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Abstract

Non-pharmaceutical interventions (NPIs) can protect against pandemic pathogens, but
they depend on behaviour change, and so can impose costs on quality of life and civil
liberties. With careful system design and risk analysis these tradeoffs can be improved,
enabling more effective disease control at a lower cost. In this thesis, I propose a method
for decentralized digital contact tracing that is fast, scalable, and cannot be used for mass
surveillance. I show how targeted quarantine substitutes for broad social distancing and
use this relationship to estimate the optimal quarantine risk threshold – finding that it
strongly depends on disease prevalence. Using the joint distribution for infectiousness and
test sensitivity, quarantine duration and test timing can be chosen to minimize the dura-
tion of quarantine without increasing expected transmissions. Decentralized digital contact
notification apps were used by close to 100 million people during the COVID-19 pandemic
and prevented a significant number of transmissions despite challenges with system ro-
bustness. Decentralized digital contact tracing combined with adaptive risk analysis can
efficiently suppress infectious disease in the idealized (high participation) case, however
more work is needed to design solutions that are both robust and socially acceptable.
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Chapter 1

Introduction

Infectious diseases impose an enormous burden on human health globally, and the ap-
pearance of pandemics like COVID-19 have the potential for rapid devastation [5]. When
vaccines or treatments are unavailable (as is typical in the early stages of a pandemic)
Non-Pharmaceutical Interventions (NPIs) are the only option for disease suppression [6].
Fortunately, pandemics begin with a prolonged early period in which disease spread is con-
centrated to a very small fraction of the population1. So, in theory it is possible to contain
a disease at a very low average cost per person by isolating infectious individuals [7]. As
an example, contact tracing is an NPI that aims to quarantine recently infected contacts
of known cases before they infect others. The number of potential contacts is proportional
to the number of infected and not the total population, so contact tracing can be a highly
efficient intervention when disease prevalence is low [8].

The focus of this thesis is on the development of technologies and strategies that can
lower the cost (both in terms of dollars and quality of life) of disease containment by
making use of heterogeneity in risk of infectiousness. We investigate several ways to do
this, including collecting better information, improving risk analysis and making better
decisions about risk on the basis of broader control dynamics. For example, the cost of
quarantine can be reduced by using information from testing to shorten quarantine duration
without increasing the expected number of transmissions. The decision about the tradeoff
between health and disruption to daily life is a complicated ethical and political problem.
Our aim here is to focus on increasing capabilities to enable better tradeoffs (essentially
expanding the Pareto frontier [9, 10, 11]). Conversely, we aim to limit the enhancement

1Even after the number of cases has increased, broad social distancing could be used to reduce case
numbers to a manageable level.
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of capabilities for non health-related purposes such as mass surveillance. The intention is
for tools we develop to be used broadly, so careful design is needed to ensure people are
comfortable with how these systems can affect privacy and the role of government.

This work began in January 2020 with the design of digital contact tracing architectures
in response to the COVID-19 pandemic. Chapter 2 provides an overview of my work with
Covid Watch and the TCN Coalition on the development of the first decentralized digital
contact tracing app. Such apps are capable of notifying people of exposure to an infectious
individual without gathering information on the vast majority of users, and at the time
of this writing (July 2022) have been used by over 90 million people worldwide through
Apple and Google’s Exposure Notification system.

For digital contact tracing, manual contact tracing, and a broad variety of NPIs, the
decision about who to target for behaviour modification is crucial. The direct cost of an
additional infection is relatively constant, but indirect costs strongly depend on the state
of disease control in the broader population. For this reason, the risk of infectiousness
that would make quarantine worthwhile varies depending on disease prevalence. Chapter
3 summarizes our work using a simple epidemiological model to estimate the ‘optimal’
quarantine risk threshold in a mostly immune-naive population that is actively social dis-
tancing. We find that when disease prevalence is low, preventing an additional infection can
substantially reduce the burden of social distancing on the broader population. Compared
to the implicit risk threshold of common policies, the optimal quarantine risk threshold is
much more dynamic and could be several orders of magnitude lower.

While quarantine of potentially infectious individuals can provide enormous social ben-
efit, it is also very costly to the individuals whose lives are disrupted. Besides supporting
them through quarantine (logistically and financially), we can also minimize the duration
of quarantine using well-timed PCR tests. Chapter 4 summarizes our work using the joint
distribution for test sensitivity and expected daily transmissions (conditional on infection
date and symptom onset date) to optimize test timing and quarantine duration. We find
that the optimal policy doesn’t depend on isolation effectiveness or quarantine effective-
ness individually, but only on their ratio. For a reasonable value of this ratio (0.7), 6
days of quarantine with a test 5 days after exposure results in the same number of ex-
pected transmissions as the default policy (10 day quarantine with no test) with 4 days
less quarantine.

The work on quarantine risk thresholds in Chapter 3 is for a special case – making
decisions on the margin to offset social distancing. In Section 5.3, we outline how this
approach could be expanded to choose better trajectories by borrowing concepts from Op-
timal Control [12]. In Sections 5.1 and 5.2 we explore how better classification algorithms
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and better information increase the risk ‘surplus’ generated, which essentially means that
the same number of transmissions could be prevented with fewer quarantines. In Section
5.4 we describe how to complete the definition of the overall policy optimization problem by
assuming that a relationship between cost of border stringency and expected case impor-
tations can be estimated. This framing highlights the importance of reducing the expected
cost of elimination per introduction and motivates the development of more efficient tools
for disease suppression. Section 5.6 describes a more powerful (but still decentralized) digi-
tal contact tracing system that can perform backward/2nd degree and venue-based contact
tracing as well as integrate with the manual contact tracing system.

There have been substantial real-world challenges with deploying targeted NPIs against
COVID-19 – most significantly insufficient participation and fragility of processes to mul-
tiple points of failure. Section 6.2 investigates observed points of failure in the Exposure
Notification (EN) system and Section 6.4 attempts to assess whether alternative protocols
could improve the success rate. Finally, in Section 6.6 we discuss strategies for building
NPIs that are better supported and more robust.

1.1 Background

1.1.1 Broad NPIs

Many modelling studies have demonstrated that NPIs can be a powerful tool against
infectious disease [6, 13, 14, 15, 16]. The mechanism of action is simple - behaviour change
is used to reduce either the frequency or transmission risk of interactions between infectious
and susceptible people, thus reducing the rate of onward transmission. Gathering evidence
of efficacy in the real world has been more challenging for many reasons (including ethics
of study design, limited number of natural experiments, process and measurement noise,
and the time-limited effect of interventions). Prior to Covid-19, there were a limited
number of real-world studies examining the effect of NPIs. Hatchet et al. and Markel
et al. showed that during the 1918 influenza pandemic, broad social distancing measures
(such as closure of schools, churches, and theaters) temporarily reduced the number of
transmissions [17, 18]. A major challenge with broad social distancing is that it can be
enormously expensive (significantly impacting the daily lives of a large fraction of the
population) and so it is difficult to maintain for a long time.
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1.1.2 Targeted NPIs (Case Isolation and Contact Tracing)

Targeted interventions such as case detection and isolation as well as contact tracing func-
tion by finding people who are at (much) higher risk of being infectious than the general
population and reducing their interactions with susceptible people. These targeted inter-
ventions are much more efficient than broad social distancing when disease prevalence is
low [8]. The efficacy of contact tracing depends on several factors, including transmissibil-
ity of the virus, proportion of presymptomatic transmissions, delays in the tracing process,
probability of case detection and effectiveness of isolation/quarantine [13, 19]. Contact
tracing was used extensively during past epidemics (e.g. SARS-1 and Ebola), and was
found to be effective but heavily dependent on public support [7, 20] .

1.1.3 Digital Contact Tracing

Prior to the Covid-19 pandemic there were several proposals to automate parts of the
contact tracing process using digital devices. Salathe et al. used wireless communica-
tion between wearable devices [21] and Yoneki used Bluetooth handshakes and GPS on
smartphones [22] to log proximity events between study participants. These studies en-
abled construction of high resolution contact graphs for more realistic simulation of disease
spread. Farrahi et al. proposed the use of smartphone Bluetooth proximity detection for
digital contact tracing using a system where all data is shared with a central server [23].
Nguyen et al. developed an app to log WLAN (Wi-Fi router) signals and detect proximity
between users based on the similarity of their signal history [24]. Prasad et al. proposed a
presence tracing system using temporary keys broadcast by stationary beacons [25]. While
this approach allows for privacy-preserving notification, it depends on physical infrastruc-
ture that would be challenging to massively scale in an emergency. Another challenge is
that it requires a large amount of data (around 30Mb) to be downloaded for each infected
user, which would be prohibitive if thousands or millions of people were infected at the
same time2. Approaches proposed prior to the Covid-19 pandemic were either not pri-
vacy preserving or would have been difficult to rapidly deploy, but they demonstrated the
promise of accurate, rapid and scalable digital contact tracing.

2Despite these scaling challenges, the analysis of design objectives, threat model, and user preferences
in [25] and [26] would have been very useful early in the Covid-19 pandemic, but unfortunately I wasn’t
aware of this work at the time.
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Chapter 2

Decentralized Digital Contact
Notification

2.1 Background

The following section describes some of my work on decentralized contact notification with
Covid Watch and the TCN Coalition. Many design decisions were made to reduce time to
deployment in early 2020 at the start of the COVID-19 pandemic. This section discusses
the development process of the technology with the goal of providing context for why
design decisions were made. See Section 5.6 for a more advanced version of decentralized
digital contact tracing that I would advocate for were it not for lock-in to Apple and
Google’s Exposure Notification system (and Appendix D for a rough proposal for more
robust disease control).

In January 2020, news from China warned of potential for COVID-19 to have a devas-
tating impact on global health. China’s extensive use of contact tracing and the success
of contact tracing against other diseases suggested it could be an important tool against
COVID-191. However, the challenge to mobilize a large number of contact tracers in time
in other countries seemed prohibitive, especially if the number of cases increased rapidly.
Additionally, traditional contact tracing can be error-prone because it relies on people re-
membering who they have been near and being able to contact them2. With the recent

1And by the end of February 2020 more detailed modelling studies emerged predicting that it could be
an effective containment strategy [27]

2Also, the speed of manual contact tracing is limited by several factors, which it turned out is especially
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adoption of smartphones by a majority of people in some countries, we had an opportunity
to make use of technology that was not available in previous pandemics.

It was clear that many of the containment strategies used in China would not be
easily accepted in many other countries, especially anything perceived to have dual-use
capabilities for traditional surveillance. The aim of my initial work was to develop a
more scalable version of contact tracing that was politically acceptable in most countries.
The first design considered was one where smartphones participating in the system would
wirelessly communicate with other nearby devices to detect potential exposure events. In
the simplest version of this system, the log of these contact events would be sent to a
central server where the entire contact graph between app users could be assembled. Using
this approach would allow people with access to the central server to monitor an almost
real-time interaction graph between individuals participating in the system. If one of these
individuals tested positive for COVID-19, their interaction history could be checked to find
contacts that meet a sufficient risk condition for contact tracing (using a standard subset
operation on this dataset). While this design is probably the simplest option, the potential
for the system to be misused comes with a substantial acceptability cost in many countries.

The second design considered overcame most of the potential for system misuse at the
cost of a moderate increase in complexity. Similar to the first design, potential contact
events are logged when pairs of devices are within range of each other. The crucial difference
is that logs of these contacts are kept on device, and whether a user has been exposed to
infectious individuals is also checked on device. This can work by having each device
wirelessly broadcast a random or pseudo-random temporary value (which we later chose
to call a Temporary Contact Number, or TCN for short), which other devices detect
and record. People who test positive can upload their TCNs from previous days to a
publicly accessible server. All devices in the system can periodically download all TCNs
from this ‘infected’ server and compare them to TCNs they had recently logged. If there
were any matches, the app could alert the user of their potential exposure and make
recommendations based on the assessed risk of infection.

The second (more decentralized) approach has a few key benefits: 1) no usable informa-
tion ever leaves the device of a vast majority of users, which prevents use of the system for
mass surveillance by either governments or third parties. 2) even the information shared by
people who are infected is highly anonymous- just which random values they had broadcast
previously (which only mean anything to people with logs from the exact places and times
they were there). 3) the design is relatively simple to explain and could be implemented in

important for a fast-moving virus like COVID-19 [28] where delays of a day or two can allow for many
more onward transmissions
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a few weeks - no elaborate cryptography needed. 4) It is possible to use as a starting point
for more sophisticated designs including second degree tracing, estimation of epidemiolog-
ical parameters, or integration with manual contact tracing. If implemented properly such
an app would be one of the most private apps on peoples’ phones, while accomplishing the
needed task of exposure notification.

For several years AdTech companies have been recording smartphone Wi-Fi broadcasts
for location tracking purposes, which eventually caused smartphone companies to modify
the OS to periodically randomize the MAC addresses emitted by smartphones [29]. This
randomization prevented trackers from linking MAC addresses recorded at different times
and locations to assemble the location history of individuals. I initially wanted to build
the contact tracing system with these randomized MAC addresses acting in place of the
previously described TCNs. Most smartphones broadcast ’Wi-Fi probe requests’ with this
unique MAC address 55-2000 times per hour [30], so if the contact tracing app could
record them this would be frequent enough to detect most high-risk exposures. Such
an implementation is a special case of the previously mentioned decentralized protocol
with the key benefit that nearly every smartphone is already broadcasting the necessary
information. Primary cases would still need to choose to upload data at the time of testing
positive, but this would not depend on having previously downloaded an app. This would
mean that the number of traceable transmissions could scale linearly with adoption of the
app, rather than quadratically (since only the person receiving a notification would need
the new software). Unfortunately, after speaking to smartphone hardware specialists in
late January 2020, it became clear that this type of Wi-Fi logging is not possible to do
with a standard app- it would require operating system level permissions.

It seemed like the best way to get this system built was to convince either Apple, Google
or governments to implement it. In early February I began writing a whitepaper to explain
the privacy model and present results of an epidemiological simulation of digital contact
tracing applied on a real-world network [31]. Three weeks later I saw a forum post by Tina
White advocating for the use of smartphones to build a COVID-19 risk heatmap [32]. I
reached out and we decided to collaborate on tech development for COVID-19 mitigation,
and the collaboration soon developed into the Covid Watch non-profit. In early March
we talked to the founders of a group named CoEpi [33] who were starting to build a
contact tracing app with a focus on grassroots adoption and symptom reporting. They
were investigating Bluetooth for device-device communication, which seemed to have fewer
restrictions than Wi-Fi. We decided to collaborate on several parts of the project including
an implementation of the previously described decentralized protocol (CEN protocol, later
renamed TCN protocol). Two weeks later we had built a proof-of-concept app and changed
our focus back to advocating for this technology by writing the Covid Watch white paper
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(posted March 20, 2020 and published by IEEE Data Engineering Bulletin in June 2020
[34]).

2.2 Excerpts from Covid Watch White Paper on De-

centralized Digital Contact Notification (March

20, 2020)

Existing mobile apps without a privacy focus have been an effective intervention to reduce
the spread of COVID-19. However, invasive interventions carry significant human rights
costs, including the temporary loss of personal freedom and fears around whether that
freedom will be restored. A mobile app with a strong privacy model may also have greater
efficacy because people will be more likely to share accurate data if they know that data
is safe. Ensuring privacy prevents COVID-19 patients from being ostracized or socially
harmed on account of inadvertent potential data exposures. Also, mobile apps with poor
privacy models may further undermine public confidence in responses and exacerbate ex-
isting mistrust. In contrast, our mobile app research has focused on developing a strong
privacy model while still providing effective intervention. Using the app, users can alert
recent contacts without anyone being able to trace the information back to them. We
believe this intervention has the potential to slow or stop the spread of COVID-19 and
save lives.

2.2.1 Current Mobile Phone Interventions

South Korea and China have demonstrated two successful systems for containing COVID-
19 that make extensive use of technology. The results they have seen match well with
predictions from numerical models: with a sufficient diagnosis rate and contact tracing
accuracy COVID-19 can be contained. China was the first to create a mobile app inter-
vention [35]. Their app uses GPS history and other data to assign a risk score. This score
is then used to control which individuals are allowed to move freely. China’s intervention
appears to have been successful, but required far-reaching state surveillance that, by the
standards of most liberal democracies, would be considered highly invasive, likely unlaw-
ful, and politically unpalatable. South Korea publicizes a large amount of information
collected from the cellphones of infected patients so that others can determine if they had
been in contact [36]. South Korea’s success has been attributed mostly to (1) widespread
testing (2) contact tracing and (3) case isolation. However, their mobile alert solutions do
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not effectively anonymize patient data. They gather location data from interviews, mobile
phone GPS history, surveillance cameras, and credit card records then send text alerts
with the location history of patients. Much like the intervention in China, this appears to
be effective, but takes a similarly high toll on personal privacy.

We’ve built a privacy-preserving version of these successful interventions that we believe
would have a regulatorily, publicly, and politically viable adoption process within the
United States and other Western countries. The system as designed complies with existing
regulations around medical information in the United States and does not reveal identifying
patient information. Making Interventions More Efficient

2.2.2 Making Interventions More Efficient

Non-pharmaceutical pandemic interventions fundamentally make a trade-off between two
important social goods: (1) loss of life from the pandemic and (2) economic impact,
which influences health and well-being outcomes indirectly. Mobile app interventions are
a powerful public health tool because they can improve this trade-off. In general, non-
pharmaceutical approaches to infectious disease control have the following components:

• Filtering (picking a subset of the population)

• Intervention (modifying the behaviour of these people)

For example, quarantining patients with a positive diagnosis applies a filter based on
testing and then applies the quarantine intervention. Other examples include travel re-
strictions for at-risk areas, cancelling public events in a specific city, or encouraging more
handwashing in an entire country. Some of these interventions, especially self-isolation [37],
are highly effective at preventing the transmission of infectious diseases like COVID-19.
The downside is that they can also be costly to use.

The quality of filtering plays a crucial role in determining the trade-off between loss of
life and economic impact. If filtering is poor, a correspondingly larger economic impact
will be needed to achieve the same loss of life reduction. Without good filtering, broad
quarantines and social distancing are needed, incurring a huge cost in the form of negative
impact on people’s lives. Unfortunately, traditional approaches to filtering, such as contact
tracing, are labor intensive and don’t scale well. So we expect filtering (and, correspond-
ingly, the trade-off between loss of life and economic impact) to degrade in quality as a
pandemic grows. But automated contact tracing solutions have the potential to be more
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scalable – and potentially even more accurate, with access to higher quality information
than traditional contact tracing. This may allow for a better trade-off to be maintained in
the midst of a pandemic.

The system proposed here is intended to be used as part of a broader campaign to
combat COVID-19 immediately and in the long term. These methods focus on gathering
and disseminating the information needed to perform targeted interventions.

2.2.3 Bluetooth Contact Tracing

Contact Tracing Background

Non-pharmaceutical methods focused on social distancing reduce the spread of COVID-
19. These methods are based on reducing contact between infected and susceptible people,
even when it isn’t known who is infected. In the simplest form, this is being achieved by
reducing all social events and increasing precautions like handwashing. This is an effective
measure because the number of new infections is roughly proportional to the number
of contact events with infectious people. A more targeted approach employed by many
health agencies is contact tracing. This system works by finding and monitoring contacts
of patients that have been diagnosed. Individuals that are thought to be infected are then
put into isolation to prevent further transmission, and individuals who have previously
been in contact with infected individuals are quarantined.

Hellewell et al [27] analyzed the effectiveness of contact tracing as a method to contain
COVID-19 at the beginning of an outbreak. Their findings are promising: with 80% contact
tracing accuracy and a mean detection time of 3.8 days after symptom onset, containment
is likely. In the context of contact tracing there are three parameters that models show
[38] can strongly impact results:

1. Reduction in overall transmission through social distancing

2. Testing rate and time to diagnosis

3. Contact tracing accuracy

Model Description

Mobile phones are carried by a majority of people in several countries with an estimated
3.5 billion users worldwide [39]. They are extremely common in Western society, with
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over 70% of the US population estimated to own one [40]. Bluetooth is a radio protocol
that can be used to wirelessly communicate between nearby mobile devices and the signal
strength can be used to estimate distance. Mobile devices can be made to proactively
record contact events with other nearby devices by sending bluetooth signals. By measuring
the signal strength and discrete number of contact events, the duration and distance of
contact between two phone users can be estimated. By recording all contact events, a high
accuracy list of at-risk individuals can be generated automatically when a new person is
diagnosed. These individuals can then be immediately notified to ensure they self-isolate
before infecting more people. Bluetooth proximity may be the most accurate crowdsourcing
method for approximating close contact to perform contact tracing.

While GPS data is a more well-known general technology, there are significant advan-
tages Bluetooth has over GPS in terms of accuracy for contact tracing. With Bluetooth,
proximity can be approximated by signal strength that is reduced by obstructions like
walls; therefore, it more accurately reflects functional proximity in high-risk environments
for close contact: inside buildings, in vehicles and airplanes, and in underground transit.
Bluetooth communication also occurs directly between mobile devices. This means a de-
centralized system can be built more easily and with stronger privacy protection than other
crowdsourcing data types like GPS trajectories.

We are also pursuing research in developing inexpensive external bluetooth devices
under the same automatic contact tracing alert system for use in communities with fewer
smartphone users. These methods would face much steeper adoption challenges, but if
mobile app users and external device users could be integrated under a single system,
outcomes could be further improved over more global communities.

The Bluetooth contact tracing system can be structured in a decentralized and anony-
mous way using randomly generated and locally stored ‘Contact Event Numbers’. This
allows the system to function fully without any private information being stored or trans-
mitted. By generating a new random number for each contact event, the system is able
to operate without storing or transmitting any personal information. This method is de-
signed so that only the phones involved in a contact event are able to identify messages on
a public database.

The only authentication required is the permission number provided by a public health
authority. This permission number is used so that malicious actors cannot send false
alarms. After authentication, the permission number is deleted from server memory. The
contact event numbers are random and only known by the message recipients and the
message sender, so the database can be made public without risk of sensitive information
being discovered. While our current intervention is based on permission numbers, in regions
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Figure 2.1: Steps for notification process
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where widespread testing is unavailable, a well-designed symptom sharing questionnaire
may perform a similar function, with a higher number of false positives. Research in this
direction is currently being done by the CoEpi team [33]. The most effective form of this
intervention would occur in communities that implement widespread testing and where
permission numbers are shared with the mobile app by public health departments.

The specification for the database is very simple: it is shared across all installations
of the app and stores anonymized Contact Event Numbers. If protections against hoaxes
are required, permission numbers can be used, but they are not required for the privacy
model. If the database grows too large, it can also be fragmented based on general location.
The code and a more in depth discussion of architecture are available on the open source
Github repository [41].

2.2.4 Implementation

Bluetooth contact tracing is implemented via background processes on iOS and Android.
The approach currently being investigated utilizes BLE functionality for background ad-
vertisement and scanning. Due to different system requirements for Android and iOS, the
protocol works differently depending on the operating systems of the devices involved. The
key challenges are:

• iOS devices acting as “peripherals” in the background can only be found by “centrals”
that are scanning for their specific service UUID. These peripherals must establish a
connection to transfer any data.

• Android devices have several unfixed bugs where subsequent connections with many
devices can cause the Bluetooth system to lock up.

The current solution is a hybrid model that is asymmetric for communication between
iOS and Android. All devices will simultaneously act as peripherals and centrals, but only
some devices will be able to detect others, and only some devices will need to establish a
connection to exchange data. An extended description of the communication model and
the code are available on Github here for iOS [42] and Android [43]. This model has been
successfully implemented as a proof-of-concept, as shown here [44].
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2.2.5 Quantitative Analysis of Impact

The impact of this technology will depend largely on the state of the world around it.
Numerical models and ongoing campaigns [36] suggest that with extensive testing, accu-
rate contact tracing, and isolation of suspected cases, outbreaks can be contained. For
intermediate testing and contact tracing detection rates, a system like this would likely
need to be used in combination with continued social distancing measures and manual
contact tracing. However, the measures suggested by Ferguson et al. [37] could potentially
be relaxed if supplemented with sufficient targeted interventions. Of the three target pa-
rameters (tracing accuracy, detection rate, base transmission), the potential influence of
the app on tracing accuracy is the simplest to quantify. Any two users of the app who
are at the same location at the same time will register a contact event. In theory, all
transmission events except those by fomites would be detected. This includes all types of
contact classified as being “high risk” by the CDC. Preventative measures encouraged by
the app such as avoiding high-risk areas and increased precautions would reduce overall
transmission rate, however it is difficult to quantify this impact. The current design of the
app may also increase detection rate by informing users of symptoms to watch for and how
to get tested. Ongoing research is being conducted on how to allocate testing resources to
maximize the expected value of secondary cases detected.

To have a significant impact the technology will require a significant adoption rate. To
detect contact events using bluetooth both individuals must have the app installed at the
time of transmission. Assuming ‘P’ percent of the population uses the app, ‘A’ percent of
transmission events between app users are detected, and ‘T’ percent of infected are tested,
then T ∗A ∗ P 2 percent of total transmissions are detected (if app users are homogeneous
in the population). Figure 2.2 examines the percentage of detectable transmission events
in countries with different testing rates as a function of app usage. The analysis assumes
that these events are uncorrelated, which may significantly under-estimate detected trans-
missions due to missing chain-reaction testing. Ongoing modelling work is being done to
investigate the dynamics of rapid tracing and testing along infection chains.

In order to investigate disease dynamics with clusters of app users, the model developed
by Hellewel et al was modified to account for two sub-populations, one that uses the app
and another that doesn’t. The modified implementation is available on Github here and
currently assumes 90% app tracing accuracy and 50% non-app tracing accuracy (assuming
health systems are partially overwhelmed). This model was used to estimate the average
number of infections caused in 6 weeks due to a single imported case. Results show a
significant reduction in risk for clusters of app users that are partially distanced from non
app users. This is important because it provides an additional incentive for individuals to
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Figure 2.2: Proportion of transmissions traced depending on app usage (x axis), detection
accuracy (colour), and test usage (subfigure labels)

use the app even when the overall adoption rate is low. As the proportion of the population
using the app increases the risk for the entire population is reduced and most outbreaks
are contained (Figure 2.3).

What we’ve most wanted to know is the answer to this question: “Can an effective
contact tracing program reduce local transmission so that sustained local spread does not
occur?” The answer looks like yes. With a comprehensive testing program, high mobile app
contact tracing accuracy, and self-isolation of diagnosed individuals, our models predict
that each new case could cause on the order of 10 other cases before the outbreak is
extinguished. Also, even in parameter regimes where automated contact tracing alone is
not enough, this technology can be used in combination with existing methodologies to
provide greater protection with lower social cost.

2.2.6 Conclusions

Mobile technologies can provide instantaneous and high accuracy contact tracing, even
between strangers at low social and economic cost. Instead of requiring thousands of
healthcare workers to do this manually, the process will be essentially cost-free. Because
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(a) Expected transmissions within app-using
population

(b) Expected transmissions within non app-using
population

Figure 2.3: Expected transmissions after 6 weeks within app-using and non app-using
populations depending on relative sizes and mixing.

the system will be so accurate, a majority of people can resume living their lives normally
without the need for indefinite social distancing. We are developing this technology as a
high-quality filter to be used for the pandemic optimization problem. Combined with a
comprehensive testing program, our filter may be powerful enough to stop further spread
of COVID-19.

2.3 Minimizing Unintended Capabilities

The intention of the previous design was to build a base protocol so unobtrusive that a vast
majority of people would be comfortable using it (which we have seen is very important for
success). One way to frame system design decisions is based on the capabilities they enable.
Here the goal is to build the most useful system for public health while not enhancing
undesirable capabilities - either information or control given to system administrators,
other users, or third parties that they did not previously have. Besides the primary goal
of contact notification, there are several extended features that can be built on top of a
decentralized framework - these are described in section 5.6. There are many threat models
which other authors describe in more detail [45], but 3 primary uses we were concerned
with were: passive surveillance by system administrators, tracking by third parties, and
disruption through false notifications.
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2.3.1 Passive tracking by server owner

In many alternative designs, access to the server would allow third parties (most likely
governments) to passively track the location and/or interaction graph of all system users.
Here, passive tracking is distinguished from active tracking because passive tracking would
allow for mass surveillance of all users without detection. Some designs (but not the one
considered here) could enable active tracking where attempts to gather information from
users would be apparent to those users.

In the simplest centralized design, all data (interaction and/or location) is frequently
shared with a single server, which then is able to check for exposures. Access to this server
would allow near instantaneous tracking of all users all the time. Under a more sophis-
ticated design (used by Singapore [46], PEPPT [47] and others) devices would broadcast
information that a central server can associate with their identity or contact information.
To find exposed users, the infected user would share their previously detected information
with the server, allowing the server owner to decipher the identity of recent contacts. Pas-
sive surveillance using this system is more difficult but still possible. Devices placed in
locations could record the information broadcast and use it to assemble the identities of
nearby users. With access to many of these devices, real-time location tracking is possible.

Our decentralized design prevents this because the information emitted by devices has
no meaning to observers or anyone with server access, and uninfected users don’t share
any information with the server.

2.3.2 Third party tracking via broadcast linking

Broadcasting persistant (or linkable) values would allow for oberservers with multiple de-
vices to track the location of specific users over time (similar to how adtech companies
used the persistent MAC addresses broadcast by smartphones to track their location).
The same solution for MAC addresses can be used here- periodic randomization or pseudo-
randomization (via a one way cryptographic operation) of broadcast values can be used to
ensure eavesdroppers cannot link location traces over time. Most proposed protocols used
some version of this strategy. At a high level the strategy is fairly simple, but care must be
taken around implementation details - e.g. ensuring broadcast values are modified on the
same schedule as the MAC address (to prevent intermediate linking). With our system,
users who upload their infection status do share information linking their broadcast values
over time. While the ability for a well-resourced adversary to link the shorterm movement
of infected users is not ideal, it is limited in time and would only impact a small fraction
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of users. Furthermore, such a risk is inherent to the notification process. Even with a
centralized protocol it is not possible to completely prevent because the purpose of the
system is to notify devices that have been in proximity to an infected user, and infections
will be relatively rare events.

2.3.3 Disruption with false notifications

With unrestricted ability to anonymously notify others of exposure, malicious actors could
cause many people to needlessly quarantine or get tested (perhaps to disrupt elections or
similar). Our solution to this was to require proof of a positive test result in order to send
a notification. When people test positive they are given a “permission number” which
allows them to upload the information needed to notify their recent contacts 3. Optional
exposure sharing (which would allow notified users to share the details of their exposure
with public health - see Section 5.6 for more details) could be used to detect if a single
device had notified an unrealistically large number of other devices. This would alert
system administrators if a high powered device were being used to falsely notify people
and allow them to retract that notification.

2.4 Protocol Data Size Reduction

Soon after publishing the white paper I proposed an improvement to the protocol that
could reduce data bandwidth requirements by 2-3 orders of magnitude. One of the main
challenges with the decentralized approach is that to do any exposure checking, informa-
tion has to be sent to every device. In scenarios with large numbers of infections and large
numbers of app users, this could potentially reach an amount of data that would be pro-
hibitive for people with only data plans and no regular access to Wi-Fi (relatively common
for low-income smartphone users). Additionally, server costs for app maintainers could
become too expensive for a non-profit or lower budget health department. The amount of
data downloaded from the server daily is equal to M ∗N2 ∗P ∗D, where M is the number
of regions, N is the number of app users per region, P is the fraction of app users that
test positive daily and D is the amount of data that needs to be transmitted per posi-
tive case. One way to reduce this number is through location fragmentation, where users

3While it is important to prevent abuse of the system and maintain users’ trust, this step adds a large
amount of friction and likely prevent many users from notifying others. CoEpi [33] wanted to allow users
to notify others of unverified symptoms.
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only downloaded exposure data for the region they were in - effectively lowering N and
increasing M. However, this requires more fine-grained location data that people may not
be comfortable sharing. My proposal was to reduce the size of the data packets by deriving
the Bluetooth broadcast data from a private key using a one-way cryptographic operation.
This private key could be regenerated on a time period T longer than 15 minutes, giving a
reduction in data size proportional to T/15 minutes 4 (3000x reduction for T = 1 month,
or 100x reduction with T=1 day which Apple and Google choose to use). The excerpt
below contains the original description of this proposal that I shared on March 23, 2020.

Decentralized, low bandwidth, less potential for any tracking

• Each device randomly generates a monthly key and stores it locally

• The device takes the current time (rounded down to 15 minutes) and hashes
it with the monthly key to generate a CEN (Contact Event Number)

• The device broadcasts this CEN and records all other CENs

• If the user is diagnosed positive they post their monthly key

• All other devices download this monthly key

• These devices locally compute the sequence of hashes for the last month using
this key and compare against their records of detected CENs

• Matches indicate a contact event

Drawbacks

• The hashes need to be recomputed locally for every infected user

• This requires symmetric communication of some form (since they only know
their own key, not those of the detected CENs)

Benefits:

• Decentralized and private

• Quite low bandwidth (1 million infected users would just be 16 MB download)

4with a maximum possible reduction of D/15min, where D is the duration contact tracing shared for.
More detailed calculation here [67]
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2.5 Influence

Shortly after our white paper was published5, several other groups proposed similar decen-
tralized protocols [48, 49, 50, 51]. In an effort to prevent fragmentation, we collaborated
with several of these groups to build the TCN protocol [41].

Our low-level BLE design was based on an asymmetric communication scheme making
use of both broadcast and paired BLE modes to work around bugs in Android and restric-
tions imposed by iOS (these choices made our app one of few that avoided a Bluetooth
vulnerability found in many other apps later [52]). This design allowed communication
between all pairs of devices except two iPhones that both had the app in the background.
We spoke with Apple about this challenge and presented our contact tracing design in late
March, but the response from them was cryptic, so we kept attempting to find workarounds
(including a partial solution that uses nearby Android devices as a communication channel
between iOS devices). Both the cryptography and Bluetooth protocol are described in
much greater detail at [41] including a reference implementation for iOS and Android. A
high-level simulation of information flows between devices, servers, and health authorities
with the exposure sharing capability discussed in Section 5.6 is available at [53].

On April 9th, the MIT PACT team lead by Ron Rivest posted a preprint advocating
for tech companies to implement an approach that they noted was nearly identical to the
one proposed in the Covid Watch white paper [54]. On April 10th, Apple and Google
announced the Exposure Notification system [55, 56] , which is built using a decentralized
Bluetooth protocol very similar to the one we were the first to propose. By May 2021, over
90 million people in 38 countries had downloaded an app using the Exposure Notification
API [57, 58]. Evaluation of the system has been challenging (for technical and non-technical
reasons), however a study of the NHS app in England estimates that from September
2020 to December 2020, app usage prevented between 100,000 and 900,000 infections [59].
Sections 6.2, 6.3, and 6.4 contain a retrospective on system performance, compare the
Exposure Notification system to alternative designs, and suggest potential improvements.

5and prior to this, the Singapore app team and other groups read earlier drafts of the white paper
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Chapter 3

The economic value of quarantine is
higher at lower case prevalence, with
quarantine justified at lower risk of
infection

3.1 Overview

Some infectious diseases, such as COVID-19 or the influenza pandemic of 1918, are so
harmful that they justify broad scale social distancing. Targeted quarantine can reduce
the amount of indiscriminate social distancing needed to control transmission. Finding
the optimal balance between targeted vs. broad scale policies can be operationalized by
minimizing the total amount of social isolation needed to achieve a target reproductive
number. Optimality is achieved by quarantining on the basis of a risk threshold that de-
pends strongly on current disease prevalence, suggesting that very different disease control
policies should be used at different times or places. Aggressive quarantine is warranted
given low disease prevalence, while populations with a higher base rate of infection should
rely more on social distancing by all. The total value of a quarantine policy rises as case
counts fall, is relatively insensitive to vaccination unless the vaccinated are exempt from
distancing policies, and is substantially increased by the availability of modestly more
information about individual risk of infectiousness.
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3.2 Introduction

Control of SARS-CoV-2 transmission has not been achieved by interventions such as im-
proved ventilation alone, but has also required social distancing. Social distancing can take
the form either of population-wide measures, ranging from extreme, mandatory lockdowns
to more modest voluntary behavior change, or it can be targeted via effective testing,
tracing, quarantine, and isolation. Social distancing to control the spread of SARS-CoV-2
has imposed immense social costs, and is difficult to maintain for long periods. Targeting
quarantine to those at higher risk of being infectious has the potential to achieve the same
benefits while reducing the total harms of social distancing on the economy and mental
health of the population. Here we calculate which combination of population-wide social
distancing plus targeted quarantine will minimize harms while controlling transmission to
the same degree. We operationalize this question by comparing the harms of different
policy combinations that all achieve the same target value for the effective reproduction
number. Figure 3.1 demonstrates how quarantining a greater fraction of infectious individ-
uals allows overall social distancing to be reduced while holding the number of expected
transmissions constant

Our approach, at the interface of infectious disease epidemiology and economics [60],
solves a number of problems previously encountered at that interface. First, it is difficult
to decide on an exchange rate between social restrictions / livelihoods versus lives [61];
compounding this is the fact that selfish agents may count only the cost to their own life,
and not that of others they infect [62]. Difficulties determining an exchange rate lead some
to present only idealized curves without a concrete recommendation [63, 64]. Idealized
curves can lead to abstract insights, but are of limited use to practical decision-making.

We avoid the need for an exchange rate between social restrictions and infections by
instead comparing one form of (population-wide, partial) social restrictions with another
form of (targeted, more stringent) social restrictions. This allows the lowest cost strategy to
be selected without having to monetarize the cost of health outcomes, the latter being held
constant in our analysis. The policy optimization problem is thus framed as a minimization
of a cost function across different degrees of isolation for different individuals, while holding
the benefits of reduced disease transmission constant.

Second, much prior work integrates across an entire sweep of a pandemic modelled using
an SIR approach [65]. These projections have often been inaccurate. We instead focus on a
moment in time, an approach that is enabled by a control theory view. At the beginning of
the COVID-19 pandemic, populations experienced rapid exponential growth, e.g. doubling
in as little as 2.75 days in New York City [66]. Through some combination of top-down

22



Figure 3.1: Two scenarios of quarantine and social distancing that give rise to the same
number of expected transmissions. A) One out of three infectious individuals is either
quarantined or isolated, and the general population is at 1/3 of normal social activity. B)
Two out of three infectious individuals are either quarantined or isolated, and the general
population is at 2/3 of normal social activity. By finding and quarantining infectious
people, social distancing imposed on the general population is significantly reduced.
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control measures and individual behavior modifications, many populations subsequently
achieved relatively flat case counts, i.e. an effective reproduction number remarkably close
to 1 [67, 68, 69]. Even locations that subsequently lost control of the pandemic have
tended to eventually issue stay at home orders leading to exponential decline. Failing that,
individuals tend to modify their behavior to reduce personal risk once healthcare systems
are overwhelmed. Over the very long term, a geometric mean of the effective reproduction
number not much greater than 1 is inevitable (see Appendix A.2). This implies that there
is a form of control system (whether intentional or not) using social distancing to regulate
transmission rate.

Third, many models consider decision-making that is informed by perfect, instantaneous
knowledge [65]. This is problematic given that key indicators such as hospital usage or
even positive tests have a marked lag relative to infections. Our approach focuses instead
on making optimal use of available, probabilistic information. Past economic approaches
to modelling the transmission of SARS-CoV-2 treat more stark examples of information,
e.g. testing to find out who is infected and should isolate, as opposed to who is exposed to
what degree and should quarantine [65, 70]. But quantitative information about individual
risk is available from a variety of sources. For example, the risk of infection with SARS-
CoV-2 can be estimated based on proximity and duration of contact with a known case,
and their estimated infectiousness as a function of timing relative to symptom onset date
[71]. Similarly, setting local rather than global shutdown policies, in the light of differences
between regions, can lower costs [72].

Our work ultimately describes the value of information, specifically information about
who is at high enough risk of being infected to quarantine strictly rather than merely to con-
form to population-wide restrictions. Given an individual estimated to be infectious with
probability ‘r’, we propose a method for deciding whether to quarantine this individual.
We do so by weighing the cost of quarantine against the degree to which indiscriminately
applied social distancing would need to be increased to achieve the same reduction in
transmission. Our approach informs choice of the lowest cost strategy needed to achieve
epidemiological targets. In particular, we formalize the intuition that populations with low
prevalence should widen the net of who they quarantine.
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3.3 Model

3.3.1 Optimal Risk Threshold

Consider a well-mixed population of size P , of which I people are currently both infected
and infectious, and S people are susceptible. According to a standard continuous, deter-
ministic SIR model approach [73], the effective reproduction number is defined to equal
Rt = R0 ∗ S/P , i.e. it depends on the the basic reproduction number R0 and the fraction
of people S/P who are still susceptible. Here we define R0 and Rt to explicitly exclude
interventions such as social distancing or quarantine, because these are the interventions
whose magnitudes are being optimized. However, Rt is intended to include fixed cost
interventions such as improved ventilation.

Population-wide social distancing is parameterized as a value D that varies between
0 and 1 such that the reproductive number is proportional to (1 − D). I.e., a value of
D = 0 indicates normal social contact, while D = 0.5 indicates that total social activity
is reduced such that expected transmissions are halved. Reductions in D come from a
variety of behavior changes including working from home and reducing social contact, and
also include measures to mitigate the danger given contact, such as wearing masks, and
meeting outside and/or at greater physical distance.

Let Qi denote the number of infectious people who are quarantined or isolated and
Qn denote the number of non-infectious people who are quarantined. The benefit from a
targeted quarantine policy depends on I−Qi

I
, the fraction of infectious cases who are not

successfully quarantined and then isolated. The effective reproduction number R′
t after

both social distancing and quarantine interventions are applied is given by:

R′
t = Rt ∗ (1−D) ∗ I −Qi

I
. (3.1)

R′
t gives the expected number of onward transmissions per infected case in the general

population. Equation 3.1 is undefined when the number of locally transmitted cases I = 0.
Even for a low but non-zero value of I, a different, stochastic treatment warranted - this
is discussed in Appendix A.3.

Consider an individual reducing their social contact by a factor of x. Here x = 1 for
complete loss of all social contact and x = D for the average individual not in quarantine or
isolation. Let the function f(x) indicate the cost of such reduction. I.e. if f(1) = 3f(0.5),
this means that the average individual finds a day of total quarantine to be an equivalent
burden to 3 days of half-quarantine. The exact functional form of f(x) is unknown, but
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in Model Section 3.3.2 we show that the results have a bounded dependence on its form.
The total cost to a population is given by Expression 3.2, based on Qi +Qn people having
no social contact, and P −Qi −Qn people with contact reduced by D.

f(1)(Qi +Qn) + f(D)(P −Qi −Qn) (3.2)

The amount of social distancing needed to meet a target reproductive number, Rtarget,
given fixed values for Qi and Qn, is given by:

D = max
{
0, 1− Rtarget

Rt

I

I −Qi

}
. (3.3)

This value is bounded at 0; if Rt
I−Qi

I
≤ Rtarget, the target has already been met and no

social distancing is required.

In the real world, it is not possible to adjust D instantaneously or exactly in response
to changes in the impact of quarantine policy. However, in Supplement Section 2, we show
that Equation 3.3 is insensitive to time and control uncertainty, so long as caseload and
control measures are fairly steady over time, as has been the case in many regions some
substantial periods of time [67, 68].

Combining Equations 3.2 and 3.3, the total cost of a quarantine policy, in combination
with the degree of population-wide distancing that is necessary to achieve Rtarget given
that policy, is given by:

J(Qi, Qn) = f(1)(Qi + Qn) + f(max
{
0, 1 − Rtarget

Rt

I

I −Qi

}
)(P − Qi − Qn). (3.4)

This equation can be used to compare the overall cost reduction achieved by different
quarantine policies, given in terms of the total reduction in social distancing that is enabled.

We assume that an estimated risk of infectiousness is available when considering whether
to recommend quarantine to an individual. Risk could be estimated using proximity and
duration of contact with a known case as described in [71]. Or it could be estimated for
members of a subpopulation like a workplace by rapid testing of a random sample of that
subpopulation and projecting the proportion positive onto the remainder. When a person
with risk of infectiousness r is quarantined, Qi is incremented by 1 with probability r, and
Qn is incremented by 1 with probability 1 − r. Quarantining this person is worthwhile if
the expected cost J if they quarantine is less than the expected cost if they do not, giving
the inequality:

rJ(Qi + 1, Qn) + (1− r)J(Qi, Qn + 1) < J(Qi, Qn) (3.5)
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Solving the corresponding equation for r, the optimal risk threshold is given by:

rthresh =
J(Qi, Qn)− J(Qi, Qn + 1)

J(Qi + 1, Qn)− J(Qi, Qn + 1)
(3.6)

To apply Equation 3.6, we first consider the simplest equation for the cost of loss of
social contact, namely the linear function f(x) = x. Using this equation in a situation
where some social distancing is necessary (Rtarget

Rt
∗ I

I−Qi−1
< 1), Equation 3.6 simplifies (as

shown in Appendix A.1) to:

rthresh =
I −Qi − 1

P −Qi −Qn − 1
. (3.7)

In this simple case, the interpretation of Equation 3.7 is straightforward and intuitive.
The optimal risk threshold for quarantine is equal to the disease frequency in the commu-
nity, excluding from that community both those already isolated or quarantined, and the
focal individual. This implies that in regions with very low prevalence rates, much stricter
quarantine requirements should be used, making the general population less impacted by
disease-control measures. In populations with higher disease prevalence in the community,
there is less benefit to quarantining a single individual at low risk, because they represent
a smaller fraction of the overall disease risk to the population.

3.3.2 Sensitivity to Cost Function

We do not know the shape of the cost function f(x) as the extent of reduction in social
contact x varies. However, some non-linearity is expected. E.g., to achieve total rather
than partial quarantine can require a specialized quarantine facility in addition to a more
extreme loss of individual utility. We define D to be constructed such that benefits in
reducing disease transmission are linear in D. When considering a reduction in the extent
of social activity, corresponding benefits are likely somewhere between linear and quadratic
[64]. When people seek out places that have variable levels of crowding, benefits are
quadratic; when they seek out people who are still willing to meet with them, benefits
are linear. By constructing D to have linear benefits, we pass this uncertainty in human
behavior to the cost function. Disparate considerations all suggest a concave-up shape for
f(x).

In Appendix A.4, we show that the deviation from Equation 3.7 is relatively small for
reasonable choices of f(x). In particular, if the threshold r1 is computed using f1(x) = x
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and the threshold r2 is computed using any f2(x) that is strictly increasing and concave

up, then r2 ≥ r1 and
r2
r1

≤ maxx∈[0,1] f
′
2(x)

minx∈[0,1] f
′
2(x)

. In practice, the value of r2 is often much closer to

r1 than indicated by this upper bound. For example, while the ratio between optimal risk
thresholds for the two cost functions shown in Figure 3.2 is bounded at a 10-fold difference,
we numerically find it to be at most 4.1-fold.

Both the costs and benefits of reduced social contact can vary among individuals. For
example, the cost is higher for essential workers than for those that can easily work from
home, while the benefit is higher for those whose jobs expose more and/or more vulnerable
people. Equation 3.7 can be modified to accommodate knowledge about an individual.
If refraining from social contact is m times more expensive for this person than for the
general population, and the potential danger to others if they are actually infectious is d
times that of an average case, then the risk threshold for this person should be modified
to rthresh ∗ m/d. Note that this approach differs substantially from suggestions to target
isolation directly to the elderly and other high medical risk individuals [64]. We instead
recommend increasing the stringency of quarantine among their contacts.

For a given individual, the cost of quarantine is likely to depend more than linearly on
quarantine length, due both to logistical and to psychological factors. To accommodate
this, the cost of quarantine could be modelled as time-dependent by scaling f(x) ∗ m(t).
The benefit of quarantine is also not equal for each possible day of quarantine, given a
probability distribution for incubation period and a quantitative timecourse of infectious-
ness [71]. Consideration of these two factors will lead shorter recommended quarantine
durations, targeted to the most infectious days. Testing individuals in quarantine could
further shorten its duration [74].

The remarkable thing about Equation 3.7 is its insensitivity to Rt and Rtarget. To
determine the degree to which this might generalize, in Appendix A.4 we derive Equation
3.8:

1

rthresh

f(1)− f(D0)

1−D0

≈ 1

rpop
f ′(D0) (3.8)

Equation 3.8 shows that rthresh is chosen so that the risk-weighted cost of quarantine is equal
to the marginal cost of distancing for the general population. In general, rthresh depends
indirectly on Rt and Rtarget because they influence the set point, D0. However, for a linear

cost function, the slope (f ′(D0)) and average slope (f(1)−f(D0)
1−D0

) are constant, and therefore
rthresh only depends on the disease prevalence in the general population. In other words,
when the cost per individual is a linear function of distancing, then the cost is the same
whether that distancing is all directed at making one individual quarantine completely

28



0

1

2

3

4

0.00 0.25 0.50 0.75 1.00
Distancing

C
os

t

Cost Function
f(x) = x
f(x) = x + 3*x^3

A

0

1

2

3

4

0.0 0.2 0.4 0.6
Fraction of Infectious Isolated or Quarantined

In
cr

ea
se

 in
 r

is
k 

th
re

sh
ol

d

B

Figure 3.2: Non-linearity in cost as a function of the degree of loss of social contact
(A) leads to a modest four-fold change in optimal risk threshold (B), or less, depending
for example on the proportion of infectious people quarantined or isolated (Qi/I). Risk
thresholds were computed using Equation 3.6 with J(Qi, Qn) defined by substituting the
two functions shown in (A) into Equation 3.4.
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instead of following current distancing norms, versus distributing the additional distancing
among all individuals. For a non-linear function, these two costs are no longer equal.
D0 is proportional to Rtarget/Rt, and so Equation 3.8 describes the degree to which non-
linearity makes rthresh depend on these terms. This dependence will be most pronounced
when the local slope of f(x) around current distancing levels and the mean slope from
current distancing to D = 1 are substantially different. However, because quantitatively,
the optimal risk threshold is not very sensitive to the cost function, we focus our analysis
on the more convenient linear cost function (with solution given by Equation 3.7).

3.4 Results

3.4.1 Applications in time and place

In a large population with many cases, the risk threshold for quarantine rthresh is closely
related to the base rate of infection in the population. Here we give several examples in
which we apply this finding, to illustrate how dramatically this causes optimal policy to
vary across different places and times.

In British Columbia in October 2020, rapid SARS-CoV-2 testing was widespread, but
only when symptoms were present, making official case counts of around 100/day a good es-
timate of symptomatic cases, such that total cases can be estimated in proportion. (When
testing is less adequate, estimating the true number of cases is more complex, involving
projections from death rates and/or testing rates, but has been attempted e.g. at [67] or
[75].) Assuming another 20 asymptomatic or other undiscovered cases per day, each with a
10 day infectious window, yields 200 non-isolated infectious individuals on any given day.
In addition, we estimate 4 infectious days per discovered case prior to isolation, yielding
another 400 non-isolated infectious individuals on any given day. The base rate of infec-
tiousness, conditional on not having been isolated, is thus of order 600/5,000,000=O(10-4).
From Equation 3.7, a quarantine risk threshold of 10-4 is appropriate, or a little higher
if a non-linear cost function is assumed in Equation 3.6. This implies that quarantine
recommendations for entire schools or workplaces are worthwhile if they are expected to
isolate one more infected person than would be achieved via traditional contact tracing.

In contrast, North Dakota in October 2020 had around 400 detected cases per day
and perhaps another ∼400 undetected in a population of ∼800,000. This yields ∼5000
undetected infectious individuals on a given day, or a 0.6% base rate and corresponding
risk threshold. Several studies have found the secondary attack rate to be on the order
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of 1/10 - 1/100 [76, 77, 78], so this risk threshold aligns well with standard guidelines
for the minimum contact considered to be close for contact tracing purposes. We note
however that a 14 day quarantine is more than is needed to put the conditional probability
of infectiousness, given lack of symptoms, of a non-household close contact below the base
rate [71].

Imported and exported cases introduce complications. Policy is best set for regions
that are relatively self-contained, and do not e.g. cut off commuter communities from one
another. When imported and exported cases make up only a small fraction of total cases,
then subtleties in using case counts to estimate R′

t (discussed in Supplement Section 3) have
negligible effects. When local transmissions are abundant enough such that elimination is
not a near-term goal, then incoming individuals can therefore be quarantined by comparing
their infectiousness risk to rthresh on the basis of base rates of infection in the location they
arrived from, plus the risk of travel. These considerations apply e.g. to the need to
quarantine following travel from one part of the U.S. to another.

Some locations, e.g. British Columbia, achieved very low levels of local transmission,
but with a degree of economic connectedness with harder hit locations that made infeasible
sufficiently strict quarantine to put the risk from incomers below rthresh as described above
[79]. This is because the marginal cost of quarantine applies not just to the quarantined
individuals, but to trucking routes and other aspects of the economic system. At this point,
some significant expected number of imported cases acts as a forcing function outside the
exponential dynamics of R′

t. In this case, it might be better to set a target value for the
expected number of cases per day, and then to set Rtarget to achieve this in combination
with imported cases.

If local elimination is achieved, including successfully quarantining all imported cases,
then Rtarget can be relaxed up to Rt, removing all social distancing, with huge social gain.
The disproportionate benefits warrant careful attention to avoid even a single imported
non-quarantined case. How best to achieve this is best quantified by a stochastic model,
outside the scope of this paper. Qualitatively, we note that the cost of letting a single case
slip through, and hence having to return to social distancing, is higher for larger popu-
lations. The harm is also magnified by delays in realizing that an outbreak is underway,
and hence the extent of harm depends strongly on local surveillance and contact tracing
capabilities.

When different regions come under shared political control, importation risk can be
controlled at the source rather than the destination. An example is Vietnam in March
2020. Viewed as an entire country instead of as smaller regions, it is optimal to quarantine
at a threshold of 1/106. This would motivate quarantining entire cities so that the rest of
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the country doesn’t have to substantially modify their behaviour. This is similar to the
approach Vietnam actually took, with up to 80,000 people in quarantine at a time from
regional lockdowns and aggressive contact tracing [80].

3.4.2 Quantifying the Value of Quarantine

The value of a test, trace, and quarantine policy can be quantified in terms of the net
reduction it enables in full or partial person-days of avoiding contact with others. By
definition, the marginal value of quarantining an individual of marginal risk rthresh is 0. This
implies, for a cost function that is uniform across individuals and neglects complications
due to compliance, that quarantining one definitely infectious person for one day yields a
benefit of C/rthresh where e.g. C is the assessed cost of quarantine. Taking into account
the cost of quarantining the focal individual, the net benefit is C/(1/rthresh − 1).

In many countries, compliance not just with social distancing, but also with quarantine
has been low. This is to be expected, given the uncompensated cost of quarantine to
individuals, who are currently asked (or in cases coerced) to sacrifice for the public good.
We advocate that governments align incentives, by guaranteeing e.g. 150% the individual’s
normal daily income. This approach also serves to convert the costs and benefits calculated
here, whose units are of person-days of elimination of social contact, to a dollar value for
quarantine. On the basis of median income, and taking into account that some individuals
are able to work from home and so will not draw the full 150%, this would in an affluent
nation amount to something on the order of USD$150 per day of complete quarantine. This
is the implied utility sacrificed by either total quarantine or equivalent social distancing D.
I.e., a dollar value on the order of USD$150 per day is what one would need to pay people in
order to incentivize their compliance, i.e. to achieve neutrality among preferences. Because
this neutrality between quarantine plus payment vs. no payment and no quarantine does
not include the dangers posed by COVID-19 itself, the existence of such payments would not
incentivize deliberate exposure. Redistributive payments move costs from the quarantined
individuals to the taxpayer.

With this cost applying to both indiscriminate distancing and targeted quarantining,
we can assess the value of a quarantine policy from its ability to reduce the total amount
of distancing required to achieve Rtarget. Given the changing nature of a pandemic, we
calculate how this total value depends on case prevalence and on the extent of population
immunity.

When case prevalence is low, quarantining a single individual makes a larger propor-
tional difference to the risk to others, enabling a greater relaxation of social distancing.
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We see in Figure 3.3B that in the pertinent range of 0.1%-5% case prevalence, the value of
effective quarantine policies is high, and increases as case counts drop. Results are similar
for the differently shaped distributions of assessable risk shown in Figure 3.3A. For lower
case prevalence, the value flattens out because the benefit from quarantining one infectious
person rises at the same rate that the number of total infectious people drops, while the
number of infectious contacts quarantined per index case remains almost constant.

Vaccination has enormous value in reducing the amount of distancing required to
achieve Rtarget. But unless the immune are exempted from distancing norms, the marginal
value of quarantine, in helping sustain Rtarget with even less distancing, is unchanged. The
effective reproductive number before including distancing, Rt, is proportional to the sus-
ceptible fraction, S/P . Under a linear cost function, we see from Equation 3.7 that the
threshold for quarantine is insensitive to Rt. This means that the value of a quarantine
policy is also insensitive to Rt and hence to this change in the vaccination status of the
population. However, if people who have immunity are exempt from social distancing, not
only is the amount of social distancing per person reduced, but also the number of people
who have to distance. This has an additional impact on rthresh: the effective size of the
population is reduced from P to S. Reducing the effective size of the population increases
rthresh by replacing P with S in the denominator of Equation 3.7.

In Figure 3.4, the value of a contact tracing system is shown as a function of the
susceptible fraction of the population. If the immune are required to socially distance, the
benefit of the program is independent of the proportion immune. If the immune are exempt,
the benefit of the program is nearly proportional to the susceptible fraction. Intuitively,
this is because quarantining infectious cases only allows an increase in social activity for
the susceptible.

3.4.3 Marginal Value of Surveillance Testing

With a method available to assess the value of a quarantine policy, we can now assess
the value of information in enabling better quarantine/isolation policies. We first consider
random surveillance using a test with 50% sensitivity and near-100% specificity (the latter
achieved via a follow-up PCR test). The value per test is given by the product of the
probability of testing positive, expected number of additional infectious days in isolation,
and the daily benefit of each additional isolation day. If a positive test leads to 3 extra
isolation days, and assuming a large enough population to neglect the −1 term in Equation
3.7, the direct benefit (not including onward contact tracing) per test is I−Qi

P−Qi+Qn
∗ 0.5 ∗

3 ∗ $150/rthresh. With rthresh ≈ I−Qi

P−Qi+Qn
, the per-test benefit is insensitive to the risk
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Figure 3.3: The benefits from quarantine policies are highest when case prevalence is low.
In this example, each case one serial interval prior has on average ten contacts, of whom
one is infected, such that R′

t = 1. Higher case prevalence corresponds to high rthresh
and so lower D. As D decreases, the expected number of contacts each un-quarantined
case has increases, but the number of positive cases in quarantine increases so that the
overall expected number of contacts stays constant (maintaining R′

t = 1). We assume
that contact tracing succeeds in reaching 10% of all contacts. A) Assessable risk among
contacts is modeled as a gamma distribution, in all cases with mean 0.1, and with different
shape parameters to explore the importance of resolution among low-risk individuals. B)
Qi = 0.4I,Qn = 4Qi, C = $150, Rt = 4, Rtarget = 1, f(x) = x. While Rt = 4 is higher than
some estimates for SARS-CoV-2, other estimates place R0 as high as 5.7 even during early
spread in China [3], and higher for new variants.
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Figure 3.4: With vaccinated people exempt from distancing, the benefit of a contact
tracing system is approximately proportional to the susceptible fraction (dashed line).
When distancing is required, with the immune following the same distancing norms as the
susceptible, the benefit does not depend on the susceptible fraction (solid line). I/P =
0.0055, Qi = 0.4 ∗ I,Qn = 4 ∗Qi, C = $150, R0 = 4, Rtarget = 1 Assumptions about contact
tracing are as for Figure 3.3. A linear cost function is shown, but the approximately
proportional relationship also holds for a non-linear cost function, with immunity adjusting
the effective population size.
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threshold and equal to ≈ $225. With a non-linear cost function, the benefit might be up
to ten times less.

This makes random surveillance clearly worthwhile for rapid testing technologies that
can be made available for as little as $5 per test [81]. The benefit of surveillance test-
ing increases with when close contacts are traced and then tested and/or quarantined.
The benefit is reduced if a fraction of people who test positive do not effectively isolate.
Note that previous estimates of the value of random surveillance supported less intensive
measures [82], because they did not account for the benefits in terms of population-wide
relaxation of other measures.

When testing is too expensive to be used for random surveillance, or merely too slow to
roll out at sufficient scale, it can achieve higher marginal value if targeted to populations
at higher risk. We note that it can be hard to justify strict quarantine on individuals of
modestly above-average risk when the risk threshold is low in absolute terms, especially
when elimination does not yet seem within reach. An alternative is daily testing instead of
quarantine. The economic benefit from testing increases with risk of the focal individual
relative to the average, and can thus justify more expensive and more sensitive daily tests.

3.4.4 Marginal Value of Distinguishing among Exposures

Current guidance from the World Health Organization [83] and the Center for Disease
Control and Prevention [84] calls for quarantine for those within 1 meter or 6 feet, for 15
minutes, from 2 days before an infected individual’s symptom onset date to 9 days after.
This guidance does not correspond to a consistent risk threshold, because it combines three
binary thresholds rather than combining three risk factors prior to applying a threshold [71],
because the infectiousness window does not reflect current science but instead a paper for
which a formal correction has been issued [85, 86, 87], and because additional information
such as ventilation in an indoor space is not taken into account. In addition, once a
consistent risk assessment can be produced, we have shown here the benefits of adjusting
the threshold based on local conditions.

While complex risk assessment can be difficult to apply in real-time case investigation
interviews, exposure notification apps [34, 28] can easily do so [71, 88, 89]. Here we con-
sider the economic value of using a better rather than a worse risk assessment algorithm.
Specifically, we consider as an example the economic benefit that would arise from modi-
fying the Google/Apple Exposure Notification protocol so that it could sense whether the
user was indoor vs. outdoor, and differentiate risk between the two.
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We assume a 50:50 distribution between indoor and outdoor exposures, each of which
have a gamma distribution of risk with shape parameter 2 as in Figure 3.3, and a 15-fold
difference in mean risk [90]. We set the mean risk across both to be 0.06. When the risk
threshold is low, there is no economic benefit from distinguishing indoor vs outdoor, for
the simple reason that quarantine is recommended to anyone with any recorded exposure.
However, when the risk threshold is high, knowing that an exposure occurred outdoors can
spare an individual from costly quarantine, while also quarantining indoor exposures that
occurred at greater distance.

With a 2% risk threshold, for the average exposed person, a fraction of whom are told
to quarantine, the net benefit is 2.32 quarantine-days averted with the information and
2.05 without. These units of quarantine-days averted include both targeted quarantine
and indiscriminate social distancing, which can be summed under a linear cost function.

Consider a population of 10 million, 2% of whom test positive over the time period of
interest. We assume 20% use the app, of whom 50% enter their diagnosis into the app,
thus notifying 20% of contacts that the app scores as above threshold risk, who go on to
infect half as many people as they would were they not contacted. We assume the cost of
quarantine is similarly only half what it would be given complete compliance. We assume
that each has 16.7 contacts (set so that Rt = 1) following the distribution described above.

We assume that the cost of quarantine is $150 per day, and that the average quarantine
is 10 days long. This gives an expected cost of quarantine of $1500 per individual that a
particular configuration succeeds in getting to quarantine. At the margin, this indicates
the value that society implicitly places, i.e. that removing a 0.02 risk is worth $1500. The
benefit of quarantine is calculated in terms of “excess risk” above 0.02 having a value where
each 0.02 of excess is worth $1500. Under these assumptions, net benefit comes out to $116
million with information about indoor/outdoor contact (i.e. $11.60 per capita or $58 per
app user), and $105 million without. This value of $58 per app user can also be used to
calculate a marginal return on further investment in marketing for higher adoption, noting
the non-linearity that will tend to produce accelerating rather than diminishing returns on
investment.

We note that the value of an exposure notification app would be dramatically higher
if, instead of a blanket 14 day quarantine duration, a shorter quarantine, targeted to the
days of greatest risk, were used [71]. Further gains would come from using negative test
results to shorten quarantine.
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3.5 Discussion

Here we showed that the socially optimal policy is to quarantine an individual if their risk
of infectiousness is even mildly above that of the average person in the population who is
not under quarantine. How much above depends slightly on the non-linearity of the cost
of isolation with the strictness of isolation. While only order of magnitude calculations
are sometimes possible, given that case prevalences vary over several orders of magnitudes
across different populations, our rough calculations are nevertheless instructive. Some
tools, like exposure notification apps, have quantitative sensitivities that can be tuned
in real time in ways informed by such calculations. With more information about risk,
quarantine policy can make a greater contribution to returning to a more normal life. The
value of quarantine policy in doing so is higher for low case prevalence. It depends on
vaccination prevalence only if the vaccinated follow different distancing norms than the
unvaccinated, or if population immunity on its own is extensive enough to achieve Rt < 1.

To simplify the optimal trade-off between targeted quarantine and broad social distanc-
ing, we have neglected two complications. First, we have based recommendations as to
who should quarantine on the assumption that they will do so completely. In reality, quar-
antined individuals often reduce rather than eliminate non-household contact, let alone all
contact. More nuanced messaging regarding the degree of quarantine may be difficult to
manage.

Second, how to choose Rtarget is not specified here. In the Introduction and Supplement
Section 2, we discuss a control theory perspective on the fact that social distancing adjusts
to keep the long-term geometric mean of Rt near 1. A well-functioning control system
is one with a negative feedback loop such that the error in achieving a desired outcome
feeds in as a correcting input [91]. Feedback can come either from top-down policy or from
changes in individual decisions in response to conditions.

A control system can be described as a combination of proportional, integral, and
derivative control [91]. Derivative control would set social distancing policy based on
whether exponential growth has resumed, and if so with what doubling time. This is
unlikely to occur spontaneously, but rather requires government action in response to
epidemiological reports not yet posing significant personal risk to the average individual.
Spontaneous control by self-interested individuals responding to local conditions would un-
der ideal circumstances follow proportional control, i.e. reflect current case counts. More
likely, individuals will respond to the integral of case counts over time, e.g. as reflected
in hospital occupancy rates. Targeting hospital occupancy rates (a combination of pro-
portional and integral control) is also the explicit policy of some governments, e.g. the
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State of Arizona [92]. If the goal is a managed approach to naturally acquired population
immunity [93], hospital usage is a reasonable target. But since the amount of social dis-
tancing (whether mandated or voluntary) needed to keep Rt near 1 is the same against a
background of low case counts as with high case counts, there are obvious health benefits
to doing so with low case counts. Integral control will lead to significant fluctuations with
a high total case burden.

We recommend mostly derivative control, with sufficient proportional control to ensure
return to low case counts following fluctuations. The optimal extent of proportional control
depends on whether shorter, sharper action vs. moderate decline with more social freedom
achieves the least harm in transitioning between different case prevalences. The choice
of Rtarget to control the speed with which case numbers are brought to low levels must
also place a value on illness and death in comparison with social restrictions, a difficult
problem.

Regardless of the form of feedback, compliance with transmission control measures such
as size limits to gathering, compulsory masking etc. can be hard to predict, and hence
the degree of top-down control is limited. This underlies our decision in this manuscript
to focus on marginal costs given prevailing policy and behaviors. Our approach exploits
the fact that some unspecified form of negative feedback keeps Rt, or at least its geometric
mean, near 1.

If testing and tracing improves, then less population-wide distancing will be required
to achieve the same value of Rtarget, and if the same level of distancing is maintaining, this
will manifest as a drop in R′

t. This might on occasion lead to a reconsideration of Rtarget to
a lower level once that seems achievable at lower cost, but otherwise, reductions in social
distancing should again ideally be triggered via derivative control, reducing the burden on
the population.

While some form of negative feedback can be inferred from the empirical tendency of
Rt to stay near 1, positive feedback can also occur: as case counts rise, contact tracing
becomes more difficult [94], potentially accelerating the outbreak. Consciously adjust-
ing the risk threshold that triggers quarantine, whether regarding incoming travellers, or
risk thresholds in an exposure notification app, contributes to this positive feedback loop.
However, conscious recognition of this positive feedback loop, and the limits it creates, can
focus contact tracers’ attention where it can do the most good, in a manner that is under
straightforward real-time control.

Because of the positive feedback associated with contact tracing workload and optimal
quarantine policies, control of R′

t via negative feedback, e.g. to bring it back down to
its target given a rise due to seasonal conditions or simply pandemic fatigue, is better
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exerted through population-wide measures to affect D. Our work shows that this is the
socially optimal approach, and indeed if performed adequately, should be accompanied by
a perhaps unintuitive relaxing of quarantine. Our formal development assumes a perfect
control system, and focuses on one-individual perturbations to an equilibrium. It is likely
that D will not reliably adjust in a completely timely manner, but a proactive approach
can improve the chances of this occurring.

While contact tracing apps enable some precision in setting risk thresholds, more
broadly our findings are primarily useful for quickly assessing the direction in which policy
should change. For example, if the secondary attack rate amongst quarantined contacts is
10%, but the base rate in the general population is ≪ 10%, our work implies that it would
be greatly beneficial to cast a wider net in who qualifies as a contact and how aggressively
to trace them. The theoretical framework of the paper can thus be used to inform policy
even without aspiring to achieve precise optimality.

Many extensions to our approach are possible. Treatment of stochastic effects at low
case counts, especially related to border policy, would expand the scope of this work to en-
able optimization of quarantine and testing decisions when local elimination of the disease
is possible. Another way to strengthen the model would be to introduce sub-populations
with different propensities for social distancing. Finally, the model presented is intended
for periods when a new outbreak is being suppressed to wait for better vaccines and treat-
ment and to reduce the burden on hospitals. Permanent social distancing is not a desirable
policy, so an analysis that depends on a trade-off between social distancing and quarantine
has less validity in the endemic phase. A better approach for the endemic phase would be
for decisions about quarantine and broader non-pharmaceutical interventions to trade off
against health outcomes.

The value of quarantine policies is highest when case counts are low. However if low
cases counts are a consequence of immunity (whether from natural infection or from vac-
cination), then the value of a quarantine policy will go down when those with immunity
follow different distancing norms from those without. There is a direct benefit from re-
laxing distancing for the immune, whether this behavior is self-regulated or whether it
comes in the form of a more official “immunity passport”. Immunity passports were once
problematic because they would have set up an adverse incentive in favor of contracting
SARS-CoV-2. However, with increasing vaccine availability, the benefits from immunity
passports have risen at the same time as an adverse incentive to get infected has been con-
verted into a pro-socially aligned incentive to get vaccinated. Our approach can be used
to merge immunity history, quarantine policies, and even recent negative test results into
an integrate metric of “risk to others”. The socially optimal policy is to use all available
information to target restrictions to where they will do the most good, and restore as much
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social activity as possible while still controlling transmission.
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Chapter 4

Optimization of Test Timing and
Quarantine Duration

4.1 Background

This section describes two methods to choose quarantine duration and test timing after
exposure to COVID-19. The first (Section 4.2) aims to compute the optimal fixed-duration
quarantine policy. In this case, we aim to choose the best test timing and quarantine dura-
tion following a single exposure on a given day where the risk of infection is unknown. This
problem is posed as a constrained optimization where we attempt to minimize quarantine
duration without increasing expected transmissions compared to a default policy.

The second method (Section 4.3) considers the case where exposures are measured over
one or more days, each with an estimated risk of infection conditional on not already
being infected. The decision of quarantine and test timing is posed as an optimization
problem with a weighted sum of expected transmissions and quarantine duration as the
objective function. This optimization problem is then solved using two-stage stochastic
programming with test scheduling as the first stage and the quarantine decision for the
current day as the second stage (depending on symptoms and test results).
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4.2 Fixed Quarantine Policy

4.2.1 Overview

We calculate the optimal timing of PCR testing following exposure to SARS-CoV-2. We
minimize the length of post-exposure quarantine, constrained not to increase expected
transmission above that of a reference policy of quarantine without testing. Given equally
short quarantine, we minimize expected transmission. Unlike previous optimizations, our
calculations account for the shared dependence of test sensitivity and infectiousness on the
individual’s incubation period. To achieve this, we infer time-dependent test sensitivity
directly from longitudinal test data, rather than indirectly from viral load trajectories.
The absolute degree to which a quarantine recommendation induces behavior change does
not affect optimal policy, which instead depends only on the ratio of behavior change
magnitudes following notification of exposure (quarantine) vs. a positive test (isolation).
Given a ratio inferred from U.K. survey data, testing on day 4 or 5, and then ending
quarantine after a negative result comes back 1-2 days later, is sufficient to keep onward
transmission lower than for a 10 day quarantine without testing. The use of a second PCR
test allows quarantine to be shortened by one more day. With zero behavior change induced
by quarantine, day 4 is the optimal date for a single PCR test, or days 3 and 4 for two PCR
tests, earlier than the CDC’s current recommendation for one test no earlier than day 5.
With more recent variants having shorter incubation periods than the variants studied in
our test sensitivity data, both testing and quarantine release shift correspondingly earlier.

4.2.2 Significance

Risk analysis that minimizes both infectious disease transmission and quarantine days,
while making optimal use of testing, can reduce total harm from outbreaks. This work
directly quantifies how the false negative rate for a SARS-CoV-2 test depends on its tim-
ing, develops new methods to account for incubation time as a confounding variable within
mathematical optimizations, and uses these new tools to make practice-changing recom-
mendations.

4.2.3 Introduction

Some public health agencies, including the Centers for Disease Control and Prevention
(CDC), recommend PCR testing after exposure to SARS-CoV-2 [95]. While other agen-
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cies instead recommend serial testing with rapid antigen tests, as a means to avoid quar-
antine, Omicron infections can be undetectable by antigen test for the first several days
of significant viral load [96], and variants that escape detection by antigen tests have been
observed [97]. Returning to PCR testing therefore also remains an important contingency
for jurisdictions currently using antigen tests during or in lieu of quarantine.

Long quarantines are required to avoid all post-quarantine transmission with high con-
fidence [98], because the distribution of incubation periods for most infectious diseases has
a lognormal shape [99], meaning that a small but not non-negligible fraction of individuals
take a long time before they develop symptoms. However, quarantine causes financial,
logistical, and psychological [100] harms, and so tests can be used to shorten or even elim-
inate quarantine. Shorter quarantine recommendations might also increase compliance
[101], which has been low from early in the COVID-19 pandemic [102], and falling [103].

Here we consider optimal policy for quarantine length and testing during quarantine,
following exposure to SARS-CoV-2. The CDC initially recommended a 14 day quarantine,
and then reduced it to 10 days in the absence of testing, or 7 days if a negative test is
obtained within 48 hours of the end of quarantine [104]. The CDC later changed this
to recommending an exit test on day 5 for individuals not up to date with vaccinations.
The World Health Organization continues to recommend 14 days quarantine [105]. We
calculate the shortest quarantine that, in combination with an optimally timed RT-PCR
test that comes back negative, will lead to an equivalent number of onward transmission
events as a 10 day or 14 day quarantine without testing. We also explore the benefits of a
second RT-PCR test during quarantine.

The objective of the CDC recommendation for testing within the last 48 hours of
a 7 day quarantine was to minimize post-quarantine transmission [106]. This choice of
objective implicitly assumes 100% compliance with quarantine, by ignoring the benefits
of shifting contacts earlier from quarantine to isolation. Other work has assumed the
same [107]. While a positive test result does not guarantee total compliance with isolation
recommendations, a recommendation to isolate following a positive test is nevertheless
likely to stem transmission better than a recommendation to quarantine after a mere
exposure. This is supported by Norwegian data in which compliance on at least one day
with quarantine/isolation without symptoms was only 28%, but rose to 71% with symptoms
[108]. Similarly, in the U.K., compliance with quarantine on all recommended days was
only 10.9%, rising to a substantially higher if still low value of 18.2% for isolation [109].
Here we optimize for testing regimes that will minimize total transmission, assuming a
transition from quarantine to isolation following either the onset of symptoms or a positive
test result. This is different from assuming perfect compliance and minimizing only the
post-quarantine transmission component. We also consider the potential for a negative
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test result to reduce compliance with remaining quarantine.

Test sensitivity depends on the day that test is administered, but there has been lit-
tle data to inform this relationship. CDC models [110] rely on the model of Clifford et
al. [111] that is based on data from Kucirka et al. [112]. But if quarantined individuals
move to isolation as presumptive COVID-19 cases upon the onset of any symptom, then
the test sensitivity that matters is that which applies pre-symptomatically, for which Ku-
cirka et al. had data only from a single patient (from [113]), who never tested positive
by nasopharyngeal swab on any day (only by endotracheal aspirate). Extrapolation from
such limited data is inappropriate. Apparent inference of presymptomatic test sensitivity
therefore primarily reflects model assumptions, with significant bias toward underestimat-
ing presymptomatic sensitivity. More recent work has abandoned this approach to instead
simulate viral load trajectories, and make assumptions about test sensitivity as a func-
tion of viral load [114, 115]. This is more straightforward for rapid antigen tests than
for PCR tests. Here we instead use two longitudinal datasets to obtain the first substan-
tive inferences of presymptomatic test sensitivity: the Big 12 conference subset of the
larger National Collegiate Athletic Association (NCAA) quarantine dataset collected by
the COVID-19 Collegiate Athlete Testing Group and described by Atherstone et al. [116]
but not made public, together with the publicly available dataset of Hellewell et al. [117].

Careful treatment of the non-independence of symptom onset timing, test timing, and
time-dependent infectiousness is required to make accurate recommendations. Specifically,
the probability of infection from a given exposure, as assessed x days after that exposure,
falls when it is made conditional on the lack of symptoms until day x [118]. The probability
of infection is similarly conditional on a negative result for a test administered on day t.
However, these two conditionalities are interdependent; a test on day 5 might yield little
additional information about infection probability on day 10, because conditional on lack
of symptoms on day 10, the incubation period if infected was likely to be sufficiently long
such that a day 5 test would have very low sensitivity. The CDC model assumes that both
infectiousness and test sensitivity peak 5 days after exposure, independent of incubation
period, which they assume follows a lognormal distribution [106]. But analysis of pairs
with known transmission timing rejected this hypothesis in favor of peak infectiousness
being closely associated with date relative to symptom onset, not date relative to exposure
[85]. Here we rigorously treat the joint dependence of the timing of symptom onset, test
sensitivity, and infectiousness.

Optimal schedules for testing and quarantine may depend on the estimated degree
of compliance in different situations, the distribution of incubation periods, the timing
of infectiousness, the fraction of cases that are asymptomatic, and the length of delay
between testing and receiving the test results. We explore these parameters, in particular
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when they vary or are poorly characterized, in order to recommend robust optimal testing
and quarantine regimes.

4.2.4 Results

Time-Dependent Test Sensitivity

We infer RT-PCR test sensitivity as a function of both infection date and symptom onset
date. Figures 4.1A and 4.1B show curves for different incubation periods, with the thick
black line showing the weighted average across the distribution of incubation periods.
Figure 4.1C illustrates the 90% credibility interval associated with our inference, taking as
an example the case of the median incubation period of 5 days. This shows that we have
sufficient data for reliable inference.

Optimal Test Timing

We compare to a reference policy of π{10,∅}: quarantine until 10 days after exposure, with-
out testing unless symptoms develop, and if symptoms develop (either during or after
quarantine), enter isolation (and request a test). By making use of testing, we find the
shortest quarantine length that does not increase the total number of expected transmis-
sions (not just post-quarantine transmissions). If there are multiple test regimes that allow
equally short quarantine, we select the one with the least onward transmission.

In Appendix B.1, we show that optimal policy does not depend on the absolute level of
quarantine or isolation compliance, but only on their ratio CQ. Note that “compliance” here
describes the reduction in transmission due to any behavior change ranging from staying at
home to mask wearing, whether or not those behavior changes are recommended as policy.

With CQ = 1 (i.e. quarantine compliance just as high as isolation compliance), CN = 0
(i.e. no drop in quarantine compliance after a negative test result), and test turnaround
Tdelay = 1.5 (assuming testing in the middle of the day yields results in time to act on the
day after next), the regime that best matches the post-quarantine transmission from 10 day
no-test quarantine is 7 day quarantine with an exit test on day 6 (Figure 4.2A). This means
that our improved estimates of time-dependent test sensitivity, and more rigorous treat-
ment of conditional probability, do not cause the resulting optimization to deviate from
that derived from CDC models. However, our recommendations are sensitive to assump-
tions about compliance. For the more realistic case of CQ = 0.7, we instead recommend 6
day quarantine with an exit test on day 5 (Figure 4.2B).
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Figure 4.1: Inferred time-dependent test sensitivity. In A) and B), lines are shown for
incubation periods of 2, 4, 6, 8, 10, 14, and 21 days, and the black line represents the
weighted average over incubation periods. Dots indicate the day of symptom onset in A).
Lines start on the day of infection in B). Line in C) shows the mean sensitivity across the
range of parameters values sampled during our Monte Carlo approach, given the median
incubation period (5 days) and the shaded area represents the 90% credibility interval for
the posterior distribution produced by our Monte Carlo inference method.
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Figure 4.2: Expected transmissions per day for default 10-day no-test quarantine policy
(red), and shortened quarantine with test (blue). A) Isolation and quarantine compliance
are both 100%, quarantine is shortened to 7 days with a test on day 6. Test turnaround
time Tdelay = 1.5 makes this an exit test. B) Isolation compliance is 100%, quarantine
compliance is 70%, and quarantine is shortened to 6 days with an exit test on day 5. In
both cases, shortened quarantine regime is chosen such that it leads to the same or fewer
expected transmissions. CN = 0.5. Results are shown for Rt = 1.0; y-axis values can be
proportionately scaled for other values of Rt.
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We explore CQ more broadly in Figure 4.3. When quarantine is taken nearly as seriously
as isolation (high CQ), as in Figure 4.2A, the risk reduction provided by a single test can
shorten quarantine by 3 days (Figure 4.3A, right). For lower quarantine compliance, as
in Figure 4.2B, we recommend earlier testing, again with quarantine ending as soon as
negative test results are received (Figure 4.3A, middle). But when quarantine compliance
is extremely low, the risk reduction from a single test on day 4 can completely replace any
quarantine (Figure 4.3A, left).

Importantly, in the absence of quarantine, the optimal date for a single test is 4 days
after exposure, in contrast to current CDC recommendations that contacts who are up
to date with recommended vaccines (who are not required to quarantine, only to mask)
should test 5 days after exposure [119]. The day 4 testing recommendation is the result of a
trade-off between earlier testing ensuring results before the period of highest transmission
risk (around day 5), and later testing reducing the risk of a false negative due to lower
test sensitivity. A negative test on day 4 should obviously be followed by isolation and a
second test should symptoms develop.

To make a practical policy recommendation based on Figure 4.3, an estimate of CQ

(quarantine compliance relative to isolation compliance) is needed. Data on self-reported
compliance with isolation and quarantine was collected by “” in the UK between “” and
“”. For quarantine, 11% reported full compliance, 54% reported partial compliance, and
35% reported no behaviour change. For isolation, compliance was slightly higher, with 40%
reporting full compliance, 40% partial, and 30% none. To use these numbers to estimate
CQ in units of expected transmissions, we we assume that full compliance eliminates trans-
mission, that no compliance leaves the number of transmissions unchanged, and we explore
the effect of partial compliance as 25%, 50%, and 75% in scenarios 1, 2, and 3 respectively.
This leads to a reduction in transmissions due to isolation of 47.5%, 55%, and 62.5%, and
a reduction due to quarantine of 24.5%, 38%, and 51.5% in the three scenarios. These
yield CQ values of 24.5/47.5 = 0.516, 38/55 = 0.691, and 51.5/62.5= 0.824 in scenarios 1,
2, and 3 respectively, which are shown by the three vertical lines in Figure 4.3. We note
that Quilty et al.’s [114] baseline scenario of values for both compliance rates maps to our
CQ = 0.75, within the higher end of the range we consider.

Depending on which scenario is most accurate, we recommend 5-6 days of quarantine
with corresponding exit test on days 4-5, a narrow range reflecting limited variation among
interpretations of the same U.K. data. In a more quarantine-compliant population than
the U.K., quarantine might be 7 days, while in a less quarantine-compliant population, no
quarantine might be recommended. For contacts who are exempt from quarantine, e.g.
due to vaccination, we recommend testing on day 4.
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However, optimal policy will depend on SARS-CoV-2 variant characteristics, e.g. the
Delta variant has higher transmission risk and may have a shorter incubation period than
previous strains [120]. The Omicron variant has also been suggested to have a shorter latent
period [121]. While our recommended policies are independent of absolute transmission
risk Rt (because risk would increase proportionally in both the test and default policy),
they are not independent of the incubation period of the virus. Dashed lines in Figure
4.3B show the recommended policy with a mean incubation period of 4.4 days instead of
5.4 days. With the shortened incubation period, the recommended quarantine duration
and test day are generally shortened by one day.

When we use the World Health Organization reference policy of π{14,∅} (Figure 4.3C,
dashed lines) instead of the CDC reference policy of π{10,∅} (Figure 4.3C, solid lines), quar-
antine remains equally short for low quarantine compliance, but is lengthened as quarantine
compliance approaches isolation compliance. However, even for CQ = 1, quarantine is not
lengthened by the full 4 days, but instead rises from 7 days to 10 days.

If we increase the PCR test turnaround time from Tdelay = 1.5 to Tdelay = 2.5, this rarely
changes the date of testing (Figure 4.3D, red dashed vs. solid lines), but instead adds one
day to quarantine (Figure 4.3D, blue lines). This supports the CDC’s shift in framing,
from recommending that quarantine end on a certain day subject to a negative test in the
last 48 hours [106], to specifying date of testing, and allow quarantine to end as soon as
a negative test result is received. As well as being more robustly optimal, framing advice
in this way is also simpler than inviting individuals to research current test turnaround
times in order to decide when within a 48 hour period to get tested. Our results points to
days 4-5 as suitable dates for testing for early variants, or earlier for currently circulating
strains with shorter incubation periods.

While testing can increase compliance when test results come back positive, it can also
decrease compliance when test results come back negative. Recommendations in Figure 4.3
are based on CN = 0.5, i.e. halving quarantine compliance following receipt of a negative
test, which results in policies that recommend quarantine exit shortly after the receipt of
test results, and thus little opportunity for false negative results to increase transmission.
However, results are the same for CN = 0.

While the tightness of our credibility intervals in Figure 4.3A is reassuring, the data from
which we infer time-dependent test sensitivity might be inaccurate in ways not captured
by our Monte Carlo simulations. We therefore explore the scope for new data to change
our recommendations. In Figure 4.4, we adjust both the height and width of our inferred
time-dependent test sensitivity curve. Shorter quarantine, enabled by earlier testing, is
made possible both by tests with higher peak sensitivity and by tests that remain sensitive
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Figure 4.3: Shorter quarantine and earlier testing are recommended when quarantine com-
pliance is much less than isolation compliance. Quarantine duration (blue) and test day
(red) depend in all figure panels on the ratio CQ of quarantine to isolation compliance.
Vertical lines correspond to three different interpretations of survey results on the compli-
ance ratio, as described in the main text. CN = 0.5 throughout, i.e. quarantine compliance
is reduced by half following a negative test result, but results are identical for CN = 0.
A) Shaded areas reflect 90% credibility intervals from posterior distributions produced by
our Monte Carlo runs. This shows that we have sufficient data on time-dependent test
sensitivity to make recommendations that are precise to +/- one day. B) A variant such
as Delta with an estimated 4.4 day mean incubation period [4] (dashed lines) calls for
testing and quarantine release one day earlier than for the original SARS-CoV-2 strain
with a mean incubation period of 5.4 days (solid lines). C) Benchmarking against a 14-day
no-test quarantine (dashed lines) rather than a a 10-day no-test quarantine (solid lines)
results in less than the 4 days between the recommended with-test policies. D) Test delays
of 1.5 days (solid lines) and 2.5 days (dashed lines) result in the same recommended test
day, with slower test return. 51
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Figure 4.4: More sensitive tests across larger date ranges allow shorter quarantine with
earlier testing. Optimal quarantine duration (blue) and test date (red) with CN = 0.5 and
CQ = 0.691 (matching scenario 2) for modified test sensitivity curves. A) Test sensitivity
function is scaled vertically (with a ceiling of 1.0). B) Test sensitivity function is scaled
horizontally around the symptom onset date (higher values of ’scaled width’ lead to a
longer period of high sensitivity).

over a greater range of dates. However, results are not overly sensitive to the exact height
or width of our inferred time-dependent test sensitivity curves. Note that the use of a
single antigen test, rather than a single RT-PCR test, likely corresponds to narrower and
lower sensitivity curve, making it less effective at shortening quarantine, although shorter
Tdelay can help compensate.

Antigen tests provide the possibility of daily rapid testing [115]. But even with PCR
testing, multiple tests during quarantine are also a viable option today. Figure 4.5A shows
the optimal timing of quarantine with two tests. Testing twice allows quarantine to be
one day shorter than when testing once. One test is timed to receive negative results for
quarantine release, and a second test is generally timed for the following day. Two tests
are almost never recommended for the same day (with the exception of very high CQ in
Figure 4.5A). We recommend that the unquarantined individuals are tested either on day
4, or on days 3 and 4 following exposure, or earlier for strains with shorter incubation
periods. Again, this is earlier than current CDC advice for unquarantined individuals to
wait at least 5 days after exposure before testing.

Our optimization procedure yields shorter quarantine with earlier testing than current

52
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Figure 4.5: Recommended quarantine length and dates of 2 tests . Quarantine duration
in blue, two tests in red and green, shaded area reflects a 90% credibility interval on the
timing of the earlier test on the basis of the posterior distribution produced by our Monte
Carlo runs. A) With all choices free. Dashed blue line shows longer quarantine duration
with only one test. B) With a fixed quarantine length of 7 days and test on day 5, plus an
additional test with optimized date. Dashed line indicates CN = 0, solid line for CN = 0.5.
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CDC suggestions that post-exposure quarantine ends upon receipt of a day 5 test [106].
Given that public health authorities in the U.S. may feel constrained by CDC suggestions,
we therefore optimize for the timing of one test while holding the other constant on day
5, with Tdelay = 2.5 allowing quarantine end after 7 days. When quarantine compliance
relative to isolation compliance is low, the first test is recommended on day 3 to reduce the
risk of transmission during quarantine. As quarantine compliance increases, the additional
test is allocated to day 6 to minimize transmissions after release from quarantine.

In Figure 4.5B, with quarantine duration held fixed, we see for the first time how the
effect of negative tests on compliance can change recommendations. When compliance
is insensitive to negative tests (CN = 0, dashed line), earlier testing becomes possible.
The reason CN = 0 and CN = 0.5 results were indistinguishable in earlier figures is that
quarantine length was not held constant. When earlier test dates enable earlier release, we
see no difference between recommendations based on CN = 0 versus CN = 0.5.

4.2.5 Discussion

We estimated time-dependent, presymptomatic RT-PCR sensitivity curves from longi-
tudinal data, and used them to optimize testing and quarantine regimes relative to a
quarantine-without-testing benchmark policy, while accounting for the joint dependence of
test sensitivity, symptom onset, and infectiousness on incubation time. A key mathemati-
cal finding of our work is that the optimal choice of test/quarantine regime depends not on
the absolute degree of to which notification of exposure prompts transmission-reducing be-
havior change (“quarantine compliance”), but on the ratio between quarantine compliance
following contact tracing and isolation compliance following positive test or symptoms.
Our calculations recommend shorter quarantine and earlier SARS-CoV-2 testing than the
CDC does, especially when quarantine compliance is low relative to isolation compliance,
and especially for variants such as Delta and Omicron that seem to have shorter incubation
periods. We recommend PCR testing 4-5 days after exposure, or earlier for strains with
shorter incubation periods, with quarantine ending upon receipt of a negative result. Use
of a second RT-PCR test can shorten quarantine by one more day. Individuals exempt
from or unlikely to comply with quarantine are best tested on day 4 following exposure, or
days 3 and 4 in case of two tests, or earlier for strains with shorter incubation periods.

Our work overcomes three key limitations of previous studies that have considered
the question of how to optimize RT-PCR test timing within quarantine [122, 123, 124].
First, Wells et al. [122] and Johansson et al. [124] focus exclusively on post-quarantine
transmission, ignoring the reduction in transmission achieved by moving individuals from
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quarantine to isolation. This focus is appropriate for enforced border quarantine scenarios
such as entry into an oil well [122], or to a location that has achieved local elimination of
SARS-CoV-2, but not for post-exposure voluntary quarantine within a population.

Interestingly, despite including during-quarantine transmission, our model still recom-
mends testing just in time for quarantine exit (in cases where quarantine is recommended
at all). We note that our treatment of the shared dependence of infectiousness and test
sensitivity on incubation period is necessary to capture the degree to which late testing
gives more significant information about post-quarantine transmission.

A second limitation with previous studies is a lack of data on presymptomatic test
sensitivity, which we directly rectify. As discussed in the Introduction, studies such as Jo-
hansson et al. [124] that rely on data compiled by Kucirka et al. [125] effectively use only a
single presymptomatic patient, and thus primarily reflect model assumptions, with signif-
icant bias toward underestimating presymptomatic sensitivity. As an alternative, Wells et
al. [122] fit a relationship between post-symptomatic transmission and test sensitivity, and
then used it to infer pre-symptomatic test sensitivity from pre-symptomatic transmission.
The problem with this is that infectiousness and transmission cannot be assumed propor-
tional in this way; post-symptomatic transmission is reduced by behavior changes to a level
lower than that expected from infectiousness. This method is therefore also expected to
underestimate presymptomatic test sensitivity. The same applies to the method used by
Johansson et al. [124] to model antigen test sensitivity, namely assuming directly propor-
tionality with transmission, which was assumed proportional to infectiousness whether or
not symptoms were present.

A third limitation with some past work [122, 124] is the assumption that test sensitivity
depends only on time since infection, not time of symptom onset. The consequence of the
neglect of shared dependence of infectiousness and sensitivity on incubation period is to
overstate the amount of information about late symptom onset infection obtained from
early tests, and thus to bias the recommendations toward testing on the inferred day
of maximum test sensitivity, given that it is inappropriately assumed to give the same
amount of information independently of incubation period. Johansson et al. [124] also
treat infectiousness as independent of incubation period. This will further overstate the
amount of information about late infectiousness obtained by an early test.

Given these limitations, the best approach prior to our work, used by Quilty et al.
[123] and Ferretti et al. [126] has been to simulate viral load trajectories and from those
apply functions for both infectiousness and sensitivity. But the relationship between viral
load and RT-PCR sensitivity is far from clear. We more directly infer test sensitivity from
longitudinal testing data.
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A limitation of our approach is that new strains might have different parameters, which
can only be estimated from contact tracing efforts such as the data used here. Unfortu-
nately, contact tracing is rarely conducted with the same intensity as occurred earlier in
the COVID-19 pandemic. It is important both to collect and to rapidly share data that
informs key parameters for decision-making [127]. This includes de-identified line list lon-
gitudinal testing data on contacts, together with the timing of their exposure relative to
symptom onset in the primary case.

Another limitation of our study is that while we quantitatively modeled isolation and
quarantine compliance, we assumed full compliance with testing. This is motivated by the
assumption that those who do not comply with testing are sufficiently unlikely to com-
ply with quarantine such that precise recommendations for this population are irrelevant.
However, it is still useful to consider strategies that make testing as convenient as possible,
in order to increase compliance.

Here we used a fixed quarantine duration of 10 or 14 days as a reference policy, and found
the best policy that leads to no more transmission than that. However the socially optimal
policy would effectively make the reference policy depend on case prevalence [128], and on
probability of infection as estimated from exposure dose [129] and immunity status. There
are strong ethical arguments for minimizing quarantine recommendations by targeting
them to where they will stem the most transmission [130]. Note that when taken from this
perspective of risk analysis, there is likely more information in exposure history than in
travel history. Outside of zero-COVID countries, test regimes for travel are perhaps best
targeted at lowering the probability of travel-associated superspreading events, rather than
minimizing the probability of introduction to a population where SARS-CoV-2 is already
established.

Our recommendations for earlier testing and quarantine end following exposure are
conservative for several reasons. Firstly, new strains seem to have shorter incubation
periods. Secondly, we did not in this study include the benefits of earlier case detection for
the purpose of tracing more contacts, either by forward contact tracing from the focal case
or by backward contact tracing to detect superspreader events. Including these benefits
might shift recommended testing dates slightly earlier.
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4.2.6 Methods

Incubation period

The day of infection is designated day 0. The time until peak viral load, which corresponds
for symptomatic patients to the day of symptom onset, follows a lognormal distribution.
Following [131], we assume

tsymp ∼ LogNormal(µ = 1.58, σ = 0.47) (4.1)

We convert this into a discrete distribution through integration to get a random variable
for the day of peak viral load / symptom onset, Dsymp. For convenience, we truncate at
30 days and renormalize.

Time-dependent test sensitivity

To estimate test sensitivity as a function of day of test, we consider screenings from em-
ployees of care facilities who were monitored longitudinally [117] and similar data from
college and university attendees [116]. Each participant included into this analysis was
tested for SARS-CoV-2 intermittently using RT-PCR tests and had at least one positive
test result. Along with 334 positive and negative test results from 97 individuals, presence
and absence of COVID-19 symptoms were recorded.

We estimate the sensitivity of a PCR test from the observed test results of infected
individuals using Bayesian model. The main data is dated test results: yi = 1 for a
positive test and yi = 0 for a negative test result, i ∈ [1, 334]. We fit Bernoulli distribution
to logit-transformed chance parameter which depends on the timing of infection:

yi ∼ Bernoulli(logit−1(f(t))). (4.2)

We examined different parametrisation of f(t), and report the one which explicitly infers
the time of symptom onset, the infection time, the time when the sensitivity peaks, and
the coefficients of the curve itself. Inverse logit-transformed f(t) is the sensitivity of PCR
test, and shows the probability of detecting an infection in an infected individual.

Expected daily transmissions from presymptomatic and symptomatic cases

T (x) is a random variable giving the number of transmissions on day x. We take its
expectation from Ferretti et al. [85] as a function of the day that symptoms begin, z:
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E[T (x)|Dsymp = z, Asymp = False] ∝


e−((x−z)∗τ/z−µ)/σ

(1 + e−((x−z)∗τ/z−µ)/σ)α+1
, if x <z

e−((x−z)−µ)/σ

(1 + e−((x−z)−µ)/σ)α+1
, if x ≥ z

(4.3)

where τ = 5.42, µ = −4, σ = 1.85, and α = 5.85.

We set the proportionality constant so thatRt =
∑

x

∑
z P (Dsymp = z)∗E[T (x)|Dsymp =

z] = 1.0, merely to make values of T(x) more concrete. Not that the sum of expected
transmissions Rt will be lower for vaccinated and/or recovered individuals than for im-
munologically naive individuals. If the individual is in isolation or quarantine, expected
transmission is dampened by a factor given by the level of compliance, CI or CQCI , re-
spectively, as discussed below.

Asymptomatic cases

A fraction of cases pasymp never develop noticeable symptoms. We assume that their viral
load profile over time nevertheless follows the same shape as symptomatic cases, and Dsymp

represents the time until peak infectiousness. Because this does not trigger symptoms and
thus isolation, we also need to model infectiousness after this time. The estimates of Ferretti
et al. are not suitable for this, because they are for post-symptomatic transmission that
is affected by behavior modification as a consequence of symptoms. Instead, we use the
TCID50 results of Bullard et al. as a more direct indication of infectiousness. We assume
that peak infectiousness continues at a plateau for days 0, 1, and 2 relative to peak viral
load, and that infectiousness then declines geometrically by a factor of 0.631 per day.

E[T (x)|Dsymp = z, Asymp = True] ∝



e−((x−z)∗τ/z−µ)/σ

(1 + e−((x−z)∗τ/z−µ)/σ)α+1
, if x <z

eµ/σ

(1 + eµ/σ)α+1
, if x ≥ z and x ≤ z + 2

eµ/σ

(1 + eµ/σ)α+1
∗ 0.631x−z−2, if x >z + 2

(4.4)

We normalize total expected transmissions from asymptomatic individuals to equal the
same value of R0 = 2.5 as we do for symptomatic individuals. This corresponds to a lower
peak infectiousness and a higher proportion of onward transmission occurring post-peak.
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Quarantine Policy

A quarantine policy π{m,t} consists of a recommended test date, t, and quarantine length,
m. Infection occurs on day 0, and a 10-day quarantine means quarantine on days 1 through
10 inclusive, with release from quarantine on day 11. The parameter Tdelay specifies the
number of days after testing that results are returned. We assume that symptoms de-
velop in the morning, and that symptomatic individuals immediately enter isolation. We
generally set Tdelay = 1.5, so that a test is taken midway through the day, and positive
test results are received at the end of the next day or early morning the day after, again
triggering isolation from the beginning of the day. E.g. when a test is recommended for
day 6 of a 7 day quarantine, a positive test result would trigger isolation beginning at the
start of day 8, smoothly taking over from the quarantine that just ended. If no testing
is used in a given policy, t is set to ∅. Test(t) is a random Boolean variable giving the
boolean test result, r, on day t, with probability dependent on time since infection and
symptom onset date, as described in Section 4.2.6. Asymp is a random variable, set to
true for asymptomatic cases. The number of expected transmissions on a given day can
be computed based on the quarantine policy, infection date, symptom onset date, whether
the symptoms are noticeable, and test result. In the absence of isolation or quarantine,
the expected number of transmissions on a particular day is given by Equation 4.3 for
symptomatic cases or Equation 4.4 for asymptomatic cases. Equation 4.5 gives the daily
transmission adjustment factor based on quarantine/isolation status (and indirectly on
symptom status, test results, and quarantine policy).

h(x, π{m,t}, T est(t) = r,Dsymp = z, Asymp = a) =

1− CI , if !a and x > z (noticeably symptomatic)

1− CI , if r and x > t+ Tdelay (tested positive)

1− CI/2− CQ ∗ CI/2, if !a and x == z (first day of symptoms)

1− CI/2− CQ ∗ CI/2, if r and x == t+ Tdelay (day received positive test result)

1− CQ ∗ CI ∗ (1− CN), if !r and x > t+ Tdelay and x < m (negative test + in quarantine)

1− CQ ∗ CI , else if x < m (in quarantine)

1, otherwise (released from quarantine and no symptoms)

(4.5)

Under a two-test policy, behavior changes after the first test, there is no second test if the
first test is positive, and behavior following first a negative then a positive test is the same
as for any other positive test.
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Transmission depends on levels of compliance (i.e. degree to which social contact is
reduced) captured by the C terms above. We assume that quarantine compliance is a
fraction CQ of isolation compliance CI . In Appendix B.1, we show that because 1 −
h(x, π{m,t}, r, z, a) is always proportional to CI , we can assume, without loss of generality,
100% compliance with isolation. To capture the effect of a negative test result on quarantine
compliance, we use a linear expression in which CN = 0 corresponds to no effect and CN = 1
corresponds to the complete collapse of quarantine compliance.

Across symptomatic and asymptomatic cases, all possible days of symptom onset /
peak infectiousness, and either positive or negative test results for day t, we obtain the
expected transmission gx on day x:

gx(π{m,t}) =
∑
z∈0:30

∑
r∈0,1

∑
a∈0,1

{P (Dsymp = z, Test(t) = r, Asymp = a)∗

h(x, π{m,t}, T est(t) = r,Dsymp = z, Asymp = a)∗
E[T (x)|Dsymp = z, Asymp = a]}

(4.6)

The first term gives the probability of a scenario, the second gives the degree to which
transmission is reduced in that scenario, and the third term from Equations 4.3 and 4.4
gives the expected number of transmissions in the absence of quarantine or isolation. Equa-
tion 4.6 can be easily expanded to the case of two tests on days t1 and t2 with results r1
and r2.

The joint probability of peak infectiousness date, test result for day t, and asymptomatic
status is:

P (Dsymp = z, Test(t) = r, Asymp = a)

= P (Dsymp = z) ∗ P (Test(t) = r|Dsymp = z) ∗ P (Asymp = a)
(4.7)

Under a two-test regime, the middle factor is repeated for each of the two tests.

For a given quarantine policy, the total number of expected transmissions, summed
over the 30 days following exposure, is given by g(π) :

g(π{m,t}) =
∑

x∈0:30

gx(π{m,t})} (4.8)
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4.3 Dynamic Quarantine Policy

4.3.1 Introduction

In section 4.2 we used conditional distributions for test sensitivity, expected transmissions,
and incubation period to choose a static quarantine and testing policy (after an exposure on
a known day) that minimized the quarantine duration while holding expected transmissions
below a specified value. In this section we will solve a similar problem - how to choose
quarantine duration and test timing following exposures on one or more days each with
an estimated transmission risk (conditional on not already being infected). Here we will
minimize a weighted sum of expected transmissions and quarantine days to be consistent
with the objective function introduced in 3. To somewhat simplify the problem, we will
assume that quarantine and isolation are equally effective.

An exposure notification app is well situated to automate this inference and provide
updates to quarantine recommendations immediately as new information is entered. The
risk threshold (from section 3 describes a preference ratio between additional transmissions
and an additional day of quarantine. This preference can be used to compute the expected
value of a scenario in units of quarantine days. Using two-stage stochastic programming,
an optimal test date can also be recommended to the user. Combining both of these
optimizations is numerically shown to reduce the cost of quarantine by 30% in typical
scenarios.

Section 4.3.2 builds a computation that takes probability of infection on given days
(conditional on not already being infected) and a day up to which symptoms have not
been noticed, and outputs the expected transmissions on future dates. This expected
transmissions calculation is then extended to incorporate dates of negative tests using a
timing-dependent test sensitivity function. Using the expected daily transmissions func-
tion, Section 4.3.3 shows how to build a quarantine recommendation system that recom-
mends quarantine on days when the expected transmissions exceed a certain threshold.
Finally, Section 4.3.4 shows how to optimally choose test timing and quarantine days to
minimize a weighted sum of expected transmissions and quarantine duration by posing it
as a two-stage stochastic programming problem.
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4.3.2 Conditional Infection Probability

Conditional on Symptoms

Consider the case where someone is known to have been exposed on certain days. This
individual receives a notification a few days later warning them of their risk. Using dura-
tion, proximity and infectiousness of the index case, the probability of infection from each
exposure event can be estimated as described in [118]. The individual is estimated to have
been infected with probability pinf (d), for each day of exposure, d. If multiple exposures
with risks, pi, occurred on the same day, the combined risk for that day is calculated as
1−

∏
i (1− pi). (This occurs automatically under GAEN v2, in which expected doses, in

the form of “Meaningful Exposure Minutes”, are summed). The person can be instructed
to presume SARS-CoV-2 infection and self-isolate immediately if they are symptomatic
or if they become symptomatic. In theory, this eliminates post-symptomatic transmission
risk, and only pre-symptomatic and asymptomatic transmission need to be considered to
make a decision about quarantine. To do so, it is useful to estimate the expected number
of transmissions that would occur on a given day if they did not quarantine.

Our aim is to compute the expected number of transmissions on day x given that no
symptoms have been experienced up to and including day w (typically w = x−1). This can
be done by constructing the joint probability distribution of infection date and symptom
onset date, then multiplying by the expected transmission curve to compute the expected
risk on a given day.

Permissible values for Dinf and Dsymp are the natural numbers and ∅ (to represent the
scenario where the event does not occur). These permissible values are represented by the
set A = (N ∪∅). In practical implementations, days more than a month away from x can
be neglected. The expected value of T (x) given symptom onset date and infection date is
given by equation 4.9. Summing over all possible values of Dinf , Dsymp, and Asymp yields
the expected value of T (x) in the absence of other information, as shown in equation 4.10.
Finally, the expected number of transmissions can be adjusted based on the knowledge
that symptoms have not occurred by day w, as shown in equation 4.11.

E[T (x)|Dinf = y,Dsymp = z, Asymp = a] =


0, if y = ∅
Tsymp(x− y, z − y), if a = False

Tasymp(x− y, z − y), if a = True

(4.9)
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E[T (x)] =
∑
i∈A

∑
j∈A

∑
k∈{0,1}

{E[T (x)|Dinf = i,Dsymp = j, Asymp = k]

∗ P (Dinf = i,Dsymp = j, Asymp = k)}
(4.10)

E[T (x)|Asymp = True or Dsymp > w)] =∑
i∈A

∑
j∈A

∑
k∈{0,1}

{E[T (x)|Dinf = i,Dsymp = j, Asymp = k]

∗ P (Dinf = i,Dsymp = j, Asymp = k|Asymp = True or Dsymp > w)}

(4.11)

In order to compute the conditional expected value in equation 4.11, P (Dinf = y,Dsymp =
z, Asymp = a|Asymp = True or Dsymp > w)) needs to be evaluated. First, the joint prob-
ability P (Dinf , Dsymp, Symp) will be constructed, and then the distribution will be adjusted
to handle the truncation of the Dsymp domain.

The joint probability can be rewritten as P (Dinf , Dsymp, Asymp) = P (Dsymp, Asymp|Dinf )∗
P (Dinf ). We assume an individual can be infected at most once (within the time period
considered - less than a month). Relaxing this assumption is for the time being not
tractable. Our logic is based on the idea that each live viral unit is independently capable
of initiating infection. When multiple infection events happen, the incubation time is likely
to be set by whichever infection event would on its own lead to earlier symptom onset, e.g.
as sampled independently from the same lognormal distribution of incubation times, poten-
tially beginning from different infection dates should there be exposure on more than one
day. We neglect the complications arising from multiple infection initiation events because
our exponential dose-response curve is not grounded in discrete numbers of virus - this kind
of Quantitative Microbial Risk Assessment is not yet available for SARS-CoV-2. Indeed,
we calculate infection probability not even from dose in arbitrary units but from expected
dose, with significant but poorly quantified variation in dose. While this approximation
performs acceptably for realistically low infection probabilities, our poor quantification of
variance in dose precludes rigorous treatment of multiple independent infection events.

Instead, we assume only a single infection event, with preference given to events associ-
ated with earlier exposure. In this case, the variable Dinf follows a geometric distribution
with different daily infection probabilities, pinf (d), as shown in equation 4.12. In this anal-
ysis, symptoms are assumed to only be caused by infection with SARS-CoV-2. Anyone
who develops symptoms is of sufficiently high risk that they should self-isolate. Those that
develop symptoms for other reasons are excluded from the population under consideration.
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The probability of first experiencing symptoms on a given day is conditional on the date of
infection, as shown in Equation 4.13. If the infection date is after the symptom date, the
probability is 0. Otherwise, the probability is computed using the incubation distribution
and scaled by a factor to account for asymptomatic cases.

P (Dinf = y) =

{
pinf (y) ∗

∏y−1
i=1 (1− pinf (i)), y ∈ N∏

i∈N (1− pinf (i)), y = ∅
(4.12)

P (Dsymp = z, Asymp = a|Dinf = y) =



1, if y = ∅ and z = ∅ and a

0, if y = ∅ and (z! = ∅ or !a)

0, if y! = ∅ and z < y

(1− pasymp) ∗ tsymp(z − y), if y! = ∅ and !a

pasymp ∗ tsymp(z − y), if y! = ∅ and a

(4.13)

The truncated distribution can be evaluated as shown in Equation 4.14, where I() is an
indicator function, and P (Dsymp ≤ w) is computed by summing over all allowed scenarios
as shown in equation 4.15.

P (Dinf = y,Dsymp = z, Symp = s|Asymp = True or Dsymp > w)) =

P (Dinf = y,Dsymp = z, Symp = s) ∗ I(z > w or a)

1− P (Asymp = False and Dsymp ≤ w)

(4.14)

P (Asymp = False and Dsymp ≤ w) =
∑
i∈A

∑
j≤w

[P (Dinf = i,Dsymp = j, Asymp = False)]

(4.15)

By combining Equations 4.11, 4.14 and 4.15, the expected number of transmissions on
day x given no symptoms noticed prior to day w can be computed. Figure 4.6 shows a sce-
nario after two exposure events 10 days apart. The expected transmission risk is computed
for each day and adjusted based on recent information about symptoms. Updating with
information about lack of symptoms on the current day significantly reduces the expected
risk compared to the prior risk curve.
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Figure 4.6: Expected daily transmissions following exposures with risk 0.01 on day 0 and
risk 0.025 on day 10. The purple curve is independent of symptom information. The blue
curve includes the condition that no symptoms were experienced up to the previous day,
and for the green curve no symptoms were experienced up to the current day.
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Conditional on Symptoms and Test Result

The risk estimate from the previous section can be improved significantly with knowledge
of a COVID test result. Using Bayes theorem, the posterior risk of infection can be updated
as shown in equation 4.16.

P (Dinf = y,Dsymp = z, Asymp = a|!Test(q))

=
P (!Test(q)|Dinf = y,Dsymp = z, Asymp = a) ∗ P (Dinf = y,Dsymp = z, Asymp = a)

P (!Test(q))

=
P (!Test(q)|Dinf = y,Dsymp = z, Asymp = a) ∗ P (Dinf = y,Dsymp = z, Asymp = a)∑

i∈A

∑
j∈A

∑
k∈{0,1}

P (!Test(q)|Dinf = i,Dsymp = j, Asymp = k) ∗ P (Dinf = i,Dsymp = j, Asymp = k)

(4.16)

As before, the distribution can be truncated based on days where no symptoms have
been detected.

P (Dinf = y,Dsymp = z, Asymp = a|!Test(q), (Asymp = True or Dsymp > w))

=
P (Dinf = y,Dsymp = z, Asymp = a|!Test(q)) ∗ I(z > w or a)

1−
∑

i∈A
∑

j≤w P (Dinf = i,Dsymp = j, Asymp = False|!Test(q))
(4.17)

Using Equations 4.16 and 4.17, the expected number of transmissions on a day can be
conditioned on test results and symptom status by summing over all values of Dinf , Dsymp,
and Asymp as shown in Equation 4.18.

E[T (x)|!Test(q), (Asymp = True or Dsymp > w)]

=
∑
i∈A

∑
j∈A

∑
k∈{0,1}

{E[T (x)|Dinf = i,Dsymp = j, Asymp = k]∗

P (Dinf = i,Dsymp = j, Asymp = k|!Test(q), (Asymp = True or Dsymp > w)}

(4.18)

Figure 4.7 shows the daily transmission risk following an exposure on day 0 with 5%
estimated infection risk. Two curves are shown: one with with no additional information,
and another with knowledge that no symptoms were experienced the previous day, and a
negative test occurred on day 8 (with a 2 day reporting delay). Both pieces of information
significantly reduce the expected transmission risk. In the next section we will show how
intelligent risk estimation using testing and symptom data can be used to reduce expected
quarantine lengths while maintaining efficacy.

66



●

●

●

●
●

●

●

●

●

●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ●0.000

0.005

0.010

0.015

0 10 20 30
Day

E
xp

ec
te

d 
Tr

an
sm

is
si

on
s

Figure 4.7: Expected daily transmissions following an exposures with 5% probability of
infection on day 0, and a test on day 8. The red curve shows a typical risk threshold, the
blue curve shows the unconditional risk, and the green curve shows the risk conditional on
no symptoms the previous day, and the negative test result (with a 2 day reporting delay).
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4.3.3 Quarantine Policy

In Chapter 3, we show that the optimal quarantine policy can be chosen to minimize the
total amount of social distancing required to meet a target reproductive number, and that
this policy is highly dependent on the disease state within a population. The quarantine
policy can be represented as a risk threshold giving the probability of infectiousness that
is required to quarantine an individual. In Chapter 3 the risk of an infectious individual is
assumed to be evenly distributed over the period of infectiousness. This assumption can
be improved using more detailed information to compute expected daily transmissions as
was done in Section 3.

In economic terms, the risk threshold is the point of indifference between expected daily
transmissions and the cost of an additional quarantine day. Assuming that the cost of a
day of quarantine is fixed, quarantining any individual with expected daily transmissions
exceeding the threshold generates a surplus.

The quarantine decision for a given day, x, can then be represented as the optimization
problem in Equation 4.19. Here, rthresh gives the risk threshold in units of expected trans-
missions per day, and Datax denotes all information available on day x. This includes any
test results and the measurement of symptoms, both delayed by a set number of days. πx

is a boolean variable taking the value of 1 if the decision is to quarantine the individual on
day x, and 0 otherwise.

π∗
x(Datax) = argminπx [πx + (1− πx)E[T (x)|Datax]/rthresh] (4.19)

This quarantine decision process could be incorporated into an exposure notification
app that evaluates exposure risk, queries for daily symptom status, and records test results.
Using Equation 4.18, expected daily transmissions can be calculated to give immediate and
projected quarantine recommendations consistent with the regional risk threshold.

An intelligent quarantine policy can significantly reduce the overall cost of disease
mitigation. Individuals with higher risk of infectiousness will be asked to quarantine for
longer, and individuals with lower risk may only be asked to quarantine for a few days (or
none at all). Compared to a fixed quarantine policy, the adaptive approach substantially
reduces the overall cost of quarantine and social distancing. As a rough example, consider
a risk threshold of 2e-3, exposure on a single day with uniform probability of infection
between 1% and 20%, and comparison with a fixed 14 day quarantine policy. The optimal
approach has an average cost of 14.9 and the fixed approach has an average cost of 18.9
(in units of quarantine days). Valuing the cost of a single day of quarantine at $150, the
smart policy saves an average of $600 per person quarantined.

68



4.3.4 Optimal Test Timing

In Section 4.2, we explore the choice of fixed quarantine length and test timing after a
single exposure. Here we generalize the procedure to account for multiple exposures with
estimated risk, and the incorporation of an adaptive quarantine decision using equation
4.19. In addition, the test timing problem is posed in a framework consistent with the quar-
antine optimization: choose the test date that minimizes the expected value of equation
4.19 over the days in consideration (e.g. the 30 days following the latest exposure).

One approach is to pose this decision as a two stage stochastic programming problem:
in the inner optimization choose which days to quarantine, and in the outer optimization
choose which day to test. The most general (but least computationally efficient) form of
this problem is solved by integrating over all possible scenarios as shown in Equation 4.21.
The optimal value of q can be found by computing the cost for all reasonable test days
and choosing the lowest.

minq

∑
x

E[(1− π∗
x(Datax(q))) ∗ T (x)/rthresh + π∗

x(Datax(q))] (4.20)

minq[
∑
y

∑
z

∑
tq

∑
a

P (Dinf = y,Dsymp = z, Test(q) = tq, Asymp = a)∗∑
x

{π∗
x(Datax(Dsymp = z, Test(q) = tq, Asymp = a))+

(1− π∗
x(Datax(Dsymp = z, Test(q) = tq, Asymp = a)))

∗ E[T (x)|Dinf = y,Dsymp = z, Test(q) = tq, Asymp = a]/rthresh}]

(4.21)

There are computational approaches faster than a search over all possible test dates
and disease scenarios. However, the above approach is tractable for problems of interest
if the quarantine decisions are cached instead of recomputed each time in the loop. For
example, if test and symptom dates are considered over 30 days, and there are 3 possible
exposure dates, then 30*3*30*2*2*30 = 324000 function calls are needed. This is easily
compute-able on a smart phone. The main benefit of this approach is that it reduces
implementation complexity; more nuanced optimization and expected value calculations
do not need to be coded and debugged.

In Figure 4.8, the expected cost of each possible test day is shown in terms of quarantine
time and transmissions for an example problem with an exposure on day 0. This example
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Figure 4.8: Expected quarantine cost as a function of test day, given an exposure with
infection probability 5% on day 0. The green curve is the quarantine cost, the red curve
is the transmission cost (converted to units of quarantine days), and the blue curve is the
total cost. The optimal test date in this scenario is day 6.

has only one exposure day for easier interpretation, but the method works for an arbitrary
number of exposure days. The transmission cost is put into units of quarantine days using
the risk threshold as a conversion ratio. From the plot it is clear that testing on day 6
would minimize the overall expected cost. In this scenario, the difference in cost between
no test and the optimal test date is equivalent to 3.0 quarantine days. Compared to a fixed
quarantine policy of 14 days with no test, there is an expected reduction of 5.4 quarantine
days.
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4.3.5 Conclusion

Quarantine plays an important role in mitigating the spread of Covid-19, but it is very
costly to individuals and society as a whole. By incorporating all available information
about exposure risk, symptoms, and test results, an adaptive risk assessment can be used
to reduce quarantine lengths when possible. Further gains can be made by optimizing the
test date to reduce the expected cost of quarantine using a form of two stage stochastic
programming. In combination, these methods reduce the expected cost of quarantine by
several days for each individual.
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Chapter 5

Improvements for Idealized Case

Previous chapters explored specific technologies and strategies to reduce the cost of disease
control. The aim of this chapter is to focus on the idealized case (with high system
participation) to investigate what closer to optimal strategies for disease containment could
look like. Finally, in Chapter 6 we will discuss some of the real-world challenges faced when
deploying these systems.

5.1 Building Classifiers to Predict Infectiousness

Manual contact tracing and digital contact tracing make use of rules to determine whether
an exposure is of sufficiently high risk to warrant quarantine and/or testing for a contact.
This risk assessment can be refined by training classification algorithms on real world
exposure and infection data. More accurate risk assessment would make quarantine more
efficient (less disruption needed to prevent the same number of transmissions) and allow
for the optimal quarantine risk threshold to be set based on disease status in the general
population.

Manual contact tracing rules are typically based on heuristics for risk such as thresholds
on duration, proximity, and timing of exposure relative to symptoms [132]. Some health
departments recommend contact tracers subjectively adjust risk assessment based on other
factors like airflow, activity, and PPE worn [133], however a quantitative approach to
combine these risk factors is lacking. Risk scoring for digital contact tracing is usually based
on duration of contact, RSSI (Bluetooth signal strength as a rough proxy for distance),
and timing of the exposure relative to symptom onset or date of positive test. Rules to
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combine this information are typically chosen to mimic manual contact tracing (15 minutes
at 2 metres) [134], or by quantitatively combining different risk factors using parameters
typically estimated early in the pandemic using intensive contact tracing [118]. But these
datasets are often small, not updated, and can be slow to surface.

While heuristics help simplify decisions, they can also lead to sub-optimal results. Clas-
sification rules for high-risk contacts that depend on specific boundaries for individual vari-
ables don’t treat risk consistently. For example, someone who spent 3 hours 2.5 metres
away from someone infectious is likely a higher risk contact than someone who spent 15
minutes 2 metres away, but standard rules would make the opposite classification. By
treating the risk factors multiplicatively this difference could be captured, as described in
our work on EN risk assessment [129]. However, even more advanced risk assessment ap-
proaches could be challenged by uncertainties about disease transmission and propagation
in a contact network.

There have been many data-driven studies aiming to understand transmission risk (e.g.
the timing of transmission [85], contact mode and viral load [135]). However little work
has been done to develop classification algorithms that take as input information related
to exposure to a known case and predict the probability of the contact becoming infected
(likely due to the challenge of getting access to enough high-quality data). A review of
data driven methods for contact tracing from May 2022 found no articles on estimating the
risk of transmission based on details of contact [136]. One paper since then (June 2022)
used test results from 1130 close contacts to train a Naive Bayes classifier on 6 variables:
contact age, relationship to patient, contact situation, wearing a mask, distance to patient,
and contact time [137]. While promising, the data set could be much larger and more
precise by making use of digital contact tracing, and this could be done much earlier in
the pandemic1 to actively guide policy and minimize costly quarantine.

We can use real-world data to evaluate the performance of existing decision rules and to
see if statistical algorithms perform better. As an illustrative example, Figure 5.1A shows
a fabricated ROC curve [138] which could have been generated by training a classifier on
exposure data and eventual test results. The classifier it is based on could be a number of
black box algorithms that are frequently used in low dimensional classification problems,
such as random forest or gradient boosting [139].

One thing we can use this curve for is to choose the optimal classification boundary
based on a set risk threshold (ideally computed using methods from Chapter 3). For
this section, we will assume that the risk threshold is unchanged by quarantine choices -
essentially a linearization around an operating point. This approximation is valid if the

1and regularly updated to account for new variants and behaviour change
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Figure 5.1: A) Example ROC curve for classification of infectiousness. B) Numerical
derivative of ROC curve

subpopulation considered contains a small fraction of the total number of infectious people
(which unfortunately is the case with the subpopulation of people who received an Exposure
Notification due to low adoption). It is possible to make this choice in a derivative-free
way by posing the problem as a linear optimization with the solution constrained to lie
on the ROC curve. However, using the approximate derivative of the ROC curve gives
a better illustration of risk distributions and how they change with better classifiers and
information. We will use the numerical derivative of the ROC curve (using smoothing
splines as an intermediate step) as shown in figure 5.1B. In general, the derivative of the
ROC curve should be non-increasing, as for any dataset, if the ROC curve isn’t concave
down it can be replaced by a strictly better classifier that does produce a concave down
ROC curve2.

The derivative has units of (True Positives / Total Positives) / (False Negatives / Total
Negatives), which if multiplied by (Total Positives / Total Negatives) gives the marginal
increase in positives quarantined per unit increase in negatives quarantined. This is almost
the same as marginal risk when the marginal risk is low (which is almost always the case in
areas of interest). To be safe however, we can transform our risk threshold to this format

2“You can always create a model whose ROC curve is the convex hull of the original . . . The new model
is created by looking at pairs of adjacent vertices of the convex hull, and creating random combinations
of them at different probabilities” [140]
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using r′ = rthresh/(1−rthresh), which ‘subtracts away’ the true positives in the denominator.

Figure 5.2: Ratio of true positives to false positives and shaded ’surplus’ for a given risk
threshold

As argued in Section Chapter 3, the risk threshold (in this case r’) is our point of
indifference, which we can draw as a horizontal line on the graph in Figure 5.2. Further,
using reasoning from microeconomics [141], any area above this threshold represents a
surplus (willing to trade x days of quarantine for y prevented transmissions, but instead
we get y + s). So, for a given risk threshold, we would like quarantine to apply to everyone
left of the point of intersection with the r’ line. The benefit (or rather, reduction in cost)
we get from this intervention is the shaded area above the risk line- representing the benefit
from infectious people quarantined minus the cost of quarantine for the false positives.

For a given risk threshold, the optimal classifier is the one that provides the best
decision-relevant risk information, which is computed as the area between the two curves.
Making this data driven allows us to objectively compare candidate decision rules and
choose the best one (with the highest ‘surplus’ for a given risk threshold). This calculation
can be used to compare several classification approaches; e.g heuristics from manual contact
tracing, quantitative estimates currently used by EN apps, or with standard classification
algorithms from machine learning. If there are patterns in the data that are not used by
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the hand-designed rules, then black-box classification algorithms may perform better.

To summarize, applying the classification algorithms to a test data set allows us to
estimate the marginal risk of infectiousness based on the relative ranking within the clas-
sification. Using this marginal risk of infectiousness, we can make quarantine recommen-
dations that are consistent with our target risk threshold. Using a similar (but separate)
training data set, we can train black-box or partially black-box classification algorithms
to search for un-modelled patterns in the data. For a given classification algorithm and
risk threshold we can compute the ‘surplus’ risk captured, allowing us to choose the best
between a set of candidate algorithms. Quarantine decisions are extremely costly in the
real world, so we should do as much as we can to optimize their accuracy.

5.2 Improved Information

The data used to make quarantine recommendations and inform other NPI decisions is
not fixed. The utility of better information can be visualized by how its inclusion affects
estimated risk distributions, and the benefit can be quantified by the change in area of the
surplus region. Which information is valuable is thus a function of the risk threshold.

More practically, this means that the value of information depends on whether it will
be acted on in a useful way. As an example, at the beginning of the COVID-19 pandemic
we (Covid Watch) were considering developing location-based proximity alerts at a low
enough spatial resolution that they could not be used to identify people. Unfortunately,
the low spatial resolution meant that the number of people that would be notified per
index case was quite high- potentially thousands. There was little willingness to act on
risk at this low of a level at the time (outside of some places like Vietnam), so this was
one of the main reasons that we focused on Bluetooth proximity tracing.

In machine learning, the decision about what types of information to include in a model
is called feature selection [142, 143]. Typically, feature selection for contact tracing risk
assessment has been done based on expert consultation [144]. Perhaps the most useful ‘fea-
ture’ added to Covid contact tracing was consideration of ventilation during exposure [145].
However, the inclusion of this data in public recommendations was significantly delayed
in many countries. In future outbreaks, automated collection of exposure information for
a portion of the population that opts in could reduce the time required to find important
risk factors. For example, contact tracing apps could infer the venue type based on nearby
Wi-Fi routers and this information could be coupled with other exposure details and the
eventual infection status.
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There are many features that can be used to predict risk of infectiousness. Some features
that are used or could be used for contact tracing are: duration and proximity of exposure,
timing of exposure relative to symptom onset, any symptoms experienced by the contact,
timing of exposure relative to test (and CT count of test if PCR or darkness of line if
antigen), PPE, type of environment (specifically airflow and activity), disease variant, past
vaccinations/infections, higher order infection information in the nearby contact network,
and probably many others. Real-world data, numerical modelling, or back-of-the-envelope
calculations could be used to determine the influence of each source of data on the resulting
risk distribution. Doing so allows us to estimate whether risk density is shifted in a useful
region, and to focus limited effort on the data sources that will do the most to improve the
efficiency of quarantine recommendations.

5.3 Dynamic Strategy

In Chapter 3, the primary focus was on guiding quarantine decisions at the margin. This
was an attempt to make progress in a complex dynamical system with limited control. In an
ideal case however, strategy can shift from responsive harm reduction, to more intentional
control, borrowing concepts from Optimal Control [12] where possible. Here the aim is to
outline a high level strategy to find optimal trajectories in disease prevalence over time.

Several researchers have explored the use of Optimal Control for guiding NPI choices
before [146] and during [147, 148] the Covid-19 pandemic. These works have used compart-
mental disease models with the transmission rate modulated by broad social distancing.
They have chosen control strategies to minimize an objective function computed as a
weighted sum of infections (or deaths) and the time integral of control cost (which is either
a linear or quadratic function of control intensity).

Several simplifying assumptions in previous models prevent them from being able to
explore strategies for local disease elimination, and so they may be recommending sub-
stantially sub-optimal solutions. The deterministic compartmental models used are unable
to reach a state of complete disease elimination (unless starting at 0 prevalence, or con-
trol is unrealistically modeled as 100% effective) [149]. By neglecting this absorbing state,
these studies miss the opportunity for control to be completely relaxed without an in-
crease in deaths. In addition, they only consider broad social distancing, which has a cost
independent of disease prevalence.

As highlighted in Chapter 3, targeted interventions have a cost that is proportional to
prevalence, and so can be substantially cheaper than broad social distancing. By neglecting
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Figure 5.3: Possible trajectories for disease prevalence over time. The cost of each depends
on the cost of rate of change and cost of infections.

targeted interventions, previous studies haven’t been able to explore optimal control when
there are increasing returns to disease mitigation. Finally, previous studies have treated
the rate of imported cases as a fixed value. In reality, the importation rate is a function
of border policy, and is very important when local disease prevalence is low (as discussed
later in Section 5.4).

In this section we will consider an isolated population, and in Section 5.4 we will address
the influence of border policy and imported cases on strategy. To compare trajectories, we
can approximate the cost of both the derivative (equivalent to growth rate- which depends
on NPIs) and case load (which will have a cost depending on health outcomes3), then
integrate the total cost of the trajectory over time. Numerically optimizing this trajectory
cost would yield a solution giving the best dynamic NPI policy (which implicitly depends
on available risk distribution via the efficiency of targeted interventions).

To simplify things, we will separate the population into two categories as in Chapter 3:
those in quarantine/isolation with complete social distancing, and those in the remaining
population with a value for social distancing that can be set between 0 and 1 4. The first

3And potentially a binary variable representing the psychological/political benefit of complete local
elimination

4This is a simplification of the more general case where social distancing can be a continuous variable
set for each person separately
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Figure 5.4: Example risk distribution for population with two sources of information:
received exposure notifications and rough location. EN subpopulation shown in rectangle
and exaggerated for visualization. Stepped pattern due to varying disease prevalence.

step is to develop a process to choose the optimal risk threshold for a specified value of
Rt when we have control over Qi and Qn. To do this we will use a risk distribution like
the one discussed in Section 5.1, but for the whole population. Like most tasks requiring
reasoning under uncertainty, building this risk distribution by combining multiple sources
of data is challenging to do accurately. However, it is better to make an estimate and be
off by an order of magnitude than to make no estimate at all or delay too long and take
actions that are off by several orders of magnitude.

As a rough approach, we can combine risk for multiple subpopulations via sorting if
they refer to different people, average if multiple assessments for same person using same
data, or summation if for the same person using different data. For people in the general
population with no information, the remainder of the risk can be assigned uniformly (it
is useful to start with an estimate for total number of infections in whole population and
ensure resulting risk profile sums to this). As an example, we could take risk estimates for
the subpopulation of people who received exposure notifications and assign the remainder
of the risk depending on infection rate in the rough location of residence. By virtue of
receiving an EN they are likely higher than average risk (even if it is a very low risk
EN). So the risk curves are roughly appended like in Figure 4 (where the size of the
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subpopulation receiving an EN at a given time is exaggerated for visualization). We could
refine this distribution by adding any of the types of information mentioned above, or in
the more intermediate regime with things like location or symptom status.

We can use this risk distribution to compute the minimum cost needed to achieve a
specified value for Rt using the following algorithm.

Algorithm 1 Quarantine policy: computes minimum social distancing cost of achieving
specified Rt (implicitly depends on available information for risk distribution)

sort(r[]) # sort population from highest to lowest estimated risk of infectiousness
Qi = 0
Qn = 0
j = 0
while j < P do

rthresh = computeThreshold(Qi, Qn)
R′

t = Rt ∗ (I −Qi)/I
if r[j] > rthresh and R′

t > Rtarget then
Qi = Qi + r[j]
Qn = Qn + 1− r[j]

else
break

end
j++

end
Cost = (Qi +Qn) ∗ f(1) + (P −Qi −Qn) ∗ f(1−Rtarget/Rt ∗ I/(I −Qi))

Essentially this works by applying the marginal quarantine decision incrementally from
high risk to low risk and adding to the expectation of Qi and Qn each time, only stopping
when Rtarget is achieved or an additional quarantine is no longer worthwhile.

We can then generate a function giving minimum social distancing cost as a function
of Rtarget, which implicitly depends on the available risk distribution. As a (quite strong)
simplifying assumption, we can assume that the risk distribution is possible to estimate
based on disease prevalence in the population. The validity of this assumption depends on
the types of risk information considered- for example it is possible to predict the amount
of information available from randomized testing as a function of disease prevalence. Com-
bined, this allows us to compute the minimum cost of achieving a given Rtarget value as a
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function of disease prevalence (by first estimating the risk profile from prevalence and then
computing the cost of the Rtarget value for the risk profile).

The last piece needed to compute the cost of the time derivative is a mapping from
Rt (onward transmissions per case) to the growth rate in time: rt. By assuming that the
mean generation time, Tc, is unchanged by interventions, we can compute this mapping as
[150]:

rt = (Rt − 1)/Tc (5.1)

We can now express the cost of achieving different rates of change as a function of
disease prevalence, allowing us to compute the cost of potential trajectories over time.
The cost given by this function only represents social distancing; it should also be summed
with a penalty term for health outcomes by integrating the total number of infections
over the outbreak. The function may not be differentiable, but it is low dimensional and
can be discretized in time, allowing us to use numerical optimization to compute the best
trajectory. A high level description of the design problem is given by Equation 5.2, where
fr() is a function giving the cost of achieving a given growth rate (using equation 5.1 and
algorithm 1), I(t) denotes infections at time t, and d is the rate of death of infected people
5.

min
rt

E[

∫
fr(rt, I(t)) + d ∗ I(t) dt]

s.t. İ(t) = rt ∗ I(t)
(5.2)

Clearly there are several challenges with implementing an approach like this in the real
world: social limitations which will be discussed in section 6.1, as well as more technical
challenges with estimation under uncertainty and the importance of stochasticity when
disease prevalence is low6. However, such a framework is useful for providing intuition
about how to use information to target interventions in different stages of an outbreak,
and why an approach like the one Vietnam took would be worthwhile. This method can also
be used to roughly compare the cost of continued suppression via broad social distancing,
vs targeted suppression enabled by a lower case prevalence and good information, vs.
temporary elimination via costly but brief suppression.

5summing deaths this way was chosen mainly for convenience of notation - other methods may be better
6Stochasticity can be partially addressed by sampling the number of new cases at each timestep as a

function of both prevalence and rt and averaging over several of these generated trajectories.
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5.4 Border Policy

Prior to the Covid-19 pandemic, travel restrictions were thought to be a relatively ineffec-
tive disease control strategy - only serving to briefly delay the inevitable outbreak [151]. A
simple model by Tomba et al estimates that with a 99% reduction in importations, a local
epidemic would be delayed by 3 weeks [152]. However, during the Covid-19 pandemic,
several countries demonstrated the effect radical border policies (including testing, quar-
antine, and a reduced numbers of travelers) could have on the rate of introductions [153].
The frequency of introductions also depends on prevalence in neighboring countries, which
is simplest to model as a fixed quantity, but there is some work on economic approaches
for countries to negotiate disease strategies [154]. When local disease prevalence is high,
imported cases aren’t significant [155]. However importations are a crucial part of the
epidemic control problem when local prevalence is low.

There is a cost to increased border stringency – both in dollars from reduced tourism
or trade, and as a reduction in wellbeing from inability to travel or see friends/family.
Conversely, each introduction has an expected cost of suppression and an expected cost
of health outcomes. Border stringency can reduce the rate of introduction, so the policy
should be chosen as a trade-off between the cost of reduced movement and the cost of more
new cases.

This can be made slightly more formal by estimating the rate of introductions as a
function of policy (using a per-person estimate accounting for mistakes, false negatives,
and long incubation periods), then estimating the cost of each policy, and combining the
two to get the cost as a function of the fraction of importations prevented. The cost per
imported case depends on the broader control strategy. For regions aiming to maintain
local elimination, the cost of a new introduction could be estimated using a stochastic
model of the implemented suppression strategy (like the branching model used by Plank et
al [156], but also including the use of targeted interventions). This would yield an estimate
of the expected cost per introduction in terms of dollars, quarantine days, and negative
health outcomes, which could be roughly converted to the same units 7. Then we can find
the optimal border policy (for the local elimination scenario) by choosing the frequency of
introductions that minimizes the sum of the border stringency and outbreak suppression
functions.

For a more general-purpose analysis of border policy, the decision can be incorporated
into the previously discussed Optimal Control problem by modifying Equation 5.2 to in-
clude imported infections (to keep things simple, exported infections are not considered

7This is again an order of magnitude estimate, not an exact calculation
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here8). In Equation 5.3, C gives the counterfactual rate of imported infections9 (with no
border control), bt gives the fraction reduction in importations at time t, and fb() computes
the cost of achieving that border policy.

min
rt

E[

∫
fr(rt, I(t)) + fb(bt) + d ∗ I(t) dt]

s.t. İ(t) = rt ∗ I(t) + bt ∗ C
(5.3)

Even without solving this optimization problem, we can see how border policy relates
to local control measures. For any policy {rt, bt} at time t, we can infinitesimally shift
the policy to {rt + dr, bt − dr ∗ I(t)/C} without changing İ(t) (assuming C ̸= 0). The
change in cost associated with this policy shift is dt ∗ (f ′

r(r) ∗ dr − f ′
b(b) ∗ dr ∗ I(t)/C).

If f ′
r(r) > f ′

b(b) ∗ I/C this means we can achieve the same outcome at lower cost by
loosening local control measures and strengthening border control (and the opposite if
f ′
r(r) < f ′

b(b) ∗ I/C). Therefore, having f ′
r(r) = f ′

b(b) ∗ I/C is a necessary (but not
sufficient) condition for a given policy to be optimal.

As with Chapter 3, these cost functions may be difficult to evaluate exactly, but in some
scenarios even order of magnitude estimates could reveal whether there are substantially
more efficient policy choices available.

5.5 Design Problem

In sections 5.3 and 5.4 we were interested in making the best decisions given fixed capa-
bilities. Alternatively, these models can reveal which capabilities are the most valuable
to enhance - either by increasing the reliability of existing methods (e.g. refinement of
border testing timing) or by developing new strategies (e.g. digital contact tracing). Effec-
tive changes can be interpreted as reducing the functions fr() or fb() (achieving the same
amount of disease containment at a lower cost). The most valuable capabilities to enhance
are ones that reduce the cost in areas of the parameter space, {rt, bt, I(t)}, that a country
expects to spend a lot of time in.

For regions with a very high expected cost of an imported case, it is worthwhile to
put significant effort into ensuring border policies are functioning as intended. Analyses

8For most scenarios, exported infections would not be significant unless the ‘border’ is chosen in a way
that caused a significant fraction of the infected population to leave

9The counterfactual importation rate could depend on time
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like in Chapter 4 could be done to estimate the number of breakthrough cases depending
on test timing and quarantine duration. Additionally, unexpected transmissions could be
investigated thoroughly to ensure the same mistake is not repeated [157, 145]. An approach
from cyber security, penetration testing, could be used to validate airborne precautions
using a technology like [158] that releases detectable (and safe) airborne particles. Using
this approach, points of failure like limos with shared air [157] could be identified at lower
cost by sending someone through the quarantine process with a device that released these
particles, and later swabbing people and surfaces to test for unintended contamination.

Interconnected regions may not be able to bring the frequency of introductions close
to 0 (or the cost function may be very steep below the level where state-sanctioned travel
has been forbidden). Reducing the cost of local suppression (when I(t) is relatively low)
as much as possible can allow for low disease prevalence to be maintained even with fre-
quent re-introductions. It is worthwhile to explore the use of technology to improve this
capability.

5.6 An Idealized (Tech-based) Solution

With risk aware strategy, high cooperation, and modifications of existing technology, infec-
tious diseases like COVID-19 could be contained at a very low expected cost per person. In
this section we will explore an idealized response to a novel infectious disease (or COVID-
19 / Influenza) before addressing real-world limitations in Chapter 6. Borrowing from
algorithm design in computer science, we would like our solution to have a cost that is
roughly proportional to the number of infected individuals, not the total population, so
that with prevalence << 1, the cost per person (in the total population) is negligible. For
a completely targeted approach (without any broad social distancing) to be able to re-
duce cases (Rt < 1), the number of transmissions per case that occur outside an identified
subpopulation (in time to prevent additional transmissions) must be less than 1. There
are two components to this: detecting cases and finding a suitable subpopulation. We
will aim to develop a strategy that can reliably identify such a subpopulation for diseases
transmitted by air or fomite, with some robustness to delays and unidentified cases.

Since this is an idealized case, we will assume 100% participation and compliance
with recommendations. This would include usage of custom devices for people without
smartphones (similar to Singapore’s tokens [46]). The proposed system functions similarly
to the one in Chapter 2, with 3 major modifications (and the minor modification of longer
storage of local records to allow backward contact tracing for diseases with an incubation
period greater than 2 weeks).
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Wi-Fi router logging

As proposed by Prasad and Kotz [25], devices also record the MAC addresses of nearby
Wi-Fi routers and store this locally along with signal strength and time period. People
who test positive upload their record of Wi-Fi logs, which is stored privately by public
health. Wi-Fi data (or the hash of Wi-Fi data) for locations deemed to have transmission
risk10 are broadcast to the notification server along with a time period. To check for an
exposure, all devices download this data from the notification server and compare it to
their logs (in addition to the existing Bluetooth-based protocol).

2nd (or higher) degree notifications

Higher order contact tracing (contacts of contacts of cases) in Vietnam [159] and backward
contact tracing in Japan [160] were both effective at controlling the spread of Covid-19.
Modeling work shows that risk estimation from higher order tracing better prioritizes scarce
resources [161], and that including backwards tracing is more efficient than only forward
tracing for disease spread with superspreading dynamics [162]. Bestvina et al proposed
using Monte Carlo simulation of disease spread within an app-based network to estimate
infection risk [163], which was implemented by Aarogya Setu [164], but was much more
challenging to use with decentralized protocols11. Exposure Notification provides a report
type for ‘recursive’ notifications [58], but (to the best of my knowledge) it was not used. In
theory, this recursive notification would allow people who were notified of direct exposure
to then notify their contacts. However, this process (as currently implemented) would
require a new permission number from a public health authority in order to send this
recursive notification.

A lower friction implementation could gate the triggering of recursive notification based
on knowledge of data originally broadcast over BLE by the index case and not shared else-
where (knowledge of this data is evidence of being near the index case recently, which
prevents system misuse). Furthermore, a setting could be used to enable automatic recur-
sive notification upon receiving a primary notification.

10with the potential for some logs to be redacted by the user
11due to quantity of information that would need to be transmitted and privacy implications of methods

to reduce that data size
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Exposure sharing for limited contact network assembly

Information about notified contacts and details of the exposure could be valuable for man-
ual contact tracing and to better understand transmission routes. This capability is fairly
simple to include in a decentralized protocol (without enabling broad surveillance). To do
this, notified devices upload the details of the exposure (duration, proximity, time, and
key of device matched with) to a private server operated by public health along with their
name and contact info. The local contact chain can be reconstructed if the index case
shared their identity with public health (which could be linked to the key they used to
notify their contacts).

Analysis of system benefits

The system cannot be used for mass surveillance, as data is stored locally on devices.
When exposure data is transmitted to the public health server the user is notified (and if
someone did not want this to happen – following a protest, for example - they could delete
the data on their app). Additionally, legislation could be introduced to prohibit use of the
system for non-health related purposes.

This system has several benefits over the original version. Essentially, it allows rapid
assembly of the 2nd degree contact network around an index case in a way that deci-
sion makers could use to assess risk, assist with testing and quarantine, and learn about
transmission dynamics. Pre-built software could be used to combine this contact network
information with any other identified networks, reported symptoms, and test results (in-
cluding genomic sequencing). Second degree contact tracing could prevent transmissions
even if the first-degree contacts are not notified in time. Additionally, second degree con-
tact tracing is equivalent to backward contact tracing when using a wide enough time
range. If fomite transmission is occurring (or transmission via particles staying in the air),
notifications could be sent to people who visited a location after a case using Wi-Fi data.
Appendix C explores how a system like this could be used in an idealized response to a
novel epidemic.
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Chapter 6

Discussion

The focus of this work so far has been on improving tradeoffs between disease suppression
and the cost to achieve it. This has been achieved by developing technology and strategies
that take advantage of the heterogeneity of infection status (over time and within a pop-
ulation). Specifically, we have developed a technology for sharing exposure information
with the people who need to act on it, a framework for using risk of infectiousness to make
decisions about quarantine that minimize overall social distancing, and methods to tailor
quarantine and testing policy based on inferred distributions about the disease being con-
trolled. We’ve also expanded on this approach by proposing strategies that make better
use of data on infection risk within an idealized population.

In this chapter, Sections 6.1 and 6.2 discuss several practical limitations observed when
applying targeted NPIs in the real world. Sections 6.3 and 6.4 investigate whether alterna-
tive approaches could perform better, and Section 6.5 examines more general limitations.
Finally, Section 6.6 discusses directions for future work and potential strategies to make
real-world progress on this complex but important problem.

6.1 Observations of Disease Dynamics

Unfortunately, low-cost elimination of COVID-19 using targeted NPIs was not the norm in
many countries. Instead, we mainly saw oscillations of disease prevalence at a higher level
for over a year before vaccines became widely available1. In many of these countries (such
as Canada, which I am most familiar with), seroprevalence in the population remained too

1Oscillations also continued after vaccines became available, but that analysis is more complicated.
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low for infections to have been significantly mediated via immunity2, suggesting that be-
haviour modification was the dominant mechanism that prevented most people from being
infected [165]. This oscillation is exactly what we would predict if targeted NPIs alone
were insufficient and fear-motivated broad social distancing was also needed to suppress
transmissions. In this model, people increase social distancing when there are more cases,
either independently or as instructed by public health. This model is supported by obser-
vations of variants almost fully displacing each other (without reaching relevant levels of
immunity); as cases rise from a new more competitive variant, social distancing increases
to the level required to keep disease prevalence steady. This increases social distancing
to a level where the prior variant is rapidly eliminated- demonstrating that elimination of
the prior variant was possible the entire time, but only occurred when prompted by rising
cases of the new variant. This fear-based control mechanism has the opposite property of
targeted interventions- reduced disease prevalence makes control harder rather than easier.

Disease control mainly occurring through responsive and broad social distancing results
in persistent costs being imposed on a large fraction of the population for the duration of
the pandemic. We were fortunate that vaccines for COVID-19 were developed as quickly
as they were because this is an extremely costly quasi-equilibrium that seems difficult to
escape in either direction. Another implication of this dynamic is that it makes the longer-
term influence of NPIs very difficult to measure - with technical or strategic improvements
in suppression, cases would drop, then people would relax social distancing, causing cases
to return close to their prior level3. The upside of this (as we argued in Chapter 3) is that
improvements in targeted NPIs can indirectly reduce the burden of broad social distancing.

6.2 Failure Modes in Exposure Notification

This section will examine the possible impact of the EN system during the COVID-19
pandemic. For a number of reasons, evaluation of the effect of targeted NPIs (and NPIs in
general) has been difficult. However, there are some exceptions, like the study evaluating
the impact of manual contact tracing in the UK based on a quasi-randomized excel error in
September 2020 [166]. They found that cases with timely manual contact tracing resulted
in 63% fewer infections 6 weeks in the future than cases without. Wymant et al. analyzed
the impact of the NHS app and found a reduction in cases between 100,000 and 900,000

2Since R0 was considerably above 1, unmitigated, simple SIR models predict the disease would have
infected roughly 1 – 1/R0 fraction of the population.

3This problem is made even more difficult by new variants, changing behaviour, and a shifting immunity
landscape

88



during a time in which there were 1.9 million total cases [59]. The UK had one of the
best EN deployments (along with Germany), so we can interpret the results from Wymant
et al. as a rough upper bound on the benefit EN had in other regions during the Covid
pandemic.

Quantification of NPI effectiveness is challenging because of how much the number of
cases in the future depends on disease dynamics over the time period4. To make predictions
about the impact of targeted NPIs, it would be useful to know the fraction reduction in
Rt caused by those targeted NPIs. Defining this fraction as x, then if R0(1 − x) < 1,
the targeted NPIs would be able to independently suppress transmissions. Both manual
contact tracing and EN prevented a large number of infections in the UK, but not enough to
achieve the type of disease control based on efficient local elimination discussed in Section
5.3 (clearly, because the disease was not locally eliminated in the UK).

To estimate the benefit of EN in other regions and look for areas of improvement, we
can return to a step-by-step analysis of the notification process (similar to what we began
in Section 2.2, Ferretti et al’s adoption analysis [28], and Tomas Pueyo’s analysis [167]). In
the Covid Watch White Paper (Chapter 2), we identified the 3 factors (actually 4 separate
steps) needed to notify someone of an exposure event:

1. The index case needs to receive a positive test result

2. The exposure needs to have been properly measured and judged to be high risk

3. Both the index case and the contact need to have downloaded the app prior to the
exposure (which is actually 2 steps)

To directly prevent counterfactual transmissions, the index case not only has to receive
a positive test result (point 1), but they also need to receive it before their contact has
become infectious. Many locations had PCR wait times of more than a week during periods
of high demand. Additionally, there are two more steps that we originally did not anticipate
limiting performance that have proven challenging:

4. The index case must choose to upload their positive test result and receive the au-
thentication to do so

5. After receiving a notification, the contact must choose to (and be able to) quarantine
or get tested so that additional transmissions do not occur

4For example, if an NPI reduced Rt from 1.1 to 1.0, then over 6 generation periods the removal of that
NPI would appear to cause 77% more infections: (1.16 − 1)/1 = 0.77
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Combined, there are at least six points of failure in the process. Each of these steps
rarely had more than a 50% success rate in the general population (although there may
have been subpopulations that managed to perform better). In a reasonably functioning
deployment of an EN app we could expect a success rate for each of these steps between
20% and 80%. Within this range, the worst-case result is a 0.0064% (0.26) reduction in Rt

and the best case is a 26% (0.86) reduction in Rt.

Clustering of app usage could at most5 reduce the adoption dependency from quadratic
to linear, which would be equivalent to removing a point of failure- changing the bound
to 0.25–0.85(0.032% − 33%). Also, indirect effects could conceivably increase the efficacy,
e.g., increased awareness about symptoms, receiving a notification and quarantining before
they would have otherwise been infected, or receiving a notification and quarantining after
being infected by a different index case. However, it would be surprising if any of these
corrections shifted the resulting bound considerably.

As we argued in Chapter 3, even a 1% reduction in Rt is very valuable because it
substitutes for much more costly broad social distancing. However, a limited resource to
consider is decision-makers’ attention. Use of a system like EN is worthwhile if it can
realistically achieve a success rate that is worth decision makers’ time (compared to other
strategies they would otherwise be deploying or optimizing). The value provided to decision
makers is improved if the EN system can not only be used to prevent transmissions, but
also to learn about disease dynamics in real time.

This challenge with robustness is not unique to EN, but it is especially pronounced
because of how many points of failure there are. As another example, manual contact
tracing requires four steps equivalent to the ones listed above (excluding the two download
steps) and success rates will vary depending on available capacity. There are technical and
social changes that could improve the success rate for many of these steps, but some of
these changes come with difficult tradeoffs.

6.3 Improving the Succes Rate of Exposure Notifica-

tion

There are several modifications that could be made to the EN system to increase the success
rate of specific steps. Overall, aligning incentives can encourage higher success rates – for
example earlier testing and therefore access to treatments like Paxlovid for app users that

5Although the dynamics of this mixed-population scenario are not straightforward
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receive a notification. The factor for the fraction of the population using the EN system
occurs twice in the calculation for success rate, so it is the most important to have close
to 1. There are many ways to increase adoption, but perhaps the most effective (short of
mandating it) would be to make participation opt-out. As an example of the influence this
can have, registration as an organ donor was between 86% and 100% in the 7 European
countries where it was opt-out, and between 4% and 27% in the 4 European countries
where it was opt-in [168]. Similar to organ donation, the choice to participate in EN is
pro-social, unlikely to cause harm, but thinking through the pros and cons is more effort
than many are willing to invest. As another example, Apple’s ‘Find My’ system operates
similarly to EN using encrypted Bluetooth messages and it is enabled by default on Apple
devices [169].

In many EN deployments, the notification process has been limited by the availability
and delay time of PCR testing. Allowing self-reported rapid antigen test results or symp-
toms [33] could reduce this bottleneck. The challenge with allowing self-reports is that it
could enable intentional disruption by falsely reporting a positive test and notifying others.
The potential damage of false reports is somewhat limited if testing rather than quarantine
is recommended for those receiving a notification. Schemes that make submitting a false
report more challenging could also reduce this risk, e.g. requiring a photo of the positive
antigen test.

The fraction of people who choose to upload a verified positive result could be in-
creased by encouraging pre-authorization of key upload while at the testing site. Ger-
many’s Corona-Warn-App [89] allows people to scan a QR code when tested, so that they
can be notified in the app as soon as test results are available. This allows app users to
choose to notify others after receiving a positive test result without the friction caused by
requirements to enter an authentication code.

The fraction of infected contacts who are assessed to be high enough risk to recommend
behaviour modification could be improved in three ways: 1) A lower risk threshold if
community prevalence is low, as we recommend in Chapter 3 2) More information on risk
(e.g. higher resolution of timing of symptoms of the index case, etc.6) 3) Better algorithms
to assess risk based on available information (As discussed in Section 5.1)

Finally, the fraction of people who reduce further transmissions could be improved by
making recommendations less costly to follow (e.g. shortening or replacing quarantine with
testing [126]), or incentivizing compliance (e.g. Finland which payed people to quarantine

6Apple and Google currently restrict data on infectiousness to be either “none”, “standard”, or “high”,
but more resolution could enable better risk predictions and learning about transmission timing
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[170]). By making one or more of these modifications, the fraction of onward transmissions
prevented could be significantly improved.

6.4 Comparison to Alternative Protocols

Many other smartphone-based systems were proposed in response to the COVID-19 pan-
demic [45, 171, 172]. Some of these systems were widely deployed, while many others did
not get the opportunity for sufficient testing7. Rather than reviewing all proposals, the
focus of this section is to analyze whether alternative designs could improve on the failure
modes discussed in Section 6.2 (and associated tradeoffs).

Singapore’s TraceTogether system [46] (and a few similar designs like PEP-PT [47])
function similarly to EN, with the key difference that public health has access to the noti-
fied contacts. This may have improved compliance with (quarantine or testing) recommen-
dations and if contact tracing capacity was available could have improved risk assessment
(by combining app data with other data). My proposal as mentioned in Section 5.6 was
to enhance EN with this capability by having notified devices send exposure information
back to public health. This design has the important benefit over TraceTogether that it
has less potential for additional tracking – TraceTogether’s system could be used for pas-
sive surveillance of all citizens because the government has a mapping between the secret
key being used to derive Bluetooth broadcasts and the device owner’s name. With this
mapping, they could use devices placed around an area to log Bluetooth data, and then use
this data to assemble quite precise location logs of everyone. EN augmented with exposure
sharing doesn’t provide this capability because no useful data leaves the device except for
when sending a notification or after receiving one – events that are rare and where the
user is explicitly informed of the information being shared. The stated public preference
seems to be for less invasive technology (especially anything involving the government), so
while the cryptographic difference between these options may appear subtle, I believe a
potential reduction in usage is not worth the risk of using TraceTogether over EN or EN
augmented with exposure sharing.

Several systems were proposed that are capable of less direct risk assessment (Aarogya
Setu [164], MILA [173], NOVID [174], and others), which by considering risk in a wider
social network have the potential to reduce transmission with less dependence on correctly
tracking a single exposure with an infectious individual. As discussed in Section 5.2, the
value of a new source of information or a better predictor depends on whether it is likely

7In some cases, likely due to app store restrictions
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to change behavior in a useful way (compared to previous information). Practically, this
depends on the predictive value of infection (and potentially symptom) information in a
larger contact network around an app user, and also the app user’s willingness and ability
to act on this information. All app-based systems will depend on at least 2 of the 6
critical steps discussed in section 6.2: the notified user must have downloaded the app and
successfully modify their behavior based on information from the app so that additional
transmissions are reduced. The dependence of these designs on the other 4 steps discussed
(infected person has app, is tested, uploads test result, and the contact was correctly
measured) is somewhat obfuscated. Clearly some information about contact events and
infection status must be entered into the system in order to make useful risk assessments,
but the reduction in Rt will depend on what level of risk users are willing to act on and how
the disease moves through a specific contact network. In theory, even quite low accuracy
risk assessments can be useful if the infection rate in the general population is low, but
the trend so far in most countries has been to only modify behaviour more than others
if at a significantly higher risk of infection (10%+). NOVID has the interesting property
that users could be informed of their risk before being infected (if transmission is primarily
occurring in a somewhat persistent contact network), which better aligns incentives for
self-protection and could increase the fraction that modify their behaviour.

A challenge with these designs is that they require more trust from users in the entity
controlling central servers – something that has even been lacking for the very private EN
system. Data obfuscation can help somewhat, but extensive contact network information
is still collected in one place for both Aarogya Setu and NOVID designs. MILA’s COVI
system attempts to avoid this vulnerability by using a Mix Network [173] to pass infor-
mation between users, but this is quite complex to implement at scale, and if all of the
message passing servers were compromised then the contact network could be assembled
based on the flow of messages.

Overall, these systems could be more robust than EN to missing specific steps in the
process, but whether this results in greater disease suppression depends on information
content and willingness to modify behaviour at low risk. These systems have fewer built-in
guarantees preventing passive surveillance, so my preference for multiple degree contact
tracing is a system like the one described in Section 5.6, which shares no information about
typical users, and exactly the information needed by contact tracers for those at higher
risk.

Over the course of the COVID-19 pandemic it became clear that venues like indoor bars
and restaurants were a frequent location for disease transmission. This likely occurred
because of poor airflow, large numbers of people, and no masks (which can’t be worn
while eating or drinking). Many countries chose a compromise that allowed these venues
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to stay open by improving contact tracing for these locations. This was done by either
signing in (using pen and paper) or more quickly by using an app to scan a QR code.
Several QR-based venue check-in systems were deployed, including in China, New Zealand
[175], Germany and the UK. All of these systems function by getting users to scan a QR
code when entering a venue – recording where and when they visited. However, some
differ on where data is stored (like Bluetooth based tracing, this can be either centralized
or decentralized, or some combination of the two), and how automated the notification
process is (which is important for being able to handle a large number of infections).
Different decision rules for notification were used in different places, but people could be
notified if they had been at a venue at a time that was later marked as high risk. The
efficacy of this type of system again depends on usage, testing, and behaviour modification.
For locations where transmission risk is better predicted by presence in the same airspace,
predictive accuracy could be better than using Bluetooth signal strength. However, the
efficacy is limited by the fraction of total transmissions that occur within these venues, the
willingness to notify people of appropriate risk (as discussed in Chapter 3), and the speed
and scalability (if cases rise) of the process if there is a manual component to decision
making. A major strength of this type of system is that there seems to be more willingness
to either mandate or strongly encourage it8 - which can significantly increase the adoption
rate. For locations unwilling or unable to get people to scan QR codes, a wireless version
of this system can either be implemented with specialized beacons9 or using existing Wi-Fi
routers as discussed in Section 5.6. Overall, a venue check-in system could significantly
reduce disease transmission stemming from venues – especially when it is automated and
set to notify people at relatively low risk (and of course people have to be willing to modify
their behaviour after receiving a notification).

Most of the systems described in this section could likely independently suppress a
disease like COVID-19 if used as they were designed. However, the real-world challenges
are significant. Public trust in government and technology doesn’t seem to be high enough
to strongly support a high-tech solution - especially one that relies on aggressive behaviour
modification based on unintuitive risk calculations. QR based check in systems are an
important addition to EN because there is greater public support for usage and so many
transmissions occur in these venues. Higher order (3+) network information seems po-
tentially useful for risk assessment but depends on transmission dynamics and people’s
willingness to modify their behaviour. The main benefits of the centralized systems (on
1-2 degree contact separation) can be incorporated into EN with exposure sharing, which

8Potential reasons: ability to enforce usage, more limited scope, getting something in exchange, better
understanding of use, attending venues is more optional

9Such as the patent pending system we designed [176] to notify EN users of venue-based exposures
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I favour as it limits broad surveillance capabilities.

6.5 Retrospective

The initial motivations for this work still remain valid – infectious disease spread is highly
heterogeneous so careful risk assessment can be used to build much more efficient methods
for suppression. An ongoing challenge is to design interventions that can reliably collect
and act on this information in the real world. Countries that can consistently do this can
achieve disease elimination much more efficiently - as an example see Vietnam’s 3rd degree
tracing and year with almost no local transmission of COVID-19 [80].

For multiple reasons, tech-based targeted interventions (and also low-tech broad in-
terventions) have not convinced a fraction of the population. Even people that agree
with these approaches in principle may not choose to act on them in practice. E.g., if
their phone requested that they quarantine for two weeks with little justification, and this
would require that they cancel plans and not get paid over this time. The benefit to the
entire population may be well worth this cost, but this is not intuitive, and they receive
very little of this benefit themselves. On top of this, there may be insufficient testing to
enable these interventions, or incomplete understanding of how to upload a test result or
quarantine properly.

It seems quite unlikely that the current version of EN (with the current public attitude
towards it) can independently suppress a high R0 (> 2) disease. Both the fixed and
variable costs of deployment are quite low compared to social distancing, so it would
still be worthwhile to use in places that are actively social distancing and can expect a
non-negligible reduction in Rt. Any of the modifications discussed in Section 5.6 could
be incorporated to increase the success rate. Real-time information about transmission
dynamics can be very valuable to decision makers and this would be possible to collect in
an EN app even if only a small fraction of the population were using it. Small modifications
to the system could be made to allow people to opt-in to share useful information or for
privacy-preserving statistics to be generated.

A more powerful system such as the one described in Section 5.6 could reduce the de-
pendence on infected people testing and uploading results in time by using both proximity
and venue-based tracing for backward and second-degree notification. This system could
also increase predictive accuracy and support for quarantine by integrating with the manual
contact tracing system (which really should be supporting people through quarantine like
in Finland [170]). However, this system is clearly still highly dependent on public partici-
pation in several steps. In the best case, a targeted system must have at least one point of
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failure: ability to quarantine or isolate if needed to prevent a counterfactual transmission.
This places an underlying limit on what can be achieved by potential interventions.

Incomplete buy-in is problematic because in a homogeneous (immune-naive) popula-
tion, at the minimum 1 − 1/R0 fraction of the population must modify (or be ready to
modify) their behaviour10 in some way to suppress transmission (Rt < 1). The math gets
worse if the population is heterogeneous – subpopulations with a higher concentration of
people with unmodified behaviour can sustain an epidemic. In addition, behaviour mod-
ification can only be partially effective. So, if those who modify their behaviour have a
reduced chance, b ∈ (0, 1) of becoming infected and transmitting to others, then at least
(1 − 1/R0)/(1 − b) people must modify their behaviour11. For a moderately infectious
disease and optimistic value of the behaviour modification reduction, b, this implies that
a very large fraction of the population must participate in order to achieve disease control
(e.g., with R0 = 3, b = 0.2, 83% participation is needed). The problem is made slightly
easier if infection grants long-lasting immunity, but it is best to not rely on a sizeable
fraction of the population getting infected.

The mechanism of effect of targeted NPIs is successful isolation of infectious individ-
uals. A corollary of the previous argument about participation is that highly effective
isolation of individuals known to be infectious is a necessary (but not sufficient) condition
for elimination of highly infectious diseases with targeted NPIs. Except for in extremely
pro-social populations, this means that at a minimum12 successful elimination requires
firm expectations about the behaviour of individuals that test positive. As an example,
Australia in July 2020 found that 1/3 of infected individuals were not home isolating when
checked [177]. Australia responded with hefty fines for breaking isolation and was able
to effectively suppress transmission for almost a full year after this (September 2020 to
August 2021) [177, 178, 179].

It is possible that the moderate participation observed during the COVID-19 pandemic
was because for some people the perceived risk of infection with COVID-19 was not worth
the perceived cost of avoiding it, and that for a more deadly infectious disease participation
would be higher. However, this seems like too large of a gamble to make given the stakes.
Even if it were true, there is significant benefit to developing coordinated strategies that
lower the average cost of suppression such that even the more hesitant find it worthwhile
to (locally) eliminate relatively less deadly diseases.

10Or be willing to modify their behaviour if needed, as in targeted interventions
11Rt = 1 = f ∗ b ∗R0 + (1− f) ∗R0− > f = (R0− 1)/(R0–b ∗R0) = (1− 1/R0)/(1− b)
12On top of the non-trivial challenge of finding infectious individuals in the first place
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6.6 Potential Design Strategy for NPIs

Except for in a few countries, at the time of this writing (July 2022) there seems to be
limited social will to deploy NPIs against COVID-19 (and with vaccines and treatment
available many less targeted NPIs are likely not worthwhile as long-term solutions). How-
ever, COVID-19 is likely not the last airborne pandemic, so improving the effectiveness
of NPIs in advance could be enormously valuable. An advantage we have now over early
2020 is time – time to selectively develop nontrivial technology to make the response more
effective.

If possible, it would be excellent to build solutions that use information close to op-
timally to minimize the cost of suppression (as discussed in Section 5.1). But the cost
of mass infection or mass social distancing is very large, so even highly suboptimal (but
reliable) methods could provide substantial benefit over the status-quo (for many but not
all countries). Recognizing that insufficient public support and fragility to multiple points
of failure have been major weaknesses of deployed NPIs, how can we design better NPIs?

Support by a supermajority of the population greatly increases the chances of a solu-
tion being successfully implemented in a democracy [180]. Our design strategy for digital
contact tracing correctly placed significant importance on public acceptability. However,
the design failed to include socially acceptable mechanisms for ensuring robustness. Pub-
lic opinion seemed to support optional participation in the EN system, but making par-
ticipation (app download, test upload, quarantine) mandatory was not broadly judged
worthwhile (at least for COVID-19 – maybe more extreme strategies would be supported
for a more deadly disease). Optional interventions (EN) and interventions primarily for
self-protection (mask wearing) seem to achieve greater public support and do prevent trans-
missions. But these types of strategies don’t reliably lead to disease elimination for highly
infectious diseases – rational self-serving actors will decrease protective measures when
personal risk decreases due to low infection rates [181], and some (potentially ‘irrational’)
actors may not take protective measures at any risk.

Ideally, we can design NPIs that are both robust at any infection rate and socially ac-
ceptable (at least when faced with a deadly pandemic). Intuitively, policy backed by social
expectations about the behaviour of others will be more successful. Social acceptability
may be the most difficult part of the problem, so one design strategy is to start with a
search for a robust social contract around control of communicable infectious diseases13

13Starting with infectious diseases that are actively being controlled. Trade-offs about behaviour around
endemic diseases can be more subtle (for example, the benefit of effective isolation depends on the fraction
of the population that is susceptible).
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and then work backwards to build technology, infrastructure, and policy to support that
‘contract’. There is precedent for building social expectations around safety- a close anal-
ogy is the standard use of drivers licenses to demonstrate proof of receiving safety training.
The danger in shared spaces is high (deadly car crashes), so we expect others to put in a
reasonable amount of effort to improve safety (driving training) and are willing to enforce
this if necessary (legal requirement for driver’s license). As a result, over 97% of drivers in
the US have a driver’s license14 [182] – a level of participation that combined with good
policy could suppress even a highly infectious disease.

Appendix D proposes a solution based on frequent mass-testing with the design goals of
socially acceptable robustness and fast deployment in response to a novel pandemic. The
system is intended to be more extensive and more strongly enforce participation than pre-
vious mass-testing deployments in democratic countries15, while being more pleasant and
offering more privacy than China’s design16. All NPIs have some tradeoff between health,
cost, and civil liberties. While a system like the one in Appendix D may seem excessive to
some against COVID-19, a vast majority would likely agree that it would be worthwhile
at some degree of danger. It is prudent to plan the response (and triggering conditions for
that response) in advance of a deadly pandemic, especially if doing so provides more time
to develop enabling technologies.

Wherever the influence on liberties is judged to be acceptable, better targeting inter-
ventions based on risk analysis can substantially reduce the cost of suppression. As an
example, the number of tests needed for the previous mass-testing example could be sub-
stantially reduced by adjusting the testing frequency depending on the probability of there
being cases in a certain location. The probability of a local case could be estimated using
wastewater measurements and prevalence estimates of connected regions, so that in low
probability regions testing frequency could be reduced to something like once a month17

instead of once a day.

Even if not mandated, encouraging optional participation in targeted interventions like
manual or digital contact tracing can be highly cost effective18. The success rate of these
interventions can be increased by reducing friction for important steps like app download

14Although, unfortunately the unlicensed 3% are responsible for 20% of accidents
15For COVID-19, these have typically been limited to a particular school or workforce, or for a brief

period of time, or are dependent on self-attestations about home test results
16At the time of writing (July 2022), China is using systems that are tied to identity, and often requires

people to line up for less-than-pleasant nasopharyngeal swabs
17Reducing frequency instead of completely stopping testing will keep infrastructure active, people fa-

miliar with system, and provide another method of disease surveillance instead of completely relying on
wastewater.

18Preferably as a lower cost addition to a robust base strategy
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and sharing test results, as well as providing support and financial incentives for disruptive
pro-social choices like testing and quarantine.

In a disaster scenario, both information and decision-making capacity are limited. In
this context, digital contact tracing apps are more useful if they require little oversight
and can provide the information needed to inform broader policy choices (e.g. when are
people infectious and how long should quarantine be?). With even a small fraction of the
population opting in to share more information with public health, a more powerful system
like the one in Section 5.6 could provide valuable real-time information. As an example, the
transmission risk associated with different types of venues could be estimated by classifying
venue type based on nearby Wi-Fi routers19. This could be done using exposures between
pairs of users, or to look for patterns correlated with infection by an unknown source (e.g.
does frequent use of public transit correlate with higher risk of infection from an unknown
source?). Having access to a real-time snapshot with clues about transmission dynamics
would allow decision makers to focus on policy that provides the most value.

6.7 Summary

In this work we developed systems for decentralized digital contact notification and tracing
that can efficiently suppress infectious disease (in the idealized high-participation case)
without enabling mass surveillance. We built a framework to estimate the value of targeted
interventions as a substitute for broad social distancing and used it to show that the optimal
quarantine risk threshold varies significantly depending on disease prevalence. We showed
how to use the joint distribution for infectiousness and test sensitivity to minimize the
duration of quarantine without increasing transmissions by incorporating well-timed PCR
tests. These approaches reduce the cost of NPIs by performing better risk analyses using
better data. From a more general perspective, we can quantify the value of information for
targeted interventions using the change in ‘risk surplus’ it generates and pose dynamic NPI
policy decisions as an optimal control problem. Targeted interventions like EN prevented a
significant number of infections during the COVID-19 pandemic [59] but failed to reach the
level of robustness needed to independently achieve local disease elimination. A promising
direction for future work is to develop low-cost NPIs that are both socially acceptable
and robust. The goal is extraordinarily worthwhile: being able to deploy effective NPIs
offers protection from future pandemics, and if made targeted enough (via either improved

19Potentially just based on the name of nearby networks or using more sophisticated lookup tables like
the ones big tech companies have
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technology or risk analysis) could enable the elimination of infectious diseases that we
accept today.
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Appendix A

Supplement to The economic value
of quarantine is higher at lower case
prevalence, with quarantine justified
at lower risk of infection

A.1 Threshold Simplification

Substituting Equation 3.4 into Equation 3.6, we obtain:

rthresh =
f(max{0, 1− Rtarget

Rt
∗ I

I−Qi
})− f(1)

(P −Qi −Qn − 1) ∗ [f(max{0, 1− Rtarget

Rt
∗ I

I−Qi−1
})− f(max{0, 1− Rtarget

Rt
∗ I

I−Qi
})]

(A.1)

Setting f(x) = x and assuming 1− Rtarget

Rt
∗ I

I−Qi−1
> 0 yields:

rthresh =
1− Rtarget

Rt
∗ I

I−Qi
− 1

1− Rtarget

Rt
∗ I

I−Qi−1
− 1 + Rtarget

Rt
∗ I

I−Qi

∗ 1

P −Qi −Qn − 1
(A.2)

Simplifying the numerator and denominator:

rthresh =
−Rtarget

Rt
∗ I

I−Qi

Rtarget

Rt
∗ I

I−Qi
− Rtarget

Rt
∗ I

I−Qi−1

∗ 1

P −Qi −Qn − 1
(A.3)
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Factoring out Rtarget

Rt
:

rthresh =

Rtarget

Rt
(− I

I−Qi
)

Rtarget

Rt
( I
I−Qi

− I
I−Qi−1

)
∗ 1

P −Qi −Qn − 1
(A.4)

Multiplying the numerator and denominator by (I −Qi − 1)(I −Qi):

rthresh =
(I −Qi − 1)(I −Qi)(− I

I−Qi
)

(I −Qi − 1)(I −Qi)(
I

I−Qi
− I

I−Qi−1
)
∗ 1

P −Qi −Qn − 1
(A.5)

Multiplying through and simplifying:

rthresh =
−(I −Qi − 1)

(I −Qi − 1)− (I −Qi)
∗ 1

P −Qi −Qn − 1
(A.6)

rthresh =
−(I −Qi − 1)

−1
∗ 1

P −Qi −Qn − 1
(A.7)

rthresh =
I −Qi − 1

P −Qi −Qn − 1
(A.8)

A.2 Fluctuating R′
t

In Model Section 2.1 from the main text, we assume that D instantaneously adapts to
achieve Rtarget given prevailing conditions and current quarantine policies. This is moti-
vated by the observation of relatively stable R′

t averaged over longer timescales. In this
section, we show that Equation 2.1 (from the main text), and hence subsequent findings,
are still a good approximation even when including stochastic effects, time delays, and
uncertainty about system state.

To make this argument, we assume that for a certain region and time frame, the virus
is neither eliminated nor creates herd immunity, and that control measures are relatively
stable. Over N serial intervals between times t0 and tN , the initial and final case prevalence
are related by I(tN) = I(t0)

∏N−1
n=0 R′

t(tn). Equivalently, the geometric mean of R′
t over this

time period can be expressed using the initial and final case prevalence, (
∏

n(R
′
t(tn)))

1/N =

( I(tN )
I(t0)

)1/N . For most regions, case prevalence doesn’t vary by more than a couple orders of

124



magnitude on the scale of months, which yields a (geometric) mean R′
t value quite close to

1. As an example, with I(tN)/I(t1) = 100, and N = 36 (6 months with a serial interval of
5 days), 1001/36 = 1.14. Approximating the geometric mean of the effective reproductive
number as 1, and expanding to include distancing and quarantine terms:

1 ≈
[N−1∏

n=0

(R′
t(tn))

]1/N
=

[N−1∏
n=0

(Rt(tn)(1−D(tn))
I(tn)−Qi(tn)

I(tn)
)
]1/N

(A.9)

Taking the log of both sides and then multiplying by 1/N :

1

N
log(1) ≈ 1

N

N−1∑
n=0

[log(Rt(tn)) + log(1−D(tn)) + log(
I(tn)−Qi(tn)

I(tn)
)] (A.10)

1
N

∑N−1
n=0 is the definition of the average over time:

0 ≈ E[log(Rt(t))] + E[log(1−D(t))] + E[log(
I(t)−Qi(t)

I(t)
)] (A.11)

Assuming control measures don’t change drastically over time, we replace the mean of
the log with the log of the mean:

0 ≈ log(E[Rt(t)]) + log(E[1−D(t)]) + log(E[
I(t)−Qi(t)

I(t)
]) (A.12)

Taking the exponential of each side:

1 ≈ E[Rt(t)] ∗ E[1−D(t)] ∗ E[
I(t)−Qi(t)

I(t)
] (A.13)

This is equivalent to Equation 2.1 (from the main text) with R′
t set to 1, showing that

by averaging over time, the requirements for precise knowledge and control of system state
can be relaxed.
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A.3 Imported Cases and Stochasticity

For regions where imported cases make up a significant fraction of total cases, policy-
makers should consider the modified dynamics when choosing Rtarget. Imported cases act
as a forcing term, with the number of cases at a future timepoint being the sum of locally
obtained infections and imported infections. The mechanics of choosing a risk threshold
do not change, but it is important to highlight that Rtarget only determines a portion of
future cases. A complete solution must also consider the effect of border policies.

When the total number of cases is small, e.g. in a region with excellent local control for
which rare imported cases are the primary concern, discrete and stochastic effects become
important.

Quantitative models of tiny case count scenarios are challenging, because of stochas-
ticity in the length of time needed to return to elimination, combined with curvature in
the harms of shutdown as a function of its duration. This is further exacerbated by su-
perspreader dynamics [183]. Modelling the number of secondary cases with a negative
binomial distribution with an overdispersion parameter 0.1 and mean 2.5 yields a variance
of 65. In locations not aiming for local elimination, stochasticity averages out over time,
and expected values can be used. When local elimination is being attempted, it would be
useful to make use of discrete, stochastic models when choosing Rtarget, e.g. to calculate the
probability distribution of time to elimination and the expected damage from shutdowns of
different severity. With the choice of Rtarget set, the previous arguments mostly still hold
(although some consideration may be given to the difference in variance in transmissions
based on broad vs. targeted distancing).

If local elimination has already been achieved, then a still more complicated case is
to consider the risk of an outbreak from an imported case, the time delay and growth in
the outbreak before it is noticed, and the subsequent shutdowns needed to re-achieve local
elimination and thus relax general social distancing. It is likely that the considerable costs
of such an outbreak warrant strict quarantine for incoming individuals. A robust testing
and contact tracing system capable of quickly containing any new outbreak is also key.

A.4 Cost Function Dependence

Here we compare the risk threshold r1 derived from the linear cost function f1(x) = x to
the risk threshold r2 derived from a non-linear cost function f2(x). As discussed in Section
3.3.1, disparate considerations all support the assumption that a realistic choice for f2(x)
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will be strictly increasing and concave up. We also assume that f2(x) is differentiable. For
both of these derivations, we define the distancing setpoint as D0 = max(0, 1− Rtarget

Rt

I
I−Qi

),

the required distancing if one more infectious person were isolated as D− = max(0, 1 −
Rtarget

Rt

I
I−Qi−1

), and the total quarantined or isolated population as Q = Qi + Qn. By

expanding Equation 2.6 from the main text, we obtain the two risk thresholds (with r1
corresponding to f1 and r2 corresponding to f2):

r1 =
f1(1)− f1(D0)

f1(D0)− f1(D−)

1

P −Q− 1
(A.14)

r2 =
f2(1)− f2(D0)

f2(D0)− f2(D−)

1

P −Q− 1
(A.15)

Substituting f1(x) = x, and taking the ratio of the two thresholds gives:

r2
r1

=

f2(1)−f2(D0)
1−D0

f2(D0)−f2(D−)
D0−D−

. (A.16)

We use the fact that f2(1)−f2(D0)
1−D0

≤ maxx∈[0,1] f
′
2(x) and

f2(D0)−f2(D−)
D0−D−

≥ minx∈[0,1] f
′
2(x)

to obtain a bound on the ratio of the two thresholds:

r2
r1

≤
maxx∈[0,1] f

′
2(x)

minx∈[0,1] f
′
2(x)

. (A.17)

Because f2(x) is concave up (indicating that additional isolation is more costly), we

have f2(1)−f2(D0)
1−D0

≥ f2(D0)−f2(D−)
D0−D−

, and therefore r2 ≥ r1.

In order to approximate the risk threshold, we substitute Equation 2.7 from the main
text into Equation A.16, and obtain:

r2 =

f2(1)−f2(D0)
1−D0

f2(D0)−f2(D−)
D0−D−

I −Qi − 1

P −Qi −Qn − 1
. (A.18)

For differentiable f2(x) and relatively large I − Qi, D0 − D− is small, and f2(D0)−f2(D−)
D0−D−

can be approximated as f ′
2(D0). Let rpop = I−Qi

P−Qi−Qn
be the risk of the unquarantined

population. Using the approximation, rpop ≈ I−Qi−1
P−Qi−Qn−1

and referring to r2 as rthresh, we
obtain Equation 3.8.

127



Appendix B

Supplement to Realistic
consideration of quarantine
compliance suggests earlier PCR
testing and shorter quarantine
following SARS-CoV-2 exposure

B.1 Dependence on Quarantine and Isolation Effec-

tiveness

Here we show that the optimal choice of quarantine length and test date(s) depend only
on the ratio CQ of quarantine compliance to isolation compliance, and not the individual
values of these two compliances.

A policy π produces a vector ϕ(π), whose four elements sum to the expected number
of transmissions that would occur given no compliance with either quarantine or isola-
tion. Those expected transmissions are divided among the four elements according to
whether they occur: [during isolation, during quarantine after a negative test result has
been received, during quarantine at other times, while not recommended for quarantine
or isolation]. Because policies differ in the timing of testing and quarantine, they differ
in the distribution of total expected transmissions (in the absence of compliance with ei-
ther isolation or quarantine, but with testing on the recommended date) among these four
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elements.

The reduction in transmissions due to scaling from quarantine and isolation is given
by:

J(π,CI , CQ, CN) = ϕ(π) ·


CI

(CQ ∗ CI) ∗ (1− CN)
CQ ∗ CI

0


Lemma: for any two policies, πa and πb and α > 0, if J(πa, CI , CQ, CN) ≥ J(πb, CI , CQ, CN),

then J(πa, αCI , CQ, CN) ≥ J(πb, αCI , CQ, CN).

Expanding
J(πa, CI , CQ, CN) ≥ J(πb, CI , CQ, CN),

we have

ϕ(πa) ·


CI

(CQ ∗ CI) ∗ (1− CN)
CQ ∗ CI

0

 ≥ ϕ(πb) ·


CI

(CQ ∗ CI) ∗ (1− CN)
CQ ∗ CI

0

 .

Multiplying both sides by α yields

ϕ(πa) ·


αCI

(CQαCI) ∗ (1− CN)
CQαCI

0

 ≥ ϕ(πb) ·


αCI

(CQαCI) ∗ (1− CN)
CQαCI

0

 ,

and thus
J(πa, αCI , CQ, CN) ≥ J(πb, αCI , CQ, CN).

Therefore if CI is required to be a positive number, the ordering of policies in terms of
expected transmissions is independent of CI . Since the order of policies ranked by expected
transmissions and quarantine days is constant for a fixed ratio of isolation and quarantine
compliances, the recommended policy will also be constant.
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Appendix C

An Idealized Outbreak Response

Early in an outbreak of a novel pathogen little may be known about transmission modes,
timing of infectiousness, timing and type of symptoms, and timing of test sensitivity (and
test capacity may be quite limited). It would be sensible to use fairly uninformative pri-
ors on these distributions based on known pathogens (with more weighting for similar
pathogens if known). If the decision is made to suppress transmission, then an approach
like the one outlined in Section 5.3 can be used (by attempting to choose the optimal trade-
off between broad distancing, targeted quarantine, and border restrictions while lowering
disease prevalence along an ‘optimal’ trajectory). Total case numbers will likely be quite
low at this point- leading to a low quarantine risk threshold (Chapter 3). With relatively
uninformative risk calculations from contact information and a low risk threshold, an opti-
mal strategy would likely recommend quarantine for a large fraction of the detected second
order contact network- even quite brief encounters (as Vietnam implemented in early 2020
[159]). This contact network could be detected almost instantaneously using the system
described in Section 5.6 (with decentralized proximity notification, recursive notification,
and exposure sharing).

Quarantine is highly disruptive for individuals, but extremely valuable (in expectation)
for the broader population, so people asked to quarantine could be compensated at a
level roughly aimed to make it worthwhile for them, but not so high that it incentivizes
intentional exposure to the virus. Unenforced home quarantine has had limited success, so
either dedicated facilities or more strictly enforced home quarantine would be preferable
[184]. Transportation to facilities could be done using dedicated vehicles with proper
fomite and airborne precautions (completely separate compartments, not just masks [157]).
People in quarantine and isolation could frequently have swabs collected and stored even
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if testing is not available – this data would be valuable for estimating test sensitivity and
infectiousness distributions. Any observed symptoms would also be recorded.

As more information became available the distributions used for risk assessments could
be refined using Bayesian updates. With greater predictive power the risk distribution will
concentrate – leading to fewer people who are judged high enough risk to warrant quaran-
tine. Unexpected infections could be thoroughly investigated to prevent repeated mistakes,
e.g. New Zealand’s analysis of transmission in quarantine facility [145]. Much of this inves-
tigation cannot be automated because there are many possible unmodelled transmission
routes. However, data collected on these unexpected cases can aid in the investigation, in-
cluding recent locations and the local contact network (using the system from Section 5.6),
along with genomic sequencing (if useful). If the mode of unexpected transmissions can
be determined, a comparison could be made between the cost of population-wide actions
to reduce it1 vs. collecting more information to enable accurate future predictions of risk
and expanded quarantine.

If a significant fraction of new cases do not present because they are asymptomatic
or paucisymptomatic, suppression becomes more challenging, but is still possible. The
notification system (described in Section 5.6) has a fair amount of robustness to this due
to backward and second (or greater) degree contact tracing, meaning that we can tolerate a
missing link in the transmission chain. However, it would be best not to rely on noticeable
symptoms at all to achieve disease control. The above approach can be augmented with
broad surveillance testing. A less disruptive version could use frequent wastewater testing
at a spatial resolution where one case could be reliably detected- then prompting local
testing.

For a broad range of infectious diseases, rapid detection of 2nd degree contact networks
and aggressive quarantine policy would be sufficient for low-cost local elimination with
no broad social distancing needed. As risk assessment improves fewer contacts would be
estimated as high risk and testing could replace quarantine, minimizing the expected cost
to suppress a novel introduction of the disease.

1In some cases this could be quite difficult- for example transmission via air ducts in large residential
buildings
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Appendix D

A Potential Design for Mass Testing

Several countries, workplaces and schools implemented some form of mass testing during
the COVID-19 pandemic [185, 186, 187]. The goal of this section is to design a system
for mass testing that would be feasible in a broader range of countries and would be able
to robustly contain a novel infectious disease. We will consider modifications to existing
approaches and technological advancements that could conceivably enable this within a few
years. Specifically, I claim that innovation in automation and logistics could massively scale
testing availability, prioritization of pleasantness and accessibility could increase public
support, and that with careful design there is an acceptable balance between robustness
and civil liberties.

Mass testing deployments in western countries have been limited in time or the fraction
of the population participating (e.g. Slovakia testing the whole population twice, but not on
an ongoing basis [187]). The expense of massively scaling testing was likely a contributing
factor preventing more widespread deployment. The limited scope of deployment limited
the possible success because people testing regularly could still be infected by members of
the broader community, and cases could rebound after time-limited interventions. With
a targeted deployment of testing, even a limited quantity of tests could be sufficient for
suppression. However, this is more complicated to deploy properly, and the public may
not be comfortable sharing information needed for highly targeted testing1.

Another option is to innovate in automation of PCR testing2 and logistics to drastically
reduce the cost. Much more ambitious deployments would be possible if the cost of a test
were around $5 instead of $100 (testing every person daily at $100 per test is close to the

1Also it could seem unfair for only specific subcommunities to need to get tested
2Or other types of testing that could be used in the early stages of a pandemic
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GDP of wealthy countries). PCR tests are highly sensitive, so it seems unlikely for someone
to test negative while actively infectious with an arbitrary airborne pathogen. If this is
true, then for some testing frequency and test delay (and implicitly isolation effectiveness),
a mass testing policy would be successful. For the original COVID-19 variant, Elbanna
and Goldenfeld estimated that testing twice a week would be sufficient to bring Rt below
1 (assuming perfect isolation of those who test positive) [188].

Mass testing seems to be an important component of China’s “dynamic Covid-zero”
policy (as of July 2022). The independent effect of mass testing is difficult to estimate
because they are using it in combination with a few other strategies like venue based trac-
ing and localized lockdowns. The combined approach seems to be effective at containing
outbreaks, but it is difficult to determine what the cost of this is, as the main source of
information is Chinese media – which is politically incentivized to tell a positive story.
Western media sources have predominately portrayed the approach as excessive, but this
framing could also be politically motivated. In either case, now that vaccines and treat-
ments are available, public support for any kind of Covid-zero strategy is likely very limited
outside of a few countries 3. However, support for a mass-testing approach may be greater
when faced with a novel deadly pandemic. There are a few modifications that could im-
prove the likelihood of achieving this support: reduced cost (as previously discussed), less
authoritarian-seeming rules (to be discussed shortly) and increasing the pleasantness of
the testing experience. To improve the testing experience, gargle [189, 190] or saliva tests
could be used instead of nasal swabs 4 and time spent waiting at or traveling to testing
sites could be reduced.

A more difficult part of the design is deciding on tradeoffs between robustness to non-
compliance and authoritarian capabilities (or the perception of them). The most straight-
forward approach is to reduce the number of points of failure (with 2 steps instead of 6,
the success rate doesn’t need to be as high). Ideally, any remaining critical steps will have
an intuitive justification; if necessary, it is much easier to enforce participation for things
that the public believes are necessary and important. In a mass testing deployment, there
are two critical steps that depend on the population: 1) frequent testing and 2) effective
isolation if positive. The honor system may be too optimistic, but both steps have not-
too-excessive methods of enforcement. Frequent testing could be encouraged by requiring
proof of a recent negative test to enter public spaces. Isolation at home can be subject to
random check-ins with fines to discourage non-compliance.

3And even if there was support, border policy with countries not aiming for elimination would be a
significant challenge

4It seems like nasal and gargle tests have comparable sensitivity for COVID-19 [190]. Even if more
pleasant testing was 10-20% less sensitive, this could be still be worthwhile if it improves public support.
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Another area to be careful about is the validity of test results – whether tests are being
taken properly and by the right people. For example, self-serving people who suspect they
could be infected have an incentive to not test properly. A robust system will preferably
have the ability to detect this failure mode and adjust if it became a significant problem.
For this reason, designs where the sample collection process can be observed are prefer-
able. Having testing records securely stored and associated with people’s identity makes
understanding the disease easier for public health departments and researchers. However,
in some countries requiring this may decrease public support and disincentivize participa-
tion among some populations (undocumented immigrants, libertarians, etc.). A potential
solution is to offer anonymous testing but heavily incentivize5 a version that associates test
results with a person’s health record.

Based on these considerations, the following is a potential implementation:

1. Sample collection sites easily available – unstaffed, in style of self-checkout kiosks6

2. Gargle or saliva-based sampling, with detachable QR code to get test results later

3. Scalable service like Uber or Amazon delivery frequently picks up samples7

4. Highly automated8 labs perform PCR tests

5. Results posted to public database linked to QR codes (ideally within 8 hours of
collection)

6. QR code demonstrating a recent negative test permits entry into public spaces

7. People who test positive are required by law to effectively isolate – free transportation,
financial support, food, and accommodation provided if needed

The likelihood of success for a mass-testing intervention (as with most NPIs) increases
with the ability to detect, diagnose, and adapt to failure modes. In this case, some impor-
tant areas to monitor are isolation effectiveness, testing compliance, and the frequency of
transmissions occurring before testing positive. This proposal is based on several partially

5For example, allowing entry into public spaces immediately after testing instead of waiting for test
results

6Potentially with a cheap camera to discourage sabotage or intentionally testing incorrectly
7With option of testing at home for those with accessibility issues, symptoms, or who wish to pay for

it
8Potentially more innovation needed to make this scalable and cheap
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validated assumptions, which ideally can be strengthened with further analysis, numerical
modeling, wargaming [191], and real-world experiments. While preliminary, it offers some
optimism that innovation can enable an acceptable compromise between civil liberties and
robust disease control.
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Glossary

Non-Pharmaceutical Intervention (NPI): Health interventions that do not depend
on medication (e.g. contact tracing, social distancing).

R0: The “basic reproduction number” [192], which gives the expected number of cases
infected by one initial case in a susceptible population.

Rt: The “effective reproduction number” [192], which gives the expected number of cases
infected by one case at time t. This value depends on immunity in the population and
health interventions.

SIR model: a compartmental model of infectious disease spread with three compartments:
susceptible, infectious, and recovered [192].

Heatmap: A plot using colour to show how a quantity varies over space. E.g. concentra-
tion of infectious individuals varying by location.

ROC curve: A “Receiver operating characteristic” curve shows how the performance of
a classifier varies with a changing decision threshold [138]. It plots the true positive rate
(correctly predicted true positives divided by total positives) against the false positive rate
(incorrectly predicted false positives divided by total negatives).

Pareto frontier: The set of feasible points that are optimal for at least one choice of
objective function in a multi-objective optimization problem. The Pareto frontier can be
expanded by relaxing limiting constraints.

Index case: In contact tracing, the index case is the first person within a cluster who is
identified as being infected with a communicable disease.

Secondary attack rate: The probability of infection among contacts exposed to an
infected individual.
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