dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) from Sigma-Aldrich (Canada). 

Samples with an OD of 0.05 were prepared and carboxy-H2DCFDA was added to the samples to 

obtain a final concentration of 50 µM. Flow cytometry was conducted using an S3e Cell Sorter 

(Bio Rad). To measure the ROS distribution, the FL1 diode was used for DCF emission (green 

fluorescence) which fluoresces at an excitation/ emission pair of 503/523 nm. A total of 20,000 

events per sample were collected at a rate of 1000 events per second. 

5.3.3 Model fitting 

The coupled model (Eqns (5.14) – (5.24)) was calibrated using the fmincon function 

(subroutine) in MATLAB. This function is designed to find the minimum of a nonlinear 
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multivariate function of the square errors between predicted and measured quantities. In particular, 

the sum of the root-mean-square-error (RMSE) of the measured variables (biomass and 

extracellular glutamate concentration) as well as the RMSE of the mean and standard deviation of 

the flow cytometric distributions of cell volume and intracellular ROS concentration were 

minimized. To ensure that all the variables have comparable effects on the outcome of the model, 

the RMSE of each variable was standardized by dividing it by the corresponding mean, as shown 

in the following expression: 

 
𝑅𝑀𝑆𝐸 =∑

√∑ (𝑦𝑖 − 𝑦𝑖̂)2
𝑛
𝑖=1

𝑛
𝜇𝑖

 
(5.25) 

 

where 𝑦𝑖 is the measured value, 𝑦̂𝑖 is the predicted variable, n is the number of calibration samples 

and 𝜇𝑖 is the mean of each variable. 

The model was calibrated with 30 samples collected under 3 different flask conditions and 

validated with an additional 10 samples collected from a different condition. OD and glutamate 

concentration measurements were obtained for each sample (calibrated to a total 30 samples with 

10 used in validation). The flow cytometry data were divided into 462 values and modelled via the 

method of characteristics. The average and standard deviations of the distributions for size and 

standard deviation were calculated based on the model results of 1776 differential equations 

corresponding to the number of different combinations of initial ROS concentration and cell size 

conditions. For each such combination, a different characteristic curve was calculated. The model 

parameters estimated by the fitting were the various rate constants (reaction rate constants, 

substrate inhibition rate constant, growth rates, partitioning rate and degradation rate constant for 
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ROS), initial concentration of component A (intracellular NADPH) and the ROS concentration 

factor to convert intensity into a concentration unit. Intracellular NADPH was not measured and 

therefore was considered to be a calibration parameter. These terms are defined in Table 5-2 in 

section 5.2.3. 

The Kullback-Leibler divergence (Kullback and Leibler, 1951) has been often used as a 

measure of the disparity between two probability distributions P(x) and Q(x). Kullback-Leibler 

divergence (Eqn (5.26)) is calculated as the sum of probability of each event in P(x) multiplied by 

the logarithm of the ratio of the probability of the event in P(x) to the probability of the event in 

Q(x) shown in Eq (5.26). In the case of the flow cytometry data for cell volume and ROS 

concentration, P(x) represents the fraction of cells in a bin predicted by the model and Q(x) 

corresponds to the fraction of cells in a bin obtained from the experiments. The sum involved in 

Eqn (5.26) is taken over all 464 bins.  The closer the Kullback-Leibler divergence is to 0, the more 

similar are the measured and predicted population distributions. A value of 0 corresponds to perfect 

agreement between the distributions. 

 𝐷𝐾𝐿 =∑𝑃(𝑥) ln
𝑃(𝑥)

𝑄(𝑥)
 (5.26) 

5.3.4 Probability density function 

The partitioning rate in the population balance model contains a probability density 

function 𝑓(𝑋) as shown in Eqn (5.27). The probability density function is defined in terms of 2 

quantities – the mean (𝑚) and variance of the distribution. The dependence of the probability 

density function 𝑓(𝑋) on cell volume is shown below in Figure 5-2. A change in the mean of this 

function shifts the curve horizontally (Figure 5-2a), whereas a change in the standard deviation (𝜎) 

changes the width of the curve (Figure 5-2b). As the standard deviation increases, so does the 
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width of the curve. The partitioning rate also depends on the substrate concentration, as evident 

from Eqn (5.27) (Tsuchiya et al., 1966; Mantzaris et al., 1999). 

 𝛾 =
𝑓(𝑋)

1 − ∫ 𝑓(𝑋)𝑑𝑥
𝑋

0

(

 
 
 
 (

𝑣𝑚𝑎𝑥
1 + 𝑆 𝐾𝑠𝑖

⁄
)𝑆

𝐾𝑋 + 𝑆
(

𝑆

𝐾𝑡 + 𝑆
)
1.5

)

 
 
 
 

𝐴𝑋 (5.27) 

 

Figure 5-2: Effect of distribution (a) mean and (b) standard deviation on the dependence of 

probability density function 𝑓(𝑋) on cell volume. 

 While the probability density function was initially assumed to be normal with a prescribed 

mean and a standard deviation, the fitting of the distribution to the experimental data was found to 

be challenging due to the nonlinearity of the problem and the occurrence of local minima in the 

parameter fitting optimization procedure. After failing to satisfactorily to fit the model to the 

experimental data for a plethora of conditions for the mean and standard deviation of the 

probability density function, we decided to use an interpolated function (with 8 points) as shown 

in Figure 5-3. The interpolated function allowed for a steeper increase in the probability of division 

with increasing cell size while still having a low probability of cell division before the sharp rise 

close to size 12. The interpolated curve for 𝛾 applies to the data exactly as does the probability 
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density function 𝑓(𝑋); a one-to-one correspondence exists between these two quantities for each 

cell volume 𝑋. The use of this interpolated function allowed for more control of the partitioning 

rate in the parameter estimation procedure leading to a better overall fit of the model. It should be 

noted that tuning the probability function affects the distribution of cell size but not the other states 

since the reaction rates depend on the total number of cells 𝑁𝑏, but not on individual cell sizes (see 

Eqns (5.22) and (5.23)). 

 

Figure 5-3: Comparison of the dependence of the partitioning rate on cell volume according to a 

normal distribution (red and yellow) and fitted interpolated function (blue) for the probability 

density function.  

 

5.4 Results and Discussion 

5.4.1 Trends of the flow cytometry distributions 

 The same control conditions as in Chapter 4 were used to mimic the first reactor in the 

Sanofi manufacturing train. This condition involved the use of the Sanofi media formulation 



129 

 

containing 9.8 g/L glutamate. The experiment was conducted in a secondary flask of B. pertussis 

which was inoculated by cells collected during the exponential growth phase from the primary 

flask. The measured values of biomass and extracellular glutamate concentration, average cell 

volume, intracellular ROS concentration, cell volume distribution and intracellular ROS 

concentration distribution obtained under these control conditions are presented in Figure 5-4.  

The cells have a larger cell volume and a wider distribution during the lag and stationary 

phases (Figures 5-4c and e), whereas they have a smaller volume and narrower distribution during 

the exponential growth phase. Generally, cells increase in size during the lag phase and their 

metabolism is targeted to prepare the molecules necessary for replication (Rolfe et al., 2012). 

Usually, the average cell size decreases during the stationary phase as cells stop growing while 

division can still occur (Kolter et al., 1993). On the other hand, pH can also play an important role 

in cell division; alkaline pH can suppress division activation leading to an increase in cell size 

(Mueller et al., 2020). Since the pH was not controlled during this batch flask, the pH of the culture 

increases over time. However, the effect of pH was not incorporated into the model in this study. 

The increase in ROS concentration during the lag and stationary phases was discussed in 

detail in section 4.4.1 in Chapter 4. The distributions reflect the same pattern as the ROS 

concentration is lowest during the exponential growth phase and highest during the lag phase 

(Figures 5-4d and f). An interesting observation is the occurrence of a tail in the ROS concentration 

distribution of the 36-hour sample (Figure 5-4f). While many cells contain a low level of ROS and 

are preparing for survival mode at this point, some older cells that are unable to cope with nutrient 

starvation may still contain high amounts of ROS. For example, starvation of glutamate may cause 

depletion of NADPH which is an essential reactant in anti-oxidative reactions.  
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Figure 5-4: B. pertussis flask culture measurements: (a) optical density (OD), (b) extracellular glutamate concentration, (c) average cell 

volume, (d) average intracellular ROS concentration, (e) cell volume distributions and (f) extracellular ROS concentration distributions 

of a culture with an initial OD of 0.28 and initial glutamate concentration of 9.8 g/L. 
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5.4.2 Characteristic curves 

 The solution of the population balance model with the method of characteristics yields 

characteristic curves which can be used to determine the effect of different initial cell conditions 

on biomass growth and oxidative stress levels. Figure 5-5 depicts the characteristic curves for 

different initial cell sizes with the same starting intracellular ROS concentration. The curves in 

Figures 5-5b – d indicate that cell size has no effect on the intracellular concentrations of 

glutamate, NADPH and ROS. This is expected since the reaction rates given in Eqns (5.23) and 

(5.24) depend on the total biomass, but not on cell size, as explained above. On the other hand, the 

growth rate is proportional to cell size and so a larger initial size leads to faster growth (Figure 5-

5a). 
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Figure 5-5: Characteristic curves: (a) cell volume, (b) intracellular glutamate concentration, (c) 

intracellular NADPH concentration and (d) intracellular ROS concentration for different initial 

cell sizes at the same initial ROS concentration intensity of 0.055. 

Figure 5-6 shows the characteristic curves for cells with the same initial size (8.5) that are 

exposed to different initial intracellular ROS concentrations. In the mechanism, ROS indirectly 

inhibits cell growth since it reacts and consumes NADPH which would otherwise react to promote 

growth. This trend is observed in Figures 5-6a and c which show that an increase in the initial ROS 

concentration leads to a smaller cell size and less intracellular NADPH (Eqns (5.16) – (5.19)).  
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Figure 5-6: Characteristic curves: (a) cell volume, (b) intracellular glutamate concentration, (c) 

intracellular NADPH concentration and (d) intracellular ROS concentration for different initial 

ROS concentrations with cells with the same initial size (8.5). 

 The characteristic curves also play an important role in determining the partitioning rate of 

the cells since the volume of a mother cell must be twice that of the daughters into which it divides. 

Since the growth rate is proportional to cell size, the ratio between the cell sizes from any two 

characteristic curves at the same time remains constant (𝐶𝑥1/𝐶𝑥2) if the initial concentration of 

ROS, A, S and C are the same. For example, a characteristic curve corresponding to a cell size that 

is initially twice as large as another initial cell size will remain twice as large as the one for the 

smaller size over the entire duration of the culture for the same initial concentrations in ROS (Bo 
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= 0.055) and same initial concentrations of A, S and C (Figure 5-7b). The cell volume changes 

according to the product of specific growth rate μ and size X (Eqn (5.16)) and μ may change with 

time as a function of S, A, B and C. However, μ remains constant along the characteristic curve 

obtained with the same initial values of S, A, B and C since the kinetic rates depend on the total 

volume of cells (see Nb in the denominators of Eqns (5.23) and (5.24), but not on X. 

 

Figure 5-7: Characteristic curves for the same initial value of B = 0.055 and same initial values 

of A, S and C and for different initial values of cell size X: variation of (a) cell volume and (b) size 

ratio with time. 

The volume of most B. pertussis cells falls in the range between 6-10 intensity units. Using the 

method of characteristics, it is possible to follow the trajectory of the growing cells over time. It is 

expected that the number of cells corresponding to a characteristic curve will be highest when the 

cell volume is within this range because of the highest probability assigned to this range of sizes 

in the partitioning rate probability function. Accordingly, larger cells have a higher chance of 

dividing and producing daughters within the intensity bins that contain cells with the common 

range for B. pertussis as shown in the experimental data (i.e., cell size range 4 - 14). Figure 5-8 

depicts the characteristic curves for cell volume and the number of cells within that bin for the 
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same initial values of S, A, B and C. The bin with an initial cell volume of 3.5 does not contain any 

cells initially but cells divide into daughters that lie in this bin as the cell volume increases. The 

number of cells lying within this bin reaches a peak when the cell volume is approximately 8 

intensity units (i.e., after ~16 hrs of incubation). This trend is common between the characteristic 

curves as the model is calibrated according to the measured average cell volume and standard 

deviation of the distribution.  

 

Figure 5-8: Characteristic curves with the same initial concentration of ROS (𝐵𝑜 = 0.105): (a) 

cell volume and (b) number of cells to examine the effect of the partitioning rate on cells in the 

characteristic curve. 

5.4.3 Re-binning and projection grid 

 The solution using the method of characteristics poses specific numerical challenges 

related to the number of bins and the sizes to be used to describe the flow cytometry data. The 

numerical challenges arise from the fact that both the number of characteristic curves and the 

number of bins remain constant during the solution. Figure 5-8a shows that the differences between 

the characteristic curves at each time interval increase exponentially as time progresses. In view 

of this increase and the fact that the number of bins is kept constant, each bin must become 
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progressively wider as time continues to cover the entire range of the change of the state variable 

according to the method of characteristics. Accordingly, a smaller number of bins will be 

progressively assigned to the range of cell size that is relevant for this process (i.e. an cell volume 

intensity range of 4-12), thus leading to an ever lower numerical resolution over that range. 

Possible approaches to address this problem are to: i) increase the number of bins to ensure 

enough discretization in the range of cell size of interest or ii) increase the number of bins in the 

lowest size range so that characteristic curves starting at the smallest sizes will contribute sufficient 

number of characteristic curves (i.e., enough bins) over the range of cell size of interest at all times. 

However, both of these alternatives require a significant increase in the computational effort which 

is already high. 

An approximate solution to this problem that we propose involves re-binning the cells after 

every sampling interval (6 hours) calculation and then continuing to integrate the model from the 

initial conditions defined with respect to a fixed initial grid. Figure 5-9 qualitatively describes this 

re-binning procedure. The initial data points are found on all corners of the original grid (black 

open circles). As time passes, the cells follow the characteristic curve trajectories which end at the 

red open circles after a sampling interval of 6 hours. 
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Figure 5-9: Projection window and moving window characteristic curves for cell volume and 

intracellular ROS concentration over 6 hours. 

 After the sample interval of 6 hours has elapsed, it is necessary to project the new results 

(open red circles) onto the original grid (open black circles) in order to continue use of the original 

grid corresponding to the black dots. The number of cells at the position of the newly calculated 

red dots must be assigned (“projected”) in the original grid.  o achieve this projection, it is 

assumed that the number of cells at each red circle location is distributed in different proportions 

among the black circle locations (original grid) based on the idea that these proportions are 

inversely proportional to the distance between the red circle to each of the black circles. This 

projection operation is done by using Eqns (5.26) – (5.27) in conjunction with Figure 5-10. This 

operation preserves the total number of cells and total biomass available before the projection 

operation is applied. This also conveniently allows for the direct comparison of the model result 

distributions with the experimental distributions as the latter are defined in the original fixed grid 

given by the black circles. By projecting the model results at every sampling interval, numerical 

resolution is maintained in the cell volume intensity range of interest for B. pertussis even with the 
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exponentially increasing distance between each characteristic curves. The projection using Eqns 

(5.27) and (5.28) maintains the biomass concentration and the total number of cells before and 

after the projecting to the original grid. 

 

Figure 5-10: Re-binning characteristic curves after 6 hours onto the projection window. 

 

𝑑𝑖𝑠𝑡𝑜𝑡𝑎𝑙 = (
𝐴𝑁 + 𝐵𝑁 + 𝐶𝑁

𝐴𝑁 + 𝐵𝑁 + 𝐶𝑁 + 𝐷𝑁
) + (

𝐴𝑁 + 𝐵𝑁 + 𝐷𝑁

𝐴𝑁 + 𝐵𝑁 + 𝐶𝑁 + 𝐷𝑁
)

+ (
𝐴𝑁 + 𝐶𝑁 + 𝐷𝑁

𝐴𝑁 + 𝐵𝑁 + 𝐶𝑁 + 𝐷𝑁
) + (

𝐵𝑁 + 𝐶𝑁 + 𝐷𝑁

𝐴𝑁 + 𝐵𝑁 + 𝐶𝑁 + 𝐷𝑁
) = 3 

 

(5.27) 

 𝑣𝐴 =
(

𝐵𝑁 + 𝐶𝑁 + 𝐷𝑁
𝐴𝑁 + 𝐵𝑁 + 𝐶𝑁 + 𝐷𝑁)

𝑑𝑖𝑠𝑡𝑜𝑡𝑎𝑙
𝑣 (5.28) 

 

The intracellular concentrations of glutamate, NADPH and NADP+ also have to be 

adjusted following the projection of the characteristic curves onto the original grid. These are 

adjusted through the MATLAB function griddata which uses a 3D linear interpolation of the 

intracellular concentrations of glutamate, NADPH and NADP+ using the intracellular 

concentration of ROS and cell volume as the independent variables. 
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5.4.4 Calibration and validation of population balance model 

The PBM calibration and validation plots for the evolution of biomass, extracellular 

glutamate and average intracellular ROS concentrations are found below in Figures 5-11 – 5-14. 

Since the oxidative stress model kinetics are used in the coupled PBM, the trends of the two models 

are similar and were already discussed in detail in Chpater 4.4.6. 

 

Figure 5-11: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration 

and (c) average intracellular ROS concentration for a B. pertussis culture with an initial OD of 

0.28 and initial glutamate concentration of 10.1 g/L. 
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Figure 5-12: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration 

and (c) average intracellular ROS concentration of a B. pertussis culture with an initial OD of 0.12 

and initial glutamate concentration of 12.4 g/L.  
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Figure 5-13: Model fitting of (a) optical density (OD), (b) extracellular glutamate concentration 

and (c) average intracellular ROS concentration of a B. pertussis culture with an initial OD of 0.13 

and initial glutamate concentration of 10.1 g/L. 
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Figure 5-14: Model validation of (a) optical density (OD), (b) extracellular glutamate 

concentration and (c) average intracellular ROS concentration of a B. pertussis culture with an 

initial OD of 0.14 and initial glutamate concentration of 8.6 g/L.  

The root-mean squared errors (RMSEC) between the calibrated and measured values of 

OD, extracellular glutamate and intracellular ROS concentrations are presented in Table 5-5 

below. The corresponding values for the validated model are included as well. The model provides 

very good fits for all the measured variables. The calibration and validation RMSEs are very 

similar to each other for both OD and extracellular glutamate indicating that the noise is not over-

fitted in the calibration step. However, the average ROS concentration is not predicted as well in 

comparison to the calibration experiments, as reflected in the RMSE for validation being 1.88 

times larger than the RMSE for calibration. This is shown in Figure 5-14c as the model over-
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predicts the average concentration of ROS over the entire run of 36 hours. Including more 

experiments in the calibration set would provide more data and could potentially increase the 

predictability of the model for average intracellular ROS concentration.  

Table 5-5: Root-mean-squared-error (RMSE) of measured variables for model calibration and 

validation. The range of each compound is also shown to compare with the RMSE. 

 OD600 (intensity) 

Extracellular 

glutamate 

concentration (g/L) 

Average 

Intracellular ROS 

concentration 

(intensity) 

RMSEC 0.337 0.509 0.008 

RMSEV 0.534 0.623 0.015 

Range [0-7] [0-12.5] [0-0.4] 

 

 The model was fitted to the distributions of the flow cytometry data for cell volume and 

intracellular ROS concentration based on minimization of the square-errors between the 

predictions and measurements in both the mean and standard deviations of the distributions. Table 

5-6 presents the adjusted RMSE calculated based on the errors between the data and model 

distribution averages and standard deviations. The RMSE was adjusted by dividing by the mean 

measurement at each point as shown in Eqn (5.25) to compare the contribution of each error on 

the same level. Comparison of the results in Table 5-5 indicates that the model gives a better fit 

for the average cell volume and intracellular ROS concentration than the standard deviations of 

the same variables.  
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Table 5-6: Adjusted root mean-squared error (RMSE) of averages and standard deviations of the 

cell volume and intracellular ROS distributions for model calibration and validation and the 

range of values and error. 

 
Cell volume (intensity) 

Intracellular ROS concentration 

(intensity) 

 Average Standard deviation Average Standard deviation 

RMSECad 0.117 0.523 0.191 2.556 

RMSEVad 0.113 0.333 0.336 1.087 

Range [6.45 – 9.06] [0.0029 – 0.0109] [0.0327 – 0.0633] [2.91E-5 – 1.49E-4] 

Error 0.8697 9.51E-4 0.0080 3.93E-5 

 

Although two measured variable distributions (i.e., cell size and ROS) have been used in 

the development of the model, the measurements and fitted model data were compared along one 

dimension at a time to facilitate visualization of the results. Figures 5-15 – 5-22 show the single 

variable (cell volume and intracellular ROS concentration) distributions of the flow cytometry data 

and model. In the model, the cell volume is controlled by tuning the partitioning and growth rates. 

These figures show that the vast majority of cells have volumes within the intensity range from 4 

to 13 according to both the measurements and fitted model. The cell volume measurements always 

fall along unimodal distributions, whereas the model yields multimodal distributions particularly 

over the earlier part of inoculation (Figure 5-15). Reducing the bin size exacerbated the problem 

of multimodal model distributions (data not shown). A much finer discretization both in terms of 

the cell size and time may be required to further smooth the distributions predicted by the model, 

but at the expense of additional computational effort which is already very high. 

The intracellular ROS concentration distributions are much narrower than the cell volume 

distributions until the beginning of the stationary phase (Figure 5-16). However, the average values 

obtained from the experimental ROS distributions change over a larger range compared to the 

corresponding averages the average cell volume. The model is very accurate in terms of the 
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location of the peak intracellular ROS concentration but the widths of the predicted distributions 

are much narrower than those observed in the experiments. At the beginning of the stationary phase 

(~30-36 hours), the distribution of the measured intracellular ROS concentration becomes bimodal 

and generally exhibits a long tail on the right-hand side of the distribution (Figures 5-16f and g). 

The model does not fit the ROS distributions well in the stationary phase, since the error in the 

standard deviation of the distribution is 32.8% of the range of the measured standard deviation of 

the ROS distributions. In particular, the model is not able to predict the long tails in the measured 

ROS concentration distributions observed during the stationary phase that appear at higher ROS 

levels. Since the model distributions are so narrow, most cells lie within only a couple of bins. 

Increasing the number of bins would not significantly improve this result. A probable cause for 

the deviation between these measured and model-predicted distributions is that cells under 

starvation conditions may exhibit a different ROS generation rate that may depend on cell age. 

Thus, as the cells approach the stationary phase where glutamate is close to depletion, older cells 

may generate more ROS than younger cells and this may result in the long tail observed in the 

experimental distribution (e.g., Figure 5-16g). Since the individual cell ages were not calculated 

in our model, it was not possible to impose this age dependent ROS generation rate. An alternative 

possible adjustment widen the of distribution for intracellular ROS concentration would be to add 

a probability term for the occurrence of the reaction of glutamate to ROS that would increase as 

the substrate is depleted. 
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Figure 5-15: Model and experimental flow cytometry distributions of cell volume for a B. pertussis shake flask culture with 10.1 g/L 

glutamate in the media and starting optical density of 0.28 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and (g) 36 hours 

of incubation.  
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Figure 5-16: Model and experimental flow cytometry distributions of intracellular ROS concentration for a B. pertussis shake flask 

culture with 10.1 g/L glutamate in the media and starting optical density of 0.28 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, 

(f) 30 and (g) 36 hours of incubation.  
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Figure 5-17: Model and experimental flow cytometry distributions of cell volume for a B. pertussis shake flask culture with 12.4 g/L 

glutamate in the media and starting optical density of 0.12 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and (g) 36 hours 

of incubation.  
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Figure 5-18: Model and experimental flow cytometry distributions of intracellular ROS concentration for a B. pertussis shake flask 

culture with 12.4 g/L glutamate in the media and starting optical density of 0.12 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, 

(f) 30 and (g) 36 hours of incubation.  



150 

 

 

Figure 5-19: Model and experimental flow cytometry distributions of cell volume for a B. pertussis shake flask culture with 10.1 g/L 

glutamate in the media and starting optical density of 0.13 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and (g) 36 hours 

of incubation.  
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Figure 5-20: Model and experimental flow cytometry distributions of intracellular ROS concentration for a B. pertussis shake flask 

culture with 10.1 g/L glutamate in the media and starting optical density of 0.13 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, 

(f) 30 and (g) 36 hours of incubation.  
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Figure 5-21: Model validation and experimental flow cytometry distributions of cell volume for a B. pertussis shake flask culture with 

8.6 g/L glutamate in the media and starting optical density of 0.14 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 24, (f) 30 and (g) 

36 hours of incubation.   
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Figure 5-22: Model validation and experimental flow cytometry distributions of intracellular ROS concentration for a B. pertussis shake 

flask culture with 8.4 g/L glutamate in the media and starting optical density of 0.14 at (a) inoculation and after (b) 6, (c) 12, (d) 18, (e) 

24, (f) 30 and (g) 36 hours of incubation. 
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 In order to compare the 2-D experimental and model distributions, the Kullback-Liebler 

divergence was calculated using Eqn (5.27) at each time interval to yield the values shown in Table 

5-7. The more similar are the predicted and measured distributions, the closer the Kullback-Liebler 

divergence will be to 0. According to these results, the fit of the model is better when the glutamate 

concentration is high (i.e., condition 2). Also, the Kullback-Liebler divergence tends to be highest 

when the cells reach the stationary phase. This observation is consistent with those that were made 

previously regarding the ROS concentration distributions (Figures 5-16, 5-18, 5-20 and 5-22). The 

contour distributions are presented in Figures 5-23 – 5-24. The contours for the remaining 

conditions can be found in Appendix B. It is also apparent from these figures that the model-

predicted distributions of ROS concentration are much narrower than the experimental ones. 

Table 5-7: Kullback-Liebler divergence based on the 2D cell volume and intracellular ROS 

distributions at all time points. 

time (hr) 

Kullback-Liebler Divergence 

Condition 1 Condition 2 Condition 3 Condition 4 

6 0.874 0.796 1.564 2.053 

12 0.719 0.607 1.028 1.811 

18 0.889 0.994 1.087 1.897 

24 0.738 1.057 1.293 1.722 

30 1.081 0.909 1.032 1.332 

36 1.985 1.026 1.489 2.275 
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Figure 5-23: Model flow cytometry distribution contours of cell volume intracellular ROS concentration for a B. pertussis shake flask 

culture with 10.1 g/L glutamate in the media and starting optical density of 0.25 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 hours. 
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Figure 5-24: Experimental flow cytometry distribution contours of cell volume intracellular ROS concentration for a B. pertussis shake 

flask culture with 10.1 g/L glutamate in the media and starting optical density of 0.25 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 

hours.  
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5.4.5 Comparison of bulk and population balance models 

The bulk oxidative stress model presented in Chapter 4 and the PBM are based on the same 

kinetics and therefore contain the same model parameters to be calibrated for fitting. Table 5-8 

shows a comparison of the model parameter values obtained from fitting of the two models to the 

data. The additional parameters in the PBM are used to shape the probability of the partitioning 

rate. The partitioning rate controls the cell volume, but the cell volume has no effect on the 

concentration of intracellular species (Figure 5-5). Also, the assumption of equal partitioning 

means that the concentrations of the various species in the resulting daughter cells do not change 

from those in the dividing mother cells. Some of the parameter values are very similar in the two 

models, including 𝐾, 𝑘𝑚, 𝑌𝑥/𝑠, and 𝑑𝐵. The largest parameter change between the models is in the 

case of the maximum growth rate 𝑣𝑚𝑎𝑥. The PBM makes use of growth rates for individual cell 

volumes while the bulk model employs the growth rate for the entire biomass in the flask. The 

initial intracellular concentration of NADPH resulting from the fitting of the PBM to the data is 

much closer to the literature ranges of NADPH as compared to the value obtained for the bulk 

model (Goldbeck et al., 2018; Shen et al., 2021). 

Table 5-8: Parameter estimates of bulk and PBM oxidative stress models  

Parameter Bulk PBM 

𝑣𝑚𝑎𝑥 16.0 
𝑚𝑀

ℎ𝑟
 0.482  

𝐾 1.72 𝑚𝑀 1.70 𝑚𝑀 

𝐾𝑡 1.73 𝑚𝑀 2.32 𝑚𝑀 

𝑘𝑝 0.536 
1

𝑚𝑀 ℎ𝑟
 0.479 

1

𝑚𝑀 ℎ𝑟
 

𝑘𝑚  0.001
1

ℎ𝑟
 0.001

1

ℎ𝑟
 



158 

 

𝑌𝑥/𝑠  0.643 
𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒
 0.620 

𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠

𝑔 𝑔𝑙𝑢𝑡𝑎𝑚𝑎𝑡𝑒
 

𝐾𝑠𝑖 4.99 𝑚𝑀 6.72 𝑚𝑀 

𝑑𝐵 0.109 
1

ℎ𝑟
 0.109 

1

ℎ𝑟
 

𝐴𝑜 (secondary) [0.5-0.787] 𝑚𝑀 0.278 𝑚𝑀 

 

The major advantage of using a PBM is that it accounts for the distributions and can predict 

the heterogeneity of the cell population with respect to experimental conditions that are not used 

in bulk models. It can be shown mathematically that no differences can exist between the mean 

values calculated from a PBM and a lumped (bulk) model when a linear model is considered. On 

the other hand, since the kinetic equations of the model used in this study are highly nonlinear, the 

use of the distributions for cell size and ROS concentration will affect the mean intracellular ROS 

concentrations. Also, the distribution of ROS concentrations provides a stress level each cell has 

to combat. Cells that are more stressed will use NADPH to quench ROS while cells with a lower 

stress level will use NADPH to grow. Table 5-9 and Figures 5-25 – 5-28 compare the fitting and 

validation of the bulk and PB models. While a small difference between the models is observed in 

their abilities to predict the biomass and extracellular glutamate concentrations, the PBM provides 

much better predictions of the intracellular ROS concentration. The superior ability to predict 

intracellular ROS is clearly shown in Figures 5-31c – 5-34c. This result also confirms that the 

fitting of the predicted averages to experimental data is significantly improved by accounting for 

the distributed nature of a variable, given the nonlinearity of the model. 

This result is significant since ROS is known to cause protein damage and affect synthesis 

rates. Thus, we hypothesize that similar improvement to the ones observed for intracellular ROS 

will be found when using distributed data to predict other intracellular quantities such as individual 
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cell antigen production which is of particular importance for manufacturing. At this point, the exact 

relation of intracellular ROS to protein production is not known. Future studies should identify 

this relation which will permit the proposed PBM to be extended to predict antigen productivity. 

Table 5-9: Comparison of RMSE between bulk oxidative stress and coupled PB models 

Model 

OD600 (intensity) 

Extracellular 

glutamate 

concentration (g/L) 

Average 

intracellular ROS 

concentration 

(intensity) 

AIC RMSEC RMSEV RMSEC RMSEV RMSEC RMSEV 

Bulk 0.295 0.316 0.536 1.014 0.029 0.050 -260.2 

PBM 0.337 0.534 0.509 0.623 0.008 0.015 -440.3 
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Figure 5-25: Comparison in model fitting between bulk and PBM of (a) optical density (OD), (b) 

extracellular glutamate concentration and (c) average intracellular ROS for a B. pertussis culture 

with an initial OD of 0.25 and initial glutamate concentration of 10.1 g/L. 
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Figure 5-26: Comparison in model fitting between bulk and PBM of (a) optical density (OD), (b) 

extracellular glutamate concentration and (c) average intracellular ROS for a B. pertussis culture 

with an initial OD of 0.12 and initial glutamate concentration of 12.4 g/L. 
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Figure 5-27: Comparison in model fitting between bulk and PBM of (a) optical density (OD), (b) 

extracellular glutamate concentration and (c) average intracellular ROS for a B. pertussis culture 

with an initial OD of 0.13 and initial glutamate concentration of 10.1 g/L. 
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Figure 5-28: Comparison in model validation between bulk and PBM of (a) optical density (OD), 

(b) extracellular glutamate concentration and (c) average intracellular ROS for a B. pertussis 

culture with an initial OD of 0.14 and initial glutamate concentration of 8.6 g/L. 

 

5.4.6 PBM and train of reactors 

It should be recalled that phenomena observed in low pertactin-producing fermentations 

include an increase in the concentration of ROS at the beginning of the culture (Zavatti, 2017) and 

low OD600 (Agarwal, 2022). One of the hypotheses behind the research of the current thesis is that 

the higher initial glutamate concentrations combined with the heterogeneity of the inoculum may 

cause adverse growth conditions that will propagate and be amplified along the train of bioreactors 
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used in the vaccine manufacturing process. Given that the population balance model can track the 

heterogeneity of the culture started with a heterogeneous inoculum, the proposed model can serve 

as a test of our original hypothesis. Similar to section 4.4.9 in Chapter 4, the coupled population 

balance model was used to replicate the effect that the initial glutamate concentration in the media 

would have on a train of reactors similar to the production process at Sanofi Pasteur. This is 

intended only as a qualitative study to gain some insight into the possible variability in the 

production process and the way in which a change in media composition propagates through the 

train of reactors. 

 The media composition can vary batch-to-batch, as discussed in Chapter 4.4.9. 

Accordingly, simulations are conducted for cases where the initial glutamate concentrations are 

10 g/L and 10.5 g/L and the resulting biomass and glutamate concentrations in the train of reactors 

process are determined. As shown in Figure 5-29, the findings using the PBM are similar to those 

of the bulk model in section 4.4.9 in Chapter 4. When the media initially contains 10.5 g/L 

glutamate, the amount of biomass produced is lower in the first reactors of the train; however, by 

the time the discharge of the final 2000 L bioreactor is reached, the difference between the biomass 

levels produced under the two conditions is very small. Thus, the final biomass yield obtained by 

the train will be very similar for both media. This result is consistent with the observations at the 

Sanofi facility where the final OD is found not to vary significantly from batch-to-batch.  

It should also be recalled that productivity is expected to be correlated to the area under the 

growth curve rather than the final biomass since the antigen is continuously secreted by the cells 

(Agarwal, 2022). The coupled PBM also enables a comparison of the distributions of cell volume 

and intracellular ROS concentration to be made when the train is fed by the two media (Figure 5-

30). The ROS concentration at the end of the 200 and 2000 L reactors is higher in the train fed 
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with a media containing 10 g/L glutamate because less glutamate is available at the end of these 

fermentations and ROS has been found in our experiments to be generated under starvation 

conditions. 
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Figure 5-29: Population balance model prediction of Sanofi process (train of seed flask and three increasing sized reactors) for B. 

pertussis cultures with media of 10 g/L and 10.5 g/L glutamate. Evolution of biomass coming from a) seed flask, b) 20 L bioreactor, c) 

200 L bioreactor and d) 2000 L bioreactor. Evolution of glutamate concentration coming from e) seed flask, f) 20 L bioreactor, g) 200 

L bioreactor and h) 2000 L bioreactor. 
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Figure 5-30: Population balance model prediction of Sanofi process (train of seed flask and three increasing sized reactors) for B. 

pertussis cultures with media of 10 g/L and 10.5 g/L glutamate. Distributions of cell volume and intracellular ROS concentration coming 

from a) seed flask, b) 20 L bioreactor, c) 200 L bioreactor and d) 2000 L bioreactor for a media with 10 g/L glutamate. Distributions of 

cell volume and intracellular ROS concentration coming from e) seed flask, f) 20 L bioreactor, g) 200 L bioreactor and h) 2000 L 

bioreactor for a media with 10.5 g/L glutamate. 
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5.6 Conclusions 

A population balance model coupled to the metabolic model that uses oxidative stress 

presented in Chapter 4 was used to predict the growth of B. pertussis. The population balance 

model was solved with the method of characteristics and re-binning the distributions from the 

model after each time step was crucial to maintain numerical resolution over time in the range of 

cell volumes that was relevant for our experiments. The cell volumes were found to be lower in 

the exponential growth phase and higher in the lag and stationary phases. During the lag phase, 

cells increase in size and their metabolism is targeted to prepare the molecules necessary for 

replication; the increase in size during the stationary phase is due to an increase in pH because of 

the accumulation of secreted alkaline molecules. The model was calibrated and validated using 

measured OD, glutamate concentration and flow cytometry distributions for cell volume and 

intracellular ROS concentration to predict the outcomes of flask fermentations. The conditions 

analyzed in these experiments cover a range of initial glutamate and ROS concentrations. The 

coupled PBM model was able to outperform the bulk oxidative stress model with regard to 

predicting the intracellular ROS concentration. This is due to the nonlinearity of the kinetic 

equations which causes the distributions of intracellular properties to affect the evolution of the 

averages of the distributions. A population balance model may also be better suited to predict 

intracellular components such as antigen concentration which may also vary from cell to cell due 

to the correlation of the productivity to ROS or other intracellular properties.  
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Chapter 6 Flow Cytometry Sorting of B. 

pertussis 

6.1 Introduction 

Whooping cough is a highly contagious respiratory tract infection that can be prevented 

through vaccination at an early age. The vaccine produced by Sanofi Pasteur to treat whooping 

cough is an acellular vaccine which contains 5 antigens components: fimbriae (types 2 and 3), 

filamentous hemagglutinin, pertactin and pertussis toxin. The bottleneck in producing the vaccine 

is the antigen pertactin which is produced in small amounts compared to the other antigens. Also, 

the company is only able to collects a fraction of the pertactin generated by the cells since their 

patented process only allows for the recovery of antigen secreted into the supernatant, but none of 

the intracellular content. The yield of the antigens from the train of reactors in production can be 

highly variable. Based on flow cytometry based findings of a previous study conducted with 

samples from the manufacturing process (Zavatti et al., 2019) the final yield of pertactin was found 

to be correlated mostly to the upstream part of the process. In particular, two factors measured via 

flow cytometry were found to contribute to the low pertactin yield batches: high oxidative stress 

and high cell complexity (side scattering) at beginning of the fermentations. Zavatti found the 

scattering to be correlated to oxidative stress and thus hypothesized that stress of the cell 

populations resulted in slower growth and lower productivity. The correlation between cell 

complexity (side scattering) and size (front scattering) with oxidative stress have been also 

reported for other bacteria (Zavatti et al., 2020; Baatout et al., 2006). 
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Flow cytometry is a sensitive and powerful tool that uses fluorescence and light scattering 

to simultaneously measure the physical and chemical properties of cells suspended in a fluid. 

Cytometry is a high throughput process that characterizes individual cells at very high rates and 

thus can detect rare events in a cell population. Flow cytometry sorting is an extension of flow 

cytometry that enables cells to be selected based on any property measured via flow cytometry. 

The actual sorting operation occurs downstream from the detectors that measure the light scattering 

and fluorescence energy. 

One of the hypotheses of the current work was that productivity can be enhanced by sorting 

a population of highly producing cells followed by cultivation of the sorted population. Typically, 

to find high producers of cellular products, a search can be done for valuable mutants from an 

artificially induced subpopulation based on different methods such as random mutagenesis and 

nuclease genome editing (Copp et al., 2014; Abuaita and Withey, 2011; Ramesh et al., 2015; 

Lonowski et al., 2017; Michener and Smolke, 2012). However, if a sorted B. pertussis cell was 

found to be a high producer of pertactin, a lengthy validation of the manufacturing process would 

have to be done in order for the corresponding cell line to be used in production. This process 

would include clinical trials where the manufacturing company would not see any profits from 

their vaccine for a long period of time. Instead, if a population of high producers could be 

effectively sorted from the current fermentation process, it could be used to inoculate the first 

fermenter in the train of bioreactors to enhance productivity. Naturally, the success of such strategy 

will strongly depend on whether the epigenetic changes are conserved after re-culturing the sorted 

cells. 

 Epigenetics changes include any process that alters gene activity without changing the 

DNA sequence and leads to modifications that can be transmitted to daughter cells (Weinhold, 
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2006). In B. pertussis, the BvgAS sensory transduction system mediates an alteration between the 

Bvg+ phase, characterized by expression of adhesins and toxins, and the Bvg- phase, where 

virulence factors are not expressed (Martinez de Tejada et al., 1998; Moon et al., 2017). In the 

manufacturing process at Sanofi, the last reactor in the train (2000 L reactor) is first run as a batch 

process and then changed to fed-batch when a rise in the dissolved oxygen level is observed 

followed by a decrease in airflow and agitation (representing low glutamate concentration in the 

media). In a study at Sanofi Pasteur, it was determined that the surface antibody concentration of 

pertactin is much higher during the batch phase than during the fed-batch phase due to a change 

from a Bvg+ to Bvg- phase (data not shown). However, not all B. pertussis cells in the population 

express a low surface concentration of pertactin in the fed-batch stage of production which is 

hypothesized to be caused by epigenetics. 

This chapter presents a flow cytometry protocol to sort B. pertussis based on side scattering 

and surface concentration of pertactin. To assess whether the epigenetic phenotype is maintained 

in the daughter cells of the sorted populations, the sorted cells were re-cultured and monitored to 

verify the phenotype. A flask study was completed to measure biomass, ROS, and surface antigen 

concentration by spectrophotometry and flow cytometry to compare the sorted cultures against an 

unsorted control. The main goal of the sorting protocol is to gain insight into whether the properties 

enhanced by sorting, e.g., productivity changes due to switch of Bvg+ and Bvg- phases, can be 

maintained post-sorting and be used for re-culturing. 

The remainder of this chapter is organized as follows. Section 2 presents the flow 

cytometry sorting protocol and experimental procedures used. Section 3 presents the experimental 

results including the sorting of high/ low side scattering and pertactin surface concentration and 

the shake flask experiments of the re-cultured sorted populations. Section 4 discusses the potential 
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improvements of sorting high pertactin producers of B. pertussis and other possible applications 

of using flow cytometry sorting in the manufacturing process. Section 5 presents conclusions. 

 

6.2 Materials and Methods 

6.2.1 Streptomycin resistant B. pertussis seed 

Since the cell sorting process is essentially open to the environment, this places an inherent 

risk of contamination of the sorted population. Initial experiments in our research showed a high 

level of contamination. Thus, to avoid contamination during the sorting protocol, it is common 

practice to administer an antibiotic to the seed population (Abuaita and Withey, 2011; Li et al., 

2018; Sun et al., 2016). Based on this, we mutated B. pertussis to have streptomycin resistance. It 

should be noted that the seed at Sanofi Pasteur previously exhibited this antibiotic resistance, but 

the mutation led to a loss in this resistance.  

The following protocol was developed to create a streptomycin-resistant seed: 

1) B. pertussis was plated on a Bordet-Gengou agar plate with 50 µg/mL of streptomycin. The 

plate was then inserted in an incubator at 36 oC for 4 days. Visible colonies appeared on 

the plate on the fourth day which are resistant to streptomycin while those that did not 

developed resistance where killed. 

2) A surviving colony from step 1 was cloned (re-plated) onto another Bordet-Gengou agar 

plate with 50 µg/mL streptomycin. The plate was inserted in an incubator at 36 oC for 2 

days. 
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3) Clones from step 2 were inoculated in a 250 mL flask with 50 mL of culture media (Table 

3-1) containing streptomycin (50 µg/mL). The contents of the flask were then grown for 

36 hours. 

4) 1.5 mL of the culture obtained from the flask were added to 1 mL of a 40% glycerol 

solution to generate the seeds. The seeds were then placed in a freezer for storage at -80 

oC. 

6.2.2 Flow cytometry sorting protocol 

B. pertussis cells were sorted into cultured media based on the side scattering and pertactin 

surface concentration using an S3e Cell Sorter (Bio Rad). A total of 100,000 cells were sorted in 

per sample in purity mode at a rate of 500 events per second. 

6.2.3 Re-Culture Protocol 

B. pertussis is sensitive to the sorting procedure and does not readily recover to grow in 

liquid media. Since B. pertussis grows better on solid media, we have devised the following 

procedure to re-culture the cells: 

1) Sorted cells were plated on a Bordet-Gengou agar plate with 50 µg/mL streptomycin with 

an inoculation needle. The plates were placed in an incubator at 36 oC until colonies were 

observed after approximately 2 days. 

2) Colonies were inoculated in a 50 mL flask with working volume of 5 mL containing 

streptomycin (50 µg/mL). After the contents of the flask were grown for 48 hours, samples 

were collected for OD and flow cytometry measurements. 

3) Secondary flasks were prepared using the culture in step 2 to measure growth at various 

times along the culture. B. pertussis fermentations were carried out in 250 mL flasks 
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(polycarbonate, sterile, with a vented cap having 0.22 µm pore-size PTFE membrane from 

VWR, Canada) with a working volume of 60 mL by incubation at 36°C and 200 rpm and 

a starting optical density of 0.25 – 0.3. 

6.2.4 Sample Measurements 

A detailed method for these measurements can be found in Chapter 3. All measurements 

(OD, ROS and pertactin surface concentration) were completed in duplicate. Below are summaries 

of the experimental methods used. 

6.2.4.1 OD600 

To measure OD, the sample was diluted by a factor of 20 in 0.9% saline solution and OD 

was obtained using optical spectrophotometry by measurement of the absorbance at 600 nm. 

6.2.4.2 ROS Concentration 

Oxidative stress was measured using the fluorescein derivative carboxy-2',7'-

dichlorodihydrofluorescein diacetate (carboxy-H2DCFDA) from Sigma-Aldrich (Canada). 

Samples with an OD of 0.05 were prepared in PBS and carboxy-H2DCFDA was added to the 

samples to obtain a final concentration of 50 µM. Flow cytometry was conducted using an S3e 

Cell Sorter (Bio Rad). To measure the ROS distribution, the FL1 diode was used for DCF emission 

(green fluorescence) which fluoresces at an excitation/ emission pair of 503/523 nm. A total of 

20,000 events per sample were collected at a rate of 1000 events per second. 

6.2.4.3 Pertactin surface concentration 

To measure the surface concentration of pertactin, an antibody provided by Sanofi (PRN 

3-16) was conjugated to fluorescein (FITC) using a FITC conjugation kit (Abcam, Canada). 1 mL 
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samples with an OD of 0.05 were prepared and centrifuged at 4,000 G for 4 minutes and the 

supernatant discarded. 25 µL of the antibody solution (containing 1µg/mL pertactin antibody) was 

then added to each tube and incubated for 1 hour in the dark at 4°C. Then, 1 mL 1xPBS was added 

to each tube and centrifuged at 4,000 G for 4 minutes to wash the sample. The supernatant was 

discarded and the pellet re-suspended in 1 mL PBS. Along with the PRN 3-16 antibody, a negative 

control was also conjugated to FITC using the same method. This antibody does not attach to B. 

pertussis and is used to check for nonspecific binding of the conjugation. To measure the surface 

antibody concentration distribution across the cell population (of both negative control and 

pertactin antibodies), the FL1 diode was used for FITC emission (green fluorescence) which 

fluoresces at an excitation/ emission pair of 491/516 nm. A total of 20,000 events per sample were 

collected at a rate of 1000 events per second. 

 

6.3 Results 

6.3.1 Oxidative stress of antibiotic resistant strain of B. pertussis 

 Streptomycin resistance was necessary to eliminate the risk of contamination in the sorted 

population of B. pertussis. However, the addition of streptomycin in the media increases the 

oxidative stress on the culture at inoculation as shown in Figure 6-1a. The average ROS 

concentration intensity is increased by 324% in the streptomycin resistant (strepR) strain with 50 

ug/mL of streptomycin in the media compared to the control seeds without antibiotic in the media. 

Antibiotics have been shown to cause oxidative stress (Guillouzo and Guguen-Guillouzo, 2020; 

Grant and Hung, 2013) and specifically streptomycin has been shown to cause oxidative stress in 

E. coli (Goswami et al., 2007). In the presence of streptomycin, the strepR strain is able to recover 
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from the oxidative stress but exhibits a longer lag phase compared to the control strain (Figure 6-

1b). Our original plan was to re-culture a cell population that had been sorted according to its low 

ROS concentration.  However, because of the observed increase in ROS concentration at 

inoculation caused by the presence of streptomycin in the media, ROS concentration-based cell 

sorting was not conducted as initially planned. 

 

Figure 6-1: Comparison between control and streptomycin-resistant (strepR) strains of B. 

pertussis: (a) number distribution of initial ROS concentration and (b) evolution of growth of 

secondary cultures. 

6.3.2 Flow cytometry sorting 

 A primary flask of B. pertussis was grown until the stationary phase where the population 

evolved into a bimodal distribution according to PRN surface concentration (Figure 6-2b). Flow 

cytometry sorting was used to sort B. pertussis cells with high and low intensity of side scattering 

(Figure 6-2a) and PRN antibody surface concentration (Figure 6-2b). The ranges and averages of 

each gate are found in Figure 6-2 and shown in Table 6-1.   
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Figure 6-2: Sorting gates of B. pertussis for (a) side scattering (R9 – low SSC, R10 – high SSC) 

and (b) PRN antibody concentration (R9 – low PRN, R10 – high PRN). 

Table 6-1: Flow cytometry sorting population averages and ranges for side scattering and PRN 

surface concentration. 

Sort Property 

Low Intensity Population High Intensity Population 

Average Range Average Range 

Side scattering 11.49 [3.2 – 10.6] 183.70 [138 – 406] 

PRN surface 

concentration 
94.28 [68 – 108] 1418.74 [1015 – 2022] 

 

 After sorting the populations according to side scattering and PRN surface concentration, 

the sorted populations were plated on TSA and BG agar (with 50 ug/mL streptomycin) plates to 

check for contamination. Figure 6-3 depicts the TSA plate of the sorted population of low PRN 

surface concentration cells grown for 7 days. The TSA plate shows no growth of colonies which 

corroborates that the sorted cells are B. pertussis only and that none of the sorted populations has 

been contaminated by other type of cells.  
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Figure 6-3: Tryptic soy agar plated with low PRN surface concentration population.  

6.3.3 Epigenetic effects of re-cultured cells 

 The goal of sorting cells based on side scattering and PRN surface concentration was to 

determine whether the changes in the property that served as the basis for sorting would be 

maintained when the sorted cells were cultured in agar plates. After approximately 2 days on the 

BG agar plate, the sorted cells formed colonies. Colonies were taken from the plate and tested for 

side scattering and PRN surface concentration to determine whether the sorted properties (i.e., side 

scattering and PRN surface concentration) were maintained in culturing the sorted cells. Figure 6-

4 shows the distributions of the re-cultured populations for side scattering and PRN surface 

concentration and the averages for these distributions are found in Table 6-2. 

 No observable differences in the side scattering distributions are evident in all the sorted 

populations (low SSC, high SSC, low PRN and high PRN) as shown in Figure 6-4a. Side scattering 

is a measure of the complexity and granularity of cells and as changes in this property have been 

generally associated with the status of the cell along the cell cycle (Papa et al., 1991; Gant et al., 

1993). The observed small differences in the distributions of side scattering for the sorted 

populations can be explained since the selected cells were plated at the same time and exposed to 

media for the same duration. 
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 The PRN surface concentration is also expected to be somewhat related to the growth phase 

in which B. pertussis is found It has been reported that cell expresses PRN in the Bvg+ phase since 

it is used in adhesion while PRN is not expressed in the Bvg- phase (Martinez de Tejada et al., 

1998; Moon et al., 2017). It has been shown that spontaneous mutations of the Bvg system are the 

cause of Bvg- mutants which out-compete other bacteria in the culture, showing that the Bvg- 

phase B. pertussis has a growth advantage (Belcher, 2017). Through phenotypic assays it has been 

shown that B. pertussis in the Bvg- phase grows and divides quicker, although Bvg+ growth 

consumes more glutamate per gram of biomass (Belcher, 2017).  

Interestingly, the sorted population with low SSC exhibits the highest surface pertactin 

concentration (Figure 6-4b). The explanation for this behaviour is not clear and more testing is 

required to better explain this result. Also, the sorted population with low PRN resulted in a higher 

surface PRN concentration on the plated cells after 2 days than the sorted population with low 

PRN. This shows that while cells can be sorted based on PRN surface concentration, the changes 

are not propagated to the daughter cells. 

 

Figure 6-4: Plate properties of (a) side scattering distribution and (b) surface PRN concentration 

of sorted cell colonies.  
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Table 6-2: Average plate properties of sorted cell colonies 2 days after plating the sorted 

populations 

Property Low SSC High SSC Low PRN High PRN 

Side Scattering 28.16 26.17 23.53 26.54 

PRN surface 

concentration 
527.54 252.18 373.90 313.62 

 

 After colonies were found on the BG agar plates from the sorted populations, individual 

colonies were grown in flasks. For each sorted property, two colonies were selected and grown in 

separate primary flasks. These primary flasks contained a working volume of 5 mL and were 

inoculated and grown for 48 hours. Then a secondary flask was inoculated with the culture from 

the primary flask with a starting OD of 0.3. The growth profiles of the secondary flasks from the 

sorted populations (low SSC, high SSC, low PRN and high PRN) were compared to a control 

(Sanofi seed stock), all with the same media outlined in section 3.1 in Chapter 3. While the sorted 

cell populations did not maintain their epigenetic properties in the daughter cells, re-culturing of 

the sorted cells did result in faster growing B. pertussis cells, as shown in Figure 6-5. It can be 

noticed from this figure that re-culturing of all sorted populations, regardless of the property and 

range used for sorting, leads to higher growth compared to the control culture. This suggests a 

correlation between the sorting and re-culturing procedures and the observed enhancement of 

growth. Specifically, B. pertussis appears to be sensitive to sorting since the sorted populations do 

not grow in liquid media and have to be plated first. Then, it appears that plating of the sorted cells 

can repair the inherent damage resulting from the sorting operation and the colonies recovered 

from the plate grow faster. The sorted and plated populations for side scattering (low SSC and high 

SSC) are faster growing than the sorted and plated populations for PRN surface concentration (low 

PRN and high PRN). This may be due to the potentially detrimental effect of the dye used for 

surface PRN-based sorting operation since the PRN surface concentration during the latter step is 
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measured with an antibody conjugated to FITC. Another possible reason for the faster growth of 

the sorted populations would be that they contain Bvg- phase cells but this has to be verified by 

testing the antigen concentrations at the end of the fermentation.  

 

Figure 6-5: Growth of secondary cultures for control and sorted B. pertussis. 

 

6.4 Discussion 

The productivity of pertactin is the major bottleneck to manufacture the vaccine for whooping 

cough at Sanofi. After fermentation, the downstream procedure begins with centrifugation to 

separate the fermentation broth into the centrate and cells. Pertactin is further isolated from the 

centrate by a series of filtrations and separation steps. The fermentation operation up to the 

centrifugation steps are often referred to as the upstream phase of the process and the 

purification/separation steps as the downstream phase. ELISA measurements are taken at the final 

stages of the upstream phase before and after centrifugation and at different points along the 
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downstream phase of the process to determine the intermediate PRN concentrations. In the current 

operation no correlation has been found between any of the ELISA measurements conducted along 

the process and the final yield of pertactin obtained by the Kjeldahl method for a fully purified 

sample. In general, it is known that a high error is associated with the ELISA measurements (data 

not shown) in the fermentation step because of the lack of specificity of the antibody used for this 

test. In the experiments presented in this study we have implicitly assumed that the surface 

concentration of PRN is associated with high secretion of pertactin. This may not always be the 

case since pertactin is cleaved to the surface of the cell to be secreted.  

On the other hand, in view of the lack of precision of ELISA, we hypothesize that droplet flow 

cytometry sorting can instead be used to determine the amount of secreted pertactin during the 

fermentation stage. This process involves encapsulating single cells in a water-oil-water (w/o/w) 

double-emulsion where the inner water-phase contains the media and secreted products (118-119). 

The major advantage of double emulsion encapsulation is that it prevents the secreted metabolites 

or products from being transported away from the cells and traps them within the droplet for 

detection. To use this technique, a suitable marker would have to be found. The conjugated 

antibody used in this work would not be an option because the antibody is unable to cross the oil 

boundary to enter the droplet and cannot be added before the droplet is formed because even an 

unbound conjugated antibody would generate a signal. The options would be to design a marker 

that can travel through the hydrophobic barrier (i.e., Ma et al., 2016) or be placed in the media. 

Both options would have to provide no fluorescent signal until it is bound to pertactin where the 

attachment allows it to become fluorescent (i.e., Filonov et al., 2014; Zou et al., 2015; Kellermann 

et al., 2017). Although the use of droplet flow cytometry sorting to find B. pertussis cells that 
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secrete larger amounts of pertactin procedure can be promising, this technique may still be 

inaccurate for quantifying productivity since it measures both surface and secreted pertactin.  

Another development in flow cytometry sorting is the use of miniaturized devices, some of 

which carry out FACS by taking advantage of a range of physical properties. These smaller devices 

are termed microfluidic FACS (FACS) and fall within the category of lab-on-a-chip 

technologies. The use of FACS has several advantages over that of conventional FACS in that it 

eliminates potentially biohazardous aerosols, sample loss and cross-contamination due to the 

closed-platform designs and disposable chips (Shields et al., 2015; Shen et al., 2019). Using 

microfluidic chips may allow for sorting of B. pertussis without the need for streptomycin 

resistance that had to be used in the current work to avoid contamination. The presence of 

streptomycin in the media resulted in an increase in oxidative stress and a longer lag phase (Figure 

6-1b). 

 

6.5 Conclusions 

Protocols involving sorting followed by re-culturing were developed for B. pertussis which 

involved obtaining streptomycin resistance to avoid contamination, sorting the cells according to 

a pre-defined property of interest and plating the sorted population on BG agar plates. The main 

goals of the sorting protocol were to investigate whether: i- cells sorted with respect to their 

scattering properties resulted in advantageous cell growth and ii- cells sorted based on surface PRN 

maintained the property post-sorting and continued to be used for re-culturing. To this end, flow 

cytometry sorting was completed on the basis of low and high side scattering as well as low and 

high PRN surface concentration. The sorted populations of cells did not maintain the selected 
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properties but the sorting protocol did manage to capture B. pertussis cells which grew at a faster 

rate than the control seed provided by Sanofi. It is believed that the combined sorting and plating 

procedures led to natural selection of cell populations that are more fit for growth. 
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Chapter 7 Conclusions and Future Work 

7.1 Conclusions 

7.1.1 Oxidative stress in flask experiments 

A main objective of the current research was to identify sources of variability in the 

manufacturing process of the whooping cough vaccine operated by Sanofi Pasteur. Variability in 

medium or inoculum were the expected causes of this variability. In terms of growth media, 

glutamate was a main potential source for batch-to-batch variation since it is the main nutrient in 

the fermentation process and thus small changes in its concentration may have a large impact on 

the process. Starvation was also targeted since the operation switches from batch to fed-batch mode 

during the course of the manufacturing process and the culture may become partially or completely 

depleted of nutrients for a duration of time during this switch-over. Measurement error and 

variability in seed preparation related to the size and/or its origin of the inoculum were also 

considered to be sources of variability. Based on previous studies which found that oxidative stress 

is correlated to productivity, we hypothesized that changes in glutamate concentration, starvation 

conditions or variability in inoculum can separately or simultaneously contribute to oxidative 

stress and thus may affect growth and productivity. In order to determine the effect of glutamate 

concentration, initial OD, starvation and seed batches on oxidative stress, a control using standard 

operating conditions and media from Sanofi was monitored to understand the pattern of growth 

and oxidative stress in B. pertussis. For this control, the ROS concentration was found to rise 

sharply during the lag phase, then drop and maintain low levels during the exponential growth 
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phase. Then, later during the culture, the ROS level was again found to increase rapidly during the 

stationary phase into the death phase.  

When the glutamate concentration in the media was increased, the intracellular ROS 

concentration during the lag and early exponential phases was found to be higher than in the control 

culture and to increase rapidly at the beginning of the batch. A possible mechanism for the fast 

increase in ROS level involves the fast generation of NADH in the TCA cycle in response to the 

high glutamate concentration, which exceeds the consumption rate capacity of the electron chain 

cycle. It has been reported for other microorganisms that ROS production increases and can lead 

to oxidative stress when nutrients are present in excess (Wellen and Thompson, 2011). In this work 

we also try to elucidate whether oxidative stress is correlated, or it is the direct cause for the 

observed slower growth rate found due to variations in glutamate concentration or inoculum 

biomass concentration. The results from the experimental data show that the growth rate of 

conditions with a high concentration of glutamate are related to substrate inhibition. For the case 

of low biomass concentration in the inoculum, after a lag period is over, the growth rate is faster 

than the control even with an observed initially higher concentration of ROS. The oxidative stress 

model also verifies this observation because the fitting accuracy of the model decreased when it 

was assumed that oxidative stress had a direct impact on the growth rate. Therefore, we conclude 

that oxidative stress is observed in batches with low biomass levels but it is not the root cause for 

low growth rates. In other words, low biomass levels occur in batches with high initial glutamate 

concentration or small inoculum as compared to the control, but the growth rates values during 

these cultures at each time does not correlate with the corresponding oxidative stress 

concentrations at that time.  
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Experiments carried out with lower initial density cultures of B. pertussis (i.e., small size 

inoculum) also exhibited higher oxidative stress during the lag phase and early portion of the 

exponential growth phase; however, this condition had no discernable effect on the biomass 

growth rate. In this case, the changes in glutamate concentration for different inoculum sizes were 

not significant enough to explain the changes in ROS levels. Quorum sensing can provide a 

possible explanation for the increased stress in low inoculum cultures. Other bacteria have been 

shown to use quorum sensing in response to environmental conditions that result in higher 

oxidative stress. 

 The duration of the lag phase in a flask (taken as the time required for the initial biomass 

population to double) that is inoculated with cells that were subjected to starvation conditions is 

approximately 36 hours more than in the case of the control culture. This effect is presumably due 

to the fact that the percentage of viable cells at the beginning of the secondary culture conducted 

post-starvation is only 20.4%. Nevertheless, the cells were able to recover and eventually 

accumulate biomass. The comparison of the two seed batches (one made in 2015 and the other in 

2018) followed a similar trend to the starved cells. Both seeds had low viability at inoculation – 

the 2015 and 2018 seeds contained 55.3% and 80.2% viable cells, respectively. This indicates that 

cryogenic storage does not conserve cells entirely and the viability of the seed depends strongly 

on the length of time over which it is stored (Walters et al., 2004).  

7.1.2 Oxidative stress model 

A model was developed to describe the interplay between the main nutrient (glutamate), 

ROS and NADPH by modifying a general model of Himeoka and Kaneko to include a relation 

between the extents of starvation and oxidative stress as well as the role NADPH plays in the 

synthesis of major cellular components and quenching of ROS. To assess the validity of this model 
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for this specific group of B. pertussis pathways, we conducted an experimental flask study in which 

the ROS, NADPH, glutamate and biomass concentrations were measured under conditions of 

varied oxidative stress. The model provided very good fits for the OD, glutamate and NADPH 

concentrations for all experimental conditions, but a less accurate fit for ROS concentration based 

on a comparison of the RMSE over the range of experimental measurements. Nevertheless, the fit 

of the oxidative stress model was considerably better than that of a Contois-based model based on 

the RMSE and the AIC. The AIC is a particularly useful measure of the trade-off between model 

dimensionality and predictability in this case since the oxidative stress model involves a greater 

number of parameters than the Contois model. 

The model was also applied to simulate a train of fermenters in order to assess whether the 

variability in the process can propagate and be further amplified over this sequence. This 

simulation showed that even a small increase in the concentration of glutamate (10 g/L versus 10.5 

g/L) yielded less biomass in the early reactors in the train (i.e., 20 L and 200 L reactors), but the 

difference vanished by the end of the last reactor (2000 L reactor). However, while the final OD 

may be similar, the final pertactin productivity may be lower. This can be explained by the fact 

that the final yield of pertactin was found to be correlated with the area under the growth curve 

(Agarwal, 2022) rather than the final OD. Therefore, a difference in glutamate concentration may 

be a possible cause in the variability found in production because it results in a smaller area under 

the curve of biomass concentration over time.  

7.1.3 Coupled population balance – oxidative stress model 

 Due to the heterogeneity of the cell population, a control action that on only the average 

culture properties may not necessarily guarantee consistent process outcomes. The solution of a 

coupled population balance-oxidative stress model using the method of characteristics was 
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developed to predict distributions in cell size and intracellular glutamate, ROS (reactive oxidative 

species), NADPH and NADP+ concentrations in shake flask cultures of B. pertussis. The model 

was calibrated with glutamate, NADPH, OD and flow cytometry data of the distributions of the 

cell population with respect to cell size and ROS levels. The model was fitted to the measured 

extracellular glutamate concentrations, OD600 for biomass and the mean and standard deviation for 

the flow cytometric distributions of cell volume and intracellular ROS concentration. It was found 

that the cell volume measurements always fall along unimodal distributions, whereas the model 

yields multimodal distributions particularly over the earlier part of inoculation. A much finer 

discretization both in terms of the cell size and time may be required to further smooth the 

distributions predicted by the model, but at the expense of additional computational effort which 

is already very high. The intracellular ROS concentration distributions predicted by the model 

were much narrower than the distributions from the experimental data. However, the peak or 

average intracellular ROS concentration was very accurate as shown by the low RMSE for this 

variable. A probable cause for the deviation between the widths of the measured and model-

predicted distributions for the intracellular ROS concentration is that cells may exhibit a different 

ROS generation rate that depends on cell age.  

The major advantage of using a PBM is that it accounts for the distributions and can predict 

the heterogeneity of the cell population with respect to experimental conditions that are not used 

in bulk models. When comparing the coupled population balance – oxidative stress model to the 

bulk oxidative stress model in Chapter 4, it is apparent that the PBM provides much better 

predictions of the intracellular ROS concentration. It can be shown mathematically that no 

differences can exist between the mean values calculated from a PBM and a lumped (bulk) model 

when the model is linear. On the other hand, since the kinetic equations of the model used in this 
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study are highly nonlinear, the use of the distributions for cell size and ROS concentration will 

affect the mean intracellular ROS concentrations. 

7.1.4 Flow cytometry sorting of epigenetic populations 

Epigenetics changes include any process that alters gene activity without changing the 

DNA sequence and leads to modifications that can be transmitted to daughter cells. In particular, 

B. pertussis contains a regulon that involves a Bvg+ phase, characterized by expression of adhesins 

and toxins, and a Bvg- phase where virulence factors are not expressed. The bottleneck of the 

production of the vaccine for whooping cough is the antigen pertactin. A sorting and re-culture 

protocol was developed for B. pertussis which involved obtaining streptomycin resistance to avoid 

contamination, sorting into cultured media and plating on BG agar plates. The main goal of the 

sorting protocol is to gain insight into whether Bvg+ and Bvg- phases can be maintained post-

sorting and continued for re-culturing. To this end, flow cytometry sorting was completed on basis 

of low and high side scattering (a factor from a previous study in Zavatti et al. (2019) that showed 

a correlation with pertactin yield) as well as low and high PRN surface concentrations. The sorted 

populations of cells did not maintain the properties sorted but the sorting protocol did manage to 

select B. pertussis cells which grew at a faster rate than the control seed provided by Sanofi. It is 

believed that the cells that are re-cultured following the sorting protocol and plating may become 

more resilient to survive the stress from sorting and grow faster. 

 

7.2 Next Steps 

Following the conclusions of this research, this section outlines future work both in terms 

of development and improvement of the oxidative stress and coupled population balance – 
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oxidative stress models and the implementation of the flow cytometry sorting protocol for B. 

pertussis. 

The following research investigations could be pursued: 

1. The predictability of the oxidative stress model can be improved by adding additional 

parameters or conducting additional measurements (intracellular NADPH to include in the 

model or metabolomic analysis). For example, the inclusion of a maintenance term or an 

age-related term for the production of ROS is recommended since the current population 

balance model cannot accurately predict the outcome of starved cells and cells in the 

stationary and death phases. 

2. Intracellular NADPH concentrations can be measured with flow cytometry using 

commercially available dyes or via autofluorescence if excited using the correct laser 

wavelength. The use of such dyes may enable the simultaneous monitoring of ROS and 

NADPH concentrations which could help corroborate the relation between these two 

species. 

3. The pathway for the generation of oxidative stress can be included within a dynamic 

metabolic flux model. The identification of this pathway may be a key factor in better 

understanding and modeling the metabolic pathways of B. pertussis. A dynamic flux model 

that incorporates the oxidative stress pathways may help explain the relation between 

oxidative stress and all amino acids included in the media.  

4. The ribosome levels during periods of high oxidative stress should be measured to gain a 

better understanding of the possible indirect effect of stress on growth rate.  

5. A population balance model incorporating the surface concentration of pertactin measured 

with flow cytometry should be developed to predict the final yield of pertactin from a 
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fermentation. We hypothesize that intracellular and cell surface quantities can be better 

modeled with population balance models for such applications as individual cell antigen 

production which is of particular importance for manufacturing. The challenge of this 

model would be developing the metabolic pathways for pertactin production and the 

release mechanism as the cells enter the Bvg- phase. 

6. Multi-parameteric flow cytometry can be used to measure the relation between cell surface 

antigen level and ROS concentration which would help elucidate a potential direct effect 

of ROS level on the antigen concentration. 

7. A population balance model that includes the mixing profile within the bioreactors should 

be developed. While heterogeneity of the cell population can originate in the inocula, 

additional factors contributing to heterogeneity stem from the surrounding media 

conditions and mass transfer effects. 

8. The flow cytometry sorting protocol and random mutagenesis can be used to sort high 

producers of the antigens in the whooping cough vaccine. Instead of re-culturing these 

populations, gene expression or PCR analysis of the factors leading to high production 

mutations should lead to better understanding of the metabolic pathways of B. pertussis 

and more optimal process control of the operations at Sanofi to increase antigen production. 



193 

 

References 

Abuaita BH, Withey JH. Genetic screening for bacterial mutants in liquid growth media by 

fluorescence-activated cell sorting. Journal of microbiological methods 2011;84(1):109-

113. 

Abujarour, R., Valamehr, B., Robinson, M., Rezner, B., Vranceanu, F. and Flynn, P., 2013. 

Optimized surface markers for the prospective isolation of high-quality hiPSCs using flow 

cytometry selection. Scientific reports, 3(1), pp.1-11. 

Agarwal, P., 2022. Application of Deep Learning in Chemical Processes: Explainability, 

Monitoring and Observability. 

Ahn, R.S., Taravati, K., Lai, K., Lee, K.M., Nititham, J., Gupta, R., Chang, D.S., Arron, S.T., 

Rosenblum, M. and Liao, W., 2017. Transcriptional landscape of epithelial and immune 

cell populations revealed through FACS-seq of healthy human skin. Scientific 

reports, 7(1), pp.1-9. 

Akaike, H., 1998. Information theory and an extension of the maximum likelihood principle. 

In Selected papers of hirotugu akaike (pp. 199-213). Springer, New York, NY. 

Andrä, I., Ulrich, H., Dürr, S., Soll, D., Henkel, L., Angerpointner, C., Ritter, J., Przibilla, S., 

Stadler, H.,  ffenberger, M. and Busch,  .H., 2020.  n evaluation of  ‐cell functionality 

after flow cytometry sorting revealed p38 MAPK activation. Cytometry Part A, 97(2), 

pp.171-183. 

Arias-Fuenzalida, J., Jarazo, J., Qing, X., Walter, J., Gomez-Giro, G., Nickels, S.L., Zaehres, H., 

Schöler, H.R. and Schwamborn, J.C., 2017. FACS-assisted CRISPR-Cas9 genome editing 

facilitates Parkinson's disease modeling. Stem Cell Reports, 9(5), pp.1423-1431. 

Arnér, E.S. and Holmgren, A., 2000. Physiological functions of thioredoxin and thioredoxin 

reductase. European journal of biochemistry, 267(20), pp.6102-6109. 

Arts, I.S., Gennaris, A. and Collet, J.F., 2015. Reducing systems protecting the bacterial cell 

envelope from oxidative damage. FEBS letters, 589(14), pp.1559-1568. 



194 

 

Åstrand, M., Nilvebrant, J., Björnmalm, M., Lindbo, S., Hober, S. and Löfblom, J., 2016. 

Investigating affinity-maturation strategies and reproducibility of fluorescence-activated 

cell sorting using a recombinant ADAPT library displayed on staphylococci. Protein 

Engineering, Design and Selection, 29(5), pp.187-195. 

Aubron, C., Glodt, J., Matar, C. et al. Variation in endogenous oxidative stress in Escherichia 

coli natural isolates during growth in urine. BMC Microbiol 12, 120 (2012). 

Baatout, S., De Boever, P. and Mergeay, M., 2006. Physiological changes induced in four bacterial 

strains following oxidative stress. Applied Biochemistry and Microbiology, 42(4), pp.369-

377. 

Babu, M.M., Bhargavi, J., Saund, R.S. and Singh, S.K., 2001. Virulence factors of Bordetella 

pertussis. Current science, pp.1512-1522. 

Baret, J.C., Miller, O.J., Taly, V., Ryckelynck, M., El-Harrak, A., Frenz, L., Rick, C., Samuels, 

M.L., Hutchison, J.B., Agresti, J.J. and Link, D.R., 2009. Fluorescence-activated droplet 

sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab on a 

Chip, 9(13), pp.1850-1858. 

Belcher, T. 2017. Investigating the growth and metabolic difference of Bvg+ and Bvg- 

phase Bordetella pertussis. 

Bertrand, R.L., 2019. Lag phase is a dynamic, organized, adaptive, and evolvable period that 

prepares bacteria for cell division. Journal of bacteriology, 201(7), pp.e00697-18. 

Boder, E.T. and Wittrup, K.D., 1997. Yeast surface display for screening combinatorial 

polypeptide libraries. Nature biotechnology, 15(6), pp.553-557. 

Boone, C.H., Grove, R.A., Adamcova, D., Seravalli, J. and Adamec, J., 2017. Oxidative stress, 

metabolomics profiling, and mechanism of local anesthetic induced cell death in 

yeast. Redox biology, 12, pp.139-149. 

Bordet, J. and Gengou, O., 1906.  Le microbe de la coqueluche. Ann. I'Institut Pasteur 20, 731–

74. 



195 

 

Brooks, D.L. and Seagroves, T.N., 2018. Fluorescence-activated cell sorting of murine mammary 

cancer stem-like cell subpopulations with HIF activity. In Hypoxia (pp. 247-263). Humana 

Press, New York, NY. 

Brynildsen, M.P., Winkler, J.A., Spina, C.S., MacDonald, I.C. and Collins, J.J., 2013. Potentiating 

antibacterial activity by predictably enhancing endogenous microbial ROS 

production. Nature biotechnology, 31(2), pp.160-165. 

Buehler, D.P., Wiese, C.B., Skelton, S.B. and Southard-Smith, E.M., 2012. An optimized 

procedure for fluorescence-activated cell sorting (FACS) isolation of autonomic neural 

progenitors from visceral organs of fetal mice. JoVE (Journal of Visualized Experiments), 

(66), p.e4188. 

Butz, M., Kast, P. and Hilvert, D., 2014. Affinity maturation of a computationally designed binding 

protein affords a functional but disordered polypeptide. Journal of Structural 

Biology, 185(2), pp.168-177. 

Caen, O., Schütz, S., Jammalamadaka, M.S., Vrignon, J., Nizard, P., Schneider, T.M., Baret, J.C. 

and Taly, V., 2018. High-throughput multiplexed fluorescence-activated droplet 

sorting. Microsystems & nanoengineering, 4(1), pp.1-10. 

Cashel, M. and Potrykus, K., 2001. Stringent Response. 

Cashel, M., 1996. The stringent response. Escherichia coli and Salmonella typhimulium: cellular 

and molecular biology, 2, pp.1458-1496. 

Cavanaugh, J.E. and Neath, A.A., 2019. The Akaike information criterion: Background, 

derivation, properties, application, interpretation, and refinements. Wiley 

Interdisciplinary Reviews: Computational Statistics, 11(3), p.e1460. 

Chatterji, D. and Ojha, A.K., 2001. Revisiting the stringent response, ppGpp and starvation 

signaling. Current opinion in microbiology, 4(2), pp.160-165. 

Chen, I., Dorr, B.M. and Liu, D.R., 2011. A general strategy for the evolution of bond-forming 

enzymes using yeast display. Proceedings of the National Academy of Sciences, 108(28), 

pp.11399-11404. 



196 

 

Chen, J., Vestergaard, M., Jensen, T.G., Shen, J., Dufva, M., Solem, C. and Jensen, P.R., 2017. 

Finding the needle in the haystack—the use of microfluidic droplet technology to identify 

vitamin-secreting lactic acid bacteria. MBio, 8(3), pp.e00526-17. 

Chen, Z., Wang, X., Zhao, N., Han, L., Wang, F., Li, H., Cui, Y. and Zhao, X., 2018. Improving 

the immunogenicity and protective efficacy of the EtMIC2 protein against Eimeria tenella 

infection through random mutagenesis. Vaccine, 36(18), pp.2435-2441. 

Cheng, Z., Wu, X., Cheng, J. and Liu, P., 2017. Microfluidic fluorescence-activated cell sorting 

(μF  S) chip with integrated piezoelectric actuators for low-cost mammalian cell 

enrichment. Microfluidics and Nanofluidics, 21(1), pp.1-11. 

Cho, S.H., Chen, C.H., Tsai, F.S., Godin, J.M. and Lo, Y.H., 2010. Human mammalian cell sorting 

using a highly integrated micro-fabricated fluorescence-activated cell sorter (μF  S). Lab 

on a Chip, 10(12), pp.1567-1573. 

Christodoulou, D., Link, H., Fuhrer, T., Kochanowski, K., Gerosa, L. and Sauer, U., 2018. Reserve 

flux capacity in the pentose phosphate pathway enables Escherichia coli's rapid response 

to oxidative stress. Cell systems, 6(5), pp.569-578. 

Contois, D.E., 1959. Kinetics of bacterial growth: relationship between population density and 

specific growth rate of continuous cultures. Microbiology, 21(1), pp.40-50. 

Copp JN, Williams EM, Rich MH, Patterson AV, Smaill JB, Ackerley DF. Toward a high-

throughput screening platform for directed evolution of enzymes that activate genotoxic 

prodrugs. Protein Engineering, Design & Selection 2014;27(10):399-403. 

Copp, J.N., Mowday, A.M., Williams, E.M., Guise, C.P., Ashoorzadeh, A., Sharrock, A.V., 

Flanagan, J.U., Smaill, J.B., Patterson, A.V. and Ackerley, D.F., 2017. Engineering a 

multifunctional nitroreductase for improved activation of prodrugs and PET probes for 

cancer gene therapy. Cell Chemical Biology, 24(3), pp.391-403. 

Cossarizza, A., Chang, H.D., Radbruch, A., Acs,  .,  dam,  .,  dam‐Klages, S.,  gace, W.W., 

Aghaeepour, N., Akdis, M., Allez, M. and Almeida, L.N., 2019. Guidelines for the use of 

flow cytometry and cell sorting in immunological studies. European journal of 

immunology, 49(10), pp.1457-1973. 



197 

 

Croce, A.C. and Bottiroli, G., 2014. Autofluorescence spectroscopy and imaging: a tool for 

biomedical research and diagnosis. European journal of histochemistry: EJH, 58(4). 

Crouch, E.E. and Doetsch, F., 2018. FACS isolation of endothelial cells and pericytes from mouse 

brain microregions. Nature Protocols, 13(4), pp.738-751. 

Cuny, C., Lesbats, M. and Dukan, S., 2007. Induction of a global stress response during the first 

step of Escherichia coli plate growth. Applied and environmental microbiology, 73(3), 

pp.885-889. 

Denny, W.A., 2003. Prodrugs for gene-directed enzyme-prodrug therapy (suicide gene 

therapy). Journal of Biomedicine and Biotechnology, 2003(1), p.48. 

Derfus, G.E., Abramzon, D., Tung, M., Chang, D., Kiss, R. and Amanullah, A., 2010. Cell culture 

monitoring via an auto‐sampler and an integrated multi‐functional off‐line 

analyzer. Biotechnology progress, 26(1), pp.284-292. 

Deweid, L., Neureiter, L., Englert, S., Schneider, H., Deweid, J., Yanakieva, D., Sturm, J., Bitsch, 

S., Christmann, A., Avrutina, O. and Fuchsbauer, H.L., 2018.  irected evolution of a bond‐

forming enzyme: ultrahigh‐throughput screening of microbial transglutaminase using yeast 

surface display. Chemistry–A European Journal, 24(57), pp.15195-15200. 

Dippong, M., Carl, P., Lenz, C., Schenk, J.A., Hoffmann, K., Schwaar, T., Schneider, R.J. and 

Kuhne, M., 2017. Hapten-specific single-cell selection of hybridoma clones by 

fluorescence-activated cell sorting for the generation of monoclonal antibodies. Analytical 

chemistry, 89(7), pp.4007-4012. 

Domínguez, Á., Ciruela, P., Hernández, S., García-García, J.J., Soldevila, N., Izquierdo, C., 

Moraga-Llop, F., Díaz, A., de Sevilla, M.F., González-Peris, S. and Campins, M., 2017. 

Effectiveness of the 13-valent pneumococcal conjugate vaccine in preventing invasive 

pneumococcal disease in children aged 7-59 months. A matched case-control study. PloS 

one, 12(8), p.e0183191. 



198 

 

Dukan, S. and Nyström, T., 1998. Bacterial senescence: stasis results in increased and differential 

oxidation of cytoplasmic proteins leading to developmental induction of the heat shock 

regulon. Genes & development, 12(21), pp.3431-3441. 

Dukan, S. and Nyström, T., 1999. Oxidative stress defense and deterioration of growth-arrested 

Escherichia coli cells. Journal of Biological Chemistry, 274(37), pp.26027-26032. 

Dürr, R., Duvigneau, S., Laske, T., Bachmann, M. and Kienle, A., 2016. Analyzing the impact of 

heterogeneity in genetically engineered cell lines for influenza vaccine production using 

population balance modeling. IFAC-PapersOnLine, 49(26), pp.225-230. 

Dürr, R., Franz, A. and Kienle, A., 2015. Combination of limited measurement information and 

multidimensional population balance models. IFAC-PapersOnLine, 48(20), pp.261-266. 

Dürr, R., Franz, A. and Kienle, A., 2015. Combination of limited measurement information and 

multidimensional population balance models. IFAC-PapersOnLine, 48(20), pp.261-266. 

Eakman, J.M., Fredrickson, A.G. and Tsuchiya, H.M., 1966. Statistics and dynamics of microbial 

cell populations. /AMERICAN INST. OF CHEMICAL ENGINEERS. 

Enfors, S.O., Jahic, M., Rozkov, A., Xu, B., Hecker, M., Jürgen, B., Krüger, E., Schweder, T., 

Hamer, G., O'beirne, D. and Noisommit-Rizzi, N., 2001. Physiological responses to mixing 

in large scale bioreactors. Journal of biotechnology, 85(2), pp.175-185. 

Eruslanov, E. and Kusmartsev, S., 2010. Identification of ROS using oxidized DCFDA and 

flowcytometry. In Advanced protocols in oxidative stress II (pp. 57-72). Humana Press, 

Totowa, NJ. 

Farha, M.A. and Brown, E.D., 2013. Discovery of antibiotic adjuvants. Nature 

biotechnology, 31(2), pp.120-122. 

Farr, S.B. and Kogoma, T., 1991. Oxidative stress responses in Escherichia coli and Salmonella 

typhimurium. Microbiological reviews, 55(4), pp.561-585.  

Fasnacht, M. and Polacek, N., 2021. Oxidative Stress in Bacteria and the Central Dogma of 

Molecular Biology. Frontiers in Molecular Biosciences, 8, p.392. 



199 

 

Ferullo, D.J., Cooper, D.L., Moore, H.R. and Lovett, S.T., 2009. Cell cycle synchronization of 

Escherichia coli using the stringent response, with fluorescence labeling assays for DNA 

content and replication. Methods, 48(1), pp.8-13. 

Filonov, G.S., Moon, J.D., Svensen, N. and Jaffrey, S.R., 2014. Broccoli: rapid selection of an 

RNA mimic of green fluorescent protein by fluorescence-based selection and directed 

evolution. Journal of the American Chemical Society, 136(46), pp.16299-16308. 

Finegersh, A. and Homanics, G.E., 2016. Chromatin immunoprecipitation and gene expression 

analysis of neuronal subtypes after fluorescence activated cell sorting. Journal of 

neuroscience methods, 263, pp.81-88. 

Frazier, T.P., Bowles, A., Lee, S., Abbott, R., Tucker, H.A., Kaplan, D., Wang, M., Strong, A., 

Brown, Q., He, J. and Bunnell, B. ., 2016. Serially transplanted nonpericytic   146− 

adipose stromal/stem cells in silk bioscaffolds regenerate adipose tissue in vivo. Stem 

Cells, 34(4), pp.1097-1111. 

Fredrickson, A.G., Ramkrishna, D. and Tsuchiya, H.M., 1967. Statistics and dynamics of 

procaryotic cell populations. Mathematical Biosciences, 1(3), pp.327-374. 

Fried, J., Doblin, J., Takamoto, S., Perez, A., Hansen, H. and Clarkson, B., 1982. Effects of 

Hoechst 33342 on survival and growth of two tumor cell lines and on hematopoietically 

normal bone marrow cells. Cytometry: The Journal of the International Society for 

Analytical Cytology, 3(1), pp.42-47. 

Gaj, T., Gersbach, C.A. and Barbas III, C.F., 2013. ZFN, TALEN, and CRISPR/Cas-based 

methods for genome engineering. Trends in biotechnology, 31(7), pp.397-405. 

Gant, V.A., Warnes, G., Phillips, I. and Savidge, G.F., 1993. The application of flow cytometry to 

the study of bacterial responses to antibiotics. Journal of Medical Microbiology, 39(2), 

pp.147-154. 

Gentry, D.R., Hernandez, V.J., Nguyen, L.H., Jensen, D.B. and Cashel, M., 1993. Synthesis of the 

stationary-phase sigma factor sigma s is positively regulated by ppGpp. Journal of 

bacteriology, 175(24), pp.7982-7989. 



200 

 

George, S.E., Hrubesch, J., Breuing, I., Vetter, N., Korn, N., Hennemann, K., Bleul, L., Willmann, 

M., Ebner, P., Götz, F. and Wolz, C., 2019. Oxidative stress drives the selection of quorum 

sensing mutants in the Staphylococcus aureus population. Proceedings of the National 

Academy of Sciences, 116(38), pp.19145-19154. 

Geslewitz, W.E., Percopo, C.M. and Rosenberg, H.F., 2018. FACS isolation of live mouse 

eosinophils at high purity via a protocol that does not target Siglec F. Journal of 

immunological methods, 454, pp.27-31. 

Ghatnekar, M.V., 1964. Primary effects of different mutagens and the disturbances induced in the 

meiosis of X1 and X2 of Vicia faba. Caryologia, 17(1), pp.219-244. 

Goldbeck, O., Eck, A.W. and Seibold, G.M., 2018. Real time monitoring of NADPH 

concentrations in Corynebacterium glutamicum and Escherichia coli via the genetically 

encoded sensor mBFP. Frontiers in microbiology, p.2564. 

González-Flecha, B. and Demple, B., 1995. Metabolic Sources of Hydrogen Peroxide in 

Aerobically Growing Escherichia coli∗. Journal of Biological Chemistry, 270(23), 

pp.13681-13687. 

Goswami, M., Mangoli, S.H. and Jawali, N., 2007. Effects of glutathione and ascorbic acid on 

streptomycin sensitivity of Escherichia coli. Antimicrobial agents and 

chemotherapy, 51(3), pp.1119-1122. 

Grant, S.S. and Hung, D.T., 2013. Persistent bacterial infections, antibiotic tolerance, and the 

oxidative stress response. Virulence, 4(4), pp.273-283. 

Grose, J.H., Joss, L., Velick, S.F. and Roth, J.R., 2006. Evidence that feedback inhibition of NAD 

kinase controls responses to oxidative stress. Proceedings of the National Academy of 

Sciences, 103(20), pp.7601-7606. 

Guillouzo, A. and Guguen-Guillouzo, C., 2020. Antibiotics-induced oxidative stress. Current 

Opinion in Toxicology, 20, pp.23-28. 

Hai, M. and Magdassi, S., 2004. Investigation on the release of fluorescent markers from w/o/w 

emulsions by fluorescence-activated cell sorter. Journal of controlled release, 96(3), 

pp.393-402. 



201 

 

Halliwell, B. and Whiteman, M., 2004. Measuring reactive species and oxidative damage in vivo 

and in cell culture: how should you do it and what do the results mean?. British journal of 

pharmacology, 142(2), pp.231-255. 

He, L., Su, J., Ming, M., Bernardo, L., Chen, T., Gisonni-Lex, L. and Gajewska, B., 2018. Flow 

cytometry: an efficient method for antigenicity measurement and particle characterization 

on an adjuvanted vaccine candidate H4-IC31 for tuberculosis. Journal of Immunological 

Methods, 452, pp.39-45. 

Helmrich, U., Marsano, A., Melly, L., Wolff, T., Christ, L., Heberer, M., Scherberich, A., Martin, 

I. and Banfi, A., 2012. Generation of human adult mesenchymal stromal/stem cells 

expressing defined xenogenic vascular endothelial growth factor levels by optimized 

transduction and flow cytometry purification. Tissue Engineering Part C: Methods, 18(4), 

pp.283-292. 

Henge-Aronis, R., 2000. The general stress response in Escherichia coli. Bacterial stress 

responses. 

Himeoka, Y. and Kaneko, K., 2017. Theory for transitions between exponential and stationary 

phases: universal laws for lag time. Physical Review X, 7(2), p.021049. 

Hirai, Y., Takagi, D., Anai, S., Chihara, Y., Tsuchiya, T., Fujimoto, K., Hirao, Y. and Tabata, O., 

2015. ALA-induced fluorescence detection with photoresist-based microfluidic cell sorter 

for bladder cancer diagnosis. Sensors and Actuators B: Chemical, 213, pp.547-557. 

Hölzenspies, J., Cruz, G.D. and Brickman, J.M., 2015. Resolving heterogeneity: fluorescence-

activated cell sorting of dynamic cell populations from feeder-free mouse embryonic stem 

cell culture. In Embryonic Stem Cell Protocols (pp. 25-40). Humana Press, New York, NY. 

Hu, F.J., Volk, A.L., Persson, H., Säll, A., Borrebaeck, C., Uhlen, M. and Rockberg, J., 2018. 

Combination of phage and Gram-positive bacterial display of human antibody repertoires 

enables isolation of functional high affinity binders. New biotechnology, 45, pp.80-88. 

Hubalek, Z., 2003. Protectants used in the cryopreservation of microorganisms. Cryobiology, 

46(3), pp.205-229. 



202 

 

Huizer, K., Mustafa, D.A., Spelt, J.C., Kros, J.M. and Sacchetti, A., 2017. Improving the 

characterization of endothelial progenitor cell subsets by an optimized FACS 

protocol. PLoS One, 12(9), p.e0184895. 

Immanuel, S.R.C., Ghanate, A.D., Parmar, D.S., Marriage, F., Panchagnula, V., Day, P.J. and 

Raghunathan, A., 2018. Integrative analysis of rewired central metabolism in 

temozolomide resistant cells. Biochemical and Biophysical Research 

Communications, 495(2), pp.2010-2016. 

Ishii, K., Suzuki, N., Mabuchi, Y., Sekiya, I. and Akazawa, C., 2017. Technical advantage of 

recombinant collagenase for isolation of muscle stem cells. Regenerative therapy, 7, pp.1-

7. 

Jager, S.B., Pallesen, L.T. and Vaegter, C.B., 2018. Isolation of satellite glial cells for high-quality 

RNA purification. Journal of neuroscience methods, 297, pp.1-8. 

Jahan-Tigh, R.R., Ryan, C., Obermoser, G. and Schwarzenberger, K., 2012. Flow cytometry. The 

Journal of investigative dermatology, 132(10), p.e1. 

Jerono, P., Schaum, A. and Meurer, T., 2021. Parameter identification of a yeast batch cell 

population balance model. IFAC-PapersOnLine, 54(7), pp.144-149. 

Kanehisa, M. and Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids 

research, 28(1), pp.27-30. 

Kanehisa, M. and Goto, S., 2000. KEGG: kyoto encyclopedia of genes and genomes. Nucleic acids 

research, 28(1), pp.27-30. 

Kashmiri, Z.N. and Mankar, S.A., 2014. Free radicals and oxidative stress in bacteria. Int J Curr 

Microbiol App Sci, 3(9), pp.34-40. 

Kellermann, S.J. and Rentmeister, A., 2017. A FACS-based screening strategy to assess sequence-

specific RNA-binding of Pumilio protein variants in E. coli. Biological chemistry, 398(1), 

pp.69-75. 



203 

 

Khelef, N., DeShazer, D., Friedman, R.L. and Guiso, N., 1996. In vivo and in vitro analysis of 

Bordetella pertussis catalase and Fe-superoxide dismutase mutants. FEMS microbiology 

letters, 142(2-3), pp.231-235. 

Kirkman, H.N., Rolfo, M., Ferraris, A.M. and Gaetani, G.F., 1999. Mechanisms of protection of 

catalase by NADPH: kinetics and stoichiometry. Journal of Biological 

Chemistry, 274(20), pp.13908-13914. 

Kodym, A. and Afza, R., 2003. Physical and chemical mutagenesis. In Plant functional 

genomics (pp. 189-203). Humana Press. 

Koh, H.J., Lee, S.M., Son, B.G., Lee, S.H., Ryoo, Z.Y., Chang, K.T., Park, J.W., Park, D.C., Song, 

B.J., Veech, R.L. and Song, H., 2004. Cytosolic NADP+-dependent isocitrate 

dehydrogenase plays a key role in lipid metabolism. Journal of Biological 

Chemistry, 279(38), pp.39968-39974. 

Kohanski, M.A., Dwyer, D.J. and Collins, J.J., 2010. How antibiotics kill bacteria: from targets to 

networks. Nature Reviews Microbiology, 8(6), pp.423-435. 

Kolter, R., Siegele, D.A. and Tormo, A., 1993. The stationary phase of the bacterial life 

cycle. Annual review of microbiology, 47, pp.855-875. 

Kullback, S. and Leibler, R.A., 1951. On information and sufficiency. The annals of mathematical 

statistics, 22(1), pp.79-86. 

Kunnath-Velayudhan, S. and Porcelli, S.A., 2018. Isolation of intact RNA from murine CD4+ T 

cells after intracellular cytokine staining and fluorescence-activated cell sorting. Journal 

of immunological methods, 456, pp.77-80. 

Labrou, N.E., 2010. Random mutagenesis methods for in vitro directed enzyme evolution. Current 

Protein and Peptide Science, 11(1), pp.91-100. 

Lakowicz, J.R. ed., 2006. Principles of fluorescence spectroscopy. Boston, MA: Springer US. 

Lange, H., Taillandier, P. and Riba, J.P., 2001. Effect of high shear stress on microbial 

viability. Journal of Chemical Technology & Biotechnology: International Research in 

Process, Environmental & Clean Technology, 76(5), pp.501-505. 



204 

 

Lara, A.R., Galindo, E., Ramírez, O.T. and Palomares, L.A., 2006. Living with heterogeneities in 

bioreactors. Molecular biotechnology, 34(3), pp.355-381. 

Leo, J.C., Grin, I. and Linke, D., 2012. Type V secretion: mechanism (s) of autotransport through 

the bacterial outer membrane. Philosophical Transactions of the Royal Society B: 

Biological Sciences, 367(1592), pp.1088-1101. 

Li, N., Huang, X., Zou, J., Chen, G., Liu, G., Li, M., Dong, J., Du, F., Cui, X. and Tang, Z., 2018. 

Evolution of microbial biosensor based on functional RNA through fluorescence-activated 

cell sorting. Sensors and Actuators B: Chemical, 258, pp.550-557. 

Li, N., Huang, X., Zou, J., Chen, G., Liu, G., Li, M., Dong, J., Du, F., Cui, X. and Tang, Z., 2018. 

Evolution of microbial biosensor based on functional RNA through fluorescence-activated 

cell sorting. Sensors and Actuators B: Chemical, 258, pp.550-557. 

Li, P., Ma, Z., Zhou, Y., Collins, D.J., Wang, Z. and Ai, Y., 2019. Detachable acoustophoretic 

system for fluorescence-activated sorting at the single-droplet level. Analytical 

chemistry, 91(15), pp.9970-9977. 

Lim, Y., 2005. Modeling and prediction of cell population dynamics. In Computer Aided Chemical 

Engineering (Vol. 20, pp. 517-522). Elsevier. 

Lindberg, H., Härd, T., Löfblom, J. and Ståhl, S., 2015. A truncated and dimeric format of an 

 ffibody library on bacteria enables F  S‐mediated isolation of amyloid‐beta aggregation 

inhibitors with subnanomolar affinity. Biotechnology journal, 10(11), pp.1707-1718. 

Liu, Y., Xue, Z.L., Chen, S.P., Wang, Z., Zhang, Y., Gong, W.L. and Zheng, Z.M., 2016. A high-

throughput screening strategy for accurate quantification of menaquinone based on 

fluorescence-activated cell sorting. Journal of Industrial Microbiology and 

Biotechnology, 43(6), pp.751-760. 

Llufrio, E.M., Wang, L., Naser, F.J. and Patti, G.J., 2018. Sorting cells alters their redox state and 

cellular metabolome. Redox biology, 16, pp.381-387. 

Locht, C., 1999. Molecular aspects of Bordetella pertussis pathogenesis. International 

Microbiology, 2(3), pp.137-144. 



205 

 

Lonowski LA, Narimatsu Y, Riaz A, Delay CE, Yang Z, Niola F, Duda K, Ober EA, Clausen H, 

Wandall HH, Hansen SH. Genome editing using FACS enrichment of nuclease-expressing 

cells and indel detection by amplicon analysis. Nature protocols 2017;12(3):581. 

López, J.E., Sharma, J., Avila, J., Wood, T.S., VanDyke, J.E., McLaughlin, B., Abbey, C.K., 

Wong, A., Myagmar, B.E., Swigart, P.M. and Simpson, P.C., 2017. Novel large-particle 

FACS purification of adult ventricular myocytes reveals accumulation of myosin and actin 

disproportionate to cell size and proteome in normal post-weaning development. Journal 

of molecular and cellular cardiology, 111, pp.114-122. 

Luftig, M., Nikitin, P., Yan, C., Forte, E., Tourigny, J., Price, A. and Dave, S., 2013. G101 studies 

at the oncogenic virus/host interface: dynamic regulation of Epstein-Barr virus-mediated 

B cell immortalization. JAIDS Journal of Acquired Immune Deficiency Syndromes, 62, 

p.58. = PRICE 

Lumjiaktase, P., Diggle, S.P., Loprasert, S., Tungpradabkul, S., Daykin, M., Camara, M., 

Williams, P. and Kunakorn, M., 2006. Quorum sensing regulates dpsA and the oxidative 

stress response in Burkholderia pseudomallei. Microbiology, 152(12), pp.3651-3659. 

Lunder, M., Brat ovič,  .,  olja , B., Kreft, S., Urleb, U., Štru elj, B. and  lazar,  ., 2005. 

Comparison of bacterial and phage display peptide libraries in search of target-binding 

motif. Applied biochemistry and biotechnology, 127(2), pp.125-131. 

Lushchak, V.I., 2001. Oxidative stress and mechanisms of protection against it in 

bacteria. Biochemistry (Moscow), 66(5), pp.476-489. 

Lv, D., Ma, Q.H., Duan, J.J., Wu, H.B., Zhao, X.L., Yu, S.C. and Bian, X.W., 2016. Optimized 

dissociation protocol for isolating human glioma stem cells from tumorspheres via 

fluorescence-activated cell sorting. Cancer Letters, 377(1), pp.105-115. 

Ma, F., Fischer, M., Han, Y., Withers, S.G., Feng, Y. and Yang, G.Y., 2016. Substrate engineering 

enabling fluorescence droplet entrapment for IVC-FACS-based ultrahigh-throughput 

screening. Analytical Chemistry, 88(17), pp.8587-8595. 



206 

 

Ma, N., Koelling, K.W. and Chalmers, J.J., 2002. Fabrication and use of a transient contractional 

flow device to quantify the sensitivity of mammalian and insect cells to hydrodynamic 

forces. Biotechnology and bioengineering, 80(4), pp.428-437. 

Maesner, C.C., Almada, A.E. and Wagers, A.J., 2016. Established cell surface markers efficiently 

isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-

activated cell sorting. Skeletal Muscle, 6(1), pp.1-10. 

Maitra, A. and Dill, K.A., 2015. Bacterial growth laws reflect the evolutionary importance of 

energy efficiency. Proceedings of the National Academy of Sciences, 112(2), pp.406-411. 

Maki, Y., Yoshida, H. and Wada, A., 2000. Two proteins, YfiA and YhbH, associated with resting 

ribosomes in stationary phase Escherichia coli. Genes to cells, 5(12), pp.965-974. 

Mantzaris, N.V., Daoutidis, P. and Srienc, F., 2001a. Numerical solution of multi-variable cell 

population balance models: I. Finite difference methods. Computers & Chemical 

Engineering, 25(11-12), pp.1411-1440. 

Mantzaris, N.V., Daoutidis, P. and Srienc, F., 2001b. Numerical solution of multi-variable cell 

population balance models. II. Spectral methods. Computers & Chemical 

Engineering, 25(11-12), pp.1441-1462. 

Mantzaris, N.V., Liou, J.J., Daoutidis, P. and Srienc, F., 1999. Numerical solution of a mass 

structured cell population balance model in an environment of changing substrate 

concentration. Journal of Biotechnology, 71(1-3), pp.157-174. 

Martinez de Tejada, G., Cotter, P.A., Heininger, U., Camilli, A., Akerley, B.J., Mekalanos, J.J. 

and Miller, J.F., 1998.  either the Bvg− phase nor the vrg6 locus of Bordetella pertussis is 

required for respiratory infection in mice. Infection and immunity, 66(6), pp.2762-2768. 

McCullum, E.O., Williams, B.A., Zhang, J. and Chaput, J.C., 2010. Random mutagenesis by error-

prone PCR. In In vitro mutagenesis protocols (pp. 103-109). Humana Press, Totowa, NJ. 

McDougald, D., Gong, L., Srinivasan, S., Hild, E., Thompson, L., Takayama, K., Rice, S.A. and 

Kjelleberg, S., 2002. Defences against oxidative stress during starvation in 

bacteria. Antonie Van Leeuwenhoek, 81(1), pp.3-13. 



207 

 

Michener JK, Smolke CD. High-throughput enzyme evolution in Saccharomyces cerevisiae using 

a synthetic RNA switch. Metabolic engineering 2012;14(4):306-316. 

Miller, M.B. and Bassler, B.L., 2001. Quorum sensing in bacteria. Annual Reviews in 

Microbiology, 55(1), pp.165-199. 

Mollet, M., Godoy‐Silva,  ., Berdugo,  . and  halmers, J.J., 2007.  cute hydrodynamic forces 

and apoptosis: a complex question. Biotechnology and bioengineering, 98(4), pp.772-788. 

Mollet, M., Godoy‐Silva,  ., Berdugo,  . and  halmers, J.J., 2008.  omputer simulations of the 

energy dissipation rate in a fluorescence‐activated cell sorter:  mplications to 

cells. Biotechnology and bioengineering, 100(2), pp.260-272. 

Moon, K., Bonocora, R.P., Kim, D.D., Chen, Q., Wade, J.T., Stibitz, S. and Hinton, D.M., 2017. 

The BvgAS regulon of Bordetella pertussis. MBio, 8(5), pp.e01526-17. 

Morchain, J., Pigou, M. and Lebaz, N., 2017. A population balance model for bioreactors 

combining interdivision time distributions and micromixing concepts. Biochemical 

engineering journal, 126, pp.135-145. 

Mueller, E.A., Westfall, C.S. and Levin, P.A., 2020. pH-dependent activation of cytokinesis 

modulates Escherichia coli cell size. PLoS genetics, 16(3), p.e1008685. 

Mullarky, E. and Cantley, L.C., 2015. Diverting glycolysis to combat oxidative stress. Innovative 

medicine, pp.3-23. 

Mutafopulos, K., Spink, P., Lofstrom, C.D., Lu, P.J., Lu, H., Sharpe, J.C., Franke, T. and Weitz, 

D.A., 2019. Traveling surface acoustic wave (TSAW) microfluidic fluorescence activated 

cell sorter (μF  S). Lab on a Chip, 19(14), pp.2435-2443. 

Nakamura, T. and Omasa, T., 2015. Optimization of cell line development in the GS-CHO 

expression system using a high-throughput, single cell-based clone selection 

system. Journal of bioscience and bioengineering, 120(3), pp.323-329. 

Nguyen, R., Perfetto, S., Mahnke, Y.D., Chattopadhyay, P. and Roederer, M., 2013. Quantifying 

spillover spreading for comparing instrument performance and aiding in multicolor panel 

design. Cytometry Part A, 83(3), pp.306-315. 



208 

 

Nilsson, H., Krawczyk, K.M. and Johansson, M.E., 2014. High salt buffer improves integrity of 

RNA after fluorescence-activated cell sorting of intracellular labeled cells. Journal of 

biotechnology, 192, pp.62-65. 

Noofeli, M., 2008. Genetic analysis and characterisation of the BapC autotransporter of 

bordetella pertussis (Doctoral dissertation, University of Glasgow). 

Ostafe, R., Prodanovic, R., Commandeur, U. and Fischer, R., 2013. Flow cytometry-based ultra-

high-throughput screening assay for cellulase activity. Analytical biochemistry, 435(1), 

pp.93-98. 

Pannala, V.R., Bazil, J.N., Camara, A.K. and Dash, R.K., 2013. A biophysically based 

mathematical model for the catalytic mechanism of glutathione reductase. Free Radical 

Biology and Medicine, 65, pp.1385-1397. 

Papa, S., Zamai, L., Cecchini, T., Del Grande, P. and Vitale, M., 1991. Cell cycle analysis in flow 

cytometry: use of BrdU labelling and side scatter for the detection of the different cell cycle 

phases. Cytotechnology, 5(1), pp.103-106. 

Parkhill, J., Sebaihia, M., Preston, A., Murphy, L.D., Thomson, N., Harris, D.E., Holden, M.T., 

Churcher, C.M., Bentley, S.D., Mungall, K.L. and Cerdeño-Tárraga, A.M., 2003. 

Comparative analysis of the genome sequences of Bordetella pertussis, Bordetella 

parapertussis and Bordetella bronchiseptica. Nature genetics, 35(1), pp.32-40. 

Pigou, M. and Morchain, J., 2015. Investigating the interactions between physical and biological 

heterogeneities in bioreactors using compartment, population balance and metabolic 

models. Chemical Engineering Science, 126, pp.267-282. 

Póvoa, E.E.F., Ebbing, A.L., Betist, M.C., Van Der Veen, C. and Korswagen, H.C., 2020. An 

optimized dissociation protocol for FACS-based isolation of rare cell types from 

Caenorhabditis elegans L1 larvae. MethodsX, 7, p.100922. 

Quedeville, V., Ouazaite, H., Polizzi, B., Fox, R.O., Villedieu, P., Fede, P., Létisse, F. and 

Morchain, J., 2018. A two-dimensional population balance model for cell growth including 

multiple uptake systems. Chemical Engineering Research and Design, 132, pp.966-981. 



209 

 

Ramesh B, Frei CS, Cirino PC, Varadarajan N. Functional enrichment by direct plasmid recovery 

after fluorescence activated cell sorting. BioTechniques 2015;59(3):157-161. 

Ramkrishna, D., 1979. Statistical models of cell populations. In Advances in Biochemical 

Engineering, Volume 11 (pp. 1-47). Springer, Berlin, Heidelberg. 

Ren, L., Yang, S., Zhang, P., Qu, Z., Mao, Z., Huang, P.H., Chen, Y., Wu, M., Wang, L., Li, P. 

and Huang,  .J., 2018. Standing surface acoustic wave (SS W)‐based fluorescence‐

activated cell sorter. Small, 14(40), p.1801996. 

Richardson, G.M., Lannigan, J. and Macara, I.G., 2015. Does FACS perturb gene 

expression?. Cytometry Part A, 87(2), pp.166-175. 

Rinnan, Å. and Andersen, C.M., 2005. Handling of first-order Rayleigh scatter in PARAFAC 

modelling of fluorescence excitation–emission data. Chemometrics and intelligent 

laboratory systems, 76(1), pp.91-99. 

Rolfe, M.D., Rice, C.J., Lucchini, S., Pin, C., Thompson, A., Cameron, A.D., Alston, M., 

Stringer, M.F., Betts, R.P., Baranyi, J. and Peck, M.W., 2012. Lag phase is a distinct 

growth phase that prepares bacteria for exponential growth and involves transient metal 

accumulation. Journal of bacteriology, 194(3), pp.686-701. 

Rover Jr, L., Fernandes, J.C., de Oliveira Neto, G., Kubota, L.T., Katekawa, E. and Serrano, S.H., 

1998. Study of NADH stability using ultraviolet–visible spectrophotometric analysis and 

factorial design. Analytical biochemistry, 260(1), pp.50-55. 

Sadreddini, S., Jadidi-Niaragh, F., Younesi, V., Pourlak, T., Afkham, A., Shokri, F. and Yousefi, 

M., 2016. Evaluation of EBV transformation of human memory B-cells isolated by FACS 

and MACS techniques. Journal of Immunotoxicology, 13(4), pp.490-497. 

Sánchez‐Luengo, M.Á.,  ovira, M., Serrano, M., Fernandez‐Marcos,  .J. and Martinez, L., 2017. 

 nalysis of the advantages of cis reporters in optimized F  S‐G al. Cytometry Part 

A, 91(7), pp.721-729. 

Sandkvist, M. and Bagdasarian, M., 1996. Secretion of recombinant proteins by Gram-negative 

bacteria. Current opinion in biotechnology, 7(5), pp.505-511. 



210 

 

Santos, J.M., Freire, P., Vicente, M. and Arraiano, C.M., 1999. The stationary‐phase morphogene 

bolA from Escherichia coli is induced by stress during early stages of growth. Molecular 

microbiology, 32(4), pp.789-798. 

Schurig-Briccio, L.A., Farías, R.N., Rodríguez-Montelongo, L., Rintoul, M.R. and Rapisarda, 

V.A., 2009. Protection against oxidative stress in Escherichia coli stationary phase by a 

phosphate concentration-dependent genes expression. Archives of biochemistry and 

biophysics, 483(1), pp.106-110. 

Scott, M., Gunderson, C.W., Mateescu, E.M., Zhang, Z. and Hwa, T., 2010. Interdependence of 

cell growth and gene expression: origins and consequences. Science, 330(6007), pp.1099-

1102. 

Seaver, L.C. and Imlay, J.A., 2001. Hydrogen peroxide fluxes and compartmentalization inside 

growing Escherichia coli. Journal of bacteriology, 183(24), pp.7182-7189. 

Serra,  .O., Lüc ing, G., Weiland, F., Schulz, S., Görg,  ., Yantorno, O.M. and  hling‐Schulz, 

M., 2008. Proteome approaches combined with Fourier transform infrared spectroscopy 

revealed a distinctive biofilm physiology in Bordetella pertussis. Proteomics, 8(23‐24), 

pp.4995-5010. 

Sharma, P., Jha, A.B., Dubey, R.S. and Pessarakli, M., 2012. Reactive oxygen species, oxidative 

damage, and antioxidative defense mechanism in plants under stressful conditions. Journal 

of botany, 2012. 

Shen, Y., Yalikun, Y. and Tanaka, Y., 2019. Recent advances in microfluidic cell sorting 

systems. Sensors and Actuators B: Chemical, 282, pp.268-281. 

Shen, Y.P., Liao, Y.L., Lu, Q., He, X., Yan, Z.B. and Liu, J.Z., 2021. ATP and NADPH 

engineering of Escherichia coli to improve the production of 4-hydroxyphenylacetic acid 

using CRISPRi. Biotechnology for biofuels, 14(1), pp.1-10. 

Shields IV, C.W., Reyes, C.D. and López, G.P., 2015. Microfluidic cell sorting: a review of the 

advances in the separation of cells from debulking to rare cell isolation. Lab on a 

Chip, 15(5), pp.1230-1249. 



211 

 

Siloto, R.M. and Weselake, R.J., 2012. Site saturation mutagenesis: Methods and applications in 

protein engineering. Biocatalysis and Agricultural Biotechnology, 1(3), pp.181-189. 

Simione, F., 1992. Key issues relating to the genetic stability and preservation of cells and cell 

banks. PDA Journal of Pharmaceutical Science and Technology, 46(6), pp.226-232. 

Simon, R.U.P.A.P., Priefer, U. and Pühler, A., 1983. A broad host range mobilization system for 

in vivo genetic engineering: transposon mutagenesis in gram negative 

bacteria. Bio/technology, 1(9), pp.784-791. 

Singh, R., Lemire, J., Mailloux, R.J. and Appanna, V.D., 2008. A novel strategy involved anti-

oxidative defense: the conversion of NADH into NADPH by a metabolic network. PLoS 

One, 3(7), p.e2682. 

Singh, R., Mailloux, R.J., Puiseux-Dao, S. and Appanna, V.D., 2007. Oxidative stress evokes a 

metabolic adaptation that favors increased NADPH synthesis and decreased NADH 

production in Pseudomonas fluorescens. Journal of bacteriology, 189(18), pp.6665-6675. 

Singh, R., Mailloux, R.J., Puiseux-Dao, S. and Appanna, V.D., 2007. Oxidative stress evokes a 

metabolic adaptation that favors increased NADPH synthesis and decreased NADH 

production in Pseudomonas fluorescens. Journal of bacteriology, 189(18), pp.6665-6675. 

Smith, G.P., 1985. Filamentous fusion phage: novel expression vectors that display cloned 

antigens on the virion surface. Science, 228(4705), pp.1315-1317. 

Stadinski, B.D. and Huseby, E.S., 2020. How to prevent yourself from seeing double. Cytometry. 

Part A: the journal of the International Society for Analytical Cytology, 97(11), p.1102. 

Stainer, D. and Scholte, M.J., 1970. A simple chemically defined medium for the production of 

phase I Bordetella pertussis. Microbiology, 63(2), pp.211-220. 

Storz, G. and Imlayt, J.A., 1999. Oxidative stress. Current opinion in microbiology, 2(2), pp.188-

194. 

Sun, Y., Ban, B., Bradbury, A., Ansari, G.S. and Blake, D.A., 2016. Combining yeast display and 

competitive FACS to select rare hapten-specific clones from recombinant antibody 

libraries. Analytical chemistry, 88(18), pp.9181-9189. 



212 

 

Sundararaghavan, A., Mukherjee, A., Sahoo, S. and Suraishkumar, G.K., 2020. Mechanism of the 

oxidative stress‐mediated increase in lipid accumulation by the bacterium,  . opacus 

  630:  xperimental analysis and genome‐scale metabolic modeling. Biotechnology and 

bioengineering, 117(6), pp.1779-1788. 

Szalóki, G. and Goda, K., 2015. Compensation in multicolor flow cytometry. Cytometry Part 

A, 87(11), pp.982-985. 

Ter Huurne, M., Chappell, J., Dalton, S. and Stunnenberg, H.G., 2017. Distinct cell-cycle control 

in two different states of mouse pluripotency. Cell stem cell, 21(4), pp.449-455. 

Terekhov, S.S., Smirnov, I.V., Stepanova, A.V., Bobik, T.V., Mokrushina, Y.A., Ponomarenko, 

N.A., Belogurov Jr, A.A., Rubtsova, M.P., Kartseva, O.V., Gomzikova, M.O. and 

Moskovtsev, A.A., 2017. Microfluidic droplet platform for ultrahigh-throughput single-

cell screening of biodiversity. Proceedings of the National Academy of Sciences, 114(10), 

pp.2550-2555. 

 oli,  ., Buttigieg,  ., Blanchard, S., Lemonnier,  ., d’ ncamps, B.L., Bellouze, S., Baillat, G., 

Bohl, D. and Haase, G., 2015. Modeling amyotrophic lateral sclerosis in pure human iPSc-

derived motor neurons isolated by a novel FACS double selection technique. Neurobiology 

of disease, 82, pp.269-280. 

Tomlinson, J.E., Wagner, B., Felippe, M.J.B. and Van de Walle, G.R., 2018. Multispectral 

fluorescence-activated cell sorting of B and T cell subpopulations from equine peripheral 

blood. Veterinary immunology and immunopathology, 199, pp.22-31. 

Tsuchiya, H.M., Fredrickson, A.G. and Aris, R., 1966. Dynamics of microbial cell populations. 

In Advances in chemical engineering (Vol. 6, pp. 125-206). Academic Press. 

Ueta, M., Ohniwa, R.L., Yoshida, H., Maki, Y., Wada, C. and Wada, A., 2008. Role of HPF 

(hibernation promoting factor) in translational activity in Escherichia coli. Journal of 

biochemistry, 143(3), pp.425-433. 

Van Beek, L.F., de Gouw, D., Eleveld, M.J., Bootsma, H.J., De Jonge, M.I., Mooi, F.R., Zomer, 

A. and Diavatopoulos, D.A., 2018. Adaptation of Bordetella pertussis to the respiratory 

tract. The Journal of infectious diseases, 217(12), pp.1987-1996. 



213 

 

Van Brussel, I., Ammi, R., Rombouts, M., Cools, N., Vercauteren, S.R., De Roover, D., Hendriks, 

J.M., Lauwers, P., Van Schil, P.E. and Schrijvers, D.M., 2015. Fluorescent activated cell 

sorting: an effective approach to study dendritic cell subsets in human atherosclerotic 

plaques. Journal of Immunological Methods, 417, pp.76-85. 

Varma, S. and Voldman, J., 2015. A cell-based sensor of fluid shear stress for microfluidics. Lab 

on a Chip, 15(6), pp.1563-1573. 

Vemuri, G. N., Altman, E., Sangurdekar, D. P., Khodursky, A. B., & Eiteman, M. A. (2006). 

Overflow metabolism in Escherichia coli during steady-state growth: transcriptional 

regulation and effect of the redox ratio. Applied and environmental microbiology, 72(5), 

3653–3661. 

Vitelli, M., Budman, H., Pritzker, M. and Tamer, M., 2021. Applications of flow cytometry sorting 

in the pharmaceutical industry: A review. Biotechnology Progress, 37(4), p.e3146. 

von Recum-Knepper, J., Sadewasser, A., Weinheimer, V.K. and Wolff, T., 2015. Fluorescence-

activated cell sorting-based analysis reveals an asymmetric induction of interferon-

stimulated genes in response to seasonal influenza A virus. Journal of Virology, 89(14), 

pp.6982-6993. 

Wagner, J.M., Liu, L., Yuan, S.F., Venkataraman, M.V., Abate, A.R. and Alper, H.S., 2018. A 

comparative analysis of single cell and droplet-based FACS for improving production 

phenotypes: riboflavin overproduction in Yarrowia lipolytica. Metabolic engineering, 47, 

pp.346-356. 

Walters, C., Wheeler, L. and Stanwood, P.C., 2004. Longevity of cryogenically stored 

seeds. Cryobiology, 48(3), pp.229-244. 

Wan, B., Zhang, Q., Ni, J., Li, S., Wen, D., Li, J., Xiao, H., He, P., Ou, H.Y., Tao, J. and Teng, 

Q., 2017. Type VI secretion system contributes to Enterohemorrhagic Escherichia coli 

virulence by secreting catalase against host reactive oxygen species (ROS). PLoS 

pathogens, 13(3), p.e1006246. 



214 

 

Wan, H.M., Chang, B.Y. and Lin, S.C., 2002. Anchorage of cyclodextrin glucanotransferase on 

the outer membrane of Escherichia coli. Biotechnology and bioengineering, 79(4), pp.457-

464. 

Wang, B.L., Ghaderi, A., Zhou, H., Agresti, J., Weitz, D.A., Fink, G.R. and Stephanopoulos, G., 

2014. Microfluidic high-throughput culturing of single cells for selection based on 

extracellular metabolite production or consumption. Nature biotechnology, 32(5), pp.473-

478. 

Wang, J.D. and Levin, P.A., 2009. Metabolism, cell growth and the bacterial cell cycle. Nature 

Reviews Microbiology, 7(11), p.822. 

Wang, L., Flanagan, L.A., Jeon, N.L., Monuki, E. and Lee, A.P., 2007. Dielectrophoresis 

switching with vertical sidewall electrodes for microfluidic flow cytometry. Lab on a 

Chip, 7(9), pp.1114-1120. 

Wang, Y., Pati, S. and Schreiber, M., 2018. Cellular therapies and stem cell applications in 

trauma. The American Journal of Surgery, 215(5), pp.963-972. 

Waters, C.M. and Bassler, B.L., 2005. Quorum sensing: cell-to-cell communication in bacteria. 

Annu. Rev. Cell Dev. Biol., 21, pp.319-346. 

Weinhold, B., 2006. Epigenetics: the science of change. 

Wellen, K.E. and Thompson, C.B., 2010. Cellular metabolic stress: considering how cells respond 

to nutrient excess. Molecular cell, 40(2), pp.323-332. 

Wilson, D.S. and Keefe, A.D., 2000. Random mutagenesis by PCR. Current protocols in 

molecular biology, 51(1), pp.8-3. 

Wilson, K., Webster, S.P., Iredale, J.P., Zheng, X., Homer, N.Z., Pham, N.T., Auer, M. and Mole, 

D.J., 2017. Detecting drug-target binding in cells using fluorescence-activated cell sorting 

coupled with mass spectrometry analysis. Methods and Applications in Fluorescence, 6(1), 

p.015002. 



215 

 

Witvliet, M.H., Burns, D.L., Brennan, M.J., Poolman, J.T. and Manclark, C.R., 1989. Binding of 

pertussis toxin to eucaryotic cells and glycoproteins. Infection and immunity, 57(11), 

pp.3324-3330. 

Wu, T.H., Chen, Y., Park, S.Y., Hong, J., Teslaa, T., Zhong, J.F., Di Carlo, D., Teitell, M.A. and 

Chiou, P.Y., 2012. Pulsed laser triggered high speed microfluidic fluorescence activated 

cell sorter. Lab on a Chip, 12(7), pp.1378-1383. 

Wylot, B., Konarzewska, K., Bugajski, L., Piwocka, K. and Zawadzka, M., 2015. Isolation of 

vascular endothelial cells from intact and injured murine brain cortex—technical issues 

and pitfalls in FACS analysis of the nervous tissue. Cytometry Part A, 87(10), pp.908-920. 

Xu, L.M., Zhao, J.Z., Liu, M., Yin, J.S., Liu, H.B. and Lu, T., 2016. Recombinant scFv antibodies 

against infectious pancreatic necrosis virus isolated by flow cytometry. Journal of 

virological methods, 237, pp.204-209. 

Yang, J.H., Wright, S.N., Hamblin, M., McCloskey, D., Alcantar, M.A., Schrübbers, L., Lopatkin, 

A.J., Satish, S., Nili, A., Palsson, B.O. and Walker, G.C., 2019. A white-box machine 

learning approach for revealing antibiotic mechanisms of action. Cell, 177(6), pp.1649-

1661. 

Yang, X.S., 2019. Introduction to algorithms for data mining and machine learning. Academic 

press. 

Yim, S.S., Bang, H.B., Kim, Y.H., Lee, Y.J., Jeong, G.M. and Jeong, K.J., 2014. Rapid isolation 

of antibody from a synthetic human antibody library by repeated fluorescence-activated 

cell sorting (FACS). PLoS one, 9(10), p.e108225. 

Yuan, D., Chen, L., Li, M., Xia, H., Zhang, Y., Chen, T., Xia, R., Tang, Q., Gao, F., Mo, X. and 

Liu, M., 2015. Isolation and characterization of circulating tumor cells from human gastric 

cancer patients. Journal of cancer research and clinical oncology, 141(4), pp.647-660. 

Yumlu, S., Stumm, J., Bashir, S., Dreyer, A.K., Lisowski, P., Danner, E. and Kühn, R., 2017. Gene 

editing and clonal isolation of human induced pluripotent stem cells using 

CRISPR/Cas9. Methods, 121, pp.29-44. 



216 

 

Zavatti, V., 2014. Monitoring of an Antigen Manufacturing Process Using Fluorescence (Master's 

thesis, University of Waterloo). 

Zavatti, V., 2019. Application of Flow Cytometry and Fluorescence Spectroscopy to Monitor and 

Predict the Fermentation Activity in a Vaccine Manufacturing Process. 

Zavatti, V., Budman, H., Legge, R.L. and Tamer, M., 2020. Investigation of the effects of oxidative 

stress‐inducing factors on culturing and productivity of Bordetella pertussis. Biotechnology 

Progress, 36(1), p.e2899. 

Zeng, W., Guo, L., Xu, S., Chen, J. and Zhou, J., 2020. High-throughput screening technology in 

industrial biotechnology. Trends in biotechnology, 38(8), pp.888-906. 

Zhao, R., Jiang, S., Zhang, L., & Yu, Z. (2019). Mitochondrial electron transport chain, ROS 

generation and uncoupling (Review). International Journal of Molecular Medicine, 44, 3-

15.  

Zheng, W., Zhao, Y., Zhang, M., Wei, Z., Miao, K. and Sun, W., 2009. Oxidative stress response 

of Inonotus obliquus induced by hydrogen peroxide. Medical mycology, 47(8), pp.814- 

823. 

Zhou, M., Diwu, Z., Panchuk-Voloshina, N. and Haugland, R.P., 1997. A stable nonfluorescent 

derivative of resorufin for the fluorometric determination of trace hydrogen peroxide: 

applications in detecting the activity of phagocyte NADPH oxidase and other 

oxidases. Analytical biochemistry, 253(2), pp.162-168. 

Zimmermann, N., McBride, M.L., Yamada, Y., Hudson, S.A., Jones, C., Cromie, K.D., Crocker, 

 . .,  othenberg, M. . and Bochner, B.S., 2008. Siglec‐F antibody administration to mice 

selectively reduces blood and tissue eosinophils. Allergy, 63(9), pp.1156-1163. 

Zou, J., Huang, X., Wu, L., Chen, G., Dong, J., Cui, X. and Tang, Z., 2015. Selection of 

intracellularly functional RNA mimics of green fluorescent protein using fluorescence-

activated cell sorting. Journal of molecular evolution, 81(5), pp.172-178. 



217 

 

Appendices 
 

Appendix A Method of Characteristics 

 After applying the assumptions for the system of interest in this work (see Chapter 5.2), 

the population balance model is shown below: 

 
𝛿𝑁(𝐱, 𝑡)

𝛿𝑡
+ ∇𝐱(𝐫(𝐱, 𝑆)𝑁(𝐱, 𝑡)) + 𝛾(𝐱, 𝑡)𝑁(𝐱, 𝑡) − 4𝛾(2𝐱, 𝑡)𝑁(2𝐱, 𝑡) = 0 (A.1) 

 

This first order PDE has initial conditions 𝑁(𝐱, 0) = 𝑁𝑜(𝐱) at 𝑡 = 0. Eqn (A.1) can be expanded 

(∇𝐱) into the form: 

 

𝛿𝑁(𝐱, 𝑡)

𝛿𝑡
+ 𝐫(𝐱, S)

𝛿𝑁(𝐱, 𝑡)

𝛿𝐱
+
𝑑𝐫(𝐱, 𝑆)

𝑑𝐱
𝑁(𝐱, 𝑡) + 𝛾(𝐱, 𝑡)𝑁(𝐱, 𝑡)

− 4𝛾(2𝐱, 𝑡)𝑁(2𝐱, 𝑡) = 0 

(A.2) 

 

 It can be observed that 
𝛿𝑁(𝐱,𝑡)

𝛿𝑡
+ 𝐫(𝐱, S)

𝛿𝑁(𝐱,𝑡)

𝛿𝐱
 is a directional derivative in the direction 

of the vector (𝐫(𝐱, 𝑡), 1) in the (𝐱, 𝑡) plane. Therefore, all the direction vectors in the (𝐱, 𝑡) plane 

can be plotted to obtain a direction field. In the field, curves 𝐱 = 𝑪𝒙(𝑡) can be found by fitting the 

curves 𝐂𝐱(𝑡) into this direction field obtained by solving the following system of ODEs: 

 
𝑑𝐂𝐱(𝑡)

𝑑𝑡
= 𝐫(𝐂𝐱(𝑡), 𝑡) (A.3) 
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with initial conditions of 𝐂𝐱(0) = 𝐱𝐨. The curves defined by 𝐂𝐱(𝑡) are called characteristic curves 

which each curve representing how x changes over time given 𝐱𝐨. Each property in xo will have 

its own characteristic curve. Now, consider a solution 𝑁(𝐱, 𝑡) of the initial value problem of (A.1), 

(A.2) and the characteristic curve 𝐱 = 𝐂𝐱(𝑡) with 𝐂𝐱(𝑡) = 𝐱𝐨. Restricting 𝑁(𝐱, 𝑡) to the 

characteristic curve gives the function: 

 𝑣(𝑡) = 𝑁(𝐂𝐱(𝑡), 𝑡) (A.4) 

 Using the chain rule, 
𝑑𝑣

𝑑𝑡
 can be expanded as: 

 
𝑑𝑣

𝑑𝑡
=
𝛿𝑁(𝐂𝐱(𝑡), 𝑡)

𝛿𝐂𝐱(𝑡)

𝑑𝐂𝐱(𝑡)

𝑑𝑡
+
𝛿𝑁(𝐂𝐱(𝑡), 𝑡)

𝛿𝑡
 (A.5) 

 Eqn (A.5) can be substituted into Eqn (A.2) to give the following equation: 

 
𝑑𝑣(𝑡)

𝑑𝑡
+
𝑑𝐫(𝐂𝐱(𝑡), 𝑆)

𝑑𝐂𝐱(𝑡)
𝑣(𝑡) + 𝛾(𝐂𝐱(𝑡), 𝑡)𝑣(𝑡) − 4𝛾(2𝐂𝐱(𝑡), 𝑡)𝑣2(𝑡) = 0 (A.6) 

with initial conditions of 𝑣𝑜 = 𝑁𝑜(𝐱𝐨). Since 𝑁(2𝐱, 𝑡) would also be subjected to the method of 

characteristics, 𝑣2(𝑡) = 𝑁(2𝐂𝐱(𝑡), 𝑡). The first order PDE can be solved for using a family of first 

order ODEs in the form of Eqn (A.6). To consolidate Eqn (A.6) into Eqn (5.9),  
𝑑𝐫(𝐂𝐱(𝑡),𝑆)

𝑑𝐂𝐱(𝑡)
𝑣(𝑡) =

0 based on the reasoning provided in section 5.2.2 in Chapter 5. 
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Appendix B Population Balance Model and 

Experimental Contours 

The contour distributions for the remaining conditions presented in Chapter 5 are shown in 

Figures B-1 to B-6.  
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Figure B-1: Model flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 12.4 g/L glutamate in the media and 

starting optical density of 0.12 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 hours. 
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Figure B-2: Experimental flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 12.4 g/L glutamate in the media and 

starting optical density of 0.12 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 hours.  
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Figure B-3: Model flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 10.1 g/L glutamate in the media and 

starting optical density of 0.13 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 hours. 
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Figure B-4: Experimental flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 10.1 g/L glutamate in the media and 

starting optical density of 0.13 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 hours.  
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Figure B-5: Model validation of flow cytometry distribution contours of cell volume intracellular 

ROS concentration for a B. pertussis shake flask culture with 8.6 g/L glutamate in the media and 

starting optical density of 0.14 at (a) 6, (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 hours.  
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Figure B-6: Experimental flow cytometry distribution contours of cell volume intracellular ROS 

concentration for a B. pertussis shake flask culture with 8.6 g/L glutamate in the media and starting 

optical density of 0.14 at (a) 6 , (b) 12, (c) 18, (d) 24, (e) 30 and (f) 36 hours.  

 

 


