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Abstract

As global temperatures continue to rise, snowfall patterns are expected to respond in a

complex, nonlinear manner. Changes in the quantity of snowmelt-derived freshwater will im-

pact global water-energy budgets, flood frequencies and intensities, and regional water resource

management practices. Remote sensing is an observational alternative to poorly constrained

reanalysis-derived estimates of snow water equivalent (SWE) across Arctic regions. We present

an outlier detection methodology which leverages remote sensing data from CloudSat to con-

strain reanalysis product estimates of SWE. This analysis highlights areas and periods of high

uncertainty in the gridded reanalysis datasets, and identifies a systematic positive SWE bias (of

14.9%) in a blended reanalysis product as a consequence of these low-quality estimates.

The ability to use remotely sensed observations to characterize error in surface SWE estimates

is incredibly powerful, however, remote sensing datasets are not without their own sources of

uncertainty. This work also, therefore, examines the capabilities of a machine learning snowfall

retrieval algorithm trained on vertically pointing surface radar data at a Global Precipitation

Measurement (GPM) validation experiment site in southern Ontario. Random forest (RF) retrieval

performance is compared to an ensemble of traditional 𝑍𝑒 − 𝑆 power law relationships, with the

RF consistently displaying the lowest overall error. The RF also demonstrates a level of robustness

not present in the power law relations, with low error when applied to unseen observations from

a study site with a different regional climate.

We further extend this methodology to a general machine learning precipitation retrieval

across the wider northern hemisphere (NH) using additional input covariates, data from multiple

sites over a longer time period, and by adopting a more sophisticated deep learning paradigm.
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The DeepPrecip retrieval algorithm displays a 187% improvement in snowfall retrieval accuracy

when compared to traditional 𝑍𝑒 − 𝑆/𝑅 power law relationships, and a 21% improvement over

the aforementioned RF. The highly generalized nature of DeepPrecip facilitates its application to

unseen data with only a small performance reduction. DeepPrecip also provides insight into the

regions of the vertical column (below 1 km and between 1.5−2 km) most effective in contributing

to high retrieval accuracy, highlighting the important role of ML in current and future spaceborne

remote sensing precipitation missions.

Keywords: machine learning, remote sensing, snowfall, precipitation, radar, CloudSat, snow

water equivalent, snow accumulation, neural network
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Chapter 1

Introduction

1.1 Background

Anthropogenic climate change has led to irreversible impacts to the Arctic, as natural processes

and human systems are bent beyond their ability to adapt and keep pace with warming global

temperatures (Cassotta et al., 2022; Brown et al., 2017). Arctic air temperatures have increased by

more than double that of the global mean, with winter temperatures now 6° C higher than 1981-

2010 averages due to increases in atmospheric greenhouse gas concentrations (Nummelin et al.,

2017). This extreme regional warming (also known as Arctic amplification), is a phenomenon

which threatens to substantially impact the daily lives of high latitude communities and their

surrounding ecosystems (Cohen et al., 2014; Tei et al., 2017). Increases in surface air temperature

are tightly coupled to many other systems within the terrestrial cryosphere, including a higher

frequency of wildfires, permafrost degradation, increased river discharge, higher surface runoff

intensity, and changes to snow and ice quantities (Fig. 1.1) (Troy et al., 2012; Schuur et al.,

2015; Kasischke and Turetsky, 2006). Changes in one or more components of this system can
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trigger positive feedback loops (e.g. snow albedo feedback), where increased warming facilitates

additional changes within the system (e.g. more losses to snow cover), which in turn contributes to

further warming (Thackeray and Fletcher, 2016). Understanding how these systems are changing

throughout the cryosphere is therefore of critical importance in the adaptation and mitigation of

climate change.

Figure 1.1: Land surface components of the Arctic including 1) permafrost; 2) surface ice; 3)
river discharge; 4) surface thawing; 5) sitting water; 6) wildfire; 7) tundra; 8) low-lying shrubs;
9) boreal forest; 10) lake ice; and 11) seasonal snow (Cassotta et al., 2022).

Snowfall and surface snow water equivalent (SWE) quantities are tightly coupled climate vari-

ables of hydrologic significance in the cryosphere. Both variables are integral, linked components
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of the global water and energy cycle with significant impacts to regional freshwater availability

and ecosystem sustainability (Musselman et al., 2021; Etchevers et al., 2017; Gray and Landine,

2011; Pörtner et al., 2019). The majority of people living in the northern hemisphere (NH)

receive a substantial quantity of annual precipitation in the form of snowfall, including, even,

southern regions like California which are typically thought of as being snow-free (Fig. 1.2)

(Sturm et al., 2017). Over a sixth of the world’s population relies on freshwater produced from

snowmelt for general consumption and horticultural purposes, with many more areas relying on

snowmelt as a primary energy source (Sturm et al., 2017). The financial implications stemming

from climate change reductions in snow cover extent (SCE) to the outdoor recreational industry

and agricultural sector are astounding, as losses are anticipated to be in the trillions, not billions,

of dollars over the next several decades (Euskirchen et al., 2013).

Figure 1.2: Percentage of total NH precipitation falling as snow calculated for the period
2000-2010 from ERA-Interim (Sturm et al., 2017).
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However, increased Arctic air temperatures do not necessarily coincide with less snow

throughout the region, as interactions with precipitation result in complex, nonlinear changes to

snow quantity, duration and extent (Cassotta et al., 2022; Liston and Hiemstra, 2011; Trenberth,

2011). The 2017 Snow, Water, Ice and Permafrost in the Arctic (SWIPA) project demonstrate

that Community Model Intercomparison Project 5 (CMIP5) projections (forced using an RCP8.5

emission scenario) display increases in maximum snow water equivalent (𝑆𝑊𝐸𝑚𝑎𝑥) of 15−30%

in high Arctic regions over the next 50 years, driven by a moisture-rich atmosphere combined

with continued cold temperatures to facilitate increased snowfall (Fig. 1.3.a) (Brown et al., 2017).

Changes in snow depth (SD) over North America (NA) are not as clearly defined as 𝑆𝑊𝐸𝑚𝑎𝑥 and

do not appear statistically significant (Vincent et al., 2015). Under the same CMIP5 scenario,

SWIPA also notes that the total number of snow cover days (SCD) are expected to decrease by

10−20% across the Arctic by 2090 (Fig. 1.3.b). Pan-Arctic multi-dataset analyses of springtime

SCE have also shown negative trends of 14− 46% over recent decades (with similar decreases

over summer), further highlighting the extreme changes occurring throughout the region (Brown

et al., 2010; Mudryk et al., 2017). The magnitude of these changes also depends greatly on

the forcing scenario used, with substantial differences in 𝑆𝑊𝐸𝑚𝑎𝑥 , SD, SCE and SCD projected

changes between RCP2.6 and RCP8.5 scenarios (Brown et al., 2017; Cassotta et al., 2022).

New in situ campaigns, improvements to climate model resolution and representation of

subgrid-scale processes, and large remote sensing data repositories from continuously orbiting

Earth-observing satellites (now regularly measured in petabytes) have been invaluable resources

for enhancing our current understanding of changing snow trends (Guo et al., 2017). However, due

to the high variability in snowfall occurrence, sublimation effects, blowing snow, and the complex

microphysical properties of frozen hydrometeors, large uncertainties still remain (Skofronick-
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Figure 1.3: Projected relative change in percent Arctic SWE and SCD to 1986-2005 averages.
a) CMIP5 (16 ensemble members under RCP8.5 forcing scenario) seasonal projected relative
changes in SWE (%) by 2090; and b) the same in a) but for changes in total annual SCD. Each
colored line represents a different percentile level from the ensemble (Brown et al., 2017).

Jackson et al., 2019; Sturm and Stuefer, 2013; Anderton et al., 2004). Shrinking the magnitude

of the aforementioned snow trend ranges, and reducing uncertainties in future projections, are

critically important steps towards preparing for and mitigating climate change driven disasters in

the coming decades (Sturm et al., 2017). In the following sections, we will review the strengths

and limitations of commonly used techniques for measuring snow accumulation over vast, remote

regions.

1.1.1 Snow accumulation estimation systems

In situ measurements

Measurements taken in place (in situ) are typically considered as some of the highest quality

observations for monitoring changes in snow accumulation (Doesken and Robinson, 2009).
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Accumulation is measured as the change in depth of fresh snow falling to the surface over a

given region in terms of its snow water equivalent (SWE) (Groisman and Davies, 2001). The

SWE content of a snowpack at a point 𝑖 is defined as 𝑆𝑊𝐸𝑖 = 𝜌𝑖 × 𝑆𝐷𝑖, where 𝜌 is the snowpack

density in kg m3 and 𝑆𝐷 is the snow depth in mm. In situ SWE monitoring techniques typically

involve either snow gauge instrumentation at a single point (e.g. Pluvio/Geonor gauges) or from

performing multiple manual snow survey measurements from a sampling device like the Federal

Snow Sampler (FSS) or the Environment Canada ESC30 (Egli et al., 2009; Kinar and Pomeroy,

2015; Brown and Mote, 2009). King et al. (2022c) have also demonstrated the effectiveness of

using the built-in Light Detection and Ranging (LiDAR) modules on consumer smartphones to

map the spatial variability of snow depth, however these methods have not yet been validated on

larger, km-scale measurement campaigns.

The high temporal sampling frequency of in situ snowfall gauges allows for detailed moni-

toring of accumulation at minute-scale resolution (King and Fletcher, 2019; Saha et al., 2021).

This high sampling frequency facilitates analyses of short-duration snowfall events and provides

detailed insights into the evolution of synoptic storms. However, the cost of installing and main-

taining such equipment often results in a sparsely distributed measurement network (Doesken

and Robinson, 2009). This observational sparsity is especially notable in Canada, with less than

1% of all Canadian gauges currently operating in Arctic regions above 70° North (Mekis et al.,

2018). Undercatch is another issue which contributes to additional uncertainty in gauge estimates

(Fassnacht, 2004). During periods of strong winds, a substantial percentage of frozen hydrome-

teors can be carried over and away from the gauge top orifice, leading to an underestimation of

the true accumulation value by upwards of 100% depending on the wind shielding techniques

being employed (Skofronick-Jackson et al., 2017; Kochendorfer et al., 2022). Transfer functions
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can be applied to account for this underestimation, however these functions are closely coupled

to the atmospheric conditions in which they are derived and therefore do not generalize well to

new regional climates (Colli et al., 2020).

Figure 1.4: Weather station locations across Canada. All 1735 Environment and Climate
Change Canada (ECCC) and partner surface weather station locations (as of 2016) within Canada’s
Surface Weather and Climate monitoring Network (SWCN) (Mekis et al., 2018).

Manual measurements do not suffer from the same sets of problems as in situ gauges, as these

observations are performed by hand using trained field technicians (Doesken and Robinson, 2009).

This is a labour-intensive process typically performed at various points across an observation site

(ranging from a few hundred meters to a km in scale) over multiple days, which provides detailed

snapshots in time of accumulated snowfall (Dyer and Mote, 2006). As a consequence of using field

technicians, the temporal frequency of observations gathered from these measurement campaigns

is much lower than that of weather gauges (Kinar and Pomeroy, 2015). Further, observations
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are also prone to human observer bias and uncertainty from performing the measurement by eye

(Brown and Mote, 2009). The limited length of measurement campaigns (ranging from a few days

to weeks at a time), facilitates large temporal gaps in manual observation networks. Accumulated

snowfall must therefore be estimated using ancillary methods during these gap periods.

Reanalyses and climate models

Reanalysis systems are popular methods for filling spatiotemporal gaps in snow observations

recorded using in situ techniques. These systems use historical assimilated observations to con-

strain numerical models which can then simulate land surface, ocean and atmospheric interactions

which, in turn, drive the global climate (Hurrell et al., 2013; Dee et al., 2011; Sun et al., 2004).

The data assimilation portion of this process can be performed in a variety of different ways of

varying complexity (e.g. sequential continuous, non-sequential intermittent), with the goal of

bringing model estimates closer to reality, and producing a more reliable estimator (Hersbach

et al., 2020; Gelaro et al., 2017; Navon, 2009). With complete spatial coverage, these systems

provide a wealth of information which can be used to advance our understanding of changing snow

patterns (Derksen and Brown, 2012; Rienecker et al., 2011; Dee et al., 2011; Duffy et al., 2021).

However, due to the requisite historical data for constraining the numerical model, reanalysis

systems are unable to estimate projected future changes in snow accumulation.

When unconstrained by historical data, climate models forced with potential future climate

scenarios (e.g. possible future pathways describing global emissions of greenhouse gases) are

able to forecast anticipated changes in snow accumulation under different emerging climates

(Cassotta et al., 2022; Brown et al., 2017). The predictive capacity of climate models allows for
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planning to begin earlier (or to initiate social programs in time) to mitigate issues arising from

warming global temperatures (Forster et al., 2020; Bonan, 2008). Physically-based fully-coupled

climate models with multiple component modules (Fig. 1.5) are able to simulate many of the

natural processes occurring between land, ocean and atmosphere in order to capture emergent

climate responses which are more challenging to model using conceptual models (at the cost of

being significantly more computationally expensive) (Danabasoglu et al., 2020; Hurrell et al.,

2013). However, climate models suffer from biases and uncertainties in their assumptions and

internal parameterizations which can propagate through to their estimates of snow accumulation

(Meehl et al., 2000; Mullan et al., 2017; Cassotta et al., 2022).

Figure 1.5: Diagram of the Community Earth System Model version 2 (CESM-2) component
modules and coupling mechanism (Danabasoglu et al., 2020).

Reanalysis systems are beholden to their own set of internal assumptions, biases in assimilated

data, and uncertainties stemming from simplified empirical relationships which represent impor-

tant sub grid-scale processes like convection and precipitation (Lange et al., 2015; Franzke et al.,

2015; Stone and Risbey, 1990). While the vast majority of reanalysis systems display increases

in Arctic precipitation in recent decades, there remains high uncertainty regarding the magnitude
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of this trend, as these products often demonstrate an inability to close the Arctic freshwater

budget (Lindsay et al., 2014). A similar trend is also noted in reanalysis snow water mass (SWM)

estimates, with individual Arctic reanalysis systems displaying large inter-product spread in their

climatological means and anomalies, as shown in Fig. 1.6 (Mudryk et al., 2015). Comparisons

of long-term (1891-2014) global precipitation trends from CMIP5 and CMIP6 show that the

multi-model mean closely matches observed precipitation trends, however this is with a large

spread in individual models within the ensemble (Vicente-Serrano et al., 2022). Additionally,

large uncertainties in snowfall trends remain a problem at the regional scale due to the strong

interannual variability of precipitation (Cassotta et al., 2022).

Figure 1.6: NH SWM differences between five gridded snow model and reanalysis products
(G2: GLDAS-2, E: ERA-Interim/Land, M: MERRA, GS: GlobSnow, C: Crocus). a)
Climatological SWM estimates from each gridded product (along with the multidataset mean)
from 1981-2010; and b) Differences from the multi-dataset mean in each product’s estimate of
SWM for various seasons and regions (Mudryk et al., 2015).

10



Remote sensing retrievals

Satellite-based remote sensing instruments are an alternative method for filling in situ obser-

vational gaps using radar retrieval algorithms with near global coverage (Dietz et al., 2012;

Skofronick-Jackson et al., 2019; Stephens et al., 2018; King and Fletcher, 2021). Instead of

directly observing surface SWE quantities, radar instrument estimates of snowfall are derived,

which are then linked to snow accumulation. Retrievals from radar systems like CloudSat’s

cloud profiling radar (CPR) or the Global Precipitation Measurement (GPM) core satellite’s

Dual-frequency precipitation radar (DPR) measure the intensity of backscattered energy from

Rayleigh scattering interactions with falling snow particles in the atmosphere (Im et al., 2001;

Skofronick-Jackson et al., 2019). In order to relate this backscattered energy (𝑥) to a specific

climatic variable like snowfall (�̂�), additional information about the atmospheric state at the time

of measurement (�̂�) like the particle size, shape, density or fallspeed is required (Wood and

L’Ecuyer, 2021). More formally, this type of Bayesian retrieval is called Optimal Estimation

(OE). OE allows for a priori information to be explicitly included in the retrieval (Eq. 1.1) where

the forward model 𝐹 transforms a set of inputs 𝑥 and additional state variables �̂� into a snowfall

estimate �̂� with 𝜖 representing the total uncertainty, error and noise from all sources (Maahn

et al., 2020). The resulting snowfall estimates can then be used to produce spatially-complete,

gridded snowfall datasets over vast, remote Arctic regions as shown in Figure 1.7 produced using

CloudSat’s 2C-SNOW-PROFILE (Kulie and Milani, 2018).

�̂� = 𝐹 (𝑥, �̂�) + 𝜖 (1.1)

A consequence of physically-based retrievals is that the accuracy of the snowfall estimate
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Figure 1.7: Gridded NH CloudSat snowfall estimates from 2006-2010. a) Mean annual
cumuliform snowfall rate; and b) mean annual fraction of total snowfall attributed as cumuliform
snowfall (Kulie and Milani, 2018).

is closely tied to the ability in which the OE algorithm can minimize a loss function and find

a maximal probability density function (PDF) based on an assumed atmospheric state (Maahn

et al., 2020). Knowledge gaps in a priori databases of observed particle microphysics for said

assumed state will directly propagate through the forward model inversion of the retrieval process

to produce an estimate of snowfall with high uncertainty (Wood et al., 2015; Chase et al., 2020;

Souverijns et al., 2017; Sun et al., 2011). Recent work by Wellmann et al. (2020) suggests that

two thirds of the precipitation variance for graupel and hail comes from uncertainties in micro-

physical properties like particle fallspeed. Gilmore et al. (2004) present similar sensitivities to

microphysical assumptions, with surface accumulation estimates of solid precipitation varying by

a factor of 3 to 4 based on changes to assumed particle density parameterizations. New validation

campaigns (e.g. the Canadian CloudSat/CALIPSO Validation Programme (C3VP), GPM Cold

12



Season Precipitation Experiment (GCPEx), and the International Collaborative Experiments for

Pyeongchang 2018 Olympic and Paralympic Winter Games (ICE-POP)) are increasing the size

and quality of current a priori knowledge databases of hydrometeor particle microphysics under

different regional climates, however large knowledge gaps still remain (Petersen et al., 2007;

Skofronick-Jackson et al., 2015; Kim et al., 2021).

Recently, researchers have begun to turn their attention towards statistical models to fill these

knowledge gaps and reduce the reliance of current retrievals on tightly coupled microphysical

assumptions (Wellmann et al., 2020; Besic et al., 2016). In particular, machine learning (ML)

algorithms have become popular tools in precipitation research as they greatly benefit from the

large databases of available remote sensing observations to extract complex, emergent relation-

ships between multiple climate variable inputs (Reichstein et al., 2019; Chen et al., 2020a; Chase

et al., 2021). Further, new satellite launches combined with continued monitoring from current

spaceborne and surface radar missions has led to an explosion in the growth of available remote

sensing data (on the order of hundreds of terabytes per day), which can be used as extensive

training datasets for these models (Agapiou, 2017; Guo et al., 2017).

1.1.2 Machine learning retrievals

Machine learning attempts to simulate human intelligence by learning from a set of input contexts

without an explicit set of instructions (El Naqa and Murphy, 2015). The resulting nonlinear

models created through this process are capable of learning complex relationships without an

understanding of the underlying physical properties of the system (Burke et al., 2020; Li et al.,

2020; Mao and Sorteberg, 2020). In general, ML is defined as a collection of empirical techniques
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which fit a series of internal model parameters using a training set of observations to optimize some

predefined loss (or cost) function (Chase et al., 2022). The size and complexity of these models

have evolved over time, facilitating the ability of increasingly sophisticated model architectures

to discover previously unknown, intricate structures in large databases, and to uncover novel data

representations through multiple levels of abstraction (LeCun et al., 2015).

Machine learning in the Geosciences has become increasingly popular over the last decade

(Fig. 1.8), yet the origins of this relationship traces back to nearly 60 years ago (Davenport and

Diffenbaugh, 2021). Decision trees, Markov chains and k-means clustering have been widely

used in the Geosciences since the mid-1960s for a variety of environmental safety and energy-

related applications (Krumbein and Dacey, 1969; Newendorp, 1976). Only recently has the

incredible quantity of remote sensing data combined with technological advancements in cloud

computing resources (e.g. Google Cloud, Amazon Web Systems, Microsoft Azure, Graphcore),

and powerful machine learning libraries (e.g. scikit-learn, Keras, PyTorch, Tensorflow) allowed

for ML-based algorithms to truly flourish in this field (Zhang et al., 2016; Shen, 2018; Karpatne

et al., 2019).

Unlike the OE snowfall retrieval methods introduced in Section 1.1.1, as empirical models,

ML-based retrievals are not constrained by a priori assumptions of underlying hydrometeor

microphysics. This does not imply that ML-based models do not have their own set of statistical

assumptions about the training data (conditions of independence, normality, multicollinearity,

autocorrelation and equal variance must still be considered), however these assumptions are

generally less restrictive than those required for OE retrievals (Karniadakis et al., 2021). While less

sophisticated statistical models like linear regression (LR) are often favoured over more complex

ML methods due to their simplicity and interoperability, the nonlinear nature of ML allows for
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Figure 1.8: Bibliometric analysis of 242 ML papers published in the Geosciences over 30
years (sorted by publication year) (Dramsch, 2020).

models to be developed which can capture increasingly complex, and desirable, behaviours in

precipitation (i.e. seasonality and spatial variability); response signals which are typically lost

when relying solely on linear methods (Holte, 1993; Maahn et al., 2020; King et al., 2020). This

process of combining remote sensing data and ML has led to many new advancements in our

understanding of global precipitation occurrence and intensity (Chen et al., 2020a; Shi et al.,

2015; Ehsani et al., 2021; Adhikari et al., 2020b; Chase et al., 2021).

The catalogue of widely-available ML methods is vast, and selecting the optimal method for a

project strongly depends on the problem context (Chase et al., 2022). The timeline in Figure 1.9

depicts a subset of popular ML algorithm milestones since the inception of the field in the 1950s.

As the work described in this thesis is focused on predictions of precipitation using radar data

and collocated in situ measurements, a supervised ML paradigm is applied wherein the training
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data is partitioned into a set of predictors (i.e. input covariates) and a response (i.e. what the

model is learning to predict). For continuous variables like precipitation, thinking of this as a

classification problem would be inappropriate, as there are an infinite number of possible classes

to be predicted. Therefore, regression-based ML is performed herein to obtain a numerical output

representing a surface precipitation rate (Breiman, 2017).

Figure 1.9: Timeline of notable milestone in machine learning (1960-2020) (Dramsch, 2019).

There exist many supervised, regression-based ML models of varying complexity which

could be appropriate for this type of problem. Support vector machines (SVM), for instance, are

a mathematically similar method to LR which defines a linear boundary in the form of Eq. 1.2

�̂� = 𝑤𝑇 ∗ 𝑥 + 𝑏 (1.2)

to perform predictions with 𝑤 as the weight vector, 𝑥 containing the input covariates, 𝑏 as

the bias term and �̂� as the predicted output (Vapnik, 1963). Note the similarity between Eq. 1.2

and LR (i.e. 𝑦 = 𝑚 ∗ 𝑥 + 𝑏), along with the fact that this general structure of weights and biases

is also a key component of more sophisticated ML model like neural networks (NN) (Huang

et al., 2006). However, unlike LR, the SVM is able to model much more complex, nonlinear
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relationships in the data. Decision tree (DT) methods are another common ML technique which

operate by making a cascade of choices through a flow chart-like data structure (Fig. 1.10) (Ali

et al., 2012). Combining multiple DTs together forms another tree-based ML model known as a

random forest (RF). Constructed from many individual trees, the RF is a much more robust model

than any single DT. At the core of the RF algorithm is the concept of bagging (or bootstrapped

aggregation). Bagging is an ensemble learning process which randomly samples the training data

with replacement (i.e. bootstrapping) to generate multiple independently trained DTs which are

then averaged together (i.e. aggregation) to yield a less variable and more robust estimate of the

response variable being predicted (Breiman, 2001; Prasad et al., 2006).

Figure 1.10: Schematic of an example decision tree with three predictors (𝑥1, 𝑥2 and 𝑥3) and
seven leaves (𝑅1 · · ·𝑅7) with a maximum depth of 3 (Akbari et al., 2021).

On the other end of the complexity spectrum to LR methods are neural networks. These

models are composed of a network of interconnected processing nodes (i.e. neurons), each of
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which receives an input signal, multiplies that signal by some weight 𝑤, adds a bias 𝑏 term

and applies an activation function (e.g. linear, sigmoid, tanh) to produce a signal sent to the

next connected neuron in the network (Schmidhuber, 2015). Network learning is performed by

incrementally updating internal model weight and bias parameters through a stochastic gradient

descent optimization scheme to minimize a predefined loss function and in turn, teach the NN

to behave in a desirable manner (e.g. driving a car, identifying a cat, or predicting snowfall)

(Amari, 1993). The overall complexity of these networks is highly dependent on whether shallow

learning (one neuron layer) or deep learning (many neuron layers) is being performed (Uzair and

Jamil, 2020).

ML models like the RF have been used in King et al. (2020) and Zahmatkesh et al. (2019) for

bias correcting precipitation data in NA (improvements in RMSE of 86%), in Wolfe and Snider

(2012) for predicting precipitation extremes (with up to 90% accuracy), and in Das et al. (2017)

for general precipitation retrievals. Neural network architectures and deep learning methods

have also shown promise in precipitation retrieval algorithms by taking advantage of the vast

database of available remote sensing observations. For instance, the Precipitation Estimation

from Remotely Sensed Information using Artificial Neural Networks (PERSIANN) is a daily,

gridded precipitation product (at 0.25 degrees) developed by the University of California Irvine

Center for Hydrometeorology and Remote Sensing (CHRS) which uses GridSat-B1 infrared

satellite data as an input to an NN in order to produce high resolution long-term estimates of

precipitation (Ashouri et al., 2015). Recently, the use of convolutional neural networks (CNNs)

have also demonstrated effectiveness in precipitation estimation by identifying and extracting

relevant features from the remote sensing input data to more accurately identify precipitating

storm layers (Xue et al., 2021; Pan et al., 2019).
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While ML-based models have contributed to advancements in the prediction of rain over the

past decade, current literature related to snowfall prediction using radar remains limited due to

the challenging variable density and non-spherical shape of frozen hydrometeors (Liu, 2020).

Further, the majority of ML-based precipitation models assimilate passive remote sensing data

(i.e. horizontally-structured data) and do not consider the vertical profile to capture different

precipitating cloud layers. Recent advancements using surface radar data as training inputs to

machine learning models during periods of snowfall have further demonstrated the important

role of ML in precipitation retrievals (Chen et al., 2020a). However, accurate precipitation

phase discrimination remains a substantial challenge (Casellas Masana, 2022). The strengths and

limitations of vertically-structured snowfall retrievals will be examined in detail in chapters 3 and

4 using a variety of ML-based approaches and remote sensing datasets.

1.2 Research Motivation

As Arctic air temperatures continue to rise, investigations of new methods for snow estimation

are becoming critically important topics with far-reaching impacts to the wider Geosciences. As

previously discussed, the micro and macro-scale impacts of rapid nonlinear changes in SWE

quantities across the Arctic are anticipated to produce knock-on effects to global water-energy

budgets which will impact billions of people in the coming decades. The ability to mitigate the

resulting damages from these changes begins with high quality, observationally-derived estimates

of snow accumulation. While southern hemisphere (SH) snowfall studies are also important,

improved satellite data sampling over the NH combined with better spatiotemporal coverage from

terrestrial weather stations and in situ measurement networks concentrates our research in this
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work on the NH. Therefore, the focus of this thesis is to evaluate the accuracy of current NH

SWE products using remote sensing techniques, and to identify new methods for low uncertainty

retrievals of snowfall using machine learning.

The motivation behind chapter 2 focuses on the former of these two issues. The large

spread in SWE from state-of-the-art gridded snow products over much of the Arctic suggests

high uncertainty in any individual product’s general accuracy (Mudryk et al., 2015). Reanalysis

and model predictions throughout this region heavily rely on in situ observational networks for

constraining their estimates, however the sparsely distributed Arctic in situ network contains

large, unobserved gaps (Mekis et al., 2018). Spaceborne, remote sensing observations from

the NASA CloudSat-CPR’s 2C-SNOW-PROFILE provide an observation-based set of snowfall

estimates that can be used for independent comparative analyses. CloudSat’s polar orbit results in

high-frequency sampling (up to daily sampling at high latitudes) and has demonstrated good skill

in estimating surface accumulation from snowfall measurements at monthly timescales (King and

Fletcher, 2020). This chapter (King and Fletcher, 2021) therefore seeks to develop a methodology

which can be used to objectively flag periods and regions within gridded SWE products which

display poor data quality in order to enhance our understanding of snow accumulation across

Arctic regions.

Following our evaluation of gridded SWE products using remote sensing, chapter 3 intro-

duces a nascent ML-based retrieval to compare against traditional reflectivity (𝑍𝑒) snowfall (𝑆)

relationships. 𝑍𝑒−𝑆 power law relations (i.e. 𝑍𝑒 = 𝑎×𝑆𝑏) have been used for decades to estimate

surface snowfall from atmospheric backscatter (Hiley et al., 2011). Deriving appropriate values

for 𝑎 and 𝑏 in this formula is challenging, as these variables are related to various hydrometer

microphysical properties (i.e. shape, size, distribution, fallspeed and density) and therefore many
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unique relationships exist (e.g. Fig. 1.11). The specific combination of microphysical properties

used in the derivation of the 𝑍𝑒 − 𝑆 relationship results in a power law that is non-robust to new

regional climates (i.e. where these properties may vary). In chapter 3 (King et al., 2022a),

we examine the role of machine learning methods (which are not beholden to the same sets of

microphysical assumptions) in retrieving surface snowfall estimates when trained using remote

sensing data.

Figure 1.11: An ensemble of 𝑍𝑒−𝑆 relationships from different studies. Each color represents
a unique 𝑍𝑒 − 𝑆 relation for non-spherical ice particles from Hong (2007), Kim et al. (2007) and
Liu (2008b) at multiple temperature thresholds (Hiley et al., 2011).

Chapter 4 (King et al., 2022b) builds on the ML-based retrieval from chapter 3, expanding

the scope of the method to use additional data from multiple sites. In order to combat the
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non-robust nature of radar-based retrievals, it is important to develop the model in a manner

which can handle different precipitation regimes at various locations and times of the year. Deep

learning methods have demonstrated skill in extracting relevant features from inputs that are not

immediately recognizable by humans (Jogin et al., 2018). Further, deep learning excels when

working on problems with large quantities of data (Chen and Lin, 2014). This final chapter

therefore attempts to produce a phase-agnostic precipitation retrieval using surface radar data

from multiple locations, and compares the accuracy of said model against traditional 𝑍𝑒 − 𝑆/𝑅

relationships as well as the RF model from chapter 3.

1.3 Research Objectives

The goal of this work is to improve our understanding of NH snow accumulation by evaluating

the robustness and uncertainty of SWE products and snowfall retrieval methods using remote

sensing observations and machine learning. This work also highlights the important role of

machine learning in remote sensing retrievals of snowfall for future spaceborne precipitation

measurement missions. We therefore aim to answer the following research questions over each

subsequent chapter:

1. How can remote sensing observations be used to quantify and reduce uncertainties in

current snow water equivalent reanalysis products?

2. What surface snowfall retrieval accuracy can be achieved using a supervised, machine

learning algorithm when trained on surface radar observations?
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3. Can we generalize the ML model from the previous question to new regional climates

using additional inputs and deep learning techniques? What additional information can

this model supply with respect to vertical column feature importances?

1.4 Thesis Structure

This thesis is separated into 5 primary chapters. Chapter 1 (the introduction) provides a literature

review of the current state of the snowfall research in Arctic regions. Descriptions of current

observational methods, climate model estimates and remote sensing techniques are also provided,

followed by a review of the increasingly relevant role of machine learning in this field in recent

years. The body of this thesis is contained within chapters 2-4, each comprised of a published

manuscript produced over the course of my PhD. Chapter 2 (King and Fletcher, 2021) defines

a novel approach for constraining current gridded SWE products using CloudSat-CPR snowfall

observations. Chapter 3 (King et al., 2022a) introduces a nascent method of snowfall retrieval

using a random forest model trained on surface radar data (X-band) from a site in southern

Ontario, Canada. Finally, in chapter 4 (King et al., 2022b) we develop a deep learning, phase-

agnostic precipitation retrieval from surface radar (K-band) at multiple sites across the northern

hemisphere. Thesis findings are summarized in chapter 5 (conclusions), followed by a discussion

regarding the main limitations encountered in this work and suggestions for relevant future studies.
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Chapter 2

Using CloudSat-derived snow

accumulation estimates to constrain

gridded snow water equivalent products

2.1 Overview

Changes in the quantity of terrestrial Arctic snow have far-reaching implications for the global

water-energy budget, ecosystem development and cold region flooding. Snow water equivalent

(SWE) is a useful metric for monitoring these changes, however only a sparse observing network is

available in the Arctic. Space-based remote sensing offers the potential to fill these measurement

gaps, and the CloudSat cloud profiling radar (CPR) has been shown to provide high-quality

estimates of surface snowfall rates across the Arctic. We propose a novel method to leverage
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monthly information from CloudSat to identify data quality issues in the Blended-4 gridded SWE

product. A regression of estimated monthly mean snow accumulation between CloudSat and

B4 provides a confidence interval to objectively flag individual months in B4 with data quality

issues. Applying this method to a case study in the Canadian high Arctic identifies an unphysical

January melt event in B4, which is traced back to a measurement error in the assimilated station

observations. We generalize this technique to a one-degree grid and find a total of 4885 cases in

B4 with low data quality. We find that the low-quality SWE product values are not random errors,

and that they introduce a systematic bias of -3.1 mm on B4’s estimates of mean Arctic SWE.

CloudSat is uniquely positioned as one of the few observational datasets for observing snowfall

at high latitudes, and when combined with the methodology developed here, its estimates can be

used to further enhance the accuracy of current gridded SWE products.

2.2 Introduction

Long term changes in Arctic snow mass has major impacts to the world’s water and energy budget,

cold region flooding, and ecosystem development (Berghuijs et al., 2019; Déry and Brown, 2007;

Peng et al., 2010). As global temperatures continue to warm, the quantity of Arctic snow is

expected to change in a significant, non-linear manner (Lemke et al., 2007; Vaughan et al., 2013).

Understanding these changes is of critical importance, as accurate estimates of snow accumulation

help us better prepare for and mitigate against the consequences of a warming climate (Hosaka

et al., 2005). Snow water equivalent (SWE) is the amount of water stored in a snowpack when

it is completely and instantaneously melted, and is a useful metric for monitoring changes in

accumulating snowfall (Brown, 2000).
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Traditional techniques for measuring SWE include automated in situ observation gauges,

and manual measurements which are performed by a human observer (Doesken and Robinson,

2009; Authorities, 1985). These methods provide high accuracy point measurements of SWE,

however, due to the time and cost of implementing and maintaining these systems, or performing

these measurements by hand, there often exist large gaps between measurement sites (Tait, 1998;

Derksen and Brown, 2012; Liston, 2004). Issues in maintaining active measurement sites are

further exasperated by the vast size, remote nature and cold climate that is typical of Arctic

regions. For instance, only approximately 1% of all active weather stations in Canada are located

poleward of 70° N (Mekis et al., 2018). Additionally, the number of automated snowfall gauges

in Canada has been declining for the past 30 years, with approximately 75% fewer measurement

locations today than were available in the early 1990s (Mekis and Vincent, 2011). Filling these

measurement gaps is therefore of critical importance in creating a comprehensive understanding

of changes to Arctic snow accumulation (Pulliainen et al., 2020).

Numerical weather and hydrologic forecasts, along with data assimilation techniques, are

powerful tools which can be used to estimate SWE in data sparse regions (Rienecker et al., 2011;

Takala et al., 2011; Balsamo et al., 2015). Gridded SWE products have complete spatio-temporal

coverage and have been shown to demonstrate good agreement with in situ measurements at

global scales (Kulie et al., 2020a; Zahmatkesh et al., 2019; Lindsay et al., 2014). Observation

based reanalyses like the European Center for Medium-Range Weather Forecasts (ECMWF)

Re-Analysis version 5 (ERA5) and the Modern-Era Retrospective analysis for Research and

Applications version 2 (MERRA-2) from NASA Gelaro et al. (2017), are two common examples

of gridded products that output a suite of surface climate parameters like snow depth (SD) and

SWE (Dee et al., 2011; Rienecker et al., 2011). However, all of these gridded SWE products are
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derived from numerical models which contain inaccuracies stemming from internal numerical

model estimates, uncertainties in prescribed forcing data, or due to issues in the assimilated

observational datasets (Teutschbein and Seibert, 2012; Broxton et al., 2016).

Using an ensemble of gridded datasets is one technique for addressing biases in individual

component estimates and improving overall product accuracy (Mudryk et al., 2015; Guan et al.,

2013). The process of blending together multiple datasets can be performed in a variety of ways,

however in this work we consider it as taking the unweighted multidataset mean of all component

products to create a new blended dataset. Blending has been used in previous literature by

Mudryk et al. (2015) and demonstrated effectiveness at reducing the multidataset spread of

SWE. Monthly normal SWE values from the blended dataset compare well with observed SWE

distributions across the Northern Hemisphere (NH) from 60° N to 82° N (Brown and Mote,

2009). Additionally, combining information from multiple datasets through the blending process

allows us to identify where one product may be negatively influencing the final product through

comparisons between individual component datasets (Foster et al., 2011; Orsolini et al., 2013;

Mudryk et al., 2015).

Another source of observational snowfall data comes from remote sensing missions. With

their global coverage, satellites are able to overcome many of the traditional issues experienced

in observing remote Arctic regions. SWE products like GlobSnow (Pulliainen et al., 2020)

and other climate change initiative (CCI) products focusing on temperature, wind speed and soil

moisture, all take advantage of remote sensing instruments which provide additional data to refine

product estimates (Jiménez-Muñoz and Sobrino, 2003; Witschas et al., 2020; Kerr et al., 2010).

The Cloud Profiling Radar (CPR) instrument installed on the NASA CloudSat satellite has been

shown to provide high quality snowfall estimates across Arctic regions (Hiley et al., 2010; King
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and Fletcher, 2020; Palerme et al., 2014; Milani et al., 2018; Hudak et al., 2008; Bennartz et al.,

2019). As a consequence of this high accuracy, we therefore expect good agreement during cold

seasons (with temperatures below 0° Celsius) between the average CloudSat snow accumulation

estimate over two consecutive months and the monthly change in snow on ground in the gridded

SWE products over that same period. However, a complete CloudSat gridded snowfall product

has yet to be used to evaluate snow accumulation in other gridded SWE products at NH high

latitudes.

The primary objectives of this work are to:

1. Characterize the relationship between CloudSat snow accumulation estimates and a gridded,

blended SWE product across the Arctic;

2. Use CloudSat accumulation estimates to identify periods of low data quality in the gridded

SWE products; and

3. Quantify the bias in climatological SWE induced by low quality observations on mean

SWE in the gridded products

2.3 Data and Methods

2.3.1 Gridded SWE Products

The Blended-4 (B4) product is a daily, 0.5° SWE dataset spanning 2006 to 2015. B4 is an

updated version (extending beyond 2010) of the Blended-5 SWE product, which was developed

28



by the Canadian Sea Ice and Snow Evolution (CanSISE) network (Mudryk et al., 2015). The B4

dataset is produced by taking the multi-dataset mean of four independent SWE products across the

NH. These component datasets include 1) the Canadian Meteorological Center (CMC) gridded

snow product; 2) the CROCUS snow model; 3) the GlobSnow gridded SWE product; and 4)

The Modern-Era Retrospective analysis for Research and Applications (version 2) (MERRA-2)

gridded reanalysis product. Each product’s estimates of SWE are derived independently using

model representations of snow accumulation and melt of variable sophistication, ranging from

simple temperature index models based on overlying air temperatures (CMC) to more complex

multi-layer, physically-based representations of snowpack evolution (CROCUS). The details of

each SWE product are summarized in Table 2.1, and briefly described below.

The CMC product is a daily, 1/3° NH gridded SWE dataset produced in Brown et al.

(2003) and updated to include data until the end of 2015. The CMC data combines a simple

temperature index snow scheme driven by 6-hourly precipitation and temperature data from the

European Center for Medium-Range Weather Forecasts (ECMWF), along with snow density

estimates derived by Sturm et al. (2010), and assimilated daily snow depth observations from

approximately 8000 United States and Canadian climate stations to provide estimates of surface

SWE. Optimal interpolation (OI) is used to combine in situ observations with background model

estimates of SWE.

CROCUS is an energy-balance snow model developed and maintained by the National Centre

for Meteorological Research (NCMR), which was applied to the terrestrial NH at 1 km resolution

(Brun et al., 1989, 2013). Daily estimates of SWE on ground are driven by 2 meter air temperature

and humidity, surface wind velocity, shortwave and longwave radiation and precipitation estimates

from ERA-Interim. CROCUS divides the snow-pack into multiple layers and represents internal
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Table 2.1: Gridded SWE product summary table for the datasets used in this study, along with
area-weighted summary statistics of accumulated snow between CloudSat and each of the B4
component products (units of mm SWE).
Product Snow Scheme Resolution Mean Bias RMSE Source
𝐶𝑀𝐶 Simple 1/3°×1/3° 8.82 29.61 (Brown et al., 2003)
𝐶𝑅𝑂𝐶𝑈𝑆 Complex 1°×1° 9.14 37.75 (Brun et al., 1989)
𝐺𝑙𝑜𝑏𝑆𝑛𝑜𝑤 Satellite & In Situ 25 km 9.23 31.81 (Takala et al., 2011)
𝑀𝐸𝑅𝑅𝐴−2 Intermediate 1/2°×2/3° 9.33 39.57 (Gelaro et al., 2017)

snowpack processes like settling, water transfer and heat exchange to simulate snowpack evolution

in a physically-based manner (Brun et al., 2013). The CROCUS snow model is run as a land

surface component in the Interactions between Soil, Biosphere, and Atmosphere (ISBA) land

model to generate estimates of SWE (Mudryk et al., 2015).

GlobSnow is a 25 km gridded SWE product developed by European Space Agency (ESA)

which provides daily estimates of SWE on ground through a combination of both in situ and

satellite brightness temperature observations (Takala et al., 2011). A single layer snow emission

model is forced with in situ snow depth measurements to simulate passive microwave brightness

temperature estimates across the NH (Pulliainen et al., 1999). Estimates of snow grain size

are then generated by minimizing the disagreement between simulated and observed brightness

temperatures to derive a contiguous SWE product across the NH.

MERRA-2 is a reanalysis product developed by NASA’s Global Modeling and Assimilation

Office that provides daily SWE estimates at 1/2° × 2/3° resolution (Gelaro et al., 2017).

MERRA-2 uses a finite-volume dynamical core and cube-sphere horizontal discretization of the

grid in its forecast model to distribute estimates of its surface variable suite (Putman and Lin,

2007). 3-Dimensional variational (3D-VAR) data assimilation is used to minimize error between
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the forward model and observational data, to incorporate in situ climate information along with

space-based aerosol data. SWE estimates are then generated using this assimilated data within the

Catchment land surface model, which includes a complex multi-layer snow scheme to represent

changes to snowpack accumulation and ablation (Mudryk et al., 2015; Koster et al., 2000).

Each of the above products is first regridded to a common 0.5° NH grid using bilinear

interpolation. A land fraction mask provided by MERRA is also applied to our data in order to

select only terrestrial SWE. The B4 product is then generated by taking the ensemble average of

all component datasets. More formally, this is written as the unweighted arithmetic mean of the

four products across all grid cells:

𝐵 =
1
𝑛

4∑︁
𝑖=0

𝑔𝑖 ∗ 𝑓 (2.1)

where 𝐵 is the derived blended dataset, 𝑓 is the land fraction mask, and each 𝑔𝑖 represents a

component gridded product.

2.3.2 CloudSat-CPR surface snow estimates

The NASA satellite CloudSat was launched in 2006 to advance our understanding of cloud

macro and microphysical properties at global scales (Stephens et al., 2002; Kulie et al., 2020a).

CloudSat is equipped with a 94-GHz nadir-looking Cloud Profiling Radar (CPR) instrument

with 500-m vertical range gate resolution that observes clouds from the Earth’s surface up to

approximately 30 km into the lower stratosphere (Liu, 2008b; Stephens et al., 2008). The CPR

allows CloudSat to view the interior structure of clouds by measuring the power backscatter

reflected from particles within the cloud as a function of distance from the radar instrument in
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orbit (Stephens, 2017). These reflectivity profiles provide information on cloud type, shape and

the presence of hydrometeors within the cloud, along with corresponding internal precipitation

rate estimates (Kulie et al., 2020a). CloudSat also demonstrates high accuracy in determining

precipitation phase to differentiate between rain, mixed-phase and snowfall events (Kodamana and

Fletcher, 2021). CloudSat has a 16-day repeat cycle with granule tracks that extend to an 82° N/S

orbital maxima which converge towards the poles. As a remote sensing option, CloudSat does

not suffer from traditional challenges that ground-based measurements encounter in measuring

snowfall across such a vast, cold and remote locale, and therefore provides a unique perspective

towards estimating accumulated SWE at global scales.

Reflectivity backscatter is derived using a combination of radar range information, hydrome-

teor positions along the path of the beam and retrieval response time for a set of assumed hydrom-

eteor properties including particle size, shape and fallspeed (Matrosov, 2007; Liu, 2008a). As a

result of the high frequency 94 GHz (3.19 mm) radar wavelength being similar to the length of the

hydrometeor particles being measured, single scattering properties of snowflakes do not follow

traditional Rayleigh scattering approximations and instead align more closely with Mie scattering

(Battaglia et al., 2007; Haynes et al., 2009; Stephens et al., 2002). This W-band frequency is

therefore well-suited for light intensity snowfall (which is typical in Arctic regions), but begins

to attenuate during high intensity precipitation events (Hudak et al., 2008). Optimal estimations

of snowfall rates are obtained by minimizing a cost function between estimated and observed a

priori assumptions about particle size, shape, fallspeed and other snow microphysical properties

(Rodgers, 2000). A forward model: 𝑦 = 𝐹 (𝑥, �̃�) + 𝜖 is constructed which approximates the physi-

cal relationship between an observed reflectivity profile 𝑦 to a set of unknown snow microphysical

properties 𝑥, additional potentially unknown supporting parameters �̃�, and measurement/forward
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model uncertainty 𝜖 (Wood and L’Ecuyer, 2021; Wood et al., 2015, 2014; Stephens, 2017). CPR

snowfall rate estimates within the lowest precipitating bin are then extrapolated to the surface

below and packaged into the 2C-SNOW-PROFILE (version 5) product, which is what is used in

calculating snow accumulation for the remainder of this study.

Individual radar profiles from CloudSat have also shown in work by Duffy and Bennartz

(2018) to exhibit uncertainties in snowfall rates of upwards of 200%. However, aggregation of

many retrievals has demonstrated skill in reducing error in snowfall rate estimates (Hiley et al.,

2010; Milani et al., 2018; Palerme et al., 2014). In our previous study King and Fletcher (2020)

on the validation of CloudSat snowfall estimates over the Canadian Arctic Archipelago (CAA),

we aggregated individual CloudSat retrievals into overpasses within a grid box. By averaging

many of these overpasses together over the course of a month, we found that CloudSat typically

displays good agreement (RMSE below 10 mm SWE and correlations above 0.5) with in situ

measurements of accumulated SWE when CPR retrievals are gridded at 1° resolution at high

latitude locations. Generalizing this technique to a hemispheric scale allows us to generate a

monthly, terrestrial gridded SWE accumulation product (Fig. 2.1.b) which can then be used in

comparisons with other gridded SWE datasets.

Duffy et al. (2021) found that when gridded at sufficiently large scales, CloudSat exhibits

high correlations and uncertainties below 50% for much of the NH when compared with B4.

Generalizing this aggregation technique to a wider NH grid from 60° to 82° N produces a spatial

map of monthly snowfall accumulation and uncertainty from January 2007 to December 2015

(Fig. 2.1.b and Fig. 2.1.c). Figure 2.1.d also shows a low average coefficient of variation

(𝐶𝑉 = 1.27) across the study region, with the lowest dataset variability with respect to the mean

over the CAA, central Eurasia and Eastern Siberia.
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Figure 2.1: Gridded CloudSat sampling frequency and snow accumulation estimates and
uncertainties. a) Distribution of CloudSat overpasses from 60° N to 82° N, gridded at 1° resolu-
tion from January 2007 to December 2015; b) gridded annual climatological snow accumulation
derived from CloudSat; c) CloudSat annual snowfall sampling uncertainty; and d) CloudSat
gridded coefficient of variation (𝐶𝑉 = 𝜎

`
).
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Repeated CloudSat battery failures are an additional source of uncertainty which may impact

the capabilities of our outlier detection methodology due to variability in the CPR’s observational

frequency over a region. A critical battery failure occurred between 2011-2012, which disabled

the CPR instrument for nearly a year and required the satellite to henceforth operate in daylight

only operational (DO-Op) mode. As implied by its name, DO-Op mode requires CloudSat to have

a direct line of sight to the sun for the CPR to have sufficient power to operate. The new DO-Op

energy requirements have been shown to substantially reduce the CloudSat sample in the southern

hemisphere, along with smaller reductions in its sample at high latitudes in the NH (Milani and

Wood, 2021; Kulie et al., 2020a). An examination of the impact of repeated CloudSat battery

failures on the CPR sample size across the Arctic was performed in our previous work King and

Fletcher (2020), and the impacts of these battery failures were found to be negligible with respect

to CloudSat’s ability to accurately quantify snow accumulation in the region (additional details

are discussed in Section 2.4.2).

2.3.3 Quantitative Methodology for Assessing Data Quality

Since the number of component products being blended together is typically small (𝑛 = 4 in the

case of B4), data quality issues in the SWE estimates from one or more component datasets can

significantly impact the accuracy of the resulting blended product. Understanding when, where

and how often these data quality issues occur can therefore provide us with improved estimates

of Arctic SWE. To identify and flag consecutive months (i.e. a month-pair) as a statistically

inconsistent outlier in a gridded product, we examine the relationship between monthly changes

in SWE estimated from two independent quantities: Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶 . Δ𝑆𝑊𝐸𝐵 is derived
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from the B4 product as the difference in monthly mean SWE on ground between two consecutive

months, providing an estimate of effective changes in SWE due to accumulation, melt, and other

ablative processes. 𝑆𝑊𝐸𝐶 is calculated as the average snowfall rate from CloudSat over the

two months (derived using techniques described in King and Fletcher (2020)) and, assuming a

constant snowfall rate (in mm/hr), multiplied by the total number of hours over the two months

to derive a corresponding estimate (in mm) of accumulated SWE on ground.

Since CloudSat provides instantaneous estimates of snowfall rates, it is therefore unable to

provide information related to ablative processes like snow melt or sublimation. To minimize

discrepancies in the quantification of SWE during periods of melt, we restrict our analysis to only

months when the maximum daily 2 meter air temperature from ERA5 remains below 0° C for

the entire month. We also examined the sensitivity to this temperature threshold by restricting

the maximum monthly temperature to three additional values (-1° C, -3° C, and -5° C), under the

assumption that a colder temperature threshold would result in a lower likelihood of including

month-pairs with surface melt occurring. Our conclusions from this study were not significantly

altered by using a different threshold (not shown), and so the 0° C threshold was selected as it

provides the largest CloudSat sample size.

Further data preprocessing constraints are also applied to the set of Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶

month-pairs in order to mask cases with an insufficient sample of CloudSat observations. This

step limits our comparisons to cases where we have a high level of confidence in CloudSat’s

accumulation estimates. Restrictions based on the number of available overpasses in a month

(𝑁𝑚𝑜𝑛𝑡ℎ) along with the total number of month-pairs in a grid cell (𝑀𝑐𝑒𝑙𝑙) were examined using

a simple grid-search procedure. This technique revealed that limiting the analysis to cases where

𝑁𝑚𝑜𝑛𝑡ℎ ≥ 12 and 𝑁𝑐𝑒𝑙𝑙 ≥ 3 improves the accuracy of the method and produces a sufficiently large
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sample over the majority of North America (NA) and Siberia.

Using estimates of accumulated SWE from 𝑆𝑊𝐸𝐶 as a predictor and Δ𝑆𝑊𝐸𝐵 as the response

variable for all months when the maximum temperature is below 0° C in an ordinary least squares

(OLS) regression, we derive a relationship between snowfall and accumulation for each grid cell.

The general regression model is described in Eq. 2.2 as:

ˆΔ𝑆𝑊𝐸𝐵 = 𝑏0 + 𝑏1 · 𝑆𝑊𝐸𝐶 (2.2)

where the 𝑏 coefficients are the respective model y-intercept and regression slope. Statistical

assumptions required for OLS regression include linearity, normality and homoscedasticity for

a set of independent grid cells, and all were found to meet acceptable criteria in our analysis.

We also examine the leverage (ℎ𝑖) and studentized residuals (𝑡𝑖) of each month-pair (𝑖) per grid

cell to remove influential cases suffering from issues in the CloudSat sample. These cases can

arise when CloudSat incorrectly estimates the average accumulation in a grid cell as a result of

missing snowfall events that occur when CloudSat is not overhead. Typical thresholds of ℎ𝑖 > 0.15

and 𝑡𝑖 > 2 standard deviations are used to identify and remove such extreme cases which would

significantly negatively influence the accuracy of our regression model fit.

Applying a 95% prediction interval (PI) to the regression model allows us to identify specific

month-pairs within each grid cell that lie outside the expected range of variation for individual

month-pairs. We apply leave-one-out cross-validation for each month-pair in a grid cell to

determine if it falls outside the PI when excluded from the construction of the regression model.

Month-pairs which fall outside the PI are automatically flagged as statistically inconsistent outliers

for further investigation.
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2.4 Results

2.4.1 Resolute Bay Case Study

We begin by presenting a case study of our method at Resolute Bay; a high latitude (75° N)

community on Cornwallis Island in the CAA (location shown in Figure 2.1.a). The selection

of this site follows from the results of King and Fletcher (2020) who found strong agreement

between CloudSat and in situ estimates of snow accumulation at this location. Resolute Bay is

equipped with Environment and Climate Change Canada (ECCC) weather station instruments to

record in situ snow data including SWE, which provides an additional independent observation

of accumulation for comparison purposes. This case study provides a local-scale test for identi-

fying statistically inconsistent periods in B4 and its component products before generalizing and

applying this technique to the wider NH in Section 2.4.2.

The relationship between 𝑆𝑊𝐸𝐶 and Δ𝑆𝑊𝐸𝐵 at Resolute Bay (Fig. 2.2) reveals a weak

positive correlation (𝑟 = 0.24) between CloudSat and B4, with plenty of scatter introduced by

uncertainties in B4 and CloudSat as discussed in more detail in Section 2.5. The vast majority

of month-pairs (94%) reside within the 95% prediction interval, and three outlier month-pairs

fall outside the interval. One of these outliers is highlighted in red and stands out as a case of

interest as it is the only month-pair where B4 shows a loss in SWE on ground between two months

(excluding this case, the correlation improves to 𝑟 = 0.384). This outlier represents a wintertime

melt event occurring between December 2007 and January 2008 when daily observed maximum

temperatures at the weather station were below -20° C and wind speeds were negligible. A

reduction in SWE of this magnitude, therefore, indicates a potential problem with the estimate of
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Δ𝑆𝑊𝐸𝐵 for these months.

Figure 2.2: CloudSat and Blended-4 monthly accumulated SWE scatter. 𝑆𝑊𝐸𝐶 snow
accumulation vs. Δ𝑆𝑊𝐸𝐵 for all frozen months at Resolute Bay (case study highlighted in red).

Next, we examine the daily evolution of the B4 gridded product and its component datasets

for this outlier event, compared to other years at the same time and location. SWE on ground

generally increases as temperatures remain too cold for any significant ablation to occur and

losses due to blowing snow are negligible (Fig. 2.3.a). However, for the 2007-2008 period, the

blended product shows two large ablation events in early December, and late December/early Jan

(Fig.2.3.a, black line). It is this second, larger melt event that is identified here by the outlier

detection method in Fig.2.2.

Examining the B4 component datasets reveals GlobSnow as the product that is responsible

for this unphysical loss in SWE during Dec-Jan 2007/08 (Fig. 2.3.b). GlobSnow is unique among
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Figure 2.3: Blended-4 melt event annual comparisons and product breakdown. a) B4 daily
SWE on ground for December through February for all years, with the 2007-2008 period of
interest in black, and the average of all other periods in bold grey; and b) B4 gridded component
breakdown of daily SWE on ground for December 2007 to February 2008, highlighting the impact
of the GlobSnow product on B4. Dashed red lines indicate the start of major ablative events.
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the products in B4 because it is satellite-based and assimilates surface snow depth data. An

examination of the in situ snow depth measurements provided by ECCC for this station reveals

similar instantaneous drops in snow depth observations during the last week of December 2007

(from 70 cm to 31 cm) and again on January 3 and January 4 (from 32 cm to 16 cm) which were

then assimilated by GlobSnow, likely resulting in this unphysical cold season melt event. This

single statistically inconsistent case was automatically flagged by our detection algorithm, which

allowed us to trace back to the component product causing the issue, and finally the assimilated

in situ surface observation.

2.4.2 Northern Hemisphere Evaluation

Applying this technique across the 60° N to 82° N NH grid allows us to examine where and when

outliers occur even in locations without in situ measurements, and to quantify the frequency of

the outliers in each product. Spatio-temporal relationships between Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶 provide

important insight into when this technique has the highest accuracy in detecting month-pair

outliers. As shown in Figure 2.2, positive agreement between the two products results in a better

regression fit and associated PI with lower uncertainty, which consequently improves the ability

of our method in detecting outlier cases. Correlations between Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶 for the entire

NH domain are shown in Figure 2.4.a with an average correlation of 𝑟 = 0.29 across all 2971 grid

cells. It is encouraging that the general tendency is for these quantities to be positively correlated,

indicating that at most locations, CloudSat-derived snowfall provides at least some constraint on

B4 snow accumulation. However, there exists considerable spatial variation with the distribution

of these correlations as shown in Figure 2.4.b, where 344 grid cells with correlations below zero
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and 1612 grid cells above the average correlation of 0.29.

Figure 2.4: Gridded correlations of CloudSat and B4 SWE accumulation. a) Δ𝑆𝑊𝐸𝐵 and
𝑆𝑊𝐸𝐶 frozen month-pair snow accumulation estimates correlated over 2007-2015 for each grid
cell with data preprocessing applied using the methodology described in Section 2.3.3; and b)
the distribution of correlations from a).

While the majority of grid cells produce correlations above 0 and most of the correlations are

strongly positive overall, the dataset agreement generally decreases as we move to lower latitudes

as a result of CloudSat’s polar orbit and reduced coverage at low latitudes (Fig. 2.4.a). A typical

example from a grid cell at lower latitudes with a negative correlation is shown in Figure 2.5.a.

The sign and magnitude of the relationship results primarily from a single erroneous 𝑆𝑊𝐸𝐶

accumulation estimate (indicated by the red dot) which is the result of a small CloudSat sample of

only 𝑛 = 3 overpasses at this grid cell during this period. A small sample size can result in large
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biases in the month-pair snow accumulation estimate if CloudSat is unable to accurately capture

the presence and magnitude of localized storm systems at the grid cell level. This can lead to a

less robust relationship with B4 accumulation at these latitudes. Furthermore, the dashed line in

Figure 2.5.a shows what the OLS relationship would look like without the influence of the outlier.

Examining the relationship between CloudSat’s sampling uncertainty and the average correlation

as a function of latitude (Fig. 2.5.b) shows that as CloudSat’s sample size increases and standard

error (SE) decreases, the correlation improves. This latitudinal component of the CloudSat

estimate error is directly related to CloudSat’s orbit and the reduction in its observational sample

size as we move towards the equator (Fig. 2.5.c).

This connection between CloudSat’s estimate uncertainty and sample size with respect to

latitude has also been examined in previous work by King and Fletcher (2020) and Duffy et al.

(2021), which came to similar conclusions that high latitude regions generally exhibit improved

accuracy and lower uncertainty from CloudSat as a result of the larger sample size. These findings,

along with the spatial distribution of grid cells in Figure 2.4, provide valuable information into

identifying where we have a sufficient sample to use CloudSat as an observational constraint for

comparisons at 1° resolution. Outlier totals were also calculated for pre and post 2011 for B4 to

quantify the impacts of the primary battery failure, and we found outlier totals were similar in

magnitude (𝑛𝑝𝑟𝑒 = 2540 and 𝑛𝑝𝑜𝑠𝑡 = 2231), with only a slight decrease after the battery failure.

The spatial differences in outlier counts between these two periods appear randomly distributed

across our study grid, and we argue that the CPR sample size remains sufficient when aggregated

at 1° across high latitude regions to apply this data quality assessment and identify statistically

inconsistent accumulation periods.

Another way to demonstrate the impact of the reduced sample size of CloudSat observations
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Figure 2.5: Negative correlation case study and the relationships between latitude and
CloudSat uncertainty. a) Example of a negative correlation between Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶

at (63.5° N, 56.5° E) due to the influence of CloudSat sampling error and its impact on the
regression slope; b) the latitudinal influence of CloudSat’s sample size on the CloudSat standard
error estimate and CloudSat’s correlation with B4; and c) the relationship between the number
of negatively correlated cells and the average number of frozen month-pairs per grid cell at that
latitude band.

is to resample snowfall rates from a randomly selected high latitude terrestrial grid cell (in

this example it is located at 81.5° N), by randomly choosing smaller sample sizes to simulate

CloudSat’s observational sample at lower latitudes. We first calculate the average snowfall rate

from all available overpasses in the grid cell (𝑛 = 3439), which is considered as the true population

mean snowfall rate (`𝑠 = 7.25 mm). We then randomly resample the snowfall rate 1000 times

using the average overpass sample size found at 60° N (𝑛 = 225) to generate a sampling distribution

of estimated mean snowfall rates (𝑠). 𝑠 and `𝑠 are then compared to yield a distribution of errors

in 𝑠 at that grid cell (Fig. 2.6.a).

Monthly mean accumulation estimates were found to converge to the population value when

the CloudSat sample includes upwards of approximately 250 overpasses (Fig. 2.6.b), which is

slightly larger than the smallest number of overpasses we would expect to obtain (on average) at
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Figure 2.6: CloudSat high latitude resampling uncertainty. a) Monthly mean accumulation
sampling distribution for a high latitude grid cell at 81.5° N, generated by resampling accumulation
estimates 1000 times using the average overpass sample size at 60° N; and b) line plot of monthly
mean accumulation estimates as we increase the number of overpasses in the sample from 1 to
the full sample size (𝑛 = 3439) at the same grid cell in a). The black dashed line indicates the
true snow accumulation (`𝑠).
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our lowest latitude grid cells around 60° N (Fig. 2.1.a). Performing this resampling procedure

at monthly timescales produces similar results to the climatological analysis, with overpasses

also converging to the population snowfall rate at a latitude of approximately 60° N (not shown).

Building on the work of King and Fletcher (2020) and Hiley et al. (2010) which found that

higher latitude stations exhibit stronger correlations and lower RMSE between CloudSat and in

situ snow observations, the results of this resampling experiment further demonstrate that while

uncertainties from a low CloudSat sample at 60° N can influence the accuracy of the accumulation

estimate in some cases, on average this latitude is an acceptable lower boundary for comparison

at 1° resolution.

2.4.3 Quantifying Biases in NH SWE due to Low Data Quality

Applying the outlier detection technique across our NH grid allows us to produce a spatial map

of outlier count totals for each of the B4 component datasets (Fig. 2.7). Higher outlier counts

are found in the CAA and central Eurasia, along with a general trend of decreasing outlier totals

further South. GlobSnow is the component with the most outliers, particularly in the CAA and

Eurasia (Fig. 2.7.c). This can likely be attributed in part to the poorly constrained nature of

these regions where few in situ observations are available coupled with limitations in GlobSnow

estimates over areas of complex topography Takala et al. (2011), and day-to-day variability in

its estimates of SWE as GlobSnow does not include data from previous daily estimates in its

calculation of SWE for the current day (Mudryk et al., 2015). Examining the spatial distribution

of outliers at monthly time scales (not shown) reveals that grid cells with data quality issues often

appear as spatial clusters but seem to be randomly located geographically.

46



Figure 2.7: B4 gridded product component spatial outlier maps. Showing outlier count spatial
distributions and grid totals (n) for a) CMC, b) CROCUS, c) GlobSnow and d) MERRA-2.
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Monthly outlier count totals are highest during periods of heavy accumulation (October

through December) and cold temperatures (Fig. 2.8.a). We note a steady decline in outliers

during spring and summer months, when there is less frozen precipitation. Seasonal comparisons

of outliers over September, October, November (SON) and December, January, February (DJF)

exhibit a spatial structure consistent with monthly temporal distributions, as 79% of the total

number of outliers occur over the CAA and central Eurasia during SON, contrasted by smaller

outlier clusters in Eastern Siberia and lower Canada in DJF. Yearly outlier totals appear closely

related to CloudSat data availability with similar outlier counts across all years excluding those

where CloudSat experienced prolonged battery failures in 2009, 2011 and 2012 (Fig. 2.8.b).

Having flagged a total of 4885 month pairs in B4 with suspected data quality issues, our final

contribution is to quantify the impact of data quality on estimated mean SWE in B4. First, an

adjusted B4 SWE (𝑆𝑊𝐸𝐵𝐴𝑑 𝑗
) is constructed as the mean of the four component products after

masking the monthly SWE values in grid cells identified as statistically inconsistent using the

method from Section 2.3.3. Next, the SWE bias attributed to low data quality is calculated as

𝑆𝑊𝐸𝐵𝐼𝐴𝑆 = 𝑆𝑊𝐸𝐵𝐴𝑑 𝑗
−𝑆𝑊𝐸𝐵 for each grid cell (Fig. 2.9). This bias is generally negative across

the NH, with a mean value of -3.1 mm in SON, which represents an approximate 14.9% reduction

in total SWE on ground during this period. The distribution of this bias for all months in SON

suggests that while in the majority of months the bias is less than 5 mm, there are some cells

with extreme negative biases of more than 20 mm. These differences are visible in Fig. 2.9,

where specific local regions in central and eastern Eurasia, the CAA and parts of southern Alaska,

exhibit very large negative biases in mean SWE.

This absolute difference in total NH SWE over all SON month-pairs (𝑏𝑖𝑎𝑠𝑎𝑏𝑠 ≈ −310,000

kg m−3) represents a substantial amount of available water sitting on the surface in the form
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Figure 2.8: Temporal distribution of outlier counts. Outliers organized in B4 [2007-2015] for
a) monthly and b) yearly totals.
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of a frozen snowpack (the approximate water volume of a lake with surface water area 100 m2

and 30 meter depth). Absolute SWE differences during DJF also exhibit a slightly negative

average climatological bias, however DJF exhibits substantial spatial scatter with respect to the

sign of the bias across the region, likely as a result of a reduced CloudSat sample from lower

accumulation amounts during this time (see Fig. 2.8.a). The tendency for the SWE bias to be

negative in Fig. 2.9 suggests that on average there exists excess snow accumulation in the gridded

SWE products at these high latitudes in SON, likely in part as a result of the sparsely distributed

in situ observational network which is a limiting factor in the accuracy of assimilation-based

SWE products. Applying this masking technique at the Resolute Bay grid cell (Section 2.4.1),

also resulted in an approximate 40% decrease in RMSE between in situ station observations

and 𝑆𝑊𝐸𝐵𝐴𝑑 𝑗
compared to using the default 𝑆𝑊𝐸𝐵. Our data quality methodology was able to

automatically identify statistically inconsistent cases (Fig. 2.2) at the site and exclude problematic

component products to improve the accuracy of the final adjusted blended product at this location.

2.5 Discussion and Conclusions

Through the process of aggregating CloudSat overpasses using techniques described in King and

Fletcher (2020) and Hiley et al. (2010), we have produced a gridded snow accumulation product

independent of current gridded SWE products that can be used as an additional observational

constraint to enhance the accuracy and robustness of operational SWE datasets. Comparisons of

NH gridded Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶 for all frozen months between January 2007 and December 2015

exhibit strong correlations over heavy accumulation periods (SON) with improved agreement at

higher latitudes due to an increase in the available CloudSat sample across these regions. Using
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Figure 2.9: Spatial bias with masked B4 outliers over SON. Spatial differences between
𝑆𝑊𝐸𝐵𝐴𝑑 𝑗

and 𝑆𝑊𝐸𝐵 over SON where 𝑆𝑊𝐸𝐵𝐴𝑑 𝑗
is a recalculated blended SWE product from

component datasets, with periods highlighted as outliers masked in the blending process.
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the 95% PI generated from a regression model for the Resolute Bay case study, this method was

able to provide important insight into identifying the component product responsible for the data

quality issues in B4. Applying this outlier detection technique to the wider NH grid produces a

spatial distribution of outliers clustered primarily across poorly constrained high Arctic regions

of the CAA and Siberia. Temporal outlier analyses also indicate that the majority (approximately

79%) of the total number of outlier events occur during periods of heavy accumulation in

SON. Masking outlier month-pairs and re-blending the B4 product results in an average 14.9%

reduction in SWE across the NH over SON, which represents a substantial difference in sitting

surface water in the form of a snowpack (approximately −310,000 kg m−3) and suggests that on

average, portions of the B4 component products are accumulating too much SWE during this

period.

A major assumption in the comparison of Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶 is that we consider 𝑆𝑊𝐸𝐶

accumulation estimates as the truth when flagging outliers in the gridded products. In reality,

uncertainties in the CloudSat retrieval of snowfall also contribute to uncertainty in the outlier

detection via both sampling and instrumental uncertainty (Stephens, 2017; Wood et al., 2014;

Duffy et al., 2021). One advantage of the outlier detection method proposed in this study is

that it includes a measure of its own uncertainty via the width of the 95% PI (Fig. 2.2). Our

analysis has found that this uncertainty tends to be largest in periods with a weaker relationship

between CloudSat and B4, and that random variability in the location of cells which display

low correlations is likely related to the effects of both a low CloudSat sample size coupled with

biased CPR observations. Since CloudSat flies over some of the most southern grid cells only 3

to 4 times a month, if a heavy snowstorm occurs during one of those overpasses and is observed

by CloudSat, it will bias the resulting accumulation estimate during that period which will then

52



lead to disagreement with estimates provided by B4. However, CloudSat has shown to generally

demonstrate good accuracy at this spatio-temporal resolution at high latitudes during periods

of strong accumulation, suggesting some confidence in the overall number of outliers detected

during this time (Hiley et al., 2010; King and Fletcher, 2020; Bennartz et al., 2019; Palerme et al.,

2014).

This methodology works most effectively if no systematic error obscures the relationship

between Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶 (an assumption supported by the overall positive agreement shown

in Fig 2.4). These systematic errors include overarching issues related to CloudSat’s available

sample, instrument retrieval accuracy and numerical model errors in the gridded SWE product

forecasts of SWE on ground (Kulie and Bennartz, 2009; Broxton et al., 2016; Lindsay et al.,

2014). These issues increase uncertainty in the relationship between Δ𝑆𝑊𝐸𝐵 and 𝑆𝑊𝐸𝐶 and

limit our ability to detect statistically inconsistent periods in the gridded products. The steps we

take in restricting the CloudSat sample in Section 2.3.3.b, along with the results of complementary

studies by Duffy et al. (2021) and King and Fletcher (2020), help to minimize the effect of such

biases and suggest that the existence of large systematic errors between CloudSat and B4 across

the NH are negligible.

Radar signal attenuation from complex terrain and ground clutter interference are two ad-

ditional critical sources of uncertainty when considering the accuracy of CloudSat snowfall

estimates (Bennartz et al., 2019; Palerme et al., 2019; L’Ecuyer et al., 2008; Hiley et al., 2010).

Since snowfall is extrapolated down to the surface from the lowest precipitating bin, areas of

high elevation and complex terrain can influence retrieval accuracy by attenuating the CPR sig-

nal directly above CloudSat’s radar blind zone at 1.2 km (Marchand et al., 2008; Matrosov and

Battaglia, 2009). The impacts of these phenomena influencing snowfall rate accuracy has been

53



noted in previous work by Kulie and Bennartz (2009) and the CPR radar blind zone can be seen

in the yellow line at the bottom of Fig. 2 in (Hudak et al., 2008). Attenuation over alpine regions

is critically important to consider, as large swaths of our study area include grid cells primary

composed of high elevation topography and contain large quantities of SWE (Wrzesien et al.,

2018). Furthermore, outputs of the regression model described in Section 2.3.3, such as the

standard error or the y-intercept, exhibit larger biases in alpine regions across all B4 component

products as a result of CloudSat-CPR retrieval deficiencies in these regions (Fig. 2.1.c).

Gridded products are capable of providing nearly complete spatio-temporal coverage of

SWE across the NH. This improved coverage is an extremely valuable resource in cryospheric

research and as inputs to hydrologic models. However, these products are not without uncertainty

and error, and we should take whatever steps are possible to enhance the accuracy of their

estimates. The outlier detection technique described here is a novel method which allows for

satellite observations to constrain gridded products and, in turn, provide researchers with an

automated check for flagging areas of statistically inconsistent SWE estimates. While this study

uses CloudSat snowfall to constrain B4 SWE and its component datasets, we argue that this

technique could be applied to any gridded SWE dataset to identify potential inconsistencies.

This technique can support future blended SWE products by providing information regarding

where and when to include component datasets in the ensemble averaging process. Additionally,

this outlier detection methodology could also be used to identify and fix issues with surface

instrumentation (e.g. ECCC acoustic snow depth measurements) which are assimilated by other

products. CloudSat is uniquely positioned as one of the few available observational snowfall

constraints in remote regions and, when retrievals are aggregated at appropriate scales, CPR

snowfall estimates can provide valuable new insights into the accuracy of current and future
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gridded SWE products.
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Chapter 3

A Centimeter-Wavelength Snowfall

Retrieval Algorithm Using Machine

Learning

3.1 Overview

Remote sensing snowfall retrievals are powerful tools for advancing our understanding of global

snow accumulation patterns. However, current satellite-based snowfall retrievals rely on assump-

tions about snowfall particle shape, size and distribution, which contribute to uncertainty and

biases in their estimates. Vertical radar reflectivity profiles provided by the VertiX X-band radar

instrument in Egbert, Ontario are compared with in situ surface snow accumulation measure-

ments from January-March 2012 as a part of the Global Precipitation Measurement (GPM) Cold
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Season Precipitation Experiment (GCPEx). In this work, we train a random forest (RF) machine

learning model on VertiX radar profiles and European Centre for Medium-Range Weather Fore-

casts (ECMWF) Reanalysis version 5 (ERA-5) atmospheric temperature estimates, to derive a

surface snow accumulation regression model. Using event-based training-testing sets, the RF

model demonstrates high predictive skill in estimating surface snow accumulation at 5-minute

intervals with a low mean square error (MSE) of approximately 1.8×10−3 mm2 when compared

to collocated in situ measurements. The machine learning model outperformed other common

radar-based snowfall retrievals (𝑍𝑒−𝑆 relationships) which were unable to accurately capture the

magnitudes of peaks and troughs in observed snow accumulation. The RF model also displayed

consistent skill when applied to unseen data at a separate experimental site in South Korea.

An estimate of predictor importance from the RF model reveals that combinations of multiple

reflectivity measurement bins in the boundary layer below 2 km were the most significant fea-

tures in predicting snow accumulation. Nonlinear machine learning-based retrievals like those

explored in this work can offer new, important insights into global snow accumulation patterns

and overcome traditional challenges resulting from sparse in situ observational networks.

3.2 Introduction

There are many reasons why it is important to measure falling snow. Accumulated snow has

important linkages to regional flooding, water resource management practices and ecosystem

development and sustainability (Buttle et al., 2016; Berghuijs et al., 2019; Déry and Brown,

2007; Peng et al., 2010). As global average temperatures continue to rise, the distribution and

magnitude of synoptic snowfall events are expected to also change in a substantial, non-linear
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manner (Vaughan et al., 2013). In many cases, the most effective way to measure snow is through

radar. Satellite radar measurements, for example, can provide valuable snowfall information in

remote regions such as the high Arctic, tundra or over sea ice (King and Fletcher, 2019; Cabaj

et al., 2020; Duffy et al., 2021). They can also be used to retrieve measurements of melting snow

in the ocean that may represent up to 10% of the seasonal ocean surface heat flux (Duffy and

Bennartz, 2018). Satellite-based snowfall radar retrievals have also been used as independent

observational datasets to evaluate and constrain current gridded snow products across Arctic

regions, which are typically poorly observed due to sparsely distributed in situ measurement

networks (King and Fletcher, 2021).

Radars are valuable resources as they can provide precipitation rates over a wider area and

at a finer temporal scale compared to traditional in situ precipitation gauges (Lemonnier et al.,

2019). Radars can only provide estimates of precipitation, however, and the accuracy of retrieved

precipitation rates is largely dependent on the accuracy of the retrieval algorithm (Kulie and

Bennartz, 2009; Hiley et al., 2010). There are several common methods typically used to convert

radar measurements into precipitation rates. So-called 𝑍𝑒 − 𝑆 relationships (i.e. 𝑍𝑒 = 𝑎× 𝑆𝑏) use

algebraic power laws, with the prefactor 𝑎 and exponent 𝑏 derived from experimental observations

or simulated models to convert near-surface reflectivity (𝑍𝑒) into precipitation rates (𝑆) (Wolfe

and Snider, 2012; Boucher and Wieler, 1985; Szyrmer and Zawadzki, 2010). Bayesian methods,

such as the techniques used in the derivation of the 2C-SNOW-PROFILE snowfall retrieval

product from CloudSat (Stephens, 2017), are also used for snowfall retrieval by incorporating

prior assumptions of snowfall particle size, shape, distribution and fall speed (Wood and L’Ecuyer,

2021).

These empirically-derived relationships may only provide accurate estimates under specific
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climate regimes as a consequence of the necessary a priori assumptions made regarding particle

microphysics. Substantial error can therefore propagate through to the final snow accumulation

estimates if the wrong 𝑍𝑒 − 𝑆 relationship is applied (Milani et al., 2018; von Lerber et al.,

2017; Schoger et al., 2021). The variability in the structure and vertical extent of winter storms

can also lead to additional uncertainty and error when deriving a surface snow accumulation

estimate from only near-surface reflectivity bins when applying such a relationship. While the

significance of each radar bin may vary, an ideal retrieval algorithm would incorporate all the

relevant reflectivity information that a radar beam can provide to maximize the accuracy of

the estimated surface accumulation. Such an algorithm would also be able to assimilate cloud

features and environmental conditions that are known to further influence 𝑍𝑒 − 𝑆 relationships

and Bayesian retrievals (Pettersen et al., 2020b; McIlhattan et al., 2020).

Traditional algebraic methods for precipitation retrievals can become impractical if we con-

sider the full set of variables present in a typical radar retrieval. Machine learning (ML) algo-

rithms, however, are unrestricted by algebra and can incorporate a virtually unlimited number of

variables to derive complex and non-intuitive relationships between the provided predictors and

response (Karpatne et al., 2019). Previous studies have used ML to construct snowfall retrieval

algorithms which can detect and estimate surface snowfall rates under specified climate contexts

using spaceborne passive microwave radar measurements (Adhikari et al., 2020b; Ehsani et al.,

2021). NNs have also recently shown promise in retrieving particle size distribution (PSD)

parameters from synthetic model data which, when applied to spaceborne radar observations,

demonstrates improved estimates of snowfall compared to their default algorithms (Chase et al.,

2021). These models are powerful tools for deriving snowfall estimates from radar data, and in

further advancing our understanding of how accumulated snow quantities are changing under a
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warming global climate.

Herein, we develop and evaluate a novel random forest (RF) snow accumulation retrieval

algorithm that incorporates reflectivity and temperature from all applicable radar range gates.

The RF model is then compared with traditional 𝑍𝑒−𝑆 relationships (derived from X-band radar)

to evaluate model skill. Finally, both the RF and 𝑍𝑒 − 𝑆 relationships are applied to data from a

completely unseen site in South Korea to evaluate model robustness. We use the RF algorithm to

identify which radar gates appear as the most important, along with how many gates are necessary

to maximize the accuracy and robustness of the retrieval. For the purposes of this methodological

proof-of-concept study in the development of a retrieval strategy that could be applied to terrestrial

and spaceborne radar, we are focusing on X-band radar measurements of snowfall to minimize

potential complications that may arise from attenuation, non-Rayleigh reflectivity, or multiple

scattering.

The main objectives of this paper are to:

1. Quantify the accuracy with which we can model surface snow accumulation from X-band

radar data using an ensemble of statistical techniques of varying complexity

2. Determine whether machine learning models offer improved skill compared to traditional

𝑍𝑒 − 𝑆 relationships

3. Identify the most significant range gate estimates of temperature and reflectivity to enhance

current and future retrievals of surface snow accumulation
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3.3 Data and Methods

3.3.1 In Situ Snow Observations

In situ precipitation measurements were obtained from the Global Precipitation Measurement

(GPM) Cold Season Precipitation Experiment (GCPEx) field campaign (Skofronick-Jackson

et al., 2015). GCPEx was a joint venture between the National Air and Space Administration

(NASA) and Environment and Climate Change Canada (ECCC). A primary goal of GCPEx

was to provide multiple observations of snowstorms in order to evaluate GPM-style retrievals

of precipitating clouds. GCPEx took place across several sites in Ontario, though for this study

we focus on observations taken at the Centre for Atmospheric Research Experiments (CARE) in

Egbert, Ontario, Canada from January to March 2012 (Fig. 3.1.a).

Surface snow accumulation was monitored using an OTT Pluvio2 automated precipitation

weighing gauge at the GCPEx study site. The gauge was installed at a representative location in an

open field, free from the influence of human activity and the presence of nearby vegetation. Snow

accumulation estimates were recorded at one-minute temporal resolution to provide 𝑛 = 25 days

of non-zero precipitation observations. The Pluvio2 minimum observational intensity threshold

is 0.2 mm per minute of snow accumulation for measurements to qualify as active precipitation

and be registered by the system (i.e. trace amounts of accumulation). Accumulation estimates

that fell below this minimum threshold were not considered as precipitation and therefore left

unrecorded. This measurement gauge was equipped with a 200 cm2 heated top to help prevent

snow accumulation from covering the gauge top orifice and mitigate against underestimation.

The Pluvio2 was also equipped with 8-ft diameter Alter shield and was situated in the centre of a
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Figure 3.1: Experiment locations and vertical radar profile summaries. a) GCPEx measure-
ment site location (Egbert, Ontario, Canada); b) 5-Minute VertiX reflectivity values (mean in
bold red, individual vertical bins in light red) and Pluvio2 snow accumulation estimates (black)
from the site in a); c) ICE-POP measurement site location in South Korea; and d) the same as b)
for ICE-POP using MXPol X-band radar observations.

surrounding Tretyakov fence (Smith, 2009; Metcalfe et al., 1997). This double-fence setup helps

to mitigate the effects of turbulent winds, which can deflect incoming hydrometeors away from

the gauge-top opening and lead to an underestimation of accumulation (i.e. undercatch effects)

(Sevruk et al., 1991; Kochendorfer et al., 2017; Rasmussen and Rasmussen, 2014; Colli et al.,

2020). To further mitigate against issues with strong winds and gauge undercatch, we constrain

our analysis to periods where surface wind speeds recorded during GCPEx were less than 5 m/s

(i.e. only low-to-medium intensity wind speed periods) for the duration of the measurement

period (Kochendorfer et al., 2022; Rasmussen et al., 2002).
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Additional surface snow accumulation observations and collocated X-band radar data were

collected from the International Collaborative Experiment for PyeongChang Olympic and Para-

lympics (ICE-POP) in South Korea (Fig. 3.1.c). Similar to GCPEx, ICE-POP was another GPM

Ground Validation campaign that collected a suite of atmospheric observations for researching

frozen and mixed-phase precipitation (Gatlin, 2020). The experiment included a Pluvio2 gauge

with a similar double-fenced shield to that at GCPEx, as well as a collocated MXPol X-band

radar system (Gehring et al., 2020). As the MXPol data extends beyond 10 km, the lowest subset

of the vertical column is extracted and aligned to the vertical resolution (44.5 m) of bins used at

GCPEx (Fig. 3.1.d). Preprocessing of the MXPol and Pluvio2 data from ICE-POP follow the

same steps as those applied to data at GCPEx (further details in Section 3.3.4).

To address uncertainties arising from trace amounts of accumulation being missed at the

surface Pluvio2 gauge, we examined varying levels of temporal data averaging and also performed

sensitivity analyses on minimum precipitation thresholds to determine whether certain low-

intensity observations should be included in the model training data. We examined minimum

accumulation thresholds from 0.01 mm to 0.16 mm and found that each model demonstrated

similar strong performance (low MSE) for minimum thresholds of 0.01 and 0.02 mm, with

reductions in performance as we move to larger minimum thresholds. For example, we note a

64% increase in MSE for 𝑅𝐹 𝑓 𝑢𝑙𝑙 trained using GCPEx data and applied at ICE-POP when the

training threshold is increased from 0.01 to 0.04 mm (and a 175% increase in MSE when the

training threshold is increased from 0.01 to 0.16 mm). To maintain high accuracy and a large

sample size, we therefore employ a minimum 5-minute average accumulation threshold of 0.01

mm.
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3.3.2 VertiX Radar

The vertically pointing X-band (_ ≈ 3 cm wavelength) radar (VertiX) provides reflectivity profiles

with a sampling frequency of 3 seconds, a range of 10 km with vertical bin resolution of ap-

proximately 44.5 meters, and a sensitivity below -20 dBZ. The VertiX instrument emits pulses of

energy which scatter off of the particles within the cloud to provide precipitation echo measure-

ments, which can then be used to derive information about precipitating hydrometeors contained

within the vertical column above the instrument (Skofronick-Jackson et al., 2015). This type

of X-band radar has been used to great effect in previous work by Gehring et al. (2020) during

experiments focused on analyzing precipitation type as well as accumulation quantification. This

instrument was positioned in the same study location as the Pluvio2 weighing gauge described in

Section 3.3.1 to provide time-height estimates of reflectivity (dBZ) and Doppler velocity (m/s)

for precipitating clouds directly overhead both instruments. Reflectivity values and Pluvio2 ac-

cumulation estimates are shown for the full study site in Figure 3.1.b. While X-band radars

have traditionally been used for rainfall retrieval algorithms, recent studies suggest that this radar

band can provide valuable information related to snowfall rates in cold environments, and the

longer wavelength compared to Ku/Ka radar helps to mitigate against the effects of non-Rayleigh

scattering of large snow particles (Matrosov et al., 2009, 2007).

3.3.3 ERA-5 Reanalysis

Atmospheric temperature data is provided by the European Center for Medium-Range Weather

Forecast’s (ECMWF) Reanalysis Version 5 (ERA-5) dataset. ERA-5 is a global reanalysis product

that provides hourly estimates of a suite of climatic variables at 0.25°× 0.25° resolution from
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1979 to present, with vertical column estimates up to 80 km into the upper atmosphere (Hersbach

et al., 2020). As a fifth generation product, ERA-5 is well documented and its estimates of

temperature have been extensively analyzed and validated in previous literature (Tarek et al.,

2020; Betts et al., 2019; Simmons et al., 2020; Wang et al., 2019a). Hourly ERA-5 atmospheric

temperature data was extracted for each bin in the lowest 10 km of its vertical profile for the grid

cell directly overlapping with the Egbert study site over our study period. Vertical bins in ERA-5

were then regridded to match the approximate 44.5 m vertical bins defined by the VertiX radar

system. The resulting binned temperature data is then used as an additional predictor set in the

snowfall retrieval techniques described in Section 3.3.4.

3.3.4 Snow Accumulation Retrieval Methodology

There were twelve days during GCPEx where snowfall was measured by both the VertiX and

Pluvio2 instruments. The VertiX reflectivity profiles for these twelve days of collocated measure-

ments are shown in Figure 3.2 along with the date of occurrence. We note the unique structure

of precipitation in each day of Figure 3.2, along with a relatively uniform low-intensity band of

reflectivity values (approximately equal to 0 dBZ on average), between the 0 to 1.5 km portion of

the vertical profile. The impact of this near-surface reflectivity band on model skill is discussed

in more detail in Section 3.5.

To begin the comparison process, each vertical bin of reflectivities in the VertiX radar profile

(in physical units mm6 m−3), along with each 1-minute in situ accumulation estimate is temporally

averaged to common 5-minute intervals. This interval size was selected to help account for small

jumps in trace amounts of precipitation from the in situ gauge, and form a more continuous
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reference dataset while still maintaining a sufficient sample size for model training and testing

(𝑛 = 391 observations). Furthermore, as only periods of non-zero precipitation were reported by

the in situ gauge, our comparisons are restricted to periods of active snowfall.

Figure 3.2: Vertical radar reflectivity profiles (X-band) generated from the VertiX radar over
𝑛 = 12 collocated precipitation events up to 10 km above the surface.

Model performance is evaluated using mean squared error (MSE) calculated from a non-

shuffled 10-fold cross validation (CV) in order to use the full set of available data and to mitigate

against potential model overfitting. MSE is a common metric used in ML precipitation retrieval

studies to quantify the average error between observed and predicted values, and assess model

skill (Chen et al., 2020b; Kim and Bae, 2017; Shi et al., 2017). The non-shuffled nature of each

90/10 train/test split allows for the model’s predictive skill to be examined when tested on unseen

data, as retrievals taken close in time during training may be autocorrelated and lead to overfitting

(i.e. a shuffled-split approach).

Each RF retrieval model examined here is provided with the same set of training data con-

taining predictors and response variables. The response variable is the in situ snow accumulation

observations provided by the Pluvio2 instrument. The default model predictors include the 221
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Table 3.1: Model list and summary descriptions of the predictors used within each model.

Model Variables Inputs Description
𝑅𝐹 𝑓 𝑢𝑙𝑙 Reflectivity, Temperature 442 All reflectivity and temperature bins
𝑅𝐹𝑛𝑒𝑎𝑟 Reflectivity, Temperature 90 Near-surface reflectivity and temperature bins
𝑅𝐹 𝑓 𝑎𝑟 Reflectivity, Temperature 352 Upper reflectivity and temperature bins
𝑍𝑒 − 𝑆 Reflectivity 1 𝑍𝑒 − 𝑆 relations described in more detail in Table 3.2

vertical reflectivity bins from the VertiX radar and the same 221 atmospheric temperature bins

from ERA-5. Model predictors can also take the form of aggregations and subsets of these bins,

depending on the model and experiment being performed. More information on the individual

structures of these experiments can be found in Table 3.1, along with their general performance

in Section 3.3.

Table 3.2: K-Band precipitation power law relationships derived from previous literature.
Name Power Law Source
DDU 𝑍𝑒 = 76× 𝑆0.91 (Grazioli et al., 2017)
B90A 𝑍𝑒 = 67× 𝑆1.28 (Matrosov et al., 2009)
W08A 𝑍𝑒 = 28× 𝑆1.44 (Matrosov et al., 2009)
W08B 𝑍𝑒 = 36× 𝑆1.56 (Matrosov et al., 2009)
W08C 𝑍𝑒 = 48× 𝑆1.45 (Matrosov et al., 2009)

In order to assess RF model accuracy, a set of five 𝑍𝑒 − 𝑆 relationships derived from X-band

radar experiments were selected (Table 3.2) to act as baseline comparisons. These relationships

were applied to the 11𝑡ℎ temporally averaged radar bin from the surface, as this region of

the profile demonstrated strong predictive skill in our later analysis of vertical profile feature

importance (Section 3.4.2) and lay far enough above the surface to avoid concerns of ground
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clutter contamination. Each relationship’s surface snow accumulation estimate was then recorded

for comparison with the RF over a common 5-minute timestep.

A set of bespoke 𝑍𝑒 − 𝑆 relationships were also empirically derived using the 5-minute

average reflectivity observations (in mm6 m−3) and temporally aligned in situ snow accumulation

measurements from the Pluvio2 at GCPEx and ICE-POP. These fits were performed under the

same 10-fold CV strategy as the RF, using the Python SciPy package’s 𝑐𝑢𝑟𝑣𝑒 𝑓 𝑖𝑡 optimization

algorithm to derive custom GCPEx and ICE-POP power law relations denoted as GZS and IPZS,

respectively. Derivations were performed using a non-linear least-squares approach for finding

optimal 𝑎 and 𝑏 coefficients to fit a 𝑍𝑒−𝑆 power law relationship (Virtanen et al., 2020). GZS and

IPZS were then applied to unseen reflectivity observations in the testing set (in the same manner

as the other 𝑍𝑒 − 𝑆 relationships) to derive corresponding surface snow accumulation estimates.

GZS and IPZS were included in this work to act as additional baseline comparisons and to further

demonstrate the robustness of a more sophisticated ML-based algorithm over traditional power

law relationships when derived from the same sets of site-specific observations.

The RF regression model is implemented using Python’s scikit-learn package from Pedregosa

et al. (2011a), which provides access to a wide library of model setup, prediction and evaluation

functions. RF model hyperparameterization is performed using a random search 10-fold cross-

validation, where subsets of model hyperparameters are randomly tested across the full parameter

space to identify a theoretical optimal set of values for our model and data. Using this technique,

we examined the parameter space for the hyperparameters listed in Table 3.3 to identify optimal

values.
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Table 3.3: Random Forest hyperparameters and final tuned values.
Hyperparameter Optimal Value Parameter Space

Forest Size 400 [100, 200, 400, 800, 1600]
Bootstrap True [True, False]
Max Features Sqrt [’auto’, ’sqrt’, ’log2’]
Min. Samples Split 2 [1, 2, 5, 10, 20]
Min. Samples Leaf 10 [1, 2, 5, 10, 20]
Max Depth 10 [5, 10, 15, 25]

3.4 Results

3.4.1 Model Intercomparisons

Cumulative accumulation timeseries are shown for all models (colored lines) and Pluvio2 snow

measurements (black dashed line) in Figure 3.3.a for the full study period. While all models

display similar accumulation trends over the full study period, the RF appears to be the most

capable in capturing peaks and troughs in the data over time, to more closely model the correct

magnitude of the total recorded surface snow accumulation. W08A also closely models the total

accumulation over the full period, but it (along with the other power law relationships) displays

a strong negative bias during the first half of the study. W08A and DDU then display a positive

total accumulation bias during the February 18 snowfall event, however all 𝑍𝑒 − 𝑆 relationships

(excluding GZS) underestimate the precipitation rate following this event (as the slope of the

accumulation curves appear to flatten out compared to in situ). While GZS closely follows in situ

accumulation during the trace precipitation events at the beginning of GCPEx, on February 10 it

begins to overestimate the amount of surface accumulation and remains positively biased by two
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orders of magnitude more than 𝑅𝐹 𝑓 𝑢𝑙𝑙 for the remainder of the period when compared to in situ.

We note that the RF displays the lowest overall error in its predictions, with MSE values smaller

than any of the other 𝑍 − 𝑆 relationships.

Figure 3.3: Cumulative snow accumulation estimates. Total snow accumulation intercom-
parisons between in situ measurements, 𝑅𝐹 𝑓 𝑢𝑙𝑙 and each respective 𝑍𝑒 − 𝑆 relationship over the
course of all accumulation events at GCPEx.

As mentioned in Section 3.2, the referenced 𝑍𝑒 − 𝑆 power law coefficients are empirically

derived from a set of observed atmospheric particle microphysics. These assumptions about

particle microphysics are a large source of uncertainty in retrieval accuracy if the snowfall event

being observed falls outside measured values recorded at the experiment from which the power

law was derived. These uncertainties contribute to additional retrieval error when applied to data

outside the training dataset, which is likely a large source of the error between each 𝑍𝑒−𝑆 relation

and the Pluvio2 estimates.

To further examine model performance on unseen data and assess the robustness of the RF

retrieval accuracy, we performed a secondary test against a similar experimental setup at the
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ICE-POP site in South Korea (Fig. 3.4.a). Testing 𝑅𝐹 𝑓 𝑢𝑙𝑙 on ICE-POP data (while trained only

on data from GCPEx) allows us to examine how well the model can generalize to completely

unseen data and further assess the impacts of potential near-surface radar contamination from the

VertiX radar.

The results of this test are shown in Figure 3.4.b, for each model at both sites. In general, the

𝑍𝑒 − 𝑆 relationships show a large change in MSE (e.g. DDU MSE improves by approximately

50% at ICE-POP), while the RF MSE remains fairly consistent between sites. Furthermore,

while the 𝑍𝑒−𝑆 performance improves when applied at ICE-POP, the RF continues to exhibit the

highest skill in predicting surface snow accumulation. While MSE values are similar for GZS

and 𝑅𝐹 𝑓 𝑢𝑙𝑙 at GCPEx (a 5% increase in MSE for GZS), the power law performance degrades

substantially at ICE-POP with an MSE increase of 40%. We also note a similar result from IPZS

where, when applied at ICE-POP (i.e. the site it was trained), IPZS demonstrates very low MSE,

however performance degrades by 150% when IPZS is applied at GCPEx. This reduction in

GZS and IPZS performance when applied to new experiment sites further highlights the bespoke

nature of empirically derived 𝑍𝑒 − 𝑆 relationships and their inability to generalize well to new

regional climates. While the RF performance degrades slightly at ICE-POP, the overall similarity

in performance suggests that the RF is capable of providing accurate estimates of accumulation,

even when applied to completely unseen retrievals from a different climatic regime and time

period.

While 𝑅𝐹 𝑓 𝑢𝑙𝑙 is able to capture the peaks in high intensity precipitation early and midway

through the experiment, it struggles to accurately predict the high intensity precipitation event on

February 24−25. These high cloud storms represent a small subset of the weather events observed

at GCPEx and also include much more variability in the vertical reflectivity profile observations
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Figure 3.4: MSE values from 𝑅𝐹 𝑓 𝑢𝑙𝑙 and the 𝑍𝑒−𝑆 relationships when tested against GCPEx
observations (red) and ICE-POP (blue). Note that the ICE-POP tests were trained only using
GCPEx observations (excluding IPZS which was derived from ICE-POP data), and that DDU
MSE values extend beyond the chart top (extent labels are included).

(lower right panel of Figure 3.3). These uncertainties in the RF estimates are further visualized

in Figure 3.5, which shows the distribution of model errors for the RF and each subset RF model

(more details in Section 3.4.2) against the errors of the ensemble of 𝑍𝑒−𝑆 relationships examined

in this work. We note a slight positive bias to the RF with an anomaly curve centred closer to

zero compared to the negatively biased and long-tailed estimates from the 𝑍𝑒 − 𝑆 relations in

Figure 3.5.a (excluding GZS, which is the only positively biased 𝑍𝑒 − 𝑆 relationship). Further,

the RF model error during the high intensity February 24−25 event is clearly visible in the error

timeseries (Fig. 3.5.b), where all 𝑍𝑒 − 𝑆 relationships and the RF display high levels of error in

their estimates of surface accumulation. MSE values from 𝑅𝐹 𝑓 𝑢𝑙𝑙 are 100% higher on average

when tested on the February 24−25 storm event compared to the other storm events at GCPEx.
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We suggest that a larger, more robust reference dataset is required to allow the ML models to more

clearly learn about differing storm types and varying cloud layer precipitation structures (which

would need to be classified in advance using an additional, preprocessing supervised learning

layer).

Figure 3.5: Snowfall error distributions and uncertainty timeseries. a) Distribution of model
errors for 𝑅𝐹 𝑓 𝑢𝑙𝑙 (and subset models), along with the ensemble of 𝑍𝑒 − 𝑆 relationships for
predictions at GCPEx; and b) error timeseries for the RF model estimates and the mean of all
tested 𝑍𝑒−𝑆 relationships for each 5-minute timestep of observed reflectivities at GCPEx (shaded
region shows a 95% confidence interval).

3.4.2 Vertical Profile Features

As a consequence of the splitting process used by individual decision tree nodes, we gain

insight into the relative importance of each predictor contributing to the decisions made within

the model. These predictor importance scores are useful metrics which provide additional
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information regarding model behaviour and performance as a function of the atmospheric vertical

column. Predictors in this study are based on the individual 221 VertiX reflectivity bins, the 221

ERA-5 atmospheric temperature bins, or as combinations/aggregations of these variables. A

visualization of the importance of each individual vertical bin for reflectivity and temperature is

shown in Figure 3.6, along with the respective frequency distributions for each bin in the vertical

profile for 𝑅𝐹 𝑓 𝑢𝑙𝑙 . The frequency distribution of reflectivity values converges as we move further

up the vertical profile, as missing regions are filled with the mean of the column. As noted

in Figure 3.6.a, near surface reflectivity values comprise the most significant predictors by far,

followed by a handful of cloud-top level ERA-5 temperature bins near 3.5 km above the surface.

Reflectivity values are on average 10 times more influential in the model’s decision-making

process than the atmospheric temperature data.

Figure 3.6: RF feature importance scores and observation frequency histograms. a) His-
togram of reflectivity values from all snowfall events up to 10 km; and b) the same as in a) for
ERA-5 temperature profiles. 𝑅𝐹 𝑓 𝑢𝑙𝑙 bin importance scores are shown in solid black for both
datasets.
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We attempt to simplify the model architecture by refining our set of predictors from the full

set of hundreds of predictors (𝑅𝐹 𝑓 𝑢𝑙𝑙) to two subsets (Table 3.4). Aggregating multiple contigu-

ous high-importance bins from Figure 3.6 results in two new predictor sets: 𝑅𝐹𝑛𝑒𝑎𝑟 (reflectiv-

ity/temperature bins 1-45; combined importance 65%) and 𝑅𝐹 𝑓 𝑎𝑟 (reflectivity/temperature bins

46-221; combined importance 35%). Rerunning the model with 𝑅𝐹𝑛𝑒𝑎𝑟 as the predictor set shows

very similar skill to that of 𝑅𝐹 𝑓 𝑢𝑙𝑙 (𝑀𝑆𝐸𝑛𝑒𝑎𝑟 = 1.77×10−3 mm2 vs. 𝑀𝑆𝐸 𝑓 𝑢𝑙𝑙 = 1.83×10−3 mm2),

while using a much smaller total set of model predictors (Table 3.4). The 𝑅𝐹 𝑓 𝑎𝑟 model displays

the poorest overall performance, with an approximate 19% drop in accuracy compared to using

the full set of predictors.

These predictor importance scores also provide new insights into the regions of the precipi-

tating atmospheric column which are most significant for predicting surface snow accumulation.

We note in Fig 3.6.a, along with the results of the importance scores from 𝑅𝐹𝑛𝑒𝑎𝑟 , that the lowest

45 reflectivity bins (lowest 2 km of the vertical column) have a significant impact on model

skill and are used in nearly two thirds of all decisions. Meanwhile, reflectivity bins above 2

km are used much more rarely within the model, with a combined total importance of less than

22%, spanning 176 bins (approximately 8 km) of the vertical column. These importance scores

also closely correspond with the vertical profile reflectivity distributions of Figure 3.6.a, where

there exists little activity in reflectivity values above this range and the most complex reflectivity

distributions appear close to the surface. Similar importance information can be also extracted

from the atmospheric temperature data, however these feature importances are typically dwarfed

by the contributions from near-surface reflectivities.

Examining distinct combinations of adjacent bins along with their relative positions within the

vertical profile provides us with a better understanding of how model performance varies when
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trained on different subsets of the atmospheric column. Sensitivity tests varying the number

of reflectivity predictors in the RF model, along with their relative position within the vertical

profile, are shown in Figure 3.7 for a) MSE, b) Pearson correlation, and c) model bias. Each color

represents a different number of adjacent predictors used in the model (i.e. red represents models

trained using a sole predictor that is derived from a single bin, while dark purple represents models

trained on 64 individual predictors composed of adjacent reflectivity bins in the vertical column).

We note a general trend of improved performance for larger groups of adjacent predictors closer

to the surface. These larger predictor-set near-surface models have similar performance to the

𝑅𝐹𝑛𝑒𝑎𝑟 model, which was generated by combining information from the most significant predictor

bins.

Figure 3.7: Sensitivity analysis produced by varying RF predictor group sizes of adjacent
bins, along with the locations of said predictor groups within the vertical profile for: a)
MSE; b) Pearson correlation; and c) mean bias (𝑚𝑜𝑑𝑒𝑙 − 𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑). Each color represents a
different number of predictors used to train the model at different heights in the vertical column.

Model performance typically degrades and eventually converges to an MSE of 2.3× 10−3

after the 100 vertical bin range (4.5 km above the surface). Another significant feature of the

76



Table 3.4: Summary of RF models and their respective performance as a function of vertical
extent.

Name Vertical Extent MSE (mm2)

𝑅𝐹𝑛𝑒𝑎𝑟 1−45 1.77×10−3

𝑅𝐹 𝑓 𝑎𝑟 46−221 2.22×10−3

𝑅𝐹 𝑓 𝑢𝑙𝑙 Full Profile 1.83×10−3

sensitivity analysis is the parabolic dip in performance for bin group sizes below 32 predictors

between the 40 and 90 bin ranges (2− 4 km range), where we see substantial losses in model

accuracy below that of even the models trained only on the uppermost bins in the atmospheric

column near 10 km. While it is not entirely clear as to the cause of this performance dip in this

region of the vertical profile, we believe it may be related to the fact that this region is typically

between areas of shallow-cumuliform precipitation and high cloud precipitation in our training

data (as seen in Figure 3.2) and therefore training only on these bins provides little information as

to the actual precipitation occurring within the cloud. Spaceborne radar retrievals from satellites

like CloudSat and GPM typically are blind to the lowest 1.5 kilometres of the atmosphere due

to ground clutter interference, however Figure 3.2 shows that models trained on multiple bins

within this near-surface range (bins 1−45) appear as the most significant contributors to improved

predictions of surface snow accumulation. The relative performance of each of the RF models

examined in this sensitivity analysis can be used to help inform current and future retrieval

methods that relate a reflectivity to snowfall rate. The information encoded in multiple, adjacent

near-surface bins provides a more robust model when compared with single-bin estimates or full

column averages.
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3.5 Discussion and Conclusions

The VertiX radar and collocated in situ snowfall measurements from GCPEx have allowed us to

derive a novel relationship between atmospheric reflectivity profiles and surface snow accumu-

lation using ML-based regression. The accuracy of traditional 𝑍𝑒 − 𝑆 power law relationships

was examined when applied to the VertiX data at GCPEx, and the RF continually demonstrated

the highest skill, with the 𝑍𝑒 − 𝑆 relationships displaying clear biases in accumulation. RF pre-

dictor importance scores indicated that near surface bins in the lowest 2 km of the atmospheric

column are by far the most influential regions of the vertical profile in quantifying surface snow

accumulation. Sensitivity tests comparing different combinations of RF predictors suggest that

the information found within groups of multiple, adjacent near-surface bins produce a model that

better understands the relationship between reflectivities and accumulation. This information

is highly relevant for improving current surface snowfall retrieval algorithms from spaceborne

instruments, which also rely on a vertical column of reflectivity values to derive snowfall esti-

mates for each atmospheric bin. These retrievals then extrapolate the snowfall rate from a single

low-lying precipitating bin down to the surface, however this region of the vertical column is

partially masked in spaceborne radar retrievals due to ground clutter attenuation in the radar

signal, contributing additional uncertainty to the true location of the lowest precipitating cloud

layer.

The small sample available from GCPEx is a major limiting factor in model performance and

robustness. While we have demonstrated improved performance in the ML regression models,

and tested the RF model against completely unseen data at ICE-POP, the highly variable nature

of precipitation coupled with the effects of wind interference, the potential for mixed-phase pre-
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cipitation occurrence, along with varying cloud layer precipitation structures, all contribute to

increased model error and uncertainty. The vertical profile shown in Figure 3.2.12 for instance,

depicts a variably-structured, high cloud storm that is unlike the other shallow-cumuliform snow-

fall events being presented to the model as training data. An examination of historical in situ 2

meter temperature observations also shows that surface temperatures fluctuate between ±1° Cel-

sius for most of this day, suggesting that mixed-phase precipitation may also have been present

and contributing additional uncertainty to an already complex synoptic event. We note that these

periods exhibit consistently high retrieval errors for both the RF and 𝑍𝑒 − 𝑆 relationship (Fig.

3.5.b), with the RF typically showing slightly reduced MSE values compared to the power law

relationships. We experimented with various methods of encoding cloud shape information and

storm event types as predictors within the RF model based on similar work by Pettersen et al.

(2020b) to help the RF better recognize unique snowfall event structures, however model perfor-

mance remained largely unchanged. A larger and more representative training dataset would be

beneficial in teaching the RF to better identify different storm events types. Automated storm-type

identification could then improve the overall model skill in predicting surface snow accumulation

for a wider array of precipitation events under varying environmental and atmospheric conditions.

Although multiple layers of wind shielding were employed at both GCPEx and ICE-POP, along

with our attempts to examine days with only low-to-moderate wind speeds, gauge undercatch may

have also been a factor contributing to error in our model as the Pluvio2 data acts as the ground

truth we are attempting to predict. This is especially relevant when we consider cases of trace

precipitation at one-minute temporal resolution, which have been shown in previous work by Colli

et al. (2020) to be challenging to accurately quantify and correct for as a result of its low intensity.

Errors in our response variable (which represents what we consider as the true accumulation
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occurring on the surface) would contribute to further biases in our ML regression model and

further obfuscate the locations of the most important bins in the vertical profile. Uncertainties

in the VertiX radar estimates should also be considered as potential contributors to model error.

As previously highlighted, Figure 3.2 displays a relatively uniform low-intensity near-surface

reflectivity band over all days at GCPEx. It is unclear as to the origins of this feature from the

VertiX retrievals, but its presence may impact the accuracy of the RF model (along with the

relative importance of these bins) when predicting near-surface snowfall in this region. However,

the reflectivity data from ICE-POP does not display these phenomena and the RF continues to

display similar levels of skill when tested against this unseen data, which suggests that it is not

training itself on this signal or statistical noise, and that its impact therefore appears negligible.

With these uncertainties in mind, we suggest that a followup study be completed which builds

on the proof-of-concept methodology introduced in this work and incorporates radar data from

multiple sites over an extended time period. An increased training sample would significantly

contribute towards building a more robust model which could then be applied to independent,

spaceborne reflectivity profiles in a wider context to derive a novel, ML-based hemispheric snow

accumulation product.
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Chapter 4

DeepPrecip: A deep neural network for

precipitation retrievals

4.1 Overview

Remotely-sensed precipitation retrievals are critical for advancing our understanding of global

energy and hydrologic cycles in remote regions. Radar reflectivity profiles of the lower atmo-

sphere are commonly linked to precipitation through empirical power laws, but these relationships

are tightly coupled to particle microphysical assumptions that do not generalize well to different

regional climates. Here, we develop a robust, highly generalized precipitation retrieval algo-

rithm from a deep convolutional neural network (DeepPrecip) to estimate 20-minute average

surface precipitation accumulation using near-surface radar data inputs. DeepPrecip displays

high retrieval skill and can accurately model total precipitation accumulation, with a mean square
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error (MSE) 160% lower, on average, than current methods. DeepPrecip also outperforms a less

complex machine learning retrieval algorithm, demonstrating the value of deep learning when

applied to precipitation retrievals. Predictor importance analyses suggest that a combination

of both near-surface (below 1 km) and higher-altitude (1.5− 2 km) radar measurements are the

primary features contributing to retrieval accuracy. Further, DeepPrecip closely captures total

precipitation accumulation magnitudes and variability across nine distinct locations without re-

quiring any explicit descriptions of particle microphysics or geospatial covariates. This research

reveals the important role for deep learning in extracting relevant information about precipitation

from atmospheric radar retrievals.

4.2 Introduction

Accurate estimates of surface precipitation are highly sought-after as they inform flood forecast-

ing operations, water resource management practices and energy planning (Buttle et al., 2016;

Gergel et al., 2017). Due to the sparse nature of in situ precipitation measurement networks,

remote sensing has become a prominent alternative source of observations for deriving surface

precipitation estimates (Liu, 2008b). Ground-based scanning radars are valuable resources as

they provide estimates of precipitation over a wider area and at a higher temporal resolution com-

pared to traditional in situ gauges (Lemonnier et al., 2019). Additionally, the size and availability

of both vertically pointing and space-borne remote sensing datasets have expanded greatly in

recent decades as a result of technological instrument improvements and new satellite missions

(Quirita et al., 2017).

Remotely-sensed radar observations used in empirical, power-law relationships can relate
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radar reflectivity (RFL) estimates (𝑍𝑒) to surface snowfall (𝑆) or rainfall (𝑅) rates (Eq. 4.1)

(Matrosov et al., 2008; Kulie and Bennartz, 2009; Schoger et al., 2021).

𝑍𝑒 = 𝑎× (𝑆/𝑅)𝑏 (4.1)

These radar-based retrievals are powerful tools for filling current observational gaps and have

been applied to great effect in previous literature (Levizzani et al., 2011; Hiley et al., 2010).

However, these relationships demonstrate an inability to generalize well to unseen validation data

as a consequence of the microphysical particle assumptions (e.g. shape, diameter, particle size

distribution (PSD), terminal fall velocity and mass) used in each relationship’s unique derivation

(Jameson and Kostinski, 2002).

Recent machine learning (ML) approaches have demonstrated improvements in estimating

surface precipitation from remotely-sensed data compared to traditional nowcasting methods

(Shi et al., 2017; Kim and Bae, 2017). Deep learning models have benefited greatly from the

increased observational sample provided by remote sensing missions and have shown skill in

learning complex spatiotemporal characteristics of the underlying datasets (Chen et al., 2020b).

However, a deep learning convolutional surface precipitation retrieval using vertical column radar

data with no spatiotemporal covariates has yet to be developed to our knowledge. Previous ML

studies have typically focused on passive microwave and infrared datasets which lack a detailed

analysis of the vertical column structure, or suffer from a limited sample for model training across

multiple, distinct regional climates (Xiao et al., 1998; Adhikari et al., 2020b; Ehsani et al., 2021).

In this work, we evaluate the abilities of a novel deep learning precipitation retrieval algorithm

trained on vertically pointing radar (up to 3 km above the surface). The regression model we
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present (DeepPrecip) is a hybrid deep learning neural network consisting of a feature extraction

convolutional neural network (CNN) front-end and a regression feedforward multilayer perceptron

(MLP) back-end. The combination of these two architectures allows DeepPrecip to recognize

and learn the nonlinear relationships between different layers in the vertical column of radar

observations and produce an accurate surface precipitation estimate. Through an analysis of

feature input combinations, DeepPrecip performance is examined to identify regions within the

vertical column that contain the most important contributions to retrieval accuracy (Lundberg

and Lee, 2017). The relationships that exist between different layers of the vertical profile (and

each atmospheric covariate) can be used to help inform current and future active radar retrievals

of surface precipitation.

4.3 Data

4.3.1 Study Sites

In situ data were collected from 9 study sites (Fig. 4.1.a) from 2012-2020 (Table 4.1). Colored

markers in Figure 4.1.b indicate periods where non-zero surface precipitation was recorded. Study

sites were selected based on the required presence of a micro rain radar (MRR) and collocated

Pluvio2 weighted precipitation gauge. Rain, snow and mixed-phase precipitation were recorded,

with each site’s precipitation phase and intensity distribution of observations differing based on

the regional climate. For instance, Marquette experienced strong lake-effect snowfall while Cold

Lake received mostly light, shallow snowfall. Further, due to the warmer temperatures recorded

at OLYMPEx, these sites were classified as primarily experiencing liquid precipitation, while
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ICE-POP received only solid precipitation.

Figure 4.1: Observational input data locations and temporal coverage periods. a), Geo-
graphic study site locations. b), timeline of observational coverage (periods of active precipita-
tion) for each site from 2012 to 2020.

4.3.2 Pluvio2 precipitation weighing gauge

Reference surface precipitation observations were collected by OTT Pluvio2 weighted gauges at

each site. The Pluvio2 gauge records the precipitation accumulation from falling hydrometeors

with a minimum time resolution of 1 minute (Colli et al., 2014). It includes a 200 cm2 heated

surface orifice (400 cm2 at Ny-Ålesund) to prevent snow and ice buildup, along with site-specific

wind shielding implemented as described in Table 4.1. These fence setups include a Double Fence

Intercomparison Reference (DFIR) shield, which is a large, double fenced wooden structure which

helps significantly reduce the impact of wind on surface precipitation measurements (Rasmussen

et al., 2012; Kochendorfer et al., 2022). The Alter shield system consists of multiple freely

hanging, spaced metal slats around the gauge top opening, which also helps mitigate undercatch

issues during strong winds (Colli et al., 2014). Sensitivity analyses of different rolling temporal

windows indicated an optimal temporal resolution of 20-minute non-real time accumulation

(measurement results 5 minutes after precipitation accumulation), with minimum observational
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thresholds of at least 0.2 mm over the course of an hour from the Pluvio2 gauge.

Table 4.1: Summary of in situ study site locations, identifiers, and observational details.

Site ID Lat Lon Elev. Sample (𝑁) Shielding Source

Ny-Ålesund 0 78.92 11.92 11 19068 Alter (Schoger et al., 2021)
ICE-POP 1 37.67 128.7 789 1705 DFIR (Kim et al., 2021)
GCPEx 2 44.23 -79.78 252 2314 DFIR (Skofronick-Jackson et al., 2015)
Marquette 3 46.53 -87.55 430 8369 Alter (Pettersen et al., 2020b)
OLYMPEx 4 4 47.39 -123.87 2155 6444 None (Houze et al., 2017)
OLYMPEx 1 5 47.5 -123.58 3340 9114 None (Houze et al., 2017)
OLYMPEx 3 6 47.68 -123.38 2100 5727 None (Houze et al., 2017)
JOYCE 7 50.9 6.4 95 43579 Alter (Lahnert et al., 2015)
Cold Lake 8 54.4 -110.26 541 1692 Alter (Boudala et al., 2021)

4.3.3 Micro rain radar

Vertical pointing MRRs (developed by METEK) were located nearby the Pluvio2 gauges at each

site to record complementary atmospheric observations. The MRR is a K-band (24 GHz) contin-

uous wave Doppler radar which provides information related to hydrometeor particle activity up

to 3.1 km above the surface (or 1 km for Ny-Ålesund) as a function of spectral power backscatter

intensity. The MRR provides 29 vertical bins (of size 100 m) spanning 300 m to 3100 m above

the surface as shown for each site in Figure 4.2.a. Raw radar measurements were preprocessed

using Maahn’s improved MRR processing tool (IMProToo) for noise removal, dealiasing and for

extending the minimum detectable dBZ to -14 which allows for improved measurements of solid

precipitation. This data was then temporally averaged to align to the same 20-minute windows

generated for the Pluvio2 observations and used as a model input (Maahn and Kollias, 2012).
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Figure 4.2: DeepPrecip input covariates, feature processing pipeline and model architecture.
a), Site-predictor matrix of normalized MRR and ERA5 observational frequency histograms
used in model training and testing. Note that darker colors in the 2D heatmaps indicate a higher
frequency of observations. b), DeepPrecip convolutional neural network diagram for 𝐿 inputs
with 𝑁 predictors.
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4.3.4 ERA5

European Centre for Medium-Range Weather Forecasts Reanalysis version 5 (ERA5) hourly

temperature (TMP) and vertical wind velocity (WVL) on pressure levels from 0 to 3 km were

also included as additional input covariates to DeepPrecip (Hersbach et al., 2020). These inputs

allow the model to more accurately recognize different precipitation event structures, large-scale

atmospheric dynamics and hydrometeor phases during training. Note that WVL units (Pa/s) are

defined using the ECMWF Integrated Forecasting System (IFS) which adopts a pressure based

vertical co-ordinate system (i.e. negative values indicate upwards air motion, since pressure

decreases with height). Each of these variables were linearly interpolated to align with the MRR

data over 20 minute intervals and at 100 m vertical resolution.

4.3.5 Surface meteorology

Collocated surface temperature (degrees Celsius (° C)) and 10-meter wind speed (m/s) meteo-

rologic observations were also collected from instruments installed at each site and temporally

aligned to the Pluvio2 and MRR datasets. Surface wind data acts as an additional observational

constraint for mitigating the effects of undercatch on unshielded measurement gauges (Rasmussen

et al., 2012). Undercatch occurs when precipitation falling in the presence of wind can cause

hydrometeors to pass over the gauge top orifice. This effect has been shown to bias reported pre-

cipitation quantities by up to 10% (Ehsani and Behrangi, 2022). We therefore limit the available

training dataset to periods when surface wind speeds are < 5 m/s, as this restricts the analysis to

low-medium wind speed events at each location to maintain a high gauge-catch efficiency (Yang,

2014). This preprocessing step reduces the average size of our total observational pool by 16%
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across all stations, however, we note that maximum intensity precipitation events are not removed

using this technique.

Surface meteorologic station temperature data is used for precipitation-phase partitioning at

5° C to allow for 𝑍𝑒 −𝑆/𝑅 comparisons with DeepPrecip. Additional dry surface air temperature

thresholds of 0°, 1° and 2° C were also examined, but 𝑍𝑒 − 𝑆/𝑅 performance for both rain and

snow appeared optimal when classified using a 5° C threshold (where temperatures < 5° C are

considered as solid precipitation and temperatures >= 5° C are considered as rainfall). This

simple temperature threshold is an additional source of uncertainty in our comparisons with the

𝑍𝑒 − 𝑆/𝑅 relationships due to the influence of mixed-phase precipitation on power law accuracy,

along with uncertainties in the location of the active melting layer (Jennings et al., 2018). A more

sophisticated phase partitioning system (e.g. using wet-bulb temperature as described in Sims

and Liu (2015)) could also be linked to DeepPrecip as an additional predictor to further improve

classification of mixed-phase precipitation in future work.

4.4 Methods

4.4.1 Radar-precipitation power laws

Relating radar reflectivity observations to surface accumulation has been done extensively in past

surface and spaceborne radar missions through 𝑍𝑒 − 𝑆/𝑅 power law relationships (Skofronick-

Jackson et al., 2017; Liu, 2008b). These power law relationships are empirically defined by

relating reflectivity values in a near surface bin to observed surface accumulation under a set of

assumed particle microphysics (e.g. size, shape, density and fallspeed) (Matrosov et al., 2008).
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While these techniques have been used to great success in previous studies by Schoger et al. (2021)

and Levizzani et al. (2011), the assumptions about snowfall and rainfall particle microphysics

makes the generalization of these power laws less robust, which contributes to high uncertainty

when applied across large areas with unique regional climates (Jameson and Kostinski, 2002).

We examine an ensemble of 12 Ka- and K-band 𝑍𝑒−𝑆/𝑅 relationships in this work to compare

with model output from DeepPrecip (Table 4.2). As a consequence of the short temporal period

(20 minutes) used in this analysis, MSE values are typically small (< 0.1 mm2). Each 𝑍𝑒 − 𝑆/𝑅

relationship was applied to a near-surface bin in the reflectivity profile (bin 5 for 𝐷𝑃 𝑓 𝑢𝑙𝑙 and

𝐷𝑃𝑛𝑒𝑎𝑟 , and bin 11 for 𝐷𝑃 𝑓 𝑎𝑟) to derive a corresponding surface precipitation estimate. These

bins were selected based on a sensitivity analysis where we examined the performance of multiple

near-surface high-importance regions of the vertical column (not shown). The best performing

regions were identified as the above bins (5 and 11) based on the respective region of the vertical

column being considered (near or far). More information regarding the derivation of each

𝑍𝑒 − 𝑆/𝑅 relationship can be found in Table 4.2.

To further evaluate the performance of DeepPrecip, we also include model comparisons

to a set of six site-derived 𝑍𝑒 − 𝑃 (reflectivity precipitation) power law relations. Each 𝑍𝑒 − 𝑃

relationship is empirically derived from the collocated MRR and Pluvio data at each observational

site examined in this work (excluding Cold Lake and Ny-Ålesund due to the limited available

sample and vertical extent of each site, respectively). Each 𝑍𝑒 −𝑃 relation is fit via a non-linear

least-squares approach for finding optimal 𝑎 and 𝑏 coefficients in Eq. 4.1 using SciPy’s 𝑐𝑢𝑟𝑣𝑒 𝑓 𝑖𝑡

optimization algorithm (Virtanen et al., 2020). Each 𝑍𝑒 −𝑃 relationship was then applied to bin

5 reflectivities at each site (i.e. the same process as is used for 𝑍𝑒 − 𝑆/𝑅 relationships) and

compared with in situ observations to assess their general accuracy.
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Table 4.2: Details for each multi-phase precipitation power law relationship.
Phase Name Source Power Law Reference

Solid AVE K K 𝑍𝑒 = 77.61× 𝑆1.22 (Schoger et al., 2021)
KB09sp Ka 𝑍𝑒 = 19.66× 𝑆1.47 (Kulie and Bennartz, 2009)
KB09ag Ka 𝑍𝑒 = 313.29× 𝑆1.85 (Kulie and Bennartz, 2009)
KB09br Ka 𝑍𝑒 = 24.04× 𝑆1.51 (Kulie and Bennartz, 2009)
M07 Ka 𝑍𝑒 = 56.00× 𝑆1.20 (Matrosov, 2007)
S17 K 𝑍𝑒 = 18.00× 𝑆1.10 (Souverijns et al., 2017)

Liquid BP09h K 𝑍𝑒 = 32.00×𝑅3.30 (Van Baelen et al., 2009)
BP09m K 𝑍𝑒 = 324.00×𝑅2.40 (Van Baelen et al., 2009)
MP48 – 𝑍𝑒 = 200.00×𝑅1.60 (Marshall and Palmer, 1948)
J19bb K 𝑍𝑒 = 367.00×𝑅1.37 (Jash et al., 2019)
J19nbb K 𝑍𝑒 = 211.00×𝑅1.44 (Jash et al., 2019)
J19hr K 𝑍𝑒 = 168.00×𝑅1.40 (Jash et al., 2019)

4.4.2 Neural network architecture

DeepPrecip is a feedforward convolutional neural network that takes as input a vector of 115

atmospheric covariates (Table 4.3), performs a feature extraction of the vertical column and

outputs a single surface precipitation estimate using a fully connected multilayer perceptron.

While the structure of this final version of DeepPrecip is complex, the retrieval evolved from

a much simpler initial state based on a multiple linear regression (MLR) model. Due to clear

nonlinearities between observed reflectivity data and surface precipitation accumulation, the

MLR model was unable to capture in situ variability and provided estimates near the mean

accumulation value. Similar radar-based precipitation retrieval studies by Chen et al. (2020a) and

Choubin et al. (2016) have demonstrated much better performance using an ML-based approach,

which led to the development of a random forest (RF) model, an MLP and finally the CNN.
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Table 4.3: Summary of DeepPrecip full vertical column model input covariates.
Predictor Abbreviation Count Units Source Type

Reflectivity RFL 29 dBZ MRR float64
Doppler velocity DOV 29 𝑚/𝑠 MRR float64
Spectral width SPW 29 𝑚/𝑠 MRR float64
Temperature TMP 12 K ERA5 float64
Wind velocity WVL 12 𝑃𝑎/𝑠 ERA5 float64
Profile group PG 4 Indicator K-mean Boolean

The 1D convolutional layers perform a feature extraction of the vertical column of inputs to

reduce the total number of parameters being fed into DeepPrecip’s fully connected dense layers.

This 1D-CNN structure can identify relationships within the vertical column, save on memory

and lower computational training time requirements. To estimate a surface precipitation rate, the

forward propagation step between the previous layer (𝑙 − 1) to the input neurons of the current

layer (𝑙) in the MLP are expressed in Eq. 4.2 (Abdeljaber et al., 2017).

𝑥𝑙𝑘 = 𝑓 (𝑏𝑙𝑘 +𝑤
𝑙−1
𝑖𝑘 ×

𝑁𝑙−1∑︁
𝑖=1

𝐶𝑜𝑛𝑣1𝑑 (𝑠𝑙−1
𝑖 )) (4.2)

Where 𝑘 and 𝑙 refer to the 𝑘 𝑡ℎ neuron for layer 𝑙 with 𝑥 as the resulting input and 𝑏 as the

scalar bias. 𝑠 and 𝑤 terms represent the neuron output and kernel weight matrix, respectively,

from the 𝑖𝑡ℎ neuron of layer 𝑙 − 1 (and to the 𝑘 𝑡ℎ neuron of layer 𝑙 for 𝑤). The function ’ 𝑓 ()’

represents the activation function used to transform the weighted sum into an output to be used

in the following network layer, and the 𝐶𝑜𝑛𝑣1𝑑 term represents the 1D convolved output from

the CNN.

The RF model tested in this study was based on previous work from King et al. (2022a) where
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an RF was used to retrieve surface snow accumulation from a collocated X-band and Pluvio2

instrument at a single experiment site (GCPEx). The RF developed in said study demonstrated

good skill in estimating surface accumulation, and so we incorporate the same model here

(retrained on the MRR and ERA5 data from this study) as a baseline comparison to other ML

retrieval methods (i.e. DeepPrecip).

The final DeepPrecip model structure is outlined in Figure 4.2.b. It includes two 1d-

convolutional layers, a 1d max pooling layer, dropout layer, flattening layer and concludes in

a dense MLP regressor with 3 hidden layers. The total number of trainable model parameters in

DeepPrecip is 3,937,793. Model training and testing was performed using a 90/10 (non-shuffled)

split on each site to generate training and testing datasets for each location. As an additional

preprocessing step, we standardize all input covariates to remove the mean and by scaling inputs

to unit variance. The non-shuffled nature of this splitting process allows for DeepPrecip estimates

to be validated against unseen data and prevents overfitting from training on temporally autocor-

related vertical column inputs. Additionally, this stratified selection process guarantees that an

equal percentage of data is included from each site during training.

Retrieval accuracy is primarily assessed using a mean squared error (MSE) skill metric

calculated between each model’s estimated surface accumulation values and the total Pluvio2

non-real-time reference accumulation observations over 20 minutes. Performance statistics are

reported from the average skill of the test portion of a non-shuffled 90/10 train/test CV split

(i.e. DeepPrecip trained and tested 10 times on different contiguous portions of the full available

sample). Note that each split is stratified to include 10% of each station’s sample in every test split.

Uncertainty estimates are calculated from running each CV split 50 times using dropout to gain

additional insight into model variability (resulting in 500 total model instances). The dropout
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layers simulate training numerous models with differing architectures in a highly parallelized

manner by randomly deactivating (or dropping) a certain fraction of nodes within the network to

provide a distribution of retrieval estimates.

4.4.3 Hyperparameter optimization

DeepPrecip was developed, trained and optimized on Graphcore intelligence processing units

(IPUs) MK2 Classic IPU-POD4 which significantly sped up the training time by a factor of

6.5 compared to a state-of-the-art Nvidia Tesla V100 GPU (Louw and McIntosh-Smith, 2021).

Additional training throughput comparisons are included in Table 4.4. Training was completed

using a combination of open-source Python packages including Keras, Tensorflow and scikit-

learn. An extension of stochastic gradient descent known as Adam optimization (adaptive moment

estimation) is used to continually update internal network weights in the model during training

to minimize a standard MSE loss function (Eq. 4.3) and track model learning over time.

𝐿 (𝑥, 𝑦) = 1
𝐷

𝐷∑︁
𝑖=1

(𝑥𝑖 − 𝑦𝑖)2 (4.3)

Hyperparameters do not change value during training (in contrast to model parameters like

internal node weights), but they play a critical role in the neural network learning process to

map input features to an output. Selecting optimal hyperparameter values is an important part in

constructing a model which minimizes loss, improves model efficiency and quality, and mitigates

overfitting. Multiple steps were taken to address concerns of model overfitting. In addition to the

use of non-shuffled training, we employ multiple regularization methods including early stopping,
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Table 4.4: DeepPrecip model training throughput comparisons running on Tensorflow (v2.4.3)
using a batch size of 128 samples on different hardware. Note that 2 IPUs were used in comparison
to 1 GPU/TPU to equalize average computation costs when training DeepPrecip using each piece
of hardware.

Hardware Processors Samples/second

Graphcore Intelligence Processing Unit (IPU) 2 500
Nvidia Tesla V100 Tensor Core GPU 1 77
Google Tensor Processing Unit (TPU) 1 56
Nvidia Tesla K80 GPU 1 23

dropout, the application of layer weight constraints and L2 regularization (details in Table 4.5).

L2 regularization (or ridge regression) adds another penalty term to the MSE loss function, which

helps to create less complex models when dealing with many input features to improve model

generalization.

To select the optimal values for the aforementioned hyperparameters, and to optimize Deep-

Precip’s general structure, we use a form of hyperparameterization known as hyperband opti-

mization (Li et al., 2017). Hyperband is a variation of Bayesian optimization which intelligently

samples the parameter space to find hyperparameter values that minimize loss while learning

from previous selections. Hyperband adds another component to the analysis by also slowly

increasing the number of epochs run during each phase of the optimization process to sample

in a more efficient manner. DeepPrecip hyperparameters were derived by running a 10-fold CV

hyperband optimization continuously on a single Graphcore IPU for approximately two weeks.

The final hyperparameter values (and their respective parameter search spaces) can be found in

Table 4.5.

95



Table 4.5: DeepPrecip hyperparameters optimization details.
Hyperparameter Value Parameter Space

Activation ReLU [’relu’, ’tanh’, ’sigmoid’]
Batch Size 128 [64, 128, 256, 512]
Dropout Rate 0.1 [0.001, 0.01, 0.1, 0.25, 0.5, 0.75]
Early Stop Patience 8 [4, 8, 16, 32]
Epochs 512 [64, 128, 256, 512, 1024]
Filters 256 [4, 16, 64, 128, 256]
Hidden Layers 3 [1, ..., 20]
Kernel Size 16 [2, 4, 8, 16, 32]
L2 Regularization 0.5 [0.001, 0.01, 0.1, 0.5]
Learning Rate 1e-7 [0.001, 0.0001, 1e-5, 1e-7]
Loss Function MSE [’MSE’]
Neurons 256 [64, 128, 256, 512, 1024]
Optimizer Adam [’Adam’]
Pool Size 2 [2]

4.4.4 Unsupervised classification layer

An unsupervised k-means clustering preprocessing step is also applied using MRR reflectivity

profiles as input to provide DeepPrecip with insights into distinct profile group (PG) vertical

column structures (Fig. 4.2.b). Minimizing within-cluster sum of squares between each vertical

column radar estimate results in 𝑘 = 4 PGs being selected using the within-cluster-sum of squared

errors elbow criterion method (Fig. 4.3). The elbow method is a clustering heuristic which

allows for an optimal number of clusters to be selected as a function of diminishing returns of

explained variation (i.e. finding the elbow or ”knee of the curve”). K-means clustering was

applied using Python’s scikit-learn package on all input reflectivity data to generate four profile

clusters, which were included as additional input parameters to DeepPrecip. These clusters are
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useful for partitioning the precipitation data into groups based on different precipitation intensity-

classes (trace, low, medium and high intensity) to identify where DeepPrecip finds the most

important contributors to high retrieval accuracy for each category of storm intensity. Derived

cluster groups are useful for interpreting feature importance values from model output (Section

4.5.2).

Figure 4.3: K-means cluster reflectivity intensity-classes of vertical profiles from the MRR
instruments at all sites. A total of 2452038 vertical profiles are organized by reflectivity intensity
(dBZ) into 𝑘 = 4 precipitation intensity subsets.

4.5 Results

4.5.1 DeepPrecip retrieval performance

We first examine the differences in performance between DeepPrecip and an RF that has demon-

strated good performance in our previous work (not shown) to assess the capabilities of a less-

sophisticated ML-based approach over a CNN. DeepPrecip demonstrates improved skill in cap-

turing most of the peaks and troughs in observed precipitation variability (Fig. 4.4.a). These

differences are most clearly demonstrated in Figure 4.4.a at OLYMPEx and JOYCE, where DP
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more accurately predicts Pluvio2 precipitation extremes compared to the RF. Both models appear

to struggle in capturing accumulation intensities during periods of mixed-phase precipitation

when temperatures are near 0° C (i.e. Marquette, JOYCE and the tail end of OLYMPEx 1) due

to a lack of training data with similar climate conditions and the complex nature of such events.

DP does demonstrate improved skill at capturing light intensity precipitation at the beginning

of the JOYCE period (compared to the RF), however this is with some uncertainty as noted by

the wider shaded region (1 standard deviation). Performance statistics (Fig. 4.4.b) summarize

these improvements, with DeepPrecip showing MSE values 21% lower and 𝑟2 values 34% higher

(significant at 𝛼 < 0.05) compared to the RF.

Total cumulative surface accumulation comparisons between DeepPrecip and each 𝑍𝑒 − 𝑆/𝑅

relationship are then examined in Figure 4.4.c for both rain and snow. To examine model skill

across different precipitation phases, a simple temperature threshold is imposed, where retrievals

recorded during periods with temperatures below 5° C are classified as snow and periods equal to

or warmer than 5° C as rain. DeepPrecip more accurately captures surface precipitation quantities

when compared to the 𝑍𝑒−𝑆/𝑅 estimates, with a total accumulation curve similar in shape to that

of in situ, indicating that DeepPrecip more closely captures the observed precipitation variability

and magnitude. Log-scale MSE statistics are calculated between each model and in situ records

in Figure 4.4.d and indicate that DeepPrecip consistently outperforms traditional 𝑍𝑒−𝑆/𝑅 power-

law methods by 187% on average. As a general precipitation retrieval algorithm, we do not

explicitly train a DP𝑠𝑛𝑜𝑤 and DP𝑟𝑎𝑖𝑛 model for different precipitation phases with unique regional

atmospheric microphysical conditions. While the 𝑍𝑒 − 𝑆/𝑅 models shown in Figure 4.4.c/d are

bespoke for rain or snow, DeepPrecip is trained on all data with no a priori knowledge of the

underlying physical precipitating particle state.
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DeepPrecip estimates of accumulated rain display a lower MSE than that of snow (Fig. 4.4.d).

We believe these differences to be twofold: 1) the larger sample of rainfall events in the training

data (3 times that of snowfall); and 2) the more complex nature of snow particle microphysics.

Unlike the uniform properties of a rain droplet, the shape, size and fallspeed of solid precipitation

is much more dynamic and challenging to model (Wood et al., 2013). Continued issues with

interference from wind may have also impacted the accuracy of in situ measurements of snow

accumulation, leading to higher uncertainty and error (further discussions on these uncertainties

in Section 4.6) (Kochendorfer et al., 2017). To visualize the range in uncertainty from the CNN

model estimates, we display confidence intervals showing 1 standard deviation in Figure 4.4.b/d

from 50 DeepPrecip model realizations using dropout. Both ML-based models exhibit the highest

uncertainty during periods of mixed-phase precipitation at GCPEx and Marquette, along with

high intensity precipitation at OLYMPEx.

To further evaluate DeepPrecip’s retrieval skill over traditional methods, we compare model

performance to a set of six custom 𝑍𝑒 −𝑃 site-derived power laws (derivation details in Section

4.4). While 𝑍𝑒 − 𝑃 relationships typically perform well in the regional climate under which

they were derived, they do not generalize well outside said climate. This lack of robustness is

visible in the differences between in situ and 𝑍𝑒 −𝑃 estimates of accumulation in Figure 4.5.a,

where each 𝑍𝑒 −𝑃 (light grey line) displays consistent positive or negative biases and no single

power law captures the high variability in accumulation across multiple sites. For instance,

OLYMPEx 1 and OLYMPEx 3-derived relationships produce a strong positive bias at JOYCE,

and the JOYCE-derived 𝑍𝑒 −𝑃 power law is quite negatively biased when applied at OLYMPEx.

The mean of all six custom power laws is shown in bold grey, and while it closely captures total

mean accumulation across all sites, it is unable to model the high variability in precipitation
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intensity.

The resulting MSE from the application of each custom 𝑍𝑒−𝑃 relationship to each site (along

with DeepPrecip) further demonstrates DeepPrecip’s improved robustness (Fig. 4.5.b). In all

other cases, DeepPrecip either outperforms all 𝑍𝑒 −𝑃 power laws or is only slightly worse than

the power law derived for the site in which it is being tested. On average, DeepPrecip retrievals

result in 187% lower MSE values than all 𝑍𝑒 −𝑃 site-derived power laws estimates when applied

to the testing data across the full spatiotemporal domain (Table 4.6). Figure 4.5.b also displays

a model intercomparison of each 𝑍𝑒 −𝑃 relation, where we can clearly see how 𝑍𝑒 −𝑃 relations

like those derived at OLYMPEx 1 and 3 are clearly unable to capture the vastly different snowfall

regimes at sites like ICE-POP, GCPEx and JOYCE with their much larger MSE values for these

sites.

Table 4.6: MSE values (in e−3 mm2) for all vertical extent experiments across all models for both
solid and liquid precipitation.

Phase Model
Mean Squared Error (e−3 mm2)

Full Column < 1 km 1−3 km

All DeepPrecip 0.7 0.94 1.2
RF 1.1 0.92 1.5
𝑍𝑒 −𝑃 20.3 20.3 21.4

Solid DeepPrecip 1.2 1.5 2.2
RF 2.9 1.5 4.2
𝑍𝑒 − 𝑆 31 31 85

Liquid DeepPrecip 0.43 0.47 0.85
RF 0.5 0.53 0.6
𝑍𝑒 −𝑅 16.9 16.9 19.7

The robustness of DeepPrecip was further evaluated using a leave-one-out cross validation
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(CV) for each site of training observations. This approach tests the skill of DeepPrecip at

predicting precipitation for a location that was not included in the training data, which is a strong

indicator of the generalizability of the model. Log-scale MSE results of this test for each site are

shown in Figure 4.6 for each precipitation-phase subset, along with the corresponding average

𝑍𝑒 −𝑃/𝑆/𝑅 estimate when applied at that site. These findings demonstrate similar performance

to the baseline DeepPrecip model skill, which continues to outperform all traditional power law

techniques on average. The large range in skill in the power law relationships at most sites (wide

error bars) further demonstrates the relative lack of generalizability of 𝑍𝑒 −𝑃/𝑆/𝑅 relationships

to different regional climates. Further, the site-derived power law fits (grey dots) perform worse

on average than DeepPrecip for locations that are close in proximity (i.e. the OLYMPEx sites).

Predictably, DeepPrecip performance degrades compared to the baseline model when the

testing site is left out, since the model is no longer trained using data representing the regional

climate of the site being tested. This difference in performance is most notable at the set

of OLYMPEx sites, and while DeepPrecip performance is still improved over the 𝑍𝑒 − 𝑆/𝑅

relationships, we note a substantial percentage increase in MSE (375% on average) at these

locations. OLYMPEx measurements were the only observational datasets without any gauge

shielding and which is a likely source of uncertainty, further contributing to this increase in error

when the site is removed from the training set (Kochendorfer et al., 2022).

4.5.2 Quantifying sources of retrieval accuracy

Identifying regions within the vertical column that are the most important contributors towards

retrieval accuracy is critical for informing future satellite-based radar precipitation retrievals.
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Figure 4.4: Performance comparisons between DeepPrecip (DP), an RF and an ensemble
of power law-derived retrievals of surface precipitation. a), Running mean (window size
500 time steps) of accumulation for all sites with Pluvio2 measurements in black, RF estimates
in green and DeepPrecip in yellow. Data is sorted by station and then time, with each station
separated by a dashed vertical line. 1 standard deviation from 50 dropout runs per cross-validated
instance is shown in the shaded regions (most notable at the start of JOYCE). b), performance
statistics for RF/DeepPrecip accuracy including MSE, Pearson correlation (𝑟) and 𝑟2 with error
bars showing 1 standard deviation. c), Timeseries of total accumulation estimates over the full
observation period for all 𝑍𝑒 − 𝑆 relationships (individual red lines) and DeepPrecip. The mean
of the 𝑍𝑒 − 𝑆 relationships is shown in bold. d), The same as in c) but for 𝑍𝑒 − 𝑅. e), Phase-
partitioned log-scale MSE values between each model and in situ observations from 50 model
realizations. Note that S17 MSE values extend beyond the top of the graph to 101 mm2.
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Figure 4.5: Site-derived empirical 𝑍𝑒−𝑃 power law performance comparisons. a), The same
as Figure 4.4.a, except now using 𝑍𝑒 −𝑃 relationships derived at each study site. b), MSE values
for DeepPrecip and each 𝑍𝑒 −𝑃 relationship when tested on each site.

The ground-based radar instruments used in this work do not suffer from the same ground clutter

contamination issues typical of satellite-based radar observations, and we are therefore able to

quantify the contributions to model skill arising from the included boundary layer reflectivity

measurements in DeepPrecip. Separating the training data into three subsets based on vertical

extent and generating new models with this data, allows us to examine changes in performance as

a function of information availability. These subsets include: 𝐷𝑃 𝑓 𝑢𝑙𝑙 (all 29 vertical bins, i.e. the

baseline model), 𝐷𝑃𝑛𝑒𝑎𝑟 (the lowest 1 km; 8 bins), and 𝐷𝑃 𝑓 𝑎𝑟 (1−3 km; 21 bins). DeepPrecip

MSE results (Table 4.6) for each subset suggest that the information provided by a combination

of both near-surface and far-profile data results in the highest accuracy.

Since Ny-Ålesund MRR observations were recorded with a maximal vertical extent of 1 km,

they are only included in 𝐷𝑃𝑛𝑒𝑎𝑟 . Model skill when including/excluding Ny-Ålesund training data
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Figure 4.6: Leave-site-out full column DeepPrecip performance robustness analysis. Each
bar represents a DeepPrecip full column log-scale MSE value when trained on all precipitation
data excluding the noted site, and then validated against said excluded site (dashed line is the
default DeepPrecip model with all sites). Each red and blue dot represents the average 𝑍𝑒 − 𝑆/𝑅
relationship estimate tested in the same manner (error bars represent the min and max ensemble
values). Gray dots represent the mean, min and max ensemble values from all site-derived 𝑍𝑒−𝑃

relationships (excluding the relationship derived from the site being tested), when applied to each
site.
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(19,000 samples) was examined to determine whether it was confounding comparisons between

the aforementioned vertical profile subset models. The results of these tests suggested that the

impact on overall performance is negligible across both precipitation phases when Ny-Ålesund

is included or excluded in the training set.

Distributions of surface precipitation anomalies appear distinct for rain and snow (Fig. 4.7),

with the full column model more closely capturing accumulation recorded by in situ gauges.

Anomaly frequencies are derived by removing the mean accumulation estimate for each phase at

each site. We attribute the structural differences between the anomaly distributions of of snow

and rain to the more complex particle size distributions (PSDs) of snowfall coupled with the more

variable particle water content of snow compared to that of rain (Yu et al., 2020). Additional

uncertainties in the surface Pluvio2 measurement gauge observational records of snowfall due to

gauge undercatch is another likely contributor to increased error (Kochendorfer et al., 2022). In

Figure 4.7.a, both 𝐷𝑃 𝑓 𝑎𝑟 and 𝐷𝑃𝑛𝑒𝑎𝑟 exhibit higher anomaly values with a flattened curve top

and heavy tails. Using a combination of information from both near and far bins reduce these

biases and tightens each accumulation anomaly distribution around zero. A similar trend is also

present for rain in 4.7.b, where we again most closely capture the in situ anomaly distribution

using 𝐷𝑃 𝑓 𝑢𝑙𝑙 .

A major challenge in deep learning is interpreting model output. SHapley Additive exPla-

nations (SHAP) (Lundberg and Lee, 2017), is a game theory approach to artificial intelligence

model interpretability based on Shapley values that has previously been used to great effect in the

Geosciences (Maxwell and Shobe, 2022; Li et al., 2022). Shapley values quantify the contribu-

tions from all permutations of input features on retrieval accuracy to identify which are the most

meaningful. While computationally expensive (with exponential time complexity), this process
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Figure 4.7: Phase-partitioned surface precipitation accumulation anomaly frequency dis-
tributions. DeepPrecip is trained and tested on three subsets of bins from the vertical column:
𝐷𝑃𝑛𝑒𝑎𝑟 (< 1 km), 𝐷𝑃 𝑓 𝑎𝑟 (1−3 km) and 𝐷𝑃 𝑓 𝑢𝑙𝑙 (the entire vertical column) for a), solid and b),
liquid precipitation.

provides local interpretability within the model by examining how each possible combination of

all input features impacts model accuracy (Jia et al., 2020). Here, the calculated Shapley values

give insight into the regions of the vertical column that are contributing the most useful radar

information in the precipitation retrieval.

Shapley values for the entire dataset used in 𝐷𝑃 𝑓 𝑢𝑙𝑙 indicate that the most important model

predictors comprise a combination of both near-surface and far profile bins (Fig. 4.8). Reanalysis

variable model inputs are generally the least influential, except for the trace precipitation case,

where low-mid level TMP and WVL bins appear highly important (Fig. 4.8). In all cases,

TMP and WVL decrease in importance as a function of height above the surface. DeepPrecip

typically considers MRR-derived bins in the 1.5−2.5 km range as the most important predictors.

In non-trace intensity profiles, it is the 2 km region Doppler velocity (DOV) observations which
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are the dominant contributing predictor. When we consider all profiles, reflectivity (the input to

𝑍𝑒 − 𝑆/𝑅 relationships) is not necessarily the dominant feature, and it is a combination of 1.5−2

km profile information from reflectivity, Doppler velocity and spectral width (SPW) that results

in the highest model skill. Combinations of these regions within the vertical column appear to

allow DeepPrecip to better understand precipitation events with complex cloud structures which

would not necessarily be recognized by conventional 𝑍𝑒 − 𝑆/𝑅 relations that primarily rely on

information from a small subset of near-surface bins.

Figure 4.8: Normalized vertical column Shapley global feature importance values (i.e.
|𝑆𝐻𝐴𝑃𝐷𝑃 |). Shapley output values are calculated for different subsets of vertical column re-
flectivities separated into all profiles, trace intensity, low intensity, medium intensity, and high
intensity precipitation events based on a k-means clustering of input data (more in Section 4.4.2).
Areas of dark color indicate a high feature importance at that location within the vertical column.

4.6 Discussion and Conclusions

DeepPrecip not only demonstrates considerable retrieval accuracy without the need for physical

assumptions about hydrometeors or spatio-temporal information, but also provides insight into the

regions of the vertical column which are most important for improving predictive accuracy. The

results from Section 4.5.2 suggest that while the exact altitudes providing predictive information

from the vertical column may shift up or down under different precipitation intensities, there
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exists a consistent combination of both near-surface and far profile bins that always appear as

highly important contributors to model skill. Furthermore, while RFL is typically considered

as the most important predictor in radar-based precipitation retrievals (Stephens et al., 2008;

Skofronick-Jackson et al., 2015), we find that contributions from RFL, DOV and SPW provide a

near-equal level of importance, with respective average percent contributions to model output of

30%, 31% and 28%, while ERA5 TMP and WVL variables have a total combined importance of

10%.

The combined insights from DeepPrecip’s multi-model vertical extent evaluations and feature

importance analyses demonstrate a potential to influence current and future remote sensing

precipitation retrievals using deep learning. Instruments like CloudSat’s Cloud Profiling Radar

(CPR), or the Global Precipitation Measurement (GPM) mission’s Dual-frequency Precipitation

Radar (DPR) also use active radar systems to perform similar, radar-based precipitation retrievals

based on data from vertical column reflectivities (Stephens et al., 2008). While CPR and

GPM-derived products use a more sophisticated Bayesian retrieval to the 𝑍𝑒 − 𝑆/𝑅 relationships

evaluated here, the resulting precipitation estimates are still tightly coupled to a priori physical

assumptions of particle shape, size and fallspeed which is a substantial source of uncertainty

(Hiley et al., 2010; Wood et al., 2013). Additionally, the results of this study further support

prior inference regarding the existence of regions of high importance in the < 1 km (near-surface)

region of the vertical column relating to shallow-cumuliform precipitation strongly influencing

retrieval accuracy. This is an area that is typically masked in satellite-based products (i.e. the

radar ”blind-zone”) due to surface clutter contamination, and has been shown in previous work

to likely be a major source of underestimation from missing shallow cumuliform precipitation

(Maahn et al., 2014; Bennartz et al., 2019). This work motivates the importance of continued
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research towards obtaining high-quality, non-cluttered near surface radar data to use as additional

model inputs in future space-based retrievals of precipitation.

DeepPrecip is not without uncertainty and error, which will reduce its accuracy when tested

against new data. Uncertainties present in the training data (stemming from the MRR, ERA5 or

Pluvio2 observations), will propagate through the model and bias the output estimates (Kochen-

dorfer et al., 2022; Jakubovitz et al., 2019). We have taken steps to mitigate the impact of these

uncertainties through multiple data alignment and preprocessing decisions (details in Section

4.4), however precipitation gauge undercatch, wind shielding configurations, MRR attenuation

and differences in site-specific vertical extent cannot be eliminated as contributors to retrieval

error. While 60% of the power laws examined in this work were MRR-derived K-band re-

lationships, the remaining 40% were either Ka-band or the Marshall-Palmer (MP) Rayleigh

relationship. While K and Ka are similar radar frequencies, the differences between the two can

bias the resulting precipitation estimate when a Ka-derived power law is applied to K-band data

(especially during periods of intense precipitation). Furthermore, while the collection of data

from multiple sites provides us with a robust training set under multiple regional climates, due

to the unique experimental setups at each site, calibration biases between study locations may

further reduce DeepPrecip’s skill when applied to new data. As the MRR instrument has a limited

3 km maximum vertical range, we also miss possible precipitation events occurring outside this

region, which may contribute to further surface precipitation underestimation. Internal CNN

model uncertainty is likely driven, in part, by a combination of the high variability that is typical

of precipitation and the limited sample from nine measurement sites over 8 years, which does not

fully capture all different forms of possible precipitation structure and occurrence.
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Chapter 5

Conclusions

5.1 Summary

The primary goal of this collective body of work was to advance our understanding of Arctic

snow accumulation using a novel combination of remote sensing data and machine learning. Each

chapter focused on a separate sub-topic or methodology in this area to evaluate uncertainties

in traditional snowfall retrievals and provide insight into future techniques. Multidisciplinary

evaluations such as these (combining machine learning and remote sensing in this case) are

increasingly important as Arctic temperatures continue to rise, and climate model estimates of

Arctic 𝑆𝑊𝐸𝑚𝑎𝑥 still display biases of up to 100% over the next 50 years (with similar uncertainties

in reanalysis estimates of NH snow mass) (Brown et al., 2017; Mudryk et al., 2015).

The ability to reduce uncertainties in current snow accumulation estimates would be ex-

tremely beneficial in constraining current snow products and would facilitate less uncertainty
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in future climate model projections (Cassotta et al., 2022). This assessment was performed by

first evaluating the capabilities of a spaceborne remote sensing dataset for constraining current

gridded SWE products. An assessment of traditional snowfall retrieval methodologies (i.e. power

law relations) was then performed, and their accuracy was compared to increasing sophisticated

machine learning-based retrievals. Additional emphasis was placed on machine learning in-

terpretability in these comparisons, using multiple feature extraction methods and importance

scoring criteria to gain insight into regions within the vertical column of reflectivity data which

appear as the most significant contributors to low uncertainty estimates of snowfall. Altogether,

these findings comprise a thesis which facilitates an important step towards low uncertainty and

highly generalized snowfall retrieval algorithms using machine learning and radar data.

The first research objective, in Section 1.3, asked how remote sensing information could

be used as an independent, observation-based constraint for enhancing current gridded SWE

products. This topic was addressed in King and Fletcher (2021), where gridded snowfall data

from the CloudSat-CPR was used to quantitatively identify statistically inconsistent accumulation

estimates (i.e. outliers) from a set of four, independent, gridded SWE datasets. This methodol-

ogy revealed that the majority (79%) of outliers occurred during periods of high accumulation

in September, October, November (SON). Spatiotemporally masking outliers in each gridded

product and re-blending them using an unweighted averaging approach to form a new, adjusted

dataset, leads to a 14.9% decrease in total NH SWE over SON (equating to −310,000 kg m−3 of

surface water). This overestimation in gridded product records of snow accumulation is consis-

tent with our earlier findings in King and Fletcher (2019), suggesting that models and reanalysis

products are overestimating SWE in the CAA. In general, the quality flags generated using this

methodology are a quantitative approach to finding regions of potentially low quality data in
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gridded SWE products. However, as mentioned at the end of chapter 2, CloudSat-derived snow

accumulation estimates are not without their own biases and uncertainties, and future work should

continue to assess, and aim to enhance, radar-based retrievals of snowfall.

Chapter 3 focused on addressing the second objective of Section 1.3 by examining uncer-

tainties in traditional reflectivity-snowfall (𝑍𝑒 − 𝑆) relationships, and analyzing the potential of

machine learning in remote sensing-based retrievals of snowfall (King et al., 2022a). Trained on

vertically pointing surface radar data from a single site (GCPEx), the RF model consistently out-

performed a set of five other K-band 𝑍𝑒 − 𝑆 relationships when tested on unseen data at the same

site. RF model MSE increased by only 5% when trained on data from GCPEx and tested on data

from a completely new location (ICE-POP), while the average 𝑍𝑒 − 𝑆 MSE values increased by

40%. Additionally, RF feature importance scores and vertical extent sensitivity analysis indicated

that multiple, adjacent near surface (< 2 km) observations were the most influential for accurately

retrieving snowfall. This was a significant result, as current spaceborne radar retrievals are often

blind to the lowest 1.5 km of the atmosphere due to surface clutter contamination (Maahn et al.,

2014). While the overall performance of the RF demonstrated improved accuracy over traditional

𝑍𝑒 − 𝑆 relationships, the available training sample was quite limited (𝑛 = 391 observations) and

the RF had difficulty retrieving snowfall when tested on storm structures not well represented in

the training data.

Chapter 4 iterated upon what was learned using the RF retrieval from chapter 3 to address

the first half of the final objective in Section 1.3. This objective was focused on the development

of a highly generalized NH precipitation retrieval using deep learning (King et al., 2022b).

The model (DeepPrecip) was extensively trained on both snowfall and rainfall data from 9

locations over 8 years using a 1D convolutional neural network (resulting in a deep learning
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model composed of 3.9 million internal network parameters and 100 thousand training samples).

DeepPrecip displayed improved MSE values, which were 187% lower than the traditional power

law relationships derived at each location. Further, DeepPrecip outperformed the RF model from

chapter 3 (retrained on the same set of data), with MSE values 21% lower and 𝑟2 values 34%

higher. DeepPrecip also demonstrated high levels of robustness when tested using a leave-one-

site-out cross validation methodology, with lower MSE values (often by orders of magnitude)

than any power law relationship examined in this work.

The final portion of chapter 4 focused on the second half of objective 3 related to ML model

interpretability. Deep learning algorithms are often considered black box models, wherein an

input is provided, the model does some work, and an output is given, with little insight into the

internal model decision-making process (Rudin, 2019). Similar to the RF feature importance

analysis, a major component of the DeepPrecip project was to analyze model behaviour to gain

insight into statistically significant portions of the vertical column of input covariates (King et al.,

2022b). Using a Shapely analysis of model inputs, derived feature importance values suggested

that reflectivity information is not necessarily the most important predictors in all cases. Inputs

like spectral width and Doppler velocity are also beneficial sources of information, which become

increasingly important during high intensity precipitation events. This analysis also revealed that

a combination of both near-surface (below 1 km) and far (1.5−2.5 km) portions of the vertical

column are consistently ranked as the most significant contributors to high model accuracy. The

combined importance of both near-surface and far bins was also demonstrated in a sensitivity

analysis using multiple versions of DeepPrecip trained on different portions of the vertical column,

where the model trained on the full column (0−3 km) significantly outperformed models trained

on solely near-surface (< 1 km) or far (1−3 km) subsets of the vertical profile.
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5.2 Limitations

The assumption that CloudSat-derived snow accumulation estimates can be used as an acceptable

ground truth value for constraining gridded products involves substantial uncertainty. CloudSat

has been shown to produce similar seasonal cycles and monthly means to in situ at some high

Arctic locations, but areas below 70° N suffer from much higher levels of error and uncertainty

as overpass granules diverge and the CloudSat sampling frequency substantially decreases (King

and Fletcher, 2019; Hiley et al., 2011). As a consequence of the radar blind zone (which

masks the lowest 1.5 km of the atmosphere), CloudSat also misses some shallow cumuliform

precipitation, which has been found to equate to an approximate 10% underestimation in total

annual snowfall (Maahn et al., 2014). Findings from Milani and Wood (2021) suggest that

following the extended 2011 battery failure and the activation of Daylight-Only Operations (DO-

Op), CloudSat’s sampling frequency was further reduced below 70° N and snowfall quantities

dropped by 8.21% on average (further compounding the underestimation problem). Resolution

also plays a major role in the accuracy of gridded CloudSat snowfall estimates, with seasonal

SWE estimate median error percentages only dropping below 50% at 2° by 2° resolution (Duffy

et al., 2021). A priori assumptions of hydrometeor microphysics used in the 2C-SNOW-PROFILE

retrieval add additional uncertainty to the comparisons with in situ and gridded products (Hiley

et al., 2011). Finally, CloudSat snowfall retrieval performance over alpine areas with complex

topography has been evaluated over high latitude regions and was found to display strong positive

biases; adding further uncertainty to our comparisons of CloudSat-derived accumulation to

gridded SWE products over the mountains regions of NA (Palerme et al., 2019).

Errors and uncertainty in the accuracy of the in situ snow accumulation record is another major

114



source of uncertainty in our analyses. Since the collocated in situ gauge data is the response

variable being predicted by the ML models in chapters 3 and 4, any errors in their observations

will be learned by the ML retrievals being developed. Wind shielding was a major potential

source of this error at many of the sites from chapter 4, some of which (i.e. OLYMPEx 1, 3

and 4) had no shielding installed at the site (Houze et al., 2017). As wind speeds increase,

falling hydrometers are pushed over and above the gauge top orifice due to turbulent air fluxes,

and are therefore not recorded (Smith, 2008). This undercatch effect can lead to gauge catch

efficiency reductions of 50% or more at wind speeds of just 5 m/s (Goodison, 1978). Adding

shielding to the measurement site (i.e. Alter shields or Double Fence Intercomparison Reference

(DFIR) shields) can substantially reduce this undercatch effect, however underestimation can still

occur (Yang, 2014). Transfer functions are one solution for addressing known biases in shielded

and unshielded gauge estimates by manually correcting well-defined, known undercatch errors

(Buisán et al., 2017). These functions have demonstrated skill at reducing mean absolute errors

(MAE) to 2% (from 34%) at multiple sites from the World Meteorological Organization Solid

Precipitation Intercomparison Experiment (WMO SPICE) (Kochendorfer et al., 2017). Similar

to the assumptions required for deriving 𝑍𝑒 − 𝑆 relationships, these transfer functions are tightly

coupled to the regional climates in which they are derived and do not necessarily generalize well

to new locations (Buisán et al., 2017).

Finally, there exist numerous uncertainties and limitations in the ML-based snowfall retrievals

performed in chapters 3 and 4. The highest levels of error and uncertainty in both models (i.e.

the RF and DeepPrecip) occurred during periods of near-zero °C surface temperatures, and

therefore during periods of likely mixed-phase precipitation (Wang et al., 2019b). Recent work

from Shin et al. (2022) has demonstrated the effectiveness of ML for precipitation classification,
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and highlighted the importance of covariates like wet bulb temperature in accurately predicting

precipitation phase. The inclusion of a preprocessing step that calculates phase using another

ML classifier and then feeding this into DeepPrecip as an additional predictor, would likely be

beneficial in further reducing model uncertainty. Due to the time and training constraints on the

DeepPrecip project, this was not attempted, but is discussed more in Section 5.3. The limited

vertical extent of the surface radar instruments (10 km for the VertiX system and only 3 km for the

MRR) adds further uncertainty in the ML retrieval estimates if precipitation occurs above these

regions in the atmosphere. While the majority of medium-to-high intensity snowfall (i.e. > 0.1

mm h−1) generally occurs in the lowest 3 km of the atmosphere, large quantities of precipitation

still occur above this threshold (Liu, 2020). As DeepPrecip uses the MRR as its primary source

of training data, the model has no knowledge of precipitating cloud layers above the 3 km mark,

which may bias its estimates when applied in regions with higher frequencies of deep convective

precipitation. Finally, both the RF and DeepPrecip assimilate data from ERA5 which, while being

a well-validated temperature and wind product, is still subject to biases and uncertainties in its

estimates (Bell et al., 2021). As a provider of input covariates to both models, these errors will be

learned by each ML algorithm and propagate through to the final output estimate of precipitation.

5.3 Future work

The continued growth of earth observing system databases, combined with the ease-of-access to

ML libraries and cloud computing resources, has facilitated the creation of a new, fast-growing

sub-field in the Geosciences (Karpatne et al., 2019). The number of ML-related papers submitted

to journals in the Geosciences has increased by orders of magnitude since 2012 for instance,
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bringing forth new perspectives and questions for future researchers (Dramsch, 2020). While the

work presented here was focused on the objectives in Section 1.3, the findings from each chapter

also raise new questions which should be considered in forthcoming studies.

As previously mentioned, uncertainties surrounding mixed-phase precipitation have demon-

strated an association with periods of high error in our models (King et al., 2022a). Research

from Wang et al. (2019b), Shin et al. (2022) and Behrangi et al. (2018) has demonstrated the sig-

nificance of wet-bulb temperature (𝑇𝑤) on accurately predicting precipitation phase. In addition

to surface temperature, 𝑇𝑤 provides critical information regarding the cooling effect from surface

evaporation, which is tightly coupled to hydrometeor phase (Shin et al., 2022). The inclusion of

hydrometeor microphysical information (i.e. shape, size, fallspeed, density) as additional input

covariates in model training, along with precipitation characteristics from Precipitation Imaging

Package (PIP) instrumentation would also be a valuable area of future research, as this informa-

tion has been shown to be closely related to precipitation rates and has also been used for phase

discrimination (Pettersen et al., 2020a; Kneifel et al., 2015; Dudhia et al., 2008). Followup work

using large eddy simulations for modelling atmospheric turbulence should also be investigated as

another source of information describing boundary layer hydrometeor movement in future deep

learning retrievals.

ML-based prediction of southern hemisphere (SH) snowfall should also be investigated. Many

of the observational sources of information discussed in this thesis (i.e. CloudSat, MRR records

and Pluvio gauges) also have coverage and data records across much of Antarctica, and have

been used in validation campaigns in previous studies (Souverijns et al., 2018; Palerme et al.,

2017). Applying DeepPrecip to Antarctic station data (at Dumont d’Urville, for instance, which

is equipped with an MRR/Pluvio), and comparing these results to reanalysis in the region would
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be a beneficial comparison for further evaluating model skill. Incorporating additional Antarctic

sites into the set of training data and retraining the model to see how skill metrics change would

also help in understanding the generalizability of ML-based retrievals under different climatic

regimes.

Comparisons between gridded ML-based snow accumulation estimates and climate model

outputs should also be examined in followup work. Examining the spatiotemporal differences

in accumulation predictions between these two techniques in the Arctic, could provide valuable

new insights into climate model deficiencies over critically important (but poorly constrained)

remote regions. Many studies are already using a combination of machine learning and climate

modelling for tasks like precipitation downscaling, parameter emulation, and bias correction,

however large research gaps still remain at the intersection of these two fields for precipitation

prediction (Trinh et al., 2021; Kajbaf et al., 2022; Ahmed et al., 2020; Sachindra et al., 2018;

Fletcher et al., 2022; King et al., 2020).

This work also acts as a motivator for future studies related to the spaceborne radar blind zone.

It has been suggested that the radar blind zone contributes to a high underestimation in CloudSat’s

total annual snowfall estimates (up to 10%) (with similar underestimation also suggested from

GPM) due to missing shallow cumuliform snowfall (Maahn et al., 2014; Valdivia et al., 2022).

The results of both chapter 3 and 4, highlight this portion of the vertical column (between 0

and 2 km) as being an area that is extremely important. Improved observational coverage (or an

accurate simulation) of the radar blind zone is, therefore, highly important for improving future

radar-based retrievals of snowfall, and reducing biases in current state-of-the-art remote sensing

retrievals of precipitation.
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Finally, the ability for ML to effectively make use of large datasets suggests that models like

DeepPrecip would strongly benefit from the vast amount of spaceborne remote sensing radar data

currently available (i.e. from satellites like CloudSat or GPM). Performing a similar analysis to

chapter 4 using spaceborne data would result in a training dataset that is orders of magnitude

larger and would, in theory, provide additional context into synoptic storm structures. Issues

with radar signal attenuation would need to be addressed, since this change would require the

development of a retrieval using downwards (instead of upwards) pointing radar. However, the

extended height of the vertical profile (up to 30 km for CloudSat) would allow for the ML

model to capture light precipitation events occurring further above the 3 km range of the MRR

(Stephens, 2017). ML models like DeepPrecip may then operate as an alternative technique (or

supplementary component) to current retrieval methods to reduce uncertainties in current and

future spaceborne retrievals of snowfall.
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Chapter 6

Copyright Permissions

The contents of chapter 2 are taken from King and Fletcher (2021) (i.e. Using CloudSat-Derived

Snow Accumulation Estimates to Constrain Gridded Snow Water Equivalent Products), which is

an open access article distributed under the terms of the Creative Commons CC 4.0 BY license,

which permits unrestricted use, distribution, and reproduction in any medium, provided the

original work is properly cited.

The contents of chapter 3 are taken from King et al. (2022a) (i.e. A Centimeter-Wavelength

Snowfall Retrieval Algorithm Using Machine Learning), with copyright permissions for use in this

thesis provided by Erin Gumbel (Senior Permissions Specialist) at the American Meteorological

Society.

The contents of chapter 4 are taken from King et al. (2022b) (i.e. DeepPrecip: A deep neural

network for precipitation retrievals), which is an open access article distributed under the terms

of the Creative Commons CC 4.0 BY license, which permits unrestricted use, distribution, and
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reproduction in any medium, provided the original work is properly cited.
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