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Abstract

This thesis discusses the design and implementation of WATonomous’ Automated Driv-
ing Stack (ADS), which is capable of performing robo-taxi services in specific operational
domains when deployed to WATonomous’ research vehicle (Bolty). Three ADS modules
are discussed in detail: (1) mapping, environment modeling, and behavioral planning, (2)
action classification in video streams, and (3) trajectory planning and control. Addition-
ally, the software architecture within which the ADS is developed and deployed, and the
ADS data pipeline itself, are outlined.

The thesis begins with preliminaries on WATonomous’ Dockerized software architecture
(coined watod) which runs and orchestrates the communication of the ADS modules. The
watod ecosystem, due to its Dockerized and cloud-based design, enables rapid prototyping
of new software modules, rapid onboarding of new team members, and parallel execution
of many ADS development instances on the WATonomous server cluster’s Virtual Machine
(VM)s. Cloud-based CARLA simulation development of the ADS and deployment to the
Bolty research vehicle are also encapsulated in and facilitated by the watod ecosystem.
The ADS can be developed in simulation and deployed to the physical research vehicle
without modifications to the ADS modules due to the replication of the physical platform
in the Carla ROS Bridge sensor configuration. The design of the ADS data pipeline is
also presented, from raw sensor input to the Controlled Area Network Bus (CAN Bus)
interface, as well as the human-computer interface.

The first ADS module discussed is the mapping and environment modeling module.
Environment modeling is the backbone of how autonomous agents understand the world,
and therefore has significant implications for decision-making and verification. Motivated
by the success of relational mapping tools such as Lanelet2, we present the Dynamic
Relation Graph (DRG). The DRG is a novel method for extending prior relational maps
to include online observations, creating a unified environment model which incorporates
both prior and online data sources. Our prototype implementation models a finite set
of heterogeneous features including road signage and pedestrian movement. However, the
methodology behind the DRG can be expanded to a wider range of features in a fashion that
does not increase the complexity of behavioral planning. Simulated stress tests indicate
the DRG’s effectiveness in decreasing decision-making complexity, and deployment to the
WATonomous research vehicle (Bolty) demonstrates its practical utility. The prototype
code is available at github.com/WATonomous/DRG.

The second ADS module discussed is the action classification module. When applied in
the context of Autonomous Vehicle (AV)s, action classification algorithms can help enrich
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an AV’s environment model and understanding of the world to improve behavioral plan-
ning decisions. Towards these improvements in AV decision-making, we propose a novel
online action recognition system, coined the Road Action Detection Network (RAD-Net).
RAD-Net formulates the problem of active agent detection and adapts ideas about actor-
context relations from human activity recognition in a straightforward two-stage pipeline
for action detection and classification. We show that our proposed scheme can outperform
the baseline on the International Conference of Computer Vision (ICCV) 2021 Road Chal-
lenge dataset [1]. Furthermore, by integrating RAD-Net with the ADS’ perception stack
and the DRG, we demonstrate how a higher-order understanding of agent actions in the
environment can improve decisions on a real AV system.

The last ADS module discussed is trajectory planning and control. Trajectory plan-
ning and control have historically been separated into two modules in automated driving
stacks. Trajectory planning focuses on higher-level tasks like avoiding obstacles and stay-
ing on the road surface, whereas the controller tries its best to follow an ever changing
reference trajectory. We argue that this separation is (1) flawed due to the mismatch
between planned trajectories and what the controller can feasibly execute, and (2) unnec-
essary due to the flexibility of the Model Predictive Control (MPC) paradigm. Instead, in
this thesis, we present a unified MPC-based trajectory planning and control scheme that
guarantees feasibility with respect to road boundaries, the static and dynamic environ-
ment, and enforces passenger comfort constraints. The scheme is evaluated rigorously in
a variety of scenarios focused on proving the effectiveness of the Optimal Control Prob-
lem (OCP) design and real-time solution methods. The prototype code is available at
github.com/WATonomous/control.
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Chapter 1

Introduction

1.1 Motivation

This thesis discusses the implementation of an AV robo-taxi that operates in urban environ-
ments. The research presented in this thesis targets a deployment to Bolty, WATonomous’
research vehicle. The requirements for Bolty’s autonomous capabilities were set by the
SAE AutoDrive Challenge I which ran from September 2017 - June 2021. Since June 2021,
WATonomous has been self-motivated with the goal of maintaining automated driving
involvement of undergrad and graduate students at UW, and advancing the field of AV
research and development.

Some examples of the robo-taxi requirements are:

1. Lane topology must be navigated while obeying traffic rules (staying on road surface,
obeying turning lanes, etc...).

2. Lane topology altering road signage (right turn only, do not enter) must be obeyed.

3. Traffic signals must be obeyed.

4. Dynamic agents including non-ego vehicles and pedestrians must be avoided.

See Appendix A for a full definition of the requirements.



1.2 Scope

To limit the scope of this thesis, object detection, tracking, and ego localization are not
considered. In practice on Bolty, object detection is done via off-the-shelf YOLOvV5 [1],
tracking is done via a simple linear Kalman Filter, and ego localization is done via off-the-
shelf Novatel SPAN Global Navigation Satellite System (GNSS) and Inertial Measurement
Unit (IMU) devices to give us a highly accurate Inertial Navigation System (INS). Further
background information on the entire ADS is given in Chapter 2.

What is in scope for this thesis includes: (1) The software architecture design, including
the Dockerized ROS network design and the ADS data pipeline, (2) Lanelet2 mapping,
environment modeling, and behavioral planning, (3) action classification in video steams,
and (4) trajectory planning and control.

1.3 Contributions

1.3.1 Software Architecture and Data Pipeline

1. The software that makes up an ADS is highly heterogeneous. Different modules
depend on different software packages, and even different operating systems. To
isolate the dependencies of the different ADS modules, a novel WATonomous Docker
(watod for short) ecosystem was created based on Docker Compose.

2. watod has Dockerized CARLA simulation built-in, allowing any ADS module con-
tained in the watod ecosystem to be quickly tested using simulated data.

3. Multiple instances of the watod ecosystems can be running simultaneously on a single
VM on WATonomous’ server cluster using Docker’s network isolation protocol. This
enables dozens of WATonomous’ software developers to work in parallel without
conflicting data streams.

4. Inside of watod, an entire ADS has been implemented that can run in real-time to
navigate simulated CARLA environments, or be deployed to Bolty for usage in the
real world.

These software architecture contributions were demonstrated at WATonomous’ Year 4
Demo (https://youtu.be/DNZgheT4Y2s), which earned WATonomous 2nd place in the
SAE AutoDrive Challenge I (Year 4).
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1.3.2 Mapping, Environment Modeling, and Decision Making

Standardized methods and toolboxes for creating and embedding relationships between
prior maps and online observations are lacking in the literature, making the logic of AV
decision systems opaque. Many different decisions could be made using the same prior
and online information, depending on how the relationships are modeled. Some systems
must be safer than others, but without standardization there is little hope of being able
to compare implementations. The ability to compare implementations goes hand-in-hand
with the ability to verify a model, since verification can be done by comparing to some
benchmark. Verifying an AV’s model of the world is essential to explaining why a decision

was made, an area where the AV industry has struggled to meet the public’s expectations!.

In light of these holes in the literature, we propose our work on the DRG which offers
the following contributions:

1. The DRG serves as a standard tool for extending prior maps with online observations
to create a unified environment model (see Fig. 3.1), allowing for greater transparency
and collaboration on decision-making algorithms.

2. A novel method for analyzing the combinatorial complexity of decision making in
urban environments, and an analysis of how the DRG reduces these complexities.

3. Design details on various DRG augmentation routines for common environment fea-
tures, including pseudo-code and a C++ prototype implementation which are re-
leased at github.com/WATonomous/DRG.

These contributions were presented at ICRA 2022 in Philadelphia PA under the ti-
tle DRG: A Dynamic Relation Graph for Unified Prior-Online Environment Modeling in
Urban Autonomous Driving [0].

1.3.3 Action Classification

The perception task in automated driving is to understand the scene around the ego
vehicle using camera data. What constitutes “understanding” is an on-going conversation,
motivated by what types of information are necessary for safe and effective driving decisions

IThe infamous Uber ATG fatality in 2018 notably lacked an explanation of the autonomous system’s
model of the world before the crash, and led to Uber ceasing testing [5].
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to be made autonomously. Historically, the literature has focused on agent detection and
classification tasks which operate on single image frames [7]. However, as the field of
automated driving matures, the perception research community is shifting their attention
towards tasks that represent a deeper understanding of the road scene as a whole [1]. A
useful task in this regard is action classification. Separating actions requires the classifier
to relate spatial and temporal information across frames. In the literature, human action
recognition is a well studied topic, and this thesis transfers and pushes those ideas further
in the context of a road action detection network (coined RAD-Net), with contributions
including;:

1. Demonstration that action classifiers original built for human action recognition are
also effective in the road scene domain, and in fact benefit from pretraining on large
human action datasets due to shared neural representations of actions between the
two domains.

2. Formulation and solutions to the active agent detection problem. Using optical flow
to better classify active and inactive agents.

3. A novel dynamic Rol-Alignment procedure which uses tracks of agents across RAD-
Net’s input view to better capture spatial features. This processes reduces spatial
noise introduced by the high-motion scenes present in the ROAD dataset, something
that previous action classification algorithms (which were designed for low-motion
human datasets) did not address.

4. Superior performance on the ICCV 2021 ROAD Challenge, compared to the baseline
RetinaNet-3D in [1].

5. Deployment of the proposed RAD-Net to the Bolty research platform, and demon-
stration of how it enhances the fidelity of the environment model and enables more
accurate behavioral planning.

These contributions were submitted to ICRA 2023 in London UK under the title
RADACS: Towards Higher-Order Reasoning using Action Recognition in Autonomous Ve-
hicles [8].

1.3.4 Trajectory Planning and Control

Generally, the task of an AV robo-taxi can be seen as progressing towards a goal state
in a feasible and efficient manner. In the context of urban driving, feasible means with-
out collisions and while obeying traffic rules, and efficient means operating near the speed
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limit. There are several papers in the literature that address the real-time obstacle avoid-
ance problem using optimal control techniques. However, all have drawbacks that make
them ill-suited for the problem presented above, see Section 5.1.1 for details. This thesis
addresses these issues by introducing a novel OCP formulation of the robo-taxi task and
an accompanying MPC solution. The main contributions in this regard are:

1. The system model aligns closely with physical platforms and allows for the compu-
tation and thus the constraint of passenger comfort metrics mandated by Society of
Automotive Engineers (SAE).

2. Constraints are added to the OCP formulation that guarantee feasibility of control
actions with respect to road boundaries, static obstacles, and dynamic vehicles. In
this way, trajectory planning can be executed simultaneously within the controller,
and the final control actions are guaranteed to be dynamically feasible.

3. The controller operates in real-time by employing a novel parallel-solver method
which uses a warm-started “online” solver for real-time performance, while employ-
ing a parallel “exploration” solver which serves to break out of warm-starting local
minima.

These contributions were submitted to ICRA 2023 in London UK under the title Real-
Time Unified Trajectory Planning and Optimal Control for Urban Autonomous Driving
Under Static and Dynamic Obstacle Constraints [9].

1.4 Organization

This thesis is organized as follows:

e Chapter 2 presents the software architecture used to develop, run, and deploy the
ADS to Bolty, as well as the ADS data pipeline.

e Chapter 3 covers the mapping framework used to create the backbone of Bolty’s
environment model, and how the environment model is augmented at runtime to
make online decisions.

e The decision making capabilities of Bolty are extended in Chapter 4 by introducing a
computational vision approach to action classification, which allows for more accurate

augmentations to the DRG over the geometric based methods presented in Chapter
3.



e Finally, no ADS is complete without a control scheme, which is presented in Chap-
ter 5. An MPC was developed that obeys vehicle body constraints and also takes
into account a free space definition that changes dynamically over time (based on
information that the environment model provides).



Chapter 2

Software Architecture and Data
Pipeline

This chapter covers how the WATonomous ADS is architected in simulation and on Bolty.

Acknowledgement: The design and implementation of the technology covered here was
done primarily by Rowan Dempster, with secondary contributions by Charles Zhang and
Chuan Tian (Ben) Zhang.

2.1 Requirements

The requirements for the software architecture design were:

1. Support rapid prototyping of new software modules, and the rapid onboarding of
new WATonomous team members. By rapid prototyping it is meant that when a new
software library dependency or and entire new software module is introduced, that
process should be painless. Developers should not have to worry about incompatible
versioning. By rapid onboarding it is meant that new team members should only
have to install a small set of additional software (limited to Integrated Development
Environment (IDE) software and visualization software like VNC), and any modern
laptop should be able to run such required software.

2. Support the concurrent use of a single VM in the WATonomous server cluster by
multiple developers. This means multiple WATonomous team members can do de-
velopment work simultaneously using the CARLA simulator on the same VM. Thus,
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data coming from CARLA and data being exchanged between ADS modules must
be isolated for every VM user.

3. Have the ability to deploy the ADS developed in simulation to the production Bolty
vehicle with no modifications to the software modules themselves.

2.2 Solutions Implemented

In light of these requirements, the watod ecosytem was designed. In watod, each soft-
ware module (e.g. the detector, tracker, environment model, occupancy grid, etc...) is
containerized into its own Docker container which only has that module’s software depen-
dencies installed (see right side of Fig. 2.1). Thus, when a new dependency is required for
a specific ADS module, only the that module’s Docker image needs to be updated, without
having to worry about affecting the whole system.

watod also supports inter-module communication via ROS. A new module can be added
to watod as a new Docker container and hook-in to the existing data pipeline using the
ROS communication protocols.

An instance of the watod ecosystem can be run remotely on any of WATonomous’ server
cluster VMs and connected to via the Visual Studio Code IDE. Thus, there is no hardware
requirements for new members’ laptops to interact with watod. New team members can get
up and running just by connecting to a VM and executing the watod commands necessary
to start the Docker containers they need to do development (see top left side of Fig. 2.1).

The CARLA simulator is also Dockerized and available via watod. CARLA provides
sensor inputs to the software modules via the Carla ROS Bridge package, allowing for
simulation based development of the ADS. watod, via Docker network isolation, ensures
that data coming from CARLA stays within each VM user’s separate ADS instance, al-
lowing many simulators and ADS instances to be running concurrently on a single VM.
Thus, there is no software-enforced limit to how many concurrent users the VMs in the
WATonomous server cluster can support. There are limits imposed by the hardware re-
sources needed to run the simulations. At the time of writing, the WATonomous server
cluster can support 50+ concurrent team members remotely developing using CARLA.

Furthermore, the Carla ROS Bridge package is configured to publish information in
the same format as the actual sensors on Bolty. Therefore, the ADS modules need not be
aware if they are running in the context of the CARLA simulator, or the real world. This
makes deployment to the research vehicle simple. The only thing that changes is where
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Figure 2.1: Diagram of WATonomous’ approach to software development and deployment.
On the simulation side (top), the penguin monitors represent abstracted Ubuntu VMs
running on some physical hardware in the WATonomous server cluster. Multiple developers
can run isolated ADS instances on a single VM, and can interact with their instance using
Visual Studio Code and a VNC client. Each isolated ADS instance is spun up using watod
utilities, and includes an instance of CARLA, the Carla ROS Bridge, and however many
“front-end” software modules the developer needs for their work. On the deployment side,
there is only ever a single instance of the ADS running on Bolty, and the CARLA simulator
inputs are replaced by the physical sensors. However, from the perspective of the “front-
end” software modules, nothing has changed.

the sensor input is coming from and thus no changes to the software modules are needed
for deployment of the ADS.

One downside of a fully Dockerized simulator and ADS is that any desktop based
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Figure 2.2: Screenshot RViz running in the GUI Tools container, accessible to remote
developers via a VNC client software.

visualization (like the popular RViz software for robotics) is not immediately supported.
To move past this limitation, the GUI Tools container was added to the watod ecosystem.
The purpose of this container is solely to run desktop based visualization software such as
RViz and expose a VNC server. This way, remote developers are able to interact with any
desktop software via a VNC client application on the developer’s local laptop. Fig. 2.2
shows the RViz instance that developers see when they connect to the VNC server exposed
by the GUI Tools container.

An in-depth tutorial of how to use the watod ecosystem in conjunction with ROS and
the WATonomous server cluster can be found at:
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https://drive.google.com/file/d/17N2ZrwlcjUfZgALg3ImMrmcRMzwk0GVz/view.
Additionally, an in-depth tutorial of how to use the CARLA simulation functionality built
into watod can be found at:
https://drive.google.com/file/d/1F32Ui6Qaegl8wS1-gabifP1fNKGzba09/view.

2.3 ROS Software Module Data Pipeline Design

The Front End Software Module block on the right side of Fig. 2.1 is where the majority of
the design work of the ADS was done. A more detailed view of that block is shown in Fig.
2.3. See Appendix B for the custom ROS message definitions mentioned in this section.

Traffic Light TrafficLightList.msg
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Image.msg -_
/ Camera
Camera \mage.msg Detection (2D) Obstaclemsg Taxi Rider
_y| Frustum Association
Obstace.msg DestinationListmsg
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Odometry.|
Legend ometry.msg
Sensor Ego Localization

Planning Module

Inertial Navigation
System

N

2
=
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Figure 2.3: The WATonomous ADS data pipeline. Uni-directional arrows represent “top-
ics” in the publisher-subscriber ROS communication paradigm. Bi-directional arrows rep-
resent topics in the client-server ROS communication paradigm. Arrows are labeled with
the data type (ROS message) being transmitted over that topic.
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Sensor Interfacing

WATonomous uses cameras (Blackfly S Color 3.2 MP GigE Vision) and LiDARs (Velodyne
Ultra Puck) to perceive the world, and a GNSS + IMU Span Device (Novatel SPAN
PwrPak7-E1) to provide odometry. First, raw sensor readings are received from the sensors
and processed into ROS messages by the sensor drivers (Pointgrey Camera Driver, Velodyne
LiDAR Driver, and Novatel SPAN Driver), and then are published into the ROS network
so that the other software modules can further process the information.

Localization

The Novatel SPAN Driver implements a complete inertial navigation system, and publishes
an Odometry.msg messages at 20Hz into the ROS network, which many software modules
subscribe to. The localization stack also sets up the ROS transform tree.

Perception

Next, the perception modules perform detection, classification, and tracking to transform
the high dimensional sensor modalities (images and point clouds) into low dimensional
representations that the environment model can understand. YOLOv5 [1] is used for 2D
object and sign detection in camera images, and publishes Obstacle.msg messages. The
euclidean clustering package from Autoware [10] is used for 3D obstacle detection on the
LiDAR point clouds, and also publishes Obstacle.msg messages. A custom frustum-based
heuristic is used for 2D-3D association. The occupancy grid estimation module used was
developed by Autonomoose [11], and is based on the well-known log odds formulation from
Probabilistic Robotics by Thrun et al. [12]. The environment model sends the 3D positions
of upcoming traffic lights to the traffic light state classification module, where they are
projected into the camera 2D frame and then classified in 2D using Hue, Saturation, Value
(HSV) thresholds. The traffic light state classification module publishes TrafficLight.msg
messages.

Object tracking is done in 3D after the frustum-based association. A modified version
of the ABSDMOT [13] algorithm (a benchmark 3D multi-object tracker which uses a linear
Kalman Filter and Hungarian matching for association) is used, and publishes Tracked Ob-
stacle.msg messages. These tracks as well as the camera stream are then sent to the action
classification module which appends a history of actions to each track using the neural
design described in Chapter 4.
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Mapping and Environment Modeling

Offline high definition Lanelet2 maps [11], which describe lane geometry and topology, are
used for navigation and motion planning. These maps are crafted by hand using the JOSM
map editing software [15].

The environment modeling module unifies the prior Lanelet2 map with the online per-
ception outputs, creating a combined relational graph that is used for behavioral planning.
This process is described in detail in Chapter 3. The behavioral plan is expressed as a
Reference.msg message, which is continuously sent to the controller.

Motion Planning and Control

The controller consumes the Reference.msg message as well as a description of free space
(OccupancyGrid.msg) from the occupancy estimation module. These messages are then
used as parameters for a non-linear program which is continuously solved as part of a MPC
design that optimizes trajectory and control actions (longitudinal acceleration and road
wheel angle). These control actions are then sent to the vehicle’s CAN Bus. Details of the
controller implementation are given in Chapter 5.

CAN Bus Interfacing

The control actions are sent to the CAN Bus modules, or the CARLA simulator in the con-
text of remote simulation development, via the DesiredOQutput.msg message. The control
actions are then actuated and thus the robotic feedback loop is closed

Human-Computer Interface

When a user of the system enters the vehicle, they select a point on the Lanelet2 map
which is displayed via RViz. This point gets translated into a destination lane, which then
gets sent to the environment model as a DestinationList. msg message. The environment
model next runs a search over its internal graphical representation of a world to find a
route from the AV’s current location to the user’s destination, and the autonomous drive
begins.
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Chapter 3

Mapping, Environment Modeling,
and Decision Making

Acknowledgement: The work in this chapter was done primarily by Rowan Dempster, with
help from those acknowledged in Section 3.9.5

3.1 Introduction

Decision making in AVs relies completely on the ability of the agent to aggregate disparate
information sources into a useful model of the agent’s environment. Examples of disparate
information sources include: hand-crafted lane geometries (see top left of Fig. 3.1), tracks
produced by a perception scheme (see middle right of Fig. 3.1), or even a prior environment
model from a previous drive. In this work, we tackle modeling these disparate sources using
relationships, and study how to embed relationships in a unified graphical model we refer
to as the Dynamic Relation Graph (DRG).

Motivating our DRG approach anthropologically, humans do not make decisions based
on isolated objects floating around in a disconnected world, but rather using relationships
between objects to elicit higher order properties. For example, we infer that the keyboard
in front of us has a relationship with the desk it is sitting on. We understand the properties
of this relationship: the keyboard is on top, the desk is solid. Using this understanding,
we decide that we can carry on typing without the keyboard falling away from our fingers.

Widely accepted prior maps of static environment features are relationship-rich [16,

, 17]. Such models encode lane neighborhood/successor relations, relationships between

14



Figure 3.1: The information layers that are fused to create the DRG. Top right is a section
of the MCity Course (https://mcity.umich.edu/), top left is the prior map of the same
section. The middle three layers show how physical information from the map and tracker
are combined, and the bottom layer shows the conflict relationship created.

traffic lights and the lane(s) they control, and have the potential for much more. These
relationships are handcrafted offline by humans during the laborious map creation process.
Therefore, the relationships can be highly complex and expressive if we are willing to incur
high creation costs (time and effort). However, prior maps are static representations. In
order to make dynamic decisions, relationships between online detections and the prior
map must be built at system runtime.
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Standardized methods and toolboxes for creating and embedding prior-online feature
relationships are lacking in the literature, making the logic of AV decision systems opaque.
Many different decisions could be made using the same prior and online information, de-
pending on how the relationships are modeled. Some systems must be safer than others,
but without standardization there is little hope of being able to compare implementations.
The ability to compare implementations goes hand-in-hand with the ability to verify a
model, since verification can be done by comparing to some benchmark. Verifying an AV’s
model of the world is essential to explaining why a decision was made, an area where the
AV industry has struggled to meet the public’s expectations®.

In light of these holes in the literature, we propose our work on the DRG which offers the
following contributions: (1) The DRG serves as a standard tool for extending prior maps
with online observations to create a unified environment model (see Fig. 3.1), allowing for
greater transparency and collaboration on decision-making algorithms. (2) A novel method
for analyzing the combinatorial complexity of decision making in urban environments, and
an analysis of how the DRG reduces these complexities. (3) Design details on various
DRG augmentation routines for common environment features, including pseudo-code and
a C++ prototype implementation which are released at github.com/WATonomous/DRG.

The rest of this chapter is organized as follows: Section 3.2 presents related work on
offline mapping toolsets and attempts at prior-online modeling, followed by our novel DRG
methodology of extending a prior relationship graph with online entities in Section 3.3.
Section 3.4 then briefly covers our implementation of specific feature designs to illustrate
the practical use of the DRG, and Section 3.5 presents the novel method of analyzing the
reduction in decision-making complexity afforded by the DRG. Simulation and on-road
results are discussed in Section 3.7, conclusions are drawn in Section 3.8, and Section 3.9
serves as an appendix for implementation details. To limit the scope of our proposed work,
we are not concerned with ego state estimation errors nor measurement uncertainties,
which are assumed to be handled by upstream modules [18, 19].

3.2 Related Work

The mapping toolset and graph implementation which DRG uses is Lanelet2 [14] [20], an
offline tool for handcrafted static maps. A Lanelet2 map consists of three layers: a physical
layer, a relational layer, and a topological /routing layer (see Fig. 3.2). The physical layer

!The infamous Uber ATG fatality in 2018 notably lacked an explanation of the autonomous system’s
model of the world before the crash, and led to Uber ceasing testing [5].
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contains the observable elements of the world represented using points and linestrings.
Points are the basic elements of the map described by their three-dimensional position in
metric coordinates and linestrings are an ordered array of points used to represent the
polygonal elements in the map.

The relational layer forms edges between elements of the physical layer, thus introduc-
ing relational entities such as lanelets, areas, and regulatory elements (short: regElems).
Lanelets are used to identify sections of the map with directed motion, like vehicle lanes,
pedestrian crossings, rails, etc. A lanelet owns one linestring as the left border, one as the
right, and optionally owns regElems describing the traffic rules applicable to the lanelet.
RegElems are used to define traffic rules such as speed limits or traffic signals®>. The
neighborhood relationships between lanelets generate a topological layer, also known as
the routing graph. The routing graph arises from a network of passable regions, where the
exact topology depends on the road user at hand (emergency vehicles are allowed to take
different routes than passenger vehicles).

Lanelet2 is purely a tool for offline map creation, whereas the DRG is capable of
augmenting prior maps autonomously during system runtime, which is far outside of the
Lanelet2 design scope. The RoadGraph model [21] [22] and other graph based environment
modeling techniques [23] are closer in functionality to the DRG. As with our work, these
papers deal with aggregating and fusing information obtained at runtime of the system
with a prior map. However, they fall short of our work in key places: (1) They do not give
design details or examples of how object tracks from on-board sensors are incorporated into
the model (see our design details in Section 3.4). (2) They focus on describing relationships
in the prior map, which are now part of the Lanelet2 library. Our work uses the established
Lanelet2 library as our prior map and focuses on pushing the design paradigms forwards,
towards a unified online model. (3) They do not cover how their RoadGraph model is
mutated in cases where certain lanes are no longer traversable due to signage or blockage.
Our work examines in detail the problem of modeling features that affect routing decisions.

In [241], Koschi and Althoff describe a reachability set approach to analyzing the inter-
actions between online tracked features and a prior map. The scope of their design is large,
considering phantom tracks and abstractions of vehicle dynamic models in their reachability
analysis. However, the paper does not consider extracting the information of surrounding
traffic participants from sensor measurements, and the uncertainty of these measurements.
In contrast, our approach is integrated into a full scale AV system; we explicitly state
and deal with perception, tracking, and occupancy estimation schemes. Additionally, our
system was validated in a closed-loop fashion whereas Koschi’s and Althoft’s approach was

2In our work, the DRG primarily exploits regElems as our graph entity for modeling online observations.

17



Topological Layer

Routing Graph
Car Emergency Vehicles

SOOI
B—0—EO—W B—0—E—®

Relational Layer

Areas Lanelets Regulatory Elements
@ @ @ @ @ _____ Speed Limit :

lewse 1O

Physlcal’Layel‘ SN

EriYii Y e— |

Pomtsi‘*
[ ............................................. }

Figure 3.2: A one way street illustrating the different layers of a Lanelet2 map. The
lanelets are represented using uppercase letters, the areas using lowercase letters, and the
linestrings using numbers.

only evaluated in an open-loop fashion.
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Figure 3.3: Data flow diagram illustrating the DRG’s lifecycle during a drive, as described
in Section 3.3

3.3 Methodology

The DRG sits between the measurement (perception) and decision (planning) layers of
the AV stack (see Fig. 3.3). It represents a map-centric view of the environment, as
opposed to the common ego-centric approach [25] [26]. The DRG is implemented as a
graph of relationships which is being continuously augmented by the fusion of new online
measurements.

Initialization: On AV system start-up, the DRG is initialized to the prior map. The
features and relationships in the prior map may have been handcrafted, or they may have
been autonomously created and embedded during a previous drive. This flexibility allows
the DRG to continuously and autonomously refine itself, with the possibility of humans in
the loop for verification and correction.

Augmentation: During a drive, the graph structure of the DRG is augmented over
time as new measurements become available. Details of how various specific environment
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features mutate or create new entities and relationships in the DRG is addressed in Section
3.4. However, the DRG is flexible to any sort of augmentation that can be cast as an update
to an existing entity, or as a new entity which has a relationship to an existing entity. All
physical information used to create or update an entity or relationship must be stored in
the DRG for use in verification as described below.

Querying: The primary function of the DRG is to be queried by the decision making
module, providing all necessary physical and relational information. The DRG serves
as a single source of truth for the decision making module, and therefore explains every
behavioral decision the AV system makes. Section 3.5 details how the decision making
complexity of a generic behavioral planner is reduced using the DRG.

Verification: In the event of an accident, the state of the DRG at any point in time
can be inspected offline and run through the behavioral planner to reproduce the sequence
of decisions that lead to the accident. Other designs that do not have a centralized en-
vironment model must store (in the worst case) all sensor data to reproduce behavioral
decisions. Furthermore, the state of the relationship graph can be monitored and inter-
preted online by a safety driver. If at any point in time the relationship graph does not
match what the safety driver observes, they can stop the vehicle before a flawed behavioral
decision is made. Because of the DRG’s map-centric design, online verification and data
sharing about the environment between multiple autonomous agents is possible.

3.4 Implementation

The methodology behind the DRG is implementation agnostic, any mapping toolset and
graph library implementation can be used. For our prototype we used the Lanelet2 C++
library® due to existing implementations of convenient entities like points, linestrings,
lanelets, and regElems, as well as methods to describe properties (via the attributes API)
and relationships (via the addRegElem API). Entities that did not already exist, e.g. pedes-
trians, were implemented as new regElems. The handcrafted lane geometry and topology
(i.e. the routing graph) is the “backbone” of the DRG implementation, which can be
traversed using the besides, next, and similar Lanelet2 graph APIs. Thus, graph search
routines that allow for expressive queries can be implemented. During runtime the back-
bone is augmented by mutating entity properties or instantiating new regElem instances
and forming relationships between those regElems and the backbone.

3Descriptions and algorithms rely on Lanelet2 Application Programming Interface (API) concepts cov-
ered in Section 3.2 and in the Implementation Details Section 3.9, which also contains more detailed
descriptions of the augmentations routines mentioned in this section.
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The remainder of this section covers four case studies of DRG augmentation routines
which run as the AV perceives the environment. It is important to note that the DRG
methodology can be applied on a wide range of features using different augmentation
routines. The routines presented here are intentionally simple as the focus is on the DRG
methodology; more complex routines are discussed in Section 3.8.

A. Stop Signage: In our implementation, we assume that signage is not part of
the prior map, and that the DRG ingests tracks of stop signs at runtime with their 3D
position and a unique ID. A regElem is instantiated using the T'SRegElem API to hold
the sign’s physical information and the addRegFElem API is used to assign the stop sign to
the lanelet(s) it regulates. The regulated lanelet(s) are chosen using a search routine over
the DRG backbone. The behavioral planner then queries each lanelet the ego traverses for
ownership of the regElem, stopping when necessary.

B. Intersection Signage: Signage such as No Right/Left Turn augments the DRG in
a similar manner to stop signs. For each sign, regElems are initialized using the T'SRegElem
APT and regulated lanelets are assigned ownership via the addRegElem API. The regulated
lanelet search routine over the DRG backbone is presented in Algorithm 1. After the
regElem is owned by the regulated lanelets, the behavioral planner queries for a new route
that obeys the augmented routing graph because it is possible the previous route is now
disallowed by the new regulation.

C. Closed Roads: The DRG also ingests occupancy grid information about the
environment, from which untraversable lanelets can be identified. A regElem is initialized
using the OccRegFElem API to store the blocking occupancy grid, which is then added to
each untraversable lanelet. The behavioral planner again uses the findRoute API to search
for a new traversable route.

D. Pedestrian Movement: In our implementation, the DRG ingests tracks of pedes-
trians with their predicted and historical states. A regElem is instantiated using the Pe-
dRegElem API which holds the predicted and historical states. A lanelet conflict set is
generated for the pedestrian based on its predicted and historical states as described in
Algorithm 2. The regElem is then augmented with the stopping point of each conflict
and added to the conflicting lanelets. Similar to stop signs, the behavioral planner queries
each lanelet the ego traverses for ownership of PedRegFElems and stops at the designated
stopping point.
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Algorithm 1 Intersection signage augmentation

Input: sign, DRG
Output: Augmented DRG

@

*

9:
10:

11:
12:

. Initialize regElem <— TSRegElem(sign.type, sign.pos)
Initialize interLls <— {} {Empty dictionary of relevant intersection lanelets}
adjacentLls <— currLl.besides() {Set of all lanelets adjacent to the ego vehicle}
for Il € adjacentLls do
interLls.insert(DRG.findInter(ll)) { DRG.findInter API searches for a successor in-
tersection lanelet}
end for
for [l € interLls do
if DRG.signControls(regElem, [l) {If the sign controls the turning direction of the
lanelet} then
ll.addRegElem(regElem)
DRG.findRoute() { DRG.findRoute() API searches for a new route given the new
regulation}
end if
end for

Algorithm 2 Pedestrian movement augmentation

Input: ped, DRG, waitDist {The conflict radius around a waiting pedestrian}
Output: Augmented DRG

._
@

. regElem < PedRegFElem(track)

confLls <= DRG.within(regElem.predictedStates)

if regElem.isWaiting() then
confLls.insert(DRG.within(regElem.currState, waitDist))

end if

for confLl € confLls do
stopPoint < intersect(confLl, track.predictedStates)
regElem.setStop (stopPoint)
confLl.addRegElem(regElem)

end for

3.5 Decision Complexity Analysis

In this section, we take a general view of behavioral planners, analyzing how any given
planner deals with the combinatorial complexity of the perceived environment features.
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In the literature, there is a notable lack of techniques for expressing the combinatorial
complexity of making a decision, and thus we present our own novel approach: Let F' =
{C1,...,Cn} be the feature class sets for the N distinct classes of features, (e.g. Cpea
represents the set of pedestrians and 0;21 is a specific pedestrian instance). Let E =
{e1,...,ep} be the set of atomic ego behaviors (a simple binary planner, with P = 2,
may have e; = driving,es = stopping). The task of any given behavioral planner is to
implement a mapping between the feature space F', of size N x Y, .o |Ci], to the planner’s
range F.

There are two sources of combinatorial complexity in this mapping, intra- and inter-
class interactions. For example, in the pedestrian feature set C,.q4, intra-class interactions

arise from considering pairs of instances (C]()izl, C’](jzl) and extracting aggregated informa-
tion such as minimum distance to the ego vehicle. Inter-class interactions must also be
addressed. Consider the case where C.,, is the set of pedestrian crosswalk lanelets specified
in the prior map and how the planner reacts depends on the pedestrian’s proximity to the

Cey features. Here, the interaction between the pair of classes (Cped, Cew) is pertinent.

Let Linger (v, ) and Iinga(+,+) be the interaction functions, which express the inter- and
intra- sources of combinatorial complexity (see Fig. 3.4 for an illustration of these functions
and their composition). Note that the output spaces of I, and ;. scale quadratically
over the number of feature classes, and the number of instances in each feature class,
respectively:

O(Linter(F, F)) = |F x F| = ©(N?) (3.1)
O(Lintra(Ci, C1))) = |Cs x Ci| = ©(ICi]?)

Applying the I, © Linter (F') (or equivalently, Iiner 0 Lo (F')) composition to the orig-
inal feature space F' produces a quadratic decision space D of size N? x 3, . |Ci]? (see
bottom left of Fig. 3.4).

Our claim is that the relational graph structure of the DRG benefits any planner using
it by mitigating the quadratic complexity of the decision space introduced by I;nq(-, -) and
Linter(+, +), resulting in an algorithm that scales linearly with the number of feature classes
and instances.

First, regarding inter-class interactions, the DRG introduces a set of homogeneity oper-
ators H;;(Cy) : C; — R;(Cy;) which map heterogeneous feature classes C; to homogeneous
representations R;. An operator is defined over all 4, and for j € {1... K} where importantly
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K is a small constant. The implementation of the operators depends on the prior map fea-
tures, and thus all H;; are parameterized by Cj;. Together, the set of operators transforms
all heterogeneous feature classes into a homogeneous representation space R = {R;...R}.

Concretely, H;;(Cy) is defined for i = {ped, car, cyclist} and j = lanelet conf by
abstracting each heterogeneous feature class into a homogeneous lanelet conflict represen-
tation as described in Section 3.4-D for pedestrians. Furthermore, H;;(Cy) is also defined
for i = {intersection sign, blocked road} and j = untraversable lanelet by applying the
techniques presented in Sections 3.4-B and 3.4-C.

After applying the set of homogeneity operators to the feature space F', the subsequent
application of ;e (+, ) is performed on the constant-sized representation space R (see Fig.
3.4 (right)). The effect is a reduction in inter-class combinatorial complexity:

O(Ljwer (R, R)) = |R x R| = O(K?) = (1) (3.3)

Note that ©(N) homogeneity operators need to be defined, one for each of the N feature
classes.

Next we discuss interactions of intra-class instances. For this discussion either the
original feature space F' or the representatlon space R can be used; we will use the feature
space notation. Note that an instance C’ becomes independent of another instance C’
when conditioned upon their inter-class interaction with the prior map. For example,
consider the case of i = ped. Here, the relative positions or trajectories of two pedestrians
are irrelevant and can be ignored, given their relationship (a potential lanelet conflict) to
the prior map (Cy). Let I, = Lipter(Cl, Cz-(m)) be instance m’s inter-class interaction with
the prior map. The effect on intra-class combinatorial complexity is then:

@([mm(Ci, Cl)) = @<|CZ|> given [m,Vm € Cl (34)

Eq. (4) effectively states that intra-class interactions between instances can be ignored
under knowledge of their interactions with the DRG backbone, allowing the decision al-
gorithm to process each feature class in O(|C;|) time. Moreover, as mentioned previously,
applying the homogeneity operations and calculating the inter-class interactions on the
representation space instead of the feature space yields a constant number of inter-class
interactions. Overall, the decision space size under the DRG is reduced to ©(} ¢ . |Ci])
(see Fig. 3.4 (right)); linear in the number of observed features. This theoretical analysis
is tested in Section 3.7.1, where a simulation with a crowd of pedestrians is carried out.

In summary, by solving the generic behavioral planner task F' +— F in the context of
the DRG structure, we are able to limit or completely eliminate inter- and intra- class

24



Feature Space (F) Feature Space (F)

N*Zi |Gy N*3 [C{
Cped Cren Cped l lcveh
Iinter( 0o ) H{ped,car}, poly_conf
Representation Space (R)
2
NE* % |Ci| K*Z|C{
CPEd(I) Cped(z) R”—confl l Rll_conf
Iim‘ra( toe ) I ( )
Decision Space (D) inter\ « >
N2 * 3, |y K2 * % [C
Rllfcon D Rllfcon 9
Iintra( 9 9c | Im’vm)
Decision Space (D)
O(Z; [Cil)

Figure 3.4: Diagrams illustrating the combinatorial complexity of decision making in dif-
ferent contexts. See Section 3.5 for symbol definitions.

Left: In the context of a generic planner. Right: In the context of a planner which em-
ploys the DRG. Note that under the DRG, representation space R is captured using O(N)
homogeneity operators, resulting in a ©(N) + ©(>_. . |Ci|) design complexity.

interaction checks, resulting in an ©O(N) + O(3 ., . |Ci|) algorithm (where ©(N) repre-
sents the number of homogeneity operators needed and ©() . . |Ci]) is the size of the
decision space). We expect that this is a lower bound on the complexity of understanding
and reacting to each detected feature instance.

3.6 Verification and Interpretability

There are three properties that make our view of the world easy to verify and interpret.
The first property is the relationship graph itself, which is an explicit encoding of the be-
havioral planner’s understanding of the world. Therefore, any behavioral decision must be
derived using information in the relationship graph. The second property is inherited from
the Lanelet2 design philosophy: Our feature designs (implemented as regElems) always
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contain the complete physical information that was used to infer the relationships. There-
fore, a behavioral decision can always be traced back, through the relationships graph, to
physical information that was observed. The last property is a subtle but distinguishing
factor: The DRG is not ego-centric, but rather map-centric.

These properties benefit verification and interpretability in the following ways:

1. In the event of an accident, the state of the DRG at any point in time can be inspected
offline and run through the behavioral planner to reproduce the sequence of decisions
that lead to the accident. Other designs that do have a centralized environment model
cannot do this.

2. The state of the DRG can be monitored and interpreted online by a safety driver.
If at any point in time the relationship graph does not match what the safety driver
observes, they can stop the vehicle before a flawed behavioral decision is made.

3. Because of the DRG’s map-centric design, online verification and data sharing about
the environment between multiple autonomous agents is possible. This is not possible
in most behavioral planning schemes, which have an ego-centric view of the world

[25] [26].

3.7 Evaluation

The efficacy of the DRG was evaluated using a stress test in simulation and real world
deployment onto the WATonomous research vehicle (Bolty).

3.7.1 Simulated Pedestrian Crowd

In simulation we were able to assess and prove the reduction in behavioral planner com-
plexity analyzed in Section 3.5. Using the CARLA simulator [27] we spawned increasingly
large crowds of pedestrians (see Fig. 3.5) and measured the runtime of the DRG augmen-
tation and behavioral planner query. As seen in Fig. 3.6, the runtime scales linearly as the
number of pedestrian instances increases. Even with 25 pedestrian instances the planner
runtime stays real-time, under 500 ms. This result is expected due to the elimination of
intra-class interactions afforded by the DRG as analyzed in Section 3.5.

26



Figure 3.5: The simulated pedestrian crowd used to stress test the DRG and measure the
accuracy of the claims made in Section 3.5. The yellow lines are linear state predictions of
the pedestrians obtained from the simulator’s ground truth, from which lanelet conflicts
(indicated in red) are extracted as described in Section 3.4-D

3.7.2 Vehicle Deployment

The DRG was primarily evaluated by deploying the prototype implementation to a research
vehicle (Bolty) performing AV taxi routes in a closed course. The lane geometry and
relational topology was handcrafted offline using the Lanelet2 toolset. At runtime the AV
system encountered stop and intersection signage, blocked roads, pedestrians, and traffic
signals. All of these features were observed online (not part of the handcrafted map) and
the DRG was augmented in real time, enabling the behavioral planner to obey the traffic
rules.

Overall, results of the experiments were promising; the AV system was able to navigate
the course and obey all traffic rules, including stops and re-reroutes, by using the DRG.
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Figure 3.6: Plot showing the linear relationship between the number of observed pedes-
trian features and the complexity of decision making under the DRG. Execution time in
milliseconds is used as the complexity metric.

The full taxi route can be viewed at https://youtu.be/DNZgheT4Y2s7t=153. Additionally,
the safety driver was able to continuously monitor the state of the DRG, verifying its
correctness or bringing the vehicle to a stop when inconsistencies appeared.

3.8 Conclusion

In this work, we have shown how prior relational maps can be extended to include on-
line observations, and the advantages this approach has for reducing behavioral planning
complexity and verification. The proposed Dynamic Relation Graph is a natural and ef-
fective step forward towards a unified model of encoding both prior and online information
sources. We believe that the proposed scheme will standardize how AV systems encode
the richness of relationships in the world, and will allow for greater collaboration in the
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development of AV decision-making algorithms. Our main contribution in this regard is
a detailed insight into how such a relationship graph can be implemented in a real world,
closed loop system in the context of a standard perception and mapping schemes.

One of the main advantages of the DRG framework is its flexibility to accommodate
many different feature model implementations, which will be the goal of our future work.
We plan to enhance our pedestrian model using the set reachability methods presented in
[24], and employing learning based approaches where procedural logic falls short. We also
aim to perform online verification and consistency checking experiments on a single DRG
instance shared between multiple autonomous agents observing the environment.
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3.9 Implementation Details

3.9.1 DRG and Lanelet2 API

All Lanelet2 entities (points, linestrings, etc...)

attributes ‘ Dictionary member variable that stores properties.
Lanelets
addRegElem Function that assigns ownership of a regElem to the lanelet.
besides Function that returns the lanelet(s) to the left and right.
next Function that returns the successive lanelet(s).
RegElems
TSRegElem RegElem subtype that stores traffic sign positions and types.
OccRegFElem RegElem subtype that stores an occupancy grid.
PedRegElem RegElem' subtype that stores an a pedestrian track with historical
and predicted states.
predictedStates PedRegElem member variable storing a linestring representation of
the predicted states.
. iy PedRegElem boolean function indicating whether a pedestrian is not
.18 Waiting . . .
moving based on its historical states.
setSto Mutates a PedRegElem by adding a point on the owning lanelet where
' p the ego vehicle must stop for the pedestrian.
.currState Member variable which stores the current position of the pedestrian.
DRG
Performs Dijkstra’s search to find the closest lanelet tagged with a
findInter turn_dir, where the edge weights are the lengths of lanelets. Then
performs a max cost depth first search to find all other intersection
lanelets within a distance threshold from the closest lanelet.
signControls Checks 7if an intgrsectign sign type applies to a lanelet based on the
lanelets’s turn_dir attribute.
Performs Dijkstra’s search from currLl to the destination over the
findRoute .
routing graph.
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Returns the lanelet(s) which contain the point or linestring operand,
within optionally accepts a distance operand which expands the search by
that radius.

Global variables and functions

currLl The lanelet that the ego vehicle is driving in.
intersect Returns the geometric intersection(s) of two linestrings.
RoutingGraph
Boolean function which consumes a lanelet and a traffic participant,
canPass returning whether that lanelet is traversable by the given traffic par-
ticipant.

3.9.2 Stop Signs

The DRG aims to associate a tracked stop sign to the lanelet(s) that it regulates. The
objective is to first obtain a set of candidate lanelets based on a search radius* around
the sign’s position, and then to determine which of the candidate lanelets contain the ego
vehicle (the controlled candidate). The controlled candidate as well as its adjacent lanelets
form the controlled set, to which the sign is associated.

A schematic diagram of the process is shown in Fig. 3.7A. The green rectangle repre-
sents the ego vehicle approaching the intersection and the three parallel red lines identify
the ego vehicle’s lanelet. When the stop sign is observed, all lanelets in a search radius of
the stop sign are considered candidate lanelets (highlighted with orange and blue lines).
All lanelets that are adjacent to the initial candidate lanelets are also added to the set
of candidate lanelets. If the ego vehicle is inside the bounds of a candidate lanelet, that
lanelet is the controlled candidate (the red lanelet). Additionally, all lanelets adjacent
to the controlled candidate are regulated (the blue lanelet). Therefore, if the ego vehicle
changes lanes after the initial construction of the controlled set, it will still be regulated
by the stop sign.

In our implementation we use the T'SRegFElem class, a custom subclass of Lanelet2’s
RegElem class, to model the physical stop sign. The T'SRegElem is constructed using the
stop sign’s tracked location, so that offline verification of associations is possible. After
being constructed, the T'SRegElem is added to each lanelet in the controlled set via the
addRegFElem API. As a result, the behavioral planner can determine if the lanelet the ego

4The search radius is a parameter in this approach. In the proposed implementation, a search radius
of 9.2 m is used, based on the maximum lane width of 4.6 m.
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is traversing is regulated by a stop sign by looking at the T'SRegElem(s) that the lanelet
owns.

3.9.3 Intersection Signage

This subsection covers associating tracked intersection signs to the virtual lanelets inside
of the intersection they control. Signs include: No Right/Left Turn, Right/Left Turn Only
and Do Not Enter. In addition, we cover the implications on routing after association.

Our objective is to construct relationships between traffic signs and upcoming virtual
intersection lanelets in order to block potential routes that disobey traffic rules. First, all
detections of the five mentioned traffic sign types are collected from the tracker. For each
tracked sign, we instantiate a TSRegElem tagged with the sign’s type. Each T'SRegElem
stores the location and type of sign and will be used to model relationships between the
sign and the lanelet(s) it regulates.

In order to determine which lanelets are regulated by a T'SRegElem, we must query the
Lanelet2 map. We begin by querying all lanelets adjacent to the ego’s current lanelet. Next,
we execute a search procedure, starting at each adjacent lanelet, through successor lanelets
with the goal of finding all intersection lanelets tagged with a turn_direction attribute. This
attribute is a custom a prior: attribute on the virtual intersection lanelets which stores
the turn direction (right, straight, left) of the lanelet. The search for intersection lanelets
is done in two steps:

1. Perform Dijkstra’s search to find the closest lanelet tagged with a turn_direction (i.e.
the closest intersection lanelet) where the edge weights are the lengths of lanelets.
Dijkstra’s algorithm was selected for its simplicity and because we know that the
search space is a small, constant, number of levels deep.

2. Perform a Max Cost Depth First Search to find all other intersection lanelets within
a distance threshold from the closest lanelet.

We now have a set of intersection lanelets in our direction of travel that are candidates
to be associated with a sign. In Fig. 3.7B the candidates are drawn in red. By comparing
and matching the turn_direction attribute with the type of the T'SRegFElem, we add the
appropriate TSRegFElem to the lanelet(s) that are regulated by the sign. For example, a
“right” turn_direction lanelet would have the “no right turn” T'SRegElem applied to it (as
shown in Fig. 3.7B).
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Figure 3.7: Illustrative schematics for (A) stop signage, (B) intersection signage, (C) oc-
cupancy, and (D) pedestrian modeling. The schematics are drawn on top of a 4-way
intersection at the MCity Course.

By adding each TSRegElem to the lanelet(s) it regulates, we have a model of how
the traffic signs relate to the prior map. However, we have yet to take this information
into account in the context of routing decisions, that is, the Lanelet2 RoutingGraph still
holds the old lanelet connectivity information. In order for our T'SRegElems to affect
the RoutingGraph connectivity, we overrode the canPass traversability evaluation of each
lanelet to take into account TSRegElem owned by that lanelet. However, the current
RoutingGraph implementation is immutable after being created, since it was designed
assuming complete a priori knowledge of information relevant to routing. Thus, in order
to update connectivity, we must destroy and recreate the entire RoutingGraph whenever a
lanelet has its canPass evaluation changed.

3.9.4 Closed Roads

This subsection focuses on modeling occupancy of the road surface in a fashion that stores
both the physical specification of the occupancy and the relationship it has to specific
lanelets. Our goal is to determine if there are any obstacles on the road, which lanelet(s)
are affected, and what impact this has on routing.
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Occupancy grid estimation is done with a VLP-32 LiDAR installed on the ego vehicle.
To establish a relationship between the occupancy grid and lanelets, we first align the
occupancy grid coordinate frame with the map frame. Next we check if a lanelet is blocked
by looping through all grid cells that overlap with the lanelet and check if any cells are
occupied. We do this using functions that project from a map coordinate to a grid cell and
vice versa.

At this point, the algorithm attempts to find a maneuver around the obstacle by switch-
ing lanes. The lateral shift distance needed to avoid the obstacle is based on the leftmost
and rightmost bounds of the occupied area. Two outcomes are possible depending on the
lateral shift distance and the existence/occupancy of adjacent lanelet(s): (1) There exists
an unblocked adjacent lanelet that the vehicle can switch to and avoid the obstacle while
staying on the current route, (2) all adjacent lanelets are blocked, and a reroute is necessary
(Fig. 3.7A illustrates this case).

In the second case we must mutate the Lanelet2 map and RoutingGraph to add infor-
mation about the blockage. In the map, we create a relationship between the observed
physical occupancy and the blocked lanelet(s) using a custom Lanelet2 RegFElem subclass,
OccRegElem. An OccRegElem object is instantiated with the relevant occupancy cells
and added to each of the blocked lanelets. In the RoutingGraph, the new OccRegFElem
is interpreted in the same manner as in Section 3.9.3, by overriding the canPass method
in a custom RoutingGraph subclass, returning false if the lanelet owns an OccRegFElem.
Finally, the RoutingGraph needs to be destroyed and re-created with the new occupancy
information so that a new route can be computed.

3.9.5 Pedestrian Movement

In this subsection we aim to model pedestrian movement and interactions with the prior
map. Modeling is done by calculating a lanelet conflict set for each tracked pedestrian, and
constructing a relationship between the pedestrian’s physical attributes and each lanelet in
that conflict set. First, we examine the spatial interactions between the pedestrian’s pre-
dicted movement (from the tracker) and the lanelets in the map coordinate frame. Lanelets
whose polygonal boundary intersects with the predicted movement of the pedestrian are
added to the conflict set (see Fig. 3.7D). However, even if a pedestrian is not moving,
it could still be in behavioral conflict with a lanelet, e.g. if waiting to cross the street.
Therefore, if a pedestrian is not moving and is within a distance threshold from a lanelet,
that lanelet is also added to the conflict set. This behavioral conflict is an example of
how our environment model explicitly encodes behavioral decisions, simplifying behavioral
planning and verification as discussed in Section 3.5.
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Once the conflict set has been determined, we calculate and store properties about
the relationship between the pedestrian and each conflicting lanelet. These properties are
used in the future tasks of behavioral planning and verification. We briefly review these
properties and the motivation for including them:

1. Stop Point: the spatial point in the map frame at which the pedestrian’s predicted
movement intersects with the lanelet’s center line; or the point closest to the pedes-
trian if the pedestrian is waiting. Used in behavioral planning to determine where
the ego vehicle should stop for the pedestrian.

2. Predicted/Past Movement: a copy of the information provided by the tracker that
was used to calculate this conflict. Necessary for verification.

The C++ instantiation of the relationship is done via a new subclass, PedRegFElem, of
RegElem class, which stores the physical properties of the relationship. The PedRegElem
object is added to each lanelet in the conflict set. This implementation allows for easy access
to all relevant PedRegFlem information in the behavioral planning phase. To determine
if a lanelet along the ego’s current lanelet path conflicts with a pedestrian, the behavioral
planner simply queries each lanelet on that path, asking it if it owns a PedRegFElem. If
so, the behavioral planner can then retrieve the PedRegElem object and the stopPoint

property.

Acknowledgment

We would like to thank Maahir Gupta, Wanda Song, Christopher Mannes, and Jacob
Armstrong for their help implementing and evaluating the prototype.

35



Chapter 4

Action Classification

Acknowledgement: Development of RAD-NetV1 was kicked off in Summer 2021 by Rowan
Dempster and Chuan Tian (Ben) Zhang. Work continued on RAD-NetV2 in Summer 2022
by Quanquan Li, Eddy Zhou, and Alex Zhuang, supervised by Rowan Dempster.

4.1 Road Action Detection Network V1 (RAD-NetV1)

4.1.1 Introduction

The perception task in automated driving is to understand the scene around the ego
vehicle using camera data. What constitutes “understanding” is an on-going conversation,
motivated by what types of information are necessary for safe and effective driving decisions
to be made autonomously. Historically, the literature has focused on agent detection and
classification tasks which operate on single image frames [7]. State-of-the-art algorithms fit
to this task, such as Faster R-CNN [25], have seen large increases in performance over the
past decade, and have been adopted into driver assistance systems [29]. A major factor in
this success is the availability of large scale datasets such as the KITTI vision benchmark

[30]-

However, as the field of automated driving matures, the perception research community
is shifting their attention towards tasks that represent a deeper understanding of the road
scene as a whole [1]. A useful task in this regard is action classification. Separating actions
requires the classifier to relate spatial and temporal information across frames. Action
classification is also essential for effective autonomous decision making. Especially in urban
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driving, understanding the intention of other intelligent actors in the scene is crucial to
maneuvering safely while not being overly conservative. To this end, the University of
Oxford Brookes has recently published the ROAD dataset [1], the first dataset to focus on
action classification tasks in the road scene domain.

Agent detection is well studied in the road scene domain. Additionally, action classi-
fication is well-studied in the human action domain, for example in the AVA ActivityNet
Challenge [31]. In this work we combine these algorithms for effective action detection and
classification in the road scene domain, proposing a two-stage action detector which we
coin the RAD-NetV1. Our contributions are as follows: (1) We found that the action clas-
sifiers first developed for the human action domain can also be trained and perform well on
road scenes, even though they contain a wider range of intelligent actors (cyclists, vehicles,
etc...). (2) Importantly, we have also discovered that transfer learning from large scale
human action datasets (such as AVA) significantly improves performance of RAD-NetV1
in the road scene domain. This is evidence that RAD-NetV1 is able to learn a shared
neural representation space that is useful to classify actions in various domains, similar to
how humans do.

The remainder of this section is organized as follows: Related works including the
ROAD tasks and baseline are discussed in Section 4.1.2, RAD-NetV1 and the algorithms
used in its two stages are examined in detail in Section 4.1.3, results and comparative
findings are presented in Section 4.1.4, and future work is explored in Section 4.1.5.

4.1.2 Related Work

In this section, we review the ROAD dataset, as well as prior work related to the ROAD
tasks which motivated our approach discussed in Section 4.1.3.

ROAD Dataset Tasks and Baseline

The ROAD dataset proposes six tasks in the form of a new annotation database for 18
videos selected from the older Oxford RobotCar Dataset [32]. We only discuss the tasks
proposed in the ROAD dataset that are relevant to this thesis.

Agent Detection: The agent detection task is to draw a bounding box around each
active agent in the scene, and determine the identity class which the agent falls into. Table
4.1 shows the active agent classes, including vehicles, pedestrians, traffic lights, with their
corresponding description. Fig. 4.1 shows the agent class distribution. This task has been

37



well-studied in the literature [33] and there are several useful implementation candidates
which can be found on the KITTI vision benchmark leaderboard [31].

Action Classification: Similar to agent detection, except the categories being assigned
to are actions, e.g. crossing and overtaking (see Table 4.2 for further details). This task
has been studied extensively in the human action domain (see Section 4.1.2). However,
ROAD is the first dataset to provide such a wide breadth of action labels for road scenes.

Agent-Action (Duplex) Detection: A combination of the agent detection and action
classification tasks, where active agents must be pixel-localized, and have their identity
and action categories classified. The agent-action detection task is the main task we work
on in this chapter, with the goal of improving on the baseline given in [1].

Alongside the dataset and these tasks, the authors also published a baseline algorithm,
coined 3D-RetinaNet. 3D-RetinaNet employs a 3D-CNN architecture by inflating 2D con-
volutional layers trained on ResNet50 as described in [35]. Focal loss was also used, as
introduced in [30] to address the imbalance between foreground and background propos-
als while training. In order to track detections from 3D-RetinaNet over multiple frames,
forming action “tubes”, the authors used the incremental approach presented in [37] which
relies on solving a linear program to match new detections to existing tubes.

Table 4.1: ROAD active agent classes with description.

Label name Description

Autonomous-vehicle The autonomous vehicle itself

Car A car up to the size of a multi-purpose vehicle
Medium vehicle Vehicle larger than a car, such as van

Large vehicle Vehicle larger than a van, such as a lorry

Bus A single or double-decker bus or coach
Motorbike Motorbike, dirt bike, scooter with 2/3 wheels
Emergency vehicle Ambulance, police car, fire engine, etc.
Pedestrian A person including children

Cyclist A person is riding a push/electric bicycle

Vehicle traffic light  Traffic light related to the AV lane
Other traffic light Traffic light not related to the AV lane
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Figure 4.1: Instance counts of various agent classes as specified in [1] (orange is frame-
level instances, blue is video-level). Shows an 1000x class imbalance for some agent classes
(Pedestrian vs. Emergency Vehicle). Dealing with this imbalance is discussed in Section
4.2.1.

Classification of Human Actions

Datasets

Although the ROAD dataset is the first of its kind to focus on road scene action classifi-
cation, there exist many long-standing datasets covering the human action domain. These
include Moments in Time [35] (three second, single-event videos), AVA [39] (untrimmed 15
minute videos, spatio-temporal action labelling, multiple actions per frame), and Kinetics
[10] (trimmed 10 second, single-event videos), among others. The AVA dataset and task
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Table 4.2: ROAD action labels, with description.

Class name

Description

Moving away
Moving towards
Moving

Reversing

Braking

Stopped
Indicating left
Indicating right
Hazard lights on
Turning left
Turning right
Moving right
Moving left
Overtaking
Waiting to cross
Crossing road from left
Crossing road from right
Crossing

Pushing object
Traffic light red
Traffic light amber
Traffic light green
Traffic light black

Agent moving in a direction that increases the distance between Agent and AV.
Agent moving in a direction that decreases the distance between Agent and AV.
Agent moving perpendicular to the traffic flow or vehicle lane

Agent is moving backwards.

Agent is slowing down, vehicle braking lights are lit.

Agent stationary but in ready position to move

Agent indicating left by flashing left indicator light, or using a hand signal.
Agent indicating right by flashing right indicator light, or using a hand signal.
Hazards lights are flashing on a vehicle.

Agent is turning in left direction

Agent is turning in right direction

Moving lanes from the current one to the right one.

Moving lanes from the current one to the left one.

Agent is moving around a slow-moving user, often switching lanes to overtake
Agent on a pavement, stationary, facing in the direction of the road.

Agent crossing road, starting from the left and moving towards the right of AV.
Agent crossing road, starting from the right pavement and moving towards the left pavement.
Agent crossing road.

Agent pushing object, such as trolley or pushchair, wheelchair or bicycle.
Traffic light with red light lit.

Traffic light with amber light lit.

Traffic light with green light lit

Traffic light with no lights lit or covered with an out-of-order bag.

specification is most closely fit to the ROAD tasks, and is widely used as a benchmark to
train and compare action classification algorithms.

View Based Approaches

Most algorithms that process video data do not look at the complete video at once, but
rather process short views of the complete video scene. The term view refers to a temporal
(and possibly spatial) crop of a long sequence of frames. Papers of note in this category
include the Action Transformer proposed by Rohit et. al in [11]. The Action Transformer
ingests short (3 second) views centered at keyframes in the AVA dataset, first passing them
through a 3D convolution layer!, and then a Region Proposal Network (RPN) [23] to extract
initial candidate regions in the feature map space. The head of the network classifies and
regresses each proposal using a transformer architecture, where the feature map around
the proposal make up the memory (keys and values) of the attention mechanism, and the

Tnflated 3D convolutions (I3D) are a common building block in video action recognition networks
[42, 43, 44, 45], although excluded for brevity in this review.
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proposals themselves are used as the queries. The transformer is multi-headed and multi-
layered (see [10]) with the motivation that self-attention will provide context from other
actors and objects in the clip when the query is updated in each layer, helping to discern
complex actions.

The issue with views is that some classifications are not possible given only a few
seconds of frames to work with. The SlowFast design proposed by Feichtenhofer et. al
[17] as well as Long-Term Feature Bank (LFB)s proposed by Wu et. al [18] provide two
methods of at least partially removing this constraint. In SlowFast networks, two streams
of temporal information are processed in parallel, one sampled at a high resolution (the
“fast” stream), and another at low resolution (the “slow” stream). The fast stream captures
detailed motion of actors in the scene, but uses a smaller CNN channel capacity and has a
short view length, whereas the slow stream has a large CNN channel capacity and captures
large temporal strides over the video. The two processing steams are connected via lateral
connections from the fast pathway to the slow pathway, allowing fine motion details to
augment the long temporal strides of the slow pathway.

LEBs [18] are similar to the slow stream of the SlowFast network, in that the bank
accumulates information from a high temporal resolution stream that views only a few
seconds from a 3D CNN. However, whereas SlowFast’s slow steam processes its own low
temporal resolution steam of information as it is fused with the high resolution stream, the
LFB only accumulates information from the short term 3D CNN backbone.

With the efficacy of the SlowFast as a video feature extractors proven by its first place
finish AVA ActivityNet Challenge 2019 [31], efforts in the past few years have focused
on different network head architectures which compute actor-actor and actor-context re-
lationships to separate harder to classify actions. A successful approach is ACAR-Net [3],
in which Rol (from an off-the-shelf detector e.g. R-CNN) aligned feature maps from Slow-
Fast are first concatenated and passed through a 1x1 convolution to model actor-context
relations as done in the Actor-Context-Relation Network [3]. However ACAR-Net goes fur-
ther by introducing a High-order Relation Reasoning Operator (HR?O) which computes
relationships between pairs of the actor-context relations themselves. The author’s argue
that an operator such as HR?O is needed to discern complex actions in the human domain
where the action of one actor is dependent on another actor’s context (e.g. riding in a
car versus driving it). In Section 4.1.4 we examine the question of if such an operator is
needed in the road scene domain.

Complete Video Approaches

Recently there have been efforts in natural language processing tasks to apply the
transformer architecture to large corpuses, which the quadratic self-attention computation
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complexity has previously prohibited. Works such as Longformer [19] and BigBird [50]
propose methods to sparsify the self-attention mechanism, which they view as a graph
formed by fully connected token nodes. This is achieved by introducing relational inductive
biases (see [51]) to the graph structure including (1) limiting self-attention to a constant
sized set of local neighboring tokens (Longformer and BigBird) possibly with dilation
(Longformer), (2) attending to a constant sized set of random other tokens (BigBird),
and (3) attending to a set of externally added global tokens (Longformer and BigBird).

In the video understanding domain, where frames can be viewed as tokens in the “video
corpus”, these sparsification techniques have also enabled self-attention to be applied over
never before possible lengths of videos. The Video Transformer Network (VTN) proposed
by Neimark et. al [52] is one such work, directly applying the Longformer sparsification
technique to frame tokens produced by any 2D feature extractor (Neimark et. al found the
Vision Transformer (ViT) [53] backbone most effective). VTN is able to attend to frames
in the video that are most important for the classification task, effectively ignoring “noise”
frames.

4.1.3 Methodology

Overall, our methodology behind RAD-NetV1 is to combine state-of-the-art agent detectors
with strong classifiers for human actions, striving to improve on the ROAD tasks discussed
in Section 4.1.2. In the remainder of the section we will discuss: (1) An overview of
the two stages of RAD-NetV1; (2) our approach to object detection and classification
using CenterNet; (3) our approach to action classification, comparing the SlowFast + Feed
Forward Network (FFW) and SlowFast + ACAR algorithms; (4) integration details of
RAD-NetV1’s two stages.

RAD-NetV1

Unlike the baseline 3D-RetinaNet, RAD-NetV1 uses a two-stage approach to solve the
agent detection, action classification, and duplex detection tasks. This decision was made
because agent detection and action classification are individually well-studied tasks, and
the strengths of existing solutions can be combined in a two-stage approach.

The first stage of RAD-NetV1 is object detection, for which we use CenterNet [5],
the backbone of one of the top performing algorithms (CenterTrack [55]) from the KITTI
vision benchmark that only uses RGB images. The CenterNet algorithm produces a list of
bounding boxes with agent classifications, effectively solving the agent detection task.
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The second stage of RAD-NetV1 deals with action classification, a task that requires
special attention and treatment of the temporal dimension to separate action classes.
Therefore, a different sort of network architecture is necessary. Instead of the single
temporal-resolution 3D-CNN that the baseline employed, we use the more recently de-
veloped SlowFast architecture [17] as our video feature extractor. SlowFast employs and
fuses multi-resolution temporal streams of frames, combined with non-local [35] blocks (see
Section 4.1.2). For the head of the network (which generates the action-class scores), we
experimented with two options in order to discern the effect of ACAR-Net: (1) A FFW
prediction head as done in the original SlowFast paper [17]; (2) further relational-context
reasoning via the ACAR-Net head design [3].

In order for RAD-NetV1 to solve the ROAD tasks, information from both the first and
second stage is necessary. Specifically, the stage-two action classifier needs bounding box
priors from the stage-one detector. Thus, as shown in Fig. 4.2, when a new keyframe is
processed it is first fed through the detector to produce bounding box priors. The box
priors are then used as the input, along with contextual frames around the keyframe, to
the action classifier which provides action-scores on a per-box basis.

Video Sequence Key Frame
Context

Key Frame

¢ Y
Agent Detector Box Action Classifier Agent-Action
Priors Detections

Figure 4.2: Schematic of the RAD-NetV1 agent-action detection pipeline as described in
Section 4.1.3

Stage I: Object Detection

Acknowledgement: The object detection work described in this section was done by Chuan
Tian (Ben) Zhang.
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For the first stage of the RAD-NetV1 pipeline, we applied state-of-the-art object de-
tection algorithms on the ROAD dataset. CenterNet is used and performed well on the
MS-COCO 80-class object detection and classification dataset. We performed experiments
using CenterNet under two settings: training on the ROAD dataset from scratch and
training on the ROAD dataset with initial weights from a pretrained model used for the
MS-COCO dataset. Because of the difference in the number of classes (11 in ROAD v.s.
80 in MS-COCO), some head weights are dropped in the transfer learning experiment.

To set up the experiments, we converted the ROAD dataset annotation format into
the COCO annotation format, and adapted an existing implementation of the CenterNet
algorithm to work with the transformed dataset. To evaluate the results, we used the
COCO API, which implements the standard intersection-over-union (IoU) calculations
and evaluates the agent labels with the equality condition. This is consistent with the
definition of ROAD, which uses 0.5 as the IoU threshold to determine the correctness of
bounding boxes.

The learning rate schedule used is identical to the one used for the “ctdet_coco_dla_2x”
experiment in the original CenterNet implementation [50].

Stage II: Action Classification Algorithms

Starting out, we had two hypotheses regarding action classification. First, we hypothesized
that algorithms which performed well in the human action domain are also well-suited for
the road scene domain, even though there is a wider range of intelligent actors, i.e. cyclists,
vehicles, in road scenes. Furthermore, we hypothesized that transfer learning can be applied
to leverage the existing large scale human action datasets, such as AVA, and improve the
action classifier’s performance in the road scene domain.

To test these hypotheses we experimented with two action classification algorithms:
SlowFast backbone + FFW head and SlowFast backbone + ACAR-Net head. Both of
these algorithms performed well on the AVA human action dataset.

We also experimented with different weight initialization settings. Each algorithm
was trained in a “scratch” setting where all weights were initialized randomly and in a
“pretrained” setting where the Slowfast backbone weights were initialized using a model
trained on the AVA dataset. Note that in the “pretrained” setting the head network
weights were not transferred as the head network architecture changes based on which set
of action classes are being predicted. Both settings were then trained (or fine tuned) on
the “train-1” split of the ROAD dataset videos, using the annotated action classes found in
Table 4.2, and evaluated on the corresponding “val-1” split. During training, the ground
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truth bounding box priors were used as inputs along with 30 (SlowFast + FFW) or 45
(SlowFast + ACAR-Net) frames of view context. An overview of the training process is

shown in Fig. 4.3.

Model Initialization
Setting 1: AVA Road Dataset Training / Fine Tuning
Weights
Keyframe Annotated
Context Feed-Forward Actions
p Head
. «| SlowFast Feature Class -
Initial Model i Extractor Scores
~ ACAR-Net
Ground Truth Head
Box Priors <
Setting 2: Random
Weights T Weight
Updates

Figure 4.3: Schematic of the action classifier training pipeline as discussed in Section 4.1.3.
Note that the two heads are trained separately, and are only shown together here for
compactness.

The same optimizer, learning rate schedule, and data augmentation techniques were
used as in the publicly available implementations of SlowFast [57] and ACAR-Net [58].

Integration Details

In order to calculate the mAP metrics which are comparable to the 3D-RetinaNet base-
line, the two stages discussed previously were integrated by providing the bounding boxes
generated by the detector to the action classifier as priors. To this end, the detector first
generates a JSON file containing detections on each frame, uniquely keyed by the video and
frame IDs. Then, when the action classifier evaluates a keyframe, the unique key for that
frame is generated again and box priors and retrieved from the JSON file. The keyframe
context is retrieved from the dataset as usual, and passed through the action classifier along
with the predicted bounding boxes in the keyframe. This integration process allowed us
to evaluate RAD-NetV1 in the same way that the 3D-RetinaNet baseline was evaluated.
These results are discussed in the next section.
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4.1.4 Results and Discussion

Overall, the agent detector and action classification algorithms performed strongly in their
respective stages (achieving 62 mAP and 34 mAP individually). When the two stages
were integrated, RAD-NetV1 performance dropped to 25 mAP, one point below the base-
line 3D-RetinaNet. These initial results are nevertheless promising, and we believe that
RAD-NetV1 will outperform the baseline after further refinement (see Section 4.1.5). The
remainder of this section discusses in detail results of the CenterNet, SlowFast, ACAR-Net
algorithms.

CenterNet Results

The two CenterNet experiments (training from scratch and transfer learning) were trained
for 11 epochs each and they appear to have drastically different performance characteristics.
The experiment where the CenterNet model is trained from scratch showed promising
decrease in loss initially. However, both the training and validation losses worsened shortly
after. The transfer learning experiment, on the other hand, exhibited expected behaviour
with the training loss decreasing in each epoch.

4.5

— training loss (from scratch)
© validation loss (from scratch)
training loss (transfer learning)
validation loss (transfer learning)

35

Loss

Epoch

Figure 4.4: Training and validation loss progression the CenterNet experiments. The
validation loss is evaluated every 5 epochs.
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Fig. 4.4 shows the loss at each epoch of training. The experiment where training
started from scratch reached its minimum training loss at epoch six. Then the training
loss degraded rapidly. This may be due to the learning rate being set too high. The transfer
learning experiment, on the other hand, shows a steadily decreasing loss. Due to time and
resource constraints, the training for both experiments was stopped after completing epoch
11.

Type | IoU TL FS Baseline
AP 0.50 0.620 | 0.549 | 0.445
AP 0.75 0.321 | 0.240 | N/A
AR ] 0.50-0.95 | 0.487 | 0.430 | N/A

Figure 4.5: Object detection and classification: best average precision (AP) and average
recall (AR) values evaluated on the val-1 split of the ROAD dataset. Two experiments are
shown: training CenterNet from scratch (FS), training CenterNet with transfer learning
(TL). The 3D-RetinaNet baseline result as described in [1] is also shown for reference.

Fig. 4.5 shows the best (among all epochs) average precision and average recall values for
various experiments. The transfer learning experiment clearly outperforms the experiment
where the training is done from scratch. Both transfer learning and training from scratch
surpassed the baseline results.

SlowFast and ACAR-Net Results and Comparison

Three different implementations are compared here: (1) SlowFast + FFW (Scratch) has the
SlowFast feature extractor trained from scratch (random weight initialization, see Fig. 4.3)
and a FF'W head; (2) SlowFast + FFW (Pretrain) is the same as SlowFast + FFW (Scratch)
but with the SlowFast feature extractor weights initialized from a model trained on the
AVA Dataset; (3) SlowFast + ACAR (Pretrain) is the same as SlowFast + FFW (Pretrain)
but with the head from ACAR-Net used instead of the FE'W head.

Fig. 4.6 shows the mAP performance on the “val-1” split versus number of epochs
trained on the ROAD dataset for each implementation. Note that these metrics were
generated using the ground truth box priors from the annotation database, in order to
evaluate the efficacy of the action classifier in isolation.

These mAP metrics are comparable to those reported in the AVA leaderboard [31].
This confirms our first hypothesis, that action classification algorithms developed for the
human action domain also perform well in the road scene domain.
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Figure 4.6: mAP versus number of epochs trained on the ROAD dataset for each imple-
mentation variant of the action classifier described in Section 4.1.4

Importantly, there is a profound increase in performance when using transfer learning
from the AVA human action dataset (see Fig. 4.6 blue vs. orange plots). In fact, the
performance is nearly saturated after a single epoch of fine tuning on the ROAD dataset
(see Fig. 4.6 orange plot). These findings are evidence that RAD-NetV1 is able to learn
shared representations of actions between different domains (human and road scene). This
domain transfer phenomena is well-documented in the image classification task, but to our
knowledge these findings are first documented evidence in the action classification task.

Lastly, we also note that the ACAR head was able to outperform the FF'W head. How-
ever the gain was smaller than reported for the AVA Dataset (3 points versus 5 points),
leaving effectiveness of ACAR’s relational-context design in road scenes up for discussion.

To get a more-fine grained interpretation of these results, Fig. 4.7 shows the perfor-
mance of each implementation variant split by each action class. Looking at the per-class
differences, we see that pretraining the SlowFast feature extractor improved performance
across the board. Comparing the FFW and ACAR heads, ACAR noticeably improves
performance (by about 10 points) on the “crossing” (directional, waiting, etc...) related
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actions. These actions are visually similar, and can only be separated by looking at the

context of the scene and relation to other actors, areas that the ACAR-Net was designed
for.

We also note that the more difficult (crossing, turning) and most difficult (overtaking)
actions have a large temporal scope compared to the easier actions (being stopped, or
moving away). Implementation of a LFB (see Section 4.1.2), or variants on the long-
term attention mechanism like VTN (see Section 4.1.2) may improve performance in these
difficult classes.
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Figure 4.7: mAP versus action class for each action classifier variant discussed in Section
414

RAD-NetV1 Results and Discussion

Quantitative Results: To assess the quantitative performance of RAD-NetV1, the ground
truth box priors used for the action classifier training were replaced with box priors from
the object detector. Object detector priors with confidence scores less then 0.3 were filtered
out. The introduction of imperfect box priors decreased the mAP of the action classifier
by nine points, to 25 mAP for RAD-NetV1.
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Qualitative Results: Qualitative results produced by RAD-NetV1 can be viewed here:
https://www.youtube.com/watch?v=asylL5mFisw, using one of the videos from the val-1
split. Fig. 4.8 shows example keyframes taken from this video which emphasize why action
detection work encouraged by the ROAD dataset is crucial for automated driving systems.

Although our initial implementation of RAD-NetV1 lags behind the baseline’s 26 mAP
performance on the action task, refinements (discussed below) are available that will close
this gap and improve on the baseline.

4.1.5 Conclusions and Future Work

This section described our original two-stage approach, RAD-NetV1, to the action detec-
tion and classification tasks posed by the ROAD dataset. The proposed agent detector
and action classifier stages both perform well individually. However, the performance de-
grades when the two algorithms are combined for RAD-NetV1 to solve the duplex task.
Refinements are discussed in the next section to address this drop in performance.

Specifically, the concept of “active-agent” detection needs to be addressed. In the
ROAD dataset, only active-agents, defined as agents that are actively performing an ac-
tion, are labeled. However, the CenterNet detector (and other common detectors) are not
designed for such a discriminative task, as inactive and active agents may appear identi-
cal in a single frame. Thus, the drop in performance when using the detector boxes as
action-classification priors instead of the ground truth boxes can be partially explained by
a large number of false positive active-agent detections being present in the detector boxes,
but not the ground truth boxes. Improvements on active-agent detection is discussed in
Section 4.2.1.

Furthermore, the current single keyframe box prior approach is ill-suited for the difficult
actions with large temporal-scope, as the actor of interest may occupy different regions of
the contextual frames, relative to the keyframe. Thus, adjustments the Rol Align algorithm
from [59] (which both SlowFast and ACAR-Net use to splice the prior boxes out of the CNN
feature maps) are necessary to support varying box priors across the contextual frames, as
discussed in Section 4.2.2.

Lastly, the imbalance of the action classes in the ROAD dataset also needs to be
addressed (see Fig. 4.9 for class instance counts). One simple solution is to over-sample the
low-instance classes while training, which is usually done via a denser data augmentation
regime for those classes. Another approach is to use a loss function which is less sensitive
to classes that the network is already well-fit to. Focal loss [30], as used in the baseline
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https://www.youtube.com/watch?v=asylL5mFisw

(a) In this frame the ego vehicle is beginning to
make a left turn in the presence of a pedestrian.
Deciding to yield or proceed is dependent on
the actions of the pedestrian, which in this case
RAD-NetV1 classified correctly as “Waiting to
Cross”.

(b) A second scene where the safety of the ego
vehicle is dependent on whether the idling van
is stopped, or indicating that it will be entering
the ego’s lane. In this case RAD-NetV1 cor-
rectly classifies the van as “Stopped”, and the
ego proceeds.

(c) This frame presents a more complicated
scene where different types of intelligent actors
(pedestrians and cyclists) as well as occlusions
(of the cross walk for the pedestrian on the
right) are present. Deciding to proceed safely
through the intersection requires the actions of
the two pedestrians, and the bike to be classi-
fied, which in this RAD-NetV1 does correctly.

(d) Another challenging scene for deciding how
close to the stop line the ego vehicle should be
as it approaches the correctly classified red light.
The information required here is that the pedes-
trian on the left is moving away, instead of cross-
ing in front of the ego vehicle. Also, the cyclist
is stationary on top of the stop line, forcing the
ego vehicle to stop well before the line.

Figure 4.8: Example outputs of RAD-NetV1 on keyframes in a “val-1” split video from the
ROAD dataset. These output frames are chosen to emphasize the importance of action
classification in road scenes. Best viewed using software with zoom ability to see labels.
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Figure 4.9: Instance counts of various actions as specified in [1]. Shows an 100x class
imbalance for some action classes (Move Away vs. Overtake). These imbalances correlate
with performance drops as seen in Fig. 4.7.
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3D-RetinaNet, is a good candidate in this regard and its implementation is discussed in
Section 4.2.3.

Although not discussed in the next section, future work could also include experiment-
ing with convolutional-free video architectures, such as TimeSformer [60], which are built
on purely self-attention computations over the space and time dimensions. Such designs,
although radically different than the 3D-CNNs discussed in this report, have shown state
of the art performance on the Kinetics Dataset, and can be applied to longer views.
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4.2 Road Action Detection Network V2 (RAD-NetV2)

In light of the shortcomings of RAD-NetV1, various improvements were investigated, as
identified in Sections 4.1.5.

4.2.1 Active Agent Detection

Acknowledgement: The active agent detection work described in this section was worked
on collaboratively with Quanquan Li.

A major drawback of RAD-NetV1 was that the first stage detection algorithm had a
large number of false positives of active agents, because an inactive vehicle can appear
practically identical to an active one, see Fig. 4.10 for an example.

Figure 4.10: Here we see a datapoint from the ROAD dataset which contains both active
(which have labels) and inactive (no labels) vehicles. Note how both kinds of vehicles
(active and inactive) have a similar appearance, and thus are difficult for an appearance
based detector to discriminate between.
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Creating an Active-Inactive Agent Dataset

In order to discriminate between active and inactive agents, at the minimum a dataset with
labels of inactive agents is required. To generate such a dataset, a common object detector
trained on the COCO dataset is used in conjunction with the ROAD dataset. Then, for
each frame in the ROAD dataset, let R; be the set of labeled (active) agents in frame i
of the ROAD dataset, and let O; be the set of all agents detected by the object detector.
Then, the set of inactive agents is O;/R;, where R; set membership is established by an
IoU of greater than 0.2. The resulting “psuedo-labels” of inactive agents are shown in Fig.
4.11.

Figure 4.11: Example frame from the created active-inactive agent dataset. Agents in
green are any active class (as in the original ROAD dataset), whereas agents in red are the
newly created pseudo-labels of inactive agents.

Average Precision (AP) results from training on the active-inactive dataset versus train-
ing on the original ROAD dataset are presented in Table 4.3

As shown in Table 4.3, using the created inactive agent dataset for training helps the
object detector differentiate bewteen active and inactive agents, yielding an improvement of
7.1 points on AP@0.5-0.95 and 6.6 points on AP@0.5, using the original ROAD validation
set.
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Model AP@0.5-0.95 | AP@0.5
Original ROAD Dataset 30.9 61.3
Inactive Agent Dataset 38.0 67.9

Table 4.3: Comparison of validation accuracy for training on the ROAD dataset versus the
created active-inactive dataset.

Super-category Classes

As shown in Fig. 4.1, there is an issue with agent class imbalance in the ROAD dataset,
biasing the training of the detector towards the common classes and harming mAP. How-
ever, note that specific class identities are not used for the final task of action classification,
only the bounding boxes are. Thus, super-classes can be created for classes that are vi-
sually similar. For example, merging MedVeh, LarBeh, Bus, and EmVeh into a new class
“Vehicle” alleviates the imbalance of EmVeh shown in Fig. 4.1. In total we are left with 6
new super-classes: Ped, Vehicle, Cyc, Mobike, TL/OthTL, Inactive. The new class distri-
bution is well balanced and improves detection mAP substantially as shown in Table 4.4.
However, this is not a fair comparison since the task has fundamentally changed. To get
a fairer comparison the final task of end-to-end action classification can be assessed using
the bounding boxes from the 10-class dataset vs. the new 6-super-class dataset. Results
for that are also presented in Table 4.4.

Super-category
Class Balance | Detection mAP | Action mAP
67.9 23.8
v 80.4 24.9

Table 4.4: Comparison of validation accuracy for the detection model with and without
super-category class balance.

As seen in Table 4.4, super-class based detection does in fact improve the end-to-end
action mAP by 1.1 points.
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(a) The first frame from which op- (b) The second frame from which (c¢) The optical flow obtained from
tical flow is derived. optical flow is derived. the two images.

Figure 4.12: A visualization of the inputs and outputs of the RAFT network. In the output
(c) the active agent can be clearly identified, unlike in the inputs (a) and (b).

Optical Flow Signals

As seen in Figs. 4.10 and 4.11, the active and inactive classes generated in Section 4.2.1
are visually similar, and thus do not provide a strong visual discrimination signal for the
detector to work with. A better signal of agent activeness is whether or not the agent is
moving across time in the scene. Optical flow is a method for computing such a signal for
each pixel in sequence of two images. To compute an optical flow image for each frame
in the ROAD dataset, we used RAFT: Recurrent All Pairs Field Transforms for Optical
Flow [2]. See Fig. 4.12 for an example of the optical flow images generated. In order to
apply pretrained convolutional filters to the low maps, a color wheel representation is used
where the direction of the flow vector determines the color and the magnitude of the flow
vector determines the intensity.

In order to fuse the appearance information from the RGB images, as well as the motion
information from the optical low image, either a shallow fusion or a deep fusion architecture
can be used (see Fig. 4.13). In shallow fusion, the flow map is first concatenated to the
RGB image before being passed through the ResNet backbone. Although simple, the main
issue with the shallow fusion architecture is that ResNet filters pretrained on ImageNet and
COCO cannot be used because the number of channels in the input tensor has changed.
Alternatively, a deep fusion architecture can be employed where concatenation is delayed
until after the individual application of the ResNet and Feature Pyramid Network (FPN)
layers. The benefit of the deep fusion design is that the pretrained ResNet filters can be
used individually on each of the 3-channel RGB and colorized flow maps, which increases
accuracy as shown in Table 4.5.
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Figure 4.13: Comparing the shallow fusion architecture, which does not allow for usage of
pretrained ImageNet and COCO filters, to the deep fusion architecture, which does allow

for pretrained filters.

Model

AP@0.5-0.95

Baseline (RGB only)
Shallow fusion
Deep fusion

56.2
52.2
59.9

Table 4.5: Comparison of validation accuracy under different optical flow fusion strategies.

As seen in Table 4.5, introducing the flow map signal does in fact boost performance
by 3.7 points when using the deep fusion strategy. However, the shallow fusion actually
decreases performance by 4 points. This comparison shows the importance of using the
pretrained ImageNet and COCO filters, afforded by only the deep fusion strategy.

Furthermore, as seen in Table 4.6, the deep fusion strategy continues to improve per-
formance by 0.9 points when applied on-top of the inactive agent dataset and super-class

improvements discussed above.
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Model AP@0.5-0.95
Baseline (RGB only) 80.4
Deep fusion 81.3

Table 4.6: Comparison of validation accuracy for the best performing optical low model.
The baseline includes using the inactive agent dataset and the super-class balancing strat-
egy discussed above.

4.2.2 Dealing with High Motion Scenes

RAD-NetV1 inherited its keyframe based design from ACAR-Net, which was targeted at
low-motion scenes found in the AVA Dataset. In low-motion scenes, spatial information
from a single frame suffices to describe the locality of the action across the entire temporal
view. However, given the high ego and non-ego motion of agents in the ROAD dataset,
spatial information in the keyframe does not accurately localize the action in frames far
from the keyframe (see Fig. 4.14 for an example).

Dynamic ROI (Tube) Based ACAR

Acknowledgement: The tube-based Rol-Alignment implementation described in this sec-
tion was worked on collaboratively with Eddy Zhou.

To mitigate this spatial mismatch across the view, we changed the input definition of
the action classification model to take a sequence of detections across the view (i.e. a
track, or tube) for each agent in the keyframe. In order to implement this change we
needed to introduce a tracker on-top of the detection step, and change the ACAR-Net
Head architecture to support multiple Rols for each agent we are classifying the action of.

For the tracker we chose OC-Sort [01] for its state of the art performance. OC-Sort
takes the detections as input, and associates a tube_uid with each detection that serves to
associate detections over time. We note that OC-SORT is especially capable of handling
occluded observations, which happen often in road scenes. In order to eliminate the possi-
bility of different object classes in the same track, we separately track agents from different
agent classes.

An illustration of the architecture change to the ACAR-Net Head can be found in Fig.
4.15. As seen in 4.15(a), ACAR-Net originally performed a single Rol-Align operation
using the keyframe Rol, after the slow and fast feature tensors are already temporally
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(a) First frame in frame-based (b) Middle (keyframe) frame in(c) Last frame in frame-based
ACAR-Net input frame-based ACAR-Net input ACAR-Net input

(d) First frame in tube-based (e) Middle (keyframe) frame in (f) Last frame in tube-based
ACAR-Net input tube-based ACAR-Net input ACAR-Net input

Figure 4.14: Difference between inputs to frame-based vs. tube-based ACAR-Net. The top
row (a-c) is the frame-based input, obtained from just the detector. The keyframe detection
(b) does not provide good spatial localization of the agent across the entire temporal view
(a) and (b). In contrast, the bottom row (d-f) is the tube-based input based on the detector
and the OC-Sort tracking algorithm. In combination with the modifications made to to the
ACAR-Net model discussed in Section 4.2.2; the tube does provide good spatial tracking
across the view, improving action classification accuracy as presented in Table 4.7.

pooled. As motivated by Fig. 4.14, we replaced this keyframe based Rol design with the
design found in 4.15(b). In our new design a Rol-Align operation is performed for each fast
and slow frame-tensor, using the Rols from the tube of detections that correspond to each
frame-tensor, before temporal pooling is applied. This way, the correct spatial features are
extracted from each frame-tensor. This modified Rol-Align approach is outlined in Alg. 3.

The results of the tube based ACAR-Net design are shown in Table 4.7. As seen in the
table, the tube-based ACAR-Net design increases performance by 2.5 points on top of the
active agent improvements described in Section 4.2.1.
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(b) The redesigned tube Rol based ACAR-Net architecture.

Figure 4.15: Comparing keyframe based ACAR-Net with tube based. In (a), only a single
Rol-Alignment operation is performed, after temporal pooling. This design works well for
low motion datasets such as AVA, but may introduce spatial noise in high motion datasets
such as ROAD. In (b) we redesigned the ACAR-Net Head to apply Rol-Alignment for each
frame-tensor before temporal pooling. This method provides better spatial alignment of
the agent’s features across the entire temporal view, but requires a tube of detections as
input.
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Algorithm 3 Tube Rol-Alignment Adapted to SlowFast

Input: slowFeats, fastFeats, bb {list of bounding boxes per frame}
Output: Feature Tensor with Encoded Tracks through Tube ROI-Alignment
. roi_fast_feats =[]

: roi_slow_feats = |

. __ temporal_len(fastFeats)
: alpha " temporal_len(slowFeats)

1
2
3
4: for idz, fastFeal € temporal_enumerate(fastFeats) do
5. if (idz + 1)/alpha = 0 then
6
7
8
9

rois = ROIAlign(slowFeats|idz|, bb[idx])
roi_slow_feats.append(rois)
end if
. rois = ROI Align(fastFeat, bblidz))
10:  roi_fast_feats.append(rois)
11: end for
12: fast_feats = Temporal AvgPool(roi_fast_feats)
13: slow_feats = Temporal AvgPool(roi_slow_feats)
14: feats = Concatenate(fast_feats, slow_feats)
15: return feats

Network Val 1
Original ACAR-Net + Optical Flow Detector | 27.8
Tube ACAR-Net + Optical Flow Detector 30.3

Table 4.7: Improvements from tube ACAR-Net design, we see a 2.5 point improvement
when using the tube based design discussed in Section 4.2.2. All ablations are reported on
validation split 1 since it has the most even class distribution.

4.2.3 Dealing with Class Imbalance

Acknowledgement: The focal loss experiments described in this section were worked on
collaboratively with Alexander Zhuang.

As examined in Section 4.1.5, there are magnitudes of difference between the number
of action class instances. The baseline 3D-RetinaNet used focal loss to deal with the
imbalance, however RAD-NetV1 did not, using vanilla Binary Cross Entropy loss instead.
In RAD-NetV2 we adopted the focal loss implementation from 3D-RetinaNet [1] (originally
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Algorithm 4 Sigmoid Focal Loss

Input: sigmoid activated preds, one hot encoded labels, number of positive samples npos,
focusing parameter v, weighting factor a

Output: Computed loss

. 11 = binary_cross_entropy(preds, labels)

a_weight = a * labels + (1 — a) * (1 — labels)

pt = preds * labels + (1 — preds) = (1 — labels)

v_focus = a_weight x ((1 — pt)7)
loss = (I1 * y_focus).sum() /num_pos
return [oss

from RetinaNet [36]). The loss implemented is presented in Alg. 4.

The results of switching to focal loss (with 7 = 2.0 and « as the inverse frequency of
each class) are presented in Table 4.8. As shown in the figure, focal loss effectively deals
with the action class imbalance shown in Fig. 4.9, which is consistent with the results
presented in [1], overall boosting performance by 3.0 points. This experiment was run
only on the action classification stage, using the ground truth box priors from the ROAD
dataset.

Loss Function Val 1
Sigmoid Loss 34.7
Sigmoid + Focal Loss | 37.7

Table 4.8: Improvements from focal loss design, we see a 3.0 point improvement when
using the focal loss design discussed in Section 4.2.3. All ablations are reported on “val-1"
split since it has the most even class distribution.
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4.2.4 Final RAD-NetV2 Results

The final design of RAD-NetV2 with all the improvements from Section 4.2 is shown in
Fig. 4.16.
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Figure 4.16: RAD-NetV2 system architecture. Given a set of frames in a clip, their optical
flow is estimated using RAFT [2]. Both clips (RGB and flow) are sent frame-by-frame into
the object detector where each RGB frame and its corresponding optical flow frame are en-
coded and summed up at multiple feature scales. We found that utilizing a pretrained RGB
backbone on 3-channel optical flow improved model predictions and accuracy. Following
detection, an online object tracker is used to link detections into tubes. Tubes present in
the key frame of the clip are then fed into our action classifier, which encodes agent tubes
through a novel Rol-Alignment procedure that takes advantage of the inherent structure of
feature encodings outputted by SlowFast. Following encoding, we adopt [3]’s higher-order
relations reasoning to compute the attention between each encoded agent tube and the
other agents present in the clip. The result is the action predictions of agents present in
the key frame.

We focus our performance evaluations on the ICCV 2021 ROAD dataset. Our results
show an improvement over the baseline on average, with a significantly improved frame and
video-mAP on the “val-17 split. Full results are shown in Table 4.9. Qualitative results
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of the entire RAD-NetV2 pipeline (active agent detection, OC-Sort based tracking, and
modified ACAR-Net Head classification) can be found at
https://youtu.be/QQF8z1fEt1I.

Model Val 1| Val 2 | Val 3 | Avg
3D-RetinaNet (frame-level) | 26.2 | 11.7 | 21.2 | 19.7
Ours (frame-level) 30.3 | 10.0 | 22.9 | 21.1
3D-RetinaNet (Online) 170 | 114 | 14.6 | 143
Ours (Online) 21.1 | 114 | 134 | 153
Ours (Offline) 24.0 | 11.73 | 13.87 | 16.52

Table 4.9: Frame and video-mAP scores on the ROAD dataset. We compare frame-
mAP@Q0.5I0U and video-level mAP@0.2I0U following the 3D-RetinaNet baseline. Exper-
imentally, it is observed that these results may fluctuate by ~1%. For our online results,
Tube-ACAR considers a temporal extent of 32 frames, so we are able to perform box in-
terpolation within gaps of 32 frames or less.

4.3 Deployment of RAD-NetV2 to Bolty

To enhance the scene understanding capabilities of Bolty, and drive in a less conserva-
tive manner, RAD-NetV2 was deployed to the perception stack, and integrated with the
environment model.

4.3.1 Perception Integration

In order to deploy the RAD-NetV2 to the ADS, the network’s inputs need to be generated
in a real-time manner. Refer to Section 2.3 for a refresher on the data pipeline design, the
relevant pieces are copied to Fig. 4.17 in more detail.

In brief, the history of 2D observations is added to each track. The observations are then
time synchronized (see Alg. 5) with a buffered temporal view from the camera stream,
and both the temporal view and the tube of observations are run through the action
classification model. The result is a binary classification for each class, and the class with
the highest score (if it is over 0.5) is added to the action classification history for that
track.
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Figure 4.17: Data pipeline used to deploy RAD-NetV2 to Bolty. The resulting action
classified tracks are sent to downstream modules (environment modeling), where they are
used as input to behavioral planning decisions.

Algorithm 5 Detection - Frame Buffer Time Sync

Input: Frame timestamps, observed bbozes (both sorted from most recent to oldest)
Output: For each frame timestamp, finds the temporally closest bbox and time_delta
1: matcht =10
2: matched_bbores = [|
3: time_deltas = ||
4: for stamp € timestamps do

5. while TRUE do

6: match_delta = abs(stamp — bboxes|match_i].stamp)

7 next_match_delta = abs(stamp — bboxes[match_i + 1].stamp)

8: if match_delta < next_match_delta OR match_i +1 >= len(bboxes) then
9: BREAK

10: end if

11:  end while

12:  matched_bboxres.append(bboxes|match_i))

13:  time_deltas.append(abs(stamp — bboxes[match_i].stamp))
14: end for

15: return matched_bboxes, time_deltas

Integration Results

Real world testing was carried out at the Waterloo Region Emergency Services Training
and Research Centre (WRESTRC). The entire test scenario can be viewed at https:
//youtu.be/KdrLhPqi4Rk, which shows a pedestrian stopped on the side of the road. Fig.
4.18 presents the qualitative results of the deployment, showing the input and output of the
deployed action classification model. As seen in the figure, the spatial footprint is tracked
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Figure 4.18: Figure showing the visual and Rol inputs to the ACAR-Net model, as well as
the top classification score across the entire tube, and the temporal misalignment for the
frame.

across the temporal view to provide a better visual description of the region of interest, as
discussed in Section 4.2.2.

Table 4.10 presents the quantitative results of the deployment, comparing the keyframe
based model against the tube based model. As seen in the table, the Tube ACAR-Net
model produces the correct classification stopped the majority of the time, whereas the
Keyframe ACAR-Net model misclassifies the majority of the time. This can be attributed
to the poor region of interest input to the Keyframe ACAR-Net model, as analyzed before
in Section 4.2.2.

Model Stop | MovTow | MovAway
Keyframe | 0.15 0.00 0.85
Tube 0.54 0.26 0.20

Table 4.10: Ratio of classifications over the test scenario.

4.3.2 Integration with Environment Model

The only change to the environment model is that incoming tracks of agents now have
a history of action classifications attached to them. The environment model uses this
additional information to better discern whether or not to create relations between the
tracks and other entities in the DRG.
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Algorithm 6 Handle Pedestrian With Action

Input: Tracked ped with history of action classifications, history time ¢ to consider, set of
safe actions safe_set.
Output: Boolean indicating if the pedestrian should be inserted into the conflict graph.
1: nunter fere =0
2: n_total =0
3: for action € ped.action_hist do
4:  if time :: now() — action.stamp >t then
5 BREAK
6: end if
7. n_total+ =1
8
9

if action.label ¢ safe_set then
n_anter fere+ =1
10:  end if
11: end for

12: return =rterfere - 5
n_total

For example, refer to the original modeling of pedestrian tracks and their potential
conflict relations with lanelets as laid out in Alg. 2. In that original implementation of the
algorithm, the decision of whether or not a pedestrian conflicts with lanelet was based on
(1) whether the linear trajectory prediction of the pedestrian intersects with the lanelet
and (2) if the pedestrian is stationary, whether it is within some radius of the lanelet. It
is clear that these geometric heuristics will lead to a large number of false positive conflict
relationships being instantiated. Not all pedestrians whose predicted linear trajectory
enters a lanelet will in-fact enter that lanelet - perhaps there is simply a t-intersection in
the sidewalk - and certainly not all pedestrians standing close to the road will jump out
into traffic (see Fig. 4.19(a) for an illustration of this failure case).

The action classification history helps to limit these false positive cases by classifying the
intentions of pedestrians based on their appearance descriptions, rather than geometrical
descriptions. Alg. 6 implements a less conservative version of Alg. 2 by taking advantage
of these appearance based intention classifications. Fig. 4.19 compares the resulting DRG
state under the conservative Alg. 2 to the resulting DRG state under the improved Alg.
6 (using safe_set = {Stop, Wait2X}). In the figure we see that the new implementation
does improve decision making, allowing the AV to proceed past the stopped pedestrian.

67



tube viD: 1
class: MovTow (0.4950) - .’
||

(a) Shows the overly conservative behavioral decision for the ego vehicle to stop when there is no
visual indication that the pedestrian will interfere with the ego vehicle. This flawed behavior can
occur when only using the geometric heuristics specified in Alg. 2, or when using an inaccurate action
classifier as discussed in Section 4.3.1.

tube viD: 1

misaligun: 0.0000
class: sStop (0.7706)

(b) Shows the reasonable ego behavior of driving past a stopped pedestrian, enabled by accurate
action classification as specified in Alg. 6.

Figure 4.19: Comparing different ego behavior in the stopped pedestrian scenario under
different DRG implementations.
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Chapter 5

Trajectory Planning and Control

5.1 Introduction

In the SAE AutoDrive Challenge 1 [62], SAE and GM set forth guidelines for vehicle
dynamics metrics that should be obeyed by AVs to ensure comfortable and safe urban
driving. These guidelines include limits on longitudinal acceleration and jerk, as well as
lateral acceleration in the vehicle’s body frame. The guidelines are to be adhered to as
the AV accomplishes the Dynamic Driving Task (DDT). Generally, the DDT can be seen
as progressing towards a goal state in a feasible and efficient manner. In the context of
urban driving, feasible means without collision and while obeying traffic rules, and efficient
means operating near the speed limit.

5.1.1 Motivation

There are several papers in the literature that address the real-time obstacle avoidance
problem using optimal control techniques. However, all have drawbacks that make them
ill-suited for the problem presented above. The authors of [63] apply a nonlinear MPC
method, similar to the one presented in Section 5.3, to the obstacle avoidance problem.
However, the controller must be instructed by the perception system on which direction to
avoid the obstacle (left or right). This assumption is unsatisfactory because the directional
decision in itself needs to consider the dynamics of the vehicle to know if a maneuver to the
left or right of the obstacle is most optimal. The authors of [(1] take an interesting approach
towards integrated obstacle avoidance by representing obstacles as a potential field in the
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cost formulation. However, this paper, as well as [65], [66], and [07] have the issue that
the avoidance maneuver controller (which they separate from the lower level actuator
controller) is based on a particle representation of the vehicle. Therefore, these approaches
have the same issue as using a higher level planner: the planned states generated by the
lower fidelity planning model may not be dynamically feasible and therefore are unsafe.

In [68], a cubic polynomial is utilized to describe the lateral deviation from the reference
line. Similarly, the authors of [09] and [70] use a sigmoid function. However, none of these
papers provide an analysis of why these functions were chosen in the context of their OCP
objective function. In contrast, the scheme proposed in this chapter avoids obstacles in a
manner that is consistent with its OCP objective function because the obstacles themselves
are part of the OCP formulation.

In [71], an MPC-based technique for short-term path planning among multiple moving
objects is presented. Experiments are carried out in simulation and present promising
results in a variety of scenarios. However, the work depends on a linearized bicycle model
assumption, which may not be a valid assumption during avoidance maneuvers that require
large road wheel angles. The authors also assume that all obstacle information is known
before system start-up and that the operating environment is a straight road, which makes
their approach not applicable to a real-world setting.

In [72] the authors take a Dynamic Programming (DP) approach to optimal obstacle
avoidance. The paper claims that with a prediction horizon of 50 their method has “high
accuracy and fast computing time, which can satisfy the requirements for application of
autonomous vehicle driving on real roads.” [72]. However, the authors do not present any
quantitative data relating to computation time of the DP solution. Since DP solutions are
usually prohibitively slower than other optimal control techniques (especially with a large
prediction horizon), these claims should be viewed with skepticism until full experimental
data is released.

In [73] the authors implement a path following MPC controller similar to the one pre-
sented here and deploy it to a VW Golf VII. However, no constraints for static obstacles,
dynamic obstacles, nor passenger comfort were designed. This strictly limits the opera-
tional domain of the deployment to the simple scenario of following a reference line.

In [74] the authors use hard constraints to avoid moving obstacles, similar to the work
presented here. However, the application of [74] is high speed ground vehicles in unstruc-
tured environments. The authors realize the benefit of a single-level design where motion
planning and reference tracking are combined into a single optimization program. The au-
thors also compare hard-constraint vs. soft-constraint (e.g. potential fields) formulations
of the obstacle avoiding optimization problem. The authors find that hard constraints out-
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perform soft constraints in terms of obstacle avoidance performance and optimization time.
However, even with the hard constraint formulation the optimization time was 45 seconds,
putting the method well out of the domain of real-time implementation. In contrast, our
work presented in this chapter operates in real-time.

In [75] the authors operate in the same context of [71], without a reference in an
unstructured environment. However, in [75] the obstacles are assumed to be static. Addi-
tionally, the authors only consider constraints that enforce vehicle dynamic safety, and not
passenger comfort. Additionally, like [69], the controller decides on a speed profile, which
then needs to be further regulated into torque commands, which can introduce additional
predictive model inaccuracy.

5.1.2 Contributions

This chapter addresses the issues presented above by introducing a novel OCP formulation
of the DDT and an accompanying MPC solution. The main areas of improvement in this
regard are:

1. The system model is designed to align closely with physical platforms and to allow for
computation of comfort metrics and constraints, enabling the OCP to be formulated
to abide by the SAE guidelines for passenger comfort.

2. Constraints are added to the OCP formulation that guarantee feasibility of control
actions with respect to road boundaries, static obstacles, and dynamic vehicles. In
this way, trajectory planning can be executed simultaneously within the controller,
and the final control actions are guaranteed to be dynamically feasible.

3. The controller operates in real-time by employing a novel parallel-solver method
which uses a warm-started “online” solver for real-time performance, while employ-
ing a parallel “exploration” solver which serves to break out of warm-started local
minima.

The remainder of this chapter is organized as follows: Section 5.2 presents necessary
background information on routing, reference line parameterization, and obstacle represen-
tations. Section 5.3 presents the OCP formulation, including the system model, objective
function, road boundary constraints, and obstacle constraints. Section 5.4 discusses the
MPC solution to the OCP, including how the OCP is expressed as a Non-Linear Program
(NLP), and the novel parallel-solver method for real-time performance. Experimental re-
sults are then presented and analyzed in Section 5.5. Conclusions are discussed in Section
5.6.
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5.2 Background

In order to properly understand the motion planning scheme in which the proposed con-
troller fits, some background information is necessary. We first note the information given
to the motion planning scheme:

1. A Lanelet2 map which describes lane geometry and topology.
2. The desired goal position on the map.
3. A discretized occupancy grid representation of the static environment.

4. Non-ego dynamic vehicle tracks that describe the position and longitudinal velocity
of the vehicle.

5.2.1 Reference Spline Creation

In order to transform this information into reference signals that the controller can follow,
we first need to find a lane-level route that describes how the vehicle can proceed from
its current state to the goal state. This step is called global planning and is done using
Dijkstra’s search algorithm over the routing graph constructed from the Lanelet2 map [0].

However, a sequence of lanes is not yet an admissible reference signal for the controller.
In order to generate a continuous and differentiable reference signal, a spline is fit to the
centers of the lanes that make up the global route. In brief, CasADi’s Interior Point
Optimizer (IPOPT) [70] is used to find the spline coefficients that minimize squared error
to the lane centers, see [69] for details.

An important note is that a spline has a limited capacity to express the complex lane
geometry which may appear over a long route, incurring high squared error. To solve
this problem, a sliding window is applied over the entire lane route, allowing the spline to
accurately capture the simpler geometry of the lanes in the local window.

The same method is applied to generate splines for the left and right boundaries of the
driveable surface. The lines that describes the driveable surface are determined using the
routing rules stored in the Lanelet2 map.
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Figure 5.1: Graphical representation of the inputs giving to the motion planning scheme
and the controller. The light pink line is the global route constructed from the lane centers.
The blue line on top of it is the local window reference spline. The pink line to the left
and the aqua blue line to the right are the drivable surface boundaries. The red ellipses
show the predicted trajectory of the dynamic vehicle that the ego-vehicle is overtaking.

5.2.2 Occupied Space Representations

Aside from the centerline and road boundary splines, a reference for occupied space over
time is also necessary to allow the controller to plan feasible trajectories. Two inputs
are used to calculate this reference: An occupancy grid, and localized vehicle tracks from
the tracker and environment model. The goal is to have a set of obstacles, and for each
obstacle have a state trajectory that covers the MPC predictive horizon. The obstacle state
representation used is a 2D ellipse, which has 5 degrees of freedom: X and Y of the centroid,
RX (longitudinal radius), RY (lateral radius) and 6 (yaw). To transform an occupancy
grid into a set of obstacle trajectories, the grid is first filtered to only contain information
of obstacles that are on the driveable surface. Then, a region growing algorithm is run with
a neighborhood radius of four cells to cluster the obstacles in the grid (see Alg. 7). Lastly,
the Minimum Volume Enclosing Ellipse (MVEE) approximate iterative algorithm [77] |
is used to fit an ellipse to each cluster found by the region growing algorithm (see Alg.
8). The result of this process is illustrated in Fig. 5.2. Since the occupancy grid contains
information about the static portions of the environment only, the occupancy ellipses are
the same for each step in the MPC horizon.

L
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Algorithm 7 Region Grow

Input: occupancy grid, row r, col ¢, radius rad, visited 2D array visited
Output: /N, 2/ array, N is the number of cells in cluster
1: Initialize seedList < [(r,c)]
2: Initialize cluster « [(r,c)]
Initialize neighbors < [n for ¢ in product(range(-rad, rad + 1), repeat=2]) if n[0] != 0
or c[1] != 0]

@

4: while len(seedList) > 0 do

5. Initialize currCell < seedList.pop(0)

6:  visited[currCell[0]][currCell[1]] = 1

7. for neigh € neighbors do

8: Initialize tR < currCell[0] + neigh[0]

9: Initialize tC <— currCell[1] 4+ neigh[1]

10: if tmpR < 0 or tmpC < 0 or tmpR > grid.height or tmpC > grid.width then
11: continue

12: end if

13: if grid[tR][tC] == 1 and visited[tR]|[tC] == 0 then
14: seedList.append((tR, tC))

15: cluster.append((tR, tC))

16: end if

17:  end for
18: end while
19: return cluster

Figure 5.2: Illustration of the result of the occupancy clustering procedure described in
Section 5.2.2. The discrete occupied cells are shown in black, the resulting clustered ellipses
are shown in red, and the actual physical obstacles are shown in transparent red.
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Algorithm 8 Grid To Ellipses

Input: occupancy grid, neighbor radius rad
Output: /N, 5/ array, N is the number of ellipses in grid
1: Initialize ells < []
2: Initialize visited <« zeros_like(grid)
3: for r in range(grid.height) do
4:  for c in range(grid.width) do

5 if visited[r][c] == 0 and grid[r][c] == 1 then
6: cluster = RegionGrow(grid, r, ¢, rad, visited)
7: C, rx, ry, theta = MVEE(cluster)

8 ells.append(C.x, C.y, rx, ry, theta)

9 end if

10: end for

11: end for

12: return ells

Algorithm 9 Predicted Dynamic Vehicle Trajectory

Input: envModel, track, MPC step S (in seconds), MPC horizon M
Output: /M, 5] array, vehicle ellipse trajectory prediction
: path = envModel.localizeVehicle(track)
startDist = toArcCoordinates(path, track.pos)
traj = ||
for i in range(M) do
lonDist = startDist + 1 * S * track.lonVel
pl = interpPointAtDistance(path, lonDist)
p2 = interpPoint AtDistance(path, lonDist + 0.1)
theta = atan2(p2.y - pl.y, p2.x - pl.x)
traj.append({ pl.x, pl.y, track.rx, track.ry, theta })
end for
return traj

— =
= O

To generate the ellipse trajectories for the dynamic vehicle tracks, the environment
model module (see Chapter 3) first localizes each track in the lanelet it geometrically
occupies. Then, based on the estimated longitudinal velocity (assumed constant) from the
tracker, and the geometry of the upcoming lanelets, the ellipses are generated following
Alg. 9. This simple prediction scheme can be expanded to a more complex learning based
technique, but this simple method suffices for controller design.
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In summary, the information given to the controller is (as shown in Fig. 5.1):

1. A spline (denoted S,.r) that describes a local window of the global route.

2. Two splines (denoted Sies; and Syign:) which describe a local left and right drivable
surface boundary.

3. A set of predicted trajectory ellipses (denoted O, where O; is the set of obstacles at
step 1, and Oy ; is the prediction for obstacle 1 at the 1st step in the MPC horizon).

5.3 Optimal Control Problem Formulation

This section describes the plant system to be controlled, the predictive model used in the
proposed MPC controller, the objective function, and the constraints.

5.3.1 System and Predictive Models

Input Variables: The plant speed is controlled by applying a longitudinal acceleration
command (denoted u,), and yaw is controlled via commanded road wheel angle (denoted
us). Additionally, an input variable referred to as path progress ue controls how far along
the reference spline the next state will progress. The usage of this path progress input in
the context of path following is explained below.

State Variables: The state vector was chosen in order to maintain the vehicle dynamic
metrics that are necessary to compute the constraints presented below. Specifically, the
state vector maintains the vehicle’s inertial pose tuple [zx, 2y, z4]7 as well as longitudinal
and forward body frame velocities (denoted z.,, and x,,, ,, respectively). Additionally, a
state variable referred to as the path integral x= is defined as the integration of the path
progress input mentioned above. The path integral variable keeps track of how far along
the reference route the ego is, and its functionality in terms of the objective function is
explained below.

Output Variables: The system output variables are the odometry signals generated
by the INS. The INS directly measures inertial pose, as well as longitudinal and lateral
velocities and accelerations in the body frame. The current path integral is estimated using
a discretized linear search over the reference spline’s parameter range.

Predictive Model: To describe the evolution of the system over time, a nonlinear model
is necessary due to the nonlinear behavior of vehicular systems under large road wheel
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angles [79]. In an urban driving setting, maneuvers that require large road wheel angles
are common. This is in contrast with a highway driving setting that may only require a
few degrees of road wheel angle and hence operate inside of a linear dynamics range. To
this end, a nonlinear kinematic bicycle model is employed, as illustrated in Fig. 5.3 and
described by Egs. 5.1, 5.2:

YA.O

> >
X

Figure 5.3: Schematic of the kinematic bicycle model representation of a vehicle. In the
figure, ¢ is the commanded road wheel angle, [y and [, are the front and rear wheel bases,
v is the direction of travel, and f is the slip angle of the vehicle at its CoG.

Tx = Ty, ,c08(Ty + ) (5.1a)
Ty = Ty, ,5i0(y + ) (5.1b)
Ty, = Uq (5.1d)
B= = ug (5.1e)
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where

Lt
g = arctan(;nT(Q;j)) (5.2)
is the slip angle of the vehicle at its CoG.
In [79] the usage of the kinematic bicycle model as a predictive model for MPC is

examined in depth, and the authors come to the conclusion that “the kinematic bicycle
model is a good modeling for low-speed vehicles but seems to not be precise enough for
vehicles at high speed” [79]. Since the target platform has a speed restriction of 25MPH,
the kinematic bicycle model is expected to capture the dynamics of the simulated high
fidelity vehicle model well enough for the presented MPC implementation.

In summary, a nonlinear kinematic bicycle model was chosen as it is a simple predictive
model that captures the nonlinear system dynamics for low-speed urban navigation [79],
and thus is the best trade-off between NLP computation time and accurate prediction.

5.3.2 Objective Function

The terms included in the OCP objective function are:

1. Reference position error. Calculated as squared error between zx, xy and S,.; at
arclength r=.

2. The distance of the path parameter to route completion. Calculated as (1 — x=).

Giving the final objective function:

ol 7 R

where () is a positive number and a:fef = ffef(a:é) . Thus, the higher the @) value,
the more incentivized the ego will be to complete the route, even at the cost of deviating
from the reference route if needed. The outcome of the tuning process of () was two
separate weighting settings, one for nominal path following and another setting for when
the controller is avoiding an obstacle. In the path following setting, a () = 1 weight is used
which ensures accurate following of the reference spline, whereas in the obstacle avoidance
setting (when the state is within 5 meters of an obstacle), ¢ = 1000 is used to encourage

the vehicle to deviate from the reference if necessary to avoid the obstacle.
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Table 5.1: Optimal Control Problem Constraints

Variable(s) Constraint Type Reasoning Calculation
Tyl fleg, ug) Non- Dynamics of system described via RK4. See Section 5.3.1 for
Holonomic constraints as per multiple shoot-  system used to model f.
ing [30]
Us -T<us <7 Non- Physical range of wheel shaft N/A, obtained from fact
Holonomic sheet
Ty, 0< zy, <vMAX Legal Vehicle cannot exceed speed limit N/A, supplied by Lanelet2
map
.2
Ty, —3.5 <3y, <3.5 Comfort SAE bounds on lateral acceleration ~ From [31]: Ty, = ?;11;:5
Uq —3.5<uq, <35 Comfort SAE bounds on longitudinal accel- N/A, input variable
eration
k_ k-1

u

Uq —10< 1, <15 Comfort SAE bounds on longitudinal jerk Uq = % Where T is
the sample time
rx,zy)  [rx,zy] € S¥ive  Feasibility The vehicle must be on the drive-  See Sec 5.3.3
able surface
[zx,zyv] [xx,zy]) & x°°€ Feasibility The vehicle can only occupy free See Sec 5.3.3
space
= 0<zz<1 Feasibility Vehicle required to stop at end of N/A, state variable

route

These two simple terms embody the non-safety constraint portions of the DDT: Drive
close to the desired route, and make efficient progress towards route completion. The rest
of the DDT (the safety constraints) is implemented as hard constraints on the NLP and
are covered below.

5.3.3 Constraints

All vehicular systems are non-holonomic and therefore an OCP aiming to control such a
system must take the non-holonomic constraints into consideration. These non-holonomic
constraints include the system model presented above, as well as further physical con-
straints like maximum steering angle. There are also constraints enforced for the comfort
of the passenger as per the SAE guidelines, which include limits on longitudinal and lateral
acceleration as well as jerk. Most importantly, there are the constraints that enforce the
feasibility of the predicted vehicle trajectory: The vehicle must stay in free space, defined
as inside the road boundaries and not in collision with any obstacle. A complete list of the
OCP constraints can be found in Table 5.1.
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Road Boundary Enforcement

There are multiple ways to enforce that a 2D point [zx,xy|, i.e. vehicle position, must
be inside a set of two splines. The method we found worked best was a “sidedness” test,
enforcing that [zx, zy|’ is to the right of Sj. s, and to the left of S,;gne. The first step in the
formulation is to obtain a 2D bound vector [bg, b1]’ that we enforce the sidedness constraint
with respect to. by is calculated as the boundary spline at arclength x= and b, is calculated
as the boundary spline at arclength zz + la where la is a small look-ahead (e.g. 0.01).
Then, the (left) sidedness constraint can be enforced as in Eq. 5.4 (right constraint is < 0).

(xx — bo.w) * (by.y — bo.y) — (xy — bo.y) * (by.x — by.x) > 0 (5.4)

Obstacle Avoidance Enforcement

For each obstacle, and for each step in the MPC horizon, the vehicle’s footprint cannot
intersect with any obstacle ellipse. Eq. 5.5 InEllipse(p, el) implements the basic operation
needed for such a constraint, testing if a 2D point p is inside an ellipse el (assuming that
the point and the ellipse are in the same reference frame, a detail that is worked out in

Alg. 10).

(px—elx)®  (py—ely)®
+
el.rx el.ry

<1 (5.5)

Now all that is left is to call InEllipse(p, el) for each ellipse we want to avoid at each
step in the MPC horizon. Alg. 10 implements such a routine, where the expandF ootprint
subroutine simply returns 6 points around the border of the vehicle’s footprint, and
ENFORCE enforces the enclosed constraint in the IPOPT solver. Note that in Alg.
10 we are creating 6 * |S| * |O;| constraints (|S| is the MPC horizon, |0;| is the number
of obstacles). This can be on the order of 100s of constraints for a nominal |S| = 15 and

5.3.4 Conversion to Torque Commands

In the CARLA simulator longitudinal commands can be applied directly, but in production
they must be converted to torque commands to send to the CAN Bus. Alg. 11 presents
how that conversion is done, where C'd = 0.3, Cr = 0.02, A = 2.0, p = 1.2, m = 2500,
r =04, rat = 7.05, g = 9.81.
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Algorithm 10 Obstacle Avoidance

Input: Symbolic set of ellipse trajectories O, symbolic state trajectory S
Output: For each matching O;, S; in the horizon, enforce that S; does not conflict with
any object in O;
1: for O; € O, S; € S do

2: for O@j € 0; do

3: th = Om-.theta

4: rot = [cos(th), sin(th); -sin(th), cos(th)]

5: el = {rot * O, j.cent, O, j.rx, O, j.ry}

6: for S; ; € expandFootprint(S;) do

7 ENFORCE(! InEllipse(rot * S; ;.pos, el))
8: end for

9: end for

10: end for

Algorithm 11 Longitudinal Acceleration to Torque

Input: Desired longitudinal accel, current vehicle speed, drag coefficient Cd, rolling resis-
tance Cr, frontal area A, air density p, vehicle mass m, wheel radius r, final gear ratio
rat, gravity force g

Output: Torque value to command

1: AeroCons =0.5%xpx AxCd

2: RollCons =mxg=Cr

3: ResForce = speed x (AeroCons + RollCons)
4: AccForce = accel xm

5: return -= x (AccForce 4+ ResForce)

5.4 Model Predictive Control Solution

To solve the OCP, Nonlinear Model Predictive Control (NMPC) was used. This decision
was due to: (1) The high number of constraints used to enforce non-holonomic system
dynamics, comfort, and feasibility, and (2) The nonlinear dynamics of the system in an
urban setting where large front wheel angles may be necessary to navigate.

In order to transform the OCP into a NLP, temporal discretization was applied to the
system dynamics over a finite prediction horizon (N = 15). Specifically, the Fourth Order
Runge-Kutta (RK4) method was used with a time step of ' = 0.25s. As proposed by Bock
and Plitt in [30], multiple shooting was used to enforce the dynamics of the system using
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Algorithm 12 Variable Obstacle Solver Delegation

Input: Max number of obstacles max_obs

Output: Delegation to solvers that handles variable numbers of obstacles
1: controller_map = {} {At system startup}
2: for i € range(max_obs) do
3:  solver_mapli] = Solver(i)
4: end for

5. while true {At runtime} do

6

7

8

9

obs_set = PERCEIVE_SCENE()
sol = solver_mapllen(obs_set)](obs_set)
EXECUTE_SOL(sol)

: end while

constraints, reducing the nonlinearity of the objective function especially in the latter steps
of the prediction horizon.

To solve the NLP, the interior point optimizer (IPOPT) [70] from the CasADi [32]
software package was used. Computational concerns regarding real-time IPOPT solutions
are discussed below. With the NLP solution obtained, receding horizon control is applied.

5.4.1 Dealing With a Variable Number of Objects

One nuance of obstacle avoidance via optimal control is the fact that the NLP must be
specified at startup time. Coupled with the fact that a different number of objects in the
scene leads to a different number of constraints and thus a different NLP formulation, it
would seem required to know the number of obstacles in the scene a priori. To get around
this impractical assumption, a collection of NLP solvers are initialized at system startup,
each with a different number of constraints according to the number of obstacles the solver
expects. Then, at system runtime, a solver is delegated to based on the number of obstacles

actually observed in the scene, which may change over time. This procedure is outlined in
Alg. 12.

5.4.2 Warm-Starting, Escaping Local Minima via Parallel Solvers

Real-time performance of the controller is defined as the NLP solver operating faster than
the sampling time of the controller (0.25s), i.e. greater than 4Hz. In order to achieve
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real-time performance, warm-starting the iterative IPOPT solver with a “decent” solution
is essential, allowing the solver to reach an acceptable solution after only a small number of
iterations. The warm-start used at time ¢ is normally the solution obtained by the solver at
time t — 1, following from the assumption that the parameters of the optimization change
little from one solve to the next. However, over time this assumption may no longer be
true, and the solver may become stuck in a series of warm-started local minima.

An example is the controller attempting to avoid an obstacle. To avoid an obstacle a
large change from the previous solution is needed; diverting from the reference line and
then re-joining it is a very different solution than just proceeding along the reference. Naive
warm-starting does not allow for such a divergence from the previous solution. Given a
warm-start that follows the reference line, and a small number of solver iterations, [POPT
will never find a solution that diverges around an obstacle (see Section 5.5.4 and Fig. 5.8
for an illustration of this failure case).

A method of “breaking out” of this local minima is required, a way to search for a
more global minima given more IPOPT iterations and a less biased warm-start. Our
novel method is to run a parallel solver that consumes the same NLP as the original solver
(which we will refer to from now on as the “online” solver), but does not use warm-starting
(initial decision variable assignments are all zero) and is allowed 10x the number of IPOPT
iterations. We will refer to this new solver as the “exploration” solver.

These two solvers run asynchronously of each other, the online solver is used to control
the vehicle as normal, and the exploration solver is used to simply “suggest” new warm-
starts that the online solver could use. Whenever the online solver is about to perform a
new solve, it polls the exploration solver for its most recent solve. If the polled solution has
a lower cost than the cost of the previous online solution, the exploration solution is used
for the online solver’s warm-start instead of the previous online solution. This process is
outlined in Alg. 13.

The result, viewed from a unified perspective, is a controller than can operate in real-
time using a warm-starting scheme but also does not get stuck in local minima (see Section
5.5.4 for results). Of course this comes at the cost doubling the computation load of the
controller, we are now running two IPOPT solvers instead of one. However each of those
processes only run on a single core, so in total we only take two out of the 64 cores on
the WATonomous computation platform for control. Note that this parallelized approach
can be scaled up to an arbitrary number of exploring solvers, each running a potentially
different warm-starting scheme and number of IPOPT iterations.
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Algorithm 13 Warm Start Breakout

Input: Number of online IPOPT iterations o_iters, number of exploration iterations

e_iters
Output: A NLP solution scheme that runs in real-time while not getting stuck in local
minima
1: o_solver = Solver(o_iters) {At system startup}
2: e_solver = Solver(e_iters) {At system startup}
3: while true {At runtime} do
4:  solver_params = PERCEIVE _SCENE()
5. warm_start = o_solver.sol
6: if e_solver.has_sol then
7: e_sol = e_solver.sol
8: if e_sol.cost < warm_start.cost then
9: warm_start = e_solver.sol
10: end if
11: e_solver(solver_params, 0) {Exploration solver runs asynchronously}
12:  end if
13:  sol = o_solver(solver_params, warm_start)

14: EXFECUTE_SOL(sol)
15: end while

5.5 Experiments

5.5.1 Reference Line Following

In this experiment, the only reference we have to follow is the lane center as the ego vehicle
completes a right turn at a 4-way intersection. The desired behavior is to have low lateral
error from S,.¢, keep the NLP solution time within the 0.25s sampling time, stay as close to
the 8m/s speed limit as possible, and obey the legal and comfort constraints from Table 5.1.
The results below show two controller settings: The nominal controller described above,
and a no-comfort-constraint controller which has the comfort constraints from Table 5.1
disabled. The purpose of the two settings is to prove the effectiveness of the OCP design
in regulating passenger comfort.
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Figure 5.4: Quantitative reference line tracking performance of the nominal controller.

Qualitative Results

The qualitative results are presented via a video of the completion of the test scenario
using the nominal controller, which can be found here: https://youtu.be/2Ck3X(K1k38.

Quantitative Results

Fig. 5.4 shows the quantitative results for the nominal controller. As seen in the figure,
the lateral deviation stays below 25c¢m from the reference, well within the lane boundaries.
The solution time of the NLP also stays below the sampling time of the controller, and the
velocity stays close to 8m/s, except when necessary to slow down while taking the right
turn to avoid passenger discomfort around t=>548. The comfort metrics are all within the
desired comfort range outlined by SAE.

Fig. 5.5 shows the quantitative results for the no-comfort-constraint controller. As seen
in the figure, the lateral deviation increases (due to more jerky steering), but is still within
the lane boundaries. The solution time and the velocity profile are both comparable to
the nominal controller. However, in the velocity profile there is no drop in velocity around
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Figure 5.5: Quantitative reference line tracking performance of the no-comfort-constraint
controller.

t=23805, in contrast with what we saw in the nominal controller. Taking the corner with
such a high speed violates the lateral acceleration constraint, deeming the drive uncom-
fortable by SAE standards. Furthermore, when first accelerating and decelerating, both
the longitudinal acceleration and jerk constraints are violated, which is further evidence of
an uncomfortable ride for the passenger.

Overall, it is clear that introducing the comfort constraints to the OCP design forces
the controller to slow down for sharp turns to keep lateral acceleration within the desired
bounds, and to accelerate and decelerate more smoothly to ensure passenger comfort.

5.5.2 Static Obstacle Avoidance

In this experiment, a new reference is introduced: static obstacles. The desired behavior
is the same as in Section 5.5.1, with the addition of not hitting any static obstacles. The
scenario used to test this behavior is similar to that of Section 5.5.1, a straight road
followed by a right turn. However an obstacle course of three static obstacles was added
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Figure 5.6: Quantitative static obstacle avoidance performance of the nominal controller.

to the straight road. The results below show the controller in its nominal setting avoiding
the course of static obstacles using the formulation discussed in Section 5.3.3.

Qualitative Results

The qualitative results are presented via a video of the completion of the test scenario
using the nominal controller, which can be found here: https://youtu.be/T83wHpZD{dO.
As desired, there are no collisions with the static obstacles on the course.

Quantitative Results

Fig. 5.6 shows the quantitative results for the nominal controller. As shown in the top left
subplot, the reference (in blue) is tracked well when the controller is not performing an
obstacle avoidance maneuver. The controller also successfully avoids the static obstacles (in
red). Furthermore, the controller performs the avoidance maneuvers while staying inside
the driveable surface bounds (shown in grey). Lastly, all the desired driving behaviors
from Section 5.5.1 (namely the SAE comfort metrics) are also still obeyed.
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5.5.3 Road Boundary

To show the effectiveness of the road boundary constraints discussed in Section 5.3.3, they
were removed in this experiment and the resulting vehicle behavior is discussed below. The
same static obstacle course testing scenario was used to examine the results. The desired
behavior is the same as in Section 5.5.2.

Qualitative Results

The qualitative results are presented via a video of the attempted completion of the static
obstacle course over two attempts by the no-road-boundary controller, which can be found
here: https://youtu.be/YqpCCIzRw28. As seen in the video, without the constraints the
controller may choose to avoid the obstacles in an illegal manner, leaving the road surface
completely. This video demonstrate the necessity and effectiveness of the road boundary
constraints discussed in Section 5.3.3.

Quantitative Results

A quantitative analysis of the no-road-boundary controller is shown in Fig. 5.7. Without
the road boundary constraints the controller may arbitrarily decide to avoid the obstacle
on either side, possibly violating the road boundary traffic rule (see top left plots, where
the orange ego trajectories violate the grey road boundaries). These plots, when compared
against the plot in Fig. 5.6, shows that the road boundary constraints specified in Section
5.3.3 are necessary for correct driving behavior.

5.5.4 Parallel Solver

To show the effectiveness of the parallel solver technique discussed in Section 5.4.2, it was
removed (only the online solver is used) in this experiment. The same static obstacle course
testing scenario was used to examine the results. The desired behavior is the same as in
Section 5.5.2. The resulting vehicle behavior is discussed below.

Qualitative Results

Qualitative results of the no-parallel-solver controller failing to complete the scenario are
shown at: https://youtu.be/cLFCUO3-1MY. As seen in the video, without the parallel
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Figure 5.7: Quantitative static obstacle avoidance performance of the no-road-boundary
controller over two runs.
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Figure 5.8: Quantitative static obstacle avoidance performance of the no-parallel-solver
controller.

solver the controller easily gets stuck in a local warm-starting minima and fails to avoid even
the first obstacle. This video demonstrate the necessity and effectiveness of the parallel
solver technique discussed in Section 5.4.2 to avoid such local minima traps when using
warm-starting for real-time performance.

Quantitative Results

A quantitative analysis of the no-parallel-solver controller is shown in Fig. 5.8. As seen in
the reference plot (top left) of the figure, without the parallel solver, the controller cannot
find a trajectory around even the first static obstacle on the course. The failure observed
here compared to the success in Section 5.5.2 is due to the missing exploration solver
discussed in Section 5.4.2. In the no-parallel-solver controller setting the controller lacks
the ability to escape local-minima traps caused by the warm-starting method necessary for
a real-time implementation.
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5.5.5 Dynamic Obstacle Avoidance

In this experiment, a new reference is introduced: dynamic obstacles. The scenario used
is a straight road with the ego obeying a speed limit of 15m/s. In front of the ego, there
is a target vehicle traveling at 7.5m/s. In order to make efficient progress along the route,
the ego vehicle should overtake the target vehicle in a comfortable and legal manner.

Qualitative Results

The qualitative results are presented via a video of the completion of the test scenario
using the nominal controller, which can be found here: https://youtu.be/oqjdudBFZIE.
As desired, the ego vehicle overtakes the target vehicle in an efficient and legal manner.

Reference vs Actual Trajectory

10 A

0_

meters

—10 4

—20 -

-250

-200 -150
meters
Cmd Lon Accel

3.0 A
2.0 A
1.0 1
0.0 A
-1.0 1
-2.0
-3.01

m/s”2

-4.0

0 2 5 7
sec

10 12 15

Solve Time

0.30
0.25 -
0.20 A

3 0.15

wn
0.10 -
0.05 -

0.00

N H

5 7 10
sec
Act Lon Jerk

12 15

N 4

12 15

m/s

m/s”™2

Act Vel

16.0 A
14.0
12.0 1
10.0 4
8.0 A
6.0 A
4.0
2.0 A
0.0 A

5 7
sec
Act Lat Accel

10 12 15

3.0
2.5 A
2.0 A
1.51
1.0 1
0.5 A
0.0

Figure 5.9: Quantitative dynamic obstacle avoidance performance of the nominal con-

troller.
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Quantitative Results

Fig. 5.9 shows the quantitative dynamic obstacle avoidance results for the nominal con-
troller. As shown in the top left subplot, the reference (in blue) is tracked well when
the controller is not overtaking the target vehicle. The controller also successfully avoids
the target vehicle (in semi-transparent red), while staying inside the driveable surface
bounds (shown in grey). Furthermore, the controller performs the maneuver efficiently
(near 15m/s) and comfortably (SAE guidelines obeyed).

5.6 Conclusion

This chapter presented a novel OCP formulation and MPC solution to the DDT that al-
lows for unified trajectory planning and control in a feasibility guaranteed manner. The
presented scheme is shown to have key advantages over previous DDT motion planning
and execution schemes, including direct adherence to SAE passenger comfort guidelines, as
well as free space and road boundary conscious control via the OCP constraints. Promis-
ing experimental results were achieved for obstacle avoidance, overtaking, and turning
maneuvers.

As for future research directions, incorporating learning techniques for more accu-
rate predictions of non-ego vehicle trajectories will enhance the motion planning scheme!.
Furthermore, we plan to integrate the proposed motion planning and control framework
with learning-based behavioral planners, e.g. [33], for developing feasible decision-making
schemes in complex urban environments.

Note that the OCP design will not have to change, only the predictive accuracy of the inputs does.
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Chapter 6

Conclusion

In this chapter we conclude by summarizing the work and contributions presented in this
thesis, and discussing future research directions. The main focus of this thesis was a
study of the software architecture and data pipeline to make autonomous driving work in
practice. There was a special focus on the environment modeling and behavioral planning,
action classification, and trajectory planning and control modules of the ADS. The main
contributions proposed are:

1. The DRG, a standard tool for extending prior maps with online observations to create
a unified environment model, allowing for greater transparency and collaboration on
decision-making algorithms.

2. RAD-Net, which showed that action classifiers originally built for human action recog-
nition are also effective in the road scene domain, and in fact benefit from pretraining
on large human action datasets due to shared neural representations of actions be-
tween the two domains.

3. A unified trajectory planning and control OCP framework, in which constraints were
added that guarantee the feasibility of control actions with respect to road bound-
aries, static obstacles, and dynamic vehicles. In this way, trajectory planning can
be executed simultaneously within the controller, and the final control actions are
guaranteed to be dynamically feasible.
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6.1 Software Architecture and Data Pipeline

In Chapter 2, the WATonomous software architecture and ADS data pipeline were pre-
sented. The software architecture allowed for rapid prototyping of new software modules,
and rapid onboarding of new team members due to its Dockerized and cloud-based design.
Furthermore, there was no software constraints on how many ADS instances could run
in parallel on a WATonomous server cluster VM due to the Dockerized simulation setup
and network isolation design. Lastly, the entire ADS developed in simulation is able to be
deployed to the physical research vehicle without modifications to the ADS modules due
to the replication of the physical platform in the Carla ROS Bridge sensor configuration.

The data pipeline that enables autonomous driving in the ADS was also presented, from
raw sensor input to the CAN Bus interface, as well as human-computer interfacing. The
sensor drivers that broadcast the sensor data into the ROS network were outlined. The
computer vision and tracking algorithms used to transform the high dimensional sensor
data into low dimensional descriptions that the environment model can understand were
discussed. The Lanelet2 mapping and environment modeling techniques were briefly men-
tioned, but illustrated in depth in Chapter 3. Similarly, trajectory planning and control
were briefly summarized but were analyzed more deeply in Chapter 5.

6.2 Mapping, Environment Modeling, and Decision
Making

In Chapter 3, the environment modeling module and relevant sub-modules (Lanelet2 map-
ping and behavioral planning) were discussed. The discussion was focused on the method-
ology behind and implementation of the DRG, a novel relational graphing tool for augment-
ing a prior map at system runtime to serve as a unified environment model. The benefits
of the DRG with respect to behavioral planning complexity analysis, verification, and in-
formation sharing were studied. Evaluations were conducted to empirically analyze the
DRG’s affects on behavioral planning complexity, and to show the real-world effectiveness
of the DRG for enabling decision making in urban environments. In-depth implementation
details were given for common DRG augmentation routines, the same routines that were
used when the DRG was deployed to the research vehicle during the Year 4 SAE AutoDrive
Challenge I (demo: https://youtu.be/DNZgheT4Y2s7t=153).
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6.3 Action Classification

In Chapter 4, the computer vision task of action classification in video streams was ex-
amined using the ROAD dataset. Furthermore, the resulting classification pipeline was
deployed to the ADS, yielding appearance based relationship modeling in the DRG. RAD-
NetV1 was introduced first, making strides in two-stage action classification and showing
the effectiveness of transfer learning from large scale human action datasets in the context
of road scene action classification. Next, RAD-NetV2 was presented as a way to improve
on the shortcomings of RAD-NetV1, which included focuses on active-agent detection,
the explicit handling of high-motion scenes, and dealing with class imbalance. Whereas
RAD-NetV1 fell short of the 3D-RetinaNet baseline by 1.0 point on the “val-17 split,
RAD-NetV2 beat the baseline by 4.1 points on the same split, showing the effectiveness of
the improvements identified in Section 4.2. The deployment of RAD-NetV2 to the ADS
was also successful, enabling appearance based and therefore less conservative environment
modeling and decision making in the context of pedestrians (see Section 4.3.2 for details).

6.4 Trajectory Planning and Control

In Chapter 5, the tasks of trajectory planning and control were tackled via optimal control
techniques. Historically, these two modules have been separated into two modules in
automated driving stacks. After arguing that such a separation is unnecessary and in-
fact flawed due to the mismatch between planned trajectories and what the controller can
feasibly execute, we proposed a unified approach to these two tasks in the form of an
OCP. Our OCP is formulated to allow for computation and enforcement of constraints
for passenger comfort, road boundary rules, as well as avoidance of static and dynamic
obstacles. We showed how such an OCP could be solved in real-time under the MPC
paradigm by employing a novel parallel-solver technique that reaps the benefit of warm-
starting the IPOPT solver while not getting stuck in local minima. A rigorous suite of
experiments and ablation studies were conducted to prove the effectiveness of the proposed
OCP constraint design and the parallel-solver methodology.
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6.5 Future Research Directions

6.5.1 Software Architecture and Data Pipeline

Currently, WATonomous is working on the next generation of the watod ecosystem, fea-
turing improved simulation environments based on NVIDIA’s Isaac Sim [31] and NerF [37]
for photorealism and Chrono [86] for vehicle dynamics realism. These environments will
serve as a more accurate representation of the real world, allowing for computer vision
models to be trained in simulation, and less controller tuning when we go from simulation
development to real world deployment.

6.5.2 Mapping, Environment Modeling, and Decision Making

Currently, WATonomous is working on the next generation of world modeling in which
a full-fledged physics simulator is implanted in the DRG for better modeling of a highly
dynamic environment.

Another interesting direction of future research is a shared environment model between
multiple autonomous agents operating in the same region, as done for localization pur-
poses in [87]. Since the DRG is map-centric instead of ego-centric, data sharing between
individual DRG instances is a natural extension to the current design.

Future work in non-ego trajectory prediction based on a neural fusion of prior maps
and online observations will increase the modeling accuracy of the DRG and thus improve
the safety of the control scheme. The review in [38] provides a good starting point for such
work.

6.5.3 Action Classification

The performance of the action classification model can also be iterated on, perhaps using
one of the convolutional-free video architectures, such as TimeSformer [60], which are built
on purely self-attention computations over the space and time dimensions. Such designs,
although radically different than the 3D-CNNs discussed in this thesis, have shown state
of the art performance on the Kinetics Dataset, and can be applied to longer views.

Towards the future, we welcome more datasets that set a standard for road scene action
recognition by including more varied and better defined agent actions. We believe that
it may also be possible to achieve additive performance benefits from existing approaches
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by combining our contributions with existing post-processing ideas that work well, such as
the cube proposal approach from the Argus++ authors [29].

6.5.4 Trajectory Planning and Control

In terms of trajectory planning and control, extensions of the parallel-solver framework are
possible. As mentioned in Section 5.4.2, any number of parallel solvers can be introduced,
each with a different warm-starting design. Several more complex candidates, compared
to the current zero-vector approach, are possible. For example, using a classical planning
algorithm, or a learned approach to trajectory planning, to generate warm-starts is possible.

In the literature, recent strides have also been made in achieving accurate predictive
models via data driven approaches based on optimizing Gaussian Process (GP)s [90] [91].
Similar methods could be applied for a data drive approach to modeling the dynamics of
Bolty, expanding its operational domain to driving surfaces where kinematic based models
fall short (e.g. slippery surfaces).
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Appendix A

Robo-Taxi Requirements

Acknowledgement: The following requirements were outlined by the SAE AutoDrive Chal-
lenge I Year 4 organizing committee.

A.1 Reacting Properly to Signals

e Green: Decelerate if necessary for acceleration metrics, but do not stop.

e Solid Red: Come to a complete stop within 3 meters of the limit line preceding the
intersection, with no part of the vehicle past the limit line. Remain stopped until
legally allowed to proceed. The vehicle must begin movement within 5 seconds of
the light turning green.

e Flashing Red: Come to a complete stop within 3 meters of the limit line preceding
the intersection, with no part of the vehicle past the limit line. Remain stopped until
legally allowed to proceed.

e Yellow: Vehicle can either follow the rules for Green or Solid Red light. Vehicle must
enter the intersection before the light turns.

A.2 React Properly to Traffic Control Signage

e Stop Sign: Come to a complete stop no more than 3 meters before any applicable
limit line, and proceed into the intersection when safe and legal to do so.
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Turn Only: Complete a required turn as mandated by a Left Turn Only or Right
Turn Only sign.

Speed Limit Sign: Do not exceed the posted speed limit[2]. Roads with no posted
speed limit signs or 25 mph signs are not scored for this metric.

Do Not Turn: Do not turn the direction specified by the sign.

Do Not Enter: Do not enter the roadway specified by the sign.

A.3 Avoid Static Objects

Avoid colliding with any static object obstructing the vehicle’s path of travel.

A.4 Avoid Dynamic Objects

e Pedestrians: When required to stop, vehicles must stop before the limit line preceding
the crosswalk, with no part of the vehicle past the limit line, and allow the pedestrian
to completely cross the roadway before proceeding.

e Other Dynamic Objects: Avoid colliding with any dynamic objects obstructing the
vehicle’s path of travel.

A.5 Intersection Lane Selection

Vehicle crosses into the intersection while inside the proper lane to execute the desired
turn, and exits the intersection into the appropriate lane.
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Appendix B

ROS Message Definitions

B.1 Sensor Messages

Messages produced by sensors.

B.1.1 PointCloud.msg

See http://docs.ros.org/en/melodic/api/sensor_msgs/html/msg/PointCloud.html

B.1.2 Image.msg

See http://docs.ros.org/en/noetic/api/sensor_msgs/html/msg/Image.html.

B.2 Perception Messages

Messages produced by the perception stack.

B.2.1 Obstacle.msg

Header header
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# Obstacle Type Enums

string OBS_TP_UNKNOWN=UNKNOWN

string OBS_TP_PED=PEDISTRIAN

string O0BS_TP_CYC=CYCLIST

string OBS_TP_VCL=VEHICLE

string label # see Obstacle Type Enums

# Detection confidence
float32 confidence

# Position and its uncertainty

# For 3d bounding boxes, the (x, y, z) is the center point of the 3d bounding box
# For 2d bounding boxes, the (x, y) is the top left point of the 2d bounding box
geometry_msgs/PoseWithCovariance pose

# Velocity and its uncertainty
geometry_msgs/TwistWithCovariance twist

# Dimensions of bounding box assuming BEV perspective
# x=width, y=height, z=depth
# For example, a vehicle with its bumper facing North that’s
# encapsulated by a rectangular prism defines width as the
# E/W measurement, height as the N/S measurement.
# Obstacle.msg is also used as 2d bounding boxes
# In that case width_along_x_axis is the width of the 2d bounding box
# in image coordinates

# and height_along_y_axis is the height of the 2d bounding box

# in image coordinates

# z axis is not used with 2d bounding boxes

float64 width_along_x_axis

float64 height_along_y_axis

float64 depth_along_z_axis

# Unique ID number
uint32 object_id
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B.2.2

Header

TrafficLight.msg

header

# Traffic Light State Enums

string
string
string
string
string
string
string
string

TL_ST_NON=NON
TL_ST_RED=RED
TL_ST_YEL=YELLOW
TL_ST_GRE=GREEN
TL_ST_FLA=FLASHING_RED
left

forward

right

# Traffic Light Sign Direction Enums

string
string
string
string
string
string
string

TL_DIR_NON=NON
TL_DIR_LT=LEFT
TL_DIR_RT=RIGHT
TL_DIR_FD=FORWARD
TL_DIR_LT_FD=LEFT_FORWARD
TL_DIR_RT_FD=RIGHT_FORWARD
sign_dir

geometry_msgs/Pose pose
geometry_msgs/Vector3 dimensions

geometry_msgs/Point pl
geometry_msgs/Point p2

common_msgs/StopLine stop_line

# Unique ID number

uint64

id
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B.2.3 OccupancyGrid.msg

See http://docs.ros.org/en/melodic/api/nav_msgs/html/msg/0OccupancyGrid.html.

B.2.4 TrackedObstacle.msg
Header header
common_msgs/0Obstacle obstacle

common_msgs/TrackedObstacleState[] observation_history
common_msgs/TrackedObstacleState[] predicted_states

TrackedObstacleState.msg

# Attributes of the TrackedObject at every observation/prediction
# To be published in the Odom frame

Header header

# bounding box centroid (m) and orientation
geometry_msgs/Pose pose

# Velocity (m/s)

geometry_msgs/Twist velocity

B.3 Navigation Messages

Messages used by the navigation stack.

B.3.1 DestinationList.msg

# Ordered sequence of destinations that the ego vehicle should proceed through
# In competition this list will be hardcoded and published via the command line
# In RVIZ the 2D Nav Goal Tool is converted to a single "x,y" destintation
string[] destination_list
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B.3.2 Odometry.msg

See http://docs.ros.org/en/noetic/api/nav_msgs/html/msg/0dometry.html.

B.3.3 Reference.msg

Header header
geometry_msgs/Point[] ref_line
geometry_msgs/Point[] left_bound

geometry_msgs/Point[] right_bound

path_planning msgs/PredictedTraj[] trajectories

B.3.4 DesiredOutput.msg

Header header

float32 theta

float32 torque

# Two states: 0 = stopped, 1 = driving
int8 state
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Glossary

Kalman Filter A statistical based filtering method that combines a measurement model
with an observation model to minimize state uncertainty.

Novatel SPAN A positioning solutions company headquartered in Calgary, Alberta,
Canada which supplies GNSS and INS solutions. They supplied SAE AutoDrive
Challenge I teams with these solutions. Bolty uses them as its localization solution.
See https://novatel.com /support /span-gnss-inertial-navigation-systems for details.

Docker A software isolation library that provides network isolation and reproducible ex-
ecution environments via containers. See https://www.docker.com/ for details.

ROS The Robotic Operating System. Allows for language agnostic communication of
modular software systems. See https://www.ros.org/ for details.

CARLA An AD simulator. See https://carla.org/ for details.

Visual Studio Code A popular open source IDE with high capacity support for remote
development and Docker container based development. See https://code.visualstudio.com/
for details.

Carla ROS Bridge A middleware software package which allows for interfacing between
the backend CARLA server and the frontend software modules that run ROS. Oper-
ates by querying the backend server for environment information, and translating that
information into ROS messages that are then broadcasted to the frontend software
modules over the ROS network. See https://github.com/carla-simulator/ros-bridge
for details.
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RViz A popular open source robotics data visualization software. See http://wiki.ros.org/rviz
for details.

Lanelet2 Lanelet2 is a C++ library for handling map data in the context of automated
driving. It is designed to utilize high-definition map data in order to efficiently
handle the challenges posed to a vehicle in complex traffic scenarios. See https:
//github.com/fzi-forschungszentrum-informatik/Lanelet?.

JOSM JOSM is an extensible editor for OpenStreetMap (OSM) for Java 8+. It supports
loading GPX tracks, background imagery, and OSM data from local sources as well
as from online sources and allows to edit the OSM data (nodes, ways, and relations)
and their metadata tags. See https://josm.openstreetmap.de/.

CasADi CasADi is an open-source tool for nonlinear optimization and algorithmic differ-
entiation. See https://web.casadi.org/ for details.
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