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Abstract

Ultracold atoms are a great platform to understand one of the most interesting open
problems in physics: quantum thermalization. Building a new lab for ultracold atoms is a
challenging task for the various tools that need to be built. In this thesis, the tools tackled
are used for cooling and control. For cooling, a potential Zeeman slower was designed and
built with the future task of being tested on cesium atoms. For control, an interlock and
a current controller circuits were built, and an AOM driver was significantly improved.
Finally, we will provide a review of the experiments made with ultracold atoms to study
thermalization, and we will show how we are planning to use our tools to join the other
labs in the quest to find answers for quantum thermalization.
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Chapter 1

Introduction

The problem of quantum thermalization is how an isolated quantum system can thermalize
or, in other words, be described by thermodynamical ensembles. It is a common practice
to use statistical mechanics for quantum systems although it is derived originally from
classical treatments. Since it apparently works, one can in principle find a way to justify
using it through a quantum mechanical treatment. The problem fundamentally lies in how
a pure quantum system can be described by a mixed state; furthermore, quantum mechan-
ics is linear unlike classical mechanics, where one can use the ergodic theorem to explain
statistical mechanics from a dynamical point of view. Several theoretical advances have
been made such as the eigenstate thermalization hypothesis, but nothing yet provides a
complete theory.[1,4] On the other hand, several experiments were done to study thermal-
ization. Some of these experiments were done using ultracold atoms due to their precise
control and near-ideal isolation. The platform of ultracold atoms was used to study ther-
malization through its simulation of two systems: the Lieb-Liniger and the Bose-Hubbard
models. The Lieb-Liniger model is an integrable system that doesn’t thermalize or cannot
be described by the canonical ensemble. The experiments were able to show its integrability
and were even able to break it. [33,34,39,47,51] For the Bose-Hubbard model, the goal was
to find correlations between entanglement and thermalization. In chapter 4, we provide a
review of these experiments to know the methods, the results, and the limitations. Our
short-term goal is to have a Lieb-Liniger model with periodic boundary conditions, with
a knob to break its integrability, and without the technical limitations faced by the other
experiments. In the longer run, we would implement entanglement entropy measurements
to find correlations between entanglement and how integrable the systems is.

To be able to start searching for answers, we need to build a lab. It is done mainly
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through three essential ingredients: a source of atoms, cooling, and control. The source of
atoms can be seen in Zach’s work.[64] My work and contribution during my Master’s years
are in the cooling and control parts of the lab. We need to cool down atoms for several
reasons including trapping the atoms, simulating the desired Hamiltonians, starting from
a precise pure state, and imaging atoms precisely. The first step of cooling atoms is the
Zeeman slowing. We will show how we built it and discuss all its details in chapter 2.
For the third ingredient, we need control to build and manipulate these Hamiltonians and
their states efficiently. The control is done through different electronics that we built for
the lab. These electronics are the interlock, the Acousto-Optic Modulator (AOM) driver,
and the current controller. The interlock is for safety while the other two devices are for
control. All these devices are discussed in chapter 3.

Before discussing the specific projects done to build the lab, we need to know our atoms
and the tools that we plan to use to manipulate our atoms. The atoms and tools are the
subject of this chapter.

1.1 Atoms

For our experiments, we need a boson and a fermion. Having two kinds of particles
provide more ways to manipulate and control your atoms. Our choice of atoms is cesium
and lithium. In the following sections, we will discuss all the relevant properties of the
atoms and what makes them a good choice for our planned experiments.

1.1.1 Cesium

Cesium is an atom with 55 electrons; only one electron is in the outermost valence shell,
the 6s. We are working with 133Cs since it is the only stable isotope. Given that the nuclear
spin is I = 7

2
, cesium is a boson since the total spin state 7

2
+ 1

2
= 4 or |7

2
− 1

2
| = 3 is an

integer. These states come from the addition of angular momenta. Notice that we only
considered the spin of one electron, which is the outermost electron, and not the other 54.
The reason is that electrons fill all the lower shells in singlet pairs, which means that they
have a total spin of zero.

2



Fine Structure

Before introducing the fine structure, the notation n2S+1LJ used to describe the atom’s
states should be reviewed. The variable n is the principal number of the energy level of
the valence electron. Note that this notation only works for alkali atoms since a single n
won’t be able to describe more than one valence electron in different energy shells. The
variable S is the total spin of the electrons; it will always be 1/2 for alkalis since only one
electron in the outermost shell is unpaired. Orbital angular momentum is denoted as L;
a few examples are the following: S for L=0 and P for L=1. Finally, J = L + S is the
addition of orbital angular momentum and spin.

The hydrogen atom has the degenerate states of 22P1/2 and 22P3/2, and this degener-
acy is lifted when we take the spin-orbit coupling into account. To elaborate more, the
proton rotates around the electron in the electron’s reference frame; the magnetic field
produced by the proton’s motion interacts with the dipole moment of the electron. The
dipole moment is proportional to the spin while the magnetic field is proportional to the
orbital angular momentum. Hence, the name comes from this coupling. We won’t jump
into the details of the spin-orbit coupling. The only thing that we want to emphasize is
that the quantum numbers that allow us to use perturbation theory are J = L + S and
mj = ml +ms. The main result of this coupling is that the degeneracy is lifted for states
with the same L but different J .

In cesium, the D1 line, 62 S1/2 −→ 62P1/2, and the D2 line, 62 S1/2 −→ 62P3/2, have
different transition frequencies due to the spin-orbit coupling1. The transition frequency of
the D1 line is ω0 = 2π ·335.1 THz. On the other hand, the D2 line has ω0 = 2π ·351.7 THz.
It can be seen that the difference is about 2π · 16 THz, which gives us the advantage to
address one of the states without affecting the other.[62]

Hyperfine Structure

The hyperfine structure is the coupling between the magnetic field generated from the
electron’s total angular momentum, which is proportional to J , and the spin of the nucleus.

1The degeneracy between the S-states and the P-state is lifted for a different reason, which is the core
electrons shielding the nuclear charge. The S-state tends to penetrate the shielding and sees the nuclear
charge more than the P-states.[63] It was important to state this effect since it has a higher scale of energy
shifts than the spin-orbit coupling, which is seen in figure 1.1.
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The Hamiltonian of this interaction is the following:

Hhs = AÎ · Ĵ (1.1)

where A is the magnetic dipole constant. The hyperfine structure has another term due
to the electric quadrupole, but it was ignored since its effect is lower than the magnetic
dipole effect by a factor of 100. The good quantum numbers for the hyperfine structure
are F = I + J and mf = mi +mj. Using the addition of angular momenta, the ground
state 62S1/2 has F = 3 or F = 4 since I = 7/2 and J = 1/2. For 62P1/2, F = 3 or F = 4.
Similarly, for 62P3/2, F can be 2, 3, 4, or 5. The degeneracy is lifted in the F -states due to
the perturbation of Hhs. The energy levels can be seen in the figure from Daniel Steck’s
document on cesium; it shows the hyperfine structures for the D2 line.[62]
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Figure 1.1: Cesium D2 Line. The first column shows the transition frequency of the
unperturbed D2 line. The next column shows how those unperturbed levels split due to
the hyperfine interaction. The last column shows the gF factors and the relative energies
between the consecutive hyperfine states. The figure is taken from ref [62].

The reason for our introduction of the hyperfine structure is that these energy levels
are what we are going to target with our lasers; therefore, a natural concern would be
if these states can even be targeted separately. The answer is found in the fundamental
uncertainty principle, which states that the energy of a hyperfine state has some uncertainty
that depends on its decay rate τ . The decay rate corresponds to the uncertainty in time.

5



Calculating the uncertainty in energy ∆E:

∆E =
ℏ
2τ

=
ℏΓ
2

From the above equation, one can deduce the uncertainty in angular frequency: ∆ω =
Γ/2 = 2π · 2.61 MHz, where Γ is known as the natural linewidth. Since the natural
linewidth is much smaller than the difference between the F = 4 and F = 5 states, these
states can be targeted independently.

Zeeman Effect

Applying a magnetic field to the atom can change the energy levels; the shift of energy levels
is known as the Zeeman effect. The strength of the magnetic field determines the good
quantum numbers; therefore, the degeneracy is lifted into states with different quantum
numbers depending on the strengths. Consider the following Hamiltonian of a magnetic
field interacting with the total atomic magnetic moment µatom:

H = −µatom ·B

= µB

(
gSŜ + gLL̂+ gI Î

)
·B

= µB

(
gSŜz + gLL̂z + gI Îz

)
Bz

(1.2)

where µB = 9.274 · 10−24 J/T is the Bohr magneton. Each angular momentum has its
g-factor gi. This Hamiltonian will always be a perturbation for the fine structure since
our magnetic fields will never reach the impossibly high magnetic fields that make this
Hamiltonian comparable to the fine structure. A rough calculation that shows the strength
of such a magnetic field is B = h·f

µB
≈ 1000 T, where f is the difference between the D1 line

and D2 line transitions. Therefore, the quantum numbers |J mj⟩, which are compatible
with the fine structure, are the proper ones to start with. We need to transform equation
1.2 to be written in terms of Jz using the Wigner-Eckart theorem2:

HB = µB

(
gS

⟨Ŝ · Ĵ⟩
J(J + 1)

Ĵz + gL
⟨L̂ · Ĵ⟩
J(J + 1)

Ĵz + gI Îz

)
Bz = µB

(
gJ Ĵz + gI Îz

)
Bz (1.3)

2Rigorously the Wigner-Eckart theorem is for expectation value and not for generating new Hamilto-
nians, but it is in practice treated for generating new Hamiltonians for the proper quantum number
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For gS = 2 and gL = 1, gJ is:

gJ ≃ 1 +
J(J + 1) + S(S + 1)− L(L+ 1)

2J(J + 1)

Now starting from the above equation, the derivation for the energy levels for different
strengths or regimes of the magnetic field will be shown.[62]

High Magnetic Field Regime

When the magnetic field is much stronger than the hyperfine Hamiltonian but perturbs
the fine structure, Hhs acts as a perturbation to the |JmjImi⟩ states while the states
|J mj I mi⟩ are eigenstates of equation 1.3. The energy shifts when calculated are the
following:

E|JmjImi⟩ = µB (gJmj + gImi) + Ahfsmjmi

The second term of hyperfine perturbation results from ⟨Jx⟩ = ⟨Jy⟩ = 0 and ⟨Jz⟩ = mj.
Since gI is a factor of 10000 lower than gJ , the energy levels mainly divide into sets of lines
depending on mj while the 8 lines in each set are the mi values due to the hyperfine term.
Figure 1.2 shows this categorization in the range of very high magnetic fields.[62]

Figure 1.2: Zeeman Effect on Hyperfine States of 62P3/2. The anomalous Zeeman
effect can be seen at the start while the high magnetic field regime is at the end. The
figure is taken from ref [62].
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Low Magnetic Field Regime: Anomalous Zeeman Effect

In figure 1.2, one would notice how the state’s energy changes linearly with the magnetic
field in the low magnetic field regime where HB is a perturbation to Hhs. The effect in this
regime is known as the anomalous Zeeman effect since the normal Zeeman effect couldn’t
explain it. In the anomalous Zeeman effect, the |F mf⟩ quantum numbers will be the right
ones to use for perturbation theory. As a result, the Wigner-Eckart theorem will be used
again in equation 1.3:

HB = µBgF F̂zBz (1.4)

where gF is:

gF ≃ gJ
F (F + 1)− I(I + 1) + J(J + 1)

2F (F + 1)

For cesium, the gF factors are seen in figure 1.1. Applying the Hamiltonian on different
|F mf⟩ states shows that the degeneracy is lifted on states with different mf ’s [62]:

∆E|Fmf⟩ = µBgFmfBz

Intermediate fields: Breit-Rabi Formula

For intermediate fields, states with J = 1/2 have an analytical formula that describes the
Zeeman effect. It is known as the Breit-Rabi formula:

E|J= 1
2
mjImi⟩ = − ∆Ehfs

2(2I + 1)
+ gIµBmfB ± ∆Ehfs

2

(
1 +

4mfx

2I + 1
+ x2

)1/2

Note again the middle term can be ignored since the nuclear g-factor is too small, gI ≈
−4 × 10−4. This formula is only applied for J = 1/2 since there are only two hyperfine
states. The sublevels of these states get coupled by the interaction with the magnetic field
only when mf = m′

f . This means that for each mf two states get coupled. In figure 1.3,
the Zeeman effect for the ground state is shown and can be completely described by the
formula.[62]
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Figure 1.3: Zeeman Effect on Hyperfine States of 62S1/2. It shows similar properties
in the splitting as the one in figure 1.2. The figure is taken from ref [62].

1.1.2 Lithium

Lithium is our second atom with three electrons, of which only one is a valence electron
in the 2s shell. Two isotopes of lithium exist: 6Li and 7Li. Since we already have a boson,
we choose a fermion, which is 6Li with I = 1. We will now discuss briefly the fine and
hyperfine structure of lithium. We will also show the Zeeman effect on the states.

Fine structure, Hyperfine structure, and Zeeman Effect

Starting with the fine structure, the transition frequency of the D1 line is ω0 = 2π ·
446.78 THz while the D2 line has ω0 = 2π · 446.79 THz. A difference of 10 GHz is enough
to target each state alone. Note also the difference of about 100 THz in the D line of
cesium and that of lithium. This difference shows the reason why each type of atom can be
controlled and manipulated individually. For example, one can create independent lattices
for each kind of atom.

Regarding the hyperfine structure, the ground state 22S1/2 has F = 1/2 and F = 3/2.
The state 22P1/2 has F = 1/2 and F = 3/2. Finally, 22P3/2 has F = 1/2, F = 3/2, and
F = 5/2. In figure 1.4, one can see the D lines with the hyperfine structure included. Note
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from the figure that 22P3/2 has its F -states inverted in energy. The state F = 3/2 has
higher energy than that of F = 5/2. This inversion is due to the negative magnetic dipole
constant of lithium.

Figure 1.4: Lithium D Lines. The first column shows the transition frequency of the
unperturbed D line while the next column shows how those unperturbed levels split due
to the hyperfine interaction. The figure is taken from ref [65].

For completeness, we show the Zeeman effect on the hyperfine states of lithium. Note
the difference in the range of the magnetic field to observe the three regimes of the Zeeman
effect. For example, 6 G is enough to observe the high field regime in the hyperfine states
of 62P3/2 while those of cesium needed about 400 G.[65]
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(a) Zeeman effect on hyperfine states of 22S1/2. (b) Zeeman effect on hyperfine states of
62P3/2.

Figure 1.5: Zeeman Effect in Lithium. Figure is from ref [65].

1.1.3 Feshbach Resonance

The main reason behind our choice of atoms is their Feshbach resonances. A Feshbach
resonance is a physical phenomenon related to coupling a molecular bound state to a
scattering state. The details of this topic are beyond the scope of this thesis. However,
the important thing to know is that Feshbach resonances can be used to tune scattering
lengths using magnetic fields:

a(B) = a0

(
1− ∆

B −B0

)
(1.5)

where a0 is the background scattering length, B0 is the magnetic field at which the res-
onance occurs, and ∆ is the resonance width. The scattering length can be tuned to
manipulate the interactions between atoms. Cesium has a lot of Feshbach resonances, and
lithium has an exceptionally good Feshbach resonance. Moreover, there are multiple Fesh-
bach resonances between the two atoms such that we can tune their interactions with each
other. This tool will be very important for quenches when we suddenly change the interac-
tion strength. It will also be important for a time-of-flight measurement. The interactions
will be turned off since they may affect the measurement.[67]
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1.2 Tools

As has been said, two of the main ingredients for building a new lab are cooling and control.
Cooling is essential since it is a prerequisite for trapping, precise control, and imaging, and
control is essential for manipulation. In this section, we mainly discuss the tools that we
would need and that are the motivation for what has been built so far during this Masters.

1.2.1 Cooling

Without cooling, one wouldn’t be able to trap atoms and subject them to the wanted
Hamiltonians. For example, one wouldn’t be able to create a 1D Bose gas unless the ther-
mal energy is lower than the first excited state energy of the transverse confinement. In
addition, cooling allows imaging with single atom resolution.[66] Finally, thermalization is
usually studied by starting with a ground state, which requires a Bose-Einstein condensate
to be achieved.

Creating a Bose-Einstein condensate requires four stages of cooling. The first stage is
using a Zeeman slower to slow down atoms after they exit from the oven. They are slowed
down until they can be captured by the Magneto-Optical trap (MOT), which is the second
stage of cooling. In the second phase of cooling, the atom in the MOT behaves like a
damped harmonic oscillator that traps atoms and further cools them down to the Doppler
limit, which is the lowest temperature that can be achieved in a MOT. This temperature is
restricted by the random walks in the velocity space of an atom due to the random nature
of spontaneous emission that causes recoils in random directions. In the third stage, we
use sub-Doppler techniques that make use of the hyperfine structure to cool below the
Doppler limit. Finally, we use evaporative cooling to remove the highest energy atoms of
our system and achieve a BEC.

The first stage of cooling, which is the Zeeman slowing, is the subject of chapter 2, and
we show all the details needed to build the Zeeman slower. Furthermore, all the mentioned
stages need lasers, which are controlled by the AOM driver discussed in chapter 3. We
mainly discuss how we improved the range of the AOM driver’s output to have better
evaporative cooling.
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1.2.2 Control

The Zeeman slower needs its current to be controlled, and the evaporative cooling needs
the power of the laser to be controlled. However, control is not only about cooling but also
about simulating Hamiltonians with the ability to freely tune their parameters. It is also
about changing quantum states as wanted. Starting with the Hamiltonians, it is pretty
common that one may want to create a lattice using standing waves as seen in figure 1.6.
The lattice is used for the simulation of the Bose-Hubbard model or for creating an array
of 1D Bose gases. These standing waves should have a certain wavelength and a certain
amplitude with minimal noise. To achieve that, one needs to control the laser’s power and
frequency, which is done by the AOM driver. The AOM driver’s feedback loop ensures
that the measured amplitude meets the wanted amplitude, and its built-in external RF
connector adds to its ability the use of external RF sources with ultra-low frequency noise.
These precise standing waves aren’t only used for creating Hamiltonians. They are also
used to take quantum states out of equilibrium. In some of the experiments to be shown
in chapter 4, they used a sequence of standing waves to divide a Bose gas into two pieces
with opposite, equal momenta.

In general, quenches are done by any sudden change in the Hamiltonian or, through
the Heisenberg picture, the state. Using standing waves is just one way of many. Another
tool that we are planning to use for quenches is the Feshbach resonances, which are not
implemented by many labs studying thermalization. One can use Feshbach resonances
to change the interaction strength between atoms by manipulating the scattering lengths.
These resonances can be used not only in quenches but also for measurements and technical
aspects like reducing three-body collisions. Achieving this tool needs great control over
the current of the Feshbach coils, which is the goal of the current controller discussed in
chapter 3.
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Figure 1.6: Creating an Optical Lattice. Due to the dipole force, one can use standing
waves from two lasers with blue detuning to trap atoms at the nodes. At blue detuning,
the atoms get repelled from high-intensity regions of the light.

In conclusion, the AOM driver and current controller will be essential for probing and
manipulating our systems; thus, a lot of details will be discussed later about the design
processes, hoping that it may help future students in our lab with their future projects.
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Chapter 2

Zeeman Slower

Introduction

The Zeeman slower is the first step of cooling after the atoms are ejected from the oven
before entering the MOT chamber, the second phase of cooling. Atoms come out with high
speed; their speeds in a beam can be described by a distribution similar to the Maxwell-
Boltzmann distribution for a gas of particles:

f(v) dv =
1

2

(
m

kBT

)2

v3 exp

(
− mv2

2kBT

)
dv

Note the difference of having v3 in the effusive beam distribution instead of v2 seen
in the common Maxwell-Boltzmann distribution. This difference in the distribution is at-
tributed for having a beam rather than a gas, and the distribution’s temperature is that
of the oven. These high speed atoms need to be slowed down to a velocity lower than the
capture velocity of the MOT, a task that is done by the Zeeman slower.

In this section, we will introduce the scattering force and show how we constructed
the Zeeman slower for cesium and lithium. For cesium, we will specify the velocities we
want to address out of the oven and construct a Zeeman slower for this velocity that slows
it down to a lower velocity than the capture one. In lithium, we will take on the design
we already made for the cesium, modify the current, and then find out the final velocity
coming out of it.
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2.1 Scattering Force

Conservation of momentum requires that the momentum of the atom to change when it
absorbs a photon; thus, you would expect that an atom would slow down if it is absorbing
a photon moving against the atom’s velocity. One could argue that the scattering force
from the spontaneous decay or stimulated emission will introduce a recoil momentum to the
atom that may cancel out the slowing down from the absorption. However, the spontaneous
decay doesn’t favor a certain direction for the emitted photons, so the average effect of
emission will be no change of the momentum.

Figure 2.1: The Concept of Scattering Force. An atom absorbs the photons of the
laser from a specific direction and emits them in all directions. The figure is taken from
ref [63].

Since it is evident that we can slow down atoms with scattering force, it is now important
to figure out a way to quantify this force. The force is equal to the change of momentum,
which is ℏk, multiplied by the rate that this process happens. The rate of change here is
the decay rate Γ times the probability ρ22 being in the excited state, which can be derived
from the optical Bloch equations [63]. The force is the following:

Fscatt = ℏk · Γρ22 = ℏk
Γ

2

I/Isat
1 + I/Isat + 4δ2/Γ2

(2.1)

where δ = ω − ω0 is the detuning, Isat =
ℏω0Γ
2σ0

is the saturation intensity with the cross

section σ0, and I/Isat = 2Ω2/Γ2. Saturation intensity is a fundamental quantity of the
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atom. It is one photon energy per decay time per the largest cross section of the atom. At
resonance, saturation intensity gives you half the maximum force possible; this intensity
of a laser can easily be achieved in the lab.[63]

Cesium

2.2 Analytic Design

To design the Zeeman slower, one needs to know the capture velocity needed in the MOT.
The capture velocity of the MOT will give us some idea on what velocity we want to target
out of the oven. After that, we will find an analytic field for the ideal Zeeman slower
and try to match it as close as we can while making sure that we don’t exceed a certain
acceleration that may let us lose the atoms. Finally, we will calculate the final output
velocity out of this slower.

2.2.1 Capture Velocity of MOT

To estimate out the capture velocity, one should figure out three important specifications.
One is to choose between two transitions: the D1 or D2 line. Since we are targeting
hyperfine states, one should next choose the targeted F-states. Finally, we have to know
the intensity since it affects the scattering force and thus the cooling.

D1 vs D2 line

One needs to aim for a cycling transition. In other words, you need to figure out a transi-
tion that you won’t need to depend strongly on repumping beams. A repumping beam is
a laser that drives the transition from the unwanted states to the ones you are targeting.
The best way to understand the importance of a cycling transition is through the cases of
the D1 and D2 lines discussed in chapter 1.

For the D1 line, assume that you are targeting the transition between F=4 in the 62S1/2

and F=4 in the 62P1/2. This transition is allowed since the selection rule1 for electric dipole

1We refer the reader to Foot’s book for more discussion about selection rules.[63]
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transition is ∆F = 0,±1. However, spontaneous decay would allow the transition from
F=4 in the 62P1/2 to F=3 in 62S1/2. If you didn’t have a repumping transition that takes
the atoms back from the F=3 to F=4 in 62S1/2, then you would lose your atoms over time.
In this case, a repumping beam is needed to take the atoms from the unwanted state to an
excited state such that a spontaneous decay will bring them down to the correct one. If
the spontaneous emission brings the atoms back to the wrong state, they will keep being
repumped until they decay to the correct state.

For the D2 line, if we targeted the transition from F=4 in the 62S1/2 to F=5 in 62P3/2,
then spontaneous decay will only move the atoms back to F=4 of the S state. Thus, we
don’t need a strong repumping beam to counter the decay. In conclusion, the D2 line is
chosen because it has a cycling transition.

F-State

Based on the example just given above, we would choose F=4 to F=5 in 62S1/2 and 62P3/2,
respectively. The choice of F quantum numbers isn’t enough because both the MOT and
the Zeeman slower depend on magnetic fields, so we need to also choose the mf quantum
states. The corresponding selection rule is ∆mf = 0,±1, depending on the polarization
of the beam; circular polarizations are the ones that drive the ∆mf = ±1 transitions,
depending on the handedness.

In the MOT, the states absorb photons of different circular polarizations from each
direction, which means the only transitions are of ∆mf = ±1. Unlike the MOT, the
Zeeman slower doesn’t have to be driven by a circular polarization; however, it will actually
be advantageous. The case is analogous to the discussion about the D2 line. Choosing a
circular polarization that drives a transition between mf = 4 in the S state and mf = 5 in
the P state will allow the spontaneous decay to only happen between the same two states.
In conclusion, we would use mf = 4 and mf = 5 or mf = −4 and mf = −5. These
F-states with the highest and lowest mf ’s are known as stretched states: |F = 5 mf = 5⟩
and |F = 5 mf = −5⟩.

Intensity

For the intensity, recall the scattering force in equation 2.1. As I → ∞, Fscatt = ℏk Γ
2
, which

is the maximum force. The intensity needed is impossible physically; however, achieving
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the saturation intensity is easy and can be exceeded. The force for the saturation intensity
is the following:

Fexp = ℏk
Γ

4

This force can be achieved even with detuning since we can get back our force by increas-
ing the intensity beyond the saturation one.[63] The deceleration from this force will be
calculated since it will be useful later:

as = ℏk
Γ

4m
= 28897.48 m/s2 (2.2)

where Γ = 32.9 · 106 s−1 = 2π · 5.234 MHz is the decay rate for an excited state in the D2
line, k is the wavenumber of the D2 transition, and m is the mass of cesium.[62]

Capture Velocity

Now, we will try to figure out an estimate for the capture velocity since we now know our
force or intensity. Using the constant deceleration calculated in equation 2.2, we find the
capture velocity:

Vc =
√
2 · as ·D = 34 m/s

where D = 2 cm is the laser’s diameter; we were not planning to have a MOT greater than
2 cm in diameter.

2.2.2 Ideal Field for the Zeeman Slower

Basic Idea

When an atom moves toward a beam of a certain frequency ω with a velocity v, the atom
sees the frequency Doppler shifted due to its motion.

ω′ = ω + kv

The idea of the Zeeman slower is fairly simple. Once the atoms are out of the oven with
a certain velocity, you would want to shine a laser with a fixed frequency such that the
doppler shift would make it on resonance. As a result, the atoms will experience a scattering
force and slow down. Once the atoms start slowing down, the fixed frequency of the laser
won’t be on resonance anymore because the lower velocity will make less Doppler shift.
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To compensate for the difference, the Zeeman shift will be used. The following simple
equation illustrates the process:

ω0 = ω + kv +
µB ·B(z)

ℏ
(2.3)

where ω is the laser’s frequency and ω0 is the transition frequency. As v becomes less,
the magnetic field B will increase to satisfy the equation. One may ask what magnetic
field regime is used for the Zeeman effect term in equation 2.3. Since the atoms are
in stretched states, it doesn’t matter which regime they are in. The reason is that a
stretched state |F mf⟩ maps to one and only one state in the basis |mj mi⟩. For example,
|F = 5 mf = 5⟩ = |mj =

3
2
mi =

7
2
⟩.

The Zeeman slower can be designed in two ways. One way is to have a zero magnetic
field at the beginning of the coil such that the detuning will be determined based on which
Zeeman capture velocity we are going to target. A Zeeman capture velocity is the highest
velocity that the slower can slow down. Another way is to have the largest magnetic field
at the beginning of the coil; consequently, the laser will be on resonance at the end of the
coil. This resonance may push back or slow down the atoms less than the wanted velocity
as they move through the transition between the Zeeman slower and the MOT chamber.
We went with the former way to avoid pushing back the atoms; a simple picture that gives
you a rough idea of the design is below.

Figure 2.2: A Rough Concept of a Zeeman Slower. The simple drawing shows a
rough design of the Zeeman slower. Note that the coils are thicker at the right end for a
greater magnetic field.

Finally, it is important to note that the Zeeman slower slows down all particles that
are equal to or less than the Zeeman capture velocity. The reason is that the atom will be
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on resonance somewhere in the middle of the coil even if it wasn’t at resonance at the start
due to its less velocity. If an atom with the Zeeman capture velocity enters the slower, it
will slow down to be on resonance at the next point until it exits the slower, so there is a
resonant frequency for each velocity between the Zeeman capture velocity and the output
velocity. For that reason, any atom with a velocity in this interval will be slowed down.

Design

Now that the MOT’s capture velocity is determined, the target is to slow down atoms to
lower than this value, so we need to choose what speed the Zeeman slower should output.
We will pick 25 m/s, which is lower than the capture velocity just to have room for any non-
idealities. To roughly get the input speed of the slower, we apply a constant acceleration
equation:

vinput =
√

(25 m/s)2 + 2 · as · (10 cm) = 80.03 m/s

The 10 cm is the length of the Zeeman slower. Now note the following; this velocity
is a rough estimate for a couple of reasons. One reason is that designing a slower won’t
give you a constant deceleration over the whole length. For example, there will be fringing
fields at the end of the slower. Another reason is that you may decide to change the input
velocity for better results, which you get to know from working on the slower and facing
some technicalities. In fact, the velocity we ended up addressing was 76.4 m/s instead of
80.03 m/s. We reduced it at first because we were able to have a slower over about only
8.5cm of the pipe at the first iterations of the coil; the first iteration will be seen in the
numerical section. Later, we were able to have even a larger distance but didn’t address a
different speed because that speed already had a satisfying population in the effusive beam
distribution The oven will usually be at a temperature between 310C and 360C. With this
Zeeman capture velocity for a temperature of 325C, we are targeting to slow down about
1% of the atoms exiting the oven’s nozzle; the flux of the atoms is 1011 atoms/(s · cm2)
.[64]

Now suppose we ran over these iterations and decided to address the 76.4 m/s instead
of the previous one; we need to find the ideal Zeeman slower magnetic field. The basic
calculation made in Foot will be done here [63]. Remember that the whole point of the
Zeeman slower is to use magnetic field to compensate for the difference in frequency seen
by the atom resulting from the Doppler effect and the detuning put by hand. The Zeeman
effect part of equation 2.3 takes the effect of the magnetic field on both stretched states the
F=4 and mF = −4 for the S state and the F=5 and mf = −5 for the P state. We chose the
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negative mf quantum numbers because these decrease the difference in frequency ω0. The
other part of the equation that needs to be determined is the detuning ω. It is determined
so that the input velocity is already on resonance, so ω0 − ω = kv = 2π · 89.63 MHz.
Solving this equation for the magnetic field, we have:

B(z) =
ℏ
µB

(ω0 − ω)− ℏ · k · v
µB

= B0 −B0

√
1− 2 · a · z

v2input
(2.4)

where B0 =
ℏ
µB

(ω0 − ω) =
h·vinput

λ·µB
= 64.04G.

2.2.3 Acceleration

As it is seen, a Zeeman slower is designed in such a way that at each point the magnetic field
makes up for a specific velocity such that the combination of its Doppler effect, the Zeeman
effect, and the detuning makes the transition on resonance. We give the term targeted
velocity to this specific velocity. The last calculation needed is to find the acceleration of
the targeted velocities of the magnetic field created and to check that they don’t exceed
the maximum acceleration of equation 2.2. The reason is that an atom will be lost if it was
asked to accelerate more than the maximum acceleration physically possible. To calculate
the acceleration of the targeted velocity, we simply take the time derivative of equation
2.3:

atarget = − µB

ℏ · k
dB

dz

dz

dt
(2.5)

where dz/dt is just the velocity, so we would rearrange equation 2.3 again and substitute
it back:

atarget = | − µB

ℏ · k2
dB

dz
(δ − µB ·B(z)

ℏ
)| ≤ ℏk

Γ

4m
(2.6)

This equation here is extremely important. Although the Zeeman slower is designed to
have a constant deceleration, designing a configuration for it numerically won’t be perfect
and will give us something close to the constant deceleration but not exactly. The most
important thing to care about after these imperfections is the targeted acceleration, which
is the acceleration asked from the atoms to achieve the target velocity at each point along
the slower. For a fixed saturation intensity, the maximum acceleration that can be achieved
is when the laser is on resonance; therefore, the atom will be left behind if you asked it
to decelerate more than the maximum deceleration of equation 2.2. To understand the
concept more, if at one point the atom was asked to decelerate more than it could, the
atom won’t be on resonance in the immediate next point in the slower, and it will keep
being off resonance for the rest of the slower and will be lost.
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Numerical Work

Th second step is to design the slower numerically. The main code for numerically cal-
culating the magnetic field from a coil was done by another student. Before using the
code to design the Zeeman slower, I modified it a bit to be user friendly. Instead of using
a start and stop angle to define the length of the coil, I made it possible to define the
length according to the actual start and end positions of the coil. With trial and error
approach, I was able to design the first version of the Zeeman slower, which then needed
to be improved. The second version will also be shown.

2.2.4 First Try

Layers Configuration and Power

In figure 2.3, it can be seen that the first configuration was made of 18 layers. At the top
right end, one can see that there are a couple of equal narrow layers. From a technical
aspect, these will be hard to implement because naturally the top layer will be winded
over the lower one that requires it to be wider. Furthermore, it is better to avoid narrow
layers as errors will be more significant in the narrow ones, and errors are more likely to
happen at the end of the coil as a transition in the winding from one layer to the next
occurs. These errors at the end are expected to happen because the of the tension from
wrapping the first winding in a new layer. This tension will try to find a place in the lower
layer rather than to start a new layer. The coils all have the same current. The power
dissipated in this configuration was about 0.15Watt, which doesn’t need water cooling.
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Figure 2.3: Layer Configuration of the First Version. This version of the slower is
made of 18 layers. The y-axis shows the radius of the layer from the center of the slower’s
pipe, and the x-axis shows the 10 cm length of the slower.

Magnetic field

In figure 2.4, we compare the analytic and numerical results. The red graph is the analytic
magnetic field while the blue one is the numerically calculated magnetic field of our config-
uration; it can be seen how they are well matched. To find the output velocity, substitute
the peak magnetic field, which is 34.6 Gauss, in the same equation. The corresponding
velocity is 35 m/s, which is slightly higher than the MOT’s capture velocity. Obviously,
we needed a better slower.
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Figure 2.4: Magnetic field vs Position. The blue line is numerically calculated magnetic
field, and the red line is the analytic magnetic field.

Acceleration

In figure 2.5, we show the ideal targeted acceleration and the targeted acceleration from
our numerical model. It can be seen here that we managed to keep the acceleration, which
is the green graph, below the threshold plotted by the black line. However, it can be seen
that we didn’t fully use the 10cm of the length of the pipe. Thus, our second try was to
take more advantage of the length we have.

Figure 2.5: Targeted Acceleration vs Position. The black line is the normalized maxi-
mum acceleration while the green graph is the numerically calculated targeted acceleration.
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2.2.5 Second Try

Layers Configuration

In the second try, we decided to add two more tricks. To smooth out the pumps in
the targeted acceleration, we added double pitches, where there is a wire’s diameter gap
between one winding and the next one. The double pitches in most layers are located at
the start of each one. If you look at the layers, you may find that some of the segments like
layer 2 and layer 3 are divided into three colors; the first color from the left is the double
pitch. Another trick is to add a different set of coils with high current at the end of the
coil; it helps to extend the range of the field. You will find a very small segment at the end
of layer 1 to layer 7; this segment is the high current coils. The middle colored segment is
just a normal single pitched coil. This configuration has 10 layers, and its total power is
0.11W.

Figure 2.6: Layer Configuration of the Second Version. It has 10 layers. Whenever
there is a layer with three colors, the first color is a double pitch. Furthermore, the tiny
segment at the end of the first to the seventh layer is the high current part. The middle
part is just a single pitched coil.

Magnetic Field

As before, figure 2.7 shows the comparison between the analytic and the numerical magnetic
fields. The output velocity is 25.07 m/s due to 43.02G.
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Figure 2.7: Magnetic Field of the Second Version. The blue curve is the magnetic
field of the numerical model while the red graph is the analytic magnetic field.

Acceleration

It can be seen here in figure 2.8 that we were indeed able to extend our range of deceler-
ation, which results in a better output velocity. Another improvement is how the curve is
smoother, which is due to the double pitch coils.

Figure 2.8: Targeted Acceleration of Second Version. The targeted acceleration
(green) has an extended range.

Implementation

To build the Zeeman slower, we needed to get an 18-AWG wire from Digi-Key and the full
nipple from Kurt-Lesker. The process of making the Zeeman Slower is shown here.
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2.2.6 Vacuum Work

First of all, the stainless steel full nipple will be used in a vaccuum system. Before just
using it, one should know that stainless steel usually has some hydrogen trapped in it, and
this gas slowly diffuses out while in vaccuum. This diffusion may ruin the quality of our
vaccuum during the experiments; thus, we need to bake the nipple first to diffuse out any
hydrogen.

Baking is the process where you diffuse out most of the hydrogen you can. To do so, we
first created a vaccuum inside the nipple. To create a vaccuum, we connected two pumps:
a roughing pump and a turbo pump. A roughing pump starts first to put it to a lower
pressure that is safe for the turbo pump to start working. The turbo pump lowers the
pressure inside even more than what the roughing pump can do.

After creating the vaccuum, we would heat up the nipple so that we speed up the
diffusion; we heated it up to about 310 Celsius. It was heated by wrapping a heating tape
around it and increasing the temperature gradually. Finally, a lot of aluminum foils were
wrapped around the pipe for insulation. A valid question can be asked here: why would
one use a conductor like aluminum for insulation? The answer is that it is wrapped in a
way such that there is a little air gap, which acts as an insulator between the pipe and
the aluminum. Furthermore, the shiny part of the aluminum is facing inward to reflect
any radiation from the heating thus insulating it better. A picture of the baking setup is
below.

Figure 2.9: Baking of the coil. The aluminum foils are covering the full nipple and the
heating tape.
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2.2.7 Wrapping the coil

We started with baking since the non-magnetic epoxy doesn’t withstand the 310C. The
non-magnetic epoxy from Cotronics was used to fix each layer of coil windings in its place
before wrapping the next layer. We mainly depended on tension to wrap the coils. Before
using just tension, we thought about using a kapton tape to fix the coil positions before
we apply the epoxy; however, the tape produced a lot of gaps, which made the use of only
tension to be the best way. A picture below shows the Zeeman slower.

Figure 2.10: Winding Wires. The Zeeman slower in the process of wrapping the wires.

As it can be seen in the picture, the metal clamp at the far right was used to fix a 3D
printed plastic piece. The 3D plastic part was used to serve as a hard wall to make the
winding easier; it makes the moving from one layer to the next natural. It also serves as a
barrier so that we can wind the lower current part first then the narrow high current coils
later. A picture below shows the 3D printed piece.
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Figure 2.11: A 3D printed Plastic Part. It was used for wrapping the coils to act as
barrier for a more natural transition from one layer to the next.

Measurement

After wrapping the coils, we started measuring the magnetic field using Hirst’s GM08
gaussmeter. We applied a current of 0.376A to the larger part of the coil and 2.7A to the
end coils. We were able to get the following profile for the magnetic field.

Figure 2.12: Measured Magnetic field vs Numerical Magnetic Field. Theblue
graph is the measured magnetic field with currents of 0.376 A applied to the larger part of
the coil and of 2.7 A to the end coils.

From figure 2.12, our peak magnetic field is 42.2 G, which corresponds to an output
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velocity of 26.05m/s. The output velocity is still less than the MOT’s capture velocity as
we aimed. Although the magnetic field profile looks promising, we still have to check the
targeted acceleration. With a few simple lines of code, we were able to graph it.

Figure 2.13: The Measured targeted acceleration vs Ideal Targeted Acceleration.
The red line representing the measured acceleration is nearly horizontal except at the end.
The few points that exceed the black line can be fixed easily by lowering the current by a
small factor.

The acceleration is nearly horizontal except at the end of the coil. The imperfections
at the end of the graph are expected because of the non-ideal intersection between the
low-current coil and the high-current part as we approach the peak. The few red points
above the black line can be lowered easily by lowering the current, which will consequently
lower the peak magnetic field. In conclusion, the measurement of the potential slower is
promising, and applying it to atoms is what remains.

Lithium

2.3 Analytic Design

All the reasons used to explain the transitions chosen will also be applied here. We will
use the D2 line to drive a transition between F=3/2 in the S state and F=5/2 in the P
state. Assuming that we will also have our laser at saturation intensity, the acceleration
will be the following:

a = ℏk
Γ

4m
= 912006 m/s2 (2.7)
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The much lower mass significantly increased the acceleration. Using the same simple cal-
culation of the MOT’s capture velocity, we find that the it is 191 m/s. The rest of the
calculations done in cesium won’t be made here since the strategy of making the slower
will be different.

Before talking about the strategy, one should determine the capture velocity of the
slower. Using the new acceleration, one finds that the largest velocity can be captured is
about 467 m/s; we choose 396 m/s in case of any non-idealities. This adressed velocity
of 396 m/s also ensures us that a good amount of the population of lithium atoms in the
oven can be captured in the MOT. In the same temperature 325C, we would capture about
1.3% of the atoms exiting through the nozzle. After determining the capture velocity, the
strategy will be the following. We will increase the current by a certain factor so that we
can target this velocity at the start of the slower; consequently, the peak of the magnetic
field will determine the output velocity of the slower.

2.4 Numerical Work

By just adjusting the current by a factor of 7.5 in the code, we got a slower for lithium.
However, the slower will have a higher power of 6.16W.

Magnetic Field and Acceleration

Below you can find the graph for the magnetic field. The output velocity is 98.4 m/s for
a peak of 331.7G. We can trap even more particles if we targeted a higher velocity. One
can also see how the targeted acceleration is below the threshold.
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Figure 2.14: Magnetic Field of Lithium Slower. The graphs are produced by increasing
the current by a factor of 7.5 .

Figure 2.15: Targeted Acceleration of Lithium Slower. The green line doesn’t exceed
the maximum acceleration indicated by the black line.
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Chapter 3

Electronics

Introduction

To achieve our goals of cooling down the atoms and using them to study quantum ther-
malization, we have to build electronics for safety and control. In this chapter, we will
cover the three circuits that I worked with in the lab: Interlock, AOM driver, and Current
controller.

3.1 Interlock

An interlock is a safety device that keeps both people and equipment safe. It reads in
values from sensors, compares them to a safe range, and then sends a digital signal to a
switch to control whether the equipment is on or off.

3.1.1 Example Use Cases

We will briefly discuss two cases where this interlock will be used. To start with, high
current wires that produce magnetic fields must be water cooled so that they don’t get
overheated. To achieve that, we measure the water flow in a sensor. If the flow rate is lower
than a certain threshold, then the wire isn’t cooled properly; as a result, the interlock will
send a 0V signal to cut off the power supply. Otherwise, it will keep sending 5V to keep
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Figure 3.1: Input Part of the Circuit. The input of the circuit is followed by a voltage
divider for scaling and then by a low-pass filter. Pull-down resistors are R2 and R3, and
C2 is just a bypass capacitor.

the current flowing.

A photonic crystal fiber can carry high-power infrared light. The fiber can get burned
from the runaway heating that happens when the power entering the tip of the fiber doesn’t
exit from the end. As a result, we will measure the power of the input and of the output
of the fiber by photodiodes. If the difference exceeds the safety threshold, we will send 0V
to the AOM to stop the light. Otherwise, the 5V will keep the AOM on.

3.1.2 The Circuit

In this circuit, we will explain some basic concepts like the separation of grounds. The
circuit will be divided into four parts: the input, the code, the output, and the power. The
code is applied to an Arduino Uno.
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The Input

The first step is to read the input signal while isolating the interlock’s ground from the
ground of the circuit where the signal comes from. The purpose of the isolation is to avoid
ground loops. The ground of a circuit is the reference voltage for any signal in the circuit.
A ground loop is formed when two points are connected to the same reference voltage
but have different voltages. It may appear confusing to know that different points of the
ground, which is the reference voltage in this case, can have different voltages, but there
are several causes responsible for the problem. Two known causes of many are the common
impedance coupling and electromagnetic induction from environmental disturbances. To
understand common impedance coupling, it is crucial to understand that wires ideally
have zero resistance, but practically they do have very small resistance that can cause
some issues. Common impedance coupling happens when two circuits share the same
ground path as shown in figure 3.2. The wire that connects the right and left circuits to
the ground has a resistance of RG instead of the ideal zero resistance. The resistors R1
and R2 can be thought of as loads of each circuit. When a current I1 resulting from source
V1 and its load flows through RG, a voltage difference across RG will affect the reference
voltage of the right part of the circuit; the voltage across R2 decreases as I1 increases.
Although both circuits were connected to the same ground, the right circuit will see a
ground of a different voltage due to the voltage difference across RG; thus, a ground loop
is created.

Figure 3.2: Common Impedance Coupling. Two circuits with different voltage sources
are connected to the same ground. The current I1 from the first circuit affects the reference
voltage of the second circuit.

If we thought of the sources as two circuits and send a signal between them as shown in
figure 3.3, a loop is formed that can conduct current easily as a result of electromagnetic
induction from any environmental disturbances. A common noise is the 60Hz of the AC
electricity in the wall.
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Figure 3.3: Electromagnetic Induction in a Ground Loop. The loop created between
the two circuits can conduct current from electromagnetic induction.

To solve the ground loop issue, we used an instrumentation amplifier, which is U3 in
figure 3.1. The signal sent to the interlock is referenced to the ground of the source circuit.
Since the difference between the signal and the ground is the actual signal, an instru-
mentation amplifier is used, which outputs the difference between its inputs; the inputs
are the signal and its ground. Since the instrumentation amplifier (inamp) is supplied by
the interlock’s power and ground, the output will be referenced to this ground; thus, the
grounds are separated.

The circuit has some additional features that can be seen in the schematic. The features
include a low-pass filter at the start for unwanted noise. Another feature is the voltage
divider at the input of the inamp to control our scaling. It is placed before the inamp
because of the inamp’s rails. The rails of an inamp are the positive and negative power
supplies that supply it. These voltages will also be the highest and lowest voltages that
the inamp can output; as a result, the inputs should be scaled to be within the rails. The
voltages of the rails are ±6V since the Arduino Uno reads up to 5V; the extra 1V is to
avoid clipping of the signal, which was found when the circuit was powered by 5V.

It is common practice to add a pull-down resistor at the inputs so that the inamp
reads zero when no signal is connected. A pull-down resistor is a resistor that is connected
between the input and the ground. When no signal is connected, no current passes through
the resistor; as a result, no voltage difference is created, which makes the input of the
inamp connected to the ground. Without the pull-down resistor, the inamp would read
just fluctuations when no specific voltage is connected. Finally, bypass capacitors were
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connected to have a better DC power supply to the inamp; their specifications and values
are from the inamp’s datasheet. A bypass capacitor allows a path for the AC noise ripple
to the ground directly, which better cleans the DC signal. To understand why the AC
ripple will choose the path of the capacitor, recall that the impedance of the capacitor is
1
ωC

.

The Code

The processing of the information given by the input signal is done by a code written
for the Arduino Uno, a microcontroller board. The code includes three parts. One part
is simply measuring the inputs using AnalogRead(), comparing the difference to the safe
threshold, and finally outputting either 5V or 0V to control the circuit. AanalogRead() is
the function used to read an analog input to the Arduino Uno.

The second part is responsible to calculate the ratio of the output to the input mea-
surement and send it as a signal; the ratio will show how well coupled the light is to the
fiber and can be used to achieve better coupling. The code instructs the Arduino Uno to
send a Pulse-Modulated Width (PWM) signal whose duty cycle is the ratio. The PWM
technique is designed to use digital means to send analog signals; it sends a 500Hz signal
with a duty cycle of your choice. The duty cycle is the fraction of one period of time of
the signal where the signal is 5V. For example, a 75% duty cycle means that 1.5ms of the
whole 2ms will be 5V. To elaborate how the ratio results from the duty cycle, the voltage
of the signal is on average 0.75 · 5 = 3.75V ; then the ratio between the output and the
input would be 3.75

5
. The goal of the output part of the circuit is to get a constant voltage

for the average instead of the varying signal; the process will be shown later.

The third and most difficult part of the code is making the Arduino faster. It is impor-
tant to understand the factors that affect the speed. One factor is the functions used in
the code and their implementation time. For example, AnalogRead() takes some time to
be performed; thus, increasing the number of this function in your code tends to increase
its running time and thus decreases the frequency bandwidth, which is the maximum fre-
quency that the Arduino can respond well to. Serial.begin() is another function that is
necessary to establish a communication between the Arduino and the computer. In our
case, it is used to know the analog values read by the Arduino. This function tends to
decrease the speed, so it is usually removed to increase the frequency bandwidth after
testing the precision of the measurement.
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To understand how to speed up the Arduino, one should know how it generally works.
The Arduino’s clock is 16MHz, which means that the Arduino Uno can perform up to 16
million instructions per second. One never observes such a high speed since simple func-
tions usually have a lot of safety and validation code that takes a significant amount of the
clock available. The goal of the speeding part of the code is then to lower the number of in-
structions needed or to remove any default limits designed to the speed of certain functions.

AnalogRead() uses an Analog-to-Digital converter(ADC) to read the analog inputs;
the ADC converts an analog input to a 10-bit digital value. The ADC has a sampling
rate determined by the Arduino’s clock and a prescale register. The prescale factor is
just a number from a certain set that controls the clock frequency for the ADC. For
example, a prescale of 128 gives a sampling rate of 9600Hz. To see that, the clock frequency
of the ADC is the 16MHz divided by the prescale factor, 16MHz/128 = 125kHz. The
sampling rate is determined by how many clocks or instructions are needed to perform
the conversion; 13 clocks are needed for the Arduino Uno. Therefore, the sampling rate
is 125kHz/13 = 9600Hz. By default, the Arduino is set to 9600Hz while it can be faster,
so the objective of the code is to choose an appropriate prescale factor that gives a faster
sampling rate.[68] Note that the word “appropriate” was said since a higher sampling rate
may lower down the precision. A table that shows the sampling rate for every prescale
factor is shown in figure 3.4.

Figure 3.4: Table of Prescale Factors. The table shows the prescale factors with their
corresponding sampling rate and clock frequency.This table is taken from ref [68].
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The Output

The output of the circuit is designed to optimally send signals to any receiving device; it
includes two outputs: the ratio and the controlling signal. Each output goes through an
opamp that acts as a buffer to avoid too much drawn current from the Arduino if it ever
had to do that. Recall that the opamp has a very high input impedance so that it will
never draw too much current from the Arduino’s output and very low output impedance
so that whatever load connected to the opamp can draw the current it needs. The opamps
are U1 and U2 in the schematic shown in figure 3.5.

Figure 3.5: Output Part of the Circuit. The output part of the circuit has two opamps
U1 and U2. The opamp U1 is the one used for the ratio, so a low-pass filter can be seen
at its input.

Only for the ratio output, the opamp has an aggressive low-pass filter at its input; it
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has a cut off frequency of about 10Hz. The purpose of the low-pass filter is to have a DC
voltage equal to the ratio. To understand that, recall that any signal can be decomposed
into sinusoidal waves of different frequencies according to Fourier transform; the DC volt-
age is a signal of frequency zero. The low-pass filter allows all signals below 10Hz to pass
through. The 10Hz was a rough good estimate that satisfied two points. One point is that
it is lower than 60Hz, which is a common noise caused by the AC electricity in the wall.
The second point is that the 10Hz is compatible for optimizing the coupling since a human
eye samples about 30 frames per second (30Hz), to which a human usually have a slower
decision making response. Therefore, something between 10Hz and 25Hz would be a good
frequency for optimization.

It is important to note the reason why we didn’t isolate our output ground from our
Arduino; in other words, why we didn’t put an optoisolator or an inamp to isolate the
Arduino’s ground to whatever circuit we are sending our signal to. The reason is that
there is only one output. We justify the only one output statement by arguing that the
DC value output will be connected to a voltmeter that won’t affect our circuit in any way.
Since there is only one output, the Arduino’s ground, which is floating, will connect to the
ground of the receiving circuit. Recall that we isolate the ground to avoid ground loops; the
ground loops only happen if we had non-floating different grounds from different circuits.
However here, we only have a floating ground that connects to a non-floating ground, so
this isn’t a problem.

The Power

The first iteration of the circuit was powered by two different supplies, which was incon-
venient. The Arduino was powered by the USB connection to the computer, and the
electronics of the board such as the inamps used a DC power supply. Since the Arduino
has a 5V pin that can be used to power the electronics, we thought of using it to make the
interlock more compact.

When the circuit was tested with a 5V power supply, it showed some clipping of the
signal, but the clipping disappeared for 5.5V. Thus, the 5V supplied by the Arduino was not
enough and needed to be converted to a 5.5V or more. One way to achieve this conversion
is by using a buck booster, which is a device that can scale up or down a DC voltage. The
buck booster in the interlock turns up the voltage to 12V, and then a linear regulator is
used to clean up the power supply, to reduce noise, and to lower the voltage down to 6V.
Going from 12V to 6V seems like a waste of a lot of power, which is indeed the case. The
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buck booster we used is easy to implement, so we favored that over heat dissipation since
the circuit doesn’t draw a lot of current. Recall that the power dissipated is proportional
to the current drawn multiplied by the voltage difference, P = ∆V · I.

Figure 3.6: Power Part of the Circuit. The buck booster is shown at the top while the
linear regulator is shown at the bottom. All the extra components are from the datasheet

The top circuit in figure 3.6 is the buck booster which increases the voltage to 12V. The
configuration around this component is taken from the datasheet. The linear regulator is
the bottom component.

3.1.3 Testing Speed and Precision

The final step is to test the interlock to show the speed up and its effect on precision. The
test is performed by observing the Arduino’s response to an input of 5V square wave of
different frequencies while the second input is terminated, which is an another way to say
zero volts. If the interlock performs well, then the output response signal will be a similar
5V square wave of the same frequency. It will also have a π phase since it will output
5V when the difference between the inputs is zero and 0V when the difference is 5V. The
response signal is always red in the figures while the input signal is blue.
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Note that we care about a steady, accurate response frequency. There would also be a
phase difference that corresponds to a delay to the response signal. Its importance depends
on the application. To elaborate more, if there was a 1kHz maximum response frequency
and a phase difference of π, then the interlock would react 0.5ms late to the failure; this
delay might be harmless for some applications. On the other hand, an accurate frequency
shows how efficiently the Arduino can spot a signal with its sampling rate.

Clock speed vs Response Frequency

In this test, we prove the speeding up by checking how well the response frequency agrees
with the input frequency as we change the prescale factor. The test fails when there is a
difference of about 100Hz between both signals.

In the first case, we set the clock frequency to 0.5MHz by choosing a prescale factor
of 32. We find that the highest frequency that it can stick to fairly close is 3.1kHz and
could never reach 3.2kHz; note that the measurement was done on a span of 6ms. Both
cases can be seen in figures 3.7 and 3.8. Note that the response signal in the 3.1kHz case
has a steady phase difference and follows the input well. On the other hand, the phase
difference of the 3.2kHz is changing over the span, and it doesn’t follow the signal well as
can be seen at -0.5ms of the measurement graph in figure 3.8. We used the oscilloscope in
the Moku instrument to send and measure the signal.
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Figure 3.7: First case limit. We set a measurement for a prescale of 32 and with a square
wave of 3.1kHz. On top right, the frequency of the red signal (Arduino’s response to the
blue signal) is measured.
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Figure 3.8: First Case Failure. The measured frequency didn’t reach 3.2kHz, the fre-
quency of the sent square wave.

In the second case, we set the prescale factor to 16, which corresponds to a clock
frequency of 1MHz. In figure 3.9, it can be seen how the response frequency reached
3.3kHz, which shows the speed up of the Arduino. Note that 3.3kHz isn’t the highest
frequency that the Arduino with a 16 prescale factor can respond to. We just wanted to
show the speed up as we increase the clock frequency.
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Figure 3.9: Speed Up in Second Case. We set the prescale factor to 16 and send a
square wave with a frequency of 3.3kHz, which was responded to by the Arduino.

Clock speed vs Precision

Unfortunately, increasing the clock speed comes at the cost of reducing precision. In this
test, we show the reduction in precision. Serial.begin() is left to observe the Arduino’s
measurement value, which can be seen in the right column of figures 3.10 and 3.11. The
second input will be measured since it is terminated; it is the easier choice to show the
decrease in precision. We will compare between prescale factors of 8 and 16. It can be seen
in the first case that the reading is pretty precise by reading all the ones that come out
in the COM3 window, which is what the Arduino reads. The one translates nearly to 0V;
you can see these ones in the right window of COM3 in figure 9. In the second case, it can
be seen that there a lot of other numbers than one. In summary, one should find the right
combination between precision and speed when modifying the Arduino for an application.

46



Figure 3.10: Precision of 16 Prescale Factor. The read values are on the right of the
figure under COM3 while the window shows the code for setting the prescale factor.
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Figure 3.11: Precision of 8 Prescale Factor. Readings on the right column are not
precise compared to the previous setting.
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3.2 AOM Driver

In the introduction, the stages of cooling were introduced, and it was discussed how they
all required lasers, which need to be controlled. The circuit that provides such control
is the AOM driver. Through sending RF electrical signals, the AOM driver controls the
frequency and the amplitude of the sound waves created by a transducer. The transducer’s
sound waves are sent into a crystal to make it behave like a diffraction grating. The 1st
order diffracted light is what we care about; both its frequency and amplitude can be
controlled by this driver.

The circuit was designed in the Dysprosium lab in MIT, and we modified it because we
needed a greater amplitude range. We increased the dynamical range from 25 dB to 50 dB
to have a better evaporative cooling. The range of 50 dB means that you can change the
power by a factor of 105. Why do we need this much scaling? The reason is that after
subdoppler cooling, lithium would have a temperature in the range of 60 µK[60], and this
temperature would needed to be cooled down even more to about 10 nK for some experi-
ments. This scaling is about 104, but a scale of 105 gives some buffer for the nonidealities
in the lab.

Another modification is the addition of an external RF port such that we can use ex-
ternal RF sources to send signals. The advantage of having an external source is that it
would have lower phase noise. Such stability and precision will allow creating lattices for
atoms.

In this section, the theory behind the AOM’s control on the laser and the modifications
done to the circuit will be explained. Finally, we will discuss the results.

3.2.1 AOM’s Control on Light

The whole system consists of two devices, the AOM and the AOM driver. The acousto-
optic modulator (AOM) is a device that controls the frequency and amplitude of light. The
device consists of a crystal and a transducer that sends sound waves through the crystal.
On the other hand, the AOM driver controls the frequency and amplitude of these sound
waves; it does that by sending an RF signal to the transducer so that it creates a sound
wave with a frequency and amplitude equal to those of the RF signal. In summary, there
are three kinds of waves. The first kind is the RF electrical signal sent by the AOM driver
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to control the sound wave of the transducer. The sound wave, which is the second type,
controls the third type of waves, the laser.

The AOM depends on the acousto-optical effect, where the compressions and the rar-
efactions caused by the sound waves alter the index of refraction of the crystal. It can be
understood from its analogy to the Bragg diffraction, which explains the x-ray diffraction
in crystals. In Bragg diffraction, the light waves hit planes of atoms that constructively
and destructively interfere as they get reflected from these planes of atoms. Unlike the
discontinuous change in density that are caused by the atomic planes, the sound waves
are sinusoidal functions that provide continuous changes in the density; however, the same
treatment of how the waves interfere can be applied. The diffracted angle is given by
sin θ = (mλ/2Λ), where λ is the light’s wavelength, and Λ is the acoustic wavelength. You
can get a general sense of the AOM from the figure below.

Figure 3.12: Diffraction of Light. The first-order diffracted light is created as the incident
beam travels through the AOM. [52]

Other than the angle of diffraction, the amplitude of the diffracted beam is controlled
by the amplitude of the RF signal sent by the AOM driver. Recall that the amplitude and
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frequency of the RF signal are as the same as the ones of the sound wave. Frequency can
also be controlled since the sound waves are moving unlike the atomic planes, which are at
rest. The frequency gained is equal to the frequency of these sound waves; you can think
of it as a Doppler shift that results from the light hitting periodic barriers moving at the
same speed of these waves.[52][53] The AOM that we use is G&H AOMO 3200-1214.

3.2.2 RF Basics and modifications on the circuit

First Modification

To understand the first modification of the circuit, it is important to understand what a
mixer is and how it is used in the circuit. A mixer is a three-port component that modulates
frequencies by multiplting input signals; it usually has the cross symbol as seen in figure
3.13. The three ports are called LO, IF, and RF. The LO (local oscillator) is always an
input. The second input out of the IF and RF is chosen based on the application.

Figure 3.13: Mixer. Shown is the basic symbol of the mixer [54]

To see how it works, suppose you have two signals S1 = A cos(ω1t + ϕ) and S2 =
B cos(ω2t). If you multiply both of them and use the product sum rule:

S1 · S2 =
AB

2
(cos[(ω1 + ω2)t+ ϕ] + cos[(ω1 − ω2)t+ ϕ])

The purpose of the mixer is to be able to modulate the signal while preserving properties
like its phase, which is unchanged in the product formula. Choosing IF or RF as the second
input determines if the modulation is upconversion or downconversion. In upconversion,
LO and IF are the inputs, which output two signals with the sum and the difference as
their frequencies: frf1 = flo − fif and frf2 = flo + fif . It is known as an upconversion for
the following reason. The frequency of LO is usually much higher than that of IF, which
results in two frequencies greater than that of IF. It is a downconversion when LO and
RF are used because the IF would have a frequency equal to the difference of the inputs’
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frequencies and lower than both of them fif = |flo − frf |. Both cases can be seen in the
figure.[54][55] Since the IF is used for outputting low frequencies, usually you would find
in mixers that the IF’s bandwidth allows lower frequencies than the RF’s bandwidth; DC
signal can be an input and output of the IF port but not for the RF port.

Figure 3.14: Downconversion and Upconversion. The processes of downconversion is
shown on the left, and the upconversion process is on the right. The figure is taken from
ref [54].

After understanding the mixer, its functionality in the circuit will be explained. It
is used to scale the RF signal that comes out of the VCO (voltage controlled oscillator),
an RF component that outputs an RF signal with a frequency depending on the voltage
applied. The mixer scales the signal without changing its frequency by using a DC voltage
in the IF port while the VCO signal is sent to LO. It results in a signal that is the multi-
plication of the DC value to the signal.

The operation of the mixer is just a part of the whole story. The missing part that will
help in understanding the first modification is the mixer’s isolation. When the DC signal
is turned way down to 0V, there would still be some signal passing through because of
the non-ideal isolation. The isolation of our mixer ADEX-10H is 55 dB between RF and
LO when IF is terminated at 50Ω. This isolation is specified for signals between 100 MHz
and 500MHz, which means that RF will have a a power of -55 dBm if LO was at 0 dBm.
Our first modification was to add another mixer so that less signal passes through due
to a higher isolation from the two mixers. However, by adding another mixer as can be
seen in the printed circuit board(PCB) of figure 3.16, the dynamical range of 50 dBm that
we wanted was not reached. One additional mixer increased the dynamic range from the
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reported 25dBm to 37dBm. Figure 3.15 shows the older PCB design1 with one mixer.

Figure 3.15: Original Design. Only one mixer was used in this circuit.

Figure 3.16: First Modification Design. It can be seen that an extra mixer was added.

Second and Final Modification

The second modification depends on a basic concept of RF electronics; it is the concept
of treating RF signals as waves. By waves, I mean that impedance matching between two
points is important since the impedance is analogous to the index of refraction. Incorrect
matching of impedance may lead to reflections of your signal. To think of the modification,
our next task was to learn how to make sure that our traces in the circuit are 50Ω, which
was done by considering two points. First, the routing of the traces in a PCB need to
avoid right angles. To have the ideal paths, the traces should be curved from one point

1The software used for the design is Eagle.

53



to another in a way that the radius of curvature is at least three times larger than the
trace width. The curved traces in the final design of the circuit can be seen in figure 3.18.
Second, we needed to know how to calculate the impedance of our traces. We did that
using the calculator on PCBway and modified our circuit to match that. The thickness
of the board, the width of the trace, and the height of the trace are all factors that affect
the impedance. Figure 3.17 shows the parameters of a microstrip, which is a certain way
to manufacture traces. Note that a PCB may have different layers; one of them can be a
fixed voltage or ground. The thickness parameter is usually the distance between the trace
and the adjacent layer with a fixed voltage.

Figure 3.17: Microstrip Trace. One of the possible ways to create a PCB trace. The
variable h is the height of the dielectric between the trace and the ground. The variable w
is the trace’s width, and the t Cu is the trace’s height. The figure is taken from ref [57].

Some details should be discussed about how we designed the board. One of the prob-
lems that we faced from the first modified circuit was that we needed a thicker board to
better fit the PCI connector on our faceplate. First, we thought about simply increasing the
board’s thickness; however, the impedance increases as the thickness increases. The only
way to effectively change the impedance after changing the thickness is to change the width
of the trace. Given the default parameters of PCB way for the dielectric constant and track
height, a thickness of 2mm will need about 150mil width for the traces, which is insanely
big. The other solution was to make a 4-layer board. Luckily, it was common practice
in RF PCB design to make the transmission lines and electronic components on the first
layer while the ground on the second layer. Having the ground on the second layer made
it easier to have the right impedance with a relatively good width. In our case, the board
had a full thickness of 2mm, and the width of the traces is 13mil. We asked PCBway also
to make sure that our design had a 50Ω impedance. You can compare the physical board
to our design in figures 3.19 and 3.18, respectively. The RF part is highlighted inside a box.

54



Another thing to consider when designing an RF circuit is to minimize coupling and
parasitic inductance. To start with, the coupling increases as the lines get closer to each
other and the more parallel they are. We tried our best to make the RF lines as far apart
from each other and to avoid parallel lines. For the parasitic ground inductance, we added
multiple vias in the RF portion of the circuit between the top layer and the ground on the
second layer and fourth layer. The vias help not only in preventing parasitic inductance
but also in RF coupling between lines. The fourth ground layer was added because we
thought that it may give some EM shielding.[56][57]

Figure 3.18: Final Design. The box contains the circuit’s RF part. An RF switch and
an SMA for the external RF source are added. The extra mixer was also kept.
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Figure 3.19: Physical Circuit. The physical circuit is shown for comparison to the
software’s design. The attached circuit below is the faceplate used to control the driver
circuit.

An Extra Feature

In our circuit, we wanted to be able to drive our AOM with an external RF signal source
with low phase noise. One of these external sources is the Windfreak’s SynthHD Pro. The
main reason is that usually the linewidth of our signal is more stable and precise in the
Windfreak; the difference will be shown in the results section. This feature also would en-
able us to have a greater range of frequencies that can be used (10MHz to 24GHz2 for the
Windfreak) than what the VCO can supply. Our VCO is a POS-300+ from mini-circuits
and is designed to have a linear tuning from 150MHz to 280MHz.

To do that we simply added a switch, which is an HSWA2-30DR+. This switch has an
operating range from DC to 3000MHz and an isolation between 44 and 64dB depending
on the frequency. With such a switch, we were able to use an external RF signal; you can
see the switch and the external signal port in figure 3.18.

3.2.3 Results

In this section, the results of the dynamical range and the linewidth of our circuit will
be shown. Our circuit is tested by measuring the signal using a spectrum analyzer. The

2The coupler and mixer can withstand up to 1000MHz, so 1000MHz would really be the threshold here
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circuit is powered by a voltage of ±15V. Furthermore, the circuit is made of two parts: a
faceplate for control and the main AOM driver, which includes all the RF and electronic
components. On the faceplate seen in figure 3.20, two potentiometers are responsible
for the signal’s amplitude and frequency, and the middle switch shifts between internal
RF signal (VCO) and the external RF signal (Windfreak). The rest of the switches and
potentiometers are related to other technicalities and a feedback loop that works well from
the original circuit and is beyond the scope of this section.

Figure 3.20: Faceplate. The AOM driver’s faceplate that contains the potentiometers used
to control the frequency and amplitude of the signal and a switch to exchange between RF
external and internal signals.
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Dynamical Range

The main purpose of the modification is to increase the dynamical range. After the first
modification, it can be seen that the dynamic range is about 37 dB. In the original design
from MIT, it was about 25 dB. For the second modification, it can be seen that a dynamic
range of about 57 dB is reached, which is indeed more than what we wanted. The test was
done using the internal RF signal, not the Windfreak.

(a) Highest Power (b) Lowest Power

Figure 3.21: Dynamic Range of the First Modification. A dynamic range of 37.4 dB
is seen for the first modification. The highest power is 1.7 dBm, and the lowest one is
-35.7dBm.

(a) Highest Power (b) Lowest Power

Figure 3.22: Dynamic Range of the First Modification. A dynamic range of 57.9 dB
for second modification: the highest power is -5.7 dBm, and the lowest one is -63.7 dBm.
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Linewidth

Besides the extra range of frequencies not provided by the VCO, the main advantage of the
WindFreak, our external RF source, is the narrower linewidth and better carrier stability.
Linewidth is the width between the two frequencies, at which half maximum of the ampli-
tude is achieved. The linewidth of both the VCO’s signal in the circuit and the external
signal will be measured.

Before any measurement, it is important to explain the concepts of resolution band-
width(RBW) and video bandwidth(VBW) in a spectrum analyzer since these were used to
measure the linewidth. RBW (Resolution Bandwidth) is the ability to distinguish between
two frequencies of the same amplitude. Figure 3.23 gives a helpful example.

Figure 3.23: RBW Illustration. All signals are separated by 20kHz. RBW for blue is
30kHz, for yellow 10kHz, and for pink 3kHz. The lowest RBW has the best distinction of
the two signals. The figure is taken from ref [59].

The two signals are separated by 20kHz; the RBW in the graphs are 30kHz, 10kHz,
and 3kHz, which are represented by blue, yellow, and pink, respectively. For the blue case,
the two frequencies are seen as one since the RBW is larger than the difference between
them. The distinction becomes clearer as the RBW decreases; the pink signal has a better
resolution than the yellow one. An interesting detail is that the noise floor decreases as
RBW decreases. On the other hand, VBW’s main effect is to clean up the signal from the
noise fluctuations by taking its average because it acts as a time-domain low-pass filter
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after taking the measurement. It is usually used to detect small peaks by smoothing down
the fluctuations.[59] In summary about the noise, decreasing RBW lowers the noise floor
while the VBW lowers the fluctuations of the noise. Now, in our measure of the VCO’s
signal, the lowest RBW where we had a stable signal is 300Hz while the VBW is 10kHz.
It is stable in a sense that we can get a clean good signal because VCO’s signal usually
keeps drifting. We froze the signal to measure the linewidth, which is about 330Hz in these
settings. The linewidth of 330Hz is just above the resolution available, which means that
the VCO might have a better linewidth measurement. However, it is difficult to obtain
this more accurate measurement because the signal isn’t stable at all for a lower RBW.

Figure 3.24: Linewidth of VCO. it is 329Hz for a 300Hz RBW, 10kHz VBW, and a span
of about 10kHz.

For the Windfreak, we can measure the linewidth at 10Hz for both RBW and VBW;
you can see the parameters at the bottom of the spectrum analyzer screen. Unlike the
VCO’s signal, the Winfreak’s signal didn’t drift at all. In these settings, the linewidth is
12Hz in a span of 200Hz. A linewidth of 12Hz for a 10Hz RBW means that the Windfreak
may have even a better linewidth. This shows that the windfreak is more precise and also
more stable.
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Figure 3.25: Linewidth of Windfreak. it is 12Hz for 10Hz RBW and VBW and a span
of 200Hz.

3.3 Current Driver

As was seen in the general outline of cooling the atoms, the first step is to use a Zeeman
slower, which has a specific coil configurations and a certain constant current. Having
a constant current can be a challenge, and this challenge needs to be overcome since it
will be faced in many other applications as well like the Feshbach coils and the 2D MOT,
which are future projects. Why is having a constant current considered to be a challenge?
The reason is that parameters determining the current change over time. For example,
current heats the wire, and the heating changes the resistance, which leads to increasing
the voltage to have the same current. Another factor is the relaxation of parameters in
some electronic components over time.

Given these reasons, a current controller is needed to adjust to the changes happening.
The best way to deal with changes of a signal is through feedback loops, so this circuit
is about implementing two feedback loops to change two different variables of the system.
The system is made of a sense resistor, a power supply, and a MOSFET. Of the two feed-
back loops, one changes the MOSFET’s gate voltage to control the current, and the other
feedback loop controls the voltage of the power supply to control the heat dissipated.

One might argue that using a current source is simply sufficient to have a constant
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current independent of the resistance of the load instead of going through the trouble of
building a current controller. The problem of using a current source is that it is also
a source of noise. On a different note, we need a current source that can be controlled
digitally, which we would have from the setpoints of the feedback loop. In this section, we
will talk about MOSFETs and PI control. After understanding these building blocks, we
will explain our design and show results. We use the Vishay SOT-227 MOSFET, so we
will always refer to its paramters when we explain the MOSFET.

3.3.1 MOSFET

Background

A metal–oxide–semiconductor field-effect transistor (MOSFET) is the first building block
since the current is mainly controlled from this device. It is a semiconductor device with
three ports: drain, source, and gate; the ports are shown below in the simplified electrical
symbol of a MOSFET. Without jumping into the deep details, understanding the reason
behind the names of the ports will give a good enough understanding of how the MOSFET
operates. The names source and drain are named for the reason that the electrons typically
flow from the source to drain, which means that the current flows in the opposite direction
from drain to source. This implies that the source usually has the lower voltage of both
ports, so we will always assume that it is at ground. The voltage between the drain and
source will be denoted as VDS. The name gate comes from the idea that a MOSFET
doesn’t conduct current until a voltage is applied to the gate; in other words, the voltage
opens the gate for the current to flow. It is important to know that the gate-source voltage
VGS must exceed a certain threshold voltage Vt to allow current to flow. In our MOSFET,
the threshold is typically 2.9V; it can be between 2.2V and 3.8V. Note that our MOSFET
is an n-type, which needs a positive gate voltage to allow current to flow. On the other
hand, a p-type needs a negative voltage.
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Figure 3.26: MOSFET. n-type MOSFET Symbol. The figure is taken from ref [58].

Next thing to consider is what will be the relations between the current flowing, VGS,
and VDS because these relations will explain our choice of parameters. Instead of VGS, the
overdrive voltage VOV ≡ VGS − Vt is the value of interest since current will be conducted
only if VGS > Vt. The relations of the three variables can all be summarized in the following
graph, where VOV is held fixed.

Figure 3.27: Current vs VOV . A linear relation exists for low VDS. For VDS ≥ VOV , the
current enters a saturation regime. The figure is taken from ref [58].
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At a very small VDS compared to VOV , there is a linear relationship between the current
and the voltage as if the MOSFET acts as a normal ohmic resistor; however, the linearity
starts breaking as it increases. As it increases past VOV , the current saturates and doesn’t
increase anymore; in other words, the resistance of the MOSFET increases as VDS increases
to keep the current constant. Here is something that needs to be noted about the design,
VDS should be chosen such that it is just above VOV because the current would be the most
stable at that state resulting in a stable magnetic field. Furthermore, it needs to be just
above VOV and not way higher than that because such a higher voltage will waste power
and heat the MOSFET for no good reason. Remember P = V I. Finally, decreasing VOV

while maintaining the condition of VDS > VOV will decrease the current but will remain in
the saturation regime.[58]

Design

After understanding the operation of the MOSFET, it is time to discuss factors related
to our design. There are two voltages that need to be specified in our system. The first
voltage is VGS supplied by one of the feedback loops. The other voltage is VDS. This voltage
will also be controlled by one of the feedback loops. Depending on the graph shown below
for the MOSFET we are using, we need to choose a certain VDS, at which we keep our
MOSFET, so that the maximum VGS gives us that largest current we want. We estimated
that we will start with a range of 50A to test our circuit; the 50A range is a good range for
not using water cooling. Since we have three plots for different temperatures, we decided
to use the 25C plot because our lab will be temperature controlled at 22C. We think that
this temperature would ideally be achieved by water cooling the circuit if we decided to
have much higher currents. As a result, 4.2V is the voltage chosen. Even without using
water cooling, a 50A will give a power of about 200W, which will increase the temperature
of the MOSFET for a thermal resistivity of 0.23 by 0.23 · 200 = 46C. The temperature
will be less than 100C, which is our rough estimate for using water cooling; consequently,
we can use a heat sink that cools the 46C down to 22C through convection. If we found
out that working with high currents needed less VGS, it will be easy to change the setpoint
volatge in our circuit.
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Figure 3.28: Current vs VGS at different temperatures. The graph is taken from the
datasheet. The voltage VDS is held fixed at 20V.

3.3.2 PI control

We stated that we will need two feedback controllers. One will control the gate voltage for
modulating the current and, therefore, the magnetic field. The other one is to control VDS.
The voltage VDS is controlled to keep the heat dissipation low. One way to perform the
feedback loops is by implementing a PI control, which can be described by the following
diagram.
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Figure 3.29: A General Schematic for a Feedback Loop. s(t) is the setpoint, m(t)
is the measurement, and e(t)=s(t)-m(t) is the error signal. The signal u(t) is sent to the
system after e(t) is processed in the feedback loop.

A system sends an output depending on the input signal it is receiving. For example in
a MOSFET with a fixed VDS, the gate voltage is the input while the current is the output.
In the graph above, the input signal is u(t). The measured output signal is m(t), which
can be any value indicating the current in our example. As will be seen, we measured a
voltage difference across a resistor to know the current. The goal of the PI feedback loop
is to control u(t) so that the measured value m(t) matches the setpoint value s(t) that we
choose. In our same example here, the setpoint sets the wanted current. When there is no
feedback loop, the setpoint becomes equal to the input signal s(t) = u(t); this process is
known as the feedthrough. In case of a feedback, the setpoint gets processed to be a input
signal.

The PI feedback sets the measured value m(t) by controlling the signal u(t). This
input signal is controlled based on the error signal e(t), which is the difference between the
setpoint and the measured value e(t) = s(t)−m(t). How the PI control exactly responds
to the error signal is described in the following equation:

u(t) =

(
kpe(t) + kI

∫ t

0

e(τ)dτ

)
(3.1)

The constant kp is the proportional gain constant, and kI is the integral constant. The
role of each term in this equation will be explained in the following sections.
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Background

Proportional

Proportional gain is the first term of equation 2: u(t) = kpe(t). The integral term will
be ignored to understand the role of the proportional term alone; in other words, kI = 0.
Assuming kp is positive, the feedback loop tends to increase the signal u(t) when the dif-
ference or error is positive indicating that the measured value is lower than the setpoint;
in other words, the feedback loop increases u(t) to decrease the error. In contrast, the
proportional part will decrease the signal when the error is negative.

The proportional control has some characteristics. One of them is that the steady-
state of the measured system will be at an offset from the setpoint. Without an offset, the
measured value will be equal to the setpoint resulting in a zero error and therefore a zero
u(t) that will never drive the system. Another characteristic is the rise time that tends
to decrease as the proportional gain increases because the error will already be large and
scaled to be larger once the feedback is started. A larger kp will decrease the rise time
but may also result in an overshooting in the start of the feedback if it was large enough.
Finally, the larger the proportional gain the more time it takes until the oscillations dampen
out because of its high response to even small changes. In summary, kp has different effects
that can be seen. As kp increases, the rise time decreases, the overshoot may result, the
offset decreases, and finally the oscillations increase to reach a steady-state[61]. Figure
3.30 shows some of these characteristics.

Figure 3.30: Different Proportional Gains.Reaction of different proportional gains to
a sudden change (y=0→y=1) that starts at t=0 (x-axis). The figure is taken from ref [61].
There is a clear overshooting for kp = 5, and it also oscillates for a longer time until it
reaches a steady state. It can also be seen that kp = 2 has a shorter rise time than that of
kp = 1.
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Integral

After understanding the proportional-only control, it is time to understand the effect of
an integrator. The main result of an integrator that it removes the offset produced by the
proportional part of the feedback. From equation 2, the integration of the feedback keeps
memory of the error and keeps adding it each time until the error reaches zero. Increasing
kI tends to increase the oscillation until it reaches the steady-state.

A popular main problem about the integral gain is the wind up phenomenon. Since
the integral part is a continuous summation of the error, the error might be so large that
it drives the system to its limit. If the limit doesn’t change the sign of the error, then the
error will keep growing non-stop; this never ending growth of the error is known as wind
up. The problem was solved in our circuit by the ability to make kI = 0 and therefore to
restart the integrator [61].

Design

Proportional

The design of the proportional part of the feedback controller was taken from the AOM
circuit. It was simply an opamp that has a variable scaling. You can see the design in
figure 3.31.

Figure 3.31: Proportional and Integral Parts of the Circuit. Component U10 is an
opamp used for the proportional and integral gain and connected to a switch to avoid the
wind up of the integrator.
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As you can see, a dual-package opamp was used for the proportional and the integrator
part of the feedback control. Focusing only on the proportional part of component U10,
you can see that the error signal passes through a 1kΩ resistor “R24” to the negative input
“-IN1” of the first channel of the opamp. To perform an inverting scaling on the signal, you
should connect another resistor between the output “VOUT1” and the negative input “-
IN1”; therefore, a potentiometer was connecter between “PROPORTIONAL POT OUT2”
and “PROPORTIONAL POT IN2” to achieve a variable scaling. The end result is the
proportional feedback part of the circuit that can have its gain tuned by the potentiometer
Kp = −Rpot

1kΩ
. To find the best range for a potentiometer, we kept trying which one worked

best. For the gate feedback, 10kΩ was good enough.

Integrator

It is well known how to build an integrator using an opamp, and it is exactly how it was
done in the AOM circuit. You can see the configuration in the same figure. The error
signal goes through a potentiometer, which isn’t seen in the figure, to the negative input
“-IN2” of the second channel of the opamp, and a capacitor is connected between this input
“-IN2” and the output “VOUT2”. This configuration alone without the 1MΩ resistor is
the integrator configuration. The resulting output is vI(t) = − 1

CRpot

∫ t

0
verror(t)dt. As you

can see, it has a gain of −1/CR. Note that the R is from the potentiometer, which makes
the integral gain tunable. The problem of this configuration is the infinite gain of the DC
signal since the capacitor cuts the wire and effectively acts like an infinite resistor for the
DC signal. One way to avoid this common problem is adding a high resistor, which is the
1MΩ in our circuit, to provide a path for the DC signal and to lower the infinite gain. Of
course, the infinite gain is unpractical; realistically it just means that the output voltage
will rail out.

Finally, a switch was added after the opamp so that we avoid the wind up situation
explained previously. The whole point of the switch is to short circuit the capacitor and
its parallel resistor to discharge the capacitor and to have a zero output. The wind up
problem is solved because the discharge of the capacitor will allow the integration to start
over without any memory of the error before.[58]

3.3.3 Circuit Design

After explaining the building blocks for our design, it is the time to show how everything
is put together. Our circuit’s goal as we said before is to control current up to 50A. The
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way we would do that is to use a power MOSFET. A power MOSFET works in principle
the same way as a normal MOSFET but differs in its design so that it can withstand very
high currents. Controlling the gate voltage under a fixed VDS will control the current;
keep in mind to make VDS ≥ VOV to have the stable regime for your current. As step 1
of our thinking process, we are going to have our current by controlling the gate voltage,
so that’s our first output to be controlled by the feedback loop. To keep it at the stable
regime, we would also want to control VDS. The power supply’s voltage is divided upon
three components as can be seen in figure 3.32: the MOSFET, the sense resistor, and the
load, so the task would be to control the power supply’s voltage to achieve the constant
wanted VDS. This would be achieved by the second feedback loop. In summary, we need
two feedback loops, and the schematic below shows the general idea. In each of the next
sections we will talk how we designed the feedback for the gate and the supply.

Figure 3.32: General Schematic for Current Controller. A MOSEFT is connected
to a sense resistor then to the load. The volatge feedback loop measures VDS and controls
V1. The gate feedback loop measures the voltage of the sense resistor that indicates the
current and controls the gate voltage VGS.

70



Gate

Design thought

The feedback loop should have two inputs, the measure and the setpoint, and one output,
which is the gate voltage. The setpoint determines the current. It is also always compared
to the measurement; therefore, we have to decide on the way to perform the measurement.
We decided to measure the voltage across a sense resistor; the voltage indicates the current
from the simple Ohm’s law. Instead of a normal resistor, a sense resistor is perfect for
the application since it is designed in a way to withstand high current while keeping its
parameters relatively the same because of the low temperature coefficient. A valid question
would be how to determine the value of the resistor. It should be chosen to have the best
possible precision for the current. The best precision is achieved when the range of current
wanted maps to a range of voltage equal to the whole positive supply voltage of the circuit,
which is 15V. For example, if we are interested to have a current in the range of no current
to 15A, then this needs to map to 15V; therefore, a 1Ω sense resistor is the best one to
use 15A · 1Ω = 15V. In addition to precision, the sense resistor can be chosen to have an
easy value for convenience; it makes the mapping from voltage to the current wanted easily
done. For example, having 1Ω is better than having 0.85Ω.

For the output, we send a voltage to the gate to achieve the current we want; the voltage
would be the u(t) in figure 3.29. Sending the voltage to the gate is more complicated than
it seems; the voltage charges the input capacitor of the MOSFET. The input capacitance
of the MOSFET is the sum of the capacitance between gate and source and between
gate and drain. As a result, our ability to charge and discharge the capacitor determines
the bandwidth of the feedback loop. How fast a capacitor gets charged depends on the
resistor connected to it as it is known from the common RC circuit. Ideally, a wire with no
resistance is the fastest way, but opamps usually have a finite maximum amount of output
current known as short current, which can be found in the datasheet. The short current
determines the resistor needed; consequently, the resulting RC circuit will determine the
bandwidth. Finally, the input capacitor will need to be discharged at some point to decrease
the gate voltage, so we connected a pull down resistor to the capacitor as a way to discharge.

Actual Circuit

The actual design can be easily understood from the following sketch.
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Figure 3.33: Gate Feedback Schematic. A schematic for the gate feedback part of
the circuit shows how the signal is processed. The signal goes through inamps for ground
isolation and processed by a feedback loop before being sent to the Gate input of the
MOSFET.

First the setpoint and the voltage measurement across the sense resistor are both sent
through an inamp of its own; the inamp ensures that the grounds are separated as was
explained before in the interlock circuit. The difference is then sent to a feedback loop
that is created using integrators and scaling opamps like the ones in the previous sections.
Finally, the output signal gets sent to the gate. A picture of the circuit design is below
with the gate part highlighted.
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Figure 3.34: Gate Feedback Part of Circuit. The gate feedback part of circuit is the
highlighted part. On the top you can find two inputs for the measurement and setpoint. At
the bottom, there is the output. On the left, three potentiometers are used for the feedback
loop. In the middle, you can find the IC components responsible for the proportional and
integral parts.

As explained before, the signal charges the input capacitor of the MOSFET and needs
to go through a resistor to achieve the maximum short current; this input resistor is
not soldered on the board but connected at the output of the circuit before reaching the
MOSFET. Determining the resistance requires knowing the short current, which can be
known from the opamp’s datasheet. The opamp used is OPA2156; it has a short-circuit
current of 100mA. Since the circuit is powered by a 15V, the 15V would be the high-
est rail of the opamp and, therefore, its highest output. As a result, you would need at
least a resistor of 150Ω to achieve the maximum allowed short current. The RC circuit
created from the resistor and the MOSFET’s capacitor will have a time constant that
would determine the highest frequency the feedback can respond to. The time constant is
τ = R·C = 150Ω·17.3nF = 2.6µs, which sets the highest frequency to f = 1

2π·2.6µs = 60kHz.
The capacitance value comes from the datasheet of the power MOSFET we are using: SOT-
227.
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Furthermore, another resistor of about 1.5kΩ is connected from the capacitor to the
ground so that it can discharge. Finally, we added a switch for the integrator’s capacitor to
discharge once we turn it on; this switch is controlled by an Arduino. An arduino introduces
a lot of noise, so we are planning to control the IC switch with physical switches.

Results

The main goal of the following test is to determine the bandwidth of our feedback loop.
Testing the circuit was done by setting the voltage of the supply to 4.2V. The supply
voltage connects to the MOSFET’s drain and then to a 1Ω sense resistor. The setup is
shown below.

Figure 3.35: Part 1 of the Current Controller Setup. Part of the setup for testing the
bandwidth of our feedback loop. One can see the Mosfet on the right part of the picture
while the sense resistor is on the left.
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Figure 3.36: Part 2 of the Current Controller Setup. The other part of the setup is
the soldered current controller connected to the MOSFET and sense resistor.

In figure 3.36, we plug everything to our circuit and measure how good we can match
a setpoint frequency. Surprisingly, we were able to reach 91kHz or even a bit more; it is
surprising since our cutoff frequency is 61kHz. We set our setpoint to 1V, which means 1A
with the 1Ω resistor, and have a modulation of 370mV which is a change of 370mA. You
can see the results below with different frequencies.

Figure 3.37: Test 1: Frequency of 10kHz. Grounds are not aligned on the oscilliscope
to show the perfect alignment of both signals.
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Figure 3.38: Test 2: Frequency of 30kHz. The signals align pretty well.

Figure 3.39: Test 3: Frequency of 70kHz. The signals still aligned for higher frequency.
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Figure 3.40: Test 4: Frequency of 91kHz. One can start noticing a small difference.

Power Supply

Design thought

The other feedback loop is to maintain the supply across the MOSFET’s VDS. To keep VDS

constant, one should control the voltage given by the power supply since part of it is taken
by the sense resistor and the load, which may affect VDS through factors like relaxation
or thermal fluctuations. Unlike the previous feedback loop, this one has only one input,
the measurement, and one output. The setpoint is designed to have a fixed voltage about
4.2V as we explained why before. As was seen in the general schematic, the measurement
was taken over the MOSFET, not the whole circuit of the sense resistor , the load, and the
MOSFET. The reason is the graphs depend on VDS. The output is a signal that controls
the power supply, which is BK precision 1693; 1V of the signal maps to 3V for the supply.
Our aim is that the feedback loop would have at least 10Hz of bandwidth mainly because
thermal fluctuations are slow.

Actual Design

The other part of the feedback is highlighted below. The setpoint voltage of 4.2V is
set inside the circuit by a voltage divider that acts on the 15V that powers the current
controller. You can see that in figure 3.41 where the purple arrow is pointing in the top
right corner. The measurement with the in-circuit setpoint goes through the same stages as
the inputs of the gate feedback loop. The output is then sent directly to remote controller
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at the back of the power supply that controls its voltage; each 1V of the control signal u(t)
maps to 3V from the supply.

Figure 3.41: Power Supply Feedback Part of Circuit. The output is at the bottom.
The arrow indicates the voltage divider used for the setpoint. The only input is at the top
beside the arrow from the left.

Testing

The goal of our test to find what is the bandwidth of the feedback loop. The feedback has a
4.2V DC set point. Having a setpoint of a constant value forced us to look for a new variable
to modulate with different. This variable was the gate voltage. To summarize the process,
we modulate the gate with various frequencies and check the highest frequency, at which
VDS remain at 4.2V. Unfortunately, the feedback loop didn’t work. A main problem is the
overshooting from the integrator; it always turns off the power supply when the mapping
exceeds 15V, which is the highest voltage the power supply can supply. Debugging is still
in the process while we also think of an alternative way to control the power supply.
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Chapter 4

Thermalization

4.1 Introduction

Statistical mechanics was a breakthrough that described how the macroscopic properties of
the system emerged from the microscopic view of the system. Unlike statistical mechanics,
these results were first derived from the very general, abstract laws of thermodynamics
that didn’t provide any reasons or interpretation of the microscopic point of view. Tak-
ing the ideal gas as an example, the laws of thermodynamics and the empirically derived
equation of state PV = kNT were used to derive different macroscopic properties such as
entropy. In statistical mechanics, an ensemble of microstates satisfying certain macroscopic
constraints is averaged over to give the macroscopic properties of the system. For an ideal
gas, these constraints can be the volume and number of particles while the properties can
be pressure and entropy.

Although statistical mechanics provided the microscopic point of view, it didn’t pro-
vide any insight into how the dynamics of the system reach the equilibrium state; in other
words, how is the ensemble of states connected to the unique state that is measured at a
certain time? Unfortunately, the connection between statistical mechanics and the more
fundamental classical mechanics isn’t clear although some ideas were proposed. A popular
idea that shows the connection is the ergodic hypothesis. The ergodic hypothesis is used
to explain the microcanonical ensemble, which is a type of statistical ensemble used to de-
scribe an isolated system with constant energy. A basic postulate of statistical mechanics
is the assumption that all the accessible systems in a phase space have equal probability.
In the microcanonical ensemble, the accessible states are the states with equal energy.
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The ergodic hypothesis states that the statistical ensemble average of the microstates in a
phase space is equal to the long time average of the observable along the trajectory in the
same phase space. This trajectory is created by the Hamiltonian dynamics for an initial
state. The trajectory visits each region in the phase space that satisfies the macroscopic
constraints, and it will spend time in a region proportional to its volume, from which the
equal probability postulate can be seen. The ergodic hypothesis can be proven to a few
systems; however, the time limit needed for the proof grows exponentially in the number
of degrees of freedom, which makes it unpractical because different observables need less
time to be measured.[1][9][10]

The ergodic hypothesis works only when there are no invariant quantities other than the
total energy.[13] Additional invariant quantities will provide less accessible volume in the
phase space for the trajectory. Some systems in one-dimension that have the same number
of invariant quantities as degrees of freedom were found not to thermalize, or to be described
by the microcanonical ensemble.[1] Evidently, invariant quantities have a great effect on
the dynamics of a system. It is therefore worthwhile to classify classical systems into
two classes known as integrable and non-integrable systems. Integrable systems have the
same number of independent conserved quantities (I1, I2, I3, ...) as the number of degrees
of freedom. The independence and conservation of these quantities to a certain system
with the Hamiltonian H can be mathematically shown by the Poisson brackets:

{Ij, H} = 0, {Ij, Ik} = 0, where {f, g} =
∑
j=1,N

∂f

∂qj

∂g

∂pj
− ∂f

∂pj

∂g

∂qj
(4.1)

Integrable systems tend not to thermalize since they have simple dynamics from the Arnold-
Liouville theorem, which shows a simple equation of motion that results from a canonical
transformation to action-angle coordinates. Unlike integrable systems that visit only part
of the phase space, non-integrable, or chaotic, systems have the number of degrees of
freedom more than the number of conserved quantities. Having more degrees of freedom
than conserved quantities leads the system to explore most of the phase space, so it seems
that chaotic exploration of the phase space allows the ergodic hypothesis to be valid and
therefore allows thermalization.[1] Chaos can be characterized by the Lyapunov exponent,
which quantifies the sensitivity of the trajectory to an initial state. The exponent quantifies
the difference between two trajectories at a later time of two initial states with a negligible
difference. For example, the initial conditions of x0 and x0 + ϵ will have their difference
quantified in the following way:

∆x(t) = ϵ eλt
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where λ is the Lyapunov exponent. A chaotic system will have a positive exponent, which
will lead to exponential growth in the difference.[11] On the other hand, an integrable
system has all its Lyapunov exponents equal to zero and consequently is not chaotic; there
are two zero exponents for each constant of motion.[12]

Unlike classical mechanics, quantum mechanics is always linear. A small difference
between two initial states will always be the same as time evolves. It can be seen from
the overlap of two states under the time evolution U : ⟨ψ(t)|ϕ(t)⟩ = ⟨ψ(0)|U †U |ϕ(0)⟩ =
⟨ψ(0)|ϕ(0)⟩. Therefore, the important question is how the observable thermalizes without
any chaotic behavior like that of classical mechanics. An observable is said to thermalize if
it can be described by the microcanonical ensemble, which is equal to the canonical ensem-
ble in the thermodynamical limit where the fluctuations are negligible. Another question
would be the effect of conserved quantities on quantum thermalization. After all, the in-
tegrability had a clear effect on the dynamics of a classical system in its phase space. One
promising idea that explains the thermalization process is the Eigenstate Thermalization
Hypothesis (ETH). It simply states that each eigenstate is a thermal state, which agrees
with the microcanonical ensemble, and that thermalization happens as the system loses its
coherence. We refer the readers to the following review about ETH to understand more
about the topic and the studies made to validate it[1]. Another promising idea is the idea
of dividing the system into a subsystem and a bath to understand the dynamics.[4] We
plan to explore the second approach for various reasons that we will be discussed after
covering most of the relevant studies and experiments.

The question of thermalization is important in the most important aspect of connecting
statistical mechanics to quantum mechanics. After establishing the connection, it may
shed some light on quantum thermodynamics and may give us a better understanding.
We may even gain a better understanding of the thermodynamics in black holes, which is
partially quantum. Using cold atoms, not only black holes but also cosmological phenomena
can be studied since some experiments showed how similar physics was observed in cold
atoms.[35,36] Thermalization can be tested very well in our labs for multiple reasons.
The experiments will be very well isolated and very well controlled. We can quench our
Hamiltonians in any way we want. Many experiments already were done and provided
information that greatly enhanced our understanding of this topic. We plan to add to
these experiments through novel techniques to gain a better understanding of the physics
behind thermalization. To do so, we will discuss important points in this chapter. First, we
will formulate the problem well so that we know what questions exactly we are addressing.
We will then provide a review of the most important experiments that were made on this
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topic. Some experiments were done using the Lieb-Liniger model as their system due to its
integrability. We are interested in this model since our first experiments will be simulating
it while resolving several technical problems that plagued previous experiments. We will
also briefly shed some light on the Bose-Hubbard model to show an important technique
that we are planning to use in the Lieb-Liniger model; this implementation is a longer-term
goal. In the end, we will provide our theoretical approach to study thermalization and our
novel planned experimental improvements that will be implemented in the future.

4.2 The Problem

The main goal is to understand when the expectation value for a quantum initial state is
equal to that of a canonical or microcanonical ensemble. Statistical mechanics is usually
used to describe equilibrium states; as a result, the better question would be the following.
When the expectation value of the initial state reaches a stationary state, is this expectation
value equal to that of the statistical ensemble? If a system reaches a stationary state, then a
very long time average will make the result of this stationary state emerge since the system
will be close to this state most of the time. Mathematically, the problem is described by
the following equation:

lim
T→∞

1

T

∫ T

0

⟨ψ(t)|Ô|ψ(t)⟩ dt ??
= Tr(Ôρ̂c]) (4.2)

where ρ̂c is the canonical ensemble, and we set ℏ = 1:

ρ̂c =
1

Z
e−βĤ =

1

Z

∑
α

e−βEα|α⟩⟨α| (4.3)

where H |α⟩ = Eα |α⟩, β = 1
kBT

, and Z = Tr(e−βĤ) is the partition function. The variable

kB = 1.380 · 10−23 J/K is Boltzmann’s constant.

4.2.1 The Setup

To equilibrate, one should first start from an out-of-equilibrium state. To achieve this
state, the standard way is to prepare an initial eigenstate for your system of a certain
Hamiltonian that is then quenched or changed suddenly such that the eigenstate isn’t an
eigenstate anymore. The system consequently will show some dynamics. Mathematically,
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one starts with a ground state |ψ0⟩ for an initial Hamiltonian H0, where H0 |ψi⟩ = Ei |ψi⟩.
After a sudden quench from H0 → H with a new set of eigenstates {|ϕi⟩}, the expectation
value of an observable is calculated by expanding the initial state |ψ0⟩ in the set of the
new eigenstates {|ϕi⟩} and then applying the time evolution to it. The expansion takes
the following form:

|ψ0(t)⟩ =
∑
m

cme
−iϵmt|ϕm⟩

where H |ϕi⟩ = ϵi |ϕi⟩. The observable is as follows:

O(t) ≡ ⟨ψ(t)|Ô|ψ(t)⟩ =
∑
m,n

c∗mcne
i(ϵm−ϵn)tOmn (4.4)

=
∑
m

|cm|2Omm +
∑
n̸=m

c∗mcne
i(ϵm−ϵn)tOmn = Tr(Ôρ̂D) + ∆O(t) (4.5)

where Omn = ⟨ϕm| Ô |ϕn⟩, and ρ̂D =
∑

i |ci|2 |ϕi⟩ ⟨ϕi| is known as the diagonal ensemble.
If a system equilibrates, one can then use the infinite time average of equation 4.2 to find
the stationary state [1]:

lim
T→∞

1

T

∫ T

0

⟨ψ(t)|Ô|ψ(t)⟩ dt =
∑
m

|cm|2Omm = Tr(Ôρ̂D) (4.6)

Although the time average gives a constant quantity, it doesn’t mean that the system
may equilibrate; the system may keep oscillating around this constant value. One way to
validate the equilibration process is to study the infinite time average of the fluctuations
of the system (∆O(t))2. In many studies, the fluctuations are observed to be small in the
equilibration process.[7] The problem of whether an observable reaches a stationary state
or not is known as the problem of equilibration, which is the first part of the problem of
quantum thermalization.

Proving that the fluctuations are small in a long time average shows that most times
the expectation value can be predicted by the diagonal ensemble; this kind of equilibration
is known as equilibration on average. Another definition for equilibration is known as
equilibration during an interval. In this second kind of equilibration, the expectation value
is close to the diagonal ensemble during all the time of this interval. The interval is bounded
from below by the relaxation or dephasing time and from above by the recurrence time,
where the state returns to its initial state after a long time evolution.[14] If one has to
choose between the two definitions, we prefer the second one because measurements can be
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done to better study a finite interval of time than an infinite time average. A measurement
that takes a long time can average out any fluctuations, but a very short measurement
can probe the fluctuations well and validate the definition of equilibration during intervals.
The following equation resembles equilibration while taking measurements into account:

1

Tm

∫ t+Tm

t

⟨ψ(t′)|Ô|ψ(t′)⟩ dt′ =
∑
m

|cm|2Omm = Tr(ÔρD) Td < t < Tr

where Td is the dephasing time after which equilibration takes place. The dephasing time
shows the time that a system takes to lose its coherence. The variable Tm is the measure-
ment time of the observable, and Tr is the recurrence time. More details about these times
will be discussed later.

The second part of the problem is the thermalization itself. In other words, does the
expectation value of the stationary state agree with that of the statistical ensembles? In
other words, is the following equation true? [4]

Tr(ÔρD)
??
= Tr(Ôρc)

A stronger statement would be the equality of the distribution for the observable for both
results, which can be calculated for the projectors of Ô. In a time-of-flight measurement,
one can measure the momentum distribution and therefore the projectors of momentum.
In the following sections, we will study each part of the problem alone.[7]

4.2.2 Thermalization

We will start with the second part since it is a prerequisite to understand the different
phases in an equilibration process. Integrability has a large role in this part of the prob-
lem. The definition of integrability is a subject of debate; however, a standard definition
that is sufficient for the following discussion is the existence of conserved observables Ik
that commute with the Hamiltonian [H, Ik] = 0 and among themselves [Ik, Im] = 0. The
commutation relations are the quantum analogue of the Poisson brackets in equation 4.1.
It is believed that the conserved observables are usually local and extensive.[1][8][37]

Let’s restate our problem. If an expectation value of an observable equilibrates, does
the reached stationary state provide the same prediction as a canonical or microcanonical
ensemble? Furthermore, if a system was integrable, what would be the role played by the
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conserved quantities? Starting with the latter question, it makes sense that a system that
has conserved quantities should keep these quantities conserved if the quenched Hamilto-
nian still commutes with these quantities. In other words, if the system equilibrates, our
measurement of these observables or our “information” of the system shouldn’t change;
therefore, the equilibrated state should still have a memory of these initial conserved quan-
tities and is completely unbiased in any other way. This state is usually found by Jaynes’
Principle of Maximum Entropy. In this context, being unbiased means that the uncer-
tainty, which is quantified by Shannon entropy, should be maximized while meeting the
constraints of conserved quantities. In classical statistical mechanics, the entropy, which
is just proportional to Shannon entropy by Boltzmann’s constant, should be maximized
yielding the canonical ensemble if energy is the only conserved quantity. In the quantum
case, the Von Neumann entropy, S = −Tr (ρ ln ρ), is the quantity maximized. Having
extra conserved quantities Ik other than the energy introduces extra Lagrange multipliers
in the exponent. Mathematically, assuming that a set of observables {Ik} commute with
the Hamiltonian with a known expectation value ⟨Îk⟩, then the following density operator
known as the Generalized Gibbs Ensemble (GGE) maximizes the Von Neumann entropy:

ρ̂GGE =
1

Z
exp

(
−
∑
m

λmÎm

)
(4.7)

where Z = Tr
(
exp

(
−
∑

m λmÎm

))
. The Lagrange multipliers associated with each con-

served quantity are chosen such that [2-3,8]:

Tr
[
Îmρ̂GGE

]
=
〈
Îm

〉
(t = 0)

It may seem that the idea of maximizing entropy is trivial and known already, so
what is too special about Jaynes’ Principle? The idea is that previously entropy was an
empirical result of studying things like the Carnot engine or thermodynamical systems
generally. The positive change of entropy always haunted scientists who tried to find an
explanation using the more fundamental classical mechanics. But, here is the thing: what
if maximizing the uncertainty or entropy is already a fundamental thing from the start?
By reversing the way physics problems are treated, statistical inferences may provide new
insight, quoting Jaynes in her paper: “In freeing the theory from its apparent dependence
on physical hypotheses of the above type, we make it possible to see statistical mechanics
in a much more general light”. The generalized gibbs ensemble is exactly the reward of
this treatment. After all, recall that the way gibbs ensemble, or canonical ensemble, was
derived is different from the way of maximizing entropy.
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Furthermore, Jaynes’ principle gives us a way to derive ensembles for pure quantum
systems. Generalized gibbs ensemble was shown in various numerical and experimental
studies after a pure quantum system relaxes.[1, 30, 33, 39] When the energy is the only
conserved quantity, it was observed that the gibbs ensemble, also known as the canonical
ensemble, was the result.[34, 47-49, 51] So to answer our previous questions, an equilibrated
state satisfies a canonical ensemble if the energy is the only conserved quantity and agrees
with the generalized gibbs state if other conserved quantities exist. The generalized gibbs
ensemble answers the second question about the effect of commuting observables. But there
is still a remaining question: how exactly do these states emerge? To elaborate more, what
is special about the eigenstates or their probability distribution after the quench to agree
with these ensembles? One promising answer for the non-integrable systems is the ETH;
however, it is a hypothesis that would need to be proved. The subsystem-bath approach
may also carry a potential answer.

4.2.3 Equilibration

We discuss the first part of the problem. Before even considering the stationary states, one
should check if the system equilibrates. Does ∆O(t) vanish in equation 4.4? One way to
approach the problem is to think that the quantity ∆O(t) is made up of different vectors
vα,β in the complex plane, and they rotate with different angular frequencies Gα.

∆O(t) =
∑
β

(
∑
α

vα,β)e
−iGβt =

∑
β

Zβe
−iGβt (4.8)

where vα,β = c∗mOm,n cn such that Gβ = En−Em is an energy gap, and Zβ is the sum of all
vα that shares the same energy gap. The energy gap Gβ determines how fast Zβ rotates in
the complex plane. From this point of view, a system equilibrates when all these vectors
distribute uniformly in the complex plane such that their sum is negligible. This process
of redistribution over the complex plane depends on two major points: the distribution of
energy gaps and the number of vectors. A small number of vectors will make the whole
expectation value oscillate instead of equilibrating; think about a superposition of only
two states and how it causes the expectation value to oscillate. Furthermore, more vectors
will provide a longer time for them to realign. This process eventually happens and is
known as recurrence; however, recurrence time increases exponentially as the number of
vectors increases. Having many vectors is equivalent to having a larger system and a larger
quench.[14] The distribution of energy gaps is also important since it is the rotation speed
of these vectors on the complex plane. In the extreme case where the energy gaps are
very close to each other, it will take a very long time to notice any appreciated angular
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distance between the vectors.[7] Figure 4.1 below shows the equilibration dynamics for an
XXZ model.[15]

Figure 4.1: Equilibration dynamics for an XXZ model. The deviation of the ex-
pectation value of Â from that of the diagonal ensemble is seen in the figure above while
the vector representation is below. It is seen how the vectors redistribute well around the
origin. The figure is taken from ref [15].

In the absolute sense of approaching an infinite time average or in the definition of
equilibration on average, large quantum systems do equilibrate. A study showed that an
infinite time average of a finite non-degenerate Hamiltonian shows that the fluctuations
are bounded by the effective dimension:

σ2
A ≡ lim

T→∞

1

T

∫ T

0

(Tr(Âρ̂(t))− Tr(Âρ̂D))
2dt ⩽

∥A∥2

deff

where ∥A∥ = sup
{√

⟨v |A†A| v⟩ : |v⟩ ∈ H with ⟨v | v⟩ = 1
}
, deff = 1∑

k tr(Pkρ(0))
2 is the ef-

fective dimension, and P̂k is the Hamiltonian’s projector. The effective dimension is a
measure of how spread the initial state is in the new eigenbasis after the quench. The more
spread the system is the tighter the bound is. Note that for a pure state deff = tr (ρ2D)

−1
.

One might argue that equal expectation values don’t mean that the density states can’t be
distinguished; therefore, the study also derived a bound for distinguishability, whose bound
was proportional to (deff)

−1/2. Bounds were also derived for subsystems.[5] A later study
relaxed the non-degenerate assumption and, even more, derived a finite average bound
for distinguishability and fluctuations of expectation values for both the full system and
a subsystem.[6] From these studies, one can conclude that the equilibration depends on a
critical quantity, which is the effective dimension. The effective dimension reflects the first
point of the distribution of vectors on the complex plane; a small number of deff means that
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Figure 4.2: Equilibration Process. The orange shaded region shows the dephasing phase.
Right after the dephasing at the tick in the time axis, the system is in the prethermal state
that can be described using the generalized gibbs ensemble. The system later decays slowly
to its thermal state.[8,18]

a few vectors are revolving which will result in oscillations of the expectation values. It is
discussed in several studies that deff is usually large for large systems.[16,17] In summary,
the goal of these studies just show that equilibration happens.[7]

However, the problem with these equilibration studies is that it doesn’t provide any
practical time scales for the equilibration process. In general, there have been three time
scales if the system was near-integrable. By near-integrable, it is meant that the conserved
quantities are very weakly broken [Ik, H] = ϵ. The first one is dephasing, which is usually
fast. In dephasing, the system loses any coherence between its states. The second step is a
metastable state known as prethermalization, where the system has a memory of its very
weakly broken conserved quantities. The generalized gibbs ensemble describes this state.
After that, the system decays slowly to reach a thermal state during the third phase.[8] The
process is shown in figure 4.2. What is interesting is that the canonical ensemble appears
at a much longer time when the integrability is very weakly broken. This behavior leads to
the question if such perturbation will lead to a quantum version of KAM theory. Another
question is whether the thermal state will emerge sooner if the conserved quantities were
better broken, which was answered by two experiments that will be discussed later.[34,47]
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4.3 Lieb-Liniger and Bose-Hubbard Models

Lieb-Liniger and Bose-Hubbard models are systems that can be created efficiently in the
lab, and they provide key insights into the problem of thermalization. For these reasons,
we will now discuss some key studies and experiments that were done about these two
systems. After the discussion of these systems, we will provide the arguments of why we
are interested to study the problem in the subsystem-bath approach.

4.3.1 Lieb-Liniger Model

The Lieb-Liniger is a 1D Bose gas with contact interactions or dirac-delta potential func-
tion. The theoretical problem was tackled and solved in 1963 before any experimental
implementation.[19] This model is an integrable system that doesn’t thermalize. The
non-thermalization can be intuitively seen from the contact potential, which only allows
particles to exchange momenta. In this section, the theoretical background of the model
will be discussed. Then, we will discuss the main experiments done using this model to
understand thermalization.

Theoretical Background

The Hamiltonian of the Lieb-Liniger model is written in terms of the bosonic field operators
that satisfy the following commutation relations [21]:[

Ψ(x),Ψ†(y)
]
= δ(x− y)

[Ψ(x),Ψ(y)] =
[
Ψ†(x),Ψ†(y)

]
= 0

The second quantization of the Hamiltonian is the following:

H =

∫
dx

[
ℏ2

2m
∂xΨ

†(x)∂xΨ(x) +
g1D
2

Ψ†(x)Ψ†(x)Ψ(x)Ψ(x)

]
(4.9)

where g1D = α · g is the 1D interaction strength. The constant g = 4πℏ2a
m

is the coupling
strength that is proportional to the 3D scattering length a, and α is some constant that
depends on the physical setup. The scattering length can be positive or negative depending
on the applied Feshbach resonance discussed in chapter 1.[20] In our case, we assume a
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positive scattering length g > 0. Another way to specify your systems is through the
dimensionless quantity known as the Lieb parameter:

γ =
mg1D
ℏ2n1D

(4.10)

where n1D is the linear density.[25] The solution shown in 1963 used what is known as
the Bethe ansatz. To understand what is the Bethe ansatz and the physics behind it, one
should first understand the two-particle case.

Two-particle Case

The Hamiltonian of the two-particle case is the following:

H = − ∂2

∂x21
− ∂2

∂x22
+ 2c δ (x2 − x1) (4.11)

where c = g1Dm/ℏ2. If there was no interaction at all g1D = 0, the solution to the
Hamiltonian would be trivial; it will just be a symmetric wavefunction made of plane
waves. Adding a contact potential makes things a little tricky. If x1 ̸= x2, then the
particles won’t be in contact and would have normal plane wave solutions. However if
x1 = x2, then the particles would be in contact, and we would expect that there will
be some kind of momenta exchange between them that depends on the coupling g1D.
The way to deal with the dirac delta is similar to the standard way to solve the dirac
delta potential in a first quantum mechanics course; the dirac delta results in a boundary
condition that determines the change in the first derivative of the wavefunction.[22] To
get the familiar boundary conditions, one transforms the coordinates to the center-of-mass
frame: R = x1+x2

2
and r = x2−x1

2
. The Hamiltonian would then be:

H = −1

2

∂2

∂R2
− 1

2

∂2

∂r2
+ c δ(r)

Integrating around r:

lim
ϵ→0

∫ ϵ

−ϵ

dr

[
−1

2

∂2

∂R2
ψ(r, R)− 1

2

∂2

∂r2
ψ(r, R) + cδ(r)ψ(r, R)

]
= lim

ϵ→0

∫ ϵ

−ϵ

dr Eψ(r, R)

Resulting in the following boundary condition equation:

− 1

2

∂

∂r
ψ(r)

∣∣∣∣r=0+

r=0−
+ c ψ(0) = 0(

∂

∂x2
− ∂

∂x1
− c

)
ψ

∣∣∣∣
x2=x1+0

= 0 (4.12)

90



Now, the goal is to find a solution that satisfies both the boundary condition in equation
4.12 and the Hamiltonian without the dirac delta in equation 4.11 since satisfying the
boundary condition is satisfying the dirac delta. The solution to the Hamiltonian is given
by the Bethe ansatz:

ψ(x1, x2) = Ae−i(λ1·x1+λ2·x2) +Be−i(λ1·x2+λ2·x1) (4.13)

The solution is merely a superposition of two plane waves, where the exchange of the vari-
ables x1 and x2 implies the elastic exchange of λi’s between the two particles; furthermore,
the exchange of λi’s is proportional to the coupling strength c according to equation 4.12.
Note that λi is known as the rapidity in literature and not strictly a momentum of one
particle since ψ(x1, x2) is not an eigenstate for pi = −i ∂

∂xi
; however, these rapidities can

be measured for freely expanding bosons after turning off the trap. This solution clearly
solves the Hamiltonian, and now we should satisfy the boundary condition. Plugging this
solution into equation 4.12 results in:

A

B
=
i (λ2 − λ1) + c

i (λ2 − λ1)− c
(4.14)

Equations 4.13 and 4.14 are our solution to the problem with λi’s as our free parameters
that usually be specified depending on the boundary conditions of the system, i.e. periodic
or a particle in a box.[23,25]

The General Solution

The solution for N particles can be generalized; the details of the solution can be found
in the following reference [24]. Without going through the derivation of the solution in
equation , a few properties of the solution should be pointed out.

ψ(x1, x2, ...) =

{
N !
∏
j>k

[
(λj − λk)

2 + c2
]}−1/2

(4.15)

×
∑
P

(−1)[P] exp

{
i

N∑
n=1

xnλPn

}∏
j>k

[λPj
− λPk

− ic · sgn(xj − xk)]

First, [P ] denotes the parity permutation of the set of rapidities allowed {λi}; this term
is necessary since we are taking all the combinations of how the rapidities are exchanged
between the particles. Second, the wavefunction is symmetric in the position variables
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ψ(x1, x2, ...) = ψ(x2, x1, ...); this symmetry is expected since we are dealing with bosons.
The sign function in the solution below allows such symmetry. Finally, the wavefunction
is antisymmetric in the rapidities ψ(λ1, λ2, ...) = −ψ(λ2, λ1, ...); this fermionic behavior
towards the rapidities is a byproduct of the boundary condition imposed by the dirac
delta.[24] In my opinion, physically this antisymmetry makes sense since it prevents par-
ticles to have the same probability distribution and thus to be in contact at all times. To
elaborate more, if the particles were in a box and were all in the ground state, then the
overlap between the particles would be maximized, which should be prevented by the dirac
delta contact potential.

Conserved Quantities

The Lieb-Liniger is an integrable system. Intuitively it can be seen from the wavefunction
where it shows clearly the exchange of rapidities by assigning the same λ’s to different
variables xi. Ideally, the system will never thermalize in a sense of reaching the Maxwell-
Boltzmann distribution for the momentum. After understanding the physics of the system,
it is natural to ask the more formal question of what the conserved quantities are. One can
simply show that the number of particles N =

∫
dxΨ†(x)Ψ(x) and the total momentum

P = i
∫
dx
[
∂xΨ

†(x)
]
Ψ(x) are conserved quantities through their commutation with the

Hamiltonian (12):
[H,N ] = [H,P ] = [N,P ] = 0

Since the set of rapidities doesn’t change at all, then it makes sense that any function f(λ)
that takes these rapidities as eigenstates will be a conserved quantity: f̂ |ψ(λ1, λ2, ...)⟩ =
(
∑

i f(λi)) |ψ(λ1, λ2, ...)⟩. Simple examples of f are P and H:

P̂ |ψ(λ1, λ2, ...)⟩ = (
∑
i

λi) |ψ(λ1, λ2, ...)⟩

Ĥ |ψ(λ1, λ2, ...)⟩ = (
∑
i

λ2i ) |ψ(λ1, λ2, ...)⟩

P̂n |ψ(λ1, λ2, ...)⟩ = (
∑
i

λni ) |ψ(λ1, λ2, ...)⟩

where P̂n is just an operator with the shown eigenvalue. As can be seen, the Lieb-Liniger
model has an infinite number of conserved quantities.[25] An infinite conserved quantities
lead to the question if they will all appear in the GGE. I would argue that only the P̂n’s
would appear since any operator f̂ can be written in terms of this so-called basis. To see
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how the expansion happens, we start with the following equation:

f̂ |ψ(λ1, λ2, ...)⟩ = (
∑
i

f(λi)) |ψ(λ1, λ2, ...)⟩

=
∞∑
n=0

N∑
i=0

f (n)(0)

n!
(λi)

n

=
∞∑
n=0

f (n)(0)

n!

N∑
i=0

[(λi)
n]

=
∞∑
n=0

f (n)(0)

n!
P̂n |ψ(λ1, λ2, ...)⟩

One can see how each conserved quantity can be written in terms of P̂n’s.

Approximation: Luttinger Liquid Model

At a certain regime, the 1D Bose gas can be treated as a quantum Luttinger liquid. The
Luttinger liquid model provides a general description of the low-energy properties of a
wide range of 1D systems. The Luttinger liquid shares some main properties including
defining a sound velocity and having a gapless, linear-dispersing excitation.[26] The low-
energy physics of these 1D systems can be described using a density field operator n̂(x) =
Ψ†Ψ; it is not surprising to use a density operator to describe a quantum fluid since
intuitively classical fluids are described by the density. To validate the use of the density
field operator, one should check that the density fluctuations can indeed be small in certain
regimes. These fluctuations can be studied using a quantity known as the density-density
correlation function S(x2, t2, x1, t1) = ⟨n̂(x2, t2)n̂(x1, t1)⟩. In a homogeneous systems, only
the differences in distance x = x2 − x1 and in time t = t2 − t1 matter, so we can write
S(x, t) = ⟨n̂(x2, t2)n̂(x1, t1)⟩ = ⟨n̂(x, t)n̂(0, 0)⟩. The density-density correlation function
shows the fluctuations since it appears in the variance in density at a specific point r:

Var(n̂(r)) ≡
〈
n̂(r)2

〉
− ⟨n̂(r)⟩2 = S(0, 0)− ⟨n̂(r)⟩2

By using the commutation relation, the density-density correlation can be written in terms
of the popular 2nd-order correlation function g2(x):

S(x) =
〈
Ψ†(0)Ψ†(x)Ψ(x)Ψ(0)

〉
+ δ(x)

〈
Ψ†(x)Ψ(0)

〉
= n2g2(x) + δ(x)

〈
Ψ†(x)Ψ(0)

〉
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where,

g2(x) =

〈
Ψ̂† (0) Ψ̂† (x) Ψ̂ (x) Ψ̂ (0)

〉
[⟨n̂ (x)⟩ ⟨n̂ (0)⟩]1/2

Usually, the correlations are studied using the quantity g2(x) to get rid of the divergent
term δ(0) · n, or another way would be to discretize the real space [31]. In figure 4.3, the
quantity g2(x) is shown for different strengths of g or, more precisely, γ = c/n1D. The weak
interaction has no oscillations and changes slowly showing low density fluctuations. Such
low interactions at low energy levels allow us to transform our field operators into a density
n̂(z) and a phase ϕ̂(z) field operators: Ψ̂(z) = eiϕ̂(z)

√
n1D + n̂(z). This transformation

allows us to simplify our system into the Luttinger liquid model, which can be diagonalized
easily using a Bogoliubov transformation, and to study correlation functions efficiently,
which was done in an essential experiment that proved the generalized gibbs ensemble.[39]

Inserting the preceding transformation into equation 4.9:

Ĥ =
ℏc
2

∫
dz

K
π

(
∂ϕ̂(z)

∂z

)2

+
π

K
n̂(z)2


=
∑
k

ℏωkâ
†
kâk

(4.16)

where ωk = ck is a linear dispersion relation, c =
√
gn1D/2m is the speed of sound, and

K =
√
n1D(ℏπ)2/4g1Dm is the Luttinger parameter. This is Hamiltonian of the Luttinger

liquid model. The diagonalization is achieved using the following transformation of the
Fourier components of the phase and density field operators:

n̂k ∼
(
âk(t) + â†−k(t)

)
ϕ̂k ∼

(
âk(t)− â†−k(t)

)
Unlike the conserved quantities of the Lieb-Liniger, the conserved quantities here are Nk =
â†kâk for each mode k. The advantage of the Luttinger-liquid mode is the easy way to
calculate the correlation functions. Here is a 2nd-order correlation function for two different
systems labeled l and r:

g2 (z1, z2) =

〈
Ψl (z1)Ψ

†
r (z1)Ψ

†
l (z2)Ψr (z2)

〉
〈
|Ψl (z1)|2

〉 〈
|Ψr (z2)|2

〉 = ⟨exp [i∆ϕ (z1)− i∆ϕ (z2)]⟩
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Figure 4.3: Correlations between g2(x) and γ. The 2nd-order correlation function is
graphed for different strengths with respect to x in the units of kF = 2π

L
N−1
2

, where L is
the size of the system and N is the number of particles. It can be seen that there are
small fluctuations for the weaker interactions while the infinite one has many ripples with
an anticorrelation during the interval near the origin. The weak fluctuations justify the
approximation of using density field operators to describe the system.The figure is taken
from ref [23].

where ∆ϕ(z1) = ϕl(z1)−ϕr(z1). Finally, weakly interacting Bose gas is a vague description
unless two quantities are compared to each other. The approximation works well when
γ << 1. This can be seen by comparing different lengths:

√
γ = d/ξ, where d = 1/n is the

interparticle distance and ξ = ℏ/√mng1D is the correlation length. It is the regime where
the interparticle distance is much lower than the correlation length. This regime is known
as the quasicondensate regime, a known term in the literature. [27]

Experimental and Numerical Studies

The experiments that have been made can be divided into three categories. One is showing
the integrability of the Lieb-Liniger model. The second category of experiments studied
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if integrability can be described using GGE. Finally, the last set of studies showed how
integrability can be broken.

Integrability

Quantum Newton’s Cradle

In a breakthrough experiment done to show the integrability of the Lieb-Liniger model,
a quantum Newton’s cradle was created by Kinoshita. This experiment showed the non-
thermalization of two colliding Bose gases that had equal, opposite momenta. We start
by briefly talking about the setup of the experiment. The setup is the part of the experi-
ment that specifies the Hamiltonian and determines its parameters. In this case, the Lieb
parameter γ is determined by the density and the confinement of bosons. They are con-
fined strongly in the transverse direction and weakly in the axial direction. Regarding the
transverse direction, the 1D Bose gas was created by loading a Bose-Einstein condensate
of rubidium atoms into a 2D optical lattice, which created the transverse confinement of
the Bose gas. Being loaded into a lattice means that we are creating an array of 1D Bose
gases, where only ensemble averages, or expectation values, are accessible in a measure-
ment. The confinement provided by the lattice can be described by a harmonic oscillator
with an angular frequency ω⊥. The first excited energy level ℏω⊥ would be greater than
any energy scale in our system to make sure that the bosons are in the transverse ground
state and consequently one dimensional. The transverse confinement also determines the
constant α of g1D in equation (4.10), setting α = mω⊥

2πℏ . This detail shows that the strength
of the interaction g1D is controlled by the confinement of the transverse direction. On the
other side, the axial direction is trapped weakly using a crossed-dipole trap, where its size
can easily be changed optically (just by moving the lens) [28]. An anharmonic oscillator
will be created due to the nature of the gaussian beam, and the axial oscillation period
of this oscillator is controlled by the trap’s size and power. The size of the trap deter-
mines the linear density, which is another parameter to tune in the Lieb parameter. In the
experiment, the Lieb parameter is set in the Tonks–Girardeau regime γ >> 1 since the
three-body decay is minimized in this regime.[38] In summary of the setup, the interaction
strength g1D is determined from the transverse trap while the density is controlled by the
axial trap.

Studying the thermalization of a system requires putting it out of equilibrium, which
was done by applying two pulses of standing waves on the loaded 1D Bose gas. These two
pulses divide the atoms into two Bose gases of equal, opposite momenta ±2ℏk, where k is
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the wavevector of the standing wave.[29] The states of these bose gases can be described by
a coherent state. Interestingly, the two coherent states of the Bose gases will keep oscillat-
ing and colliding with each other along the axial anharmonic trap. As stated in the paper,
these collisions will have a total energy of 8(ℏk)2/2m = 0.45ℏω⊥, which will not cause any
excitations in the transverse direction. Since the trap is anharmonic, the coherent states
will dephase with time causing the atoms to spread along the tube and consequently to
have less linear density, which will increase the Lieb parameter.

After oscillating for a time t, the 1D Bose gas is released from the crossed dipole trap
and allowed to expand in 1D for 27 ms before taking a picture from the transverse direction;
the long time expansion is necessary for the time-of-flight measurement of the momentum.
The momentum distribution f(p) of these measurements never had a gaussian distribution
that is expected from a canonical ensemble; therefore, one can conclude that the system
never thermalizes as fast as a 3D Bose gas, which showed thermalization in the observation
time limit of the experiment.
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(a) Absorption image after the
expansion due to turning off
the dipole trap.

(b) Momentum distribution after processing
the absorption images.

Figure 4.4: Quantum Newton’s Cradle. (a) The absorption image is taken for the first
full oscillation of the Bose gases. It is clear that the collisions still maintained two distinct
Bose gases; thus, the system didn’t thermalize. Note also the narrower peaks of the last
picture at the bottom compared to the first one at the top; this change in spatial density
is due to the dephasing of atoms caused by the anharmonicity of the trap. (b) This is the
expanded momentum distribution for three different Lieb parameters γ = c/n1D: γ = 4 for
figure a, γ = 1 for figure b, and γ = 0.62 for figure c. The green curve is the average f(p)
for one oscillation while the blue and red curves are the distribution at given instants of
time when the atoms have dephased. Notice how the distributions always have the same
shape, which reflects the contact interaction. Since the curves never reached a gaussian
one, the system didn’t thermalize. The figures are taken from ref [51].

Although this experiment showed the integrability of the Lieb-Liniger model, it has a
few limitations. One limitation is the dephasing due to the anharmonicity, which shows
that the change of the momenta distribution is due to the technical details as well as
to the interactions of the system. Mixing both wouldn’t help us to see the role of the
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contact interactions purely on our system. Another limitation was the loss of atoms that
didn’t allow long time observations of the system. Such limitation doesn’t show if the
near-integrable system thermalizes at the end; it just shows that it doesn’t thermalize on
the same time scale as an equilibrium Bose gas. In figure 4.4b, the red curves in (b) and
(c) correspond to an observation at time t=40τ , where τ is the period of the system.[51]

Prethermalization in 1D Bose Gas

Not reaching a gaussian distribution is not the only property of integrable systems. Another
property is reaching a prethermal state that doesn’t describe thermal equilibrium. A
hint of the prethermal state can be seen in the quantum Newton’s cradle experiment
when the momentum distribution didn’t have much change in its shape between the red
and blue curves in figure 4.4b. As much as this is a good hint, another experiment was
needed to study the equilibration process discussed in the theoretical background section
to observe a prethermal state. In an interference experiment that will now be discussed,
the equilibration process was shown indicating a prethermal state for the 1D Bose gas;
furthermore, it partially validates the generalized gibbs ensemble.
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Figure 4.5: Experimental Protocol. (A) The initial gas is split quickly such that both
gases have identical phase profiles at t = 0. At later times, the phases of each Bose gas will
evolve in time until they are completely independent of each other as in independent gases.
(B) The way to study the evolution of the phase profiles of each subsystem is through their
phase difference. It is expected at thermal equilibrium that the phase difference profile
becomes uncorrelated. (C) The interference contrast is measured by fitting a sine function
with a gaussian envelope. The locally displaced interference pattern is the result of the
differences in the local relative phase. (D) After many measurements of the contrast, one
can have a probability distribution of Ĉ2. The figure is taken from ref [33].

Starting with the setup, the experiment starts by creating a 1D Bose gas of 87Rb in
the quasicondensate regime, which is described by the Luttinger-liquid model. The 1D gas
was prepared in an elongated microtrap on an atom chip. We will not discuss any details
about the atom chip since our setups will entirely be created optically. The main goal
of the experiment was to study the equilibration process and to check if the prethermal
phase exists. Since the thermal state of 1D Bose gas is characterized by completely random
local phases, one way to study equilibration is to start with a well known phase along the
1D Bose gas and study how the local phases evolve. This way was done by taking 1D
Bose gas and by quickly splitting it into two 1D Bose gases, which have almost identical
phase profiles. Later, the 1D Bose gases are left to evolve in time before measurement.
Once the goal is about studying phases, one usually aims for interference measurements
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and quantities to probe the system. In our case, the quantity of interest that will probe
the phase fluctuations is the mean squared of the interference contrast C, which has its
equation shown below. The interference contrast can be measured from the interference
fringes as seen in the experimental protocol illustrated in figure 4.5.

Ĉ2 =

∣∣∣∣∣
∫ l/2

−l/2

e−iϕ̂s(z)

∣∣∣∣∣
2

dz

Studying the thermalization of a system requires putting it out of equilibrium, which
is inherently found in the splitting process. The splitting process was done much faster
than the speed of traveling correlations tsplit < ξ/c, where ξ = ℏ/mc is the healing length.
Thanks to the quick splitting, each small segment of the 1D Bose gas undergoes indepen-
dent splitting that causes a binomial distribution of the density of particles between the
two resulting Bose gases; the binomial distribution is known as quantum shot noise and
introduces energy only to the relative degrees of freedom. Thus, studying the contrast,
which probes the relative phase, is perfect for studying the dynamics. After some evolu-
tion time, the measurement is done by turning off the trap and allowing the Bose gases to
expand and interfere in a time-of-flight. Figure 4.6 shows the measurement process.
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(a) The measurement process of imaging after a
time-of-flight interference and of taking a length
integration L from the image.

(b) A reflection imaging method.

Figure 4.6: Measurement Method. (a) The measurement is done by turning off the
trap and allowing the Bose gases to expand as they fall due to gravity. The interference
is imaged by sending a beam through the cloud onto a CDC camera. The beam is sent in
the transverse direction of the 1D Bose gas in this picture, which is taken from another
experiment that used the same technique. The subfigure is taken from ref [32]. In the
experiment we are reviewing, the beam is sent longitudinally to integrate the absorption
amplitude along the axial direction. The downside of longitudinal imaging is the time
needed for collecting a data set of each integration length L. (b) Another measurement
scheme is a reflection imaging method, where the length integration is done post-processing.
In step 1, the 1D gases fall, expand, and interfere. In step 2, a beam is sent with a specific
focus such that it passes once through the gases upon reflection in step 3 in the image.
The subfigure is taken from ref [33].

Unlike the quantum Newton’s cradle experiment, there was only one 1D Bose gas that
allows us to measure the entire distribution of the observable instead of just the expectation
value, which allowed the computation of ⟨Ĉ2⟩ from the data of the interference contrast
. One can see the equilibration process in figure 4.7. The measured observable ⟨Ĉ2⟩
showed a rapid decay at the start due to dephasing. A prethermal state was then reached
that was described pretty well by a gibbs ensemble of an effective temperature given by
Teff = ℏn1Dcπ

4K
; furthermore, the effective temperature was independent of the initial state
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temperature. To understand the reason, recall the conserved quantities Nk of each mode
k of the Luttinger liquid model discussed in section 4.3.1. The reason for the effective
temperature is that each relative mode k was given equal energies Ek = ℏn1Dcπ

4K
by the

quantum shot noise; as a result, one can extract a temperature using the equipartition
theorem. Since the single temperature used to describe the whole prethermal state is not
the same temperature as the initial state, it can be thought of as a GGE with a single
Lagrange multiplier λk. All the thermal energy before is given to the common mode
degrees of freedom. After prethermalization, a further slow decay is observed that leads
the system to thermalization; however, its rate corresponds to that of the technical heating
of the system. This correspondence makes it inconclusive to determine if a near-integrable
system relaxes further toward a thermal equilibrium on its own. In summary, a prethermal
state exists for integrable systems. In the inset of figure 4.7, the experiment also showed
the probability distribution for different integration lengths. Surprisingly, the smaller the
system the better it retains a memory of its initial conditions as can be seen from the
non-vanishing peak in small lengths. It can also be seen how the red curve representing
the generalized gibbs ensemble reaches the blue thermal curve faster in the full cloud. This
may hint toward how GGE is better for describing smaller subsystems.[33]

Generalized Gibbs Ensemble

After one year of Kinoshita’s results, Rigolt et al. were able to show that an integrable sys-
tem of hard-core bosons in 1D lattice can reach an equilibrium state that can be described
by GGE; his work supports the idea that the GGE can describe integrable systems.[30]
Based on similar studies, a follow-up experiment of the prethermalization one was done to
verify the existence of a prethermal state. Although an effective temperature, which is not
equal to that of the initial state, was used to describe the prethermal state and was seen
as a hint of GGE, one would able to surely verify the existence of the GGE if a state with
multiple Lagrange multipliers was created.

In the previous experiment, the splitting process was too fast that the quantum shot
noise gave the same energy to all relative modes k; the equal energies given are the reason
for the same effective temperature for all Lagrange multipliers. Therefore, changing the
splitting process may result in having different Lagrange multipliers to different occupation
numbers Nk, and the change in the splitting process is the main ingredient to measure a
GGE with multiple Lagrange multipliers.
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Figure 4.7: Experimental Observation of Equilibration Process. In this figure, a fast
decay due to dephasing is observed in phase I. In phase II, a quasi-steady state is reached
where it experiences very slow decay. In phase III, the system slowly decays further at the
same rate as the heating of the system; thus, the approached thermal state isn’t known to
be from the near-integrability or the technical heating of the system. The inset shows the
distribution of the data compared to that of a thermal state represented by the blue curve
and a GGE represented by the red curve; these are done for different lengths of the 1D
Bose gas. The figure is taken from ref [33].

The experiment was again done on an atom chip using rubidium atoms. It was also
studied in the quasicondensate regime. After the splitting and some time evolution t, the
measurement was done by time-of-flight interference as before; however, the data was used
at this time to compute the correlation functions, which can be used to determine the
Lagrange multipliers for the occupation modes.
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Figure 4.8: Observation of Different Lagrange Multipliers. The figure shows the
occupation numbers Nk (in units of ℏωk/µ) of the quasi-particle modes, where µ is the
chemical potential and ωk is in equation 4.16. The even occupation numbers increases
with respect to that of the initial splitting protocol represented by the dashed line. On the
other hand, a decrease is seen in the odd modes. Different occupation numbers indicate
different Lagrange multipliers.The figure is taken from ref [8].

Freely fitting the occupation number Nk to explain the experimental data results in
the graph in figure 4.8. The different splitting process or the modified quench protocol
results in an increase in the even mode occupation numbers compared to that of the initial
splitting while a decrease is seen in the odd ones. Different occupation numbers lead to
different Lagrange multipliers; thus, the GGE is observed.[39]

Breaking Integrability

Dipolar Quantum Newton’s Cradle

The art of experimental physics can be viewed as a way of creating a knob to control
an intriguing physical phenomenon; things will never be well understood until we explore
all regimes and poke every detail in the interesting physics. After verifying the integra-
bility, prethermalization, and the GGE, it is only natural to think about how to break
integrability. How one would have a knob to switch smoothly between integrability and
non-integrability or, in other words, between having a prethermal state and just directly

105



reaching a thermal state. One experiment tried to achieve this knob by using dipole-dipole
interaction (DDI) since its strength can be controlled based on the direction of the applied
magnetic field. In a three-body interaction involving a DDI, the momenta of particles may
change in a diffractive way instead of just swapping momenta as in the integrable case.
Not much details of the DDI will be discussed since these won’t be used for cesium and
lithium atoms due to their low dipole moment. The setup of the experiment was similar
to that of the original quantum Newton’s cradle. A BEC of dysprosium atoms, which
were chosen because of their large dipole moment, was loaded into a 2D lattice to create
an array of 1D Bose gases. Note that the DDI can diffract momenta while not having
the three particles in the same tube; two particles may collide in one tube while having a
long-range DDI with a particle in another tube. The 1D Bose gas was put out of equilib-
rium in the same way by applying two pulses of standing waves to create two Bose gases
with equal, opposite momenta, where their collisions will never excite any atoms to the
excited transversal state. After the pulses, the Bose gases are left for some time evolution
at a specific direction of the magnetic field that tunes the interaction. Figure 4.9a shows
a schematic of four 1D Bose gases with an interaction strength that varies based on the
angle between the magnetic field and the direction connecting different tubes.
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(a) A schematic of four 1D gases
with a defined magnetic field that
tunes the interaction.

(b) Strength of different kinds of DDI.

Figure 4.9: The Role of the Magnetic Field in the Setup. (a) The magnetic field
defined by the angle θ between its direction and the axial axis of the tubes controls the
interaction. The numbers on the sphere indicate the pair-wise DDI strength while the
numbers on the tubes indicate the integrated DDI strength. It can be seen that the
interactions between the tubes are not isotropic. (b) The graph shows the interaction
strength of different types of DDI as a function of θ. Intratube DDI energy Uintra is
the interaction between the atoms in the same tube; it vanishes at 55◦. The intratube
interaction energy reflects the DDI strength coming from all nearby tubes. The energy
Utotal reflects the strength coming from both the intertube and intratube interactions; it
shows us that the integrability-breaking interaction can never be turned completely off.
Finally, the DDI has a short range interaction that affects the contact strength in the
Lieb-Liniger model. The figures are taken from ref [34].

The measurement is done by first deloading the lattice slowly compared to the band
excitation timescale but fast compared to the 3D trap thermalization timescale. It is done
slowly with respect to the band excitation state to perform an adiabatic mapping from
the quasimomentum states to the real momentum states. After the mapping, the whole
trap is turned off for a time-of-flight measurement. Unlike the original quantum Newton’s
cradle, it was not a 1D expansion since releasing the confinement alleviates any effects due
to the interactions. The momentum distribution was measured for multiple directions of
the magnetic field. Regarding the momentum distributions, figure 4.10a shows the results.
It shows that the system always thermalizes; this thermalization always takes a different
duration depending on the angle, and its timescale is always longer compared to a 3D gas
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that experiences that same quench.

(a) The evolution of the momentum distribution
in time for different magnetic field directions de-
noted by θ

(b) Time evolution of the observ-
able DT, which is a distance-to-
thermalization of the measured momen-
tum distribution. It is the distance to
the closest gaussian fit.

Figure 4.10: Momentum Distribution Results. (a) The evolution of the momentum
distribution at different times at different θ’s. All the momentum distributions reach a
thermal distribution mainly because the DDI interactions strength can never be completely
turned off as can be seen in figure 4.9b. (b) The graph shows the equilibration process
defined by two regimes. Regime I defines the fast dephasing phase. At the end of this
regime, the system can be described using GGE. In regime II, the system keeps decaying
to a thermal state. The inset shows the decay for different angles in this regime. The
figures are taken from ref [34].

Furthermore, the study compared each momentum distribution at each time to the
closest gaussian fit; this distance is known as the distance-to-thermalization metric. This
observable was studied and plotted as can be seen in figure 4.10b. It can be seen that the
graph is divided into two regions. In region I, a fast decay due to dephasing is seen. It was
concluded that this dephasing is due to anharmonicity in the presence of interactions but
in the absence of high-energy collisions like the head-on ones here. This can be seen as a
limitation similar to that of the original quantum Newton’s cradle since the dephasing is
not purely due to the interactions of the system. In region II, the experiment was able to
show that the further decay was due to the near-integrability since the rate at the start
of this region was different from the heating of the system. How fast a thermal state can
be reached depends on the direction of the magnetic field that causes the perturbation to
the Lieb-Liniger model. A limitation of this experiment is the lack of a complete turn-off
of the perturbation as can be seen in figure 4.9b. In conclusion, the integrability can be
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broken in the Lieb-Liniger model, and the relaxation towards a thermal state happens in
a near-integrable system.[34]

Breaking Integrability through Transverse Excitations

Another way to break integrability is through the excited transverse states, which can
contribute to redistributing the momenta distribution. This quantum Newton’s cradle
experiment is a significant improvement of the original one for the following reasons. The
first reason would be the negligible loss of atoms that allowed them to observe up to 10
times more oscillations than the original one. A second reason is the use of transverse
states to break integrability. It was shown that a near-integrable system as that of the
original experiment eventually reaches a thermal state. Another result is the faster decay
toward thermal equilibrium as more atoms access the transverse excited states.

Figure 4.11: Experimental Setup. A 2D lattice is created in the y-z plane, where its
eigenstates can be solved by Bloch’s theorem. The Bragg pulinteractionthe x-direction
diffract atoms to opposite, equal momenta states. After time-of-flight expansion, imaging
through either the longitudinal or the transverse direction is done. The longitudinal direc-
tion shows the population of atoms in the transverse state while the transverse direction
measures the longitudinal momentum distribution. The figure is taken from ref [47].
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Starting with the experimental setup, a 2D optical lattice was created using two stand-
ing waves that are detuned from each other to avoid interference. The lattice lasers also
provide a weak axial confinement, creating the 1D tubes. To take the system out of equi-
librium, a sequence of Bragg pulses, which are two standing wave pulses, is sent to diffract
the atoms among a series of momentum states ±2nℏk, where n is just an integer. Instead
of having only ±2ℏk, access to higher momentum states allows the control of the fraction
of atoms that can get excited in the transverse harmonic confinement. To measure the
momentum distribution, a time-of-flight expansion is followed by imaging in either the
longitudinal or transverse direction. Figure 4.11 shows the setup of the system. Longitudi-
nal imaging is used to measure the fractional population of atoms in the transverse states.
Transverse imaging is used to measure the longitudinal momentum distribution.

Figure 4.12: Initial Momentum Distributions. The initial longitudinal momentum
ditribution is experimentally measured for different Bragg pulse sequences. A Bragg pulse
sequence is defined not only by the wavevector kBragg but also by the pulse intensity V0

in units of ER = (ℏkBragg )
2 /2m. It is also important to specify the time sequence for the

duration of the pulses denoted by t1 and t3 and the duration of the gap between them t2.
In the figure, the vertical line corresponds to the threshold momentum kth, at which two
atoms can populate the excited state Eth = 2ℏω⊥ upon head-on collisions. Finally, N is
the number of particles. The figure is taken from ref [47].

For the results, we begin by showing how the near-integrable 1D Bose reach thermal-
ization given that the head-on collisions don’t have enough energy to populate the excited
transverse state. We start by checking the evolution of the momentum distribution for
the initial distribution of (a) and (b) in figure 4.12. The evolution is shown in figure
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4.13. It can be seen that the images get blurry as time evolves due to the dephasing of
the anharmonicity. Furthermore, it can be seen that both systems seem to completely
dephase on similar time scales as can be seen from the density images at 720 ms. Unlike
the original quantum Newton’s cradle experiment, it can be seen that the 1D Bose gas
of N=130 eventually thermalizes by having a gaussian distribution. It is conjectured that
this thermalization is due to the scattering between the atoms in the ground transverse
state and the much fewer atoms in the excited state.[47]

Figure 4.13: Results of Near-Integrability. In this figure, the time evolution of the
momentum distribution is shown for the distributions (a) and (b) in figure 4.12. For these
distributions, the system is near-integrable. The parts of the graph (a.1) and (b.1) show
the observations taken of the longitudinal momentum distribution. They both completely
dephase at about 720ms where no significant change in the distribution happens after one
oscillation. The other parts of the graph (a.2) and (b.2) show the time evolution of the
momentum distribution averaged over the oscillation period. The figure is taken from ref
[47].

Finally, we will explore the effect of the population of atoms in the excited transverse
state on the relaxation towards a thermal state. The observable that will be studied isR(t),
which is the summed square of residuals between the oscillation period averaged momentum
distribution and its best gaussian fit. It is quite similar to the distance-to-thermalization
metric used in the dipolar quantum Newton’s cradle. The time evolution of R(t) is shown
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in figure 4.14 where the letters correspond to the initial momentum distributions in figure
4.12. The more atoms that cross the red vertical line of the threshold momentum in figure
4.12, the faster the decay toward a thermal state. In conclusion, controlling the population
of atoms that can access the transverse excited states will control the rate of thermalization.
[47]

Figure 4.14: Results of Integrability-Breaking. This figure corresponds to the initial
momentum distributions in figure 4.12. It clearly shows the faster decay of R(t) as the
population of atoms accessing the excited states increases. The figure is taken from ref
[47].

4.3.2 Bose-Hubbard Model

Unlike the Lieb-Liniger model, the Bose-Hubbard model will have its experiments and
theoretical background discussed very briefly. The reason is that no experiments in the near
future will be done to study this system for thermalization. However, only one experiment
will be discussed in more detail since its technique will be used in our experiments and
since it will provide supporting arguments for our approach to study thermalization.

Introduction

The Bose-Hubbard model has a simple Hamiltonian that surprisingly doesn’t have an
analytical solution when both the tunneling term J and interaction term U are non-zero
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and non-perturbative. The Hamiltonian is:

HBH = −J
∑
⟨i,j⟩

â†i âj +
U

2

∑
i

n̂i (n̂i − 1) (4.17)

This Hamiltonian describes the physics of particles in a deep lattice. The first term is
known as the tunneling term in the sense that it removes one particle from a lattice site
using the annihilation operator and creates one in a neighboring site using the creation
one. The second term is known as the interaction term in the sense that the energy in-
creases as the number of particles in a site increases. It is important to know always how
to create this Hamiltonian using our ultracold atoms. It is created by a deep lattice from
a standing wave. It needs to be deep since the Hamiltonian depends on what is called
the tight-binding approximation. In this approximation, the lattice is deep enough that
the overlap between the Wannier states is small enough that only the nearest-neighbor
interaction matters. Wannier states are the Fourier transform of the Bloch states, and
they are as localized as they can be. For more details, we refer the reader to the following
reference.[41] From these small details above, one can find that the tunneling factor can
be controlled by the lattice depth. The interaction term can be controlled by the Feshbach
resonance.

Regarding the integrability of the Bose-Hubbard model, the Hamiltonian is non-integrable.
It is non-integrable in the sense that it can thermalize. We refer the reader to the following
extensive study that shows to what extent the canonical and microcanonical ensembles can
describe the system. It considered many factors during this study from the system’s size
to the strength of the quench.[40] Regarding experimental studies, we refer the reader to
a small portion of experiments done in this model.[42,43]

Entanglement Entropy in Bose-Hubbard Model

The idea of using statistical mechanics, which uses certain mixed states, to predict a pure
state works nicely, but it is not clearly justified.[48] A possible justification for the use of
a mixed state to a pure state can be seen through entanglement since an entangled many-
body pure state has its subsystems described by a mixed state. For example, the simple
state of |ψ⟩ = 1√

2
(|00⟩ + |11⟩) will have its subsystems described by the following mixed

state:

ρA = TrB(ρAB) = TrB(|ψ⟩⟨ψ|) =
1

2
(|0⟩⟨0|+ |1⟩⟨1|)
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Following this motivation, an experiment was done to show how the thermal behavior
appeared locally in the Bose-Hubbard model in the superfluid regime U

J
<< 1, where the

tunneling effect is enhanced causing spatial entanglement. When U
J
>> 1, the ground state

of the Bose-Hubbard model is in a Mott insulator state with unity filling of the lattice sites,
which can be verified by setting J = 0 in equation (4.17).

Figure 4.15: Measurement Method. The measurement of purity is done by an inter-
ference between a single site of one system with the corresponding site on the identically
prepared system. (c) A Mott insulator state with unit filling is prepared. An interference
between the sites of each system is done to measure the number parity. A measurement of
the number of particles will show an even number of particles in the subsystem since the
Mott insulator doesn’t have any spatial entanglement. (d) The same sequence is done for
a superfluid state, which is characterized by its spatial entanglement. After measurement,
subsystems will show odd numbers indicating a mixed state due to entanglement. To com-
pute the purity of the whole pure state, we add the particle numbers of each subsystem;
the total particle number will be even indicating that the whole quantum system remains
pure. The figure is taken from ref [49].

In this elegant experiment, a way was shown to measure entanglement entropy, more
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specifically the 2nd-order Renyi entanglement entropy:

S2(ρA) = − lnTr
(
ρ2A
)

(4.18)

It is elegant due to its simplicity in the measurement, where only a 50-50% beam splitter
was used to interfere two identical and independent copies of the system. The whole goal
was to measure quantum purity Tr(ρ2A) since it is sufficient to prove entanglement by
showing that subsystem A is less pure than the entire system:

Tr
(
ρ2A
)
< Tr

(
ρ2AB

)
It can be seen how quantum purity is related to the Renyi entropy. This theoretical
quantity was related experimentally to the number parity P :

⟨Pi⟩ = Tr
(
ρ2
)

where i represents a specific lattice site of the system. Note that P = 1 for an even number
and P = −1 for an odd number. Given how the theoretical quantum purity is related to
the number parity, the whole experiment was about preparing identical states in the Bose-
Hubbard system and then about performing interference measurements between individual
lattice sites of one system with the corresponding ones on the other system. Pure states
will only lead to an even number of particles in the outputs while a mixed state may lead to
an odd number. Figure 4.15 illustrates the process, and figure 4.16 shows the entanglement
measurements.[49]
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Figure 4.16: Measurements of Entanglement Entropy. The Renyi entropy is mea-
sured for different subsystems as the parameter U/J is adiabatically reduced. In the
superfluid phase, the subsystem has an entanglement entropy higher than the total system
due to the spatial entanglement. In the Mott insulator phase, the subsystem has less en-
tanglement entropy. Note how the Renyi entropy for the full system is always fixed. Solid
lines are theoretical while circles are data points. The figure is taken from ref [49].

To study thermalization, a quench was made from a Mott insulator state with unity
filling to a weakly interacting regime of U/J = 1.56. Three main results were observed.
The first one is the increase of the entanglement entropy in a subsystem after the quench;
it is shown in figure 4.17a. Furthermore, it agrees well with the thermodynamical entropy
for small subsystems.
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(a) Dynamics of the entanglement entropy for
different subsystem sizes.

(b) Comparison between the entangle-
ment entropy of the saturated quenched
state and the canonical thermal ensem-
ble.

Figure 4.17: Entanglement Entropy after Quench. (a) It can be seen how the en-
tanglement entropy increases in the subsystems while it is constant in the whole system.
(b)The entanglement entropy for the saturated quench state agrees very well with that of
the canonical ensemble. The figures are taken from ref [50].

The second result is the comparison between the reduced density matrix of a site from
the saturated quench state and the canonical ensemble. This was done by computing two
quantities: the trace distance and the fidelity. The fidelity measures the overlap of density
states while the trace distance shows an effective distance between these mixed states in
Hilbert space. An agreement between two density operators will have a fidelity of 1 and
a trace distance equal to zero. These quantities show how local thermal states emerge.
Figure 4.18 shows the results.
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Figure 4.18: Fidelity and Trace Distance. Comparing the reduced density matrix of
each site to the reduced density matrix from a canonical ensemble. The time evolution of
the fidelity and trace distance shows how the reduced density operator agrees well with
that of the canonical ensemble; thus, local emergence of thermalization is observed. The
figure is taken from ref [50].

Finally, an emerging local thermal state leads to the natural result that the local observ-
ables calculated using pure states agree with ones of statistical mechanics. Furthermore,
the experiment also showed how the expectation value of the full system interaction energy,
which is a global quantity, agrees with the one from a canonical ensemble.[50]
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(a) Comparison of atom number distri-
bution between measurements and pre-
dictions of thermodynamical ensem-
bles.

(b) Measurement of the total interaction
energy, which is a global observable.

Figure 4.19: Measurement of Local and Global Observables. (a) The given temper-
ature is achieved by the quench. One can see how the measured number distribution agrees
with different kinds of thermodynamical ensembles. (b) One would expect that only local
observables can be described by the thermodynamical ensembles due to the local emer-
gence of a thermal state; however, it can be seen that global observables also agree with
the result of the canonical ensemble. The figures are taken from ref [50].

4.4 Subsystem-Bath Approach

Previous experiments mainly provided evidence of what is expected such as integrability,
GGE, and integrability-breaking perturbations. It is now the time to use these tools
to understand the fundamental physics behind thermalization. We want to be able to
have a theory that could predict the thermodynamics of the system by just knowing its
Hamiltonian. To plan our experiments, we want to figure out the theoretical approach
and to show the experimental techniques that will be used to overcome the discussed
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limitations. We start by showing why the subsystem-bath approach is promising and how
we would study that experimentally.

Motivation

Applying classical statistical mechanics to quantum systems is a problem since the deriva-
tions of ensembles like the canonical one depend on thermodynamics that we know works
in the classical limit. The second law of thermodynamics about entropy, which can be
defined from the Carnot cycle as a conserved quantity, is a classical law. If it is true also
in the quantum regime, one in principle can derive it using quantum mechanics. Luckily,
one can derive the second law of thermodynamics from the Markovian Master Equation
(MME), which describes the open quantum systems under certain conditions. Note that
the entropy in quantum mechanics is usually the Von-Neumann entanglement entropy:

S = −Tr (ρ ln ρ)

This quantity is the first order Renyi entropy related to the 2nd-order in equation 4.18. It
can be used to quantify entanglement hence the name entanglement entropy. If a subsys-
tem is in contact with a bath of temperature T, one can show using the MME that the
subsystem will reach a steady state described by the canonical ensemble having the bath’s
temperature T.[7,44]

Although the problem of thermalization is mainly about closed systems, the results
from studying open quantum systems hint that the answer may be in the subsystem-bath
approach. In this approach, we divide our closed system into a small subsystem and a much
larger one that we see as a bath and start studying their interactions together. This ap-
proach is supported by some numerical and experimental studies. In a numerical study, it
was shown for a pure non-integrable system that the entanglement entropy was calculated
for a subsystem in two different ways. One way was through the reduced density matrix
generated by taking the partial trace over an eigenstate while the other way was taking the
partial trace over the microcanonical ensemble. Both ways gave the same result.[45] Exper-
imentally, the Bose-Hubbard model experiment showed how a thermal state emerges in a
subsystem.[50] The subsystem-bath approach can be supported further through arguments
related to the generalized gibbs ensemble. It was pointed out that the GGE is used for
local observables in the long time limit.[8] It was also shown that the lack of entanglement
in the energy eigenbasis leads to the outcome that all local observables retain a memory
of their initial state when they equilibrate.[46] Since the GGE is always linked to local
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observables, focusing on subsystems seems to be the right way to study thermalization in
a closed system.

After figuring out the theoretical approach, the next question is what tools will be
used to probe our systems experimentally. Given the experimentally shown overlap of the
subsystem and the canonical ensemble and the effect of the lack of entanglement, we believe
that the thermalization of quantum systems can be explained through entanglement. In
conclusion, studying thermalization in the subsystem-bath approach can be done through
implementing entanglement entropy measurements.

Experimental Plans

Our future experiments will mainly study the Lieb-Liniger model for various reasons. First,
it is much easier to break integrability than to build one, which is why we focused on the
Lieb-Liniger model rather than the Bose-Hubbard model. Another reason is that the Lieb-
Liniger model has an exact analytical solution.

After understanding the previous work, we plan to overcome the limitations seen in
previous experiments. For example, all quantum Newton’s cradle experiments faced the
problem of dephasing due to the anharmonicity of the trap; this “technical” dephasing is
the main reason for the fast decay at the start of the equilibration process. We believe that
we can study the Lieb-Liniger model without any anharmonicity. To avoid the technical
dephasing, we plan to trap our bosons in 1D rings because the intensity would have a cir-
cular symmetry. The 1D rings in principle can be created in two steps. The first step will
be using a Bessel beam that would create a hollow cylinder trap for the atoms. The second
step would be cutting this cylinder into many thin rings using a standing wave. The inten-
sity in the ring will have a circular symmetry, which would be the reason for not having
any technical dephasing. The frequency and intensity of the optical traps will be controlled
by the AOM. Creating 1D ring traps will be interesting for two reasons. The first reason
will be experimentally achieving truly periodic boundary conditions. Understanding the
bulk properties of this system under periodic boundary conditions is one of our short-term
goals. Another reason would be controlling the transition between the integrability and
the non-integrability of the system through the thickness of the rings. Having the perfect
knob between integrability and non-integrability is another short-term goal. A longer-term
goal would then be to deeply understand the correlation between thermalization and en-
tanglement. To study that, we will research a way to implement entanglement entropy
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measurements on the 1D rings.

Unlike the other experiments that mainly depended on optical means to control the
Hamiltonian, we have extra tools that may help us quench and probe the system better.
For example, the Feshbach resonances, which will be controlled by the current controller,
will be used to change the interaction strength between particles. We can even use that
during time-of-flight measurements to cancel any interaction effects and thus never worry
about how interactions may affect our measurements of the momentum distribution. We
can use this tool to understand the effect of interactions on the expansion of particles dur-
ing measurements. Another tool is the available mixture of atoms we have, which can be
used as a cooling technique by using one kind to absorb the entropy from the other one.
We can also create arbitrary potentials using SLM or DMD. Regarding measurements, we
would be able to measure the position of single atoms using a quantum gas microscope.

In conclusion, our new lab will have the means to provide new answers to the problem
of thermalization and shed light on the thermodynamics of various systems from different
fields due to the ability of ultracold atoms to be an efficient simulator.
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