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Abstract

In the past few decades, the field of cosmology has become a fascinating field of study
in physics. The computational advances and precision observational measurements such as
Cosmic Microwave Background (CMB) measurements [13] and the Large Scale Structure
(LSS) experiments [53] have thrust cosmology into the spotlight of modern physics. While
research in cosmology explores the evolution of the universe on large scales, it is also
closely connected from one end to the fundamental theories of physics such as theories
of gravity and particle physics and from the other end to the astrophysical models and
astronomical observations on small scales. Understanding the physics and formation of
astronomical objects such stars or black holes can shed light on the physics of galaxy
formation, nature of dark matter, models of gravity in strong field regime and history of
the universe as a whole. In particular the detection of Gravitational Wave(GW) signals
from binary compact objects since 2015 by the Laser Interferometer Gravitational-Wave
Observatory (LIGO) collaboration [11], has opened the door to the new era of multi-
messenger astronomy. Given the wealth of data we are expecting over the next few decades
on this front specially including the next-generation detectors like Cosmic Explorer [57],
and Einstein Telescope [55], exploring and understanding how this data with conjunction
to the other astrophysical data such as galaxy surveys, can be utilized to understand
the underlying physics is very crucial. The measurement of GWs is also a useful tool to
understand the population of binary black holes and neutron stars and their merger rate in
the universe. GW detections can also reveal the connection between the formation of binary
compact objects and properties of stellar population like their brightness, star formation
rate and mass [52]. Measuring these properties based on identification of an individual
galaxy host of a single GW event may be unrealistic due to the large sky localization
errors (even considering the next generation of GW detectors which may reach below one
squared degree sensitivities). However, a statistical inference method could shed light on
these properties by taking advantage of the correlation of their distribution to the matter
density and large scale structure. This requires understanding and theoretical modeling of
how their population traces large scale structure for different astrophysical models.

In this thesis, I will present our research on gravitational wave cosmology which lays the
groundwork for one of the important aspects of these future studies: theoretical prediction
of the GW bias parameter based on different choices of galaxy properties.

In particular, we develop a numerical framework for forecasting the the bias param-
eter for GW sources based on the observed galaxy surveys. This can provide important
information about the astrophysical properties of the GW merger events, their environ-
ment and can also be used for cosmological inference models. To be more specific, We will
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evaluate angular and 3-dimensional power spectrum and bias parameter of GWs given the
parameters of astrophysical models using two galaxy surveys GLADE+ and Sloan Digital
Sky Survey (SDSS) Data Release 7.

Our results even though preliminary and part of a bigger program still in progress,
indicate some interesting features on how the bias parameter can be impacted by properties
of the galaxies such as the stellar mass, metallicity and star formation rate.

It is worth mentioning that our numerical package is written such that it can easily be
adopted to other galaxy surveys (photometric or spectroscopic) and accommodate different
astrophysical assumptions. We are planning to make our code publicly available to scientific
community in near future.
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Chapter 1

Introduction

Our mysterious universe has always incited humans to discover its deep secrets. Cosmology
fulfills this ambition by creating a harmony between the mathematical and foundational
theories of physics and the experimental data i.e. it provides a self consistent picture to
analyse the entire universe. In recent decades, significant progress has been made in ob-
servational cosmology which has made physicists refer to the current state of cosmology
as “the golden era of cosmology”1. This is thanks to precision measurements of cosmic
microwave background [13, 14], the redshift surveys that can map the 3D distribution of
matter and many other impressive astrophysical observations [59].
Meanwhile another observational front that has recently opened up to us is through grav-
itational wave experiments. Albert Einstein hypothesized gravitational waves as some
perturbations in the space-time geometry which is produced by a moving mass which
propagate from their source at extremely high velocity. The first direct detection of grav-
itational waves was achieved in 2015, when the Laser Interferometer Gravitational-Wave
Observatory (LIGO) detectors in Livingston, Louisiana, and Hanford, Washington, de-
tected a GW event corresponding to merging of two stellar black holes [11]. Discovery of
gravitational waves provides an extraordinary chance to scientists for the first time in his-
tory to explore space and the physics of the coalescence of the compact objects like binary
systems of black holes (BBH), neutron stars (BNS) and neutron star-black hole (NSBH)
directly and independent from electromagnetic radiations and particle emissions.
Another potential implication of collecting more gravitational waves data in the upcom-
ing years is that since they encode luminosity distances, using them along with existing
electromagnetic signals data (which provide redshift) may shed light on the debates about

1Mentioned in several papers on the NASA/ADS website.
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cosmological parameters such as Hubble tension [67]. However, most of the GWs are
not expected to have electromagnetic counterpart which means to break the degeneracy
between redshift and other cosmological parameters such as Hubble constant, statistical
inference models should be used. [43, 22]. In addition to inferring cosmological properties,
an abundance of GWs data can also provide us a window into exploring other astrophysical
questions such as properties of the host galaxies.
In the research presented in this thesis, I will describe our approach to address one of the
important and necessary aspects for future studies of GWs: theoretical prediction of the
GW bias parameter based on different choices of galaxy and merger properties. This can
provide valuable information about the astrophysical properties of the GW merger events,
their merger rate and also their relation to the properties of the stars and galaxies. It is
also a useful tool for cosmological inference models. In particular, we develop a numerical
framework for forecasting the bias parameter for GW sources based on the observed galaxy
surveys. To be more specific, I will describe how our frame work can be used to evaluate
angular and 3-dimensional power spectrum and bias parameter of GWs given the param-
eters of astrophysical models using two galaxy surveys GLADE+ [24] and Sloan Digital
Sky Survey (SDSS) Data Release 7 [59] .

The outline of this thesis will be as follows: in chapter (2), I will provide a brief review
of the theory of standard cosmology and some updates on current status of observations.
Then in chapter (3), I will present a brief discussion about statistical cosmology which will
be used for the observational data analysis and the theory of Large Scale Structure (LSS). In
chapter (4), I will go over the theory of gravitational waves, cosmic distance estimation from
dark sirens, gravitational wave detectors and astrophysical background on the life cycle of
a star, black hole and binary formation, and finally gravitational wave signal emitted by
their merger. Then in chapter (5), I will present my work on modeling GW bias parameter
based on specific astrophysical models including different astrophysical properties such
as metallicity, star formation rate (SFR) and stellar mass of galaxy populations as well
as mass distribution of black hole in binary black hole mergers. In particular, I explore
the dependence of angular, 3-dimensional power spectrum and bias parameter of GWs to
parameters of these models when applying to observed galaxy population in GLADE+
and Sloan Digital Sky Survey Data (SDSS) Release 7 catalogs. Finally, in chapter 6, I
summarize our results and conclude that bias parameter will be affected by selecting host
sirens based on the astrophysical properties of the host galaxies. In the case of galaxies’
random selection, the bias fluctuates around one and will increase and deviate from one
when we start selecting host galaxies based on their masses or SFR.
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Chapter 2

Cosmology

In this chapter, I will use general relativity to describe a cosmological model.
To be more precise, I will describe toolbox metric and Einstein’s theory of gravity to con-
struct Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric and Friedmann equations to
finally get the standard model of cosmology. This chapter’s theoretical backgrounds are
motivated by ”lecture notes on general relativity” by Sean Carroll [21], ”Cosmology” by
Daniel Baumann [15], ”Cosmology” by Steven Weinberg [63], the [33] and [43].

2.1 Einstein Field Equations (EFEs)

In Einstein’s general theory of gravity, the geometry of space-time is described through met-
ric (which describes curvature of the manifold). Therefore, in General Relativity, EFEs
(first proposed by Einstein in the 1900s) express the relation between local space-time cur-
vature and the local energy and momentum tensor. This is similar to Maxwell’s equations
which express how the electric and magnetic fields depend on charges and currents.
EFEs reduce to the Newtonian laws of gravity in the limit of weak field gravitational ap-
proximation with lower velocities than spped of light.
Assuming a given 3+1 D space-time manifold M and a metric tensor gµν

1 defined on the
manifold, we have space-time line element as :

ds2 = gµνdx
µdxν , (2.1)

1In this section, Greek indices are used for space-time, and Latin indices for space and the signature is
gµν = diag(1,−1,−1,−1)
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in which, dxµ, dxν are basis dual vectors.

Einstein Field Equations can be presented as:

Gµν = 8πGTµν . (2.2)

A set of coupled non-linear second-order partial differential equations. They express how
space-time interacts with matter. G is the Newton’s constant of gravitation, Gµν is the
Einstein tensor given by

Gµν ≡ Rµν −
1

2
Rgµν , (2.3)

R is the Ricci scalar which obeys:

R = Rµ
µ = gµνRµν , (2.4)

where gµν is the inverse metric and Rµν is the Ricci tensor which itself is obtained from
Christoffel coefficients as follows:

Rµν = ∂λΓλ
µν − ∂νΓλ

µλ + Γλ
λρΓ

ρ
µν − Γρ

µλΓλ
νρ, (2.5)

in which affine connection (Christoffel coefficients) follow :

Γλ
µν =

1

2
gλρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (2.6)

Tµν is the energy-momentum tensor describing the matter fields. Therefore, the left-hand
side of Eq. (2.2) describes the geometry of the space-time manifold while the right-hand
side incorporates all dependencies on the matter content in the problem.
In cosmology to leading order, we can describe most of the matter content of the Universe
as perfect fluids, which can be written as:

Tµν = (ρ+ P )UµUν + Pgµν , (2.7)

where Uµ is the fluid four-velocity and ρ, P are the energy and momentum densities.
Note that, in the case of the perfect fluid observed by a comoving observer (an observer
who is moving by Hubble flow) stress-energy tensor will reduce to

T µ
ν = gµνTλν = diag(ρ,−P,−P,−P ). (2.8)

Taking the trace of (2.2) EFEs can also be written as:

Rµν = 8πG(Tµν −
1

2
Tgµν). (2.9)

Note that, the vaccume Einstein’s equation correspond to Rµν = 0, since in vaccume we
have Tµν = 0.
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2.2 Friedmann-Lemâıtre-Robertson-Walker (FLRW)

Metric

In special relativity, space-time is considered to be flat and independent of the matter
content. therefore, the Minkowski metric can be defined as

gµν = diag(1,−1,−1,−1). (2.10)

In general relativity, the Minkowski metric can still describe a special isotropic and
homogeneous vacuum space-time that we often have. Matter and energy sources induce
curvature to the geometry of space-time metric, and the metric generically depends on
space-time positions, gµν(t, xi).
In cosmology, since the spatial distribution of matter and radiation in the Universe on
sufficiently large scales is homogeneous and isotropic (meaning that there is no preferred
direction and location in the Universe), space-time is often approximated by
Friedmann-Lemâıtre-Robertson-Walker (FLRW) metric 2, where the 4-dimensional line el-
ement can be written as

ds2 = dt2 − a(t)2dl2. (2.11)

Here a(t) is the scale factor, characterizing the expansion (or contraction) of the Universe,
and dl2 is the so-called co-moving spacial line element given by

dl2 =
dr2

1 − kr2
+ r2(dθ2 + sinθ2dϕ2). (2.12)

The constant parameter k characterizes the curvature of comoving spacial hyper-surfaces,
taking the values 0, 1,−1 for flat, positive and negative curvature 3-dimensional spaces.
The above metric is referred to as FLRW metric, which is the basis for describing the
cosmological background evolution of the Universe.

2.3 Friedmann Equations

The cosmos is composed of a variety of matter components. Now we want to see how these
matter sources connect to cosmological background evolution, i.e. time variation of the
scale factor, a(t) introduced earlier in the FLRW metric (2.11).

2Cosmologists use variety of observation tests to make sure this assumption is justified
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For this purpose, we need first to calculate the Einstein tensor Gµν for FLRW metric,
for which we need first to find Ricci tensor and Ricci scalar defined in (2.5) and (2.4).
Due to the isotropy of the FLRW metric, the three-vector Ri0 = R0i both vanish. The
non-vanishing components are R00, Rij which can be calculated as following using (2.5):

R00 = ∂λΓλ
00 − ∂0Γ

λ
0λ + Γλ

λρΓ
ρ
00 − Γρ

0λΓλ
0ρ = −∂0Γi

0i − Γi
0jΓ

j
0i

Rij = ∂λΓλ
ij − ∂jΓ

λ
iλ + Γλ

λρΓ
ρ
ij − Γρ

iλΓλ
jρ.

(2.13)

Which given Γi
0j = ȧ

a
δij leads to

R00 = − d

dt
(3
ȧ

a
) − 3(

ȧ

a
)2 = −3(

ä

a
)

Rij = −[
ä

a
+ 2(

ȧ

a
)2 + 2

k

a2
] gij.

(2.14)

The fact that we obtained Rij ∝ gij is compatible with the homogeneity and isotropy of
FLRW metric. Ricci scalar can also be evaluated as

R = gµνRµν = g00R00 − giiRii = R00 −
1

a2
Rii = −6[

ä

a
+ (

ȧ

a
)2 +

k

a2
]. (2.15)

Therefore, non-vanishing elements of Einstein tensors are

G0
0 = g0λGλ0 = 3[(

ȧ

a
)2 +

k

a2
]

Gi
j = [2

ä

a
+ (

ȧ

a
)2 +

k

a2
]δij .

(2.16)

At this step, we calculated the left-hand side of the EFEs (Einstein tensors), and assuming
perfect fluid approximation, the right-hand side (stress-energy tensor) can be computed
using Eq. (2.8) as

T 0
0 = ρ

T i
j = −P. (2.17)

Now substituting (2.17) and (2.16) in the EFEs, Friedmann equations are obtained,

(
ȧ

a
)2 =

8πG

3
ρ− k

a2

ä

a
=

−4πG

3
(ρ+ 3P ).

(2.18)
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Here, ρ and P represent the total energy density in the Universe, including radiation
energy density (ρr), matter energy density (ρm) and cosmological constant (ρΛ)3 and their
corresponding pressure. Sometimes − k

a2
is also referred to as curvature energy density ρk.

Eq. (2.18) can also be written as

H2 =
8πG

3
ρ− k

a2

Ḣ +H2 =
−4πG

3
(ρ+ 3P ),

(2.19)

in which H ≡ ȧ
a

is called the Hubble parameter, characterizing the logarithmic expansion
rate of the Universe.
After the radiation and matter components are decoupled, one can write Continuity
equation for each component as

ρ̇i + 3
ȧ

a
(ρi + Pi) = 0. (2.20)

Similarly, one can write Equation of state for components as

P = ρw, (2.21)

where w = 0, 1/3,−1, is the constant of the equation of state for matter, radiation and
vacuum energy, respectively.
In the Newtonian limit and non-relativistic particles, i.e. dust, pressure is negligible and
can be ignored (P = 0), leading to w = 0. Whereas, for relativistic particles and in the
perfect fluid approximation, it can be shown that pressure is related to density as P = 1/3ρ.
Using Eqs. (2.20) and (2.21), one can get energy density as

ρ ∝ a−3(1+w), (2.22)

which can also apply to curvature density by setting w = −1
3
, so the energy density for dust,

radiation, curvature and the cosmological constant are proportional to a−3, a−4, a−2 and a0,
correspondingly.
In the following, we use the subscript ’0’ to represent today’s quantities (t = t0). For
instance, a0 = a(t0) is the scale factor today, which we set to unity: a0 = 1 and H0 is today
expansion rate.
We also define today’s critical density and dimensionless density parameters as

ρcrit,0 =
3H2

0

8πG
= 2.8 × 1011 h2M⊙pc

−3

ΩI,0 =
ρI,0
ρcrit,0

where
∑
I

ΩI,0 = 1.
(2.23)

3Energy density of the dark energy
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Where H0 is the so-called Hubble constant will be expressed in the following. Finally, Eq.
(2.19) can be rewritten as the following

H2(a) = H2
0 [Ωr,0(

a0
a

)4 + Ωm,0(
a0
a

)3 + Ωk,0(
a0
a

)2 + ΩΛ,0]. (2.24)

From (2.24), we can see when the scale factor was negligible (in the early Universe), the first
term in the Friedmann equation contributed dominantly over other terms. The Universe
was first in the radiation-dominated era; then, at a special value of a, the second term
started dominating, the Universe entered its matter-dominated phase, and finally, the last
term started to dominate over matter density at a point. Note that, in the real Universe,
the spacial curvature density has been measured to be close to 0, so for the rest of the
thesis, we set k = 0.

2.4 Redshift

We can deduce everything about the cosmos from the light emitted by a distant galaxy. It
can be interpreted both classically (as photons propagating in space-time) and quantum
mechanically (as propagating photons).
In quantum mechanic scenario, the wavelength related to momentum as λ = h/p and
p ∝ a−1(t) so the observed photons at time t0 have wavelength λ0 which obeys

λ0 =
a(t0)

a(t1)
λ1, (2.25)

where λ1, a1 are the wavelength and expansion rate in the emission time. Since a0
a1
> 1,

we conclude the wavelength of light will be stretched by the expansion of the Universe
(λ0 > λ1).
In another scenario, we consider light as an electromagnetic wave. In this case, consider
a wave emitted from a galaxy at a co-moving distance d and at time η1which observed at
time η0 = η1 + d then, as we know, the conformal duration time is the same from both
detectors and source’s points of view but the physical time is different and can be written
as

∆ti = a(ηi)∆η i = 0, 1 (2.26)

where ∆t is the period of light-wave and we have λi = ∆ti. So that

λ1
λ0

=
a(η1)

a(η0)
. (2.27)
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Now we can introduce redshift as the difference in the light wavelength and can be written
as

z ≡ λ0 − λ1
λ1

=
a(t0)

a(t1)
− 1, (2.28)

where λ0, λ1 are the wavelength of light in the emission and observation time. By consid-
ering, a(t0) ≡ 1 we have

1 + z =
1

a(t1)
, (2.29)

for close galaxies, we have

a(t1) = a(t0) − a(t0)(t1 − t0)H0 + ... , (2.30)

where H0 ≡ ȧ(t0)
a(t0)

, then Eq. (2.29) comes as

z = H0(t0 − t1) + ..., (2.31)

which for nearby sources we have t0 − t1 ≃ d (since c = 1). Therefore, redshift increases
with co-moving distance as (see Eq. (2.12))

z ≃ H0d. (2.32)

2.5 Cosmological Distances

• Co-moving distance and physical distance are two closely related distance mea-
surements that cosmologists employ to specify distances between objects in the Uni-
verse.
Physical (proper) distance is a notion of distance which describes the distance be-
tween two points with considering the expansion of the Universe. In contrast, co-
moving distance is the measured distance between two objects in the Universe by
factoring out the Universe’s expansion. Co-moving distance and physical distance
can be related by

Dp(t)

a(t)
= χ, (2.33)

in which Dp(t), χ are the physical distance and the co-moving distance, respectively.
Furthermore, the co-moving distance can be calculated as

χ =

∫ tobs

te

dt

a(t)
=

∫ z

0

dz

H(z)
, (2.34)
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where te, tobs are the time photons emitted and observed by detectors and a(t) are
the scale factor.

• Metric distance
First, consider the FLRW metric in the form

ds2 = dt2 − a2(t)[dχ2 + S2
k(χ)dΩ2]. (2.35)

In which

Sk(χ) =


R0 sinh(χ/R0), k = −1

χ, k = 0

R0 sin(χ/R0), k = 1

(2.36)

Then the metric distance comes as

dm = Sk(χ). (2.37)

For example, in the flat Universe where k = 0, the metric distance is the same as the
co-moving distance χ.

• Angular diameter distance the angular diameter distance DA is another helpful
distance measurement. Assume an object located in the co-moving distance χ and
photons are emitted at time t1 and observed at time t0, the Angular diameter distance
comes as

dA =
D

δθ
, (2.38)

considering the FLRW metric, D is

D = a(t1)Sk(χ)δθ. (2.39)

Finally Angular diameter distance can be calculated as

dA =
dm

1 + z
. (2.40)

• Luminosity distance

If we consider an exploding supernova (standard candle), the received flux can be
used to derive its luminosity distance and comes as

F =
L

4πχ2
. (2.41)
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Where L is the luminosity (the amount of observed energy per second) and χ is the
so-called co-moving distance.
Note that, in the FLRW space-time:
The observed photon rate to the emitted rate is 1/(1+z), and we also have Eobs

Eemi
= 1

1+z
.

So that, Eq. (2.41) can be modified as

F =
L

4πd2m(1 + z)2
, (2.42)

in which, dL = dm(1 + z) is the luminosity distance.
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2.6 Measurement of Present-Day Hubble Constant

Since Edwin Hubble’s discovery of the expansion of the Universe in 1929, the Hubble con-
stant has been the most significant parameter characterizing cosmology which expresses the
expansion rate of the Universe. On the largest scales, the Universe’s expansion can be con-
sidered homogeneous and isotropic, so all its components recede from one another. General
relativity demonstrates that due to the Universe’s expansion, a distant object’s emitted
radiation wave becomes redshifted by propagating from the source toward an observer.(see
Eq. (2.32)).Today H0 measurement of the Hubble Constant is H0 ≃ 67 km s−1Mpc−1 and
the Hubble time can be calculated by 1/H0 [67].

2.6.1 Hubble Tension

In recent years, there has been much discussion about the local Hubble parameter measure-
ments, which is arguably one of the most widely discussed topics in cosmology right now.
The debates can be divided roughly into two parts: direct measurements of H0 from the
late Universe and indirect measurements of H0 from the early Universe. The better tech-
niques one can use, the more precise H0 estimation can be achieved, and the measurement
uncertainties will be decreased. Fig. (2.1) provides a useful reference for the subsequent
Hubble constant landscape discussion. As one can see, different methods do not agree on
the range of the estimated H0 value; this discrepancy is known as the Hubble tension.
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Figure 2.1: H0 measurement from different methods. The pink band corresponds to the
Planck 2018 measurement of H0 [13] whereas The blue band is characterizing H0 value from
the SH0ES team (R20) [58]. This is a scaled-down version of the figure in [67], produced
by the sample code (https://github.com/lucavisinelli/H0TensionRealm) and edited in [43].
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2.6.2 Different Methods of Measuring H0

• Cosmic distance ladder
The ladder method (mostly for late Universe measurement of H0) comes into the pic-
ture since there is no method to measure all ranges of distances to celestial objects
in the Universe. The cosmic distance ladder is a series of overlapping methods used
by astronomers to measure distances between objects in the Universe, ranging from
nearby planets to the most distant quasars and galaxies. Fig. (2.2) shows a distance
ladder; one can see that solar system distances can be established by direct mea-
surement. Different geometrical techniques can be used to calculate the distances to
stars within a few thousand light-years. Still, the Hipparcos satellite’s measurements
of the annual parallax of about 10,000 nearby stars provide the most precise distance
estimates. The main-sequence fitting technique works for clusters with a distance of
about 60,000 light-years. Going further into the Milky Way Galaxy, approximately
100 million light-years, the most reliable method for determining distances is the
period-luminosity relation of Cepheid variables, supported by similar observations of
much brighter stars such as RR Lyrae stars and novae. For more distant galaxies,
brighter objects are required, like standard candles, which can be useful for up to
about 3 billion. All mentioned ladder techniques agree on reporting theH0 value from
late universe methods to be about 73 km/s Mpc[67],[6].

Figure 2.2: Cosmic distance ladder. Adopted from “The Essential Cosmic Perspective,”
Bennett et al.
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• Cosmic Microwave Background and Large Scale Structure
If one considers a cosmological model to be a flat ΛCDM (cosmological constant plus
cold dark matter), then the H0 measurements deduced from Cosmic Microwave Back-
ground (CMB) observation such as Planck Satellite (Aghanim et al.2020, Planck18)
and large scale structure data sets at high redshifts (Zhang, Huang 2019) are in some
tension with the one estimated with cosmic distance ladder method. Invoking new
physics that changes the sound horizon scale in the early Universe is one of the few
theoretical approaches to resolving this tension. Doing so generates CMB and Baryon
Acoustic Oscillations (BAO) constraints on the Hubble constant to agree with local
estimations of H0. However, tension would probably still exist so it is important that
we have another independent method to estimate H0 [67].

• Standard sirens
The gravitational wave signals from binary black holes and neutron star mergers pro-
vide a new and independent method to measure the Hubble constant that might shed
light on Hubble measurement tension. In this method, one can infer the luminosity
distance to the host galaxies based on the emitted Gravitational Waves (GWs) from
binary compact objects coalescence (named standard sirens). If an electromagnetic
wave counterpart for the event is also observed, one can obtain the redshift of the host
galaxy and then H0 can be estimated. Unfortunately, so far only one such events with
electromagnetic counterpart, GW170817, has been detected. The Hubble constant
estimated based on this particular event is 70.0+12.0

−8.0 km s−1 Mpc−1(Abbott et al.
(2017), GW170817). If GWs events do not have electromagnetic wave counterparts,
the so-called dark sirens, one could use statistical methods to deduce redshift to host
galaxies and estimate the Hubble constant. There has been one such estimates ob-
taining H0 = 75+25

−22 km s−1 Mpc−1 which is not very competitive with other methods.
However, this is very intriguing given the forecast for upcoming GWs observations
over the next decade. We will discuss this method in the following chapters [67].
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Chapter 3

Large Scale Structure and Statistics

In this chapter, I will discuss statistics in astrophysics which is a useful tools for analysing
astrophysical data which will be discussed in chapter (5), Large Scale Structure (LSS),
correlation functions, power spectrum and bias parameter. This chapter’s theoretical back-
grounds are inspired from [36],[68],[39] and [43].

3.1 Statistics in Astrophysics

3.1.1 Brief Review of Basic Probability Theory

Let’s consider that Ω represents the sample space from which potential outcomes are drawn
and that A ∈ Ω represents an event selected from. The probability function p can be de-
fined as a function that assigns a probability to an event. A probability function must
adhere to the following axioms, called Kolmogorov axioms:

1. The probability of an event can not be negative:

p(X) ≥ 0. (3.1)

2. If ∀i;Ai ∈ Ω are mutually exclusive events meaning that any 2 events are disjoint
(∀i, j; Ai

⋂
Aj = ∅), then we have :

p(
∞⋃
i=1

Ai) =
∞∑
i=1

p(Ai). (3.2)
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3. if A = Ω then :
p(Ω) = 1. (3.3)

In the following, some important properties are noted:

• For not necessarily disjoint events A,B :

p(A ∪B) = P (A) + p(B) − p(A ∩B). (3.4)

• Probability of events A,B happening simultaneously is:

p(A ∩B) = p(A,B) = P (A|B)P (B), (3.5)

where P (A|B) is the Conditional probability. Note that if A,B are independent
events then :

p(A|B) = p(A)

P (B|A) = p(B).
(3.6)

Since
⋂

is symmetric :

P (A,B) = p(B,A) ⇒ p(A|B)p(B) = p(B|A)p(A), (3.7)

which leads to the so-called Bayes’ rule, written as:

p(A|B) =
p(B|A)p(A)

p(B)
. (3.8)

• For any independent Bi ∈ Ω ;
⋃k

i=1Bi = Ω where i = 1...k :

p(A) =
k∑

i=1

p(A ∩Bi). (3.9)

This gives us the total probability (marginalization) law as

p(A) =
k∑

i=1

p(A|Bi)p(Bi). (3.10)

This is a useful statistical tool in cosmology that will be discussed later in this chapter.
In some cases, we can quantify physics by assigning a real number (Random variable)
to an event.
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• Random variables
Are mapping events from event space to the real numbers in the state space. Here the
set of real numbers is called a Realization and a random variable can be continuous or
discrete. Now the probability density function (pdf) is the probability function that
assigns a probability to a random variable realization. So that for random variables
X, Y and pdf p(x, y) (where x, y are realisations), Eq. (3.10) for the continuous case
comes as

pX(x) =

∫
p(x, y)dy =

∫
p(x|y)p(y)dy. (3.11)

It can also be called a marginalized probability density function for X over Y

3.1.2 Bayesian & Frequentist Statistics

Bayesian and frequentist are the two most well-known statistical approaches. When an
event occurs numerous times, in the limit, when that number reaches infinity, its rela-
tive frequency turns into its probability which Frequentists know as a probability. While
Bayesian probability interprets probability as a measure of a state of knowledge rather
than a frequency.

• Bayes’ theorem
Can be described by Bayes’ formula as the following:

p(M |D) =
p(D|M) p(M)

p(D)
. (3.12)

In which D,M are characterizing data and hypothesis (model), respectively.

p(M) is the probability of M being correct before seeing data; is called prior proba-
bility.

p(D|M) is the probability of observing data, given model (hypothesis) and is called
likelihood.

p(D) is the probability of observing data considering all possible models; is called
Bayesian evidence. It can be evaluated by integrating of likelihood over all parame-
ters of the possible models.

p(M |D) is the probability of the model being true, given the data; is named posterior
probability.
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Since the data explosion of the 1990s, the Bayesian approach has been nearly universally
accepted in cosmology owing to its numerous advantages.
The Bayesian approach facilitates the incorporation of multiple data sets. For instance,
you could use Bayes’ theorem to update the prior probability with new data sets where
the prior probability (on the model space M ) was originally imposed by the first data set.
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3.2 Large Scale Structure (LSS)

The cosmological Large Scale Structure (LSS) refers to the structure and density distribu-
tion of matter on scales larger than individual galaxies or groups of galaxies. Gravity has
created and formed these correlated structures, which can be seen up to billions of light
years away. On large scales, gravity pulls galaxies and matter into patterns in a similar
way that it keeps pulling gas particles together to form stars and stars to form galaxies
on smaller scales . These patterns frequently contain large filaments of galaxies and gaps
between them, similar to a spider web, and this structure is commonly known as “cosmic
web”. Large-scale structure research is mostly about studying the impact od gravitational
force in the Universe and on cosmic web. Astronomers can estimate the distances of various
galaxies from the Earth and the correspondingly times that light was emitted fron these
galaxies in the history of Universe based on the required time for light to reach us. This
has enabled us to infer that as time has by, gravity has pulled more and more matter into
clusters, clustering the Universe even more. LSS provides information about dark energy as
well. The majority of theories on dark energy wich explain the late accelerated expansion
of teh Universe also suggest that it slows down the process by which gravity produces large
structures. This is in some sense intuitive since as the expansion of the Universe contin-
ues to accelerate, the matter will need more time to cluster since it must travel a greater
distance. Therefore, the evolution of large-scale structures over time provides information
about dark energy and gravity and how they change as the Universe evolves over time.
Fig. (3.1) shows how gravity is clustering matter from the early Universe (most-left box)
to the present-day (most-right box), considering the expansion of the Universe [39].

Figure 3.1: The large scale structure. From left to right gravity is increasing and the matter
is clustering further and further. The Universe (boxes) is also expanding by passing the
time. The simulation adopted from Dark Energy Survey (DES) website.
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On reasonably large scales, the Universe is homogeneous and isotropic. Most theories of
early universe suggest that the origins of structure in the Universe are quantum mechanical.
Due to the random nature of the fluctuations, the Universe appears uniform on large scales
but is inhomogeneous and anisotropic on smaller scales. Areas that had higher energy
densities or gravitational curvature in the early universe will have over-dense eras, which
will produce more galaxies than usual in the late universe. Similar to this, eras in the
early Universe with lower energies will correspond to under-dense regions and have fewer
galaxies than usual in the late Universe .

Density fluctuations

The over-density can be calculated as

δ(X, t) =
ρ(X, t) − ρ̄

ρ̄
, (3.13)

in which ρ(X, t) is the matter density at time t with space coordinate X and ρ̄ is the
average density over the whole space. Note that the over-density meets the inequality
−1 < δ ≤ ∞.
According to standard inflationary theory, primordial matter density perturbations have
an initial Gaussian distribution and follow

P (δ) dδ =
1√
2πσ

e−δ2/2σ2

dδ. (3.14)

It is worthwhile to mention that for small perturbations (δ ≪ 1), the distribution is
Gaussian while for larger perturbations (δ ≫ 1), this assumption breaks down. Tests of
so-called non-gaussianity, or deviations from the Gaussian distribution in Eq. (3.14), have
become an interesting topic in cosmology in the past decade (for more detail see [39]).

Two point correlation function

• Point process
Assume some point particles in the space and their density to be n. Therefore, the
probability of existing a point particle in volume dV can be calculated as

dP = n dV. (3.15)
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Now for two particles, assuming a given particle observed in dV1, the probability of
finding the second particle in dV2 is

dP (p2|p1) = n(1 + ξ(r12)) dV2, (3.16)

where the two point correlation function 1 for clusters and galaxies can be approxi-
mated as

ξ(r) = (
r

r0
)γ, (3.17)

where γ ≈ −1.8 and r0 ≈ 20h−1 Mpc, r0 ≈ 5h−1 Mpc for clusters and galaxies
respectively. Now assume that we have a particle located at the center of a volume
V , the expected number of particles in that volume is

⟨N⟩ = nV + n

∫
ξ(r)dV, (3.18)

in which r is the distance from centered particle.
Similarly, one can find the probability of finding three points in three volume spaces
dV1, dV2, dV3 using three point correlation function ζ123 as

dP = n3[1 + ξ(r12) + ξ(r13) + ξ(r23) + ζ(r123)]dV1 dV2 dV3. (3.19)

• Continuous process
The two-point correlation function for a continuous density field ρ(X) can be defined
as

ξ(r) =
⟨[ρ(X + r) − ⟨ρ⟩][ρ(X) − ⟨ρ⟩]⟩

⟨ρ⟩2 = ⟨δ(X + r) δ(X)⟩X . (3.20)

By averaging across all X, it could be rewritten as

⟨ρ(X + r)ρ(X)⟩X = ⟨ρ⟩2[1 + ξ(r)]. (3.21)

And three-point correlation function can also be defined as

ζ(r, s, |r − s|) =
⟨[ρ(X + r) − ⟨ρ⟩][ρ(X + s) − ⟨ρ⟩][ρ(X) − ⟨ρ⟩]⟩X

⟨ρ⟩3
= ⟨δ(X + r) + δ(X + s) + δ(X)⟩X .

(3.22)

which can also be written as

⟨ ρ(X+r) ρ(X+s) ρ(X) ⟩X = ⟨ρ⟩3[1+ξ(r)+ξ(s)+ξ(|r−s|)+ζ(r, s, |r−s|)]. (3.23)

1Here ξ only depends on distances (not directions) due to the isotropy assumption.
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Figure 3.2: galaxies distribution from Baryon Oscillation Sky Survey (BOSS)and
we are located at the center of the diagram. The photo is adapted from
http://www.sdss3.org/science.

Power spectrum

The density contrast of the Universe—the difference between the local density and the
mean density is described as a function of scale by the matter power spectrum. It can be
calculated from the matter correlation function by the Fourier transform. Therefore, the
over-density can be written in Fourier space as

δ(r⃗) =

√
V

(2π)3

∫
δk⃗ e

−ik⃗r⃗ dk3, (3.24)

where V is the co-moving volume, and the Fourier components can be written as

δk⃗ =

∫
δ(r⃗)eik⃗r⃗d3r√

V
. (3.25)

Note that δ(r⃗) ≪ 1 , δk⃗ ≪ 1, by moving from r by ∆r the two point correlation function
will be as following

⟨δk⃗ δ∗k⃗′⟩ → ei(k−k
′
)∆r⃗⟨δk⃗ δ∗k⃗′⟩. (3.26)

Since homogeneity is assumed, it does not depend on ∆r⃗ so Eq. (3.26) comes as

⟨δk⃗ δ∗k⃗′⟩ = (2π)3δ(3)(k⃗ − k⃗′)P (k), (3.27)
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where k, k′ are wave numbers and P (k) (the Fourier transform of the 2-point function) is
called the power spectrum. In other words, it is the average of the square of the Fourier
components over all locations in the Universe, so the power spectrum is the amount of
the power on various scales (wave numbers k). Therefore, the power spectrum can be
calculated from the correlation function in the following way

P (k⃗) = ⟨δk⃗ δ∗−k⃗
⟩ = ⟨δk⃗ δ−k⃗⟩

=
1

V

∫ ∫
⟨δ(r⃗1)δ(r⃗2)⟩ e−ik⃗(r⃗2−r⃗1) d3r⃗1d

3r⃗2

=

∫
ξ(r12) e

−ik⃗r⃗12 d3r⃗12,

(3.28)

where r12 = |r⃗1 − r⃗2| and we integrated over r⃗2 considering
∫
d3r⃗2 = V . Finally, the power

spectrum can be calculated as2

P (k) =
4π

k

∫ ∞

0

ξ(r)sin(kr)r dr, (3.29)

where the inverse-Fourier transform reads from

ξ(r) =
1

2π2r

∫ ∞

0

P (k)sin(kr)k dk, (3.30)

and

ξ(0) =

∫ ∞

0

k3P (k)

2π2
d lnk, (3.31)

logarithmic band power can be also defined as

∆2(k) ≡ k3P (k)

2π2
. (3.32)

For more details, see [39].

2P (k⃗) = P (k)
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Galaxy Bias

As was demonstrated, the matter density field is a highly effective statistical tool that
provides abundant information about the early and late Universe. Unfortunately, we can
not directly observe most of the matter density field as it laregely consists of Dark Matter.
However, visible tracers of the density field can be employed instead. One of these tracers is
galaxies which can be categorized among observable objects, and their distribution follows
the distribution of the matter density field. The so called bias parameter characterizes
how the galaxy density field (observable field) connects to the underlying matter field.
The density field for galaxies can be described as

δg(x) =
ng(x)

n̄g

− 1, (3.33)

in which n̄g is the average number density and ng(x) the number density for galaxies at
location x. Note that, since the number of galaxies is countable, their density fields are
typically expressed as number densities. The density field of galaxies can be defined more
generally as [26]

δg(x, τ) =
∑
W

bW (τ)W (x, τ) (3.34)

where W is a mathematical operator made up of matter density field, and bW is the
bias parameter. Since on large scales, gravity is the controlling mechanism for structure
formation, the statistics of galaxies can be expressed locally as a function of over-densities in
the matter field. Therefore, for smoothed density field of galaxies, the mentioned equation
can be written as [34]

δg(x) ≈
∞∑
0

bk(x)

k!
δk(x). (3.35)

Note that in the limit of δ ≪ 1, one can ignore higher orders of δ so that b0 = 0 and (3.35)
can be reduced to

δg(x) = b1(x) δ(x), (3.36)

where b1 is the so-called linear galaxy bias. However, In the general case, the Taylor ex-
panded form of (3.35) is more difficult than what is mentioned above. For more informa-
tion, see [26].
In Fourier space, the linear bias parameter can be obtained by the power spectrum of
matter P(k) and galaxies Pg(k) as

b2P (k) =
Pg(k)

P (k)
. (3.37)
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It can also be calculated by two-point correlation function of matter and galaxies as

bξ(r)
2 =

ξ2g(|x− y|)
ξ2(|x− y|) =

⟨δg(x) δg(y)⟩
⟨δ(x) δ(y)⟩ , (3.38)

where ξ2g(|x − y|) is called galaxy-galaxy auto- correlation or 2-point correlation function
for galaxies and ξ2(|x− y|) is the 2-point correlation function for matter.

Figure 3.3: Top: observed galaxies (yellow clustered locations) from underlying matter
field. Adopted from Illustris simulation website. Bottom: Galaxies which are tracing dark
matter. Credit: Amir Hossein Dehghani.
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Observational Constraints on Galaxy Bias

As mentioned before, it is believed that the galaxy distribution follows the distribution of
underlying dark matter. This has been confirmed both through ΛCDM simulations and
observations. Galaxies form in the over-dense areas (halos) that have collapsed due to
the their gravity. Recent observations and simulations are now able to provide very good
insight on the tracing properties of galaxies and constrain the dependency of the galaxy
bias and the power spectra to the astrophysical properties like luminosity, stellar mass
and star formation rate and different parameters of models which relate the galaxy field
to the dark matter field. As an example, Figure 3.4 shows that the galaxy clustering can
be characterized as a function of specific Star Formation Rate (sSFR) 3 and stellar mass
ratio 4. This measurement is done using two different galaxy surveys namely SDSS and
PRIMUS and one mock catalog simulated by the evolution model of the universe provided
in [16]. It can be seen that in a fixed stellar mass, the two-halo relative bias enhances as the
sSFR decreases which means galaxies with sSFR higher than star-forming main sequence
(SFMS) are more clustered than galaxies with sSFR lower than SFMS. It can also be seen
that for a given value of sSFR ratio, the galaxies with more stellar mass are more clustered.
However, bias has more dependency on sSFR than stellar mass. These results show that
sSFR and stellar mass can both affect the connection between galaxies and dark matter
haloes [18, 23]. This trend can also be seen using VIMOS Public Extragalactic Redshift
Survey (VIPERS). As shown in fig 3.5, The bias of galaxies strongly depends on their mass
and luminosity. As the figure indicates more massive and luminous galaxies have higher
corresponded bias value (more clustered) [48].

3Its values corresponds to star formation rate divided by stellar mass.
4Here mass ratio refers to the ratio of masses of two galaxy samples.
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Figure 3.4: Relative bias as a function of stellar mass and sSFR, measured for two SDSS
and PRIMUS galaxy surveys and the mock catalog (z = 0, 0.45). The dotted lines show
the fixed value of stellar mass and sSFR. The color bar is associated to the color of each
point corresponded to the bias value. Adopted from [18].

Figure 3.5: Left plot: Bias dependency on luminosity (using B-band absolute magnitude).
Solid line is a fit model to bias done by [71]). Right plot: Bias as a function of stellar mass
in different redshift bins [48].
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Chapter 4

Gravitational Waves from Merging
Compact Binaries

In this section, we will discuss gravitational wave theory in linearized gravity, estimating
cosmic distance from dark sirens, gravitational wave detectors and finally, some astro-
physical prescriptions. The discussion in this section is mostly inspired from references
[33, 37, 60, 25, 62, 43, 27, 29, 28, 54, 32, 61, 3].

4.1 Theory of Gravitational Waves (GWs)

Albert Einstein hypothesized gravitational waves as some perturbations in the space-time
geometry which are produced by a moving mass and propagate from their source at ex-
tremely high velocity (the speed of light).
However, the first indirect evidence for their existance was discovered by astronomers in
1974. They recognized a decrease in the orbit of Hulse-Taylor binary pulsar which matched
the theoretical predictions for energy being emitted as gravitational waves. The first direct
detection of gravitational waves came almost forty years later in 2015, when the Laser In-
terferometer Gravitational-Wave Observatory (LIGO) detectors in Livingston, Louisiana,
and Hanford, Washington, detected a signal consistent with a gravitational wave form
emitted from merging of two stellar black holes [2, 11].

In this section, I will briefly discuss the theory of GWs and, in particular, how the
distances can be estimated based on a detected GW signal and then discuss the future
generation of GW detectors.
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Please note that in this chapter, Latin indices are used for space-time coordinates and
the metric is taken as ηab = diag(−1, 1, 1, 1).

4.1.1 GWs in Linearized Gravity

In linearized gravity, the spacetime metric, gab, is assumed to be approximately flat and
written as

gab = ηab + hab ; ||hab|| ≪ 1, (4.1)

where ηab = diag(−1, 1, 1, 1) and hab represents the metric perturbation which encompasses
GWs and non-radiative degrees of freedom. As the name indicates, the higher-order per-
turbative terms in hab are ignored in this analysis.
Note that the condition ||hab|| ≪ 1 is satisfied in weak field regime and underlying flat
space-time.
The next step is calculating all the quantities needed to construct the Einstein tensor and,
from there, obtaining the dynamics of GWs in linearized gravity.
First, Christoffel coefficients are computed as

Γa
bc =

1

2
(∂ch

a
b + ∂bh

a
c + ∂dhbc). (4.2)

From that Riemann tensor, Ricci tensor and Ricci scalar are obtained,

Ra
bcd = ∂cΓ

a
bd − ∂dΓ

a
bc =

1

2
(∂c∂bh

a
d + ∂d∂

ahbc − ∂c∂
ahbd − ∂d∂bh

a
c),

Rab = Rc
acb =

1

2
(∂c∂bh

c
a + ∂c∂ahbc − ∂c∂

chab − ∂bah),

R = ∂c∂
ahca −□h,

(4.3)

where h is the trace of hab and is defined as h = haa and ∂c∂
c = □ is called wave operator.

Substituting from these relations, it can be shown that the Einstein tensor reduces to

Gab = Rab −
1

2
ηabR

=
1

2
(∂c∂bh̄

c
a + ∂c∂ah̄bc − h̄ab − ηab∂c∂

dh̄cd),
(4.4)

where, h̄ab = hab − 1
2
ηabh is called the trace-reversed perturbation. Gab can be further

simplified by fixing the gauge 1 freedom to Lorentz gauge ∂ah̄ab = 0 so that Einstein Eq.

1Some theories in physics describe forces in terms of fields, such as the electromagnetic field, the
gravitational field, and the fields describing forces between elementary particles. Some fundamental fields
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(2.2) reduce to

Gab = −1

2
□h̄ab = −16πTab. (4.5)

In the absence of matter and in the case of GWs propagating in empty space-time, the
gravitational wave equation becomes homogeneous

□h̄ab = 0, (4.6)

which has plane wave solutions. Therefore solutions can be written as

h̄ab(X, t) = Re

∫
d3kAab(K)ei(KX−ωt), (4.7)

where K is the wave vector, ω = |K| and Aab(K) are complex coefficients. By substituting
(4.7) in the Lorentz gauge condition we get kaAab = 0 in which ka = (ω,K).
These plane waves are called Gravitational Waves, which are the metric oscillations
substituted into the Einstein Field Equations.
We now focus on the vacuum space-time where Tab = 0. In other words, the space in which
linearized Einstein equation has homogeneous, asymptotically flat 2 solutions. For having
such a space-time, there are two conditions which should be satisfied:

1. Specialising the gauge to make the metric perturbation entirely spatial and traceless as

hti = htt = 0

h = hii = 0.
(4.8)

2. Then, by implying the Lorentz gauge condition, we will get a transverse spatial pertur-
bation in the metric. Therefore so-called ”transverse-traceless gauge” which is a system
in co-moving coordinate (meaning that free particles’ location and their separation are
constant in the coordinate system), can be written as

∂ihij = 0. (4.9)

Now consider a GW which is propagating in the z-direction, so the solution for the wave
Eq. (4.6) comes as

hTT
ij = hTT

ij (t− z), (4.10)

cannot be directly measured, although some corresponding quantities, like charges, energies, and velocities,
can be. Therefore physicist use gauge transformation to transit from one of these field configurations to
another.

2A Lorentzian manifold in which the curvature vanishes (hab → 0) at large distances (r → ∞) resulting
in Minkowski spacetime-like geometry at large distances.
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then by applying the Lorentz condition for the asymptotically flat space-time, we will get

hTT
zj (t− z) = 0. (4.11)

Therefore, the non-zero components would be hTT
xx , h

TT
xy , h

TT
yx , h

TT
yy . So by applying (4.8),

we get
hTT
xx = −hTT

yy = h+(t− z)

hTT
xy = hTT

yx = h×(t− z),
(4.12)

where h+, h× denote waveforms of the gravitational wave. Hence the metric perturbation
can be calculated as follows

h̄µν
3 = hµν =


0 0 0 0
0 h+ h× 0
0 h× −h+ 0
0 0 0 0

 (4.13)

in which h+, h× are polarization components of GW. So by having wave amplitudes

hab =

(
h+ h×
h× −h+

)
(4.14)

and choosing êx, êy as the unit basis vectors in the considered plane. Basis tensors and TT
gravitational-wave tensors can be defined as

e× = êx ⊗ êy + êy ⊗ êx

e+ = êx ⊗ êx − êy ⊗ êy

h = h+e+ + h×e×.

(4.15)

4.1.2 Gravitational Wave Frequency

In order to predict a waveform in the best way, its frequency needs to be well-defined.
Frequency is mostly related to the natural frequency for a self-gravitating object and can
be written as

ω0 =
√
πGρ̄ , f0 =

ω0

2π
=

√
Gρ̄/4π, (4.16)

in which, ρ̄ is the mean density of the mass-energy in the source. Although this is in the
Newtonian regime, it is able to predict order-of-magnitude of the natural frequencies and

3Note that, h̄µν = hµν since we are in TT gauge which is traceless
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relativistic systems like black holes.
The mean density can be calculated by the mass and the radius of the body as

ρ̄ =
3M

4πR3
. (4.17)

So that by considering Eqs. (4.16) and (4.17), the frequency of a radiation emitting by a
object with mass M and radius R can be calculated as

f0 =
1

4π

√
3M

R3
. (4.18)

For instance, in case of having a neutron star of mass 1.4M⊙ and radius 10km, frequency
is f0 = 1.9 kHz, and for a large black hole with mass 2.5 × 106M⊙ it will fall down as
f0 = 4 mHz.
Fig. (4.1) describes the mass-radius diagram for the gravitational wave sources; the 3
plotted lines f0 = 10−4Hz, f0 = 1Hz, f0 = 104Hz characterize the natural frequency.
Emitted GWs with frequencies between f0 = 1Hz, 104Hz can be detected by ground-based
detectors while radiation with lower frequencies only can be observed by space-based ones.
There is also a black hole line obeying the R = 2M equation, and there is no black hole
below that line. It also intersects the two frequency lines meaning that black holes with
masses more than 104 can not be detected by ground-based detectors. Another drawn
line is the chrip line; if a binary locates below this line, its orbit will shrink to the point
where its orbital frequency rises noticeably over the course of a year. The dashed-line also
represents the 1-year coalescence line, where the timescale of the orbital shrinking (caused
by gravitational radiation back reaction) is less than one year.
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Figure 4.1: Mass-radius diagram for GW sources, the vertical and horizontal axis are the

size and the mass of the GW sources. The frequency lines obey f ∼
√

Gρ
4π

[60].
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4.1.3 Cosmic Distance Estimation by Dark Sirens

On September 14, 2015, the first observation of gravitational waves opened a new window
in astronomy. When the Laser Interferometer Gravitational-Wave Observatory (LIGO)
detectors detected gravitational waves emitted by a pair of merging black holes labelled
GW150914. The discovery was also a victory for theory. The GW’s frequency and ampli-
tude evolution precisely matched the general relativity predictions.
In Fig. (4.2) , one can see how the strain 4 of the GW (emitted by GW150914) changes by
time and the relation between frequency and amplitude with time according to Hanford
data [25].

Figure 4.2: a: Strain of the data from LIGO (orange) and the black curve is a GR the-
oretical fit (from Hanford data).b: the relation between frequency and time achieved by
Hanford data [25].

After a short while, more BBH and BNS 5 coalescence were detected. Still, due to
the insufficient electromagnetic and matter fields near the merging eras, non of them had
an electromagnetic counterpart. These detections were followed by the most important
detection (labelled GW170817) in the history of astronomy happened on 17 August 2017;
astronomers detected a gravitational-wave signal (detected by LIGO and Virgo) after about
1 second of observing a burst of gamma rays (by Fermi Gamma-Ray Space Telescope
and INTEGRAL observatory) from a kilonova explosion in the NGC 4993 galaxy which
was 1000 times brighter than a normal kilonova. So that the electromagnetic wave and
gravitational wave emitted by GW170817 helped astronomers measure the Hubble constant
and the Universe’s dynamic (since distances can be encoded by GWs) via the standard

4The oscillation of the LIGO detectors divided by their arm length
5Binary of Back holes or Neutron stars
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sirens method. Fig. (4.3) shows GW170817 event which was detected due to the merger
of two neutron stars.

Figure 4.3: a: The frequency of GW is increased by time detected by LIGO. b: The Dark
Energy Camera (DECam) also observed electromagnetic counterpart by short time after
the merger. By two [62].
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Consider a binary neutron star or black hole orbiting in a circular path, the two objects
in this orbit is circling with frequency Ω which depends on their masses and their separation
in the binary. When GW emits, it takes energy from the orbit, and the orbital separation
decreases consequently, followed by an increase in the orbital frequency which causes more
energy loss and a further decrease in separation and so forth. Finally, the binary merges
and one can observe an outstanding increase rate in the frequency. The relation between
frequency and so-called Chirp mass M is

dΩ

dt
=

96

5
(
GM
c3

)5/3 Ω11/3, (4.19)

in which M can be calculated as

M =
(m1m2)

3/5

(m1 +m2)1/5
, (4.20)

where m1,m2 are the masses of two black holes or neutron stars in the binary.
Let’s assume the angle between our line of sight and the normal to the orbital plane is l
so that if l = 0, the orbital plane is observed head on and for l = 90◦ corresponds to the
case, we are viewing the plane from the edge side. There are two polarization states for
gravitational waves, using the convention that the normal to the orbital plane lies in the
xz-plane. Their amplitude can be written as

h+ =
2c

dL
(
GM
c3

)5/3 Ω2/3 (1 + cos2l) cos2Φ(t)

h× =
4c

dL
(
GM
c3

)5/3 Ω2/3cosl sin2Φ(t).

(4.21)

Where Φ(t) characterizes the accumulated orbital phase, which can be calculated found
by integrating Ω over time, and the factor of 2 (multiplied by Φ(t)) corresponds to the
quadrupolar nature of waves. Furthermore, dL is the luminosity distance, G 6 the so-called
gravitational constant, cosl is the degeneracy.
From Gravitational wave observations, the Chrip mass (M) can be precisely determined,
and in the case of measuring both polarization, one can get l. Finally, by having M , l and
according to the equations (4.21) distance to the source (the binary which was the host for
the detected gravitational wave) can be estimated.

6G = 6.674×1011 m3 kg−1 s−2
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4.1.4 Gravitational Wave Detectors

Observing gravitational wave signals can reveal new insight in the most energetic and
violent astrophysical incidents like the Universe’s black holes and neutron star mergers. As
mentioned previously, the first gravitational wave detection has been observed in September
2015 (100 years after Albert Einstein predicted their presence) which was an outstanding
scientific discovery in astronomy of the 21 st century. The mentioned gravitational wave
had been emitted by the merging of two black holes at a distance of 1.3 billion light years
from earth and was detected by LIGO and Virgo gravitational wave detectors [38].

• Advanced LIGO and Virgo detectors Have been run since 2015 and 2017, re-
spectively. As shown in Fig. (4.4), they have been run in 3-time intervals, which
the third one lasted for about 1 year. Even at design sensitivity, LIGO and Virgo
detectors are limited to local Universe, detecting 50 sources per year, mostly black
hole mergers.

Figure 4.4: adapted from LVC public document G1901322 (see [69]).

• LIGO A+ Is an incremental upgrade to aLIGO which will be installed in early 2022
and possibly start observing in late 2022. Its coating thermal noise is a factor of 2
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lower than the reported measurement by aLIGO. As shown in Fig. (4.5), the A+
range is 1.9 times higher than the achieved LIGO operating at design sensitivity and
can be a stepping stone to third-generation detectors technology [45, 56].

• LIGO India

Three gravitational waves (GW) detectors are used in the Laser Interferometer Gravitational-
wave Observatory (LIGO) project. Two are in the northwestern American state of
Washington at Hanford, and one is in the south-eastern state of Louisiana at Liv-
ingston. These observatories are currently being upgraded to their sophisticated
configurations (called Advanced LIGO). LIGO-India project proposed to transport
one detector from Hanford to India. The proposed detector will be a Michelson In-
terferometer with Fabry-Perot-enhanced arms of 4 km length with the objective of
detecting differential arm-length changes as small as 10-23 Hz-1/2 in the frequency
range of 30 to 800 Hz. The design would be the same as the Advanced LIGO detectors
that are currently being put into service in the USA [6].

• KAGRA

The Kamioka Gravitational Wave Detector (KAGRA) is another interferometer de-
signed to detect gravitational waves, neutrino and dark matter. The KAGRA detec-
tor is made of two three-kilometre-long arms situated underground at the Kamioka
Observatory, located near the Kamioka neighbourhood of Hida, Gifu Prefecture,
Japan.

• Third-generation (3G) detectors

The third generation of the detectors is supposed to be a network between Einstein
Telescope and Cosmic Explorer. It is expected that we will be able to get a strain
sensitivity 10 times better than advanced LIGO detectors and detect black hole
mergers at the large redshifts, getting a higher signal-to-noise ratio and finally observe
more sources per year. The operation time is assumed to be in late of 2030.

• Einstein telescope
Is a ground-based gravitational wave detector with a triangular shape and an arm
length of about 10 km. It is supposed to be installed underground to properly detect
gravitational waves with low frequency (Hz) (see [69]).

• The cosmic explorer
Is another ground-base gravitational wave detector which will be placed on the ground
to help with detecting high-frequency (kHz) or medium-frequency (100 Hz) sources.
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Considering the network of Einstein Telescope and Cosmic Explorer will improve
gravitational wave detection (see [69]).

Figure 4.5: The amplitude spectrum of the detector noise as a function of frequency.
Adopted from cosmic explorer website (https://cosmicexplorer.org/)
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4.2 Astrophysics and Compact Objects

Neutron stars and black holes are created by either collapse of an evolved star or collapse
of the white dwarf’s core. In either scenario, if they end up having a non-spherical collapse,
the binding energy can increase and cause emittion of gravitational waves which carry some
portion of the angular momentum and binding energy. This can result in gamma-ray bursts
and supernova occurrences rating between 0.01 and 0.1 per year in a Milky way equivalent
galaxy (MWEG) and about 30 events per year in Virgo super-cluster. It is worth noting
while the focus of this thesis is on detection of gravitational radiations from binary black
holes, the detection of GWs from these events can also reveal important information about
the dynamics of astronomical systems. In the following, we will discuss the life cycle of a
star, supernovae formation, black hole and neutron star binaries.

4.2.1 Life Cycle of a Star

Fig. (4.6) provides a schematics summery of the life cycle of a star. It starts from enormous
gas and dust clouds. The existing hydrogen fuels the nuclear reactions in the core of the
star and causes the star’s brightness during its life-time. Eventually, hydrogen in the core
burns out and the star gets to the end of its life. Massive stars run out of fuel more quickly
than smaller stars and that is why their life-time are shorter. In the next phase, star can
either cool and cease to emit light or it will have a much more violent and energetic demise,
exploding as a supernova, dispersing its progenitor’s material into the interstellar medium
and leaving a dense neutron star or black hole behind [5].

Figure 4.6: The lifetime of a star. Credit: NASA

41



4.2.2 Supernova and Failed Supernova

Supernova is a luminous star explosion that occurs at the end of the star’s lifetime. The
progenitor of the massive star may either experience a gravitational collapse or explode
and then disappeared into Inter-Stellar Medium (ISM).
In fact, in an arbitrary star nuclear fusion pressure pushes the envelope outward, and
gravity pulls it inward, equality of these two forces keeps the star in a stable state. At the
end of the star’s life-time, gravity takes over, and the star collapses into either a black hole
or a neutron star (depending on the mass of the progenitor). It explodes and releases a
huge amount of energy (about 1051 erg, the amount of energy that a star emits in its whole
lifetime) which blows stellar material with the speed of about v = 30000 km/s (0.1c)7, this
derives a shock wave into surrounding ISM and sweeps up supernova remnants (gas and
dust) which can be ended up to form new stars.
The collapse triggers a powerful explosion of the outer layers. It appears as a supernova or
in another scenario the released gravitational energy can be deficient, and the star collapses
into a neutron star or black hole with little radiation energy. Stars with compact cores
fail to revive the shock wave propagated from the core, resulting in a failed supernova
and eventually black hole formation. Even if the bounce shock can not propagate, a small
amount of mass will be ejected due to core collapse, the gravitational mass of the core
will decrease by 10 % in a few time intervals (due to the neutrino emission). This sudden
loss of gravity will generate a sound pulse as a shock which propagates toward the star’s
surface and causes an ejection of the outer layer of star’s envelope. envelope. The ejecta’s
mass, kinetic energy and velocity depend on the progenitor types. For instance, Red super-
giant stars (RSGs) have feeble envelopes, which leads to a considerable amount of ejection
but with small velocity. The Wolf-Rayet stars (WRs) have compressed envelope leading
to lighter amount of ejecta with more velocity and Blue super-giant stars (BSGs) lie in
between. For more see table (4.1) [31, 66, 40].

Table 4.1: Mass, kinetic energy and velocity (
√

2Eej

Mej
) of ejecta for different type of super-

massive stars. adapted from Ref.[66]

Model Mej[M⊙] Eej[erg] eg[kms
−1]

RSG 4 2 ×1047 70
BSG-1 0.1 6 ×1047 800
BSG-2 0.05 2 ×1047 630

WR 5 ×10−4 3 ×1046 2000

7c=299 792 458 m/s is the speed of the light
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There are three phases in the model of the supernova remnants:
The first phase is called Free expansion phase in which shock evolved into Interstellar
Medium (ISM) like a shell until the mass density on the both sides of the shell will be equal.
In this state the star enters into the next phase named Sedov - Taylor phase in which
the mass of the swept-up ISM (on the outer side of the star’s shell) is equal to the ejected
stellar mass (on the inner side of star’s shell) then the star will enter to cooling phase in
which ions get their electrons back, the thermal pressure decrease, expansion slows down
and supernova remnants mixed into interstellar medium and SNR is no longer visible (see
Fig. (4.7)). Fig. (4.8) shows the evolution of the shock for BSG-1 model. The shock
evolves and until 103 years and then stops and cools down. Collision of the ejecta with
Circumstellar Medium (CSM) triggers emission (analogous to supernova remnants (SNR))
created by shock-heated gas which helps us to improve detectability.

Figure 4.7: Supernova explosion. Credit: NASA,ESA and hubble heritage
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Figure 4.8: the radius and velocity of the shock for BSG-1 model for different rate of mass
[66].

4.2.3 Black Hole in Astrophysics

Astronomers now acknowledge that the Universe contains a large number of black holes.
There are three different classes of black holes depending on their masses [60].

• Stellar black-holes
Mostly have masses about 10M⊙ and are formed by the gravitational collapsing
of large red giant stars into their centers and occur supernova explosions. Stellar
black hole radiation will fall within the frequency range detectable by ground-based
detectors (see Fig. (4.1)). Even though black holes (BH) are formed less frequently
than neutron stars (NS), the number of binary systems containing black holes and
neutron stars, or two black holes, is greater than that of neutron-star binaries since
neutron star binaries are much more easily fragmented in comparison with black
hole ones. In most cases, When a NS forms, it will lose a portion of its progenitor’s
mass, and now the companion star (which is rotating with the same speed as before)
is holding in the binary with fewer amount of gravitational attraction finally, the
binary will be broken. Whereas, in the case of forming black hole, the majority of
the original mass may fall into the hole, increasing the binary’s chance of survival.
Therefore, in the case of having a similar population of NS binaries and black-hole
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binaries in the Universe, one can detect NS coalescence much more frequently rather
than black-hole ones and the detection can also be done by first-generation detectors.

• Intermediate-mass black holes
The mass of the intermediate-mass black holes lies between 100M⊙ and 104M⊙. Due
to their weaker influence on nearby stellar motions, they can not be identified.

• Supermassive black holes
These black holes have masses between 106M⊙ and 1010.M⊙ and usually located in the
center of most galaxies (which at least are sufficiently near to ours to study) resulting
in having large population number. Gravitational radiation from supermassive black
holes coalescence is much more powerful than discussed black holes, the amplitude
is higher, but the frequency is lower (∝ 1/M , where M is the mass of black holes).
These galactic black holes can only be detected by detectors located in space (see
Fig. (4.1)).

4.2.4 Neutron Stars in Astrophysics

The collapsed core of a supergiant star with a total mass of between 10 and 25 solar
mass (or more if the star was particularly metal-rich) is what we refer to as a neutron
star. They known as one of the Universe’s smallest and densest classes of stellar objects.
When two neutron stars collide, they will exceed the Tolman-Oppenheimer-Volkoff limit 8

of ∼ 2.3 M⊙ and will collapse into a black hole and emit gravitational waves. The nuclear
matter becomes so heated by the collision that, at least initially, thermal pressure rises
to a critical level. The merger radiation can be predicted by numerical simulations using
theoretical equations of state, and the equation of the state’s underlying nuclear physics
assumptions should also be tested by observation. Comparing predicted waveforms with
what was observed could give some additional context to the equation of state [60].

4.2.5 Metallicity

Hydrogen and helium comprise the majority of regular physical matter in the Universe
and metallicity refers to enormous amount of elements which are heavier than hydrogen

8The Tolman–Oppenheimer–Volkoff limit (or TOV limit) is an upper bound for the mass of cold neutron
stars which are not rotating, known by Chandrasekhar limit for white dwarf stars. If the mass of the star
gets to the mentioned limit, it will collapse to a denser form of it such as a black hole [20].
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and helium in an astrophysical object. The majority of the elements (metals) in the Uni-
verse heavier than hydrogen and helium are created in the cores of stars as they grow.
The metals are gradually deposited into the environment by stellar winds and supernovae,
enriching the interstellar medium and supplying resources for forming new stars. As a re-
sult, older stars which formed in the early Universe, less-metal-rich Universe typically have
lower metallicities than younger stars that formed in the more-metal-rich Universe (late
Universe). Therefore astrophysically, stars and nebulae with considerably large amount of
heavier elements are referred to as metal-rich, and the ones with a lower amount of metals
are called metal-poor stars.
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Chapter 5

Modeling Bias Parameter for Binary
Black Hole Mergers as Tracers of
Galaxies based on Astrophysical
Properties

As mentioned in the last chapter, the discovery of gravitational waves by the LIGO-Virgo-
KAGRA (LVK) scientific collaboration has provided an opportunity to astronomers for
exploring the cosmos through the physics of coalescence of the compact objects like binary
systems of black holes (BBH), neutron stars (BNS) and neutron star-black hole (NSBH).
The GW measurements can provide new insight into answering questions such as: how the
merger rate evolved over cosmic time and how binary compact objects were populated in
galaxies. The study of GW sources can also shed light into the formation of binary compact
objects and how it relates to different astrophysical properties of their host galaxies such as
cosmic star formation rate (SFR), stellar mass, and metallicity. While the current obser-
vation of GWs due to the large sky localization errors have not yet provided a meaningful
connection between stellar properties and the population of various GW compact objects,
several numbers of population synthesis simulations [42] in this regard are forecasting a
promising future for the next generation of GWs observations.

In the project described in this chapter, we set out to investigate how specific astro-
physical models impact the population of GW sources as tracers of galaxy populations. In
particular, we will focus on BBHs and model the dependence of angular and 3-dimensional
power spectra for BBH GWs to the parameters in two observed galaxy surveys: GLADE+
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and Sloan Digital Sky Survey Data (SDSS) Release 7 catalogs [24, 19]. In doing so we have
also developed a numerical package that can easily be adopted to other galaxy surveys
(photometric or spectroscopic) and accommodate different astrophysical assumptions. We
are planning to make our code publicly available to scientific community in near future.

The following sections describe our theoretical prediction of the GW bias parameter
for different choices of galaxy properties. In section (5.1), we will provide a theoretical
scheme to compute the BBH merger rate and then demonstrate how it can be used to
evaluate the expected number of mergers in various redshift bins for a galaxy catalog
such as GLADE+. In section (5.2), we obtain mass distribution of black holes in BBH
mergers based on different astrophysical features such as metallicity and SFR distribution
for galaxies. Section (5.3), provides a prescription for modeling the probability of each
galaxy being the host of a merger event, considering the astrophysical features. Eventually,
in section (5.4), we will calculate the power spectrum for galaxies and sirens and evaluate
the bias parameter. The description of the two catalogs GLADE+ and SDSS DR7 that we
have used in our work, is written in Appendix (A).
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5.1 Expected number of Gravitational Wave Event

Detections for a Galaxy Catalog

The current models of astrophysics predict that the merger rate of gravitational wave
sources depends on different astrophysical properties such as redshift distance, Star For-
mation Rate (SFR) and delay time distribution (characterizing the time between the forma-
tion of stars and the merging of compact objects). In this section we describe a theoretical
scheme to calculate the BBH merger rate and then based on that forecast the expected
number of GW event sources in different redshift bins corresponding to a galaxy survey.

5.1.1 Binary Merger Rate

We model the dependence of the merger rate to astrophysics quantities as [51, 50]

RGW(zm) = A0

∫ ∞

zm

P (td)
dtf
dzf

RSFR(zf ) dzf , (5.1)

where zm, zf denote the merger and formation redshift, respectively. In the following, we
explain what each quantity corresponds to.
RSFR(zf ) represents the redshift-dependent star formation rate (SFR) density for which,
the analytically best-fit formula to observation can be written as [51, 50]

RSFR(z) = ψ(z) = 0.015
(1 + z)2.7

1 + [(1 + z)/2.9]5.6
M⊙ yr−1 Mpc−3. (5.2)

This Fig. (5.1) displays the agreement of the above formula to the observational data.
It has a growing phase, is peaked at z = 1.9 (approximately 3.5Gyr after the Big Bang)
and then decays exponentially in later epochs until present day and the trend seems to be
steady for higher redshifts as well [47].
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Figure 5.1: Star Formation Rate (SFR) from observational data. Image is adopted from
Ref. [47]. For more information on which observation each color corresponds to, see Table
1 the reference [47].

Next, A0 in Eq.(5.1) denotes the normalization factor such that the local merger rate of
gravitational wave sources at redshift zm = 0 matches the observed value RBBH = 23.9+14.3

−8.6

Gpc−3 yr−1 ( [12]). This implies

A0 =
RBBH∫∞

0
P (td)

dtf
dzf
RSFR(zf ) dzf

.

td = tm − tf in Eq.(5.1) characterizes the delay time between the star formation time, tf ,
and the black holes merger times, tm. P (td) quantifies the delay time distribution. While
there are numerous theoretical studies in this regard, the exact distribution of the delay-
time and the corresponding value of minimum delay time (td,min) is not well established.
Therefore, delay time distribution can be written to be of the form (see Ref. [47] for more
details)

P (td) ∝ Θ(td − td,min)t−κ
d , (5.3)

where Θ(t) is the Heaviside function. For td < td,min, the probability distribution will be
equal to zero, and as td crossed td,min and mixture of black holes from the stars formed at
zf will contribute to the merger redshift zm. κ is one of the free parameters of the model
that for now, we set to κ = 1. In this case, we can easily normalize the probability density
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P (td) which leads to

P (td) =
1

ln(td,max/td,min)
Θ(td − td,min)t−1

d , (5.4)

where td,max is the maximum possible delayed time, taken to be sufficiently large and in
the order of the age of the Universe in our models. Fig. ((5.2)) shows examples of the
delay time distributions considering three different values of td,min. Note that mentioned
measurements on κ, td,min are based on stochastic GW background and individual events
and can be measured more precisely in future [47].
Finally, dtf/dz in Eq. (5.1) is the standard change-of-coordinates Jacobian (relating time
to redshift) for which we must invoke the usual cosmological equations. We write the
lookback time to the formation as

tf =
1

H0

∫ zf

0

dz

(1 + z)E(z)
, (5.5)

where H0 is the Hubble constant and

E(z) =
√

Ωm0(1 + z)3 + Ωr0(1 + z)4 + ΩΛ + ΩK(1 + z)2. (5.6)

So the Jacobian terms is given by

dtf
dzf

=
1

H0

1

(1 + zf )E(zf )
. (5.7)
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Figure 5.2: Dependence of delay time distribution for three different values of minimum
delay-times, td,min, assuming power law decay with κ = 1.

In what follows, we will choose our fiducial cosmology to have vanishing curvature and
radiation density parameters (i.e. ΩK , Ωr ≃ 0) along with Ωm = 0.3, ΩΛ = 0.7, and
H0 = 70 km/s Mpc. Substituting these values and functions back in Eq. (5.1), we can
calculate the merger rate RGW for different values of td,min.
Fig. ((5.3)) displays merger rate calculation for different minimum delay times and different
values of κ. It can be seen that as expected by increasing td,min, on average merger events
take longer to occur, and the peaks of merger rates are moving to the lower redshifts.

Fig. ((5.4)) shows the sampled merger rate considering different delay-time which have
been fit by the merger rate curve and Kernel density estimation (KDE) for the sampled
merger rates. One can see an agreement between our sampling scheme based on the merger
rate function normalised as pdf and our KDE estimation from sample.

Top figure in Fig. ((5.4)) shows sampling from merger rate in Eq. (5.1) normalized to
a pdf with td,min = {100Myr, 500Myr, 5Gyr} and κ = 1. Smooth lines correspond to the
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underlying pdf for specific td,min. Bottom figure: Kernel density estimation (KDE) for the
sampled merger rates in the top figure.
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Figure 5.3: Merger rate RGW(z) for three different minimum delay times td,min =
{100 Myr, 500 Myr, 5 Gyr}. The red curve corresponds to the 5 Gyr minimum delay time,
the black curve is the 100 Myr minimum delay time, and the blue curve is the 500 Myr
minimum delay time. Different line styles correspond to different power law index κ.
Note that these curves have been normalized so that they coincide at redshift z = 0 and
RBBH = 23.9+14.3

−8.6 .
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Figure 5.4: Top figure: sampling from merger rate in Eq. (5.1) normalized to a pdf with
td,min = {100Myr, 500Myr, 5Gyr} and κ = 1. Smooth lines are merger rates for specific
td,min. Bottom figure: Kernel density estimation (KDE) for the sampled merger rates in
the top figure.
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5.1.2 Computing the Expected Number of Merger Events in Dif-
ferent Redshift Bins

To compute the number of mergers in each redshift bin, we can write

NGW (za) =

∫ za+∆z/2

za−∆z/2

dV

dz

RGW (z)

1 + z
Tobs dz, (5.8)

where za is the midpoint of bins labeled as a = 1, · · · , Nbins, Nbins is the number of bins
in redshift range of the galaxy survey, [0, zmax]. Width of each redshift bin is taken as
∆z = zmax/Nbins. Tobs is a constant value corresponding to the observation time and
depends on the running time of the GW detectors. The following is an example of using
this analytical framework to forecast the number of GW events for corresponding to a
galaxy survey.

The Expected Number of Merger Events in Redshift Bins Corresponding to
GLADE+ Catalog

As an example we estimate the number of merger events for the redshift depth of GLADE+
Catalog [0, zmax] = [0, 0.3]. Table (5.1) and Fig.((5.5)) illustrate the computed number of
mergers using Eq.(5.8) and dividing the redshift range into 6 bins (∆z = 0.05), assuming
the observing time of Tobs = 1. Fig. ((5.6)) displays how the host galaxies would be
distributed in a HEALPix map, if sirens were sampled from the catalog using a uniform
angular distribution.

55



0.00 0.05 0.10 0.15 0.20 0.25 0.30
z

0

10

20

30

40

50

60

70

80

N
G
W

NGW with tobs = 1 yr

Figure 5.5: Number of GW mergers, NGW , with the observation time of Tobs = 1 yr. The
other paramaters are set as κ = 1, td,min = 500 Myr and redshift bin sizes are ∆z = 0.05
in the interval of [0, zmax] = [0, 0.3].

Redshift bin NGW

0 ≤ z ≤ 0.05 1
0.05 < z ≤ 0.10 7
0.10 < z ≤ 0.15 19
0.15 < z ≤ 0.20 35
0.20 < z ≤ 0.25 56
0.25 < z ≤ 0.30 80

Table 5.1: Number of mergers in different redshift bins computed via Eq. (5.8) with the
observing time set as Tobs = 1 yr.
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Sampled siren catalog
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Figure 5.6: HEALPix map for the spatial distribution of sampled sirens which is discussed
in Fig.((5.5)) with observation time of Tobs = 1 yr.

5.2 Mass Distribution of Binary Black Holes

Now having the number of GW mergers in each redshift bin, we proceed to model their
mass distribution. We will first study a simple case, where all the implicit and explicit
dependencies on astrophysical properties, such as halo mass, metallicity, and star formation
rate are suppressed. Then we investigate what potential impacts they have, if they are not
suppressed.

5.2.1 Mass Distribution of Black Holes

To acquire the mass distribution of black holes, we begin with initial distribution of masses
for star population, i.e. the Initial Mass Function (IMF). The term initial refers to the
formation of stars from a parent gas cloud before any star evolution or merger occurs.
However, eventually this mass distribution of stars will translate into the distribution of
stellar compact objects that source the black hole population. The mass lost during the
formation of black holes from stars is denoted by the loss function. This loss function is
typically dependent on stellar winds since after the explosion of a star, some portion of the
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initial mass and the separated mass will be carried to the interstellar medium (ISM) by
the stellar winds.

Fundamental arguments indicate that the initial mass function (IMF) should change
with the pressure and temperature of the cloud in which star is forming, with higher
temperatures resulting in higher average stellar masses.
Here, we implement a phenomenological model in which all the physics, from star formation
to black hole black formation is encoded in only a few parameters. We start by assuming
the mass distribution of black holes mostly follows the same power-law behaviour as the
mass distribution of stars given by Kroupa IMF [44] and it is redshift independent,

ps(m)Kroupa ∝
{

0 m < mmin

m−αk m ≥ mmin

. (5.9)

The αk parameter differs for different mass ranges but for higher mass ranges is estimated
to be about 2.3 ± 0.7. The population of very low mass stars (< 0.5M⊙) may not follow
this distribution, but they are irrelevant to our study here and we set it to be zero since
for stellar black holes the minimum mass would corresponds to upper bound on mass of
neutron stars. In this work we take mmin to be greater than 5M⊙. Fig. ((5.7)) displays
mass distribution ps(m)Kroupa for slightly higher and lower values of αk.
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Figure 5.7: Black hole mass distribution for different values of αk.
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5.2.2 Distribution of Black hole Masses in BBH Mergers (Phe-
nomenological Modelling)

We will now further adjust the black hole mass distribution to model BBH mass distribution
at merger redshift taking into other theoretical constraints and observational evidence. We
have already imposed a lower bound on mass of stellar black holes as mentioned above,
we can also impose an upper bound, mmax, corresponding to the maximum mass scale
accessible to stellar black holes in their formation channels. The absolute expected cut-
off is to be set by the pair-instability supernovae process (will be explained soon) which
its exact values is still being studied but but it is expected to be higher than 45M⊙
[50, 30]. Observations from LVK collaboration [10] and population synthesis models [42]
also indicate a bump or pile up close to the pair-instability mass scale, which we model
with super-imposing a Gaussian peak on top of the stellar mass distribution [64, 65] as,

p(m) ∝ ps(m)Kroupa + λgNg(µg, σg), (5.10)

where λg, σg are free parameters and µg is so-called PISN mass. These parameters are
meant to capture the impact of pair-instability of supernovae and related to the physics
that happen from star formation to the merger state of black holes. If these parameters
are well fitted to observation and happen to be redshift dependent by observation, they
can provide valuable information about different formation channels of black holes. Fig.
((5.8)) shows examples of mass distribution probability (at merger redshift) p(m) with a
power law assumption and a Gaussian peak.
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Figure 5.8: Mass distribution in BBH mergers with a power law assumption and a Gaussian
peak.

5.2.3 Black Hole Mass Distribution at the Merger Redshift (Phys-
ical Modeling)

In last subsection we provided a phenomenological prescription for modeling the GW
sources, we know provide a more physically motivated prescription. In practice our nu-
merical package is equipped to implement both approaches.

As mentioned previously, present-day detection of GWs is a new and promising ap-
proach for inferring cosmological parameters. Although GWs can provide a good measure-
ment for luminosity distance of the GW source, individual measurements can not provide
the redshift information independently. However, if the population distribution of ob-
served BBHs depends on astrophysical properties of their environment then exploring the
redshift dependencies could lead to utilising GW data to break the degeneracy with other
astrophysical and cosmological quantities as well.

We now model the redshift dependence of the observed BBH events mass distribution
(at merger time) in the following way: first that the mass scale of pair-instability supernovae
(PISN) at formation time has metallicity dependence and then that the evolution of the
stellar metallicity itself is redshift dependent. Next since there is a delay time between
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formation and merger, at any redshift the merger distribution is mixture of BBH that were
formed at different redshift earlier.

It is worthwhile to start by answering this question first: what is the PISN mass?
The stellar evolution theories predict a mass gap in the black hole mass distribution due
to the mass loss of heavy stars during pair-instability supernovae process (PISN). These
studies anticipate this process to happen due to the over production of electrons-positrons
pairs and a follow up drop of the internal pressure. That will then lead to partial collapse
of the star which causes accelerated burning in a runaway thermonuclear explosion. Star is
eventually blown apart without leaving a compact remnant behind. The maximum stellar
BH masses is expected to range between 40 and 50 M⊙ which has been mostly consistent
with the current population of detected binary black holes with the absence of black holes
with masses more than 45M⊙. However, there maybe possible pathways to get a BBH
merger in the PISN mass gap. For example, the most massive stellar black hole discovered
to date is the primary of GW190521, with BHs with mass about 85+21

−14M⊙ and 142+28
−16M⊙

which is in the mass gap but a possible explanation to this is that it might have been pop-
ulated by the mergers of smaller black holes which assumed to be rare and subdominant.

All in all, the start of the mass gap in the stellar mass distribution due to the PISN
process is expected to be about 45M⊙ but change due to the stellar metallicity variation
with the rate about 7% in the interval Z = [10−5, 3× 10−3] [49]. The PISN mass scale can
also be affected by nuclear reaction rates with about 35% but since this parameter will not
evolve with redshift, it will not be relevant to our calculation. In our analysis, we follow
the approach taken in Ref. [42, 50] to model the redshift dependence of the PISN mass
scale as

MPISN(Z) = MPISN(Z∗) − αZ log10(Z/Z∗) (5.11)

where Z is the metallicity, αZ is a free parameter and based on the results obtained by
Ref. [30] Z∗ = 10−4 for MPISN(Z∗) = 45M⊙. If we do not have the metallicity information
for the host galaxy in the catalog we estimate it using the mean metallicity of the Universe
at each redshift by:

log10(Z(z)) = γz + ζ (5.12)

where ζ is the current metallicity of the Universe (at z = 0) and γ is a free parameter
capturing the redshift dependency.

Next, as noted before the mass distribution of merging black holes at redshift zm will
include contributions from black holes which were formed at earlier redshifts (z > zm) due
to non-zero delay-time. The sources at higher redshifts have lower metallicity leading to
larger PISN mass scales compared to the BHs formed at lower redshifts (see Eq. (5.11)).

61



In other words, we have modeled the black hole mass distribution in the source frame.
However, since each binary needs some time (so-called delay-time) to find its companion,
binaries merging at a particular redshift have formed at different redshifts (see Fig. (5.9))
[42, 50, 30]. In principle, we have time lapsed between the formation of a star and the
black holes and also individual black holes coming from different stellar-mass distributions
and redshifts as well. However, we neglect the time lapsed between the formation of a star
and the BH in comparison to the cosmic time scale of it to merge (which is a few hundred
Myr to Gyr) and also assume the formation redshift of the two parent stars are also close
compared to merging times.

Figure 5.9: A diagram showing how the redshift dependence of the PISN mass can con-
tribute to the mass distribution of the discovered GW events. Since delay time distribution
acquire a non-zero value above the minimum delay time, BHs created at various redshifts
can merge at the same redshift. Image adopted from Ref.[50].

For producing the observer frame mass distribution (onset of coalescence), we argue
[42]:

P(m(zm)) = W (m(zm))Ps(m) (5.13)
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where Ps(m) is the mass distribution of BHs at any redshift (Eq. (5.9)) and W (m(zm))
is the accumulated window function for allowed black hole masses in a binary system at
the merging redshift1. One way to understand the logic behind this equation is that at
a particular redshift(zm), the mass distribution of all BHs would be given by Ps(m(zm)).
Then the probability of some of these objects for merging in a binary system is taken into
account by W (m(zm)).

To calculate the window function, W (m(zm)), we make a convolution of source frame
window function at different formation redshifts as:

W(m(zm)) = N
∫ ∞

zm

Ptd(zm, z
′)Ws(m(z′))dz′ (5.14)

where Ws(m(z′)) is the mass window function in the source frame or basically allowed mass
range at each redshift. N is a normalization factor so that

∫
W(m(zm))dm = 1. Here we

set the allowed region of masses in the source frame to be from our assumed minimum
stellar BH mass value up to the PISN mass,

Ws(m(z′)) =

{
1 mmin ≤ m ≤MPISN

0 otherwise
(5.15)

Since the delay time distribution we had obtained in (5.3) was expressed as a function
of time difference between the formation and merger redshifts, td = tm − tf , and not the
redshift, we make a change of variables similar to Eq. ((5.1)), and rewrite equation ((5.14))
as:

W(m(zm)) = N
∫ ∞

zm

P (td)
dtf
dz′

Ws(m(z′))dz′ (5.16)

The window function in the observer frame or at merging redshift (Eq. (5.14)) is shown
in Fig. ((5.10)).

1In principle, Ps(m) can be redshift dependent as well and in that case, it should be convoluted in the
integration with the window function at the formation redshift.
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Figure 5.10: Window function, W(m(zm)) for different merger redshifts

Then we multiply these window functions with the source frame mass distributions
Ps(m) using Eq. ((5.9)) to get the mass distributions in the observer frame or at the
merger redshift. Plots in Fig. ((5.11)) exhibit the redshift dependence of W(m(zm)). For
simplicity we have also imposed an uppercut of mmax = 70, since the probability is negligi-
ble beyond that value. As can be seen, the sources with higher redshift and consequently
lower metallicity will have a larger PISN mass scale value. Fig. ((5.12)) shows how this
will impact P(m(zm)) the mass distribution in merger(observer) frame.

It is worth noting here that as we have described so far in our model SFR and metallicity
both can impact the merger population through the merger rate (5.1) and the BBH mass
distribution (5.11). In some galaxy surveys such as SDSS DR7, these two parameters are
measured for individual galaxies. For others like GLADE+, we can use Eqs. (5.12) and
(5.2) to model and calculate these two quantities.
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Figure 5.11: Mass distribution at merger(observer) frame at different merger redshifts
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5.2.4 Secondary Mass in Binary

While we have modeling the probability mass distribution of individual black holes that
are merging at zm, every BBH consists of two companion masses so it involves sampling a
primary black hole (m1) out of the distribution and a secondary black hole (m2) out of it
as well. To do this, we can take two approaches.

• In the first approach, the secondary mass distribution is following the primary mass
distribution but conditioned to be less than m1 (this is equivalent taking the con-
ditional probability to include a mass ratio between [mmin/m1, 1] from a uniform
distribution for the mass ratio as well). That extra condition however, makes the
secondary mass distribution different from the distribution of the primary mass as
shown in Fig. (5.13).

• In the other approach, we choose the conditional probability for m2 to include a
power-law with a positive index (βm2), minimum and maximum cuts as [mmin,m1].
Note that, here although a single m2 in a binary system is conditioned to be sampled
from a positive power-law distribution, the global distribution of m2 in all binaries,
more or less follows the the negative power-law of m1, see Fig (5.14). Finally, as-
suming βm2 = 0 is equivalent to acquiring option 1 to sample the secondary mass
of the binary since if we choose m2 from a power-law with zero index and between
[mmin,m1], we are only conditioning m2 to be less than m1 (which is confirmed by
sampling in Fig. (5.14)).
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5.3 Assigning galaxies to the possible hosts of sirens

In the previous sections, we provided a model for mass and redshift dependence of BBHs.
We now like develop a framework to calculate their distribution among galaxies based
on astrophysical properties. In other-words obtain probably functions for identifying host
galaxies. We will then implement them in our code that utilizes these probabilities as the
chance of a galaxy being selected as the host. We call these probability functions galaxy
selection functions.

5.3.1 1 Dimensional Selection Function

We first consider the galaxies selection functions for different properties to be independent
of each other and each be a power low comprised of five parameters as

P (g) ∝


0 g ≤ gmin

gα gmin ≤ g ≤ g∗

gβ gα∗
gβ∗

g∗ ≤ g ≤ gmax

0 g ≥ gmax

. (5.17)

where g would be an astrophysical feature of a galaxy such as mass, metallicity, or star
formation rate (SFR). Powers α and β are assumed to be positive and negative respectively
and gmin, gmax, g∗ represent the cut off values and transition scale from monotonically
growing to decaying for the corresponding feature.

Fig. ((5.15)) displays the schematic behaviour of the selection function in Eq. ((5.17))
if g is chosen to be the mass of the galaxies. It also portrays the performance of our
sampling scheme in our code. In this example we have taken the galaxies from GLADE+
catalog.
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Figure 5.15: The selection function is from Eq. (5.17) where g is the mass of galaxies,
mmin = 2 × 1010M⊙ , m∗ = 5 × 1010M⊙, mmax = 8 × 1010M⊙ , α = 1, and β = −1. The
number of samples is 80000 out of 3689580 galaxies.

5.3.2 3 Dimensional Selection Function

In previous subsection we assumed the galaxy selection functions for different astrophysical
features are independent from each other. However, in principle, these properties are not
independent. Therefore, we equip our code to accommodate the probability of selecting
a host galaxy with mass (M), star formation rate (SFR) and metallicity (Z) as a joint
probability P (M,SFR,Z). The joint probability can be split in multiple conditional prob-
abilities depending on specific astrophysical models. For example it can be implemented
in our code in the following is:

P (M,SFR,Z) = P (M |SFR,Z)P (SFR,Z) = P (M |SFR,Z)P (SFR|Z)P (Z) (5.18)

Or if we assume M , SFR, and Z are independent, the joint probability reduces to

P (M,SFR,Z) = P (M)P (SFR)P (Z), (5.19)

where we can take P (M), P (SFR), and P (Z) to follow the selection functions provided in
(5.17). We tested the joint probability sampling package for independent selection functions
to make sure our code is reliable. The results for joint probability, taking into account mass
dependent, while assuming uniform prior on SFR and metallicity are shown in Fig. ((5.16)).
The figure is for galaxies with real masses from GLADE+ galaxy catalog. The GLADE+
galaxy catalog does not have metallicity and SFR information, so we artificially produced
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some random metallicity. The SFR can be also calculated by Eq ((5.2)). Now we have a
selection function that enable us to choose the host galaxies based on their astrophysical
properties such as SFR, Mass and metallicity.
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Figure 5.16: The selection function is from Eq. (5.19). For the mass selection mmin = 0M⊙,
m∗ = 5×1010M⊙, mmax = 10×1010M⊙, α = 1, and β = −1. For SFR and metallicity part
α = β = 0 with no cutoff which basically means random selection. Here the considered
redshift bin of the galaxy catalog here is 0.25 < z ≤ 0.30. The number of samples is 80000
out of 3689580 galaxies.
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5.4 Modeling GW Bias Parameter for Angular Power

Spectra through GLADE+ Catalog

In this section, we will make theoretical modeling of the GW bias for angular power Spectra
and apply it to GLADE+ catalog. This will involve producing a masked density map to
get a more uniform galaxy map and to manage the shot-noise, then calculating 2D power
spectrum for both galaxies and sirens with and without shot-noise subtraction. We will
finally obtain the GW bias parameter for GLADE+ catalog. In next section, we will model
GW bias for 3D power spectra for galaxies and sirens for the SDSS Dr7 catalog and then
calculate bias parameter.

5.4.1 Density Map

Given a galaxy catalog such as GLADE+ (Appendix.(A)), we can use our prescription in
the previous sections to sample the galaxy hosts of the expected number of GW sources
(sirens), Na

GW , in a redshift bin (denoted as a) out of it. We can then compute the redshift-
bin density map by computing the over-density in each pixel with label i, as

δaGW,i =
Na

GW,i

N̄a
GW

− 1, (5.20)

where Na
GW,i is the number of sirens in the pixel i of the redshift bin a. N̄a

GW is the
redshift bin-specific average number of sirens a pixel. The average is computed from
N̄a

GW = Na
GW/(npix × fsky), where Na

GW is the total number of mergers in each redshift bin
and npix is the number of pixels, determined by npix = 12N2

side in the Hierarchial Equal
Area isoLatitude Pixelization (HEALPix)2 language [35].
By prescribing an over-density to each pixel, we can generate a density map rather than a
position map 3 which was previously shown for random host selection (not applying galaxy
selection functions) in Fig. (5.6) . As can be noted there the expected number of GW
events per year is too low to produce a meaningful power spectrum for sirens. Therefore,
we amplify the number of sirens by a constant factor (NGW (za) → 104NGW (za)) in all the
redshift bins [za−∆z/2, za + ∆z/2]4. The left panel of Fig. (5.17), shows a density map of

2https://healpix.sourceforge.io/
3When we were making these plots initially for the first version of GLADE+, we discovered a bug in

the catalog which has since been fixed!
4Note that since we multiply each number by a constant number, this is effectively the same as increasing

the observation time by that factor.
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the galaxy catalog in a HEALPix plot for the redshift bin 0.1 ≤ z ≤ 0.15 while the right
panel of Fig. (5.17) shows the density map of the GW catalog for the same redshift bin,
and with the “jacked up” number of sirens from the ones computed in Section (5.1.2). As
expected, the GW density map in the right panel is a just more grainy and less-smooth
version of the density map in the corresponding redshift bin of the GLADE+ catalog since
no galaxy selection function is applied.

Density map of galaxy catalog for 0.1 ≤ z ≤ 0.15

-1 22.0031

Density map of sampled siren catalog for 0.1 ≤ z ≤ 0.15

-1 65.2259

Figure 5.17: Left panel: HEALPix map for the density map of galaxies in the GLADE+
catalog in the redshift bin 0.1 ≤ z ≤ 0.15. Right panel: HEALPix map for the density
map of (amplified) sirens in the GLADE+ catalog in the redshift bin 0.1 ≤ z ≤ 0.15 for
an observation time of Tobs = 104 yr. Both figures are produced with Nside = 128 for
demonstration purposes.

5.4.2 Binary Mask

Since the GLADE+ catalog is composed of several various galaxy surveys, we construct a
binary mask to mask over the remaining incomplete regions and the galactic plane. Fig.
(5.18) shows the two maps in question. The left panel corresponds to a HEALPix map
of the full GLADE+ catalog across all redshifts with Nside = 512, while the right panel
corresponds to a HEALPix map generated with Nside = 256 so that the mean number of
galaxies inside non-empty pixels5 was about ∼ 32. In this binary map, we have taken the
pixels with no galaxies to have a density equal to 0, and pixels with galaxy counts less
than a threshold amount of 15 to have a density equal to 1 (we are also masking bright

5This is with the goal of having an average of about ∼ 25 galaxies in non-empty pixels so that a pixel
with zero galaxies is a 5σ fluctuation, where σ =

√
N̄gal is the mean in Poisson statistics.
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parts). This was chosen so that the galactic plane and the brighter regions in the map are
masked out.

Density map of full GLADE+ catalog with Nside = 512

-1 9.25507

Mask of full GLADE+ catalog with Nside = 256

0 1

Figure 5.18: Left panel: HEALPix map of the full galaxy catalog with Nside = 512. Right
panel: HEALPix map of the binary mask with Nside = 256. The resolution was chosen so
that the mean number of galaxies inside a non-empty pixel was given to be ∼ 32. The
threshold amount of galaxies in the mask was 15 so that the galactic plane and the middle
“strip” in the upper middle part of the map is sufficiently masked.

After producing the map, we use the healpy.ud_grade() method to increase the res-
olution of the mask to match the resolution of the density map. By multiplying the mask
to the map, we produce the masked density map. Hence to produce redshift-binned power
spectra, we multiply the density map in each redshift bin with the full-survey mask.

5.4.3 Shot Noise

We compute the shot noise associated with each sample of galaxies/GWs via

σ2
n,X =

1

nX

, (5.21)

where X is a label for either galaxies or GWs and nX is the number density. Recall that
the definition of number density function was taken to be (suppressing any redshift labels
since we will be working with the first redshift bin temporarily):

nX,i =
NX,i

N̄X

− 1, (5.22)
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where i is the pixel label and NX,i is the number of galaxies/GW samples in the corre-
sponding pixel. N̄X is the average number of galaxies/GW samples in an unmasked pixel,
ie. the pixels where the binary map has a value of 1. Note that, we must consider the
fraction of the sky that remains after masking. In other words, we introduce a sky fraction
parameter f defined through the pixels of the mask via

f =
non-zero pixels

total pixels
, (5.23)

and then can write

N̄X =
NX,tot

fnpix

, (5.24)

where npix is the total number of pixels in the HEALPix map, and f is the sky fraction
defined by the binary mask. We can now perform a sanity check to see our shot noise
subtraction behaves well by setting the various parameters of the model to a base model
case with no mass sampling or metallicity selection. We label this model as the fiducial
model and the values for the relevant model parameters can be found in Table (5.2).

Model parameter Value

zmax 0.3
Nbins 6
Tobs 104 yr
td,min 500 Myr
Nthresh 15
nside,map 512
nside,mask 256

Table 5.2: Fiducial values for the simple model parameters. Note that we take zmin = 0 to
be fixed across all models so that the redshifts considered are z ∈ [0, zmax].

We can compute the shot noise for both galaxies and sirens, Fig. (5.19) shows angular
power spectrum for large values of the multipoles, ℓ, converges towards the computed shot
noise as expected. In what follows in the next section, we will subtract this shot noise out
and compute the relationships between the two bias parameters involved.
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Figure 5.19: Left: Corrected cXX
ℓ for the first redshift bin in the fiducial scenario. The

dashed lines represent the theoretical estimate for shot noise. Right: Corrected cXX
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the first redshift bin with the theoretical shot noise term subtracted off.
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Figure 5.20: Bias parameter in the first redshift bin of the fiducial model.

The left panel of Fig. (5.19) shows the corrected form of cℓ, with the sky fraction
divided off of the masked cℓ outputs. The dashed lines represent the theoretical estimates
for shot noise, which seems to match much better with the asymptotic behaviour of the
cℓ’s for high ℓ-values. However, the cℓ for sirens still ends up dipping below the shot noise
line. The right panel of Fig. (5.19) shows the resulting cℓ’s with the theoretical estimate of
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shot noise subtracted off. For low ℓ there is excellent agreement as expected. Also dividing
the two subtracted angular power spectra, we obtain the ratio of the bias parameters GW
sources to galaxies, b2GW/b

2
g be one (shown in Fig. (5.20)) as theoretically expected since

we have not applied any galaxy selection functions at this point.

5.4.4 Theoretical Error Estimation for Angular Power spectrum
and Bias

When the variables in a function represent the values of observational measurements, their
measurement uncertainties propagate due to the combination of variables as a result. If
we assume Poison-sampling from a Gaussian density field for both galaxies and sirens is a
good approximation then the expected error for bin-averaged power spectrum is given by
standard theoretical Gaussian errors, i.e.:

σCl,gg
=

√
2C2

l,gg

(2l + 1)∆lfsky
(5.25)

σCl,ss
=

√
2C2

l,ss

(2l + 1)∆lfsky
(5.26)

where l, and ∆l are the center and the width of the bin and fsky is the sky fraction.
For analytical calculation of the error for bias in previous subsection, we have used the
following error propagation scheme:

σbias =
√

2

√
(

1

Cl,gg

)2σ2
Cl,ss

+ (
Cl,ss

C2
l,gg

)2σ2
Cl,gg

− 2
Cl,ss

C3
l,gg

cov(Cl,ss, Cl,gg) (5.27)

where cov is given by:

cov(Cl,ss, Cl,gg) =
Cl,ggCl,ss + C2

l,gs

(2l + 1)∆lfsky
(5.28)

5.4.5 Testing Gravitational Wave Bias Calculation for Uniform
Galaxy Selection Functions

Having tested our shot noise subtraction, we continue to further test the sensitivity of
our bias calculation to different parameters compared to the fiducial model with uniform
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selection function on the survey. The ratio of the bias parameters squared for the mergers
and the galaxies as a function of the multipole moments ℓ with different astrophysical
parameters are plotted out in the following. All the plots will have the fiducial model
as the top panel. Fig. (5.21) is with redshift bin size variation, Fig. (5.22) is with the
masking threshold changed (note that this is the only scenario where the sky fraction is
different), Fig. (5.23) is with Tobs-variation, Fig. (5.24) is with κ-variation in the delay
time distribution, while Fig. (5.25) is with td,min-variation in the delay time distribution.
Interestingly enough, the final panel of Fig. (5.25), corresponding to a minimum delay time
of td,min = 10 Gyr has cℓ’s in the final redshift bin that are very spurious in the intermediate
ℓ-values. The siren count corresponding to this bin is a whopping 2947, which could be
why the spectrum gets shot noise dominated early on. As one can see by enhancing the
minimum delay time, the number of mergers allowed in higher redshift bins decreases (since
binaries do not have enough time to merge). Therefore, the power spectrum for sirens at
higher redshift bins become shot-noise dominated much faster than at lower redshift bins
due to the small sample size.
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Figure 5.21: Fixed cGWGW
ℓ /cggℓ for various number of redshift bins. The right colour bar is

in redshift, with yellow being the highest and blue being the lowest. Top: 6 redshifts bins
with size ∆z = 0.05 (fiducial model). Middle: 12 redshifts bins with size ∆z = 0.025.
Bottom: 3 redshifts bins with size ∆z = 0.1. All other parameters were taken to be their
fiducial values.
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Figure 5.22: Fixed cGWGW
ℓ /cggℓ for different masking thresholds. The right colour bar is

in redshift. Top: Fiducial model with a masking threshold of 15. Bottom: Masking
threshold of 40.
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Figure 5.23: Fixed cGWGW
ℓ /cggℓ for different observation times Tobs in Eq. (5.8). The right

colour bar is in redshift. Top: Fiducial model with an observation time of Tobs = 104 yr.
Bottom: Observation time of Tobs = 103 yr.
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Figure 5.24: Fixed cGWGW
ℓ /cggℓ for different scaling κ in the delay time distribution Eq.

(5.4). The right colour bar is in redshift. Top: Fiducial model with κ = 1. Second:
κ = 0.2. Third: κ = 2. Bottom: κ = 3.
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Figure 5.25: Fixed cGWGW
ℓ /cggℓ for different minimum delay times td,min in the delay time

distribution Eq. (5.4). The right colour bar is in redshift. Top: Fiducial model with
td,min = 500 Myr. Second: td,min = 100 Myr. Third: td,min = 1 Gyr. Bottom:
td,min = 10 Gyr.
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5.4.6 Bias Calculation for Non-Uniform Galaxy Selection Func-
tions

We now turn on the host galaxies selection functions for mass and SFR based on Eq. (5.17)
and will compare the result to the fiducial model in Table.(5.2). Fig. (5.26) shows the ratio
of biases squared for fiducial model in which we set α, β = 0 for all parameters such as
SFR, M and metallicity (see Eq.(5.17)). This means BBH hosts are selected randomly and
it seems reasonable for the ratio to be about one for smaller values of ℓ ≤ 1000, where it
can be interpreted as a uniform sampling of host galaxies.

Fig.(5.27) presents the effect of turning on the mass selection function on the bias
parameter. We have tested 3 versions of mass selection, with αM = −βM = 1 and M∗ =
5, 10, 100×1010M⊙. Error bars are theoretically calculated using (5.27), using the analytic
Gaussian covariance for the angular power spectrum and Taylor series error propagation.
For all 3 selection functions, we find that the ratio of the GW auto-correlation and the
galaxy auto-correlation significantly increases at low redshift (i.e. the bias becomes greater
than one). The results interestingly show that there is a clear redshift dependency due
to using mass selection function on the bias and deviation from unity which we observed
in the fiducial model. The increase in bias is statistically significant and the one sigma
error bars for different redshift bins in figure (5.27) largely do not overlap with each other
but it is harder to differentiate it from uniform sampling in the sixth redshift bin. To
see the mass dependence trend better, we have plotted the the ratio of angular power
spectra for three different mass selection functions in the 6th redshift bins in Fig.(5.29).
The blue-dashed line shows the bias for the model where sirens are randomly selected.
The bias is consistent with one within error bars for this model as expected. Orange, red,
green lines are showing the bias for selecting the host of sirens based on different values of
M∗ = 5, 10, 100× 1010M⊙ and αM = −βM = 1. One can see that the biases deviate from
one and it increases with M∗ which is consistent with saying if BBH are more probable
to be hosted in more massive galaxies, they are also more clustered. As pointed out our
result also indicate a redshift dependence for bias i.e. fixing the stellar mass selection, the
GW bias is higher at low redshift (see Fig. (5.27)). This suggests that bias increases at
lower redshift for fixed stellar mass distribution. This is a somewhat surprising result, as
our expectation from previous works is that at a fixed stellar mass, bias should increase
toward higher redshifts. For instance, figure 5 in [17] shows that at fixed stellar mass bellow
1011M⊙, halo mass increases slightly towards higher redshifts. So for galaxies in that range
one expects that bias increases monotonically at higher redshift. However, since we are
not just fixing the stellar mass and choosing a distribution peaked at M∗ but normalized
over the survey the impact is more subtle. We are planning to further investigate this in
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the follow up work.

Fig. (5.28) also presents the effect of turning on the SFR selection function. However,
since Glade+ catalogue does not have SFR information, all the galaxies in the same redshift
bin are assigned the same mean value and sampling based on SFR does not have any effect
on bias ratio (see fig (5.28)). Therefore, in this analysis we conclude that bias can be
indicative of the astrophysical properties of the host galaxies in this case their masses.
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Figure 5.26: The bin-averaged bias parameter for fiducial model with parameters men-
tioned in Table.(5.2) in different redshift bins. Here α, β = 0 which means sirens are
randomly selected out of galaxies.
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Figure 5.27: The bin averaged bias parameter comparison for GW sirens selected using
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α, β are parameters in Eq.(5.17). Error bars are theoretically calculated using (5.27), using
the analytic Gaussian covariance for the angular power spectrum and Taylor series error
propagation.
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Figure 5.28: Bias Parameter comparison for GW sirens selected using star formation rate,
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in 6 different redshift bins. α, β are parameters in Eq. (5.17).
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5.5 Modeling GW Bias based on 3 Dimensional Power

Spectra through SDSS DR7

In this section, we will present theoretical modeling of the GW bias for 3D power Spectra.
We calculate 3D power spectrum (for both galaxies and sirens with shot-noise subtraction)
and bias parameter for SDSS DR7 catalog.

5.5.1 3D Power Spectrum

The redshift and angular position of observed galaxies are provided in a redshift survey. The
redshift is directly related to the galaxy’s radial distance linearly, using the Hubble’s law at
low redshift, and using the co-moving distance Eq. (2.34) at high redshift. Therefore, if we
measure galaxies’ redshifts, we can measure their clustering in three dimensions. Redshifts
are recession velocities and contain both a cosmological component from the expansion of
the Universe and a peculiar velocity component (from large-scale radial velocities induced
by the matter distribution). Since velocities are correlated with densities, galaxy clustering
along the redshift-space direction will be distorted, with the apparent density increased
along the line of sight due to galaxies moving closer to an overdensity (see [41] for more
details). This anisotropic clustering can be expressed as a function of wavenumber and
angle, or by computing the multipoles of the galaxy power spectrum. Due to the reflection
symmetry of the galaxies, only even multipoles survive; the monopole (P0) represents
the spherically averaged part of the power spectrum, whereas the quadrupole (P2) and
hexadecapole (P4) represent the redshift space distortion part. In this work, rather than
using the multipoles, we use a spherically averaged power spectrum.

5.5.2 Gaussian Error Bar for Power Spectrum

We calculate errorbars analytically assuming Gaussian random field, neglecting the smaller
contribution from the connected four-point function and super sample covariance [46].
Furthermore, we haven’t included the effects of the window function. The Gaussian piece
can be written as

CG
ij =

1

Vw

2π

Vki
2P (ki)

2δkij, (5.29)

where k is the wave number, P (ki) is the power spectra, Vki = 4πk2i δki, Vw is the survey
volume and δkij = 1 and δki is the bin width, if ki = kj in the bin width. In the following
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sections, we will use Eq.(5.29) for producing error bars corresponding to galaxy and siren
power spectra. We have checked that these theoretical error bars agree with the jacknife
error bars from Ross et al paper [59] within 20%. We measured error bars for the bias by
creating 100 new samples of the sirens with different random seeds, and re-measuring the
bias for each case. The error bars is the standard deviation of these 100 samples.

5.5.3 3D Power Spectrum for Sloan Digital Sky Survey (SDSS)
Data Release 7

In this section, we will calculate 3 dimensional power spectrum for SDSS DR7 catalog. We
consider all the cuts mentioned in Appendix.(A) except for the cuts on color information.
We take the fiducial model to correspond to the parameters described in Table (5.4) for
the rest of this section. Note that since the number of sirens are much fewer than galaxies
in each bin for order of one year or even a decade of observing time, we multiply the
number of sirens with amplitude=1000 or in other words take Tobs = 103years to obtain a
meaningful theoretical prediction. We calculate the number of mergers in each redshift bin
using Eq. (5.8) then we aim to populate the potential host galaxies with binary mergers
using astrophysical properties such as metallicity, stellar mass and star formation rate
(SFR) as mentioned in sections (5.2) and (5.3). Once again, we will first test the fiducial
model with α, β = 0 in Eq. (5.17), meaning assuming uniform distribution for selection
of the GW hosts out of the galaxies in the survey. This will allow us to check and ensure
that the code is working properly. Fig. (5.30) shows the 3D power spectrum for galaxies
in redshift bin 0 < z ≤ 0.1. Table (5.3) shows the number of sirens in that redshift bin but
in two mass bins. Note that, by mass bins we mean binning based on the chirp mass (4.20)
which can be calculated using the masses of the two bodies in the binary. Fig. (5.31) shows
the 3D power spectrum of the sirens in this redshift bin and the two different mass bins.
Note that, the second mass bin is about two times larger than the first mass bin since for
equal partition, number of sirens in the second mass bin will be much fewer than the first
one and bias becomes more noisy consequently.
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Redshift Mass Number of sirens

0 < z ≤ 0.1 4M⊙ ≤ mch < 9M⊙ 6085
0 < z ≤ 0.1 9M⊙ ≤ mch < 34M⊙ 2187

Table 5.3: Number of sirens in the redshift bin 0¡ z ≤ 0.1 for two mass bins (chirp mass).
Note that since the number of sirens are much fewer than galaxies in each bin for order
of one year or a decade of observing time, we multiply the number of sirens with ampli-
tude=1000 or in other words take Tobs = 103years.

Model parameter Value

zmin 0
zmax 0.2
Tobs 103yr

td,min 500 Myr
number of redshift bins 2

number of mass bins 2
κ 1

Table 5.4: Parameter for fiducial model.
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Figure 5.30: 3D power spectrum for galaxies in redshift bin 0 < z ≤ 0.1 . The error bars
are calculated by Eq.(5.29).
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Figure 5.31: 3D power spectrum for sirens in redshift bin 0 < z ≤ 0.1 and mass bins
(4M⊙ ≤ mch < 9M⊙ , 9M⊙ ≤ mch ≤ 34M⊙). The error bars are calculated using
Eq.(5.29). Random selection is used for choosing host galaxies.

Figure (5.32), displays the calculated estimate of the bias squared ratios in different
mass bins in this redshift bin as function of scale. The difference from one is not statistically
significant, as expected for random selection of host galaxies.

0.0 0.1 0.2 0.3 0.4

k [h Mpc−1]

0.4

0.6

0.8

1.0

1.2

P
gw

gw
k

/P
gg k

Random Selection

0 < z ≤ 0.1 , 4M� ≤ mch < 9M�
0 < z ≤ 0.1 , 9M� ≤ mch ≤ 34M�

Figure 5.32: Bias parameter in redshift bin 0 < z ≤ 0.1 and mass bins (4M⊙ ≤ mch < 9M⊙
, 9M⊙ ≤ mch ≤ 34M⊙). Random selection is used for choosing host galaxies.
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Now we use the selection functions according to Eq.(5.17) to choose the host galaxies.
Figure (5.33) shows the 3D power spectrum of sirens for the same redshift bin and mass
bins as before but we have now set αM = 1, βM = −1 and M∗ = (10, 56)× 1010M⊙. This
means we are sampling the host galaxies based on their masses and specially from more
massive galaxies in the survey but we are considering uniform distribution on SFR and
metallicity. Figure (5.34) shows the resulting impact on the siren bias compared to the
galaxy bias. It is evident that the bias deviates from one (corresponding to the random
selection case) and it increases by enhancing the mass of the host galaxies. This means
that the distribution of host galaxies is getting more clumped if we select more massive
galaxies. These difference are statistically significant, especially once we average over k
bins. The scatter in the bias is smaller than the size of the error bars which could be due
to the covariance between the bins (due to the small k width of the bins compared to the
scales couple by the window). Analyzing and understanding these errors further is also
part of our follow up works. However, we can see that the bias is clearly deviating from 1
specially for M∗ = 56 × 1010M⊙. So that we can conclude that the theoretically GW bias
can be a statistical indicative of mass properties of the host galaxies.
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Figure 5.33: 3D power spectrum for sirens in redshift bin 0 < z ≤ 0.1 and mass bins
(4M⊙ ≤ mch < 9M⊙ , 9M⊙ ≤ mch ≤ 34M⊙). The error bars are calculated by Eq.
(5.29). Here we have considered αM = 1, βM = −1, M∗ = 10 × 1010M⊙(right plot) and
M∗ = 56 × 1010M⊙ (left plot) in Eq. (5.17).
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Figure 5.34: Bias parameter for redshift bin 0 < z ≤ 0.1 and mass bins (4M⊙ ≤ mch < 9M⊙
, 9M⊙ ≤ mch ≤ 34M⊙). Here we considered αM = 1, βM = −1 and M∗ = (10, 56)×1010M⊙
in Eq. (5.17).

Next, we turn on the SFR selection function using again Eq.(5.17) to choose host
galaxies, while considering uniform distribution on mass and metallicity. Figure (5.35)
shows the 3D power spectrum of sirens for same redshift bin and mass bins as before but
we have now set αSFR = 1, βSFR = −1, SFR∗ = 4 × 1011 M⊙ yr−1 Mpc−3. Figure (5.36)
displays the impact of SFR selection function on bias for host galaxies. We can observe
that taking into account the one standard deviation error, bias equal to 1 is excluded for
the SFR selected sample. In particular since the host galaxies are now taken from galaxies
with lower SFR than the average (in our sample SFRave ∼ 6× 1011 M⊙ yr−1 Mpc−3) they
are more clustered than the random selection case.
We will end this chapter by noting that in principle as discussed before, one can use joint
probabilities and vary both SFR and mass which together with the scale dependence of
bias can break the degeneracy for their impact on clustering of the host galaxies.
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Figure 5.35: 3D power spectrum for sirens in redshift bin 0 < z ≤ 0.1 and mass bins
(4M⊙ ≤ mch < 9M⊙ , 9M⊙ ≤ mch ≤ 34M⊙). The error bars are calculated by Eq. (5.29).
Here we considered αSFR = 1, βSFR = −1, SFR∗ = 4×1011 M⊙ yr−1 Mpc−3 in Eq. (5.17).
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Figure 5.36: Bias parameter for redshift bin 0 < z ≤ 0.1 and mass bins (4M⊙ ≤ mch <
9M⊙ , 9M⊙ ≤ mch ≤ 34M⊙). Here we considered αSFR = 1, βSFR = −1, SFR∗ =
4 × 1011 M⊙ yr−1 Mpc−3 in Eq. (5.17).
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Chapter 6

Conclusion

In this thesis, I briefly reviewed the theory of standard cosmology and the bases of the
general theory of relativity needed to describe the background evolution of cosmose in
chapter (2). I then moved on to introduce some important concepts in theory of large
scale structure and statistical cosmology such as power spectrum and bias parameter in
chapter (3). In chapter (4), I presented the primer to physics and observational status of
Gravitational Waves from Merging Compact Binaries.
Chapter (5), summarizes my research contribution during my master’s program which
aimed at constructing a framework for making theoretical prediction of the GW bias pa-
rameter for different choices of galaxy properties using both Spec-z and Photo-z galaxy
catalogs. We investigated the effect of astrophysical models on properties of GWsources as
tracers of galaxy populations. We first explored how one can model the mass distributions
and redshift dependence of GW sources based on their merger rate. We then studied how
different astrophysical properties of galaxies (such as metallicity, mass and star formation
rate density) can affect their probability to be host of a merger event. Finally we put for-
ward computational scheme to calculate the dependence of the angular and 3-dimensional
power spectra of GWs and the corresponding bias parameters to the parameters of these
models. Our work is currently tailored for observed galaxy population in GLADE+ and
Sloan Digital Sky Survey Data (SDSS) Release 7 catalogs but it is easily extendable to
other catalogs. Note that this work is just one part in a more ambitious program of using
the upcoming GWs data and galaxy surveys in a meaningful way to infer cosmological
and astrophysical parameters. After numerous sanity tests, our result in chapter (5) show
that our codes are all working and communicating well. In fact, we have some preliminary
results that indicate how astrophysical parameters such as mass and SFR of host galaxies
can systematically affect the bias parameter. As can be seen in chapter (5), if we increase
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the mass of GW event host galaxies or decrease their SFR, the bias increases and deviates
from one (expected to be one for random selection case) which agrees with host galaxies
being more clustered in these cases than the case of random selection. More over the scale
dependence of bias can distinguish between these two effects. Our code is easily extendable
to different prescriptions for populating the GW host galaxies.
In this research, the following two different galaxy catalogs were used:

• GLADE+ which does not include SFR and color information (metallicity) of galaxies.
In this case we used best-fit models to compute them. 2D angular power spectrum and
bias parameter are presented in chapter (5). The result indicated some dependency
between bias and the available astrophysical property namely mass. However, we
need to construct more realistic models to test the connection between galaxies and
binaries.

• SDSS ER7 catalog has all the necessary astrophysical properties. Our result at this
point shows how clustering of host galaxies impacts the GW bias parameter for 3D
power spectrum.

Future works can be summarized as following:

• Exploring different assumptions in the astrophysical modelling of the binary synthesis
module and selection function.

• Exploring the impact of BBH masses on the hosts astrophysical properties and how
it will impact GW bias.

• One long-term objective can be once GW bias is better understood it can be used to
optimise the statistical inference cosmological parameters such as H0 based on cross
correlation of sirens and galaxy surveys.

• Exploration of the GW bias parameter for different galaxy completeness scenarios.

• Measurability of the signal from current and the next generation GW detectors.

• Comparison of the GW bias parameters for Primordial BHs and Astrophysical BHs.
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[29] Albert Einstein. Über Gravitationswellen. Sitzungsberichte der K&ouml;niglich
Preussischen Akademie der Wissenschaften, pages 154–167, January 1918.

[30] R. Farmer, M. Renzo, S. E. de Mink, P. Marchant, and S. Justham. Mind the gap:
The location of the lower edge of the pair-instability supernova black hole mass gap.
The Astrophysical Journal, 887(1):53, dec 2019.

[31] Rodrigo Fernández, Eliot Quataert, Kazumi Kashiyama, and Eric R Coughlin. Mass
ejection in failed supernovae: variation with stellar progenitor. Monthly Notices of the
Royal Astronomical Society, 476(2):2366–2383, 2018.

[32] Dave Finley. ”einstein’s gravity theory passes toughest test yet: Bizarre binary star
system pushes study of relativity to new limits”.
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A Rüdiger, B Sassolas, B Sathyaprakash, R Schnabel, C Schwarz, P Seidel, A Sintes,
K Somiya, F Speirits, K Strain, S Strigin, P Sutton, S Tarabrin, A Thüring, J van den
Brand, C van Leewen, M van Veggel, C van den Broeck, A Vecchio, J Veitch, F Ve-
trano, A Vicere, S Vyatchanin, B Willke, G Woan, P Wolfango, and K Yamamoto.
The einstein telescope: a third-generation gravitational wave observatory. Classical
and Quantum Gravity, 27(19):194002, sep 2010.

[56] David Reitze. The future of ground-based gravitational-wave detectors, 2018.

98



[57] David Reitze, Rana X Adhikari, Stefan Ballmer, Barry Barish, Lisa Barsotti, Gari-
Lynn Billingsley, Duncan A. Brown, Yanbei Chen, Dennis Coyne, Robert Eisenstein,
Matthew Evans, Peter Fritschel, Evan D. Hall, Albert Lazzarini, Geoffrey Lovelace,
Jocelyn Read, B. S. Sathyaprakash, David Shoemaker, Joshua Smith, Calum Tor-
rie, Salvatore Vitale, Rainer Weiss, Christopher Wipf, and Michael Zucker. Cosmic
explorer: The u.s. contribution to gravitational-wave astronomy beyond ligo. 2019.

[58] Adam G. Riess, Stefano Casertano, Wenlong Yuan, J. Bradley Bowers, Lucas Macri,
Joel C. Zinn, and Dan Scolnic. Cosmic distances calibrated to 1% precision with gaia
EDR3 parallaxes and hubble space telescope photometry of 75 milky way cepheids
confirm tension with {upLambdaCDM. The Astrophysical Journal Letters, 908(1):L6,
feb 2021.

[59] Ashley J. Ross, Lado Samushia, Cullan Howlett, Will J. Percival, Angela Burden, and
Marc Manera. The clustering of the SDSS DR7 main Galaxy sample – I. A 4 per cent
distance measure at z = 0.15. Monthly Notices of the Royal Astronomical Society,
449(1):835–847, 03 2015.

[60] B. S. Sathyaprakash and Bernard F. Schutz. Physics, astrophysics and cosmology
with gravitational waves. Living Reviews in Relativity, 12.

[61] American Scientist. ”the secret history of gravitational waves”.

[62] M. Soares-Santos, Holz et al., Dark Energy Survey, and Dark Energy Camera GW-
EM Collaboration. The Electromagnetic Counterpart of the Binary Neutron Star
Merger LIGO/Virgo GW170817. I. Discovery of the Optical Counterpart Using the
Dark Energy Camera. , 848(2):L16, October 2017.

[63] S.Weinberg. Cosmology. 2008.

[64] The LIGO Scientific Collaboration, The Virgo Collaboration, The KAGRA Collab-
oration, R. Abbott, and H et al. Abe. Constraints on the cosmic expansion history
from gwtc-3, 2021.

[65] The LIGO Scientific Collaboration, The Virgo Collaboration, The KAGRA Collab-
oration, and R. et al. Abbott. The population of merging compact binaries inferred
using gravitational waves through gwtc-3, 2021.

[66] Daichi Tsuna. Failed supernova remnants. 73(3):L6–L11, 2021.

99



[67] Eleonora Di Valentino, Olga Mena, Supriya Pan, Luca Visinelli, Weiqiang Yang,
Alessandro Melchiorri, David F Mota, Adam G Riess, and Joseph Silk. In the realm
of the hubble tension a review of solutions. 38(15):153001, jul 2021.

[68] L. Verde. Statistical methods in cosmology. In Lectures on Cosmology, pages 147–177.
Springer Berlin Heidelberg, 2010.

[69] Salvatore Vitale. on behalf of the cosmic explorer project team, 2021.

[70] Anna K. Weigel, Kevin Schawinski, and Claudio Bruderer. Stellar mass functions:
methods, systematics and results for the local universe. Monthly Notices of the Royal
Astronomical Society, 459(2):2150–2187, apr 2016.

[71] Idit Zehavi, Zheng Zheng, David H. Weinberg, Michael R. Blanton, Neta A. Bahcall,
Andreas A. Berlind, Jon Brinkmann, Joshua A. Frieman, James E. Gunn, Robert H.
Lupton, Robert C. Nichol, Will J. Percival, Donald P. Schneider, Ramin A. Skibba,
Michael A. Strauss, Max Tegmark, and Donald G. York. Galaxy Clustering in the
Completed SDSS Redshift Survey: The Dependence on Color and Luminosity. ,
736(1):59, July 2011.

100



APPENDIX

101



Appendix A

Catalogs

A.1 GLADE+ catalog

GLADE+ is an expanded version of the GLADE galaxy survey designed for multi-messenger
probes with gravitational-wave detectors. GLADE+ includes data from six distinct but in-
terconnected astronomical catalogues namely, GWGC, 2MPZ, 2MASS XSC, HyperLEDA,
and WISExSCOSPZ, and the SDSS-DR16Q. About 22.5 million galaxies and 750,000
quasars are included in GLADE+. As can be seen if fig. A.1, the completeness of GLADE+
is until luminosity distances of about 47 Mpc (by integrating the galaxies’ B-band lumi-
nosity). To compare with GW detectors, the maximum BNS detection range for the fourth
observing run of LIGO (O4) (for BNSs with masses about 1.4M⊙ with signal-to-noise ratio
about 8) is about 190Mpc so that GLADE+ is about 45 percent complete in this areas.
It contains location information of galaxies such as right ascension (ra), declination (dec),
luminosity distance (DL) and redshift (z). GLADE+ also reports some colour informa-
tion and other quantities discussed in detail in the official GLADE+ website1. Fig. A.4
shows some columns of the GLADE+ catalog that are used in our work. The figure shows
the mollweide projection(using mollview from healpy package in python) which visualizes
related HEALPix maps (ref. [24]). NSIDE is also defining the resolution of the map.2

1At http://glade.elte.hu/.
2For more information about the HEALPix map and Mollview map see the official healpy website at

https://healpy.readthedocs.io/en/latest/.
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Figure A.1: GLADE+ completeness (ref. [24]).

Figure A.2: GLADE+ catalog of about 23 million galaxies. Adopted from
http://glade.elte.hu/
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Figure A.3: The log mollview map of galaxies in the GLADE+ catalog with Nside=128.

Density map of the full GLADE+ catalog, Nside=128

0 3.76118

Figure A.4: The mollview map of galaxies in the GLADE+ catalog with Nside=128.
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A.2 Sloan Digital Sky Survey (SDSS) Data Release 7

New York University Value-Added Galaxy Catalog (NYU-VAGC) is a collection of galaxy
catalogs that can be used to compute power spectra and correlation functions. A catalog
of galaxies with the maximum of z = 0.3 compiled from surveys that have been made pub-
licly available and accommodate to the Sloan Digital Sky Survey (SDSS) Data Release 2
with about 693,319 galaxies, QSOs, and stars in the photometric catalog; of these, 343,568
have redshift measurements from the SDSS. Except regions obscured by bright stars, the
photometric sample encompasses 3514 deg2, and the spectroscopic sample encompasses
2627 deg2 (with the completeness of approximately 85% ) (ref. [19]).
The SDSS DR7 includes the SDSS-I and SDSS-II full data sets. In these surveys, CCD pho-
tometry field (Gunn et al. 1998, 2006) was obtained in five bands (u, g, r, i, z), calibrated
utilizing the “uber-calibration” method (Padmanabhan et al. (2008)), Creating an overall
area of 11, 663 deg2. From this data set, galaxies with a footprint of 9380 deg2(Abazajian
et al. 2009) were chosen as the main galaxy sample (MGS; Strauss) for spectroscopic
follow-up which roughly includes every galaxy with the extinction-corrected r-band Pet-
rosian magnitude (rpet) smaller than 17.77, in other words, the magnitude sample of SDSS
is complete up to r = 17.77 [59]. So that, the sample is complete to stellar mass 109

at z = 0.02 and 1010 at z = 0.06 (see fig. A.5). we can extrapolate the limiting mass
using the luminosity distance. In ref. [70], Weigel et al define the limiting mass as the
stellar mass corresponding to the faintest galaxy in the sample. Since stellar mass is pro-
portional to luminosity, they are computing the luminosity of the faintest galaxy in the
sample. At fixed apparently magnitude, going to higher redshift means that the least mas-
sive/luminous galaxy is more massive/luminous. The mass/luminosity scales as luminosity
distance squared. Now we can calculate 3 Dl = 988Mpc at z = 0.2 and Dl = 270Mpc at
z = 0.06 (scaling by a factor of 13). So that is a minimum log stellar mass of 11.3 (scaling
the log stellar mass of 10.2 at z=0.06 from Weigel et al [70]).
We acquired the SDSS DR7 MGS data from (NYU-VAGC) hosted by NYU. They consist
of K-corrected absolute magnitudes, as calculated by the methods of Blanton et al (2003),
and comprehensive mask information. We choose our galaxy sample from among the “safe”
NYU-VAGC catalog. Fig. A.6, A.7 show the Mollview map which describe the number of
galaxies in each pixel in the Celestial sphere in both Galactic and Equatorial plane. Table
A.1 shows different columns in the ’safe0’ file in the SDSS catalog (ref. [59]).

3Using this website: https://www.astro.ucla.edu/ wright/CosmoCalc.html
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Figure A.5: Stellar mass completeness for three different samples(early, late and whole
galaxies). For more information see ref [70].

Figure A.6: The Mollview map of ’safe0’ file from SDSS DR7 galaxy catalog with
Nside=256.
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Figure A.7: The Mollview map of SDSS DR7 galaxy catalog in equatorial plane with
Nside=256.

SDSS DR7 catalog also contains random catalogs which are dispersed inside the window
with equal surface density and outside the mask. Fig. A.8, A.9 show the counts map which
describe the number of galaxies in the each pixels in the Celestial sphere in both Galactic
and Equatorial planes. Table A.2 shows different columns in the ’random0’ file in the SDSS
catalog.

Figure A.8: The mollview map of ’random’ file from SDSS galaxy catalog with Nside=256.
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Figure A.9: The mollview map of SDSS galaxy catalog with Nside=256 in equatorial plane.

Table A.1: Information of each object mentioned in the SDSS catalog “safe0” file

SDSS catalog Description
RA Right ascension, J2000, degrees
DEC Declination, J2000, degrees
Z Redshift (set to -1 if not available)
M Apparent magnitude (extinction-corrected r-band Petrosian)
WEIGHT Weight related to north and south caps
MMAX Main sample flux limit
IWINDOW Index for this subsample of the polygon containing this object in the window file
ABSM Absolute magnitudes in ugrizJHK bands
OBJECT POSITION Index mentioned in the VAGC catalog
LETTER MASK Bitmask describing what happened to this object:
0 (LETTER TARGET) It is a target in the photometric catalog which passing our cuts
1 (LETTER TILED TARGET) It was a tiled target in the target reductions
2 (LETTER TILED) It was assigned a fiber on a tile
3 (LETTER TRIED) Attempts were made to obtain a spectrum or a redshift by correcting a collision.
4 (LETTER GOT) A redshift has been identified (by a spectrum or fixing of collisions)
5 (LETTER FIXED) The collision was fixed to obtain the redshift.
6 (GALAXY) It was referred to as a galaxy.

Table A.2: Information of each object mentioned in the SDSS catalog “random” file

SDSS catalog Description
RA Right ascension, J2000, degrees
DEC Declination, J2000, degrees
FGOT completeness of the map
MMAX Main sample flux limit
WEIGHT Weight related to north and south caps.
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The footprint of galaxies in the NYU VAGC safe0 catalog is 7356deg2. We use a sample
of galaxies with 14.5 < rpet < 17.6 in which the lower bound guarantees that only galaxies
with trustworthy SDSS photometry are utilized, and the upper bound enables uniform
selection across the whole sample.
In order to have a more uniform sample, we only consider the north galactic cap. We only
include regions where the completeness, calculated without considering missed galaxies due
to fibre collisions, is greater than 0.9. Therefore, the footprint will be reduced to 6813 deg2.
We also applied more cuts on the NYU VAGC safe0 sample (inspired from Ref. [59] ) as
written in the following:

• We only used galaxies with 0 < z < 0.2 (to sample at lower redshifts in comparison
with BOSS)

• We put some colour cuts which make the sample more homogeneous (as a function
of z) and enhance the clustering amplitude, which causes an increase in the mass of
the halo hosting the galaxy.

After all these cuts applied on the galaxy and random catalogs, the maps of the final
sample are as shown in the Fig. A.10, A.11, A.12, A.13. As a sanity check, we used this
sample to reproduce the power spectrum similar to the one calculated in Ross et al. paper
[59]. Figs. A.14,A.15 and A.16 show that our measurement is almost the same as the Ross
et al. paper. Therefore, in the next step, we will delete all considered cuts (except the
completeness and the cuts on locations) and measure the 3-dimensional power spectrum
by considering all mentioned astrophysical features mentioned in section ??.
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Figure A.10: The Mollview map of ’safe0’ file from SDSS galaxy catalog with Nside=256.

Figure A.11: The Mollview map of ’safe0’ file from SDSS galaxy catalog with Nside=256
in equatorial plane.
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Figure A.12: The Mollview map of ’random0’ file from SDSS galaxy catalog with
Nside=256.

Figure A.13: The Mollview map of ’random0’ file from SDSS galaxy catalog with
Nside=256 in equatorial plane.
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Figure A.14: 3D power spectrum obtained from Ross et al paper [59].
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Figure A.15: 3D power spectrum obtained from our work.
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Figure A.16: Deviation in units of the 1-σ error bar from Ross et al measurement on galaxy
power spectrum [59].
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Appendix B

Notes on Details of the Code

Here we include the list of the inputs to the code along with a short description and their
fiducial values for GLADE+. Values can be also adopted from any other galaxy surveys,
namely, SDSS etc.

1. Binning inputs

• Redshift binning information:
zmin = 0, zmax = 0.3, Nbins = 6

• BH mass number of bins. The fiducial value is set to one, just first to examine
the effect of different host galaxy selection functions.
mbins = 1

2. Inputs related to galaxy host selection functions

• The form of the selection function (a defined function in python). For now, we
assume it is the unconditional (equation (5.19)).
p = Pg,unconditional

• Parameters of the function. The fiducial values basically means completely
random selection. Also note that for GLADE+, we generated some random
numbers for metallicity (just to keep the code coherent). Still, since the selec-
tion function for the metallicity part is set to a constant, it does not matter
what are the values of metallicity of each galaxy. For SFR, though, we use the
mean cosmological value.
pargs = [0, 0, 5, 0, 4000, 0, 0, 0.02 ∗ 1e9, 0, 0.14 ∗ 1e9, 0, 0, 0.5, 0, 1]
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These numbers are 15 numbers which are 3 sets of 5 numbers for mass, SFR,
and as follows (basically parameters in equation (5.17)):
pargs = [αM , βM ,M

∗,Mmin,Mmax, αSFR, βSFR, SFR
∗, SFRmin, SFRmax,

αZ , βZ , Z
∗, Zmin, Zmax]

• Type of the input for SFR, which here is from the model.
SFR-Z-type=’model’

3. Inputs related to BH mass modelling
Here we set mbins = 1, so the mass modelling does not matter because we will not
bin in BH mass. However, we need to specify these values due to the structure of
the code. If we change the number of BH mass bins, we get different results for each
bin affected by these inputs. Here we have two options:

(I) Physical mass modelling:

• Type of the mass modelling:
p-m1-type=’phys’

• Name of the probability function:
p-m1=m-kroupa

• Parameters of the model:
p m1 args = [5, 50, 2.3, 10−4, 45, 1.5,−0.44, 0.0175]
where are gotten from equation (5.9), (??), and (5.12),respectively:
[mmin,mmax, α, Z∗,MPISN(Z∗), α, γ, ζ]

(II) Phenomenological mass modelling:

• Type of the mass modelling:
p-m1-type=’phen’

• Name of the probability function:
p-m1=m-peak-model

• Parameters of the model:
p m1 args = [5, 50, 2.3, 30, 2.6, .05]
where respectively are from equation (5.9), (5.10),respectively:
[mmin,mmax, α, µg, σg, λg]

In addition, we also need inputs for the secondary mass of the binary system:
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• name of the function:
p-m2=sec-mass-sample-beta

• parameters ([mmin, β]):
p-m2-args=[5,1]

4. Number of redshift in which we produce the window function (equation 5.14)). It
is nothing about physics; just because it is time-consuming to calculate the window
function for every siren, we do it for some redshifts and each siren, we use the one
with the closest redshift.
nz = 10

5. Inputs for amplifying the number of mergers:
ampl=1e4 , obs-time = 1

6. Inputs related to the merger rage:
tmin = 500e6 , κ = 1 , grid-points=1999

7. Inputs related to masking:
thresh=15 , nside-map=512 , nside-mask=256
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Appendix C

Flowchart of the Code

Fig. C.1, provides a schematic description of different modules in the code. The main tasks
are divided into 5 different parts. In the first part we calculate the number of mergers by
implementing star formation rate density and delay-time distribution. In the second one,
we apply our own masking prescription on the catalogs to make them more uniform in
order to prevent additional bias (for example, we neglect under-dense and over-dense areas
of catalogs). In the third and forth steps, we model the mass distribution of black holes
and select host galaxies based on their astrophysical properties (such as mass, metallicity
and SFR). In the last part, we calculate the 2D angular and 3D power (using nbody kit)
spectrum with shot noise subtraction mentioned in chapter 5 and finally compute the bias
parameter.
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Figure C.1: The flowchart shows the steps in the numerical package.

I contributed to these parts of the code:

• Implementation the SFR, delay-time distribution and number of mergers.

• Masking both GLADE+ and SDSS DR7 catalogs (note that, codes related to the
shot-noise subtraction are implemented by my collaborators).

• Implementing codes related to the calculation of the power spectra and bias param-
eter and feed them in the main body code.

• Implementing all codes related to SDSS DR7 catalog (relating the main body codes
and 3D power spectra codes) and implementing the selection function for SDSS DR7.

• Implementing error bars for power spectrum and bias for SDSS DR7.
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