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Abstract

Coherent structures (CS), i.e., regions of flow exhibiting significant spatio-temporal coher-
ence, have long been observed in turbulent fluid flow. These CS offer an opportunity to gain
insights on fluid behaviour by bypassing the non-linear complexities associated with turbulent
flows. Historically, the identification of CS in turbulent flows has involved using manual thresh-
olds to label regions of interest. More recently, work towards more objective threshold selection
have used percolation analysis; yet, particular situations can leave the method vulnerable to human
bias. This work takes further steps towards pruning human subjectivity from the CS detection
process, where an unsupervised learning framework that uses a clustered self-organizing map
is used to automatically organize salient regions of flow within a turbulent channel into distinct
clusters. The CS identified and analyzed throughout the study include quasi-streamwise coherent
vortices, ejections, and sweeps. Structures pertaining to the near-wall region (𝑦+ ⪅ 60), inner
region (𝑦+ ⪅ 100), and entire wall-normal domain are investigated. Structures are found to agree
qualitatively with dynamic expectations, i.e., near-wall vortex structures are quasi-streamwise,
and ejection and sweep regions flank vortices. Quadrant distributions of the ejection and sweep
structures show larger sweep strength in the lower buffer region (𝑦+ ⪅ 15) and larger ejection
strength above the buffer region (𝑦+ ⪆ 15), both characterized by large fluctuating streamwise
velocity, whereas streamwise and wall-normal fluctuations in ejections and sweeps that populate
the outer layer are more balanced; vorticity component distributions within vortices indicate
counter streamwise rotating vortices in the buffer region; orientation statistics of vortices show
preference for streamwise orientation in the near-wall, transverse orientation in the log-layer,
and no preferred orientation in the outer layer; and the distribution of vorticity transport compo-
nents, i.e., stretching and tilting, within vortex clusters demonstrate dominant streamwise vortex
stretching within buffer layer vortices. Evidence is found of outer layer structures that resemble
outsized counterparts of the ejection–vortex–sweep structures found in the near-wall, reinforcing
the notion that a hiearchichal self-sustaining process exists in channel flow turbulence.
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Chapter 1

Introduction

1.1 Coherent structures in turbulence

The importance of fluids with respect to life on earth is evident. Fluids are vital to the transport
of material throughout biological systems, both at the individual and ecosystem level. Many
engineered processes rely on leveraging fluid behaviour to exercise specific tasks. Natural
selection, the unconscious engineer of life, has created cephalopods, i.e., squid and cuttlefish,
that use jet-propulsion to dash around their aquatic environments, and large birds, such as condors
and vultures, who conserve energy by using their broad wings to glide from one thermal column
to another [Dawkins and Lenzová, 2021, ch. 6]; likewise, humans have consciously engineered
machine equivalents: jet-propulsion engines to propel watercraft, and airfoils to lift aircraft. The
near-limitless potential of fluid dynamics applications have thus led to considerable efforts to
further our understanding of fluid behaviour.

Difficulties associated with developing a firm understanding of fluids lie in the complexities
associated with the governing equations of fluid motion. In flow conditions prone to turbulence,
ever-increasing spatial ranges of cascading energy transfer and the non-linear contributions to the
evolution of fluid motion (e.g., the stretching and tilting of vortices) make causality of physical
mechanisms, such as those associated with momentum and energy transfer, difficult to discern.
The complexities brought about by this non-linearity act as a shield, fending off physicists from
developing a deeper understanding of turbulence physics. Engineers are also affected, e.g., when
considering the design of an aerodynamic body, an engineer may contemplate whether to bevel
or fillet its edges, or ponder which material to coat its surface with. Having a way to quickly
infer how the surrounding fluid, and thus the aerodynamic forces exerted on the body, is affected
by these changes saves the engineer time, effort, and resources. One approach to address the
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challenges brought about by flow complexity is by analyzing the coherent structures (CS) that
arise in turbulent flows, as CS can provide valuable insight into the dynamics of a turbulent
fluid system by bypassing some of its complexity. CS are characterized as regions of flow
containing spatial and temporal correlations of flow variables, such as velocity fluctuations or
vorticity, that persist over a range of length and time scales significantly larger than the smallest
local scales [Robinson, 1991]. The visualization of coherent structures has been instrumental to
furthering understanding of physical processes in turbulent boundary layers, from the discovery
of alternating high and low-speed streaks [Kline and Runstadler, 1960] to horseshoe vortices
[Head and Bandyopadhyay, 1981]. Likewise, visualizing CS is also a valuable tool in the design
process of surfaces that interact with fluid [Galbraith and Visbal, 2008, Yuan et al., 2018, Hu
et al., 2022], providing qualitative insight on how changes in design affect the surrounding flow
dynamics.

There currently exist several methods for four-dimensional turbulent CS identification in
fluid dynamics simulations. A common approach used is thresholding; for example, Hack and
Zaki [2014] visualize low and high speed near-wall streak instabilities in a transitional boundary
layer simulation by thresholding the streamwise velocity fluctuations by ±8.5% and plotting the
isosurfaces, further visualizing vortical structures by plotting isosurfaces of a vortex identification
parameter known as the _2 criterion [Jeong and Hussain, 1995] with a threshold of −0.3% and
streamwise vorticity fluctuations with a threshold of ±8.5%. In a study of large scale motions
in channel flow turbulence, Lee et al. [2014] define low-speed regions of flow by filtering out
regions with negative streamwise velocity fluctuations exceeding 10% of the bulk streamwise
velocity.

The aforementioned methods, among others [Hedley and Keffer, 1974, Anand et al., 2009,
Portwood et al., 2016], require some user-defined value for thresholding. In this situation, a user
manually tunes the threshold until the visualization fits perceptual expectations; for example,
to visualize the vortical structures in a channel flow with the _2 criterion, isosurface threshold
values would be adjusted until the expected quasi-streamwise structures are observed. Percolation
theory has been used in an effort to move towards more objective threshold selection (see Motoori
and Goto [2021], Lozano-Durán et al. [2012]); though, as will be shown, this method does still
encounter limitations in particular situations. In this work, a machine learning framework that
automatically organizes flow into clusters in an unsupervised fashion is used to address the issues
surrounding threshold subjectivity. The boundaries of the identified structures are not bound to
a subjective value; instead, these boundaries are automatically learned based on computational
pattern recognition.

2



1.2 Reductionism and holism

Before discussing how computational pattern recognition is used in the field of fluid dynamics,
first addressed is the question: Why may the study of coherent structures be valuable?

Turbulent flows are complex systems, and thus furthering understanding of the dynamics of
these systems has long involved taking a blend of reductionist and holistic approaches. The
philosophical position of reductionism [Sloane, 1945] attempts to describe a complex system as
a whole by breaking the system into its constituent parts and traversing up the system hierarchy,
using these constituent parts to construct an understanding of the causal mechanisms along the
way. Reductionism bases itself on the assumption that a complex system can be described as the
sum of its parts. The study of coherent structures in turbulent flows are partially motivated by this
perspective, where focusing on local flow patterns and regions of coherence are used to describe
global system dynamics. An example being the visualization of coherent vortices to provide
insights on the energetics of a fluid simulation. This perspective allows one to filter through the
complexity of the system and describe it with a few key features; though, one must be careful
not to get lost in the granularity of the system, and diligent about ascribing local features to the
entirety of the system.

The opposing perspective of holism (i.e., Gestalt psychology [Koffka, 1935]) lays focus on
complex systems as a whole. This perspective lies on the assumption that a complex system is
more than the sum of its parts. Considering the system as a whole allows one to view emergent
properties of the system that would not observable when looking at individual parts. An example
is that of a nervous system, in which a description of the emergence of decision making and
memory are not made possible by considering neurons individually, but rather collectively.
Holistic analysis allows one to obtain a general description of a system; but, one must be cautious,
as it is possible to overlook salient finer details within the system. A relevant holistic example to
turbulence research is the use of scalar statistical moments to describe behaviour of a global flow,
for example using the root-mean-square (rms) of a velocity fluctuation over the wall direction to
describe how energetic the flow is in different wall regions. As a whole, one can observe larger
rms quantities in the buffer layer (a highly energetic region in turbulent boundary layers), however,
this by no means implies that every region in the buffer layer is highly energetic. Representing
a global region’s behaviour by a single scalar quantity is bound to gloss over some of the finer
details.

It can be tempting to attribute general statistical findings, such as global rms quantities, to
an entire population, labeling regions that do not adopt the global trends as low relevance. One
must be cautious with this mindset. For example, the cascade of energy in turbulence is generally
transferred from larger to smaller scales as slightly larger eddies stretch slightly smaller eddies;
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yet, there still exist regions in which energy is transferred against the grain from smaller to larger
scales, the process known as backscatter, in which neglecting backscatter in turbulence modeling
can lead models to produce inaccurate predictions of perturbation growth [Piomelli et al., 1991].
Likewise, if one only considered the global distribution of streamwise vorticity within a horizontal
plane in the buffer layer of a channel flow, they would see a symmetric distribution centered around
zero. Though, it is apparent that there exist dynamically salient regions within that plane that are
not well-represented by this distribution—counter rotating quasi-streamwise vortices have a bi-
modal distribution and are a keystone process to the self-sustainability of channel flow turbulence
[Jeong et al., 1997].

Peering out through a foggy window on a gloomy night, to attempt to discern what phenomena
are emanating warm light from outside, we would consider not just the faint glimmers of light
from the blurry scene; we would instead wipe the window to get a clearer view of the finer details.
Nor would we focus solely on regions containing light, we would expand our view to consider
the surrounding structures that associate with the light as well. Understanding complex systems
requires a blend of both reductionistic and holistic perspectives, which in fluid dynamics involves
elucidating the dynamics of fundamental flow components and tying them to the dynamics of
the global system. This is what the study of CS in turbulence allows, in which regions of local
coherence are observed to elucidate the dynamics of the global domain. Understanding of a
system as a whole is necessary to understand how individual components collect to generate
emergent properties. Understanding of the fundamental scaffolding is required to shed light on
causal mechanisms that give rise to those emergent properties and the overall system dynamics.
By studying the CS that arise in turbulent flows, a portion of the system complexity can be
bypassed by highlighting local regions of interest, and insights gained through the study of those
local features can further our understanding of the global process. This work attempts to refine
the way in which CS are identified, through the use of computational pattern recognition.

1.3 Machine learning methods used in turbulence research

Recent advancements in machine learning have ignited the interest to employ machine intelligence
across nearly all disciplines. In computational fluid dynamics, of particular interest has been the
convolutional neural network (CNN). CNNs work particularly well with structured grid data, first
gaining popularity in the computer vision community for working with image data. Simulated
flow data shares some structural similarities with that of image data; notably, if taking a two
dimensional horizontal slice of velocity vectors in a three-dimensional flow domain, the shape
is similar to that of a two dimensional image with three colour channels. Methods developed in
computer vision can thus be repurposed to the domain of channel flow turbulence. Supervised
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and semi-supervised learning CNN frameworks [Fukami et al., 2019, 2020, Kim et al., 2020]
have recently been applied to the super-resolution of turbulent flow fields. Here, super-resolution
refers to the process of up-sampling an input from low-resolution to high-resolution. Kim and
Lee [2020] also explore the use of unsupervised learning in fluid dynamics, using a generative
adversarial network to synthesize temporal sequences of steady, turbulent cross-stream planes of
simulated flow velocity fields at various Reynolds numbers.

CNNs clearly possess an array of impressive abilities that enable learning the complex non-
linear patterns that arise in fluid dynamics, as shown by the aforementioned studies; however, a
limiting factor to take into consideration when employing CNNs is computational memory. CNNs
are tailored towards two-dimensional inputs with (typically) 3 colour channels (three-dimensional
inputs are used as well for tasks related to video); yet, channel flow simulations contain four-
dimensional fields that require significant spatio-temporal resolution. Powerful CNNs that are
catered towards image or video inputs already contain millions of learnable parameters, i.e., the
neural network weights and biases. The graphics processing units that host and perform the
tensor operations associated with neural network training have memory limitations that become
increasingly strained when increasing the rank of the input tensors. Hence, Kim et al. [2020]
are restricted to using two dimensional slices for their semi-supervised learning framework,
and Fukami et al. [2020] are restricted to a low Reynolds number simulation, which requires
lower spatio-temporal resolution. In addition to memory restrictions, the CNN architecture itself
is excessively complex for the task of identifying CS in channel flow, of which the detection
process of CS is simple enough such that the patterns can be found with a simpler neural network
configuration, as will be shown.

These drawbacks are mentioned because to identify the spatio-temporal structures in channel
flow, a sufficiently large input domain is required to resolve the turbulent structures of interest.
While there exist CNNs that perform unsupervised semantic segmentation, the previously noted
memory constraints currently make these CNN methods incompatible with four-dimensional
channel flow. Worth noting, there do exist some studies that attempt to use machine learning
to identify the coherent structures of boundary layer flows. For example, Ströfer et al. [2018]
use a CNN to identify the re-circulation region in a two-dimensional flow through a convergent-
divergent channel, and identify three-dimensional horseshoe vortices over a wing-body junction.
Jagodinski et al. [2020] use a CNN to uncover the near-wall events within a turbulent channel,
however, their domain size is significantly restricted and they are required to manually label
regions of interest. Both of these studies used a supervised learning scheme, which requires
manually labelling ground truths. Having to label regions of interest is sub-optimal, not only
because labelling is a cumbersome task, but it also introduces human bias into the learning process,
which one would preferably want to avoid. Of preference would be a machine telling the user what
the important regions are, not the other way around. This requires not only a method capable
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of supporting high-dimensional inputs, but also one that supports an unsupervised learning
process. An unsupervised clustering method that satisfies these constraints will be discussed
next; however, a brief thought experiment is first provided to familiarize the reader with the
concepts of supervised and unsupervised learning.

1.4 Unsupervised learning

Imagine a situation where one observes cloud formations for the first time. Looking up at the sky,
observed are some clouds that are large and fluffy, some thin and streaky, some pale white, and
some dark grey. Thanks to the development of language and taxonomy, a cloud expert could let
one know that the large fluffy clouds belong to the cumulus class, and the thin and streaky clouds
belong to the cirrus class. After being taught cloud nomenclature, an assessment could then be
set up containing a new set of clouds, where one is asked to assign labels to the new clouds just
observed. Upon receiving the results of the test, disappointment attributed to misclassifications,
and satisfaction attributed to correct classifications, encourages learning of the correct labels.
This situation encapsulates a supervised learning task, where the minimization of a loss function
with externally labeled data (ground truths) guides learning of the correct labels. However, in the
absence of guidance that ground truth labels provide, the brain is yet capable of segmenting and
storing these various distinct structures in an unsupervised fashion. One still generates internal
labels for patterns sensed from external stimuli. Given enough exposure to a wide distribution
of clouds, one could formulate internal cloud classifications. This is unsupervised learning: the
ability to recognize and learn patterns without ground truth labels.

The goal of this study is to delegate the unsupervised learning process of structure detection
to a machine. Rather than observing the structure of clouds in the sky, a machine is tasked with
detecting patterns within flow variables provided from direct numerical simulation (DNS) data.
The primary unsupervised learning method used in this work is the Self-Organizing Map (SOM)
[Kohonen, 1998], a single layer artificial neural network that is trained using a competitive learning
scheme. The smaller network size alleviates some of the computational resource allocation pitfalls
associated with applying deep neural networks to high-dimensional inputs, allowing for training
on high resolution four-dimensional regions of flow. Since its introduction, the SOM has been
used to detect patterns in satellite imagery [Richardson et al., 2003]; to model rainfaill-runoff
patterns in watershed to aid water resource engineers [Kalteh et al., 2008]; and more recently
to cluster a large eddy simulation [Narasimhan et al., 2021] and a DNS [Wu et al., 2019] of a
transitional boundary layer into turbulent and non-turbulent regions.
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1.5 Thesis outline

This study will use a clustered SOM to identify dynamically important regions in a simulated
turbulent wall-bounded flow. First, detailed background on the dynamics and energetics of
fluids in wall-bounded flows, as well as the physical structures commonly associated with these
dynamics, is provided in § 2. In § 3, details are provided on the simulation data subject
to the analyses of the current study, and the data pre-processing required prior to input into the
unsupervised learning pipeline. Three scales of the domain will be analysed, and the three pairs of
flow variables relevant to these scales will be outlined in this section as well. The methodologies
of the learning algorithms, both the SOM and the agglomerative clustering method, and the
general machine learning pipeline are outlined in § 4. The unsupervised method will also be
compared to standard thresholding and percolation theory in this section. Results are presented
in § 5 for each of the three scales, where ejection, sweep, and vortical structures identified by the
unsupervised learning method are examined in depth. Resulting structures will also be compared
against those identified by percolation theory. Concluding remarks are made in § 6.
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Chapter 2

Background

The objective of this study is to highlight the strengths of having an objective method that learns
to identify CS within flow fields. This study will focus on two interdependent processes that
include: structures relevant to momentum transfer, known as ejections and sweeps; and structures
relevant to strong local rotation, known as vortices. First, the fundamental equations that describe
fluid motion and the evolution of turbulent kinetic energy (TKE), are presented. Background
is then provided on each of the structures and their relevance to the research of boundary layer
turbulence.

2.1 Navier-Stokes equations

The motion of fluid can be described by a collection of partial differential equations known as the
Navier-Stokes equations. The Navier-Stokes equations for an incompressible, constant density,
Newtonian fluid are

𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, (2.1)

𝐷𝑢𝑖

𝐷𝑡
=
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
= −1

𝜌

𝜕𝑝

𝜕𝑥𝑖
+ a 𝜕2𝑢𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
. (2.2)

where 𝑝 is pressure, 𝜌 is density, and a is kinematic viscosity. In this work, the 𝑥, 𝑦, and 𝑧
axes refer to the streamwise, wall-normal, and spanwise directions, respectively. The velocities
in the 𝑥, 𝑦, and 𝑧 directions are denoted by 𝑢, 𝑣, and 𝑤, respectively, and (𝑢1, 𝑢2, 𝑢3) = (𝑢, 𝑣, 𝑤).
These equations represent Newton’s laws as applied to a fluid, namely Newton’s first law, the
conservation of mass (equation 2.1); and Newton’s second law, the conservation of momentum

8



(equation 2.2). Note that the influence of gravity has been absorbed into the pressure term, as
outlined in [Wyngaard, 2010, p. 12]. These equations state that the sum of total acceleration of
the fluid is equal to the sum of pressure, gravitational, and viscous forces. Equation 2.2 can also
be written in dimensionless form

𝐷𝑢𝑖

𝐷𝑡
=
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢 𝑗

𝜕𝑢𝑖

𝜕𝑥 𝑗
= − 𝜕𝑝

𝜕𝑥𝑖
+ 1

Re
𝜕2𝑢𝑖
𝜕𝑥 𝑗𝜕𝑥 𝑗

, (2.3)

where Re ∼ 𝑢ℎ
a
≡ advection

viscosity is the Reynolds number and ℎ is the characteristic length scale of the
fluid domain, which, in the case of this study, corresponds to the height of the channel. Highly
viscous, slow-moving fluids have a small Re, i.e., Re ≪ 1, indicating that advective terms can be
neglected, the flow is laminar, and the Navier-Stokes equations approach linearity; fast-moving,
low-viscosity fluids have a large Re, i.e., Re ≫ 1, indicating the flow of a highly turbulent inviscid
fluid. A Reynolds number used to characterize wall-bounded flows is

Re𝜏 =
𝑢𝜏ℎ

a
(2.4)

[Durbin and Reif, 2010, p. 59] where 𝑢𝜏 = (𝜏𝑤/𝜌)0.5 is the friction velocity. Here, 𝜏𝑤 is the wall
shear stress. Last, spatial dimensions in channel flow can be scaled into dimensionless quantities
[Durbin and Reif, 2010, p. 59], known as wall-unit scaling, e.g., for the wall-unit equivalent of
wall-normal position,

𝑦+ =
𝑦𝑢𝜏

a
=
𝑦Re𝜏
ℎ

. (2.5)

Dimensionless wall-unit scaling enables comparison of analyses across flows with varying Re.
Near wall wall-normal regions in boundary layers are the viscous sub-layer (VSL) (𝑦+ ⪅ 5), the
buffer layer (5 ⪆ 𝑦+ ⪅ 30), and the logarithmic layer (60 ⪆ 𝑦+ ⪅ 100) (figure 2.1) [Kundu, 2003,
p. 530].

2.2 Turbulent kinetic energy in wall-bounded flow

Flow within a turbulent boundary layer [Durbin and Reif, 2010, p. 65] undergoes a continual
process in which kinetic energy from the free-stream, i.e., mean, flow enhances turbulent fluctu-
ations; meanwhile, kinetic energy dissipates into heat by viscous effects. Herein, a fluctuating
quantity refers to a quantity deviating from the mean, i.e., 𝑢′ = 𝑢 -𝑈, where𝑈 represents the mean
of 𝑢. In the absence of buoyancy effects, the equation to describe the spatio-temporal evolution
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of the kinetic energy within turbulent fluctuations, the turbulent kinetic energy (TKE), can be
obtained by subtracting the mean momentum

𝐷𝑈𝑖

𝐷𝑡
=
𝜕𝑈𝑖

𝜕𝑡
+𝑈 𝑗

𝜕𝑈𝑖

𝜕𝑥 𝑗
= −1

𝜌

𝜕𝑃

𝜕𝑥𝑖
+ a 𝜕2𝑈𝑖

𝜕𝑥 𝑗𝜕𝑥 𝑗
(2.6)

from the total momentum (equation 2.2), multiplying the difference by 𝑢′
𝑖
, and ensemble averaging,

yielding
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(2.7)

where
𝑠′𝑖 𝑗 =

1
2

(
𝑢′𝑖, 𝑗 + 𝑢′𝑗 ,𝑖

)
(2.8)

is the fluctuating strain rate tensor. TKE production, 𝑃𝑖 𝑗 , appears with opposite sign in the
mean kinetic energy (MKE) equation, and is generally negative in boundary layer flow [Durbin
and Reif, 2010, p.52; Atoufi et al., 2020, p.14], acting as a sink of kinetic energy from the
mean flow and a source of kinetic energy to turbulent fluctuations. Viscous dissipation, Y𝑖 𝑗 ,
represents the dissipation of kinetic energy into internal energy, or heat, due to viscous effects.
Its contribution to TKE is strictly negative, as 𝑠′

𝑖 𝑗
𝑠′
𝑖 𝑗

and a are strictly positive. Worth noting,
energy is also dissipated by the mean flow; however, the scale of mean dissipation is negligible
in turbulent flows, of order 1

Re
𝑢3

ℎ
, compared to the scales of 𝑃 ∼ 𝑢3

ℎ
and Y ∼ 𝑢3

ℎ
. Thus, most

MKE is transferred into fluctuating kinetic energy, in which the kinetic energy of the fluctuations
cascades to smaller and smaller scales until an eventual dissipation into internal energy, i.e., heat.
Turbulent transport and viscous diffusion, 𝑇𝑖 𝑗 and 𝐷𝑖 𝑗 , describe how energy translates throughout
the fluid by turbulent dynamics and molecular diffusion, respectively; and Π𝑖 𝑗 represents the work
done by pressure to advect fluctuating flow, an important process that sustains fluid motion in the
VSL, where pressure supplements kinetic energy to otherwise slow-moving fluid near a no-slip
boundary [Atoufi et al., 2020].

In boundary layer flow, TKE production is most significant in close proximity to the surface
of the boundary (just above the VSL) due to large mean wall-normal shear, 𝜕𝑈/𝜕𝑦 ≡ 𝑈,𝑦, where
𝑦 is the direction perpendicular to the wall and 𝑈 is mean streamwise velocity. The no-slip
boundary condition on the boundary causes a rapid increase in fluid velocity after the VSL (see
figure 2.1, or the mean velocity profile in 3.1). This thin, yet dynamically rich, region that
encompasses the VSL, buffer layer, and logarithmic layer is known as the near-wall region. The
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Figure 2.1: Mean velocity profile of a plane channel flow in log-linear coordinates. Yellow:
viscous sub-layer; blue region between yellow and green: buffer layer; green: log layer; ^ = 2.44;
𝐶+ = 5.5.
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Figure 2.2: Root-mean-square (rms) of fluctuating velocity fields over channel height.
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dynamical richness comes in large part from the 𝑃12 = −𝑢′𝑣′𝑈,𝑦 term in equation 2.7, which
transfers kinetic energy into streamwise fluctuations that subsequently distribute kinetic energy
into lateral velocity fluctuations, to a lesser effect; and wall-normal velocity fluctuations, to an
even lesser effect [Atoufi et al., 2020]. As such, the kinetic energy of streamwise fluctuations is
generally largest, followed by spanwise fluctuations and then wall-normal fluctuations (see figure
2.2). This energy transfer is most prominent in the buffer layer (5 ⪆ 𝑦+ ⪅ 30) where 𝑈,𝑦 is
largest (as per the slope demonstrated in figure 2.1). The question that follows is: How do these
energy transfer mechanisms manifest in space and time? Many years of collective boundary layer
turbulence research [Head and Bandyopadhyay, 1981, Kim and Moin, 1985, Robinson, 1991,
Del Álamo et al., 2006, Jiménez, 2018, Motoori and Goto, 2021] have found that the structures
most commonly associated with momentum and energy distribution in shear flows are ejections,
sweeps, and quasi-streamwise vortices.

2.3 Ejections, sweeps, and vortices

In the absence of stabilizing effects, the process of turbulence generation and dissipation is self-
sustaining [Waleffe, 1997]. As such, understanding the specific mechanisms that transfer energy
between the mean and fluctuating flow fields, and dissipate fluctuating energy, have long been
sought after by fluid dynamicists. How do these energy extraction and dissipation mechanism
manifest in space and time? This is where the study of the internal scaffolding of fluid flow
comes in, as quasi-periodic spatio-temporal patterns have long been observed in boundary layer
flow [Kline and Runstadler, 1960, Head and Bandyopadhyay, 1981]. These coherent motions
provide an unique lens into the otherwise complex dynamics of flow, and investigating them can
inform guidance of turbulence control; shed light on the dynamic phenomena that underlie the
gross statistics that are measured through modeling; and elucidate causality in fluid interactions.

Fluid motions in shear flows can be sorted into quadrants [Wallace et al., 1972, Willmarth and
Lu, 1972] (figure 2.3) relative to their contributions to the turbulent instantaneous Reynolds stress,
−𝑢′𝑣′. Quadrant splitting is a simple yet intuitive method that involves separating streamwise and
wall-normal velocity fluctuations into quadrants based on the sign (i.e., + or -) of the fluctuating
velocity component. A positive wall-normal velocity fluctuation (𝑣′ > 0) paired with a negative
streamwise velocity fluctuation (𝑢′ < 0) is considered to be a part of an ejection, or Q2 event,
since the flow moves upwards and against the mean streamwise flow; with the signs switched
it is considered a sweep, or Q4 event, since the flow moves downwards and exceeds the mean
streamwise flow. By the late twentieth century it was widely agreed upon that fluid dynamics
in the wall-region (𝑦+ < 100) contributed significantly to the production of TKE, due to the
considerably large mean wall normal shear (𝑈,𝑦); and large Reynold stresses, related to ejections
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Figure 2.3: Quadrant schematic of the instantaneous Reynolds stress plane.
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Figure 2.4: Conceptual model of the relationship between quasi-streamwise vortices, ejections,
and sweeps in the near-wall region.

and sweeps, found in this region. Furthermore, structures such as near wall streaks; ejections
and sweeps; near wall shear layers; quasi-streamwise vortices in the wall region; and transverse
vortices in the outer region were deemed of significant importance in terms of understanding the
self-sustaining process of channel flow turbulence [see Robinson, 1991, pp. 32-33].

The complexities associated with the Navier-Stokes equations, notably the vast span of length
scales required to resolve energy transfer in turbulence, had long made accurately modelling
turbulent fluid flow seem impossible. That is until some significant advancements in computing
arrived in the late 1980s, which enabled the use of computer models to simulate turbulent
fluid behaviour, which require increasingly refined grids when increasing Reynolds numbers
[Wyngaard, 2010, p. 305]. Of note, these new models included large eddy simulations (LES)
(the underlying concepts of LES are laid out in Lilly [1966]); and direct numerical simulations
(DNS) (see Orszag and Patterson [1972] for what is considered the first DNS). The former
attempts to accurately model the larger spatial scales and parameterizes small scale behaviour;
the latter attempts to accurately model all scales, requiring a more resolved grid which increases
computational costs. Kim and Moin [1985] embarked on a detailed analysis of a LES dataset,
investigating the structural qualities of vortical motions within the modelled flow, leading them
to find statistically significant evidence of hairpin-shaped vortical motions angled roughly 45
degrees from the wall to the streamwise direction. Kim and Moin [1986] later found that upright
horseshoe vortices tended to be associated with Q2 events, while inverted horsehoes were more
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associated with Q4 events. Shortly thereafter, Robinson [1991] carried out the first in-depth
structural investigation of the DNS database of Spalart [1988], which included extensive 2D and
3D visualizations of ejections, sweeps, and vortical structures.

Today, further computational advancements have allowed for increasing in-depth analyses
of DNS databases. The structural qualities of vorticity structures [Del Álamo et al., 2006] and
momentum-transferring structures [Lozano-Durán et al., 2012, Dong et al., 2017, Jiménez, 2018]
have been studied in channel flow DNS at various Reynolds numbers. Large scale motions and
very large scale motions [Lee et al., 2014], i.e., regions in the outer layer where flow coheres
over exceptional scales of space and time, have had their characteristics anaylsed, as well as how
their presence in the outer layer interacts with the dynamics in the wall-region below [Hwang
et al., 2016]. The spatial hierarchy of both lifted low streamwise speed structures (i.e., ejections)
and rotational structures [Motoori and Goto, 2021] have been studied to further illuminate the
physical mechanisms in the energy cascade of turbulent channel flow. This work touches each of
these phenomena, i.e., momentum and vortex structures across the entire wall-normal extent of
the channel, in which what differentiates this work from the aforementioned is the methodology
used to identify regions of interest.
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Chapter 3

Data

Prior to discussing the unsupervised learning methodology used to identify turbulent coherent
structures, the data to be analysed is first introduced. The velocity fields and velocity gradient
fields taken from a DNS of turbulent shear flow [Durbin and Reif, 2010, p. 58] will later be
clustered to identify regions of coherence relevant to TKE production and local rotation. The
flow configuration used in this section represents the fundamental building block of turbulent
fluid flowing over a smooth and solid surface.

3.1 Direct numerical simulation data

A high resolution DNS [Atoufi et al., 2019] of turbulent open channel flow (figure 3.1) is analysed
in this paper. The governing equations of this simulation are the incompressible non-dimensional
Navier-Stokes equations, equations 2.1 and 2.3. The flow is driven in the streamwise direction
by a uniform pressure gradient, and periodic boundary conditions are applied in the horizontal
directions. No-slip and no-stress boundary conditions,

𝑦 = 0 : 𝑢 = 𝑣 = 𝑤 = 0, (3.1)

𝑦 = ℎ :
𝜕𝑢

𝜕𝑦
= 𝑣 =

𝜕𝑤

𝜕𝑦
= 0, (3.2)

are applied to the bottom and top boundaries, respectively. Fluctuating variables are denoted
by a prime (e.g., the fluctuating streamwise velocity is 𝑢′), obtained by the subtraction of the
horizontal mean. Mean quantities are denoted by a capital letter equivalent of the variable (e.g.,
mean streamwise velocity is 𝑈), and are obtained using averages taken across the horizontal
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Figure 3.1: Open channel configuration with the mean streamwise velocity profile shown. The
sub-domain used for unsupervised model training is also shown.

directions, owing to the horizontal homogeneity of the channel. Note, as the simulation also
develops to statistical stationarity (i.e., temporal homogeneity), a temporal average would suffice
as well. Wall unit scaled variables are denoted by a ‘+’ superscript (e.g., scaled wall-normal
position is 𝑦+), computed using equation 2.5. Further details on the numerical approach of the
simulation can be found in Atoufi et al. [2019] and He [2016].

The simulation was performed on a computational domain of size [𝐿𝑥/ℎ, 𝐿𝑦/ℎ, 𝐿𝑧/ℎ] =

[2𝜋, 1, 𝜋] with grid resolution [𝑁𝑥 , 𝑁𝑦, 𝑁𝑧] = [768, 384, 768]. Grid spacing is homogeneous in
the horizontal directions and non-uniform in the wall-normal directions, with increased resolution
near the bottom surface. The friction Reynolds number is 𝑅𝑒𝜏 = 560, a Reynolds number large
enough to capture a rich inertial sub-range of TKE transfer [Kundu, 2003, p. 530]. The simulation
was run until statistical stationarity with a time step equal to Δ𝑡 = 0.0002, and data was recorded
at a time interval of 𝑡𝑠 = 0.1 [Atoufi et al., 2019].

3.2 Flow features of interest

An unsupervised learning method will be used to examine the relationship between regions of
significant momentum transfer, i.e., ejections and sweeps, and regions of significant rotation, i.e.,
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vortices. The three following subsections will outline the three experiments undergone in this
study. Each experiment is distinguished by the particular flow variables that are selected as input
to the unsupervised learning framework. The structures identified using these particular flow
variables will tend to inhabit particular wall-normal regions in the boundary layer, notably the
near-wall region (𝑦+ ⪅ 60), wall region (𝑦+ ⪅ 100), and entire wall-normal domain.

3.2.1 Near-wall region

To highlight the dynamics of the near-wall region (𝑦+ ⪅ 60), vortices are identified using the
instantaneous Q-criterion [Wray et al., 1988], 𝑄 = 0.5

(
| |𝛀| |2 − ||𝑺 | |2

)
as an input to the SOM,

where 𝛀 and 𝑺 denote the instantaneous vorticity tensor and strain rate tensor, respectively.
The component form derivation for 𝑄 can be found in appendix B. To represent regions of
significant TKE production and momentum transfer, the dominant instantaneous TKE production
term 𝑃12 = −𝑢′𝑣′𝑈,𝑦 is used as input as well, signalling regions in which mean kinetic energy
is transferred into TKE. As both 𝑄 and 𝑃12 contain the mean shear, 𝑈,𝑦, the salient structures
relevant to these variables are localized to the near-wall region where the mean shear is maximal.

3.2.2 Wall region

To extend analysis further away from the wall, 𝑄′ and the Reynolds stress, −𝑢′𝑣′, are instead
used, as within these variables is no direct presence of the mean shear. Structures relevant to
these variables therefore tend to extend their reach further from the wall. 𝑄′ structures are still
generally wall-localized (𝑦+ ⪅ 100), as regardless of the mean shear, gradient terms are stronger
near the wall. Reynolds stress structures, lacking gradient terms, generally extend further into
the outer layer.

3.2.3 Inner and outer layer (𝑦 ⪅ ℎ)

To capture the entire wall-normal extent of the channel, 𝑄′ and −𝑢′𝑣′ are standardized to zero-
mean and unit variance at each channel height, e.g., for 𝑄′ we have

𝑄′𝑠 = 𝑄′/⟨𝑄′2(𝑦)⟩1/2. (3.3)

Standardization in this way enables a multi-scale analysis of structures across the entire wall-
normal extent of the channel. As seen in figure 3.2, strong wall-localized vortical intensities
instead get spread near uniformly across the entire wall-normal domain.
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Figure 3.2: Instantaneous cross stream snapshots of 𝑄′ (left) and standardized 𝑄′ (right), i.e.,
𝑄′𝑠, demonstrating the near wall proclivity of high intensity 𝑄′ regions and wall normal ubiquity
of high intensity 𝑄′𝑠 regions.
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Case Input Features 𝑁𝑟𝑠 𝑁𝑣 𝑉𝑟𝑒𝑙𝑟𝑠 𝑉𝑟𝑒𝑙𝑣 Section
Near-wall −𝑢′𝑣′𝑈,𝑦, 𝑄 1391 3413 0.5% 0.6% 5.1
Wall −𝑢′𝑣′, 𝑄′ 2607 2317 6.0% 0.2% 5.2
Full −𝑢′𝑣′𝑠, 𝑄′𝑠 3531 7499 12.4% 2.9% 5.3

Table 3.1: Parameters for each experiment. Each experiment used a sub-domain of shape
[𝑁𝑡 , 𝑁𝑥 , 𝑁𝑦, 𝑁𝑧, 𝑁 𝑓 ]𝑠𝑢𝑏 = [60, 128, 384, 128, 2] for training. 𝑁𝑟𝑠 and 𝑁𝑣 are the number of
Reynolds stress and vortex clusters identified by the unsupervised learning method, respectively.
A distinct structure is considered as a set of highlighted grid cells that connect by grid face,
edge, or vertex. 𝑉𝑟𝑒𝑙𝑟𝑠 and 𝑉𝑟𝑒𝑙𝑣 are the volumes of each population of clusters relative to the full
spatio-temporal volume of the sub-domain, e.g., 𝑉𝑟𝑒𝑙𝑣 =

∑
𝑉𝑣/(𝑁𝑡 × 𝑁𝑥 × 𝑁𝑦 × 𝑁𝑧)𝑠𝑢𝑏.

3.3 Data preparation

Prior to model training and the subsequent clustering, the data must be pre-processed. First,
a sub-volume of the domain is selected to ease the computational burden on the SOM training
process. In the temporal and horizontal dimensions, due to stationarity and homogeneity, the
model generalizes well when applied to unseen data in these directions, whereas the full wall-
normal extent must be used due to wall-normal inhomogeneity. Care was taken to ensure the
temporal and horizontal spatial extents of the sub-domain were greater than the integral time
scale and integral length scales, respectively. The sub-domain size selected for model training is
[𝑁𝑡 , 𝑁𝑥 , 𝑁𝑦, 𝑁𝑧]𝑠𝑢𝑏 = [60, 128, 384, 128].

With the input flow features of interest selected, the sub-domain data is assembled into 𝑫 of
shape [𝑁𝑡 , 𝑁𝑥 , 𝑁𝑦, 𝑁𝑧, 𝑁 𝑓 ]𝑠𝑢𝑏 where 𝑁 𝑓 represents the number of features. The spatio-temporal
dimensions for each feature are then reshaped into columns to form a feature set, 𝑿, of shape
[𝑁𝑡 · 𝑁𝑥 · 𝑁𝑦 · 𝑁𝑧, 𝑁 𝑓 ]𝑠𝑢𝑏. For the near-wall (3.2.1) and wall (3.2.2) sections, prior to being input
into the unsupervised framework, each feature is standardized to zero-mean and unit variance,
where averages in this case are computed globally, independent of wall-normal position. This
step can be interpreted as a means to balance the influence between features during training. For
example, the magnitude of 𝑄′ tends to be of larger scale than that of −𝑢′𝑣′ due to larger gradient
terms in the near-wall region, such that in the absence of standardization the model would be
more influenced by the larger scale feature during training. To observe inner and outer layer
(3.2.3) phenomena, standardization is computed as in equation 3.3 using wall-normal position
dependent averages. Once standardized, the feature set, 𝑿𝑠, is sufficiently prepared for analysis
by computational pattern recognition. The methodology of the algorithms used for the pattern
recognition task of identifying ejections, sweeps, and vortices will be the topic of the following
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section.
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Chapter 4

Methodology

Two unsupervised learning algorithms are used in this study to identify regions of interest in
a turbulent channel flow simulation. The first algorithm used is the SOM. The choice for this
algorithm was noted earlier in section 1.3. The SOM provides a mapping from higher dimensional
inputs to a two-dimensional vector space. This two-dimensional space is then clustered using
𝑘-means. Reasons as to why the four-dimensional flow fields are not clustered directly will be
addressed later in section 4.2. Together, these two algorithms form a framework that allows
to deterministically cluster a flow field into regions of interest, which can elucidate coherent
structures present within a turbulent flow.

4.1 Self organizing map

The SOM is an unsupervised machine learning method that produces an organized low-dimensional
representation of a higher dimensional input. Typically, the low-dimensional representation is
in that of a two-dimensional neural map that preserves the topological structure of the data.
Throughout training, the map self-organizes such that similarly valued inputs are mapped to sim-
ilar regions on the map. There exists an iterative and a batch computation method for executing
the algorithm. For further details on these two algorithms the reader is referred to Kohonen
[2013, pp. 56-58], however brief overviews are provided on both. The iterative method is first
introduced to present foundational understanding of the algorithm’s objectives, followed by a
description of the more powerful batch method used in this work.
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4.1.1 Iterative method

Let 𝑿 denote the input data of shape [𝑛, 𝑓 ], where 𝑛 is the number of observations and 𝑓 is the
number of features. 𝑿 is mapped to a neural map of shape [𝑁, 𝑀], where 𝑁 and 𝑀 correspond
to the number of rows and columns in the neural map, respectively. Each node in the neural map
has a corresponding weight vector, 𝒘𝑖 𝑗 of shape [1, 𝑓 ], with 𝑖 and 𝑗 corresponding to the spatial
indices of the neural map. The matrix consisting of these weights is referred to as the weight
matrix, 𝑾, of shape [𝑁, 𝑀, 𝑓 ].

In the iterative method, an iteration, 𝑡, corresponds to the random selection of one data
instance, 𝒙, of shape [1, 𝑓 ] within 𝑿. The Euclidean distance between 𝒙 and all 𝒘𝑖 𝑗 ,

𝑐 = argmin
𝑖 𝑗

( | |𝒙(𝑡) − 𝒘𝑖 𝑗 (𝑡) | |), (4.1)

is computed, where the node, 𝑐, with weights closest to 𝒙 is termed the best matching unit (BMU)
for this input. Nodes that are near the BMU have their weights shifted towards those of the BMU,

𝒘𝑖 𝑗 (𝑡 + 1) = 𝒘𝑖 𝑗 (𝑡) + ℎ𝑐,𝑖 𝑗 (𝑡) [𝒙(𝑡) − 𝒘𝑖 𝑗 (𝑡)] (4.2)

where ℎ𝑐,𝑖 𝑗 is the neighbourhood function. In this study, a Gaussian neighbourhood function is
used [Kohonen, 1998, p. 2],

ℎ𝑐,𝑖 𝑗 (𝑡) = exp
−||𝑟𝑐 − 𝑟𝑖 𝑗 | |2

2𝜎2(𝑡)
, (4.3)

where the numerator represents the Euclidean distance between the BMU, 𝑟𝑐, and other nodes, 𝑟𝑖 𝑗 ,
on the grid, and the denominator represents a function that monotonically decreases as training
progresses. Weights positioned near the BMU, i.e., | |𝑟𝑐 − 𝑟𝑖 𝑗 | | → 0, are shifted more, and the
radius of influence the Gaussian neighbourhood (ℎ𝑐,𝑖 𝑗 ) decreases over time as 𝜎 → 0, resulting
in a neural map with weights that self-organize and localize over time. After sufficient training,
all 𝒙 in 𝑿 can be mapped to their respective BMU in 𝑾.

One drawback of the iterative method is that for each iteration, only one random data instance
𝒙 is selected. For a large spatio-temporal dataset, 𝒙 represents a tuple of flow variables at a
single point in space and time, and our DNS simulation consists of hundreds of millions of these
points. Capturing every point during training thus requires hundreds of millions of iterations. In
this case, iterating over each individual data instance is intractable and a subset must instead be
used; as such, the resulting maps from using the iterative method with large datasets are rarely
deterministic, i.e., 𝑾 between two runs with identical parameters vary due to the random input
selection. This is of concern, as for method to bear weight it must provide reproducible outputs.
Bussov and Nättilä [2021] demonstrate one workaround to the aforementioned issue, where they
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employ multiple iterative SOM method instances to cluster electromagnetic plasma flow fields,
and use an ensembling approach to select the best SOM map from the group of instances. Yet, this
process is both cumbersome and avoidable, and to avoid the problems surrounding the iterative
method this study instead adopts the batch method.

4.1.2 Batch method

The batch method alleviates the aforementioned issues with scalability and reliability of the
iterative SOM method. For stable convergence, one assumes that the expected values of 𝒘𝑖 (𝑡 + 1)
and 𝒘𝑖 (𝑡) be equal as 𝑡 → ∞. Applying this change to equation 4.2 suggests

E𝑡
[
ℎ𝑐,𝑖 𝑗 (𝑡)

[
𝒙(𝑡) − 𝒘𝑖 𝑗 (𝑡)

] ]
= 0,∀𝑖 𝑗 , (4.4)

where E𝑡 represents the expected value over 𝑡 iterations. Re-writing the expected value as
(1/𝑡)∑

𝑡
(.) and isolating 𝒘𝑖 𝑗 (𝑡)

𝒘𝑖 𝑗 (𝑡) =

∑
𝑡
ℎ𝑐,𝑖 𝑗𝒙(𝑡)∑
𝑡
ℎ𝑐,𝑖 𝑗

. (4.5)

Rather than iterating through random observations one by one, the batch method updates all
weights concurrently per update cycle using batches of inputs. One update cycle, 𝑡𝑏, consists of
first determining the BMU for each input in a batch, where a batch corresponds to the entire training
set, i.e., our entire spatio-temporal set of inputs. Inputs are assigned to the node corresponding
to their BMU, and the number of inputs assigned to each node, 𝑛𝑞, are recorded. The mean of
the inputs lying within each node, 𝑿𝑞, are computed, and the weights at each node are updated

𝒘𝑖 𝑗 (𝑡𝑏) =

∑
𝑞
𝑛𝑞ℎ𝑞,𝑖 𝑗 (𝑡𝑏)𝑿𝑞∑
𝑞
𝑛𝑞ℎ𝑞,𝑖 𝑗 (𝑡𝑏)

. (4.6)

To summarize, the batch computation follows the process outlined below:

1. For each weight, 𝒘𝑞, first compute the mean of all inputs, 𝑿𝑞, that are nearest to each
weight. Record the number of inputs, 𝑛𝑞, falling into each node.

2. For each weight 𝒘𝑖 𝑗 , compute the neighbourhood functions, ℎ𝑞,𝑖 𝑗 , between node 𝑖 𝑗 and
𝑞 = 1, ..., 𝑁 × 𝑀 . Update each weight value with equation 4.6.
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3. Repeat steps 1 and 2 until | |𝒘𝑖 𝑗 (𝑡𝑏) − 𝒘𝑖 𝑗 (𝑡𝑏 − 1) | | < 𝜖 , where 𝜖 is some small value.

As training progresses the neighbourhood function radius of influence decreases, and once
the weight updates settle and become steady the model is considered converged. Batch training
provides more consistent and reproducible outputs than the iterative method. A neural map
of shape [𝑁, 𝑀] = [10, 10] is used in this work, providing a sufficient balance between topo-
logical resolution and computational loads. It was found that smaller maps limit topological
complexity, important to the clustering step outlined in section 4.2; larger maps were found to
increase computational loads with negligible benefit, see appendix B.1.1 for more details. Linear
initialization [Kohonen, 2001, p. 107] of weights is employed to accelerate model convergence.
Linear initialization involves determining the two eigenvectors, i.e., the principal components, of
the autocorrelation matrix of 𝑿, and spanning these eigenvectors across a two-dimensional linear
sub-space. The initial values of 𝑤𝑖 𝑗 (0) are then initialized with this array of points. Note, the
autocorrelation matrix of the sub-volumes corresponding to five random timesteps was used in
this study, as obtaining the principal components of the full sub-domain was too expensive. This
is approximation is sufficient, as the rationale around using linear initialization is that any ordered
initial approximation should be more profitable than random initialization [Kohonen, 2001, p.
107]. The model took approximately 14 hours to train on two Intel Platinum 8160F Skylake
CPUs.

4.2 Clustering

Once trained, the batch SOM method produces a low-dimensional representation of the input
data, in the form of 𝑾. To cluster the data, one option would be to consider each map node
as an individual cluster. Wu et al. [2019] follow this approach, using a [𝑁, 𝑀] = [1, 2] SOM
to identify turbulent and non-turbulent regions in a transitional boundary layer flow, treating
instances mapped to one node as turbulent, and others as non-turbulent. In the case of a large
neural map this approach leads to a large number of clusters; moreover, it imposes a specific
count of clusters, which corresponds to the number of nodes on the map, yet in most cases the
true number of clusters is not necessarily known.

Nodes near one another in 𝑾 hold similarity to one another; hence, it is expected that
neighbourhoods of multiple nodes coalesce to form self similar clusters. Therefore, to obtain
a distinct cluster set for 𝑿, 𝑾 is further partitioned into distinct regions based on converged
weight values. Vesanto and Alhoniemi [2000] show the effectiveness of this approach, taking a
high-dimensional input and employing this two-level approach to clustering—by first obtaining
a SOM map and further clustering the map using an agglomerative clustering method. Applying
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the clustering methods directly to large datasets is computationally expensive, whereas clustering
the low-dimensional SOM representations of the data instead serves to bypass a large portion of
the computational load while maintaining cluster quality.

A similar approach is used here, where the agglomerative clustering method of 𝑘-means
[Lloyd, 1982] is used to further cluster the SOM. Outputs of 𝑘-means are stochastic, sensitive
to initialized centroid values; meaning, clusters produced by two separate models trained with
identical parameters are not necessarily the same.

4.2.1 Ensuring reproducibility

To obtain a deterministic model that generates reproducible outputs, multiple 𝑘-means model
instances, 𝒎, are trained to produce a set of models, 𝒎𝑎𝑙𝑙 . From this, the best model is selected,
𝒎𝑏𝑒𝑠𝑡 , such that it returns the minimum intra-class variance,

𝒎𝑏𝑒𝑠𝑡 = min
∀𝒎∈𝒎𝑎𝑙𝑙

𝑘∑︁
𝑏=1

𝑁×𝑀∑︁
𝑎=1

| |𝒘 (𝑏)
𝑎 − 𝒄𝑏 | |2, (4.7)

where𝑁×𝑀 is the number of data instances (in this case number of SOM nodes), 𝒘 (𝑏)
𝑎 corresponds

to a weight instance (in this case the weight vector at node 𝑎) falling into cluster 𝑏, 𝑘 corresponds
to the number of clusters, and 𝒄𝑏 is the centroid value of cluster 𝑏. Selecting the best of O(103)
model instances provides reproducible cluster outputs (see appendix B.1.2), and due to the low
dimensionality of the SOM map the computational cost of running many instances is negligible.

Another required input parameter is the number of clusters, 𝑘; however, the number of
clusters is not necessarily known—injecting that bias into the learning process is to be avoided.
To automatically determine the number of clusters, 𝑘𝑏𝑒𝑠𝑡 , the best models are obtained for cluster
counts 𝑘 = 2, 3, ..., 𝑘𝑚𝑎𝑥 , setting 𝑘𝑚𝑎𝑥 = 20 in this study. Two criteria are used to assess the
cluster quality of these models: the silhouette coefficient [Rousseeuw, 1987] and the intra-class
variance. These two criteria are used to provide robustness to the cluster count determination
process. The silhouette coefficient, ranging from [−1, 1], measures how similar data points are
to their assigned cluster relative to other clusters, with large positive values indicating strong
intra-cluster cohesion and inter-cluster separation; whereas a large negative value indicates that
instances are not well-matched to their own clusters and better-matched to neighbouring clusters.
Silhouette coefficients are obtained for each cluster count, and the best cluster count relevant to
this criteria is that with a maximal silhouette coefficient. For recent studies making use of this
criteria see Yatsunenko et al. [2012], Bagirov et al. [2023]. Meanwhile, the intra-class variance
for each cluster count is also obtained, and the best cluster count relevant to this criteria is

27



𝑴𝑪𝑿𝒔

−𝒖′𝒗′𝒔

−𝑢′𝑣′𝑠0

… …

𝑸′𝒔

𝑄′𝑠0

Data Pipeline

Reshape into
column vectors

Train SOM to obtain
low−dimensional
representation of 𝑿𝒔

Map clusters back
to original domain

Input standardized
flow data

[𝑁,𝑀][𝑁,𝑀,𝑁𝑓][𝑁𝑡𝑜𝑡𝑎𝑙 , 𝑁𝑓 ]
[𝑁𝑡 , 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧 , 𝑁𝑓]sub

(single timestep shown for clarity)

𝑫𝒔

−𝒖′𝒗′𝒔

𝑸′𝒔

𝑢′𝑣′𝑠𝑁𝑡𝑜𝑡𝑎𝑙
𝑄′𝑠𝑁𝑡𝑜𝑡𝑎𝑙

Cluster W
into 𝑘𝑏𝑒𝑠𝑡 clusters

𝑾𝑢′𝑣′𝑠

𝑾𝑄′𝑠

𝑾

[𝑁𝑡 , 𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧]sub
(single timestep shown for clarity)

Figure 4.1: Data pipeline for an input containing 𝑁 𝑓 = 2 flow features. Text in grey boxes
represent the shape of the data object shown at that point in the pipeline. 𝑁𝑡𝑜𝑡𝑎𝑙 represents the
product of the spatial and temporal sizes.

determined using the elbow method [Thorndike, 1953], i.e., the point of the intra-class variance
vs. cluster count plot with maximum curvature. For recent studies using this criteria see Omar
et al. [2020], Topór [2020]. The average between the two cluster counts, that found by using the
silhouette coefficient and that found by the elbow method, is used as 𝑘𝑏𝑒𝑠𝑡 . For further details on
this process, see appendix B.1.3.

4.3 Learning pipeline

Once𝑾 is clustered, clusters𝑪 = {𝑪1, ...,𝑪𝑘𝑏𝑒𝑠𝑡 } are mapped back to the spatio-temporal domain.
Using the learned connection between observations and their corresponding BMU on 𝑾, a mask
tensor 𝑴 of shape [𝑁𝑡 , 𝑁𝑥 , 𝑁𝑦, 𝑁𝑧] is created. 𝑴 is representative of all features that were input
in the first stage of the data pipeline, thus having only one feature. In summary, 𝑴 represents the
proper superset of all identified disjoint clusters

𝑴 ⊃
{
𝑪1, ...,𝑪𝑘𝑏𝑒𝑠𝑡

}
| 𝑪𝑖 ∩ 𝑪 𝑗≠𝑖 = ∅. (4.8)

An overview of the data pipeline described throughout this section is shown in figure 4.1. Analyses
of the learned clusters within 𝑴 will be the topic of discussion in the section 5.
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Figure 4.2: Percolation plot for structures corresponding to 𝑄′𝑠 > 𝛼, ★ indicates 𝛼𝑝𝑒𝑟𝑐 ≃ 1.6.

4.4 Percolation Theory

Prior to the analysis of the clusters produced by the unsupervised learning framework, the
methodology of percolation theory is first outlined briefly here. Later in section 5.4, the resulting
clusters produced by the unsupervised method will be compared against those found using
percolation theory, a method used to determine more objective thresholds to identify coherent
structures.

Visualization of CS in numerically represented flows generally involves using judgment to
manually select a threshold value that displays the salient regions of the thresholded variable.
The threshold tuning process in this case would involves a situation in which the user selects a
threshold that brings rise to structures that match their perceptual expectations.

Recent works [Lozano-Durán et al., 2012, Dong et al., 2017, Motoori and Goto, 2021] have
used percolation theory to move towards more objective threshold selection. Percolation theory
involves first computing the volume of each distinct structure identified by a threshold value.
These structures are obtained by simply highlighting regions of flow above the chosen 𝛼, and
discarding the rest. A distinct structure is considered as a set of highlighted grid cells that
connect by grid face, edge, or vertex. The volume of the largest structure, 𝑉𝑙𝑎𝑟 , is compared
against the total volume occupied by all structures, 𝑉𝑡𝑜𝑡 , yielding a ratio of 𝑉𝑙𝑎𝑟/𝑉𝑡𝑜𝑡 . Ratios
are obtained for an array of thresholds, yielding a plot such as figure 4.2 (this plot will be used
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later in section 5.4). Note, for small and large 𝛼, the percolation plot approaches a ratio of
unity. To understand this behaviour, consider that an infinitesimally small threshold selects the
entire domain as the structure, thus 𝑉𝑙𝑎𝑟 ≡ 𝑉𝑡𝑜𝑡 ; and the largest possible threshold corresponds
to the global maximum of the thresholded value, thus only highlighting only a solitary “speck”
within the domain, resulting again in 𝑉𝑙𝑎𝑟 ≡ 𝑉𝑡𝑜𝑡 . A local minimum after a steep gradient on
the percolation plot indicates a rapid shift from a coalescence to a distinct and separated set of
structures, the threshold value at this minimum is selected to represent the percolation threshold,
𝛼𝑝𝑒𝑟𝑐, which provides a more data-driven threshold than one selected based on visual perception.

Computational analysis was done on Python. The Somoclu Python package (see Wittek
et al. [2017]) was used to employ the batch SOM method, scikit-learn was used to employ K-
Means clustering, and the PyVista package (see Sullivan and Kaszynski [2019]) was used for
three-dimensional structure visualizations.
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Chapter 5

Results

Ejections, sweeps, and quasi-streamwise vortices are known to be prevalent in the wall region
of wall-bounded flows [Robinson, 1991]. Through the transfer of MKE into TKE, velocity
fluctuations are amplified considerably in the near-wall region, primarily by way of mean shear.
Momentum transfer in this region is thus enhanced. Characteristic processes involved in mo-
mentum transfer include regions of high vorticity with quasi-streamwise orientation, flanked by
regions of slower than average (i.e., 𝑢′ ≪ 0) fluid being ejected upwards and regions of faster
than average (i.e., 𝑢′ ≫ 0) fluid being swept downwards Robinson [1991, p. 625]. The presence
of these near-wall coherent structures have been long documented in the literature, and more
recent works [Dong et al., 2017, Jiménez, 2018] have reaffirmed their presence. In this section,
the unsupervised learning method is used to further inspect these processes.

This collection of processes are explored in three stages. First, in subsection 5.1, instantaneous
𝑃12 and 𝑄 fields are used to illuminate the near-wall (𝑦+ < 60) dynamics between vortices and
TKE production. In subsection 5.2, the instantaneous −𝑢′𝑣′ and 𝑄′ fields are used to illuminate
the interactions between momentum and fluctuating vorticity CS in the wall region (𝑦+ < 100).
In subsection 5.3, the standardized instantaneous −𝑢′𝑣′𝑠 and 𝑄′𝑠 are used to explore momentum
and fluctuating vorticity structure interactions across the entire span of the wall-normal domain.

This section will feature analysis done on regions of interest as identified by the unsupervised
learning method, involving both qualitative and quantitative methods of analysis. Notably,
the quantitative methods will involve evaluating local statistics within the regions of interest.
Refining the statistics to intelligently localized phenomena offers the ability to further understand
the physical processes that underlay the local phenomena, and how it contributes to the global
system.
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Figure 5.1: Joint 𝑝.𝑑. 𝑓 (𝑢′, 𝑣′) of regions of flow labeled as 𝐶1𝑄2 and 𝐶1𝑄4 from the a) viscous
sublayer, b) lower buffer layer, c) mid buffer layer, and d) upper buffer layer. Contours contain
90% to 10% of the joint probability mass from the lowest to highest contour levels, respectively.
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a)

b)

Figure 5.2: Instantaneous a) top-down (𝑦+ ≈ 15) and b) cross-stream snapshots of 𝑃12 (left)
and 𝑄 (right) overlaid with cluster boundaries. Red (𝐶1𝑄4), blue (𝐶1𝑄2), pink (𝐶1Ω) and green
(𝐶1𝑆).

5.1 Near-wall dynamics

The input data for the near wall region analysis, 𝑫𝑛𝑤, containing fields of instantaneous 𝑃12 and
𝑄, progresses through the data pipeline shown in figure 4.1. The mask set, 𝑴𝑛𝑤, is generated,
containing 𝑘𝑏𝑒𝑠𝑡 = 4 clusters, forming the cluster set 𝑪1 = {𝐶11, ..., 𝐶14}. To link each cluster
with its respective dynamic process, quantitative and qualitative methods are employed to further
inspect the clusters. The statistics of each cluster with respect to the input variables are first
examined to apply meaningful labels.

Cluster 𝐶1𝑛𝑠 occupies 98% of the channel volume, encompassing what is named as the
non-salient region of the channel. While this region is undoubtedly still relevant to the overall
dynamics of the channel, it occupies space where production and vorticity/strain are locally low in
magnitude. Two clusters,𝐶1Ω and𝐶1𝑆, are characterized by vorticity dominated regions (𝑄 ≫ 0)
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Figure 5.3: Side profile of three-dimensional 𝐶1Ω (blue) and 𝐶1𝑃 (red) structures, showing
production structures confined to the buffer layer, and vortices extending out further above. 𝐶1𝑛𝑠
and 𝐶1𝑆 are made transparent.

and strain dominated regions (𝑄 ≪ 0), respectively. The fourth cluster, 𝐶1𝑃, is characterized
by regions of large production, altogether forming the cluster set 𝑪1 = {𝐶1𝑛𝑠, 𝐶1Ω, 𝐶1𝑆, 𝐶𝑃}.
Figure 5.1 shows that 𝑢′ and 𝑣′ values within cells labeled as 𝐶1𝑃 are distributed neatly within
quadrants Q2 and Q4, which are henceforth denoted by 𝐶1𝑄2 and 𝐶1𝑄4. Herein, a flow variable
within a specific cluster are represented by a superscript indicating the specific cluster (i.e., 𝑢′𝐶1Ω

are streamwise fluctuations in the set of grid cells labeled as 𝐶1Ω), akin to a filtered quantity.

Figure 5.1 shows that sweeps within high production regions, i.e., 𝐶1𝑄4, are more intense
near the wall in the viscous sublayer and early buffer layer. In these regions, the joint distributions
demonstrate limited wall-normal fluctuations, as vertical flow is inhibited by the wall below. As
wall-normal distance increases, one observes increasing ejection intensities, as well as reduced
wall-normal fluctuation restriction. This dichotomy of sweep and ejection intensity in the lower
and upper buffer layers is well documented [Wallace, 2016]. Regardless of wall-normal position
within the near wall, streamwise fluctuations are generally stronger than wall normal fluctuations,
one reason being that the mean shear injects kinetic energy directly into streamwise fluctuating
kinetic energy.

The 𝑖 = 1 and 𝑗 = 2 production term from equation 2.7 is large due to the significantly
large mean shear,𝑈1,2 (or equivalently 𝜕𝑈

𝜕𝑦
), transferring MKE into streamwise fluctuating kinetic

energy. Figure 5.2 and 5.4 show that significant TKE production occurs on the flank of vortices,
as shown by the overlaid𝐶1𝑄2,𝐶1𝑄4, and𝐶1Ω clusters. Signatures of internal shear layers [Jeong
et al., 1997] can be seen, with regions of large strain (which is shear dominated, see section 5.2.2)
lying both below vortices, favouring the Q4 side; and above vortices, favouring the Q2 side (see
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Figure 5.4: Instantaneous 3D snapshot of 𝐶1Ω and 𝐶1𝑃 in the near-wall region, coloured by a)
𝑢′ and b) 𝑣′. 𝐶1𝑛𝑠 and 𝐶1𝑆 are made transparent.
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the green enclosures in figure 5.2(b)). Fluid advected below a vortex in a sweep (Q4) is squished,
shearing the fast-moving fluid against the wall below. Fluid advected above a vortex in an ejection
(Q2) is also squished, as slow-moving fluid hits a “wall” of faster moving fluid above, shearing
the ejecting fluid.

𝐶1𝑃 is generally restricted to the the buffer layer and below, where the mean shear is largest.
Vortices are most populous in the buffer layer, but extend further into the logarithmic region as
well. This can be observed in figure 5.4, where one observes Q2 and Q4 structures flanking
quasi-streamwise vortices, and a transverse vortex head extending above the production clusters
(see figure 5.3). The mean shear in the production term localizes populations to the near-wall,
restricting statistical analysis to the buffer layer and below; therefore, the following section will
inspect the rotation-momentum relationship such that structures extend across the wall region.

5.2 Wall-region dynamics

The wall-region (𝑦+ < 100) is examined next, following the same unsupervised learning procedure
as in the previous section. This section features additional detailed analyses of the learned clusters,
to both validate that the structures learned by the unsupervised learning method are meaningful,
and to further establish understanding of wall-region dynamics.

The input data for the wall-region analysis, 𝑫𝑤, containing fields of instantaneous −𝑢′𝑣′ and
𝑄′, progresses through the data pipeline shown prior in figure 4.1, providing 𝑴𝑤 containing
𝑘𝑏𝑒𝑠𝑡 = 4 clusters, forming the cluster set 𝑪2 = {𝐶21, ..., 𝐶24}. The statistics of each cluster
with respect to the input variables are again examined to apply meaningful labels. Cluster 𝐶2𝑛𝑠
occupies 93% of the channel volume, encompassing what is once-more named the non-salient
region of the channel. Two clusters, 𝐶2Ω′ and 𝐶2𝑆′ , are characterized by vorticity fluctuation
dominated regions (𝑄′ ≫ 0) and strain fluctuation dominated regions (𝑄′ ≪ 0), respectively. The
fourth cluster, 𝐶2−𝑢′𝑣′ , is characterized by regions of large Reynolds stress, altogether forming
the cluster set 𝑪2 = {𝐶2𝑛𝑠, 𝐶2Ω′ , 𝐶2𝑆′ , 𝐶2−𝑢′𝑣′}. Figure 5.5 shows that 𝑢′ and 𝑣′ values within
cells labeled as 𝐶2−𝑢′𝑣′ are distributed neatly within quadrants Q2 and Q4 𝐶2−𝑢′𝑣′ , which are
henceforth denoted by 𝐶2𝑄2 and 𝐶2𝑄4.

Figure 5.6 demonstrates qualitatively the alignment of clusters with the high intensity regions
of their pertinent flow variables. In the near-wall region, the characteristic arrangement of vortices
with ejections and sweeps on either side is again observed, with regions of strong fluctuating
strain above and below vortices. Q2 and Q4 events in this case extend further above into the outer
layer, as the absence of a gradient term in −𝑢′𝑣′ leads to 𝐶2−𝑢′𝑣′ populations being more spread
out in the wall-normal direction; though, −𝑢′𝑣′ is still generally more intense in the buffer layer
as seen in figure 5.5, indicated by the larger distribution spreads.
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Figure 5.5: Joint 𝑝.𝑑. 𝑓 (𝑢′, 𝑣′) of regions of flow labeled as 𝐶2𝑄2 and 𝐶2𝑄4 from the a) viscous
sublayer, b) lower buffer layer, c) upper buffer layer, d) logarithmic layer, and e) outer layer.
Contours contain 90% to 10% of the joint probability mass from the lowest to highest contour
levels, respectively. – · – : −𝑢′𝑣′ = 1.
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Figure 5.6: Instantaneous cross-stream snapshots of −𝑢′𝑣′ (left) and 𝑄′ (right) overlaid with
cluster boundaries. Red (𝐶2𝑄4), blue (𝐶2𝑄2), pink (𝐶2Ω′) and green (𝐶2𝑆′).
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Figure 5.7: Instantaneous sample of momentum transferring structure interactions identified by
the unsupervised learning method.
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a)a)

b)b)

Figure 5.8: Intra-cluster statistics of regions of flow labeled as 𝐶2Ω′ , 𝐶2𝑄2, and 𝐶2𝑄4. a) Joint
𝑝.𝑑. 𝑓 (𝑢′, 𝑦+) (left) and 𝑝.𝑑. 𝑓 (𝑢′) (right) computed at 𝑦+ ≈ 20. b) Joint 𝑝.𝑑. 𝑓 (𝑣′, 𝑦+) (left) and
𝑝.𝑑. 𝑓 (𝑣′) (right) computed at 𝑦+ ≈ 20. Contours contain 90% to 10% of the joint probability
mass from the lowest to highest contour levels, respectively. Intra-cluster means are indicated by
– · –.
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Three dimensional visualizations are shown in figure 5.7, with the inset showing a repre-
sentative vortex, identified by 𝐶2Ω′ , nestled between an ejection and sweep, identified by 𝐶2𝑄2
and 𝐶2𝑄4. A sweep occurrence alongside an ejection implies rotation within the flow region
cushioned between, in which the three dimensional structures succinctly elucidate this behaviour.
The relationship between momentum transferring structures and vortices is represented quantita-
tively in figure 5.8, showing that the identified vortex populations are generally restricted to the
buffer and log layer. Figure 5.8(a) shows that in the early buffer layer (5 < 𝑦+ < 15), 𝐶2Ω′ , i.e.,
coherent vortices, tend to inherit high 𝑢′ from the more populated and intense sweeps, whereas
in the outer buffer and log layer (15 < 𝑦+ < 70), vortices tend to inherit low 𝑢′ from the more
populated and intense ejections; while figure 5.8(b) shows that vortices at all heights generally
advect slightly upwards, a signature of vortex lift-up as described by Zhou et al. [1999]. While
not all vortices are necessarily situated between an ejection and sweep and streamwise oriented,
these statistics seem to suggest that the dominant momentum and energy transferring mechanism
in the wall region is that of the vortex flanked by an ejection and sweep. This finding is consistent
with the findings of Dong et al. [2017] who found that quadrant events in close proximity to one
another tended to form quasi-streamwise trains with a vortex cushioned between. What follows
is a further statistical examination of vortex clusters to confirm this claim.

5.2.1 Vortex statistics

Vorticity statistics

The claim that near-wall vortices generally fall between a region of ejecting and sweeping fluid
is further explored in this section. The equation for vorticity is given by

𝝎 = ∇ × 𝒖. (5.1)

For clarity, the streamwise, vertical, and spanwise components of vorticity in three-dimensional
Euclidean space are given by

𝜔𝑥 = 𝑤,𝑦 − 𝑣,𝑧, (5.2)

𝜔𝑦 = 𝑢,𝑧 − 𝑤,𝑥 , (5.3)

𝜔𝑧 = 𝑣,𝑥 − 𝑢,𝑦 . (5.4)

To first establish an understanding of the physics, a simple schematic of a streamwise vortex
flanked by a sweep and ejection will be used, as shown in figure 5.10. Note that, as found
earlier in figure 5.5, sweep and ejection strength vary based on wall normal position, but in
this simplified model it is assumed that these strengths are comparable; thus, this model can be
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Figure 5.9: Joint 𝑝.𝑑. 𝑓 (𝜔𝐶2Ω′
𝑖

, 𝑦+). Contour levels contain 66% (thin line) and 33% (thick line)
of the joint probability mass, respectively.

thought of as occurring around the mid-buffer layer, where sweep and ejection intensities are
relatively balanced. Furthermore, only a configuration pertaining to a positive streamwise vortex
is shown in figure 5.10, where the relative spanwise positions of the ejection and sweep parallel
to one another associate with positive streamwise vorticity (𝜔𝑥) between; yet, if the ejection and
sweep positions were swapped, one would expect negative 𝜔𝑥 to occur between.

The near-wall region is host to both positively and negatively rotating quasi-streamwise
vortices [Jeong et al., 1997], as supported by the near-symmetric bi-modal distribution of 𝜔𝑥
within vortex clusters (𝐶2Ω′) shown in figure 5.9. The top contours of the 𝑗 .𝑝.𝑑. 𝑓 indicate that
vortices are most populous from in the buffer layer. This figure also demonstrates that buffer layer
vortices are most characterized by high magnitude 𝜔𝑥 , as indicated by the further extension of the
peaks in the 𝜔𝑥 distribution. The vertical vorticity (𝜔𝑦) also shows a near-bi-modal distribution
(see the outer contour lines of the 𝜔𝑦 𝑗 .𝑝.𝑑. 𝑓 ), since between ejections and sweeps there is a
spanwise gradient of streamwise velocity (𝜕𝑢/𝜕𝑧) that rotates fluid between, whose sign depends
on the relative spanwise position of the low-streamwise-speed ejection and the high-streamwise-
speed sweep. For the configuration shown in figure 5.10, 𝜕𝑢/𝜕𝑧 > 0; if the spanwise positions
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of the ejection and sweep were swapped the gradient would instead be negative. The spanwise
vorticity (𝜔𝑧) is near-exclusively negative, due to 𝜕𝑢/𝜕𝑦 always being greater than zero due to
the mean shear contribution and 𝜕𝑣/𝑥 being negligible in magnitude with respect to 𝜕𝑢/𝜕𝑦.
This section maintains focus on positively rotating quasi-streamwise vortices; however, results
were also obtained for negatively rotating quasi-streamwise vortices and showed similar trends;
therefore, those results are omitted to avoid redundancy.

With the simple configuration shown in figure 5.10 established, one can pose the questions:
What vortical dynamics are expected to occur between an ejection and sweep? Why do quasi-
streamwise vortices persist, despite spanwise vorticity being so prominent near the wall? The
instantaneous streamwise vorticity transport equation can be used to investigate these questions

𝐷𝜔𝑥

𝐷𝑡
= 𝜔 𝑗𝑢, 𝑗 +�

��∇2𝜔𝑥 = 𝜔𝑥
𝜕𝑢

𝜕𝑥
+ 𝜔𝑦

𝜕𝑢

𝜕𝑦
+ 𝜔𝑧

𝜕𝑢

𝜕𝑧
+�

��∇2𝜔𝑥 (5.5)

where the diffusive term is neglected, as the configuration is assumed to take place in the buffer
region where viscous effects are negligible [Brooke and Hanratty, 1993, p. 1017]. Referring
to figure 5.10, the expected streamwise vorticity transport term contributions are summarized
below:

• 𝜔𝑦𝜕𝑢/𝜕𝑦 (tilting):

– Positive vertical vorticity (𝜔𝑦) is generated by way of a positive spanwise gradient of
streamwise velocity (𝜕𝑢/𝜕𝑧) between the low speed ejection and high speed sweep

– 𝜔𝑦 is tilted downwards by 𝜕𝑢/𝜕𝑦 into positive 𝜔𝑥

• 𝜔𝑧𝜕𝑢/𝜕𝑧 (twisting):

– Strictly negative 𝜔𝑧 is generated by positive 𝜕𝑢/𝜕𝑦
– 𝜔𝑧 is twisted by positive 𝜕𝑢/𝜕𝑧 into negative 𝜔𝑥

• 𝜔𝑥𝜕𝑢/𝜕𝑥 (stretching):

– Positive 𝜔𝑥 is generated due to both negative 𝜕𝑣/𝜕𝑧 (and positive 𝜕𝑤/𝜕𝑦) between
the rising ejection and falling sweep

– Vortices incline upwards with respect to the wall, thus positive 𝜕𝑢/𝜕𝑥 is indirectly
adopted, which stretches 𝜔𝑥 into more positive 𝜔𝑥

With these expectations set, one can evaluate the transport statistics of regions identified as
vortices to see whether local trends obey theoretical expectations. Cluster 𝐶2Ω′ is first filtered
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Figure 5.10: Simplified configuration of a near-wall streamwise vortex between an ejection and
sweep. The tilting, twisting, and stretching terms of the streamwise vorticity transport are shown
at a) some initial position (𝒙0, 𝑡0), and b) a later position (𝒙1, 𝑡1) to demonstrate how the velocity
gradients within this arrangement influence each transport term.
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to consider only positively rotating streamwise vortices (𝜔𝑥 > 0). Figure 5.11 confirms the
previously established streamwise vorticity transport expectations, showing positive contributions
to 𝐷𝜔𝑥/𝐷𝑡 from vortex stretching and tilting, and negative contributions from vortex twisting.
Since the tilting and twisting terms share some components, their net effect can be shown by
rewriting equation 5.5 as follows

𝐷𝜔𝑥

𝐷𝑡
=𝜔𝑥𝑢,𝑥 + 𝜔𝑦𝑢,𝑦 + 𝜔𝑧𝑢,𝑧 +���∇2𝜔𝑥 (5.6)

=𝜔𝑥𝑢,𝑥 + (𝑢,𝑧 − 𝑤,𝑥)𝑢,𝑦 + (𝑣,𝑥 − 𝑢,𝑦)𝑢,𝑧 (5.7)
=𝜔𝑥𝑢,𝑥 − 𝑤,𝑥𝑢,𝑦 + 𝑣,𝑥𝑢,𝑧, (5.8)

where the common 𝑢,𝑧𝑢,𝑦 terms are cancelled out. The net contributions are shown in figure 5.12,
showing a relatively symmetric distribution of twisting, and a generally positive tilting of −𝑤,𝑥 by
𝑢,𝑦. While 𝑢,𝑦 is generally positive due to the mean shear, 𝑤,𝑥 is most likely negative since flow
between an ejection-sweep region is rotated counter-clockwise (from a top-down perspective in
the coordinate system used in this work), such that the leading edge of the vortex tends in the +𝑧
direction and the trailing edge tends in the −𝑧 direction (as will be shown later in figure 5.14).

The dominant term contributing to the spatio-temporal sustenance and growth of 𝜔𝑥 is that of
vortex stretching. An interesting insight is that stretching strength increases nearest to the wall.
A possible explanation is that closer to the wall 𝑢,𝑦 is strongest, and due to the inclined nature
of the vortices 𝑢,𝑥 indirectly adopts the strong wall-normal gradient. As wall-normal position
increases, shear strength decreases, leading to a decrease in streamwise vorticity stretching. As
will be shown in the following section, vortices tend to advect upwards faster at the downstream
tail than at the upstream tail, causing the vortex to lift up and orient more and more vertically
near the end of its life cycle, until its eventual decoherence in the logarithmic region and above.

Velocity statistics

Further insights on coherent vortex behaviour is gathered by analyzing how the structures tend
to advect, by examining the distributions of each fluctuating velocity component within vortex
clusters (𝐶2Ω′) over wall-normal position. With figure 5.13 as reference, the following behaviours
are demonstrated (note: due to the inclined nature of quasi-streamwise near-wall vortices, it is
assumed that the leading edge of a vortex is generally situated closer to the wall, and the trailing
edge is generally situated further from the wall):

• Streamwise velocity tends faster at the leading edge and tends slower at the trailing edge of
near-wall vortices. This is due to the inheritance of high 𝑢′ from the more populated and
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a) b)

Figure 5.11: a) Joint 𝑝.𝑑. 𝑓 (𝜔 𝑗𝑢, 𝑗
𝐶2Ω′ , 𝑦+) with the additional condition of 𝜔𝑥𝐶2Ω′ > 0. Contour

levels contain 66% (thin line) and 33% (thick line) of the joint probability mass, respectively. b)
Intra-cluster vorticity transport means (𝜔 𝑗𝑢

𝐶2Ω′
, 𝑗

).

a) b)

Figure 5.12: a) Joint 𝑝.𝑑. 𝑓 (𝜔 𝑗𝑢, 𝑗
𝐶2Ω′ , 𝑦+) using the terms from equation 5.8, with the additional

condition of 𝜔𝑥𝐶2Ω′ > 0. Contour levels contain 66% (thin line) and 33% (thick line) of the joint
probability mass, respectively. b) Intra-cluster vorticity transport component means.
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Figure 5.13: Intra-cluster mean velocity fluctuations (𝑢𝑖′𝐶2Ω′ ) over wall-normal height. – · – :
𝜔𝑥

𝐶2Ω′ > 0; — : 𝜔𝑥𝐶2Ω′ < 0. A qualitative representation of these statistics for a quasi-streamwise
vortex with 𝜔𝑥 > 0 is shown in 5.14.

intense sweeps closer to the wall, whereas further from the wall vortices tend to inherit low
𝑢′ from the more populated and intense ejections

• Wall-normal velocity tends to increase with increasing height. The trailing edge tends
upwards more than the leading edge—a signature of the inclination angle commonly
observed in coherent vortices [Kim and Moin, 1985]

• Spanwise velocity for coherent vortices, having 𝜔𝑥 > 0, tends in the +𝑧 direction at the
leading edge, and in the −𝑧 direction at the trailing edge. The opposite is found for
𝜔𝑥 < 0. This spanwise velocity imbalance leads to slight spanwise tilts in the vortices
(hence quasi-streamwise oriented vortices)

A note on the final point is that it is consistent with the findings of Jeong and Hussain [1995, p.
198], who obtained ensemble averaged positively quasi-streamwise oriented rotating vortex (SP)
and negatively rotating vortex (SN) structures. The averaged structures were found to overlap,
much like a parent-eddy configuration, where the trailing edge of a SP lies on top of the leading
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Figure 5.14: Quasi-streamwise positively rotating (𝜔𝑥 > 0) vortex with velocity vectors shown
at its leading and trailing edge.

edge of a SN. Their reasoning for the spanwise velocity gradient along the streamwise extent of
the structure was that the counter-rotation of the SP head and the SN tail have an additive effect,
such that the counter-rotation thrusts fluid out in the +𝑧 direction at the trailing edge of the SP.

While this explanation is plausible given the ensemble averaged structures, there is an al-
ternative explanation. Observing figure 5.14, the leading edge of a positively rotating vortex
is rotated in the +𝑧 and the trailing edge in the −𝑧 by way of negative 𝜔𝑦 that is generated by
𝜕𝑢/𝜕𝑧 > 0, leading to 𝜕𝑤′/𝜕𝑥 < 0. This streamwise gradient of spanwise velocity causes a
negative spanwise tilt relative to the 𝑥-direction. [Jeong et al., 1997, p. 190] find that SP are
tilted in the positive direction, and that SN are tilted in the negative direction—note, their positive
spanwise direction runs opposite to the one used in this study, so their SP have a negative angle
if using the reference frame of this study. This explanation avoids reliance on the overlapping
parent-offspring configuration seen in Jeong and Hussain [1995, p. 198], which is plausible for
an ensemble averaged CS; however, the specific configuration is less commonly found in complex
instantaneous fields. Slight spanwise advection leads to the meandering of vortices, implying
the inevitable collision of some of those streamwise propagating vortices with one another, an
instrumental part of the self-sustaining process of turbulence [Adrian, 2007, p. 14].

5.2.2 Strain statistics

Regions of substantial strain and negligible rotation, labeled 𝐶2𝑆′ , generally fall below and above
coherent vortices (shown qualitatively in figure 5.17). Flow rotating about the vortex is swept
downwards into a wall on one side, and ejected into a “wall” of faster moving fluid on the other
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Figure 5.15: Joint 𝑝.𝑑. 𝑓 (𝑠𝐶2𝑆′
𝑖 𝑗

, 𝑦+) for a) normal strain components and b) shear strain compo-
nents. Contour levels contain 66% (thin line) and 33% (thick line) of the joint probability mass,
respectively. Intra-cluster means (𝑠𝐶2𝑆′

𝑖 𝑗
) are shown for c) normal strain and d) shear strain. Strain

schematic on sample grid cell shown in e).
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side. Statistics of strain rates within 𝐶2𝑆′ regions are examined to understand the types of strain
experienced by fluid within these regions. The strain rate tensor is given by

𝑠𝑖 𝑗 =
1
2

(
𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖

)
(5.9)

or equivalently

𝑠𝑖 𝑗 =
1
2


𝜖𝑥𝑥 𝛾𝑦𝑥 𝛾𝑥𝑧
𝛾𝑦𝑥 𝜖𝑦𝑦 𝛾𝑦𝑧
𝛾𝑥𝑧 𝛾𝑦𝑧 𝜖𝑧𝑧

 (5.10)

where the normal and shear strain components are defined as

𝜖𝑥𝑥 = (2𝑢,𝑥),
𝜖𝑦𝑦 = (2𝑣,𝑦),
𝜖𝑧𝑧 = (2𝑤,𝑧),

𝜏𝑥𝑦 = (𝑢,𝑦 + 𝑣,𝑥),
𝜏𝑥𝑧 = (𝑢,𝑧 + 𝑤,𝑥),
𝜏𝑦𝑧 = (𝑣,𝑧 + 𝑤,𝑦).

(5.11)

These strain components are shown schematically in figure 5.15(e). Referring to figure 5.15(a-b),
fluid straining is generally dominated by 𝜏𝑥𝑦, due to the mean shear. The top contours of the 𝜏𝑥𝑦
distribution indicate that regions of intense shear are more populous in the VSL and early-buffer
layer (𝑦+ < 10) and the upper-buffer layer (𝑦+ > 10), reinforcing quantitatively the notion that
regions of significant shear lie above and below vortices. Other shear components have negligible
contributions compared to 𝜏𝑥𝑦. Normal strain distributions are also negligible with respect
to 𝜏𝑥𝑦. Though, the larger 𝜖𝑧𝑧 spread highlights spanwise convergence the i.e., compression,
associated with convergences of ejecting fluid; and spanwise dispersion, i.e., tension, associated
with inrushes of sweeping fluid [Hwang et al., 2016]; the larger 𝜖𝑦𝑦 shows a similar wall-normal
compressive/tensile nature in regions of high strain as well.

5.3 Inner and outer region dynamics

Regions of intense rotation and associated fluctuating momentous activity are localized to the
wall region, yet the dynamics of the outer region certainly influence the dynamics of the inner
region [Hwang et al., 2016]. With the flow variables used in the previous two sections, unveiling
outer region dynamics is challenging. To bypass the wall-normal inhomogoneity of variables, the
variables of interest are standardized by wall-normal dependent root mean square values (equation
3.3). This approach has been used by Del Álamo et al. [2006] and Lozano-Durán et al. [2012]
to study vorticity and momentum transferring structures, respectively. Alternative methods to
highlight different scales of fluid include low-wavelength filtering in spectral space [Lee et al.,
2014] and real space [Motoori and Goto, 2021].
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Figure 5.16: Joint 𝑝.𝑑. 𝑓 (𝑢′, 𝑣′) of regions of flow labeled as 𝐶3𝑄2 and 𝐶3𝑄4 at various channel
heights. Contours contain 90% to 10% of the joint probability mass from the lowest to highest
contour levels, respectively.
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The input data for the full wall-normal region analysis, 𝑫 𝑓 , containing fields of instantaneous
−𝑢′𝑣′𝑠 and 𝑄′𝑠, progresses through the data pipeline shown prior in figure 4.1, providing the
mask set 𝑴 𝑓 containing 𝑘𝑏𝑒𝑠𝑡 = 4 clusters, forming the cluster set 𝑪3 = {𝐶31, ..., 𝐶34}. Once
again, the statistics of each cluster with respect to the input variables are examined to apply
labels. Two clusters, 𝐶3Ω′ and 𝐶3𝑆′ , are characterized by vorticity fluctuation dominated regions
(𝑄′𝑠 ≫ 0) and strain fluctuation dominated regions (𝑄′𝑠 ≪ 0), respectively. The cluster, 𝐶3−𝑢′𝑣′ ,
is characterized by regions of large Reynolds stress. The last cluster, 𝐶3𝑛𝑠, occupies 74% of the
channel volume, encompassing what is once again named the non-salient region of the channel.
Altogether, the cluster set 𝑪3 = {𝐶3𝑛𝑠, 𝐶3Ω′ , 𝐶3𝑆′ , 𝐶3−𝑢′𝑣′} is formed.

Figure 5.16 shows that velocity values within grid cells labeled by 𝐶3−𝑢′𝑣′ are distributed
within quadrants Q2 and Q4, which are henceforth denoted by 𝐶3𝑄2 and 𝐶3𝑄4. Near the wall,
the sweeps are still generally stronger in the viscous sub-layer and lower buffer layer (𝑦+ < 10),
and ejections are still generally stronger in the upper buffer layer and above (𝑦+ > 15). Above the
buffer layer the mean shear has a weaker effect on streamwise TKE production, and wall-normal
motion is less restricted by the bottom surface; as a result, 𝑢′ and 𝑣′ become more balanced,
indicated by increasingly circular quadrant distributions as height increases.

Near-wall structures are still maintained after wall-normal standardization, as seen by the
similarities in structures when comparing figures 5.6 and 5.17 below 𝑦/ℎ = 0.1. The outer layer
is where standardization brings life to previously unseen structures. In general, structures in the
outer layer tend to have larger length scales and time scales (not shown) than those located closer
to the wall.

Three dimensional visualizations are shown in figure 5.18, with figure 5.18(a) showing a
representative near-wall vortex, identified by 𝐶3Ω′ , nestled between an ejection and sweep,
identified by 𝐶3𝑄2 and 𝐶3𝑄4. A group of outer layer structures are shown in figure 5.18(b),
in which compared to the near-wall structures in figure 5.18(a) the magnitude of 𝑢′ and 𝑄′

are notably lower; length scales are notably larger; and the collection of structures are more
structurally isotropic. These points are also demonstrated holistically in figure 5.19, where the
instantaneous structures can be seen across the entire spatial domain. In figure 5.19(a), one
observes more intense streamwise aligned vortices closer to the wall, and less intense vortices
with no apparent preferred orientation in the outer layer.

Figure 5.20(a) shows that below the mid-buffer layer, vortices still tend to inherit high 𝑢′
from the more populated and intense sweeps, whereas above the mid-buffer layer, vortices tend
to inherit low 𝑢′ from the more populated and intense ejections; while figure 5.20(b) shows that
vortices at all heights generally advect slightly upwards, even in the outer layer.

Figure 5.21 confirms that vortices tend to be more streamwise oriented (smaller \𝑥) near the
wall. In the logarithmic region, \𝑧 tends to decrease, indicating increasingly spanwise oriented
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Figure 5.17: Instantaneous cross-stream snapshots of −𝑢′𝑣′𝑠 (left) and 𝑄′𝑠 (right), overlaid with
cluster boundaries. Red (𝐶3𝑄4), blue (𝐶3𝑄2), pink (𝐶3Ω′) and green (𝐶3𝑆′).
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Figure 5.18: Instantaneous top-down, side, and trimetric views of an ejection, sweep, and vortex
collection in the a) near-wall region and the b) outer layer.

vortices, highlighting transverse vortices (i.e., the heads of horseshoe vortices commonly observed
in this region [Robinson, 1991, p. 625]). As wall-normal distance increases, vortex bounding
boxes become more isotropic, consistent with the findings of Motoori and Goto [2021] who found
that ensemble-averaged vortices at increasing scales become more spherical. Interestingly, when
observing ejection, sweep, and vortex structures occupying the outer layer (figures 5.22–5.28), one
can observe flurries of vortical activity between adjacent ejection and sweep regions that occupy
significant length scales and persist for significant time scales after their eventual decoherence
and dissipation. Figures 5.22–5.28 show a collection of coherent ejecting and sweeping fluid
travelling along the periodic channel, beginning with a streamwise extent of Δ+

𝑥 ≃ 500, eventually
stretching out and merging with an upstream ejection (figure 5.24(b) and 5.25(a)) reaching a
streamwise extent of Δ+

𝑥 ≃ 1500, until the eventual decoherence and dissipation of the collection
seen in figure 5.28. The behaviour of the low-streamwise-speed regions (purple in the figures) are
consistent with the literature of large-scale motions (LSM) and very large-scale motions (VLSM)
[Lee et al., 2014, Hwang et al., 2016], e.g., the merging event shown in figure 5.24(b) and 5.25(a)
supports the observation that VLSMs tend to be birthed from the merging of multiple LSMs.
The aforementioned studies tend to focus on LSMs and VLSMs of slow-moving fluid, this work
further illuminates the dynamics by involving regions of fast-moving fluid (sweeps) and intense
vortical activity (vortices) in the visualizations as well, showing that a coupled dynamic exists
between ejecting LSMs and sweeping LSMs in the outer layer.

Similarities can be seen between these outer layer structures and some of the earlier found
near-wall structures, in which the structures enclosed in figures 5.22–5.28 resemble outsized
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Figure 5.19: Instantaneous a) vortical structures (𝐶3Ω′) and b) vortical and momentum structures
(𝐶3Ω′ , 𝐶3−𝑢′𝑣′) across the entire spatial domain of the channel.
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Figure 5.20: Intra-cluster fluctuating velocity statistics of regions of flow labeled as 𝐶3Ω′ , 𝐶3𝑄2,
and 𝐶3𝑄4. a) Joint 𝑝.𝑑. 𝑓 (𝑢′, 𝑦+) and b) joint 𝑝.𝑑. 𝑓 (𝑣′, 𝑦+). Contours contain 90% to 10% of the
joint probability mass from the lowest to highest contour levels, respectively. Intra-cluster means
are indicated by – · –.
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Figure 5.21: a) Intra-cluster bounding box angle statistics of 𝐶3Ω′ . a) Joint 𝑝.𝑑. 𝑓 (\𝑖, 𝑦+𝑐 ) with
respect to the i) streamwise, ii) wall-normal, and iii) spanwise directions, where 𝑦+𝑐 = 𝑦+𝑚𝑖𝑛 +

Δ𝑦+

2 .
Contours contain 80% to 20% of the joint probability mass from the lowest to highest contour
levels, respectively. b) Sample vortex bounding box schematic.
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𝑡𝑢𝜏
0/ℎ = 0

a)

𝑡𝑢𝜏
0/ℎ = 0.6

b)

Figure 5.22: Outer layer (𝑦+ > 100) structures at (a) 𝑡𝑢0
𝜏/ℎ = 0 and (b) 𝑡𝑢0

𝜏/ℎ = 0.6 across the
entire streamwise extent of the channel. Here, 𝑢0

𝜏 = 1 corresponds to a unit reference velocity. A
collection of ejecting (purple) and sweeping (orange) LSMs are enclosed in red, whose streamwise
extent is Δ+

𝑥 ≃ 500.
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𝑡𝑢𝜏
0/ℎ = 1.2

a)

𝑡𝑢𝜏
0/ℎ = 1.8

b)

Figure 5.23: Outer layer (𝑦+ > 100) structures (enclosed is the same group of CS shown in
figure 5.22) at (a) 𝑡𝑢0

𝜏/ℎ = 1.2 and (b) 𝑡𝑢0
𝜏/ℎ = 1.8 across the entire streamwise extent of the

channel. The LSMs surround regions of intense vortical activity, and occupy a streamwise extent
of Δ+

𝑥 ≃ 750.
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𝑡𝑢𝜏
0/ℎ = 2.4

a)

𝑡𝑢𝜏
0/ℎ = 3.0

b)

Figure 5.24: Outer layer (𝑦+ > 100) structures at (a) 𝑡𝑢0
𝜏/ℎ = 2.4 and (b) 𝑡𝑢0

𝜏/ℎ = 3.0 across the
entire streamwise extent of the channel. The LSMs continue to stretch, in which the onset of a
merging event between two ejecting LSMs can be seen in b) (labeled 1 & 2).
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𝑡𝑢𝜏
0/ℎ = 3.6

a)

𝑡𝑢𝜏
0/ℎ = 4.2

b)

Figure 5.25: Outer layer (𝑦+ > 100) structures at (a) 𝑡𝑢0
𝜏/ℎ = 3.6 and (b) 𝑡𝑢0

𝜏/ℎ = 4.2 across
the entire streamwise extent of the channel. A VLSM can now be observed, spanning a range of
Δ+
𝑥 ≃ 1500.
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𝑡𝑢𝜏
0/ℎ = 4.8

a)

𝑡𝑢𝜏
0/ℎ = 5.4

b)

Figure 5.26: Outer layer (𝑦+ > 100) structures at (a) 𝑡𝑢0
𝜏/ℎ = 4.8 and (b) 𝑡𝑢0

𝜏/ℎ = 5.4 across
the entire streamwise extent of the channel. Hints of decoherence can be observed in b), as the
VLSM becomes more disconnected and patchy.
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𝑡𝑢𝜏
0/ℎ = 6.0

a)

𝑡𝑢𝜏
0/ℎ = 6.6

b)

Figure 5.27: Outer layer (𝑦+ > 100) structures at (a) 𝑡𝑢0
𝜏/ℎ = 6.0 and (b) 𝑡𝑢0

𝜏/ℎ = 6.6 across
the entire streamwise extent of the channel. The decoherence and dissipation of the structures
continues.
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𝑡𝑢𝜏
0/ℎ = 7.2

Figure 5.28: Outer layer (𝑦+ > 100) structures at 𝑡𝑢0
𝜏/ℎ = 7.2 across the entire streamwise

extent of the channel. The collection no longer resembles an organized structure, indicating the
dissipation of the coherent outer layer LSMs and VLSMs.
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a) b)

Figure 5.29: Percolation plots for a) 𝑄′ fields and b) −𝑢′𝑣′ fields. [★, ★, ★] indicate percolation
threshold candidates, [𝛼1

𝑝𝑒𝑟𝑐,−𝑢′𝑣′ , 𝛼
2
𝑝𝑒𝑟𝑐,−𝑢′𝑣′ , 𝛼

3
𝑝𝑒𝑟𝑐,−𝑢′𝑣′], for the −𝑢′𝑣′ fields. ★ indicates the

percolation threshold, 𝛼𝑝𝑒𝑟𝑐,𝑄′ , for the 𝑄′ fields.

counterparts of near-wall structures (i.e., the inset of figure 5.18), highlighting that there at
least exists various scales of the self-sustaining process of wall-bounded turbulence, and that
there potentially exists a hierarchy of ejection, sweep, and vortical processes. This may not
come to a surprise given what is known about the turbulent energy spectrum, i.e., that ”big
whirls have little whirls that feed on their velocity, and little whirls have lesser whirls and so
on to viscosity” as was elegantly put by [Richardson, 1922, p. 66]. A hierarchy of eddies also
implies hierarchies of surrounding momentous fluid, which in channel flow tend to manifest as
ejections and sweeps given the streamwise propagation of the flow. This notion coincides with
the findings of Motoori and Goto [2021], who investigated hierarchies of low-streamwise-speed
regions and vortical regions, finding that lifted low-speed regions (i.e., ejections) flanked by
oppositely rotating streamwise vortices exist at various spatial scales within a turbulent channel
flow.

5.4 Comparison with percolation theory

In this section, statistics found for the wall-region clusters (section 5.2) identified by the unsu-
pervised method are compared against the statistics of structures identified by percolation theory,
followed by qualitative structure comparisons. This section closes with a discussion surrounding
the capabilities and limitations of both methods.
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5.4.1 Statistical Comparison

First, the percolation process outlined in section 4.4 is applied to the four-dimensional 𝑄′ and
−𝑢′𝑣′ fields used earlier in section 5.2. No pre-processing of the data is required in the percolation
process. Structures are found for an array of thresholds for each variable, 𝑄′ > 𝛼𝑄′ and
−𝑢′𝑣′ > 𝛼−𝑢′𝑣′ . Logarithmic threshold ranges of 𝛼−𝑢′𝑣′ = 0, ..., 45 and 𝛼𝑄′ = 102, ..., 106,
each with length 100, were generated, and 𝑉𝑙𝑎𝑟 and 𝑉𝑡𝑜𝑡 are found for the collection of structures
identified by each threshold, yielding figure 5.29. Figure 5.29(a) demonstrates a limitation
of the percolation method, providing a case in which the percolation threshold is ambiguous.
Three potential percolation threshold candidates are shown, [𝛼1

𝑝𝑒𝑟𝑐,−𝑢′𝑣′ , 𝛼
2
𝑝𝑒𝑟𝑐,−𝑢′𝑣′ , 𝛼

3
𝑝𝑒𝑟𝑐,−𝑢′𝑣′]

≃ [1.1, 3.9, 5.6], that come either after a steep slope, or after a steep slope and within a local
minimum.

The buffer layer quadrant distributions from figure 5.5 are compared against the quadrant
distributions of the structures found using the three thresholds of figure 5.29(a), this time only
showing two contour levels to ease comparison. Figure 5.30 shows that the three quadrant
distributions of the percolation structures surround that of the unsupervised method, with regions
identified with 𝛼1

𝑝𝑒𝑟𝑐,−𝑢′𝑣′ having distributions that hug closer to the quadrant origin (figure
5.30(a)), indicating less intense Reynolds stress; whereas regions identified with 𝛼2

𝑝𝑒𝑟𝑐,−𝑢′𝑣′ and
𝛼3
𝑝𝑒𝑟𝑐,−𝑢′𝑣′ are distributed further from the quadrant axes (figure 5.30(b–c)), indicating regions with

more intense Reynolds stress when compared to the decision boundary found by the unsupervised
method. Nevertheless, the general trend of early buffer layer sweep strength and late buffer layer
ejection strength is found in both methods. Based on figure 5.30, the decision threshold of the
unsupervised method lies between 𝛼1

𝑝𝑒𝑟𝑐,−𝑢′𝑣′ and 𝛼2
𝑝𝑒𝑟𝑐,−𝑢′𝑣′ .

For the fields of 𝑄′, the percolation threshold is used to identify regions where 𝑄′ > 𝛼𝑝𝑒𝑟𝑐,𝑄′ ,
where 𝛼𝑝𝑒𝑟𝑐,𝑄′ ≫ 0, i.e., regions where rotation dominates strain. The vorticity component
distributions shown in figure 5.9 are compared with the distributions returned by the percolation
structures. Figure 5.31 shows that the distributions are similar, with the vorticity distributions be-
longing to the unsupervised method extending slightly further out. The populations of percolation
structures generally have smaller 𝜔𝑥 and slightly smaller 𝜔𝑦, yet the shapes of the distributions
are consistent, signalling that the general statistical trends found earlier (i.e., a bi-modal distri-
bution of streamwise vorticity in the buffer layer) comply when using either method. Note, the
greater reduction in streamwise vorticity indicates that regions of large 𝑄′, i.e., quasi-streamwise
vortices, are most characterized by 𝜔𝑥 . These distributions suggest that the vortices identified by
the unsupervised method highlight vortices closer to their high intensity cores, hence the more
intense vorticity components; whereas percolation theory returns structures, identifying vortices
slightly further from their cores (as is shown qualitatively in figure 5.32). Based on figure 5.31,
the decision threshold of the unsupervised method likely lies further down the plateau of the
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a)

b)

c)

Figure 5.30: Joint 𝑝.𝑑. 𝑓 (𝑢′, 𝑣′) of clusters 𝐶2𝑄2 and 𝐶2𝑄4 (filled) and structures identified using
a) 𝛼1

𝑝𝑒𝑟𝑐,−𝑢′𝑣′ = 1.1, b) 𝛼2
𝑝𝑒𝑟𝑐,−𝑢′𝑣′ = 3.9, and c) 𝛼3

𝑝𝑒𝑟𝑐,−𝑢′𝑣′ = 5.6 (lines). Contour levels contain
66% and 33% of the joint probability mass, respectively.
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a) b)

c)

Figure 5.31: Joint 𝑝.𝑑. 𝑓 (𝜔𝐶2Ω′
𝑖

, 𝑦+) (—) and joint 𝑝.𝑑. 𝑓 (𝜔𝛼𝑝𝑒𝑟𝑐,𝑄′
𝑖

, 𝑦+) (- - -) for a) 𝜔𝑥 , b) 𝜔𝑦,
and c) 𝜔𝑧. Contour levels contain 66% (thin line) and 33% (thick line) of the joint probability
mass, respectively.
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Figure 5.32: Instantaneous trimetric view of a near-wall ejection, sweep, and vortex collection as
identified by the unsupervised method (left) and by percolation thresholds 𝛼1

𝑝𝑒𝑟𝑐,−𝑢′𝑣′ and 𝛼𝑝𝑒𝑟𝑐,𝑄′

(right).

minimum in figure 5.29(b).

5.4.2 Qualitative Comparison

The structures identified by thresholds𝛼𝑝𝑒𝑟𝑐,𝑄′ and𝛼1
𝑝𝑒𝑟𝑐,−𝑢′𝑣′ are compared against those found by

the unsupervised method in section 5.2. Observing figure 5.32, the general shape of the structures
remain unchanged. The intensity of 𝑄′ is lower in the vortex identified by percolation theory,
and the vortex is slightly larger, suggesting a larger 𝑄′ decision boundary for the unsupervised
method than 𝛼𝑝𝑒𝑟𝑐,𝑄′ . These results are consistent with the statistical findings shown in figure
5.31. More cells further from the core of vortices are included in the statistics, which include
larger populations of lesser vorticity that shift the vorticity distributions towards lower values. A
similar result is found for the sweeps and ejections, whose structures are slightly larger and 𝑢′ are
slightly less intense, indicated by the darker colours in figure 5.32.

Percolation analysis was also applied to the 𝑄′𝑠 fields of section 5.3, following the process
outlined earlier. A logarithmic threshold range of 𝛼 = 10−4, ..., 102 with length 100 was used,
with fields satisfying 𝑄′𝑠 > 𝛼 being generated. 𝑉𝑙𝑎𝑟/𝑉𝑡𝑜𝑡 was computed for each threshold value,
yielding the earlier shown figure 4.2 and 𝛼𝑝𝑒𝑟𝑐 ≃ 1.6. The bounding surfaces of some arbitrary
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thresholds, as well as the percolation threshold, are compared against the bounding surfaces found
by the unsupervised method in figure 5.33. Perceptually, the unsupervised boundaries correspond
to a threshold value just above 𝛼𝑝𝑒𝑟𝑐, keeping in mind that the unsupervised “threshold” is more
specifically a multivariate threshold (𝑄′𝑠 & −𝑢′𝑣′𝑠).

5.4.3 Discussion

In comparing the unsupervised method with the percolation method, it is difficult to say which is
better. Training times are comparable, where training time for the percolation method involves
computing cluster volumes across an array of thresholds, and training for the unsupervised method
involves the self-organization of weights within the SOM. Inference time for percolation theory
is negligible, once the threshold is determined, inference only requires a binary operation, e.g.,
𝑄(𝒙, 𝑡) > 𝛼; SOM inference, however, requires determining the BMU for each input, making
inference more costly (see appendix B.1.1 for inference times).

A slight point of concern for the percolation method is how to interpret the plot. Whether one
should select the location directly after a steep gradient, i.e., an “elbow” on the curve, as done by
Del Álamo et al. [2006]; or the local minimum shortly after, as done by Motoori and Goto [2021],
is not clear. A sharp gradient in the plot acts as a proxy for a sharp transition on the volumetric
contours of the target flow variable, indicating the sudden increase of a population of similarly
sized structures; a local minimum indicates a population of even more distributed evenly shaped
structures, but not necessarily a rapid transition point. The user must make a choice of where on
the graph the percolation threshold is likely to be, and if the choice is not obvious, more human
bias is involved in the threshold selection process. The unsupervised learning method offers a
“hands-free” alternative, where the choice is automatically made for the user.

Last, the percolation method obtains thresholds univariately. When structures from two
dynamic features are compared, they overlap in space and time. There is no physical reason
why multiple structures attributed to different features ought not to overlap, yet, discerning the
dynamical interactions of the structures can be challenging when they do (e.g., see Robinson
[1991, p. 317] and Motoori and Goto [2021, p. 6]). The unsupervised learning method obtains
a multivariate threshold, and returns clusters that are mutually exclusive from one another.
Observation of dynamical interactions can be easier to process in this case. Exclusive ownership
of specific grid cells also enables the tracking of proportional statistics; e.g., for a transient process
one could track the volumetric share of energy producing and dissipating structures, knowing
that respective volumes belong to distinctly separate processes.

The percolation and unsupervised methods are both effective methods for objectively elucidat-
ing regions of interest. Percolation is simple and easy to apply, yet vulnerable to bias and limited
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Figure 5.33: Instantaneous cross-stream snapshots of 𝑄′𝑠 overlaid with cluster boundaries using
static thresholds (black) and the unsupervised learning method (pink).
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to a univariate threshold; the unsupervised method is more complex, yet minimizes human bias
and enables multivariate thresholding.

71



Chapter 6

Conclusions

The pursuit of this work was motivated by the desire to find an objective method to label regions of
interest in turbulent flows to elucidate the beautiful structures that manifest in turbulent boundary
layer flow. Leafing through pages of the boundary layer literature, one often comes across figures
that contain three-dimensional visualizations, with an iso-surface threshold stated in the caption
that leaves the reader wondering: Why was this particular value used? This work hopes to provide
a solution to remedy this commonly encountered conundrum. An unsupervised learning method
has been employed to identify CS at various scales in a turbulent open channel flow, offering a
“hands-off” approach to label salient regions of flow. The batch SOM outlined in § 4 is used
to obtain a low-dimensional representation of the input data, the low-dimensional map is further
clustered using 𝑘-means, and additional steps are taken to ensure experimental reproducibility.
Structures pertaining to the various wall-normal regions introduced in § 3 were investigated, those
regions being the near-wall region (𝑦+ ⪅ 60), wall-region (𝑦+ ⪅ 100), and entire wall-normal
domain. Section 5 shows that the resulting near-wall ejection, sweep, and vorticity clusters are
consistent with boundary layer literature and comply with physical intuitions. Near-wall quasi-
streamwise vortices flanked by ejections and sweeps are unveiled by the unsupervised clustering
method (§ 5.1). Quadrant distributions of ejection and sweep clusters demonstrate stronger
sweeps in the lower buffer layer (𝑦+ ⪅ 15) and stronger ejections in the outer buffer and log layer
(15 ⪆ 𝑦+ ⪅ 100) (§ 5.2). Sweep and ejection strength are found to be more balanced in the outer
layer, where inhomogenieties introduced by the wall have a lesser effect. Vortices are found to be
more streamwise-oriented in the near-wall; populations of transverse-oriented vortices are found
in the log-layer; and vortices in the outer-layer are more structurally isotropic (§ 5.2). LSMs
and VLSMs are observed in the outer layer, resembling outsized equivalents to the smaller scale
ejection–vortex–sweep arrangements found in the wall-region (§ 5.2). Unsupervised clustering
offers a promising alternative to manual filtering. Applicable to any numerical flow, unsupervised
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clustering enables researchers across the realm of fluid dynamics to inspect salient regions of
flow with increased objectivity.

Further directions of this work include to assess the generalizability of the unsupervised
method and how its corresponding outputs change with Reynolds number or alternative flow
configurations, such as stratified turbulence or a spatially developing flow. Another route could
be to explore alternative unsupervised learning methods to reduce training and inference time;
though, with the lack of ground truths the hurdle remains of how to assess model validity in an
unsupervised setting. Last, the outer layer collections of ejecting and sweeping LSMs and VLSMs
that were observed in § 5.3 may warrant further investigation to establish an understanding of
their role in the self-sustaining process of wall-bounded turbulence.
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stationary homogeneous shear turbulence. Journal of Fluid Mechanics, 816:167–208, 2017.
doi: 10.1017/jfm.2017.78.

P. A. Durbin and B. A. Pettersson Reif. Statistical Theory and Modeling for Turbulent Flows.
Wiley, August 2010. doi: 10.1002/9780470972076. URL https://doi.org/10.1002/
9780470972076.

K. Fukami, K. Fukagata, and K. Taira. Super-resolution reconstruction of turbulent flows with
machine learning. Journal of fluid mechanics, 870:106–120, 2019. ISSN 0022-1120.

K. Fukami, K. Fukagata, and K. Taira. Machine learning based spatio-temporal super resolution
reconstruction of turbulent flows. 2020.

M. Galbraith and M. Visbal. Implicit large eddy simulation of low reynolds number flow past the
sd7003 airfoil. volume 225, 01 2008. ISBN 978-1-62410-128-1. doi: 10.2514/6.2008-225.

M. J. P. Hack and T. A. Zaki. Streak instabilities in boundary layers beneath free-stream turbulence.
Journal of fluid mechanics, 741:280–315, 2014. ISSN 0022-1120.

P. He. A high order finite difference solver for massively parallel simulations of stably strat-
ified turbulent channel flows. Computers & Fluids, 127:161–173, 2016. ISSN 0045-7930.
doi: https://doi.org/10.1016/j.compfluid.2015.12.012. URLhttps://www.sciencedirect.
com/science/article/pii/S0045793015004090.

M. R. Head and P. Bandyopadhyay. New aspects of turbulent boundary-layer structure. Journal
of fluid mechanics, 107(1):297–338, 1981. ISSN 0022-1120.

T. B. Hedley and J. F. Keffer. Turbulent/non-turbulent decisions in an intermittent flow. Journal
of fluid mechanics, 64(4):625–644, 1974. ISSN 0022-1120.

X. Hu, Z. Deng, J. Zhang, and W. Zhang. Aerodynamic behaviors in supersonic evacu-
ated tube transportation with different train nose lengths. International Journal of Heat

75

https://books.google.ca/books?id=3CsOEAAAQBAJ
https://books.google.ca/books?id=3CsOEAAAQBAJ
https://doi.org/10.1002/9780470972076
https://doi.org/10.1002/9780470972076
https://www.sciencedirect.com/science/article/pii/S0045793015004090
https://www.sciencedirect.com/science/article/pii/S0045793015004090


and Mass Transfer, 183:122130, 2022. ISSN 0017-9310. doi: https://doi.org/10.1016/
j.ijheatmasstransfer.2021.122130. URL https://www.sciencedirect.com/science/
article/pii/S0017931021012369.

J. Hwang, J. Lee, H. J. Sung, and T. A. Zaki. Inner–outer interactions of large-scale structures
in turbulent channel flow. Journal of Fluid Mechanics, 790:128–157, 2016. doi: 10.1017/jfm.
2016.3.

E. Jagodinski, X. Zhu, and S. Verma. Uncovering dynamically critical regions in near-wall
turbulence using 3d convolutional neural networks. 2020.

J. Jeong and F. Hussain. On the identification of a vortex. Journal of fluid mechanics, 285:69–94,
1995. ISSN 0022-1120.

J. Jeong, F. Hussain, W. Schoppa, and J. Kim. Coherent structures near the wall in a turbulent chan-
nel flow. Journal of Fluid Mechanics, 332:185–214, 1997. doi: 10.1017/S0022112096003965.
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T. Topór. An integrated workflow for micp-based rock typing: A case study of a tight-gas
sandstone reservoir in the baltic basin (poland). Nafta-Gaz, 76:219–229, 04 2020. doi:
10.18668/NG.2020.04.01.

J. Vesanto and E. Alhoniemi. Clustering of the self-organizing map. IEEE transactions on neural
networks, 11(3):586–600, 2000. ISSN 1045-9227.

F. Waleffe. On a self-sustaining process in shear flows. Physics of Fluids, 9(4):883–900, 1997.
doi: 10.1063/1.869185. URL https://doi.org/10.1063/1.869185.

J. M. Wallace. Quadrant analysis in turbulence research: History and evolution. Annual Review
of Fluid Mechanics, 48(1):131–158, 2016. doi: 10.1146/annurev-fluid-122414-034550. URL
https://doi.org/10.1146/annurev-fluid-122414-034550.

J. M. Wallace, H. Eckelmann, and R. S. Brodkey. The wall region in turbulent shear flow. Journal
of fluid mechanics, 54(1):39–48, 1972. ISSN 0022-1120.

W. W. Willmarth and S. S. Lu. Structure of the reynolds stress near the wall. Journal of Fluid
Mechanics, 55(1):65–92, 1972. doi: 10.1017/S002211207200165X.

P. Wittek, S. C. Gao, I. S. Lim, and L. Zhao. somoclu: An efficient parallel library for self-
organizing maps. Journal of Statistical Software, 78(9):1–21, 2017. doi: 10.18637/jss.v078.
i09. URL https://www.jstatsoft.org/index.php/jss/article/view/v078i09.

A. A. Wray, P. Moin, and J. C. R. Hunt. Eddies, streams, and convergence zones in turbulent
flows. 1988.

Z. Wu, J. Lee, C. Meneveau, and T. Zaki. Application of a self-organizing map to identify the
turbulent-boundary-layer interface in a transitional flow. Physical review fluids, 4(2), 2019.
ISSN 2469-990X.

J. C. Wyngaard. Turbulence in the Atmosphere. Cambridge University Press, 2010. doi:
10.1017/CBO9780511840524.

T. Yatsunenko, F. E. Rey, M. J. Manary, I. Trehan, M. G. Dominguez-Bello, M. Contreras,
M. Magris, G. Hidalgo, R. N. Baldassano, A. P. Anokhin, A. C. Heath, B. Warner, J. Reeder,
J. Kuczynski, J. G. Caporaso, C. A. Lozupone, C. Lauber, J. C. Clemente, D. Knights,
R. Knight, and J. I. Gordon. Human gut microbiome viewed across age and geography.
Nature, 486(7402):222–227, Jun 2012. ISSN 1476-4687. doi: 10.1038/nature11053. URL
https://doi.org/10.1038/nature11053.

79

https://doi.org/10.1063/1.869185
https://doi.org/10.1146/annurev-fluid-122414-034550
https://www.jstatsoft.org/index.php/jss/article/view/v078i09
https://doi.org/10.1038/nature11053


Z. Yuan, Z. Gu, Y. Wang, and X. Huang. Numerical investigation for the influence of the car
underbody on aerodynamic force and flow structure evolution in crosswind. Advances in Me-
chanical Engineering, 10(10):1687814018797506, 2018. doi: 10.1177/1687814018797506.
URL https://doi.org/10.1177/1687814018797506.

J. Zhou, R. J. Adrian, S. Balachandar, and T. M. Kendall. Mechanisms for generating coherent
packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387:353–396, 1999.
doi: 10.1017/S002211209900467X.

80

https://doi.org/10.1177/1687814018797506


APPENDICES

81



Appendix A

Nomenclature

82



Physical symbols

𝜌 Density

a Kinematic viscosity

𝑝 Pressure

ℎ Channel height

𝐿𝑖 Channel length in direction 𝑖

𝑥, 𝑦, 𝑧 Streamwise, wall-normal, and spanwise spatial directions

𝒖 Velocity

𝒖′ Fluctuating velocity

𝑢, 𝑣, 𝑤 Streamwise, wall-normal, and spanwise velocity

𝑢𝑖 Velocity component in direction 𝑖

𝑢𝑖 or𝑈𝑖 Mean velocity in direction 𝑖

𝜕𝑢𝑖/𝜕𝑥 𝑗 or 𝑢𝑖, 𝑗 Velocity gradient w.r.t direction 𝑗

𝑅𝑒 Reynolds Number

𝜔𝑖 Vorticity component 𝑖

𝜖𝑖𝑖 Normal strain component 𝑖𝑖

𝛾𝑖 𝑗 Shear strain component 𝑖 𝑗

𝑃𝑖 𝑗 TKE production tensor
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Y𝑖 𝑗 TKE dissipation tensor

𝑇𝑖 𝑗 TKE transport tensor

𝐷𝑖 𝑗 TKE diffusion tensor

Π𝑖 𝑗 TKE pressure work tensor

𝑄 Q-criterion

Ω𝑖 𝑗 Vorticity tensor

𝑆𝑖 𝑗 Strain rate tensor

𝑦+ Vertical position in wall units

𝑢𝐶1Ω Streamwise velocity in grid cells belonging to cluster 𝐶1Ω

Data sets

𝑫 Five-dimensional simulated flow dataset

𝑫 𝒔 Standardized flow dataset

𝑿 Two-dimensional input dataset

𝑾 SOM weights map

𝑪 Clustered SOM map

𝑴 Four-dimensional mask dataset

Other symbols

𝛼 Threshold value

𝒎 𝑘-means model

𝒎𝑎𝑙𝑙 Batch of all 𝑘-means models

𝒏𝑎𝑙𝑙 Batch size of all 𝑘-means models

𝒎𝑏𝑒𝑠𝑡 Best 𝑘-means model within 𝒎𝑎𝑙𝑙

𝑘 Cluster count
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𝑘𝑏𝑒𝑠𝑡 Best cluster count

𝑁𝑖 Node count 𝑖

𝐶𝑥Ω Cluster from section 5.x characterized by Ω

𝐷𝑁𝑆 Direct numerical simulation

𝐿𝐸𝑆 Large eddy simulation
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Appendix B

Model Parameters

B.1 Framework parameters

B.1.1 SOM Parameters

A specification required for the SOM method is the size of the neural map. This map is to serve
as a two-dimensional representation of the input data, and the shape of the map will limit the
complexity of the further clustering step. Assessing the quality of the map is challenging due to
the nature of unsupervised learning, i.e., one lacks a ground truth map to compare with. Finding
an optimal map size thus incurs this challenge; yet, an attempt at moving towards ”more-optimal”
map dimensions is made here.

The criteria relevant to this optimization problem are minimizing training time while main-
taining enough map resolution to make meaningful clusters. At the extrema of map resolution
one can see that a [𝑁, 𝑀] = [1, 2] map limits analysis to only two clusters, whereas a highly

𝑁 𝑀 Training time (hrs) Inference time (hrs)
5 5 7.3 0.94
10 10 14.0 1.16
20 20 29.2 1.89

Table B.1: Relationship between SOM map size and time to train. Inference times were each
recorded for inference applied to a domain of shape [𝑁𝑡 , 𝑁𝑥 , 𝑁𝑦, 𝑁𝑧] = [1, 768, 384, 768].
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resolved map, e.g., [𝑁, 𝑀] = [100, 100], is considerably large if one only expects a handful of
clusters (as in the case of this study).

Table B.1 shows that increasing map resolution increases training time, with a 4𝑥 increase in
map resolution corresponding to a 2𝑥 increase in train time. Inference time also increases, as there
exist more map nodes in which to search for the BMU of each input. The trained weight maps using
the three SOM resolutions are shown in B.1.1. Figure B.2 shows that there exists slight variation
in how𝑄′ is distributed within the three different map sizes. Referring to figures B.1.1 and B.2, as
map resolution increases, so does refinement in the clusters, i.e., non-salient population increases
and the other clusters become more concentrated. This is displayed perceptually in figure B.4,
where cluster boundaries constrict with higher SOM resolution. The [10, 10] map is chosen for
this study as it provides rapid training and inference, while still providing refined clusters.

B.1.2 Ensuring reproducibility of k-means

The 𝑘-means algorithm is stochastic, sensitive to initialized centroid locations. A way to address
this issue is to instantiate a batch of models, and select the best model of that batch (𝒎𝑏𝑒𝑠𝑡)
based on equation 4.7. Figure B.5 shows that with a batch of 𝑛𝑎𝑙𝑙 = 1000, all models return
identical maps (in terms of cluster positions, specific colours are unimportant as they have yet to
be labeled), signalling that this batch size ensures reproducibility of the 𝑘-means portion of the
unsupervised framework.

B.1.3 Determining cluster count

The two data-driven criteria used to determine cluster count are the silhouette score and the
intra-class variance. Silhouette coefficients are obtained for each cluster count, and the best
cluster count is taken to be the count with the maximal silhouette coefficient. This is visualized
in figures B.6, B.7, and B.8, where the maximum average silhouette coefficient (figure B.6(b)) for
the SOM map obtained in section 5.1 was obtained with a cluster count of 𝑘 = 3. Meanwhile, the
intra-class variance for each cluster count is also obtained, as shown in B.9, in which the elbow
method returns a cluster count of 𝑘 = 7. The rounded average between the two cluster counts,
𝑘 = 3.5 → 4, is used for 𝑘𝑏𝑒𝑠𝑡 .
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Figure B.1:
, [10, 10], and [20, 20] SOM map.]𝑾−𝑢′𝑣′ (left), 𝑾𝑄′ (center), and 𝑪2 (right) for a [5, 5] (top),
[10, 10] (middle), and [20, 20] (bottom) SOM map.

88



Figure B.2:
, [10, 10], and [20, 20] SOM map.]Stacked histogram of 𝑄′ within each cluster for a [5, 5] (top),
[10, 10] (middle), and [20, 20] (bottom) SOM map.
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Figure B.3:
, [10, 10], and [20, 20] SOM map.]Instantaneous cross-stream snapshots of −𝑢′𝑣′ (left) and
𝑄′ (right) overlaid with cluster boundaries using a [5, 5] (top), [10, 10] (middle), and [20, 20]
(bottom) SOM map. Red (𝐶2𝑄4), blue (𝐶2𝑄2), pink (𝐶2Ω′) and green (𝐶2𝑆′).
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Figure B.4:
, [10, 10], and [20, 20].]Joint 𝑝.𝑑. 𝑓 (𝑢′, 𝑣′) of clusters 𝐶2𝑄2 and 𝐶2𝑄4 in the (left) lower buffer
layer and (right) upper buffer layer for SOM maps of size [5, 5] (- - -); [10, 10] (——); and
[20, 20] (- · -). Contour levels contain 66% (thin line) and 33% (thick line) of the joint probability
mass, respectively.
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Figure B.5: Clustered maps 𝒎𝑏𝑒𝑠𝑡 with batch size 𝑛𝑎𝑙𝑙 = 1 (top), 10 (top-middle), 100 (bottom-
middle), 1000 (bottom). Columns represent three arbitrary 𝒎𝑏𝑒𝑠𝑡 using these batch sizes. More
similar maps within a row indicate a more deterministic 𝑘-means model. Specific colours are
unimportant as the maps are yet labeled.
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a)

b)

Figure B.6: Silhouette analysis for clusters a) 𝑘 = 2 and b) 𝑘 = 3. Red dashed line indicates the
average silhouette coefficient. The left plot indicates the silhouette scores for each SOM weight
within their respective cluster. The right plot shows how clusters are distributed in the SOM
weight feature space.
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a)

b)

Figure B.7: Silhouette analysis for clusters a) 𝑘 = 4 and b) 𝑘 = 5. Red dashed line indicates the
average silhouette coefficient.
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a)

b)

Figure B.8: Silhouette analysis for clusters a) 𝑘 = 6 and b) 𝑘 = 7. Red dashed line indicates the
average silhouette coefficient.
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Figure B.9: Plot of intra-class variance against cluster count. The point on the plot with maximum
curvature (the elbow) is indicated by ★.
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Appendix C

Maths

C.1 Q-criterion

Vortices have long been known to play an important role in turbulent fluid dynamics. Conse-
quently, a working definition of vortices was required. Prior to the introduction of more recent
sophisticated vorticity metrics, vorticity magnitude, |𝜔 |, was used in attempt to identify vortices.
Though, this method has no way of distinguishing between rotation from shear and rotation from
swirling. Pressure minima was also used as a condition. However, while the core of a vortex
necessarily has a pressure minimum, not every local pressure minimum represents a vortex core.
Regions of low pressure indicate regions of accelerating fluid, not all of which occur in vortex
cores.

The Q-criterion, 𝑄, addresses these pitfalls. 𝑄 represents the local balance between the
vorticity rate and strain rate of a fluid element, with large positive values of 𝑄 representing
regions of strong rotation and negligible deformation. 𝑄, the second invariant of the velocity
gradient tensor, ∇𝒖, can be written as

𝑄 =
1
2

(
| |𝛀| |2 − ||𝑺 | |2

)
(C.1)

where | |𝛀| | =
[
tr

(
𝛀𝛀𝑇

)]1/2
and | |𝑺 | | =

[
tr

(
𝑺𝑺𝑇

)]1/2
. The antisymmetric component of ∇𝒖,

Ω𝑖 𝑗 = 1
2
(
𝑢𝑖, 𝑗 − 𝑢 𝑗 ,𝑖

)
, represents local rotation, and the symmetric component of ∇𝒖, 𝑆𝑖 𝑗 =

1
2
(
𝑢𝑖, 𝑗 + 𝑢 𝑗 ,𝑖

)
, represents local strain deformation.

Outlined below are the mathematical steps to represent C.1 in component form. For brevity,
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derivative components will be written with just a subscript, e.g, instead of 𝑢,𝑦, 𝑢𝑦 will be used.
First, tr

(
𝛀𝛀𝑇

)
can be rewritten as follows

| |𝛀| | =
[
tr

(
𝛀𝛀𝑇

)]1/2

=

tr ©«
1
2


0 𝑢𝑦 − 𝑣𝑥 𝑢𝑧 − 𝑤𝑥

𝑣𝑥 − 𝑢𝑦 0 𝑣𝑧 − 𝑤𝑦
𝑤𝑥 − 𝑢𝑧 𝑤𝑦 − 𝑣𝑧 0


1
2


0 𝑣𝑥 − 𝑢𝑦 𝑤𝑥 − 𝑢𝑧

𝑢𝑦 − 𝑣𝑥 0 𝑤𝑦 − 𝑣𝑧
𝑢𝑧 − 𝑤𝑥 𝑣𝑧 − 𝑤𝑦 0

ª®¬


1/2

=


1
4

tr ©«


0 𝜔𝑧 −𝜔𝑦
−𝜔𝑧 0 𝜔𝑥
𝜔𝑦 −𝜔𝑥 0




0 −𝜔𝑧 𝜔𝑦
𝜔𝑧 0 −𝜔𝑥
−𝜔𝑦 𝜔𝑥 0

ª®¬


1/2

=


1
4

tr ©«

𝜔2
𝑥 + 𝜔2

𝑦 −𝜔𝑦𝜔𝑧 −𝜔𝑥𝜔𝑧
−𝜔𝑦𝜔𝑧 𝜔2

𝑥 + 𝜔2
𝑧 −𝜔𝑥𝜔𝑦

−𝜔𝑥𝜔𝑧 −𝜔𝑥𝜔𝑦 𝜔2
𝑦 + 𝜔2

𝑧

ª®¬


1/2

=

[
1
4

(
2𝜔2

𝑥 + 2𝜔2
𝑦 + 2𝜔2

𝑧

)]1/2

=

[
1
2

(
𝜔2
𝑥 + 𝜔2

𝑦 + 𝜔2
𝑧

)]1/2
.

Repeating with tr
(
𝑺𝑺𝑇

)
,

| |𝑺 | | =
[
tr

(
𝑺𝑺𝑇

)]1/2

=

tr ©«
1
2


2𝑢𝑥 𝑢𝑦 + 𝑣𝑥 𝑢𝑧 + 𝑤𝑥

𝑣𝑥 + 𝑢𝑦 2𝑣𝑦 𝑣𝑧 + 𝑤𝑦
𝑤𝑥 + 𝑢𝑧 𝑤𝑦 + 𝑣𝑧 2𝑤𝑧


1
2


2𝑢𝑥 𝑣𝑥 + 𝑢𝑦 𝑤𝑥 + 𝑢𝑧

𝑢𝑦 + 𝑣𝑥 2𝑣𝑦 𝑤𝑦 + 𝑣𝑧
𝑢𝑧 + 𝑤𝑥 𝑣𝑧 + 𝑤𝑦 2𝑤𝑧

ª®¬


1/2

=


1
4

tr ©«

𝜖𝑥𝑥 𝛾𝑦𝑥 𝛾𝑥𝑧
𝛾𝑦𝑥 𝜖𝑦𝑦 𝛾𝑦𝑧
𝛾𝑥𝑧 𝛾𝑦𝑧 𝜖𝑧𝑧



𝜖𝑥𝑥 𝛾𝑦𝑥 𝛾𝑥𝑧
𝛾𝑦𝑥 𝜖𝑦𝑦 𝛾𝑦𝑧
𝛾𝑥𝑧 𝛾𝑦𝑧 𝜖𝑧𝑧

ª®¬


1/2

=


1
4

tr ©«

𝜖2
𝑥𝑥 + 𝛾2

𝑥𝑦 + 𝛾2
𝑥𝑧 . . . . . .

. . . 𝛾2
𝑥𝑦 + 𝜖2

𝑦𝑦 + 𝛾2
𝑦𝑧 . . .

. . . . . . 𝛾2
𝑥𝑧 + 𝛾2

𝑦𝑧 + 𝜖2
𝑧𝑧

ª®¬


1/2
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=

[
1
4

((
𝜖2
𝑥𝑥 + 𝛾2

𝑥𝑦 + 𝛾2
𝑥𝑧

)
+

(
𝛾2
𝑥𝑦 + 𝜖2

𝑦𝑦 + 𝛾2
𝑦𝑧

)
+

(
𝛾2
𝑥𝑧 + 𝛾2

𝑦𝑧 + 𝜖2
𝑧𝑧

))]1/2

=

[
1
2

(
𝛾2
𝑥𝑦 + 𝛾2

𝑥𝑧 + 𝛾2
𝑦𝑧 +

1
2

(
𝜖2
𝑥𝑥 + 𝜖2

𝑦𝑦 + 𝜖2
𝑧𝑧

))]1/2
.

Thus, the component form of 𝑄 can be written as

𝑄 =
1
2

(
| |𝛀| |2 − ||𝑺 | |2

)
=

1
2

©«
([

1
2

(
𝜔2
𝑥 + 𝜔2

𝑦 + 𝜔2
𝑧

)]1/2
)2

−
([

1
2

(
𝛾2
𝑥𝑦 + 𝛾2

𝑥𝑧 + 𝛾2
𝑦𝑧 +

1
2

(
𝜖2
𝑥𝑥 + 𝜖2

𝑦𝑦 + 𝜖2
𝑧𝑧

))]1/2
)2ª®¬

=
1
4

©«
(
𝜔2
𝑥 + 𝜔2

𝑦 + 𝜔2
𝑧

)
︸             ︷︷             ︸

rotation

−
[
𝛾2
𝑥𝑦 + 𝛾2

𝑥𝑧 + 𝛾2
𝑦𝑧 +

1
2

(
𝜖2
𝑥𝑥 + 𝜖2

𝑦𝑦 + 𝜖2
𝑧𝑧

)]
︸                                            ︷︷                                            ︸

deformation

ª®®®®®¬
.
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