
Equilibrium and dynamical computation
schemes for vibronic models of

nonadiabatic systems

by

Neil George Raymond

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Chemistry

Waterloo, Ontario, Canada, 2022

© Neil George Raymond 2022

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiner: Michael Schuurman
Adjunct Professor, Dept. of Chemistry & Biomolecular Sciences,
University of Ottawa

Supervisor(s): Pierre-Nicholas Roy
Professor, Dept. of Chemistry, University of Waterloo

Marcel Nooijen
Professor, Dept. of Chemistry, University of Waterloo

Internal Member(s): Scott Hopkins
Associate Professor, Dept. of Chemistry, University of Waterloo

Germán Sciaini
Associate Professor, Dept. of Chemistry, University of Waterloo

Internal-External Member: Roger Melko
Professor, Dept. of Physics, University of Waterloo

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

Two computational schemes were investigated for studying vibronic models of nonadia-
batic systems: Path Integral Monte Carlo (PIMC) and vibrational electronic coupled cluster
(VECC).

A PIMC method was used to investigate the distributions of normal modes of nonadia-
batic systems. The key element to this approach is the use of gaussian mixture distributions
(GMD), and the evaluation of the path integral through matrix products instead of individ-
ual matrix elements. By using PIMC with a GMD-reduced scheme, we showed that it is
possible to circumvent a sign-problem presented by the non-stoquastic nature of the vibronic
Hamiltonian. An alternative GMD scheme was shown to be effective for systems with weaker
coupling when the vibronic Hamiltonian is not non-stoquastic.

In recent years a new approach, VECC, was developed, in the Nooijen group by the
graduate student Songhao Bao, to describe electronic absorption spectra. The problem of
determining detailed equations of motion (EOM) used in VECC was solved and implemented
in a software package named termfactory. We explored a variety of ways to represent the
constraints of the equations of motion for further generalization of termfactory. A partic-
ular realization of these EOM were developed and applied to produce vibrationally-resolved
electronic spectra from auto-correlation functions (ACFs) by way of real-time propagation of
a coupled cluster (CC) wave function whose operators are expressed in the second quantized
formulation.

Our implementation, called t-amplitudes, showed excellent agreement with
Multi-configuration time-dependent Hartree (MCTDH) for small molecules, but with much
improved computational runtimes. For a larger system, hexahelicene, we were able to repli-
cate the overall shape of the spectra as presented in the literature.

Code for both termfactory and t-amplitudes is available on GitHub.

iv

Acknowledgements

This thesis would not be possible if not for the support of various people both within
and without academia. My sister who is amazing and puts her all into everything that she
does. My parents for their love and endless support.

I am grateful to my supervisors Professors Pierre-Nicholas Roy and Marcel Nooijen for
taking a chance on me almost a decade ago. Marcel, who spent countless hours teaching me
and reviewing my documents in detail. P.-N. for his continuing moral support, advice and
general enthusiasm for life.

I would not have continued on with my studies if not for the community that was fostered
in the Theoretical Chemistry research group. I need to especially thank Dmitri Iouchtchenko
for his patience and support. I am grateful to have had the opportunity to collaborate with
Songhao Bao. Of course, Spencer, Matt, Kevin, Lindsay, and many more contributed to the
supportive and social environment.

In addition, I am thankful for the various group members who were readily available to
play squash and provide me with a necessary reprieve.

Finally, to all the other people in my life supporting me, thank you!

v

Table of Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xiv

List of Listings xvi

1 Introduction 1

1.1 Overview of the thesis . 4

2 Background Theory 6

2.1 Path Integral Formulation of Statistical Mechanics 6

2.1.1 Basic Formulation . 6

2.1.2 Representations specific to this work 8

2.2 Monte Carlo and Metropolis Hastings . 9

2.2.1 Monte Carlo Integration . 9

2.2.2 Importance Sampling . 10

2.2.3 Markov Chain Monte Carlo methods 11

2.2.4 Metropolis-Hastings Algorithm . 12

2.3 Vibrational Electronic Coupled Cluster . 14

2.3.1 Coupled Cluster theory in electronic structure theory and generaliza-
tions to vibrational problems . 14

2.3.2 Vibrational Electronic Coupled Cluster Theory 18

2.4 Realistic Computations . 21

vi

3 Vibronic Models 23

3.1 Quantum Mechanical Models . 23

3.2 Adiabatic states . 25

3.2.1 Clamped Nuclei . 25

3.2.2 Born-Oppenheimer and Born-Huang approximations 25

3.3 Diabatic States . 27

3.3.1 Coupling coefficients . 28

3.3.2 Diabatization scheme . 28

3.4 Vibronic Models . 29

3.4.1 Notation . 29

3.4.2 Displaced Model . 31

3.4.3 Jahn-Teller Model . 31

3.5 Real World Diabatization Example . 32

3.5.1 Step 1: Geometry Optimization & Frequency Calculation 32

3.5.2 Step 2: Calculate geometry displacements 35

3.5.3 Step 3: Evaluate electronic integral 36

3.5.4 Step 4: Calculate transformation matrix 36

3.5.5 Step 5: Collate numerical results . 37

3.6 Wrapping up . 37

4 Path Integral Monte Carlo 39

4.1 Basic Definitions . 40

4.1.1 Matrix representation . 41

4.2 Theory . 42

4.3 Metropolis scheme 1 (Direct approach) . 42

4.3.1 Definition of a state . 42

4.3.2 Generating a trajectory . 43

4.3.3 Example of evaluating proposed sample state 43

4.4 Metropolis scheme 2 (Averaged matrix/GMD approach) 44

4.5 Additional Metropolis schemes . 46

4.5.1 Fixed method . 46

4.5.2 Selective matrix method . 46

4.6 Solution to manifestation of the sign problem 47
vii

4.7 Results . 48

4.7.1 Displaced System . 49

4.7.2 Uncoupled (γ1), Proposal π1 . 55

4.7.3 Weak Coupling (γ3), Proposal π1 . 59

4.7.4 Weak Coupling (γ3), Proposal π2 . 63

4.7.5 Intermediate Coupling (γ4), Proposal π1 67

4.7.6 Intermediate Coupling (γ4), Proposal π2 71

4.7.7 Strong Coupling (γ5), Proposal π1 . 73

4.7.8 Strong Coupling (γ5), Proposal π2 . 74

4.7.9 Strong Coupling (γ6), Proposal π1 . 76

4.7.10 Strong Coupling (γ6), Proposal π2 . 77

4.7.11 Strong Coupling (γ6), Proposal π3 . 79

4.8 Concluding Remarks . 81

5 Distinguishing pairings with termfactory 82

5.1 Motivating Problem . 83

5.1.1 Example . 84

5.1.2 Summary of Objective . 86

5.2 General pairing forms . 87

5.2.1 General form . 87

5.2.2 Simplified f̄ form . 87

5.3 Constraints . 88

5.3.1 Permutation symmetry . 89

5.4 Projection Operator . 91

5.4.1 External Symmetrization . 92

5.5 Solving the Problem in practice . 93

5.6 termfactory scheme . 94

5.6.1 Term and pairing representation . 94

5.6.2 Context . 96

5.6.3 Overall scheme . 98

5.6.4 Basic Exclusion (Step 2/5) . 99

5.6.5 Generating all valid pairings (Step 4/5) 100

5.7 The Language of Pairing Terms . 103
viii

5.7.1 Motivation . 103

5.7.2 Logic Programming . 104

5.7.3 Linear programming . 111

5.8 Concluding Remarks . 116

6 Application of termfactory and t-amplitudes to VECC methodology and
calculation of Vibronic Spectra 117

6.1 Derivation of Vibrational Electronic Coupled Cluster approaches 118

6.2 Computational Costs . 123

6.2.1 Optimized Einsum . 123

6.2.2 Sparse Matrix Symmetrization . 126

6.3 Results . 127

6.3.1 MCTDH calculations . 127

6.3.2 Details of generating spectra . 127

6.3.3 Benchmark models . 129

6.3.4 Water H2O . 129

6.3.5 Carbon Dioxide CO2 . 133

6.3.6 Formaldehyde CH2O . 136

6.3.7 Nitrous Oxide N2O . 139

6.3.8 Ammonia NH3 . 143

6.3.9 Larger Systems . 146

6.4 Conclusion . 147

7 Conclusions and Final Remarks 148

7.1 Future Work and Ongoing Projects . 148

7.2 Outstanding questions . 151

Bibliography 153

Appendices 163

A Statistical distributions 164

A.1 Notation and form of specific Distributions 164

ix

B Deriving energy estimator for PIMC method 168

B.1 Deriving the Energy estimator . 168

B.2 Derivation of explicit form of F(Q, a) . 169

B.3 τ derivative of individual O matrix element 171

B.4 τ derivative of individual M matrix element 173

C Assorted Notes 175

C.1 Normal Ordering inequality explanation . 175

C.2 More general contraction scheme . 180

C.3 Formal language theory . 182

C.4 Complexity of linear programming . 189

D Algorithms 190

Python example . 190

E Example Files 193

E.1 termfactory eT̂ ĤẐ LATEX example output 193

E.1.1 Constant Equations P̂0 . 194

E.1.2 Linear Equations P̂y . 194

E.1.3 Quadratic Equations P̂yx . 195

E.2 Extreme termfactory eT̂ ĤẐ LATEX example output 196

E.2.1 Constant Equations P̂0 . 196

E.2.2 Linear Equations P̂y . 197

E.2.3 Quadratic Equations P̂yx . 198

E.2.4 Cubic Equations P̂yxw . 199

E.2.5 Quartic Equations P̂yxwv . 200

E.2.6 Quintic Equations P̂yxwvu . 201

E.2.7 Sextic Equations P̂yxwvu . 202

E.3 Example MCTDH input file . 203

E.4 Diabatization water model . 204

E.5 Displaced JSON . 206

E.6 Displaced op . 207

E.7 Jahn-Teller JSON . 208

E.8 Jahn-Teller op . 209
x

List of Figures

1.1 Memory (GB) needed to store Hamiltonian per number of basis functions. . 3

2.1 Estimation of the distribution π(x) using a basic Metropolis-Hastings (MH)
algorithm. 13

2.2 Example auto-correlation function (ACF). 19

2.3 Example electronic spectra. 19

4.1 Heat Capacity vs Temperature (Kelvin) of the displaced system for each γi
value. 51

4.2 PIMC results for γ1 at T = 0.1Θ, using π1 proposal distribution. 56

4.3 PIMC results for γ1 at T = 1.0Θ, using π1 proposal distribution. 56

4.4 PIMC results for γ1 at T = 2.0Θ, using π1 proposal distribution. 57

4.5 PIMC results for γ1 at T = 5.0Θ, using π1 proposal distribution. 57

4.6 PIMC results for γ1 at T = 10.0Θ, using π1 proposal distribution. 58

4.7 PIMC results for γ3 at T = 0.1Θ, using π1 proposal distribution. 60

4.8 PIMC results for γ3 at T = 1.0Θ, using π1 proposal distribution. 60

4.9 PIMC results for γ3 at T = 2.0Θ, using π1 proposal distribution. 61

4.10 PIMC results for γ3 at T = 5.0Θ, using π1 proposal distribution. 61

4.11 PIMC results for γ3 at T = 10.0Θ, using π1 proposal distribution. 62

4.12 PIMC results for γ3 at T = 0.1Θ, using π2 proposal distribution. 64

4.13 PIMC results for γ3 at T = 1.0Θ, using π2 proposal distribution. 64

4.14 PIMC results for γ3 at T = 2.0Θ, using π2 proposal distribution. 65

4.15 PIMC results for γ3 at T = 5.0Θ, using π2 proposal distribution. 65

4.16 PIMC results for γ3 at T = 10.0Θ, using π2 proposal distribution. 66

4.17 PIMC results for γ4 at T = 0.1Θ, using π1 proposal distribution. 68

4.18 PIMC results for γ4 at T = 1.0Θ, using π1 proposal distribution. 68

4.19 PIMC results for γ4 at T = 2.0Θ, using π1 proposal distribution. 69
xi

4.20 PIMC results for γ4 at T = 5.0Θ, using π1 proposal distribution. 69

4.21 PIMC results for γ4 at T = 10.0Θ, using π1 proposal distribution. 70

4.22 PIMC results for γ4 at T = 2.0Θ, using π2 proposal distribution. 71

4.23 PIMC results for γ4 at T = 5.0Θ, using π2 proposal distribution. 72

4.24 PIMC results for γ4 at T = 10.0Θ, using π2 proposal distribution. 72

4.25 PIMC results for γ5 at T = 100K, using π1 proposal distribution. 73

4.26 PIMC results for γ5 at T = 300K, using π1 proposal distribution. 74

4.27 PIMC results for γ5 at T = 100K, using π2 proposal distribution. 75

4.28 PIMC results for γ5 at T = 300K, using π2 proposal distribution. 75

4.29 PIMC results for γ6 at T = 100K, using π1 proposal distribution. 76

4.30 PIMC results for γ6 at T = 300K, using π1 proposal distribution. 77

4.31 PIMC results for γ6 at T = 100K, using π2 proposal distribution. 78

4.32 PIMC results for γ6 at T = 300K, using π2 proposal distribution. 78

4.33 PIMC results for γ6 at T = 100K, using π3 proposal distribution. 79

4.34 PIMC results for γ6 at T = 300K, using π3 proposal distribution. 80

5.1 pictorial representation of a simple linear program. 112

6.1 Waterfall plot of vibrationally-resolved photo-electron spectra of H2O. . . . 130

6.2 Direct comparison of Z2 and Z3 truncation for H2O. 131

6.3 Waterfall plot of vibrationally-resolved photo-electron spectra of CO2. . . . 134

6.4 Direct comparison of Z2 and Z3 truncation for CO2. 135

6.5 Waterfall plot of vibrationally-resolved photo-electron spectra of CH2O. . . 137

6.6 Direct comparison of Z2 and Z3 truncation for CH2O. 138

6.7 Waterfall plot of vibrationally-resolved photo-electron spectra of N2O. . . . 140

6.8 Direct comparison of Z2 and Z3 truncation for N2O. 141

6.9 Waterfall plot of vibrationally-resolved photo-electron spectra of NH3. . . . 144

6.10 Direct comparison of Z2 and Z3 truncation for NH3. 145

6.11 Vibrationally-resolved electronic absorption spectra of hexahelicene (C26H16). 147

C.1 Chomsky hierarchy. 183

C.2 FSM representation of Equation (C.41) . 184

C.3 Non-deterministic pushdown automaton (NDPDA) that recognizes L. 186

xii

List of Tables

1.1 Entropy of Dinitrogen (N2) . 2

3.1 Reference geometry q0 (dimensionless) . 35

3.2 Displaced geometry q0 ± δq1 (dimensionless) 35

3.3 Displaced geometry q0 ± δq2 (dimensionless) 35

3.4 Displaced geometry q0 ± δq3 (dimensionless) 35

4.1 Displaced system parameters (eV). 49

4.2 Displaced system characteristic temperatures (K). 50

4.3 Path Integral simulation parameters. 52

4.4 Temperature values (in Kelvin) relative to Θ for each γi. 52

4.5 Temperature values used in strongly coupled systems γ5 and γ6. 53

4.6 β values (eV−1) relative to Θ for each γi. 53

4.7 Possible P values to obtain τ values in strongly coupled systems γ5, γ6. . . 54

5.1 Canonical form of linear relations . 113

6.1 Comparing runtimes of einsum methods for a small system 125

6.2 Comparing runtimes of einsum methods for a medium system 125

6.3 Runtime data of Z3 calculation of ACF for Hexahelicene using 20 cpu cores. 126

6.4 Comparing runtimes of symmetrization methods for a small system 126

6.5 Comparing runtimes of symmetrization methods for a medium system . . . 127

6.6 H2O model parameters (eV). 132

6.7 CO2 model parameters (eV). 133

6.8 CH2O model parameters (eV). 136

6.9 N2O model parameters (eV). 142

6.10 NH3 model parameters (eV). 143

xiii

List of Abbreviations

ACF auto-correlation function. iv, xi, 4, 18–20, 117, 118, 120, 126–129, 152

BO Born-Oppenheimer. vii, 1, 2, 23–28

BOA Born–Oppenheimer approximation. 2

CC coupled cluster. iv, 4, 14–17, 23, 128

CCSD coupled cluster single-double. 129

CFG context-free grammar. 185

DFT Density Functional Theory. 2, 32, 146

DoF degrees of freedom. 2, 4, 6, 8, 9, 23, 24, 44, 48, 83, 91, 119, 122–125, 148

EOM equations of motion. iv, 4, 6, 14, 16, 17, 83, 98, 117, 118, 125, 128, 148, 149

FC Frank–Condon. 23, 31, 33

GMD gaussian mixture distribution. 40, 42, 54, 81, 164, 165

HF Hartree-Fock. 15, 32

HO harmonic oscillator. 23

ILP Integer linear programming. 103, 104, 112, 115, 116, 149

LVM linear vibronic model. 129, 146

MC Monte Carlo. 9, 10, 39, 164

MCMC Markov chain Monte Carlo. 4, 9, 11, 12

MCMH Monte Carlo Metropolis-Hastings. 13, 164

MCTDH Multi-configuration time-dependent Hartree. xvii, 127–129, 133, 136, 139, 143,
146, 149, 203

xiv

MH Metropolis-Hastings. xi, 4, 9, 12, 13, 39, 40, 42, 48, 81, 150, 190

ML-MCTDH Multi-layer Multi-configuration time-dependent Hartree. 146

MP Møller–Plesset perturbation theory. 23, 32

NACT nonadiabatic coupling term. 25, 27, 28

NDPDA non-deterministic pushdown automaton. xii, 185–187

NOE Normal Ordered Exponential. 16, 17

PDF probability density function. 10, 165

PES potential energy surface. 2, 31, 32

PI Path Integral. 6–9, 13, 40, 42, 150, 152, 164, 166

PIGS Path Integral Ground State. 150

PIMC Path Integral Monte Carlo. iv, 3, 4, 21, 38, 39, 48, 49, 55–58, 60–62, 64–66, 68–80,
148–150, 164, 168

QM quantum mechanical. 1, 4, 6, 14, 117, 118

RR rigid rotor. 23

SE Schrödinger equation. 1, 15, 16, 23, 25–28

SOS sum-over-states. 23, 31, 32, 48, 49, 52, 53, 55, 59, 63, 67, 79, 81, 148, 150

TD-DFT time-dependent Density Functional Theory. 33, 35

TDSE time-dependent Schrödinger equation. 116, 118, 119

VECC vibrational electronic coupled cluster. iv, 3–5, 14, 83, 117, 122, 123, 126, 129, 133,
136, 139, 143, 146–149

xv

List of Listings

3.1 Example Gaussian input file water_optfreq.com for H2O 33

3.2 Charge and multiplicity in water_optfreq.log 33

3.3 Optimized geometry section in water_optfreq.log 33

3.4 Various properties of frequency calculation in water_optfreq.log 34

3.5 Atomic masses of each atom in water molecule inside the masses file 34

3.6 Example Gaussian input file water_excited.com for H2O 34

3.7 Example header, in water_overdia.out . 36

3.8 Overlap matrix element S11(∆qi) in water_overdia.out 36

3.9 The transformation matrix U for the first mode’s positive displacement . . . 36

3.10 Sµa matrix elements for the first mode’s positive displacement 36

3.11 Adiabatic energies Ea(R0 ±∆q1) (eV) , in water_overdia.out 37

3.12 Symmetric derivative of adiabatic energies (eV) for the first state 37

3.13 linear coefficients g11j for each mode j, in water_overdia.out 37

3.14 linear coefficients g12j for each mode j, in water_overdia.out 38

4.1 Illustrative example of sparse LinearOperator diagonalization of Hamiltonian 48

5.1 Illustrative use of tuples for checking constraints of terms AB 94

5.2 Illustrative use of namedtuples for checking constraints of terms AB 95

5.3 Excerpt of Python code from a function which generates Rzy 99

5.4 Simple namedtuple representation of valid
terms for R0 . 100

5.5 Basic Prolog program . 104

5.6 Prolog code which finds M,N values for valid terms 106

5.7 Example from Maude Manual . 109

5.8 Modification of Maude Manual example to match Prolog coin example . . . 109

5.9 Maude vending machine result. 109

xvi

5.10 Maude code which finds M,N values for valid terms 110

5.11 Example Maude code showing set inclusion. 110

5.12 Python script for solving linear programming problem. 114

6.1 Example of tensor contraction performed with np.einsum and opt_einsum’s
contract. 124

6.2 Example path_info output detailing differences in naive and optimized path
contraction. 124

D.1 Example of Python script for approximating a modified normal distribution
using a Metropolis-Hastings approach . 190

E.1 Input file for H2O calcuation using Multi-configuration time-dependent Hartree
(MCTDH). 203

E.2 Example of *.op file format of Water molecule (H2O) 204

E.3 Example of JSON file format of Displaced model 206

E.4 Example of *.op file format of Displaced model 207

E.5 Example of JSON file format of Jahn-Teller model 208

E.6 Example of *.op file format of Jahn-Teller model 209

xvii

Chapter 1

Introduction

In computational chemistry, our objective is to compute and predict properties of quantum
mechanical (QM) systems via software based on of mathematical models and employing
sophisticated algorithms and approximations to achieve maximum efficiency and accuracy.
Consistent, efficient, and accurate calculations are needed across a wide spectrum of technolo-
gies and fields of study, and computational chemistry can provide this data at a significantly
reduced cost when compared to in-lab experiments. To take just two examples, combinato-
rial computational chemistry has been used to study options for battery cathodes in lithium
batteries that are used in EVs [1], while the investigation of geometric, electronic, and optical
properties of electronic acceptor materials allows one to design better organic solar cells? [2].

In Quantum mechanics, one of the paramount equations is the Schrödinger equation
(SE). Heisenberg showed us that this differential equation could be cast as an eigenvalue
problem in which eigenvalues correspond to the energies of the states, and the eigenvectors
can be used to construct wavefunctions. These two ingredients can be used to construct a
series of physical observables and properties. The approach one takes in addressing the SE
depends on systems and properties of interest. In Quantum mechanics, the total energy of
a system is described by the Hamiltonian operator Ĥ. Usually the Hamiltonian is composed
of kinetic and potential energy terms

Ĥ = K̂ + V̂. (1.1)

We can express the time-independent form of the SE

Ĥ |n⟩ = En |n⟩ (1.2)

where En are known as the energy eigenvalues and |n⟩ are the eigenstates. Note that we use
the Dirac notation here and will use it throughout this thesis. To solve the SE one can use
a basis |i⟩ to represent the Hamiltonian operator Ĥ as a matrix H with matrix elements
Hii′ = ⟨i| Ĥ |i′⟩.

Routine applications of electronic structure methods in quantum chemistry use the Born-
Oppenheimer (BO) approximation in which the focus is on a single electronic-state at a time,
and the effects of nuclear motion can be included using a (model) potential energy surface.

1

Take a common computational program, such as Gaussian[3]. We can obtain very accurate
properties for common systems, such as the entropy of dinitrogen (N2). Calculating the
entropy using Gaussian takes on the order of tens of seconds and produces a result that is
within 6× 10−2calmol−1K−1 of experimental results, as seen in Table 1.1 1

S (calmol−1K−1)

Gaussian 4.5735× 101

NIST[4] 4.5796× 101

Table 1.1: Entropy of Dinitrogen (N2)

The BO approximation may break down when electronic surfaces are close together in
important regions of nuclear configuration space. Such situations require a description of
coupled motion of electrons and nuclei, involving multiple electronic states. A convenient
approach is the use of a vibronic model Hamiltonian: vibronic meaning that it considers
only vibrational and electronic contributions; not rotational, magnetic, translation, etc.

In the vibronic frame of reference, our basis is comprised of two degrees of freedom (DoF):
A electronic states ai ∈ a1, a2, . . . , aA, and N vibrational normal modes qi ∈ q1, q2, . . . , qN .
For the nuclear co-ordinates the easiest thing to do is to have a product basis.

|i⟩ =
N⊗
k=1

|ik⟩ (1.3)

Typically the index ik runs from 1 to dk, the size of the Hilbert space for DoF k. We set the
number of basis functions to be BF = dk per DoF, where we assume that, for the purpose
of this illustration, dk is the same for all k [5].

While in a standard electronic structure BO approach a single surface a1 would be consid-
ered and V̂ would describe a single potential energy surface (PES), vibronic models consider
multiple surfaces a1, a2, . . . , aA and V̂ is instead a potential energy matrix. The vibronic
Hamiltonian will be expressed in the diabatic basis2 (aka a non-adiabatic basis) as opposed
to an adiabatic basis3. Adiabatic in this case means the potential V̂ contribution is diagonal
with respect to the basis, whereas in the diabatic basis it is instead the kinetic K̂ contribution
that is diagonal.

One simple reason for the use of approximations, like the Born–Oppenheimer approxi-
mation (BOA) is the data size of the mathematical terms, such as the Hamiltonian. As seen
in Figure 1.1 the amount of space necessary to store the Hamiltonian matrix on a computer
roughly follows:

GB of storage ∝
(
A ∗ BFN

)2
. (1.4)

1Calculated in the ground state using Density Functional Theory (DFT), B3LYP cc-pVTZ basis.
2Diabatic states are further described in Section 3.3.
3This notion of adiabatic is not the “thermodynamic” notion of adiabatic. We mean adiabatic in the

sense that wavefunctions are eigenfunctions of the Hamiltonian.

2

The blue line represents the storage required for the matrix representation of a Hamiltonian
defined using BF = 15 basis functions4 and A = 4 electronic states. The amount of storage
required to add 1 normal mode N = 4→ N = 5 increases by two orders of magnitude: from
640GB (0.64TB), which is feasible to store on RAM for large compute servers, to 100TB, and
therefore requires storage on disk. Even a relatively small system ofN = 10 modes and A = 4
electronic states requires 1016 GB for an insufficient 15 basis functions. Furthermore, this is
only the size required to store the Hamiltonian, we haven’t even performed any computations!
This storage cost is an example of what is referred to as the curse of dimensionality.

1 2 3 4 5 6 7 8 9 10

Number of Modes (N)

10−3

101

105

109

1013

1017

1021

1025

1029

st
or

ag
e

sp
ac

e
fo

r
H

am
ilt

on
ia

n
(G

B
)

4 electronic states (A)
15 basis functions (BF)

2 electronic states (A)
30 basis functions (BF)

2 electronic states (A)
80 basis functions (BF)

640GB RAM

100TB of Disk

Figure 1.1: Memory (GB) needed to store Hamiltonian per number of basis functions.

The heart of the matter is finding a good balance between accuracy and computational
performance by exploiting contextually appropriate approximations. The type of system,
the form of the Hamiltonian, and the wavefunction, are some of the factors that affect which
approximations are “good”.

In this thesis the starting point will be a vibronic model and the goal is to develop suit-
able strategies to calculate thermal or spectral properties based on an underlying vibronic
model. The two approaches Path Integral Monte Carlo (PIMC) and vibrational electronic
coupled cluster (VECC) are quite different, and consequently they use different wavefunc-
tions, different approximations, and different methods of evaluating properties of interest.

4Harmonic oscillator

3

1.1 Overview of the thesis

This thesis is a study of more efficient methods for a specific class of QM systems, namely
vibronic models, of nonadiabatic systems. In Chapter 3, I describe the motivation for these
models by showing where common approximations break down. I describe how the new
diabatic representation can overcome numerical approximation issues in Section 3.3. An
explicit diabatization scheme for deriving these vibronic models is presented in Section 3.3.2.
The reader should be familiar with the mathematical definitions of the vibronic models
in Section 3.4 as they are used extensively in the remainder of the thesis. I provide a
concrete example of a diabatization procedure in Section 3.5.

We will look at two methods: PIMC and VECC.

The PIMC method is focused on systems that are in thermodynamic equilibrium. Through
the use of Feynman path integrals, Monte Carlo Markov Chains, and various numerical ap-
proximations, we can compute statistical estimates of QM properties. I outline the basic
PIMC method for approximating integrals in Section 2.1, the general idea behind Markov
chain Monte Carlo (MCMC) in Section 2.2, and finish by presenting an illustrative example
of the Metropolis-Hastings (MH) method. In this work I introduce the notion of tracing
out electronic DoF exactly, instead of stochastically, which reduces the variance by avoiding
a sign problem. The majority of the PIMC work is presented in Chapter 4, detailing the
subtleties of the method, as well as discussing its results.

The VECC approach, is used to produce vibrationally-resolved electronic spectra from
auto-correlation functions (ACFs) by way of real-time propagation of a coupled cluster (CC)
wavefunction whose operators are expressed in the second quantization formalism5. The
pathway for these complicated calculations is covered in Section 2.3. The extension of CC
theory from standard single surface vibrational problems to multiple electronic states is
discussed in Section 2.3.1. The exact derivation of this representation is not presented in
this thesis as it was not a contribution of this author6. Section 2.3.2 lays out the details of
how VECC theory can be applied to generate ACFs and subsequently vibrationally-resolved
electronic spectra. The VECC approach in this thesis is limited to time-dependent problems7.

By parameterizing a wave function, deterministic equations of motion (EOM) can be
solved to propagate wavefunctions in real and imaginary time. There are many possible
choices of parameterization, each with their own accuracy and computational cost. Small
changes in the parameterization can, and do, lead to drastically different EOM. In order to
facilitate exploration of different parameterizations, I developed a program to derive and im-
plement EOM. This program eliminates the need to manually derive EOM, avoiding mistakes
and wasted effort. The focus of Chapter 5 is on this program: the problem it is designed
to solve, how it operates in practice, and explorations of more general approaches to handle
future challenges.

5Sometimes also referred to as occupation number representation.
6If the reader is interested in reading more about the derivation the primary source is [6].
7In principle the VECC approach can be extended to thermal problems, which is discussed further

in Section 2.3.

4

Finally, in Chapter 6, using a particular parameterization, we simulate vibronic spectra
using VECC.

5

Chapter 2

Background Theory

Sections 2.1 and 2.2, cover the background information for Chapter 4. Section 2.3 is a primer
for Chapters 5 and 6.

2.1 Path Integral Formulation of Statistical Mechanics

In exact diagonalization, one expands the wavefunction into a basis. The size of the basis
grows exponentially with the number of DoF. For instance, if one takes d basis functions
per DoF, the total size of the basis for N DoF is dN . Since the cost of exact diagonalization
scales as (dN)3, we therefore say that the cost of exact diagonalization scales exponentially
with the number of DoFs.

In the Path Integral (PI) formulation of statistical mechanics, we replace the QM trace
by a functional integral[7]. In practice, we partition this functional integral into P discrete
integrals. The advantage of this new representation is that classical EOM are easier to solve.

Here I briefly outline the core principle of the imaginary time PI formulation that will
be employed in this thesis.

2.1.1 Basic Formulation

For a system described by a Hermitian Hamiltonian Ĥ and a basis of continuous DoF x

I =

∫
dx |x⟩ ⟨x| , (2.1)

the canonical partition function is

Z =

∫
dx ⟨x| e−βĤ |x⟩ . (2.2)

6

With a Hamiltonian Ĥ = K̂ + V̂ we commonly want to treat the kinetic and potential
operators separately. The issue is that, in general, e−K̂ and e−V̂ do not commute[

e−K̂ , e−V̂
]
̸= 0, (2.3)

which means
e−βĤ = e−β(K̂+V̂) ̸= e−βK̂e−βV̂ , (2.4)

and so we employ the Trotter-Suzuki factorization1[8]

eA+B = lim
N→∞

(eA/NeB/N)N , (2.5)

which is exact in the limit, allowing us to treat K̂ and V̂ separately

e−βĤ = e−β(K̂+V̂) = lim
P→∞

(e−
β
P
K̂e−

β
P
V̂)P = lim

P→∞
(e−τK̂e−τV̂)P , (2.6)

which we apply to Equation (2.2)

Z = lim
P→∞

∫
dx ⟨x|

P∏
i=1

e−τK̂e−τV̂ |x⟩ . (2.7)

Inserting resolutions of the identity produces a PI discretization of Z:2

Z = lim
P→∞

∫
dx1 , dx2 , . . . , dxP

P∏
i=1

⟨xi| e−τK̂e−τV̂ |xi+1⟩ , (2.8)

where τ = β
P

for P imaginary-time slices (also known as “beads”).

Applications beyond the partition function

If other properties of interest are desired, it is straightforward to insert an ‘action’ operator
Â inside to obtain some property A:

⟨A⟩ = 1

Z
Tr
[
e−βĤÂ

]
(2.9)

=
1

Z
lim
P→∞

∫
dx1 , dx2 , . . . , dxP

(
P∏
i=1

⟨xi| e−τK̂e−τV̂ |xi+1⟩

)
Aestim(x1, x2, . . . , xP).

(2.10)

1Also known as the Lie product formula.
2A step-by-step derivation is shown in supplementary material.

7

For example, suppose we are interested in the distribution of a particular co-ordinate x:

ρ(x) =
1

Z
Tr
[
e−βĤδ(x̂− x)

]
. (2.11)

This is known as the diagonal of the reduced density matrix for co-ordinate x. In path
integral form it is expressed as:

ρ(x) =
1

Z
lim
P→∞

∫
dx1 , dx2 , . . . , dxP

(
P∏
i=1

⟨xi| e−τK̂e−τV̂ |xi+1⟩

)
1

P

P∑
i=1

δ(xi − x). (2.12)

The average over δ(xi−x) is a reflection of the equivalency of all the beads (P): the Feynman
path is cyclic in imaginary time. Some other properties of interest include: the distribution
of individual modes qi, the true distribution, the partition function, the expectation value
of the energy, and the Helmholtz energy.

In this way, different properties can be expressed in a PI formulation. Similar formulations
can be derived for different choice of basis, partitioning of the Hamiltonian, and order of
Suzuki-Trotter factorization. Each will exhibit different trade-offs between accuracy and
computational efficiency.

In the next section I will outline the specific formulation that I chose to use.

2.1.2 Representations specific to this work

The specific path integral form used in Chapter 4 is different to the general form listed
above in Equation (2.8). It will be expressed in terms of both continuous vibrational DoFs
and discrete electronic DoFs. In the same fashion as before, the continuous co-ordinates q
will be treated through integration and the discrete co-ordinates A will be treated through
summation.

The systems explored with PIs will be expressed in terms of N continuous normal mode
co-ordinates

q = q1, q2, . . . , qN | qi ∈ R, (2.13)

and A discrete electronic states

a = a1, a2, . . . , aA | ai ∈ {1, 2, . . . , A} . (2.14)

I make use of a compact notation to represent P integrals over qi
3∫

dQ =

∫
dqP =

∫
dq1 , dq2 , . . . , dqP , (2.15)

3Where Q and qP can be used interchangeably depending on whichever is most helpful in aiding the
reader.

8

and
A∑
a

=
A∑

a1=1

A∑
a2=1

· · ·
A∑

aP=1

. (2.16)

For these DoFs, the PI discretization of Z can be expressed:

Z = lim
P→∞

∫
dqP

A∑
a

⟨qi, ai| e−τK̂e−τV̂
∣∣qi+1, ai+1

〉
. (2.17)

In this representation, I have a mixture of path integrals and path sums due to the mixture
of continuous and discrete DoF. In Chapter 4, the Hamiltonian is partitioned in a specific
way Ĥ = ĥ + V̂ and has two important properties: ĥ is diagonal in the discrete electronic
DoFs, and V̂ is diagonal in the continuous DoFs. This means that

Z = lim
P→∞

∫
dqP

A∑
a

⟨qi, ai| e−τĥ
∣∣qi+1, ai

〉 〈
qi+1, ai

∣∣ e−τV̂
∣∣qi+1, ai+1

〉
. (2.18)

The exact definition of this partitioning and the reason for these properties are presented
in Section 3.4.1.

For the purpose of this thesis, it is important to highlight that the error in the Trotter-
Suzuki expansion is inversely proportional to P , and that as P → ∞ the expansion is
exact. Therefore when applying this method to systems, one commonly shows that they
are “converged” in the imaginary-time dimension; or said another way, that they have a
sufficiently large number of beads.

Now that I have derived PI expressions for properties of interest in general, I will explain
how to evaluate these integrals with a Monte Carlo (MC) scheme.

2.2 Monte Carlo and Metropolis Hastings

Section 2.1 outlines how to express properties of interest by evaluating integrals over matrix
elements of e−βĤ . In practice, these integrals are very expensive to calculate and it is common
to employ various approximate methods to avoid direct calculation of the integrals. In this
thesis, I employ the use of MCMC integration, specifically a MH scheme, to approximate
these integrals.

2.2.1 Monte Carlo Integration

MC at its core is a method for approximating an integral. The method is exact in the limit of
infinite samples, but in real-world situations, has an error proportional to 1√

N
for N samples.

In general, “Monte Carlo” methods refers to a broad class of computational/mathematical
algorithms. For the purpose of this thesis, whenever I discuss Monte Carlo I am referring

9

specifically to Monte Carlo integration, which is a numerical technique for approximating an
integral.

For a continuous random variable X having a probability density function (PDF) p(x),
the expected value of a function f(x) is:

⟨f(x)⟩p =
∫
dx p(x)f(x)∫
dx p(x)

(2.19)

We define a Monte Carlo estimator as the mean of f(x) overN samples from p(x), (x1, . . . , xN).

f̃(x) =
1

N

N∑
i=1

f(xi) (2.20)

This ratio of integrals can be approximated using the Central Limit Theorem[9, pp. 278-281]∫
dx p(x)f(x)∫
dx p(x)

=
1

N

N∑
i=1

f(xi)±
(σ2

N

) 1
2 (2.21)

⟨f(x)⟩p = lim
N→∞

1

N

N∑
i=1

f(xi) (2.22)

Note that the second term in Equation (2.21) is inversely proportional to
√
N . Therefore to

obtain an effective estimate, a small variance σ2 or a large sample size is required. A reduction
in the variance of a sample distribution is computationally advantageous as smaller sample
sizes result in shorter run times. In an ideal world, sampling from p(x) would be easy and
computational efficient, but in practice many PDFs of interest have numerical complications.
Various methods exist to tackle this problem, two of which I present below.

2.2.2 Importance Sampling

Importance sampling is a statistical method that can reduce the variance σ2 of sampling.
Certain values of the input random variables in a simulation have more impact on the pa-
rameters being estimated than others. If these important contributions are emphasized by
sampling more frequently, then the estimator variance is reduced. The principle of impor-
tance sampling is that sampling from a new distribution d∗ is equivalent to sampling with
weight d∗

d
from our original distribution d, biasing the sample obtained towards d [9, pp.

284-286]. The reduction in variance leads to more efficient calculation of parameters of in-
terest, since fewer samples are needed for convergence. In addition, we can choose the new
distribution d∗ so that it is more efficient to sample than d. Here is a simple example of how

10

importance sampling can be used to express the partition function:

Z =

∫
dq d(q) (2.23)

Z =

∫
dq d∗(q)

d(q)

d∗(q)
(2.24)

Z∫
dq d∗(q)

=

∫
dq d∗(q) d(q)

d∗(q)∫
dq d∗(q)

(2.25)

Z∫
dq d∗(q)

=

〈
d(q)

d∗(q)

〉
d∗

(2.26)

Z =

〈
d(q)

d∗(q)

〉
d∗

(∫
dq d∗(q)

)
. (2.27)

Other quantities of interest can also be expressed in terms of d and d∗, by deriving new
estimators. Of note is that for certain distributions d∗(q), the term

∫
dq d∗(q) can be

analytically evaluated.

Importance sampling provides one approach to addressing the difficulty of producing
samples xi ∈ X by lowering the variance. Next we will look at another approach: MCMC.

2.2.3 Markov Chain Monte Carlo methods

Markov chain Monte Carlo are a group of methods for sampling from a probability distri-
bution. Whereas in importance sampling each sample was drawn independently, in MCMC
samples are now autocorrelated, which allows MCMC algorithms to narrow in on the quan-
tity that is being approximated, even with a large number of random variables. Instead of
having to design an optimal distribution d∗ from which to sample, MCMC methods con-
struct a Markov Chain by starting in an initial state X0 and transitioning to new states
X1, X2, · · · [10, pp. 270]. Assuming the Markov Chain is ergodic, then the probability of
drawing a sample xi will have probability density proportional to the target distribution
P (x).

An integral can then be evaluated as the expectation value over X4,

⟨f(x)⟩X →MCMC lim
N→∞

1

N

N∑
i=1

f(Xi). (2.28)

One can calculate properties of the form ⟨A⟩ from the trace

⟨A⟩ = 1

Z
Tr
[
e−βĤÂ

]
, (2.29)

4Employing the Markov chain central limit theorem in a somewhat similar manner as the central limit
theorem in Equation (2.21).

11

and also obtain histograms

h(x) =
1

Z
Tr
[
e−βĤδ(x̂− x)

]
. (2.30)

For example, if we want to compute the distribution of the first normal mode q1

h(q1) =
1

TrR[ϱ̂R(β)]
TrR[ϱ̂R(β)δ(q̂1 − q1)] = ⟨δ(q̂1 − q1)⟩ . (2.31)

There are multiple approaches for constructing Markov Chains. For the purposes of this
thesis, I focus solely on the Metropolis-Hastings MCMC approach.

2.2.4 Metropolis-Hastings Algorithm

Metropolis-Hastings (MH) method gives a prescription for generating a Markov Chain.

A MH algorithm for a target distribution P (x) and a sampling distribution d(x) with T steps:
Algorithm 1: Generic Metropolis-Hastings algorithm
1 x0 ← A
2 t← 0
3 while t ≤ T do
4 x′ ← d(x′|xt)
5 A(x′, xt) = min(1, P (x′)d(xt|x′)

P (xt)d(x′|xt)
)

6 u← U{0, 1}
7 if u ≤ A(x′, xt) then
8 xt+1 = x′

9 else
10 xt+1 = xt

11 t← t+ 1

Applying this algorithm generates a series of states x0, x1, x2, . . . , xT which form a Markov
ChainX that can be used as shown in Equation (2.28). After the “burn-in” / pre-equilibration
period, samples can be treated as coming from the target distribution P (x).

Example As an example I will show how MH can be used to approximate a modified
continuous normal distribution

π(x) = sin2(x) ∗ sin2(2x) ∗ N (µ = 0, σ2 = 1) (2.32)

using the continuous uniform distribution as the proposal distribution

U[x−α,x+α], (2.33)

12

whose width is controlled by the parameter α. The basic MH algorithm is shown in Algo-
rithm 1. In Figure 2.1 I have plotted the histogram of results generated using the algorithm
with parameters N = 5e4 and α = 2. The exact code used to generate this histogram is
available in supplementary material Listing D.1.

Figure 2.1: Estimation of the distribution π(x) in Equation (2.32) using a basic MH algo-
rithm.

Considerations Obtaining independent samples from the Markov Chain requires only
taking every Nth sample, where N is sufficiently large that xi and xi+N are not correlated.
To reach an ergodic state requires pre-equilibration and/or “burn-in”. This process involves
throwing away M initial samples, such that M is large enough that the xN+1 sample is
independent of the initial state. The choice of proposal distribution also has an effect on the
performance of the algorithm, but is not as dominant as in importance sampling.

If the reader still has questions about Monte Carlo Metropolis-Hastings (MCMH) I would
recommend consulting[11].

In this section, I have covered how a PI formulation evaluated using a MCMH approach

13

can be used to obtain properties of interest from a QM system. In the next section I will
cover the background for the second main approach for calculating properties of interest.

2.3 Vibrational Electronic Coupled Cluster

The vibrational electronic coupled cluster (VECC) method is quite different from what
we’ve seen so far in Section 2.1. Rather than using a stochastic approach to obtain thermal
equilibrium properties, in VECC one parameterizes a wave function (or reduced density
matrices in thermal approaches) and solves for deterministic equations of motion (EOM).
The starting point for both problems is the same and is based on a vibronic Hamiltonian.

Coupled Cluster methods are widely used in electronic structure theory, although there
are also some results for single surface vibrational problems. However, the approach has not
been used before for vibronic Hamiltonians involving multiple electronic states5. The detailed
so-called Normal Ordered Exponential (NOE) Theory that forms the basis for this work is
described elsewhere, in a paper that discusses both real and imaginary time propagation
schemes [6]. The extension to vibronic theory is an ongoing problem. B. Songhao, M. Nooijen,
and I expect to submit a paper, detailing this extension, for publication in 2023. It is
important to note that the majority of the theoretical work has been done by B. Songhao
and M. Nooijen.

Here we will introduce the primary ideas. Coupled Cluster theory in the context of elec-
tronic structure theory will be reviewed briefly, and then we will set the stage for applications
to vibrational and vibronic problems. There are a number of possible variations to VECC
and the details concerning each one of these approaches would be cumbersome to derive and
implement. For this reason we developed a computer-aided approach to derive and imple-
ment equations, further described in Chapter 5. In Chapter 6 we apply a particular variation
of VECC to calculate time-correlation functions, which can be applied to simulate vibronic
spectra. These spectra, simulated using VECC, are compared to experimental spectra, and
benchmarked against other theoretical chemistry software packages.

2.3.1 Coupled Cluster theory in electronic structure theory and
generalizations to vibrational problems

CC theory is most widely applied in the field of electronic structure theory. It was first
formulated in the mid 1960’s [12, 13] and has seen many developments since, see e.g. [14,
15, 16]. It is currently implemented in most advanced electronic structure packages, and,
perusing a number of highly technical developments, it can be applied to large systems
contain hundreds of atoms [17, 18, 19, 20, 21, 22] . In this synopsis we will limit ourselves to
the essentials while preparing the ground for applications to a new field of study: Vibronic
problems.

5Except for unpublished (undergraduate) work in the Nooijen group.

14

Second Quantization Electronic CC theory is cast in the language of second quantization
using Fermionic annihilation and creation operators that obey anticommutation relations,
e.g. {

p̂†, q̂†
}
= 0;

{
p̂†, q̂

}
= δpq (2.34)

A creation operator can be characterized by its action on a Slater determinant, e.g. [15]

p̂† |ϕq · · ·ϕs⟩ = |ϕpϕq · · ·ϕs⟩ , (2.35)

while conversely an annihilation operator removes an orbital from a determinant (or yields
zero), e.g.

p̂ |ϕpϕq · · ·ϕs⟩ = |ϕq · · ·ϕs⟩ . (2.36)

A Slater determinant may then be written as a series of creation operators acting on a
vacuum state

â†pâ
†
q · · · â†s |⟩ = |ϕpϕq · · ·ϕs⟩ . (2.37)

Single reference CC theory is built on a reference determinant |Φ0⟩, usually obtained from
a preceding mean-field Hartree-Fock (HF) calculation, that provides a partitioning into oc-
cupied orbitals, labelled i, j, · · · and virtual orbitals a, b, · · ·. The operators â†, î create ex-
citations out of the reference determinant, and are referred to as (quasiparticle) q-creation
operators. Conversely q-annihilation operators î†, â annihilate the reference state

î† |Φ0⟩ = â |Φ0⟩ = 0. (2.38)

Electonic Coupled Cluster Starting with the SE

Ĥ |Ψ⟩ = E |Ψ⟩ , (2.39)

in CC theory one expresses the wavefunction using an exponential operator acting on a single
determinant reference wave function |Φ0⟩

|Ψ⟩ = eT̂ |Φ0⟩ (2.40)

The cluster operator
T̂ = T̂1 + T̂2 + T̂3 + · · · , (2.41)

consists of so-called singles (S), doubles (D) and higher-order excitation operators, where

T̂1 =
∑
a,i

tai â
†î; T̂2 =

1

4

∑
a,b,ij

tabij â
†îb̂†ĵ; · · · ; (2.42)

This yields the parameterized SE which is to be solved for the amplitudes tai , tabij , · · ·

ĤeT̂ |Φ0⟩ = eT̂ |Φ0⟩E (2.43)

15

The CC amplitude equations are derived by multiplying the parameterized SE by e−T̂ and
projecting against excited bra states ⟨Φλ| = ⟨Φ0| Ω̂λ,

⟨Φ0| Ω̂λe
−T̂ ĤeT̂ |Φ0⟩ = 0 (2.44)

The energy can be obtained as E = ⟨Φ0| ĤeT̂ |Φ0⟩. The key idea underlying CC is
the exponential parameterization, which yields size-consistent approximations [23, 24]. This
parameterization is primarily responsible for the high accuracy of the approach, in particular
the CCSD(T) approach in which a perturbative approximation is made for the numerous
triple excitations. Important for our purposes, the evaluation of the amplitude equations
proceeds through an application of Wick’s theorem, which implies that products of operators
are written in normal ordering with respect to the reference state. In a normal ordered
product the q-annihilation operators are moved to the right of q-creation operators, using
essentially the anticommutation relations, and as a result only fully contracted, or fully paired
terms survive in the amplitude equations[15]. This is the essence of the approach that will
be transplanted to the vibrational problem.

Traditionally, CC theory has been used for electronic ground states that are fairly well
characterized by a single determinant. Further extensions include so-called EOM variations
which extend the approach to excited states, while lots of work has been done on further
generalizations to so-called multireference situations, where the single determinant reference
state is not very suitable (for an overview see [25]). In the context of this thesis, another
important advance is the use of exponential parameterizations to obtain thermal properties
and partition functions using a direct calculation, and not using a sum-over-states (SOS)
formulation. The recent work by S. Bao and M. Nooijen [6] is particularly relevant in this
context. In their thermal approaches one generalizes the notion of normal ordering and
defines contractions in terms of the thermal populations of a simpler one-body hamiltonian.
The key features of the fully contracted working equations of CC theory remain valid, but in
addition one integrates amplitudes over real or imaginary time. An important complication
in the theory, is that there is no partitioning into occupied and virtual orbitals, and the
various substitution operators (rather than excitation operators) p̂†, q̂ no longer commute.
As a result, one introduces Normal Ordered Exponential (NOE) operators [26], and the
amplitude equations are more complicated to derive.

Vibrational Coupled Cluster Coupled Cluster theory can be generalized to vibrational
problems. In recent work by Hirata and Feauchaux [27, 28] both ground and excited state
calculations have been explored in a single surface Born-Oppenheimer context. Earlier work
by Prasad et al. is also of interest [29]. The theory is closely analogous then to electronic
structure theory, with a few important changes. The annihilation and creation operators
refer to the ladder operators for a harmonic approximation in a dimensionless parameteriza-
tion, and satisfy commutation rather than anticommutation relations. This is an important
simplification compared to electronic structure theory as it means that operators can be
permuted (especially in a normal ordered product) without a sign change. For the most
straightforward applications, the reference state is taken to be the ground state of a har-
monic oscillator, and annihilation operators annihilate the reference state. In this thesis we

16

will refer to the bosonic operators corresponding to normal modes simply as operators î, ĵ†,
satisfying [̂

i†, ĵ†
]
= 0;

[̂
i, ĵ†

]
= δij. (2.45)

The vibrational CC Ground state wave function can be parameterized in terms of operators
that contain 1, 2, or in general N creation operators

T̂ n =
1

n!

∑
ti1,i2,...,in î†1î

†
2 · · · î†n.

Interestingly, in the theory, one does not introduce a basis set. All states are parameterized
by second quantized operators. This feature is responsible for the potentially high efficiency
of the approach.

For single surface Hamiltonians the basic theory is straightforward. For spectroscopy
purposes it is most convenient to solve the time-dependent Schrödinger equation (TDSE)

i
d |Ψ⟩
dτ

= Ĥ |Ψ(τ)⟩ , (2.46)

for a wavefunction expressed using the vibrational cluster operator (T̂ = T̂ 0+ T̂ 1+ T̂ 2+ · · ·)

|Ψ(τ)⟩ = eT̂ (τ) |ϕ(τ = 0)⟩ , (2.47)

and finally calculate a time correlation function C(τ):

C(τ) = ⟨ϕ(τ = 0)|eT̂ (τ)|ϕ(τ = 0)⟩ = et
0

. (2.48)

The EOM for the t-amplitudes can be formulated, after multiplication by e−T̂ and projection,
as

dtλ
dτ

= ⟨ϕ0|Ω̂λ
dT̂

dτ
|ϕ0⟩ = ⟨ϕ0|Ω̂λe

−T̂ ĤeT̂ |ϕ0⟩ (2.49)

These equations can be propagated from suitable initial conditions, and most often one would
use |ϕ(τ = 0)⟩ = |ϕ0⟩.

Thermal Properties The theory is substantially more complicated if one aims to calculate
thermal properties directly, and we refer elsewhere for a discussion. Similar to the electronic
structure case, to parameterize the thermal density matrix one has to introduce operators
that have both annihilation and creation operators, for example

T̂ 1
1 =

∑
i,j

tij î
†ĵ, T̂ 2

1 =
∑
i,j,k

tijk î
†ĵ†k̂ (2.50)

Moreover, the contractions that enter thermal Wick’s theorem can have non-integer values
and in the NOE approach by M. Nooijen and S. Bao[6] a normal ordered exponential operator
is used to parameterize the normal ordered thermal many-body density. It will take us too
far afield to discuss this approach in detail, but the essential take away, in the context of

17

this thesis, is that the equations for the thermal theory, in particular, are hard to derive and
implement by hand. For this reason it is attractive to use computer software to derive the
equations. This computer-aided approach has a long history in both chemistry and physics,
see [30] as an early example, and [31] as a further example. Likewise, to explore the methods
considered in this thesis such a tool is very valuable, and this is discussed in Chapter 5
of the thesis. The code generator discussed in Chapter 5 can handle both “thermal and
spectroscopic” cases by setting a few options in the program. The more general thermal
procedure is a major complication, however, in the development of the code-generator, and
will be discussed at length in Chapter 5.

2.3.2 Vibrational Electronic Coupled Cluster Theory

Absorption, emission, and fluorescence spectra are commonplace in many chemistry research
fields. They can be used to identify various properties, such as: characterization of chemical
compounds, the presence of free electrons, what functional groups are present, double bonds,
and the geometric structure of compounds. Spectra can be generated through a variety of
methods, both physically and theoretically. For vibronic spectroscopy, the calculation of
spectra is most conveniently done in a time dependent fashion. Given a wave function at
some initial time, e.g. |Ψ0⟩ one propagates this wave function in time, formally,

|Ψ(τ)⟩ = e−iĤτ |Ψ0⟩

and calculates the time-autocorrelation function auto-correlation function (ACF).

C(τ) = ⟨Ψ0|e−iĤτ |Ψ0⟩ (2.51)

Taking a Fourier transform of the autocorrelation function generates the spectrum of interest.

An example auto-correlation function (ACF) is plotted in Figure 2.26. Applying the
Fourier transform7 to the x, y points of the ACF produces a new set of x, y points. These
can then be plotted, as in Figure 2.3, and interpreted as a vibrationally-resolved electronic
spectra.

6A vibronic model of H2O was used to generate this figure. More details can be found in Section 6.3.4.
7Technical details of how the Fourier transform was performed are covered in Section 6.3.2

18

Figure 2.2: Example auto-correlation function (ACF).

Figure 2.3: Example electronic spectra.

For vibronic problems of interest the initial wave function is expressed as

|Φ0⟩ =
∑
b

|0, b⟩Xb (2.52)

in which the label b indexes the diabatic electronic states8 , and 0 indicates the ground vibra-
tional level in the electronic ground state, as described by a multimodal harmonic oscillator.

8Diabatic states are covered in Sections 3.2 and 3.3.

19

In the current work we focus on absorption spectroscopy from the ground vibrational state,
and use the diabatic Condon approximation, in which the electronic transition dipoles Xb

are treated as constants calculated at the ground state equilibrium geometry. In the context
of VECC it is most flexible to propagate each electronic component individually

|Ψb(τ)⟩ = e−iĤτ |0, b⟩ (2.53)

which leads to population of the other electronic states over time. Then cross-correlation
functions can be calculated

⟨0, a|Ψb(τ)⟩ = ⟨0, a|e−iĤτ |0, b⟩ = Uab(τ). (2.54)

One can then calculate the overall ACF

ACF (τ) =
∑
a,b

XaUab(τ)Xb, (2.55)

by numerical integration over the parameter τ , that can be chosen to be time t. A similar
construction can also be employed to calculate thermal properties for vibronic Hamiltonian
and one integrates over inverse temperature β.

In what follows, we focus on the problem of obtaining operator-based parameterizations
for a general wave function Ψ(τ), starting from some initial state Ψ0. The wave function for
multiple electronic surfaces can easily be parameterized in a linear fashion

|Ψ(τ)⟩ =
∑
b

Ẑb(τ) |0, b⟩ (2.56)

Here a, b, and c will indicate the various electronic surfaces, as above. The equation of
motion can then be obtained by substituting in the time-dependent Schrödinger equation
and projecting on a suitable set of states, expressed as operators,

∑
b

⟨0, a| Ω̂λ
dẐb

dτ
|0, b⟩ =

∑
b

⟨0, a| Ω̂λĤẐb(τ) |0, b⟩ (2.57)

Here and in what follows the surface-specific part is represented by boldface Ĥ, our conven-
tion to represent the matrix aspect in the diabatic electronic basis. The evaluation of such
terms is relatively straightforward, but the accuracy of results is not very promising. We
need to incorporate an exponential parameterization into the definition of the wave func-
tion. However, it is not obvious how to do this. Below we will list a number of possibilities.
Each of these approaches constitutes a different set of equations, that would have to be
implemented in a computer code that can propagate the wave function parameters and then
obtain the cross-correlation functions. The purpose of the research presented in the thesis is
to facilitate the derivation of lengthy equations and produce computational procedures that
can be organized in a final computer code. Let us just provide a small sample of possibilities

20

that have been explored over time.

|Ψ(τ)⟩ = eT̂ |Ψ0⟩ (2.58)

In the first expression T̂ has a similar “electronic matrix” form as the vibronic Hamilto-
nian. This formulation has formal appeal, but it leads to complicated equations that are
numerically not very well behaved. Another possibility is to use

|Ψ(τ)⟩ = eT̂ (τ)Ẑ(τ) |Ψ0⟩ (2.59)

In this equation T̂ represents a pure vibrational operator, that is the same for each electronic
surface. In this approach one has to develop separate equations for a state-averaged operator
T̂ , in the spirit of Ehrenfest dynamics, and then propagate also the equations for the linear
parameters in the operator Ẑ. A third possibility removes the state-averaged aspect and
uses

|Ψ(τ)⟩ =
∑
b

eT̂b(τ)Ẑb(τ) |0, b⟩ (2.60)

Again one has to posit separate equations for the state-specific operators T̂b(τ) and Ẑb(τ).
The reader may ask, why one would not use an ansatz like

|Ψ(τ)⟩ =
∑
b

eT̂b(τ) |0, b⟩ (2.61)

This would be possible as a unitary formulation, but in our formulation the initial contribu-
tion from many states would be close to zero, at least initially, and this leads to numerical
instabilities. The use of intrinsically Unitary formulations makes it hard to calculate the
overlap with the initial states ⟨0, a|.

Clearly this state of uncertainty leaves many questions and many details unanswered.
This is precisely the state of affairs we face and the path forward is to develop computer-
aided derivations of detailed working equations, keeping in mind the flexibility such a tool
would need to have, and including the possibility to generalize methodology to thermal
problems. In Chapter 4 we discuss such a tool, keeping the formal theory to a minimum. In
chapter 5 a specific version of the theory is considered and put to the test.

2.4 Realistic Computations

It is important to touch upon decisions made during the development of the theory and
software in this thesis. Of note is the computational cost of the algorithms within. Here I
highlight the major bottlenecks as well as the steps taken to tackle them and any bottlenecks
still remaining.

In terms of the PIMC method in Chapter 4, the dominant cost is the evaluation of the
matricesM, O, and Õ. In my profiling of the Python code, roughly 75–85% of the runtime is
matrix evaluation. The scaling of this also grows fastest with system size A and N . Therefore

21

the priority here is twofold, efficient matrix evaluation and diagonalization. Both of these
tasks were accomplished with low-level software libraries: BLAS, LaPACK, etc. [32, 33]

For the VECC method in Chapter 5, there are two aspects to consider: the generation
of the LaTeX documents and Python code, and the computational evaluation of the Python
code. For all input parameter choices that I have used, the cost of generating the LaTeX
documents and the Python code is negligible, on the order of a few minutes at most, so this
is not a concern. The evaluation of the Python code dominates the runtime9 and motivates
much of the work in Chapter 5. We employ a variety of methods to tackle this problem: sparse
symmetrization, collating equivalent permutable terms, and employing optimized einsum()
function calls using a third-party library. While the evaluation of the residual terms could
potentially benefit from being implemented in a compiled language10 such as FORTRAN, C,
or C++, this would incur the cost of dozens of weeks of development time by an experienced
programmer. Additionally these performance benefits are also not guaranteed. An imple-
mentation in a new programming language risks introducing many bugs, which are hard to
identify due to the approximate nature of the theory. To verify the new implementation, it
would be necessary to identically compare with the prior code at a low level, which would
be a slow arduous task.

As the saying goes “premature optimization is the root of all evil”11. With regards to
optimizations of the computational evaluation of integrals present in this thesis my focus was
towards the dominant contributing factors. Balancing development time with computing
gains was a consideration. Standard matrix operations, like addition, multiplication and
diagonalization represent the majority of the computational cost in methods used in this
thesis. These operations can be computed using low level C libraries such as IntelMKL or
OpenBLAS [34, 35, 36, 37, 38]. In Python this can be done by linking to these libraries
through Numpy [39]. In this way I am able to get the best of both worlds, the development
speed and ease of use of a scripting language and the computational efficiency of a compiled
language.

9The runtime to propagate the wavefunction and hence produce a spectra.
10As opposed to a interpreted language like Python.
11Usually attributed to Donald Knuth, although possibly originated in a book from the 1960’s.

22

Chapter 3

Vibronic Models

3.1 Quantum Mechanical Models

The (non-relativistic) Hamiltonian for molecular systems, in the absence of external fields,
is easy to write down as the sum of kinetic energy plus potential energy, extending the sums
over all particles in the system (electrons plus nuclei):

Ĥ =
∑
a

P 2
a

2Ma

+
∑
a<b

qaqb
|ra − rb|

(3.1)

The equations that determine phenomena in chemistry are, first, the time-dependent, and
second, the time-independent Schrödinger equation (SE):

ĤΨ = EΨ. (3.2)

However, those equations involving states that depend generically on both electronic and
nuclear DoF are exceedingly hard to solve.

In most of quantum chemistry, the BO approximation is invoked, and one uses electronic
structure calculations to obtain ground and excited electronic states at relevant particular
nuclear configurations. A wide variety of methods are available for this purpose, e.g. semi-
empirical, Density Functional and ab initio approaches like CC, Møller–Plesset perturbation
theory (MP), and variations thereof[40]. The BO approximation is often combined with
additional harmonic and rigid rotor (RR) approximations, such that in most of traditional
quantum chemistry, one optimizes geometries (i.e. finds stationary points on BO surfaces),
and then includes: nuclear eigenstates using the (polyatomic) harmonic oscillator (HO) for
vibrations, rotational motion using RR, and translational motion using the “particle in a
box” model. In this fashion, one can estimate thermal free energies for molecular systems,
approximating the more rigorous sum-over-states (SOS) approach from statistical mechanics.

Likewise, in electronic spectroscopies, one solves for minima on ground and electronic sur-
faces, and invokes the harmonic Frank–Condon (FC) approach to obtain the vibrational fine
structure on electronic spectra. This Rigid-Rotor-Harmonic-Oscillator-Born-Oppenheimer

23

(RR-HO-BO) approach is widely used for rigid molecular systems and can be combined with
most electronic structure methods of choice.

However, these methods break down when electronic surfaces are close together at rel-
evant nuclear geometries. More accurate wavefunctions describing combined electronic and
nuclear DoF require the inclusion of a small number of close-lying adiabatic states, and in-
cluding the so-called non-adiabatic coupling between such states. Such phenomena are well
known in areas of electronic spectroscopy and in discussions of photochemical reactions, in
which transitions between electronic states are of key interest[41].

As part of ongoing investigations in the Nooijen research group, such breakdown of single
surface BO approximation phenomena are also relevant when discussing the thermochemistry
of a manifold of low-lying states[6]. The most straightforward generalization of the RR-HO-
BO approach is the construction of vibronic models in a small set of diabatic states that
describe the electronic structure in a limited region of nuclear configuration space. The key
aspect is that the Hamiltonian that describes coupled nuclear-electronic states is described
by a potential-energy matrix, rather than a scalar function. We will limit ourselves in this
work to simple quadratic models, in close analogy to harmonic oscillators. In addition,
rotational effects are not considered.

In this chapter, we will outline the construction of vibronic models and their mathematical
structure using the ladder operators, familiar for the harmonic oscillator. These models
are the starting point for novel operator approaches to discuss both nuclear dynamics and
spectroscopy, and statistical mechanics. These new methods are not the focus of the thesis,
however. We will discuss the mathematical structure of equations and develop an equation
and code generator to derive relevant equations in a quite abstract but generic fashion. Some
example applications will be presented.

In Section 3.2 we begin by working through the standard (BO) approach to the electronic
Hamiltonian Ĥel. Numerical challenges related to computing specific factors motivate the
use of a different representation, the diabatic representation, as described in Section 3.3.
The specific mathematical definition of a vibronic model, in the diabatic representation,
(used throughout the thesis) is presented in Section 3.4. Finally, a step-by-step example of a
diabatization process is presented in Section 3.5. This is presented for those unfamiliar with
vibronic models so as to ground the discussion presented in Sections 3.3 and 3.4.

To understand further chapters the reader need only familiarize themselves with the
mathematical definitions in Section 3.4.

24

3.2 Adiabatic states

To discuss the complications associated with coupled nuclear-electronic states we first need
to define the adiabatic states. We will then look at the evaluation of the full molecular SE,
in terms of those adiabatic states, and see (in Equations (3.16a) to (3.16d)) how problematic
nonadiabatic coupling term (NACT) directly arise from the definition of these adiabatic
states.

The molecular Hamiltonian Ĥ is comprised of electronic and nuclear contributions to the
kinetic and potential energies, with corresponding electronic (r), and nuclear (R) coordi-
nates. The full molecular SE is as follows:

Ĥ(r,R)Ψn(r,R) = EnΨn(r,R). (3.3)

3.2.1 Clamped Nuclei

The clamped nuclei approximation assumes that due to the difference in the time scale of
electronic and nuclear motion, nuclei being much heavier than electrons, these two degrees
of freedom can be separated and solved for separately. The nuclei are therefore fixed relative
to the electrons. The molecular Hamiltonian can be written as the sum of two terms

Ĥ = T̂N + Ĥel, (3.4)

where the first term is the nuclear kinetic energy and the second term refers to the electronic
Hamiltonian:

Ĥel = T̂ el + V̂ N,N + V̂ N,e + V̂ e,e, (3.5)

which includes all contributions, except T̂N . Starting with fixed nuclei, electronic structure
theory states that

Ĥel(r;R)ψλ(r;R) = Eλ(R)ψλ(r;R). (3.6)

For emphasis in Equation (3.6) I have clearly indicated the electronic r and nuclear coordi-
nates R, on Ĥel. The parametric dependence on the fixed nuclear coordinates R is indicated
by the use of a semicolon: ψλ(r;R). The electronic wavefunctions ψλ(r;R) are approximate
eigenfunctions of Ĥel and are referred to as the adiabatic states [42].

3.2.2 Born-Oppenheimer and Born-Huang approximations

A general parametrization of the complete set of eigenstates (including nuclear motion) is
given by

Ψ(r,R) =
∑
λ

ψλ(r;R)χλ(R). (3.7)

In practice a finite number of states K is chosen, and thus Ψ(r,R) is expressed in terms of a
truncated basis of K eigenstates. If one were to choose to represent the wavefunction using

25

only a single term (λ ∈ K):
Ψ(r,R) ≈ ψ(r;R)χ(R) (3.8)

this would be the BO approximation. Using the full expansion with all K states is the
Born-Huang expansion.

Electronic eigenstates

We will tackle the full molecular SE for a single eigenstate of Ĥ

ĤΨ(r,R) = EΨ(r,R), (3.9)

where E is a constant and
Ĥ = T̂N + Ĥel. (3.10)

We start by directly evaluating the SE using Equation (3.8)

(T̂N + Ĥel)
∑
λ

ψλ(r;R)χλ(R) = E
∑
λ

ψλ(r;R)χλ(R). (3.11)

Expanding the left side

= (
1

2Ma

∇a · ∇a + Ĥel)
∑
λ

ψλ(r;R)χλ(R) (3.12)

=
∑
λ

(
Ãλ + B̃λ + C̃λ + D̃λ

)
, (3.13)

with the four terms

Ãλ =
∑
a

1

2Ma

χ
λ(R)∇2

aψλ(r;R), (3.14a)

B̃λ =
∑
a

1

2Ma

ψλ(r;R)∇2
a
χ
λ(R), (3.14b)

C̃λ =
∑
a

1

2Ma

∇aψλ(r;R)∇a
χ
λ(R), (3.14c)

D̃λ = Eλ(R)ψλ(r;R)χλ(R), (3.14d)

where A labels the nuclei and λ labels the electronic states. Multiplying Equation (3.13)
by ψµ(r;R) and integrating out the electronic co-ordinates

=
∑
λ

(Aµλ +Bµλ + Cµλ +Dµλ) , (3.15)

26

where

Aµλ =

∫ (
ψµ(r;R)

∑
a

1

Ma

∇2
a ψλ(r;R) dr

)
χ
λ(R), (3.16a)

Bµλ = δµλ
∑
a

1

2Ma

∇2
a
χ
λ(R), (3.16b)

Cµλ =
∑
a

(∫
ψµ(r;R)∇aψλ(r;R) dr

)
−1
Ma

∇a
χ
λ(R), (3.16c)

Dµλ = δµλEλ(R)χλ(R). (3.16d)

There are two major challenges with these equations. First and foremost, are the NACTs:
Cµλ in Equation (3.16c) [43]. In the full Born-Huang expansion, the NACTs are difficult to
calculate, and incorporate. The second issue, is that the energies Eµλ(R) are hard to obtain
in compact form. They are poorly defined around conical intersections, and cannot be easily
represented by a low-order Taylor series expansion.

As previously stated, in the BO approximation the full wavefunction is approximated
by a single λ state. In the single state case µ = λ, resulting in the NACTs vanishing due
to the electronic states being a normalized orthonormal basis set. In most calculations A,
commonly referred to as the diagonal BO correction, is sufficiently small that it is neglected.

Under the BO approximation, only the b and D remain, resulting in the familiar BO SE(
T̂N + E(R)

)
ψ(r;R)χ(R) = Eψ(r;R)χ(R), (3.17)

which gives us the energy E of a single eigenstate Ψ(r;R) of Ĥ. In a similar fashion, this
derivation can be extended to multiple eigenstates Ψn(r;R) and corresponding energies En.

3.3 Diabatic States

If one’s goal is to include the effects of the NACTs, another approach is necessary. Using a
new basis the calculation of these terms becomes a feasible task. These diabatic states are
derived from a linear combination of specific adiabatic states ψλ(r;R):

ϕa(r;R) =
∑
λ

ψλ(r;R)Uλa(R), (3.18)

where Uλa(R) is the rotation matrix which depends on R. At a reference geometry R0 these
states are equivalent

ϕa(r;R0) = ψλ(r;R0), (3.19)

as a consequence of our choice of Uλa(R) the overlap between diabatic states is minimized∫
dr ϕa(r;R0)∇ϕb(r;R) ≈ 0 | a ̸= b (3.20)

27

In the diabatic basis we also choose to neglect the diagonal BO correction, Aλ in Equa-
tion (3.15), from our calculation of the electronic Hamiltonian. In this manner, we have
addressed the two troublesome terms from Equations (3.16a) to (3.16d)

3.3.1 Coupling coefficients

In the new diabatic basis the electronic energies Eλ(R) become a potential energy matrix

Vab(R) =
∑
λ

Uλa(R)Eλ(R)Uλb(R)

= U †EU .

(3.21)

Now we can express the SE, for nuclear motion, in the diabatic basis

T̂N χ
a(R) +

∑
b

Vab(R)χb(R) = E χa(R). (3.22)

How does the diabatic basis compare to the previous adiabatic basis? In the diabatic basis we
have no cumbersome NACTs. Also our potential energy matrix Vab(R) has smooth curves for
each matrix element, and as a consequence low-order Taylor series suffice to provide adequate
model hamiltonians. However, the disadvantage is that we require extensive calculations
to perform the diabatization at many displaced geometries, as seen in Equations (3.25)
and (3.26), to obtain the Taylor series expansion.

3.3.2 Diabatization scheme

Let us now discuss diabatization, the process by which we compute diabatic states. Recall,
that the diabatic states ϕa(r;R) are defined in terms of the rotation matrix Uλa(R). This
matrix can be formally defined as

δµa =
∑
λ

SλµUλa(R), (3.23)

where
Sλµ(R0 +∆q) =

∫
dr ψλ(r;R0)ψµ(r;R0 +∆q) (3.24)

Overall scheme I present an example a general approach for calculating a single diabatic
state ϕa(r;R):

1. Select a set of adiabatic states1 {ψ1, ψ2, . . . , ψj, . . . , ψN}
1It can be the case that only certain excitations are of interest and so then the adiabatic states are chosen

appropriately.

28

2. Calculate the overlap Sλµ between adiabatic states at the ground state geometry R0

and at a displaced geometry along a normal mode R0 ±∆qi using Equation (3.24)

3. Calculate U which minimizes the difference between Saj and δaj

4. transform Vab(∆q)

5. Obtain coupling coefficients Eb,i
a through numerical differentiation as shown in Equa-

tion (3.26)

Constructing a vibronic model Recall from Equation (3.21), that the derivation using
these new diabatic states results in a diabatic potential energy matrix Vab(R) whose ma-
trix elements were well defined. To produce a vibronic model, vibronic coupling terms are
obtained as Taylor series expansions of Vab, up to some order, commonly quadratic.

Vab(q) = Vabδab +
∑
i

gabi qi +
1

2

∑
ij

gabij qiqj + · · · . (3.25)

The coefficients of the coupling terms are obtained through numerical differentiation, like so:

gabi =
Vab(R0 +∆qi)− Vab(R0 −∆qi)

2∆qi
. (3.26)

The quadratic and higher terms can be derived in a similar fashion. With the understanding
of adiabatic states, diabatic states, and the diabatization process, I can now define the
Hamiltonian of the vibronic models used in this thesis.

3.4 Vibronic Models

When a vibronic model is being discussed in this thesis I am referring to a Hamiltonian of
the general form in Equation (3.27), whose numerical values have been obtained through
a diabatization procedure as outlined in Section 3.3. This Hamiltonian is expressed in
discrete electronic co-ordinates A, and continuous vibrational co-ordinates q̂j. Note that q̂j
are dimensionless normal modes2. All methods are outlined for models truncated at second
order. Although, results are presented only for models truncated at first order terms.

3.4.1 Notation

I define the general form of a Hamiltonian as obtained from a diabatization procedure:

Ĥaa′ = Eaa′ +

(
1

2

N∑
j

ωj(p̂
2
j + q̂2j)

)
δaa′ +

N∑
j

gaa
′

j q̂j +
N∑
jj′

gaa
′

jj′ q̂j q̂j′ . (3.27)

2They have been nondimensionalized in the standard approach. A straightforward example can be found
here.

29

https://en.wikipedia.org/wiki/Nondimensionalization#Quantum_harmonic_oscillator
https://en.wikipedia.org/wiki/Nondimensionalization#Quantum_harmonic_oscillator

Chapter 3 Form In chapter 4 the vibronic model is split in a specific fashion:

Ĥ = ĥ + V̂, (3.28)

where ĥ contains all terms that can be described by harmonic oscillators

ĥa = Eaa +
1

2

N∑
j

ωj(p̂
2
j + q̂2j) +

N∑
j

gaaj q̂j, (3.29)

and V̂ contains the remaining terms

V̂ aa′ = Eaa′(δaa′ − 1) +
N∑
j

gaa
′

j q̂j(δaa′ − 1) +
N∑
jj′

gaa
′

jj′ q̂j q̂j′ . (3.30)

Chapter 4 Form In Chapter 5 the vibronic model will be expressed in terms of second
quantized operators. By defining the creation and annihilation operators in terms of position
q̂ and momentum p̂ operators 3:

â†j =
1√
2
(q̂j + ip̂j) âj =

1√
2
(q̂j − ip̂j) , (3.31)

such that
q̂j =

1√
2
(âj + â†j) p̂j =

1√
2i
(âj − â†j), (3.32)

we can express the Hamiltonian in second quantized operators:

Ĥaa′ = Eaa′ +

(
1

2

N∑
j

ωj(1 + â†j âj)

)
δaa′

+
1√
2

N∑
j

gaa
′

j (âj + â†j) +
1

2

N∑
jj′

gaa
′

jj′ (âj + â†j)(âj′ + â†j′).

(3.33)

The quadratic contribution can be re-written by expanding

(âj + â†j)(âj′ + â†j′) = âj âj′ + âj â
†
j′ + â†j âj′ + â†j â

†
j′ , (3.34)

and using the commutation relation [âj, â
†
j′] = δjj′ to replace âj â†j′

âj âj′ + âj â
†
j′ + â†j âj′ + â†j â

†
j′ = âj âj′ + (δjj′ + â†j′ âj) + â†j âj′ + â†j â

†
j′ , (3.35)

3Specifically the nondimensionalized q̂ and p̂.

30

such that

1

2

N∑
jj′

gaa
′

jj′ (âj + â†j)(âj′ + â†j′)

=
1

2

N∑
jj′

gaa
′

jj′ δjj′ +
1

2

N∑
jj′

gaa
′

jj′ (âj âj′ + â†j′ âj + â†j âj′ + â†j â
†
j′).

(3.36)

Applying this to Equation (3.33) gives a modified Hamiltonian

Ĥaa′ = Eaa′ +
1

2

N∑
jj′

gaa
′

jj′ δjj′

+

(
1

2

N∑
j

ωj(1 + â†j âj)

)
δaa′

+
1√
2

N∑
j

gaa
′

j (âj + â†j) +
1

2

N∑
jj′

gaa
′

jj′ (âj âj′ + â†j′ âj + â†j âj′ + â†j â
†
j′).

(3.37)

This is the processing of writing the Hamiltonian in normal order.

3.4.2 Displaced Model

Here I present the displaced model from my previous work [44]. This model is a linear
vibronic model with two electronic surfaces A, and two normal modes q. The off-diagonal
coupling terms q̂2 can be tuned by changing the γ coefficient. This allows me to explore the
system over a range of values: from having no coupling γ = 0 and being a FC system where
the q̂1 mode dominates, to small to medium coupling 0.01 ≤ γ ≤ 0.1 where neither q̂1 or q̂2
dominates, to very strong coupling 0.1 ≤ γ ≤ 0.2 where the q̂2 dominates. This system is
small enough that SOS can be performed to check the results.

This system is described by the Hamiltonian

Ĥ = ĥ + V̂

=

[
Ea + ĥo + λq̂1 0

0 Eb + ĥo − λq̂1

]
+ γi

[
0 q̂2
q̂2 0

]
.

(3.38)

You can see the JSON file format in Listing E.3 and the .op format in Listing E.4.

3.4.3 Jahn-Teller Model

Here I present a Jahn-Teller model also from my previous work[44]. This model is a linear
vibronic model with two electronic surfaces A, and two normal modes q. It has the important
property that the PES is symmetric in both modes. The steepness of the curvature of the

31

well in the PES can be tuned by the γ coefficient. Again we can explore the system over
a range of values: from having no coupling γ = 0 and being a simple harmonic oscillator,
to small to medium coupling 0.01 ≤ γ ≤ 0.1, to very strong coupling 0.1 ≤ γ ≤ 0.2. This
system is small enough that SOS can be performed to check the results.

This system is described by the Hamiltonian

Ĥ = ĥ + V̂ (3.39)

=

[
Ei + ĥo + λiq̂1 0

0 Ei + ĥo − λiq̂1

]
+ λi

[
0 q̂2
q̂2 0

]
. (3.40)

You can see the JSON file format in Listing E.5 and the .op format in Listing E.6.

3.5 Real World Diabatization Example

An explanation of the automated process of creating a vibronic model will be presented using
water (H2O) as an example. The process is a slightly modified version of the approach used in
Aranda and Santoro’s work[45]. Code to automate the task of preforming this diabatization
was developed in collaboration with Benny Chen.

Work is ongoing to make this code publicly available on GitHub4. An example of the
final output of the diabatization process is provided in Listing E.2.

The process has, broadly, five phases:

1. Section 3.5.1 Geometry optimization
2. Section 3.5.2 Calculating geometry displacements
3. Section 3.5.3 Calculating adiabatic states
4. Section 3.5.4 Evaluating the electronic integral
5. Section 3.5.5 Collating numerical results

3.5.1 Step 1: Geometry Optimization & Frequency Calculation

The process begins by choosing a specific molecule, in this case: water (H2O). A represen-
tation is chosen for the molecule, specifically a Z-matrix is constructed in Gaussian5.

An opt+freq calculation is performed in Gaussian, using the input file Listing 3.1. This
optimizes the three-dimensional geometry of the molecule, as well as calculating the vibra-
tional frequencies through normal mode analysis. Multiple computational methods can be
used: DFT, HF, MP, and various basis sets can also be selected: B3LYP, cc-pVTZ, etc.

This step produces a .log file which contains four pieces of necessary information:

1. Listing 3.2 The charge and multiplicity
4Hopefully by September.
5Other computational chemistry software packages could be used.

32

1 %nprocshared =8
2 %Mem=30GB
3 #p opt freq=hpmodes b3lyp /6 -311++g(d,p) geom=connectivity
4

5 Water opt+freq 6 -311++g(d,p)
6

7 0 1
8 O 0.00000000 1.44654086 0.00000000
9 H 0.96000000 1.44654086 0.00000000

10 H -0.32045459 2.35147669 0.00000000
11

12 1 2 1.0 3 1.0
13 2
14 3

Listing 3.1: Example Gaussian input file water_optfreq.com for H2O

109 Symbolic Z-matrix:
110 Charge = 0 Multiplicity = 1

Listing 3.2: Charge and multiplicity in water_optfreq.log

2. Listing 3.3 The optimized geometry of the molecules in cartesian co-ordinates
3. Listing 3.4 The vibrational frequencies of the 3N-6 modes
4. Listing 3.5 The atomic masses of each atom (in amu)

Excitation calculation

Using the new optimized geometry (Listing 3.3) a time-dependent Density Functional The-
ory (TD-DFT) calculation is executed. The user chooses a number of electronic states to
calculate: in this case three states. The input file is presented in Listing 3.6.

This calculation produces a water_excited.log output file. The FC vertical electronic
excitations are taken from there and are used in the final step: Section 3.5.5

1033 Input orientation:
1034 --
1035 Center Atomic Atomic Coordinates (Angstroms)
1036 Number Number Type X Y Z
1037 --
1038 1 8 0 -0.011972 1.429601 0.000000
1039 2 1 0 0.949258 1.466833 -0.000000
1040 3 1 0 -0.297741 2.348125 0.000000
1041 --

Listing 3.3: Optimized geometry section in water_optfreq.log

33

1503 1 2 3
1504 A1 A1 B2
1505 Frequencies --- 1602.4365 3818.8124 3923.9167
1506 Reduced masses --- 1.0829 1.0449 1.0824
1507 Force constants --- 1.6384 8.9782 9.8194
1508 IR Intensities --- 66.7263 9.2211 56.9048

Listing 3.4: Harmonic frequencies (cm−1), Reduced Masses (AMU), Force constants
(mDyne/A), and IR intensities (KM/Mole) in water_optfreq.log

1 15.9949146
2 1.0078250
3 1.0078250

Listing 3.5: Atomic masses of each atom in water molecule inside the masses file

1 %chk=water_excited.chk
2 %nprocshared =10
3 %Mem=35GB
4 #p td=(nstates =3) b3lyp /6 -311++g(d,p) scrf=check
5

6 Molecule 3 excited states 6 -311++g(d,p)
7

8 0 1
9 8 0 -0.011972 1.429601 0.000000

10 1 0 0.949258 1.466833 -0.000000
11 1 0 -0.297741 2.348125 0.000000

Listing 3.6: Example Gaussian input file water_excited.com for H2O

34

3.5.2 Step 2: Calculate geometry displacements

Recall from Equation (3.24) that for each normal mode i, the adiabatic states are evaluated
at both the ground state geometry q0, and a displaced geometry ∆qi. These displacements
are calculated using Gaussian, by performing TD-DFT calculations at cam-b3lyp/6-31G(d)
with the following options: nosymm iop(3/33=4) td(nstates=8,conver=6) iop(9/40=5)

The reference geometry is given in Table 3.1 and the displacements ±δqi are given in Ta-
bles 3.2 to 3.4

Table 3.1: Reference geometry q0 (dimensionless)
Atom X Y Z

O 0.000 000 0 1.446 541 0 0.000 000 0
H 0.960 000 0 1.446 541 0 0.000 000 0
H −0.320 455 0 2.351 477 0 0.000 000 0

Table 3.2: Displaced geometry q0 ± δq1 (dimensionless)

Atom
+δq1 −δq1

X Y Z X Y Z

O 0.0000000 1.4465410 0.0009871 0.0000000 1.4465410 -0.0009871
H 0.9600000 1.4405950 -0.0078328 0.9600000 1.4524870 0.0078328
H -0.3204550 2.3574230 -0.0078328 -0.3204550 2.3455310 0.0078328

Table 3.3: Displaced geometry q0 ± δq2 (dimensionless)

Atom
+δq2 −δq2

X Y Z X Y Z

O 0.0000000 1.4465410 -0.0004574 0.0000000 1.4465410 0.0004574
H 0.9600000 1.4411569 0.0036298 0.9600000 1.4519251 -0.0036298
H -0.3204550 2.3568611 0.0036298 -0.3204550 2.3460929 -0.0036298

Table 3.4: Displaced geometry q0 ± δq3 (dimensionless)

Atom
+δq3 −δq3

X Y Z X Y Z

O 0.0000000 1.4471697 0.0000000 0.0000000 1.4459123 0.0000000
H 0.9600000 1.4415518 0.0038239 0.9600000 1.4515302 -0.0038239
H -0.3204550 2.3464878 -0.0038239 -0.3204550 2.3564662 0.0038239

35

3.5.3 Step 3: Evaluate electronic integral

Finally, Equation (3.24) can be obtained. In this step, the electronic integral
∫
dr is computed

to obtain the overlap matrix Sλµ(R0 ±∆qi).
As we have six geometric displacements ±∆qi, there are six corresponding blocks of output
in water_overdia.out; starting at lines: 1956, 2277, 2677, 2998, 3398, and 3719. Each
block of code has a header of the form in Listing 3.7, and contains the results of evaluating
the adiabatic states ψλ(r;R0), ψµ(r;R0 +∆q)

2122 *GEOMETRIC PERTURBATION No. 1

Listing 3.7: Example header, in water_overdia.out

For the first geometric displacement output block, we see the calculation of the overlap matrix
element S11(+∆q1) in Listing 3.8. Within lines 2122-2175, the calculation is repeated once
for each of the nine matrix element Sjj′(+∆q1). There are similar blocks, computing the
nine Sjj′(±∆qi) matrix elements, for each of the six geometric displacements

2122 ista1 ista2 1 1
2123 aaa11 0.50012842920702916
2124 aaa12 5.2244234178751675E-008
2125 aaa21 1.1920706250027622E-007
2126 aaa22 2.2594236048360214E-004
2127 overlap= 0.49990241988371720

Listing 3.8: Overlap matrix element S11(∆qi) in water_overdia.out

3.5.4 Step 4: Calculate transformation matrix

After finding the overlap matrix Sλµ(R0 ±∆qi), the transformation matrix U , which min-
imizes the difference between Sµa and δµa, is calculated. In this particular diabatization
procedure, this is done using symmetric orthogonalization6. For the first geometric dis-
placement, this process occurs on lines 2185-2261; the U and Saj are presented below
in Listings 3.9 and 3.10. We can see that Saj is indeed equal to δaj up to 1× 10−5.

2237 1 0.99988 0.00572 0.01410
2238 2 -0.00572 0.99998 -0.00006
2239 3 -0.01410 -0.00002 0.99990

Listing 3.9: The transformation matrix U for the first mode’s positive displacement, in
water_overdia.out

2248 1 1.00000 -0.00000 0.00000
2249 2 -0.00000 1.00000 0.00000
2250 3 0.00000 0.00000 1.00000

Listing 3.10: Sµa matrix elements for the first mode’s positive displacement, in
water_overdia.out

Having obtained our U we calculate our new diabatic states using Equation (3.18)
6Also know as (Löwdin) orthogonalization.

36

2594 DIABATIZATION FROM MAX. OVERLAP
2595 ad energy for positive displ 6.8996639976393750
2596 ad energy for negative displ 6.8694104053466551
2597 ad energy for positive displ 8.4022209856185430
2598 ad energy for negative displ 8.3733959898313213
2599 ad energy for positive displ 8.8246610541498871
2600 ad energy for negative displ 8.7776126092186768

Listing 3.11: Adiabatic energies Ea(R0 ±∆q1) (eV) , in water_overdia.out

2622 derivative of adiabatic energies
2623 1 0.15126796146359922
2624 2 0.14412497893610876
2625 3 0.23524222465605149

Listing 3.12: Symmetric derivative of adiabatic energies (eV) for the first state, in
water_overdia.out

3.5.5 Step 5: Collate numerical results

Step 5 evaluates the diabatic coefficients from Equations (3.21) and (3.25), using all the
parameters calculated in the prior steps, and produces one final file, which fully prescribes
the vibronic model. An example of such a file is available in Listing E.2.

As previously described, see Equation (3.26), the coefficients of the coupling terms are
obtained through numerical derivatives, once for each state we are calculating, at lines 2586,
3307, and 4028 in water_overdia.out. Looking at the first state, we can see the adiabatic
energies Ea(R0±∆q1) in Listing 3.11, and the resulting symmetric derivatives in Listing 3.12.
These derivatives are used to obtain the diabatic coefficients, which are presented at the end
of the file water_overdia.out.

In Listing 3.13 we see the electronically diagonal linear coefficients g11j (defined in eqs. (3.25)
and (3.26)) for each mode j. In Listing 3.14 we see the off-diagonal linear coefficients g12j for
each mode j:

3.6 Wrapping up

The specific example here, is oriented towards producing vibronic models to be investigated
through spectroscopy. At the moment, another method is also being explored, specifically

4122 COUPLING STATE < 1|H| 1>
4123 MODE COUPLING
4124 1 0.15126954
4125 2 0.13700266
4126 3 -0.16662290

Listing 3.13: linear coefficients g11j for each mode j, in water_overdia.out

37

4136 COUPLING STATE < 1|H| 2>
4137 MODE COUPLING
4138 1 0.08494233
4139 2 0.07689810
4140 3 -0.07576917

Listing 3.14: linear coefficients g12j for each mode j, in water_overdia.out

one including spin effects, to generate additional vibronic models. New models of the form
defined in Section 3.4, can be used in a plug-and-play fashion with all the methods presented
in this thesis.

Now that we have seen how to compute a vibronic model in the diabatic basis, I can
start to get into the meat of computing properties of interest. In Chapter 4 I will explain the
PIMC method, and show results calculated using the Hamiltonians defined in Sections 3.4.2
and 3.4.3. Chapter 5 contains a more general prescription for computing expectation values,
which is then applied in Chapter 6, where I show resulting spectra for Hamiltonians defined
in Equation (3.37).

38

Chapter 4

Path Integral Monte Carlo

The purpose of this chapter is to present a new approach for the calculation of the thermo-
dynamic properties of vibronic models introduced in Chapter 2. The new approach is based
on the Feynman path integral representation of quantum statistical mechanics. The method
presented here is in principle exact, as properties will be obtained as statistical estimates over
the exact thermal distribution using quantum Monte Carlo (MC) with Metropolis-Hastings
(MH) sampling. The sources of error include statistical uncertainties, and systematic Trot-
ter factorization error. We will show that statistical errors can be readily minimized as the
standard error of estimate scales as O(1√

M
) where M is the number of independent samples.

The Trotter error can be reduced by increasing the imaginary time discretization.

It will be shown that an important feature of vibronic models is that they lead to so-
called non-stoquastic1 Hamiltonians [46, pg. 2]. This means that a sign-problem will be
expected in a quantum Monte Carlo application [47]. This chapter includes an approach to
circumvent the sign-problem, based on an partial trace of the discrete electronic state degrees
of freedom. One is then left with a reduced density matrix path integral approach for the
continuous mode degrees of freedom. To my knowledge, this is the first formal identification
of vibronic models as non-stoquastic Hamiltonians.

It is prohibitively expensive2 to directly calculate many of the integrals present in this
work. One solution to this problem is evaluating integrals discretely using methods such as
MC and MH. In this work, my use of MH has formally exact sampling. In previous work, I
have done approximate sampling and attempted to re-weight the sampling [44]. We will refer
to the current method as PIMC and whereas the previous method is a re-weighted version
of PIMC.

As the math can be quite dense in this chapter, I will begin by defining some of the most
common mathematical objects in Section 4.1. Using this foundation, I present the detailed

1This is not a typo; stoquastic is a term used to define a class of Hamiltonians where all off-diagonal
matrix elements are real and non-positive. Correspondingly a non-stoquastic Hamiltonian has off-diagonal
elements with both signs. Many fermionic systems are non-stoquastic. The reference gives a more detailed
explanation.

2This is, of course, an opinion; but one that seems to be pervasive in the research that the author has so
far encountered.

39

form of the PI in Section 4.2, that I adapt to the MH algorithm. I present a primer on
the statistical distributions, and their notation in Appendix A.1. I then demonstrate the
different ways of implementing MH, and show that using the gaussian mixture distribution
(GMD) approach is preferred. Finally, I will compare and contrast the different MH schemes
in Section 4.7.

4.1 Basic Definitions

I begin by defining the primary components of my PIs. I work with a vibronic system split
into diagonal and off-diagonal (in electronic DoF) components:

Ĥ = ĥ + V̂, (4.1)

where the Hamiltonian Ĥ was defined in Equation (3.27) and the ĥ operator was defined
in Equation (3.29). I express Z in a path integral formulation derived in the same fashion
as Section 2.1:

Z = lim
P→∞

∫
dq1

∫
dq2 · · ·

∫
dqP g(q1, q2, . . . , qP) = lim

P→∞

∫
dQ g (Q) . (4.2)

where g (Q) is

g (Q) =
A∑
a

P∏
i=1

⟨qi, ai| e−τĥ
∣∣qi+1, ai

〉 〈
qi+1, ai

∣∣ e−τV̂
∣∣qi+1, ai+1

〉
, (4.3)

I will employ importance sampling as described in Section 2.2.2 with the target distribu-
tion g (Q) from Equation (4.3), and the new sampling distribution ϱ (Q)

ϱ (Q) =
A∑
a

P∏
i=1

⟨qi, ai| e−τĥ
∣∣qi+1, ai

〉
. (4.4)

I define the function W (Q, a), which is a reduced density matrix,

W (Q,a) =
P∏
i=1

⟨qi, ai| e−τĥ
∣∣qi+1, ai

〉 〈
qi+1, ai

∣∣ e−τV̂
∣∣qi+1, ai+1

〉
, (4.5)

so that I can express g (Q)

g (Q) =
A∑
a

W (Q,a). (4.6)

In this way I can express Z

Z = lim
P→∞

∫
dQ

A∑
a

W (Q,a), (4.7)

40

or some other property A of interest

⟨A⟩ = 1

Z
lim
P→∞

∫
dQ

A∑
a

W (Q,a)Aestim(Q). (4.8)

4.1.1 Matrix representation

As described in Section 2.4, the dominant cost of evaluating the Q integrals is in computing
and diagonalizing the matrices M, O, Õ. I will now define these matrices through their
matrix elements. The O matrix elements:

O
(
q, q

′
)
aa′

=
〈
q
∣∣∣e−τĥa

∣∣∣q′
〉
δaa′ , (4.9)

and M matrix elements:
M (q)aa′ = ⟨a|e

−τV̂(q)|a′⟩ . (4.10)

Equations (4.3) and (4.5) can now be expressed as the product of O and M:

W (Q, a) =
P∏
i=1

O(qi, qi+1)M(qi+1), (4.11)

g (Q) =
∑
a

W (Q, a) = Tr

[
P∏
i=1

O(qi, qi+1)M(qi+1)

]
, (4.12)

and Equation (4.4) in terms of O

ϱ (Q) = Tr

[
P∏
i=1

O(qi, qi+1)

]
. (4.13)

The Õ matrix is defined in almost the same way as O,

Õ
(
q, q

′
)
ãã′

=
〈
q
∣∣∣e−τĥã

∣∣∣q′
〉
δaa′ , (4.14)

however the size of the matrix can be larger or smaller than O. Õ is of size Ã × Ã in-
stead of A × A where A is the number of electronic states of the vibronic model as defined
in Section 3.4.1. Õ is still evaluated on the same q continuous co-ordinates but the discrete
contribution e−τĥã is chosen to optimize the statistical efficiency of evaluating the integrals.
Generally the simplest choice is Õ = O but better statistical performance can be achieved
by adding fictitious surfaces or removing surfaces of low contribution.

Similarly there is

ϱ̃ (Q) = Tr

[
P∏
i=1

Õ(qi, qi+1)

]
. (4.15)

41

4.2 Theory

Now that I have covered basic definitions, I can begin to layout the PI formalism in full.
Four different MH schemes were explored, two of which I discuss in detail within the follow-
ing Sections 4.3 to 4.5.

I will begin by describing the naive direct scheme, which doesn’t use any fancy tricks and
evaluates individual matrix elements. I will show how this approach is fundamentally flawed
and a different approach is needed. Next is the fixed method which performed somewhat
poorly. Finally we have the selective matrix, and the GMD or averaged matrix schemes.

As the reader will see in Section 4.7, the GMD scheme is statistically superior to the
other schemes, in both accuracy and computational efficiency. The goal of all these schemes,
is to express some property of interest in terms of a PI integral, which will be approximated
through MH.

For each scheme, it is important to define what a state is, and how a trajectory is
generated. Proposal states are drawn from a proposal distribution and then either accepted
or rejected. Each scheme has several subtle differences in this process. Recall that the basic
MH algorithm is laid out in Section 2.2.

4.3 Metropolis scheme 1 (Direct approach)

We describe the Direct approach for evaluating the path integral function through metropo-
lis sampling. The goal of the metropolis sampling is to generate a trajectory (a set of states
x0,x1, . . .xT) to estimate a distribution P (x).

4.3.1 Definition of a state

We define a state of the system x for some number of beads P and electronic surfaces A:

x ∼ [Q,a] x = [x1, x2, . . . , xP] xi ∼ [qi, ai] (4.16)

a = [a1, a2, . . . , aP] ai ∈ {1, 2, . . . , A} (4.17)

Q = [q1, q2, . . . , qP] qi = [q1,i, q2,i, . . . , qN,i] ∀ij qj,i ∈ R (4.18)

Evaluating Equation (4.3) with these parameters looks like the following:

g (Q) =
2∑

a1=0

2∑
a2=0

2∑
a3=0

⟨q1, a1| e−τĥ |q2, a1⟩ ⟨q2, a1| e−τV̂ |q2, a2⟩

× ⟨q2, a2| e−τĥ |q3, a2⟩ ⟨q3, a2| e−τV̂ |q3, a3⟩

× ⟨q3, a3| e−τĥ |q1, a3⟩ ⟨q1, a3| e−τV̂ |q1, a1⟩ .

(4.19)

42

4.3.2 Generating a trajectory

A trajectory is a set of states x0,x1, · · ·xT where each state xt+1 is generated based on the
previous state xt. The target or desired distribution is defined as P (x), and the distribution
from which samples are drawn is g(x′|x)

At each time step, the new state xt+1 is either the previous state xt, or a candidate state
x′ which is drawn from g(x′|x). To determine which value xt+1 will take on, the acceptance
ratio is used:

A(x′,x) = min

(
1,
P (x′)g(x|x′)

P (x)g(x′|x)

)
. (4.20)

To obtain a new state xt+1 given the current state of xt:

1. Generate a random candidate state x′ from g(x′|xt)

2. Calculate the acceptance probability using Equation (4.20)

3. Generate a random number u ∈ [0, 1]

(a) if u ≤ A(x′,xt) then accept the candidate state and xt+1 = x′

(b) if u > A(x′,xt) then reject the candidate state and xt+1 = xt

For our method, the target distribution is g (Q) from Equation (4.3) and the sampling distri-
bution is ϱ (Q) from Equation (4.4). Note that samples drawn from ϱ (Q) are independent:
ϱ(x′|xt) = ϱ(x′) and ϱ(xt|x′) = ϱ(xt).
The acceptance ratio for the direct method is:

A(x′,xt) = min

(
1,
g(x′)

g(xt)

ϱ(xt)

ϱ(x′)

)
, (4.21)

with probability ratio (between the proposed sample x′ and the previous sample xt)

g(x′)

g(xt)
, (4.22)

and proposal density ratio

ϱ(xt)

ϱ(x′)
. (4.23)

4.3.3 Example of evaluating proposed sample state

For a system with two surfaces (A = 2, ai ∈ {0, 1}) and three beads (P = 3), if our previous
state was xt ∼

[
[q1, q2, q3], [1, 1, 0]

]
and we want to compute the next state xt+1, then:

1. Draw a candidate state x′ from ϱ (Q)

43

(a) draw P random surfaces a1, a2, a3 ∈ unif{0, 1}3(for example a1, a2, a3 = 0, 1, 0)

(b) draw P ×N random positions q1, q2, q3 from a distribution (GMD or some πa)

We now have a candidate state x′ ∼
[
[q1, q2, q3], [0, 1, 0]

]
2. Evaluate Equation (4.22) using x′ and xt:

Both g(x′) and g(xt) can be evaluated as shown in Equation (4.19) to give

g(x′)

g(xt)
=
⟨q1, 0| e−τĥ |q2, 0⟩ ⟨q2, 0| e−τV̂ |q2, 1⟩ ⟨q2, 1| e−τĥ |q3, 1⟩
⟨q1, 1| e−τĥ |q2, 1⟩ ⟨q2, 1| e−τV̂ |q2, 1⟩ ⟨q2, 1| e−τĥ |q3, 1⟩

× ⟨q3, 1| e−τV̂ |q3, 0⟩ ⟨q3, 0| e−τĥ |q1, 0⟩ ⟨q1, 0| e−τV̂ |q1, 0⟩
⟨q3, 1| e−τV̂ |q3, 0⟩ ⟨q3, 0| e−τĥ |q1, 0⟩ ⟨q1, 0| e−τV̂ |q1, 1⟩

3. Evaluate Equation (4.23) using x′ and xt

ϱ(xt)

ϱ(x′)
=
O(q1, q2)O(q2, q3)O(q3, q1)

O(q1, q2)O(q2, q3)O(q3, q1)
(4.24)

=
⟨q1, 1| e−τĥ |q2, 1⟩ ⟨q2, 1| e−τĥ |q3, 1⟩ ⟨q3, 0| e−τĥ |q1, 0⟩
⟨q1, 0| e−τĥ |q2, 0⟩ ⟨q2, 1| e−τĥ |q3, 1⟩ ⟨q3, 0| e−τĥ |q1, 0⟩

(4.25)

4. Compute the acceptance ratio using Equation (4.21)

5. Compare the acceptance ratio to u and set xt+1 to x′ or xt as appropriate

Z would be computed in this fashion

Z =

∫
dq1

∫
dq2

∫
dq3 ⟨q1, 0| e−τĥ |q2, 0⟩ ⟨q2, 0| e−τV̂ |q2, 1⟩

× ⟨q2, 1| e−τĥ |q3, 1⟩ ⟨q3, 0| e−τV̂ |q3, 0⟩

× ⟨q3, 0| e−τĥ |q1, 0⟩ ⟨q1, 0| e−τV̂ |q1, 0⟩ .

(4.26)

Unfortunately the Direct method performs abysmally and in my testing almost always is
frozen in the initial state and never accepts any proposed states. Only by moving to a
matrix approach did I finally see good results.

4.4 Metropolis scheme 2 (Averaged matrix/GMD approach)

We improve upon the direct scheme by changing how the states are evaluated, specifically
the discrete DoF are treated differently. Instead of stochastically evaluating the electronic

3In general the distribution is unif{0, A− 1} or unif{1, A}. I treat these as equivalent given the choice of
the value of the starting surface. It feels natural to refer to the ground state as 0.

44

surfaces, as in the Direct scheme, the Averaged matrix exactly evaluates them using matrix
multiplication.

Another difference between this scheme and the Direct scheme is how the individual
beads are evaluated. Previously each bead was evaluated on a specific surface ai, drawn
uniformly. Now surfaces ãi are drawn, not uniformly, but with weights wi, and each bead is
evaluated on all surfaces as the AxA matrices O and M.

The Averaged matrix scheme is as follows For some number of samples L:

1. Draw three (P) random values ã1, ã2, ã3 with weights [w1, w2, w3]

2. Draw three (P), (N × L) samples y1 ∈ ϱã1 , y2 ∈ ϱã2 , y3 ∈ ϱã34

3. Transform from collective bead co-ordinates yℓjλ to bead dependent co-ordinates xℓji

xℓ = yℓ(V)†, (4.27)

4. To evaluate the matrices O and M we shift each sample to all A electronic states:

xℓ,a
i = xℓ

i + dãℓ − da, (4.28)

resulting in a tensor x of dimension L×A×N×P .

5. Evaluate ϱ(xt) and ϱ(x′) in a matrix fashion:

TrA

(q1q2 0 0
0 q1q2 0
0 0 q1q2

×
q2q3 0 0

0 q2q3 0
0 0 q2q3

×
q3q1 0 0

0 q3q1 0
0 0 q3q1

) (4.29)

6. Evaluate g(xt) and g(x′) in a matrix fashion:

TrA

(q1q2 0 0
0 q1q2 0
0 0 q1q2

×
M (q2)00 M (q2)01 M (q2)02
M (q2)10 M (q2)11 M (q2)12
M (q2)20 M (q2)21 M (q2)22

×

q2q3 0 0
0 q2q3 0
0 0 q2q3

×
M (q3)00 M (q3)01 M (q3)02
M (q3)10 M (q3)11 M (q3)12
M (q3)20 M (q3)21 M (q3)22

×

q3q1 0 0
0 q3q1 0
0 0 q3q1

×
M (q1)00 M (q1)01 M (q1)02
M (q1)10 M (q1)11 M (q1)12
M (q1)20 M (q1)21 M (q1)22

)
(4.30)

7. Compute the acceptance ratio using Equation (4.21)
4Here the yj samples are 2-dimensional tensors of dimensions L (samples/batches) and N (modes). After

drawing P of them we now have L x 1 x N x P samples. When we perform the shift in Equation (4.28) we
“broadcast” the singular 1 dimension to A samples producing L x A x N x P samples.

45

8. Compare the acceptance ratio to u and set xt+1 to x′ or xt as appropriate

Then we can repeat this process N times.

4.5 Additional Metropolis schemes

Two additional methods were considered: the Fixed method, a simplification of the Direct
method, and the Selective matrix method, an extension of the Averaged matrix method.

4.5.1 Fixed method

Here we “fix” all beads to the same randomly sampled surface. This is a very simplistic
method and should behave poorly anytime the system is not trivial. It may be interesting
to compare the fixed method against the more complex methods, for systems that are in the
ground state (due to large energy separation or thermalization). This comparison may be
able to indicate performance/accuracy costs incurred by the additional machinery.

The Fixed method for drawing a candidate state x′ from ϱ (Q) is as follows:

1. Draw 1 random surface a ∈ unif(0, A) (for example a = 3)

2. Draw P ×N random positions q1, q2, · · · from a distribution (either GMD or some πa)

3. We now have a candidate state x′ ∼
[
[q1, q2, · · ·], 3

]
4.5.2 Selective matrix method

Recall from the Averaged matrix approach:

For each bead i ∈ {0, P − 1}:

1. Draw ãi with weight wi (1)

2. Chose a distribution ϱãi (2)

3. Draw a collective bead co-ordinate yℓjλ that had no notion of surfaces. (3)

4. Transform to bead dependent co-ordinates xℓji

5. Shift each sample to all A electronic states xℓ,a
i

46

The Selective matrix is an attempt to use the sampling of the Averaged matrix ap-
proach in the Direct method fashion, by being more selective than simply “broadcasting”
each bead-dependent sample to all surfaces and then evaluating the integral as matrices.
Instead, the integral is calculated by multiplying respective matrix elements (Oaa, Maa′) for
each ai sample.

For a proposed state x′ ∼ [Q,a]:

• Normal mode components (Q = [q1, q2, . . . , qP]) are still drawn as the Averaged
matrix approach
drawing collective co-ordinates and transforming etc.

• Electronic component (a = [a1, a2, . . . , aP]) are drawn in the Direct method fashion:
ai ∈ unif{0, A− 1}

• Finally the probability ratio g(x′)
g(xt)

and proposal density ratio ϱ(x′)
ϱ(xt)

are calculated as
follows:
(suppose 4 beads with a = [2, 1, 1, 3] and a′ = [0, 3, 2, 0])5

g(x′)

g(xt)
=
O(q1, q2)00M (q2)03O(q2, q3)33M (q3)32O(q3, q4)22M (q4)20O(q4, q1)00M (q1)00
O(q1, q2)22M (q2)21O(q2, q3)11M (q3)11O(q3, q4)11M (q4)13O(q4, q1)33M (q1)32

(4.31)

ϱ(x′)

ϱ(xt)
=
O(q1, q2)00O(q2, q3)33O(q3, q4)22O(q4, q1)00
O(q1, q2)22O(q2, q3)11O(q3, q4)11O(q4, q1)33

(4.32)

It is important to highlight there is NO trace over the surfaces as we are multiplying indi-
vidual matrix elements! This means that we are still stochastically evaluating the discrete
electronic states and suffer from the sign problem.

4.6 Solution to manifestation of the sign problem

The uniform sampling revealed an important fact about the vibronic Hamiltonian studied
here: they are non-stoquastic. A stoquastic Hamiltonian Ĥ has the general form defined
in Equation (3.27) but whose matrix elements are negative [46]

⟨a|H(q) |a′⟩ < 0. (4.33)

As we move from un-coupled, to weakly coupled, to strongly coupled systems, Uniform
sampling breaks down because the vibronic coupling manifests as a sign problem in the
distributions defined by the V component of the Hamiltonian. The sign problem causes the

5And the q ’s are different but I can’t be bothered to distinguish them right now.

47

variance to become extremely large so as to make the sampling of the problem intractable.
Whereas the GMD-reduced method tackles this manifestation of the sign problem by tracing
out electronic DoF exactly. We are left to stochastically sampling the modes, which do not
have a sign problem because they are bosonic. In this way, our variance is well behaved
and this makes the problem tractable. One can readily see from Equation (3.39) that the
representation of a vibronic Hamiltonian, in the position representation for the modes q1, q2,
and the discrete representation for the states A will have alternating signs.

Now we’ve gone through the two methods, explaining how the MH algorithm works. In
the next section I will show results of applying the GMD and GMD-reduced matrix schemes
to the displaced system defined in Equation (3.38).

4.7 Results

I focused on testing the GMD and GMD-reduced methods using the Displaced system which
is described below. I do not plot any results for the Direct method as this method simply
doesn’t work. It rejects almost every proposed move and therefore fails to generate a Markov
Chain. I also did not plot any Fixed method results as both GMD methods are as good or
better than the Fixed method.

Efficient Diagonalization

In this section, SOS6 results are used as to benchmark the PIMC methods. The exact
implementation of these results used an operator-based diagonalization approach, that com-
putes the action and never stores the matrix elements of the Hamiltonian. SOS results were
obtained through the use of the LinearOperator object and the eigsh method provided
by the scipy.sparse.linalg library. Since this is a sparse approach it avoids the storage
issues discussed in Chapter 1. In addition, this is more efficient than a standard sparse
matrix representation of the Hamiltonian. Because it never stores any matrix elements and
instead uses an iterative solver approach. The Hamiltonian can be represented as a sum of
LinearOperators and then simply diagonalized as shown in Listing 4.1.� �
h_Ea = LinearOperator ((N,N), matvec=Ea_v)
h_01 = LinearOperator ((N,N), matvec=h01_v)
h_02 = LinearOperator ((N,N), matvec=h02_v)
h_q1 = LinearOperator ((N,N), matvec=q1_v)
h_q2 = LinearOperator ((N,N), matvec=q2_v)

Construct DVR Hamiltonian out of LinearOperators
H_total = h_Ea + h_01 + h_02 + h_q1 + h_q2

Sparse diagonalization
evals , evecs = eigsh(H_total , k=100, which = ’SA’)� �
Listing 4.1: Illustrative use of LinearOperators and eigsh for diagonalization of a
Hamiltonian.

6Also known as exact diagonalization (ED).

48

https://docs.scipy.org/doc/scipy/reference/generated/scipy.sparse.linalg.LinearOperator.html

All references to SOS results were generated using the sparse LinearOperator approach just
described.

4.7.1 Displaced System

The Displaced system’s Hamiltonian is of the form defined in Equation (3.38) with the
parameters given in Table 4.1. This system is useful because it has a “tunable” parameter γ
which allows us to investigate the performance over a range of coupling strengths. γ1 there is
no off-diagonal coupling and the two electronic surfaces are completely independent. Based
on past experience γ2, γ3 denote weakly coupled systems, γ4 is a turning point (neither weak,
nor strong), and finally γ5, γ6 denote strongly coupled systems. The reader will see that the
results of the PIMC methods agree with this assessment.

Table 4.1: Displaced system parameters (eV).
Parameter Parameter

Ea 0.0996 γ1 0.00
Eb 0.1996 γ2 0.04
ω1 0.02 γ3 0.08
ω2 0.04 γ4 0.12
λ 0.072 γ5 0.16

γ6 0.20

Characteristic Temperature

To illustrate, the tunability of the Displaced system, I have plotted heat capacity (Cv) versus
temperature for each γi value in Figure 4.1. These plots were obtained using SOS. In each
plot, the corresponding characteristic temperature Θ is denoted with a dashed vertical orange
line. The idea of high or low temperature is associated with the population of excited states.
The so-called characteristic temperature is defined as

Θ =
∆E

kB
(4.34)

For an uncoupled system, there will be an electronic temperature based on the spacing
between the electronic states, and a temperature for each of the independent normal modes.
When coupling is introduced, the mixing between the degrees of freedom blurs the distinction
between the individual temperatures of each degree of freedom. Here, we use the first energy
gap for the fully-coupled Hamiltonian to define the system’s characteristic temperature:

Θ =
E1 − E0

kB
, (4.35)

49

where E0 is the ground state and E1 is the first excited state. Each γi has a different
energy gap and therefore a different characteristic temperature. These values are provided
in Table 4.2. Note that whenever I refer to Θ, it is relative to some choice of γi.

In Figure 4.1, the heat capacity’s relation to temperature is very consistent for γ1, γ2,
and γ3, with only a slight variation in the T > 600K range for γ3. We see a huge change once
the second mode’s coefficient (γ4 = 0.12) is much larger than the first mode’s (λ = 0.072).
Both the temperature (x) axis and the slope change drastically. This system should prove
somewhat challenging. Finally, γ5 and γ6 both have slopes which decrease very quickly, but
with temperature ranges different by several orders of magnitude: T ≤ 0.01 for γ5, and
T ≤ 2 × 10−7 for γ6. The low temperatures for these systems pose an issue for completing
calculations in a reasonable amount of time.

Table 4.2: Displaced system characteristic temperatures (K).
Θ

γ1 232.09
γ2 231.21
γ3 226.39
γ4 33.33
γ5 8.94× 10−4

γ6 4.64× 10−8

50

Figure 4.1: Heat Capacity vs Temperature (Kelvin) of Displaced system for each γi value.
The characteristic temperatures are denoted with a dashed vertical orange line. Their values
are listed in Table 4.2.

51

Calculation Parameters

I benchmark the GMD and GMD-reduced methods against SOS results. Each subsection
(4.7.2 to 4.7.11) show computational results for a specific q2 coupling (γi) and proposal
distribution. The plots compare the distributions of the two normal modes q1 and q2. The
histogram for each method were calculated in the same fashion as in Equation (2.31). All
simulations were performed using the parameters in Table 4.3.

Table 4.3: Path Integral simulation parameters.
Ntotal 1× 106

Nskip 1× 103

Nburn in 1× 102

P 16

For the first three coupling coefficients γ1, γ2, γ3 (4.7.2 to 4.7.4) results are presented over
a range of temperatures relative to their respective Θ: 0.1, 1.0, 2.0, 5.0, and 10.0 times Θ.
Only 2.0, 5.0, and 10.0 times Θ are presented for γ4, (4.7.5 and 4.7.6) due to divergence issues
for 0.1, and 1.0 Θ. Exact values are given in Table 4.4. It is expected that for 2.0Θ and
above that we should start to see the effect of thermalization: that more of the eigenstates
have non zero population.

For γ5 and γ6, we can no longer use these temperature ranges due to the extreme value
of Θ, that causes numerical divergence in the sinh(x) prefactor terms, as well as when
computing the acceptance ratio. For the acceptance ratio, this divergence can be addressed
to some degree by scaling the O’s by a constant prefactor7. However, for the hyperbolic
prefactors we really only have two means to handle divergence: the number of beads P and
the temperature β = (kBT)

−1. For γ5, we need to use thousands of beads to avoid numerical
issues, and many more beads are needed for γ6. To keep the number of beads consistent, I
chose to use temperatures of 100K and 300K as shown in Table 4.5.

Table 4.4: Temperature values (in Kelvin) relative to Θ for each γi.
0.1Θ 1.0Θ 2.0Θ 5.0Θ 10.0Θ

γ1 2.32× 101 2.32× 102 4.64× 102 1.16× 103 2.32× 103

γ2 2.31× 101 2.31× 102 4.62× 102 1.16× 103 2.31× 103

γ3 2.26× 101 2.26× 102 4.53× 102 1.13× 103 2.26× 103

γ4 N/A N/A 6.67× 101 1.67× 102 3.33× 102

7Since O is diagonal in surfaces A, we can multiply by a constant term and it will carry through to the
exponential energy prefactor. Performing this both in the numerator and denominator results in the scaling
factor simply cancelling out, and is equivalent to multiplying by identity.

52

Table 4.5: Temperature values used in strongly coupled systems γ5 and γ6.
T = 100K T = 300K

γ5 1.1187× 105 Θ 3.3561× 105 Θ
γ6 2.1554× 109 Θ 6.4662× 109 Θ

τ convergence

The choice of temperature T and bead P values is linked to the Trotter error. In my previous
work [44, Fig 2.], I performed τ convergence analysis on the Displaced system; note that the
y axis is described in [44, Eq. 70]. Visually analyzing the previous figure, we can see that
for the low coupling strength γ2, even at very high values of τ there is only a tiny deviation
between SOS and the Trotter results. In the strongly coupled case γ5, high values of τ
have substantial deviation. The initial conclusion is that a low number of beads should be
sufficient for γ1 to γ4. If we are to consider the strongly coupled γ5, then for “complete
agreement” we should use τ values in the range [0.2, 0.4](eV−1), as there is less than 1%
difference between the Trotter and SOS. This can be relaxed a bit to [0.4, 0.6](eV−1), if (or
when) between 1% and 3% difference is acceptable. At the far end, one might consider
τ = 1(eV−1) if ≈ 10% difference is acceptable8.

If we begin with an analysis of the characteristic temperatures, aiming for τ = 1 as the
low end of accuracy for γ5, then we have a simple prescription: P = β, as shown in Table 4.6.
Numbers are expressed with orders of magnitude to emphasize the fact that as the coupling
strength γ increases, the value of β changes drastically. For most temperatures, 16 beads
should be sufficient for the coupling strengths γ1 to γ4, as this results in τ values around 10.
However, the β values for 0.1Θ, as well as 1.0Θ for γ4, are quite large and may require more
beads. This may explain the “flipping” of the q1 and q2 distributions that can be observed
in the GMD results when comparing Figures 4.7 and 4.8, as well as Figures 4.12 and 4.13.
Additionally, the marked difference between the GMD results in Figures 4.19 and 4.20 could
be due to lack of τ convergence. Another solution to the debilitatingly high values of β
would be to perform simulations with lower P values (i.e. higher τ) and use the asymptotic
behaviour of the Trotter error to extrapolate to τ = 0.

Table 4.6: β values (eV−1) relative to Θ for each γi.
0.1Θ 1.0Θ 2.0Θ 5.0Θ 10.0Θ

γ1 5.00× 102 5.00× 101 2.50× 101 1.00× 101 5.00
γ2 5.02× 102 5.02× 101 2.51× 101 1.00× 101 5.02
γ3 5.13× 102 5.13× 101 2.56× 101 1.03× 101 5.13
γ4 3.48× 103 3.48× 102 1.74× 102 6.96× 101 3.48× 101

γ5 1.30× 108 1.30× 107 6.49× 106 2.60× 106 1.30× 106

γ6 2.50× 1012 2.50× 1011 1.25× 1011 5.00× 1010 2.50× 1010

8This is of course based on the difference between partition functions, which is not a natural quantity to
compare. Here we are just trying to get a sense of the approximate ranges.

53

For results presented here we only used 16 beads. I did run some calculations with in-
creased number of beads, but the GMD-reduced distributions were largely the same. Specif-
ically, I generated results for the strongly coupled γ5 Displaced system using the bead values
listed in Table 4.7. Results for Figures 4.25 and 4.26 were almost identical. There was
some noticeable difference when comparing to Figures 4.27 and 4.28, but only for the GMD
method, which performed markedly better: the GMD-reduced performed exactly the same.
My intuition is that the density of samples becomes more important than the Trotter error
for the normal mode distributions, and that we are already sufficiently converged in τ . It
may also be the case that another benefit of the GMD-reduced method is this improved
performance at lower number of bead simulations.

Table 4.7: Possible P values to obtain τ values in strongly coupled systems γ5, γ6.
τ(eV−1) T = 100K T = 300K

1.0 116 39
0.6 193 64
0.4 290 97
0.2 580 193

Proposal Distributions

Here I list three proposal-distributions 9 used in the calculations.

1. The first proposal distribution, π1 is based on the uncoupled components ĥ of the
Hamiltonian as defined in Equations (3.27) and (3.29):

ĥa = Eaa +
1

2

N∑
j

ωj(p̂
2
j + q̂2j) +

N∑
j

gaaj q̂j.

The proposal distribution π1 is a GMD comprised of two Gaussians defined by these
equations (given the values in Table 4.1):[

Ea + ĥo + λq̂1 0

0 Eb + ĥo − λq̂1

]
This is a simple approach that can be replicated for any linear vibronic model by simply
setting all off-diagonal terms to 0 and treating each surface as individual Harmonic
Oscillators.

2. The second proposal distribution π2 attempts to capture the q2 contribution to the
Hamiltonian. As γ increases the q2 mode eventually dominates the q1 mode. We expect

9Distributions from which proposal states are drawn when constructing the Markov Chain using the MH
algorithm.

54

π2 to perform better for systems with stronger coupling as it captures the dominant q2
contributions. [

Ea + ĥo + γiq̂2 0

0 Eb + ĥo − γiq̂2

]

3. The third proposal distribution π3 is an attempt to combine the two prior distributions
and hopefully capture both q1 and q2 contributions; π3 is only used in Section 4.7.11.[

Ea + ĥo + λq̂1 + γiq̂2 0

0 Eb + ĥo − λq̂1 − γiq̂2

]

4.7.2 Uncoupled (γ1), Proposal π1

I plot histograms of samples generated using both the GMD-reduced and GMD matrix PIMC
methods. These histograms approximate the true distributions of the normal modes q1, q2
which have been computed using SOS. For the Displaced system with no coupling we should
expect to get exact agreement with SOS. Since the Proposal distribution π1 is identical to
the true distribution I don’t explore results using an alternative proposal distribution.

in Figure 4.2 we see both methods do indeed exactly agree. Figure 4.3 sees almost exact
agreement, although the GMD-reduced approach slightly overestimates the q1 distribution
in the [2.5, 5.0] range. Increasing the temperature to 2.0Θ allows the q1 mode to spread out
and have some appreciable probability of taking on positive values in Figure 4.4. Here we
see the first difference between the GMD-reduced and GMD method. The GMD-reduced
q1 distribution agrees exactly with the SOS in the positive region. The GMD method has
some samples in the positive region but appears to struggle to get over the barrier; it does
reasonable in the [0.0, 2.5] range, and has a few samples in the [3, 5] range, but overall misses
the qualitative shape of the positive component of the distribution.

Moving to 5.0Θ in Figure 4.5, where it appears that we have increased the temperature
high enough that the barrier doesn’t prove sufficiently difficult to overcome anymore and
both methods are able to recover the general shape of the distributions. The GMD-reduced
method seems to produce slightly smoother distributions. To get very fine agreement with
the SOS we could simply increase the number of samples here.

Both methods perform somewhat poorly in Figure 4.6 when T = 10.0Θ. The GMD-
reduced method does okay with the q1 mode, but struggles to get the appropriate width σ
of both distributions. I think in this case we may need more samples to get nice agreement
with SOS.

55

Figure 4.2: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 0.1Θ, γ1, and π1.

Figure 4.3: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 1.0Θ, γ1, and π1.

56

Figure 4.4: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 2.0Θ, γ1, and π1.

Figure 4.5: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 5.0Θ, γ1, and π1.

57

Figure 4.6: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 10.0Θ, γ1, and π1.

58

4.7.3 Weak Coupling (γ3), Proposal π1

For the Displaced system with weak coupling (γ3), we should expect more difficulty getting
exact agreement with SOS. In this case we use the basic proposal distribution π1 defined by
the harmonic components of the Hamiltonian.

in Figure 4.7 we see the GMD-reduced method almost exactly agrees with the SOS. While
the GMD method’s samples are in the correct q range, the distribution’s shapes are wrong.

The GMD method performs surprisingly better for 1.0Θ in Figure 4.8, almost matching
the SOS distribution shape exactly. The GMD-reduced approach captures the q1 distribution
correctly, but for q2 the samples width is slightly too tight. This trend of samples being over
represented in the centre of the distribution seems to also be present for the GMD-reduced
approach at T = 2.0Θ and T = 5.0Θ.

Increasing the temperature to 2.0Θ allows the q1 mode to spread out and have some
appreciable probability of taking on positive values in Figure 4.9. Again we see that the
GMD-reduced approach does a better job capturing the q1’s distribution shape in the positive
regime. Instead of exact agreement with the SOS it struggles in the [−1.75, 1.75] range. The
GMD method has some samples in the positive region but appears to struggle to get over the
barrier; it does reasonably well in the [−1.75, 1.75] range, and has a few samples in the [2, 5]
range, but overall misses the qualitative shape of the positive component of the distribution.

Moving to 5.0Θ in Figure 4.10, it again appears that we have increased the temperature
high enough that the barrier doesn’t prove sufficiently difficult to overcome any more and
both methods are able to recover the general shape of the distributions. The GMD-reduced
method seems to produce slightly smoother distributions, but again has a slightly smaller
width than the true distribution.

Both methods perform somewhat poorly at capturing the q1 in Figure 4.11 when T =
10.0Θ. Surprisingly the GMD-reduced method has better agreement with q2, the width not
being so narrow in this case. The GMD method does capture the q2 distribution.

59

Figure 4.7: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 0.1Θ, γ3, and π1.

Figure 4.8: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 1.0Θ, γ3, and π1.

60

Figure 4.9: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 2.0Θ, γ3, and π1.

Figure 4.10: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 5.0Θ, γ3, and π1.

61

Figure 4.11: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 10.0Θ, γ3, and π1.

62

4.7.4 Weak Coupling (γ3), Proposal π2

For the Displaced system with weak coupling (γ3), we should expect more difficulty getting
exact agreement with SOS. In this case we use the second proposal distribution π2 which we
expect should help with capturing the q2 contributions that are now present, as opposed to
γ1 which has no q2 contribution.

In all the following plots we see something quite unexpected. The GMD-reduced ma-
trix method’s samples are strongly affected by the proposal distribution, such that for
all Figures 4.12 to 4.16 the GMD-reduced method’s q1 and q2 are seemingly “swapped”. The
GMD-reduced q1 distribution does a good job of approximating the true q2 distribution for
almost all of the Figures. The GMD-reduced q2 distribution does not give a good estima-
tion of the true q1 distribution does capture some of the qualitative shape, specifically for
1.0Θ, T = 2.0Θ and T = 5.0Θ. The most striking result is in Figure 4.14, where we can
clearly see the bi-modal shape of the q2 distribution similar to bi-modal shape of the true q1
distribution.

The GMD method does not demonstrate the same behaviour due to the change of the
proposal distribution. For T ≥ 1.0Θ it seems to do a fairly reasonable job of correctly
capturing both the q1 and q2 distributions, especially in Figure 4.15 where T = 5.0Θ, the
results look very good. However, we see unexpected behaviour between Figures 4.12 and 4.13.
It seems as we shift from 0.1Θ to 1.0Θ the GMD q1 and q2 distributions swap! My hypothesis
here is that at the lower temperature the acceptance probability is affected such that the
GMD method struggles to produce a good Markov Chain and instead is suffering the same
issue as the GMD-reduced method where the proposal distribution is strongly affecting the
results.

I think this set of figures, for γ3 and π2, highlights a key difference between the GMD-
reduced and GMD methods. Based on the results in this Chapter it seems the GMD-reduced
method, in general, produces smoother histograms and much better agreement with the SOS
when the proposal distribution is “good”. Said another way, if we have an ergodic Markov
Chain then the GMD-reduced method seems to perform better. However, the GMD method,
while requiring more samples to get as smooth a distribution as the GMD-reduced method,
seems to be able to tease out the true distribution even with a poor proposal distribution.

Although we will see in Sections 4.7.9 and 4.7.10 that once the coupling becomes too
strong that the GMD method falls apart. So it seems that the GMD method’s performance
in this region is due to the weak coupling.

63

Figure 4.12: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 0.1Θ, γ3, and π2.

Figure 4.13: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 1.0Θ, γ3, and π2.

64

Figure 4.14: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 2.0Θ, γ3, and π2.

Figure 4.15: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 5.0Θ, γ3, and π2.

65

Figure 4.16: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 10.0Θ, γ3, and π2.

66

4.7.5 Intermediate Coupling (γ4), Proposal π1

For the Displaced system with (γ4), both modes contribute. Now we struggle to exactly agree
with the SOS, regardless of which method is used. In this case we use the basic proposal
distribution π1 defined by the harmonic components of the Hamiltonian.

For all of the following Figures in Section 3 the reader will notice two entries labelled q2
on the legend. This is due to my treatment of the q2 mode. Since the q2 mode is symmetric, I
divide the samples obtained by either method into two groups10 which I plot as two separate
histograms, along +q and −q x-axis components, respectively. Ideally the symmetry of the
system should be captured in a converged simulation and this splitting treatment would not
be needed. However, in reality, exceptionally high potential barriers between symmetry-
equivalent regions of the phase space may trap configurations in a single region, leading
to asymmetric results. An example of this barrier effect appears to be present in the q1
distribution in Figures 4.4 and 4.9. A similar effect and separation can be seen in [48, Fig.
5 & 6].

The GMD method really struggles in Figures 4.17 to 4.19. It is in the “ballpark” but
the shape of the distributions is not clearly defined. Once the temperature is high enough,
T ≥ 5.0Θ in Figure 4.20, it at least has the rough shape of the true q1 and q2 distributions.

The GMD-reduced method again produces much smoother distributions, but their dis-
placement and qualitative shape is still dominated by the proposal distribution π1 having
q1 displacement but no q2 displacement. Interestingly, it appears to capture some of the
bi-modal nature of the true q2 distribution in Figure 4.17, although that seems to disappear
as soon as T ≥ Θ.

in Figure 4.21 we continue to see the behaviour of the GMD-reduced method being able
to do a better job of capturing the q1 distribution density in the positive regime. The shape of
the GMD q1 distribution tapering off around q1 ≈ 1.75 and the GMD-reduced q1 distribution
having a dip in the [−1.75, 1.75] regime is very similar to Figures 4.10 and 4.15.

Overall the GMD-reduced method fails to correctly describe the q1 and q2 distributions,
while the GMD method does somewhat reasonable at high temperature.

10If I have picked sufficiently spaced samples then they should be independent. Therefore the manner in
which I divide up the samples should not effect the resulting Figures.

67

Figure 4.17: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 0.1Θ, γ4, and π1.

Figure 4.18: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 1.0Θ, γ4, and π1.

68

Figure 4.19: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 2.0Θ, γ4, and π1.

Figure 4.20: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 5.0Θ, γ4, and π1.

69

Figure 4.21: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 10.0Θ, γ4, and π1.

70

4.7.6 Intermediate Coupling (γ4), Proposal π2

For the Displaced system with (γ4), both modes contribute. In this case, we use the second
proposal distribution π2 which we expect should help with capturing the q2 contributions that
are now present. We also only cover temperatures of 2.0Θ, 5.0Θ, 10.0Θ as the simulations
at 0.1Θ, and 1.0Θ suffered numerical errors due to the low value of T .

It is clear in all three Figures 4.22 to 4.24 that using the second proposal distribution π2
drastically improves both the GMD and GMD-reduced methods.

However, it seems that for this intermediate coupling γ4, the true q1 distribution still has
some appreciable weight in the negative regime. Because π2 does has no q1 contributions,
the GMD-reduced method can only produce a distribution centered at zero, similar to what
we’ve seen in Section 4.7.4. We also see the same kind of behaviour in the GMD method
when we compare with Section 4.7.4: that it does a much better job capturing the true
distribution’s shapes when using π2. The temperature range in which it performs the best
is slightly different. in Figure 4.24 the GMD method almost entirely recreates the true
distribution. With more samples I expect them to agree exactly.

Figure 4.22: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 2.0Θ, γ4, and π2.

71

Figure 4.23: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 5.0Θ, γ4, and π2.

Figure 4.24: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 10.0Θ, γ4, and π2.

72

4.7.7 Strong Coupling (γ5), Proposal π1

For the Displaced system with strong coupling (γ5), the q2 mode dominates. In this case we
use the basic proposal distribution π1 defined by the harmonic components of the Hamilto-
nian. We expect this proposal distribution to perform poorly, and it does. Both the GMD
and GMD-reduced methods are completely “consumed” by the proposal distribution and
cannot get anywhere close to the true distributions in either Figure 4.25 or Figure 4.26. In-
terestingly enough, we see the same behaviour from the GMD-reduced method in the [1.75, 5]
regime that we’ve seen previously in Figures 4.4, 4.9, 4.21 and 4.26.

Figure 4.25: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 100K, γ5, and π1.

73

Figure 4.26: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 300K, γ5, and π1.

4.7.8 Strong Coupling (γ5), Proposal π2

For the Displaced system with strong coupling (γ5), the q2 mode dominates. In this case we
use the second proposal distribution π2, which we expect should help with capturing the q2
contributions that are now present. The results are actually quite spectacular, with both
methods performing much better in Figures 4.27 and 4.28 than Figures 4.25 and 4.30. The
GMD-reduced method really shines here, almost exactly matching the true distributions.
Again we see this consistent trend to be slightly off-centre from the true distributions.

The GMD method struggles much more than the GMD-reduced method. in Figure 4.28
it does seem to have most of its q1 in the same general area as the true distribution. With
many more samples, it seems reasonably likely that it would eventually have the same general
shape. The bi-modal nature of the q2 distribution is at least present now, although the
displacement and shapes are unfortunately all wrong.

74

Figure 4.27: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 100K, γ5, and π2.

Figure 4.28: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 300K, γ5, and π2.

75

4.7.9 Strong Coupling (γ6), Proposal π1

In this case, we use the basic proposal distribution π1 defined by the harmonic components
of the Hamiltonian. We expect this proposal distribution to perform poorly, and it does.
Both the GMD and GMD-reduced methods are completely “consumed” by the proposal
distribution and cannot get anywhere close to the true distributions in either Figure 4.29
or Figure 4.30. Interestingly enough, we see the same behaviour from the GMD-reduced
method in the [1.75, 5] regime that we’ve seen previously in Figures 4.4, 4.9, 4.21 and 4.26.

Figure 4.29: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 100K, γ6, and π1.

76

Figure 4.30: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 300K, γ6, and π1.

4.7.10 Strong Coupling (γ6), Proposal π2

In this case, we use the second proposal distribution π2, which we expect should help with
capturing the dominant q2 contributions. The results are actually quite spectacular, with
both methods performing much better in Figures 4.31 and 4.32 than Figures 4.29 and 4.30.
The GMD-reduced method really shines here, almost exactly matching the true distributions.
Again we see this consistent trend to be slightly off-centre from the true distributions.

The GMD method struggles much more than the GMD-reduced method, although at
least now it captures most of the q1 distribution. With a much larger number of samples it
seems reasonably likely that it would eventually have the same general shape. The bi-modal
nature of the q2 distribution is at least present now, although the displacement and shapes
are unfortunately all wrong.

77

Figure 4.31: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 100K, γ6, and π2.

Figure 4.32: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 300K, γ6, and π2.

78

4.7.11 Strong Coupling (γ6), Proposal π3

In this case, we use the third proposal distribution π3, which we hope will fix the issue associ-
ated with q1 while still capturing the dominant q2 contributions. Overall, the attempt to use
π3 is a failure and Figures 4.33 and 4.34 show much worse results than Figures 4.31 and 4.32
for both methods. Again we see that the GMD-reduced method is strongly influenced by
the proposal distribution with the q1 histogram having the right shape but being displaced
from the SOS.

Figure 4.33: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 100K, γ6, and π3.

79

Figure 4.34: Comparison of GMD & GMD-reduced PIMC method’s approximation of the
true distribution of normal modes q1, q2. All results calculated at T = 300K, γ6, and π3.

80

4.8 Concluding Remarks

In this Chapter I presented my new MH approach for calculating thermodynamic properties
of vibronic models. I derived equations for the straightforward direct method to explain the
basic approach. However in practice this method fails to construct a Markov Chain. Uniform
sampling had great difficulty dealing with the non-stoquastic nature of the Hamiltonian.
I then presented a new approach: the GMD method which evaluates exactly, instead of
stochasitcally, the electronic surfaces.

Both the GMD and GMD-reduced methods were compared against SOS results for the
small Displaced system. In the Results section it was clear that GMD-reduced method was
strongly impacted by the choice of proposal distribution. At times this meant the GMD
method preformed better. In the strongly coupled systems, however, the exact evaluation
of the electronic surfaces produced drastically different results to the GMD method, as seen
in Figure 4.31. I purposely presented results where the proposed sampling methods work
well and when they fail. Doing so allows one to understand the applicability of the approach
and identify areas where the method can be improved.

In light of the present results, it is clear that better proposal distributions are required
in order to simulate the full range of coupling strengths. One possibility is to use a larger
number of Gaussian distributions in the GMD to distribute the sampling over a broader
range of configurations. As the number of Gaussian distributions will be greater than the
actual number of electronic states, new transition rules will have to be derived in the MH
algorithm. This line of investigation is currently underway and will be the focus of future
work.

This MH can be extended to computing the expectation value of a systems energy in
the near future. This method also can be applied to new vibronic models, particularly those
that incorporate spin-orbit coupling in a plug-and-play fashion.

81

Chapter 5

Distinguishing pairings with termfactory

STATEMENT OF CONTRIBUTION

As this section discusses work that was a collaboration with two other researchers it is
important to clearly state my contributions.

I solely developed and implemented the software package termfactory [49] for generating
LATEX equations, and Python equations, and for evaluating those Python equations. 1

The t-amplitudes [50] software package was developed collaboratively between S. Bao
and myself. Over the course of development, I was responsible for the majority of the
programming and project management components. Songhao’s contribution was focused
primarily on derivation of equations, testing, and prototyping new ansatz.

The theoretical foundation for both of these packages and the method for generating
spectra was developed by M. Nooijen and S. Bao. I did not directly contribute to that
theory; I provided a robust software ecosystem to facilitate the development of the theory
implemented in t-amplitudes as well as a technical collaborator in accelerating ansatz
prototyping.

Outline

In this chapter, I will detail my approach to solving a general problem. in Chapter 6 I will
give context for applying that solution to a specific case, and discuss how that allows me to
generate theoretical spectra of vibronic models. A large portion of this chapter is detailing
the mathematical problems addressed by termfactory.

It is important to emphasize to the reader than the ongoing goal of the generator is
to write a robust software package that removes natural human error. A primary motiva-
tion behind the automation is that there are a number of variations on the theme and a
code/equation generator is very beneficial in such situations. The termfactory package was

1The termfactory and t-amplitudes packages were migrated to GitHub with the assistance of Lucas
Price.

82

fundamental to the success of the t-amplitudes software package, and therefore to the goal
of reliable spectra generation. Key contributions from this software are the drastic reduc-
tion in time required to produce vibrational electronic coupled cluster (VECC) equations of
motion (EOM), as well as the code required to compute those equations. It generally takes
on the order of a few seconds to generate the necessary EOM using termfactory, even for
hundred’s of equations, whereas manually deriving these equations by hand can easily take
days, or weeks if any mistakes are made 2. termfactory offers time savings and a guarantee
of certainty that the equations are consistent.

5.1 Motivating Problem

To simplify what would otherwise be a lengthy and dense explanation of the theoretical
background, I will explain the problem in the simplest form and give very general definitions.
How this connects with the background theory and leads to the computation of simulated
spectra will be covered in Chapter 6. Additional background has been provided in Section 2.3.

In general, the motivating problem can be expressed as computing an expectation value:〈
ÂB̂Ĉ · · ·

〉
. (5.1)

Each operator, say Â, has electronic DoF

Â =
∑
a,b

|a⟩ ⟨b| Âa
b , (5.2)

expanding one particular component:

Âa
b =

∑
M+N≤R

Âa,M
b,N , (5.3)

where M counts the number of vibrational creation operators, N counts the number of
vibrational annihilation operators and R defines the maximum rank of an operator 3. When
one of the labels M , N are zero they will be omitted: Âa

b,N or Âa,M
b , and if both labels are

zero then a lower label of zero will be used: Âa
b,0.

I can now give a full expansion in terms of the general operators Â in Equation (5.3):

Âa,M
b,N =

1

N !

1

M !

∑
i1,i2,...,iM

∑
j1,j2,...,jN

(
Aa,i1,i2,...,iM

b,j1,j2,...,jN

)(
î†1î

†
2 . . . î

†
M ĵ1ĵ2 . . . ĵN

)
, (5.4)

2These are not estimates, but in fact recounting of actual time spans during this research.
3The basic definition of creation and annihilation operators is in Section 2.3.1.

83

which, in general, can be treated as three components:

Âa,M
b,N =

(
prefactors

) ∑
labels

(
coefficients

)(
operators

)
, (5.5)

where the two primary components are the complex valued coefficient amplitudes and the
collection of creation and annihilation operators. The amplitudes are symmetric under both,
permutations of the i labels with themselves, and permutations of the j labels with them-
selves. Sums run over all normal modes Nmodes in the system i, j ∈ {1, 2, . . . , Nmodes}.
Equation (5.4) therefore provides a full prescription for any operator Â in Equation (5.1).
Electronic labels a, b will always act as in matrix multiplication and will be suppressed for
the remainder of this chapter.

Equations of the form 5.1 can most easily be evaluated by applying Wick’s theorem. This
process involves pairing all annihilation and creation operators. These pairings occur in two
ways. For normal modes i and j, the pairings are:

î†ĵ = f̄iδij, (5.6a)

ĵ î† = fiδij, (5.6b)

where
fi = 1 + f̄i. (5.7)

In general f̄i and therefore fi are complex numbers but in specific cases

f̄i = 0 fi = 1. (5.8)

The application of Wick’s theorem means that for the product of two normal ordered 4 oper-
ators ÂB̂ one only includes pairings between the operators Â, B̂ and never pairings within
an operator, where both î† and ĵ come from the same normal ordered operator Â. Pairing
occurs between a î† and a ĵ operator, each coming from a different normal ordered operator
Â, B̂, Ĉ, D̂, · · ·. Evaluating equations of this form involves summing over all possible normal
mode labels: 〈 ∑

all labels

ÂB̂Ĉ · · ·

〉
. (5.9)

Since every pairing of two normal mode labels i and j produces a pair-like Kronecker delta
δij, then the labels can simply be equated, while reducing the summation labels.

5.1.1 Example

We will examine a sizeable example to see how this pairing and equating process unfolds.
Consider three operators ÂM

N , B̂
M
N , Ĉ

M
N , that we know are fully described by Equation (5.4).

4See Equation (3.37).

84

Given a specific choice of M and N values for each operator:

Â2
1, B̂1

2, Ĉ1
1, (5.10)

having amplitudes and operators

Ai1,i2
j1

(
î†1î

†
2ĵ1

)
, Bi3

j2,j3

(
î†3ĵ2ĵ3

)
, Ci4

j4

(
î†4ĵ4
)
, (5.11)

we can evaluate them as follows:

1

1!2!

1

2!1!

1

1!1!

∑
i1,i2,i3,i4
j1,j2,j3,j4

Ai1,i2
j1

(
î†1î

†
2ĵ1

)
Bi3

j2,j3

(
î†3ĵ2ĵ3

)
Ci4

j4

(
î†4ĵ4
)
. (5.12)

Consider a possible pairing: (̂i†1ĵ2), (̂i
†
2ĵ3), (̂i

†
3ĵ4), (ĵ1î

†
4); equating the labels and substituting

in Equations (5.6a) and (5.6b):

1

4

∑
i1,i2,i3,i4
j1,j2,j3,j4

(f̄i1 f̄i2 f̄i3fi4)A
i1,i2
j1

Bi3
j2,j3

Ci4
j4
δi1j2δi2j3δi3j4δi4j1 , (5.13)

reducing the summation labels:

1

4

∑
i1,i2,i3,i4

(f̄i1 f̄i2 f̄i3fi4)A
i1,i2
i4

Bi3
i1,i2

Ci4
i3
δi1i1δi2i2δi3i3δi4i4 , (5.14)

which can be simplified to

1

4

∑
i1,i2,i3,i4

(f̄i1 f̄i2 f̄i3fi4)A
i1,i2
i4

Bi3
i1,i2

Ci4
i3
, (5.15)

and we see that the pairing Ai1,i2
i4

Bi3
i1,i2

Ci4
i3

will have a complex valued contribution to its
associated expectation value. Note that in the specific case where f̄i = 0 the pairing would
instead have zero contribution to its expectation value due to the presence of f̄ ’s. It is
evident that explicitly writing out all these pairings and terms becomes quite tedious and
confusing. So I will employ a short hand of only labeling the equivalent labels with unique
letters.

For the pairing Ai1,i2
i4

Bi3
i1,i2

Ci4
i3

I instead write Akl
n Bm

klC
n
m simplifying5eq. (5.15) to

1

4

∑
klmn

(f̄kf̄lf̄mfn)Akl
n Bm

klC
n
m, (5.16)

We can immediately see the usefulness of this compact notation when we consider all possible
5Replacing i1 → k, i2 → l, i3 → m, i4 → n and using letters from the alphabet k, l,m, n, o, p, · · · which

do not include i or j.

85

pairings for Equation (5.12):

(̂i†1ĵ2), (̂i
†
2ĵ3), (̂i

†
3ĵ4), (ĵ1î

†
4)→ Ai1,i2

i4
Bi3

i1,i2
Ci4

i3
→ Akl

n Bm
klC

n
m (5.17a)

(̂i†1ĵ3), (̂i
†
2ĵ2), (̂i

†
3ĵ4), (ĵ1î

†
4)→ Ai1,i2

i4
Bi3

i2,i1
Ci4

i3
→ Akl

n Bm
lkC

n
m (5.17b)

(̂i†1ĵ2), (̂i
†
2ĵ4), (̂i

†
3ĵ1), (ĵ1î

†
3)→ Ai1,i2

i3
Bi3

i1,i4
Ci4

i2
→ Akl

mBm
knC

n
l (5.17c)

(̂i†1ĵ4), (̂i
†
2ĵ2), (̂i

†
3ĵ1), (ĵ1î

†
3)→ Ai1,i2

i3
Bi3

i2,i4
Ci4

i1
→ Akl

mBm
lnC

n
k (5.17d)

(̂i†1ĵ3), (̂i
†
2ĵ4), (̂i

†
3ĵ1), (ĵ1î

†
2)→ Ai1,i2

i3
Bi3

i4,i1
Ci4

i2
→ Akl

mBm
nkC

n
l (5.17e)

(̂i†1ĵ4), (̂i
†
2ĵ3), (̂i

†
3ĵ1), (ĵ1î

†
2)→ Ai1,i2

i3
Bi3

i4,i2
Ci4

i1
→ Akl

mBm
nlC

n
k (5.17f)

It is important to reinforce that these are the only possible pairings that obey Wick’s theorem.
For example: Ai1,i2

i3
Bi3

i2,i1
Ci4

i4
can never be a possible pairing because of Ci4

i4
; pairings can

never occur within an operator.

5.1.2 Summary of Objective

Computing an expectation value of the form in Equations (5.3) and (5.9) requires summing
over all labels of products of operators ÂB̂Ĉ · · ·. The amount of summation terms is deter-
mined by the rank R of the operators. Consider the product ÂB̂Ĉ where Â and B̂ have
ranks of two (R = 2)

Â = Â0 + Â1 + Â1 + Â1
1 + Â2 + Â2, (5.18)

B̂ = B̂0 + B̂1 + B̂1 + B̂1
1 + B̂2 + B̂2, (5.19)

and Ĉ has a maximum rank of one (R = 1)

Ĉ = Ĉ0 + Ĉ1 + Ĉ1 + Ĉ1
1. (5.20)

To compute
〈 ∑

labels

ÂB̂Ĉ
〉

we have to consider all product terms

Â0B̂0Ĉ0, Â0B̂0Ĉ1, · · · , Â1B̂1Ĉ0, · · · , Â2B̂2Ĉ1
1, · · · , Â2B̂2Ĉ1

1.

Some terms, such as Â2B̂2Ĉ1
1, may have multiple pairings ÂklB̂kmĈm

l , ÂklB̂lmĈm
k . Other

terms, such as Â1B̂1Ĉ0 may have only one pairing ÂkB̂kĈ0. There are also terms, such as
Â0B̂0Ĉ1, that cannot be paired and contribute 0 to the sum over labels.

The focus of the rest of this chapter is finding a method for determining all possible
pairings and their prefactors (including the number of f and f̄) for each product term as
seen in Equation (5.15). Of key importance is being able to distinguish between non-zero
terms, (and their associated pairings) and zero contribution terms. In the next section I will
explore how to distinguish between these terms and pairings.

86

5.2 General pairing forms

This section will compare and contrast two term forms. It will outline the general constraints
which define non-zero contributions. These constraints form the logical foundation for the
operation of termfactory.

I will now use the shorthand valid to refer to terms/pairings with non-zero contribution
and invalid to refer to terms/pairings which contribute 0 to the summation over labels.

5.2.1 General form

In the general case where f̄i and fi are complex numbers, then all pairings (ÂkB̂k for example)
arise from terms of the general form:

ÂM
N B̂M

N ĈM
N · · · ẐM

N . (5.21)

Consider two example terms: Â1B̂1
1Ĉ

1
1D̂

1 and Â1
3B̂

3
1. The first term has three possible

pairings:
ÂkB̂k

l Ĉ
l
mD̂m, ÂlB̂k

mĈl
kD̂

m, ÂmB̂k
l Ĉ

l
kD̂

m,

and the second term has six possible pairings:

Âk
lmnB̂

lmn
k , Âk

mlnB̂
lmn
k , Âk

mnlB̂
lmn
k ,

Âk
lnmB̂lmn

k , Âk
nlmB̂lmn

k , Âk
nmlB̂

lmn
k .

All of these pairings are valid in the general case, and need to be considered in the sum
over labels.

5.2.2 Simplified f̄ form

In the specific case where f̄i = 0 and fi = 1 all valid
terms must be of the form

ÂNB̂M
N · · · ẐM , (5.22)

where the first operator Â cannot have any creation labels (M = 0) and the last operator Ẑ
cannot have any annihilation labels (N = 0). Additionally, upper labels can only pair with
lower labels that proceed them, otherwise the pairing would result in a f̄ and therefore be
invalid .

Consider the previous examples Â1B̂1
1Ĉ

1
1D̂

1 and Â1
3B̂

3
1. For the general case where f̄i ̸= 0

the first term had three pairings. But only one of those pairings is valid when f̄i = 0. The
pairing ÂkB̂k

l Ĉ
l
mD̂m has a prefactor of fkflfm and is therefore valid . Whereas ÂlB̂k

mĈl
kD̂

m

and ÂmB̂k
l Ĉ

l
kD̂

m have f̄k in their prefactors so they are invalid . For the second example
Â1

3B̂
3
1 all six of the pairings are invalid because f̄k = 0.

87

5.3 Constraints

The simplified pairing form in 5.22 will be used to explain two general constraints. Additional
constraints can exist depending on the definition of the overall Equation (5.1). A term or
pairing must satisfy ALL given constraints to be considered valid .

Balanced Operators

Applying Wick’s theorem involves pairing all annihilation and creation operators, it follows
then, that all valid terms and pairings must be balanced : having an equal number of creation
and annihilation operators. As the M and N labels count those operators, we can represent
this constraint in a simple fashion: for an equation of the form Equation (5.1) with some
finite number of operators (λ)

λ∑
ℓ=1

Mℓ =
λ∑

ℓ=1

Nℓ, (5.23)

or expressed in a more concise format

Mtot = Ntot. (5.24)

For example Â1B̂0Ĉ1 satisfies this constraint, but Â1B̂1Ĉ1 does not.

Normal Ordering

This constraint prevents the pairing of î† or ĵ operators from the same ÂM
N operator. For a

valid term ÂNB̂M
N ĈM

N · · · ẐM , each operator cannot pair with itself because all ÂM
N operators

are normal ordered. There are three possible cases we should consider: a term where all
pairings are valid a term where all pairings are invalid and the mixed case where a term
has some valid pairings and some invalid pairings.

All valid pairings: Â1B̂1

In the trivial case there is no pairing where Â or B̂ can pair with themselves; as they
must pair with each other ÂkB̂k.

All invalid pairings: Â1B̂2
1

For all possible pairings B̂ MUST pair with itself: ÂkB̂kl
l , and ÂlB̂kl

k .

Some valid pairings: Â1B̂1
1Ĉ

1

There is at least one pairing where B̂ pairs with itself ÂlB̂k
kĈ

l, but there is also at
least one pairing where no operators pair with themselves ÂkB̂k

l Ĉ
l.

The Normal Ordering constraint6 requires that each valid term ÂNB̂M
N ĈM

N · · · ẐM has at
least one pairing where no operators pair with themselves. This can be expressed in two
parts:

6In the simplified case where f̄ = 0.

88

1. If either M = 0 or N = 0 an operator cannot pair with itself and therefore meets the
constraint.

2. Otherwise, if both inequalities

M ≤ Ntot −N, (5.25)
N ≤Mtot −M, (5.26)

are satisfied, then the operator satisfies the constraint.

Recall the example Â1B̂2
1 term; the B̂ operator does not satisfy eq. (5.25), since 2 ≤ 2− 1 is

not true, and therefore the term is invalid . Whereas, for the other example term Â1B̂1
1Ĉ

1;
each operator does meet the conditions: Â and Ĉ trivially, and for B̂: eqs. (5.25) and (5.26)
are both satisfied. Therefore Â1B̂1

1Ĉ
1 satisfies the Normal Ordering constraint7.

Consider the prior example from Section 5.1.2, that is of the general form in Equa-
tion (5.21), which has a large number of terms (144). Choosing f̄i = 0 changes to the
simplified form from eq. (5.22), and applying the Balanced and Normal Ordering constraints
results in a reduction down to only 12 terms:

Â0B̂0Ĉ0 + Â1B̂0Ĉ1 + Â2B̂0Ĉ2 + Â1B̂1Ĉ0 + Â2B̂2Ĉ0 + Â0B̂1Ĉ1 + Â0B̂2Ĉ2

+ Â2B̂1Ĉ1 + Â1B̂1Ĉ2 + Â1B̂1
1Ĉ

1 + Â2B̂1
1Ĉ

2 + Â2B̂2
2Ĉ

2.
(5.27)

Note that even though each term in Equation (5.27) satisfies the constraints, not all pairings
are valid . As previously described, the term Â1B̂1

1Ĉ
1 has one valid pairing and one invalid

pairing.

There is an additional simplification that occurs due to the permutational symmetry of
operators Â, B̂, · · ·.

5.3.1 Permutation symmetry

As defined in Equation (5.4), each operator Â, B̂, · · · is symmetric under permutation of
the upper labels with themselves, and permutations of the lower labels with themselves;
Since we are summing over all labels, we can compute only one of these M ! upper or N !
lower permutations, the lexicographically sorted permutation, and then account for the other
permutations by multiplying by an additional factor. This approach is of interest because it
reduces the computational cost of evaluating Equation (5.1).

Consider the term Â2B̂2, which has two pairings ÂklB̂kl, ÂlkB̂kl. We use only one term
(ÂklB̂kl) to represent the contribution of both pairings, and modify its prefactor by (N !). A
similar process can be applied to Â2B̂2 with the pairing ÂklB̂kl and a factor of (M !). Since
all pairings are between two operators we only need to account for this permutation once.
Double counting of these factors is easily handled by scanning from left-to-right across the

7A more in-depth explanation is provided in Appendix C.1.

89

operators. For example

1

2!

1

2!
Â2B̂2 ⇒

1

2!

1

2!

∑
kl

ÂklB̂kl ⇒
2!

2!

1

2!

∑
kl

ÂklB̂kl,=
1

2!

∑
kl

ÂklB̂kl, (5.28)

where we account for the kl → lk permutation when considering Â by adding a factor of 2!;
therefore we do not consider the kl labels when we move on to B̂. It should be clear that
using the lexicographically sorted permutation does not change the expectation value.

1

2!

∑
kl

ÂklB̂kl =
1

2!

1

2!

∑
kl

ÂklB̂kl +
1

2!

1

2!

∑
kl

ÂlkB̂kl. (5.29)

A slightly bigger example; consider the terms in Equation (5.27) which have the following
pairings (where I explicitly list the prefactors):

Â0B̂0Ĉ0 + ÂkB̂kĈ0 + ÂkB̂0Ĉk + Â0B̂kĈk + ÂkB̂k
l Ĉ

l

+
1

2!

(
ÂklB̂kĈl + ÂlkB̂kĈl + ÂkB̂lĈkl + ÂlB̂kĈkl

)
+

1

2!2!

(
ÂklB̂0Ĉkl + ÂlkB̂0Ĉkl + ÂklB̂klĈ0 + ÂlkB̂klĈ0 + Â0B̂klĈkl + Â0B̂lkĈkl

+ ÂklB̂k
mĈlm + ÂkmB̂k

l Ĉ
lm + ÂlkB̂k

mĈlm + ÂmkB̂k
l Ĉ

lm

)
+

1

2!2!2!2!

(
ÂklB̂kl

mnĈ
mn + ÂlkB̂kl

mnĈ
mn + ÂklB̂kl

nmĈmn + ÂlkB̂kl
nmĈmn

)
.

(5.30)

We can replace them with the shorter and simpler lexicographically sorted pairings

Â0B̂0Ĉ0 + ÂkB̂kĈ0 + ÂkB̂0Ĉk + Â0B̂kĈk + ÂkB̂k
l Ĉ

l + ÂklB̂kĈl + ÂkB̂lĈkl

+
1

2
ÂklB̂klĈ0 +

1

2
ÂklB̂0Ĉkl +

1

2
Â0B̂klĈkl + ÂkmB̂k

l Ĉ
lm + ÂklB̂k

mĈlm +
1

4
ÂklB̂kl

mnĈ
mn.

(5.31)

The approach described for two operators Â, B̂ generalizes to multiple operators as seen by
the final term ÂklB̂kl

mnĈ
mn in Equation (5.31). To account for the kl → lk permutation

on Âkl we include the N1! = 2! factor. When looking at B̂kl
mn we see that the kl has thus

been accounted for, but the mn→ nm permutation has not, and so adds a N2! = 2! factor.
Finally the mn permutation on Ĉmn has already been accounted for and so no factor is
added for this operator. The prefactor is modified accordingly 1

2!2!2!2!
→ 1

4
.

Going forward I will only list the unique lexicographically sorted pairings, which are
symmetric by definition. Each of these pairings will have been obtained following this left-
to-right approach.

90

5.4 Projection Operator

In this section, I introduce the projection operator P̂M
N which is distinct from the operators

we have been previously discussing. It has no electronic DoF and is defined

P̂M
N = î†1î

†
2 · · · î

†
M ĵ1ĵ2 · · · ĵN . (5.32)

It has no prefactor or coefficients and is a collection of creation and annihilation operators.
The projection operator is applied to Equation (5.9) giving

RM
N =

〈
P̂M
N

∑
all labels

ÂB̂Ĉ · · ·

〉
. (5.33)

In the simplest case, (which is effectively the general form in Equation (5.9)):

R0 =

〈
P̂0

∑
all labels

ÂB̂Ĉ · · ·

〉
, (5.34)

where we can see that all terms/pairings that we have been considering up till now are of
the R0 form.

If we consider two operators (Â, B̂) both with maximum rank of two:

R0 =

〈
P̂0

∑
all labels

ÂB̂

〉
, (5.35)

and choose f̄i = 0, as well as applying both constraints

R0 = Â0B̂0 + Â1B̂1 + Â2B̂2, (5.36)

with the following valid pairings, where I colour all labels that will be traced out in blue

R0 = Â0B̂0 + ÂkB̂k + ÂklB̂kl. (5.37)

The use for this colouring becomes evident when we consider P̂1 (choosing f̄i = 0 and
applying both constraints):

R1 =

〈
P̂1

∑
all labels

ÂB̂

〉
, (5.38)

with valid terms:
R1 = Â0B̂1 + Â1B̂0 + Â1

1B̂
1 + Â1B̂2, (5.39)

and the following valid pairings, where external labels are coloured red

Rz = Â0B̂z + ÂzB̂0 + Âz
kB̂

k + ÂkB̂zk + ÂkB̂kz. (5.40)

91

The label z is not part of the sum in Equation (5.38) and so we call it an “external” label. The
label k is part of the sum and so we call it an “internal” label. The colouring is a visual aid
to help distinguish between labels, as it can be quite tedious to do so otherwise. In addition
I label the external labels using letters from the alphabet in reverse (z, y, x, w, v, u, · · ·). 8

Each equation’s R0,R1, · · ·, valid pairings are unique, and in lexicographical order.

5.4.1 External Symmetrization

To compute R0 or Rz the previous left-to-right approach is sufficient. The only difference
regarding Rz is that instead of calculating a single complex value we are calculating a vector
of complex values of length Nmodes (the number of normal modes); Â0B̂z + ÂzB̂0 represents
an element wise addition along the z-labeled normal mode dimension.

Higher order terms Rzy,Rzyw, · · · will be symmetric if all terms in Wick’s theorem are
considered. However it is more efficient to only include the unique terms in lexicographical
order, and symmetrize the result during the computational process. Similar to Section 5.3.1
we would like to avoid computing all permutations of external labels (ÂklB̂klzy + ÂkB̂kyz)
but the contributions are not the same in general and so we cannot simply account for these
permutations using only a multiplicative factor. Instead, we first compute lexicographically
ordered tensors (such as Rzy) which are not symmetric9, and then we numerically symmetrize
them.

The symmetrized R̃zy tensor can be computed by summing over all permutations and
then normalizing:

R̃zy =
1

2
(Rzy + Ryz), (5.41)

however in practice this can add a considerable computational cost. To accelerate this
symmetrization process we employ a sparse matrix product approach.

R̃zy = Ŝ(Rzy). (5.42)

Consider a tensor RN with explicit labels Ra
b,j1,j2,··· ,jNmodes

. We can define full labels
J → j1, j2, · · · , jNmodes and symmetrized labels J̃ → j1 ≤ j2 ≤ · · · ≤ jNmodes , and then define
the matrix SJ̃,J whose elements are 1 where the index J can be sorted to index J̃ and zeros
otherwise. The matrix SJ,J̃ can be defined in a similar fashion, mapping indices J̃ back to J
Symmetrization is a two step process:

RJ̃ =
∑
J

SJ̃,J RJ , (5.43)

8So far this has been sufficient to uniquely label pairings. Although a different approach may be needed
in the future.

9With respect to the external labels zy; they are symmetric with respect to the internal labels by definition.

92

and then
R̃J =

∑
J̃

SJ,J̃ RJ̃ . (5.44)

I provide a small example: R3 has an explicit labelling Ra
b,j1,j2,j3

. For a specific index J̃
of 1, 2, 3 there are 3! possible J indices: 123, 132, 213, 231, 312, 321 which can be sorted to J̃ .
Thus the matrix elements S1,2,3,1,2,3, S1,2,3,1,3,2, S1,2,3,2,1,3, S1,2,3,2,3,1, S1,2,3,3,1,2, and S1,2,3,3,2,1

are all set to 1. Then we compute RJ̃=(1,2,3) as follows

R̃(1,2,3) =
∑
J

S(1,2,3),J RJ = R(1,2,3) + R(1,3,2) + R(2,1,3) + R(2,3,1) + R(3,1,2) + R(3,2,1) (5.45)

Thus SJ̃,J maps from the 3! J indices to the single J̃ index. Similarly SJ,J̃ will map from the
single J̃ index to the 3! J indices.

Two matrix products as opposed to summing over N ! permutations is computationally
attractive. These symmetrization matrices only need to be computed once for a fixed num-
ber of indices. They can also be pre-calculated for a large range of indices and stored to
disk for repeated use at a later date. This process works the same if the matrices SJ̃,J ,
and SJ,J̃ are dense or sparse. But for performance reasons we have implemented them as
sparse matrices. In practice this means the cost of calculating them is negligible and only
the sparse matrix product need be considered when measuring computational performance.
in Section 6.2.2 I provide some performance analysis on the advantage of using this sparse
matrix symmetrization.

I introduced a projection operator P̂M
N which provides the ability to generate various

orders of tensors: R0,R1,R1, · · ·. Labels are coloured either blue, to indicate they will be
traced out, or red to indicate that they are external labels and therefore are indexed to
the tensor RM

N . Higher order tensors R2,R2, · · · are symmetrized using a sparse matrix
projection approach.

5.5 Solving the Problem in practice

I have laid out the theoretical foundation for computing RM
N equations. A detailed summary

of the general contraction scheme is provided in Appendix C.2.

Now I turn to addressing the problem of determining these terms and pairings in prac-
tice. in Section 5.6 I will discuss in broad strokes how termfactory tackles the problem of
determining these pairings. I have provided two substantial examples of output generated
by termfactory in Appendices E.1 and E.2

While developing both termfactory and t-amplitudes it became apparent that having a
more generalized or “formal” approach to distinguishing/generating valid terms and pairings
would be useful. It seemed intuitive that one should be able to express both terms and
pairings as a formal language, and consequently be able to leverage the work of the field.
My exploration of this approach is presented in Section 5.7.

93

5.6 termfactory scheme

Having covered the theoretical building blocks describing terms and their pairings, I will
give a broad overview of how they are generated by termfactory. I will first explain the
specific representations that are used. Then I will discuss how the output of termfactory is
contextually dependent on the theoretical definition of the equations R0,R1, · · ·. Finally, I
can outline the general protocol taken by termfactory to produce terms and their pairings.

5.6.1 Term and pairing representation

Tuples It is very natural to represent operators ÂM
N using tuples (m,n) of length two;

where the first element is the M label, and the second element is the N label. A term
with multiple operators such as: Â0

1B̂
1
0, can be represented by multiple tuples: (0,1),

(1,0). As one of the goals of termfactory is robustness, the immutability of tuples is
advantageous compared to other data types. Listing 5.1 provides an example of how tuples
can be used to encode the constraints defined in Section 5.3. Specifically, the constraints
defined in Equations (5.25) and (5.26) are handled on line 14 and 15.� �

1 def valid_term(term):
2 """ Return True if term is valid , otherwise False """
3 A, B = term
4

5 M_tot = A[0] + B[0]
6 N_tot = A[1] + B[1]
7

8 # balanced operators
9 If not (M_tot == N_tot):

10 return False
11

12 # normal ordering
13 for Op in [A, B]:
14 if not (Op[0] == 0 or Op[1] == 0):
15 if not (Op[0] <= N_tot - Op[1]) and (Op[1] <= M_tot - Op[0]):
16 return False
17

18 return True� �
Listing 5.1: Illustrative use of tuples for checking constraints of terms ÂM

N B̂M
N

However, embedding the constraints and logic of pairing generation using just tuples leads
to code which is harder to read, debug, and work with. I speak from personal experience as
the early prototypes of termfactory suffered from these issues. Instead termfactory now
uses namedtuples.

Namedtuples Namedtuples are a subclass of tuples available in the Python standard
library. They are used extensively in termfactory for three primary reasons:

1. They allow for writing code which encodes logic in a English-like manner.

2. Their fields can be explicitly named as to their purpose.

94

3. They are tuples and therefore immutable.

Consider the term Â1
0 with a tuple representation of (1,0). The corresponding simple

namedtuple representation is A = Aop(rank=1, m=1, n=0); although we will use more com-
plicated namedtuples later on. Elements of the namedtuple can be accessed using their
fieldnames, rather than their index, like so: A.rank, A.m, and A.n.

I treat each operator Â, B̂, · · · in this fashion:

Â2
1: A = Aop(rank=3, m=2, n=1) where A.m = 2 and A.n = 1

B̂3
4: B = Bop(rank=7, m=3, n=4) where B.m = 3 and B.n = 4

Terms can be represented as lists of namedtuples:

Â1
0B̂

0
1 → [Aop(rank=1, m=1, n=0), Bop(rank=1, m=0, n=1)].

A clear advantage of using namedtuples is accessing their fields by name instead of by index.
An example of this is provided in Listing 5.2, which can be compared to Listing 5.1� �

1 def valid_term(term):
2 """ Return True if term is valid , otherwise False """
3 A, B = term
4

5 M_tot = A.m + B.m
6 N_tot = A.n + B.n
7

8 # balanced operators
9 If not (M_tot == N_tot):

10 return False
11

12 # normal ordering
13 for Op in [A, B]:
14 if not (Op.m == 0 or Op.n == 0):
15 if not (Op.m <= N_tot - Op.n) and (Op.n <= M_tot - Op.m):
16 return False
17

18 return True� �
Listing 5.2: Illustrative use of namedtuples for checking constraints of terms ÂM

N B̂M
N

Pairings For pairings, more complicated namedtuples are used to fully specify the pairings.
A fully specified namedtuple contains all information needed to write the formal representa-
tion down by hand. Consider the term

P̂1 Â1B̂1
1Ĉ

1
1,

with the valid pairing
P̂z ÂzB̂k

l Ĉ
l
k.

95

The associated fully specified namedtuples are

Aop(rank=1, m=1, n=0, p_m=1, p_n=0, b_m=0, b_n=0, c_m=0, c_n=0)
Bop(rank=2, m=1, n=1, p_m=0, p_n=0, a_m=0, a_n=0, c_m=1, c_n=1)
Cop(rank=2, m=1, n=1, p_m=0, p_n=0, a_m=0, a_n=0, b_m=1, b_n=1)

Previously, for terms the namedtuple’s fields could be directly mapped from their formal
definition B̂1

1 → Bop(rank=2, m=1, n=1). But each pairing occurs between two different
operators, and therefore we need additional information (p_m=0, p_n=0, a_m=0, a_n=0,
c_m=1, c_n=1), to specify which operators those pairings are being formed with and how
many pairings are being formed.

For each other operator P̂, Â, Ĉ, we add an upper p_m, a_m, c_m, and lower p_n, a_n,
c_n field. An operator’s upper field *_m denotes how many of its own upper labels (counted
by m) are pairing with the lower labels of some other operator, and the same is true for the
lower fields counting how many lower labels pair with other operator’s upper labels. In the
pairing P̂zÂz, Â contributes an upper label and therefore p_m=1 for Â’s namedtuple.

The other valid pairings would be specified as follows:

P̂z ÂkB̂z
l Ĉ

l
k

Aop(rank=1, m=1, n=0, p_m=0, p_n=0, b_m=0, b_n=0, c_m=1, c_n=0)
Bop(rank=2, m=1, n=1, p_m=1, p_n=0, a_m=0, a_n=0, c_m=0, c_n=1)
Cop(rank=2, m=1, n=1, p_m=0, p_n=0, a_m=0, a_n=1, b_m=1, b_n=0)

P̂z ÂkB̂l
kĈ

z
l

Aop(rank=1, m=1, n=0, p_m=0, p_n=0, b_m=1, b_n=0, c_m=0, c_n=0)
Bop(rank=2, m=1, n=1, p_m=0, p_n=0, a_m=0, a_n=1, c_m=1, c_n=0)
Cop(rank=2, m=1, n=1, p_m=1, p_n=0, a_m=0, a_n=0, b_m=0, b_n=1)

It is important to highlight that these namedtuples store the number of pairings between
every operator, not the specific labels of the pairings klm · · ·, zxy · · ·. This representation
is possible because of the label symmetry in the definition of the operators (Equation (5.1))
which arises from the fact that these equations are describing Bosons and not Fermions.
For Fermions additional complications would arise due to the occurrence of signs in the
expressions.

5.6.2 Context

Before explaining the general termfactory approach I introduce the shorthand context,
which means all information necessary to fully and explicitly define a RM

N equation, as well
as all possible valid terms and pairings. It represents all require input information and baked
in assumptions necessary for termfactory.

96

The notions of valid or invalid terms and pairings are only well defined withing a given
context. Take the example of Â1

3B̂
3
1 from Section 5.2.2. In the general case where f̄ ̸= 0

this term is valid but when f̄ = 0 this term is invalid . The choice of f̄ as being 0 or some
complex valued number is necessary information for distinguishing between valid and invalid
terms and pairings, and is therefore part of the context defining a specific RM

N equation which
is then processed by termfactory.

Recall that RM
N equation’s are defined in Equation (5.33) as

RM
N =

〈
P̂M
N

∑
all labels

ÂB̂Ĉ · · ·

〉
.

The form of RM
N depends on the specific operators ÂB̂Ĉ · · · and their definitions.

To talk about the process of determining valid terms and pairings in practice we must
agree on a context under which to evaluate them. The context is comprised of information
whose corresponding logic is “baked” into termfactory:

• The specific operators and their definitions that comprise the equation we are trying
to compute.

and information that can be easily changed, which comprises the input variables:

• The value of f̄ ; and therefore if the general form (5.21) or the simplified form (5.22) is
being used.

• The maximum rank of each operator.

For example we can use termfactory like so:� �
1 python termfactory -t 1 2 1� �

where the argument -t is used to indicate a sequence of integers will follow; integers which
are the truncation values for P̂ , Â and B̂ of

RM
N =

〈
P̂M
N

∑
all labels

ÂB̂

〉
.

To remove the terms with f̄ prefactors (effectively setting f̄ = 0) we add the flag -rf:� �
1 python termfactory -t 1 2 1 -rf� �

I will give an example: For Â, B̂ both with maximum ranks 2 and f̄ = 0 there are four valid
pairings for R1

Rz = Â0B̂z + ÂzB̂0 + Âz
i B̂

i + ÂiB̂iz, (5.46)

but if instead B̂’s maximum rank is reduced to 1 then the Â1B̂2 term does not exist and
therefore the ÂiB̂iz pairing is gone from R1

Rz = Â0B̂z + ÂzB̂0 + Âz
i B̂

i. (5.47)

97

If we introduce a new operator Ĉ which has a maximum rank of 1:

Rz = Â0B̂zĈ0 + Â0B̂0Ĉz + ÂzB̂0Ĉ0 + Âz
i B̂

iĈ0 + Âz
i B̂0Ĉi + ÂzB̂iĈi + ÂiB̂iĈz + ÂiB̂zĈi.

(5.48)
The context is therefore the input specification for termfactory which determines for which
RM

N equations, the terms and pairings will be produced.

5.6.3 Overall scheme

Given a specific context, the general scheme is as follows:

1. For each operator Â =
∑

Â0+Â1+Â1+Â1
1+ · · · create a representative list of tuples

of each term’s M , N labels: [(0,0), (0,1), (1,0), (1,1), ...].

2. The Balanced Operators and Normal Ordering constraints (from Section 5.3) are ap-
plied to all permutations of the product of these lists. This produces a list of all valid
terms, where each of these terms are represented by lists of namedtuples which fully
specify their M , N labels. More detail will be provided in Section 5.6.4.

3. Remove all duplicates from this list; we only need unique lexicographically ordered
terms.

4. For each valid
term, generate all possible pairings and apply the Normal Ordering constraint to re-
move invalid
pairings. Each remaining term in the list is a valid
pairing, fully specified by a namedtuple. More detail will be provided in Section 5.6.5.

5. Finally, various processing routines can be applied to generate either a LATEX (*.tex)
or Python (*.py) file.

LATEX To generate the LATEX for Âz
kB̂

yk: various functions analyze the namedtuples and
produce the string \hat {\textbf {A}}^{\red {z}}_{\blue {k}}\hat {\textbf
{B}}^{\red {y}\blue {k}}. By repeating this process for every pairing and
having a pre-built header and footer termfactory can produce a multi-page
LATEX file. A relatively simple example of the output is provided in Appendix E.1
and a more extreme example is provided in Appendix E.2.

Python Similarly for generating Python code, various functions can process the namedtu-
ples and produce Python code to compute a single pairing Âz

kB̂
yk: np.einsum(’zk,yk

-> zy’, A[(1,1)], B[(2,0)]). These can then be “glued” together to form
blocks of code which calculate RM

N . By using similar pre-build header and footers
a full Python module is created to calculate various R0,R1,R2,R3, · · ·. This mod-
ule is then imported and utilized to compute EOM as further described in Chap-
ter 6.

98

Small example

I present a small example of a few terms used in calculating Ra
zy:

Rzy → ÂkB̂
zĈky + ÂkB̂

zkĈy + ÂkÂlB̂
lzĈky +

1

2

(
ÂkB̂

kĈzy + ÂkB̂
zyĈk

)
+

1

4

(
ÂkÂlB̂

zyĈkl + ÂkÂlB̂
ijĈzy

) (5.49)

and the corresponding code excerpt in Listing 5.3� �
1 R += np.einsum(’k,z,ky ->zy’, A[(0, 1)], B[(1, 0)], C[(2, 0)])
2 R += np.einsum(’k,kz,y->zy’, A[(0, 1)], B[(2, 0)], C[(1, 0)])
3 R += np.einsum(’k,l,lz ,ky->zy’, A[(0, 1)], A[(0, 1)], B[(2, 0)], C[(2, 0)])
4 R += (1 / 2) ∗ (
5 np.einsum(’k,k,zy ->zy’, A[(0, 1)], B[(1, 0)], C[(2, 0)]) +
6 np.einsum(’k,zy,k->zy’, A[(0, 1)], B[(2, 0)], C[(1, 0)])
7)
8 R += (1 / 4) ∗ (
9 np.einsum(’k,l,zy ,kl->zy’, A[(0, 1)], A[(0, 1)], B[(2, 0)], C[(2, 0)]) +

10 np.einsum(’k,l,kl ,zy->zy’, A[(0, 1)], A[(0, 1)], B[(2, 0)], C[(2, 0)])
11)� �

Listing 5.3: Excerpt of Python code from a function which generates Rzy

5.6.4 Basic Exclusion (Step 2/5)

Here I will describe in more detail the process by which I apply the constraints and produce
all permutations of the products of each operators expansion. We revisit the prior example
from Section 5.1.2, but choose f̄i = 0. There are three operators Â, B̂, Ĉ, where Â, and B̂
have maximum ranks of two, and Ĉ has a maximum rank of one:

Â: [(0,0), (0,1), (0,2)]

B̂: [(0,0), (0,1), (1,0), (1,1), (0,2), (2,0)]

Ĉ: [(0,0), (0,1), (1,0)]

This will produce 3× 6× 3 = 54 possible triplets, such as [(0,1), (1,1), (1,0)]. Some
of these terms are invalid
and therefore we want to exclude them from our collection of terms, so as to be left with
only valid
terms.

In general, I begin by looping over each projection term in P̂M
N ; equivalent to processing

each equation R0,R1,R2, one-by-one. For a given equation I loop over each term and apply
the Balanced and Normal Ordering constraints in a manner similar to Listing 5.2. Any
term that does not meet these basic constraints is excluded immediately. For R0 this results
in only twelve terms as previous seen in Equation (5.27). The associated list of simple
namedtuples is illustrated in Listing 5.4:

99

� �
[

[A(rank=0, m=0, n=0), B(rank=0, m=0, n=0), C(rank=0, m=0, n=0)],
[A(rank=1, m=0, n=1), B(rank=0, m=0, n=0), C(rank=1, m=1, n=0)],
[A(rank=2, m=0, n=2), B(rank=0, m=0, n=0), C(rank=2, m=2, n=0)],
[A(rank=1, m=0, n=1), B(rank=1, m=1, n=0), C(rank=0, m=0, n=0)],
[A(rank=2, m=0, n=2), B(rank=2, m=2, n=0), C(rank=0, m=0, n=0)],
[A(rank=0, m=0, n=0), B(rank=1, m=0, n=1), C(rank=1, m=1, n=0)],
[A(rank=0, m=0, n=0), B(rank=2, m=0, n=2), C(rank=2, m=2, n=0)],
[A(rank=2, m=0, n=2), B(rank=1, m=1, n=0), C(rank=1, m=1, n=0)],
[A(rank=1, m=0, n=1), B(rank=1, m=0, n=1), C(rank=2, m=2, n=0)],
[A(rank=1, m=0, n=1), B(rank=1, m=1, n=1), C(rank=1, m=1, n=0)],
[A(rank=2, m=0, n=2), B(rank=1, m=1, n=1), C(rank=2, m=2, n=0)],
[A(rank=2, m=0, n=2), B(rank=2, m=2, n=2), C(rank=2, m=2, n=0)]

]� �
Listing 5.4: Simple namedtuple representation of validterms for R0

After filtering out invalid
terms using the constraints, I am left with a list of valid
permutations. Every remaining product term ÂM

N B̂M
N ĈM

N obeys both the Balanced Operators
and Normal Ordering constraints. At this point there is no notion of pairing. If all possible
terms are invalid
for a projector P̂N then we skip to the next one P̂N+1 and so on. Terms for R1 and R2 are
treated in the same fashion as was described for R0.

5.6.5 Generating all valid pairings (Step 4/5)

In this step we explicitly define all possible valid
pairings. We begin with a list of unique lexicographically ordered terms in simplified named-
tuple form.

In general, I begin by looping over each projection term in P̂M
N ; similar to Step 2 in the

previous section. For a given equation, say R3, I loop over each term in the list

Illustrative Example

The first step in generating the full specified namedtuple representations is to enumerate
over all permutations of pairings. Consider the term P̂3 Â2B̂3Ĉ3.

The valid normal-ordered pairings are

P̂zyx ÂklB̂zyxĈkl

P̂zyx ÂklB̂zykĈxl

P̂zyx ÂklB̂zklĈyx

I enumerate over all internal and external pairing permutations, for all but one of the oper-
ators; the final operator’s pairings are pre-determined by the enumeration over all possible
pairings, for each of the previous operators. In this example, I enumerate over Â, and B̂,

100

but not Ĉ. The pairing with P̂ is determined as a byproduct of processing Â, B̂, and Ĉ.
In general a left-to-right approach, similar to Section 5.3.1, can be used to narrow down all
possible pairings10.

Choosing Â to “pivot” around, I represent all possible/partial permutations as tuples
(p, a, b, c) whose numbers represent pairings with P̂ , Â, B̂ and Ĉ respectively11. We
consider possible pairings using only the upper labels first, which is trivially (0,0,0,0) as
Â has no upper labels. Considering the possible pairings using the lower labels:

P̂zyx Â2B̂3Ĉ2 : (0, 0, 2, 0)→ ÂklB̂1,klĈ2

P̂zyx Â2B̂3Ĉ2 : (0, 0, 1, 1)→ ÂklB̂2,kĈ1,l

P̂zyx Â2B̂3Ĉ2 : (0, 0, 0, 2)→ ÂklB̂3Ĉkl

In the same fashion I choose B̂ as a “pivot” point, with (p, a, b, c), whose upper pairings
are

P̂zyx Â2B̂3Ĉ2 : (3, 0, 0, 0)→ Â2B̂zyxĈ2

P̂zyx Â2B̂3Ĉ2 : (2, 1, 0, 0)→ Â1,kB̂zykĈ2

P̂zyx Â2B̂3Ĉ2 : (1, 2, 0, 0)→ ÂklB̂zklĈ2

The lower pairings for B̂ are trivially (0,0,0,0). We have now enumerated over all possible
upper and lower pairings for Â and B̂. At this point we stop since all valid
pairings with Ĉ can be determined with the possible pairings we just considered in B̂ and
Ĉ.

Enumerate all combinations

The rest of the process is as follows:

1. We form a list combined_m_perms of the product of all possible upper permutations
for each operator we “pivoted” around. In this case, there are only three upper per-
mutations because Â has no upper labels. Then we remove all elements which are not
possible (without considering the lower labels).

2. We do the same for the lower labels: form a list combined_n_perms of the product of all
possible lower permutations and remove all elements which are not possible (without
considering the upper labels).

10For specific equations RM
N with particular operators Â, B̂, · · · different strategies can be employed, but

the overall principle is the same: enumerate all pairings.
11In practice, I omit the number corresponding to a tuple’s own operator, as it may never pair with itself.

However this “full” form tuple allows for a better visual explanation.

101

3. Finally, we loop over all upper permutations combined with all lower permutations,
keeping only valid pairings, and throwing away any other combinations

In this specific case, each upper permutation only forms one valid
pairing with a single lower permutation; for example (0,0,2,0) from Â only pairs
with (1,2,0,0) from B̂. This can be thought of as adding/combining the two partial
pairings

(0, 0, 2, 0) + (1, 2, 0, 0) → valid

P̂zyxÂklB̂1,klĈ2 + P̂zyxÂklB̂zklĈ2 → P̂zyxÂklB̂zklĈyx (5.50)

As a counter-example, consider the following combination, which is not a well-defined
pairing. Â is trying to pair with Ĉ twice, but B̂ is also trying to pair with Â, which
doesn’t have enough labels for all three attempted pairings:

(0, 0, 0, 2) + (2, 1, 0, 0) → invalid

P̂zyxÂklB̂3Ĉkl + P̂zyxÂ1,kB̂zykĈ2 →
hhhhhhhhhP̂zyxÂklB̂zykĈkl (5.51)

Clearly, in this case the resulting combination is not possible, and is recognized as such
by termfactory, and therefore discards this term, continuing on with other permuta-
tions.

The explicit connections for each operator are assigned, giving this final output

P̂zyxÂklB̂zyxĈkl:
Pop(rank=3, m=0, n=3, m_a=0, n_a=0, m_b=0, n_b=3, m_c=0, n_c=0)
Aop(rank=2, m=0, n=2, m_p=0, n_p=0, m_b=0, n_b=0, m_c=0, n_c=2)
Bop(rank=3, m=3, n=0, m_p=3, n_p=0, m_a=0, n_a=0, m_c=0, n_c=0)
Cop(rank=2, m=2, n=0, m_p=0, n_p=0, m_a=2, n_a=0, m_b=0, n_b=0)

P̂zyxÂklB̂zykĈxl:
Pop(rank=3, m=0, n=3, m_a=0, n_a=0, m_b=0, n_b=0, m_c=0, n_c=0)
Aop(rank=2, m=0, n=2, m_p=0, n_p=0, m_b=0, n_b=1, m_c=0, n_c=1)
Bop(rank=3, m=3, n=0, m_p=2, n_p=0, m_a=1, n_a=0, m_c=0, n_c=0)
Cop(rank=2, m=2, n=0, m_p=1, n_p=0, m_a=1, n_a=0, m_b=0, n_b=0)

P̂zyxÂklB̂zklĈyx:
Pop(rank=3, m=0, n=3, m_a=0, n_a=0, m_b=0, n_b=0, m_c=0, n_c=0)
Aop(rank=2, m=0, n=2, m_p=0, n_p=0, m_b=0, n_b=2, m_c=0, n_c=0)
Bop(rank=3, m=3, n=0, m_p=1, n_p=0, m_a=2, n_a=0, m_c=0, n_c=0)
Cop(rank=2, m=2, n=0, m_p=2, n_p=0, m_a=0, n_a=0, m_b=0, n_b=0)

102

5.7 The Language of Pairing Terms

The motivation for the title of this section rests in my desire to express the pairing of
terms as a language, such as would be defined in Formal Language Theory. It seemed
evident to me that this representation would lend itself to distinguishing between valid and
invalid terms and pairings. I also hoped to leverage the work of that field by finding this
alternative representation. I was not successful in this original goal, but an offshoot of this
investigation did produce results in the form of a Integer linear programming (ILP) approach,
that I plan to integrate into termfactory in the near future, improving the robustness and
ansatz flexibility. There is a small section with more detail on Formal Language Theory
in Appendix C.3.

5.7.1 Motivation

My work on automatically generating pairings has been successful, within specific constrained
problem sets. However, I identified an important limitation in the approach developed to
date. The straightforward approach to capturing the constraints embeds those constraints in
control flow. In other words, a rule such as a < b is captured via an explicit programming if-
statement that checks if a < b. This can be clearly seen on lines 8, 13 and 14 in Listing 5.2.
While this seems a natural and straightforward method of implementing the rule, it results
in several problems:

1. An experienced programmer is needed to change rules, and requires going through a
full edit-compile-test cycle every time we change, modify or extend the rule set which
defines an ansatz

2. When we have many rules that all interact at the same time, our program can become
quite complex to read and modify

3. The program control flow tends to solidify around one single type or class of problem;
that is, we embed assumptions, heuristics, tradeoffs, and other elements into the control
flow, thus making the program difficult to extend to other domains. I have discussed
termfactory with other developers working with Logic Programming languages and
there was difficulty adapting my code to their problem area.

I am thus motivated to find a more general method for expressing the constraints in the
series expansion generator, such that I can avoid large software overhead, and make the
software more extensible. Ideally, such a method would not use control flow to represent
constraints, but would represent constraints as data, which we expect to be both more
malleable and more readily understandable by a user. By taking a declarative approach,
defining the problem that needs to be solved (in the form of constraints) and solving that
problem without defining the logic required to find a solution

There are three primary objectives for a generalized approach to general term pairing:

103

1. Express constraints as data rather than as control flow

2. Develop a more general solution approach

3. Employ existing established software to quickly and correctly generate expansions

Additionally, along with these objectives, consideration should be applied to the difficulty
of “pivoting” with the associated approach. If the definition of the R0,R1, · · · are changed,
and therefore the associated equations are different, we would like it to be the case that
modifying the program to produce the full set of equations should not be prohibitively
difficult for a reasonably skilled user.

To this end, I investigated three different areas that I thought might provide an answer:
Formal language theory, Logic Programming, and Integer linear programming (ILP). Dur-
ing my research the most viable approach, given the time constraints, seems to be the ILP
approach. While Formal language theory felt the most natural approach, it unfortunately
appears to be just as complex as using a software-based control-flow approach. Logic pro-
gramming does appear to be quite general, and powerful! However the overhead associated
with developing the relevant skills to design such a piece of software suggested that this
approach would be troublesome to use even by reasonably skilled users. In the end ILP
seemed the best fit for this problem.

5.7.2 Logic Programming

One method for describing constraints as data is to express constraints in formal logic,
and use a logic programming language to automatically compute the implication of the
constraints. Programs written in logic programming languages are sets of sentences in logical
form, expressing rules and facts about problem domains. Logic programming can be done
in a variety of languages, two of which I investigated: Prolog, and Maude[51, 52, 53]

Constraints in Prolog

Prolog is a declarative programming language. Prolog uses Horn clause logic to define a prob-
lem’s constraints, and then allows the user to ask Prolog to determine whether statements
are true, based on the constraints (Clocksin & Mellish, 1981). For example, in Listing 5.5 I
present a basic Prolog program to calculate all possible combinations of specific coins that
add up to 25 cents.

1 change ([Q,D,N,P]) :-
2 member(Q,[0,1,2,3,4]), /* quarters */
3 member(D,[0,1,2,3,4,5,6,7,8,9,10]) , /* dimes */
4 member(N,[0,1,2,3,4,5,6,7,8,9,10, /* nickels */
5 11 ,12 ,13 ,14 ,15 ,16 ,17 ,18 ,19 ,20]),
6 S is 25*Q +10*D + 5*N,
7 S =< 25,
8 P is 25-S.

Listing 5.5: Basic Prolog program

104

The program defines the change from a dollar as being made up of half-dollars, quarters,
dimes, nickels, and pennies; each coin can occur up to a maximum of n times, where n times
the coin = 25, and the sum S of the coins must be 25.

Having defined the constraints on the coins, we can use the Prolog to explore the solution
space for all valid solutions. If after loading the above program into the Prolog interpreter, we
input the query change([H,Q,D,N,P]) and then we press the semi-colon key ; repeatedly,
we get the following solutions:

1 Q = D, D = N, N = 0,
2 P = 25 ;

1 Q = D, D = 0,
2 N = 1,
3 P = 20 ;

1 Q = D, D = 0,
2 N = 2,
3 P = 15 ;

1 Q = D, D = 0,
2 N = 3,
3 P = 10 ;

1 Q = D, D = 0,
2 N = 4,
3 P = 5 ;

1 Q = D, D = P, P = 0,
2 N = 5 ;

1 Q = N, N = 0,
2 D = 1,
3 P = 15 ;
4

1 Q = 0,
2 D = N, N = 1,
3 P = 10 ;

1 Q = 0,
2 D = 1,
3 N = 2,
4 P = 5 ;

1 Q = P, P = 0,
2 D = 1,
3 N = 3 ;

1 Q = N, N = 0,
2 D = 2,
3 P = 5 ;

1 Q = P, P = 0,
2 D = 2,
3 N = 1 ;

1 Q = 1,
2 D = N, N = P, P = 0 ;

Now let us consider a Prolog program that might solve constraints applicable to our expan-
sion. Consider a general term P̂M

N ÂM
N B̂M

N . In the Prolog code I use alphabetic characters as
variables to represent the M , N labels; assigned from top-to-bottom, left-to-right:

P̂M
N ÂM

N B̂M
N → P a

b B
c
dC

e
f (5.52)

I then define the constraints from Section 5.3 in terms of these variables. The Balanced
operators constraint (Mtot = Ntot) is as simple as

a+ c+ e = b+ d+ f. (5.53)

105

The Normal ordering constraints

M ≤ Ntot −N
N ≤Mtot −M

expressed in alphabetic variables

• P̂

a ≤ (b+ d+ f)− b = d+ f (5.54)
b ≤ (a+ c+ e)− a = c+ e (5.55)

• B̂

c ≤ (b+ d+ f)− d = b+ f (5.56)
d ≤ (a+ c+ e)− c = a+ e (5.57)

• Ĉ

e ≤ (b+ d+ f)− f = b+ d (5.58)
f ≤ (a+ c+ e)− e = a+ c (5.59)

in Listing 5.6 I provide a Prolog program which solves for these constraints. However, I
restrict it to the case where P̂ has a maximum rank of 1, both Â, B̂ have maximum ranks
of 2, and f̄ = 0 to reduce the number of output terms. Note that variables in Prolog begin
with a capital letter, otherwise I would have used lowercase letters a, b, c, d, e, f .

1 legal([A,B,C,D,E,F]) :-
2 % define M, N labels for each operator
3 member(A, [0, 1]),
4 member(B, [0, 1]),
5 member(C, [0]),
6 member(D, [0, 1, 2]),
7 member(E, [0, 1, 2]),
8 member(F, [0]),
9

10 %! Balanced Operators constraint
11 (A + C + E) =:= (B + D + F),
12

13 %! --- Normal Ordering constraints ---
14

15 %! P operator can’t pair with itself
16 A =< (D + F),
17 B =< (C + E),
18

19 %! A operator can’t pair with itself
20 C =< (B + F),
21 D =< (A + E),

106

22

23 %! B operator can’t pair with itself
24 E =< (B + D),
25 F =< (A + C).

Listing 5.6: Prolog code which finds the M N values for which P̂M
N ÂM

N B̂M
N is a valid term.

If we run this program in the Prolog interpreter and search for all solutions, we obtain:

. .

A = B, B = C, C = D, D = E, E = F, F = 0 ;
P 0
0 Â

0
0B̂

0
0

. .
A = B, B = C, C = F, F = 0,
D = E, E = 1 ;

P 0
0 Â

0
1B̂

1
0

. .
A = B, B = C, C = F, F = 0,
D = E, E = 2 ;

P 0
0 Â

0
2B̂

2
0

. .
A = C, C = D, D = F, F = 0,
B = E, E = 1 ;

P 0
1 Â

0
0B̂

1
0

. .
A = C, C = F, F = 0,
B = D, D = 1,
E = 2 ; P 0

1 Â
0
1B̂

2
0

. .
A = D, D = 1,
B = C, C = E, E = F, F = 0 ;

P 1
0 Â

0
1B̂

0
0

. .
A = E, E = 1,
B = C, C = F, F = 0,
D = 2 ; P 1

0 Â
0
2B̂

1
0

. .
A = B, B = D, D = E, E = 1,
C = F, F = 0 ;

P 1
1 Â

0
1B̂

1
0

. .
A = B, B = 1,
C = F, F = 0,
D = E, E = 2 ; P 1

1 Â
0
2B̂

2
0

. .

107

Issues with Prolog

The above programs show that it is possible to capture constraints in Prolog, and to obtain
solutions that satisfy those constraints. However, there are several issues that make the use
of Prolog less than satisfactory.

1. Prolog requires a separate interpreter. We would have to package up the interpreter
with our Python routines to make a complete package, as well as provide a mechanism
to supply input to Prolog and then post-process its output

2. Prolog is not in general easy to program

(a) Most programmers are not familiar with the declarative Horn clause logic style,
and find it an effort to depart from their imperative programming style

(b) Prolog’s only data structure is lists

(c) The error diagnostics of the interpreter can be very confusing to beginning pro-
grammers

3. The Prolog community is small and it can be difficult to get help with problems

4. It is difficult to estimate the complexity of our Prolog program, and how expensive it
would be as we expand the number of constraints. Since Prolog does tree searching
across all possibilities, it may consume a very significant amount of time

For these reasons we discontinued further investigation of Prolog, although it still retains
value for rapid prototyping of sets of constraints.

Maude

The Maude website describes the language as:[54]

Maude is a high-performance reflective language and system supporting both equational
and rewriting logic specification and programming for a wide range of applications. Maude
has been influenced in important ways by the OBJ3 language, which can be regarded as an
equational logic sublanguage. Besides supporting equational specification and programming,
Maude also supports rewriting logic computation. Rewriting logic is a logic of concurrent
change that can naturally deal with state and with concurrent computations. [...]

For my purposes the draw to use Maude was the rewriting logic capabilities. It seemed
ideal for representing the application of Wick’s theorem in a concise well defined fashion. The
initial plan was to start with a basic mathematical description of the operator expansions,
such as those in Equations (5.18) to (5.20), then process product terms similar to Sec-
tion 5.1.2. These product terms could be rewritten according to constraints as described
in Section 5.3.

To understand a bit more about how it works I present the simple vending machine example
in Maude:

108

1 fmod VENDING -MACHINE -SIGNATURE is
2 sorts Coin Item Marking .
3 subsorts Coin Item < Marking .
4 op __ : Marking Marking -> Marking [assoc comm id: null] .
5 op null : -> Marking .
6 op \(: -> Coin [format (r! o)] .
7 op q : -> Coin [format (r! o)] .
8 op a : -> Item [format (b! o)] .
9 op c : -> Item [format (b! o)] .

10 endfm

Listing 5.7: Example from Maude Manual[53, Pg. 150]

We can modify it to match the Prolog coin example in Listing 5.5:
1 fmod VENDING -MACHINE -SIGNATURE is
2 sorts Coin Item Marking .
3 subsorts Coin Item < Marking .
4 op __ : Marking Marking -> Marking [assoc comm id: null] .
5 op null : -> Marking .
6 op \) : -> Coin [format (r! o)] .
7 op q : -> Coin [format (r! o)] .
8 op a : -> Item [format (b! o)] .
9 op c : -> Item [format (b! o)] .

10 endfm

Listing 5.8: Modification of Listing 5.7 to match Listing 5.5.

Exploring the solution space is not as simple as in Prolog, instead we must use the specific
tools, in this case reduce. Running reduce in META-LEVEL we can explore the solution
space like so

1 Maude > reduce in META -LEVEL : upModule(’VENDING -MACHINE -SIGNATURE , false)
.

2 reduce in META -LEVEL : upModule(’VENDING -MACHINE -SIGNATURE , false) .
3 rewrites: 1 in 0ms cpu (0ms real) (~ rewrites/second)
4 result FModule: fmod ’VENDING -MACHINE -SIGNATURE is
5 including ’BOOL .
6 sorts ’Coin ; ’Item ; ’Marking .
7 subsort ’Coin < ’Marking .
8 subsort ’Item < ’Marking .
9 op ’$: nil -> ’Coin [format(’r! ’o)] .

10 op ’__ : ’Marking ’Marking -> ’Marking [assoc comm id(’null.Marking)] .
11 op ’a : nil -> ’Item [format(’b! ’o)] .
12 op ’c : nil -> ’Item [format(’b! ’o)] .
13 op ’null : nil -> ’Marking [none] .
14 op ’q : nil -> ’Coin [format(’r! ’o)] .
15 none
16 none
17 endfm

Listing 5.9: Maude vending machine result.

To give more context I present a very basic module to solve the sample problem as Listing 5.6:
109

1 mod RESIDUALS is
2

3 protecting BOOL .
4 protecting INT .
5

6 *** define integer variables
7 var A, B, C, D, E, F : INT
8

9

10 M_tot = A + C + E .
11 N_tot = A + C + E .
12

13 *** Balanced Operators constraint
14 M_tot == N_tot .
15

16 A + B = R1 .
17 C + D = R2 .
18 E + F = R3 .
19

20

21 *** Normal ordering constraints
22 A <= N_tot - B .
23 B <= N_tot - A .
24

25 C <= N_tot - d .
26 D <= N_tot - c .
27

28 E <= N_tot - f .
29 F <= N_tot - e .
30

31 endfm

Listing 5.10: Maude code which finds the M N values for which P̂M
N ÂM

N B̂M
N is a valid term.

1 mod RESIDUALS is
2

3 protecting BOOL .
4 protecting NAT .
5 protecting INT .
6

7 *** define the types of terms
8 sorts ValidTerm InvalidTerm Term .
9 subsorts ValidTerm InvalidTerm < Term .

10

11 *** a variable for any term
12 var T : Term .
13 var VT : ValidTerm .
14 var IVT : InvalidTerm .
15

16 *** define the set of valid terms
17 sort ValidSet .
18 subsort ValidTerm < ValidSet .
19 op empty : -> ValidSet [ctor].

110

20 op _;_ : ValidSet ValidSet -> ValidSet [ctor assoc comm id: empty] .
21

22 *** define membership in the set of valid terms
23 op _in_ : Term ValidSet -> Bool .
24 var SetOfValidTerms : ValidSet .
25

26 eq T in T ; SetOfValidTerms = true .
27 eq T in SetOfValidTerms = false [owise] .
28

29

30 *** define the set of invalid terms
31 sort InvalidSet .
32 subsort InvalidTerm < InvalidSet .
33 op empty : -> InvalidSet [ctor].
34 op _;_ : InvalidSet InvalidSet -> InvalidSet [ctor assoc comm id: empty] .
35

36 *** define membership in the set of Invalid terms
37 op _in_ : Term InvalidSet -> Bool .
38 var SetOfInvalidTerms : InvalidSet .

Listing 5.11: Example Maude code showing set inclusion.

Clearly Maude is very powerful and has very intuitive mathematical notation. However
trying to go further than simple examples becomes extremely challenging. In Maude the
design paradigm is not clear, and there are many ways one could solve a problem that a
certain amount of selection paralysis is present. In addition, the pros/cons of certain choices
are obscure to non-experts and can have hidden implications. In the end, it seems the extra
overhead associated with having a more powerful and dynamic tool is too high a cost. It
may be that Maude is a good solution to this problem, but using it requires more years
of experience with the tool. In the end I found it disheartening to have to abandon this
approach because, at first, it appeared to be a very good fit with high flexibility.

Let us now review. While the logic programming approach does show promise for sim-
ple examples, it rapidly becomes complicated when the examples contain more constraints.
Furthermore, both Prolog and Maude are relatively baroque programming environments in
which basic arithmetic and output are done in a non-traditional manner. This limits the
usability of such tools. For these reasons, I discontinued looking at logic programming, and
pursued a third option.

5.7.3 Linear programming

A third area for investigation that has proved more fruitful is linear programming. A linear
programming problem is a mathematical optimization problem12 where all constraints are
expressible by linear relationships. The linear relationships define a convex polytope over
an n-dimensional space, where n is the number of variables. For example, in a two-variable
(x, y) case a set of six inequalities might define the following convex polytope13

12A problem where the goal is to select the “best” element, with regards to some criterion, from some set
of available alternatives

13A line segment is 1d, a polygon 2d, a polyhedron 3d, and polytopes are Nd.

111

Figure 5.1: A pictorial representation of a simple linear program. The set of feasible solutions
is depicted in yellow and forms a polygon, a 2-dimensional polytope. The optimum of the
linear cost function is where the red line intersects the polygon. The red line represents the
objective function that we are attempting to minimize, and the arrow indicates the direction
in which we are optimizing [55].

Here the red line represents the objective function that we are attempting to minimize:
the minimum of the objective function that is consistent with the constraints is where the red
line touches the convex polytope. This linear programming problem has a unique solution.

Integer linear programming

Integer linear programming (ILP) is a special case of linear programming, in which the
variables are restricted to integer values. Linear programming is a general problem that has
wide applicability in science and economics, and finds use in planning, routing, scheduling,
and assignment. The problem has been studied since at least 1947, when Dantzig invented
the simplex method to solve linear programming problems [56].

If we can express our problem as an ILP problem, we can take advantage of the simplex
method (or other known algorithms) to solve it. The general linear programming problem
expressed in canonical form is: 14

Find a vector x

that maximizes cTx

subject to Ax ≤ b

and x ≥ 0.

Let us use the same example and constraints as defined in Equation (5.52):

P̂M
N ÂM

N B̂M
N → P a

b B
c
dC

e
f

Our goal is to find integer values for each superscript and subscript, such that the result is
a valid term in our series expansion. To represent this as a linear programming problem, we

14Inequality comparisons are performed elementwise over tensors.

112

need to define x,c,A, and b. We can rewrite the constraints as a set of linear relations on
their variables a, b, c, d, e, f , by moving all variables to one side of the equation:

Table 5.1: Canonical form of linear relations

Constraint Linear relation in canonical form

a+ c+ e = b+ d+ f a− b+ c− d+ e− f = 0
a ≤ d+ f a+ 0b+ 0c− d+ 0e− f ≤ 0
b ≤ c+ e 0a+ b− c+ 0d+ e+ 0f ≤ 0
c ≤ b+ f 0a− b+ c+ 0d+ 0e− f ≤ 0
d ≤ a+ e −a+ 0b+ 0c+ d− e+ 0f ≤ 0
e ≤ b+ d 0a− b+ 0c− d+ e+ 0f ≤ 0
f ≤ a+ c −a+ 0b− c+ 0d+ 0e+ f ≤ 0

Then x, b, and c will be

x =

a
b
c
d
e
f

 b =

0
0
0
0
0
0

 c =

0
0
0
0
0
0

 . (5.60)

I choose c = b since I am not attempting to minimize any linear objective function and so
can set c to zeroes. The constraints will be split into two matrices. The equality constraint
Aeq will be captured this way: [

1 −1 1 −1 1 −1
]
, (5.61)

and our inequality constraints Aub will be captured this way:

a b c d e f

1 0 0 −1 0 −1
0 1 −1 0 1 0
0 −1 1 0 0 −1
−1 0 0 1 −1 0
0 −1 0 −1 1 0
−1 0 −1 0 0 1

. (5.62)

This is the complete set of specifications of our term pairing problem, expressed as an integer
linear programming problem.

• Our first objective has been achieved: we have been able to express the constraints as
data instead of control flow.

113

• Our second objective has also achieved, because we can use this technique to express
a wide variety of problems, over any possible set of variables and constraints, so long
as we are limited to linear combinations.

• We next show that our third objective can also be achieved, because there already
exists a rich set of library functions that can solve our integer linear programming
problem.

The third-party Python library Scipy [57] has a module optimize which provides “functions
for minimizing (or maximizing) objective functions, possibly subject to constraints”. Specifi-
cally it contains a general solver for linear programming problems: optimize.linprog. This
function takes as input the exact vectors and matrices we have outlined above, and produces
a set of values for our variables a, b, c, d, e, f . Since linprog will produce only one “optimal”
value for a given set of input, we can explore the solution space by controlling the values of
our individual variables. Mechanically, this means that given a set of solutions S1 which has
some optimal solution k1 we produce a new set of solutions S2 = S1 \ k1 which will have
some optimal solution k2, and we can repeat this process until we end up with no solutions
left ∅ = Sn \ kn.

The following Python script gives an example:� �
1 # import packages
2 import numpy as np
3 from scipy import optimize
4

5 # We have no linear objective function to optimize
6 c = np.zeros (6)
7

8 # AEQ is the equality constraint matrix
9 # AUB is the inequality constraint matrix

10 # They have one row per constraint , and one column per variable
11 # { a, b, c, d, e, f }
12 AEQ = np.array ([
13 [1, -1, 1, -1, 1, -1]
14])
15

16 AUB = np.array ([
17 [1, 0, 0, -1, 0, -1],
18 [0, 1, -1, 0, -1, 0],
19 [0, -1, 1, 0, 0, -1],
20 [-1, 0, 0, 1, -1, 0],
21 [0, -1, 0, -1, 1, 0],
22 [-1, 0, -1, 0, 0, 1]
23])
24

25 # beq is the equality constraint vector
26 beq = np.array ([[0]])
27

28 # bub is the inequality constraint vector
29 bub = np.array ([[0, 0, 0, 0, 0, 0]])
30

31 # bnds defines the minimum and maximum value for each variable
32 # we will redefine it in each iteration of the loop
33 bnds= [(0,0), (0,0), (0,0), (0,0), (0,0), (0,0)]
34

35

36 # We run a nested loop over the values min to max for each variable ,
37 # making sure we test all values of each variable
38 min=0
39 max=2

114

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.linprog.html

40 for x, y, z in it.product(range(min ,max), repeat =3):
41 for X, Y, Z in it.product(range(min ,max), repeat =3):
42 bnds = [(x,max), (y,max), (z,max), (X,max), (Y,max), (Z,max)]
43 result = optimize.linprog(
44 c,
45 A_ub=AUB , A_eq=AEQ ,
46 b_eq=beq , b_ub=bub ,
47 bounds=bnds ,
48 method="revised simplex"
49)
50 print(result.x)� �

Listing 5.12: Python script for solving linear programming problem which is analogous to
finding the M N values for which P̂M

N ÂM
N B̂M

N is a valid term.

The above program will generate output in rows like so: (1.0, 0.0, 0.0, 0.0, 0.0, 1.0),
where row is a set of of values for the variables a, b, c, d, e, f that satisfies the constraints
expressed in Listing 5.12. In the case where each operator has a maximum rank of 3 the
ILP approach finds 729 solutions, of which 199 are unique. Changing to maximum rank of
2 for each operator produces a much more reasonable 64 solutions, of which 29 are unique.
By adding a bit of processing code I can print those 29 solutions out as simple LATEX:

P 0
0A

0
0B

0
0

P 0
0A

0
1B

1
0

P 0
0A

1
0B

0
1

P 0
0A

1
1B

1
1

P 0
1A

0
0B

1
0

P 0
1A

1
0B

0
0

P 0
1A

1
0B

1
1

P 0
1A

1
1B

1
0

P 0
1A

1
1B

2
1

P 0
2A

1
0B

1
0

P 1
0A

0
0B

0
1

P 1
0A

0
1B

0
0

P 1
0A

0
1B

1
1

P 1
0A

1
1B

0
1

P 1
0A

1
1B

1
2

P 1
1A

0
0B

1
1

P 1
1A

0
1B

1
0

P 1
1A

0
1B

2
1

P 1
1A

1
0B

0
1

P 1
1A

1
0B

1
2

P 1
1A

1
1B

0
0

P 1
1A

1
1B

1
1

P 1
1A

1
2B

1
0

P 1
1A

2
1B

0
1

P 1
2A

1
0B

1
1

P 1
2A

1
1B

1
0

P 2
0A

0
1B

0
1

P 2
1A

0
1B

1
1

P 2
1A

1
1B

0
1

Each line above is a valid set of values for the variables a, b, c, d, e, f . Note the following:

1. Constraints expressed as linear combinations are directly usable as data

2. No constraint is expressed as control flow; indeed, there are no conditional statements
at all in our program

3. The program is very short and easy (for Python programmers) to read

4. The result is efficient; the results are printed in 1 to 2 seconds

A comment on computational performance and the scaling with respect to the number of
variables. I expect this ILP approach to be the same order of magnitude as the original
control-state-flow Python implementation, which takes on the order of a few seconds. Even
if either approach took a minute or even ten minutes that runtime pales in comparison to the
cost of computing the integral using the equations that are generated with this approach.
For small molecules like N2O, CH2O, H2O, a 50fs propagation takes on the order of a few
minutes for Z2 or Z3 truncation, moving to medium-sized molecules like vinyl and cytosine
are 10’s of minutes, and finally hexahelicene is a few hours.

115

Scipy’s optimize.linprog is a very general method that has many options, and is de-
signed for use with large linear optimization problems. It fits very well with our problem,
but if it did not, there are a variety of other third-party libraries which provide functionality
for solving these types of problems, such as cvxpy and Numpy’s linalg module [39].

A more general discussion of the simplex and revised simplex methods for solving systems
of linear equations is beyond the scope of our work, but this is a well-studied problem in
numerical analysis and so discussion can be found in good textbooks on numerical analysis.
Suffice it to say that by recasting the term pairing problem as an instance of linear pro-
gramming, we can take advantage of the very extensive amount of work done to solve linear
programming problems, without needing to understand how they produce such solutions.

Thus, our third objective, of quickly and correctly generating series expansion terms, has
been achieved.

The simplex method should be sufficient to solve our ILPs in short order. in Appendix C.4
I discuss the complexity of linear programming.

5.8 Concluding Remarks

The goal of this chapter was to develop a robust software package for generating and calculat-
ing derivative terms in the second quantization formalism of the change of the wavefunction
of the time-dependent Schrödinger equation (TDSE). I was able to successfully accomplish
these goals, and the resulting software package termfactory is publicly available on GitHub.
This work allows the t-amplitudes software package to be used by experimentalists to sim-
ulate and compare spectra with real-world results.

This package also provides a foundation for future research into thermal properties of
vibronic systems or spectra of excited state systems. Both of these require solving the
problem for the general form, as opposed to the simplified form. Producing a software
package that only supported the simplified form with very restricted contractions would
have been a much simpler task. By anticipating future expansion, I reduced the overall
development time and helped accelerate the ansatz prototyping process, which was a key
element in the success or failure of the t-amplitudes software package. This somewhat
higher overhead at the outset of the project was seen to have a significant future payoff.

With regards to the exploration of solving the problem using ILP, I have a proof-of-
principle implementation. As the current implementation is sufficient to complete the job,
and due to time constraints, adding the ILP approach to termfactory has not been a
priority. I do plan in the near future to integrate this approach into the code base.

116

https://www.cvxpy.org/tutorial/intro/index.html
https://numpy.org/doc/stable/reference/routines.linalg.html
https://github.com/ngraymon/termfactory

Chapter 6

Application of termfactory
and t-amplitudes to VECC methodology
and calculation of Vibronic Spectra

In this chapter equations for some quite involved variants of the VECC methodology will be
presented. The equations are cast in general operator form, and the task of our software tools
is to derive detailed working equations and provide implementations for procedures that are
then assembled in computer code that can perform actual simulations of spectra. The actual
implementation is compute-intensive, and thus I will discuss computational improvements
which allow for these expensive EOM to be solved within a reasonable time frame. Finally,
I will present spectra that I generated for various molecules.

The equations to be discussed are superficially quite different from the equations discussed
in the previous chapter. However, there are clear pathways to connect the formulations, and
to provide the relevant equations to the newly developed software tools.

In the previous chapter the problem was outlined as computing an expectation value,〈
ÂB̂Ĉ · · ·

〉
. (6.1)

It was shown in Section 2.3.1, specifically Equation (2.49), that quantum mechanical (QM)
EOM can be expressed in terms of these expectation values. Thus, by calculating all non-
zero contributions and evaluating them, we solve these EOM. This allows us to propagate
a wavefunction in real time. With a method for propagating our wavefunction we have a
pathway to calculating an ACF. As was shown in Section 2.3.2 we can obtain a power spectra
from an ACF.

The operator equations derived in this chapter can be evaluated using the tools in termfac-
tory and they are then implemented in actual computer code using t-amplitudes. In the final
computer code one solves an ordinary differential equation for the t-amplitudes, which can
be used to obtain the ACF. As was shown in Section 2.3.2 we can obtain a power spectra
from an ACF.

117

Therefore, Chapter 5 is all about computing QM EOM so that we can calculate an ACF
from which we can obtain our theoretical spectra.

6.1 Derivation of Vibrational Electronic Coupled Cluster
approaches

The goal is the generation of vibrationally-resolved electronic spectra through the Fourier
transform of an auto-correlation function (ACF)

ACF (τ) =
∑
a,b

XaUab(τ)Xb =
∑
a,b

Xa ⟨0, a| e−iĤτ |0, b⟩Xb, (6.2)

by numerically integrating equations of motion over the parameter τ . Work with S. Bao is in
progress to also evaluate thermal properties, in which case τ will refer to inverse temperature
β. In this chapter, real-time propagations are of interest, and τ is used to denote time t. We
can apply a fixed ansatz that is based on second quantized operators to parameterize the
time-dependent wavefunction. Let us first recall the definition of the vibronic hamiltonian

Ĥ =
∑
ab

|a⟩ ⟨b|

(
hab +

∑
a

haib {̂i†}+
∑
i

habi{̂i}+ haibj {̂i†ĵ}

+
1

2

∑
ij

haijb {̂i
†ĵ†}+ 1

2

∑
ij

habij {̂iĵ}

)
,

(6.3)

where labels a, b, c, · · · denote electronic surfaces and i, j, k, · · · denote vibrational modes.

The relevant matrix U
Uab(τ) = ⟨0, a| e−iĤτ |0, b⟩ , (6.4)

can be obtained by obtaining wavefunctions Ψb

e−iĤt |0, b⟩ ≡ |Ψb(τ)⟩ , (6.5)

that satisfy the TDSE

i

∣∣∣∣dΨb

dτ

〉
= Ĥ |Ψb(τ)⟩ , (6.6)

which allow us to express each matrix element of Uab in terms of the wavefunction

Uab = ⟨0, a|Ψb(τ)⟩ . (6.7)

Thus, the full Uab matrix is computed through independent propagations for each electronic
state |Ψb(τ)⟩. Having the full Uab matrix, one can compute the ACF using Equation (6.2),
and then produce a vibrationally-resolved electronic spectra. Computing these propagations
requires choosing a representation, or ansatz, for a wavefunction to approximate the ‘true’
time-dependent wavefunction. Over the course of working on this research project, many

118

different representations were explored. Below, I provide a breakdown of a simple linear rep-
resentation, and then we discuss the scheme that will be used in actual simulations, and that
has proven most successful thus far. The ansatz applies second quantization and has clas-
sical DoF. By increasing the truncation order of the ansatz, accuracy can be systematically
improved. In the limit the ansatz is an exact solution to the TDSE.

Linear wavefunction representation

The simplest approach using second quantization is a linear operator

|Ψb(τ)⟩ =
∑
c

Ẑc |0, c⟩ , (6.8)

where
Ẑc = z0c (τ) +

∑
k

zkc (τ)k̂
† +

1

2

∑
k,l

zklc (τ)k̂
†l̂† + · · · , (6.9)

in general

Ẑ(N)
c =

1

N !

∑
k1,k2,...,kN

zk1,...,kNc k̂1
† · · · k̂N †. (6.10)

with has the initial condition (where τ = 0)

Z0
c = δcb, (6.11)

and all other amplitudes are zero. Substituting in the TDSE gives us the following relation

i
∑
c

dẐc

dτ
|0, c⟩ =

∑
c

ĤẐc |0, c⟩ , (6.12)

that we can project onto, with ⟨0, a| Ω̂†
λ

i ⟨0, a| Ω̂†
λ

∑
x

dẐc

dτ
|0, c⟩ =

∑
c

⟨0, a| Ω̂†
λĤẐc |0, c⟩ , (6.13)

where λ defines the level of excitations in the bra state, and we ensure we have the same
number of equations as we have parameters. Of key importance here is the presence of
the term dẐc

dτ
on the left-hand-side. Having a closed form expression for the change in the

operator Ẑc with respect to time τ is necessary for computing the independent propagations
for each initial state |0, b⟩.

Since the projection operator Ω̂λ does not have an electronic label, the equations simplify
to

i ⟨0, a| Ω̂†
λ

dẐa

dτ
|0, a⟩ =

∑
c

⟨0, a| Ω̂†
λĤẐc |0, c⟩ . (6.14)

119

To propagate the ACF and produce a spectrum one needs to calculate dẐc

dτ
. Starting from

the linear wave function representation in Equation (6.13) there is a general expression for
each order N

dẐN
a

dτ
= RHSN

a (6.15)

and it is this RHS that are the residual equations that are derived by the code generator.
This is the root of the terminology “residual term/equation”. By this point the reader should
have some grasp of the relation between the time-derivatives of the form dẐx

dτ
= a+b+c+ · · ·

and the overall goal of computing vibrationally-resolved electronic spectra.

Mixed Exponentional-Linear approach with Ehrenfest projections

In Section 2.3 we discussed that in the course of this work a number of approaches have
been explored, but we ran into many failures. In this section we present a fairly complicated
scheme that yields fairly satisfactory results.

We introduce a special type of mixed exponential/linear parameterization for the time-
dependent wavefunction

|Ψ(τ)⟩ = eT̂ (τ)
∑
c

Ẑc(τ) |c, 0⟩ (6.16)

where
T̂ =

∑
i

tiî† (6.17)

is the same for each electronic state and only contains single excitations. The purpose of
this operator is essentially to provide a moving reference state that is based on a weighted
average over the various electronic states. Details will follow.

The operators Ẑc are the same as in the linear ansatz.

Ẑc = z0c +
∑
i

zicî
† +

1

2

∑
ij

zijc î
†ĵ† + · · · (6.18)

The initial conditions are ti = 0, z0c = δbc to propagate starting from surface b in its initial
ground state configuration. All other z-amplitudes vanish initially.

We substitute this ansatz in Equation (6.16) into TDSE and multiply by e−T̂ on both
sides of the equation

∑
c

(i
dT̂

dτ
Ẑc + i

dẐc

dτ
) |0, c⟩ =

∑
c

e−T̂ ĤeT̂ Ẑc |0, c⟩ (6.19)

It is convenient to define the transformed operator

H̄ = e−T̂ ĤeT̂ (6.20)

which can be computed outside the code-generator and which has the same operator rank

120

as Ĥ

In the next step we need to define a projection manifold. Here we use the same moving
(nuclear) reference state, but now acting on the bra side of the equation, represented by
⟨0, a| eT̂ † and using the the fact that T̂ † commutes with Ω̂†

ν we obtain

⟨0, a| Ω̂†
νe

T̂ †
(i
dT̂

dτ
Ẑa + i

dẐa

dτ
) |0, a⟩ =

∑
c

⟨0, a| Ω̂†
νe

T̂ †
H̄Ẑc |0, c⟩ (6.21)

The goal of introducing this modification of projection manifold is to shift the center of
the reference state (in the projection manifold) and to align it with the center of an evolving
ket wave function |Ψ⟩. The exponential incorporates contributions of higher-level excitations
on top of the linear Ẑ ansatz. We emphasize that the parameterization of the wave function
is not affected by the presence of eT̂ † , but the equations and therefore the values of the
parameters will change. As a consequence, both accuracy and robustness is expected to be
be improved by introducing the modification of projection manifold.

The effect of the operator eT̂ † can be treated as another similarity transform. We can
define

H̃ = eT̂
†
H̄e−T̂ †

Z̃c = eT̂
†
Ẑce

−T̂ †

dZ̃a

dτ
= eT̂

† dẐa

dτ
e−T̂ †

dT̃

dτ
= eT̂

† dT̂

dτ
e−T̂ †

And from the fact that eT̂ † |0, c⟩ = |0, c⟩, since T̂ † only has annihilation operators only, the
equations simply reduce to

⟨0, a| Ω̂†
ν(i
dT̃

dτ
Z̃a + i

dZ̃a

dτ
) |0, a⟩ =

∑
c

⟨0, a| Ω̂†
νH̃Z̃c |0, c⟩ (6.22)

The parameterization of the mixed exponential/linear ansatz is redundant. There is
in a sense complete freedom to choose the T̂ operator while the Ẑ equations are adjusted
accordingly, and the approach remains exact in the limit of a complete expansion of Ẑ
operators.

To obtain a suitably averaged equation for T̂ , we manipulate the above equation as
follows. We remove the time derivative dZ̃a

dτ
, and retain only the constant (or reference)

contribution Z̃0
c on both sides of the equation. Finally, we multiply each equation by (Z̃0

a)
∗

and sum the electronic components to obtain the averaged equation

∑
a

(Z̃0
a)

∗ ⟨0, a| Ω̂†
ν(i
dT̃

dτ
)Z̃0

a |0, a⟩ =
∑
a,c

(Z̃0
a)

∗ ⟨0, a| Ω̂†
νH̃Z̃

0
c |0, c⟩ (6.23)

121

Because the operator T̂ has no dependence on electronic labels (and it only has singles, T̂1),
the equation simplifies to

i
dti

dτ
=

1

C

∑
a

(Z̃0
a)

∗
∑
c

⟨0, a| Ω̂†
νH̃Z̃

0
c |0, c⟩ (6.24)

where C is a positive normalization constant C =
∑

a(Z̃
0
a)

∗Z̃0
a This latter equation clearly

indicates the averaging over the electronic states for the amplitudes of the T̂ operator. To
implement the equations inside the code generator requires a substantial amount of work and
there are still many steps that are done manually. One needs to manipulate equations further
to solve for the amplitudes of the untransformed Ẑa operator. All of these manipulations were
done in hand-coded implementation. The code generator evaluates the basic multiplication
using the transformed amplitudes in Equation (6.22).

Discussion equation generator and Left hand side

From the main working equation in Equation (6.22), the reader can glean the general form of
terms that can be generated by termfactory. However, many special issues are adding up
that are better implemented by hand. Taking a step back, at the outset of this research the
linear and pure exponential representations were investigated, and only after further devel-
opment was the mixed exponential/linear representation explored. Therefore the language
around residual equations originated with the dẐx

dτ
= RHS shape. However, for the mixed

representation due to the presence of two operators eT̂ † and Ẑ, what was a singular deriva-
tive term on the left hand side of the equation instead becomes multiple derivative terms.
Further complications arise as the equations are cast in terms of transformed operators, and
the amplitudes need to be solved for. Determining the change of an operator Â ∈ {T̂, Ẑ} is
handled in the following abstract fashion: 1

dÂ

dτ
+ LHS = RHS, (6.25)

dÂ

dτ
= RHS− LHS. (6.26)

The scope of the project expanded to calculating these left-hand-side terms as well.
Thankfully, the logic and procedure is very similar to the right-hand-side terms. Therefore
the majority of the chapter will focus on the generation of the Residual equation (RHS) and
their terms, with a small section at the end explaining the small changes needed to allow
generation of the LHS equations and terms.

We next look at methods to improve the efficiency of the VECC approach, particularly
those that can reduce the computational scaling with respect to DoFs.

1Where LHS is everything except the derivative I am trying to calculate.

122

6.2 Computational Costs

Computational Scaling is extremely important as it can make or break this tool. Conse-
quently we looked at a number of different techniques to improve the performance of the
tool when scaling up our problem sizes.

6.2.1 Optimized Einsum

The most computationally expensive part of the VECC approach is computing the individual
terms. These operations are executed using Numpy’s einsum function2. It provides a very
useful interface to define mathematical operations in Einstein notation. For example:

• trace np.einsum(’ii’, a)
• inner product np.einsum(’i,i’, a, b)
• outer product np.einsum(’i,j’, a, b)
• matrix transpose np.einsum(’ij->ji’, c)
• matrix multiplication np.einsum(’ij,jk -> ik’, a, b)

Increasing the efficiency of these computations is of great interest. We next describe some
techniques used to achieve efficiency.

Linking to BLAS libraries One straightforward approach is to compile Numpy’s library
with links to a BLAS library such as IntelMKL or openBLAS [34, 35, 36, 37, 38]. This allows
low-level mathematical operations (matrix products) to use optimized C code, which is much
faster than any Python implementation. This is standard practice for all my calculations3.

Path optimization Besides linking to optimized libraries, there is also a method for opti-
mizing the path used by einsum. The principle here is that while a mathematical operation
may have multiple theoretically-equivalent evaluation methods, the real-world performance
can vary drastically. In particular, path optimization attempts to reduce the scaling of
the big-O cost respective to the number of DoF. This is accomplished by partitioning the
calculation up into a number of intermediate steps. By choosing an “optimal” partitioning
the maximum scaling of ALL intermediate steps is lower than the scaling of the original
calculation.

opt_einsum library A final optimization was the use of the opt_einsum library [58]. Their
documentation is well written and so I reproduce two examples to illustrate the use of
opt_einsum and path optimization. First from their GitHub page’s README file: Listing 6.1:

2https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
3At this time I have been using the 2019 version of IntelMKL, however it does seem that more recent

versions, 2022 specifically, have significant improvements. The 2022 version seems to require more overhead
to install due to the “oneAPI” so I hope to address this possible improvement in the future.

123

https://numpy.org/doc/stable/reference/generated/numpy.einsum.html
https://github.com/dgasmith/opt_einsum
https://numpy.org/doc/stable/reference/generated/numpy.einsum.html

� �
1 import numpy as np
2 from opt_einsum import contract
3

4 N = 10
5 C = np.random.rand(N, N)
6 I = np.random.rand(N, N, N, N)
7

8 %timeit np.einsum(’pi,qj,ijkl ,rk,sl ->pqrs’, C, C, I, C, C)
9 1 loops , best of 3: 934 ms per loop

10

11 %timeit contract(’pi,qj ,ijkl ,rk ,sl ->pqrs’, C, C, I, C, C)
12 1000 loops , best of 3: 324 us per loop� �

Listing 6.1: Example of tensor contraction performed with np.einsum and opt_einsum’s
contract.

Second, from their github.io documentation where they state:

As an example, consider the following expression found in a perturbation theory (one of
5, 000 such expressions):� �
’bdik ,acaj ,ikab ,ajac ,ikbd’� �

At first, it would appear that this scales like N7 as there are 7 unique indices; however,
we can define a intermediate to reduce this scaling.� �
(N^5 scaling)
a = ’bdik ,ikab ,ikbd’
(N^4 scaling)
result = ’acaj ,ajac ,a’� �
They go on to show the use of oe.contract_path to find a different path in Listing 6.2:� �

1 path_info = oe.contract_path(’bdik ,acaj ,ikab ,ajac ,ikbd ->’, ∗ views)
2

3 print(path_info)
4 #> Complete contraction: bdik ,acaj ,ikab ,ajac ,ikbd ->
5 #> Naive scaling: 7
6 #> Optimized scaling: 4
7 #> Naive FLOP count: 2.387e+8
8 #> Optimized FLOP count: 8.068e+4
9 #> Theoretical speedup: 2958.354

10 #> Largest intermediate: 1.530e+3 elements
11 #> --
12 #> scaling BLAS current remaining
13 #> --
14 #> 4 0 ikbd ,bdik ->ikb acaj ,ikab ,ajac ,ikb ->
15 #> 4 GEMV/EINSUM ikb ,ikab ->a acaj ,ajac ,a->
16 #> 3 0 ajac ,acaj ->a a,a->
17 #> 1 DOT a,a-> ->� �

Listing 6.2: Example path_info output detailing differences in naive and optimized path
contraction.

We can see that the calculation was split into 4 intermediate steps which exhibited a maximal
scaling of O(4) and a theoretical speedup of ≈ 3000.

I have found in practice that for systems with less than 15 DoF, (H2O, CO2, CH2O,
N2O, NH3) optimizing the paths either incurs a performance cost or shows relatively small
improvements under 10%. In this case, the improvement in scaling comes at the cost of

124

https://dgasmith.github.io/opt_einsum/paths/introduction/

larger prefactors, and in the case where the number of DoF is small, results in a decrease in
performance. For “medium” systems (vinyl, cytosine) we start to see serious computational
gains. Below I show comparisons of path optimization for a “small” system Section 6.2.1,
and a “medium” system Section 6.2.1:

Tensor rank Un-optimized einsum (s) opt_einsum (s) Relative Runtime

3rd order 0.000875 0.000388 2x
4th order 0.07769 0.00730 11x
5th order 5.022 0.070 74x
6th order 238.861 2.002 142x

Table 6.1: Relative and absolute runtimes of einsum vs. opt_einsum for a small system (5
electronic surfaces 8 normal modes). Results are for 1 calculation.

Tensor rank Un-optimized einsum (s) opt_einsum (s) Relative Runtime

3rd order 0.07 0.009 3x
4th order 27.364 0.142 193x
5th order 1200 3.925 306x

Table 6.2: Relative and absolute runtimes of einsum vs. opt_einsum for a medium system
(12 electronic surfaces, 12 normal modes). Results are for 1 calculation.

To provide some in context of performance benefits in practice we can look at Hexahe-
licene. The linear vibronic model of Hexahelicene, discussed in Section 6.3.9, provides a good
example as it is comprised of 63 normal modes and 15 electronic surfaces.

I first will detail the performance including all optimizations. I was able to simulate the
spectra with Z3 truncation in roughly 6 hours. This involves about 2800 integration steps,
integrated using an explicit Runge–Kutta method of order 5(4) with a 1 × 10−7 relative
tolerance and 1× 10−8 absolute tolerance. This calculation was performed on 20 cpu cores,
using 15GB of memory; running the same calculation with 4 cores takes about 22 hours.

The computational runtime is linear with respect to the length of the propagation, as
seen in Table 6.3. In Table 6.3 the first column lists the amount of real-world time it took to
compute the necessary EOM to propagate the wavefunction the associated # of femtoseconds
in column two. In column three, we can see the real-world computational time it took to
propagate 1fs for that particular block of the total simulation. We can see that there is a
larger start up time for the initial section of the propagation, but that the majority of the
entire simulation takes roughly 15 minutes per one femtosecond of propagation.

Because the runtime scales linearly we can get good estimates of the runtime by calculat-
ing only a few integration steps. The runtimes I just mentioned are using the most optimized
implementation of t-amplitudes. For example, to propagate 28 steps, roughly 0.25fs, takes
around 216 seconds with optimized einsum code. Using non-optimized einsum calls, it can
take around 4582 seconds, roughly 21x slower.

125

real time (s) simulation time (fs) real time per 1fs (s/fs)

00:00:00 0.0 –
01:22:49 2.5557 00:32:24
01:59:57 5.0587 00:14:50
02:38:00 7.5603 00:15:13
03:14:59 10.0519 00:14:51
03:54:40 12.5517 00:15:52
04:31:45 15.0678 00:14:44
05:10:10 17.5518 00:15:28
05:49:52 20.0512 00:15:53
06:30:50 22.5515 00:16:23

Table 6.3: Runtime data of Z3 truncated calculation of the ACF of a linear vibronic model of
Hexahelicene. Results are reported every 2.5 femtoseconds, or 10% of the total propagation
length 25fs.

6.2.2 Sparse Matrix Symmetrization

Symmetrization of certain mathematical tensors is also of importance in the VECC method.
By not computing all permutations of external labels, we make a trade-off: we can make
fewer einsum calls, but the resulting tensor needs to be symmetrized as we only calculate
the upper/lower triangle (effectively). Note that even though this symmetrization adds
computational cost, it adds less than what the respective einsum calls would cost.

Instead of using a trivial approach of symmetrizing by permuting over all indices and
normalizing, we choose instead to use matrix projection. This procedure is outlined in Sec-
tion 5.4.1. The procedure has significant performance benefits, as we can reduce the sim-
plistic transpose approach down to two matrix multiplications, which can be computed very
efficiently by a BLAS library as opposed to N ! additions. To further improve on this, we
use sparse matrices to perform the projection.

Below I show comparisons of the basic transposition approach to our sparse matrix ap-
proach for a “small” system section 6.2.1, and a “medium” system section 6.2.1:

Tensor rank Transpose (s) Sparse Matrix (s) Relative Runtime

4th order 0.125 0.066 2x
5th order 0.853 0.072 12x
6th order 10.609 0.093 114x

Table 6.4: Relative and absolute runtimes of basic transposition vs. sparse matrix projection
for a small system (2 electronic surfaces, 2 normal modes). Results are for 1000 consecutive
repetitions.

126

Tensor rank Transpose (s) Sparse Matrix (s) Relative Runtime

4th order 0.195 0.065 3x
5th order 11.9 0.544 22x
6th order 1153.4 22.68 51x

Table 6.5: Relative and absolute runtimes of basic transposition vs. sparse matrix projection
for a medium system (12 electronic surfaces, 12 normal modes). Results are for 1 calculation.

6.3 Results

In this section, I present vibrationally-resolved spectra generated using t-amplitudes. Rele-
vant technical details will be discussed in Section 6.3.2. I first benchmark my results using the
Multi-configuration time-dependent Hartree (MCTDH) software package in Sections 5.3.2 to
5.3.7, and then compare hexahelicene results with a recently published paper.

6.3.1 MCTDH calculations

The MCTDH software package is used to generate benchmark ACF results, which are then
turned into theoretical spectra through the use of autospec84, as described in the section be-
low. These results were generated through wavepacket propagation calculations. Harmonic
oscillator primitive basis functions (PBF) were used to describe the vibrational modes. A
multi-set single-particle function (SPF) basis was used. The ground electronic state was de-
scribed with one SPF, and excited electronic states were described with 3–6 SPF’s depending
on the strength of their associated coupling coefficients. Standard integrator settings were
used: CMF/var, BS/spf, and SIL/A. The initial wavefunction was always placed in the lower
electronic state. Calculations were run for various propagation lengths, 50, 100, 500, 1000
fs. Convergence in the PBF was determined by comparing MCTDH calculations. For most
systems approximately 30 PBF’s was sufficient, otherwise 100 to 300 PBF’s showed conver-
gence. Results were generated every 0.1fs. An example input file for water H2O is provided
in Listing E.1.

During the calculation ACF data is written to the file auto. For every propagation step,
in femtoseconds, the real, imaginary and absolute values of the ACF are recorded. This
data was then processed by autospec84. Note that the MCTDH data did not need to be
normalized.

6.3.2 Details of generating spectra

In this section I will provide the reader a more detailed explanation of how the final spectra
are obtained from the ACF that I generate. The software tool that I used to produce spectra
is autospec, specifically autospec84, provided in the MCTDH software package[59, 60]. A
simple example of how to use autospec84, for determining the absorption spectrum for the
photodissocia- tion of NOC, is provided at[61, Pg. 14-15].

127

The basic process to generate vibrationally-resolved electronic spectra such as Fig. 6.1
requires the following steps:

1. Calculate ACF using t-amplitudes.
2. Normalize x, y data through interpolation.4
3. Fourier transform interpolated ACF using autospec84.

The ACF data needs to be interpolated and normalized for comparison to MCTDH.
The raw ACF has a variable real-time spacing between data points and the values are not
normalized. Whereas the MCTDH ACF data has a fixed spacing and the data is normalized.
The necessary components to calculate the ACF using t-amplitudes are:

• A vibronic model of the form in Equation (3.37), an example is provided in Listing E.2.
• Relevant equations of motion.

As t-amplitudes implements a coupled cluster method we can choose various levels of
truncation (Singles, Doubles, etc) which change the EOM used to propagate the wavefunc-
tion. For most purposes those EOM will already have been pre-generated. If not, then
termfactory can be used to generate necessary EOM.

Fourier Transformation I used autospec84, provided in MCTDH, to obtain spectra
from results generated by t-amplitudes and MCTDH. autospec84, quote: “computes the
spectrum by Fourier transform of the autocorrelation function which is multiplied with the
weight function”:

exp

{
−
(t
τ

)iexp}
∗ cosn

(π ∗ t
2T

)
(6.27)

The arguments provided to autospec84 to generate Figure 6.1 are shown below. Similar
commands were used to produce the other spectra in this section.

• -o ./h2o_vibronic_linear_tf50.pl
• -f ./ACF_ABS_CC_h2o_vibronic_linear_tf50_z3_normalized.txt
• -p 4000
• 21.0 11.5 eV
• 30
• 1

The command -p 4000 changes the density of data points plotted. The limits and units of
the x-axis of the plot are set using 21.0 11.5 eV. The value of τ is set by 30. The value of
iexp is set by 1. The input file path is given by -f, and the output file path by -o. For the
previous commands, the general weight function in Equation (6.27) becomes

exp

{
−
(t

25

)1}
∗ cosn

(π ∗ t
2T

)
(6.28)

4Scipy’s interpolate.interp1d was used to perform the interpolation.

128

https://docs.scipy.org/doc/scipy/reference/generated/scipy.interpolate.interp1d.html

For each point on the x axis autospec84 generates three y values (g0, g1, g2) corresponding
three choices of the cosine exponent N . In general, n = 1 gives the preferred shape, and so
all results are plotted using the g1 data[61] Note that the magnitudes of calculated spectral
peaks are dependent on the choice of τ in Equation (6.27). By choosing iexp to be 1, I am
choosing to Fourier transform with a Lorentzian function. Choosing iexp to be 2, it would
instead be using an exponential function.

6.3.3 Benchmark models

Results are presented for five linear vibronic model of molecules, whose Hamiltonians are of
the form shown in Equation (3.37). The molecules are water (H2O), carbon dioxide (CO2),
formaldehyde (CH2O), nitrous oxide (N2O), and ammonia (NH3). We benchmark the VECC
result of t-amplitudes against the MCTDH software package as described in the previous
section. All spectra are generated from ACFs calculated by propagating the initial wave-
function for 50 femtoseconds. Electronic transition dipole moments are chosen to be 0.1 eV
for all electronic surfaces.

We are calculating photo-electron spectra using ionized states calculated by the IP-
EOMCC method [62, 63, 64, 65, 66, 67, 68]. These vibronic models were calculated with
code developed in the Nooijen group, using similar protocols as described in Chapter 3 [69,
70, 71]. These protocols, as explained with reference to work by Santoro [45], were first devel-
oped in [71] and generalized to TD-DFT by Neugebauer and Nooijen [72]. The five vibronic
models that are used here were developed by undergraduate student Julia Endicott [73, 74].
In these calculations, the ground state was optimized and the harmonic frequencies were
obtained using coupled cluster single-double (CCSD) with a TZ2P atomic basis set. Follow-
ing that, ionization potentials were calculated using subsequent IP-EOMCCSD calculations
using the same TZ2P basis set. The vibronic models were then constructed in the same
fashion as Equations (3.25) and (3.26), including up to quartic constants. Here we only use
the linear vibronic models.

6.3.4 Water H2O

The parameters for this vibronic model of H2O are presented in Table 6.6. This model has
three electronic surfaces A = 3 and three normal modes N = 3. We expect this model’s
spectra to have three bands, around 14eV, 12eV and 18eV, due to the fairly large separation
between the three electronic states. The second and third modes ω2, ω3 are almost degener-
ate, and the largest coefficient is g332 . Consequently we expect the highest energy band to be
the most complicated.

In Figure 6.1, we see the VECC and MCTDH spectra exactly agree. Results for t-amplitude
are generated in 1 to 2 minutes; 52 seconds for Z1 truncation, 82 seconds for Z2 truncation,
and 102 seconds for Z3 truncation. In this case, Z1 truncation is sufficient to correctly
capture the MCTDH spectra. The theoretical spectra has good agreement with the experi-
mental spectra in Figure 6.1. The magnitude of the theoretical peak slightly below 13eV is
smaller than the corresponding experimental peak.

129

Figure 6.1: Waterfall style plot. Theoretical vibrationally-resolved photo-electron spectra
of H2O is presented in the upper subplot. Digitized data of experimental photo-electron
spectrum of H2O using the He 584(Å) line is presented in the lower subplot. Experimental
data reproduced from [75, Fig. 1].

130

F
ig

ur
e

6.
2:

D
ir

ec
t

co
m

pa
ri

so
n

of
Z2

an
d

Z3
tr

un
ca

ti
on

fo
r

H
2O

.

131

Table 6.6: H2O model parameters (eV).
Parameter Parameter Parameter

E11 14.051 208 g111 0.650 150 g133 −0.213 821
E22 11.785 450 g112 0.302 387
E33 18.280 470 g221 0.076 394

Z.P.E −0.591 746 g222 0.291 455
ω1 0.208 018 g331 −0.692 915
ω2 0.481 209 g332 0.857 173
ω3 0.494 264

132

6.3.5 Carbon Dioxide CO2

The parameters for this vibronic model of CO2 are presented in Table 6.7. This model has
six electronic surfaces A = 6 and four normal modes N = 4. There are two degeneracies in
the electron states: E22, E33 are degenerate, and E55, E66 are degenerate. We expect this
model’s spectra to have three bands, around 19eV, 17eV and 13eV. The second and third
modes ω2, ω3 are degenerate, and the largest coupling coefficients are g254 , and g364 . There are
to coupling coefficients that are exactly degeneracies, and numerous ones which are almost
degenerate. We expect the multiple degeneracies around 17eV and the associated coupling
strengths to create a complicated band structure in that region.

In Figure 6.3, we see the VECC and MCTDH spectra almost exactly agree. There are
two discrepancies around 14eV, and a small difference around 18.5eV. Results take less
than 10 minutes to run: 135 seconds for Z1 truncation, 352 seconds for Z2 truncation, and
462 seconds for Z3 truncation. In this case, Z2 truncation is needed to correctly capture
the majority of the MCTDH spectra. The error in the Z1 truncation causes most of the
spectra to have incorrect energetic placement, shifted higher or lower in energy compared to
the MCTDH spectra. Looking at two small peaks around 14–13.5 eV, we can see that Z3
does a better job than Z2 of capturing these less pronounced peaks. The theoretical spectra
captures the rough shape of the experimental spectra in the lower subplot of Figure 6.3.
Although the theoretical spectra’s second band appears to lose intensity sooner than the
experimental spectra, around the 17eV region specifically. Comparing magnitudes is not
possible.

Table 6.7: CO2 model parameters (eV).
Parameter Parameter Parameter

E11 19.027 256 g111 −0.100 514 g122 0.052 180
E22 17.590 002 g221 0.311 746 g133 0.051 851
E33 17.590 002 g331 0.311 746 g144 −0.341 311
E44 17.744 698 g441 0.060 581 g254 −0.668 194
E55 13.315 085 g551 0.075 499 g452 0.324 922
E66 13.315 085 g661 0.075 499 g364 −0.666 585

Z.P.E −0.318 398 g463 0.327 569
ω1 0.170 654
ω2 0.084 656
ω3 0.084 656
ω4 0.296 830

133

Figure 6.3: Waterfall style plot. Theoretical vibrationally-resolved photo-electron spectra
of CO2 is presented in the upper subplot. Digitized data of experimental photo-electron
spectrum of CO2 using the He 584(Å) line is presented in the lower subplot. Experimental
data reproduced from [76, Fig. 16], individual bands can be found in Figures 17–19.

134

F
ig

ur
e

6.
4:

D
ir

ec
t

co
m

pa
ri

so
n

of
Z2

an
d

Z3
tr

un
ca

ti
on

fo
r

C
O

2.

135

6.3.6 Formaldehyde CH2O

The parameters for this vibronic model of CH2O are presented in Table 6.8. This model
has four electronic surfaces A = 4 and six normal modes N = 6. We expect this model’s
spectra to have four bands, around 16eV, 15eV, 13eV, and 10eV. No vibrational modes are
exactly degenerate, the closest, ω3, ω6, are within 0.01eV. There are no exact degeneracies
in the coupling coefficients. The largest coupling term is g135 . We expect a fairly complicated
band structure between 17eV and 14eV due to the small spacing between the three highest
electronic states.

In Figure 6.5, we see the VECC and MCTDH spectra exactly agree. Results take 1 to 4
minutes: 75 seconds for Z1 truncation, 207 seconds for Z2 truncation, and 250 seconds for
Z3 truncation. Both t-amplitude results take roughly a minute to run. In this case, Z2
truncation is sufficient to correctly capture the majority MCTDH spectra. The Z1 truncation
does a fairly poor job around 18–16 eV, as well as around 11eV.

The theoretical spectra has reasonable agreement with the experimental spectra in Fig-
ure 6.5, capturing the general structure of each band. It describes most of the peaks correctly,
but fails to reproduce all of the peaks accurately. In the 15 ∼ 14eV band it does reproduce
six peaks. But in the 16eV band the theoretical spectra only has four distinct peaks, and
there are five distinct peaks present in Figure 6.5.

Table 6.8: CH2O model parameters (eV).
Parameter Parameter Parameter

E11 15.245 549 g111 −0.117 668 g125 0.144 927
E22 16.641 110 g112 0.323 218 g126 0.194 289
E33 9.915 591 g113 −0.006 768 g135 −0.509 812
E44 13.766 519 g221 0.417 238 g136 −0.150 823

Z.P.E −0.738 212 g222 0.022 881 g231 −0.049 255
ω1 0.193 726 g223 0.461 602 g232 0.409 333
ω2 0.224 191 g331 −0.072 118 g233 −0.295 391
ω3 0.369 378 g332 −0.006 233 g144 −0.197 230
ω4 0.148 693 g333 0.051 206
ω5 0.161 180 g441 0.107 009
ω6 0.379 255 g442 0.485 266

g443 −0.064 124

136

Figure 6.5: Waterfall style plot. Theoretical vibrationally-resolved photo-electron spectra of
CH2O is presented in the upper subplot. Evidence of Z3 contribution making a difference in
the spectra. Digitized data of experimental photo-electron spectrum of CH2O using the He
584(Å) line is presented in the lower subplot. Experimental data reproduced from [77, Fig.
1], individual bands can be found in Figures 2–4.

137

F
ig

ur
e

6.
6:

D
ir

ec
t

co
m

pa
ri

so
n

of
Z2

an
d

Z3
tr

un
ca

ti
on

fo
r

C
H

2O
.

138

6.3.7 Nitrous Oxide N2O

The parameters for this vibronic model of N2O are presented in Table 6.9. This model has
six electronic surfaces A = 6 and four normal modes N = 4. There are two degeneracies in
the electron states: E33, E55, are degenerate, and E44, E66 are degenerate. We expect this
model’s spectra to have four bands, around 20eV, 18eV, 16eV, and 12eV. The third and
fourth modes ω3, ω4 are degenerate, and the strongest coupling coefficients are g342 , and g562 .
We expect a fairly complicated band structure between 18eV due to the degenerate electronic
states and the fact that the associate coupling coefficients have the greatest magnitude.

The theoretical spectra has reasonable agreement with the experimental spectra in Fig-
ure 6.5, capturing the general structure of each band. It describes most of the peaks correctly,
but fails to reproduce all of the peaks accurately. In the 15 ∼ 14eV band it does reproduce
six peaks. But in the 16eV band the theoretical spectra only has four distinct peaks, and
there are 5 peaks present in Figure 6.5.

In Figure 6.7, we see the VECC and MCTDH spectra exactly agree. Results take less
than 10 minutes to run: 138 seconds for Z1 truncation, 384 seconds for Z2 truncation, and
461 seconds for Z3 truncation. In this case, Z2 truncation is sufficient to correctly capture the
MCTDH spectra. The Z1 truncation again exhibits incorrect energies when compared to the
MCTDH spectra. The theoretical spectra has reasonable agreement with the experimental
spectra in Figure 6.7, capturing the general spacing of the four bands. However, the 18–19 eV
band has a different shape as well as being shift up by ≈ 1eV.

139

Figure 6.7: Waterfall style plot. Theoretical vibrationally-resolved photo-electron spectra
of N2O is presented in the upper subplot. Digitized data of experimental photo-electron
spectrum of N2O is presented in the lower subplot. Experimental data reproduced from [76,
Fig. 1], individual bands can be found in Figures 2–5.

140

F
ig

ur
e

6.
8:

D
ir

ec
t

co
m

pa
ri

so
n

of
Z2

an
d

Z3
tr

un
ca

ti
on

fo
r

N
2O

.

141

Table 6.9: N2O model parameters (eV).
Parameter Parameter Parameter

E11 19.731 012 g111 0.010 438 g121 −0.155 567
E22 16.283 402 g112 0.170 076 g122 −0.122 708
E33 18.645 826 g221 −0.162 425 g131 0.000 088
E44 12.432 094 g222 −0.123 629 g134 −0.083 328
E55 18.645 826 g331 0.354 892 g231 0.000 388
E66 12.432 094 g332 −0.221 269 g232 −0.000 085

Z.P.E −0.298 130 g441 0.067 501 g234 −0.066 600
ω1 0.159 852 g442 0.023 286 g141 0.002 779
ω2 0.285 443 g551 0.354 892 g142 −0.000 606
ω3 0.075 482 g552 −0.221 269 g144 −0.288 642
ω4 0.075 482 g661 0.067 501 g241 0.000 198

g662 0.023 286 g244 0.204 549
g341 0.267 659
g342 0.539 477
g153 0.083 300
g253 0.066 873
g353 −0.000 003
g163 0.290 770
g263 −0.204 810
g561 0.267 225
g562 0.538 994

142

6.3.8 Ammonia NH3

The parameters for this vibronic model of NH3 are presented in Table 6.10. This model
has three electronic surfaces A = 3 and six normal modes N = 6. The electronic states
E11, E33 are degenerate. We expect this model’s spectra to have two bands, around 16eV,
and 10eV. There are two degeneracies in the modes: ω3, ω4, as well as ω5, ω6. There are
many degeneracies among the coupling coefficients: g113 , g333 , g134 , are degenerate, g111 , g331 ,
are degenerate, and g112 , g332 , are degenerate. Additionally, the coefficients g115 , g335 , g136 , are
almost degenerate. The strongest coupling coefficients are the two degenerate groups at
0.573074eV and 0.588249eV.

In Figure 6.9, we see the VECC and MCTDH spectras are slightly different. Results
take less than 2 minutes: 37 seconds for Z1 truncation, 55 seconds for Z2 truncation, and
114 seconds for Z3 truncation. All truncation levels can accurately capture the low energy
band, however in the high energy band Z1 preforms quite poorly. In this case, Z2 truncation
is sufficient to capture the majority of the MCTDH spectra. We do see some deviation
between the Z2 and Z3 results. The theoretical spectra has reasonable agreement with the
experimental spectra in Figure 6.9, capturing the general structure of both bands. The lower
energy band on the other hand is easily described.

Table 6.10: NH3 model parameters (eV).
Parameter Parameter Parameter

E11 15.526 843 g111 0.330 653 g123 −0.252 207
E22 9.746 612 g112 0.573 074 g125 0.108 074
E33 15.526 843 g113 0.588 249 g134 −0.588 249

Z.P.E −0.954 114 g115 0.332 074 g136 −0.332 078
ω1 0.136 676 g221 −0.501 301 g234 −0.251 602
ω2 0.438 180 g222 0.154 145 g236 0.107 915
ω3 0.213 508 g223 0.000 001
ω4 0.213 508 g225 −0.000 004
ω5 0.453 178 g331 0.330 653
ω6 0.453 178 g332 0.573 074

g333 −0.588 248
g335 −0.332 083

143

Figure 6.9: Waterfall style plot. Theoretical vibrationally-resolved photo-electron spectra
of NH3 is presented in the upper subplot. Digitized data of experimental photo-electron
spectrum of NH3, using the He 584(Å) resonance line, is presented in the lower subplot.
Experimental data reproduced from [78, Fig. 4].

144

F
ig

ur
e

6.
10

:
D

ir
ec

t
co

m
pa

ri
so

n
of

Z2
an

d
Z3

tr
un

ca
ti

on
fo

r
N

H
3.

145

6.3.9 Larger Systems

As seen in Sections 6.3.4 and 6.3.8 the VECC method is capable of accurately simulating
vibronic spectra. In addition, I have made efforts to test t-amplitudes using larger systems.
MCTDH results for acroleyin (C3H4O), cytosine (C4H5N3O), furan (C4H4O), formamide
(CH3NO) and vinyl chloride (C2H3Cl) were calculated. Although at this time VECC results
have not been generated for those systems. Instead, in the section below, I will compare
results for hexahelicene (C26H16) with literature [45].

Hexahelicene

The hexahelicene molecule is represented by the linear vibronic model M062X5, consisting
of 63 normal modes and 15 electronic surfaces. This makes it unreasonable to list all the
parameters here. The parameters of the M062X model were provided by F. Santoro, as
per the relevant paper [45]. Here I compare the electronic absorption spectra generated
using VECC to F. Santoro’s Multi-layer Multi-configuration time-dependent Hartree (ML-
MCTDH) spectra in Figure 6.11. The digitzed experimental spectra is also included.

There is a lower energy band at 3.5–5 eV, and a higher energy band at 5–6 eV. The
simulated spectra’s vertical energies, intensities, and zero point energy have been shifted in
the same manner used in the reference. The peak positions and intensities of the VECC and
ML-MCTDH are fairly close in the lower energy band. In this region the VECC method
successfully models the vibronic coupling effects. The peak positions of the VECC and
ML-MCTDH are consistent in the higher energy band. But there is a discrepancy in the
intensities; the VECC’s are lower and thus closer to the digitized experimental spectra It
appears that the ML-MCTDH overestimates the intensities in the higher energy band

Two levels of truncated VECC results are shown: Singles-Doubles (Z:SD) and Singles-
Doubles-Triples (Z:SDT). The SD calculation takes roughly 30 minutes, and the SDT (as
discussed in Section 6.2) takes around 6.5 hours. At higher accuracy in the Ẑ expansion, we
see improvements in overall spectra shape. However, the SD and SDT truncations show only
slight differences and so we can conclude that the SD truncation is sufficiently converged.

Compared to the ML-MCTDH approach in [45] the VECC approach has much better
agreement with the experimental data in the high energy region. Additionally, the VECC SD
calculation is an order of magnitude faster than the ML-MCTDH calculation, which takes
roughly 7–8 hours for the M062X model.

5The M062X linear vibronic model (LVM) in the reference paper [45] is named after the DFT functional
(M062X) used in the diabatization process to generate the model.

146

https://pubchem.ncbi.nlm.nih.gov/compound/Hexahelicene

Figure 6.11: Vibrationally-resolved electronic absorption spectra of hexahelicene (C26H16).

6.4 Conclusion

I showed exact agreement with MCTDH for the small benchmark molecules. For larger
molecules like hexahelicene, my results replicate the overall shape of the spectra as presented
in the literature. The vibronic models that we are working with may not be of sufficient
accuracy and this is motivating current work ongoing in the Nooijen group to collaborate
with other researchers to produce better models.

The exponential/linear VECC method with Ehrenfest projection approach has been im-
plemented using termfactory and t-amplitudes. The approach has been applied to a
number of benchmark molecules and shows highly satisfactory results. The favourable scal-
ing properties of the VECC approach results in efficient computations.

In this thesis we limit ourselves to the calculation of spectra, but we note that the code
can also be used to calculate time-dependent diabatic state populations. This is of interest
to the community and results will be reported elsewhere.

In terms of the software packages as a tool; they have been used successfully to enable
research. t-amplitudes is well positioned to work with new models when they are produced.
There are still further avenues available to improve the runtime.

147

Chapter 7

Conclusions and Final Remarks

Two computational schemes, PIMC and VECC were presented and discussed. in Chapter 4 I
showed that by using a PIMC approach, the GMD-reduced scheme, it is possible to circum-
vent a sign-problem presented by the non-stoquastic nature of the vibronic Hamiltonian.
This method was shown to be strongly affected by the proposal distribution. The GMD
scheme, which does not trace out all electronic DoF, was shown to be effective for systems
with weaker coupling when this non-stoquastic nature was not present. This alternative
method appeared to be less dependent on the proposal distribution.

in Chapter 5, I outlined the problem of determining all non-zero contributing pairings
for a specific expression (Equation (5.1)) evaluated using Wick’s Theorem, and described
how the software package termfactory, I implemented, solves this problem. I also explored
some alternative avenues for increasing the robustness of this package, by shifting away from
embedded assumptions, and instead representing constraints as data.

in Chapter 6, we saw the application of the EOM generated by termfactory in the cal-
culation of vibrationally-resolved electronic spectra, of vibronic models. We showed exact
agreement with MCTDH for small molecules, as well as much improved computational run-
times. For a larger system, hexahelicene, we were able to replicate the overall shape of the
spectra as presented in literature. The t-amplitudes software package and VECC theory
are thus well positioned to investigate other systems of interest.

I described my two computational schemes for investigating vibronic models of nonadia-
batic systems. Code for both termfactory and t-amplitudes are available on GitHub.

7.1 Future Work and Ongoing Projects

Path Integral Monte Carlo (PIMC) For the PIMC approach I derived an energy
estimator in Appendix B. It should be straightforward to implement and obtain results for
the model systems. These new results could then be compared to SOS or the previous PIMC
results where we employed a re-weighing approach[44].

148

https://github.com/ngraymon

Test VECC on additional models The following additional models were investigated
using MCTDH but VECC spectra have not yet been generated.

• Acroleyin (C3H4O) A = 7, N = 18
• Cytosine (C4H5N3O) A = 33, N = 7
• Furan (C4H4O) A = 8, N = 21
• Formamide (CH3NO) A = 6, N = 11
• Vinyl chloride (C2H3Cl) A = 6, N = 12
• Formic acid (HCO2H) A = 6, N = 9
• Hydrogen peroxide (H2O2) A = 5, N = 6

This is straightforward in principle and just involves setting up the right scripts on computa-
tional servers such as the Advanced Research Computing (ARC) provided by the The Digital
Research Alliance of Canada1. The Cytosine vibronic model was of particular interest as
it was generated using the diabatization procedure described in Section 3.5, as opposed to
the benchmark models in Section 6.3.3 which were computed using a different diabatization
procedure.

Vibronic models incorporating Spin-orbit coupling There has been recent work in
the Nooijen group to generate new vibronic models using T. Zeng’s spin-orbit coupling
diabatization scheme. Ideally this would allow for generating vibronic models for which
thermodynamic properties are of interest. These models would provide better foundation
for the use of PIMC scheme I described in Chapter 4 than the simple model systems that I
have used so far.

Integer linear programming (ILP) Personally, I would like to integrate the ILP ap-
proach I described into termfactory. At this moment I have a proof-of-concept prototype,
but it still requires more work before presenting to an end-user. Additionally I would like to
further generalize the second stage of the problem, determining pairings.

Thermal properties using VECC As previously discussed, with regards to VECC the-
ory, thermal properties can be calculated but require more general and complicated EOM.
Extending the t-amplitudes software package to support the calculation of thermal prop-
erties is of interest. This also requires the extension of termfactory to generating more
general terms and pairings which include both fi and f̄i prefactors, as opposed to the sim-
plified form, as described in Section 5.2.2. I am confident that I know what steps need to
be taken to extend termfactory in this manner. However, edge cases may prove extremely
difficult to handle, as they did with t2 terms. The problem is solvable but requires a careful
and methodical approach so as to not get drowned by the complexity.

Below are a few research tangents which were left in an unfinished state or shelved and might
be worth future effort.

1Formerly known as Compute Canada.

149

Iterative Decomposition Scheme This was an attempt to produce sampling/proposal
distributions in a automated manner for a general vibronic model. The general principle
was to extract eigenvalues, in manner very similar to singular value decomposition (SVD),
and then determine coefficients for new ‘fictitious’ surfaces using the extracted eigenvalues.
An implementation in Julia is available on GitHub. Ultimately we didn’t pursue this, as the
results were mixed.

Dense transformation scheme This was an attempt to make a numerical approach for
generating “arbitrary” vibronic models for benchmarking PI approaches. We started with a
deliberately crafted Hamiltonian Ĥ, of continuous normal mode co-ordinates N and discrete
electronic states A, that was diagonal in A and therefore could be evaluated analytically.
The approach was to find a transformation to some “dense” representation, meaning that the
result was no longer diagonal in A but now had non-zero off-diagonal coupling coefficients.
The intent here was that one could produce what appeared to be a challenging vibronic
model, which could be freely parameterized, and benchmark the results with ease, due to
the nature of already possessing the solution. Ideally the “strength” of the transformation
could be controlled by a parameter A, such that for a = 0 there would be no change, and
that for a = aMAX the matrix would be “maximally” dense. One of the challenges was to
design a monotonically increasing transformation. We may have had some minimal success
with 2× 2 matrices but for, 3× 3, 4× 4, and larger, things started to break down. Even the
notion of aMAX was not well defined

The Displaced model in Section 4.7.1 is an example of a system which was used to bench-
mark the PI results and has a parameter which provides control of the vibronic coupling.
It was handcrafted to be of use, which was possible due to the small size of the system,
but for larger systems this becomes very difficult. With a well-defined transformation, we
could investigate the performance for larger systems without the need for expensive SOS
calculations.

PIGS A significant portion of the initial years of my studies were dedicated to the explo-
ration of Path Integral Ground State (PIGS), specifically to extend the work done in [44] to
calculate internal energy. This was waylaid by COVID unfortunately. I think it could still
be an interesting avenue to explore, especially if the MH component presented in my thesis
could be incorporated into the PIGS approach.

Distribution Fitting Another avenue of exploration was the fitting of the PIMC distri-
butions. This was intended to improve the performance of the method by approximating
the tails using the slope of the dominant part of the distribution. This was done by eval-
uating log

(
g(R)
ϱ(R)

)
= s and computing a log binning distribution for p(s), then fitting the

binning distribution to a continuous sum of gaussian distributions ϱ(s). We then attempt
to numerically integrate esϱ(s), using a scheme such as Gauss-Legendre. Then we calculate

Zf =

∫
esϱ(s) ds Z(T1) = Zf (T1)Z0(T2) (7.1)

150

https://github.com/0/VibronicToolkit.jl/blob/master/src/iterative_decomposition.jl

Ultimately this approach did not seem promising so it was not pursued further. It is entirely
possible that there are techniques I was unaware of, or newly developed techniques which
could greatly simplify this problem.

Application of Machine Learning This topic is rather large, as one can imagine many
ways that machine learning could be used, for example to generate proposal distributions, as
well as to do the PI portion, and/or to compute the expectation values. Maybe autoencoders,
and/or latent spaces could be a pathway towards a metric of vibronic coupling strength?
Training a ML model on vibronic coupling models, and trying to design it to design/predict
new ones, to provide a large library of systems to benchmark various tools (VECC, MCTDH,
PI) could be useful.

7.2 Outstanding questions

Here I would like to briefly outline a collection of thoughts and ideas that could be explored
in the future.

Coupling Metric λ To my knowledge there is no formal metric for measuring or assessing
how “coupled” a vibronic system is. It is of course clear when a system has no coupling or
weak coupling, but the notion of strong coupling seems to be defined as any region where
techniques struggle to produce good results. This always bothered me; it felt natural to want
to use statements such as

We can see that for λ = 0.2 the system becomes weakly-coupled such that vertical
Frank Condon calculations are no longer sufficient but that a CC approach, with
a Singles expansion, is sufficient for an accurate description. At λ = 1.2 the
coupling strength increases such that Singles and Doubles are necessary, and for
λ ≥ 3.5 the coupling is strong enough that Triples are needed. Finally the strength
plateaus around λ ≈ 6.

A natural comparison would be phase diagrams: plotting (say in the z direction, or as a
heatmap); some metric of the coupling strength as a function of certain parameters: geo-
metric configuration, state separation, for example. Consider activation barriers in reaction
pathways: there is importance in understanding the different pathways, and the height of
activation barriers, and also of the number of steps in a pathway.

Having a standard approach to measure the coupling strength seems intuitively applicable
to processing of many different molecules and chemical compounds. Supposing that you have
three different methods, each of which performs best within a specific region of coupling
strength. Suppose Method 1 is good between 0 ≤ λ ≤ 0.8, Method 2 between 0.5 ≤ λ ≤ 2.6
and Method 3 between 4.5 ≤ λ ≤ 7. You could potentially process a large number of systems,
and apply the best Method to each one based on the coupling strength (λ). This becomes an
example of using such a metric in a predicative application for filtering. For systems where

151

3 ≤ λ ≤ 4 you might simply avoid spending time on them, as none of your methods would
perform well.

I suspect that realistically one would need a variety of different metrics, that of course
would depend on the size and type of the system and therefore become an entire framework
requiring maintenance. Metrics suitable for a simple water molecule (H2O) with 3 vibra-
tional modes would very likely not be sufficient to describe a more complex molecule like
hexahelicene (C26H16) with 64 vibrational modes. There are also different vibronic mod-
els and so this would likely lead to certain metrics only being relevant for certain models.
For single state systems, you can look at dE

dkB
, but of course this falls apart for many state

systems. Measuring the magnitude of the gradient terms (∆, ∆2) in Section 3.2 might be
possible, but this seems not worth pursing because it requires computing the integrals that
we were trying to avoid all along!

It is possible that such a formal definition/metric does exist and that I simply haven’t
encountered it; I would be happy to be proven wrong! Overall it just felt like a missing tool
in my mathematical toolbox.

Metric of proposal distribution It is desirable to have a heuristic to pick a “good”
proposal/sampling distribution ϱ for an arbitrary distribution g. It seem natural, then, that
this would require a metric to measure the “goodness” of the distribution. Of course there is
the Kullback–Leibler divergence, which does provide some measure. I feel it would be useful
to have a basic protocol of how to approach a generic vibronic model with a small library
of “standard” proposal distributions. Being able to heuristically measure their fit and then
choose an appropriate distribution would then make for a more complete tool for the PI
approach and allow it to be utilized by a broader group of researchers.

Fourier Transform I use, the autospec84 script from the MCTDH software package to
produce spectra from an ACF in Chapter 6. However this requires that the ACF has uniform
spacing, and therefore that I interpolate the results from the t-amplitudes software package.
I have some vague idea that there are approaches to transforming variably-spaced functions
using the Fourier transform and I was curious if that would have had any significant effect
on the spectra that are produced. Additionally my understanding of the various knobs and
tuning parameters was only at the basic level and I would have liked to have a better grasp
of the underlying nature. From a programmer’s perspective, I was annoyed at having the
t-amplitudes package be tied down to the use of an entirely different software package and
would have liked to implement my own Fourier Transform to have a self-contained solution;
of course time did not permit this possibility.

152

Bibliography

[1] Ken Suzuki et al. “Combinatorial computational chemistry approach to the design of
cathode materials for a lithium secondary battery”. In: Applied surface science 189.3-4
(2002), pp. 313–318.

[2] Lesley R Rutledge, Seth M McAfee, and Gregory C Welch. “Design and computational
characterization of non-fullerene acceptors for use in solution-processable solar cells”.
In: The Journal of Physical Chemistry A 118.36 (2014), pp. 7939–7951.

[3] M. J. Frisch et al. Gaussian~16 Revision C.01. Gaussian Inc. Wallingford CT. 2016.

[4] Malcolm W Chase and National Information Standards Organization (US). NIST-
JANAF thermochemical tables. Vol. 9. American Chemical Society Washington, DC,
1998, pp. 1–1951. url: https://webbook.nist.gov/cgi/cbook.cgi?ID=C7727379&
Units=CAL&Mask=1#ref-2.

[5] Gilbert. Strang. Linear algebra and its applications. 2nd ed. Orlando: Academic, 1980.
isbn: 012673660X.

[6] Marcel Nooijen and Songhao Bao. “Normal ordered exponential approach to ther-
mal properties and time-correlation functions: general theory and simple examples”.
In: Molecular Physics 119.21-22 (2021), e1980832. doi: 10.1080/00268976.2021.
1980832.

[7] Richard P Feynman. Statistical mechanics: a set of lectures. CRC press, 2018.

[8] KE Schmidt and Michael A Lee. “High-accuracy Trotter-formula method for path
integrals”. In: Physical Review E 51.6 (1995), p. 5495.

[9] Mark Tuckerman. Statistical mechanics: theory and molecular simulation. Oxford Uni-
versity Press, 2010, pp. 133–151, 278–281, 284–286.

[10] George Casella Christian P. Robert. Monte Carlo Statistical Methods. 2nd ed. 2004.
Springer Texts in Statistics. New York, NY: Springer New York, 2004. isbn: 1-4757-
4145-6. doi: 10.1007/978-1-4757-4145-2. url: https://doi-org.proxy.lib.
uwaterloo.ca/10.1007/978-1-4757-4145-2.

[11] Christian P Robert and George Casella. “The metropolis—Hastings algorithm”. In:
Monte Carlo statistical methods. Springer, 1999, pp. 231–283. eprint: https://arxiv.
org/pdf/1504.01896.pdf.

[12] Jiří Čížek. “On the correlation problem in atomic and molecular systems. Calculation
of wavefunction components in Ursell-type expansion using quantum-field theoretical
methods”. In: The Journal of Chemical Physics 45.11 (1966), pp. 4256–4266.

153

https://webbook.nist.gov/cgi/cbook.cgi?ID=C7727379&Units=CAL&Mask=1#ref-2
https://webbook.nist.gov/cgi/cbook.cgi?ID=C7727379&Units=CAL&Mask=1#ref-2
https://doi.org/10.1080/00268976.2021.1980832
https://doi.org/10.1080/00268976.2021.1980832
https://doi.org/10.1007/978-1-4757-4145-2
https://doi-org.proxy.lib.uwaterloo.ca/10.1007/978-1-4757-4145-2
https://doi-org.proxy.lib.uwaterloo.ca/10.1007/978-1-4757-4145-2
https://arxiv.org/pdf/1504.01896.pdf
https://arxiv.org/pdf/1504.01896.pdf

[13] Fritz Coester and Hermann Kümmel. “Short-range correlations in nuclear wave func-
tions”. In: Nuclear Physics 17 (1960), pp. 477–485.

[14] Rodney J Bartlett and George D Purvis. “Many-body perturbation theory, coupled-
pair many-electron theory, and the importance of quadruple excitations for the corre-
lation problem”. In: International Journal of Quantum Chemistry 14.5 (1978), pp. 561–
581.

[15] T Daniel Crawford and Henry F Schaefer III. “An introduction to coupled cluster
theory for computational chemists”. In: Reviews in computational chemistry 14 (2007),
pp. 33–136.

[16] Rodney J Bartlett and Monika Musiał. “Coupled-cluster theory in quantum chem-
istry”. In: Reviews of Modern Physics 79.1 (2007), p. 291.

[17] Frank Neese, Frank Wennmohs, and Andreas Hansen. “Efficient and accurate local
approximations to coupled-electron pair approaches: An attempt to revive the pair
natural orbital method”. In: The Journal of chemical physics 130.11 (2009), p. 114108.

[18] Christoph Riplinger et al. “Natural triple excitations in local coupled cluster calcula-
tions with pair natural orbitals”. In: The Journal of chemical physics 139.13 (2013),
p. 134101.

[19] Martin Schütz and Hans-Joachim Werner. “Low-order scaling local electron correla-
tion methods. IV. Linear scaling local coupled-cluster (LCCSD)”. In: The Journal of
Chemical Physics 114.2 (2001), pp. 661–681.

[20] Martin Schütz and Hans-Joachim Werner. “Local perturbative triples correction (T)
with linear cost scaling”. In: Chemical Physics Letters 318.4-5 (2000), pp. 370–378.

[21] Zoltán Rolik et al. “An efficient linear-scaling CCSD (T) method based on local
natural orbitals”. In: The Journal of chemical physics 139.9 (2013), p. 094105.

[22] Wei Li, Zhigang Ni, and Shuhua Li. “Cluster-in-molecule local correlation method for
post-Hartree–Fock calculations of large systems”. In: Molecular Physics 114.9 (2016),
pp. 1447–1460.

[23] Rodney J Bartlett. “Many-body perturbation theory and coupled cluster theory for
electron correlation in molecules”. In: Annual review of physical chemistry 32.1 (1981),
pp. 359–401.

[24] Marcel Nooijen*, KR Shamasundar, and Debashis Mukherjee. “Reflections on size-
extensivity, size-consistency and generalized extensivity in many-body theory”. In:
Molecular Physics 103.15-16 (2005), pp. 2277–2298.

[25] Dmitry I Lyakh et al. “Multireference nature of chemistry: The coupled-cluster view”.
In: Chemical reviews 112.1 (2012), pp. 182–243.

[26] Marcel Nooijen. “Many-body similarity transformations generated by normal ordered
exponential excitation operators”. In: The Journal of chemical physics 104.7 (1996),
pp. 2638–2651.

[27] Jacob A Faucheaux and So Hirata. “Higher-order diagrammatic vibrational coupled-
cluster theory”. In: The Journal of chemical physics 143.13 (2015), p. 134105.

154

[28] Jacob A Faucheaux, Marcel Nooijen, and So Hirata. “Similarity-transformed equation-
of-motion vibrational coupled-cluster theory”. In: The Journal of chemical physics
148.5 (2018), p. 054104.

[29] Subrata Banik, Sourav Pal, and M Durga Prasad. “Calculation of vibrational energy
of molecule using coupled cluster linear response theory in bosonic representation:
Convergence studies”. In: The Journal of chemical physics 129.13 (2008), p. 134111.

[30] Curtis L Janssen and Henry F Schaefer. “The automated solution of second quanti-
zation equations with applications to the coupled cluster approach”. In: Theoretica
chimica acta 79.1 (1991), pp. 1–42.

[31] So Hirata et al. “Combined coupled-cluster and many-body perturbation theories”.
In: The Journal of chemical physics 121.24 (2004), pp. 12197–12207.

[32] “An Updated Set of Basic Linear Algebra Subprograms (BLAS)”. In: ACM Trans.
Math. Softw. 28.2 (June 2002), pp. 135–151. issn: 0098-3500. doi: 10.1145/567806.
567807. url: https://doi.org/10.1145/567806.567807.

[33] E. Anderson et al. LAPACK Users’ Guide. Third. Philadelphia, PA: Society for In-
dustrial and Applied Mathematics, 1999. isbn: 0-89871-447-8 (paperback).

[34] openBLAS. Version 0.3.20. Feb. 20, 2022. url: http://www.openblas.net/.

[35] Qian Wang et al. “AUGEM: automatically generate high performance dense linear
algebra kernels on x86 CPUs”. In: SC’13: Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Analysis. IEEE. Denver
CO, 2013, pp. 1–12.

[36] Zhang Xianyi, Wang Qian, and Zhang Yunquan. “Model-driven level 3 BLAS per-
formance optimization on Loongson 3A processor”. In: 2012 IEEE 18th international
Conference on Parallel and Distributed Systems (ICPADS). IEEE. Dec. 2012, pp. 684–
691.

[37] IntelMKL. Version 2019.5.138. 2019. url: https://www.intel.com/content/www/
us/en/develop/documentation/onemkl-linux-developer-guide/top.html.

[38] Endong Wang et al. “Intel math kernel library”. In: High-Performance Computing on
the Intel® Xeon Phi™. Springer, 2014, pp. 167–188.

[39] Charles R. Harris et al. “Array programming with NumPy”. In: Nature 585.7825
(Sept. 2020), pp. 357–362. doi: 10.1038/s41586-020-2649-2. url: https://doi.
org/10.1038/s41586-020-2649-2.

[40] Jake Fisher. CHEM 340 Course Notes and Lectures. Jan. 2021.

[41] Sebastian Mai and Leticia González. “Molecular Photochemistry: Recent Develop-
ments in Theory”. In: Angewandte Chemie International Edition 59.39 (2020), pp. 16832–
16846. doi: https : / / doi . org / 10 . 1002 / anie . 201916381. eprint: https : / /
onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201916381.

[42] David R Yarkony et al. “Diabatic and adiabatic representations: Electronic structure
caveats”. In: Computational and Theoretical Chemistry 1152 (2019), pp. 41–52.

155

https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
https://doi.org/10.1145/567806.567807
http://www.openblas.net/
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top.html
https://www.intel.com/content/www/us/en/develop/documentation/onemkl-linux-developer-guide/top.html
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/https://doi.org/10.1002/anie.201916381
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201916381
https://onlinelibrary.wiley.com/doi/pdf/10.1002/anie.201916381

[43] Michael Baer. Beyond Born-Oppenheimer: Conical intersections and Electronic nona-
diabatic coupling terms. Wiley New York, 2006.

[44] Neil Raymond et al. “A path integral methodology for obtaining thermodynamic
properties of nonadiabatic systems using Gaussian mixture distributions”. In: The
Journal of Chemical Physics 148.19 (2018), p. 194110. doi: 10.1063/1.5025058.
url: https://doi.org/10.1063/1.5025058.

[45] Daniel Aranda and Fabrizio Santoro. “Vibronic spectra of π-conjugated systems with
a multitude of coupled states: A protocol based on linear vibronic coupling models
and quantum dynamics tested on hexahelicene”. In: Journal of Chemical Theory and
Computation 17.3 (2021), pp. 1691–1700.

[46] Sergey Bravyi et al. “The complexity of stoquastic local Hamiltonian problems”. In:
arXiv preprint quant-ph/0606140 (2006).

[47] Milad Marvian, Daniel A Lidar, and Itay Hen. “On the computational complexity of
curing non-stoquastic Hamiltonians”. In: Nature communications 10.1 (2019), pp. 1–
9.

[48] Tao Zeng et al. “MoRiBS-PIMC: A program to simulate molecular rotors in bosonic
solvents using path-integral Monte Carlo”. In: Computer Physics Communications
204 (2016), pp. 170–188.

[49] Neil Raymond. termfactory. Version 1.0.0. June 22, 2022. url: https://github.
com/ngraymon/termfactory.

[50] Neil Raymond and Songhao Bao. t-amplitudes. Version 1.0.0. July 20, 2022.

[51] Jan Wielemaker et al. “SWI-Prolog”. In: Theory and Practice of Logic Programming
12.1-2 (2012), pp. 67–96. issn: 1471-0684.

[52] Manuel Clavel et al. All About Maude-A High-Performance Logical Framework: How
to Specify, Program, and Verify Systems in Rewriting Logic. Vol. 4350. Springer, 2007.

[53] Manuel Clavel et al. Maude Manual. Version 3.1. Springer, 2020.

[54] Maude Overview. url: http://maude.cs.illinois.edu/w/index.php?title=
Maude_Overview&oldid=14.

[55] Ylloh. Linear optimization in a 2-dimensional polytope. 2015. url: https://en.
wikipedia . org / wiki / File : Linear _ optimization _ in _ a _ 2 - dimensional _
polytope.svg.

[56] George B. Dantzig. “Origins of the Simplex Method”. In: A History of Scientific Com-
puting. New York, NY, USA: Association for Computing Machinery, 1990, pp. 141–
151. isbn: 0201508141. url: https://doi.org/10.1145/87252.88081.

[57] Pauli Virtanen et al. “SciPy 1.0: Fundamental Algorithms for Scientific Computing
in Python”. In: Nature Methods 17 (2020), pp. 261–272. doi: 10.1038/s41592-019-
0686-2.

156

https://doi.org/10.1063/1.5025058
https://doi.org/10.1063/1.5025058
https://github.com/ngraymon/termfactory
https://github.com/ngraymon/termfactory
http://maude.cs.illinois.edu/w/index.php?title=Maude_Overview&oldid=14
http://maude.cs.illinois.edu/w/index.php?title=Maude_Overview&oldid=14
https://en.wikipedia.org/wiki/File:Linear_optimization_in_a_2-dimensional_polytope.svg
https://en.wikipedia.org/wiki/File:Linear_optimization_in_a_2-dimensional_polytope.svg
https://en.wikipedia.org/wiki/File:Linear_optimization_in_a_2-dimensional_polytope.svg
https://doi.org/10.1145/87252.88081
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2

[58] Daniel G. a. Smith and Johnnie Gray. “opt_einsum - A Python package for optimizing
contraction order for einsum-like expressions”. In: Journal of Open Source Software
3.26 (2018), p. 753. doi: 10.21105/joss.00753. eprint: https://doi.org/10.
21105/joss.00753. url: https://github.com/dgasmith/opt_einsum.

[59] G. A. Worth et al. The MCTDH Package, Version 8.2, (2000). H.-D. Meyer, Version
8.3 (2002), Version 8.4 (2007). Used version: 8.4.23 (May 2022). See http://mctdh.uni-
hd.de. University of Heidelberg, Germany.

[60] Apache Software Foundation. autospec84. Version 8.4.21. June 24, 2021. url: https:
//www.pci.uni-heidelberg.de/tc/usr/mctdh/doc/analyse/analyse_docu.
html#autospec.

[61] G. A. Worth et al. The Heidelberg MCTDH Package: A set of programs for multi-
dimensional quantum dynamics. User’s Guide. English. Version Version 8.5.16. 209 pp.
published.

[62] Yannick J Bomble et al. “Equation-of-motion coupled-cluster methods for ionized
states with an approximate treatment of triple excitations”. In: The Journal of chem-
ical physics 122.15 (2005), p. 154107.

[63] Monika Musia and Rodney J Bartlett. “EOM-CCSDT study of the low-lying ioniza-
tion potentials of ethylene, acetylene and formaldehyde”. In: Chemical physics letters
384.4-6 (2004), pp. 210–214.

[64] Monika Musial and Rodney J Bartlett. “Equation-of-motion coupled cluster method
with full inclusion of connected triple excitations for electron-attached states: EA-
EOM-CCSDT”. In: Journal of Chemical Physics 119.4 (2003), pp. 1901–1908.

[65] John F Stanton and Jürgen Gauss. “Analytic energy derivatives for ionized states
described by the equation-of-motion coupled cluster method”. In: The Journal of
chemical physics 101.10 (1994), pp. 8938–8944.

[66] Marcel Nooijen and Jaap G Snijders. “Coupled cluster Green’s function method:
Working equations and applications”. In: International journal of quantum chemistry
48.1 (1993), pp. 15–48.

[67] Marcel Nooijen and Jaap G Snijders. “Coupled cluster approach to the single-particle
Green’s function”. In: International Journal of Quantum Chemistry 44.S26 (1992),
pp. 55–83.

[68] RJ Bartlett and JF Stanton. “Reviews in computational chemistry”. In: Inc. New
York (1994), p. 65.

[69] Anirban Hazra and Marcel Nooijen. “Vibronic coupling in the excited cationic states
of ethylene: Simulation of the photoelectron spectrum between 12 and 18 eV”. In: The
Journal of chemical physics 122.20 (2005), p. 204327.

[70] Anirban Hazra and Marcel Nooijen. “Comparison of various Franck–Condon and vi-
bronic coupling approaches for simulating electronic spectra: The case of the lowest
photoelectron band of ethylene”. In: Physical Chemistry Chemical Physics 7.8 (2005),
pp. 1759–1771.

157

https://doi.org/10.21105/joss.00753
https://doi.org/10.21105/joss.00753
https://doi.org/10.21105/joss.00753
https://github.com/dgasmith/opt_einsum
https://www.pci.uni-heidelberg.de/tc/usr/mctdh/doc/analyse/analyse_docu.html#autospec
https://www.pci.uni-heidelberg.de/tc/usr/mctdh/doc/analyse/analyse_docu.html#autospec
https://www.pci.uni-heidelberg.de/tc/usr/mctdh/doc/analyse/analyse_docu.html#autospec

[71] Marcel Nooijen. “First-principles simulation of the UV absorption spectrum of ketene”.
In: International journal of quantum chemistry 95.6 (2003), pp. 768–783.

[72] Johannes Neugebauer, Evert Jan Baerends, and Marcel Nooijen. “Vibronic coupling
and double excitations in linear response time-dependent density functional calcu-
lations: Dipole-allowed states of N 2”. In: The Journal of chemical physics 121.13
(2004), pp. 6155–6166.

[73] Marcel Nooijen. Vibronic model parameters, calculated by IP-EOMCC method, for
generating photo-electron spectra. 2011. url: http://scienide2.uwaterloo.ca/
~nooijen / website _ new _ 20 _ 10 _ 2011 / vibron / VC / models . html (visited on
08/08/2022).

[74] Julia Endicott. “Generating Vibronic Coupling Models and Simulating Photoelectron
Spectra”. CHEM 494 project report. Dept. of Chemistry, Faculty of Science, University
of Waterloo, 2014. url: http://scienide2.uwaterloo.ca/~nooijen/website_
new_20_10_2011/vibron/VC/julia_thesis.pdf (visited on 08/08/2022).

[75] CR Brundle and David Warren Turner. “High resolution molecular photoelectron
spectroscopy II. Water and deuterium oxide”. In: Proceedings of the Royal Society of
London. Series A. Mathematical and Physical Sciences 307.1488 (1968), pp. 27–36.

[76] CR Brundle and DW Turner. “Studies on the photoionisation of the linear triatomic
molecules: N2O, COS, CS2 and CO2 using high-resolution photoelectron spectroscopy”.
In: International Journal of Mass Spectrometry and Ion Physics 2.3 (1969), pp. 195–
220.

[77] Baohua Niu et al. “High-resolution He Iα photoelectron spectroscopy of H2CO and
D2CO using supersonic molecular beams”. In: Chemical physics letters 201.1-4 (1993),
pp. 212–216.

[78] GR Branton et al. “A Discussion on photoelectron spectroscopy-Photoelectron spectra
of some polyatomic molecules”. In: Philosophical Transactions of the Royal Society of
London. Series A, Mathematical and Physical Sciences 268.1184 (1970), pp. 77–85.

[79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to Automata Theory, Lan-
guages, and Computation. Reading, MA: Addison-Wesley, 1979. isbn: 8178083477.

[80] D. Wood. Theory of Computation. John Wiley and Sons., 1987. isbn: 0471603511.

[81] Richard M. Karp. “Reducibility among Combinatorial Problems”. In: Complexity of
Computer Computations. The IBM Research Symposia Series. Ed. by Raymond E.
Miller, James W. Thatcher, and Jean D. Bohlinger. Boston, MA: Springer, 1972,
pp. 85–103. isbn: 978-1-4684-2001-2. doi: 10.1007/978-1-4684-2001-2_9. url:
https://doi.org/10.1007/978-1-4684-2001-2_9.

[82] L.G. Khachiyan. “A Polynomial Algorithm in Linear Programming (english transla-
tion)”. In: Doklady Akademiia Nau SSSR. Vol. 20. 1979, pp. 191–194. doi: https:
//doi.org/10.1016/0041-5553(80)90061-0.

[83] V. Klee and G. Minty. “How good is the simplex algorithm?” In: Inequalities III
(Proceedings of the Third Symposium on Inequalities). Los Angeles: Academic Press.,
1969, pp. 159–175.

158

http://scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/vibron/VC/models.html
http://scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/vibron/VC/models.html
http://scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/vibron/VC/julia_thesis.pdf
http://scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/vibron/VC/julia_thesis.pdf
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0
https://doi.org/https://doi.org/10.1016/0041-5553(80)90061-0

[84] Hendrik W Lenstra Jr. “Integer programming with a fixed number of variables”. In:
Mathematics of operations research 8.4 (1983), pp. 538–548.

[85] Daniel Lokshtanov. “New methods in Paramterized Algorithms and Complexity”. PhD
thesis. Bergen, Norway: University of Bergen., 2009.

[86] John Fearnley and Rahul Savani. “The Complexity of the Simplex Method”. In: Pro-
ceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing.
STOC ’15. New York, NY, USA: Association for Computing Machinery, 2015, pp. 201–
208. isbn: 9781450335362. url: https://doi.org/10.1145/2746539.2746558.

[87] Andrew M Childs et al. “Theory of trotter error with commutator scaling”. In: Physical
Review X 11.1 (2021), p. 011020.

[88] Michel X Goemans and Thomas Rothvoß. “Polynomiality for bin packing with a
constant number of item types”. In: Proceedings of the twenty-fifth annual ACM-SIAM
symposium on Discrete algorithms. SIAM. 2014, pp. 830–839. doi: 10.1145/3421750.

[89] WH Press et al. “Numerical Recipes: The Art of Scientific Computing”. In: Techno-
metrics (2007).

[90] Numerical recipes : the art of scientific computing. 3rd ed. Cambridge, UK ; Cam-
bridge University Press, 2007. isbn: 9780521880688.

[91] Gilbert Strang. Linear algebra and its applications. 4th ed. Belmont, CA: Thomson,
Brooks/Cole, 2006.

[92] Guangyao Zhou. “Mixed Hamiltonian Monte Carlo for mixed discrete and contin-
uous variables”. In: Advances in Neural Information Processing Systems 33 (2020),
pp. 17094–17104.

[93] Maria I Gorinova et al. “Conditional independence by typing”. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 44.1 (2021), pp. 1–54.

[94] Guangyao Zhou et al. “PGMax: Factor Graphs for Discrete Probabilistic Graphical
Models and Loopy Belief Propagation in JAX”. In: arXiv preprint arXiv:2202.04110
(2022).

[95] Jacob Kelly and Will Sussman Grathwohl. “No Conditional Models for me: Train-
ing Joint EBMs on Mixed Continuous and Discrete Data”. In: Energy Based Models
Workshop-ICLR 2021. 2021.

[96] I. Prigogine and S.A. Rice. Advances in Chemical Physics. Advances in Chemical
Physics v. 121. Wiley, 2003. isbn: 9780471619673. url: https://books.google.
ca/books?id=NCO0FAm7IxoC.

[97] Andrew Gelman and Xiao-Li Meng. “Simulating normalizing constants: From impor-
tance sampling to bridge sampling to path sampling”. In: Statistical science (1998),
pp. 169–170.

[98] Nandini Ananth and Thomas F Miller III. “Exact quantum statistics for electronically
nonadiabatic systems using continuous path variables”. In: The Journal of chemical
physics 133.23 (2010), p. 234103.

159

https://doi.org/10.1145/2746539.2746558
https://doi.org/10.1145/3421750
https://books.google.ca/books?id=NCO0FAm7IxoC
https://books.google.ca/books?id=NCO0FAm7IxoC

[99] H Chang. “From electronic structure theory to molecular spectroscopy”. In: BA degree
Thesis, Princeton University (2003).

[100] Prateek Goel. “First Principles Simulations of Vibrationally Resolved Photodetach-
ment Spectra of Select Biradicals”. MA thesis. University of Waterloo, 2012. url:
https://uwspace.uwaterloo.ca/handle/10012/6985.

[101] Julia Endicott. “Generating Vibronic Coupling Models and Simulating Photoelectron
Spectra”. 2012. url: http://scienide2.uwaterloo.ca/~nooijen/website_new_
20_10_2011/vibron/VC/julia_thesis.pdf.

[102] Wolfgang Domcke and David R Yarkony. “Role of conical intersections in molecular
spectroscopy and photoinduced chemical dynamics”. In: Annual review of physical
chemistry 63 (2012), pp. 325–352.

[103] Michael Baer. “Introduction to the theory of electronic non-adiabatic coupling terms
in molecular systems”. In: Physics reports 358.2 (2002), pp. 75–142.

[104] David R Yarkony. “Nonadiabatic Quantum Chemistry Past, Present, and Future”. In:
Chemical reviews 112.1 (2011), pp. 481–498.

[105] Shaohong L Li et al. “Nonintuitive Diabatic Potential Energy Surfaces for Thioanisole”.
In: The journal of physical chemistry letters 6.17 (2015), pp. 3352–3359.

[106] A Devaquet, A Sevin, and B Bigot. “Avoided crossings in excited states potential
energy surfaces”. In: Journal of the American Chemical Society 100.7 (1978), pp. 2009–
2011.

[107] Alexei Stuchebrukhov. “Tunneling Time and the Breakdown of Born–Oppenheimer
Approximation”. In: The Journal of Physical Chemistry B (2015).

[108] John C Tully. “Perspective: Nonadiabatic dynamics theory”. In: The Journal of chem-
ical physics 137.22 (2012), 22A301.

[109] Charles P Enz et al. [Lectures on physics]; Pauli lectures on physics. 5. Wave me-
chanics. Vol. 1. Courier Corporation, 2000, pp. 180–182.

[110] Takeshi M Yamamoto. “Path-integral virial estimator based on the scaling of fluctu-
ation coordinates: Application to quantum clusters with fourth-order propagators”.
In: The Journal of chemical physics 123.10 (2005), p. 104101.

[111] Troy Van Voorhis et al. “The diabatic picture of electron transfer, reaction barriers,
and molecular dynamics”. In: Annual review of physical chemistry 61 (2010), pp. 149–
170.

[112] Maria Fumanal, Etienne Gindensperger, and Chantal Daniel. “Ultrafast Intersystem
Crossing vs Internal Conversion in alpha-Diimine Transition Metal Complexes: Quan-
tum Evidence”. In: The Journal of Physical Chemistry Letters 9.17 (2018). PMID:
30145893, pp. 5189–5195. doi: 10.1021/acs.jpclett.8b02319. url: https://doi.
org/10.1021/acs.jpclett.8b02319.

[113] Konstantin Karandashev and Jiří Vaníček. “Accelerating quantum instanton calcula-
tions of the kinetic isotope effects”. In: The Journal of chemical physics 143.19 (2015),
p. 194104.

160

https://uwspace.uwaterloo.ca/handle/10012/6985
http://scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/vibron/VC/julia_thesis.pdf
http://scienide2.uwaterloo.ca/~nooijen/website_new_20_10_2011/vibron/VC/julia_thesis.pdf
https://doi.org/10.1021/acs.jpclett.8b02319
https://doi.org/10.1021/acs.jpclett.8b02319
https://doi.org/10.1021/acs.jpclett.8b02319

[114] Michele Ceriotti et al. “The inefficiency of re-weighted sampling and the curse of
system size in high-order path integration”. In: Proc. R. Soc. A. The Royal Society.
2011, rspa20110413.

[115] Amelia Zutz and David J Nesbitt. “Nonadiabatic Spin–Orbit Excitation Dynamics in
Quantum-State-Resolved NO(2Π1/2) Scattering at the Gas–Room Temperature Ionic
Liquid Interface”. In: The Journal of Physical Chemistry C 119.16 (2015), pp. 8596–
8607.

[116] K Mohamed Ali and BWC Sathiyasekaran. “Computer professionals and carpal tunnel
syndrome (CTS)”. In: International Journal of Occupational Safety and Ergonomics
12.3 (2006), pp. 319–325.

[117] Johan Hviid Andersen et al. “Computer mouse use predicts acute pain but not pro-
longed or chronic pain in the neck and shoulder”. In: Occupational and environmental
medicine 65.2 (2008), pp. 126–131.

[118] Clayton Blehm et al. “Computer vision syndrome: a review”. In: Survey of ophthal-
mology 50.3 (2005), pp. 253–262.

[119] R.E. Bellman. Dynamic Programming. Dover Books on Computer Science Series.
Dover Publications, 2003. isbn: 9780486428093. url: https://books.google.ca/
books?id=fyVtp3EMxasC.

[120] S Saddique and GA Worth. “Applying the vibronic coupling model Hamiltonian to
the photoelectron spectrum of cyclobutadiene”. In: Chemical physics 329.1 (2006),
pp. 99–108.

[121] EN Miranda. “A paradox in the electronic partition function or how to be cautious
with mathematics”. In: European Journal of Physics 22.5 (2001), p. 483.

[122] Donald G Truhlar. “Potential energy surfaces”. In: coordinates 1 (2001), p. M1.

[123] João Pedro Malhado, Michael J Bearpark, and James T Hynes. “Non-adiabatic dy-
namics close to conical intersections and the surface hopping perspective”. In: Fron-
tiers in chemistry 2 (2014).

[124] Juha Tiihonen, Ilkka Kylänpää, and Tapio T Rantala. “Adiabatic and nonadiabatic
static polarizabilities of H and H 2”. In: Physical Review A 91.6 (2015), p. 062503.

[125] Christopher J Cramer. Essentials of computational chemistry: theories and models.
John Wiley & Sons, 2013, pp. 355–358.

[126] Guiying Liang et al. “Accurate potential energy functions, non-adiabatic and spin–
orbit couplings in the ZnH+ system”. In: Spectrochimica Acta Part A: Molecular and
Biomolecular Spectroscopy 156 (2016), pp. 9–14.

[127] Thomas J. Penfold et al. “Spin-Vibronic Mechanism for Intersystem Crossing”. In:
Chemical Reviews 118.15 (2018). PMID: 29558159, pp. 6975–7025. doi: 10.1021/
acs.chemrev.7b00617. url: https://doi.org/10.1021/acs.chemrev.7b00617.

161

https://books.google.ca/books?id=fyVtp3EMxasC
https://books.google.ca/books?id=fyVtp3EMxasC
https://doi.org/10.1021/acs.chemrev.7b00617
https://doi.org/10.1021/acs.chemrev.7b00617
https://doi.org/10.1021/acs.chemrev.7b00617

[128] Felix Plasser et al. “Strong Influence of Decoherence Corrections and Momentum
Rescaling in Surface Hopping Dynamics of Transition Metal Complexes”. In: Journal
of Chemical Theory and Computation 15.9 (2019). PMID: 31339716, pp. 5031–5045.
doi: 10.1021/acs.jctc.9b00525. url: https://doi.org/10.1021/acs.jctc.
9b00525.

[129] Sebastian Mai and Leticia González. “Identification of important normal modes in
nonadiabatic dynamics simulations by coherence, correlation, and frequency analyses”.
In: The Journal of Chemical Physics 151.24 (2019), p. 244115. doi: 10.1063/1.
5129335. url: https://doi.org/10.1063/1.5129335.

162

https://doi.org/10.1021/acs.jctc.9b00525
https://doi.org/10.1021/acs.jctc.9b00525
https://doi.org/10.1021/acs.jctc.9b00525
https://doi.org/10.1063/1.5129335
https://doi.org/10.1063/1.5129335
https://doi.org/10.1063/1.5129335

Appendices

163

Appendix A

Statistical distributions

As distributions are an important component of the PIMC approach in Chapter 4, a small
primer is presented in Appendix A.1. Analytical expressions for the GMD are also derived
in Appendix A.1. A reminder on how to analytically calculate a multivariate Gaussian is
shown in ??. The simplification of Hyperbolic terms is shown in ??.

A.1 Notation and form of specific Distributions

Distributions are very important as the performance of the PI, MC, and MCMH methods are
determined by the statistics. Evaluating the integral by MC with a sampling distribution d∗
which is infinitesimally close to d will have rejection-less sampling. The choice of the sampling
distribution is a major contribution to the computational efficiency of MC methods.

I have grouped together various definitions and derivations related to the distributions
used in this chapter. I mainly make use of uniform, normal, and mixture distributions.

Uniform distribution

The discrete uniform distribution U{a, b} or unif{a, b} is a very simple way to represent the
discrete electronic states. The most basic way of sampling surfaces is to draw them

a ∈ U{0, A− 1} or a ∈ U{1, A}.

It can also be said that I draw samples with weights wa.

Normal/Gaussian distribution

The normal distribution N{µ, σ2} is used extensively in these notes, very often to describe
the continuous normal mode co-ordinates. This distribution is defined by the mean µ and
the variance σ2.

164

Its probability density function (PDF) is:

(
σ
√
2π
)−1

exp

{
−1

2

(
x− µ
σ

)2
}
. (A.1)

For my specific case, I choose Gaussians of the form

fa(x) =
1

Zfa

N∏
j=1

(Fj)
P πj(x

a
j), (A.2)

where

Zfa =
N∏
j=1

1

2
csch

(
βωj

2

)
, (A.3)

Fj =

(√
sinh(τωj)

√
2π

)−1

, (A.4)

and

πj(x
a
j) = exp

[
csch(τωj)

P∑
i=1

xaj,ix
a
j,i+1 − coth(τωj)

P∑
i=1

(
xaj,i
)2]

. (A.5)

These Gaussians are fully defined by the parameters: τ = beta
P

, continuous co-ordinates xaj,i,
and N frequencies ωj

I know the closed form expressions for all my normal distributions, and can sample from
them without issue1.

Gaussian Mixture distribution (GMD)

The GMD2 from my prior work [44]

πj(x
a
j) = exp

[
−1

2
(xa

j)
T (2Cj1− SjB)xa

j

]
, (A.6)

with B a circulant matrix of dimension P × P defined by the row vector

[0100 · · · 001] . (A.7)
1For those concerned about the exact details see Numpy documentation where they describe the use of

“256-step Ziggurat methods” to sample the normal distribution
2A GMD is another label for a mixture distribution whose mixture components are normal/gaussian

distributions; it is also important to highlight that this is a special case where I can use either the GMD or
a multivariate normal/gaussian distribution

165

https://numpy.org/devdocs/reference/random/index.html#random-quick-start

Samples drawn from this distribution are termed collective bead co-ordinates as they are
independent of the number of beads in a PI

yãjλ =
P∑
i=1

xajiViλ, (A.8)

where

Bii′ =
P∑

λ=1

ViλbλλV∗
i′λ. (A.9)

This means that samples are drawn from the distribution πj We can of course extend this
to include multiple surfaces by redefining

πj(x
a
j) = exp

[
−1

2
(xa

j)
T (2Cj1− SjB)xa

j

]
. (A.10)

Analytical equations for GMDs

Here we work out the analytical expressions for our sampling distribution. Our goal is to have
an exact expression for the histogram defined by points xαj on a grid α ∈ [0, 1, · · · , Ngrid− 1]
where xαj = xmin + α∆x and ∆x = xmax−xmin

Ngrid
for any mode j. Beginning with j = 1: The

continuous marginal distribution is given by Eq. (A.11), whereas Eq. (A.12) gives the discrete
distribution

h(x1P) =

∫ P−1∏
i=1

dx1i

∫
dx2 · · ·

∫
dxN ϱ(q) (A.11)

Hist(xα1) =

∫
dx1 · · ·

∫
dxN ϱ(q)δ(x

α
1 − x1P). (A.12)

which we can separate by electronic surface, A, using Eq. (46) from (prior paper)

h(x1P) =
A∑

a=1

wa

∫ P−1∏
i=1

dx1i

∫
dx2 · · ·

∫
dxN ϱa(q). (A.13)

We will explore by first focusing on ϱa(q) Eq. (A.2)

h(x1P) =
A∑

a=1

wa

∫ P−1∏
i=1

dx1i

∫
dx2 · · ·

∫
dxN ϱa(q) (A.14)

=
A∑

a=1

wa (F1F2 · · · FN)
P

Zϱa

∫ P−1∏
i=1

dx1i

∫
dx2 · · ·

∫
dxN π1(x

a
1)π2(x

a
2) · · · πN(xa

N).

(A.15)

166

By definition ∫
dxj πj(x

a
j) =

Cj
2(Fj)P

, (A.16)

and3

Zϱa =
N∏
i=1

1

2
csch

(
βwj

2

)
=

N∏
i=1

2−1/2
√
(cosh(βwj) + 1)

sinh(βwj)
, (A.17)

therefore Equation (A.15) becomes

=
(F1)

P

C1

∫ P−1∏
i=1

dx1i π1(x
a
1) (A.18)

=
(F1)

P

C1

∫
dx11 , dx12 , · · · dx1P−1 π1(x

a
1). (A.19)

After integrating out N − 1 modes we are left with mode j = 1

h(x1P) =

(
(F1)

P

C1

)
A∑

a=1

wa

∫
dx11 , dx12 , · · · dx1P−1 π1(x

a
1). (A.20)

Here we can use a simple trick where we pretend that there is only one bead4.

If P = 1 then it should be simple

h(x1P) =

(
F1

C1

) A∑
a=1

waπ1(x
a
1) (A.21)

=
tanh(βwj)√
2π sinh(βwj)

A∑
a=1

wa exp
[
Sj(xa11)2 − Cj(xa11)2

]
(A.22)

=
1√
2π

√
sinh(βwj)

cosh(βwj)

A∑
a=1

wa exp
[
−(Cj − Sj)(xa11)2

]
. (A.23)

Comparing to the generic form Eq. (A.1) we can see that

σ2 =
1

2(Cj − Sj)
=

1

2

(cosh(x)
sinh(x)

− 1

sinh(x)

)−1

=
1

2

sinh(x)

cosh(x)− 1
. (A.24)

coth(βwj)− csch(βwj) =
−1

sinh(βwj)
+

cosh(βwj)

sinh(βwj)
. (A.25)

3See ??.
4For a more explicit derivation with P beads see Appendix ??.

167

Appendix B

Deriving energy estimator for PIMC
method

This appendix details the derivation of an energy estimator for the PIMC method. A very
concise derivation is shown in Appendix B.1. In Appendix B.2, it is shown that d

dτ
W (Q,a) =

W (Q,a)F(Q,a), using the explicit forms for dO
dτ

, derived in Appendix B.3, and dM
dτ

, derived
in Appendix B.4.

B.1 Deriving the Energy estimator

We calculate ⟨E⟩ as1

⟨E⟩ = − d

dτ
ln(Z) (B.1)

where Z can be expressed in terms of g(Q) from Eq. (4.3), and W (Q,a) from in Eq. (4.11):

Z =

∫
dQ g(Q) =

∫
dQ

∑
a

W (Q,a). (B.2)

Using logarithmic rules ⟨E⟩ becomes2

⟨E⟩ =

∫
dQ

∑
a

d
dτ
W (Q,a)∫

dQ g(Q)
=

∫
dQ

∑
a

W (Q,a)F(Q,a)∫
dQ g(Q)

=

∫
dQ g(Q)K(Q)∫

dQ g(Q)
=
〈
K(Q)

〉
g(Q)

(B.3)

where

K(Q) =
∑
a

F(Q,a) =
∑
a

P∑
i=1

V (qi)aiai+1

(
Ẽai +

N∑
j=1

f(xaij,i, x
ai
j,i+1, ωj)

)
(B.4)

1The negative sign from ⟨E⟩ is cancelled by τ derivative of e−τĤ

2For a more detailed derivation see appendix 1

168

So we have two estimators:

1. K(Q) =
∑
a

F(Q,a)

2. F(Q, a),

which are evaluated over points Q and a obtained using Metropolis sampling (min(1,
(g/r)*(r/g))

B.2 Derivation of explicit form of F(Q, a)

For compactness we re-define W (Q,a) like so

W (Q,a) =
P∏
i=1

⟨qi, ai| e−τĥ
∣∣qi+1, ai

〉 〈
qi+1, ai

∣∣ e−τV̂
∣∣qi+1, ai+1

〉
=

P∏
i=1

AiBi. (B.5)

A more detailed explanation of eq. (B.3) will follow:

⟨E⟩ =

∫
dQ

∑
a

d
dτ
W (Q,a)∫

dQ
∑
a

W (Q,a)
, (B.6)

where
d

dτ
W (Q,a) =

d

dτ

P∏
i=1

AiBi =
P∑
i=1

[(dAi

dτ
Bi + Ai

dBi

dτ

)
×

P∏
j ̸=i

AjBj

]
. (B.7)

First we consider dAj

dτ

dAj

dτ
=

d

dτ

〈
qj, aj

∣∣ e−τĥ
∣∣qj+1, aj

〉
=

d

dτ
O
(
qj, qj+1

)
ajaj

, (B.8)

which we know from eq. (B.35) is equal to a prefactor p(Aj) times O
(
qi, qi+1

)
ajaj

:

dAj

dτ
= p(Aj)× Aj. (B.9)

Next we consider dBj

dτ

dBj

dτ
=

d

dτ

〈
qj, aj

∣∣ e−τV̂
∣∣qj, aj+1

〉
=

d

dτ
M
(
qj

)
ajaj+1

, (B.10)

which we know from eq. (B.45) is equal to a prefactor p(Bj) times M
(
qj

)
ajaj+1

:

dBj

dτ
= p(Bj)×Bj. (B.11)

169

Proceeding from eq. (B.7)

P∑
i=1

[(dAi

dτ
Bi + Ai

dBi

dτ

)
×

P∏
j ̸=i

AjBj

]
(B.12)

=
P∑
i=1

[(
p(Ai)AiBi + p(Bi)AiBi

)
×

P∏
j ̸=i

AjBj

]
(B.13)

=
P∑
i=1

[(
p(Ai) + p(Bi)

)(
AiBi

)
×

P∏
j ̸=i

AjBj

]
(B.14)

=
P∑
i=1

[(
p(Ai) + p(Bi)

)
×

P∏
i=1

AiBi

]
, (B.15)

= F(Q,a)×
P∏
i=1

AiBi, (B.16)

= F(Q,a)×W (Q,a), (B.17)

Result

So in summary we have
d

dτ
W (Q,a) = W (Q,a)F(Q,a), (B.18)

where

F(Q,a) =
P∑
i=1

[
V (qi)aiai+1

+

(
Ẽai +

N∑
j=1

f(xaij,i, x
ai
j,i+1, ωj)

)]
, (B.19)

for an energy estimator

⟨E⟩ =

∫
dQ

∑
a

d
dτ
W (Q,a)∫

dQ
∑
a

W (Q,a)
=

∫
dQ

∑
a

W (Q,a) d
dτ
W̃ (Q,a)∫

dQ
∑
a

W (Q,a)
=

〈
d

dτ
W̃ (Q,a)

〉
W (Q,a)

.

(B.20)

170

B.3 τ derivative of individual O matrix element

An individual matrix element

O
(
qi, qi+1

)
aa

= ⟨qi| e−τĥa ∣∣qi+1

〉
(B.21a)

=
〈
q1,i q2,i · · · qN,i

∣∣ e−τĥa ∣∣q1,i+1 q2,i+1 · · · qN,i+1

〉
(B.21b)

=
(
e−τẼa

) 〈
xa1,i x

a
2,i · · · xaN,i

∣∣ e−τĥa
o
∣∣xa1,i+1 x

a
2,i+1 · · · xaN,i+1

〉
(B.21c)

=
(
e−τẼa

) N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)
, (B.21d)

where the kernel K is:

K(x, x′; τωj) =

√
csch(τωj)

2π
exp

(
csch(τωj)xx

′ − coth(τωj)
1

2

(
x2 + (x′)2

))
, (B.22)

and Ẽ comes from

ĥa =
[
Eaa +∆a

]
+

[
1

2

N∑
j=1

ωj

(
p̂2j + (x̂aj)

2
)]

(B.23a)

= Ẽa + ĥao, (B.23b)

remembering that

xaj = qj − daj , (B.24)

daj =
−gaaj
ωj

, (B.25)

∆a = −1

2

N∑
j=1

(gaaj)2

ωj

. (B.26)

To find d
dτ
O
(
qi, qi+1

)
aa

d

dτ
O
(
qi, qi+1

)
aa

=
d

dτ

(
e−τẼa

) N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)
(B.27a)

=
(
e−τẼa

)[
Ẽa

N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)
+

d

dτ

N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)]
.

(B.27b)

171

For each mode j we need to calculate

d

dτ
K
(
xaj,i, x

a
j,i+1; τωj

)
=

1√
2π

d

dτ

(
AeB

)
=

1√
2π

[
A

d

dτ
eB + eB

d

dτ
A

]
, (B.28a)

where
eB

d

dτ
A = eB

d

dτ

√
csch(τωj) = eB

−1
2
ωj cosh(τωj) csch

3/2(τωj), (B.29)

and

A
d

dτ
eB = AeB

d

dτ
B = AeB

d

dτ

[
csch(τωj)xx

′ − coth(τωj)
1

2

(
x2 + (x′)2

)]
(B.30a)

= AeB
1

2
ωj csch(τωj)

[
x2 + (x′)2

sinh(τωj)
− 2xx′ coth(τωj)

]
. (B.30b)

Then

1√
2π

[
A

d

dτ
eB + eB

d

dτ
A

]
(B.31a)

=
1√
2π
AeB

1

2
ωj csch(τωj)

[
x2 + (x′)2

sinh(τωj)
− 2xx′ coth(τωj)

]
− 1√

2π
eB

1

2
ωj cosh(τωj) csch

3/2(τωj)

(B.31b)

=
ωj csch(τωj)

2

([
x2 + (x′)2

sinh(τωj)
− 2xx′ coth(τωj)

]
− cosh(τωj)

)
AeB√
2π

(B.31c)

= f(x, x′, ωj)
AeB√
2π

(B.31d)

To find d
dτ
O
(
qi, qi+1

)
aa

d

dτ
O
(
qi, qi+1

)
aa

=
d

dτ

(
e−τẼa

) N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)
(B.32a)

=
(
e−τẼa

)[
Ẽa

N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)
+

N∑
j=1

f(x, x′, ωj)
N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)]
(B.32b)

=
(
e−τẼa

)(
Ẽa +

N∑
j=1

f(x, x′, ωj)

)[
N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)]
. (B.32c)

Where

f(x, x′, ωj) =
ωj

2 sinh(τωj)

([
x2 + (x′)2

sinh(τωj)
− 2xx′ coth(τωj)

]
− cosh(τωj)

)
(B.33)

172

Result

So in summary we have

O
(
qi, qi+1

)
aa

=
(
e−τẼa

) N∏
j=1

K
(
xaj,i, x

a
j,i+1; τωj

)
, (B.34)

and (where f is defined in Eq. (B.33))

d

dτ
O
(
qi, qi+1

)
aa

=

(
Ẽa +

N∑
j=1

f(x, x′, ωj)

)
×O

(
qi, qi+1

)
aa
. (B.35)

B.4 τ derivative of individual M matrix element

An individual matrix element

M (qi)aa′ = ⟨a|e
−τV̂(qi)|a′⟩ (B.36a)

= exp[−τV (qi)aa′] (B.36b)

= La exp[−τε]L†
a′ , (B.36c)

for some L, ε obtained by diagonalizing the matrix V (qi)

V (qi)aa′ = gaa′qi(1− δaa′) +
1

2
qiG

aa′q†
i (B.37a)

=
A∑

λ=1

LaλελLa′λ, (B.37b)

V̂ aa′ =
N∑
j

gaa
′

j q̂j(1− δaa′) +
1

2

N∑
jj′

gaa
′

jj′ q̂j q̂j′ . (B.38)

To find d
dτ
M (qi)aa′

d

dτ
M (qi)aa′ =

d

dτ
La exp[−τε]L†

a′ (B.39)

= La
d

dτ

(
exp[−τε]

)
L†

a′ (B.40)

= La

(
− ε× exp[−τε]

)
L†

a′ (B.41)

= V (qi)aa′ × exp[−τV (qi)aa′] (B.42)
= V (qi)aa′ ×M (qi)aa′ . (B.43)

173

Result

So in summary we have
M (qi)aa′ = La exp[−τε]L†

a′ , (B.44)

and
d

dτ
M (qi)aa′ = V (qi)aa′ ×M (qi)aa′ . (B.45)

174

Appendix C

Assorted Notes

Appendix C.1 provides a more in-depth explanation of the Normal Ordering inequalities
(Equations (5.25) and (5.26)) that were defined in Section 5.3.

In Section 5.5, the specific method that termfactory uses to solve the problem of determin-
ing pairings is discussed. A detailed summary of the general contraction scheme is shown
in Appendix C.2.

I initially wanted to express the pairing of terms as a language, such as would be defined in
Formal Language Theory, and so a short discussion of Formal Language Theory is provided
in Appendix C.3. Additionally, a short discussion of the complexity of linear programming
is provided in Appendix C.4.

C.1 Normal Ordering inequality explanation

In Section 5.3 we define the Normal Ordering (NO) constraint as the requirement (for the
simplified case where f̄ = 0) that each valid term ÂNB̂M

N ĈM
N · · · ẐM has at least one pairing

where no operators pair with themselves. This constraint can be expressed be applying two
conditions to each operator in the term:

1. If either M = 0 or N = 0 an operator cannot pair with itself and therefore meets the
constraint.

2. Otherwise, if both inequalities

M ≤ Ntot −N, (C.1)
N ≤Mtot −M, (C.2)

are satisfied, then the operator satisfies the NO constraint.

If each operator in the term satisfies either 1 or 2 then the term is Normal Ordered
and meets the constraint.

175

However, it may not be clear how the inequalities Equations (C.1) and (C.2) satisfy the NO
constraint, or how they were obtained. I will show that these inequalities satisfy the NO
constraint in the general case (where f̄ ∈ R) and by extension also the simplified case (where
f̄ = 0).

Setup

First, we need to quantify what it means for an operator to pair with itself, and therefore
break the Normal Ordering constraint. Consider the general term

ÂNaB̂
Mb
Nb

ĈMc , (C.3)

whose operators are balanced1:

Mtot = Ntot,

Mb +Mc = Na +Nb.

By definition Â and Ĉ cannot pair with themselves and so we need only consider checking
if the B̂ operator can pair with itself. Starting with the simplest case: Â1B̂1

1Ĉ
1, where

Mtot = 2 and Ntot = 2, two possible unique pairings exist:

ÂiB̂i
jĈ

j, (C.4)

ÂiB̂
j
jĈ

i. (C.5)

The first pairing obeys the Normal Ordering constraint and the second pairing does not. We
can distinguish between these two pairings by splitting each of the Mb and Nb labels into two
parts: one which counts the number of pairings that obey the Normal Ordering constraint
(i.e. with other operators Â or Ĉ) and one which counts the number of pairings B̂ has with
itself .

Mb =MNO
b +MS

b (C.6)
Nb = NNO

b +NS
b (C.7)

The term which obeys the Normal Ordering constraint ÂiB̂i
jĈ

j, has values

Mb =MNO
b +MS

b = 1 + 0 = 1,

Nb = NNO
b +NS

b = 1 + 0 = 1.

1Any term whose operators are not balanced is invalid by definition, and therefore we can ignore such
terms when checking if a term meets the Normal Ordering constraint.

176

The term which does not satisfy the Normal Ordering constraint ÂiB̂
j
jĈ

i, has values

Mb =MNO
b +MS

b = 0 + 1 = 1,

Nb = NNO
b +NS

b = 0 + 1 = 1.

MS = NS must always be true for any operator, by definition, because a pairing is between
an upper î† operator and a lower ĵ operator, a term cannot be valid and have unpaired
operators. However, MNO and NNO are not required to be equal.

We can now define, for a generic operator B̂M
N , the condition for satisfying the Normal

Ordering constraint as
MS = NS = 0, (C.8)

and consequently when
MS = NS > 0, (C.9)

it fails to satisfy the constraint. We can now show that Equations (C.1) and (C.2) satisfy
the NO constraint.

Contradiction example

Since the NO constraint only requires:

“at least one pairing exists, where no operators pair with themselves”

then we want to show that if both inequalities are satisfied, at least one such pairing must
exist. Consider the generic term

ÂMa
Na

B̂Mb
Nb
· · · ĜMg

Ng
· · · ẐMz

Nz
(C.10)

where Ĝ is some arbitrary operator in the term with both upper and lower labels. We know
by definition:

Ntot = Na + · · ·+Ng + · · ·+Nz, (C.11)
Mtot =Ma + · · ·+Mg + · · ·+Mz, (C.12)

where

Ng = NNO
g +NS

g , (C.13)

Mg =MNO
g +MS

g , (C.14)

and
MS

g = NS
g . (C.15)

177

Assume that both inequalities are satisfied:

Mg ≤ Ntot −Ng, (C.16)
Ng ≤Mtot −Mg, (C.17)

and that for all possible pairings Ĝ must pair with itself, which can be represented by the
following:

NS
g =MS

g > 0, (C.18)

Ntot −Ng =MNO
g , (C.19)

Mtot −Mg = NNO
g . (C.20)

Justifying eqs. (C.19) and (C.20)

Equations (C.19) and (C.20) follow from the requirement that Ĝ must pair with itself. MNO
g

counts the number of î† operators from Ĝ that pair with other operators in Equation (C.10).

Conceptually it should be clear that MNO
g ≤ Ntot −Ng is true, as there must be at least

the same number of ĵ operators as î† operators for the pairings to exist. Since Ntot − Ng

counts all ĵ operators that do not belong to Ĝ, and MNO
g counts all î† operators from Ĝ

that follow the Normal Ordering constraint.

It can also be shown this is true by definition, starting with Equation (C.16):

Mg ≤ Ntot −Ng (C.21a)
MNO

g ≤ Ntot −Ng −MS
g , (C.21b)

but if MNO
g > Ntot −Ng, then

MNO
g > Ntot −Ng (C.22a)

Ntot −Ng −MS
g > Ntot −Ng (C.22b)

−MS
g > 0 (C.22c)

MS
g < 0 (C.22d)

which contradicts Equation (C.18) thus MNO
g ≤ Ntot −Ng.

However, MNO
g < Ntot − Ng implies that there is a ĵ operator that is not pairing with

a î† operator from Ĝ. Since NS
g = MS

g > 0 we are free to choose a different pairing
of Equation (C.10), by pairing one of the î† operators thatNS

g counts with the aforementioned
ĵ operator. The same can be done for one of the ĵ operator’s counted by MS

g .

As a discrete example consider:
ÂijĜim

lmẐlj, (C.23)

where MNO
g = 1 and Ntot −Ng = 4− 2 = 2 thus MNO

g < Ntot −Ng. We can “re-pair” the j

178

and m labels:
ÂijĜ

ij
lmẐlm, (C.24)

where the operator Ĝ no longer pairs with itself and the term clearly satisfies the NO
constraint. After this “re-pairing” MNO

g = 2 = 4 − 2 = Ntot − Ng. We can preform this
process for terms of any size like so

Âi
···B̂

···
··· · · · Ĝ

···j···
···j··· · · · Ẑ···

i → Âi
···B̂

···
··· · · · Ĝ

···j···
···i··· · · · Ẑ···

j (C.25)

Thus, whenever MNO
g < Ntot−Ng we can simply move operators from NS

g to MNO
g until

MNO
g = Ntot − Ng. If there were not enough operators to move over (e.g. MNO

g + NS
g <

Ntot − Ng) then after moving all the operators from NS
g to MNO

g , the following would be
true MS

g = NS
g = 0 which contradicts Equation (C.18)! We are left with two possibilities,

either a pairing where Ĝ does not pair with itself exists, or there is enough operators and so
MNO

g = Ntot −Ng. A similar argument can be employed for Mtot −Mg = NNO
g .

Thus, we can say that if either Equation (C.19) or Equation (C.20) are not true, then Equa-
tion (C.18) is not true and therefore Ĝ cannot pair with itself.

Proof

By definition (eq. (C.20)):
Mtot −Mg = NNO

g (C.26)

and (eq. (C.17)):
Ng ≤Mtot −Mg (C.27)

but that implies

Ng ≤Mtot −Mg (C.28)
Ng ≤ NNO

g (C.29)

NNO
g +NS

g ≤ NNO
g (C.30)

NS
g ≤ 0 (C.31)

which contradicts Equation (C.18) (NS
g > 0). This holds true for any of the operators

in Equation (C.10). Therefore if Equations (C.16) and (C.17), (or equivalently Equa-
tions (C.1) and (C.2)) are satisfied then there must be at least one pairing where no operators
pair with themselves.

179

C.2 More general contraction scheme

This entire section is taken verbatim (with permission) from M. Nooijen’s notes. The lan-
guage and notation is slightly different than those used in Chapter 5.

This section uses a more general contraction scheme. It describes equations that we use
currently to describe thermal properties. We can also use it for time-correlation functions.
The aim would be to formulate a theory that has less (or no) issues with singularities of the
Matrix u. This will be a first attempt at writing down the general theory. It may need some
refinements and better explanations later on. I think it can be used as a blue print for a
generalized equation and code generator. As before we will focus on the most complicated
term

〈
P̂ ĤŴ

〉
. All operators in the more general theory now carry both lower and upper

labels. Let us write a generic (residual) term with explicit indices

Rm1m2···mM
i1i2···iI =

〈
Pm1m2···mM
i1i2···iI

∑
all labels k,l,m,n

Hl1l2···lL
k1k2···kKWj1j2···jJ

n1n2···nN

〉
(C.32)

In a non-vanishing expression the lower labels all have to be paired with the upper labels.
The pairings can only occur between different groups of labels. We can write

Rm1m2···mM
i1i2···iI =

∑
all labels k,l,m,n

Hl1l2···lL
k1k2···kKWj1j2···jJ

n1n2···nN
F

m1···mM | l1···lL | j1···jJ
i1···iI | k1···kK |n1···nN

(C.33)

The vertical bars in the new “contraction tensor” F indicate the various groups of indices. As
before, upper indices have to be paired with lower indices, but always pairing operators from
different groups. Every pairing of two normal mode labels introduces a pair-like Kronecker
delta δpq , and the labels can then simply be equated, while reducing the summation labels.

In the final result one will always keep the projection labels (on P̂), which are not summed
over, and it is most convenient to use as the other remaining labels, the labels on H that are
contracted to W, and which will be summed over. The labels on W will all be replaced.

In this more general theory there is one additional rule. If external labels from P̂ are
contracted to H, there is an additional factor. If an upper label m from P is contracted
to k on H, corresponding to the contraction

〈
m̂†k̂

〉
we have the factor fmδmk. If a lower

label i on P is contracted with l on the hamiltonian we get a factor f̄iδil. It follows that one
can still identify paired indices (from Kronecker δ), but there are additional factors fm, f̄i
associated with external labels on H, that are not summed over.

It is part of the theory that f̄i = 1+fi. The factors fi can be arbitrary positive numbers,
and final results are in principle independent of these numbers (i.e. for an exact version of
the theory). The numbers can depend on the normal mode of interest, and this is indicated
by the subscript. A simpler theory can arise if fi = f, f̄i = (1 + f). Let me note that
the previous simpler theory follows from the more general theory by setting fm = 0. We
anticipate that results for the auto-correlation function will be (slightly) different if equations
are truncated. The most important aspect is that the Ŵ and in particular u amplitudes

180

will be different, and this we hope results in improved robustness during time-propagation.
We should implement the most general theory first, i.e. using explicitly fm, f̄i factors that
depend on the normal mode. As before, In the sequel we will be completely systematic about
the naming convention.

Derivation of generic prefactors in general term

Let us consider a generic term in the residual equation

Rm1···mM
i1···iI =

1

I!
Ŝ(i1 · · · iI)

1

M !
Ŝ(m1 · · ·mM)

〈
Ω̂m1···mM

i1···iI

∑
all labels

Hl1···lL
k1···kKWj1···jJ

n1···nM

〉
(C.34)

The (normalized) symmetrization operators like 1
I!
Ŝ(i1 · · · iI) leave a symmetric expression

unchanged. We can abbreviate such a term by listing only the number of operators of a
given type

RM
I =

1

I!
S(I)

1

M !
S(M)

1

L!K!J !N !

〈
Ω̂M

I HL
KW

J
N

〉
(C.35)

In the term in expectation value, we have to consider all possible allowed pairings (permu-
tations), that all give rise to the same canonically ordered result. Let us assume that LI

operators are paired with operators in I, while LN = L−LI are paired with N . Likewise we
can partition K = KM +KJ . The canonical form of the equation including all factors takes
the form

RM
I = Ŝ(I)Ŝ(M)

1

I!M !

1

L!K!J !N !
fMK

f̄ILH
IL,LN

MK ,KJ
W IJ ,KJ

MN ,LN

×

((
I

IL

)
IL!

)((
N

LN

)
LN !

)((
M

MK

)
MK !

)((
J

KJ

)
KJ !IJ !MN !

) (C.36)

The factorial expressions on the second line count how many different pairings can be made
including all permutations. The expression can be simplified, using IJ = I − IL and MN =
M −MK , to

RM
I = Ŝ(I)Ŝ(M)

fMK
f̄IL

L!K!J !N !
HIL,LN

MK ,KJ
W IJ ,KJ

MN ,LN

((
N

LN

)
LN !

)((
J

KJ

)
KJ !

)
(C.37)

= Ŝ(I)Ŝ(M)
fMK

f̄IL
L!K!(J −KJ)!(N − LN !)

HIL,LN

MK ,KJ
W IJ ,KJ

MN ,LN
(C.38)

The above formula agrees with the previously derived general formula if we choose M =
N = 0.

181

C.3 Formal language theory

In our work building software to automatically generate expressions, we have had occasion
to consider our series expansions from the perspective of formal language theory.

Formal language theory is a branch of computational science that explores the properties
of languages. A language is simply a set of finite-length words over a finite alphabet of
symbols, where a word is a specific string of symbols. For example

Definition 1 let Σ be an alphabet containing the two symbols 1 and 0

Σ = {0, 1}. (C.39)

Definition 2 Let each word w in our language L be such that every w ∈ L contains as
exactly as many 1’s as it contains 0’s.

Definition 3 Then L is the infinite set {ϵ, 10, 01, 1100, 1010, 1001, 0011, 0101, 0110, 111000, · · · }

A language has a finite alphabet, and each word is finite, but the language may be infinite,
as in our example above.

Formal language theory arose from work in linguistics and computer science. Linguists
were interested in describing derivation grammars that could be used to understand the
meaning of human languages. Computer scientists were initially interested in describing
switching circuits, and later in developing parsers for programming languages. As formal
language theory matured, it became a more general discipline for describing the computa-
tional properties of strings and the automata that can produce or recognize them.

In addition to human languages, there are also programming languages. Each program-
ming language can be understood as a language in formal language theory:

• The alphabet Σ of a programming language is the set of letters, numbers, and special
symbols available on a keyboard

• The words w of a programming language are strings of the alphabet that satisfy the
syntactic and semantic rules of the programming language. Such words are what we
know as ‘valid’ or ‘legal’ programs

Thus a programming language is a formal language L = {wi} where each wi is a valid
program.

How do we specify the rules of a programming language so that we can recognize a
valid program? We do this by constructing a parser that the rules of the language. In the
early days of computing, parsers were hand-crafted for each specific language, but this was
a tedious and error-prone method.

182

One of the key results of formal language theory is the Chomsky hierarchy, Figure C.1
which states the four major types of languages (in bold) and the machines that are required
to recognize them:

Figure C.1: Chomsky hierarchy.

Figure C.1 shows set inclusion: regular languages are a subset of context-free languages;
context free languages are a subset of context-sensitive languages, and all are a subset of
recursively enumerable languages.

Since Turing machines are capable of doing any known computation, any language that
is computable is at most recursively enumerable—this is an upper bound, but not a tight
one. Often we want to find a more restrictive upper bound by showing that our language
is contained in one of the subset languages. For example, experience with programming
languages has taught us that it is best if we design programming languages so their parsers
are no more complicated than context-free. This is partly because it reduces the complexity
of the compiler, but also because humans need to read programs, and context-sensitive
grammars can be very difficult for humans to parse 2 More information on formal language
theory can be found in standard texts [79, 80].

Now let us turn to consider how language theory may apply to series expansions. First,
2Note that when we speak of the complexity of a language parser, we mean only the complexity of the

machine that recognizes valid programs in the language.

183

let’s consider a very simple example, the geometric series:

∞∑
n=0

xn = 1 + x+ x2 + x3 + · · · (C.40)

This expansion can be viewed as a language that consists of an infinite set of words, each
word w of the form xn. We can express this language with a regular expression of the
following form:

1 + x(x)∗ (C.41)

This regular expression is the union (+) of 1 and one or more x’s (the ∗ operator means zero
or more occurrences of what is in the brackets.

Every regular language is recognized (or can be generated by) a finite state machine,
and every finite state machine defines a regular language. For the regular expression Equa-
tion (C.41), a finite state machine representation would be this:

AInit C

B

1

x
x

Figure C.2: FSM representation of Equation (C.41)

The finite state machine in Figure C.2 has three states A, B, and C. A is the initial state
because it has a transition entering it from no other state. States B and C are both final
states 3: any string that ends in a final state is a word in the language.

We enter the machine from the left, on the transition state A. At this point we can
recognize 1 and enter the final state B, which means 1 is a word in our language. From B we
cannot go anywhere, so this terminates what can be recognized on this path. Alternatively,
we can recognize x and enter state C. Since state C is a final state, then we also recognize
x as a word in the language. But we can also continue with the transition labelled x and
remain in state C, and this can be repeated as many times as we like. Thus xx (that is, x2)
and xxx (that is, x3) and so on will also be words in our language; in fact any xn is a word
in our language.

The geometric series is simple enough that it can be done by hand, and we don’t really
need the mechanism of regular languages and finite state machines. But consider a highly

3A final state is traditionally represented by two concentric circles.

184

simplified form of one of our expansions:

Ha
bZ

a
b

This language will consist of words such as the following:

H0
1Z

1
0

H0
2Z

2
0

H1
0Z

0
1

H1
5Z

5
1

and so on.

We can ask: is the language L = Ha
bZ

b
a a regular language? Intuitively, we guess that

it is not, because it seems we must “remember” A and b from the H term so that we can
“repeat” them for the Z term, and a finite state machine, having only states and transitions,
has no apparent “memory” where we could store the values of A and b.

We can show that L = Ha
bZ

b
a is not regular by reducing it to a known non-regular

language:

1. The language AnBn where n ∈ N is known not to be regular

2. If we choose a = b in our language, then we have L = Ha
aZ

a
a

3. To recognize this we must recognize HaZa, but this is isomorphic to AnBn, which is
non-regular

4. Hence L is non-regular

It is worth noting here that L is non-regular where A and b can take any value in N . If
we limit the choice of A and b to, say, the set 1, 2, 3, 4, 5, then L will be regular, because
it now becomes possible to define a (much larger) finite state machine that captures all the
permutations of 1 through 5 in its states. We do not show such a construction here.

In the Chomsky hierarchy (Figure C.1), the next superset of languages above regular
languages, are languages which do have a memory: these are the context-free grammars
(CFGs). CFGs are recognized by a non-deterministic pushdown automaton (NDPDA). In
essence, an NDPDA is a finite state machine that also has a “stack” on which it can “push”
and “pop” symbols: the stack is a simple form of “memory”. If we can find an NDPDA that
recognizes or generates our language L, then we will have shown that L is at most context-
free (on the other hand, if we cannot find an NDPDA that recognizes our language L, then
L may be context-sensitive or even recursively enumerable).

To simplify such an NDPDA, let us use a simple encoding for the a and b in our language
L. Instead of using base 10, we will use base 1: thus instead of A being (for example) “5”,
it will be “11111”; similarly instead of b being (for example) “7”, it will be “0000000”. By
choosing this encoding, we reduce the complexity of our input alphabet. Also, we will create

185

an NDPDA that generates our language, by writing output symbols instead of reading input
symbols.

With these choices, one NDPDA that recognizes L is this:

AInit B C D

E F

Write H Write Z

Write Z

Pop 1
Write 1

Write 0
Push 0

Write 1
Push 1

Pop 0
Write 0

Pop 1
Write 1

Write 0
Push 0

Pop Z0

Pop Z0

Figure C.3: NDPDA that recognizes L.

In this pushdown machine, we do not show the stack explicitly; instead, we have push
and pop operators to push a value on the stack, or pop it off. The stack has a start symbol
Z0: by popping off this symbol and looking at it, we can tell if the stack is empty. Let us
follow some paths through the NDPDA to see how it works:

1. If we go from A to B to C to F we will write H, then write Z, then pop the stack
start symbol. This gives us the output HZ, which is the word in our language L
corresponding to a = b = 0

2. If we go from A to B writing H, then write A 1’s, then write Z, then pop A 1’s (writing
them), then pop the stack start symbol. This gives us the output Ha

0Z
0
a , for any A

3. If we go from A to B writing H, then go to E writing b 0’s, then write Z, then pop
b 0’s (writing them), then pop the stack start symbol, this gives us the output H0

bZ
b
0,

for any b.

4. If we go from A to B writing H, then write A 1’s, then go to E writing b 0’s, then write
Z, then pop A 1’s (writing them), pop b 0’s (writing them), then pop the stack start
symbol, this gives us the output Ha

bZ
b
a, for any A and b.

Notice that the machine will only generate legal words in our language, because any other
word will not lead us to the terminating state, and hence is not recognized by the machine.

We are now ready to write a formal definition for the NDPDA for the language L. Our
notation is taken from [79].

A pushdown automaton is a system (Q,Σ,Γ, δ, q0, Z0, F) where
186

1. Q is a finite set of states

2. Σ is an alphabet called the input alphabet4

3. Γ is an alphabet called the stack alphabet

4. q0 ∈ Q is initial state

5. Z0 ∈ Γ is a stack symbol called the start symbol

6. F ⊆ Q is the set of final states

7. δ is a mapping from Q× (Σ ∪ {ϵ})× Γ to finite subsets of Q× Γ∗

Our NDPDA as shown in the figure above is formally defined as follows:

Q = {A,B,C,D,E, F}
Σ = {H,Z, 1, 0}
Γ = {Z0, 1, 0}
A = q0

F = {F}

And the mapping δ is as follows:

δ(A,H, ϵ) = (B,Z0)

δ(B,Z, ϵ) = (C,Z(0))

δ(C, ϵ, Z0) = (F, ϵ)

δ(B, 1, 1) = (B, 11)

δ(B, 0, 1) = (E, 10)

δ(E, 0, 0) = (E, 00)

δ(E,Z, 0) = (C, 0)

δ(C, 0, 0) = (C, ϵ)

δ(C, 1, 1) = (D, ϵ)

δ(D, 1, 1) = (D, ϵ)

δ(D,Z, Z0) = (F, ϵ)

δ(C, ϵ, Z0) = (F, ϵ)

δ(D, ϵ, Z0) = (F, ϵ)

In the definition of δ, a “push” occurs when there are two alphabet characters on the
stack (for example, {(E, 10)}) , and a “pop” occurs when there is an empty string ϵ which
“erases” the top of the stack (for example, {(C, ϵ)}).

4In our case, it will be the output alphabet because we are generating the language instead of recognizing
it.

187

Let us now review. We have shown that we can think of a series expansion as a sequence
of words from a language, and that for some simple expansions we can define finite state ma-
chines or non-deterministic pushdown automata that recognize such a language. Moreover,
such machines can be defined as data, not control flow—therefore they achieve one of the
objectives we have for our generalization effort. However, it appears clear at this point that
expressing constraints in language-theoretic terms is just as complex as expressing them in
program control flow—therefore we have not achieved our objective of additional simplicity
and understandability. For this reason, we discontinued looking at formal language theory,
and pursued a second option.

188

C.4 Complexity of linear programming

The question will arise as to the complexity of linear programming—in other words, how
efficient linear programming is as a method for solving constraints. We are interested in both
the space (memory) and time requirements; further, we are interested both in the worst-case
and average-case performance.

Complexity of linear programming is a long-studied problem; indeed, the basic result
that integer linear programming is NP-complete was known as far back as Karp’s paper on
21 NP-complete problems [81]. An NP-complete problem is one for which there is no known
algorithm that, in the worst case, does not take time exponential to the size of the input.
Thus, it may seem that we should be concerned about this approach. However, the situation
is not this simple.

Consider first of all (non-integer) linear programming. This problem is known to be
solvable in polynomial time via Khachiyan’s ellipsoid algorithm [82]. However Khachiyan’s
algorithm is not practical to implement. Dantzig’s simplex method, on the other hand, is
known to be exponential in the worst case, especially for problems constructed specifically for
their difficulty, such as Klee-Minty cubes [83]. But in practical use, the time complexity of
the simplex algorithm appears to be linear, and hence it continues to be a popular algorithm.

We stated that the general integer linear programming problem is NP-complete. However,
more restricted versions of the integer linear programming problem are polynomial. Lenstra
showed that integer linear programming with a fixed number of variables is polynomial in
time [84]. Lenstra’s algorithm is exponential in the number of variables, but so long as the
number of variables is fixed, then this becomes simply a large constant term. In our use, we
expect there to be a bound on the number of variables, simply because we have to bound our
expansions as well, and there are only so many terms we wish to compute. Thus, conceivably
we could use Lenstra’s algorithm and ensure polynomial time. However, as was the case with
Khachiyan’s algorithm, Lenstra’s is more theoretical than practical (in particular, Lenstra’s
algorithm requires exponential space), and simplex method may still in practice be more
efficient.

What about space complexity? A result by Lokshtanov indicates that integer linear
programming requires space polynomial in the number of bits of the input [85]. The simplex
method is also PSPACE-complete [86].

In summary: while integer linear programming can, in some cases, be exponential, it
appears that for certain restricted subsets of the problem, it can be bounded to linear time
and polynomial space; further, that the simplex algorithm is a widely-available algorithm
that also performs efficiently for many practical problems. Thus, the best course of action
is to use the simplex method to solve our ILPs unless and until we can demonstrate that we
are producing a problem at which simplex proves to be too expensive in time.

189

Appendix D

Algorithms

In Section 2.2.4 results from a MH simulation are presented. The code used to generate
those results is given in Listing D.1.� �

1 # import packages
2 import matplotlib as mpl; mpl.use(’pdf’);
3 import matplotlib.pyplot as plt
4 from scipy.stats import norm , uniform
5 from scipy.integrate import quad
6 import numpy as np
7

8 # if choosing initial point randomly
9 from numpy.random import default_rng

10 rng = default_rng ()
11

12

13 def target_density(x, mean=0, std_dev =1):
14 """ The p.d.f. we are trying to approximate. """
15 return_val = (
16 (np.sin(x) ∗ ∗ 2.)
17 ∗ (np.sin(2 ∗ x) ∗ ∗ 2.)
18 ∗ norm.pdf(x, loc=mean , scale=std_dev)
19)
20

21 return return_val
22

23

24 def proposal_density(x_old , alpha):
25 """ The p.d.f. we use to propose new moves/samples/steps.
26 The uniform distribution should be distributed [x - alpha , x + alpha]
27 the way scipy uses scale is [loc , loc+scale]
28 so then we need scale = 2 * alpha
29 """
30

31 # scipy returns random values that are normalized
32 return uniform.rvs(loc=x_old - alpha , scale =2. ∗ alpha)
33

34

35 def metropolis(x_old , alpha =1.):
36 """ Take a step / increment the Markov -Chain forward 1 link """
37

38 proposed_x = proposal_density(x_old , alpha)
39

40 # acceptance ratio
41 ratio = target_density(proposed_x) / target_density(x_old)
42

43 # generate random variable between [0, 1]

190

44 u = uniform.rvs(loc=0, scale =1)
45

46 # accept
47 if bool(u <= ratio):
48 x_new = proposed_x
49

50 # or reject
51 else:
52 x_new = x_old
53

54 return x_new
55

56

57 def plot(x_simulated , n_points , alpha , xmin=-4.0, xmax =4.0):
58 """ plot the distribution and the histogram of the results """
59

60 plt.rcParams[’text.usetex ’] = True
61 plt.rcParams[’font.size’] = ’12’
62

63 # define a grid to evaluate the distribution on
64 x_grid = np.arange(xmin , xmax , step =0.005)
65

66 # compute normalization factor for target distribution
67 norm_factor , abserr = quad(target_density , xmin , xmax)
68 y_analytic = target_density(x_grid) / norm_factor
69

70 fig , ax = plt.subplots ()
71 ax.plot(
72 x_grid , y_analytic , label=r’\(\pi(x)\)’,
73 color=’r’, linestyle=’--’)
74

75 n, bins , patches = plt.hist(
76 x_simulated , 100, label=r’\(\ tilde {\pi}(x)\)’,
77 density=True , edgecolor=’black’, facecolor=’lightgrey ’, alpha =0.7,
78)
79

80 ax.set(
81 xlabel=’x’, ylabel=’Density ’,
82 # title=’Illustrative approximation of a distribution using Metropolis Hastings ’
83)
84 ax.legend(loc=’best’)
85 ax.grid()
86

87 fig.savefig(f"mh_simulation_a{int(alpha):d}_N{n_points }.png", dpi =175)
88 # plt.show()
89

90 return
91

92

93 def simple_example ():
94 # set parameters
95 max_steps = int(1e4)
96 alpha = 2.0
97

98 # store our metropolis steps in here
99 chain = np.zeros(max_steps)

100

101 # choose manually
102 if True:
103 chain [0] = 3 # 2.783
104

105 # choose randomly
106 else:
107 chain [0] = rng.uniform(-alpha , alpha)
108 print(f"Random initial value: {chain [0]}")
109

110 # simulate the distribution
111 for t in range(1, max_steps):

191

112 chain[t] = metropolis(chain[t-1], alpha)
113

114 plot(chain , max_steps , alpha)
115

116

117 if (__name__ == ’__main__ ’):
118 simple_example ()� �

Listing D.1: Example of Python script for approximating a modified normal distribution
using a Metropolis-Hastings approach

192

Appendix E

Example Files

These appendices contain various files that are referenced in the thesis. Appendices E.1
and E.2 contain output from termfactory. Listing E.2 is the output of the diabatization
example outlined in Section 3.5. Two vibronic models are defined in Sections 3.4.2 and 3.4.3
and their corresponding file representations are presented in Listings E.3 and E.5 and List-
ings E.4 and E.6.

E.1 termfactory eT̂ ĤẐ LATEX example output

This appendix is intended to be illustrative of the type of output generated by termfactory
that is used by t-amplitudes to generate spectra, and is more complicated than the examples
in Chapter 5. The magenta colouring is a visual aid for pairings between t and z. Generating
this is as simple as python3 driver.py -t 2 3 1 3 2 and takes ≈ 0.2 seconds.

193

E.1.1 Constant Equations P̂0

LHS = i
(dẑγ
dτ

)
RHS = h0,xb(1− δxγ)

+
∑(

1h0z0 + f1hkzk + f 2 2!

2!2!
1hklzkl + ftkh0zk

+ f 2 (2)

2!
tkhlzkl + f 3 (3)2!

2!3!
tkhlmzklm + ftkhkz0 + f 2tkhk

l z
l

+ f 2 2!

2!2!
tktlh0zkl + f 3 (3)2!

3!2!
tktlhmzklm + f 2 1

2!
tktlhlzk + f 3 (2)

2!2!
tktlhl

mzkm

+ f 2 2!

2!2!
tktlhklz0 + f 3 3!

3!3!
tktltmh0zklm + f 3 2!

2!3!
tktltmhmzkl + f 4 (3)2!

3!3!
tktltmhm

n zkln

+ f 3 2!

2!3!
tktltmhlmzk

)
− i
∑(dt̂0,γ

dτ
ẑ0,γ
)

E.1.2 Linear Equations P̂y

LHS = i
(dẑiγ
dτ

)
RHS = hi(1− δxγ)

+
∑(

1h0zy + f
(2)

2!
1hkzky + f 2 (3)2!

2!3!
1hklzkly + 1hyz0

+ f1hy
kz

k + f
(2)

2!
tkh0zky + f 2 (3)(2)

3!
tkhlzkly + ftkhyzk

+ ftkhkzy + f 2 (2)

2!
tkh

y
l z

kl + f 2 (2)

2!
tkhk

l z
ly + f

(2)

2!
tkhkyz0

+ f 2 (3)2!

3!2!
tktlh0zkly + f 2 2!

2!2!
tktlhyzkl + f 2 (2)

2!2!
tktlhlzky + f 3 (3)2!

3!2!
tktlhy

mzklm

+ f 3 (3)(2)

3!2!
tktlhl

mzkmy + f 2 (2)

2!2!
tktlhlyzk + f 2 2!

2!2!
tktlhklzy + f 3 3!

3!3!
tktltmhyzklm

+ f 3 (3)2!

3!3!
tktltmhmzkly + f 3 (2)2!

2!2!3!
tktltmhmyzkl + f 3 2!(2)

2!2!3!
tktltmhlmzky

)
− i
∑(dt̂iγ

dτ
ẑ0,γ +

dt̂0,γ
dτ

ẑiγ
)

194

E.1.3 Quadratic Equations P̂yx

P̂yx

LHS = i
(dẑijγ
dτ

)
RHS = hij(1− δxγ)

+
∑(1

2!
1h0zyx + f

(3)

3!
1hkzkyx + 1hyzx + f

(2)

2!
1hy

kz
kx

+
1

2!
1hyxz0 + f

(3)

3!
tkh0zkyx + f

(2)

2!
tkhyzkx + f

1

2!
tkhkzyx

+ f 2 (3)(2)

3!
tkh

y
l z

klx + f 2 (3)

3!
tkhk

l z
lyx + f

1

2!
tkhyxzk + f

(2)

2!
tkhkyzx

+ f 2 (3)2!

3!2!
tktlhyzklx + f 2 (3)

3!2!
tktlhlzkyx + f 2 2!

2!2!2!
tktlhyxzkl + f 2 (2)(2)

2!2!2!
tktlhlyzkx

+ f 2 2!

2!2!2!
tktlhklzyx + f 3 3!

2!3!3!
tktltmhyxzklm + f 3 (2)(3)2!

2!3!3!
tktltmhmyzklx + f 3 2!(3)

2!3!3!
tktltmhlmzkyx

)
− i
∑(dt̂ijγ

dτ
ẑ0,γ +

dt̂iγ
dτ

ẑjγ +
dt̂0,γ
dτ

ẑijγ
)

195

E.2 Extreme termfactory eT̂ ĤẐ LATEX example output

This appendix is intended to be illustrative of the extreme end of LATEX generated by termfactory. Note that equations this
extensive are not used in t-amplitudes. Generating this is as simple as python3 driver.py -t 2 5 1 6 6 and takes roughly
1.5 seconds. The magenta colouring is a visual aid for pairings between t and z.

E.2.1 Constant Equations P̂0

LHS = i
(dẑγ
dτ

)
RHS = h0,xb(1− δxγ)

+
∑(

1h0z0 + f̄1hkzk + f̄ 2 2!

2!2!
1hklzkl + f̄tkh0zk

+ f̄ 2 (2)

2!
tkhlzkl + f̄ 3 (3)2!

2!3!
tkhlmzklm + f̄tkhkz0 + f̄ 2tkhk

l z
l

+ f̄ 2 2!

2!2!
tktlh0zkl + f̄ 3 (3)2!

3!2!
tktlhmzklm + f̄ 4 (6)2!2!

2!4!2!
tktlhmnzklmn + f̄ 2 1

2!
tktlhlzk

+ f̄ 3 (2)

2!2!
tktlhl

mzkm + f̄ 2 2!

2!2!
tktlhklz0 + f̄ 3 3!

3!3!
tktltmh0zklm + f̄ 4 (4)3!

4!3!
tktltmhnzklmn

+ f̄ 5 (10)2!3!

2!5!3!
tktltmhnozklmno + f̄ 3 2!

2!3!
tktltmhmzkl + f̄ 4 (3)2!

3!3!
tktltmhm

n zkln + f̄ 3 2!

2!3!
tktltmhlmzk

+ f̄ 4 4!

4!4!
tktltmtnh0zklmn + f̄ 5 (5)4!

5!4!
tktltmtnhozklmno + f̄ 4 3!

3!4!
tktltmtnhnzklm + f̄ 5 (4)3!

4!4!
tktltmtnhn

oz
klmo

+ f̄ 4 2!2!

2!2!4!
tktltmtnhmnzkl + f̄ 5 5!

5!5!
tktltmtntoh0zklmno + f̄ 5 4!

4!5!
tktltmtntohozklmn + f̄ 6 (5)4!

5!5!
tktltmtntohozklmn

+ f̄ 5 2!3!

2!3!5!
tktltmtntohnozklm + f̄ 6 5!

5!6!
tktltmtntothzklmno + f̄ 6 2!4!

2!4!6!
tktltmtntothozklmn

)
− i
∑(dt̂0,γ

dτ
ẑ0,γ
)

196

E.2.2 Linear Equations P̂y

LHS = i
(dẑiγ
dτ

)
RHS = hi(1− δxγ)

+
∑(

1h0zy + f̄
(2)

2!
1hkzky + f̄ 2 (3)2!

2!3!
1hklzkly + 1hyz0

+ f̄1hy
kz

k + f̄
(2)

2!
tkh0zky + f̄ 2 (3)(2)

3!
tkhlzkly + f̄ 3 (4)(3)2!

2!4!
tkhlmzklmy

+ f̄tkhyzk + f̄tkhkzy + f̄ 2 (2)

2!
tkh

y
l z

kl + f̄ 2 (2)

2!
tkhk

l z
ly

+ f̄
(2)

2!
tkhkyz0 + f̄ 2 (3)2!

3!2!
tktlh0zkly + f̄ 3 (4)(3)2!

4!2!
tktlhmzklmy + f̄ 4 (5)(6)2!2!

2!5!2!
tktlhmnzklmny

+ f̄ 2 2!

2!2!
tktlhyzkl + f̄ 2 (2)

2!2!
tktlhlzky + f̄ 3 (3)2!

3!2!
tktlhy

mzklm + f̄ 3 (3)(2)

3!2!
tktlhl

mzkmy

+ f̄ 2 (2)

2!2!
tktlhlyzk + f̄ 2 2!

2!2!
tktlhklzy + f̄ 3 (4)3!

4!3!
tktltmh0zklmy + f̄ 4 (5)(4)3!

5!3!
tktltmhnzklmny

+ f̄ 3 3!

3!3!
tktltmhyzklm + f̄ 3 (3)2!

3!3!
tktltmhmzkly + f̄ 4 (4)3!

4!3!
tktltmhy

nz
klmn + f̄ 4 (4)(3)2!

4!3!
tktltmhm

n zklny

+ f̄ 3 (2)2!

2!2!3!
tktltmhmyzkl + f̄ 3 2!(2)

2!2!3!
tktltmhlmzky + f̄ 4 (5)4!

5!4!
tktltmtnh0zklmny + f̄ 4 4!

4!4!
tktltmtnhyzklmn

+ f̄ 4 (4)3!

4!4!
tktltmtnhnzklmy + f̄ 5 (5)4!

5!4!
tktltmtnhy

oz
klmno + f̄ 5 (5)(4)3!

5!4!
tktltmtnhn

oz
klmoy + f̄ 4 (2)3!

2!3!4!
tktltmtnhnyzklm

+ f̄ 42!(3)2!

2!3!4!
tktltmtnhmnzkly + f̄ 5 5!

5!5!
tktltmtntohyzklmno + f̄ 5 (5)4!

5!5!
tktltmtntohozklmny + f̄ 5 (2)4!

2!4!5!
tktltmtntohoyzklmn

+ f̄ 52!(4)3!

2!4!5!
tktltmtntohnozklmy + f̄ 6 (2)5!

2!5!6!
tktltmtntothyzklmno + f̄ 62!(5)4!

2!5!6!
tktltmtntothozklmny

)
− i
∑(dt̂iγ

dτ
ẑ0,γ +

dt̂0,γ
dτ

ẑiγ
)

197

E.2.3 Quadratic Equations P̂yx

LHS = i
(dẑijγ
dτ

)
RHS = hij(1− δxγ)

+
∑(1

2!
1h0zyx + f̄

(3)

3!
1hkzkyx + f̄ 2 (6)2!

2!4!
1hklzklyx + 1hyzx

+ f̄
(2)

2!
1hy

kz
kx +

1

2!
1hyxz0 + f̄

(3)

3!
tkh0zkyx + f̄ 2 (6)(2)

4!
tkhlzklyx

+ f̄ 3 (10)(3)2!

2!5!
tkhlmzklmyx + f̄

(2)

2!
tkhyzkx + f̄

1

2!
tkhkzyx + f̄ 2 (3)(2)

3!
tkh

y
l z

klx

+ f̄ 2 (3)

3!
tkhk

l z
lyx + f̄

1

2!
tkhyxzk + f̄

(2)

2!
tkhkyzx + f̄ 2 (6)2!

4!2!
tktlh0zklyx

+ f̄ 3 (10)(3)2!

5!2!
tktlhmzklmyx + f̄ 2 (3)2!

3!2!
tktlhyzklx + f̄ 2 (3)

3!2!
tktlhlzkyx + f̄ 3 (4)(3)2!

4!2!
tktlhy

mzklmx

+ f̄ 3 (6)(2)

4!2!
tktlhl

mzkmyx + f̄ 2 2!

2!2!2!
tktlhyxzkl + f̄ 2 (2)(2)

2!2!2!
tktlhlyzkx + f̄ 2 2!

2!2!2!
tktlhklzyx

+ f̄ 3 (10)3!

5!3!
tktltmh0zklmyx + f̄ 3 (4)3!

4!3!
tktltmhyzklmx + f̄ 3 (6)2!

4!3!
tktltmhmzklyx + f̄ 4 (5)(4)3!

5!3!
tktltmhy

nz
klmnx

+ f̄ 4 (10)(3)2!

5!3!
tktltmhm

n zklnyx + f̄ 3 3!

2!3!3!
tktltmhyxzklm + f̄ 3 (2)(3)2!

2!3!3!
tktltmhmyzklx + f̄ 3 2!(3)

2!3!3!
tktltmhlmzkyx

+ f̄ 4 (5)4!

5!4!
tktltmtnhyzklmnx + f̄ 4 (10)3!

5!4!
tktltmtnhnzklmyx + f̄ 4 4!

2!4!4!
tktltmtnhyxzklmn + f̄ 4 (2)(4)3!

2!4!4!
tktltmtnhnyzklmx

+ f̄ 42!(6)2!

2!4!4!
tktltmtnhmnzklyx + f̄ 5 5!

2!5!5!
tktltmtntohyxzklmno + f̄ 5 (2)(5)4!

2!5!5!
tktltmtntohoyzklmnx + f̄ 52!(10)3!

2!5!5!
tktltmtntohnozklmyx

)
− i
∑(dt̂ijγ

dτ
ẑ0,γ +

dt̂iγ
dτ

ẑjγ +
dt̂0,γ
dτ

ẑijγ
)

198

E.2.4 Cubic Equations P̂yxw

LHS = i
(dẑijkγ

dτ

)
RHS = hijk(1− δxγ)

+
∑(1

3!
1h0zyxw + f̄

(4)

4!
1hkzkyxw + f̄ 2 (10)2!

2!5!
1hklzklyxw +

1

2!
1hyzxw

+ f̄
(3)

3!
1hy

kz
kxw +

1

2!
1hyxzw + f̄

(4)

4!
tkh0zkyxw + f̄ 2 (10)(2)

5!
tkhlzklyxw

+ f̄
(3)

3!
tkhyzkxw + f̄

1

3!
tkhkzyxw + f̄ 2 (6)(2)

4!
tkh

y
l z

klxw + f̄ 2 (4)

4!
tkhk

l z
lyxw

+ f̄
(2)

2!2!
tkhyxzkw + f̄

(2)

2!2!
tkhkyzxw + f̄ 2 (10)2!

5!2!
tktlh0zklyxw + f̄ 2 (6)2!

4!2!
tktlhyzklxw

+ f̄ 2 (4)

4!2!
tktlhlzkyxw + f̄ 3 (10)(3)2!

5!2!
tktlhy

mzklmxw + f̄ 3 (10)(2)

5!2!
tktlhl

mzkmyxw + f̄ 2 (3)2!

2!3!2!
tktlhyxzklw

+ f̄ 2 (2)(3)

2!3!2!
tktlhlyzkxw + f̄ 2 2!

2!3!2!
tktlhklzyxw + f̄ 3 (10)3!

5!3!
tktltmhyzklmxw + f̄ 3 (10)2!

5!3!
tktltmhmzklyxw

+ f̄ 3 (4)3!

2!4!3!
tktltmhyxzklmw + f̄ 3 (2)(6)2!

2!4!3!
tktltmhmyzklxw + f̄ 3 2!(4)

2!4!3!
tktltmhlmzkyxw + f̄ 4 (5)4!

2!5!4!
tktltmtnhyxzklmnw

+ f̄ 4 (2)(10)3!

2!5!4!
tktltmtnhnyzklmxw + f̄ 42!(10)2!

2!5!4!
tktltmtnhmnzklyxw

)
− i
∑(dt̂ijkγ

dτ
ẑ0,γ +

dt̂ijγ
dτ

ẑkγ +
dt̂iγ
dτ

ẑjkγ +
dt̂0,γ
dτ

ẑijkγ

)

199

E.2.5 Quartic Equations P̂yxwv

LHS = i
(dẑijklγ

dτ

)
RHS = hijkl(1− δxγ)

+
∑(1

4!
1h0zyxwv + f̄

(5)

5!
1hkzkyxwv + f̄ 2 (15)2!

2!6!
1hklzklyxwv +

1

3!
1hyzxwv

+ f̄
(4)

4!
1hy

kz
kxwv +

1

2!2!
1hyxzwv + f̄

(5)

5!
tkh0zkyxwv + f̄ 2 (15)(2)

6!
tkhlzklyxwv

+ f̄
(4)

4!
tkhyzkxwv + f̄

1

4!
tkhkzyxwv + f̄ 2 (10)(2)

5!
tkh

y
l z

klxwv + f̄ 2 (5)

5!
tkhk

l z
lyxwv

+ f̄
(3)

2!3!
tkhyxzkwv + f̄

(2)

2!3!
tkhkyzxwv + f̄ 2 (15)2!

6!2!
tktlh0zklyxwv + f̄ 2 (10)2!

5!2!
tktlhyzklxwv

+ f̄ 2 (5)

5!2!
tktlhlzkyxwv + f̄ 3 (20)(3)2!

6!2!
tktlhy

mzklmxwv + f̄ 3 (15)(2)

6!2!
tktlhl

mzkmyxwv + f̄ 2 (6)2!

2!4!2!
tktlhyxzklwv

+ f̄ 2 (2)(4)

2!4!2!
tktlhlyzkxwv + f̄ 2 2!

2!4!2!
tktlhklzyxwv + f̄ 3 (20)3!

6!3!
tktltmhyzklmxwv + f̄ 3 (15)2!

6!3!
tktltmhmzklyxwv

+ f̄ 3 (10)3!

2!5!3!
tktltmhyxzklmwv + f̄ 3 (2)(10)2!

2!5!3!
tktltmhmyzklxwv + f̄ 3 2!(5)

2!5!3!
tktltmhlmzkyxwv + f̄ 4 (15)4!

2!6!4!
tktltmtnhyxzklmnwv

+ f̄ 4 (2)(20)3!

2!6!4!
tktltmtnhnyzklmxwv + f̄ 42!(15)2!

2!6!4!
tktltmtnhmnzklyxwv

)
− i
∑(dt̂ijklγ

dτ
ẑ0,γ +

dt̂ijkγ

dτ
ẑlγ +

dt̂ijγ
dτ

ẑklγ +
dt̂iγ
dτ

ẑjklγ +
dt̂0,γ
dτ

ẑijklγ

)

200

E.2.6 Quintic Equations P̂yxwvu

LHS = i
(dẑijklγ

dτ

)
RHS = hijkl(1− δxγ)

+
∑(1

4!
1h0zyxwv + f̄

(5)

5!
1hkzkyxwv +

1

3!
1hyzxwv + f̄

(4)

4!
1hy

kz
kxwv

+
1

2!2!
1hyxzwv + f̄

(5)

5!
tkh0zkyxwv + f̄

(4)

4!
tkhyzkxwv + f̄

1

4!
tkhkzyxwv

+ f̄ 2 (10)(2)

5!
tkh

y
l z

klxwv + f̄ 2 (5)

5!
tkhk

l z
lyxwv + f̄

(3)

2!3!
tkhyxzkwv + f̄

(2)

2!3!
tkhkyzxwv

+ f̄ 2 (10)2!

5!2!
tktlhyzklxwv + f̄ 2 (5)

5!2!
tktlhlzkyxwv + f̄ 2 (6)2!

2!4!2!
tktlhyxzklwv + f̄ 2 (2)(4)

2!4!2!
tktlhlyzkxwv

+ f̄ 2 2!

2!4!2!
tktlhklzyxwv + f̄ 3 (10)3!

2!5!3!
tktltmhyxzklmwv + f̄ 3 (2)(10)2!

2!5!3!
tktltmhmyzklxwv + f̄ 3 2!(5)

2!5!3!
tktltmhlmzkyxwv

)
− i
∑(dt̂ijklγ

dτ
ẑ0,γ +

dt̂ijkγ

dτ
ẑlγ +

dt̂ijγ
dτ

ẑklγ +
dt̂iγ
dτ

ẑjklγ +
dt̂0,γ
dτ

ẑijklγ

)

201

E.2.7 Sextic Equations P̂yxwvu

LHS = i
(dẑijklmγ

dτ

)
RHS = hijklm(1− δxγ)

+
∑(1

5!
1h0zyxwvu +

1

4!
1hyzxwvu + f̄

(5)

5!
1hy

kz
kxwvu +

1

2!3!
1hyxzwvu

+ f̄
(5)

5!
tkhyzkxwvu + f̄

1

5!
tkhkzyxwvu + f̄

(4)

2!4!
tkhyxzkwvu + f̄

(2)

2!4!
tkhkyzxwvu

+ f̄ 2 (10)2!

2!5!2!
tktlhyxzklwvu + f̄ 2 (2)(5)

2!5!2!
tktlhlyzkxwvu + f̄ 2 2!

2!5!2!
tktlhklzyxwvu

)
− i
∑(dt̂ijklmγ

dτ
ẑ0,γ +

dt̂ijklγ

dτ
ẑmγ +

dt̂ijkγ

dτ
ẑlmγ +

dt̂ijγ
dτ

ẑklmγ +
dt̂iγ
dτ

ẑjklmγ +
dt̂0,γ
dτ

ẑijklmγ

)

202

E.3 Example MCTDH input file� �
1 RUN-SECTION
2 title = wavefunction propagation of h2o_FC_constant
3 name = h2o_FC_constant
4 propagation
5 tout = 0.10 tfinal = 25.00
6 geninwf
7 psi=single
8 auto=once
9 end-run-section

10

11 OPERATOR-SECTION
12 opname = h2o_FC_constant
13 end-operator-section
14

15 SPF-BASIS-SECTION
16 multi-set
17 v01 = 3, 3, 6, 1
18 v02 , v03 = 3, 3, 6, 1
19 end-spf-basis-section
20

21

22 PRIMITIVE-BASIS-SECTION
23 v01 HO 30 0.0 1.0 1.0
24 v02 HO 30 0.0 1.0 1.0
25 v03 HO 30 0.0 1.0 1.0
26 el el 4
27 end-primitive-basis-section
28

29 INTEGRATOR-SECTION
30 CMF/var = 0.5, 1.0d-05
31 BS/spf = 7, 1.0d-05, 2.5d-04
32 SIL/A = 5, 1.0d-05
33 end-integrator-section
34

35 INIT_WF-SECTION
36 build
37 init_state =4
38 ---
39 # mode type center moment. freq. mass
40 ---
41 v01 HO 0.0 0.0 1.0 1.0
42 v02 HO 0.0 0.0 1.0 1.0
43 v03 HO 0.0 0.0 1.0 1.0
44 ---
45 end-build
46 operate=Ex
47 end-init_wf-section
48

49 end-input� �
Listing E.1: Input file for MCTDH to propagate a ground state wavepacket for the linear
vibronic model ofH2O

203

E.4 Diabatization water model

1 OP_DEFINE -SECTION
2 title
3 water 3 modes 3 states
4 end -title
5 end -op_define -section
6

7 PARAMETER -SECTION
8

9 # frequencies
10 w01 = 0.19867693 , ev
11 w02 = 0.47347270 , ev
12 w03 = 0.48650398 , ev
13

14 # vertical energies
15

16 delta1 = 0.00000000 , ev
17 delta2 = 1.53130000 , ev
18 delta3 = 2.12440000 , ev
19

20 # linear intrastate parameters
21 KD11_01 = 0.15126954 , ev
22 KD11_02 = 0.13700266 , ev
23 KD11_03 = -0.16662290 , ev
24

25 KD22_01 = 0.14413728 , ev
26 KD22_02 = 0.13055576 , ev
27 KD22_03 = -0.12270191 , ev
28

29 KD33_01 = 0.23522834 , ev
30 KD33_02 = 0.21306226 , ev
31 KD33_03 = 0.06221878 , ev
32

33 # linear interstate parameters
34 KD12_01 = 0.08494233 , ev
35 KD12_02 = 0.07689810 , ev
36 KD12_03 = -0.07576917 , ev
37

38 KD13_01 = 0.27002321 , ev
39 KD13_02 = -0.12513436 , ev
40

41 KD23_01 = 0.00001514 , ev
42 KD23_02 = -0.00000574 , ev
43 KD23_03 = -0.00004295 , ev
44

45 end -parameter -section
46

47 HAMILTONIAN -SECTION
48 modes | el
49 modes | v01
50 modes | v02
51 modes | v03

204

52

53 1.0* w01 |2 KE
54 1.0* w02 |3 KE
55 1.0* w03 |4 KE
56

57 0.5* w01 |2 q^2
58 0.5* w02 |3 q^2
59 0.5* w03 |4 q^2
60

61 delta1 |1 S1&1
62 delta2 |1 S2&2
63 delta3 |1 S3&3
64

65 KD11_01 |1 S1&1 |2 q
66 KD11_02 |1 S1&1 |3 q
67 KD11_03 |1 S1&1 |4 q
68

69 KD22_01 |1 S2&2 |2 q
70 KD22_02 |1 S2&2 |3 q
71 KD22_03 |1 S2&2 |4 q
72

73 KD33_01 |1 S3&3 |2 q
74 KD33_02 |1 S3&3 |3 q
75 KD33_03 |1 S3&3 |4 q
76

77

78 KD12_01 |1 S1&2 |2 q
79 KD12_02 |1 S1&2 |3 q
80 KD12_03 |1 S1&2 |4 q
81

82 KD13_01 |1 S1&3 |2 q
83 KD13_02 |1 S1&3 |3 q
84

85 KD23_01 |1 S2&3 |2 q
86 KD23_02 |1 S2&3 |3 q
87 KD23_03 |1 S2&3 |4 q
88

89

90 end -hamiltonian -section
91

92 end -operator

Listing E.2: Example of *.op file format of Water molecule (H2O) obtained through
diabatization process as explained in Section 3.5

205

E.5 Displaced JSON

1 {
2 "number of modes": 2,
3 "number of surfaces": 2,
4 "energies":
5 [
6 [0.0996, 0.0],
7 [0.0, 0.1996]
8],
9 "frequencies":

10 [
11 0.02, 0.04
12],
13 "linear couplings":
14 [[
15 [0.072, 0.0],
16 [0.0, -0.072]
17],[
18 [0.0, 0.04],
19 [0.04, 0.0]
20]
21]
22 }

Listing E.3: Example of JSON file format of Displaced model defined in Equation (3.38)
with (λ = 0.072, γ = 0.04)

206

E.6 Displaced op

1 OP_DEFINE -SECTION
2 title
3 IP
4 end -title
5 end -op_define -section
6

7

8 PARAMETER -SECTION
9

10

11 # Frequencies
12 # ------------------------
13

14 w01 = 0.02 , ev
15 w02 = 0.04 , ev
16

17 # Electronic Hamitonian
18 # Vertical energies - Zeropoint
19 # -------------------------------
20

21 EH_s01_s01 = 0.0996 , ev
22 EH_s02_s02 = 0.1996 , ev
23

24 # Linear Coupling Constants
25 # --------------------------
26

27 C1_s01_s01_v01 = 0.072 , ev
28 C1_s02_s02_v01 = -0.072 , ev
29 C1_s01_s02_v02 = 0.04 , ev
30 C1_s02_s01_v02 = 0.04 , ev
31

32

33 end -parameter -section

Listing E.4: Example of *.op file format of Displaced model defined in Equation (3.38)
with (λ = 0.072, γ = 0.04)

207

E.7 Jahn-Teller JSON

1 {
2 "number of modes": 2,
3 "number of surfaces": 2,
4 "energies":
5 [
6 [-0.0033333333333329107, 0.0],
7 [0.0, -0.0033333333333329107]
8],
9 "frequencies":

10 [
11 0.03, 0.03
12],
13 "linear couplings":
14 [[
15 [0.04, 0.0],
16 [0.0, -0.04]
17],[
18 [0.0, 0.04],
19 [0.04, 0.0]
20]
21]
22 }

Listing E.5: Example of JSON file format of Jahn-Teller model defined in Equation (3.39)
with λ = 0.072, γ = 0.04

208

E.8 Jahn-Teller op

1 OP_DEFINE -SECTION
2 title
3 IP
4 end -title
5 end -op_define -section
6

7

8 PARAMETER -SECTION
9

10

11 # Frequencies
12 # ------------------------
13

14 w01 = 0.03 , ev
15 w02 = 0.03 , ev
16

17 # Electronic Hamitonian
18 # Vertical energies - Zeropoint
19 # -------------------------------
20

21 EH_s01_s01 = -0.0033333333333329107 , ev
22 EH_s02_s02 = -0.0033333333333329107 , ev
23

24 # Linear Coupling Constants
25 # --------------------------
26

27 C1_s01_s01_v01 = 0.04 , ev
28 C1_s02_s02_v01 = -0.04 , ev
29 C1_s01_s02_v02 = 0.04 , ev
30 C1_s02_s01_v02 = 0.04 , ev
31

32

33 end -parameter -section

Listing E.6: Example of *.op file format of Jahn-Teller model defined in Equation (3.39)
with (λ = 0.072, γ = 0.04)

209

	Title Page
	Abstract
	Table of Contents
	List of Figures
	List of Tables
	List of Abbreviations
	List of Listings
	Introduction
	Overview of the thesis

	Background Theory
	Path Integral Formulation of Statistical Mechanics
	Basic Formulation
	Representations specific to this work

	Monte Carlo and Metropolis Hastings
	Monte Carlo Integration
	Importance Sampling
	Markov Chain Monte Carlo methods
	Metropolis-Hastings Algorithm

	Vibrational Electronic Coupled Cluster
	Coupled Cluster theory in electronic structure theory and generalizations to vibrational problems
	Vibrational Electronic Coupled Cluster Theory

	Realistic Computations

	Vibronic Models
	Quantum Mechanical Models
	Adiabatic states
	Clamped Nuclei
	BO and Born-Huang approximations

	Diabatic States
	Coupling coefficients
	Diabatization scheme

	Vibronic Models
	Notation
	Displaced Model
	Jahn-Teller Model

	Real World Diabatization Example
	Step 1: Geometry Optimization & Frequency Calculation
	Step 2: Calculate geometry displacements
	Step 3: Evaluate electronic integral
	Step 4: Calculate transformation matrix
	Step 5: Collate numerical results

	Wrapping up

	Path Integral Monte Carlo
	Basic Definitions
	Matrix representation

	Theory
	Metropolis scheme 1 (Direct approach)
	Definition of a state
	Generating a trajectory
	Example of evaluating proposed sample state

	Metropolis scheme 2 (Averaged matrix/GMD approach)
	Additional Metropolis schemes
	Fixed method
	Selective matrix method

	Solution to manifestation of the sign problem
	Results
	Displaced System
	Uncoupled y1, Proposal d1
	Weak Coupling y3, Proposal d1
	Weak Coupling y3, Proposal d2
	Intermediate Coupling y4, Proposal d1
	Intermediate Coupling y4, Proposal d2
	Strong Coupling y5, Proposal d1
	Strong Coupling y5, Proposal d2
	Strong Coupling y6, Proposal d1
	Strong Coupling y6, Proposal d2
	Strong Coupling y6, Proposal d3

	Concluding Remarks

	Distinguishing pairings with termfactory
	Motivating Problem
	Example
	Summary of Objective

	General pairing forms
	General form
	Simplified form

	Constraints
	Permutation symmetry

	Projection Operator
	External Symmetrization

	Solving the Problem in practice
	termfactory scheme
	Term and pairing representation
	Context
	Overall scheme
	Basic Exclusion (Step 2/5)
	Generating all valid pairings (Step 4/5)

	The Language of Pairing Terms
	Motivation
	Logic Programming
	Linear programming

	Concluding Remarks

	 Application of termfactory and t-amplitudes to VECC methodology and calculation of Vibronic Spectra
	Derivation of Vibrational Electronic Coupled Cluster approaches
	Computational Costs
	Optimized Einsum
	Sparse Matrix Symmetrization

	Results
	MCTDH calculations
	Details of generating spectra
	Benchmark models
	Water H2O
	Carbon Dioxide CO2
	Formaldehyde CH2O
	Nitrous Oxide N2O
	Ammonia NH3
	Larger Systems

	Conclusion

	Conclusions and Final Remarks
	Future Work and Ongoing Projects
	Outstanding questions

	Bibliography
	Appendices
	Statistical distributions
	Notation and form of specific Distributions

	Deriving energy estimator for PIMC method
	Deriving the Energy estimator
	Derivation of explicit form of F(Q, a)
	tau derivative of individual O matrix element
	tau derivative of individual M matrix element

	Assorted Notes
	Normal Ordering inequality explanation
	More general contraction scheme
	Formal language theory
	Complexity of linear programming

	Algorithms
	Python example

	Example Files
	termfactory eTHZ LaTeX example output
	Constant Equations P0
	Linear Equations P1
	Quadratic Equations P2

	Extreme termfactory eTHZ LaTeX example output
	Constant Equations P0
	Linear Equations P1
	Quadratic Equations P2
	Cubic Equations P3
	Quartic Equations P4
	Quintic Equations P5
	Sextic Equations P6

	Example MCTDH input file
	Diabatization water model
	Displaced JSON
	Displaced op
	Jahn-Teller JSON
	Jahn-Teller op

