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Abstract

In the era of NISQ devices, having practical methods to characterize noisy processes is
more important than ever. Characterization techniques allow us to determine performance
of current experimental setups and aids in the development of error mitigation and correc-
tion protocols. Randomization-based techniques have become a key player in this area with
techniques such as randomized benchmarking and cycle benchmarking providing efficient
and robust methods of determining fidelity metrics. In this thesis, we introduce a novel
randomization-based protocol for estimation of parameters in a sparse Hamiltonian. This
is achieved via a projective Rabi experiment which interleaves projective channels between
applications of a fixed quantum channel of interest to allow for a coherent amplification of
some small user selectable subspace. An important result that we prove is the efficiency
and robustness of the protocol making it a suitable for experimental systems. Specifically,
we prove it is Heisenberg-limited meaning the uncertainty in the output reaches the best
case scaling with experimental time restricted only by the fundamental limit of quantum
physics. For this thesis, we outline the abstract algorithm and demonstrate how to con-
struct approximate projectors using the character projection formula. Then, we prove the
efficiency and robustness of the protocol. Finally, we walk through an example of a multi-
qudit rotation gate demonstrating the functionality of our methodology and run numerical
simulations to validate our results.

iv



Acknowledgements

I would like to thank Joel Wallman for his supervision and mentoring throughout my
time at the University of Waterloo. Additionally, I would like to thank Crystal Senko
and Rajibul Islam for granting me the opportunity to be a part of their QuantumIon
team. Finally, I would like to thank Matthew Graydon and Joshua Skanes-Norman for
their enthusiastic assistance whenever I had a question, the useful discussions and their
guidance toward new resources.

v



Dedication

This is dedicated to all those who helped me get this far.

vi



Table of Contents

List of Figures ix

1 Introduction to Quantum Computing 1

2 Preliminaries 4

2.1 Group Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Representation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Character of a Representation . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.4 General Pauli Transfer Matrix Representation . . . . . . . . . . . . . . . . 11

3 Review of Characterization Techniques 13

3.1 Hamiltonian Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Gate Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.2.1 Standard Randomized Benchmarking . . . . . . . . . . . . . . . . . 16

3.2.2 Character Randomized Benchmarking . . . . . . . . . . . . . . . . 18

3.2.3 Cycle Benchmarking . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Algorithm 22

4.1 Finite Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Robustness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.3 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

vii



5 Numerical Simulations 34

6 Conclusion 38

References 40

APPENDICES 44

A Mathematical Proofs 45

A.1 Schur’s Orthogonality Relations . . . . . . . . . . . . . . . . . . . . . . . . 45

A.2 General Character Projection Formula . . . . . . . . . . . . . . . . . . . . 46

A.3 Complex Hoeffding Inequality . . . . . . . . . . . . . . . . . . . . . . . . . 48

A.4 Telescoping series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

viii



List of Figures

2.1 For d = 2, the PTM of a Pauli X gate (left) and rotation gate RX(π/4)
(right) visualized. Blocks represent the actions of the gate on elements of
the Weyl-Heisenberg group. E.g. the rotation gate generated by X maps Y
to 0.71Y and −0.71Z. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3.1 Example of Rabi oscillations in a 133Ba+ trapped ion system obtained by
applying a microwave rotation R(ΩRt, 0) onto an ion in the |0〉 state. [11] . 14

3.2 The cycle benchmarking procedure as introduced in [16]. The green B̃P,N
are basis changing operations, blue R̃i,N are Pauli cycles, and red G̃ is a
noisy Clifford gate of interest. . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.1 Pauli transfer matrix of a single qubit Z rotation (left) and X rotation (right)
generated by θ = 0.609 Rad. Diagonal blocks of 0.82 represent the cos(θ)
components of the rotation and off diagonal blocks of 0.57 represent the
sin(θ) components. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.1 Experimental output for the two qubit RXX(π/4) gate in the case of an ideal
system (left) and a system undergoing over-rotation, stochastic Pauli noise
and SPAM errors (right). In both cases, a cosine function was able to be
successfully fitted and θ determined. . . . . . . . . . . . . . . . . . . . . . 35

5.2 Standard deviation convergence under number of samples (left) and number
of iterations (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

5.3 Comparison of standard deviation for the projective Rabi experiment versus
randomized benchmarking. Standard deviations are normalized based off
the maximum deviation for each protocol. . . . . . . . . . . . . . . . . . . 37

ix



Chapter 1

Introduction to Quantum Computing

It is no secret that computers have become an essential part of everyday life. From scien-
tific applications such as modelling complex systems to even daily use such as browsing the
internet; computers are unavoidable in the modern world. This explosion of technology is
in part thanks to Moore’s Law, which states the number of components on a microchip
will double every two years all while the cost of those components will decrease at a similar
rate [17]. However, despite holding true since its inception in the mid 60s, Moore’s Law is
less of a physical law and more a goal post. One that is rapidly become difficult to reach,
namely due to the introduction of quantum effects as components become smaller. This
sets the stage to explore the union between classical computing and quantum mechanics
leading to the concept of quantum computers.

Theories about the advantages quantum computers appeared not long after Paul Benioff
proposed the first quantum mechanical model of the Turing machine in 1980 [6]. Physicists
such as Richard Feynman quickly recognized the potential these quantum machines could
possess. Although, it was not until the introduction of algorithms such as Shor’s algorithm
that the first concrete evidence of this claim was provided. Peter Shor’s factorization algo-
rithm shows that a quantum computer can factorize integers exponentially faster than the
fastest known classical algorithm. This revelation raised many red flags for cryptography
experts as the widely used RSA scheme depends on factorization being difficult. Develop-
ing a quantum computer from then on has become the goal of many physicists, engineers
and cryptographers. Companies such as Google and IBM are investing heavily in the
modern day and many of the greatest minds across several disciplines are deeply involved.
Yet, despite all this interest, we have yet to see a fully functioning quantum computer.
Fundamentally, the issue that persists is that quantum systems are very sensitive to noise
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and prone to error. Any unwanted interactions, such as with the surrounding environment
or amongst qubits, introduce errors that severely limit performance. Quantum computers
capable of operating as intended in the presence of these errors are called ‘fault-tolerant’.

As we work toward the first fault-tolerant quantum computer, we currently reside in
the ‘noisy intermediate scale quantum’ (NISQ) era as originally termed by John Preskill.
To achieve fault tolerance, quantum error correcting codes (ECCs) must be developed. For
QECCs to work as intended, errors in a system must occur at some rate below a threshold
set by that QECC. Literature suggests lower bound error rates as low as 10−6 [1] for generic
local noise and 10−4 − 10−3 [2, 3] for stochastic Pauli noise. Achieving (and surpassing)
these rates is a communal effort between experimentalists developing better physical im-
plementations and theorists understanding the noise processes acting on these systems.

In this thesis, we study characterization techniques that allow us to extract important
information from our system. Some characterization protocols intend to learn everything
about a particular aspect of our system, such as gate set tomography (GST) [7, 8, 28]
which shows exactly how a gateset acts on target qubits. Others give a single metric that
is meant to correspond to the performance of a system. In this area, randomization-
based protocols have become dominant. Techniques such as randomized benchmark-
ing [10, 12, 14, 15, 18, 19, 27] and cycle benchmarking [16] output an average gate-set fidelity
providing information as to how well implemented gates are. These randomization-based
protocols are efficient in terms of experimental overhead, scalable in the number of qubits,
and robust to both state preperation and measurement (SPAM) and gate dependent errors.

Here we introduce a new randomization-based characterization technique for efficiently
learning parameters of a sparse Hamiltonian. We achieve this by designing a way to perform
a projective Rabi experiment. In between repeated applications of a noisy quantum chan-
nel, a projective channel1 is interleaved. This projective channel is carefully constructed
from the weighted average of results for sequences with randomly sampled generalized
Pauli operators and isolates the action of a noisy channel on a small subspace. Repeated
applications coherently amplify the signal such that it can be robustly characterized with
post-processing time that scales with O(log(D)) where D is the dimension of the Hilbert
space.

1In the presence of Markovian noise this becomes an ‘effective’ projective channel. That is, the channel
is not an exact projective channel but under relatively small errors it still behaves close to one.
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This protocol is not only efficient and robust to small errors but also achieves Heisen-
berg scaling. That is, the standard deviation in the output scales according to O(1/T )
where T is the experimental probing time [32]. The Heisenberg limit is a fundamental limit
closely related to the Heisenberg uncertainty principal and is typically a topic of interest
in quantum metrology as it establishes the best case scenario for learning properties of a
quantum system. Quantum phase estimation (QPE) is one example of a protocol that can
achieve this limit [13, 23, 26]. Typically, for QPE, Heisenberg scaling is achieved through
the use of entangling states such as NOON states [23]. However, some protocols have been
demonstrated to achieve this limit without the use of such states by instead utilizing coher-
ent accumulation to amplify some signal of interest [26]. This technique can be included
as another of these Heisenberg-limited protocols.

This thesis is structured as follows. Chapter 2 introduces all the necessary mathematics
to understand the results of this thesis. Chapter 3 provides much needed context of charac-
terization techniques such as Rabi oscillation experiments and randomized benchmarking.
Chapter 4 introduces the algorithm in its entirety including a method for creating a projec-
tive channel, examination of robustness and the effect of finite sampling, and an example
of a multi-qudit rotation gate. Finally, chapter 5 runs numerical simulations to validate
our results.
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Chapter 2

Preliminaries

In this chapter we will review the preliminary material necessary to understand the rest
of this thesis. The state of a quantum system can be described by a an element in a
Hilbert space H restricted to a d-dimensional complex system Cd. Qudits (d ≥ 2) are
the building blocks of a quantum computer and are mathematically represented as vectors
in the Hilbert space spanned by the orthonormal computational basis {|i〉; i ∈ Zd} where
Zd := Z/dZ = {0, 1, . . . , d − 1}. For a multi-qudit system the Hilbert space will be an
n-tensor fold product H⊗n where n is the number of qudits and so we define the total
system dimension as D = dn.

In quantum information theory, we often deal with the quantum operator formalism.
Suppose we have a pure quantum state (for a single qudit)

|ψ〉 =
d−1∑
i=0

αi|i〉 (2.1)

such that
∑d−1

i=0 |αi|2 = 1. We can then define a quantum density operator as

ρ =
∑
i

pi|ψi〉〈ψi| (2.2)

where
∑d−1

i=0 pi = 1. A quantum density operator is an operator ρ ∈ CD×D that is positive
semi-definite to ensure non-negative probabilities when measuring the eigenstate of an
observable. That is, for all x ∈ CD it holds true that x†ρx ≥ 0. Additionally, it is
Hermitian (A† = A) and holds the property Trρ = 1. A quantum density matrix is
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a representation of a quantum density operator by choice of basis in the Hilbert space,
however, the two terms are often used interchangeably. Quantum channels are linear maps
that act on our density operators that then can represent ideal or noisy quantum gates.
These channels are completely positive trace-preserving (CPTP) maps that take density
operators to density operators. Choi’s theorem allows quantum channels to be expressed
in Kraus form

C(ρ) =
∑
j

CjρC
†
j (2.3)

for fixed (but not unique) operators {Cj}. The composition of two channels C and D with
operators {Cj} and {Dk} respectively is

C(D(ρ)) = (C ◦ D)(ρ) =
∑
j,k

CjDkρD
†
kC
†
j . (2.4)

The composition of channels can be simplified by expressing quantum channels as matrices.

Let {B1, . . . , BD2} be a basis for CD×D that is orthonormal according to the normalized
Hilbert-Schmidt inner product

〈A,B〉 =
1

D
TrA†B, ∀A,B ∈ CD×D. (2.5)

Let |M〉〉 be a column vector obtained by vectorizing an operator M ∈ CD×D. It can be
expanded as the vector of expansion coefficients

|M〉〉 =
D2∑
j=1

〈Bj,M〉 |Bj〉〉 (2.6)

By linearity we have

〈A,B〉 = 〈〈A| |B〉〉 (2.7)

with the natural dual |A〉〉† = 〈〈A|. The action of any linear map (e.g. quantum channel)
L : CD×D → CD×D can be written as

|L(M)〉〉 =

(
D2∑
j=1

|L(Bj)〉〉 〈〈Bj|

)
|M〉〉 (2.8)
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where notation is slightly abused by conflating the abstract channel L with its matrix
representation via

L =
D2∑
j=1

|L(Bj)〉〉 〈〈Bj| . (2.9)

The action of a channel L given a state and observable ρ,Q ∈ CD×D is now

L|ρ〉 = |L(ρ)〉〉 (2.10)

Tr(Q†L(ρ)) = 〈〈Q| L |ρ〉〉 . (2.11)

The composition of channels L1 and L2 as well as the tensor product is

|L1 ◦ L2(ρ)〉〉 = L1L2 |ρ〉〉 (2.12)∣∣L1 ⊗ L2(ρ
⊗2)〉
〉

= L1 ⊗ L2

∣∣ρ⊗2〉〉 . (2.13)

As an example, say we have some state ρ ∈ CD×D and want to apply a channel G which
is a series of gates labeled G1, G2, G3 with corresponding channels G1,G2,G3 in respective
order. The Choi representation of that circuit would be

G(ρ) =
∑
i,j,k

G3,kG2,jG1,iρG
†
1,iG

†
2,jG

†
3,k (2.14)

where Gi,j is the ith gate and jth Kraus operator. The matrix representation on the other
hand is

|G(ρ)〉〉 = G3G2G1 |ρ〉〉 (2.15)

thus greatly simplifying the representation of the circuit.

2.1 Group Theory

Groups play a fundamental role in quantum information theory as well as many other dis-
ciplines. This is because symmetric structures and groups are very closely related to one
another. Many symmetric structures are encoded as groups such as Lie groups in geome-
try and the Poincaré group in special relativity. In relation to symmetries P.W. Anderson
stated that “it is only slightly overstating the case to say that physics is the study of sym-
metry” [4]. Symmetry is perhaps the most powerful tool in all of physics and as such it
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will be important to understand at least some group theory for the remainder of this thesis.

A group (G, ·) is defined as a set G with a binary operator · acting on elements of G
such that the following properties are satisfied:

1. Closure:

• Given a, b ∈ G then a · b ∈ G

2. Associativity:

• For all a, b, c ∈ G, we have (a · b) · c = a · (b · c)

3. Identity:

• There is an element e ∈ G such that for every a ∈ G we have e · a = a · e = a

4. Inverse:

• For every a ∈ G there exists a−1 ∈ G such that a · a−1 = a−1 · a = e

Any set and binary operation that fulfills these properties can be considered a group.
The following groups are relevant to this thesis.

The general linear group GLd(F ) of dimension d and field F is the group of d × d
invertible matrices with elements in F . An equivalent definition is GL(V ), the general
linear group over a finite dimensional (R or C) vector space V . This is the group of all
automorphisms of V (i.e. the group of invertible linear transformations of V ). The special
linear group SL(V ) is a subgroup of the general linear group with the property that all
matrices have determinant 1.

The unitary group U(d) is the group of isometries of the d dimensional complex Hilbert
space H = Cd. Naturally, U(d) ⊂ GLd(C) as the set of d× d unitary matrices is a subset
of the d× d invertible matrices. The special unitary group SU(d), similarly to the special
linear group, is a subgroup of the unitary group of matrices with determinant 1.
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The general Pauli group Pd (also known as the Weyl-Heisenberg group for Pnd ) is the
subgroup of U(d) that is generated by Pd := 〈ω̃Id;Xd;Zd〉 where

Xd =
d−1∑
j=0

|j ⊕ 1〉〈j|, (2.16)

Zd =
d−1∑
j=0

ωj|j〉〈j|; ω = exp(2πi/d)

are the shift and clock operators respectively and ω̃ = ω for odd d and ω̃ = ω1/2 for even
d. Xd and Zd have order d indicating Xd = Zd = Id. Neglecting the phase ω̃ produces a
projective group where any two elements is a phase multiple of another element.

The Clifford group acts as the normalizer of the Pauli group and is defined as

Cnd := {c ∈ U(dn); cP̃nd c† ∈ Pnd }/{exp(iθ)Ind ; θ ∈ R} (2.17)

where P̃nd := Pnd /〈ω̃Id〉. The qudit Clifford group is generated by Cnd = 〈CZd, Fd, Pd, Zd〉.
Where the controlled-Z gate is:

CZd =
d−1∑
j=0

d−1∑
j′=0

ωjj
′|jj′〉〈jj′| (2.18)

F corresponding to the quantum Fourier transform:

Fd =
1√
d

d−1∑
j=0

d−1∑
j′=0

ωjj
′ |j′〉〈j| (2.19)

P the phase gate:

Pd =
d−1∑
j=0

ω
j(j+%d)

2 |j〉〈j|, %d =

{
1, if d is odd,

0, otherwise.
(2.20)

2.2 Representation Theory

Groups are abstract algebraic structures. In order to study them in the context of quantum
information it is useful to work in the framework of matrices and linear operators. This
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can be achieved through representation theory.

Given the general linear group GL(V ) over a finite-dimensional (real or complex) vector
space V and group G, a representation ϕV of G on vector space V is a map:

ϕV : G→ GL(V ) : g 7→ ϕ(g) (2.21)

with the property

ϕV (g)ϕV (h) = ϕV (gh) ∀g, h ∈ G. (2.22)

If a subspace W satisfies that for all w ∈ W it holds true

ϕV (g)W ⊂ W ∀g ∈ G (2.23)

then W carries a subrepresentation of ϕV denoted as ϕW . If there is no non-trivial proper
subspace fulfilling eq.(2.23) then, the representation ϕV is said to be irreducible. Two
representations ϕV and ϕV ′ are said to be equivalent (ϕ ∼= ϕ

′
) if and only if there exists

an invertible linear map T : V
′ → V such that

ϕV (g) = TϕV ′ (g)T−1 ∀g ∈ G. (2.24)

Maschke’s lemma allows every finite-dimensional representation of a group to be written
as a direct sum of its irreducible representations

ϕV (g) ' ⊕λ∈RGϕλ(g)⊗mλ ∀g ∈ G (2.25)

where mλ is the multiplicity integer of ϕλ or, in other words, the number of equivalent
copies of ϕλ in ϕ. Representations are called multiplicity-free when mλ = 1 for all ϕλ. One
fundamental result of representation theory is Schur’s lemma which pertains to irreducible
representations. Let ϕV ,ϕV ′ be irreducible representations of a finite group G on vector
spaces V ,V

′
respectively. A linear map A : V → V

′
satisfies

ϕV ′ (g)A = AϕV (g) ∀g ∈ G (2.26)
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if and only if

A =

{
0 if ϕV � ϕV ′ ,

λI if ϕV ∼= ϕV ′
(2.27)

where λ ∈ C. This means that there are no non-zero homomorphisms between distinct
irreducible representations and that the only non-trivial endomorphisms of an irreducible
representation are multiples of the identity. Setting V

′
= V and working with multiplicity

free representation ϕV (g) = ⊕λ∈RGϕλ(g) then

A =
∑
i

λiPi (2.28)

where Pi is a projector which is defined as a linear operator P : V → V that satisfies
P 2 = P . Then we can see A is a sum over projectors onto subspaces of V carrying
irreducible subrepresentations ϕλ. Given a representation φ on vector space V and a
general linear map A : V → V , the twirl of A with respect to φ, Tφ can be defined as

Tφ(A) := EG∈Gφ(G)Aφ(G)† (2.29)

and further simplified for multiplicity free representations as

Tφ(A) =
Tr(APλ)

Tr(Pλ)
Pλ. (2.30)

where Pλ is a projector onto the support of the representation ϕλ.

2.3 Character of a Representation

Let ϕ : G→ V be a representation of a group G carried by (real or complex) vector space
V . We define the character χϕ as

χϕ : G→ C : g 7→ χϕ(g) = TrV (ϕ(g)) (2.31)

noting that TrV () is the trace over vector space V and the character is complex for complex
vector spaces or real for real vector spaces. Given two representations ϕ, ϕ′ we have the
relations

χφ⊗φ′ = χφχφ′ (2.32)

χφ⊕φ′ = χφ + χφ′ (2.33)
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The inner product between the characters of two representations for a compact group is

〈χφ, χφ′〉 =

∫
G
χφ(G)χφ′(G)µ(G). (2.34)

The overline in the previous two expressions indicates complex conjugation and µ the
normalized Haar measure. With this in mind, Schur’s orthogonality relation states that
for irreducible representations

〈χφ, χφ′〉 =

{
0 if φ � φ′,

1 if φ ∼= φ′.
(2.35)

Lemma 1 (Character projection formula). Let G be a group with representation φ and
normalized Haar measure µ. Let φ̂ be an irreducible subrepresentation of φ with character
χφ̂. Then we have the following

|φ̂|
∫
G
χφ̂(G)φ(G)µ(G) = Pφ̂ (2.36)

where Pφ̂ is a projector onto all subrepresentations of φ that are equivalent to φ̂.

2.4 General Pauli Transfer Matrix Representation

Previously in this chapter we established the matrix representation of quantum channels
given a basis {B1, . . . , BD2}. When selecting the basis as the projective Weyl-Heisenberg
group (established in 2.1)

Wd,n = {Xx
dZ

z
d : x, z ∈ Znd} (2.37)

we obtain the general Pauli transfer matrix (PTM) representation. Given a quantum
channel E its corresponding PTM representation will be a D×D matrix R with elements

Ri,j =
1

D
Tr(W †

i E(Wj)) (2.38)

where Wi ∈ Wd,n are in a fixed but arbitrary order. A useful property of the PTM
representation is that it is a true representation of any subgroup of U(D). Given U, V ∈
U(D) set W = UV . The PTM representation then shows

UV |X〉〉 =
∣∣V UXU †V †〉〉 =

∣∣WXW †〉
〉

=W |X〉〉 , ∀X ∈ CD×D (2.39)
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satisfying the definition of a representation in eq.(2.22). Figure 2.1 is an example of the
PTM for a Pauli X gate and rotation gate generated by Pauli X and angle π

4
defined as:

RG(θ) = exp(−iθG). (2.40)

Figure 2.1: For d = 2, the PTM of a Pauli X gate (left) and rotation gate RX(π/4) (right)
visualized. Blocks represent the actions of the gate on elements of the Weyl-Heisenberg
group. E.g. the rotation gate generated by X maps Y to 0.71Y and −0.71Z.
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Chapter 3

Review of Characterization
Techniques

In this chapter we will review some notable characterization techniques. These techniques
operate on different levels of abstraction in a quantum computer. We will focus on two of
those levels for this chapter: the Hamiltonian level and the gate level. At the Hamiltonian
level, the evolution of an isolated quantum system is described by the Schrödinger equation

ψ′(t) = −iH(t)ψ(t) (3.1)

where H(t) ∈ CD×D is a time-dependent operator called the Hamiltonian that describes
the energy of a system. Qudits are coupled with control Hamiltonians that are driven to
manipulate the state of the system. At the gate level, time dependence is abstracted away
by integrating time-dependent evolution over distinct intervals giving a unitary matrix
which we call a gate. We primarily work within the gate level for this thesis, however,
certain characterization/calibration techniques operate within the Hamiltonian level and
so it is useful to introduce these levels of abstraction.

3.1 Hamiltonian Level

Here we review a notable Hamiltonian level characterization technique, Rabi oscillation
experiments. A Rabi oscillation (sometimes known as a Rabi cycle or Rabi flop) refers
to the cyclical behaviour of a few level quantum system (typically a two level system) in
the presence of a periodically time-varying field. We can outline some of the foundational
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physics behind these oscillations as follows. Let us consider a two level system with ground
state |g〉 and excited state |e〉 with energies Eg and Ee respectively. The Hamiltonian of a
classical field with time-varying amplitude is

HR = Eg|g〉〈g|+ Ee|e〉〈e|+ (F0Vege
−iωt|e〉〈g|+ F ∗0 V

∗
ege

iωt|g〉〈e|) (3.2)

where the amplitude of the classical field is denoted as F0, Veg is the matrix element for
the interaction of the system with the field, and ω is the frequency the amplitude of the
field varies with. If we have some initial state at t = 0 then its time evolution will give a
solution of the form

|ψ(t)〉 = e−iEgtCg(t)|g〉+ e−iEetCe(t)|e〉. (3.3)

Setting the initial state to the ground state |ψ(0)〉 = |g〉 we can solve for the coefficients
Cg(t), Ce(t) using Schrödinger equation to obtain

|ψ(t)〉 = ei(ω−Ee−Eg)t/2
[(

cos(Ωt) +
iΘ

2Ω
sin(Ωt)

)
|g〉 − iF0Veg

Ω
e−iωt sin(Ωt)|e〉

]
(3.4)

where Θ = Ee − Eg − ω and Ω =
√

Θ2/4 + |F0Veg|2. Finally, measurement of the system
being in the excited state gives the probability

Pe(t) = |F0Veg
Ω
|2 sin2(Ωt) (3.5)

Therefore the population of the excited state oscillates with a period of π/Ω. [29]

Figure 3.1: Example of Rabi oscillations in a 133Ba+ trapped ion system obtained by
applying a microwave rotation R(ΩRt, 0) onto an ion in the |0〉 state. [11]
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Rabi oscillation experiment is a ubiquitous term used to generally describe experiments
that induce this oscillatory behaviour in a quantum system. The experiment itself can
vary depending on context however all have the common characteristic of inducing Rabi
oscillations in a quantum system. A Rabi oscillation experiment in the context of quantum
information processing can be presented as follows:

1. Prepare a fixed state; for example the |1〉 state

2. Allow the state to evolve freely for time t under the Hamiltonian H(t)

3. Measure and obtain state |i〉

4. Repeat steps 1-3 k times

5. Report the probability as Pi(t) = Number of i’s
k

This can then be repeated over a range of times and the output Pi(t) can be fitted to a
sinusoidal equation such as eq.(3.5) to obtain a figure similar to Figure 3.1. This procedure
can be used, for example, to comparatively determine the performance of qubits based
on how close experimental results are to the theoretical Rabi oscillations where the best
performing qubits will be approximately close to the ideal.

3.2 Gate Level

Next, we turn our attention to a set of protocols at the gate level often referred to as
benchmarking. Involving protocols capable of quantifying the performance of a quantum
computer; benchmarking is one of the most useful tools we have towards developing a fault
tolerant quantum computer as it provides us with the concept of fidelity.

Fidelity is the measure of ‘closeness’ between quantum operators. It is perhaps one of
the most useful metrics that accompany benchmarking and we will examine protocols that
provide us such a metric in this section.

In general, benchmarking is divided into two phases: data collection and data process-
ing. The specifics of what each phase entails depends on the protocol but can generally be
described as follows: [21]
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• Data collection: Involves physically running an algorithm on a quantum computer.
Steps are typically (1) state preparation, (2) application of a sequence of gates and
(3) measurement.

• Data processing: Involves taking measurement data from the data collection phase
and processing it to establish some information about the physical system.

When developing a benchmarking protocol there are two main considerations to be
kept in mind. First is efficiency. As the size of our physical systems grow (i.e., as the
number of qudits increases) the protocols we employ on these systems should run with
reasonable overhead. That is, the resources required to run these protocols with some
fixed precision should scale polynomially with the size of the system. This is a non-trivial
problem as the complexity of a Hilbert space increases exponentially with the number of
qudits as well as their dimensionality. Secondly is robustness to error. Benchmarking
tools are intended to be run on devices prone to error. As such, these algorithms need
to be designed to cope with errors that may occur experimentally such as gate or state
preparation and measurement (SPAM) errors. If an algorithm can function with these
errors then it is said to be robust. With these considerations in mind let us continue to
some notable benchmarking techniques.

3.2.1 Standard Randomized Benchmarking

Perhaps the most prominent benchmarking technique is randomized benchmarking. In
fact, all the benchmarking techniques that will be covered in this chapter can be consid-
ered as versions of randomized benchmarking. For this section however we will be covering
what is referred to as standard randomized benchmarking.

The standard randomized benchmarking procedure is as follows. Given a finite group
G and fixed positive integer m, run the following procedure: [12, 14, 22]

1. Choose a state ρ and POVM {Q, I−Q}

2. Sample ~G = G1, . . . , Gm uniformly at random from G

3. Prepare ρ and apply the gates G1, G2, . . . Gm

4. Compute and apply inverse Ginv = (Gm . . . G1)
†
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5. Obtain the measurement pm(~G) := 〈〈Q| G̃invG̃m . . . G̃1 |ρ〉〉

6. Repeat steps 3-5 for many ~G and estimate the average pm := E ~G(pm(~G))

The procedure is then repeated over different values of m ∈M and a set of probability
outputs {pm}m∈M are obtained. Intuitively, we can think of standard randomized bench-
marking as applying a random sequence of gates such that (in the case of ideal noiseless
gates) ρ is unchanged. Encountering noisy gates will result in deviations from the ideal
measurement results in step 5. Thus, averaging these measurements over random sequences
and fitting the results as a function of m can be used to identify the average fidelity of the
gates being applied.

More formally, under the assumption of gate-independent CPTP noise and multiplicity-
free representations, each output survival probability pm can be shown to be

pm = EG1,...Gm 〈〈Q| G̃invG̃m . . . G̃1 |ρ〉〉 (3.6)

= 〈〈Q|
(
EG∈G(G†EG)

)m |ρ〉〉 (3.7)

=
∑
λ∈RG

〈〈Q| Pλ |ρ〉〉 fmλ (3.8)

where G̃ = EG is a noisy implementation of G ∈ G, Pλ is an orthogonal projector onto an
irreducible representation of G, RG is an index set and fλ := Tr(PλE)/Tr(Pλ). Therefore,
the averaged survival probability of the randomized circuit is equivalent not only to a G-
twirl of the error channel (eq (3.2)) but also a linear combination of quality parameters via
Schur’s lemma (eq 3.3). These parameters will, in general, be able to provide the average
fidelity of the gate-set Favg. In the data processing phase, fitting occurs such that

pm ≈fit
∑
λ∈RG

Aλf
m
λ . (3.9)

Then the average gate-set fidelity can be determined via

Favg =
2−q

∑
λ∈RG Tr(Pλ)fλ
2q + 1

(3.10)

Eq.(3.9) requires the fitting of (potentially) many parameters which is a difficult task.
However, selecting the finite group G as the Clifford group simplifies eq.(3.9) to

pm ≈fit A+Bfm. (3.11)
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making Clifford based standard RB efficient and scalable. Another useful property is ro-
bustness to SPAM error. The parameters fλ are solely dependent on gate implementations
and SPAM dependency is concentrated into the Aλ terms.

3.2.2 Character Randomized Benchmarking

As mentioned in the standard randomized benchmarking section, non-Clifford RB can po-
tentially require the fitting of many parameters. Thus, modifications would have to be
introduced to circumvent this issue for non Clifford gatesets. This is where character ran-
domized benchmarking comes in. By introducing concepts found in character theory (see
section 2.3) a single parameter fλ can be isolated regardless of gateset.

The character randomized benchmarking procedure is as follows. Given a finite group
G, a specific irreducible subrepresentation of that group φλ′ , a subgroup Ĝ ⊂ G and a
irreducible subrepresentation of that group φ̂ run the following procedure for fixed integer
m: [22]

1. Choose a state ρ and POVM {Q, I−Q}

2. Sample ~G = G1, . . . , Gm uniformly at random from G

3. Sample Ĝ uniformly at random from Ĝ

4. Prepare the state ρ and apply the gates (G1Ĝ), G2, . . . Gm

5. Compute the inverse Ginv = (Gm . . . G1)
† and apply

6. Measure kλ
′
m(~G, Ĝ) = |φ̂|χφ̂(Ĝ) 〈〈Q| G̃invG̃m . . . G̃1Ĝ |ρ〉〉

7. Repeat for Ĝ and obtain the average kλ
′
m(~G) = EĜ(kλ

′
m(~G, Ĝ))

8. Repeat for ~G and obtain the average kλ
′
m = E ~G(kλ

′
m(~G))

Then repeat for different values of m ∈ M. The goal behind the procedure is to compile
an additional gate Ĝ with its character (focused on subrepresentation φ̂) to construct the
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character projection formula (eq.(2.36)). This projector will isolate a single component of
eq.(3.9)

kλ
′

m =
∑
λ∈RG

〈〈Q| PλPφ̂ |ρ〉〉 f
m
λ (3.12)

= 〈〈Q| Pφ̂ |ρ〉〉 f
m
λ′ (3.13)

≈fit Aλ′fmλ′ (3.14)

allowing for efficient characterization of non-Clifford gatesets. Repeat runs of the procedure
on various subrepresentations allows for efficient learning of all parameters fλ and gives
full characterization of the gateset G.

3.2.3 Cycle Benchmarking

Cycle benchmarking arises from further practical limitations that randomized benchmark-
ing faces. Randomized benchmarking does a good job characterizing stochastic gate errors
without conflating SPAM error however it fails to account for coherent errors such as
crosstalk errors. Crosstalk can describe a large set of device-specific physical phenomena
that occurs in many qubit systems. The term encompasses the phenomena of driving un-
intentional qubit interactions. For example, in a multi-qubit system applying a gate on
your first qubit may interact with the second or third. Crosstalk error is the by-product
of crosstalk that shows up in our computations typically violating either locality or in-
dependence (or both). [30] For single qubits, these coherent errors show up as unwanted
rotations U(n̂, ε) = exp(−iεn̂ · σ/2) with n̂ the axis of rotation and σ the Pauli vector
[20]. Capturing these errors are crucial to the development of a fault tolerant quantum
computer and cycle benchmarking aims to do just that. This is achieved by using the
notion of cycles; a set of operations acting on a quantum register within a set period of
time.

The cycle benchmarking procedure is outlined below and illustrated in Figure 3.2. [16]

1. Select K random Paulis P

2. Select two lengths m1 and m2 such that Gm1 = Gm2 = I

3. Perform the following for each Pauli P ∈ P, length m ∈ (m1,m2) and l ∈ (1, . . . , L)
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(a) Select m + 1 random Pauli cycles R0,R1, . . . ,Rm and define the randomized
circuit

C(P ) = RmGRm−1G . . .R1GR0 (3.15)

(b) Calculate the expected outcome of C(P )

(c) Apply C(P ) to a state ρ and estimate the overlap

fP,m,l = Tr[C(P )C̃(ρ)] (3.16)

where the state ρ is a +1-eigenstate of P and operators B̃P and B̃†C(P ) are used
to perform state preparation and measurement.

4. Estimate the composite process fidelity

FRC(G̃,G) =
∑
P∈P

1

|P|

(∑L
l=1 fP,m2,l∑L
l=1 fP,m1,l

) 1
m2−m1

(3.17)

Figure 3.2: The cycle benchmarking procedure as introduced in [16]. The green B̃P,N are
basis changing operations, blue R̃i,N are Pauli cycles, and red G̃ is a noisy Clifford gate of
interest.

The random Pauli cycles present in the procedure have the explicit purpose of trans-
forming the coherent errors present in the circuit into stochastic Pauli noise processes via
twirling. Twirling is the technique of conjugating a gate with randomly chosen gates from
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a twirling set to tailor generic local noise into some other noise model [9]. Selecting the full
set of Pauli gates as the twirling set will convert a general noise channel to a Pauli noise
channel modeled by

E(ρ) =
∑
P∈P⊗n

cPPρP
† (3.18)

where cP is the relative probability of Pauli error P occurring. One of the benefits of
this noise tailoring is that stochastic Pauli errors only grow linearly with circuit depth as
opposed to coherent errors worst case scenario of quadratic growth. Additionally, when
comparing fault tolerant error rate thresholds for stochastic versus generic local noise one
finds that stochastic noise are orders of magnitude higher than generic local noise.[20] In cy-
cle benchmarking, these Pauli cycles will allow for the decay

∑L
l=1 fP,m,l/L to be extracted.

Process fidelity can be determined via

F (G̃,G) =
∑
P∈PN

4−NFP (G̃,G), (3.19)

where

FP (G̃,G) = 2−NTr
[
G(P )G̃(P )

]
. (3.20)

However, this method of process fidelity estimation is not robust to SPAM errors. Instead,
extracting the decay of FP (G̃m,Gm) will decouple SPAM error similar to randomized bench-
marking. For generic noise channels this extraction is a non ideal task and so, as previously
mentioned, Pauli cycles can be introduced to allow for the decay to be efficiently extracted
giving us

FRC(G̃,G) =
∑

R∈I,X ,Y,Z⊗N
4−NF (G̃R̃,GR). (3.21)

In the procedure itself, composite fidelity is estimated by eq. (3.17). It can be shown that
this fidelity is equivalent to the one in eq. (3.21) up to O([1− FRC(G̃,G)]2).
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Chapter 4

Algorithm

In this chapter we outline our algorithm which we refer to as a ‘projective Rabi experiment’
due to its behaviour functioning similarly to the Rabi experiment outlined in Chapter 3
with the main difference being the interleaving of projective channels. Our protocol is
inspired by cycle benchmarking [16] for its repeat applications of randomly sampled Pauli
cycles and character RB [22] for its use of character projections; we aim to combine the
two in order to coherently amplify the error in a subspace of our choosing. Say we have a
fixed unitary quantum channel A ∈ U(D) that we wish to characterize and a fixed positive
integer m representing experimental time or, equivalently, the number of iterations of
a quantum channel. Let µ, ν : Wd,n → R,C be distributions where µ is a probability
distribution we sample gates from and ν is some scalar function which we will typically
choose to be a character of the Weyl group (introduced as the Weyl-Heisenberg group in
2.1). The projective Rabi experiment then is presented as follows:

1. Prepare ρ;

2. Apply a random gate U0 sampled according to the measure µ;

3. Set χ = ν(U0)

4. For each j = 1, . . . ,m:

(a) Apply A;

(b) Apply a random gate Uj sampled according to the measure µ;

(c) Set χ→ χν(Uj)
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5. Measure the expectation value µ of Q.

6. Return µχ.

The output for the algorithm for a fixed choice of sampled Weyl operators {U0, . . . , Um} is
then

µχ = 〈〈Q|

( ∏
j=m→1

ν(Uj)Θ(Uj)Θ(A)

)
ν(U0)Θ(U0) |ρ〉〉 . (4.1)

where Θ : U(D) 7→ CD2×D2
is the implementation map of quantum channels and the

directional notation shorthand is used∏
j=a→b

xj =

{
xaxa+1 . . . xb−1xb, if a ≤ b

xaxa−1 . . . xb+1xb, if a > b
(4.2)

to specify the order for products of non-commuting variables. As a simple example, say
we are working with a single qubit system (D = 2) and we sample the Weyl operators X
and Z in that order. Assuming implementation maps are ideal (i.e. Θ(U) = U) our single
output would then be

µχ = ν(Z)ν(X) 〈〈Q| ZAX |ρ〉〉 (4.3)

where we exploited the fact that ν(U) is a scalar bringing those terms to the front of the
equation1. Returning to the general case, averaging the output over many samples of Uj
gives

〈µχ〉 = EUm...U0

(
〈〈Q|

( ∏
j=m→1

ν(Uj)Θ(Uj)Θ(A)

)
ν(U0)Θ(U0) |ρ〉〉

)
(4.4)

=

∫
U(D)

( ∏
j=m→0

µ(Uj)

)
〈〈Q|

( ∏
j=m→1

ν(Uj)Θ(Uj)Θ(A)

)
ν(U0)Θ(U0) |ρ〉〉 (4.5)

Eq.(4.4) looks quite complex, however, we can simplify further by defining the quantum
channel

B =

∫
U(D)

µ(U)ν(U)Θ(U). (4.6)

1There is not only significance in this decision aesthetically but in a physical sense as well as we can
calculate these scalar functions in post-processing as long as we keep track of our sampled Weyls.
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With this channel, our average output can be expressed as

〈µχ〉 = 〈〈Q| (BΘ(A))m B |ρ〉〉 . (4.7)

So far our final output is quite abstract as our definition of the channel B holds a very
general structure. However, we can carefully select our distributions to give it some mean-
ingful structure. Specifically, we will demonstrate construction of a projection channel via
the character projection formula introduced in section 2.3. Working in the PTM represen-
tation, choose the distributions µ, ν to be only non-zero over a subgroup G ⊆Wd,n. Given
a random gate U ∈ G we have the implementation map

Θ(U) =
∑

W∈Wd,n

|UWU †〉〉〈〈W | =
∑

W∈Wd,n

χU,W |W 〉〉〈〈W | (4.8)

where χU,W ∈ {ωj : j ∈ Zd} is the character of U on subrepresentation W and satisfies

UW = χU,WWU (4.9)

which holds for all U ∈Wd,n. Given some set Q ⊆Wd,n we choose ν such that

ν(U) =
∑
Q∈Q

χ̄U,Q. (4.10)

Examining eq.(4.6) then gives

B =

∫
U(D)

µ(U)

(∑
Q∈Q

χ̄U,Q

) ∑
W∈Wd,n

χU,W |W 〉〉〈〈W |

 (4.11)

=
∑

W∈Wd,n

|W 〉〉〈〈W |
∫
U(D)

µ(U)
∑
Q∈Q

χU,WχU,Q (4.12)

=
∑

W∈Wd,n

|W 〉〉〈〈W |〈χW , χQ〉 (4.13)

=
∑

W∈Wd,n

|W 〉〉〈〈W |δW,Q (4.14)

=
∑
Q∈Q

|Q〉〉〈〈Q|. (4.15)

Given µ(U) is the normalized Haar measure we can recognize the integral as the character
inner product eq.(2.34) and use Schur’s orthogonality relations to establish W = Q (lines
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4.12 - 4.14). Then B simplifies to a projector onto the elements of Q (4.15). Achieving this,
we have the main result of our protocol. A small invariant subspace (determined by our
selection of Q) is isolated in Θ(A) and coherently amplified via m applications. Through
our selections of ρ and Q we can either learn the eigenvalues of this subblock or perform
full process tomography. We continue our analysis by ensuring this protocol functions as
expected under conditions that more closely resemble experimental conditions.

4.1 Finite Sampling

As is the case with any protocol involving the calculation of means of probability distribu-
tions, the empirical mean will deviate from the theoretical due to finite sampling effects.
As such, it is crucial to establish some metric that ensures our empirical mean is close
to the theoretical within a reasonable number of samples. One way to achieve this is via
Hoeffding’s inequality [24]. Let X1, . . . , XN be N real independent random variables such
that they are bounded as a ≤ Xi ≤ b where a, b ∈ R. Given X̄ = 1

N

∑N
i=1Xi and t ≥ 0

Hoeffding’s inequality gives

P (|X̄ − E[X̄]| ≥ t) ≤ 2 exp(− 2Nt2

(b− a)2
) (4.16)

an upper bound on the probability that the finite average deviates from the expectation by
more than t. In the context of the projective Rabi algorithm, we are interested in estab-
lishing a bound on the empirical output 〈µχ〉N obtained by sampled unitaries U1, . . . , UN
drawn according to µ. Examining the empirical channel B̃N ,

B̃N =
∑

W∈Wd,n

|W 〉〉〈〈W |

(
1

N

N∑
i=1

χUi,W
∑
Q∈Q

χUi,Q

)
. (4.17)

our independent random variables will be Xi = χUi,W
∑

Q∈Q χ̄Ui,Q. We can use eq.(4.16)
for d = 2 as χU,W ∈ [−1, 1] however for larger dimension qudits χU,W can take complex val-
ues. Therefore, we must establish Hoeffding’s inequality for complex independent random
variables. Consider the complex variable Z as Z = <(Z)+ i=(Z) and applying Hoeffding’s
inequality to the real and imaginary components as well as use of Boole’s inequality2 gives
us [31]

P (|X̄ − E[X̄]| ≥ t) ≤ 4 exp(− 2Nt2

(b− a)2
) exp(− 2Nt2

(d− c)2
). (4.18)

2See A.3 for a proof that achieves similar scaling without the union bound.
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Now we can establish the probability bound of empirical channel 〈µχ〉N deviating from
〈µχ〉 by t ≥ 0 as

Pr(|〈µχ〉N − 〈µχ〉| ≥ t) ≤ 2 exp(− Nt2

2|Q|2(m+1)
) (4.19)

Pr(|〈µχ〉N − 〈µχ〉| ≥ t) ≤ 4 exp(− Nt2

4|Q|2(m+1)
) (4.20)

for qubits and qudits respectively. Given a confidence interval (t, δ) we also have

Pr(|〈µχ〉N − 〈µχ〉| ≥ t) ≤ δ (4.21)

which can be used to establish a lower bound on the number of samples

N ≥ log(2/δ)(2|Q|2(m+1))

t2
(4.22)

N ≥ log(4/δ)(4|Q|2(m+1))

t2
(4.23)

again for qubits and qudits respectively. As is evident from these results, the minimum
number of samples we need to establish some confidence interval directly depends on the
size of Q and the number of iterations m which can become intractable very rapidly. For
example, if we have a confidence interval of (0.02, 0.99) and we wish to isolate a 2 × 2
subspace (i.e. |Q| = 2) over m = 5 iterations the minimum number of samples would be
on the order of 106 for qubits and qudits. We can eliminate this dependence by normalizing
our function ν(U) such that ν(U) ∈ [−1, 1]. However, doing so naively would pickup a
normalization term to the power of m+1 in our output effectively killing the signal. Instead
we can readjust our probability distribution to compensate for this. This is achieved by
rewriting eq.(4.11) as

B =
∑

W∈Wd,n

|W 〉〉〈〈W |
∫
U(D)

µ(U)C
1

C

∑
Q∈Q

χU,WχU,Q

=
∑

W∈Wd,n

|W 〉〉〈〈W |
∫
U(D)

µ′(U)
1

C

∑
Q∈Q

χU,WχU,Q (4.24)

where we define a truncated distribution µ′ by

µ′(U) =

{
Cµ(U) if ν(U) 6= 0

0 otherwise,
(4.25)
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such that C is defined to maintain the normalized Haar measure
∫
µ′(U) = 1. If we select

ν such that ν(U) = 0 for enough terms to give C = |Q| the probability bounds become

Pr(|〈µχ〉N − 〈µχ〉| ≥ t) ≤ 2 exp(−Nt
2

2
) (4.26)

Pr(|〈µχ〉N − 〈µχ〉| ≥ t) ≤ 4 exp(−Nt
2

4
) (4.27)

and the number of samples is lower bounded as

N ≥ log(2/δ)2

t2
(4.28)

N ≥ log(4/δ)4

t2
(4.29)

eliminating any dependence on |Q| or m making finite sampling effects converge rapidly
regardless of parameters (e.g. dimensionality, number of qubits, number of iterations, etc.).
Once again, as an example examining (0.02, 0.99), |Q| = 2 and m = 5 we get 103 samples
which is significantly more ’reasonable’. It is important to note that tighter bounds can be
established however, since the probability scales nicely with N for this looser bound then
it can be argued the same is true for the tighter bound.

4.2 Robustness

So far we have worked under the unrealistic assumption that our gates are perfectly im-
plemented3. We now turn our attention to the case that our quantum gates undergo
some noise model thus resulting in imperfect implementations. In particular, we deal with
Markovian noise where noise is gate dependent but not time dependent. This gives us a
model that is more realistic than gate independent noise but does not necessarily reflect
non-Markovian experimental conditions. If we compare to randomized benchmarking, our
analysis benefits from the absence of the application of inverse gates which typically intro-
duces correlated errors. We can then greatly simplify our gate dependent noise analysis as
the average noise factorizes. This is facilitated with a telescoping series argument. First,
take the difference between two outputs eq. (4.7) of different implementations Θ and Ω

ε = 〈〈Q| (BΘ(A))m B |ρ〉〉 − 〈〈Q| (B′Ω(A))
m B′ |ρ〉〉 . (4.30)

3Perfectly implemented in the sense that we ignore errors in the phase as they do not affect final results.
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Now set am = (BΘ(A))m and bm = (B′Ω(A))m and using eq. (A.41) to isolate am and
substituting into eq. (4.30) we have

ε =
m∑
j=1

〈〈Q| (BΘ(A))m−j (BΘ(A)− B′Ω(A)) (B′Ω(A))
j−1 B |ρ〉〉+ 〈〈Q| (B′Ω(A))

m
(B − B′) |ρ〉〉 .

(4.31)

With this we can start examining our algorithm under gate dependent noise. The two
sources we can look at are imperfect fixed channel implementations Θ(A) and projective
channels B. Firstly, let us examine the case that our projectors are perfectly implemented
and our implementation of the fixed channel has a small perturbation ∆A. In this case,
we set Θ(A) = A+ ∆A, Ω(A) = A and B,B′ are ideal projectors. Eq. (4.31) is then

εA =
m∑
j=1

〈〈Q| (B(A+ ∆A))m−j B∆A (BA)j−1 B |ρ〉〉 (4.32)

=
m∑
j=1

〈〈Q| (BA)m−jB∆A(BA)j−1B |ρ〉〉+O(∆2
A). (4.33)

If ∆ is small in comparison to Θ(A) then our error will be small and we still isolate our signal
of interest. Next, we want to ensure the orthogonality conditions of our noisy projectors.
This orthogonality condition suggest we are still projecting onto orthogonal subblocks of
our PTM and deviations from imperfect projectors are therefore small. Let us denote our
imperfect projector as B̃ = B + ∆B where ∆B is a small perturbative term as a result of
imperfect implementations of our Weyl gates and finite sampling effects. Examining m+ 1
applications of this projector4 we have

B̃m+1 = (B + ∆B)m+1

= Bm+1 +
m∑
j=0

Bm−j∆BBj +O(∆2
B) (4.34)

4This is equivalent to setting Θ(A) = I in our primary algorithm. Our analysis still holds however for
arbitrary Θ(A) under the condition [B̃,Θ(A)] ' 0.
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where O(∆2) denotes second order perturbation. If we introduce an orthogonal projector
B⊥ such that BB⊥ = B⊥B = 0 into eq. (4.34) we get

B⊥B̃m+1 = B⊥Bm+1 +
m∑
j=0

B⊥Bm−j∆BBj +O(∆2
B) (4.35)

= (B⊥∆BB)Bm−1 +O(∆2
B) (4.36)

' 0 (4.37)

where B∆B⊥ = B⊥∆B ' 0 is assumed. Therefore, we see under repeat applications of
our noisy projective channel orthogonality is maintained up to first order. With this, our
projective gate can be defined as B̃ = BID + B⊥ where BIDB⊥ = B⊥BID = 0. Then (4.31)
gives

εB =
m∑
j=1

〈〈Q|
(
(BID + B⊥)A

)m−j B⊥A (BIDA)j−1 BID |ρ〉〉+ 〈〈Q| (BIDA)m B⊥ |ρ〉〉 (4.38)

if [BID,A] = 0 we can exploit the orthogonality condition in both terms giving εB = 0.
Finally, we examine both imperfect channels. Substituting Θ(A) = A + ∆, Ω(A) = A,
B = BID + B⊥ and B′ = BID we get

εA,B =
m∑
j=1

〈〈Q| (BID(A+ ∆A))m−j BID∆A (BIDA)j−1 BID |ρ〉〉 (4.39)

=
m∑
j=1

〈〈Q| (BIDA)m−jBID∆A(BIDA)j−1BID |ρ〉〉+O(∆2
A). (4.40)

once again using the commutation between BID and A as well as the orthogonality between
BID and B⊥. Thus, our final output will be of the form

〈µ̃χ〉 = 〈〈Q| (BA)mB |ρ〉〉+ ε. (4.41)

giving a robust protocol for relatively small errors.

4.3 Example

As an example let us examine the case of an n-qudit rotation gate,

R = Gθ (4.42)
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where G ∈Wd,n is the generator of the rotation and θ ∈ R is the angle of rotation. Say we
wish to characterize the angle of rotation and notice that G can be diagonalized such that
G = CZ0C

† where C is a Clifford operator and Z0 = Z ⊗ I⊗n−1. Our rotation gate then
becomes

R(θ) = CZθ
0C
†. (4.43)

Examining the case of G = Z0 and generalizing is then simple as we can set Q→ C†QC to
obtain rotations for other G. This is evident when we examine the PTM of these rotations.
As an example, Figure 4.1 shows the PTM of a single qubit Z rotation versus a single qubit
X rotation. Applying a Clifford to the Z rotation such that X → Y , Y → Z and Z → X
gives the PTM of the X rotation.

Figure 4.1: Pauli transfer matrix of a single qubit Z rotation (left) and X rotation (right)
generated by θ = 0.609 Rad. Diagonal blocks of 0.82 represent the cos(θ) components of
the rotation and off diagonal blocks of 0.57 represent the sin(θ) components.

Continuing on, let Q = X0〈Z0〉 where X0 = X⊗In−1. Our distribution ν then becomes

ν(U) = χ̄U,X0

∑
j∈Zd

χ̄jU,Z0

=

{
dχ̄U,X0 [U,Z0] = 0

0 otherwise
(4.44)

satisfying the condition C = |Q| as |G| = d2n, |Q| = d and d2n−1 terms commute with Z0.
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Now, examining the output of the circuit

〈µχ〉 = 〈〈Q| (BΘ(R))mB |ρ〉〉
= 〈〈Q| B(Θ(R))m |ρ〉〉

= 〈〈Q|

(∑
Q∈Q

|RmQ(Rm)†〉〉〈〈Q|

)
|ρ〉〉

= 〈〈Q|

(∑
i∈Zd

|Zmθ
0 X0Z

i
0Z
−mθ
0 〉〉〈〈X0Z

i
0|

)
|ρ〉〉 (4.45)

where we used [B,Θ(R)] = 0. Note that the Zi
0 and Zmθ

0 terms also commute. We then
want to solve for Zmθ

0 X0Z
−mθ
0 . To achieve this we first can decompose Zmθ into

Zmθ
0 =

∑
k∈Zd

akZ
k
0 (4.46)

Coefficients ak can be solved for by using the Hilbert-Schmidt inner product and the fact
that the Weyls form an orthonormal basis

ak = 〈Zk
0 , Z

mθ
0 〉 (4.47)

=
1

D
Tr((Z†0)kZmθ

0 ) (4.48)

=
1

D
Tr(

∑
j,j′∈Zd

ω−jkωj
′mθ|j〉〈j|j′〉〈j′|)Tr(In−1) (4.49)

=
1

d

∑
j∈Zd

ωjθω−jk (4.50)
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Examining ZmθXZ−mθ now

Zmθ
0 X0Z

−mθ
0 =

(
1

d

∑
j,k∈Zd

ωjmθω−jkZk
0

)
X0

(
1

d

∑
j′,k′∈Zd

ω−j
′mθω−j

′k′Zk′

0

)
(4.51)

=
1

d2

∑
j,k,j′,k′∈Zd

ωjmθω−jkω−j
′mθω−j

′k′Zk
0X0Z

k′

0 (4.52)

=
1

d2

∑
j,k,j′,k′∈Zd

ωjmθω−jkω−j
′mθω−j

′k′ωkX0Z
k+k′

0 (4.53)

=
1

d2

∑
j,j′,n∈Zd

ωjmθω−j
′mθω−j

′n′

(∑
k∈Zd

ωk(−j+j
′+1)

)
X0Z

n
0 (4.54)

=
1

d

∑
n∈Zd

ω−(d−1)mθω−(d−1)n + ωmθ
∑

j∈Zd−1

ω−jn

X0Z
n
0 (4.55)

=
ωmθ

d

∑
n∈Zd

ωn

(
ω−dmθ +

d−1∑
j=1

ω−jn

)
X0Z

n
0 (4.56)

The final circuit output is then

〈µχ〉 =
ωmθ

d

∑
n,i∈Zd

ωn

(
ω−dmθ +

d−1∑
j=1

ω−jn

)
〈〈Q|

∣∣X0Z
n+i
0 〉
〉 〈
〈X0Z

i
0

∣∣ |ρ〉〉 (4.57)

Robust selection of ρ and Q allows for isolation of a single term that can be fitted and
can be used to determine θ. For example, set d = 2 (i.e. the case of a multi-qubit Pauli
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rotation gate) using eq. (4.57) we get

〈µχ〉 =
ωmθ

2

1∑
n,i=0

ωn
(
ω−2mθ + ω−jn

)
〈〈Q|

∣∣X0Z
n+i
0 〉
〉 〈
〈X0Z

i
0

∣∣ |ρ〉〉 (4.58)

=
1

2
(ωmθ + ω−mθ)

1∑
i=0

〈〈Q|
∣∣X0Z

i
0〉
〉 〈
〈X0Z

i
0

∣∣ |ρ〉〉 (4.59)

+
1

2
(ωmθ − ω−mθ)

1∑
i=0

〈〈Q|
∣∣X0Z

1+i
0 〉
〉 〈
〈X0Z

i
0

∣∣ |ρ〉〉
= cos(πmθ)

1∑
i=0

〈〈Q|
∣∣X0Z

i
0〉
〉 〈
〈X0Z

i
0

∣∣ |ρ〉〉 (4.60)

+ i sin(πmθ)
1∑
i=0

〈〈Q|
∣∣X0Z

1+i
0 〉
〉 〈
〈X0Z

i
0

∣∣ |ρ〉〉
with cos(πmθ) on the diagonal of a 2 × 2 matrix and sin(πmθ) on the off diagonal terms
showing we have successfully isolated a single qubit rotational gate signal. Selections of
ρ and Q can then be restricted to X0 or X0Z0 where if ρ = Q then a cos(πmθ) term is
isolated and a sin(πmθ) term otherwise. This result is essentially equivalent to a more
generalized version of the QPE protocol outlined in Kimmel et al. [26]. As discussed in
that paper, repeat applications of a single qubit rotation gate gives a Heisenberg-limited
protocol for the determination of the parameter θ. We can conclude, if the time to perform
an experimental run is proportional tom, the empirical estimate of θ has standard deviation
σ(θ) that scales with O(1/m) achieving Heisenberg scaling.
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Chapter 5

Numerical Simulations

We can now validate these results via numerical simulations. These simulations are per-
formed via the True-QTM software package [5] provided by Keysight Technologies Inc. This
software package functions with Python 3.7 or above and provides a set of tools to run cir-
cuits on hardware and perform error diagnostics and error suppression. More importantly
for us, it also provides a powerful and efficient simulator with the ability to introduce
various realistic noise sources into our circuit. For our purposes, we use the built-in noise
models which include over rotation, stochastic Pauli, and SPAM noise models.

We aim to simulate a full experimental protocol for the characterization of a multi-qubit
rotation gate as presented in section 4.3. Here we set our system to be a two qubit device
and the gate of interest to be a rotation generated by Weyl XX and angle of rotation
π/4.1 We run our protocol by sampling over the Weyl operators that commute with the
generator XX, choose Q = {IY,XZ} and set ρ = Q = IY where Y = XZ. Then, we
run our algorithm for each m = 1, . . . ,mmax where mmax = 30 with 5000 shots per circuit
averaging over N = 20 random circuits. Assuming no noise sources present we demonstrate
that we can successfully reproduce a Rabi oscillation experiment in a multi-qubit system
under ideal conditions. Of course, as previously discussed these are unrealistic expectations
to have when dealing with physical systems and so we can also introduce noise into our
simulations. First we include over rotation errors. This is achieved in the software by
replacing the ideal unitary U with Uerr = U1+ε. For the purposes of our simulations
we set ε as 0.1/0.2 for single qubit gates and multi-qubit gates, respectively. Next, we

1We can run these simulations on any arbitrary multi-qudit rotation given we adjust our sampling
group and Q appropriately.
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introduce a stochastic Pauli noise channel. These channels are an effective model for
simulating noisy gates in physical implementations where the channel eq. 3.18 is interleaved
for each cycle and we set cX,Y,Z = (0.01, 0.01, 0.01). Finally, we introduce some SPAM
error in the form of a readout and state preparation error with a 1% chance of bit-flip
during state preparation or readout. Simulating our experiment we find that we maintain
our Rabi oscillations however, our system experiences decoherence with an increase in
circuit depth that manifests itself as an amplitude damping channel. In both the ideal and
noisy simulations, a least squares fitting function was used to estimate the parameter θ by
fitting a cosine function to the simulated results. For noiseless circuits, the angle θ was
determined to be 0.785 Rad± 0.001 and for noisy circuits 0.805 Rad± 0.010 agreeing with
our expectations of 0.785 Rad.

Figure 5.1: Experimental output for the two qubit RXX(π/4) gate in the case of an ideal
system (left) and a system undergoing over-rotation, stochastic Pauli noise and SPAM
errors (right). In both cases, a cosine function was able to be successfully fitted and θ
determined.

In addition to the Rabi oscillations, we wish to verify our claims of rapid finite sampling
convergence and Heisenberg-limited behaviour. To achieve this, we plot our standard
deviation of θ versus number of samples and number of iterations, respectively.
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Figure 5.2: Standard deviation convergence under number of samples (left) and number of
iterations (right).

On the left hand side, we plot our standard deviation versus sample size N . To do this,
we set m = 1 to minimize its contribution in suppressing deviation. We simulate our noisy
output using the same over rotation and readout errors and an inflated stochastic Pauli
noise cX,Y,Z = (0.1, 0.1, 0.1) over different values of N . The function f(x) = 1/

√
x is then

fitted to the data. As we can see, our results match the expected scaling of 1/
√
N . Thus,

we can conclude that even under the effects of Markovian noise our protocol converges
rapidly with finite samples.

Now, on the right hand side we plot standard deviation versus number of iterations (or
equivalently circuit depth or number of cycles) m. We set N = 1 once again to minimize its
contributions to the overall error. Fitting the function f(x) = 1/x to our data we see our
standard deviation scales accordingly with respect to m. This is what is expected given
the Heisenberg-limited nature of our protocol.

To further validate this we can compare our results to ones obtained for a well known
protocol, namely randomized benchmarking. Randomized benchmarking is simulated using
the same parameters as before with the one exception being N = 30 to obtain well defined
standard deviations (handled by True-Q). In figure 5.3, we can see a normalized standard
deviation for both our projective Rabi experiment versus randomized benchmarking plotted
against circuit depth. Comparatively, the projective Rabi experiment performs better than
RB. This further validates the Heisenberg-limited nature of our protocol.
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Figure 5.3: Comparison of standard deviation for the projective Rabi experiment versus
randomized benchmarking. Standard deviations are normalized based off the maximum
deviation for each protocol.
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Chapter 6

Conclusion

In this thesis, we introduced a projective Rabi experiment. Functioning similarly to a
Rabi oscillation experiment, the projective Rabi experiment’s novelty stems from inter-
leaved projection channels introduced between m applications of a quantum channel of
interest A allowing for coherent amplification of some signal of interest. These projective
channels are constructed using a fundamental result of character theory. Specifically, we
chose sampling distributions to purposefully induce character transforms onto irreducible
subrepresentations of the PTM via the character projection formula. This is an efficient
task as it only requires the application of random Weyls and a fixed scalar function that
can be efficiently computed.

We then examined the scalibility and robustness of the algorithm. It was demonstrated
that, considering finite sampling effects, this algorithm is fully scalable given that the num-
ber of terms where ν(U) 6= 0 is equal to |G|/|Q| and a truncated sampling distribution
is used. Additionally, it was shown that under gate dependent noise we maintain our in-
tended output with a relatively small perturbative term.

Next, an example of a multi-qudit rotation gate was used to showcase the usefulness
of the algorithm. We saw how projecting onto a small d × d subblock generated by the
set X0〈Z0〉 isolates a single signal in our gate that is coherently amplified through repeat
applications. That signal could then be used to either isolate the rotation angle θ as a
QPE technique or full process tomography on the subspace could be performed.

Finally, we validated our results with numerical simulations. We were able to demon-
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strate that even with noise acting on our system we can obtain a Rabi oscillatory signal
that when fitted to the appropriate cosine function can determine its rotation angle. We
also demonstrated the standard deviation scaling as O ∝ 1/m

√
N showing that both finite

sampling errors converge rapidly and Heisenberg-limited scaling.

For future work, demonstrating the viability of this algorithm experimentally would be
the next crucial step. Although robustness to Markovian experimental conditions such as
gate dependent noise and SPAM error has been shown; experimental verification is still
necessary as non-Markovian effects may affect results. Experimentally implementing our
example of a multi-qudit rotation gate on a system that can perform high fidelity rotations
is the recommendation. Additionally, exploring how to adapt the algorithm to different
Hamiltonians of interest would be useful. As an example, the Ising Hamiltonian

H = −
∑
j

Jj,j+1σjσj+1 −
∑
j

hσj (6.1)

can be examined. Constructing projectors onto some subspace such that the coefficients
Jj,j+1 can be determined would give an efficient and robust technique for full tomography
of Ising systems.
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Appendix A

Mathematical Proofs

A.1 Schur’s Orthogonality Relations

Theorem 1. Let G be a compact group with normalized Haar measure µ : Σ(G) → R≥0.
Let V and Z be finite dimensional complex vector spaces with inner product 〈·|·〉 : A×A →
C where A is the respective vector space. Let π : G→ U(dimC V) and ρ : G→ U(dimCZ)
be inequivalent irreducible unitary representations and let u, v, u1, u2, v1, v2 ∈ V and x, y ∈
Z. Schur’s orthogonality relations are∫

G
〈π(g)u|v〉〈ρ(g)x|y〉dµ(g) = 0 (A.1)∫

G
〈π(g)u1|v1〉〈π(g)u2|v2〉dµ(g) =

〈u1|u2〉〈v1|v2〉
dimC V

. (A.2)

Proposition 1. Let L ∈ EndC(Z,V) then∫
G
π(g) ◦ L ◦ ρ(g)†dµ(g) = [π ∼= ρ]

Tr(L)

dimC V
IV (A.3)
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Proof. First show L̃ ≡
∫
G π(g) ◦ L ◦ ρ(g)†dµ(g) is G-invariant. Notice ∀h ∈ G we have

π(h) ◦ L̃ = π(h) ◦
∫
G
π(g) ◦ L ◦ ρ(g)†dµ(g) (A.4)

=

∫
G
π(hg) ◦ L ◦ ρ(g)†dµ(g) (A.5)

=

∫
G
π(hg) ◦ L ◦ ρ(g)†dµ(hg) (A.6)

=

∫
G
π(g) ◦ L ◦ ρ(h−1g)†dµ(g) (A.7)

Since ρ(h−1g)† = ρ(g)†ρ(h) then L̃ ∈ HomG(ρ, π). From this Schur’s Lemma implies L̃
must be λIV with λ ∈ C determined by the trace when π ∼= ρ and L̃ = 0 otherwise
proving the proposition. Now the proof for Schur’s orthogonality relations follows. Set
L = |v〉〈y| ∈ EndC(Z,V) then recognize 〈ρ(g)x|y〉 = 〈y|ρ(g)x〉 and 〈π(g)u|v〉 = 〈u|π(g)†v〉
allowing us to use the proposition and thus proving Schur’s orthogonality relations.

A.2 General Character Projection Formula

Theorem 2. Let G be a compact group with normalized Haar measure µ : Σ(G) → R≥0.
Let π : G → U(H) be a unitary representation of G on a separable Hilbert space H.
Let πk be a finite dimensional irreducible unitary subrepresentation of π on Hk. Let
|e(k)1 〉, |e

(k)
2 〉, . . . , |e

(k)
nk 〉 be an orthonormal basis for Hk with nk ≡ dimCHk and let a

(k)
j,l (g) ≡

〈e(k)j |πk(g)|e(k)l 〉. Then the character projection formula is defined as

P
(k)
j,l ≡ nk

∫
G
a
(k)
j,l (g)π(g)dµ(g) (A.8)

Proposition 2.

π(h)P
(k)
j,l =

nk∑
v=1

a
(k)
v,j (h)P

(k)
v,l (A.9)
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Proof.

π(h)P
(k)
j,l = nk

∫
G
a
(k)
j,l (g)π(h)π(g)dµ(g) (A.10)

= nk

∫
G
a
(k)
j,l (g)π(hg)dµ(g) (A.11)

= nk

∫
G
a
(k)
j,l (h−1x)π(x)dµ(h−1x) (A.12)

= nk

∫
G

nk∑
v=1

〈e(k)j |π(h−1x)|e(k)v 〉〈e(k)v |π(x)|e(k)l 〉π(x)dµ(h−1x) (A.13)

= nk

nk∑
v=1

〈e(k)j |π(h−1)|e(k)v 〉
∫
G
a
(k)
v,l (x)π(x)dµ(h−1x) (A.14)

=

nk∑
v=1

a
(k)
v,j (h

−1nk

∫
G
av,l(hy)π(hy)dµ(y) (A.15)

=

nk∑
v=1

a
(k)
v,j (h

−1nk

∫
G
av,l(y)π(y)dµ(y) (A.16)

=

nk∑
v=1

a
(k)
v,j (h)P

(k)
v,l (A.17)

Proposition 3.

P
(k)
j,l P

(k
′
)

µ,ν = δk,k′δl,µP
(k)
j,ν (A.18)

47



Proof.

P
(k)
j,l P

(k
′
)

µ,ν = nk

∫
G
a
(k)
j,l (g)π(g)P (k

′
)

µ,ν dµ(g) (A.19)

= nk

∫
G
a
(k)
j,l (g)

nk∑
t=1

a
(k
′
)

t,ν (g)P
(k
′
)

t,ν dµ(g) (A.20)

= nk

nk∑
t=1

[∫
G
a
(k)
j,l (g)a

(k
′
)

t,ν (g)dµ(g)

]
P

(k
′
)

t,ν (A.21)

= nk

nk∑
t=1

δk,k′δt,jδµ,l

nk
P

(k
′
)

t,ν (A.22)

= δk,k′δl,µP
(k)
j,ν (A.23)

Proposition 4. Projector Pi,j is self adjoint. That is,

P
(k)
j,l

†
= P

(k)
j,l (A.24)

Proof.

P
(k)
j,l

†
= nk

∫
G
a
(k)
j,l (g)π(g)†dµ(g)† (A.25)

= nk

∫
G
a
(k)
j,l (g−1)π(g−1)dµ(g1) (A.26)

= nk

∫
G
a
(k)
j,l (g)π(g)dµ(g) (A.27)

= P
(k)
j,l (A.28)

Thus, we see the projectors onto the mutually inequivalent irreducible representations of
π are a complete set of orthogonal projectors proving the general character projection
formula.

A.3 Complex Hoeffding Inequality

Theorem 3. Let Z be a complex random variable. Now define the diameter of a complex
variable as

diamZ = inf{c ∈ R|P (|Z1 − Z2| > c) = 0} (A.29)
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where Z1, Z2 are independent copies of Z. Let the complex random variable Z be bounded
by diamZ ≤ d. Say we sample Z1, . . . , Zn then let Sn = Z1 + . . . + Zn with expectation
value E[Sn]. Hoeffding’s inequality for complex random variables is then

P (Sn − E[Sn] ≥ t) ≤ exp(− 2t2

nd2
) (A.30)

Proof. From [25] Hoeffding’s lemma for the case of a complex random variable is

E[exp(s(Z − E[X])) ≤ exp(
1

8
s2d2) (A.31)

From this the proof for Hoeffding’s inequality follows from the case of a real random
complex variable.

P (Sn − E[Sn] ≥ t) = P (exp(s(Sn − E[Sn])) ≥ exp(st)) (A.32)

≤ exp(−st)E[exp(s(Sn − E[Sn]))] (A.33)

= exp(−st)
n∏
i=1

E[exp(s(Zi − E[Zi]))] (A.34)

≤ exp(−st+
1

8
s2nd2) (A.35)

This upper bound is the best for the value of s minimizing the value inside the exponential.
This value is found to be s = 4t

nd2
giving us Hoeffding’s inequality.

A.4 Telescoping series

Lemma 2. For two arbitratry ordered lists of m elements {a1, . . . , am} and {b1, . . . , bm}
of an algebra with associative and distributive addition and multiplication we have,

am:1 − bm:1 =
m∑
j=1

am:j+1(aj − bj)bj−1:1 (A.36)

where aj:k with j ≥ k is defined with respect to the list {a1, . . . , am} as

aj:k = ajaj+1 . . . ak−1ak. (A.37)
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Proof.

am+1:1 − bm+1:1 = am+1am:1 − am+1bm:1 + am+1bm:1 − bm+1bm:1 (A.38)

= am+1(am:1 − bm:1) + (am+1 − bm+1)bm:1 (A.39)

=
m+1∑
j=1

am+1:j+1(aj − bj)bj−1:1. (A.40)

One final note is that if all elements in both sets are identical then am:1 = am and
bm:1 = bm and (A.36) becomes

am − bm =
m∑
j=1

am−j(a− b)bj−1. (A.41)
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