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Abstract

Ultrasound plays a critical role in the accurate and reliable observation of blood flow
dynamics within the human body and is instrumental in the assessment of cardiovascular
health and subsequent follow-up treatment. However, flow imaging innovations in ultrasound
are dependent on the ability to remove the unwanted portion of the signal corresponding
to static or slow moving tissues (or clutter) from the dynamic blood signal. If this filtering
process cannot be done to a high degree of precision, any corresponding flow image will
be of low quality, corrupted by non-flow signals. Filtering is typically performed on the
basis of frequency, using a high-pass filter. This approach functions well when the velocity
distributions of tissues and flow signals are distinct but fails entirely when the two spectra
overlap.

New types of filters in high-frame-rate ultrasound (HiFRUS) making use of both temporal
and spatial information use the singular value decomposition (SVD) have been proposed.
These filters function by decomposing the input signal into a series of orthonormal basis
vectors or components. In theory, as tissue and flow signals posses different signal statistics,
they should be decomposed into different components and readily identified. The identified
flow components can then be reconstituted to produce a filtered flow signal. In practise, flow
and clutter component identification is a challenging task considering the adaptive nature
of the SVD. Furthermore, flow and clutter signals may be mixed in the same components
to varying degrees, making identification of flow signals a challenging task. While increased
flow sensitivity and clutter rejection has been demonstrated by SVD filters, they currently
lack the robustness required for clinical applications, often failing to perform in scenarios
that challenge their innate assumptions of the flow signal decomposition.

The goal of this work is to develop a robust generalizable flow identification framework
that produces high quality filtered flow images across challenging in-vivo flow scenarios where
current SVD filters demonstrate inconsistency. A deeply-connected neural network (DNN)
was trained on a variety of flow acquisitions to reproduce the area under the curve (AUC)
value obtained after performing receiver operator characteristic (ROC) analysis on the seg-
mented flow region using a variety of statistical quantities correlated to the presence of flow
in each component of the decomposition. The use of the AUC metric and subsequent training
of the DNN using multiple statistical factors represents the first attempt at using a super-
vised learning approach to identify the flow components of the decomposition using many
statistical factors simultaneously. When the proposed model was applied to acquisitions of
an in-vitro flow phantom, in-vivo brachial artery, and in-vivo femoral arteries, greater sensi-
tivity and specificity (measured using contrast and AUC) were obtained when compared to
literature SVD techniques. The proposed model was also sufficiently generalizable to identify
small blood vessels in the in-vivo human kidney.

The proposed methodology demonstrates an improvement on the performance and con-
sistency of SVD filters, helping to put this powerful technique in the hands of more users.
Furthermore, the supervised training methodology developed here, using ROC analysis to
obtain an AUC value for each component that describes the spatial distribution of its sig-
nal power, has the potential to be extended to other clutter filtering algorithms potentially
leading to better feature identification than current unsupervised techniques.
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Ultrasound Flow Imaging as a Diagnostic Tool

Compared to other imaging modalities such as computer tomography (CT) or magnetic res-
onance imaging (MRI), ultrasound provides a safe, cheap, non-invasive method of imaging
the internal structures of the human body in a point-of-care environment. As today’s ultra-
sound scanners are low-cost mobile instruments, capable of being directly delivered to the
patient and do not present any harmful ionizing radiation or potentially dangerous magnetic
fields they are becoming increasingly common for disease treatment and diagnosis [1][2][3].
Furthermore, due to its inherent safety, ultrasound is the go-to standard imaging modality
for applications such as fetal health assessment [4][5]. While ultrasound is typically asso-
ciated with the imaging of physical structures within the human body, Doppler ultrasound
provides a method of probing moving structures and even the flow of blood within the body,
allowing for the visualization of blood flow dynamics within the arteries, veins, and heart
and assessment of cardiovascular health [6][7][8].

As an imaging modality that provides resolution of blood flow dynamics, Doppler ultra-
sound is commonly used to diagnose cardiac disease. For instance, measurements of very high
blood velocities in arteries may be indicative of plaque buildup (atherosclerosis) [9][10][11]
or blood clots [12][13]. Doppler techniques may also be used to observe motion within the
heart and help in the diagnosis of conditions such as arrhythmia [14][15].

Although many flow imaging techniques exist, flow imaging is always dependent on the
separation or suppression of the signals originating from moving scatterers from the signals
originating from static background part of the image such as the walls of the blood vessel
and other surrounding tissue [16][17]. The process of suppressing the high-magnitude signals
originating from stationary and slow moving tissue or clutter is called clutter filtering and
is instrumental as a first step in all Doppler techniques for the formation of high quality
ultrasound flow images [18].

Clutter filtering, as deployed in current clinical scanners, follows a major assumption
— that tissue motion is relatively slow and blood flow speeds are relatively high. The
corresponding frequency of signals originating from tissue and blood is therefore low and
high respectively allowing for the suppression of tissue signals through the use of a high
pass filter [16][19] and preset cutoff frequency. However, many scenarios exist in the body
where blood and tissue movements are similar in velocity (such as in cardiac imaging),
resulting in an inability to separate blood and tissue signals on the basis of frequency. If
this is the case, the much higher magnitude tissue signals originating from large amounts
of tissue dominate the much weaker flow signals resulting in an inability to visualize flow.
Examples of particularly difficult scenarios where blood and tissue spectra overlap include
cardiac applications where signals originating from the fast moving blood is difficult to isolate
against the rapid motion of heart tissues and in micro-vessel imaging where the slow flow of
blood through small vessels is obscured by random bodily movements. In these situations
frequency filters fail to produce good flow images; more advanced clutter removal techniques
are needed.
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A Need for Robust Clutter Removal

Newer clutter filtering techniques involve the use of both spatial and temporal information to
better detect and suppress tissue clutter and have been demonstrated in a variety of clinical
applications. One such technique involves the use of the singular value decomposition (SVD)
[20]. Spatiotemporal clutter filters utilizing the SVD have been used to measure flow within
the brain [21][22][23], allowing researchers to identify regions of high blood flow and thus
activity. Measurements of flow within skeletal muscles provides visualization of the transport
and uptake of various blood-transported substances and their physiological role within the
body [24]. For instance, using SVD filtering, blood flow, and hence insulin uptake could be
observed with good fidelity when comparing healthy and obese insulin-resistant mice [25].

While SVD clutter filters have been shown to produce significantly better flow images
than conventional clutter filters, both in traditional scanline imaging [26][27] as well as with
ultra-fast plane wave transmissions [28]; a significant point of contention has remained; how
can the elements of the decomposition which contain the blood flow signal be identified [29]1?.
The flow components, assumed to be present as a contiguous block in the decomposition, are
generally identified through an analysis of the data matrices of the decomposition, revealing
the estimated upper and lower boundaries of this blood subspace. Although investigations of
the statistical parameters used to identify the blood subspace have been made [29], a holistic
consideration of these parameters and their correlations between both themselves and the
blood or clutter signals has yet to be performed and there is still much contention in the
literature on how to best identify the boundaries of the flow subspace. Furthermore, the
fundamental assumption that flow is always contained in an easily identifiable subspace with
a well defined upper and lower threshold has only recently begun to be challenged [30][31].

Inherent in all clutter filtering algorithms is the fundamental trade-off between clutter
removal and flow sensitivity (generically referred to as specificity and sensitivity in more
generic separation algorithms [32]). For example, consider using a high pass filter on a
signal with flow and clutter components overlapping in frequency (but with the flow signal
distribution being higher in frequency than the clutter signal distribution). Here, setting
a lower than optimal cutoff frequency will result in a filtered signal that contains most or
all of the flow signal but will contain a significant amount of clutter as well. This filter is
technically more sensitive to flow and will contain more of the flow distribution but is also
much worse at clutter removal and may fail to produce a useful image as the magnitude of
clutter signals is much higher than that of flow signals. Setting the cutoff frequency too high
creates the inverse problem; more of the clutter signal is removed but at the cost of losing
part of the flow signal. Furthermore the optimal cutoff may vary depending on application2;
and so it is important to leave the dial balancing sensitivity to flow against clutter removal
(sensitivity vs. specificity) in the hands of the medical practitioner.

This sensitivity and specificity trade-off applies to SVD filtering techniques where the de-
composition of the flow and clutter signals into a discrete number of components is not perfect

1The details of SVD clutter filter design will be discussed in the next chapter.
2Although a ‘mathematically correct’ cutoff, however defined, may exist, it may be so that greater diag-

nostic value can be found in a flow image that is biased to greater flow sensitivity OR clutter removal.

3



and components often contain some mixture of the flow and clutter signals. Identifying the
relative degree of flow and clutter in each component of the decomposition is a difficult op-
eration to perform quantitatively, hence the difficulty in the literature of identifying the flow
subspace thresholds. Most literature SVD algorithms only perform a binary classification on
whether a component should be classified as flow or clutter but do not identify the degree to
which that component contains flow or clutter signals, attempting to produce an upper and
lower threshold of best fit. This automatic fit fails to allow for a tunable balance between
sensitivity and specificity; techniques do exist that consider the relative flow and clutter
compositions of SVD components [30][31] but do not produce a meaningful numerical result
that allows for the tuning between flow sensitivity and specificity.

Another issue it that although SVD clutter filters have consistently been shown to out-
perform frequency filters in challenging in-vivo scenarios [33][34][35], their robustness has
not been demonstrated at a level sufficient for clinical use. Demonstration has largely been
restricted to single frames as algorithmic inconsistency in accurately and consistently identi-
fying the flow subspace boundaries creates difficulty in producing filtered cineloops without
flashing artifacts or inconsistent frame-to-frame performance [36]. Thus while SVD clut-
ter filters may reduce or eliminate the ‘flashing’ artifacts so common when using frequency
filters [37] they may introduce a new distinctive type of flashing artifacts if clutter is not
consistently removed on a frame-to-frame basis.

The major issues with current implementations of SVD clutter filters can be summarized
as follows.

1. Clinical robustness: A robust and sufficiently adaptable SVD algorithm that con-
sistently outperforms ‘best guess’ manual operator input under varied and challenging
imaging scenarios has not been fully demonstrated. While improved clutter filtering
performance is frequently shown, this performance must hold up across all relevant
imaging scenarios for entire cineloops and not simply selected frames. This leads to
point 2).

2. Simplistic techniques: SVD filtering algorithms tend to use a limited amount of
the overall information contained in the decomposition to identify flow components
which can lead to inconsistency. Furthermore they often make specific assumptions,
such as the assumed existence of flow in the image and will fail when these assumptions
do not hold true.

3. A focus on ‘one size fits all’ thresholding: Current SVD filtering algorithms do not
allow for meaningful user tuning between sensitivity and specificity. Instead the focus
is on determining the best default thresholds. While this may be a mathematically
sound approach, there is a significant difference in what constitutes the ‘ideal’ threshold
across various imaging scenarios which may demand different balances of sensitivty
and specificity. Furthermore, many current SVD algorithms do not quantitatively
attempt to describe how flow and clutter signals are contained within individual SVD
components.
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Machine Learning and Ultrasound

While most literature SVD filtering techniques only utilize a fraction of the statistical infor-
mation available in the decomposition [29] to identify the flow subspace thresholds, our goal
is to simultaneously consider all relevant statistical information to arrive at a more accurate
estimate. Our proposed framework will also allow us to numerically quantify the relative
amount of flow in each component of the decomposition. With both inputs and targets
available, it is possible to use a more complex supervised learning approach to identify the
flow components of the decomposition.

In this thesis we propose to use a deeply-connected neural network (DNN) under a su-
pervised learning approach to well-characterize the relationship between the SVD statistics
and presence of flow. Supervised machine learning models and neural networks have been
used extensively in ultrasound for clutter filtering applications [38][39][40][41]; however a
fundamental issue has always been the limitations of the available target information. While
literature networks have been used to perform clutter filtering, the target output of the net-
works were limited to the output of pre-existing clutter filtering algorithms and therefore
literature networks were unable to advance the performance of the clutter filter beyond that
of the input target training data. To address this, in this project we will use a combination
of manual segmentation and receiver-operator characteristic3 or ROC analysis to numeri-
cally quantify how the signal of each singular component is present in the identified flow
region and train our network to numerically identify the flow-containing components of the
decomposition.

Research Overview

The focus of this research project will be to develop a clutter filtering utilizing the SVD that
addresses the points described above. We aim to accomplish this by first performing an in-
depth analysis of the information contained in the SVD data matrices to identify and extract
the statistical fingerprints indicative of the presence of flow. These statistical quantities will
serve as the inputs for our framework to numerically quantify the presence of flow. We will
then develop a method to numerically characterize the amount of flow signal contained within
each component of the decomposition using a spatial segmentation technique, to obtain a
prospective target for our framework to reproduce. We will then train a deep neural network
using the input and target values obtained from large number of distinct and varied in-vitro
and in-vivo acquisitions to give a numerical score representing the presence of flow within
each component of the decomposition.

We will then evaluate the effectiveness of the proposed framework on unseen in-vitro and
in-vivo acquisitions. In the case of in-vivo acquisitions, care will be taken to select complex
flow scenarios such as the femoral bifurcation (in which the femoral vein is also present)

3ROC analysis has been used extensively in the literature to numerically quantify the performance of
clutter filtering algorithms. Here, we propose to extend ROC analysis to each individual component of the
decomposition.
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and brachial artery with a comparison being made across the entire cardiac cycle. Both
the performance of individual frames and the consistency of frame-to-frame output will be
considered in accordance with standard literature assessment techniques.

Thesis Organization

This thesis thesis is organized into four chapters following this introduction. Chapter 2
will present background information on ultrasound data acquisition and clutter filtering
strategies. Chapter 3 describes how the proposed clutter filtering framework will function,
describing how input and target information is obtained and how the deep neural network is
trained. Chapter 4 describes how the proposed DNN SVD clutter filter performs against
current literature algorithms in in-vitro and in-vivo scenarios. Finally in Chapter 5 we
interpret the results of the previous chapter and suggest future work in the field of SVD
clutter filters.
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Part II

Background: Ultrasound Flow
Imaging
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This chapter presents the basics of ultrasound data acquisition and image formation as
groundwork for further discussions on clutter filtering and the considerations that must be
made when performing Doppler flow imaging. The singular value decomposition and its use
in spatiotemporal SVD clutter filtering is then presented. Current literature SVD filtering
algorithms and their strengths and weakness are discussed. An introduction to supervised
learning and finally a brief discussion on how neural networks function and are trained is
then provided. The overall goal of this chapter is to provide a background and prepare for
the introduction of the proposed SVD clutter filtering framework presented in Chapter 3.

Fundamentals of Ultrasound

Ultrasound imaging is a pulse-echo sensing technique where the echoes of ultrasonic pressure
waves, reflecting off echogenic scatterers within a medium, are reconstructed to create a lo-
calized intensity map of the position of the scatterers. A simplified description of ultrasound
imaging process proceeds as follows, piezoelectric crystals in a device known as a transducer
are used to convert an electrical signal into acoustic pressures waves (1-15 Mhz) that pene-
trate into the body from the transducer-skin interface. In the process of travelling through
the body, some of the acoustic energy is reflected whenever a ’scatterer’ is encountered [42].
These returning waves travel back to the transducer where the piezoelectric crystals in the
transducer head converts the intensity of the returning echoes into voltage measurements.
These voltage measurements, known as radiofrequency (RF) data can then be processed
to return a map of the location of acoustic scatterers in the field of view called a b-mode
(brightness mode) image through time of flight calculations with the speed of sound within
bodily tissues assumed to be a constant 1540 m/s. When applied to the human body, this
mapping of acoustic scatters allows one to discern structural information such as the location
and internal structure of different tissues such as blood, muscle, and bone. Figure 1 shows
an b-mode image cross section of the human carotid where the highly echogenic muscles and
tissues and less echogenic blood can be observed.

Figure 1: Left) A b-mode image of the human carotid artery acquired using conventional
scanline ultrasound. Right) The corresponding power Doppler image showing the intensity
of blood flow within the artery.
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Data Acquisition and Beamforming

For the images presented in Figure 1 an ultrasound probe head containing a linear array of
transducer elements was used; the use of multi-element probes is necessary to localize the
echoes originating from an object to a specific point in space. In conventional ultrasound
scanners, an approach called ”scan-line” imaging is utilized, whereby an ultrasound pulses
are emitted from sub-apertures of the array. This is shown in Figure 2a where a number of
adjacent elements of the array are used for transmission and then beamformed on reception
to create a single image line in the resulting b-mode image. The aperture window is then
translated laterally and the next set of elements fired. This process continues until the b-
mode image is complete and then repeated again from the beginning of the array for the
next frame. A set number of firings per second are performed (this number is known as
the pulse repetition frequency or PRF ) — as many firings must be completed per frame the
overall frame-rate is slow, ∼ 30 fps, although overall quality is high due to the use of focused
transmissions.

Figure 2: In scanline or conventional ultrasound a) a subset of array elements are used
to form a focused transmission which upon reception is used to form a single line in the
resulting image. b) In high-frame-rate ultrasound the entire imaging view is insonified to
create an image of the entire imaging view at once.

In high-frame-rate ultrasound, the entire array of elements is fired simultaneously, creat-
ing a plane wave that insonifies the entire imaging region. All transducer elements are used
both for both transmission and reception and frame-rate is limited effectively only by the
PRF. However, high-frame-rate ultrasound suffers from a significant loss in quality due to a
lower power intensity due to the insonification of the entire imaging region and a difficulty
in localizing the exact position in space of scatterers. This can be corrected somewhat by
compounding plane wave transmissions from different transmission angles [43].

Image formation in high-frame-rate ultrasound is most commonly performed using a
process known as delay and sum beamforming [43]. Here time-of-flight (TOF) calculations
(total time = transmit time + receive time) are performed for each pixel in the image,
allowing for the localization in each transducer element’s RF data that best represents the
echoes originating from a given pixel. The resulting echo contributions can then be summed
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together to give a value representing the intensity of echoes originating at each pixel’s location
in space. Displaying all of the summed pixel contributions under a logarithmic scale produces
the final b-mode image. These b-mode images show structural anatomy (Figure 2) but do
not reveal reveal the flow of blood within vessels; further signal processing is needed to detect
the movement of scatterers.

Figure 3: a) The time of flight for a plane wave reflecting off scatters at pixel xy can be
calculated to two transducer elements a and b as the sum (TOFa and TOFb) of the transmit
(tt) and receive times (tra and trb) respectively. b) The RF data of elements a and b can
then be inspected, and the indices (ia and ib) corresponding to times TOFa and TOFb

identified. The final signal intensity of the red pixel (Ipxy) is the sum of all relevant element
contributions.

Principles of Flow Imaging

Although B-mode images show the location of echogenic structures within the body they
contain only static structural information and therefore multiple transmissions are required
to visualize blood movement, a time dependent phenomena. For flow imaging using a pulsed
wave approach, multiple RF acquisitions are needed to calculate the change in position of
scatters as a function of time.

Consider the scenario of a scatterer moving toward the transducer as shown in Figure
4. Here a pulse echo transmission occurs every TPRI = 1

PRF
where PRF is the pulse

repetition frequency. As the scatterer travels toward the transducer the transducer receives
the reflected signal earlier in the transmission cycle. The magnitude of the reflected signal
for that particular depth (pixel) can be recorded for each slow time firing and the resulting
sampled waveform used in the Doppler equation (1) to estimate the velocity of the scatterer
toward or away from the transducer. Here fD is the measured Doppler frequency, v is the
velocity of the scatterer toward or away from the transducer, c is the speed of sound in tissue,
f is the transmission frequency, and θ is the angle between the transducer and the direction
of motion of the scatterer.
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fD =
2vf

c
cos θ (1)

Figure 4: Measuring the Doppler frequency using pulsed-wave Doppler. a) A scatterer
is observed moving towards the transducer over several slow time acquisitions. b) The
intensity of the echoes returning from a given depth (the dashed line in the left-hand image)
can be used to estimate the frequency of the scatterer motion in relation to the ultrasound
transmission frequency (f = 1

TPRI
).

This example only considers the case of a single scatterer. In reality many scatterers
contribute to the signal of any given pixel, all of which may be moving at different velocities.
It is therefore useful to compute the mean Doppler frequency of the ensemble of scatterers
which can be performed through calculation of the lag-one autocorrelation [44]. In Equa-
tion 2, V represents the slow time series signal of length N for a given pixel. After computing
the Doppler frequency one can then substitute into Equation 1 to compute the mean velocity
of the given pixel.

R =
N−1∑
i=1

V ∗(i) · V (i+ 1) (2)

fD =
(PRF

2π

)
× arctan

(imag(R)

real(R)

)
(3)

By displaying all pixels over a given magnitude threshold, we can form the colour Doppler
image. By convention, flow toward the transducer is depicted as red while flow away from
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the transducer is shaded blue. The power Doppler image, by contrast, is simply a map of
the relative magnitude of motion in each pixel and contains no directional information. The
b-mode image of the human carotid bifurcation is shown in Figure 5 along with its respective
power and colour Doppler images.

As we are calculating the autocorrelation of adjacent samples in time, the maximum
detectable frequency of pulsed wave Doppler is limited by the Nyquist limit [42]. Therefore,
the maximum detectable frequency using pulsed Doppler techniques is one half the PRF.
Should scatterers move faster than this limit their measured frequency appears to wrap
around the spectrum and it appears as if these scatterers are moving backwards, similar
to how a rotating helicopter blade appears to rotate backwards when the camera shutter
speed is insufficient. This phenomenon is called aliasing and hinders flow visualization,
making diagnosis difficult. Aliasing can be eliminating by sampling at a sufficiently high
PRF, although this is not always possible in practice.

Figure 5: The femoral bifurcation. a) B-mode image. Red dashed lines indicate the arterial
walls. b) Power Doppler image. c) Colour Doppler. Flow pixels are assigned a colour
depending on whether they represent flow towards (red) or away from the transducer (blue).
Only pixels with flow magnitudes over a defined threshold are assigned colours. At this
moment in the cardiac cycle flow is only visible in the upper branch of the bifurcation.

Finally, we note that the number of firings used to create the sampled waveform is
called the ensemble size and that while larger ensemble sizes may allow for better frequency
measurements, temporal resolution is lost.

Clutter Filtering

In the creation of high quality flow images, it is necessary to suppress the signals resulting
from the unwanted stationary or slow moving tissues that would otherwise dominate the
image due to their large signal magnitudes. These unwanted signals are known as clutter.
Figure 6 shows the origination of clutter in conventional scanline imaging, in which the
signals originating from tissue regions where the grating lobes of the transducer array lie
will be difficult to discriminate from the genuine flow signals due to the large amounts of
energy (and hence echoes) being delivered to the grating lobe regions, even with a focused
transmission. These unwanted tissue signals originating from the grating lobes will then
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appear to originate along the main lobe where blood signals lie. In high-frame-rate imaging
due to the use of a plane wave to insonify the entire imaging view, a given element will receive
returning echoes from all equidistant regions simultaneously (same time of flight). Figure 6
shows that echoes originating from the green flow pixel will be received simultaneously with
all other echoes along the dashed purple line at element a, including high magnitude red
tissue pixels, resulting in distortion of the flow signal.

Figure 6: a) Clutter in conventional beam based ultrasound showing tissue signals originating
from the grating lobes. b) In high-frame-rate ultrasound the entire region is insonified. All
echoes from regions equidistant (with same time-of-flight t) to the transducer element a will
be received simultaneously, corrupting potential flow signals.
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Figure 7: Frequency response of a typical high pass filter. The ideal filter as shown in green
attenuates all signals below the cutoff frequency to zero magnitude. Filters constructed in
practice shown in red are unable to attain a perfectly sharp transition between the stopband
and passband and this region of changing attenuation is known as the transition band.
Furthermore, practical filters are unable to perfectly remove all signals within the stopband,
instead suppressing them by some finite amount. We also note that the exact shape of the
frequency response will depend on the filter being used.

Flow images are generally formed through the use of a high pass filter (HPF), which
works by suppressing some frequency components of the signal. We note that tissue clut-
ter in ultrasound consists of signal components that are static or slow moving relative to
blood. Therefore, if the low frequency components of the aggregate signal are suppressed,
the resulting signal will consist mainly of blood. The name ‘high-pass-filter’ refers to the
fact that high frequency components (passband) pass through the filter unscathed while low
frequency components are suppressed (stopband). The frequency response of a typical high
pass filter is shown in Figure 7.

While frequency-based clutter filtering achieves excellent results in a wide variety of
scenarios and has been extensively implemented in medical scanners it requires that the
blood and tissue signals possess separable frequencies. In some scenarios this separation is
not guaranteed; for example in cardiac imaging the frequency spectra of fast flowing blood
coincides with that of the quickly moving heart valves while in microvessel imaging where the
blood flow through small vessels is so slow that it can be easily obscured by random tissue
motions. In these scenarios, the frequency overlap between the blood and tissue spectra
means that the two signal components cannot be well separated using a high pass frequency
filter and attempts to do so will leave significant artifacts in the resulting image. This can be
observed in Figure 8 which shows the spectrograms of separable and inseparable scenarios
on the basis of frequency.
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Figure 8: Left. Spectrogram of typical ultrasound signal. Tissue and blood components
possess different frequencies and are easily separable on the basis of frequecy. Right. In
certain circumstances such as slow blood flow the tissue and blood spectra overlap and
blood and tissue signal components cannot be separated on the basis of frequency. Noise is
distributed equally over the entire spectrum and is far more difficult to remove.

Spatiotemporal Filtering and the Singular Value De-

composition (SVD)

A possible solution to the problem of overlapping tissue and blood frequencies is to incor-
porate spatial information about the relative pixel positions of the blood and tissue signals
into the picture. One such technique, speckle tracking, performs pattern matching between
adjacent frames to track the motion of blood scatterers through space [45][46][47]. In this
work we focus on the aforementioned singular value decomposition (SVD) which decomposes
the raw signal into a number of self-consistent basis vectors.

It is assumed that the very different signal statistics of flow and clutter will result in the
signal populations being decomposed into different sets of basis vectors. As the clutter signal
is much larger in magnitude than the flow signal, it will be contained in the first elements of
the decomposition. The flow signal is much weaker but still self-consistent and will be found
in the middle elements of the decomposition. Finally, the last elements of the SVD will tend
to contain uncorrelated high-frequency but low magnitude noise. The general goal of all
SVD filters is therefore to identify the ideal boundary between these three signal subspaces.

Principles of SVD Filtering

The singular value decomposition (SVD) of a real or complex m×n matrix M is a factoriza-
tion of the form M = U∆V ⋆ where U is a m×m real or complex unitary (UU⋆ = I) matrix,
∆ is a real rectangular diagonal matrix (m × n), and V is n × n unitary real or complex
matrix [48].
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M = U∆V ⋆ (4)

Here we call the diagonal matrix ∆ the singular values of M . ∆ has a number of non-zero
singular values equal to the rank of M . Conversely, the columns of U and V are known as
the left singular vectors and right singular vectors of M respectively. By convention,
the singular values ∆ii are sorted in descending order.


M11 M12 M13

M21 M22 M23

M31 M32 M33

M41 M42 M43

 =


U11 U12 U13 U14

U21 U22 U23 U24

U31 U32 U33 U34

U41 U42 U43 U44



∆11 0 0
0 ∆22 0
0 0 ∆33

0 0 0


V ⋆

11 V ⋆
13 V ⋆

13

V ⋆
21 V ⋆

23 V ⋆
23

V ⋆
31 V ⋆

33 V ⋆
33

 (5)

In terms of computation it is often useful to remove elements in matrices U , ∆, or V
which would be multiplied by zero and thus not possess any meaningful contribution. In this
form ∆ is a square diagonal matrix of size rank(M)× rank(M) with no 0 elements along its
diagonal. This formulation decreases computation and memory requirements significantly.
This form is known as the reduced SVD.


M11 M12 M13

M21 M22 M23

M31 M32 M33

M41 M42 M43

 =


U11 U12 U13

U21 U22 U23

U31 U32 U33

U41 U42 U43


∆11 0 0

0 ∆22 0
0 0 ∆33

V ⋆
11 V ⋆

13 V ⋆
13

V ⋆
21 V ⋆

23 V ⋆
23

V ⋆
31 V ⋆

33 V ⋆
33

 (6)

To perform clutter filtering using the SVD we first vectorize the ultrasound cineloop,
turning it from a 3D array of K ensemble images of size Nx by Ny into a 2D matrix called
a Casorati matrix with dimensions Nx × Ny by K. We can visualize the Casorati matrix
as consisting of a vertical stack of pixel time series measurements as shown in Figure 9; in
this fashion we note that time data is displayed along the horizontal direction while spatial
data is distributed along the vertical. Therefore after computing the SVD, the columns of
U will contain the spatial singular vectors while the columns of V will contain the temporal
singular vectors.
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Figure 9: Clutter filtering using the singular value decomposition (SVD). 1)The ultrasound
cineloop is 2) first vectorized into a 2D Casorati matrix, transforming the data structure
from three to two dimensions. 3) The SVD is then computed and 4) some statistic(s) from
the U , ∆, or/and V matrices are used to calculate the upper and lower cutoffs between which
the blood signal is located. 5) All singular values not between these cutoffs are replaced with
0’s in the ∆ matrix. 6) The blood image is then reformed by multiplying together the U ,
∆, and V matrices.

After computing the SVD of the vectorized ultrasound data we are left with the three U ,
∆, and V data matrices. Let us make some observations. First for an initial ensemble size
of K, we will have K values of ∆ or singular values, i.e. ∆1...∆K

4. The i’th singular value
is given by ∆i while Vi and Ui refer to the i’th columns of the V and U matrices. We may
also write the SVD in a slightly different form as shown in Equation 7.

M =
K∑
i=1

Mi =
K∑
i=1

∆iUiV
⋆
i (7)

Here the Mi’s are referred to as the principle image components of M and can be cal-
culated by taking the outer product of the Ui and Vi vectors. Although this is simply a
rewriting of the definition of the SVD, this reformulation allows for the direct visualization
of the signals contained in the individual image components aiding in the determination of
the Mi’s that contain blood.

The next step is to determine which of the K singular components contain the desired
blood signal using a variety of parameters that can be extracted from the U , ∆, and V
matrices. The ∆ matrix contains the singular values of the decomposition, ordered from
largest to smallest. Here, components which contain most of the total raw signal are readily
identified. From the temporal singular vectors the mean Doppler frequency for each Vi may
be calculated as described in Equation 2. From the spatial singular vectors the spatial

4This assumes that K < Nx ×Ny which for relevant image sizes will always be true.
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correlation matrix may be calculated (Equation 8) [29]. Here N represents the length of the
vectors and Ūn and σn represent the mean and standard deviation of the Un indices. These
discriminating factors are visualized in Figure 10.

Ci,j =
1

N2

K∑
i,j=1

(|Ui| − ¯|Ui|) · (|Uj| − ¯|Uj|)
σi · σj

(8)

Figure 10: Discriminating factors for threshold selection. Upper and lower thresholds de-
noting the blood subspace may be calculated using temporal/frequency information derived
from V , magnitude information from ∆, or spatial information from U . The red arrows show
possible upper and lower thresholds using each discriminating factor.

Identification of the blood signal is generally dependant on a number of assumptions
about the properties of blood, tissue, and noise signals. As follows;

1. That the magnitude of the tissue signal is far larger than that of the blood signal due
to the tissue’s far greater echogenicity and that generally far more of the viewing plane
will contain tissue.

2. That the frequency of the tissue signal is generally low and that blood frequencies are
generally higher.

3. That the blood or tissue signals will be strongly spatially correlated with themselves
and poorly correlated with each other as they are contained in different pixels. Noise
is uncorrelated.

Current SVD Filtering Algorithms and their Limitations

Current literature SVD filters use assumptions described above in conjunction with the SVD
to define a lower threshold or cutoff in the singular values that separates the blood subspace
from the tissue subspace. All singular components below this threshold are assumed to con-
tain no blood signal and can be eliminated from consideration. Higher singular components
are assumed to contain less and less blood signal and instead capture more and more random
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noise. Therefore, a higher cutoff may be defined that separates the last of the blood signal
from singular components that contain only noise. The final filtered signal may formed by
replacing the ∆i’s above and below the cutoffs with zeros and multiplying through the U ,
∆, and V matrices.

Mfiltered = U∆filteredV
⋆ =

upper cutoff∑
i=lower cutoff

∆iUiV
⋆
i (9)

Intuitively, an analogy can be made with reference to Figure 8 except that the x axis has
been relabeled to ‘Singular Component Number’ with the SVD filter acting as a bandpass
filter rather than a high pass filter and eliminating high and low frequency components5. It
is extremely important to note that similarly to the ‘inseparable’ scenario shown in Figure
8 as it is not guaranteed that the blood and tissue signals will not mix, rather, it is hoped
that the incorporation of spatial as well as temporal information into the filtering process
adds an additional dimension of separation between the two signal types reducing potential
mixing of signal types.

SVD clutter filters have been used extensively in the literature with scanline [26][27]
ultrasound imaging although a modified approach is necessary due to the reduced ensemble
sizes and sequential rather than simultaneous data acquisition. One such method, the single-
ensemble SVD filter creates an Hankel matrix from the times series measurements of a single
individual pixel. The SVD of the Hankel matrix is then computed and the frequencies of
each singular component (calculated using the lag-one autocorrelation [44]) used to estimate
and remove components containing clutter. Another scanline SVD filtering method, the
multi-ensemble formulation, uses a data matrix constructed from the surrounding pixels as
well as the sample pixel to obtain a better estimate of the blood components [26][27].

In high-frame-rate ultrasound, much larger ensemble sizes are achievable (by more than
a factor of 10) and sampling takes place over the entire imaging plane. Therefore the data
matrix is much larger, being of size (M × N) × EnsembleSize where M and N are the
dimensions of the ultrasound image.

The central tenet of SVD clutter filters is that the blood, tissue, and noise sub-spaces
are separable from each other at a given threshold or point and that these thresholds can be
identified using information contained within the U , V , and ∆ SVD data matrices (Figure
10).

Common threshold estimators making use of the singular values (∆) involve pre-selected
fixed cutoffs [28][49], the turning point of the singular value curve [50][51] (indicating signif-
icant change in signal statistics), a proportion of the total signal strength [33] (assumption
of a relative flow to clutter energy ratio), etc. Temporal information may also be leveraged
and the threshold estimator set as an arbitrary predefined frequency (analogous to the cutoff
frequency in a frequency filter) or turning point [50] (representing a significant change in fre-
quency statistics). Spatial analysis has been performed using the spatial correlation matrix
(Equation 8) and flow threshold identified through a block-matching algorithm [33] (clutter

5This is simply an analogy as the SVD does not function on the basis of frequency.

19



and flow signals possess a different spatial distribution). A good review of various thresh-
old estimators and their relative performance can be found in Ref. [29] which extensively
compares about a dozen theshold identification methods. Additionally, this work concluded
that a spatial estimator using the subspace boundaries of spatial similarity index generally
demonstrated the best clutter filtering performance.

This best-performing algorithm from Ref [29] using the spatial similarity matrix C (Equa-
tion 8) involves identifying that the blood and tissue subspaces should appear as two ‘blocks’
of correlations in C (Figure 10). This phenomena can be numerically quantified when two
limit values within the ensemble size nt are identified 1 ≤ a ≤ b ≤ nt (representing the lower
and upper thresholds) such that the value of χN(a, b) is maximized as shown in Equation 10

χN(a, b) =
χ(C, αa,b)√

χ(C,C) · χ(αa,b, αa,b)
(10)

where

χ(C, αa,b) =
1

n2
t

·
∑
(n,m)

(
C(n,m)− C̄)

)
·
(
αa,b(n,m)− ᾱa,b

)
(11)

Here nt is the ensemble size and αa,b is given by

αa,b =


1, if (n,m) ∈ [1, a)

1, if (n,m) ∈ [a, b]

0, otherwise

(12)

Although time consuming to compute, this method has been frequently used in the lit-
erature [33][52] and is considered one of the more robust threshold identification methods
although it only makes use of the spatial U information present in the SVD. While most
threshold identification techniques in the literature consider only a single estimator to iden-
tify the blood subspace boundaries there are a few that do leverage multiple estimators to
perform more robust subspace identification. Consider the following algorithm and its in-
herent assumptions to identify the upper and lower blood subspace boundaries from Ref.
[50].

The lower clutter-flow threshold following Ref. [50] is obtained by first computing the
turning point of the singular value curve. This turning point is then compared with the
point at which the Doppler frequencies of the components exceeds some predefined cutoff,
say 50 Hz. The lower threshold is defined as the greater of the two potential cutoffs. The
upper flow-noise cutoff is defined in a similar way. As they are assumed to contain only noise
[50], the Doppler frequency of the noise components is assumed to be be generally high and
quite consistent; a potential ’pre-cutoff’ threshold can be identified as the index at which this
‘plateau’ in the Doppler frequency disappears (this effect can be seen somewhat in Figure
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10). It is assumed that for noise, the singular values (log-scaled) above the upper cutoff
should follow a linear relationship with respect to the index of the decomposition; the points
above the ’pre-cutoff’ are used to identify the portion of the singular value magnitude curve
used for the linear fit. The final upper flow-noise threshold is set as the index at which the
singular value magnitude curve no longer maintains a linear relationship with the singular
value index as a potential cutoff. This process is shown in Figure 11

Figure 11: Hybrid upper and lower threshold estimator. a) Lower threshold identification.
The lower threshold is defined as the higher of cutoffs a and b where cutoff a is calculated as
the turning point of the singular value magnitude curve and cutoff b is defined as the singular
index at which the mean Doppler frequency curve first crosses some predefined frequency
threshold, here 300 Hz. b) Upper threshold identification. The upper threshold is calculated
by first identifying the edge of the noise frequency ceiling as the pre-cutoff. A linear fit
on the singular value magnitude curve using the indices above the pre-cutoff then gives the
upper cutoff as the point at which the singular value curve begins to diverge away from the
linear fit.

The two SVD filtering algorithms presented here represent the more robust literature SVD
techniques and their performance under a variety of in-vitro and in-vivo imaging conditions
will be discussed in the following chapters. However, both methods make many assumptions
about the signal statistics of the input data matrix or how the SVD actually performs the
decomposition. The breaking of these assumptions is shown in Figure 12. Here it is seen that
the Doppler frequency plot of the decomposition or the spatial correlation matrix is often
too noisy to extract meaningful information. Figure 12 also shows how both methods break
down in a (relatively) simple in-vitro imaging scenario using a spiral flow phantom [53] with
aliasing present. Finally, we remark that in the SSM in Figure 10 there are actually three
‘blocks’ of correlations present; the tiny clutter block (components 1 - 5) and the forward
(components 6 - 30) and reverse flow (components 30 - 63) in an aliased environment. This
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particular image was used illustrate how easy it is to draw incorrect conclusions from plots
of discriminating factors, and the breadth of analysis required to ‘certify’ the accuracy and
robustness of a filtering algorithm.

Figure 12: Limitations of the described SVD filters. a) - b) In-vitro color Doppler of a spiral
flow phantom [53] offset to the edge of the imaging view. Three blocks of correlations are
observed in the SSM. Block 1 corresponds to tissue clutter while blocks 2 and 3 correspond
to the non-aliased and aliased flow as shown in c). d) - e) show the mean Doppler frequency
curve and singular magnitude curve for the same spiral flow phantom adjusted to lie in
the center of the imaging view. The difficulty in identifying the pre-cutoff in mean Doppler
frequency curve is observed as there does not appear to be any noise plateau in the plot. The
arrows in g) show the actual identified upper and lower thresholds – we can observe that the
flow subspace encompasses nearly the entire decomposition. e) The Doppler frequency plot
for an in-vivo acquisition of a cross-section of the human carotid. Here we can observe a huge
peak in the frequency that will stymie many frequency-based threshold algorithms. Finally
g) shows a scenario (in-vitro flow phantom) where significant sub-structure can appear in
the SSM, making the application of the algorithm described in Equation 10 difficult.

However, it is very easy to see that not all blood singular image components between
the upper and lower threshold contain the same ’quality’ of blood image. This is observed
in Figure 13 which shows the same femoral artery as seen in Figure 5, albeit at a different
moment in the cardiac cycle. The final filtered signal is shown on the left while filtered
images corresponding to selected singular components (labelled in red) are shown on the
right. To enhance clarity we use a relative scale and show these images under 15 dB dynamic
range. Under visual identification it is obvious that the first singular component contains
tissue signal and the twentieth noise and that under a thresholding approach we would likely
describe the blood signal as being contained between components 8 to 18. However, we note
that the signal to noise ratio of component 15 is very low. Little blood signal is observed in
this singular component and it appears to be dominated by some ‘beamlike’ noise artifacts.
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With a vanishing amount of blood signal but significant noise, component 15 contributes
little to the image and if removed will improve the quality of the final filtered signal.

Figure 13: Left Filtered flow image of the femoral bifurcation created using SVD clutter
filtering (20 dB dynamic range). The red dashes indicate the arterial walls. Right Image
formed using the corresponding singular component (lower right). An ensemble size of 128
was used. Images here are shown under varying but appropriate dynamic range. Visually,
tissue, blood, and noise are observed in the component images.

Previous work in the literature has explored the idea of component selection algorithms
which do away with the notion of thresholds but instead attempt to classify singular compo-
nents individually as containing primarily tissue, blood, or noise signals [30][31]. This method
has significant merit, however it is not without significant caveats. In this algorithm, the sin-
gular value magnitude, the mean Doppler frequency, and the spatial correlation with respect
to the first spatial singular vector (the values contained in the bottom row of the SSM) were
first identified for each component in the decomposition. K-means clustering [54][55] was
then performed with the clutter, flow, and noise signals forming clutters and allowing for the
flow-containg components to be identified. Although signficant issues can be readily identi-
fied in the inherent assumptions being made using this approach6 it nevertheless remains one
of the few algorithms that attempts to identify components individually and does so using
the statistics from the spatial, temporal, and magnitude data matrices simultaneously. Our
proposed framework, discussed in the following chapters, will maintain these key properties.

It is also useful to discuss some of the other strategies that have been employed in SVD
clutter filtering algorithms to enhance performance. In high-frame-rate ultrasound, much
larger ensemble sizes are achievable than with scan-line imaging and sampling takes place

6Such as a presumption of three clusters – how would the algorithm perform if no flow was present?
Furthermore the ’clusters’ that were formed tended to be wormlike or otherwise irregularly shaped which
does not lend itself well to K-mean clustering where clusters are assumed to be more spherical in shape.
Additionally, K-means uses a distance-based metric for clustering meaning that the normalization on the
discriminating factors needs to be determined or even adaptively set.
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over the entire imaging plane. Many SVD clutter filters have been designed such that
the entire beamformed image is used, perhaps 256 by 256 pixels, as the data matrix. We
will call these types of SVD filters global SVD. Alternatively, the image may be further
subdivided into overlapping blocks. In blockwise SVD, the beamformed image is divided into
overlapping blocks of pixels, each of which undergoes the process described in Figure 9 with
threshold identification being performed as described above. These filtered sub-images are
then averaged to create a final image [50] encompassing the entire imaging view.

A blockwise approach to filtering was shown to greatly improve flow detection and con-
trast [50] due to the reduction of the overall ’signal bandwidth’ present in the data matrix.
As the data matrices of individual blocks contain only clutter and flow signals ’local’ to the
region, the total contained clutter and flow signal distributions are less complex, and the
decomposition is better able to separate blood and tissue components within the defined
ensemble length. For example, consider a scenario where the flow signal is highly localized
to a region of the image (such as an artery or vein); under a blockwise approach, SVD clutter
filtering can be performed for blocks that do and do not contain the flow signal, resulting
in increased sensitivity in the flow blocks as flow/clutter discrimination can be performed
without the inclusion of clutter signals from further regions of the image. By removing sig-
nals that possess different statistical properties from the data matrix, greater sensitivity can
be obtained for the pixels in the region of interest.

One major issue with blockwise SVD is that line-like artifacts may be observed at the
boundaries of the overlapping blocks7 due to differences in the selected upper and lower
thresholds [50]. One solution involves the use of randomized spatial downsampling whereby
the ‘blocks’ are formed by constructing the data matrix from randomly selected pixels from
the entire image [49][56]. The general SVD cluttering filtering process is then performed on
these randomly created blocks. As pixels have been selected randomly, the line-like artifacts
frequently observed in blockwise SVD are noticeably absent. It is important to note an
interesting property of the Casorati matrix; due to the stacked arrangements of the times
series of each pixel (i.e. each row in the Casorati matrix contains the time series of a given
pixel) rows may be shuffled with no change in the end results of the decomposition; in other
words it makes no difference how information is ’packed’ into the Casorati matrix.

7These artifacts can generally be eliminated if appropriate ‘block’ parameters with sufficient overlap are
chosen. This may greatly increase computational demand however.
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Figure 14: a) A power Doppler image of the femoral bifurcation computed using blockwise
SVD (cyan squares represent the data matrices of each individual block) showing line-like
artifacts (red arrow) due to insufficiently chosen block and overlap sizes. As the block size
and overlaps are not commensurate, the artifacts are irregular. b) and c) The data matrices
of flow and non-flow blocks. Under blockwise SVD flow and non-flow blocks contain only
local pixels and the clutter filtering algorithm can identify the flow and clutter signals in
the flow data matrix and that the non-flow matrix contains only clutter signals. If we were
to randomly spatially sample the image to form the data matrices we would end up with a
mix of flow and clutter signals in all, resulting in a less cohesive blood signal that is more
difficult to identify – the flow signal is distributed across more data matrices.

However, randomized spatial downsampling is not without its own set of drawbacks. Ran-
domized spatial downsampling does not perform any better than the more generic blockwise
SVD; it is simply much faster as it does not require the very significant overlap between
blocks that is required for blockwise SVD to eliminate the line-like artifacts. However, we
remark that randomized spatial downsampling only performs well if blood and clutter signals
are present and possess similar statistics across the entire image (applications such as kidney
or liver imaging). If however, flow is present in only a small portion of the imaging view
(imaging of an artery or vein) then using randomized spatial downsampling will result in
data matrices with only a few flow pixels in each, resulting in very low flow to clutter ratio
and poor clutter filtering performance (Figure 14).

Another common literature technique used to lessen the computational requirements of
SVD clutter filtering remarks on the fact that generally the flow subspace is contained within
the first half of the components of the decomposition. Therefore, one can save significant
computational time by only calculating8 the first half ranks of the SVD, as the higher index
components would contain only noise and would be zeroed out anyway [56]. However, we
remark that this approach is not generically robust – Figure 12 shows how in certain cases
flow can be found in even the second last component of the decomposition.

8Actually an approximation.
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The breaking of the global data matrix into smaller matrices that otherwise undergo the
same clutter filtering process allows for advantages other than increased sensitivity in the
region of interest. First it is trivially easy to parallelize the operation of multiple blockwise
SVD calculations allowing for better performance on multi-threaded CPUs and GPUs [56].
Secondly, the computational demands of the reduced SVD of a m by n matrix generally
scale as O(m ∗ n ∗min(m,n))[57] and thus it is significantly more efficient to compute the
SVD of several smaller matrices than one large matrix until there becomes overlap between
blocks. We will also note that the main advantage of a blockwise approach is that the target
data matrix is always divided into blocks of the same size making it easier to generalize
classification algorithms or machine learning models to data acquired under different imaging
scenarios.

In the framework proposed in this thesis we will elect to use blockwise SVD, due to its
inherently better clutter filtering performance. The subdivision of the input signal into uni-
formly sized blocks further improves generalizability to machine learning models, allowing
for greater independence with respect to imaging acquisition parameters. Although ran-
domized spatial downsampling or reduced rank calculations have the potential to speed up
computation, they do not increase filtering performance and can perform poorly under select
conditions. Therefore, we will not implement them in our framework.

Different but SVD-like Clutter Filtering Algorithms

Although outside the focus of this thesis, clutter filters making use of other non-SVD de-
composition methods also frequent the literature. We note that there are many forms of
blind source separation that have been applied to the problem of separating out the clut-
ter and flow signals. While SVD (or similar principle component analysis techniques) are
very common in the literature, the use of independent component analysis has also been
demonstrated to separate flow and clutter [58][59][60]. Here the key idea is that while prin-
ciple component analysis techniques create a representation of the source signal in terms of
mutually orthogonal bases corresponding to the direction of maximal variance, independent
component analysis is not constrained by these restrictions and instead identify maximally
independent bases into which the source signal is decomposed. Other techniques involving
sparse and low-rank matrix decompositions[61][62] exist in the literature as well. A good
review of difference blind source separation techniques and their role in ultrasound can be
found in Ref [63].

Introduction to Machine Learning

Machine learning refers to the development of models or frameworks that automate the
adaptive modelling process to improve performance on some task with minimal human in-
put. These models can vary in complexity from simple clustering/classification and regression
analysis to neural networks with millions of parameters capable of identifying street numbers
from photographs to 95% accuracy[64]. The goal of this thesis work will be to produce a

26



machine learning framework that is capable of identifying the flow containing components
of the singular value decomposition. The remainder of Chapter 2 will provide a brief gen-
eral introduction to machine learning and neural networks with the details of the proposed
framework being introduced later in Chapter 3.

Supervised and Unsupervised Learning

Machine learning models are largely broken up into two categories supervised and unsuper-
vised learning.

Unsupervised learning attempts to analyze unlabeled datasets to identify hidden pat-
terns or trends without human intervention. Here the ability to discover statistical similar-
ities or differences in the dataset can be of great use in image or pattern recognition. For
example, the multifactorial SVD algorithm discussed earlier [30][31] used K-means cluster-
ing to attempt to separate and identify the clutter, flow and noise signals. Figure 15 shows
a reproduction of the general method employed in Ref. [30] to identify the clutter, flow,
and noise clusters. Here the component elements of the decomposition self-separate into
clusters (albeit poorly) based on their shared statistics. The clusters can then be labelled
through knowledge of assumed signal statistics; the clutter cluster will be high in magnitude,
strongly correlated, and low in frequency while the noise cluster should be low magnitude,
high frequency, and uncorrelated. As discussed previously, k-means clustering is capable
of successfully identifying the flow components of the decomposition, however, the clusters
tend to be ill-formed, raising issues of normalization and robustness.

Figure 15: The result of k-means clustering performed on the signal statistics of each com-
ponent of the decomposition. Here the mean Doppler frequency, magnitude, and two spatial
correlation statistics (described in Chapter 3) were used for clustering.

Unsupervised learning is generally difficult as the output is not known in advance and
can be difficult to ‘force’ into a desired prototype. For example, the above clustering has
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been performed with number of clusters set equal to 3 (k = 3). However, what if no flow was
present in the data matrix? Under these conditions we would expect only two clusters, one
for the clutter/tissue signals and one for the noise to be present. As this cannot be directly
communicated to the algorithm the algorithm must possess some means of determining
whether to cluster with k = 2 or k = 3. This greatly increases difficulty and generally results
in lower than desired accuracy.

An advantage of unsupervised learning is that it avoids having to label the dataset,
which may be difficult or impossible. In this case here, we would need a method to identify
or numerically quantify the amount of ‘flow’ in each component (which we discuss in Chapter
3) to obtain a label.

In supervised learning, the algorithm, provided with a corresponding set of labels to the
input dataset, attempts to identify the relationship between the labels and the inputs. The
trained model can then be used to assign labels to unseen data. In comparison to the k-means
algorithm described above a supervised learning approach would provide the algorithm with
the same statistical input data (such as the frequency, magnitude, and spatial correlations
shown in Figure 15) as well as a corresponding labels (i.e. flow or non-flow component). The
algorithm would then be tasked with identifying how the inputs relate to one another and
the target labels and self-adjust itself to be able to generically identify flow and non-flow
components when presented with similar but unseen new inputs. Supervised learning always
functions through the use of a loss function, that relates the degree of similarity between the
network’s current output and the desired output. As the loss is minimized, the network’s
output more closely resembles the target output.

Supervised learning approaches can be further divided into two classes of problems: clas-
sification and regression. Classification algorithms are used when the labels are categorical
(i.e. labels such as flow and non-flow) and regression when the outputs are continuous vari-
ables (i.e. probability that component is a flow component, or a ‘score’ on how much blood
is contained within each component, etc.).

Neural Networks

A very common type of supervised learning approach is the neural network – groups of ‘neu-
rons’ related by weighted connections to one another. Input fed into the first or input layer
is broadcast through the network, propagating layer by layer and modified and controlled by
the weighted connections, to arrive at the final output layer, which describes the ’decision’
that the network has made. The final output layer could consist of a single neuron that is
activated or deactivated, representing a binary decision (i.e. a ‘yes’ or ‘no’ model), or pos-
sess some continuous value (i.e. a probabilistic model) or consist of multiple neurons with
discrete continuous values representing more complex models. A generic two layer network
is shown in Figure 16. As every neuron in a given layer is connected to every neuron in every
preceding or following layer, this is called a deep network.
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Figure 16: A two layer deep neural network. The width of the arrows connecting each layer
of neurons represents the magnitude of the weights.

The foundational unit of the neural network is the neuron. As shown in Figure 16 a
neuron accepts a number of inputs (x1, ..., xn, multiplied by weights (w1, ..., wn) to produce
an output y. However, there are two additional factors present, 1) an additional bias term
b, and 2) an activation function f that serves to introduce non-linearities into the network.
Without a non-linear activation function the network would be purely linear and unable to
approximate more complex models. The output of an individual neuron is shown in Equation
13. Some examples of common activation functions are shown in Figure 17.

y = f

(
n∑

i=1

[
wixi

]
+ b

)
(13)

Figure 17: Some common activation functions. ReLu refers to rectified linear unit and serves
as a thresholding function.

When the weights or biases of the neurons are adjusted, the outputs of the activation
functions changes resulting in a different network output or prediction. To obtain correct
output answers, the optimum weights and biases must be continuously updated in a process
known as training.
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Training Neural Networks and Other Considerations

Network training is composed of two fundamental techniques: gradient descent and back-
propagation.

Gradient descent is the process of minimizing a loss function L with respect to the free
parameters of the model. Loss functions take many forms but one of the most commonly
used is the mean squared error (MSE) which is the average over n samples of the networks
output yi compared against the expected output y′i.

MSE =
1

n

n∑
i=1

(
yi − y′i

)2
(14)

Mean squared error is used extensively in other applications; for instance the optimal fit
when performing linear regression is the line that minimizes the summed distance squared
of each data point from the line of best fit to the data. Similarly we can say that a model
which has its weights and biases set to minimize the loss function (MSE) [65] will have much
less prediction error than a model with different values for its weights and biases that gives
a much higher loss.

Minimization of the loss function is achieved through gradient descent. The network
output yi is defined for a set of input weights w and biases b – i.e. we can consider the network
as a function. Therefore, if the gradient of the loss function (the difference between the
network output and the expected output) were to be obtained, the minimum of said function
would represent the ideal set of weights and biases that would minimize the loss function.
Here the gradient of the loss function would simply be the partial derivatives of the loss

function with respect to each individual weight and bias: ∇f =
(

∂L
∂w1

, ..., ∂L
∂wn

, ∂L
∂b1

, ..., ∂L
∂bn

)
.

Successive ‘steps’ down this gradient will bring the network closer and closer to the minimum
and therefore the set of weights and biases that would most accurately reproduce the input
samples. Equation 15 shows how weights are updated (w → w′) in each step down the
gradient of the loss function. Here α refers to the learning rate or a measure of how large
the steps down the gradient are. Figure 18 shows a high level overview of this process for a
model with a single weight and bias (single neuron) in two dimensions.

w′ = w − α

(
∂L
∂w

)
(15)

For models with a large number of free parameters, the process of gradient descent,
computed for each individual sample, can become quite computationally demanding. To
address this, the gradient can be approximated over a number of training samples or a batch.
The batch gradient can simply be computed as the sum of the gradients of each individual
sample in the batch as the loss function is the sum over individual training samples. The
process of gradient descent is repeated until all training samples have been used, a period
known as an epoch. Training generally takes a number of epochs, depending on the model
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and the training data, until the loss function has been suitably minimized – when further
training no longer reduces the loss.

Figure 18: An example of gradient descent for a single neuron model.a) The initial weight
w1 and bias b1 have significant loss or here, mean squared error. After an epoch of training a
new set of weights and biases has been obtained, a new gradient computed, and a ’step’ down
the gradient performed. This process repeats itself until the set of weights and biases that
results in a minimum of the updated loss function gradient has been obtained (Epoch N).
b) Training is performed until the loss function shows no further improvement in decreasing
the MSE.

To compute the gradient of the loss function, equivalently the partial derivative of the
loss with respect to the free parameters of the model, a method called backpropagation
[66] is used. Without going into too many details, backpropagation involves heavy use of
calculus’s chain rule to relate the partial derivatives of the loss function with respect to free
parameters at the beginning of the network to those at the end of the network. An example
of backpropagation for a very simple network with no biases or activation functions is shown
in Figure 19.
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Figure 19: Backpropagation in an extremely simplified network (no biases or activation
functions). Two input nodes, two hidden nodes, and one output node is present. The
output of the network is given as o and the expected result is O. The MSE is used as the
loss function (a 1

2
term is added to simplify the derivatives) and the chain rule is used to

represent the partial derivatives of free parameters at the beginning of the network to the
output produced at the end of the network. If biases and activation functions were present
they would simply appear as additional terms in the derivative (and changes in their values
would be calculated exactly the same as for the weights).

The overall training process of a neural network is shown in Figure 20. Note the pres-
ence of a validation set in the data; it is good practice to withhold some of the dataset
from the training set and use these samples to test the networks response to similar but
different information to identify if the network is still maintaining sufficient generalizability,
rather than adapting to the exact data samples being fed to it. Therefore, by tracking the
loss on the validation dataset we can identify whether the network is generically improving
performance or over-fitting on the training data by tracking the loss curves for the training
and validation datasets. If the validation loss curve shows no improvement after training for
a certain number of epochs while the training loss curve continues to decrease, we should
stop training to avoid overfitting. Once we have identified the point at which training is no
longer improving the loss training is halted and the network can be applied to the samples
which we desire to make a prediction on. This unseen data should always be isolated from
the network to avoid potentially biasing the network or the training process.
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Figure 20: The general training process. 1 ) The dataset is subdivided into training and
validation subsets. 2 ) - 3 ) The network is trained using the training data. The loss is
calculated and used to update the weights and biases of the network. 4 ) During the training
process, the loss of the training and validation sets are tracked. Training is halted when
further training no longer results in a decrease in the loss. 5 ) The trained model is then
used to make predictions with the unseen data.
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Part III

Flow Component Identification using
a DNN
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As described in the previous Chapter, our goal is to develop a neural network trained using
statistics extracted from the U , ∆, and V SVD data matrices to output a target quantity
that indicates the likelihood of a given component being a flow component. As labeled
samples will be required to train the model, the target quantity must be well defined, posses
physical meaning, and must be computed for all samples prior to model training. In this
thesis we will use the area under the curve (AUC) of the receiver operator classifier (ROC)
curve, a metric that has been comprehensively used to quantify the performance of clutter
filters in the field of ultrasound [30][67][68], extending its use from assessment of the final
filtered image to instead assess the presence of flow within each singular image component
of the decomposition (Figure 13).

As inputs for the network, we will expand upon the discriminating parameters described
in Refs. [30] and [31], investigating the SVD data matrices for additional ‘fingerprints of flow’
that can be used to increase the sensitivity to flow of our model. We will then describe the
specific details of the data acquisition procedures, the subdivision of acquired data into the
training, validation, and testing datasets and the required reprocessing and normalization
before the data can be used for training. Finally we will discuss some of the performance
and evaluation metrics used to evaluate clutter filters.

Proposed Model

Using the ROC to Quantify Flow within the Decomposition

The ROC curve describes the diagnostic performance of a binary classifier as the sensitivity
threshold is varied and is created by plotting the true positive rate (TPR) or sensitivity
against the false positive rate (FPR) or (1−specificity) at various discrimination thresholds
[69]. Different points on the ROC curve therefore represent the true positive vs false positive
rate at different decision thresholds.

Figure 21 shows the performance of two classifiers. Note the difference in the overall
structure of the two curves indicating different levels of predictive ability at different dis-
crimination thresholds. The area under the curve (the two-dimensional region between the
curve and the x-axis) can be used as an aggregate measure of performance across all classifica-
tion thresholds. This AUC value ranges from 0, representing a perfect anti-classifier (always
wrong), to 1, representing a perfect classifier. A value of 0.5 therefore is representative of a
model that has no predictive ability.

There are several advantages and disadvantages to using the AUC. First, note that the
area under the curve is scale invariant; it ranks classifiers on an ordinal scale but does not
quantitatively describe which classifier performs better. While avoiding the issues of having
to deal with absolute values, this means that the AUC can be difficult to utilize in terms of
real physical meaning. Furthermore, scale-invariance is not always desirable; we may wish
to prioritize one type of error over another depending on application. For instance, in some
applications we may wish to have more sensitive flow detection, even if it means a lot of
clutter will also be present. Nevertheless, the AUC remains one of the best ways to rank
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classifiers as it measures the quality of the model’s predictions irregardless of the chosen
classification threshold.

Figure 21: The ROC curve of two classifiers. Overall classifier 2 is superior to classifier 1 and
indicated by the higher area under the curve value. A perfect classifier will have an AUC
of 1 and pass through the upper left hand corner of the plot. The point giving the smallest
distance d between this (0, 1) point and the ROC curve d is one metric used to obtain the
optimum cutoff. Another metric involves maximizing the vertical distance J between the
diagonal random classifier line and ROC curve.

An area under the curve of 1 represents a perfect classifier (Figure 21). This curve will
pass through the upper left hand corner of the plot with sensitivity = 100% and specificity =
100%. If the curve does not pass through the upper left hand corner (which will be true for
almost all real-world classifiers), then we can find the point on the curve that minimizes the
distance between the curve and the upper left hand corner i.e. d2 = (1−TPR)2+(FPR)2 =
(1− sensitivity)2 + (1− specificity)2. This threshold can be said to be the optimal cutoff
or trade-off between minimizing the false positive rate while simultaneously maximizing the
true positive rate. Another technique of determining the optimal threshold is performed
by maximizing the vertical distance between the ROC curve and the diagonal ‘chance’ line
(called the Youden’s Index J [70]), maximizing the difference between the TPR and the FPR.
We will use these thresholding techniques later in this thesis to determine the appropriate
sensitivity thresholds for the power and color Doppler images of the proposed clutter filtering
framework.

Clutter filters are assessed using the area under the ROC curve [68] as follows (Figure
22). First, the clutter filtered signal is obtained and its power Doppler computed. Next,
the region of interest (ROI) which contains blood is defined. This segmentation can be
automatically performed by segmentation algorithm, but we note that flow segmentation is
difficult[71][72] especially as segmentation must also be performed during diastole when the
flow signal is weak (due to the movements of tissues in-vivo during the cardiac cycle). For
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this reason, manual segmentation we will use manual segmentation. We will then sweep
intensity from the lowest to the highest measured pixel intensities in the image, recording
the percentage of flow pixels (TPR) and tissue pixels (FPR) above the intensity threshold
at each intensity value. These two values are plotted against one another to generate the
ROC curve, and the AUC numerically computed. A higher AUC value indicates a better
performing filter.

Figure 22: Filter performance evaluation through the ROC curve. 1 ) The power Doppler
(signal intensity) images produced through different clutter filters are obtained. Together,
with the b-mode image the reference flow pixel region 2 ) is identified. 3 ) The ROC curves
are then produced and the AUC is numerically computed from them. The filter with the
greater AUC (filter a) is ranked as the best performing filter.

In this thesis, we propose to extend AUC analysis from assessment of the final filtered
image to assessment of each of the singular image components of the SVD data matrix
(Equation 7) which can be visualized in Figure 13. The obtained AUC values, one for each
singular component, will be used as the training target value for the deep neural network
proposed here. Just like ROC analysis for the final clutter filtered image, higher component
AUC values indicate singular image components which possess signals that are more spatially
constrained to the defined flow regions. We then propose to label the components with the
highest AUC values as the flow components and use these components to form the final
filtered flow images.

Figure 23 accomplishes this using a simple threshold cutoff9. We note that this threshold
can be varied depending on application by the operator. Should, greater flow detection
be desired at the cost of increased clutter the threshold can be dropped. If strong clutter
rejection is required, the threshold can be increased. An example of the power Doppler
of the femoral bifurcation created using this method is presented in Figure 25 a). Unlike

9For scenarios where flow flow is weak, such as during diastole, the AUC curve can be somewhat incon-
sistent and poorly formed. Therefore in addition to the threshold cutoff we will also require that the AUC
curve possesses a concave-down structure. This was done by requiring that the actual cutoff be at least some
factor ×AUC of the first component.

37



other SVD clutter filtering techniques, filter sensitivity is tunable on a well defined metric.
Furthermore, the defined AUC threshold may identify singular components that are not
contiguous (Figure 23) leading to a framework that is better able to handle more complex
mixed clutter and flow signals.

Figure 23: Determining flow components using the component AUC plot. A 1 ) filtered10flow
image and b-mode image (not shown here) are used to segment the 2 ) flow region of the
image. The 3 ) N singular image components are computed and the 4 ) ROC curves for
each of the N singular image components is calculated. The areas under these ROC curves
are then calculated and plotted. From the 5 ) component AUC plot, the 6 ) highest AUC
components can be identified, after setting an AUC threshold and used to produce the 7 )
optimal Doppler flow image for a given AUC threshold.

The effect of varying the AUC threshold is shown in Figure 24 where components within
some percentage of the component with the highest AUC value have been labeled as flow
and used to form the power Doppler image. If only a few components are used to form the
power Doppler image, some patchiness is observed in the flow signal, despite little clutter
being observed. As the AUC threshold is decreased, the flow signal grows in intensity (as
does the clutter signal). If the AUC threshold is set too low, high magnitude clutter signals
become included in the power Doppler image drowning out the flow signal.

10This reference image is needed to aid in segmentation. It does not have to be the best quality. The
image in step 1 was obtained used a high-pass filter.
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Figure 24: Demonstration of varying the threshold of acceptance for an in-vivo scenario
showing the common carotid artery (CCA) and the jugular vein (JV). Power Doppler images
were normalized relative to the maximum pixel intensity to better show the relative changes
in flow and clutter pixel intensities. The threshold of acceptance (red values) is defined to
include all singular components with an AUC that is within x% of the maximum measured
component AUC. As the threshold is dropped, a more complete signal and less patchy signal
is obtained up to the point where tissue components dominate the image.

One potential weakness of using ROC analysis to evaluate clutter filter performance
and rank SVD components in terms of flow and clutter contents is the reliance on manual
segmentation. However, as we have previously mentioned automatic segmentation algorithms
from the literature are unlikely to perform well either due to changing flow statistics across
the cardiac cycle. For instance it is much more difficult to detect flow during diastole,
and indeed in some acquisitions it appears that no flow is present within certain parts of
the artery vein. However, under ideal circumstances flow should be detected within these
regions and they should be segmented as such. This operation is generally difficult due to
the different flow intensities within what should be uniform flow regions. For example in
Figure 13 poor flow detection is encountered at the branching of the femoral as the beam to
flow angle approaches 90◦ while upstream flow detection is decent. In these cases a priori
knowledge of the vessel structure allows a manual operator to segment flow regions to a high
degree of accuracy. Figure 25 shows the effects on the component AUC curve for slightly
different manual segmentation attempts. The effect of slight inaccuracies in the segmentation
is minimal to large vessels as they represent changes in only small fractions of the flow and
pixel populations.

Finally we note that the ROC curve and AUC are calculable and defined/normalized such
that the absolute numbers of tissue and flow pixels will not affect the generation of the ROC
curve, only how well/poorly the classifier does detect the true/false positives. Therefore, a
block with only a few flow pixels may generate a similar AUC value as a block with a majority
of flow pixels, despite both blocks containing very different signal statistics. To address this
potential mismatch between signal statistics and AUC value we will only compute the AUC
value for blocks with at least 10% flow pixels. For blocks with 10% or fewer flow pixels, we
will set the AUC of all components to 0.5, or equivalent to a random classifier.

This choice satisfies two main goals. First the network is not being tasked with the
problem of identifying clutter as well as identifying flow (an AUC of 0 indicates a perfect
anti-classifier). Secondly the default AUC of tissue clutter is 0.5 NOT 0. Consider an
improperly drawn ROI, indicating the presence of flow when there is none present in the
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entire image. If the ROI is randomly drawn we would expect the singular image component
of each singular component to more or less randomly include high and low intensity pixels
inside and outside the ROI. Calculation of the ROC curve of each singular component would
therefore yield values close to 0.5.

Figure 25: a) Power Doppler of the femoral bifurcation during systole created using the
component AUC as described in Figure 23. The femoral vein can also be observed. b) The
component AUC curves of the region in the red box (blockwise SVD is employed here) for
4 segmentation attempts: two careful attempts, one quick segmentation, and one attempt
with an intentional error shown inset in grayscale (i.e. before power thresholding). The
component AUC curves are very similar between the two separate careful attempts and
only minor difference are observed with respect to the quick segmentation. The incorrect
segmentation attempt is noticeably difference from the other but does maintain the same
general structure of the AUC curve compared to the AUC curve for the green block in
c). In general, provided care is taken in segmentation, the component AUC curve is quite
reproducible.

Calculation of the component AUC curve is dependent on knowledge of the segmented
flow region, something not available to the algorithm which is presented only with statistics
extracted from the data matrices of the decomposition. Therefore, the goal of this framework
will be approximate the component AUC curve using derived estimators from the SVD data
matrices, and use the approximated component AUC curve to identify flow and non-flow
components at the desired level of sensitivity. In the next section we will describe the
estimators derived from the U , ∆, and V SVD data matrices and how they can be used to
estimate the AUC.

Investigation of the SVD Data Matrices for Network Input

The ∆ Matrix: Magnitude Information

Unlike the spatial or temporal matrices, the ∆ matrix only contains information along its
diagonal (N entries in total where N is the ensemble size) – the singular values, which are

40



arranged in order from largest to smallest representing the magnitude of each component of
the decomposition. Equivalent to a size N vector, there is little to derive from the singular
value curve. Furthermore, we note that the components are ordered from largest to smallest
producing a constantly decreasing relatively smooth curve.

However, magnitude information is useful as a coarse method of classification as the
diagonal of the ∆ matrix represents all available magnitude information (as the U and V
matrices are orthonormal). We will therefore use the singular magnitude information as
a rough input to the network (with N elements, one for each singular component) to be
tempered with additional information. Figure 26 shows how the singular value curve can be
used as a very rough proxy for the flow subspace in flow and non-flow scenarios.

Figure 26: Singular magnitude curves for various imaging scenarios. a-c) (femoral bifurcation
and in-vitro flow phantom) contain blood while d) (fleshy part of forearm) contains solely
tissue. The red arrows show the estimated upper and lower threshold locations. We note
that the turning point (first red arrow) appears present in every scenario and that it can be
difficult to distinguish the fourth figure, with no blood signal, from the other three scenarios,
particularly scenario c). If the relative amount of flow signal in the data matrix is low it
becomes significantly more difficult to distinguish the flow threshold in the singular value
curve.

The V Matrix: Temporal Information

A useful statistical estimator of the temporal characteristics of the data matrix is the lag-one
autocorrelation as described in the previous chapter [44]. As discussed previously, there are
many well-established methods of identifying threshold cutoffs from the frequency vs. sin-
gular component plot; we will use the mean Doppler frequency11 of each singular component

11Similarly to literature algorithms we will actually use the absolute value of the mean Doppler frequency
to measure flow speed rather than distinguishing between flow towards or away from the transducer (in
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as one of our input variables.

However, one of the major issues encountered in our investigation of the temporal infor-
mation is that the mean Doppler frequency curve frequently contains significant noise, often
to the point that the general structure of the Doppler frequency curve no longer displays
the general tendency to increase relatively smoothly with singular component index. This
can be seen in Figure 27 where the expected frequency curve archetype as described in Ref
[50] is only observed in panel a). Panes b − d) contain the frequency curves taken from
flow blocks of the carotid cross section (Figure 24), femoral bifurcation (Figure 25), and the
aliased spiral flow phantom[53] (Figure 12).

Figure 27: Mean Doppler frequency of each singular component (N = 128) for various
imaging scenarios. Under many imaging scenarios the characteristic curve structure is not
maintained. a) Femoral bifurcation. The expected ideal Doppler frequency curve as encoun-
tered in-vivo. As expected, the frequency increases with singular component number. b)
The carotid cross section (containing the jugular vein). A large peak is encountered in the
clutter components. These components could contain significant flow and should be selec-
tively retained. c) A different region/block of same in-vivo femoral acquisition as a). The
noise plateau is ill defined as the flow signal contains forward and backward flow and there
is significant mixing of flow and clutter signals within individual components. d) Spiral flow
phantom with aliasing; the aliased components wrap around the Nyquist limit. Furthermore
it appears the there are only a few (1− 2) clutter components.

However chaotic the mean Doppler frequency appears to be, it does contain important
information about the interaction of the flow and clutter signals and so we deem it a useful
parameter for our proposed framework.

From the temporal data matrix we present another discriminating factor – the magnitude
of the zero frequency component of the smoothed power spectral density of each singular
component. We observe that for larger and larger singular component indices the smoothed
power spectral density, initially with a peak at 0 Hz slowly becomes depleted as low frequen-
cies are removed (a consequence of increasing the mean Doppler frequency) leaving a curious
double-peaked feature. Figure 28 shows the power spectrograms of each singular component
and the corresponding magnitude of the 0 Hz frequency component . We note that the zero
frequency component generally contains less noise than Doppler frequency magnitude but
can still be noisy. Across our investigation of many in-vitro or in-vivo imaging scenarios

either case blood flow is blood flow).
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we find that the zero frequency magnitude is very consistent in its general structure and
generally distinguishes between tissue clutter and flow fairly well. We will therefore use the
magnitude of the zero frequency component as one of our input discriminating factors.

Figure 28: a) The power spectral density of each singular component. As the singular
component index increases, we observe that the contents of each component shifts towards
higher frequencies (absolute value) leading to the depletion of the zero frequency mode. b)
A plot of the magnitude of the zero frequency component. A large jump is always observed
between the tissue and flow subspace.

The U Matrix: Spatial Information

The spatial matrix is most commonly visualized through the spatial similarity matrix (Equa-
tion 8) which, as previously discussed, shows how well a given singular component is spatially
correlated with another singular component. To avoid computation of the entire SSM, and
to reduce the amount of input data to our model, we propose to reduce the SSM down to
two quantities as shown in Figure 29.

From the spatial similarity matrix, we can extract the bottom row (or first column as the
matrix is symmetric along the anti-diagonal). This quantity has been used before [30][31]
but is relatively uncommon in the literature. This gives the spatial correlation of a given
singular component with the first singular component or first correlation a quantity which
should display a sharp boundary between tissue and blood components as the tissue and
blood signals are only weakly spatially correlated.

We can also extract the one-off diagonal (or rather as shown in Figure 29, the one-off
anti or sub-diagonal) in an attempt to measure how well a singular component is correlated
with its neighbouring components. From this vector, we can compute a quantity we will call
the neighbour correlation, which is given by the average correlation that particular singular
component has with the next higher and next lower singular components. We note that
the first and last of the N singular components will lack a neighbouring component. In
this case we will just set the neighbour correlation to the correlation that the first or last
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components have with their only neighbour (this is ultimately unimportant as the first and
last components will not contain any flow signal).

Figure 29: a) The spatial similarity matrix showing the first (first horizontal line shown in
gold) and neighbour (1-off sub-diagonal shown in green) spatial correlations. A typical plot
of these quantities is depicted in panes b) and c) showing how these quantities highlight the
separation of the tissue and flow signals and flow and noise signals respectively.

While the spatial similarity matrix describes the correlations between singular compo-
nents it does contain any information about the spatial correlations between the pixels
within a singular component. For instance the speckle patterns characteristic of ultrasound,
found in the first few singular components (which tend to generally resemble the b-mode
image), while random, tend to possess some structure and length scale and are therefore very
different from the Gaussian-distributed noise found in the higher singular image components
were neighboring pixels are uncorrelated.

By simply computing the standard deviation of pixels inside a sliding window across
each component image we observe that pixels in the blood components tend to be quite
correlated and possess a high standard deviation while noise and tissue components are
relatively uncorrelated. This is shown in Figure 30 in which the blood components are
clearly distinct from noise components. The first few tissue components also tend to be
locally spatially correlated, however, flow is never found in the first components and these
components, with the aid of the other discriminating factors, should be safely discarded.

We will call this discriminating parameter the local spatial correlation as it refers to
local pixel distributions. For instance, in Figure 30, blockwise SVD was performed with
blocks of size 80× 80 pixels; each singular image component is 80× 80 pixels and the sliding
window used in each singular image component was 20× 20 pixels. Therefore, pixel spatial
distributions are computed over a much smaller window (approximately a 3.2 × 3.2 mm
region12), with the standard deviations across all sub-regions within a block being averaged
together to produce a final aggregate value.

12These values were found to produce good consistent results across the imaging scenarios investigated.
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Figure 30: a) The femoral bifurcation. Blockwise SVD is performed with red blocks contain-
ing flow signal and green blocks containing no flow signal (Figure 13 shows the segmented
flow region for this image). The average standard deviation of the pixels within a sliding
window is computed for each of the N singular image components. b) and c) Plots of the
standard deviation of pixels within each singular image component for a typical flow and
non-flow block. Components with significant flow signal appear as highly correlated (high
standard deviation) while components whose pixels contain just noise are more weakly corre-
lated. The standard deviations presented in panes b) and c) have been min-max normalized;
it is the relative change in standard deviation that we highlight.

While computing the spatial correlations tends to be computationally intensive due to
the large size of the spatial data matrix, this inter-component spatial information provides
significant insight into the type of signal present in each singular component and cannot be
overlooked, especially due to its directly visually observable nature in the singular image
components. Therefore, the local spatial correlation will be a useful discriminating factor
for the proposed deep network model.

Data Acquisition and Preprocessing

As described in the previous section, our model attempts to reproduce the area under the
ROC curve using 6 statistics as inputs. With an ensemble size of N , there will be 6N inputs
and N approximated AUC values. In this thesis work, we have chosen an ensemble size of
128, long enough to obtain a good number of flow samples but short enough to maintain
temporal resolution at a PRF of 3000 Hz or 3333 Hz. Therefore, our network will possess
128 × 6 = 768 total inputs and estimate 128 AUC values. The inputs and output of the
proposed framework are summarized in Figure 1.
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Table 1: Model Input and Output Parameters

Inputs Details

Singular value magnitude Magnitude of each component of the decomposi-
tion, diagonal of the ∆ data matrix, log-scaled.

Mean Doppler frequency Mean Doppler frequency of each component of the
decomposition, lag-1 autocorrelation of each col-
umn of the V matrix.

Zero frequency magnitude Magnitude of the 0 Hz bin for each singular com-
ponent after taking the Fourier transform of each
column of V .

First correlation Spatial correlation between a given singular com-
ponent and the first singular component, bottom
row of the SSM.

Neighbour correlation Spatial correlations between a given singular com-
ponent i and its adjacent singular components i±1,
1-offset (sub) diagonal of the SSM.

Local spatial correlation Standard deviation of pixel intensities computed
across a 20 × 20 pixel sliding window on each sin-
gular image component.

Output Details

Area under the Curve (AUC) Area under the ROC curve computed for each sin-
gular component using a hand-segmented flow re-
gion. ROC curve is generated by computing the
number of true positive flow pixels and false posi-
tive tissue pixels sweeping the intensity threshold
from the lowest to highest pixel values.

Data Acquisition

Ultrasound scans were acquired using two scanners with similar acquisition settings. A
SonixTouch research system (SonixTouch; Analogic Ultrasound; Peabody, MA, USA) was
used for in-vitro acquisitions of ultrasound flow phantoms, while a US4US (USPlatform;
us4us Ltd., Warsaw, Poland) scanner was used for all in-vivo acquisitions. The imaging
acquisition parameters are shown in Table 2.

46



Table 2: Data Acquisition Parameters

Parameter Details

Ultrasound Scanner SonixTouch US4US

Ultrasound Probe L14-5 SL1543
RF Data Range and Resolution -2048 – 2047, 12 bit -2048 – 2047, 12 bit
Number of Tx/Rx Channels 128 192
Array Pitch (mm) 0.3048 0.245
Transmit Frequency (MHz) 6 5
Transmit Angles1 -10, 0, 10 -10, 10
# Pulse Cycles 3 3
Sampling Rate (MHz) 40 25
Imaging Depth (mm) 60 47
Pulse Repetition Frequency (Hz)2 3333 3000

1 Although acquisitions contained multiple angles, in this work only the 10◦ angle
was used for processing as this resulted in a generally better beam to flow angle.

2 Here the PRF refers to the frequency at which each individual angle is sampled.
The total PRF for all angles is 10 MHz for the SonixTouch and 6 MHz for the
US4US.

We note that although the acquisition parameters are slightly different between systems,
this is unlikely to influence our framework, as our network inputs are higher order parameters
and the framework is not exposed to the raw RF data or even the beamformed images.

Relatively generic beamforming parameters were chosen for both the SonixTouch and
US4US systems, differing in only the prefilter passband. Blockwise SVD was performed
identically on all acquisitions. Blocks of size 80× 80 pixels with an overlap of 5 pixels were
chosen as this combination tended to not produce the linear artifacts shown in Figure 14
while still being reasonably computationally cheap. The leftmost and bottom pixels were
slightly cropped; this is not expected to have a significant effect on the results as image
quality tends to be degraded near the edges of the imaging view due to reduced transmit
power. Table 3 summarizes the beamforming and blockwise SVD filtering parameters.

The data acquisition scenarios are presented in the next section, along with their place-
ment into the training, validation, or unseen datasets.
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Table 3: Beamforming and SVD Processing Parameters

Beamforming Parameter Details

Ultrasound Scanner SonixTouch US4US

Prefilter Passband 4 – 8 MHz 3 – 7 MHz
Filter Design and Order Equiripple (30th Order)
Apodization Rectangular
F-Number 1.25
Assumed Speed of Sound (m/s) 1540
Beamformed Image Size (mm) 4 mm × 4 mm
Beamformed Image Size (pixels) 256 × 256

SVD Parameter Details

Ensemble Size 128
Window Size 16
Block Size (pixels) 80 × 80
Block Overlap (pixels) 5
# Blocks per Frame 1156
Final Image Size (pixels) 245 × 2451

1 Some of the image along the right side and bottom is cropped off during block-
wise SVD.

Training, Validation, and Testing Datasets

To ensure robustness of the trained model, a large amount of flow data was acquired under
various flow scenarios13. In total 30 in-vitro and in-vivo acquisitions were acquired, divided
into groups of 17, 9 and 4 acquisitions for the training, validation, and unseen datasets
respectively. Acquisitions were performed over the entire cardiac cycle (or a cardiac flow
profile was used, in the case of the flow phantoms) with each acquisition taking at least 1.5s.
Only every 5th frame was used for training as flow signals generally did not appreciable change
between frames, removing the highly correlated flow signals in adjacent frames. Furthermore,
frames that could not be segmented, due to significant clutter or difficult to observe flow, were
not included in the training data. The focus of this work was on in-vivo acquisitions, as in-
vitro flow phantoms, with little movement, a consistent speed of sound, homogeneous tissue
mediums and attenuation, are not particularly challenging sample cases. A few phantom
acquisitions were included however, to provide a more diverse training and testing dataset.
A summary of the acquisitions used for training is presented in Table 4.

13Some acquired as part of this work and some reused from previous experiments in this lab [73][74].
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Table 4: Training and Testing Flow Acquisitions

Label # Frames1,2 Type Comments

F01 46 Training Femoral bifurcation
F09 2 80 Training Femoral bifurcation
F11 39 Training Femoral bifurcation
F12 39 Training Femoral bifurcation
SP 1 73 Training Spiral flow phantom [53], carotid flow profile
HT 033 73 Training Helical toroidal phantom [75], carotid flow
HT 043 73 Training Helical toroidal phantom [75], carotid flow
J3 B 80 Training Brachial artery
H5 B 43 Training Brachial artery
HF 10 61 Training Carotid bifurcation
HF 7 80 Training Carotid artery, complex flow
CB 1 80 Training Carotid artery, significant clutter
CC 2 76 Training Carotid artery, clutter present
KC 2 80 Training Carotid artery, strong wall reflection
RC 1 56 Training Carotid artery, strong wall reflection
WC 1 57 Training Carotid artery
RE 1 80 Training Femoral Bifurcation
F07 45 Validation Femoral bifurcation
HT 053 73 Validation Helical toroidal phantom [75], carotid flow
F04 80 Validation Femoral bifurcation + Femoral vein
D2 L 63 Validation Carotid artery
H1 L 41 Validation Carotid artery, significant clutter present
KC 1 82 Validation Carotid artery
WB 1 80 Validation Brachial artery, strong flow signal
JF 1 53 Validation Femoral Bifurcation, little flow in upper branch
YE 1 81 Validation Femoral Bifurcation, clutter during systole

CF 270 Unseen Bifurcation Phantom [76], carotid flow profile
D5B 340 Unseen Brachial artery
F03 350 Unseen Femoral Bifurcation, Little flow in upper branch
HB 340 Unseen Femoral Bifurcation

1 Every 5th frame was processed. Total refers to the number of included frames NOT
acquistion length

2 Frames in which segmentation could not be clearly performed, were discarded.

3 This flow phantom has a 3D structure. Acquisitions 03, 04, and 05 were taken along
different 2D planes.

After acquisition, segmentation was performed on every 5th frame. The ROC curve and
subsequent AUC value was calculated for each of the 128 singular components in each of
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the 1156 blocks in each frame. The statistical discriminating factors, as given in Table 1
were likewise computed for each of the 128 singular components in each block. Each frame,
consisting of 1156 highly overlapping blocks, was then randomly sampled at 10% to reduce
the amount of training data by removing (many) adjacent blocks with highly similar flow
characteristics.

In total, 1113 distinct flow frames were used for training, each containing 115 randomly
sampled blocks giving a total 129,995 training samples. The validation set consisted of 525
frames and 60,375 validation samples. While many machine learning frameworks do not
use completely distinct training and validation datasets; choosing to aggregate all samples
not part of the unseen dataset, preprocess and normalize, and then subdivide into training
and validation datasets[77][78] we found that this method did not perform well in our case.
Using the same subdivided dataset we found our framework produced similar loss curves for
the training and validation sets. However, when the framework was applied to the unseen
acquisitions, results were poor. Changes to the network structure continued to produce
networks that appeared to perform well on the training and validation datasets but poorly
on the unseen data. We expect that this is occurring because the input statistics likely
differ significantly between data acquisitions necessitating the use of 1) large diverse training
datasets that contain different flow profiles 2) a validation set that is distinct14 from the
training set so that the generalizable performance of the network on other unseen data can
be assessed.

For this reason we have elected to use completely distinct acquisitions, although the same
subject could be used (acquisitions taken at different positions/angles), for our training and
validation datasets allowing us to estimate how the network would perform on other unseen
data. Due to the large variation in flow profiles and signal statistics, a relatively large (and
distinct) validation set was used relative to the training set.

Preprocessing and Normalization

The input parameters (Table 1) were first min-max normalized [79] (relative to the minimum
and maximum in each individual 128 element block input) to equalize feature size and aid in
training [80][81]. The physical motivation of using a self-consistent min-max normalization
is that the inputs to the network will differ only in structure, not value (the plots of all inputs
are scaled from 0 to 1 but maintain the same structure). If inputs were scaled relative to some
arbitrary value (say correlations scaled to between -1 and 1) then the differences of inputs
between samples would become relevant when they are generally not. For instance, observing
the SSM, it is the relative correlations between components that delineates potential subspace
boundaries, not the absolute values of the correlations.

14Due to overlap in space, blocks in the training and validations sets may have similar statistics. To some
degree (i.e. 5 frames of separation) blocks can overlap in time as well. This violates the assumption that
training samples are independent from one another.
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Network Structure and Computational Details

The proposed model was implemented in Python (Ver. 3.9), using Tensorflow with GPU
support (Ver. 2.6) using the Keras API frontend. It was found that a 3 layer deep neural
network with 8,000 neurons per layer performed best (lowest loss values) with ReLU activa-
tion for every hidden layer, except the output layer which used a linear activation function.
Additional layers did not appear to improve performance but significantly increased com-
putational and memory requirements. An outline of the proposed model is shown in Figure
31.

Figure 31: An overview of the proposed model. The numbers below each layer refer to the
number of neurons in each layer. The connections between neurons are shown using a large
red arrow for simplification.

To improve network generalizability it was proposed to use the Tensorflow Dropout(x)
command, that randomly sets the weights in the layer to 0 at a rate of x. By forcing the
network to make correct inferences using only a fraction of the possible weights, overfitting
can be avoided. However, it was observed that networks trained using Dropout() were less
able to accurately reproduce the sometimes unique structures of the AUC curves (Figures
34 - 36).

Other network structures were also explored. In summary, we suspect that the rather
significant amount of noise in the discriminating factors and output AUC limit the final
accuracy of the network as well as the rather simplistic model with its limited number of
inputs15. For instance, we observed that a three layer network with 8,000 neurons in each
layer was only slightly better than a single layer 8,000 neuron network.

We would also like to remark here that other classification models were tested using the
same training and validation datasets such as a linear regression model and a random forest
classifier. However, these methods did not perform anywhere near as well as the DNN.

15This is not a negative point – it means that a hugely complex framework not need be deployed.
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All other calculations in this work such as computing the SVD of data matrices, discrim-
inating parameters, Doppler calculations, etc. were performed using MATLAB (ver. 2021b;
MathWorks, Natick, MA, USA).

Training and Validation

The network was trained on an RTX 3060 Mobile GPU (Nvidia, Santa Clara, CA, USA). The
weights of each layer were initialized using the default Keras initialization (Glorot uniform
initialization[82]) and trained using the Adam optimization algorithm[83] using the mean
squared error (MSE) as the loss. Training was performed using a learning rate of 10−5 and
a batch size of 32, running for 55 epochs on the training set. At the end of each epoch, the
loss was computed on the validation set as well16. The training and validation losses are
shown in Figure 32.

Figure 32: Loss (MSE) curves for the training and validation sets. a) The training and
validation sets from Table 4 were combined and subdivided (using the traintestsplit function
in Keras). As there is significant correlation between samples, the training and validation
losses were quite comparable (given the scale of the plot). b) The network was trained using
only the training acquisitions from Table 4 with the validation acquisitions held separate
from the training data. In this scenario, the difference in MSE between the two datasets
was much larger (given the scale of the plots) and the absolute MSE of the validation set
significantly higher. It was found that changing the network structure would result in a small
change in the MSE curves in pane a) but a large change in pane b); the change in pane b)
was more indicative of final performance on the unseen acquisitions.

Figure 32 shows two loss curves, in the first the standard dataset splitting for the training
and validation datasets was performed (i.e. all training and validation data from Table 4 was
combined and split into 80% and 20% training and validation sets – non-isolated training and
validation sets). In this case we observe that the loss curves of the training and validation
data follow one another closely (looking at the absolute difference in MSE). In the other
pane, isolated training and validation sets are used as described above. We found that

16As the validation set consisted of unseen data from completely distinct acquisitions, it tended to stop
showing improvements in the loss, although we never observed significant regression.
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due to the overlapping nature of our samples, subdividing a training set and attempting to
optimize network structure based on a non-isolated validation set did not correlate well to
performance on unseen samples. For this reason, we tracked the loss in the isolated validation
set and optimized network design for a model that produced an isolated validation loss that
1) never regressed (started increasing after some point) and 2) produced the lowest absolute
MSE after training.

Performance Metrics

Image Quality and Filtering Performance

The validation of any model involves testing the results of said model against a set of data
that is known to be true – the ground truth. Unfortunately we do not possess the ground
truth blood signal against which our clutter filtering algorithms can be bench-marked. This
results in a clutter filter whose performance is very difficult to determine quantitatively. In
the literature, clutter filter performance is most generally quantified using the contrast ratio
(CR) and contrast to noise ratio (CNR) on reference blood and tissue/background patches
[84][85][86]. This procedure requires us to identify which region(s) of the image contain blood
and tissue pixels17 and then perform the following calculations.

CR1 =
µb

µt

CNR1 =
|µb − µt|√
σ2
b + σ2

t

(16)

1As signal power is displayed on a logarithmic scale, these quantities are repre-
sented as the difference in [dB] between the flow and clutter pixels.

Here µb and µt refer to the mean signal power of blood and tissue pixels respectively and
σb and σt to the variance. Higher CR and CNR values are indicative of filters with a greater
ability to separate flow and clutter signals.

Figure 33 shows how the CR is calculated for two prospective filtered images. It is
important to select relevant tissue and flow ROIs as the subsequent quantification of clutter
filtering performance using these metrics is only true for the selected regions – and this
numerical quantization is then applied to the entire frame as a whole. For instance in Figure
33 the wall artifacts obtained using method b) do not impact the calculation of the contrast
ratio. Nevertheless, despite these caveats, we will use the CR as it is important metrics to
assess filter performance. Due to the discrete nature of the SVD and potential use of further
spatial filtering on the power and color Doppler images, the CNR was found to be of less
utility.

17A blood and a tissue reference patch are used.

53



Figure 33: The calculated contrast ratio for the power Doppler image produced using two
sample filtering techniques for the marked flow (yellow) and tissue ROI (pink) on a spiral
flow phantom under carotid flow.

The CR and CNR are frequently used as they are easy to calculate and understand.
However, they do not quantify how well the clutter filter performs in terms of sensitivity and
specificity across various imaging scenarios as they are just a measure of pixel brightness and
local consistency. While they will form a part of our analysis, we will additionally use the
area under the ROC curve as described previously and found in Ref [68]. While the AUC
does not possess a numerical interval scale, it will nevertheless allow us to identify the best
and worst performing filters. ROC analysis is performed using the entire segmented flow
region, giving this metric greater validity over the entire flow region,

One final issue with the contrast and contrast-to-noise ratios is that they are presented
on an absolute scale in decibels. However, different clutter filtering techniques may stretch
or scale the inherent signal data. For instance, consider what would happen if during the
filtering operation18 that was used to produce Figure 33 the signal intensity of all values was
halved (halved in terms of the log-scaled values, i.e. a pixel with an intensity of 80 dB is now
a pixel with an intensity of 40 dB). If the power Doppler of this filtered signal was compared
with the original image and presented on the same scale it would appear significantly worse
than the original unscaled image (with half the contrast ratio for instance) despite both
images possessing the same diagnostic ability (and identical appearance if the dynamic range
for the new power Doppler image was halved). Despite scaled values, both power Doppler
images have the same pixel intensity distributions between the clutter and flow signals. In
reality, it is not the amount of separation (in dB) of the flow and clutter statistics that
creates a better filtered image, but the reduction in the overlap of the two distributions.

In practise, this effect is relatively minimal when comparing the performance of differ-
ent SVD filtering techniques. However, when comparing to power Doppler images created
through other filtering means such as through high-pass filtering, the ideal intensity scales of
the SVD and HPF filtered images are very different and it is NOT appropriate to display or
compute contrast values without adjustment. We propose the following method to determine

18We are abstracting this operation to that of a black box.
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the most ideal/fair dynamic range of a power Doppler image using the ROC curve19

1. Segment flow region.

2. Create ROC curve.

3. Identify the point on the ROC curve closest to the top left corner and record the true
positive rate X corresponding to that point.

4. Identify the intensity value of the X th percentile flow pixel. This gives the bottom of
the dynamic range relative to the max intensity flow pixel.

5. Dynamic Range:
[
X th flow pixel,max pixel value

]
We will adopt this method to determine an appropriate dynamic range to compare results

obtained through frequency filtering. However, as the singular value decomposition is unique
for a given data matrix and the same data matrices are being used for each SVD filtering
algorithm there is no inherent ‘stretching’ or ‘shrinking’ of the data scale occurring between
the tested SVD filtering algorithms. Therefore we will present all SVD results using the
same dynamic range.

However, we note that the most ideal dynamic range also possesses several caveats. 1) It
is different for each individual frame and thus unsuitable to quantify filtering performance
across a cineloop. 2) It is a range relative to the maximum pixel intensity, not a preset
threshold and will not saturate. 3) It requires flow segmentation. 4) Most importantly,
clinical scanners will not perform this analysis and will use a user-set dynamic range over
the cineloop (or at least the part that is being examined).

Ultimately there is no perfect metric to absolutely assess image quality and filtering
performance; every proposed method possesses some relative advantages and disadvantages.

Cineloop Consistency

While the consistently improved performance of SVD filters relative to frequency filters has
frequently been demonstrated for still images, there has been little focus on the demon-
stration of consistent frame by frame performance. As the end user of any clutter filtering
technology will be viewing multiple filtered frames in quick succession, it is important not
only for the individual filtered frames to be consistently of high quality, but for individual
frames to be consistent with one another. If this condition of consistency does not hold,
flashing and strobing artifacts will be observed in the cineloop.

As SVD filters are discrete in nature, ultimately consisting of some number of singular
components they are prone to produce flow images, that even if extremely good, may still
possess significant variations between each other as signal features evolving in time are
captured/mixed in different singular components which may or may not be used for adjacent

19This has the unfortunate effect of only being possible if the flow region is segmentable.
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frames in the cineloop to form the final flow image. We will therefore have to track and make
sure that variations between frames are minimized. This can be done using the Pearson
correlation coefficient [87].

r =

∑
i(x1i − x̄1)(x2i − x̄2)√∑

i(x1i − x̄1)2
√∑

i(x2i − x̄2)2
(17)

Here r is the Pearson correlation coefficient between frames 1 and 2 where xi refers to the
intensity of the ith pixel in frames 1 and 2 [88]. While the blood flow will evolve in time, we
would expect frames to still be highly correlated with one another (r > 0.95) considering the
relatively slow timescale of the cardiac cycle and the high sampling frequencies achievable
with high-frame-rate ultrasound. Large drops in the correlation coefficient will therefore be
indicative of highly inconsistent frame-by-frame output.

The Pearson correlation coefficient is calculated on a pixel-by-pixel basis. While minimiz-
ing pixel-to-pixel variations is important from an algorithmic perspective the human visual
system is very sensitive to changes in orientation and contours or structure [89][90][91]. The
structural similarity index (SSIM) is a metric frequently used to assess image quality which
computes the similarity of a given image and its reference based on the distribution of pixels
within a small window [92]. The SSIM is a weighted combination of three metrics: lumi-
nance, structure, and contrast and is shown in its most common form below in Equation 18
which compares between two images x and y. Here µx and σx and µy and σy represent the
average and variance of pixels in x and y while σxy is the covariance. c1 and c2 are numerical
values used to stabilize the division.

SSIM(x, y) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
(18)

While the SSIM is generally used to compare a computed or modified image against its
reference we aim to calculate the SSIM between subsequent frames in the filtered cineloop as
a metric of playback ’smoothness’[93]. We will use the SSIM as a second metric in addition
to the Pearson correlation as a metric to evaluate cineloop performance and quantify the
presence of ’flashing’ and frame-by-frame inconsistency in a manner consistent with the
human visual system. As flow is evolving in time we would expect the SSIM of each frame
pair to be less than 1; the purpose of computing the SSIM would be to identify large drops or
inconsistencies in the SSIM that would indicate large structural differences in flow between
frames.

High Pearson correlation or SSIM values are not valuable in isolation as they are only a
metric of cineloop smoothness and not quality. A filter can perform consistently and poorly.
We use these metrics primarily as a check on the consistency of the final filtered power
Doppler images.
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Part IV

Assessment of Filter Performance
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Reproduction of Target AUC Curves

After training, the predicted AUC values were compared with the target AUC values. In
general, good agreement is seen between the network output and the unseen AUC values.
Figure 34 shows the reproduced and target AUC values for 9 random blocks in the D5B
unseen dataset (brachial artery) at a random frame in the cineloop (neither systole nor
diastole). The AUC values of blocks with flow are faithfully reproduced although the network
output tends to be slightly smoothed. We note that the network exhibits much greater
success during systole when the flow signal is stronger than during diastole where the flow
signal is weaker. Additionally, blocks possessing fewer flow pixels tend to be reproduced
worse than blocks containing significant flow signals.

However, in some cases the network reproduces the general structure of the AUC curve
correctly albeit seemingly scaled down in magnitude. This can be seen in block 500 of Figure
35 where the reproduced AUC values are scaled up or down from the actual unseen values but
the AUC curve structure is faithfully reproduced. We expect that this scaling is occurring
because the calculated AUC is invariant to the overall amount of flow signal and in some
cases the network is obtaining the correct relationships between discriminating factors to
obtain the correct AUC curve structure, but lacking some piece of magnitude information
to get the proportionality correct.

Figure 34: The predicted and actual AUC values for 9 blocks from frame 79 (midway between
systole and diastole) of unseen acquisition D5B (brachial artery). The black numbers on
the lower left hand side is the block # while the red numbers give the fraction of flow pixels
contained within each block.
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Figure 35: The predicted and actual AUC values for 9 blocks from frame 190 (systole) of
unseen acquisition F03 (femoral bifurcation). The black numbers on the lower left hand
side is the block # while the red numbers give the fraction of flow pixels contained within
each block. All blocks contain flow, and the AUC values for components in most blocks are
reproduced accurately.

While the reproduction of the AUC curve is reasonably robust for all unseen acquisitions
when the amount of flow signal is significant, it does suffer significantly during diastole
when the flow signal is weak. Figure 36 shows a few blocks acquired during diastole for
several selected blocks in the unseen acquisitions (in the case of the brachial artery, AUC
reproduction was generally quite good). In these cases reproduction of the target AUC curve
is poor with not only non-matching curve structures being predicted by the network but also
incorrect predictions on the presence of flow. However, in these scenarios no filtering method
performs well (shown in the following section) and incorrect thresholds are chosen using the
tested literature techniques (Table 5) as well.
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Figure 36: Some examples of incorrect AUC reproduction. a) A flow block without significant
flow during diastole has components incorrectly marked as flow components. b) A non-flow
block (according to segmentation) has components incorrectly marked as flow components.
c) Something is incorrect with the unseen AUC calculation, the first component should never
possess a high AUC value. The network predicts no flow present. d) Similar to pane e) but
with a different structure. e) In the in-vitro flow phantom the flow signal is extremely strong
and the AUC values of the flow components should be very high. Curiously, the network
has predicted lower AUC values. f ) Although the curves differ significantly, all component
AUC values are low enough (≲ 0.75) that no components would be used to form the filtered
image. F09 1 refers to another tested acquisition not presented here.

Clutter Filtering Performance

The proposed framework was compared to the most prevalent of the more complex SVD
techniques used in the literature, specifically the hybrid estimator described in Ref. [50]
and shown in Figure 11 and the SSM block correlation estimator from Ref. [29] described
in Equation 10. Reference images produced using a generic high-pass FIR filter were also
obtained. Clutter filter performance was assessed on the filtered power Doppler image using
the contrast ratio and through ROC analysis (after flow region segmentation)20. This is

20The contrast ratio serves to quantify the relative difference in flow and background signal intensities at a
specified point, while ROC analysis gives a measure of sensitivity and specificity across the entire segmented
flow region. Alternatively as another performance metric we can compute the contrast ratio between the
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summarized in Table 5.

Table 5: Tested Clutter Filters

Clutter Filtering Technique

1. Proposed Framework using AUC reproduction
2. Hybrid Method, Ref [50] (30 Hz Cutoff)
3. SSM spatial similarity, Ref [29]
4. High-pass filter1

1 The entire data acquisition (∼ 9000 frames) is first filtered using a high or-
der FIR filter in Matlab (applied using Matlab’s filtfilt function). Segments of
the filtered signal (of size Ensemble Length) are used to form each frame in the
Doppler cineloop. Filter parameters: normalized cutoff = 0.01, normalized pass-
band = 0.05, attenuation = 100 dB, order = 169. The filter was created using
Matlab’s firpm function (Optimal Parks-McClellan FIR filter design tool). The
chosen high-pass-filter was designed to represent the some of the best results that
could be obtained with frequency filtering, with high stopband attenuation, a
high order, and with the actual filtering being applied to the entire 18,000 frame
cineloop rather than shorter frame-by-frame ensembles.

Although not a clutter filter itself, we will also make comparisons to the filtered results
obtained using the actual calculated AUC curves using the same AUC thresholding values.
This ‘ground truth’ AUC (G-AUC) result represents the ideal network output given our pre-
processing and training technique using ROC analysis (these are the AUC values that would
be used for training if this acquisition was not used for filter performance evaluation). By
comparing to these ‘ground truth’ results we can ascertain whether potential poor perfor-
mance is due to training and network configuration issues or the preprocessing and inherent
methodology (specifically the use of ROC analysis on the segmented flow region and the
AUC as a target metric).

AUC Sensitivity Thresholds

Several AUC thresholds were tested for each acquisition. As previously discussed AUC
threshold selection was only weakly adaptive; statically set unless the AUC of the first
singular component was very high (indicating an overlapping tissue signal or a lack of flow
in the block). The formula used for setting an AUC threshold for the network output or the
ground AUC values was given by

Threshold = max
(
Set Threshold,Multiplier× AUC(1)

)
(19)

total segmented flow and non-flow regions.
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Where ‘Set Threshold’ is the predefined threshold AUC and ‘Multiplier’ is a defined
proportion. The AUC threshold used for that particular block was set as the max of the
predefined threshold or the estimated/computed AUC of the first singular component mul-
tiplied by the predefined value of ‘Multiplier’. Including this additional condition helped
select for AUC curves that were concave down (and therefore more likely to contain flow).
Under this approach for instance, no components in the block shown in Figure 36c) would
be identified as flow components.

Four sensitivity thresholds were tested, with their ‘Set Threshold’ and ‘Multiplier’ values
shown in Table 6. Unless otherwise noted, all results presented in this work (network output
and ground AUC calculations) utilized the third sensitivity threshold (T3) as it was generally
found to be most optimal.

Table 6: Tested AUC Thresholds for the Proposed DNN SVD Filter

Filter Thresholds Set Threshold Multiplier

T1 0.65 1.2
T2 0.70 1.25
T3 0.75 1.4
T4 0.85 1.25

In-Vitro Carotid Flow Phantom

An in-house walled carotid bifurcation flow phantom [76] connected to a flow pump (setup
details found in Ref. [94]) using blood mimicking fluid (nylon scatters – BMF-US; Shelley
Medical Imaging, matched to the acoustic and viscous properties of human blood[95]) was
used to assess the performance of the proposed filter in-vitro. At the beginning of the
acquisition the flow pump was turned off. Shortly after beginning data acquisition, the flow
pump was turned on. A carotid flow profile with a repetition frequency of 1 Hz (60 bpm) was
generated with a volume flow rate of 12 mL/s. This volume flow rate during peak systole
was sufficient to nearly generate two cycle aliasing in the upper branch of the phantom.

This simplistic scenario, with an in-vitro flow phantom, is included not to show how the
proposed DNN filter is significantly more sensitive to flow and outperforms current literature
filtering techniques (this is shown in the following sections), but rather as a test of robustness
to illustrate the performance of our technique in a ‘worst case’ scenario – when the much more
simplistic high-pass filter performs excellently and there is little to be gained and potentially
much to be lost when using an SVD filter. In this situation, the fundamental limitations
of the SVD and our component identification accuracy start to come into play, specifically
how well the flow and clutter signals are distinctly decomposed into separate components by
the SVD and how consistently flow and clutter components can be identified over multiple
frames of 1156 blocks. The proposed DNN filter shows clear improvements over the tested
literature filtering techniques in this scenario. Ultimately though, this scenario is included
to demonstrate the lower bound performance of the proposed methodology; relatively little
training data and a scenario where high-pass filtering shines.
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We show the filtering performance for three representative frames in the acquisition.
Figure 37 shows frame 53 from the beginning of the acquisition when there is little blood
flow within the phantom. Strong, not aliased flow is present in frame 95 shown in Figure
38. Figure 39 of frame 200 shows filtering performance with high flow volume rates and
significant aliasing. As flow velocities are high, we present the colour Doppler images in the
bottom half of each figure described above as well to ascertain whether the proposed SVD
filter is able to accurately produce correct velocity measurements. Table 7 summarizes the
contrast and AUC measurements for the tested clutter filters in these scenarios.

We note that in the power Doppler images formed using the high-pass filter, significant
reflections from the walls of the walled phantom are visible, especially as the high flow
rate causes the walls of the phantom to move and generate tissue clutter. Along with
the significant aliasing present in the upper branch, this is expected to produce a more
challenging filtering scenario than typical in-vitro flow acquisitions. Due to the relatively
small amount of in-vitro samples used in training (three total acquisitions) this is expected
to be a challenging test for the proposed network, indicative of a scenario where limited
training data is available21.

Good performance was generally obtained using all tested filtering techniques. High pass
filtering produced reasonable results although strong wall reflections were always observed
(in testing the cutoff frequency of the high pass filter was adjusted but this did not appear to
have an appreciable effect on the wall reflections). The SVD clutter filters had significantly
greater success in removing these wall reflection artifacts with the DNN filter producing the
best results, eliminating the reflections entirely or at worst, reducing them to intensities
comparable to that of the flow pixels. All SVD filters suffered to some degree from incorrect
component identification during some part of the cardiac cycle (Figures 37c and 38c for
the SSM filter, Figure 38a for the proposed DNN filter, and Figure 39h for the hybrid
filter). In general, we note that the proposed DNN filter produced generally good results
when compared to the other tested filters offering improved contrast and AUC values when
compared to the two literature SVD techniques. However, the proposed method encountered
difficulty with clutter removal in the upper branch of the bifurcation and demonstrated a
lack of sensitivity to flow in the lower branch. This same effect was observed to an even
greater degree in the power Doppler images formed using the ground AUC values indicating
an issue with the uniform AUC threshold set across all blocks (for the entire cineloop). It
is possible that if adjustments in the training methodology and/or a more adaptive AUC
threshold method was employed to correct the AUC values for potential bias between the
upper and lower branches that this issue could be corrected.

Although, SVD filtering techniques are most frequently used to produce power Doppler
measurements probing flow sensitivity, we have also chosen to generate the colour Doppler
image to ascertain whether the proposed and literature SVD filtering techniques would bias
velocity measurements due to choice of flow components of the decomposition. Doppler
frequency measurements are presented for the entire frame without power thresholding as 1).
The colour Doppler measurements are intended solely as a evaluation of velocity estimation

21As discussed before, due to the lack of any sort of tissue structure, varying attenuations or speeds of
sound, etc. in-vitro acquisitions generate very different statistics compared to in-vivo acquisitions.
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and 2). Velocities thresholded by poor power maps may inadvertently make accurate velocity
estimations look visually poor and 3). It is useful from a filtering perspective to observe
what frequency components are retained or discarded in the non-flow regions (i.e. high-
frequency noise elimination). We note that with the exception of the hybrid technique,
which is not able to identify the aliased flow components, velocity measurements from all
tested filters generally agree with one another. However, in some cases (Figure 38g) an
incorrectly identified clutter component identified as flow created a minor artifact in the
color Doppler images created using the DNN and SSM filtering techniques.

In summary however, this acquisition represents a scenario (strong flow in-vitro) where
more than sufficient performance is obtained with the high-pass filter. While the tested
SVD filters are able to remove the reflections originating from the vessel walls, they do have
difficulty removing the clutter present on the left hand side of the image just above the
vessel wall (yellow arrow in Figure 37a). While the proposed method clearly performs better
than literature SVD techniques (Figures 37 – 38) the high pass filter performs extremely
well in this scenario and already produces an excellent AUC of 0.969 ± 0.011. Rather,
this acquisition serves to illustrate that 1) the proposed method is more consistent and
higher performing than literature SVD techniques, and 2) the extremely difficult task of
robustly identifying the flow components (ensemble size of 128) in 1156 blocks per frame
for multiple frames can be achieved to a relatively high level using a network trained using
limited in-vitro data. Ultimately however, all SVD filters are subject to the limitations of
the decomposition22; if the level of mixing is greater than the separation of flow and clutter
signals using a high-pass filter then no SVD filter will outperform the high-pass filter.

22Imperfect separation of flow and clutter signals into separate components without mixing.
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Figure 37: Power and colour Doppler images produced using the clutter filtering techniques
described in Table 5 for frame 50 of acquisition CB (weak flow scenario). a), g) The proposed
DNN filter. b), h) Hybrid technique. c), i) Spatial similarity technique. d), j ) High-pass
filtering under 40 dB dynamic range. e) High pass filtering using an ‘optimally’ set 42.5
dB dynamic range relative to the maximum pixel intensity. f ), k) An example blood region
ROI used for AUC calculations and the flow and tissue patch ROIs. l) The reference filtered
images formed using calculated AUC values (based on a hand segmented blood ROI). All
SVD filtered images are presented under 20 dB dynamic range. Compared to other filtering
techniques it appears that the flow sensitivity of the G-AUC is too high in the upper branch
and two low in the lower branch.
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Figure 38: Power and colour Doppler images produced using the clutter filtering techniques
described in Table 5 for frame 95 of acquisition CB (strong flow scenario). a), g) The
proposed DNN filter. b), h) Hybrid method. c), i) Spatial similarity method. d), j ) High-
pass filtering under 40 dB dynamic range. e) High pass filtering using an ‘optimally’ set
34.3 dB dynamic range relative to the maximum pixel intensity. f ), k) Ground AUC values
(G-AUC). All SVD filtered images are presented under 20 dB dynamic range. Some clutter
components in some data blocks were incorrectly classified as flow components resulting in
the ‘block-like’ artifacts characteristic of blockwise SVD.
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Figure 39: Power and colour Doppler images produced using the clutter filtering techniques
described in Table 5 for frame 200 of acquisition CB (strong flow scenario). a), g) The
proposed DNN filter. b), h) Hybrid method. c), i) Spatial similarity method. d), j ) High-
pass filtering under 40 dB dynamic range. e) High pass filtering using an ‘optimally’ set
31.2 dB dynamic range relative to the maximum pixel intensity. f ), k) Ground AUC values
(G-AUC). All SVD filtered images are presented under 20 dB dynamic range. The hybrid
technique was unable to identify the aliased part of the flow signal.
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Table 7: Filtering Performance: Carotid Bifurcation Phantom (CF)

Filter

Weak/No Flow (Frame 53) DNN Spatial Hybrid HPF

Contrast (Patch) [dB] 22.7 28.0 20.1 40.11

Contrast (Region) [dB] 16.0 10.33 13.4 15.31

AUC 0.945 0.854 0.968 0.949

Strong Flow (Frame 95)

Contrast (Patch) [dB] 35.6 28.9 20.5 37.91

Contrast (Region) [dB] 16.8 14.8 14.6 25.11

AUC 0.972 0.966 0.964 0.978

Aliasing (Frame 200)

Contrast (Patch) [dB] 31.1 18.54 17.7 35.91

Contrast (Region) [dB] 17.3 14.6 12.5 23.91

AUC 0.982 0.981 0.879 0.973

Cineloop Average2

Contrast (Patch) [dB] 29.2 ± 3.2 20.7 ± 3.6 19.4 ± 5.4 37.8 ±2.91

Contrast (Region) [dB] 17.2 ± 0.6 14.6 ± 1.0 12.8 ± 1.1 22.2 ±4.41

AUC 0.975 ± 0.012 0.972 ± 0.022 0.848 ± 0.080 0.969 ± 0.011
Pearson Correlation 0.993 ± 0.009 0.994 ± 0.014 0.991 ± 0.021 0.985 ± 0.016

SSIM 0.869 ± 0.036 0.896 ± 0.039 0.867 ± 0.033 0.934 ± 0.015

1 These are the default (unscaled) contrast ratios produced using the high-pass
filter. These should not be compared directly to the contrast measurements
produced through SVD filters and are presented here for completeness.
2 Averaged over frames 50 - 280.

Figure 40 tracks the contrast of the patch and flow region shown in Figure 37k) and the
AUC of the tested clutter filters across the entire 350 frame cineloop with the results over
the entire cineloop (Frames 50-280) summarized in Table 7. We note that at the beginning
of the cineloop where no (or little) flow is present all filters perform poorly and exhibit poor
statistics (as we are trying to measure flow that isn’t there). Note that due to the entirely
different filtering technique employed by high-pass filtering the contrast values produced are
not directly comparable to those produced by SVD filtering23. All filters produce reasonably
consistent frame-to-frame results.

23In theory, the effective contrast between ideal flow and non-flow signals is scaled by the filter attenuation.
As a high performance high-pass filter operating on the entire cineloop was used, the effective contrast
between readily identifiable flow (above the cutoff frequency) and tissue signals (below the cutoff frequency)
is very high.
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Figure 40: a) The area under the curve. All techniques exhibit poor flow detection before
the flow pump is turned on (frame 50). After the pump is turned on most filters exhibit
somewhat comparable performance with the exception of the Hybrid filter which does not
perform well is aliasing flow is present. b) & c) The contrast between the flow and non-flow
regions and between the blood and background ROIs. The DNN filter produces significantly
better contrast compared with the other SVD techniques (results using the high pass filter
are not shown here due to the different intensity scales).

Concluding Remarks

This imaging scenario was expected to be especially challenging for the proposed framework
due to the lack of in-vitro data for training. However DNN clutter filtering performance
performs better than the tested literature SVD techniques, both of which encounter serious
difficulties (SSM method tends to incorrectly identify flow blocks while the hybrid method
cannot deal with aliased signals). Observing the power and colour Doppler images produced
using calculated AUC values we note that the proposed choice of using the AUC curve as a
target works sufficiently for the network to reproduce accurate power and colour Doppler flow
images. However, we note that the choice of a simplistic and uniform sensitivity threshold
across the entire image is non-ideal as illustrated by the large amount of clutter in the
upper branch of the phantom and the relatively weak flow sensitivity in the lower branch.
This effect is moderated somewhat by the DNN (which has an averaging effect), however,
sensitivity is still weak in the lower branch and additional clutter is present in the upper
branch (as evidenced by comparisons to the other SVD clutter filters).

It appears, looking solely at the AUC values that little is gained in this scenario when
comparing the DNN SVD filter to the high pass filter. The performance of the high-pass
filter is generally quite good. However, the AUC is computed over the entire frame and the
effect of small regions of incorrectly classified pixels (such as the highly reflective walls of
the phantom) is relatively minor. The AUC is also not presented on an interval scale and
differences in AUC between results may not scale as expected with visual identification.

Thus far there has been little discussion about filtering performance in the first 50 or so
frames, before the flow pump is turned on. However, while the DNN could not separate the
flow and the clutter components for this part of the cineloop, the flow within this region
was identifiable to some degree in the SVD components. Figure 41 shows how the SVD
filtering techniques tested in this work, fail to identify weak (perhaps residual) flow within
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the carotid bifurcation phantom. These flow components, identifiable through ROC analysis,
are present in the decomposition but could not be identified by any tested method, including
the DNN clutter filter developed here that was trained using similar data. In the case of
the proposed DNN filter, the inability to identify flow in these frames could be due to the
previously-mentioned lack of in-vitro training data.

Figure 41: Power Doppler images for frame 15 of the carotid bifurcation acquisition acquired
using the a) DNN SVD clutter filter and b) using the ‘ground truth’ AUC values for the same
AUC sensitivity threshold. We see that flow is separated by the decomposition into some
number of unmixed components. The power Doppler images produced using the hybrid and
spatial correlation method produce equivalent power Doppler images to a).
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Brachial Artery

The filtering results for an unseen acquisition of a volunteer’s brachial artery (D5B in Table
4) is presented here. We note that in this acquisition flow within the artery was visible
throughout the cineloop for every acquisition, including the high-pass filter, However, at
certain points during the cardiac cycle, significant tissue clutter would appear for∼20 frames.
This clutter, along with strong wall reflections was extremely visible if a high pass filter
was used. If an SVD filter was used, the clutter during these periods was greatly reduced
(wall reflections completely removed). The proposed DNN SVD clutter filter was capable
of removing almost all wall reflections and movement artifacts while still maintaining good
sensitivity to flow.

Here we show the performance of the proposed methodology for two frames during dias-
tole (slow flow) and systole (where significant clutter is present) against literature techniques.
Due to a low beam to flow angle, flow velocities are difficult to measure accurately and we
have elected to show only the power Doppler in the following figures.

Figure 42: Power Doppler images produced using clutter filtering techniques (Table 5) during
diastole where flow is present and there is little motion. (Frame 10 of D5B). Power Doppler
images were obtained obtained using a) The proposed DNN SVD clutter filter, b) hybrid
method, c) SMM correlation method, and d) - e) high-pass FIR filter. f ) the ‘ground truth’
AUC values. Panes a) - c) are presented under 20 dB dynamic range. Pane d) under 30 dB
dB dynamic range. Pane e) has been rescaled to a DR of 36.2 dB relative to max.
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Figure 43: Power Doppler images produced using clutter filtering techniques (Table 5) during
systole where significant patient motion is present in the brachial artery (Frame 100 of D5B).
Power Doppler images were obtained obtained using a) The proposed DNN SVD clutter
filter, b) hybrid method, c) SMM correlation method, and d) and e) high-pass FIR filter.
Panes a) - c) are presented under 20 dB dynamic range. Pane d) is presented under 30 dB
dynamic range. Pane e) has been rescaled to a DR of 56.6 dB DR relative to the maximum
pixel intensity. Pane f ) shows an example segmentation of the total flow region and the flow
and background ROIs used to compute the values in Table 8.

While the SVD filters were able to remove the bright wall reflections (or at least reduce
them down to the same intensity as flow within the vessel), the proposed model was addi-
tionally able to remove the beam-like artifacts present below the brachial artery in frame 10.
In frame 100, the proposed model was able to remove significantly more of the surround-
ing clutter compared to the tested filters while maintaining the same flow signal intensity.
Although not shown here, the improved power-map of the flow signal has the potential to
significantly ‘clean-up’ color Doppler images due to better correlation with the actual flow
region.
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Table 8: Filtering Performance: Brachial Artery (D5B)

Filter

Frame 10 DNN Spatial Hybrid HPF

Contrast (Patch) [dB] 30.6 9.7 8.5 11.91

Contrast (Region) [dB] 17.0 8.9 8.4 10.71

AUC 0.993 0.930 0.978 0.953

Frame 100

Contrast (Patch) [dB] 35.1 7.7 6.6 5.11

Contrast (Region) [dB] 20.2 9.2 6.3 -5.51

AUC 0.970 0.933 0.915 0.738

Clean Signal2

Contrast (Patch) [dB] 36.1 ± 1.7 11.0 ± 0.7 9.4 ± 0.6 13.3 ± 1.61

Contrast (Region) [dB] 20.2 ± 0.5 11.5 ± 1.4 8.9 ± 1.3 11.0 ± 2.71

AUC 0.995 ± 0.004 0.980 ± 0.019 0.973 ± 0.021 0.940 ± 0.025
Pearson Correlation 0.995 ± 0.002 0.966 ± 0.076 0.981 ± 0.017

SSIM 0.881 ± 0.028 0.775 ± 0.038 0.769 ± 0.049 0.931 ± 0.024

Tissue Motion3

Contrast (Patch) [dB] 33.8 ± 2.3 10.6 ± 1.1 9.2 ± 0.8 6.7 ± 5.71

Contrast (Region) [dB] 19.7 ± 0.8 9.4 ± 1.6 7.4 ± 0.9 0.8 ± 6.31

AUC 0.991 ± 0.005 0.960 ± 0.026 0.950 ± 0.183 0.798 ± 0.096
Pearson Correlation 0.993 ± 0.004 0.982 ± 0.023 0.990 ± 0.008 0.989 ± 0.016

SSIM 0.861 ± 0.038 0.729 ± 0.047 0.755 ± 0.040 0.904 ± 0.080

1 These are the default (unscaled) contrast ratios produced using the high-pass
filter.

2 Average of frames 10 – 85.

2 Average of frames 150 – 220.

For these particular frames, the proposed method produces a significantly cleaner image
with better contrast and higher AUC compared to literature techniques. These results are
consistent across the entire cineloop as shown in Figure 44 which tracks the patch contrast,
frame contrast, and AUC across the entire 350 frame cineloop for the literature SVD filters
and the proposed methodology.
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Figure 44: a) The area under the curve. The high pass filter struggles to remove tissue
clutter throughout the acquisition. b) & c) The contrast between the flow and non-flow
regions and between the blood and background ROIs. The DNN filter produces significantly
better contrast compared with the other SVD techniques.

The effect of different sensitivity thresholds is shown in Figure 45 which shows how,
regardless of choice of flow threshold24, the proposed DNN clutter filter consistently outper-
forms other techniques and this performance is not due to choice of an ideal threshold. We
observe that as the AUC threshold is increased, only the strongest flow components are ob-
served. If the threshold is dropped sensitivity is decreased and more flow signal (and clutter
due to the presence of mixed components) is present in the image.

24To within reasonable parameters. If increasingly inappropriate thresholds are chosen, incorrect compo-
nents will start to be chosen in some blocks (see Figure 53), or virtually no signal will be observed.
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Figure 45: Power Doppler produced by the DNN for Frame 100 of the brachial acquisition
for various sensitivity thresholds (Set Threshold, Multiplier). a) (0.55, 1.2) b) (0.65, 1.25) –
The optimal threshold c) (0.70, 1.3) d) (0.75, 1.4). All images are presented under 20 dB
dynamic range relative to the same fixed value. As the sensitivity threshold is modified, the
trade-off between flow sensitivity and clutter removal is illustrated. In pane d), at a much
higher sensitivity threshold, nearly all clutter is removed but flow detection at the edges of
the lumen is correspondingly decreased. As the sensitivity threshold is decreased more flow
is revealed, however, clutter starts to appear in the image. If the sensitivity is decreased too
much as shown in pane a) additional clutter begins to appear.

Concluding Remarks

Compared to the high-pass filter, all SVD filters demonstrated lower frame to frame con-
sistency due to the discrete nature of the singular value decomposition and the imposed
restriction of ‘choosing’ predefined singular components. This is especially true if random
tissue components are incorrectly identified as a flow component and included in frames of
the cineloop. As these clutter components are much larger in magnitude than the flow com-
ponents they will always appear in the log-scaled power Doppler image. The large number
of blocks and singular components impose a very high accuracy threshold on SVD filters to
consistently detect flow and reject clutter components that can be difficult to meet. Ad-
ditionally, as high-pass filtering is performed on a sample-by-sample basis25 the produced

25The filter order is larger than the effective ensemble size!
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output is ‘smoothed’ whereas the SVD filters operate on a more granular ensemble by ensem-
ble basis. Figure 46 shows the Pearson correlation and SSIM between adjacent frames across
the cineloop. In general, all tested filtering techniques produced reasonably smooth cineloop
playback26, although consistency (but not filtering performance) was noticeably better with
the high-pass filter.

Figure 46: a) The Pearson correlation between frames for the tested filters. b) The structural
similarity index measure (SSIM) between frames for the tested filters. The high-pass filter
produced the most consistent frame to frame performance, however, the proposed model
performed decently when compared to literature SVD filters as shown by the overall much
higher SSIM over the entire cineloop as shown in pane b.

In summary, the proposed framework was able to consistently produce filtered power
Doppler images with higher contrast and area under the ROC curve measurements than
current literature filter in this particular acquisition of the brachial artery. Visually, the
proposed filter was able to remove the beam-like artifacts that other filters could not and
generally reduced the clutter artifacts that it could not wholly remove down to approximately
the same intensity as the flow signal.

26Or ‘flashing-type’ phenomenon occurred over longer timescales i.e. on the order of multiple frames and
thus could not be measured on a frame-to-frame basis.
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Femoral Bifurcation

Two acquisitions of the femoral bifurcation were obtained from healthy volunteers and used
for filter evaluation in more challenging flow conditions. In one acquisition not only was
the femoral bifurcation visible but the femoral vein was also present, resulting in a scenario
where pulsatile arterial flow and constant venous flow were present in the same image view
(and even in the same block). These scenarios were chosen to assess filter performance
under conditions of: 1) significant tissue clutter originating from patient motion during
systole, 2) flow detection throughout the cardiac cycle, especially at low beam-to-flow angles
and, 3) consistency of filtering performance in complex flow scenarios on several individuals
throughout the cardiac cycle.

Acquisition F03

In the F03 acquisition, significant clutter is observed during systole in the power and color
Doppler images when using the high pass filter. This clutter is also difficult to remove with
SVD filtering techniques. In addition, flow detection is poor during diastole in the upper
branch as flow is almost perpendicular to the imaging axis. The proposed method was far
more effective at removing clutter resulting from patient motion during systole than high
pass filtering or the tested literature techniques as shown in Figure 47 for frame 77 of the
acquisition. Here the DNN clutter filter was able to remove all clutter from the power
Doppler image, producing a clear delineation of vessel boundaries. The reflection artifacts
on the bottom of the main branch were mostly removed as well (reduced to about the same
magnitude as the flow), allowing for accurate velocity estimation in this region (indicated
by the yellow arrows). Table 9 shows the contrast of the patch, flow region and AUC for the
segmentation shown in Figure 47k). The proposed filter shows a significant improvement in
these quantities across the entire cineloop (Figure 48 and Table 9).
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Figure 47: Power and colour Doppler images produced using the clutter filtering techniques
described in Table 5 for frame 77 of acquisition F03 where significant tissue clutter is present.
a), g) The proposed DNN filter. b), h) Hybrid method. c), i) Spatial similarity method. d),
j ) High-pass filtering under 40 dB dynamic range. e) High pass filtering using an ‘optimally’
set 62.2 dB dynamic range relative to the maximum pixel intensity. f ), k) Ground AUC
values (G-AUC). l) An example blood region ROI used for AUC calculations and the flow
and tissue patch ROIs. All SVD filtered images are presented under 20 dB dynamic range.
Only the proposed method was able to robustly identify flow and remove all tissue clutter
from the power and color Doppler images.
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Table 9: Filtering Performance: Femoral Artery (F03)

Filter

Frame 77 DNN Spatial Hybrid HPF

Contrast (Patch) [dB] 70.0 11.7 13.8 26.61

Contrast (Region) [dB] 15.6 8.2 5.1 4.71

AUC 0.969 0.929 0.888 0.925

Systole2

Contrast (Patch) [dB] 59.8 ± 8.8 15.99 ± 9.0 15.7 ± 2.4 26.4 ± 2.71

Contrast (Region) [dB] 14.7 ± 1.5 7.9 ± 3.4 6.9 ± 1.3 10.9 ± 3.31

AUC 0.951 ± 0.031 0.905 ± 0.116 0.917 ± 0.051 0.912 ± 0.149
Pearson Correlation 0.979 ± 0.045 0.981 ± 0.053 0.997 ± 0.003 0.985 ± 0.017

SSIM 0.840 ± 0.053 0.808 ± 0.044 0.826 ± 0.016 0.911 ± 0.042

Diastole3

Contrast (Patch) [dB] 49.8 ± 9.4 23.5 ±1.6 16.9 ± 0.5 29.9 ± 1.51

Contrast (Region) [dB] 11.5 ± 1.3 4.7 ± 1.7 5.6 ± 0.9 11.7 ± 1.41

AUC 0.837 ± 0.024 0.796 ± 0.041 0.716 ± 0.053 0.613 ± 0.070
Pearson Correlation 0.991 ± 0.004 0.993 ± 0.013 0.992 ± 0.005 0.988 ± 0.003

SSIM 0.755 ± 0.024 0.792 ± 0.035 0.810 ± 0.016 0.924 ± 0.008

1 These are the default (unscaled) contrast ratios produced using the high-pass
filter.

2 Average of frames 65 - 110.

2 Average of frames 160 - 290.
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Figure 48: a) The area under the curve. All techniques struggle to detect flow in the upper
branch during diastole resulting in poor AUC values. b) & c) The contrast between the flow
and non-flow regions and between the blood and background ROIs. The DNN filter produces
significantly better contrast compared with the other SVD techniques (results using the high
pass filter are not shown here due to the different intensity scales).

A large part of the proposed filter’s improved performance according to Figure 48 lies in
significantly better clutter rejection rather than much better flow detection. Ultimately, the
ability of an SVD clutter filter to detect flow is limited by the fundamental decomposition
of the mixed clutter and flow signals into separate components. A decomposition of a data
matrix that results in many mixed components will produce poorly filtered flow images
no matter how inherently well designed and motivated the technique used to identify flow
and clutter in the components of the decomposition is. While our proposed clutter filter is
inherently better at separating flow from clutter (Figure 47) it is also significantly better at
performing this identification for blocks which do not contain flow signal (i.e. no overlap on
the segmented flow region). For these regions the network predicts a complete absence of
flow (i.e AUC of 0.5, see Figure 34), resulting in an absence of signal in these regions.

Acquisition HB

This acquisition contains both the femoral bifurcation and the femoral vein. Figure 49 shows
frame 215 of the acquisition, just after systole where flow is relatively weak and significant
tissue motion is present. Due to the low velocities and high beam to flow angle the color
Doppler images of this frame are not shown. In frame 215, the intense clutter band above
the femoral artery is significantly reduced by our DNN filter when compared to high-pass
filtering or literature SVD filters. Additionally, the beam-like artifacts have been removed
by the proposed methodology (in general, the DNN was found to be quite adept at removing
these types of artifacts). Flow detection in the lower branch was found to be poor using any
filtering approach; however, all filtering techniques were able to resolve flow in the vein well.
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Figure 49: Power Doppler image of the femoral bifurcation and vein just after systole.
Significant tissue motion is present and the flow signal is relatively weak (Frame 215). a)
The proposed DNN SVD clutter filter, b) Hybrid method, c) SMM correlation method, and
d) and e) high-pass FIR filter. Panes a) - c) are presented under 20 dB dynamic range. Pane
d) is presented under 40 dB dynamic range. Pane e) has been rescaled to a DR of 42.6 dB
DR relative to the maximum pixel intensity. f ) ground AUC values (G-AUC) The proposed
filter removes the majority of the surrounding clutter while maintaining good sensitivity to
flow. Flow detection in the lower branch is generally poor for all filters.

In terms of sensitivity to flow during diastole, Figure 50 shows frame 254 of diastole
where there is little flow in the femoral artery. At this point in the cardiac cycle, only the
flow in the femoral vein is visible using the high-pass filter. We use this point in the cycle as
a reference for sensitivity to slow flow, while still robustly identifying flow components in the
femoral vein. In this scenario the proposed model (although using a slightly more sensitive
AUC threshold), optimizes for the removal of clutter over the inclusion of heavily mixed
clutter and flow (and predominantly clutter) components. Although this is likely the most
statistically optimal choice for the network to make, it may not always be the most desired
outcome. In some cases greater flow sensitivity may be more desirable. Using a theoretically
more sensitive threshold (the T1 thresholds) did not result in the inclusion of these mixed
components.

The results for frames 215 and 254 as well as the averages during systole and diastole are
shown in Table 10. In general, all techniques performed well during peak systole when no
clutter was present. However, performance during other parts of the cardiac cycle could be
poor; cineloop statistics are shown in Figure 51.
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Figure 50: Power Doppler acquired during diastole where weak flow can just be resolved in
the upper branch (Frame 254). Flow in the femoral vein is visible. a) The proposed DNN
SVD clutter filter using the T2 sensitivity threshold, b) Hybrid method, c) SMM correlation
method, and d) and e) high-pass FIR filter. Panes a) - c) are presented under 20 dB dynamic
range. Pane d) is presented under 40 dB dynamic range. Pane e) has been rescaled to a
DR of 33.7 dB DR relative to the maximum pixel intensity. In this case an additional 8 dB
of dynamic range was added to show the poor flow detection in the bifurcation of the high
pass filter. Pane f ) shows an example segmentation of the total flow region and the flow and
background ROIs. The proposed filter correctly identifies the femoral vein and some flow in
the upper and lower branches but fails to detect flow higher up the artery, marked by the
yellow arrow.

As shown in Figure 51 all tested filters were able to detect flow in this femoral acquisition
during systole fairly well. However, diastolic performance was significantly worse and no filter
was able to detect flow well in either the femoral artery or vein during diastole, especially
just before systole. This is unlikely to be related to filter performance and is much more
likely to be related to the low SNR of the very weak flow during this portion of the cardiac
cycle and the use of plane wave imaging rather than more sensitive conventional scan-line
imaging. We will not include this portion of the cardiac cycle in our diastolic measurements
in Table 10. The contrast measurements in Table 10 show very high values for the proposed
framework. This is due to the greater clutter rejection performance of the network, in this
case the elimination of the vertical beam-like artifacts.
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Table 10: Filtering Performance: Femoral Bifurcation (HB)

Filter

Frame 215 DNN Spatial Hybrid HPF

Contrast (Patch) [dB] 32.6 8.1 6.3 12.31

Contrast (Region) [dB] 8.0 3.9 4.1 11.51

AUC 0.861 0.786 0.844 0.730

Frame 254

Contrast (Patch) [dB] 45.4 2.6 1.1 -3.71

Contrast (Region) [dB] 6.9 1.5 1.5 -1.71

AUC 0.808 0.686 0.692 0.531

Systole2

Contrast (Patch) [dB] 44.7 ± 6.2 17.7 ±1.6 11.0 ± 0.6 17.0±3.21

Contrast (Region) [dB] 14.8 ± 1.5 11.1 ± 1.4 8.6 ± 0.73 14.1 ± 3.9 1

AUC 0.960 ± 0.015 0.970 ± 0.017 0.968 ± 0.008 0.966 ± 0.012
Pearson Correlation 0.972 ± 0.028 0.989 ± 0.071 0.996 ± 0.003 0.988 ± 0.006

SSIM 0.797 ± 0.039 0.795 ± 0.042 0.827 ± 0.021 0.921 ± 0.010

Diastole3

Contrast (Patch) [dB] 35.7 ± 7.8 7.7 ± 4.5 5.1 ± 3.9 9.3 ± 3.11

Contrast (Region) [dB] 8.8 ± 4.4 4.9 ± 2.9 4.3 ± 2.6 6.0 ± 3.61

AUC 0.873 ± 0.057 0.812 ± 0.106 0.820 ± 0.131 0.705 ± 0.192
Pearson Correlation 0.967 ± 0.028 0.974 ± 0.025 0.984 ± 0.005 0.978 ± 0.003

SSIM 0.732 ± 0.085 0.787 ± 0.029 0.778 ± 0.029 0.914 ± 0.049

1 These are the default (unscaled) contrast ratios produced using the high-pass
filter.

2 Average of frames 160 - 200.

2 Average of frames 215 - 250.
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Figure 51: a) The area under the curve. All techniques perform well during systole and poor
during diastole. During the end of diastole, no flow is identified within the flow region for any
of the tested filters. b) & c) The contrast between the flow and non-flow regions and between
the blood and background ROIs. Due to more robust removal of clutter elements the DNN
filter produces significantly better contrast compared with the other SVD techniques

Concluding Remarks

The proposed DNN clutter filter produces a more ideal balance between clutter removal and
flow detection than high-pass filtering or literature SVD filters as shown in Figures 49 and
50. The calculated AUC and contrast between flow and clutter regions was also significantly
higher than the tested filter (Table 10) due to the proposed methods improved ability to
identify and remove the predominantly clutter components from the decomposition. We will
note that although the network does make the ‘statistically optimal’ identification of flow and
clutter components it may be desirable to retain significantly more clutter if slightly better
flow sensitivity can be obtained. However, we remark that much of the flow identification in
the left-hand side of the upper branch in Figure 50 done by the eye is based on the presence
of different ‘textures’ rather than different intensities. The images presented in Figure 50
are shown without any additional spatial filtering or additional post processing and thus
possess a very ‘raw’ quality that would not be present in conventionally processed power
Doppler images. If this additional spatial filtering, frame averaging, etc. were to be added,
the textural information in panes b) and c) would be lost or greatly reduced.

Frame to frame consistency remains an issue for SVD filters in general due to the discrete
nature of identifying the ‘premade’ flow components produced by the SVD. However, the
proposed method is not significantly worse than current SVD filters and smoothness is only
a desirable feature if the specified filter demonstrates good performance.

Proof of Concept: Small Vessel Imaging

To assess whether the proposed model, trained using only large segmentable flow vessels, was
generalizable to small vessel imaging, the kidney of a healthy volunteer was imaged using
the US4US scanner (same acquisition settings as described in Table 2). Although the signal
to noise of the flow signal was weak due to the relative depth of the kidney and the use of
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plane wave imaging, the branching arterial structure characteristic of kidney flow images was
just visible in the lower right hand corner. Figure 52 shows the results of clutter filtering
for a frame in the cineloop where flow could be observed. The proposed model accurately
identifies flow within the kidney while rejecting the tissue clutter present in other parts of
the imaging view.

Figure 52: a) DNN with sensitivity threshold (0.6/1.0) b) Hybrid method c) SSM correlation
method d) High-pass filter. SVD clutter filters are presented under 25 dB dynamic range27.
The DNN filter rejects blocks with predominantly clutter, producing a similar result as the
SSM filter although with more aggressive clutter removal.

Both the DNN filter and the SSM filter produce visually similar results and are able to
identify and remove the bright reflections in the upper half of the image. In general, the
DNN filter produces similar results although it appears to prioritize clutter removal over flow
detection (adjusting sensitivity thresholds did not appear to improve this much).

27Saturation thresholds are individually set to best display the flow signal – this is necessitated by the
large amount of high intensity clutter that is not removed by the high-pass filter and hybrid methods.
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Further Comments

Implemented on a GPU, the DNN performs AUC predictions quite rapidly, outputting over
10 frames (> 11, 000 total blocks) per second, significantly faster than the SSM block-fitting
algorithm. At this stage, no rigorous optimization has been performed; we remark here that
the inclusion of a neural network does not slow the SVD filtering procedure down by any
significant degree28 as other operations in filtering pipeline take far longer and by far are
the rate-limiting steps. However, we remark that the acquisition of some of the statistical
factors such as the local spatial correlation can take a significant amount of time. If differ-
ent, optimized discriminating factors were used as inputs to the DNN, computational time
could be further reduced. Although we have made no effort to check its feasibility, real time
blockwise SVD filtering is likely not feasible for the current framework due to the signifi-
cant computation required to compute the full rank SVD and the numerous discriminating
parameters.

Currently, the AUC threshold cutoffs are relatively static and only weakly adaptive,
based on the absolute values of the AUC curve. Adjustments to the AUC threshold can
be made but this adjustment is global to all blocks in the frame, and not an individual
adjustment to a specific block. Despite this, good results are obtained in most imaging
scenarios as shown in the previous subsection. However, we note that when decreasing the
sensitivity threshold the transition into a more cluttered image can happen abruptly due
to mispredictions about clutter components in specific blocks. Figure 5329 shows this effect
in which the power Doppler image can be obtained with correctly set thresholds (pane a)),
however, reducing the AUC sensitivity threshold below optimal induces an abrupt transition
as clutter components in some blocks abruptly appear (pane b)). Good results are obtained
before this effect appears but ideally the effects of dropping the sensitivity threshold would
be gradual; it appears that a more adaptive method of setting the sensitivity threshold would
be beneficial.

28Using Matlab’s default svd function with the ‘econ’ flag and an 8 core AMD Ryzen 7 5800H CPU
(Advanced Micro Devices, Santa Clara, CA, USA) it takes over 94 seconds (almost 100× longer)to compute
the SVD of 11,000 (80 × 80) × 128 data matrices (randomly initialized) using single precision floating point
operations).

29As the largest components dominate a log-scaled image and clutter is much larger in magnitude than
flow, these clutter blocks always dominate the power Doppler image.
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Figure 53: a) Femoral bifurcation (F03 Frame 205) where thresholds have been correctly set.
The femoral bifurcation and vein are clearly visible. b) The same frame with the sensitivity
threshold set too low. Rather than a gradual transition, a clutter block are abruptly appears.
Results are presented using the same 20dB dynamic range. Sensitivity thresholds are shown
in the lower left corner.

Finally, we note that while the proposed framework outperforms conventional literature
techniques in most cases, the results obtained with the high pass filter can sometimes appear
visually superior, specifically in terms of pixel-by-pixel ‘sharpness’. As high-pass filtering is
performed on a pixel-by-pixel basis, it is inherently capable of producing extremely sharp
boundaries between clutter and flow. In contrast, the SVD filters used here take as input
a block of pixels (80 × 80 = 6400 pixels) and output combinations of singular image com-
ponents, each of which contains an intensity value for each of the 6400 pixels. Although
the SVD decomposes the input signal into mutually orthogonal basis vectors, the number
of components is limited and often this decomposition is ‘imperfect’ (for our intended use)
resulting in ‘mixed’ components containing both flow and tissue signals. In these cases, the
vessel boundary tends to appear less sharp than would be desired; the flow signal appears to
possess a blooming type effect around it. This is an inherent property of the decomposition
when compared with a high-pass filter – the correlations between neighbouring pixels can
be exploited to better identify flow at the cost of losing the ability to independently process
each pixel.

87



Part V

Discussion and Future Work
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Robust Flow Component Identification using Supervised

Learning

The robust identification of the flow components in the data matrix after it has undergone the
singular value decomposition extended across varied flow acquisitions is no easy task and has
limited the use of SVD filters as a generic clutter filtering solution, requiring calibration or
even different SVD filter designs to be applicable to specific imaging scenarios. Our proposed
deeply connected neural network attempts to link the presence of flow to the reproduction
of the area under the curve value obtained using ROC analysis on the segmented flow region
by identifying what correlations in the network input statistics are representative of flow
signals. If the components of the SVD with the highest reproduced AUC values are labeled
as flow, accurate power Doppler images can be obtained that outperform current literature
techniques. Furthermore, the proposed framework’s ordinal prediction of the presence of
flow in each component allows for the variation of the sensitivity threshold, allowing for
‘adjusted’ flow components that are more relevant to the diagnosis needed for the given
imaging scenario in an easy to understand manner.

The proposed methodology was able to reproduce the AUC curve of flow blocks accurately
(albeit with the scaling issue discussed in the previous chapter) while also able to identify
blocks without any flow present (with an AUC of 0.5), generalizable to multiple in-vivo and
in-vitro imaging scenarios across the cardiac cycle. The trained network was independently
applied to the statistics of each of the 1156 blocks in each frame, which varied significantly,
especially across the cardiac cycle, and consistently produced results that exceeded (or at
least matched) current literature techniques. Some issues were encountered in reproducing
AUC values during diastole but the resulting power Doppler images were comparable or
better than those produced using other filtering techniques. In these cases, despite the
statistical ‘fingerprints’ of flow being difficult to identify,30 the proposed model, with access
to multiple flow estimators, was able to better identify flow components.

Importantly, this work has demonstrated the utility of the component AUC curve, a
target quantity obtainable through segmentation that can be used to ordinally rank the
components of the SVD in terms of how their signal content lies within or outside the seg-
mented flow region as a proxy for the amount of flow within each component. These values
are a good approximation for the components of the decomposition that should be identified
as flow components in any SVD clutter filtering algorithm. Critically, the methodology de-
scribed here provides an accurate, reproducible target value that identifies flow components,
a (somewhat) ground-truth,31 that makes supervised learning techniques for SVD clutter
filters feasible.

30Note that if the blood flow signal is weak, the flow signal will tend to be mixed in with clutter signals.
As SVD filtering consists of picking some subset of elements of the decomposition (and the decomposition
is unique) there is an upper limit on the performance of any SVD algorithm (at least without changing how
the data matrix is created).

31The AUC is a good metric but not perfect – it has a number of limitations including the requirement of
segmentation. Furthermore, it simply describes spatially where signal is present but contains no information
about that signal content.
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Limitations of the Proposed Framework

Although its stability was demonstrated in Figure 25, the manual segmentation required to
create the component AUC curve will nevertheless be an issue of contention. As discussed
in Chapter 3, automatic segmentation algorithms would encounter many difficulties and
struggle to outperform manual segmentation across the large variety of training acquisitions
(at least within the time constraints of this project). However, there is some contention on
what should be segmented. As discussed in Chapter 3, we have chosen to segment based on
where we know flow should exist (i.e. within the walls of blood vessels) even if no flow is
currently observed in that region of the filtered flow image (during diastole in some vessels)
– we are assuming that our current filtering technique is unable to isolate the flow signal
but as there is blood within that region it does exist. We then assume that if no flow is
present in the flow region, the spatial distribution of signal power should be such that there
are no singular components with signals predominantly within the segmented flow region
(noting that the interior of the lumen does not possess tissue scatterers) and the resulting
AUC curves should be close to 0.5. However, we found that often the component AUC
curves for these regions often possess significant noise; varying wildly around a value of 0.5.
These swings may be caused by the identification and placement of spatially small unique
correlations in the very weak identified flow signal in unique singular components by the
decomposition. If these components were summed, the resulting flow signal would be more
cohesive, however, spatially they only cover part of the segmented flow region at various
levels of signal strength (see Figure 13) and so result in a very uneven inconsistent AUC
curve32. This will be especially pronounced when included tissue signals (the flow signal is
weak and mixing may occur) outside the segmented region are significant and inconsistently
present in different singular components (component 15 in Figure 13 for example).

This large amount of noise and inconsistency in the AUC may make it difficult for the
network to interpolate, leading to poor flow identification in blocks which do possess a more
significant and identifiable flow signal. In other words, the larger amount of noise in the
AUC values in blocks with no or little flow signal may be making it more difficult for the
network to interpolate AUC values for networks with more moderate amounts of flow signal.

We have previously mentioned that a major difficulty with this project was the sheer
amount of unique training data required to accurately train the DNN while still maintaining
generalizability. Obtaining a labelled dataset for training is an unfortunate downside to
supervised learning approaches. In this project (and in potential future works following
this general procedure) this is a major issue as a tremendous amount of data acquisitions
were needed. Many acquisitions were too noisy or low quality to be used and resulting in
some difficulty in obtaining a sufficiently large training set. Compared to preliminary testing
on a much reduced dataset (about half of the training and validation acquisitions listed in
Table 4), the addition of more unique training and validation samples significantly improved
the end clutter filtering performance of the proposed model. In particular, our DNN clutter

32This is a signal acquisition issue, not an inherent failing of the proposed method. The AUC curve
produced through ROC analysis of the flow region still gives the optimal components that possess more
signal within the flow region and less signal outside of it. Rather there is little flow signal at all.
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filter performed significantly better in in-vivo than in the much simpler in-vitro flow phantom
likely because only two in-vitro acquisitions were used in training.

The use of only two flow phantom training acquisitions further illustrates difficulties in
obtaining a robust training set. If a flow phantom[53] is used for training under a carotid flow
profile that phantom and any of its derivatives (even under different flow profiles) cannot
be used in the validation or unseen datasets as the training and unseen samples would not
be independent (flow of nearly every velocity is present in each region of the spiral at some
point during the cardiac flow cycle). Here we also note that block statistics are very different
in-vitro due to the use of homogeneous tissue-mimicking materials (for instance, the blood
subspace is large and very clearly defined – see Figures 26c and 12) compared with in-vivo
acquisitions resulting in poor generalizability between acquisition types. It is unsurprising
perhaps, that the proposed model performed much better in-vivo.

A major advantage of our DNN clutter filtering model is that the difficulty in choosing
appropriate thresholds, often very abstractly described such as the edges of ‘a block of
correlations in the SSM’, is repackaged into a intuitive sensitivity threshold selection device.
However, despite the AUC cutoff being much more intuitive and easy to adjust than the
‘knobs’ in other adaptive algorithms33 it could be argued that the proposed method simply
repackages the threshold identification problem into another threshold identification problem
due to the many subtleties in choosing the optimal AUC cutoff.

This argument is valid. While we would argue that threshold adjustment in our model
is intuitive and not inherently any different from tuning the cutoff frequency of a high-pass
filter, it does represent another ‘knob’ that must be adjusted. Having two knobs, one that
represents dynamic range and another sensitivity to flow makes things more complicated for
the clinician. Furthermore, in our work we have not provided any mechanism to identify a
default or useful ‘presets’ for various imaging scenarios. This would have to be addressed
in future projects. Ultimately, there are advantages and disadvantages to algorithms that
attempt to pick optimum thresholds and algorithms that put that choice in the hands of the
user.

Addressing this current limitation by adaptively identifying a default AUC threshold
(the user would still be able to set specific thresholds by applying an offset to this default
value) would improve the accuracy of the current model. Perhaps this default should be
individually identified for each block. An identified AUC threshold on a block-by-block basis
could have the ability to address the magnitude scaling issues observed in Figures 34 and 35
where the DNN output possesses the same general structure as the input AUC value but is
scaled up or down in magnitude.

A critical issue with using the AUC as a target is its independence of the relative amounts
of flow and tissue pixels while the data matrix discriminating factors are heavily affected by
the ratios of flow and tissue pixels present within the data matrix34. A final method of

33For instance, while the lower frequency threshold in the hybrid threshold estimator[50] appears to be
intuitive, the inherent noisiness of the Doppler frequency curve (Figure 27) can cause alterations to the cutoff
to cause erratic changes in the power Doppler image.

34These tend to be correlated but it may be useful to make a more strict distinction between blocks with
large numbers of low intensity flow pixels and blocks with a few very high intensity flow pixels. The arbitrary
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potentially improving network prediction may be to include the proportion of flow pixels in
each block as an additional output of the network. This flow pixel proportion could perhaps
be used as a weight in adjusting or setting an optimal AUC threshold as discussed in the
previous paragraph.

Future Directions

Alternative Supervised Models

This project began as an attempt to improve on the results presented in Refs. [30] and
[31] with the key idea to use repeated density-based clustering attempts (varying the hyper-
parameters of the DBSCAN algorithm [96]) to identify the clustered points most likely to
form part of the blood cluster. Although this was an improvement over the results obtained
through K-Means clustering, it was by no means consistent across different acquisitions.
Once the method of using the component AUC curve for supervised learning approaches
was developed, preliminary investigations of several other supervised learning approaches
such as a linear regression model [97] and a random forest classifier [98] were performed in
parallel with DNN development. A brief investigation (results not shown here) found that
these models performed adequately but not amazingly.

It would be interesting to explore other supervised learning approaches to this same
problem. By no means is a neural network the guaranteed optimal solution to the problem
of predicting the AUC values of each singular component. Our preliminary investigations
into alternative clustering and classification models was quite brief and limited in scope and
it is quite likely that other techniques could yield comparable or better results, especially
if methodology changes are made. Furthermore, while the area under the receiver operator
characteristic curve has shown itself to be a useful identifier of flow within the components
of the decomposition, it possesses several major flaws and could be potentially replaced in
this study with a hypothetical superior target metric.

Improving or Not Using Discriminating Factors

A natural extension of this work would be to further refine the chosen discriminating pa-
rameters, removing those that are computationally expensive to compute (such as the local
spatial correlation) and add new quantities that further improve the robustness of the AUC
estimate. There is a significant amount of information in the U , ∆, and V data matrices
and their derived quantities; perhaps another robust estimator could be derived from the
structure of the power spectral density plots of each singular component (Figure 28). Further
analysis could also be performed on the singular image components.

While additional and improved discriminating factors could be proposed, each additional
factor represents additional computational demand and ultimately slower filtering. As each

10% pixel cutoff for AUC calculation was a weak attempt to address this issue.
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discriminating factor is simply some quantity derived from the SVD data matrices, why not
simply use the raw U , ∆, and V data matrices as the input to the network? This would
remove the need to compute discriminating factors, reduce preprocessing and potentially
allow more calculations to be performed on the GPU which is significantly more powerful
than the CPU.

Some preliminary testing using the raw data matrices as input was explored in this work.
The principle image components Mi of blocks (several are shown in Figure 13) Mi = ∆iUiV

⋆
i

were calculated and formed into a 3D matrix (effectively a stack of the 2D principle image
components). A 3D convolutional neural network [99][100] was then proposed to process
input of this form. Convolutional neural networks have been used extensively in the field of
ultrasound, for b-mode imaging [101][102][103], channel count interpolation [104], and clutter
filtering [105][106], etc.35. However, the liability of using the raw SVD information is its size
and/or the time taken to compute the SVD. In the proposed framework the discriminating
factors are precomputed and stored. With 6 discriminating factors and an ensemble size of
128, only 768 elements need to be stored per block. Stored as 32-bit floating point values,
it takes only 3 KB (6× 768× 4 bytes each = 3072 bytes) to store the inputs for each block
(potentially less with compression). If the principle image component stack is used as input,
over 3.2 MB are needed to store a given block (80 × 80 × 128 × 4 = 3,276,800 bytes), a
ratio of about 1000× more. The storage and memory requirements of storing approximately
190,000 training and validation samples is excessive and although perhaps addressable on
some systems, was found to be unfeasible for this project. Alternatively, it may be possible to
compute the SVD on the fly using optimized computational techniques while still achieving
somewhat reasonable training times (See following sections). Although a difficult challenge,
using the raw data matrices as input would greatly simplify the processing pipeline and
provide significantly more raw information for network inference, representing a logical next
step for this project.

Data Matrix Adjustments and Alternatives to the SVD

The singular value decomposition of a given data matrix is unique. This means that every
potential SVD filtering algorithm that takes as input the same U , ∆, and V data matri-
ces should ultimately identify the same flow components of the decomposition. While this
property controls the scope of the problem, it produces an upper bound on the performance
of any equivalent SVD algorithm (i.e. for any definition of ‘optimal flow component’ there
is a set of components that will produce the best filtering performance) that represents an
upper bound to filtering performance. In other words the potential mixing of the clutter
and flow signals within the components of the decomposition cannot be addressed by any
filtering technique. This limitation motivates changes to the input data matrix or the use of
alternative or modified decompositions.

35Here networks have generally been used to reproduce the filtered images produced using known clutter
filtering techniques. These algorithms almost always attempt to reproduce known results (i.e. they are
trained using clutter filtered images) and therefore function as an easy and efficient reproduction mechanism
rather than producing fundamental improvements in filtering performance. (The issue of the ground truth
flow signal not being available presents inself).
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Experimental results obtained using the higher order singular value decomposition (HOSVD),
an extension of the SVD [107] that takes as input the 3D tensor cineloop (without repack-
aging data into a Casorati matrix) and outputs a central tensor and three 2D matrices,
has shown improved clutter filtering performance36 over conventional SVD filtering using
the 2D Casorati matrix [108][109]. Furthermore as discussed in Section II the use of other
decompositions and blind-source separation algorithms abound in the literature. It would
be interesting to see if the current framework could be extended in these directions.

Towards Real-time Implementation and Clinical Use

Currently to the best of our knowledge, no clinical system uses SVD filtering techniques for
flow detection. A major reason to this is firstly, the arbitrariness and difficulty in robustly
identifying flow components and secondly, the tremendous computational demands required
to perform blockwise SVD in real time, especially at a time when the major focus is towards
more portable systems.

It is possible to perform the singular value decomposition on the much more powerful
GPU [110][111]37. However, it is difficult to implement the decomposition efficiently on
highly parallel GPUs and most algorithms do not exhibit significant speedups over imple-
mentations on multicore CPUs for small matrices [111][112]38. Nevertheless, an efficient
GPU implementation would represent a large step toward complex SVD filtering techniques
being implementable in real time.

Many SVD filters in the literature have embraced numerical ‘approximations’ to reduce
computational requirements (such as randomized spatial downsampling [49][56]). Another
common technique in the literature is to perform a limited rather than full rank decompo-
sition, as the higher rank singular components rarely contain flow signal. Ref. [56] showed
that calculating only an approximation to the first m singular components required signifi-
cantly less computational time (up to 6× faster if only a few ranks needed to be computed)
and delivered similar results to what was obtained using the full SVD. These calculations
can also be efficiently implemented on the GPU [113].

The current framework requires the full rank singular value decomposition to be per-
formed to identify flow components. One of the reasons for this choice was the realization
that in certain in-vitro scenarios, flow may be found even in the high rank components of the
decomposition (i.e. see Figures 26c and 12a) where typically only noise signals are found. In
some in-vivo acquisitions we also note the presence of flow in higher rank components of the
decomposition (i.e. Figures 34 and 35). Nevertheless, if this issue could be addressed and
computational requirements decreased, it would represent a major step towards real-time
SVD clutter filtering. Making use of these computational optimizations such as reduced

36In both cases flow thresholds were manually tuned.
37Present on current versions of Matlab.
38In our testing using Matlab, a RTX 3060 Mobile proved to be significantly slower (1.5 - 2× depending

on matrix dimensions) than an 8 core AMD Ryzen 7 5800H mobile CPU for randomly initialized single
precision matrices of sizes 6400 × 128 - the dimensions of the data matrices of 80× 80 pixel blocks with an
ensemble size of 128.

94



rank SVD calculation and random spatial downsampling, SVD clutter filtering has been
demonstrated in real time [49] – a real time implementation of the current framework would
represent a major step towards widespread clinical adoption.
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[23] C. Demené, J. Robin, A. Dizeux, B. Heiles, M. Pernot, M. Tanter, and F. Perren. Tran-
scranial ultrafast ultrasound localization microscopy of brain vasculature in patients.
Nature Biomedical Engineering, 5(3):219–228, 2021.

[24] D. Ghosh, F. Xiong, S. Sirsi, P. Shaul, R. Mattrey, and K. Hoyt. Toward optimization
of in-vivo super-resolution ultrasound imaging using size-selected microbubble contrast
agents. Medical Physics, 44(12):6304–6313, 2017.

[25] D. Ghosh, J. Peng, K. Brown, S. Sirsi, C. Mineo, P. Shaul, and K. Hoyt. Super-
resolution ultrasound imaging of skeletal muscle microvascular dysfunction in an animal
model of type 2 diabetes. Journal of Ultrasound in Medicine, 38(10):2589–2599, 2019.

[26] A. Yu and R. Cobbold. Single-ensemble-based eigen-processing methods for color
flow imaging-part i. the Hankel-SVD filter. IEEE Transactions on Ultrasonics, Ferro-
electrics, and Frequency Control, 55(3):559–572, 2008.

[27] A. Yu and L. Lostakken. Eigen-based clutter filter design for ultrasound color flow
imaging: A review. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency
Control, 57(5):1096–1111, 2010.
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