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Abstract

The classification of sea ice in SAR imagery is complicated by statistical nonstationarity.
Incidence angle effects, heterogeneous ice conditions and other confounding variables con-
tribute to spatial and temporal variability in the appearance of sea ice. I explore a family
of models called mixture regressions which address this issue by endowing mixture distri-
butions with class-dependent trends. I introduce mixture regression as a general technique
for unsupervised clustering on nonstationary datasets and propose techniques to improve
its robustness in the presence of noise and outliers. I then develop region-based mixture
regression models for sea ice segmentation, focusing on the modeling of SAR backscatter
intensities under the influence of incidence angle effects. Experiments are conducted on
various extensions to the approach including the use of robust estimation to improve model
convergence, the incorporation of Markov random fields for contextual smoothing, and the
combination of mixture regression with supervised classifiers. Performance is evaluated
for ice-water classification on a set of dual-polarized RADARSAT-2 images taken over the
Beaufort Sea. Results show that mixture regression achieves accuracy of 92.8% in the
unsupervised setting and 97.5% when integrated with a supervised convolutional neural
network.

This work improves on existing techniques for sea ice segmentation which enable oper-
ational ice mapping and environmental monitoring applications. The presented techniques
may also be useful for the segmentation of nonstationary images obtained from other re-
mote sensing techniques or in other domains such as medical imaging.
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Chapter 1

Introduction

Vast swaths of the polar oceans are covered with sea ice, with sea ice in the Northern
Hemisphere typically covering an area of 12-14 million square kilometers during the annual
maximum [64]. However, anthropogenically induced climate change has driven a consistent
decline in sea ice over the past four decades. The continuation of this decline will bring
far-reaching consequences for the global climate, for Arctic and Antarctic ecosystems,
and for human activities in polar regions. Sea ice monitoring is important both to gain
understanding of these impacts and to enable polar operational activities in the face of
changing and unpredictable ice conditions.

Large-scale sea ice monitoring is made possible through the use of satellite-borne remote
sensing technologies. Synthetic aperture radar (SAR) is heavily used for ice monitoring
due to its large-area coverage, high resolution and ability to see through clouds and fog
[69]. However, deriving data products such as high resolution ice maps from SAR imagery
is a complex task. Operational ice maps are typically prepared manually by experts at
organisations such as the Canadian Ice Service (CIS)[68]. Manual analyses are too time
consuming to make full use of the large volumes of data available from modern SAR sys-
tems, necessitating the development of automated ice mapping algorithms to supplement
them [68, 50].

Automated sea ice mapping has been an active area of research for nearly three decades,
evolving alongside concurrent developments in computer vision and machine learning as
well as improved understanding of the interactions between microwaves and sea ice [69,
78]. Existing approaches are divided between supervised methods, which involve training
a classifier using a corpus of data with corresponding ground truth labels [38, 34], and
unsupervised methods which attempt to find natural groupings of the data without access

1



to any training labels [77]. A further categorization exists based on the type of image
features that are used. Some approaches directly employ SAR backscatter intensities at
various polarizations to distinguish between media [50, 75], while others employ higher-
order features such as texture statistics [38].

Backscatter intensities carry significant discriminative power, but it is difficult to use
them for classification because they are statistically nonstationary due to incidence angle
effects [40, 11, 43]. Methods for ice mapping based on backscatter intensities must there-
fore incorporate models for the variability of backscatter distributions. In this thesis, I
explore a solution to this problem using a family of unsupervised models called mixture
regressions, which combine clustering and regression to identify subpopulations in datasets
which are corrupted by class-dependent nonstationary trends. I develop models for binary
ice-water classification based on dual-polarized SAR backscatter intensity, using mixture
regressions to model intensity distributions which vary as a function of the SAR sensor
incidence angle. Despite the simplicity of the approach it proves highly effective for this
task. The proposed framework is also quite flexible, setting the stage for future work which
may consider both nonstationarity of image features other than backscatter intensity (e.g.,
texture statistics) and trend variability across other variables (e.g., 2D spatial coordinates
or physical variables such as wind speeds).

I begin in chapter 2 by providing some background on SAR observation of sea ice, the
physical origins of nonstationarity in SAR imagery, and existing algorithmic approaches
to sea ice segmentation. Chapter 3 introduces mixture regression as a general clustering
technique for nonstationary datasets. I emphasize the issue of model convergence to un-
desirable local optima and propose two techniques for mitigating this issue. In chapter
4 I present a region-based adaptation of mixture regression which is suited for segmen-
tation of large, noisy images. I apply this model for ice-water segmentation on a set of
dual-polarized RADARSAT-2 images and draw conclusions on the effectiveness of model
variants. Finally, in chapter 5 I provide conclusions and an outlook on possible future
developments.
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Chapter 2

Background

2.1 Remote Sensing of Sea Ice

Satellite-borne remote sensing platforms have long been instrumental to the study of sea
ice. Persistent cloud cover and lack of sunlight during the winter season often precludes the
use of optical-wavelength instruments for sea ice analysis. Conversely, the microwave bands
are ideal for this application due to their ability to penetrate cloud and their sensitivity to
various physical parameters of sea ice. High resolution ice mapping is conducted primarily
based on synthetic aperture radar (SAR). Below I provide a brief overview of SAR and its
use for sea ice monitoring.

2.1.1 Synthetic Aperture Radar

SAR is a radar imaging technique which can achieve much higher resolution than other
radar modes such as scatterometry and real-aperture radar [17]. In general, the angular
resolution of a radar system is limited by the size of its antenna; SAR simulates a large
“synthetic” antenna by operating on a moving platform and illuminating targets from
multiple positions along its track. To form an image, echoes received at multiple positions
are coherently combined in a process called focusing [17].

The sensor geometry for a typical satellite-borne SAR is shown in Figure 2.1. Most
SAR satellites occupy polar orbits at an altitude of 500-900km. SAR systems are side-
looking radars which point nearly perpendicularly to their direction of travel. The strip of
ground imaged by the SAR is called the swath. The angle between the sensor’s line of sight
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and the vertical direction (the nadir) is called the incidence angle, denoted in this work by
θ. For the wide-swath SAR imaging modes which are preferred for sea ice mapping, the
incidence angle typically varies from around 20 degrees in the near range to 50 degrees in
the far range. As will be discussed below, the incidence angle has a significant impact on
the radar returns observed over different media.

SWATH
WIDTH

Figure 2.1: The viewing geometry of a SAR satellite. Based on a depiction of RADARSAT-
2 beam modes courtesy of MacDonald, Dettweiler and Associates Ltd. [41].

SAR systems operating at different frequencies are sensitive to different target char-
acteristics due to wavelength-dependent interactions of electromagnetic waves with target
materials [14]. The primary frequencies currently used for spaceborne SAR reside in L-band
(∼1.2 GHz), C band (∼5.4 GHz) and X-band (∼9.6 GHz). All three bands have proven
valuable for sea ice analysis [9, 33], but the C-band has been leveraged the most heavily for
this purpose. Contemporary C-band SAR platforms such as RADARSAT-2 (the primary
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data source for this thesis), RADARSAT Constellation Mission, and Sentinel-1 provide
large volumes of data covering most of the globe with short revisit times.

Many SAR systems have the ability to operate under different polarimetric modes
[72]. The dual-polarization SAR imagery used in this thesis comprises a co-polarized HH
channel (radiation is both transmitted and received with linear horizontal polarization) and
a cross-polarized HV channel (radiation is transmitted with linear horizontal polarization
and received with linear vertical polarization). Contrast between these channels can help to
distinguish between different media due to polarization-dependent scattering mechanisms
[72].

2.1.2 Electromagnetic Interactions and Scattering Mechanisms

The interpretation of SAR sea ice imagery requires understanding the interaction of electro-
magnetic waves with sea ice. The interaction of a material with electromagnetic radiation
is governed by its morphology and its dielectric permittivity [24]. The permittivity deter-
mines the propagation and absorption of radiation inside a material, and how it is reflected
and transmitted at material interfaces [68]. High-permittivity materials tend to produce
strong reflections and allow little penetration of electromagnetic waves. The interaction
also depends on the frequency of the electromagnetic wave. This is because permittivity
is in general a frequency-dependent property, and because wave scattering depends on the
roughness scale of the material with respect to the wavelength.

Analysis of SAR backscatter is complicated by the many scattering mechanisms which
contribute to radar returns [14]. Scattering which occurs after the radar signal has pen-
etrated a medium is called volume scattering. Strong volume scatter often occurs in me-
dia which are largely transparent but which are interspersed with small scattering bodies
[14, 23]. For high-permittivity media which allow little penetration of the illuminating
signal, scattering occurs mostly at the surface and the return strength is determined by
the surface properties. In the case of surface scattering, the surface roughness with respect
to the wavelength of the radar signal strongly affects the magnitude and the direction of
scattered radiation. Surfaces whose roughness scale is much smaller than the radar wave-
length produce specular reflections, where the incident and reflected waves propagate at
equal angles to the surface normal. Conversely, surfaces which are highly irregular at the
wavelength scale produce a diffuse reflection where the reflected radiation is spread across
a large range of angles. Surfaces which contain periodic structures at specific scales may
induce particularly strong returns. Bragg scattering, which occurs for surfaces which con-
tain scattering bodies arranged at multiples of half-wavelength spacing along the sensor
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line of sight, produces a bright return directed back towards the illumination source [14].
Illustrations of the various scattering mechanisms described above are shown in Figure 2.2.

specular surface
scattering

diffuse surface
scattering

volume scatteringBragg scattering

Figure 2.2: SAR scattering mechanisms

2.1.3 Characteristics of Sea Ice Types

For sea ice, the morphological and dielectric properties are modulated by many factors
including the physical qualities of the ice and the nature of the surface cover on top of the
ice (e.g., snow cover or melt ponds). These factors produce the contrast which allows sea ice
to be identified and characterized in radar imagery. Water has a much higher permittivity
than snow or ice, allowing less penetration of electromagnetic waves and producing stronger
reflections from its surface [68]. The permittivity of snow depends strongly on its moisture
content, with dry snow being nearly transparent at frequencies below X-band [15, 27].
The permittivity of sea ice is significantly increased by the presence of brine, giving SAR
signatures of sea ice a very different appearance from freshwater ice [68].

Sea ice conditions are categorized by the World Meteorological Organization (WMO)
[74], who define a standardized terminology for different sea ice types distinguished pri-
marily by their stage of development. New ice often forms as a slushy mixture on the
ocean surface which attenuates waves and appears dark in SAR imagery. Young ice passes
thorough a number of stages as it continues to freeze and agglomerate, eventually becoming
first-year ice (FYI) when it reaches a thickness of around 30cm [74]. FYI maintains a high
salt content which reduces the penetration depth and causes relatively high backscatter
intensity primarily influenced by surface effects [74]. Ice formed under calm conditions
remains relatively smooth while wind and pressure buildup can cause deformation and
ridging. As ice ages, brine drainage occurs and leaves air pockets in its absence. The
reduced brine content allows a larger penetration depth of microwaves within the ice, and
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scattering occurs at the discontinuities introduced by the air pockets [23]. This results in a
much larger volume scattering contribution from multi-year ice (MYI) over young ice [74].
In winter conditions, MYI can often be distinguished from FYI by its bright cross-polarized
SAR backscatter, especially at higher frequencies (C and X band).

Interpreting SAR sea ice imagery during the freeze-up and melt seasons is complex.
Young ice backscatter intensities range from low values which can hardly be distinguished
from calm water to anomalously high values due to frost flowers or other surface phenomena
[74] (see Figure D.1). While the dry snow cover present during winter is mostly transparent,
melt season brings wet snow cover and melt ponds which mask the signature of the ice
underneath [9]. Understanding of the impact of surface cover on microwave backscatter
has been gained through electromagnetic simulations of layered media [67, 35] and in-situ
measurements obtained with scatterometers [51, 19].

The high permittivity of seawater leads to a very low microwave penetration depth, so
SAR returns over open water are largely determined ocean surface conditions. Backscatter
intensity over open water is therefore highly dependent on wind [49], with open water in
windy conditions often exhibiting returns several dB higher than those of calm open water.
Sea ice often exhibits large fissures called “leads”. Water in leads typically appears darker
than open water as a result of smooth surface conditions brought by wave damping or the
presence of thin ice cover [69].

A consequence of the different scattering contributions for sea ice and open water is that
each exhibits a different response to changes in incidence angle. A demonstration of this
effect is shown in Figure 2.3. The large specular reflection contribution from open water
manifests a strong dependence on incidence angle. Open water returns typically decay at
a rate between 0.5-1.0 dB/degree from the near range to the far range. Ice also exhibits
variability in SAR backscatter across incidence angles, but its rougher surface properties
lead to a smaller effect; under winter conditions, C-band HH backscatter typically decays
with incidence angle at a rate between 0.16 dB/degree (for MYI) and 0.2-0.3 dB/degree
(for FYI) [43, 2]. Backscatter intensity for water in the HH polarization thus typically
exceeds that of ice in the near range and falls below it in the far range. At intermediate
incidence angles the backscatter intensity distributions in the HH polarization overlap,
making ice-water classification difficult.
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*

†

a) b)

c) d)

e) f)

Figure 2.3: Incidence angle effects on a RADARSAT-2 scene from October 27, 2010. (a)
HH polarization, (b) HV polarization. Backscatter distributions in (c-f) are shown for
water in blue and for ice in red. The variation of backscatter intensities across incidence
angle are shown for HH in (c) and HV in (d). Backscatter statistics are shown for the
incidence angle ranges of 20-23 degrees (e, statistics extracted from region ∗) and 45-48
degrees (f, statistics extracted from region †).
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2.2 Automated Sea Ice Mapping

Automatically producing sea ice maps from SAR imagery has been a long-standing chal-
lenge, and a wide variety of techniques have been proposed to address it. Many of these
approaches are supervised algorithms which rely on the existence of training data. Simple
examples include the use of thresholding [29] or decision trees [20, 39] to produce segmen-
tations based on SAR backscatter intensities. Other supervised models such as support
vector machines [38] have also been considered. More recently, deep learning models such
as convolutional neural networks have risen to prominence and found use in sea ice seg-
mentation applications [57, 3, 34]. While deep learning models are effective, they require
large training datasets to acheive good performance and they lack interpretability due to
their “black-box” nature.

On the other hand, unsupervised approaches have also demonstrated strong results for
sea ice segmentation. Commonly used methods include clustering algorithms (k-means
[6], fuzzy clustering [5], mixture models [6], etc.) and linear discriminant analysis [10].
Both backscatter intensities and texture statistics [10] have been used in such models. A
particularly successful combination is the coupling of unsupervised clustering models with
Markov random fields (MRFs)[21], which have formed the basis for several effective sea ice
segmentation algorithms [77, 50]. The models developed in this thesis fall into this category,
the primary deviation from existing work being the adaptation of the clustering models to
account for nonstationarity. Below I briefly introduce some algorithmic techniques which
provide background for the models developed in later chapters.

2.2.1 Mixture Models

Mixture models (MMs) are a ubiquitous tool for modeling data which arise from a set of
unknown sub-populations [6]. MMs are well suited for the purpose of image segmentation,
where they have frequently been used to perform unsupervised clustering on image features.
In a multivariate MM, the probability distribution of a random vector x is represented as
a weighted sum of K component distributions as shown in (2.1). Each mixture component
has a set of parameters θk and is weighted by a parameter πk called the mixture coefficient.
The mixture coefficients obey

∑
k πk = 1 in order to ensure that P (x) is normalized.

P (x) =
K∑
k=1

πkPk(x|θk) (2.1)
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The most common MM is the Gaussian mixture model (GMM), where each of the compo-
nent distributions is a multivariate Gaussian Pk(x|θk) = N (x|µk,Σk). The parameters µk

and Σk respectively denote the mean vector and the covariance matrix of the distribution
for class k.

Mixture model fitting presents a chicken and egg problem. To estimate the parame-
ters of the component distributions, it must be known which data points originate from
which component; however, attributing the data points to the mixture components requires
knowledge of the component parameters. EM-type algorithms provide an iterative method
for overcoming this problem. The idea is to simply guess an initial set of parameters for the
mixture components, and compute a set of labels based on this guess. The process is then
iterated, updating the labels and component parameters at each step until convergence
is reached. Variants of this procedure are used to fit a wide variety of clustering models
including K-means and the GMM. A more formal development of the EM algorithm for
the GMM is given in Appendix A. Since most of the algorithms developed in this work are
based on the EM algorithm for GMMs, the reader is encouraged to review this procedure.

2.2.2 Markov Random Fields

Markov random fields (MRFs) provide a method for modeling the statistical dependencies
between groups of unobserved variables. They have been a mainstay in computer vision
since the seminal work of Geman and Geman [21], used for tasks such as denoising and
segmentation. MRFs are particularly advantageous SAR image segmentation due to their
ability to overcome noise, and as such they have been employed in many successful sea
ice segmentation approaches [77, 50, 38]. A brief summary of MRF modeling for image
segmentation is given in Appendix B along with details on the optimization approach used
in this study.

2.2.3 Overcoming Nonstationarity

Random processes whose statistical properties vary with respect to some variable (for ex-
ample, time or space) are called nonstationary. Nonstationary image data arises in several
contexts, and is particularly common in remote sensing and medical imaging. For example,
magnetic resonance imagery is often corrupted by a location-dependent “bias field” which
leads to inhomogeneous intensities across the image [56]. Techniques have been proposed
to estimate and remove the bias field [47], but this corresponds to a global correction which
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does not account for class-dependent nonstationarity. The primary source of nonstation-
arity in SAR imagery is incidence angle effects, which existing methods have treated in a
variety of ways. Global incidence angle correction schemes have been considered [2] but
their effectiveness is limited to homogeneous scenes due to the class-dependent nature of
the incidence angle effect. Another possibility is to use a “glocal” approach [38], in which
SAR scenes are divided into regions across which are small enough that the class statistics
are stationary. Segmentation is applied within each region individually, and the results
are then combined in a hierarchichal gluing process. A more direct approach, and the one
which is pursued in this work, is to construct a model for class-dependent nonstationary
effects and incorporate it into a classifier. This approach was pioneered by Cristea et al.
[11] and Lohse et al. [40]. Although they did not recognize it as such, the model pro-
posed by Cristea et al. is a mixture regression; the models developed in this thesis are
generalizations of this work.

2.3 Experimental Dataset

2.3.1 Data Description and Study Area

The main dataset used in this thesis is a set of 35 dual polarized (HH and HV) RADARSAT-
2 images acquired over the Beaufort Sea between April and December for the years 2010
and 2011. Winter is excluded because near-total ice cover persists in the Beaufort sea
during the winter months. Throughout the spring, summer and fall, winds and currents
in the Beaufort sea drive a unique seasonal pattern of ice conditions. In particular, MYI
transported into the Beaufort sea becomes trapped by a large circular current called the
Beaufort Gyre. The Beaufort sea has thus historically been an important reservoir for thick
ice, although recently the fraction of MYI in the region has declined precipitously [18]. The
variability of ice conditions in this region make it an ideal case study for evaluating the
effectiveness of automated sea ice mapping algorithms. Previous work has used a subset
of the dataset for this purpose [38].

The images are acquired in the ScanSAR Wide beam mode, each covering an area of
approximately 500x500km at a nominal pixel resolution of 50m. The bounding boxes for
the scenes are shown in Figure 2.4. Corresponding weather data (air temperatures and
wind speeds) are obtained from the Global Historical Climatology Network-Daily database
(GHCN-Daily)[44, 45] for station USW00027502 located in Utquiagvik, Alaska.
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Figure 2.4: Locations of the RADARSAT-2 scenes used in this study.

2.3.2 Data Pre-processing

Radiometric calibration is applied to image each to obtain the σ0 values for each channel
following the RADARSAT-2 product description [42]. All processing is performed in the
log-domain (σ0 values in dB). For the HH channel, σ0 is thresholded between -30dB and
0dB and linearly mapped to the range [0, 1]. For the HV channel, the low and high
threshold levels are set to -35dB and -5dB, respectively. I apply block averaging to each
image using a 4x4 pixel window, resulting in a resolution of approximately 200m and image
dimensions of around 2500 by 2500 pixels. The block averaging helps to reduce speckle
noise and lower the computational burden while maintaining sufficient spatial resolution
for operational applications.
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Chapter 3

Modeling Nonstationarity with
Mixture Regressions

Mixture regression [6] combines two fundamental tasks in machine learning, clustering [6]
and regression [28]. Early studies of mixture regression [54] arose from the field of econo-
metrics, where it was known as switching regression and was used for regression analysis
on data arising from multiple sub-populations or economic regimes. Efficient estimation of
mixture regressions was enabled with the development of the EM algorithm [13, 12]. The
first well-known application of mixture regression in nonstationary image segmentation
is the work of Cristea et al. [11], who incorporated incidence angle dependencies into a
clustering-based framework for SAR image segmentation. However, they did not identify
their model as a mixture regression and therefore did not draw connections to previous
literature on the topic.

In many applications, obtaining accurate regression parameters for each component
of a mixture regression is of primary importance. Conversely, in this thesis the primary
objective is clustering, with the regression estimates serving to facilitate cluster separation
in the presence of nonstationarity. The following sections introduce mixture regression
with an emphasis on this point of view. After establishing some terminology I introduce
the mixture of linear regressions (MLR), which is a straightforward combination of the
Gaussian mixture model with linear regression. I then discuss techniques for improving
model convergence and accomodating various patterns of nonstationarity, and finally ex-
plore techniques for mixture regression when the dependence on the covariates is nonlinear.
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3.1 Keeping Up with the Trends

When the probability distribution of a random variable changes according to one or more
covariates (e.g., space or time) it is said to be nonstationary. To capture this effect in a
mixture model, the mixture components must be modified to reflect their dependence on
the covariates. I represent a general set of covariates with the vector y as shown in (3.1).

P (x|y) =
K∑
k=1

πkPk(x|θk,y) (3.1)

In this thesis, the primary source of nonstationarity under consideration is the incidence
angle effect, so y is simply the incidence angle at each image location. Other choices are
however possible such as the 2D image coordinates px and py or any other quantity across
which the observed data systematically varies in a class-dependent manner.

A common type of nonstationarity arises when the mean value of a distribution varies
across a covariate but the distribution remains otherwise unchanged. Such distributions
are commonly encountered in time series analysis where they are known as trend-stationary
processes [31]. In the context of mixture distributions, the covariate may affect each of the
mixture components differently resulting in a different trend for each class. An example of
this type of nonstationarity in a two-component mixture distribution is shown in Figure
3.1. As can be seen, the presence of nonstationarity poses a challenge for the separation of
the mixture components based on the measured values of x. Although the two populations
are well separated over most values of the covariate, marginalizing over the covariate makes
the component distributions overlap significantly.

Consider the situation where the covariate values are known for each data point, that
is we have a set of measurements {(xi,yi)}Ni=1. It is then possible to account for the
nonstationarity by obtaining an estimate of the trend for each mixture component. For
class k, denote the trend estimate by gk(y). The GMM is converted to the more general
Gaussian mixture regression by replacing the constant mean vectors µk with gk(y). The
rest of this chapter details functional forms for gk(y) and methods for estimating them.

3.2 Mixtures of Linear Regressions

In the mixture of linear regressions (MLR) [12], the trend function is a linear function
gk(y) = wT

kϕ(y). The term wk is the set of regression weights for class k and ϕ(y) is a
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Figure 3.1: A toy dataset demonstrating a mixture of trend-stationary distributions. (a)
Samples from a nonstationary mixture distribution across various values of the covariate.
(b) The marginal distributions of the mixture components.

set of basis functions over y. This model subsumes the GMM, which is recovered when ϕ
is 1 for all data points. The simplest non-trivial choice of basis, corresponding to a linear
trend function, is to take ϕ(y) = [1y0 ... yn]

T ; the values of wk then consist of a mean value
along with a slope for each element of y. Alternate choices of basis are discussed in section
3.4.

Fitting a linear regression mixture is possible using a simple modification to the EM
algorithm for GMMs. The E step proceeds as shown in (3.2), the only difference from
A.2 being the replacement of µk with wT

kϕi. Note that I have adopted the shorthand
ϕi = ϕ(yi).

zik =
πkN (xi|wT

kϕi,Σk)∑
j πjN (xi|wT

j ϕi,Σj)
(3.2)

The M step updates the mixture component parameters as shown in (3.3)-(3.5), in which
Φ = [ϕ0 ϕ1 ...ϕN ]

T and Rk = diag({zik}Ni=1). The update step for wk is a weighted linear
regression where the weighting for data point i is zik.

πk =
1

N

N∑
i=1

zik =
Nk

N
(3.3)

wk = (ΦTRkΦ)−1ΦTRkX (3.4)

Σk =
1

Nk

N∑
i=1

zik(xi −wT
kϕi)(xi −wT

kϕi)
T (3.5)
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In practice, it is beneficial to add a small regularization constant to the diagonal of ΦTRkΦ
to ensure that it is non-singular before carrying out the inversion [66]. Equation (3.4) is
thus modified as shown in (3.6), where λ is a small positive constant and I is the identity
matrix.

wk = (ΦTRkΦ+ λI)−1ΦTRkX (3.6)

3.3 Convergence Considerations

A perennial challenge with unsupervised clustering models is convergence to undesirable
local maxima. The problem stems from the non-convexity of most common clustering
objectives [6] (the likelihood function in the case mixture models) and the use of EM-
type algorithms which monotonically increase the objective at each step. If the iterations
are initialized in the basin of attraction of a poor solution they are unable to escape.
Despite some recent theoretical progress [32, 36, 37], the convergence behaviour of the EM
algorithm remains poorly understood for GMMs and even more so for mixture regressions.

Mixture models are made useful in practice using a variety of techniques which can push
them towards desirable solutions. A widely used solution is cross-validation [25], where
the model is run many times from different starting points and some criterion is used to
select the best result. This approach is time-consuming and subject to the availability of a
criterion which accurately measures the quality of the solution, so it is not considered here.
In this section I consider two alternative methods. The first is the use of robust estima-
tors, which reduce the impact of outliers when fitting the cluster parameters. The second
is deterministic annealing, a technique inspired by statistical mechanics which gradually
decreases a “temperature” parameter over the course of model fitting.

3.3.1 Robust Estimation in Mixture Models

While the standard mixture of linear regressions model uses least squares to obtain the
regression weights wk, (3.4) can be replaced with another suitable regression procedure
without modification to the rest of the algorithm. Alternatives to the least squares objective
can fulfill desiderata such as obtaining sparsity in the weights or increasing the model
robustness to outliers [30]. In this work I consider the latter goal using a method called
iteratively reweighted least squares (IRLS) [58].

IRLS obtains successive estimates of the regression parameters w
(t)
k in a series of steps

t = 0, 1, ..., T . The initial estimate w
(0)
k is obtained as in (3.4). Subsequent estimates

16



are obtained using weighted least squares [28], where the data points are reweighted by a
function of their residual with the estimated trend. Effective reweighting schemes include
the family of M-estimators, the canonical example of which is the Huber function [30]

w
(t)
ik = min{1, δ/r(t)ik } where r

(t)
ik is the residual magnitude shown in (3.7) and δ is a tuning

parameter.

r
(t)
ik = |xi −w

(t)
k

T
ϕi| (3.7)

The reweighted regression steps are performed in (3.8), where R̃
(t)
k = diag({zikw(t)

ik }Ni=1).
As in (3.6), a small regularization constant λ is added to ensure that the inversion is stable.

w
(t+1)
k = (ΦT R̃

(t)
k Φ+ λI)−1ΦT R̃

(t)
k X (3.8)

In this scheme, data points with small residuals r
(t)
ik < δ are assigned a weight of 1, while

outliers with r
(t)
ik > δ are given less importance. The value of δ can thus be tuned to achieve

the desired degree of outlier rejection, with δ → ∞ corresponding to ordinary least squares.
When δ approaches zero the result approaches the median regression (also known as L1

or quantile regression), which corresponds to minimizing the sum of the absolute residuals
rather than their squares. Robust variants of mixture regression have been considered by
Bai et al. [4], and in the context of stationary clustering it is related to the k-medians
problem. A demonstration of the outlier-handling ability of a robust clustering model
employing IRLS is shown in Figure 3.2.

DATA GMM RESULT ROBUST GMM RESULT

Figure 3.2: Demonstration of robust clustering on a toy dataset consisting of two main
clusters along with an outlier population on the upper right. The outliers are detrimental
to the GMM result but not to the robust GMM result. 95% confidence ellipses are shown
for the final clusters.

Sensitivity to outliers in clustering problems can also be alleviated by changing the
number of clusters, allowing outlier populations to form separate clusters. However, the
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optimal number of clusters cannot usually be determined a priori and must be selected
by expensive cross-validation procedures. Further, changing the number of clusters can
decrease the interpretability of the results if the clusters are intended to represent specific
sub-populations. This motivates the development of robust clustering procedures that are
tolerant to mis-specification of the number of clusters.

3.3.2 Soft EM, Hard EM and Deterministic Annealing

The traditional EM algorithm for GMM fitting [6] obtains “soft” estimates of the class
labels in the E step, that is, the responsibility for a particular data point is distributed
among the classes according to a probability distribution. This contrasts with the K-
means clustering algorithm [6], where a “hard” classification is used which assigns each
data point entirely to the nearest cluster center. A hybrid between the two, sometimes
called the Classification-EM (CEM) algorithm or elliptic K-means [16, 6], retains the M
step of the GMM but uses a hard E step as shown in (3.9).

zik =

{
1 k = argmax

j
πjN (xi|wT

j ϕi,Σj)

0 otherwise
(3.9)

Comparison studies have indicated that the CEM algorithm brings improved convergence
speed over regular EM for mixture regressions in certain applications [16], and several
successful image segmentation models use GMMs with hard update steps [76, 53].

It is in fact possible to interpolate between the soft and hard EM algorithms by rec-
ognizing that the E step of the regular EM algorithm produces a Gibbs distribution over
the class labels. Consider the log-probabilities of the mixture components for a Gaussian
mixture regression with trend functions gik shown in (3.10).

uik = log(πk)−
1

2
log|Σk| −

1

2
(xi − gik)

TΣ−1
k (xi − gik) (3.10)

A generalized E step is zi = softmax(ui/T ) where T is a scalar parameter called the
temperature and the softmax function is defined in (3.11).

softmax(x)k =
exp(xk)∑
j exp(xj)

(3.11)

Taking T = 1 corresponds to the regular soft E step, and the hard E step is recovered in
the limit as T → 0.
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Figure 3.3: Annealing schedule for EM iterations

The temperature parameter is named in analogy to statistical mechanics, where the
Gibbs distribution describes a physical system in equilibrium with a large reservoir having
a particular temperature. If the reservoir has a high temperature the system can explore its
high energy states, with all states becoming equiprobable as T → ∞; as T → 0 the proba-
bility mass concentrates entirely on the lowest energy state(s). This view of the relationship
between hard and soft clustering algorithms inspired a technique called deterministic an-
nealing [61, 60, 70] which aims to improve the convergence of clustering algorithms by
systematically varying the temperature over the course of the clustering procedure. The
temperature is initially set to a high value and is slowly decreased according to a function
known as the annealing schedule. This strategy bears resemblance to well known stochastic
sampling algorithms such as simulated annealing, but unlike these methods each update
step proceeds deterministically.

In this work I use a sigmoidal annealing schedule shown in (3.12) parameterized by loca-
tion and scale parameters respectively denoted α1 and α2. The influence of the parameters
is illustrated in Figure 3.3.

T (τ) =
1

1 + exp((τ − α1)/α2)
(3.12)
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3.4 Nonlinear Dependence on the Covariates

3.4.1 MLR with Polynomial Basis

It is common to perform nonlinear regression by performing a basis expansion over the
covariates [28]. The same idea can be used to fit a nonlinear trend function in MLR. The
optimal choice of basis depends on the application, and it can be used to encode prior
information about the nature of the trend function. In this work I use the Legendre poly-
nomials truncated at a maximum order B as the nonlinear basis. This is an appropriate
choice for modeling trend functions which vary smoothly over a fixed interval in the co-
variate, since the Legendre polynomials are smooth and orthogonal under a unit weighting
function on the interval [−1, 1]. The Legendre polynomial basis for univariate y is shown
in (3.13), where Pn(y) is the nth Legendre polynomial.

ϕ(y) = [P0(y) P1(y) ... PB(y)]
T (3.13)

Increasing the order of the basis allows more flexible trend functions to be fit, however
higher order basis functions tend to incite problems with convergence and identifiability.
Consider the dataset illustrated from Figure 3.1, in which the trend functions for the two
mixture components were generated by fourth-order polynomials. Examples of mixture
regression trends of varying degrees fit to this dataset are shown in Figure 3.4. Overly
flexible trend functions typically lead to catastrophic overfitting as shown in panel (b).
Even if the order of the basis is correctly specified, nonlinear mixture regression encounters
ambiguities at points where the trend functions of two components cross one another. This
ambiguity is shown in panels (c) and (d) of Figure 3.4. The fit in panel (c) is close to the
true result, but without prior knowledge the result in panel (d) appears equally good.

If it is known that the trend function comprises a small high-order correction on top of
a larger low-order trend, an effective strategy is to use the result from a low-order mixture
regression to initialize a more flexible model. The low-order trend provides a favorable
starting position from which the higher-order model can “relax” onto the true trend. In
the example considered above, random initializations of a mixture regression with a 4th

order trend converge to the solutions is panels (c) and (d) of Figure 3.4 with nearly equal
probability. However, if the model is initialized with the linear trend fit from panel (a) the
model converges to the result in panel (c) every time, which is an accurate fit to the true
class labels shown in Figure 3.1.
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Figure 3.4: Mixture regression fits with polynomial bases on the toy dataset from Figure
3.1. (a) Linear trend, (b) Polynomial trend of degree 10, (c-d) Polynomial trends of degree
4.

3.4.2 Mixtures of Kernel Regressions

An alternative to selecting a particular basis to represent the trend function is to employ
a nonparametric estimation method such as kernel regression [65]. This results in the
mixture of kernel regressions (MKR). The simplest example employs the Nadaraya-Watson
estimator [48, 73] shown in (3.14).

x̃i =

∑N
j=1 k(yi,yj)xj∑N
j=1 k(yi,yj)

(3.14)

The term k(·, ·) is the kernel function such as the Gaussian kernel k(yi,yj) = exp(∥yi−
yj∥22/2σ2), where ∥·∥22 is the squared Euclidean distance. The parameter σ controls the
bandwidth of the kernel, and it must be chosen to match the scale of the spatial variation
in the data. Employing a non-parametric form for gk(y) changes little about the EM model
fitting procedure. The E step remains identical, and the M step is modified according to
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(3.15)-(3.17).

πk =
1

N

N∑
i=1

zik =
Nk

N
(3.15)

gk(yi) =

∑N
j=1 k(yi,yj)zjkxj∑N
j=1 k(yi,yj)zjk

(3.16)

Σk =
1

Nk

N∑
i=1

zik(xi − gk(yi))(xi − gk(yi))
T (3.17)

A drawback of the MKR model compared to the MLR is its scalability; the compu-
tational costs of naive kernel estimation methods scale quadratically with the number of
data points, although efficient approximations such as inducing point methods exist [55, 1].
Further, MKR does not bring a strong benefit over MLR for the present application be-
cause the nonstationary trends in SAR imagery are nearly linear. For these reasons MKR
models are not explored further in this thesis, but they are introduced here to demon-
strate the flexibility of the mixture regression framework and to anticipate possible related
developments such as mixtures of Gaussian process regressions.
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Chapter 4

Sea Ice Segmentation with Mixture
Regression

In this chapter, I apply the mixture regression models developed in the previous chapter to
the problem of sea ice segmentation in SAR imagery. I begin by developing a region-based
variant of the MLR which is tailored towards the segmentation of large images corrupted
by nonstationarity and speckle noise. The model can incorporate linear or nonlinear trend
functions and can be combined with a MRF for contextual smoothing. I then conduct
experiments to explore the effectiveness of various model configurations.

4.1 Proposed Models

4.1.1 Region-Based Mixture Regression

Following previously developed SAR image segmentation methods [77, 38], I use a region-
based segmentation approach where the basic units to be classified are small homogeneous
groups of pixels called regions1. This brings the benefit of reduced computational cost and
better resistance to speckle noise than pixel-based approaches without requiring excessive
downsampling of the image. The regions are obtained using the watershed algorithm
applied to the vector gradient magnitude of the input image as described by Qin et al.
[53].

1Related work in computer vision often refers to regions as “superpixels.”
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The MLR is modified for the region-based framework in the following way. Let N
denote the number of regions in the image, which are indexed by i. Each region consists
of a set of pixels Ωi with |Ωi| denoting the number of pixels in the region. EM updates
are computed in terms of the first and second order statistics of the pixels in each region,
namely the mean x̄i =

∑
s∈Ωi

xs/|Ωi| and the second moment x̃i =
∑

s∈Ωi
xsx

T
s /|Ωi|, where

xs denotes the feature vector for pixel s.

I employ an E step with temperature parameter T as described in section 3.3.2. The
update is given by zi = softmax(ui/T ) where the elements of ui are shown in (4.1). The
shorthand gik is used for gk(yi).

uik = log(πk)−
1

2
log|Σk| −

1

2
(x̄i − gik)

TΣ−1
k (x̄i − gik) (4.1)

The region-based M step is shown in equations 4.2-4.4, where I have used the notation
X̄ = [x̄1 x̄2 ... x̄N ]

T and Ω = diag({|Ωi|}Ni=1).

πk =

∑N
i=1|Ωi|zik∑N
i=1|Ωi|

(4.2)

wk = (ΦTΩRkΦ)−1ΦTΩRkX̄ (4.3)

Σk =

∑N
i=1 zik

∑
s∈Ωi

(xs − gik)(xs − gik)
T∑N

i=1|Ωi|zik
(4.4)

It is possible to express 4.4 solely in terms of region-level statistics as shown in (4.5). This
provides an efficiency benefit since the region statistics can be pre-computed and re-used
during each iteration.

Σk =

∑N
i=1|Ωi|zik

(
x̃i − gikx̄

T
i − x̄ig

T
ik + gikg

T
ik

)∑N
i=1|Ωi|zik

(4.5)

The regression weight update in (4.3) can be replaced with a robust variant as described
in section 3.3.1. Once the EM steps have been completed, the final label for region i is
computed as ℓi = argmaxk zik.

4.1.2 Trend Functions

I begin by considering models in which the trend function of the backscatter log-intensity
for each class is modeled as a linear function of the incidence angle as shown in (4.6)
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following Cristea et al. [11] and Lohse et al [40]. I refer to this model as the linear trend
model.

gk(θi) = ak + bkθi (4.6)

In the formulation presented in chapter 3, the linear trend model corresponds to taking
ϕ(θi) = [1 θi]

T and wk = [ak bk]
T . In the region-based approach θi is taken to be the

incidence angle at the centroid2 of region i.

I also consider trend functions which are nonlinear functions of the incidence angle,
referring to the MLR where the basis ϕ(θi) is the set of Legendre polynomials up to order
n as the nth-order polynomial trend model. This is the model that was considered in
section 3.4, which is written more explicitly in (4.7).

gk(θi) = ak +
n∑

j=1

bjkPj(θi) (4.7)

Polynomial trend model fits are obtained by first running the linear trend model to con-
vergence and using the resulting labels as initialization. The linear trend model and the
polynomial trend models are contrasted with the standard GMM which represents the case
where the backscatter is stationary (no trend).

Beyond nonstationarity due to incidence angle effects, I also considered the possibility
of mixture regression using a two-dimensional trend function over the spatial coordinates.
The motivation for this approach is that such a model could represent trend nonstationarity
arising from any (possibly unknown) spatially varying quantities provided that the response
is spatially correlated. The trend could be represented for example using a MLR with a two-
dimensional basis or with a two-dimensional kernel regression. Unfortunately preliminary
experiments with this approach encountered problems. As the flexibility of the 2D basis
was increased, the model’s convergence suffered before any significant benefit was observed.
Further work is required to make two-dimensional trend models viable so I do not consider
them further in this work.

4.1.3 Regularizing Mixture Regressions with Markov Random
Fields

Clustering models such as GMMs and mixture regressions do not make use of spatial
context information leading to noisy results. Segmentation results with many small isolated

2regions are small enough that the within-region incidence angle variation is negligible.
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regions are sometimes undesirable, for example when sea ice maps are converted into
polygon shapefiles for use in GIS applications. This issue can be alleviated using MRFs.
Previous work has employed a region-based MRF to regularize the results of a GMM [53];
replacing the GMM with a mixture regression is straightforward. Details on the region-
based MRF and the optimization technique are given in Appendix B.

The objective function for the mixture regression-MRF is shown in (4.8).

ℓ∗ = argmin
ℓ

E(ℓ) = argmin
ℓ

{∑
i∈V

Ui(ℓi) +
∑

(s,t)∈E

Vij(ℓi, ℓj)

}
(4.8)

The unary potentials Ui(ℓi) are derived from the mixture regression parameters as shown
in (4.9). The pairwise potentials Vij(ℓi, ℓj) are obtained as described in (B.3) in Appendix
B.

Ui(k) = |Ωi|
(
log(πk)−

1

2
log|Σk| −

1

2
(x̄i − gik)

TΣ−1
k (x̄i − gik)

)
(4.9)

When using MRFs with mixture models as the unary potential, it is common to incorporate
the MRF into the EM iterations, replacing maximum likelihood estimates for zik in the E
step with maximum a posteriori estimates. This appears to negatively impact convergence
in the case of mixture regressions, so I use the MRF as a post-processing step by first fitting
the mixture regression without any MRF regularization and using the resulting parameters
to compute the unary potential for the MRF.

4.1.4 Nonstationary MRF Weighting

When using MRFs for image segmentation it is necessary to select a weight which controls
how strongly the MRF regularizes the result. If the weight is too small then the MRF has
no effect, but excessive weights are also detrimental since minima of the pairwise energy
correspond to all regions in the image being assigned to the same label. Yu and Clausi
[76] developed a principled method for selecting the edge penalty for a pairwise MRF with
a univariate GMM for the unary potential, which was extended to the multivariate case
by Qin and Clausi [53]. The basic idea is that the edge penalty should be large when the
unary potential provides strong class separability so as to provide sufficient regularization,
but should decrease in the case of a weak unary potential. Therefore an adaptive edge
weight was proposed which scales according to a measure of class separability. The class
separability measure was taken to be the minimum of the two-class Fisher criterion over
all pairs of classes j and k as shown in (4.10).

J = min
jk

trace
(
S−1
Wjk

SBjk

)
(4.10)
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In the above, SWjk
and SBjk

respectively represent the within and between-class scatter
matrices as defined in (4.11) and 4.12.

SWjk
=

Nj

Nj +Nk

Σj +
Nk

Nj +Nk

Σk (4.11)

SBjk
= (µj − µk)(µj − µk)

T (4.12)

The MRF edge penalty is then determined by 4.13, where C1 and C2 are tuning parameters.
C2 controls the sensitivity of the edge weight to changes in the Fisher criterion and C1 scales
the result.

β = C1
J/C2

1 + J/C2

(4.13)

When the GMM is replaced with a mixture regression, it no longer makes sense to consider a
global Fisher criterion since the class separability varies across the image. I propose a simple
extension which replaces the between-class scatter matrix of (4.12) with the nonstationary
version shown in (4.14).

SBijk
= (gij − gik)(gij − gik)

T (4.14)

The elements of SBijk
scale according to the difference between the trends for classes j

and k at the location of region i, and are then weighted by the inverse of the within-class
scatter matrix to obtain the modified Fisher criterion shown in (4.15). In contrast to the
global Fisher criterion, the modified version provides local estimates of class separability,
having high values where the classes are well separated and low values where they have a
large overlap.

Ji = min
jk

trace
(
S−1
Wjk

SBijk

)
(4.15)

The modified Fisher criterion is then used to construct a spatially varying edge strength
parameter

βi = β0

(Ji
J̄

)γ
(4.16)

where β0 is a scaling parameter, J̄ =
∑

i Ji/N is the mean of the local Fisher criterion
across the whole image, and γ is a positive constant which controls the sensitivity of the
edge strength to the local class separability. This parameterization is chosen over the
parameterization from 4.13 to allow a larger variation in edge penalty across the image; in
practice I find that γ = 2.0 works well.
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4.2 Results and Discussion

4.2.1 Evaluation of Least Squares MLR for Ice-Water Segmen-
tation

This section provides a qualitative evaluation of the results of the MLR model with a
linear trend function for ice-water segmentation. Fitting is performed using standard
least squares and no MRF regularization is used. Initial results support the findings of
Cristea et al. [11] who achieved good ice-water separation using the same model for class-
dependent backscatter decay. An example segmentation from the linear-trend MLR is
shown in Figure 4.1 and is contrasted with the result from a GMM. Plots of the incidence
angle dependent backscatter intensities for each channel are overlaid with the obtained
trend fits for comparison. It is clear that the incidence angle induced nonstationarity
prevents the GMM from separating the classes, while the MLR achieves a good fit.

While the MLR performs very well on some scenes, for others the convergence is un-
reliable; different model initializations converge to different results, some successful and
others not. For these scenes models initialized with randomly typically converge to one of
a handful of basins of attraction. Certain conditions in particular prove adversarial to MLR
convergence. One difficult scenario occurs during advanced melt conditions, where moist
snow cover and melt ponds attenuate backscatter. This is particularly detrimental for the
HV polarization where backscatter intensity during melt approaches the sensor noise floor.
An example of unreliable convergence for a scene with low HV contrast is shown in Figure
4.2 for a scene taken on July 30, 2010. Another confounding factor in this scene is the
presence of very dark regions of open water in the HH polarization; these may be caused
by local wind conditions or by wave attenuation by sub-pixel ice floes.

A second scenario which proves challenging for the convergence of mixture regression
occurs when the incidence angle ranges for which ice and water are present are nearly
disjoint. Mixture regression works best when there is an ice-water boundary that separates
the scene horizontally (across all incidence angles). It is worth noting that the favourable
scenario is over-represented in the dataset used in this study; narrow channels of open
water tend to form along the coastline of the Beaufort Sea, appearing horizontal in the
swaths of polar-orbiting satellites. This results in scenes such as the one shown in Figure
4.1 where both water and ice cover the full range of incidence angles. An example of poor
convergence for a scene where the ice-water boundary crosses the scene vertically is shown
in Figure 4.3.
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MLR TRENDS (HH) MLR TRENDS (HV) MLR RESULT

Figure 4.1: Comparison of GMM with MLR for scene 20101027
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Figure 4.2: Least squares mixture regression results for scene 20100730 corresponding to
two different random initializations. Middle row - a solution obtaining poor ice-water
separation (pixel accuracy 57.3%). Bottom row - a solution acheiveing good ice-water
separation (pixel accuracy 90.7%). A weather station in Utquiagvik, AK (approximately
140 km from the nearest point in the scene) reported a 24h-average air temperature of
8.2 degrees Celsius on the day of observation, and 24h average temperatures exceeded 6.3
degrees Celsius during the preceeding week indicating an advanced stage of melting.
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Figure 4.3: Least squares mixture regression results for scene 20101114 corresponding to
two different random initializations. Middle row - a solution obtaining poor ice-water
separation (pixel accuracy 80.2%). Bottom row - a solution achieveing good ice-water
separation (pixel accuracy 94.7%).
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4.2.2 Improving the Reliability of Mixture Regression

In this section, I explore schemes to overcome the reliablity problems encountered by
the standard mixture regression in section 4.2.1 by incorporating robust regression and
deterministic annealing. I conduct experminents on the two challenging scenes described
above (20100730 and 20101114). In general, if convergence is unreliable using the linear
trend model then it is unreliable for the polynomial trend model as well, so only the linear
trend model is considered in these experiments. The experimental configurations for the
regression are as follows:

• Least Squares : The trend coefficients wk are obtained using an ordinary least squares
regression as shown in (4.3).

• Robust Regression: The trend coefficients are obtained with a robust objective and
the IRLS algorithm described in section 3.3.1. I use the Huber loss with robustness
parameter δ, and consider the three settings δ = 0.001, δ = 0.01, and δ = 0.1. Note
that δ should be chosen in proportion to the range of the input data since it is used
as an outlier threshold on the regression residuals; the choices used here apply to
input values normalized to the range [0, 1].

For each of the variants described above, I perform experiments with two types of EM
fitting procedures:

• Constant Temperature EM : Each configuration is run for 50 EM iterations using a
constant temperature parameter T . I perform several experiments for each configu-
ration, sweeping over temperature values between 0.1 and 1.0.

• Deterministic Annealing : I fit the models using determinisitic annealing following
the sigmoidal annealing schedule detailed in section 3.3.2 with 50 iterations. I set
α1 = 25 and α2 = 4 since these settings seem to work well in practise; systematic
investigation of annealing schedules is beyond the scope of this work.

For each pairing of a model configuration with a fitting procedure I run 50 trials, each
starting from a random set of initial labels. A seed is used to generate the initial random
labels so that all experiments use the same 50 starting points. Models are evaluated on
their pixel accuracy against manual labels for each scene (the percentage of pixels for which
the correct ice/water label is obtained).

Experimental results are presented in Figure 4.4. The reliablility problems with the
least squares method are apparent from the left-most panes. The model converges to a
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satisfactory solution for some of the runs, and the performance when this occurs is quite
good (pixel accuracy 90.7% for scene 20100730 and 94.7% for 20101114). However, the
least squares model reaches this solution for only 43% of the tested initializations for scene
20100730 and for 46% of the initializations for scene 20101114. Other runs are drawn
to various lower-accuracy basins of attraction. Varying the temperature parameter has
only a minor effect on the consistency of the solutions for least squares, and employing
deterministic annealing similarly shows no benefit.
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Figure 4.4: Comparison of results for least squares and robust regression, both for constant
temperature EM and annealing EM. Top row shows results for scene 20100730 and middle
row shows results for scene 20101114. In all cases, robust regression converges to high-
accuracy solutions more frequently than least squares. Annealing EM leads to better
convergence for robust regression but not for least squares.

Robust regression results for various values of δ are shown in the rightmost 3 panes
of Figure 4.4. In most cases, similar basins of attraction exist for the robust regression
models as for least squares. The maximum accuracy over 50 trials is thus no better for
robust regression than least squares, but the high-accuracy solutions are achieved much
more consistently as is shown by the increased average accuracy. Performance is similar
across the three values of δ that were tested. The lack of significant improvement when
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decreasing δ below 0.1 indicates that outliers with large residuals are primary contributors
to the convergence difficulties faced by the least squares procedure.

Unlike the least squares case, the performace for robust regression depends on the choice
of temperature. However, the optimal temperature varies between scenes. This is likely
due to the fact that in the trend estimation step for robust mixture regression each data
point is reweighted by both the expected class labels and an outlier rejection term (see 3.8
in section 3.3.1). The weighting terms interact differently depending on the temperature
and the severity of outlier contamination in the scene. Experimental results show that
deterministic annealing brings improved consistency while also avoiding the need to tune
the temperature parameter on a scene-by-scene basis. For both scenes, the combination of
robust regression with δ = 0.001 and deterministic annealing reaches the highest-accuracy
solution in all 50 trials.

4.2.3 Nonlinear Dependence on Incidence Angle

While a linear trend function provides a reasonable approximation of the incidence angle
dependence of SAR backscatter for water and sea ice, a more flexible model for the trend
can provide a better fit. In this section, I experiment with polynomial trend models from
degree 1 (linear trend) to 5. I use the model settings determined in the previous section
to give the most consistent results (robust regression with δ = 0.001 and deterministic
annealing), and conduct experiments on the 25 labelled scenes in the dataset where both
ice and water are present. I find that the presence of outliers reduces the quality of the
polynomial fits when the number of clusters is set to 2, so I use 3 clusters and evaluate the
pixel accuracy using the best mapping of the clusters to the two output classes (ice and
water)3.

The trends for scene 20100730 are shown in Figure 4.5. It is apparent that the poly-
nomial model provides a better representation of the trend, especially for the water class.
The main source of nonlinearity for this scene appears to be low backscatter values in the
far range which fall below the noise-equivalent sigma zero (NESZ) of the SAR sensor.

Interestingly, the improved fit for the polynomial trend model does not bring a cor-
responding increase in classification accuracy. In fact, increasing the trend order beyond
the linear case corresponds to a slight decrease in the average accuracy over the 25 scenes.
Visually, the segmentation results obtained using nonlinear trends are very similar to those
obtained with the linear trend model. The lack of improvement when increasing the trend

3“Best” in this context means the mapping which gives the highest pixel accuracy.
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FIRST ORDER TREND (HH) SECOND ORDER TREND (HH) FIFTH ORDER TREND (HH)

FIRST ORDER TREND (HV) SECOND ORDER TREND (HV) FIFTH ORDER TREND (HV)

Figure 4.5: First, second and fifth order polynomial trend fits for scene 20100730. Note
that

order can be attributed to the fact that nonlinear fit deviates from the linear fit mostly at
incidence angles where ice and water backscatter values are well separated. Although in-
cluding nonlinear incidence angle terms does not help the classification performance, doing
so may still be beneficial if the trends themselves are of interest. Results for the average
pixel accuracy across the 25 scenes are shown in table 4.1. Accuracies for all scenes are
given in table C.1 in Appendix C.

Table 4.1: Comparison of polynomial models for the incidence angle effect.
Trend Order 1 2 3 4 5
Pixel Accuracy (%) 92.8 92.4 92.4 92.7 92.2
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4.2.4 MRF Regularization

This section presents the results of adding the MRF regularization scheme presented in
section 4.1.3 to the mixture regression models presented above. While mixture regression
without MRF regularization often obtains high pixel accuracy, the results are noisy. This
effect is particularly strong at incidence angles where the HH backscatter distributions
for ice and water overlap, leading to reduced class separability. An example is shown
in the center panel of Figure 4.6, where banding noise towards the leftmost third of the
scene causes misclassified pixels. As can be seen, the MRF alleviates this issue, leading to
accurate results in the regions where there is homogeneous cover of ice or water. The MRF
results in some loss of detail, causing some of the smaller leads to be erased; however, the
majority of the lead structure is preserved.

COLOUR COMPOSITE RESULT (NO MRF) RESULT (WITH MRF)

Figure 4.6: Effect of MRF regularization on the segmentaton result. The leftmost image is
a colour composite of the original SAR image with R=HH, G=HV, B=HV/HH. All bands
are stretched for better viewing.

The impact of employing the adaptive nonstationary edge penalty is illustrated in Fig-
ure 4.7. The degree of smoothing introduced by the MRF varies across the scene when a
constant edge penalty is used as a result of the variable contrast introduced by the inci-
dence angle effect. The inconsistent regularization allows noise to persist on the left side of
the scene while over-smoothing details towards the right side. The adaptive edge penalty
applies stronger regularization at incidence angles where the contrast is high and reduces
the regularization strength where the contrast is low. This results in a more consistent
smoothing effect across the scene. Although the effect is relatively minor and is not ac-
companied by an increase in measured accuracy, it constitutes a qualitative improvement.

36



4.2.5 Integrating Mixture Regression into a Supervised Classifi-
cation Scheme

This research has considered sea ice classification using mixture regression as an unsu-
pervised clustering technique. However, it is possible to pursue a hybrid approach which
combines mixture regression with essentially any supervised classifier. The hybrid ap-
proach plays to the strengths of each component. While it is well known that both tonal
and textural information are beneficial for the classification of sea ice [10, 71], the mix-
ture regression models considered so far have left texture features unleveraged. On the
other hand, many supervised classifiers can make use of texture features, but they tend
to neglect the information from raw backscatter intensities due to their inability to model
nonstationarity.

As a proof of concept, I explore a hybrid model which combines mixture regression
with an off-the-shelf U-Net convolutional neural network (CNN) [59]. No particular effort
is made to optimize the performance of the CNN on this dataset, but its performance
proves sufficient to demonstrate the benefits of the hybrid approach; alternative models
could presumably be substituted to similar effect. A leave-one-out approach [38] is used
for CNN training where the model evaluated on each scene is trained on the remaining 34
scenes.

Denote by fCNN
s (k) the output of the CNN for class k at pixel s, which is used without

applying any activation function. The hybrid segmentation approach is obtained by mod-
ifying the unary potential of the MRF as shown in (4.17), where UMR

i (k) is the mixture
regression unary from 4.9 and λ is a parameter which controls the relative weights of the
CNN and the mixture regression. For the results presented below I use λ = 1 to give the
models equal weight; Differing values for λ tend to bias the solution heavily towards the
output of only one of the models.

Ui(k) = UMR
i (k)− λ

∑
s∈Ωi

fCNN
s (k) (4.17)

Accuracy results for the hybrid model are presented for all the scenes in the study
dataset in table C.2 in Appendix C. The average pixel accuracy across all scenes of the
hybrid model is 97.5%, surpassing both the CNN (96.2%) and the unsupervised mixture
regression (92.8%, evaluated on the 25 scenes with both ice and water present). On in-
dividual scenes, the hybrid model consistently outperforms the CNN, achieving a higher
accuracy for 32 of the 35 scenes.
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Figure 4.8 compares the results of the hybrid model with the CNN and the unsupervised
mixture regression for scene 20101017. In this scene, relying on backscatter intensity
alone proved insufficient to obtin a satisfactory result; the unsupervised mixture regression
obtained the lowest accuracy (73.7%) on this scene of the 25 on which it was tested. This is
probably due to very heterogeneous ice backscatter across the scene and an unusual pattern
across the open water region which may be related to wind or thin ice formation. The CNN
fares much better, but suffers from artefacts and poor segmentation alignment to natural
edges in the image. The hybrid model improves on the CNN result both qualitatively and
quantitatively.
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COLOUR COMPOSITE FISHER CRITERION

STATIONARY MRF ADAPTIVE MRF

a) b)

c) d)

Figure 4.7: Comparison of MRF regularization with constant edge penalty (β = 20) and
adaptive edge penalty (β0 = 20, γ = 2.0) for scene 20100710. (a) Colour composite of the
original SAR image with R=HH, G=HV, B=HV/HH. (b) Value of the Fisher criterion
plotted against the incidence angle, showing low values in the center of the scene where
constrast is low and higher values at the edges. (c) Mixture regression result with constant
edge penalty. (d) Mixture regression result with adaptive edge penalty. Best viewed
zoomed in.
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COLOUR COMPOSITE MANUAL SEGMENTATION

MLR RESULT HYBRID RESULTCNN RESULT

Figure 4.8: Comparison of segmentation results for different models on scene 20101017.
The bottom row shows results for mixture regression (pixel accuracy 73.7%), CNN (pixel
accuracy 94.8%), and the hybrid CNN-mixture regression model (pixel accuracy 95.8%).
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Chapter 5

Conclusions

5.1 Summary

In this thesis, I have advocated the use of mixture regression models as a simple yet
effective method for segmenting nonstationary imagery. I presented a general framework
for nonstationary segmentation problems based on the estimation of class-dependent trends
which describe the variability of image features across covariates. I then developed mixture
regression models tailored for the segmentation of sea ice based on nonstationary SAR
backscatter intensity, focusing on the variability of backscatter distributions introduced by
incidence angle dependencies.

The experiments presented in chapter 4 make a strong case for the effectiveness and
flexibility of mixture regression. Although mixture regression fitting using regular least
squares suffered from unreliable convergence, I showed that this problem can be resolved
using a combination of robust estimation and a deterministic annealing. The resulting
model was able to capture the nonstationary backscatter distributions present in SAR sea
ice imagery and to to obtain accurate, high-resolution ice maps based on the modeled
distributions. Both linear and nonlinear incidence angle dependencies were considered.
Although including nonlinear incidence angle dependence did not increase the overall clas-
sification accuracy, it led to a better representation of the class-dependent backscatter
distributions.

Another strength of mixture regression models is their ease of incorporation with other
models. The addition of MRF regularization removed noise while maintaining fine struc-
tures such as leads. Beyond the unsupervised setting, I showed that mixture regression can
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be combined with supervised classification techniques to obtain higher performance than
either model on its own. This was demonstrated by combining mixture regression with
a CNN, acheiving an average pixel accuracy of 97.5% over the 35 RADARSAT-2 scenes
considered in this study. Several promising directions exist to extend the work presented
in this thesis, which are outlined in the following section.

5.2 Future Work

Use of mixture regression to model nonstationary texture features. Many sea ice
classification methods employ texture features. The incidence angle dependence of texture
features has attracted some recent studies [62, 26], but further work is needed to integrate
this into effective classifiers.

Extending mixture regression models for fully polarimetric SAR. This work con-
sidered the modeling of dual-polarized SAR data with nonstationary mixtures of Gaussians.
Unsupervised segentation of sea ice from Quad-Pol [75] and Compact-Pol [22] SAR has also
been accomplished using classifiers based on Wishart statistics. These methods may ben-
efit from the integration of mixture regression techniques to account for incidence angle
effects and other sources of nonstationarity.

Integrating auxiliary data sources On top of incidence angle dependencies, numerous
other factors affect the SAR backscatter intensity in sea ice imagery. It would be interesting
to consider the use of auxiliary variables (such as surface temperatures, wind fields, and
other relevant quantities) as covariates with respect to which backscatter may exhibit class-
dependent trends. To make full use of this approach it is likely that a co-segmentation
approach would be appropriate where several scenes are simultaneously segmented with
trend fits computed for all of the scenes jointly.

Region Merging. I considered mixture regression in the same region-based framework
employed by the IRGS algorithm [76, 53], which employs a region-merging strategy to grow
regions over the course of segmentation. However, I did not consider region merging in this
work. Incorporating a region merging step into the mixture regression models considered
in this thesis may enable more effective spatial context modeling.
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Appendix A

The EM Algorithm for Mixture
Models

Fitting aK-component GMM to a dataset X = {xi}Ni=1 involves finding a set of parameters
Θ∗ = {π∗

k,µ
∗
k,Σ

∗
k}Kk=1 corresponding to a maximum of the log-likelihood function of the

observed data shown in equation A.1.

logP (X|Θ) =
N∑
i=1

log

{
K∑
k=1

πkN (xi|µk,Σk)

}
(A.1)

Although it is simple to analytically obtain maximum-likelihood parameter estimates for a
single Gaussian distribution, directly maximizing equation A.1 is intractable, necessitating
the EM approach. Let {zi}Ni=1 be a set of latent variables which are “soft” labels for each
data point. Each zi is a K-dimensional vector whose elements zik represent the degree of
membership of point i to class k. Given an estimate of the component parameters, the
values of zik are obtained as the expected values of the class labels in a process called the
E step as shown in equation A.2.

zik =
πkN (xi|µk,Σk)∑
j πjN (xi|µj,Σj)

(A.2)

The expected value of the log-likelihood function for the dataset X and the expected labels
Z = {zi}Ni=1 can then be constructed as shown in equation A.3.

logP (X,Z|Θ) =
N∑
i=1

K∑
k=1

zik
{
log πk + logN (xi|µk,Σk)

}
(A.3)
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Unlike equation A.1, the expected log likelihood can easily be maximized with respect to
the component parameters. This process is called the M-step, which is shown in equations
A.4-A.6.

πk =
1

N

N∑
i=1

zik =
Nk

N
(A.4)

µk =
1

N

N∑
i=1

zikxi (A.5)

Σk =
1

Nk

N∑
i=1

zik(xi − µk)(xi − µk)
T (A.6)

The EM algorithm proceeds by repeatedly applying the E step and the M step until the
results converge. The expected log-likelihood in equation A.3 is a lower bound for the data
log-likelihood from equation A.1, and thus maximizing it in the M step is guaranteed not
to decrease the data log likelihood.
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Appendix B

Markov Random Fields

B.1 Markov Random Fields for Image Segmentation

Markov random fields (MRFs) are a type of graphical model which can represent statistical
relationships between unobserved variables. To apply MRFs to image segmentation, the
image is represented as a graph G = (V , E) where V is the node set and E is the edge
set. The nodes i ∈ V are the image locations which need to be classified, i.e. pixels in
a pixel-based approach or regions in a region-based approach. Edges (i, j) ∈ E represent
statistical relationships between nodes. Usually a nearest neighbour graph is used, where
edges exist between all pairs of nodes which share a common boundary. This allows the
modeling of spatial correlation effects where the label for a given node is correlated with
the labels of its neighbours. Examples of nearest neighbour graphs for the pixel-based case
and the region-based case are shown in Figure B.1.

Let the label for node i be represented by ℓi, where ℓi ∈ {0, 1, ..., K − 1} and K is
the number of classes in the segmentation problem. Let ℓ denote the set of labels for all
the nodes in the graph. The object is to find the label configuration ℓ∗ which maximizes
the probability P (ℓ|x) of the labels given the observed data x. This is accomplished by
minimizing an energy function E(ℓ) as shown in function B.1.

ℓ∗ = argmin
ℓ

E(ℓ) = argmin
ℓ

{∑
i∈V

Ui(ℓi) +
∑

(s,t)∈E

Vij(ℓi, ℓj)

}
(B.1)

The terms Ui(ℓi) are called the unary potentials and Vij(ℓi, ℓj) are called pairwise potentials.
The unary potentials represent the cost of assigning a particular label to each node, and
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Pixel-based Graph Region-based Graph

Figure B.1: Examples of pixel-based and region-based nearest neighbour graphs.

they can be derived from the output of essentially any node-level classifier. For example, a
common choice is the negative log-likelihood from a mixture model. The pairwise potential
Vij(ℓi, ℓj) represents the cost of simultaneously labeling node i with label ℓi and node j
with ℓj. The most common pairwise potential in image segmentation is the Potts model,
which introduces a discontinuity penalty β when two neighbouring nodes have differing
labels as shown in equation B.2.

Vij(ℓi, ℓj) =

{
β ℓi ̸= ℓj
0 otherwise

(B.2)

From a Bayesian statistics perspective, the role of the pairwise potential can be interpreted
as imposing a prior over label configurations. Minimizing the energy function therefore cor-
responds to finding maximum a posteriori (MAP) estimates for the node labels.The case
where the pairwise potentials are zero corresponds to a uniform prior, resulting in a max-
imum likelihood estimate where the predictions of the node-level classifier are recovered.
From a geometric perspective, the Potts model can be interpreted as a regularization which
seeks to minimize the total length of the intra-class boundary in the segmentation result.

When the pairwise potential in a MRF depends on the observed data, it is called a
conditional random field (CRF). In image segmentation this is often used to reweight the
edge penalty based on local image properties, for example to decrease the edge penalty
where the image gradient is large to encourage boundaries to occur along natural edges in
the image. Such a weighting scheme for a region-based CRF can be defined following Yu
and Clausi [76] as shown in equation B.3. Here ∂Ωi ∩ ∂Ωj represents the set of pixels on
the boundary separating region i from region j, ∇s is the gradient of the image evaluated
at pixel s, and g(∇s) is defined in equation B.4.

Vij(ℓi, ℓj) =

{
β
∑

s∈∂Ωi∩∂Ωj
g(∇s) ℓi ̸= ℓj

0 otherwise
(B.3)
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g(∇s) = exp
(
−
(∇s

K

)2)
(B.4)

B.2 Optimization of Markov Random Fields

Finding the minimum energy solution in a MRF is a combinatorial optimization problem
which is in general NP-hard, making exact solutions intractable except in special cases.
Significant research efforts have been directed towards developing approximate techniques
for MRF optimization, and several effective techniques are available such as graph cuts
[8], simulated annealing [21], and message passing. In this work I use a variant of the
belief propagation (BP) algorithm [52] which is a general message-passing based optimizer.
My implementation is inspired by the formulation by Bixler [7] who expressed the belief
propagation algorithm using sparse matrix multiplication. This algorithm is very efficient
for MRFs on the sparse, irregular nearest neighbour graphs that arise when using a region-
based approach tom image segmentation.

The matrix formulation for belief propagation requires encoding the graph structure
into a set of sparse binary matrices. The undirected graph is first converted into a directed
graph by replacing each undirected edge with two directed edges, one in each direction.
Arbitrary but fixed orderings are chosen for the node set and the directed edge set. Using
these orderings, let T be the forward incidence matrix, which maps each directed edge to
its destination node. It is a sparse binary matrix of size 2|E| × |V|. Similarly, let F be the
backward incidence matrix, which maps each directed edge to its source node and is also
of size 2|E| × |V|. Finally, let R be the direction reversal matrix which maps each directed
edge to the corresponding edge in the opposite direction, which is of size 2|E| × 2|E|.

The unary and pairwise potentials must also be cast into matrix form. Let U be the
matrix of pairwise potentials, a dense matrix of size |V| × K as shown in equation B.5
where K is the number of classes.

Uij = Ui(j) (B.5)

As above, the rows of U must follow the fixed node ordering. Similarly, the pairwise
potentials are placed in a 3 dimensional array V of size 2|E|×K×K as shown in equation
B.6 where i is an index over the ordered set of directed edges, si is the source node for
edge i, and ti is the destination node for edge i.

Vijk = Vsi,ti(j, k) (B.6)

Belief propagation employs variables called “beliefs” for each node which represent the
likelihood that it is assigned a particular label. The algorithm is an iterative message
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passing procedure in which information is propagated between adjacent nodes and used to
update the beliefs for each one. To maintain consistency with the convention in computer
vision where MRF optimization is cast as an energy minimization problem and the poten-
tials are expressed as costs, I employ a belief propagation variant which operates in the
negative log domain. A dense belief matrix B of size |V|×K is introduced where Bij is the
negative logarithm of the belief that node i should take on label j. A message matrix M is
also introduced which carries the information passed between the nodes at each iteration;
M is a dense matrix of size 2|E| ×K where Mij is the jth element of the message passed
between nodes si and ti.

Both M and B require initialization before the belief propagation iterations can begin;
the algorithm is insensitive to initialization and thus matrices with all zeros are a reasonable
choice. The iteration steps are then carried out as shown in equations B.7-B.9. The beliefs
are only determined up to a constant, so equation B.8 does not change the result of the
algorithm but is useful for avoiding numerical instability. Note that a “broadcasting”
operation is required to expand the dimensions of the matrices in equations B.8 and B.9,
as described in [7].

B̃ = U+TTM (B.7)

B = B̃−min B̃ (B.8)

M = min
j

{
V + FTB−RTM

}
ijk

(B.9)

The belief propagation has both hard (“min-sum”, as shown above) and soft (“sum-
product”) variants [46]. These variants are essentially analogous to the hard and soft EM
variants described in section 3.3.2. The soft variant of BP is obtained by replacing the
minimum function in equations B.8 and B.9 with the smooth minimum function shown in
equation B.101.

smoothmin(x) =
∑
i

xi − log
∑
i

exp(xi) (B.10)

1The terminology surrounding the various functions related to equation B.10 is unfortunately a bit
of a mess. The softmax function should really be called soft-argmax, and the log-sum-exp function is a
much better candidate for the name of softmax because it actually provides a soft approximation to the
maximum function! The term “softmin” is not available for similar reasons, so I went with “smoothmin”
in equation B.10 even though this term is not regularly used.

57



Once the belief propagation iterations are complete, the final labels are obtained as
shown in equation B.11.

ℓi = argmin
j

Bij (B.11)
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Appendix C

Tables of Results
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Table C.1: Comparison of polynomial models for the incidence angle effect. Results are
presented for the 25 scenes containing both ice and water to enable meaningful conparisons
in the unsupervised setting. The best result for each scene is indicated in bold.

Trend Order 1 2 3 4 5
Scene Pixel Accuracy (%)
20100510 98.0 98.0 98.1 98.1 98.0
20100524 96.8 95.6 96.0 96.2 96.0
20100605 99.2 98.9 99.2 99.2 99.3
20100623 96.4 92.9 97.0 97.3 97.4
20100629 95.8 95.9 95.6 95.2 95.2
20100704 97.5 96.8 94.3 96.5 96.4
20100712 88.4 90.5 90.6 90.7 90.7
20100721 95.0 95.6 95.7 95.8 95.8
20100730 90.7 91.5 91.3 91.3 91.3
20100807 89.6 89.3 89.4 89.4 89.4
20100909 87.3 89.1 89.3 89.3 89.8
20101003 92.0 91.9 88.8 91.9 91.8
20101017 73.7 72.6 72.4 73.4 72.6
20101021 87.7 80.7 80.6 81.1 83.2
20101025 90.3 87.6 84.9 85.2 85.3
20101027 94.7 94.7 95.1 95.1 95.1
20101114 94.8 94.4 94.6 94.1 80.6
20110530 98.5 98.5 98.5 98.5 98.6
20110613 98.9 99.0 99.0 99.2 99.1
20110627 94.9 95.5 95.4 95.1 95.4
20110709 94.8 95.0 94.9 94.7 94.7
20110710 94.3 94.4 94.4 94.6 94.6
20110720 93.7 94.0 94.1 94.1 93.8
20110725 89.9 89.9 94.4 94.3 94.3
20111029 86.6 86.8 87.0 87.1 87.3
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Table C.2: Pixel accuracy results for the CNN model and the hybrid CNN mixture regres-
sion model.

scene CNN Hybrid scene CNN Hybrid
20100418 99.3 99.9 20101021 96.1 96.6
20100426 99.5 99.9 20101025 94.8 95.8
20100510 99.0 99.1 20101027 95.8 96.9
20100524 98.6 98.7 20101114 96.5 96.4
20100605 99.1 99.2 20101120 98.6 99.2
20100623 98.0 98.8 20101206 98.1 99.3
20100629 93.6 96.6 20101214 98.8 100.0
20100704 95.8 99.3 20110530 99.3 99.5
20100712 84.8 92.5 20110613 99.4 99.7
20100721 94.0 96.5 20110627 87.9 94.9
20100730 92.4 94.7 20110709 96.5 97.4
20100807 93.5 94.2 20110710 96.3 97.0
20100816 93.9 95.0 20110720 96.4 96.9
20100907 99.9 99.7 20110725 93.5 95.7
20100909 95.0 95.2 20111006 99.9 99.5
20101003 94.9 97.0 20111013 99.3 99.6
20101014 99.7 99.9 20111029 95.0 95.9
20101017 94.8 95.8
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Ice Gallery
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Figure D.1: Comparison of thin ice features in L-band (ALOS PALSAR) and C-band
(RADARSAT-2) during freeze-up. Both images are taken with HH polarization. The
presence of thin ice is ambiguous in C-band, with some regions appearing dark and others
bright, possibly due to frost flowers or other anomalous surface scattering conditions. The
deeper penetration depth in L-band resolves this ambiguity.
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Figure D.2: Example of small ice floes too small to be resolved in wide-swath SAR modes.
The left-hand image was acquired in the L-band by the ALOS PALSAR sensor in the fine-
beam single polarization mode (HH polarization), with a nominal resolution of 6.25x6.25m.
The right hand image is from RADARSAT-2 (C-band, HH polarization) in the ScanSAR
Wide beam mode with a nominal resolution of 50x50m. The RADARSAT-2 image was
acquired 8.5 hours after the PALSAR image.
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