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Abstract

For a structural system consisting of multiple columns, horizontal discrete braces are often

used to increase the system’s load-carrying capacity by reducing the columns’ effective

length. Over the past several decades, Winter’s model has been extensively adopted to

investigate the stiffness and strength requirements of bracing for multi-column systems.

However, as Winter’s model simulates the column as two perfectly-straight rigid members

pin-connected at ends, it neglects the column’s flexibility and initial curvature as well as

the stiffness of end connections. As a consequence, the pertinent research and standards

are limited to multiple columns with pin ends and may yield unconservative results due to

neglecting the column initial curvature. In addition, the specifications in current standards

are based on the cases in which the column sizes, applied loads, and braces are the same

(referred to as uniform stiffness), which restrains its practical application scenarios. There-

fore, the effect of nonuniform stiffness, i.e., different column sizes, applied loads, or brace

stiffness, on the bracing requirements for multi-column systems has not been investigated.

A new analytical model (half-length column model) is proposed in this thesis to consider

the aforementioned factors neglected in Winter’s model. The bracing requirements for

a single semi-rigidly connected column with a lateral brace at the mid-height obtained

by employing the proposed model are investigated and compared with those obtained by

following current standards. It is found that considering the column initial curvature will

magnify the additional lateral displacement induced by the applied load and subsequently

increase the brace force, as expected. Hence, the bracing requirements for a single column

specified in current standards may be underestimated in some cases.

By extending the proposed half-length column model to multiple columns, an analytical

method is proposed to evaluate the ideal brace stiffness and brace forces for multi-column

systems with nonuniform stiffness by formulating the stiffness interaction among columns

and braces. Explicit solutions and empirical equations are attained to evaluate the ideal

brace stiffness and maximum brace force for systems with uniform column stiffness. The

results of the presented numerical examples indicate that the design equations in current

standards are not applicable to cases with nonuniform column stiffness.

Due to the interactive relationship between the brace stiffness and brace force in multi-

column systems, the design process of evaluating the maximum brace force and column
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lateral displacement with presupposed brace stiffness may require cumbersome iterations

and overestimate the bracing requirements. Therefore, instead of presupposing the brace

stiffness to calculate the brace forces and column lateral displacements, the bracing require-

ments are converted to preconditions and incorporated into the formulations established

in the proposed method to assess the minimum brace area for a single column and multi-

column systems, thus circumventing the iteration process.

Instead of assuming all the brace stiffness to be uniform, the effect of nonuniform brace

stiffness on bracing requirements is also investigated. The effect of solid blocking on bracing

requirements for cold-formed steel bearing walls is assessed, indicating that considering

solid blocking will always reduce the bracing requirements, which is not considered in the

current standards. An optimization problem is proposed to investigate alternative bracing

patterns that are more economical than the uniform bracing pattern.

As building fires are responsible for momentous losses of property and life, fire safety

has become an inseparable part of structural design, especially for steel structures. Also,

it has reached a consensus in the structural fire research community that the creep effect

should be considered when evaluating the fire resistance of steel members because it will

decrease the material stiffness, thus leading to larger deformations and premature failure. A

numerical method is established in this thesis to assess the column’s mid-height deflection

at elevated temperatures induced by the creep effect. The method is validated against the

creep buckling tests on steel columns at elevated temperatures. In particular, it has been

found that the creep-induced deflection of the steel column is led by the nonuniform strain

and stress distributions on the cross-section, which is triggered by the initial imperfection.

As the assumptions adopted in the proposed numerical method are experimentally

verified to be reasonable, a simplified formulation is proposed to evaluate the creep effect

on the column lateral stiffness at elevated temperatures. Analytical expressions are proposed

to attain the additional column lateral displacements and internal forces induced by the

thermal expansions of braces. The modified plastic-hinge method is adopted to account

for the adverse effect of partial yielding on the lateral stiffness of steel columns at elevated

temperatures. Finally, a numerical method is established incorporating the effects of thermal

expansions of braces, and partial yielding and creep of columns, to evaluate the critical

temperature of multi-column systems.
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As necessary, finite element modelling is used to validate the theoretical accuracy of

the proposed methods. Overall, the proposed model and analytical methods in this study

are comprehensively applicable to assessing the bracing requirements for multi-column

systems, providing certain reference significance for researchers and engineers.
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Chapter 1

Introduction

1.1 Background

For multi-column systems such as industrial buildings and cold-formed steel bearing walls,

horizontal bracing is an efficient and common way to improve the stability and strength

of columns by reducing the columns’ effective length. Such bracing needs to fulfill both

strength and stiffness requirements to ensure the stability of the multi-column system [6].

For simplicity, Winter [7] proposed a model in which the column is divided into two perfectly

straight and rigid members pin-connected at ends to investigate the bracing requirement

for a single column. Subsequently, Winter’s model has been widely adopted and extended to

assess the bracing requirements for multi-column systems [5, 8, 9]. The universally accepted

philosophy of determining the required brace stiffness is to compute the ideal brace stiffness

first, which refers to the minimum stiffness required for braces to ensure that the full

buckling strength of the braced system can be achieved [5]. The analysis regarding ideal

brace stiffness can be carried out by investigating perfect systems without considering

possible column initial imperfections. However, the presence of initial imperfections would

theoretically result in infinite brace forces when the columns are subjected to their buckling

loads and the braces possess the ideal brace stiffness. For that reason, the brace stiffness

must be magnified from the ideal brace stiffness to a certain value to reduce the brace

forces from infinity to an acceptable magnitude. It is stipulated in AISC 360-16 [10] and AISI

S100-16 [11] that the brace stiffness shall be at least twice the ideal brace stiffness (stiffness

requirement) to reduce the strength demand for bracing members. Then, the maximum
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brace force, i.e., strength requirement for bracing members, in a multi-column system is

attained with the brace stiffness being twice the ideal brace stiffness. Finally, the stiffness

of the bracing member is determined according to the stiffness and strength requirements.

Although the research regarding determining the ideal brace stiffness [5, 8, 9] and brace

forces [12–16] for multi-column systems has been well conducted, there are still several

important issues that need to be addressed:

1. Due to adopting Winter’s model, the previous studies assume that the column ends

are pin-connected. However, realistic connections at column ends possess a certain

degree of rotational restraint; thus, the column ends should be considered semi-rigid

to accurately predict the stability of the system.

2. As Winter’s model simulates the column as two perfectly straight rigid members, it

neglects the column’s flexibility and initial curvature, which will magnify the additional

displacement induced by the applied load and consequently increase the brace force

[10, 17]. Therefore, the effect of column initial curvature on brace forces in multiple

columns needs to be investigated.

3. Considering the previous studies were limited to the system in which all the columns

and braces are identical, there is a lack of research on the system with nonuniform

column stiffness and brace stiffness.

1.2 Scope and Objectives

The purpose of this study is to develop a comprehensive, analytical design methodology

for evaluating the bracing requirements of multi-column systems. On account of the afore-

mentioned issues, the methodology should consider the effects of stiffness of column end

connections, column flexibility, and column initial curvature. Also, this methodology should

be applicable to systems in which the column sizes, brace sizes, end connections, or applied

loads are not limited to being identical. The objectives of this research are outlined below:

• To investigate the effects of the column’s flexibility and initial curvature as well as the

end connection stiffness on bracing requirements. Given that these factors are not
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considered in Winter’s model [7], it is therefore necessary to establish a new analytical

model.

• To propose an analytical method of assessing the ideal brace stiffness and brace forces

for multi-column systems by accounting for the stiffness interaction among columns

and braces.

• To propose simple-to-use expressions for the ideal brace stiffness and maximum brace

force for systems with uniform stiffness.

• To propose an analytical method for evaluating the minimum required brace stiffness

satisfying the bracing requirements.

• To compare the results obtained from the proposed methods against those obtained

from the current standards.

• To investigate the effect of nonuniform bracing on bracing requirements, which has

not been considered in the previous research and current standards.

• To propose a numerical method of assessing the creep effect on the column stability

at elevated temperatures.

• To extend the proposed methods towards fire scenarios, including determining the

critical temperature of braced multi-column systems.

The scope of research work presented in this study regarding bracing requirements

for multi-column systems is completely analytical and involves a number of theoretical

derivations. Examples and parametric studies are presented in each chapter to illustrate

the application of the proposed method and illustrate how design parameters influence

the ideal brace stiffness, brace forces, and bracing requirements. Where necessary, finite

element analyses (FEA) were carried out to verify the accuracy of the proposed methods.

Overall, compared to alternative methods such as finite element modelling and second-

order analysis that may suffer from the disadvantage of complexity, the proposed methods

are relatively easy to use and understand given the simplicity of the derived, closed-form

equations.
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1.3 Thesis Organization

The contents of each section in this thesis are outlined as follows:

• Chapter 2 reviews the current research and standards pertaining to all concepts incor-

porated in the proposed methods.

• Chapter 3 illustrates the development of the proposed analytical model for a single

semi-rigidly connected column. The relationship among the column’s mid-height

deflection, applied axial load, and lateral force is derived. The bracing requirements for

a single semi-rigidly connected column are investigated to demonstrate the differences

between the results obtained from the proposed model and Winter’s model.

• Chapter 4 proposes the analytical methods for determining the ideal brace stiffness

and brace forces for multi-column systems by formulating the stiffness interaction

among columns and braces. In particular, the effect of nonuniform column lateral

stiffness on ideal brace stiffness and brace forces is investigated.

• Chapter 5 presents an analytical method to determine the minimum required stiffness

of bracing members for a single column and multi-column systems. By employing the

methods proposed in Chapter 4 and Chapter 5, the results of the required stiffness of

bracing members following two different design philosophies are compared.

• Chapter 6 investigates the effect of solid blocking on bracing requirements for multi-

column systems. In addition, an optimization problem is proposed to explore the

minimum total bracing stiffness with nonuniform bracing stiffness.

• Chapter 7 proposes a numerical method of assessing the creep buckling behaviour, i.e.,

the creep-induced deflection of steel columns at elevated temperatures. The numerical

method is verified against the experimental results, and the failure mechanism of creep

buckling is investigated.

• Chapter 8 extends the proposed methods to evaluate the critical temperature of multi-

column systems with the considerations of effects of thermal expansion of braces,

partial yielding and thermal creep.
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• Chapter 9 summarizes the main conclusions drawn from this thesis and provides

some recommendations for future research.
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Chapter 2

Literature Review

2.1 Bracing Requirements for Multi-column Systems

For multi-column systems, intermediate bracing is an efficient approach to increase the

column strength by reducing the column effective length; thereby, it has been widely adopted

in engineering practice. By adopting a single column-brace model proposed by Winter [7],

the stiffness and strength requirements of the bracing for a single column have been well

investigated by researchers [18–20] and documented in standards [10, 11, 21]. However,

when it comes to multiple columns, the corresponding bracing requirements are not clearly

specified in current standards except for the revisions recently adopted in AISI S100-16 [11].

In this section, Winter’s model is briefly introduced first. Next, the bracing requirements

for multi-column systems in existing research and current standards are reviewed. Finally,

some overlooked aspects of current research and standards are discussed.

2.1.1 Winter’s model

A simplified model was proposed by Winter [7] to assess the stiffness and strength require-

ments for the brace at mid-height of a column with pin ends, as shown in Fig. 2.1. Winter’s

model divides the column into two rigid segments at the brace point and introduces a

fictitious hinge to connect the two rigid segments and brace, as illustrated in Fig. 2.1a. If

the column’s initial imperfection ∆0 is to be considered (Fig. 2.1b), the relationship between
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the total deflection and the brace stiffness can be obtained via the equilibrium expressed in

Eq. (2.1a). Then, the mid-height deflection ∆ can be written as Eq. (2.1b).

P

L

L

(a)

P

Δ0

Δ 2Sb

(b)

P

Δ0+Δ
ΔSb

(c)

Figure 2.1: Force diagram of Winter’s model

P (∆0 +∆) = Sb∆L (2.1a)

∆= P∆0

SbL−P
(2.1b)

where Sb is the brace stiffness and ∆ is the additional displacement induced by the applied

load, P .

Although it has been extensively used in research and practice regarding bracing re-

quirements, Winter’s model adopts certain assumptions which may hinder its applications.

First, Winter’s model neglects the column flexural stiffness by adopting rigid segments and

a fictitious hinge. As such, the column stability solely relies on the support of the brace.

In a multi-column system, columns possessing a greater lateral stiffness can be referred to

as “strong" columns. In resisting system instability, “strong” columns can provide certain

degrees of lateral support to “weak” columns in addition to that of the brace. Such column

stiffness interaction is neglected when Winter’s model is adopted. Second, although the

out-of-plumbness of the half-length column is introduced in the model, the initial curvature

(the lateral deflection of a member relative to its cord [17]) is not considered, which will

result in additional lateral displacement of the column. Furthermore, Winter’s model is not

applicable to columns with semi-rigid connections.
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2.1.2 Ideal brace stiffness of Winter’s model

For multiple compressive members, Tong and Chen [8, 22] established the theoretical bases

for the stiffness and strength requirements of bracing that can reduce the column effective

length by half. In the assessment of brace stiffness requirement, the ideal brace stiffness Sb,id

is a crucial indicator, which is determined such that the half-column’s non-sway buckling

load equals its sway buckling load, and an increase in brace stiffness beyond the ideal value

will not increase the buckling strength of the multi-column system.

For a single column, the ideal brace stiffness Sb,ids is obtained by the equilibrium at the

hinge of Winter’s model (Fig. 2.1c) as:

Sb,ids =
2Pcr

L
(2.2)

where Pcr is the critical buckling load of the half-length column. For a system consisting of

multiple identical compressive members, Ziemian and Ziemian [5] indicated that its ideal

brace stiffness Sb,idt can be expressed using the product of a scale factor amax and the ideal

brace stiffness for a single column Sb,ids, as below:

Sb,idt = amaxSb,ids (2.3)

By fitting the analytical results, Ziemian and Ziemian [5] proposed an easy-to-use formula

to calculate the value of amax, as expressed in :

amax = 0.4N 2 + (0.4+ c)N +0.2 (2.4)

where N = n/ j in which n is the number of columns in the system, and j is the number of

ends anchored; j = 1 or 2. c is the ratio between the stiffness of tie bracing and anchor brac-

ing. If the system is braced with one or two rigid anchors, c = 0. Eq. (2.4) was demonstrated

to be useful for dealing with systems of multiple columns with discrete bracing between

columns, such as that presented in Fig. 2.2.
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Solid Blocking

Screw 
Attachment

(a) Diagram [9] (b) Example [23]

Figure 2.2: Discrete blocking between columns

Subsequently, to investigate the effect of shear connectors on the ideal brace stiffness of

tie-bracing for multi-column systems depicted in Fig. 2.3, Ziemian and Ziemian [9] propose

a more general single column-brace model in which the shear connector is connected in

series with the adjacent tie-bracing. It was found that a decrease in the shear connector

stiffness leads to higher ideal brace stiffness of the tie-bracing. Taking the shear connector

and the tie-bracing as the discrete bracing as per Fig. 2.2, the shear connector stiffness

shall be larger than the ideal brace stiffness of the discrete bracing; otherwise, the stiffness

resulting from the shear connector and tie bracing is less than the ideal brace stiffness, even

if the tie-bracing stiffness is theoretically infinite. Based on the thorough analytical results,

Ziemian and Ziemian [9] proposed empirical expressions to evaluate the ideal brace stiffness

for multi-column systems considering the effect of shear connectors.

Clip Angle with Screw 
or Weld Attachment

Cold Rolled Channel

(a) Diagram [9] (b) Example

Figure 2.3: Continuous cold-rolled channel attached to studs with shear connectors

Despite the successful achievements being made in the previous studies, further research
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advancements can certainly be made in the following aspects. First, due to the adoption of

Winter’s model, the research is based on the assumption that the column is pin-connected.

The effect of column end connection stiffness on ideal brace stiffness is yet to be investi-

gated. Second, since all the multi-column systems investigated in the foregoing research are

comprised of identical columns and the axial loads applied on columns are assumed to be

identical; thereby, the bracing requirements for systems with nonidentical columns or with

identical columns but different applied loads need to be investigated.

2.1.3 Brace force of Winter’s model

As the analysis regarding ideal brace stiffness is based on bifurcation theory, it can be carried

out by investigating perfect systems without considering possible column initial imperfec-

tions. However, the presence of initial imperfections would theoretically result in brace

forces becoming infinite when the columns are subjected to their non-sway buckling loads

and the braces possess the ideal brace stiffness, as illustrated by the solid line associated

with Sb = Sb,ids in Fig. 2.4. This is unacceptable as the strength requirement for bracing

members cannot be fulfilled.

∆ = ∆0

Sb = Sb,ids 

Sb = 2Sb,ids 

Sb = 3Sb,ids 

0 2

∆0

4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

(∆ + ∆0)/∆0

P
/P

e

Figure 2.4: Effect of brace stiffness on additional displacement [10]

Pe =π2Ec Ic /L2 is the elastic non-sway buckling load of a column with pin ends. Theo-

retically, increasing the brace stiffness can reduce the brace forces induced by applied axial

loads on columns. To that end, standards such as AISC 360-16 [10] and AISI S100-16 [11]
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stipulate that the brace stiffness is taken as two times the ideal brace stiffness to ensure

that the additional displacement equals the initial imperfection, ∆=∆0, when the column is

subjected to its non-sway buckling load, as per Fig. 2.4. Based on the equilibrium of Winter’s

model (Fig. 2.1c), the brace force Qb with P = Pe is:

Qb = 2Sb∆= 4Pe∆0

L
(2.5)

By doing so, with the required brace stiffness being two times the ideal brace stiffness,

the corresponding brace force can be attained from Eq. (2.5) in terms of Pe if ∆0 is given.

For most current standards [10, 11, 24], the initial imperfection tolerance is taken as L/500,

and thus the brace force is 0.8%Pe with Sb = 2Sb,ids and ∆0 = L/500, as shown in Fig. 2.5 .

Blum et al. [13] indicated that a lower brace stiffness of 1.33 times the ideal brace stiffness

could also significantly reduce the brace forces to an acceptable level of 1.6%Pe , providing

greater leeway for designers.

Sb = Sb,ids 

Sb = 2Sb,ids 

0 1 2 3
0

0.2

0.4

0.6

0.8

1

Qb (% of P)

P
/P

e

∆0 = L/500

0.8

Sb = 1.33Sb,ids 

1.6

Figure 2.5: Effect of brace stiffness on brace force

However, Winter’s model neglects the fact that the initial curvature associated with

the half-column’s initial out-of-straightness results in additional lateral displacement of

the column, which consequently will increase the brace force. For that reason, several

standards [10, 11, 24] increase the theoretical value of 0.8%Pe to 1%Pe in an attempt to

compensate for neglecting the column curvature and continuity [10]. Nevertheless, whether

the amplification of brace force by 25% (from 0.8% to 1%Pe ) is still adequate for columns

with semi-rigid end connections is yet to be answered. Therefore, the effect of column initial
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curvature on the brace force of a semi-rigidly connected column is to be investigated in

Chapter 3.

2.1.4 Bracing requirements in current standards

The simplified analysis in CSA S16-19 [21] requires that the brace strength shall be at least

0.02 times the factored compressive force at the braced member. Alternatively, the direct

method in CSA S16-19 [21] can be used to calculate the required brace force for a single

column:

Q̄1 = βbr (∆0 +∆b)P

Lcb
(2.6)

where βbr is a coefficient varying with the number of brace points along the column height,

e.g., βbr = 2 for columns with a brace at the mid-height. Lcb is the length between braces,

∆0 is the initial misalignment of the member at a brace point, and ∆b is the sum of the brace

deformation, the brace connection deformation, and the brace support displacement. For

multiple columns, the reduction factor η in Eq. (2.7) can be applied to decrease ∆0 with the

consideration of the initial imperfection randomness [21].

η= (0.2+0.8
p

n) (2.7)

where n is the number of members being braced. For multiple compressive members braced

at the mid-height, with βbr = 2, ∆b =∆0 = Lcb/500, the maximum brace force is:

Qn = 0.8%ΣP (0.2+0.8
p

n) (2.8)

where
∑

P is the summation of gravity loads applied on the columns. However, if the

simple analysis is adopted, Qn = 2%ΣP (0.2+0.8
p

n), which is considerably greater than that

obtained from the direct method.

The Eurocode EN 1993-1-1 [24] specifies that the brace force for multiple columns is:

Qn = 1%ΣP
√

0.5((1+1/n)) (2.9)

While stipulating that the brace force shall be at least 1% of the axial compressive load

for a single column, AISC 360-16 [10] does not clearly specify the brace strength requirement

for multiple columns. For multiple members, as per AISC 360-16, if the use of an average

initial displacement recommended by Chen and Tong [25] is adopted, the brace force is:

Qn = 1%ΣP/
p

n (2.10)
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The Chinese standard GB 50017-2017 [26] stipulates that the bracing force Qn is deter-

mined by:

Qn =∑
P (0.6+ 0.4

n
)/60 (2.11)

The Australian standard AS4100-2020 [27] specifies that the brace force Qn should be

calculated by:

Qn = 0.025Pmax +0.0125(
∑

P −Pmax) (2.12)

where Pmax is the maximum gravity load.

AISI S100-16 [11] requires the following brace strength for multiple parallel members.

P r b = 0.5

j

(
1+ 1p

n

)∑
P r b,i (2.13a)

P r b,i = 0.01P r a,i (2.13b)

where P r b is the required brace strength to brace multiple parallel members; P r a,i is the

required compressive axial strength of the i th member; P r b,i is the required brace strength

of the i th member; j is the number of brace anchor ends ( j = 1 or 2). For a system with

tension-only braces, two anchor ends shall be provided with j taken as 1.

Apparently, there are pronounced discrepancies among the bracing requirements stipu-

lated in standards in different countries. For a single column, 1% of the applied axial load

is adopted as the brace strength requirement in EN 1993-1-1 [24], AISC 360-16 [10], and

AISI S100-16 [11], but 0.8%, 2%, 1.67%(1/60), and 2.5% in CSA S16-19 simplified analysis,

CSA S16-19 direct method, GB 50017-2017 [26], and AS4100-2020 [27], respectively. The

comparison of the brace forces for a single column between the analytical result obtained

from the newly proposed model and the predictions obtained from AISC 360-16 [10] and

CSA S16-19 [21] is discussed in Chapter 3. Except for AS4100-2020 [27], the brace strength

requirements for multiple columns in these standards are specified in the form of scaling the

sum of applied axial loads on all columns with considering the initial imperfection reduction.

Only AS4100-2020 [27] considers the effect of a nonuniform load pattern on the brace force

by applying a larger scaling factor to the maximum axial load. However, AS4100-2020 does

not account for the favourable effect of the initial imperfection randomness on the brace

force, which tends to be overly conservative in this regard. Only AISI S100 [11] specifies

that the brace strength requirement can be reduced by half if the multi-column system is

anchored on both sides and the braces are not tension-only. In a nutshell, the effects of
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semi-rigid connections and load patterns on the brace force for multiple columns are not

introduced in current standards, which are to be investigated in Chapter 4.

2.2 Storey-Based Stability of Semi-rigidly Connected Frames

Since 1960’s, the alignment chart method has been commonly used in practice to evaluate

the capacity of columns in continuous frames by assessing the column effective length factor,

K [28]. Because of its simpleness, the alignment chart method is still adopted in current

standards [10, 21] in lieu of an actual stability analysis to evaluate the capacity of a frame.

However, as might be expected, the overall loading capacity of a frame is usually higher than

the prediction based on its individual members due to the capacity of redistribution of loads

in frames. The concept of storey-based stability was primarily developed by Higgins [29],

Salem [30], and Yura [28], under the notion that the overloaded columns in a frame can

be laterally supported by other columns as long as the capacity of the whole frame is not

exceeded, so that the sidesway buckling of the frame must occur with all columns in a storey

buckling simultaneously.

Subsequently, Yura [28] and LeMessurier [31, 32] proposed the storey buckling approach

and storey stiffness approach, respectively, to evaluate the stability of storey frames. Nev-

ertheless, the approaches by Yura [28] and LeMessurier [31, 32] are still based on the as-

sessment of column effective length, which can be tedious and confusing when designing

structures containing leaning columns [10].

Besides neglecting the interaction among columns, another important assumption in

the development of the alignment charts is that all columns are rigidly connected to beams,

which is not realistic and as such may produce overestimated results. Following the storey-

based concept, Xu and Liu [33] derived an analytical method to evaluate the stability of a

planar frame with semi-rigid connections. The generalized visualization of the semi-braced

and semi-rigidly connected storey frame analyzed by Xu and Liu [33] is presented in Fig. 2.6.
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Figure 2.6: Generalized semi-rigidly connected semi-braced storey frame analyzed by Xu

and Liu [33]

The n-bay frame illustrated in Fig. 2.6 consists of n beams and n + 1 columns. E , I ,

L, and A are the elastic modulus, in-plane moment of inertia, length, and cross-sectional

area of the members. R is the rotational stiffness of the beam-to-column connection or the

column base connection. P is the applied gravity load. For the symbols of section properties,

the subscripts c , b, and br correspond to columns, beams, and diagonal braces, respectively.

Accordingly, let the subscript i , j , and k stand for the numbering, from left to right, of the

columns (connections), beams, and diagonal braces, respectively. Rl ,i , Rule, j , Rur i , j are the

rotational stiffness of the connections at the lower end of column i , the left end of beam

j , and the right end of beam j , respectively. The total bracing stiffnesses provided by the

diagonal braces in the frame can be calculated by:

Sbr,t =
m∑

k=1

[
Ebr,k Abr,k

Lbr,k

(
1

1+ (
Abr,k /Ac,k

)
sin3θk

)
cos2θk

]
(2.14)

where θk is the angle of the brace with respect to the horizontal direction, as per Fig. 2.6.

Ac,k is the cross-sectional area of the column connecting the top end of brace k. If Ac ≫ Abr

then the sine term in Eq. (2.14) can be ignored, and thus Eq. (2.14) can be simplified as:

Sbr,t =
m∑

k=1

[
Ebr,k Abr,k

Lbr,k
cos2θk

]
(2.15)

It should be noted that the presented expressions of Sbr,t only apply to tension-only

bracing. Xu and Liu [33] adopted the end-fixity factor proposed by Monforton and Wu [34]
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to represent the rotational restraint at the ends of columns, as below:

ru,i = 1

1+ 3Ec,i Ic,i

R̄u,i Lc,i

(2.16a)

rl ,i =
1

1+ 3Ec,i Ic,i

R̄l ,i Lc,i

(2.16b)

where R̄u,i and R̄l ,i are the effective value of restraint stiffness at the upper and lower end

of the column, respectively. For the storey frame shown in Fig. 2.6, R̄l equals the rotational

stiffness of the base connection, Rl , and R̄u is evaluated based on the beam-to-column

connection stiffness and flexural stiffness of beams [35], as expressed in

R̄u,i = R ′
ule,i +R ′

ur i ,i−1 (2.17a)

R ′
ule,i =

6zle,i

4− zle,i zr i ,i

Eb,i Ib,i

Lb,i
(2+ v zr i ,i ) (2.17b)

R ′
ur i ,i−1 =

6zr i ,i−1

4− zr i ,i−1zle,i−1

Eb,i−1Ib,i−1

Lb,i−1
(2+ v zle,i−1) (2.17c)

where R ′
ule,i and R ′

ur i ,i−1 are the values of restraint stiffnesses provided by the corresponding

beam and connecting beam-to-column connection. zle,i and zr i ,i are the end-fixity factors

of the left and right end of beam i , respectively, calculated via:

zle,i =
1

1+ 3Eb,i Ib,i
Rule,i Lb,i

; zr i ,i = 1

1+ 3Eb,i Ib,i
Rur i ,i Lb,i

(2.18)

where v is the ratio of joint rotation of the far end θF to the joint rotation of near end

θN . Xu [35] indicated that adopting v = 1 associated with the asymmetric buckling mode

can yield sufficiently accurate results. Alternatively, the value of v can be obtained using

numerical analysis for better accuracy [36]. Theoretically, the magnitude of an end fixity

factor r ranges from zero to unity, which corresponds to an idealized pinned and an idealized

fixed connection, respectively. The advantages of adopting r are that it avoids the possible

mathematical issues arising from assuming connection stiffness as infinity, i.e., R =∞, and

it is more intuitive for engineers to assess the level of restraints on members.

By compiling the stiffnesses of diagonal bracing into Sbr,t and using end-fixity factor

r to describe the restraints from the connections and adjacent beams on columns, the

generalized semi-rigid frame in Fig. 2.6 can be further simplified as the system illustrated in

Fig. 2.7.
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Figure 2.7: Generalized diagram of the storey frame with end-fixity factor

As a consequence, the total lateral stiffness of the system shown in Fig. 2.7 can be

expressed as Eq. (2.19) [33].

ΣS =
(

n+1∑
i=1

Sc,i

)
+Sbr,t =

n+1∑
i=1

12Ec,i Ic,i

L3
c,i

βi +Sbr,t (2.19)

where ΣS is the lateral stiffness of the storey frame, taken as the summation of the lateral

stiffnesses of individual columns, Sc,i and the total diagonal bracing stiffness, Sbr,t.

It is worth noting that the premise of using Eq. (2.19) is that beams in the frame can be

assumed to be axially rigid, and thus all the columns have the identical lateral displacement

induced by possible lateral force or the P−∆ effect. In this way, the column lateral stiffnesses

are additive. β is a modification factor accounting for the effect of axial force on the stiffness

and can be calculated from Eq. (2.20) [35].

β= f (φ,rl ,ru) = φ3

12

a1φcosφ+a2 sinφ

18rl ru −a3 cosφ+ (a1 −a2)φsinφ
, φ> 0 (2.20a)

a1 = 3[rl (1− ru)+ ru(1− rl )] (2.20b)

a2 = 9rl ru − (1− rl )(1− ru)φ2 (2.20c)

a3 = 18rl ru +a1φ
2 (2.20d)

φ= L
√

Nc /Ec Ic (2.20e)

where φ is the axial load coefficient, and Nc is the compressive axial force in the column. The

derivation of Eqs. (2.20) is based on Euler-Bernoulli theory, and only flexural deformations

are considered, neglecting the shear and axial deformations of members.

If β> 0, i.e., Sc > 0, then the column has sufficient retention capacity to bear the axial

load by itself and can provide lateral support to other columns in the frame. While a

17



column with β≤ 0 requires the support from other columns to maintain its sidesway stability.

Consequently, ΣS is an indicator of the frame’s lateral instability: the frame is stable only if

ΣS > 0 and unstable when ΣS = 0. Note that β decreases non-linearly and monotonically

with the increase of axial load Nc until rotational buckling occurs. When the axial load in

the column is zero (φ= 0), Eq. 2.20a converges to

lim
φ→0

β=β0 = rl + ru + rl ru

4− rl ru
(2.21)

Additionally, for leaning columns where ru = rl = 0, the lateral stiffness Sc converges to the

column geometric stiffness, −Nc /Lc :

lim
rl→0,ru→0

Sc =−Nc

Lc
(2.22)

2.2.1 Non-sway buckling of columns

The previous section shows that the lateral stiffness of a semi-rigidly connected column is

a product of 12Ec Ic /L3
c and β, and β is a non-linear function of φ, rl , and ru . It should be

pointed out that Eq. (2.20) is only applicable when the column is in compression (Nc > 0)

and does not experience yielding failure and flexural rotational buckling:

0 ≤ Nc,i < Pcr,i =
π2Ec,i Ic,i(

Ki Lc,i
)2 (2.23a)

Nc,i < Py,i = fy Ac,i (2.23b)

where Pcr,i and Ki are the rotational (non-sway) buckling load and the effective length factor

of column i , respectively. Py,i is the yielding strength of column i , and fy is the yield stress of

steel. The column non-sway buckling load Pcr can be obtained by setting the denominator

of β in Eq. (2.20a) to zero, as expressed in

18rl ru −a3 cosφu + (a1 −a2)φu sinφu = 0
(
φu > 0

)=⇒ Pcr =
φ2

uEc Ic

L2
c

(2.24)

Due to the transcendental function in Eq. (2.24), root-finding algorithms are required to

obtain the value of φu . Ma [37] indicated that the Newton-Raphson method [38] converges

well when an initial value φu,0 =π/Kapp is adopted. The approximate value of the effective

length factor Kapp can be obtained from the equation proposed by Newmark, as below:

Kapp =
[
π2 + ru(6−π2)

]× [
π2 + rl (6−π2)

][
π2 + ru(12−π2)

][
π2 + rl (12−π2)

] (2.25)
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Although multiple roots exist in Eq. (2.24), corresponding to different buckling modes,

they will not typically be encountered when taking φu,0 =π/Kapp as the initial value because

this value is very close to the exact solution of φu .

2.2.2 Inelastic buckling of columns

All the aforementioned formulae are limited to the elastic stability analysis of steel frames,

assuming that the columns in a frame will be adequately slender; thus, no inelastic buckling

or yielding failures will occur prior to lateral instability. However, columns with slenderness

ratios corresponding to inelastic buckling are commonly adopted in engineering practice.

In the case that columns behave inelastically, the inelastic stiffness reduction factor τb

specified in AISC 360-16 [10] can be adopted to account for the inelastic buckling of the

columns [5], as below:

Pcr = π2EtanI

(Kp L)2
, with Et = τbE (2.26a)

τb =
 1 Pcr

Py
≤ 0.5

4 Pcr
Py

(
1− Pcr

Py

)
Pcr
Py

> 0.5
with Py = Ac fy (2.26b)

where Kp is the column effective length factor for inelastic analysis. If the values of end-fixity

factors are predetermined, the effective length factor for inelastic analysis equals that for

elastic analysis. Accordingly, Eq. (2.26) can be directly used to calculate τb with Kp = K . But

if the connection stiffness R is given, the reduced elastic modulus Et will affect the end-fixity

factor defined in Eq. (2.16) and subsequently affect the effective length factor Kp . In that

case, substituting the expression of Pcr in Eq. (2.26a) into Eq. (2.26b) and replacing the elastic

modulus E in Eq. (2.24) by Et = τbE give the expressions involving τb and Kp , as shown in

Eqs. (2.27). As such, the values of τb and Kp can be obtained by solving Eqs. (2.27) [1].

π2τbEc Ic(
Kp Lc

)2 −
[

1− Ac fy
(
Kp Lc

)2

4π2Ec Ic

]
A fy = 0 (2.27a)

18rl ru −a3 cosφu + (a1 −a2)φu sinφu = 0 (2.27b)

where

φu =π/Kp (2.28a)

ri = 1

1+3Ecτb I /(Ri Lc )
(2.28b)
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2.2.3 Effects of axial deformations

As mentioned in Section 2.2, the storey-based stability approach by Xu [35] was developed

based on assuming all the beams are axially rigid, which is feasible for structures with

rigid floors or rigid roof diaphragms. However, due to neglecting the axial deformations

of beams, applying Eq. (2.19) to evaluate the instability of structures without rigid floors

or with flexible diaphragms, such as industrial workshops and storage racks, may yield

unconservative results. The research reported in [3] proposed a method to incorporate the

effect of beam axial deformations into evaluating the storey-based stability of steel frames

using the concept of equivalent spring stiffness. It was found that the effect of beam axial

deformations should not always be neglected in structural analysis as it will reduce the

lateral stiffness and critical load of a frame.

In contrast to beam axial deformations, the axial deformations in columns due to the

compressive loads will shorten the columns, thus increasing the lateral stiffness and capacity

by marginal amounts [37]. Therefore, the effects of column axial deformations are typically

neglected in structural design and analysis for the reason of conservation and convenience.

Likewise, the effects of column axial deformations on the stability of structures are not

considered in this study.

2.3 Fire-Structural Analysis

Admittedly, fire safety has become an inseparable part of structural design, especially for

steel structures that are vulnerable to fire hazards due to steel’s high thermal conductivity

and dramatic deterioration of mechanical properties at elevated temperatures.

Presented in Fig. 2.8 is a typical structural fire engineering (SFE) design process [39]. First,

the design fuel load is established according to the combustible material in a given space.

Once the design fuel load is attained, the fire development can be simulated with enclosure

and ventilation conditions. Then, the analysis regarding thermal response is carried out

based on the well-established theory of heat transfer to determine the temperature histories

of structural members. The structural response associated with temperature (time) can be

analyzed by modelling the structural system and incorporating the mechanical properties.

Compared to structural analysis at ambient temperature, the fire-structural analysis should
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account for the material nonlinearity, possible thermally induced stresses, and geometrical

imperfections, which play crucial roles in structural analysis at elevated temperatures.

Fuel load

Enclosure

Ventilation

Fire development

!ermal properties

!ermal reaction

Mechanical properties

!ermal response

Structural system

Structural responseRestraint

!ermal 
boundary 
conditions

Structural 
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Figure 2.8: Typical SFE design process [39]

As fire development is more within the fire engineering scope, structural fire engineering

typically only adopts design fires which prescriptively describe the gas temperature varia-

tions with time [39]. Accordingly, as this study mainly focuses on the structural response

of the multi-column systems, the research pertinent to steel mechanical properties, stress-

strain relationships, and the stability of steel frames at elevated temperatures is reviewed in

this section.

2.3.1 Mechanical properties of steel at elevated temperatures

The mechanical properties of steel, i.e., strength and modulus, deteriorate at elevated

temperatures, which subsequently reduces the strength and stiffness of structural steel

members in a fire. As a result, the mechanical properties of steel at elevated temperatures

are essential to achieve an appropriate fire analysis on steel structures. As the tensile

tests on steel at elevated temperatures are expensive and laborious, researchers establish

the mechanical properties of steel using the retention factors (a ratio of the mechanical

properties at elevated temperature to that at ambient temperature) obtained from the

existing experimental research or current fire design standards, together the measured

mechanical properties at the ambient temperature.

For a typical stress-strain relationship of steel at the elevated temperature, the definitions

of elastic modulus ET , proportional limit fp,T , and yield strengths are illustrated in Fig. 2.9.
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Conventionally, different yield strengths are introduced to characterize the stress-strain

relationships of steel at elevated temperatures due to the lack of an obvious yield plateau.

As shown in Fig. 2.9, the 0.2% offset yield strength ( f0.2offset) is the stress of the intersection

of the stress-strain curve and the proportional line offset by 0.2% strain [40]. The yield

strengths, f0.5, f1.0, f1.5, and f2.0 correspond to the stresses associated with the strains being

0.5%, 1.0%, 1.5%, and 2.0%, respectively. Generally, f0.2offset and f2.0 are more widely adopted

by researchers to portray the stress-strain curves of steel at elevated temperatures.

ET

1

f0.2offset

0 0.2 0.5 1.0 1.5 2.0

f0.5

f1.0 f1.5 f2.0

S
tr

es
s

Strain (%)

fp,T

Figure 2.9: Definitions of elastic modulus, proportional limit, and yield strengths at elevated

temperatures

The European Code EN 1993-1-2 [41] provides the retention factors for structural steel

at elevated temperatures, which are also adopted by AISC 360-16 [10], as presented in

Table 2.1, in which the yield strength fy,T corresponds to the stress associated with the

strain being 2.0%, f2.0. Note that EC3 [41] specifies alternative retention factors of yield

strength for the hot-rolled class 4 sections, represented as kyb in Table 2.1. allows that the

linear interpolation can be used for intermediate values of the steel temperature. With the

consensus of the international fire engineering and research community, the values in Table

2.1 have been widely used in fire design.

Studies [42–46] show that high-strength steels have different retention factors from mild

steels as they possess distinctive chemical compositions. There, since values in Table 2.1 are

mainly based on experimental results of steel with normal strength, AISC 360-16 stipulates

that Table 2.1 does not apply for steels with yield strengths in excess of 65 ksi (450 MPa).
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Moreover, the mechanical properties of cold-formed steels may vary from those of hot-

rolled steels due to the cold-forming procedure. The experimental research by Craveiro et

al. [47] indicates that the yield strengths predicted in current design standards [27,41,48] are

unconservative for low-strength (up to 350MPa) cold-formed steels. For cold-formed steels,

large variations were found among the existing experimental results of different cold-formed

steel sections [47, 49–52], or even different elements in the same section [53], due to the

different levels of cold-forming experienced in manufacturing.

Table 2.1: Temperature-dependent retention factors for steel specified in EN 1993-1-2 [41]

T (◦C) ky = fy,T / fy kp = fp,T / fp kE = ET /E kyb = fyb,T / fyb

20 1.000 1.000 1.000 1.00

100 1.000 1.000 1.000 1.00

200 1.000 0.807 0.900 0.89

300 1.000 0.613 0.800 0.78

400 1.000 0.420 0.700 0.65

500 0.780 0.360 0.600 0.53

600 0.470 0.180 0.310 0.30

700 0.230 0.075 0.130 0.13

800 0.110 0.050 0.090 0.07

900 0.060 0.0375 0.0675 0.05

1000 0.040 0.0250 0.0450 0.03

1100 0.020 0.0125 0.0225 0.02

1200 0.000 0.0000 0.0000 0.00

Given that there are no universally accepted retention factors for high-strength hot-rolled

and cold-formed steels at elevated temperatures, fire analyses on steel structures should

adopt the available experimental results of the used steel or adopt those of the steel with

equivalent grade and same type for better accuracy.
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2.3.2 Stress-strain models

Besides the deterioration of elastic modulus and yield strength discussed in the previous

section, another major characteristic of steel at elevated temperatures is that the yield

plateau almost disappears when the temperature exceeds 300 ◦C [49, 54, 55]. In the past

decades, various models were proposed to describe the stress-strain relationships of steel

at elevated temperatures, mainly consisting of multilinear approximations [56, 57], smooth

curves [58, 59] and the combination of linear and smooth curves [41, 60, 61]. Compared

to the multilinear models, the stress-strain relationship models with smooth curves are

more consistent with the inelastic material behaviour of steel at elevated temperatures, and

consequently can fit the experimental results more accurately. Two stress-strain models that

are mostly adopted in the current fire structural research community are introduced in this

subsection.

EC3 Model

The stress-strain curve specified in EN 1993-1-2 [41] (referred to as the EC3 model) is

subdivided into four portions and can be expressed in Eq. (2.29).

σ=



εET , ε≤ εp,T

fp,T − c + b
a

[
a2 − (

εy,T −ε)2
]0.5

, εp,T < ε< εy,T

fy,T , εy,T ≤ ε≤ εt ,T

fy,T (1− (ε−εt ,T ))/(εu,T −εt ,T ), εt ,T < ε≤ εu,T

(2.29)

where εp,T is the strain at the proportional limit; εy,T is yield strain, taken as 0.02; εt ,T is

limiting strain for yield strength, taken as 0.15; εu,T is ultimate strain, taken as 0.2; a, b and

c are coefficients related to the above parameters to depict the elliptical curve and are given

in:

a2 = (
εy,T −εp,T

)(
εy,T −εp,T + c/ET

)
(2.30a)

b2 = c
(
εy,T −εp,T

)
ET + c2 (2.30b)

c =
(

fy,T − fp,T
)2(

εy,T −εp,T
)

ET −2
(

fy,T − fp,T
) (2.30c)
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Ramberg-Osgood Model

In 1943, Ramberg and Osgood proposed [58] a formula, as given in Eq. (2.31), to describe

the stress-strain relationship of steel at ambient temperature.

ε=σ
E
+αr

(σ
E

)ηr
(2.31)

where αr and ηr are coefficients determined according to the experimental data. When the

stress is relatively small, as the value of the exponential term in Eq. (2.31) is insignificant,

the strain is governed by the term σ/E , and consequently the material exhibit almost linear.

Conversely, the material becomes more nonlinear as the stress increases. Such a charac-

teristic, plus its simple format, makes Ramberg-Osgood formula suitable to describe the

stress-strain curves of steel at elevated temperatures with appropriate modifications [59],

especially for cold-form steels [47, 52, 53, 62].

2.3.3 Creep effects on steel structures

The phenomenon of creep refers to the permanent deformation a material will undergo over

time, even under constant loading. Typically, the creep strain variation over time consists of

three stages: primary, secondary, and tertiary stages, as shown in Fig. 2.10. In the primary

stage, the creep strain rate is relatively high but decreases with time; in the secondary stage,

the creep strain rate remains stable; and in the tertiary stage, the creep strain accelerates

with time until rupture [63].

Experimental research [45, 64, 65] indicates that the creep strain path highly depends on

the temperature and stress levels; more importantly, it varies greatly among different types

of steel. Thereby, researchers [66–70] developed various mathematical expressions, referred

to as creep models, to describe the creep strain variations of steel at elevated temperatures.

As shown in the previous studies [4, 45, 65], Fields and Fields creep model [67] exhibits good

agreements with creep test results of different steel types. In addition to its simple format, as

expressed in Eq. (2.32), Fields and Fields creep model has been widely used in fire structural

analyses [70–72].

εcp = at bσc (2.32)

where εcp is the creep strain; t is time; a, b and c are coefficients determined by fitting the

creep test results.
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Figure 2.10: Typical creep strain curve

For steel structures, the creep effect is usually neglected in design at ambient temperature

due to the extremely low creep strain rate. However, research [73] indicates that the creep

strain rate becomes dominant when the temperature reaches 30% of the melting point of

metals, corresponding to around 400◦C for steel. Accordingly, when it comes to the fire

design of steel structures, the creep strain increases rapidly at elevated temperatures, which

reduces stiffness and consequently increases deformations of steel members. In the past

several decades, it has reached a consensus in the research community of fire-structural

analysis [74–77] that the creep effect should not be neglected for steel structures to avoid

unconservative predictions of structural behaviour at elevated temperatures.

Huang et al. [75] used the finite element software FEMFAN2D to analyze the structural

behaviour of restrained steel columns subjected to fire. The study shows that creep should

be considered in fire analysis even for cases in which steel columns are heated at rapid

paces, and the creep effect can be significant over 350◦C for some extreme cases. Li and

Zhang [76] investigated the creep effect on the buckling temperature of restrained steel

columns. Different from their adverse effects on unrestrained steel columns, the creep

strains in the axially restrained steel columns can partially release the thermal-induced

compressive force, which may result in a higher buckling temperature. A finite element

model for simulating the fire behaviour of a high-strength steel column was established in

ABAQUS by Wang et al. [77] with considering the creep effect, and the model was validated

with experimental results. The subsequent parametric studies indicate that the reduction

of the critical temperature of the steel column due to the creep effect is primarily affected
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by the heating rate. Overall, the aforementioned research emphasizes the necessity of

considering the creep effect in the fire design of steel structures.

When subjected to the constant applied load and elevated temperature, structural steel

columns may buckle after a certain duration due to the increasing creep-induced lateral

deflection. This phenomenon is referred to as creep buckling. The creep buckling of steel

columns was initially investigated by Marin [78], who assumed that the creep deflection

curve of an axially loaded column could be obtained by amplifying the elastic deflection

curve, and the mid-height deflection induced by creep was assumed to be linear with time.

Subsequent research regarding creep buckling of columns [79–83] showed that even if the

applied load was less than the Euler buckling load of the column, the column deflection

could be significant as time increases, and the deflection increased rapidly with time when

the applied load approached the Euler buckling load.

Although the previous research [72, 79–81, 84] provides plausible methods to evaluate

the creep buckling behaviour of steel columns at elevated temperatures, there are some

discrepancies among the assumptions adopted in those methods. As the validity of the

assumptions is still unknown, the accuracy of the corresponding failure mechanism of creep

buckling is yet to be answered. In Chapter 7, these issues are to be discussed.

2.3.4 Steel frame stability at elevated temperatures

Due to the difficulty and complexity of investigating the instability of steel frames at elevated

temperatures, the majority of past experimental [85–88] and theoretical research [75, 89–93]

focused on the structural behaviour of individual steel columns at elevated temperatures.

The following can be concluded from the prior research:

1. The load ratio is the most crucial factor for determining the critical temperature of a

steel column.

2. For a restrained steel column, axial restraint generally reduces the critical temperature

as the restraint on thermal expansion at elevated temperature will induce additional

axial force, while the presence of rotational restraints increases the critical temperature

by decreasing the effective length of the column.
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3. The nonlinear stress-strain relationships of steel at elevated temperatures and initial

imperfections of steel columns should be incorporated into the fire-structural analysis.

4. As the creep of steel becomes pronounced at certain elevated temperatures, lowering

the heating rate will decrease the critical temperatures of steel columns.

Xu and Zhuang [94] indicated that the buckling strength of a steel frame at elevated

temperatures could be underestimated if the evaluation is solely based on the fire behaviour

of individual columns, as unheated columns in the same storey still have the capacity

to laterally support the columns exposed to fire. Thus, this subsection highlights some

representative research to signify the significant factors that need to be concerned in the

fire-structural analysis of steel frames.

Rubert and Schaumann [60] conducted a series of fire tests on steel frame assemblies, in

which the structural responses and critical temperatures were acquired at differing heating

rates, load ratios and system slenderness ratios. This research indicated that the critical

temperature decreases with a lower heating rate, which experimentally demonstrated that

the creep effect has adverse effects on the fire behaviour of steel frame assemblies. As the

experiments carried out by Rubert and Schaumann [60] focused on the lateral instability of

unbraced steel frames, they were frequently utilized to verify the numerical approaches in

the subsequent fire-structural research regarding steel frames [59, 71, 93, 95–97].

In practice, robust firewalls are commonly constructed between large buildings to pre-

vent the fire from spreading to other buildings, subsequently decreasing the economic

losses. At elevated temperatures, unbraced steel frames may deform laterally due to ther-

mal expansions of beams and lower mechanical properties, and consequently contact and

damage the fire walls. Ali et al. [71] found that shorter columns or columns with stronger

cross-sections would provide larger resistance to lateral expansion of the girder, and thus

reduce the minimum required clearance between the frame and firewall. As a matter of fact,

the shorter columns or columns with stronger cross-sections mentioned by Ali et al. [71]

are the columns with relatively larger lateral stiffness. Overall, their research emphasizes

the effect of beams’ thermal expansion on the structural behaviour of steel frames and the

contribution of column lateral stiffness to restrain beam deformations in fires. Accordingly,

the thermal expansion of braces should be considered when evaluating the fire resistance of

braced multi-column systems. To that end, an analytical method is proposed in Chapter 8
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to calculate the additional lateral displacements of columns and additional forces in braces

in multi-column systems induced by the braces’ thermal expansion.

When it comes to fire scenarios, the column lateral stiffness will decrease due to the

deterioration of material properties at elevated temperatures. In the preliminary investi-

gation on the storey-based stability of unbraced steel frames at elevated temperatures, Xu

and Zhuang [98] assume the temperature to be uniformly distributed in steel columns and

incorporate the retention factor of steel elastic modulus at elevated temperatures, kE . In

such a way, Eq. (2.20) can be extended to evaluate the lateral stiffness of a semi-rigidly

connected column at elevated temperatures by replacing the elastic modulus at ambient

temperature E with the elastic modulus at elevated temperatures ET = kE E .

Nevertheless, only adopting the elastic modulus of steel at elevated temperatures ET in

the storey-based stability analysis [94, 98] may not be a satisfying approach to evaluate the

steel frame’s capacity at elevated temperatures because the stress-strain relationships of steel

at elevated temperatures are characterized by its obvious non-linearity, as discussed above.

More importantly, the research by Xu and Zhuang [94,98] ignored the reduction of steel yield

strength at elevated temperatures. Subsequently, instead of using the elastic modulus, Ma

and Xu [99] adopted the tangent modulus of steel at elevated temperatures Etan,T specified

in the EC3 [41] and proposed new criteria to assess the stability of an unbraced n-bay steel

frame at elevated temperatures.

Despite adopting the tangent modulus of steel at elevated temperature, the current

calculation of column lateral stiffness assumes that the stress is uniformly distributed on

column cross-section: σ= P/Ac . The assumption neglects the cross-sectional stress gradient

resulting from the internal bending moment in the column, which may overestimate the

critical temperature of steel frames. Owing to this, the effect of partial yielding on the

column lateral stiffness is to be investigated in Chapter 8. Besides the partial yielding of

steel columns, the failure criterion that a steel frame loses its sidesway stability when the

total lateral stiffness of the frame equals zero may not be practical for cases at elevated

temperatures as it represents a bifurcation phenomenon where the lateral displacement is

theoretically infinite; thereby, it is necessary to establish a new failure criterion or criteria

for storey-based stability analysis.
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Chapter 3

Bracing Requirements for a Single

semi-rigidly connected column

3.1 Introduction

Intermediate bracing is an efficient way to increase the column strength by decreasing the

column’s effective length. The prevailing practice for designing the brace [10, 11] requires

determining the ideal brace stiffness first, which is the minimum brace stiffness required to

ensure that the full buckling strength of the braced column can be achieved [5].

Due to the existence of the column initial imperfection ∆0, if the ideal brace stiffness is

adopted, the additional displacement ∆ associated with the applied load becomes consider-

ably large as the load approaches the column’s critical buckling load, which subsequently

results in a large brace force and is structurally unacceptable. Thus, the additional displace-

ment ∆ shall be limited to avoid the large brace force in practice. The AISC specification [10]

adopts twice the ideal brace stiffness to ensure that the additional displacement equals the

initial imperfection: ∆=∆0. By taking the brace stiffness as twice the ideal brace stiffness

and ∆ as 1/500 of the braced length, the theoretical brace force is 0.8% of the required axial

strength of the column, Pr [10].

So far, the research regarding the brace force is primarily based on Winter’s model [7],

which mimics a column as two rigid segments at the brace point and uses a fictitious

hinge to connect the two segments and brace, as per Fig. 2.1. However, Winter’s model

neglects effects of the column stiffness and shape of the initial curvature on the lateral
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displacement of the column. For that reason, the AISC specification [10] increases the

theoretical value, 0.8%, to 1%Pr with an attempt to compensate for neglecting the column

curvature and continuity. Besides neglecting the column the shape of the initial curvature,

as Winter’s model assumes the column ends to be pinned connected, the specification [10]

admits that the specified bracing requirements are not sufficient for the column with the

corresponding effective length factor of K less than 1.0. Although the assumption of ideally

pinned connection behaviour greatly facilitates the analysis and design procedures, it may

be conservative because all the connections in practice possess some degree of rotational

stiffnesses. Hence, whether the amplification of brace force by 25% (from 0.8% to 1%Pr ) is

adequate for semi-rigidly connected columns is yet to be answered. In addition, as Winter’s

model neglects the column continuity across the brace, it does not realistically characterize

the actual stiffness interaction between the column and the brace. To bridge the gap, a

new analytical model is proposed in this chapter to investigate the effects of column initial

curvature and semi-rigid end connection on the bracing requirements.

3.2 Half-length Column Model

A new half-length column model is proposed in this section to consider the effects of the

column initial curvature, semi-rigid column end connections and column continuity at the

bracing point on the bracing requirements, as illustrated in Fig. 3.1. The column shown

in Fig. 3.1a is semi-rigidly connected at both ends with the same end-fixity factor re and

is laterally braced at its mid-height. Considering the initial imperfection ∆0 induces the

lateral deflection ∆ under the action of the applied load P , as per Fig. 3.1b. The column-

brace system in Fig. 3.1b can be modelled by two identical half-column-brace systems in

Fig. 3.1c due to symmetry. Furthermore, the half-column-brace system in Fig. 3.1c can be

equivalently converted to the system in Fig. 3.1d by introducing an equivalent lateral load Q0

and column lateral stiffness Sc to evaluate the lateral deflection of the half-length column.

The expressions of Sc and Q0 for the half-length semi-rigidly connected column of Q0 are to

be derived in the following section.
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Figure 3.1: Half-length column model

The lateral stiffness of the equivalent spring system in Fig. 3.1d is the summation of the

column lateral stiffness and brace stiffness. The criterion for determining the ideal brace

stiffness is to let the half-length column reach its sway buckling load and non-sway buckling

load (critical buckling load) simultaneously. Therefore, the ideal brace stiffness for the

single column Sb,ids is obtained when the lateral stiffness of the half-column-brace system

in Fig. 3.1d becomes zero with the critical buckling load being applied on the half-length

column, as below:

ΣS = Sc (Pcr ,re )+Sb,ids/2 = 0 =⇒ Sb,ids =−2Sc (Pcr ,re ) (3.1)

3.3 Mid-height lateral deflection of a semi-rigidly connected

column

The dashed lines in Fig. 3.2 represent the initial imperfection of the column that can be

expressed using Eq. (3.2). Let y be the additional lateral deflection induced by the axial load

P and lateral load Q, and y(L) =∆.

y0(x) =∆0 sin
( π

2L
x
)

(3.2)
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Figure 3.2: Column imperfection and equilibrium based on the deformed shape

The relationships between bending moments and rotational stiffnesses at the upper and

lower ends of the half-length column are:

Mm = Rmθm (3.3a)

Me = Reθe (3.3b)

Thus, based on the equilibrium of the half-length column:

Rmθm +Reθe =QL+P (∆+∆0) (3.4)

The governing differential equation associated with the flexural deformation of the half-

length column shown in Fig. 3.2 can be written as:

−E I
d 2 y

d x2
= P (y + y0)−θe Re +Qx (3.5)

By solving the differential equation, the deformation and rotation of the column can be

obtained from Eqs. (3.6).

y (x) =C1 cos

(
φx

L

)
+C2 sin

(
φx

L

)
+ θe Re

P
−∆0

4φ2

4φ2 −π2

sin(πx/2L)

P
− Q

P
x (3.6a)

y ′ (x) =−C1
φ

L
sin

(
φx

L

)
+C2

φ

L
cos

(
φx

L

)
−∆0

4φ2

4φ2 −π2

π

2L

cos(πx/2L)

P
− Q

P
(3.6b)
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where φ is the axial load coefficient expressed in Eq. (2.20e), and C1 and C2 are coefficients

to be determined by the boundary conditions, namely:

y(0) = 0 (3.7a)

y(L) =∆ (3.7b)

y ′(0) = θe (3.7c)

y ′(L) = θm (3.7d)

By substituting Eq. (3.4) and Eqs. (3.7) into Eqs. (3.6), the system of five equations is

obtained and then solved for ∆, C1, C2, θe and θm . The lateral displacement of the column

∆ is therefore obtained:

∆= Q + P∆0
L ψ

Sc
= Q + P∆0

L ψ

12Ec Ic
L3 β

(3.8)

where β is the same modification factor given in Eq. (2.20a), and ψ is an amplification factor

accounting for the influence of the column initial curvature on the lateral deflection and

can be expressed as Eq. (3.9a) by incorporating the end-fixity factor in Eq. (2.16). The Sc

in Eq. (3.8) is the same as the Sc in Eq. (2.20), which was derived without considering the

column initial curvature [33].

ψ=

φ2


(1− re )(1− rm)φsinφ

(
4φ2 −π2

)−4a1φ
2 cosφ−

3π2re
(
1−cosφ

)
(1− rm)+18πre rm

(
1−cosφ

)+
6πφsinφre (1− rm)−36φre rm sinφ


(
4φ2 −π2

)[
18re rm −a3 cosφ+ (a1 −a2)φsinφ

] (3.9a)

a1 = 3[re (1− rm)+ rm(1− re )] (3.9b)

a2 = 9re rm − (1− re )(1− rm)φ2 (3.9c)

a3 = 18re rm +a1φ
2 (3.9d)

For the proposed half-length column model shown in Fig. 3.1c, if the column fails in

lateral sway buckling, the column deformed shape will be symmetrical about the mid-height,

which indicates that there is no rotation at the column mid-height. As a consequence, the

upper end-fixity factor of the half-column rm should be taken as 1.0 when calculating the

lateral stiffness of the half-length column, Sc . By doing so, Eq. (2.20) and Eq. (3.9a) can be

simplified as Eq. (3.10) and Eq. (3.11a), respectively.

Sc = 3E I

L3

φ3
[
3re sinφ+φcosφ (1− re )

]
18re

(
1−cosφ

)−3φ2 cosφ (1− re )−3φsinφ (4re −1)
(3.10)
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ψ= 2φ2
[
2φ2 cosφ (1− re )+6φre sinφ+3πre

(
cosφ−1

)](
4φ2 −π2

)[
(6re +φ2 − reφ2)cosφ−6re + (4re −1)φsinφ

] , φ> 0 (3.11a)

lim
φ→0

ψ= 1.216−0.433re

1−0.25re
(3.11b)

As a result, the relationship among the axial compressive load P , lateral load Q, and

mid-height lateral deflection ∆ of a column with semi-rigid connections is attained, as

expressed in Eq. (3.8).

3.4 Effect of End-Fixity Factor on Ideal Brace Stiffness

This section investigates the variation of the ideal brace stiffness of a single semi-rigidly

connected column with the end-fixity factor. As indicated in Eq. (3.1), the requisite of

determining the ideal brace stiffness is obtaining the magnitude of the half-length column’s

critical buckling load Pcr , which can be obtained via Eq. (2.24). It is worth noting that in the

evaluation of Pcr , rm shall be taken as 0 to mimic the anti-symmetric deformed shape of the

full-length column associated with the non-sway buckling. Thus, substituting ru = rm = 0

and rl = re into Eq. (2.24) gives

3reφu cosφu + [
3re + (1− re )φ2

u

]
sinφu = 0

(
φu > 0

)=⇒ Pcr =
φ2

uE I

L2
(3.12)

When the critical buckling load is applied on the single column (P = Pcr ,) let βu and φu

be the corresponding values of β and φ defined in Eq. (2.20a) and Eq. (2.20e), respectively.

With known re , column section properties and length, the critical buckling load Pcr and

ideal brace stiffness Sb,ids of the single full-length column can be obtained via Eq. (3.12) and

Eq. (3.13) for elastic analysis, respectively. If necessary, the stiffness reduction factor τb in

Eq. (2.26b) can be incorporated into evaluating Pcr and Sb,ids.

Sb,ids =−2Sc,cr =−24Ec Ic

L3
βu (3.13)

where Sc,cr is the lateral stiffness of the half-length column with P = Pcr .

The variations of Pcr and Sb,ids with re are presented in Fig. 3.3, in which the numerical

results obtained from the finite element software ABAQUS are also presented for the ver-

ification purpose, indicating good agreements with the analytical results. For the sake of

brevity, the general features of the finite element modelling are given in Appendix A.
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Figure 3.3: Influence of end-fixity factor on the ideal bracing requirement of a single semi-

rigidly connected column

Two fitting formulas for φ2
u and βu are presented in Eq. (3.15) with R2 being 0.99979

and 0.99995, respectively, which agrees well with the analytical results, as shown in Fig. 3.3.

By adopting Eq. (3.14) and Eq. (3.15), with known end-fixity factor re , the corresponding

critical buckling load is Pcr =φ2
uEc Ic /L2, and the ideal brace stiffness for a single semi-rigidly

connected column Sb,ids can be obtained without solving the implicit equation in Eq. (2.24).

φ2
u = 9.8766+5.7064re +4.6981r 2

e (3.14)

βu =−0.8235+0.257re −0.0815r 2
e −0.4397r 3

e (3.15)

For inelastic analysis, Ec varies with re and is associated with the column’s yield strength

Py . For elastic analysis, Ec is constant, and the critical buckling load of column Pcr increases

as the end-fixity factor re increases, as per Fig. (3.3). It is worth noting that Sb,ids decreases

as re increases in the region of 0 ≤ re ≤ 0.392 and then increases as re increases from 0.392

to 1.0. The ideal brace stiffness of a semi-rigidly connected column reaches the minimum

value when the end-fixity factor is 0.392.

The reason can be explained as follows. As re increases, Pcr will increase, which is likely

to require the increase of the ideal brace stiffness; however, the increase of the column end

rotational restraints is likely to decrease the ideal brace stiffness. Therefore, the ideal brace

stiffness Sb,ids varies non-monotonically with the end-fixity factor re . Since the column
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buckling load increases and ideal brace stiffness decreases with the increase of column

end rotational restraints within the region of 0 ≤ re ≤ 0.392, there are potential economical

incentives for practitioners to consider the effect of semi-rigid connections in designing

columns.

The normalized scales are used to quantify the influence of the end-fixity factor on Pcr

and Sb,ids, as shown in 3.4, in which Pcr,0 and Sb,ids,0 are the critical buckling load and ideal

brace stiffness for a column with pinned ends (re = 0), respectively.
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Figure 3.4: Variations of normalized critical buckling load and ideal brace stiffness of a

semi-rigidly connected column with the end-fixity factor

An efficiency factor η in Eq. (3.16), is introduced to characterize the relationship between

the column’s critical buckling load and ideal brace stiffness corresponding to different re

values, as presented in Fig. 3.5. It can be seen from the figure that the maximum value of η

is obtained at re = 0.77.

η= Pcr /Pcr,0

Sb,ids/Sb,ids,0
(3.16)

Fig. 3.6 illustrates the relationship between the end-fixity factor r and rotational stiffness

of the connection R obtained from Eq. (2.16), indicating that the rotational stiffness of

the connection increases slowly as the end-fixity factor increases from 0 to 0.6 and rapidly

approaches infinity as the end-fixity factor approaches 1.0. As a consequence, the required

rotational stiffness of the connection for r = 0.392 is only 1.93Ec Ic /Lc , but for r = 0.77 is

10.34Ec Ic /Lc . Therefore, adopting semi-rigid connections with re = 0.392 may provide a
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more economical design with the minimum ideal brace stiffness and a higher buckling

strength compared to those of the column with pinned ends.
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Figure 3.5: Relationship between efficiency factor and end-fixity factor
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Figure 3.6: Relationship between end-fixity factor and rotational stiffness

3.5 Column Initial Curvature Coefficient ψ of a Semi-rigidly

Column Braced at Mid-height

Besides the end connection stiffness (end-fixity factor), another significant factor considered

in the newly proposed model is the column initial curvature. In this section, the charac-

teristics of the column initial curvature coefficient ψ and the effects of ψ on the bracing

requirements for a single semi-rigidly connected column are discussed.
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3.5.1 Characteristics of column initial curvature coefficient ψ

From Eq. (3.11a), it can be seen that the initial curvature coefficient ψ is only associated with

the magnitudes of load factor φ (i.e., the applied load level) and end-fixity factor re . Plotted

in Fig. 3.7 are the variations of the initial curvature coefficient ψ with different end-fixity

factors re and applied load ratios αp , which is the ratio of the applied load to the critical

buckling load, P/Pcr . For a semi-rigidly connected column, its critical buckling load Pcr can

be obtained from Eq. (3.12).

αp

(a)

αp = 0

αp = 0.1
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αp = 0.4

αp = 0.5
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αp = 0.7

αp = 0.8

αp = 0.9

αp = 1.0

(b)

Figure 3.7: Variations of ψ with different load ratios and end-fixity factors

Fig. 3.7 shows that ψ increases with the increase of αp but decreases with the increase

of re . This is reasonable because the larger applied load leads to a greater second-order

P −∆ effect, but the larger end-fixity factor signifies a greater rotational restraint at the

column ends, which reduces the column lateral displacement and consequently reduces the

second-order P −∆ effect.

For a column with pinned ends (re = 0) and subjected to its critical buckling load

(P = Pcr ), ψ achieves the maximum value of 1.333 predicted from Eq. (3.11a) with φ = π.

Consequently, the equivalent lateral load Q0 is increased by 33.3% with the column initial

curvature being considered, which leads to the corresponding brace force to be also in-

creased by 33.3% for the case in which no external lateral force exists, i.e., Q = 0. Therefore,

the initial curvature coefficient ψ provides a theoretical explanation for the observation

by Blum et al. [13], indicating that if a column is modelled with an initial half-sine-wave
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imperfection, the predicted brace forces are approximately 33.6% greater than that based on

Winter’s model from MASTAN2 [100]. This is because Winter’s model neglects the influence

of the column initial curvature as it assumes the half-length column to be perfectly straight

and rigid.

When the column ends are assumed to be fixed (re = 1.0), the increase of ψ becomes less

significant as the applied load increases; as re decreases from unity to zero, the influence of

applied load on ψ becomes more perceptible. When αp = 0, Eq. (3.11a) indicates that even

with a very small axial load, the column initial curvature could still have a notable influence

on the lateral displacement with ψ being 1.216 when the column ends are pin-connected.

Although the analytical expression of the initial curvature coefficient ψ has been derived,

attaining the exact value of ψ of a semi-rigidly connected column still requires solving the

implicit equation in Eq. (3.12) and employing Eq. (3.11a), which is not friendly for engi-

neers. In analytical analysis, the magnitude of ψ associated with P = Pcr (referred to as ψu

hereafter) is of interest as it represents the most critical case. On that account, ψu can be

adopted for reference in practice, which is conservative because the initial curvature coeffi-

cient decreases as the applied load decreases. For a column with semi-rigid connections

subjected to Pcr , the relationship between ψu and re obtained from Eq. (3.11a) is presented

in Fig. 3.8, wherein ψu ranges from 1.333 (re = 0) to 1.0520 (re = 1).
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Figure 3.8: Relationship between the end-fixity factor and initial curvature coefficient of a

column subjected to its critical buckling load

A simple equation for ψu is obtained by curve fitting, as below:

ψu = 1.3333−0.19448re −0.1886r 2
e +0.09984r 3

e (3.17)
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There is a good agreement between Eq. (3.11a) and Eq. (3.17) with the corresponding ad-

justed coefficient of determination (R2) being 0.99993, as demonstrated in Fig. 3.8. As

such, with known end connection stiffness R, the end-fixity factor re can be obtained from

Eq. (2.16), and Eq. (3.17) can be used to compute the value of ψu for convenience. Addition-

ally, Eq. (3.17) can be incorporated into the analysis based on Winter’s model to account for

the influence of the column initial curvature on the brace force for semi-rigidly connected

columns.

3.5.2 Effect of ψ on bracing strength requirements

For the system shown in Fig. 3.1d, adopting Eq. (3.8) yields the relationship among the brace

stiffness, lateral displacement, and axial load, as below:

∆=
P∆0

L ψ

Sc +Sb
(3.18)

The internal force in the brace Qb is the product of the brace stiffness and brace defor-

mation; as the brace deformation equals the additional lateral displacement of the column

∆, the brace force is Qb = Sb∆. Furthermore, as Eq. (3.18) is based on the half-length column,

the brace force Qb shall be doubled for the full-length column:

Qb = 2Sb

Sb +Sc

P∆0

L
ψ (3.19)

For the reason of comparison, the brace force obtained by Winter’s model is briefly dis-

cussed. As illustrated in Fig. 2.1, the equilibrium in Winter’s model provides the relationship

between the lateral displacement and brace stiffness:

Sb∆L = P (∆+∆0) →∆= P∆0/L

Sb −P/L
(3.20)

Because Qb = 2Sb∆,

Qb = 2Sb

Sb −P/L

P∆0

L
(3.21)

The effect of axial load on the column lateral stiffness is introduced first to elucidate

the difference between Eq. (3.19) and Eq. (3.21). Fig. 3.9 shows the relationships among

column lateral stiffness, applied load, and end connection stiffness, which are normalized

as Sc /(Pe /L), P/Pe , and re , respectively. Pe is the critical buckling load of a column with

pinned ends.
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It can be seen that the column lateral stiffness decreases almost linearly with the increase

of the applied load and becomes negative once the applied load exceeds the sway buckling

load of the half-length column. For a pin-pin connected column, with re = 0, Pcr = Pe =
π2E I /L2, Eqs. (3.10) yields

Sc =−π
2Ec Ic

L3
=−Pe

L
(3.22)

Hence, if the effect of column initial curvature is neglected (ψ= 1) and the column is

assumed to have pinned ends (re = 0 ) and the column is subjected to the critical buckling

load Pcr = Pe , Eq. (3.19) becomes the same as Eq. (3.21). In other words, compared to

Eq. (3.21), Eq. (3.19) is a general expression that considers the effects of column initial

curvature, end connection stiffness and column stiffness on the brace force. In fact, the

term −P/L in Eq. (3.21) can be equivalently considered as the geometrical stiffness of the

half-length column with pinned ends in Winter’s model. The negative magnitude of the

stiffness is induced by the applied load, which signifies that the column needs an external

brace to maintain its stability. However, as shown in Fig. 3.9, due to neglecting the continuity

and elastic stiffness of the column in Winter’s model, taking the geometrical stiffness −P/L

as the column stiffness Sc is conservative because the geometrical stiffness −P/L increases

more slowly as the applied load decreases, compared to the column lateral stiffness obtained

from Eqs. (3.10).
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The strength requirements for intermediate bracing and corresponding column initial

imperfections stipulated in different design standards are tabulated in Table 3.1.

Table 3.1: Brace strength requirements for a single column in different standards

Standard Single column ∆0

AISC 360-16 [10] 1%Pr L/500

EN 1993-1-1 (2005) [24] 1%Pr L/500

AISI S100-16 [11] 1%Pr L/500

CSA S16-19 Direct method [21] 0.8%Pr L/500

CSA S16-19 Simplified analysis [21] 2%Pr -

In Table 3.1, Pr is the applied factored load stipulated in the corresponding standard,

and L is the length of the braced segment shown in Fig. 3.1. The standards AISC 360-16 [10],

EN 1993-1-1 [24], and AISI S100 [11] specify the same ratio of the brace strength to the

applied load and the initial imperfection ∆0, which are 1% and L/500, respectively. The

following is the reason for taking 1% as the brace strength requirement, as given in AISC

360-16 [10]. The theoretical value of brace force with the brace stiffness Sb being taken as

the two times ideal brace stiffness, Sb = 2Sb,id = 2Pe /L, is 0.8%P based on Winter’s model, as

below:

Qb = 2Sb

Sb −P/L

P∆0

L
= 2(2Pe /L)

2Pe /L−Pe /L

Pe L/500

L
= 0.8%Pe (3.23)

The AISC specification [10] points out that the theoretical value, 0.8%Pr , should be

increased to 1%Pr to consider the column curvature and continuity. If the proposed half-

length column model is adopted, with the brace stiffness Sb taken as the two times ideal

brace stiffness, −2Sc , the brace force obtained from Eq. (3.19) is

Qb = 2Sb

Sb −Sc

Pe∆0

L
ψ= 4ψPe∆0/L = 0.8%ψPe (3.24)

Hence, for a column with pinned ends, considering the effect of column initial curvature

yields a 33.3% increase of brace force if P = Pe , and the corresponding brace force with ∆0 =
L/500 is 0.8%Pe ×1.333 = 1.067%Pe . Accordingly, the augment of brace force considering

column initial curvature in AISC 360-16 [10] may not be theoretically sufficient for the case

with P = Pe . However, ψ = 1.333 corresponds to the elastic critical buckling load Pe . For
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slender members, the AISC specification [10] stipulates that their nominal compressive

strength Pn , shall not exceed 0.877Pe . Thus, the maximum design compressive strength for

slender members φc Pn is 0.9×0.877Pe = 0.79Pe . As discussed in Section 3.5.1, ψ is related

to the applied load and end-fixity factor. With αp = 0.79 and re = 0, Eqs. (3.11a) yields

ψ= 1.294. In addition, the column lateral stiffness, Sc , is greater than −Pe /L if the applied

load is less than the critical buckling load Pe , as illustrated in Fig. 3.9. When P equals 0.79Pe ,

Eq. (2.20) yields β=−0.575 and Sc =−0.699Pe /L. Consequently, with the considerations of

the column initial curvature and column stiffness, the brace force with Pr = 0.79Pe is

Qb = 2Sb

Sc +Sb

P∆0

L
ψ= 2×2Pe /L

−0.699Pe /L+2Pe /L

Pr L/500

L
1.294 = 0.796%Pr (3.25)

In Eq. (3.25), since the required brace stiffness is obtained based on two times the ideal

brace stiffness, the required brace stiffness is still 2Pe /L, while the lateral stiffness of the

half-length column increases from −Pe /L to −0.699Pe /L if the applied load decreases from

Pe to 0.79Pe . As a result, the brace force is 0.796%Pr if the lateral stiffness of the half-length

column is considered. Overall, if the brace stiffness is taken as two times the ideal brace

stiffness, the design value of brace force specified by AISC 360-16 [10] is adequate.

CSA S16-19 [21] provides a direct method to compute the brace force for a single column,

as below:

Qb = 2(∆0 +∆)Pr

Lb
(3.26)

Like Eq. (3.21), Eq. (3.26) can be obtained from Eq. (3.19) with Sc = −P/L and ψ = 1,

indicating that Eq. (3.26) is a special case of Eq. (3.19) for the column with pinned ends and

neglects the effect of column initial curvature. By setting ∆=∆0 = L/500 in Eq. (3.26), Qb

equals 0.8%Pr . Unlike AISC 360-16 [10], CSA S16-19 [21] does not require increasing Qb from

0.8%Pr to 1%Pr , which may underestimate the brace force in certain cases. Alternatively,

CSA S16-19 [21] provides a simplified method with the requirement of brace strength not

less than 2%Pr , which is apparently quite conservative.

For now, the brace strength requirements in current standards [10, 11, 21, 24] assume

columns to be ideally pinned supported. If the standards are to be extended to consider the

effects of end connection stiffness and column initial curvature on the brace force, Eq. (3.19)

can be adopted for better accuracy.
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3.5.3 Effect of ψ on bracing stiffness requirement

In Section 3.5.2, the induced brace force is investigated with Sb = 2Sb,id, as specified in AISC

360-16 [10]. The required brace stiffness being two times the ideal brace stiffness is derived

with the criterion that the additional lateral displacement equals the initial imperfection of

the column: ∆=∆0, as per Fig. (2.4). As such, it is not required to check the additional lateral

displacement in AISC 360-16. Because the column initial curvature has no influence on the

magnitude of ideal brace stiffness, it will not affect the bracing stiffness requirement in AISC

360-16. However, different from AISC 360-16, CSA S16-19 [21] specifies the bracing stiffness

requirement by limiting the additional displacement ∆ that ∆ shall not exceed the initial

imperfection ∆0. Following this design philosophy, it is of no surprise that considering the

column initial curvature increases the bracing requirement as it will magnify the additional

displacement induced by the applied load.

If this criterion ∆=∆0 is adopted in the proposed half-length column model, the required

brace stiffness for the half-length column is:

Sb = P

L
ψ−Sc (3.27)

Eq. (3.27) is obtained from Eq. (3.18) with ∆=∆0. It should be noted that Eq. (3.27) may

yield a negative value of the brace stiffness when the applied load is considerably small.

Different from Winter’s model which introduces a fictitious hinge to connect two half-length

columns, the proposed model considers the continuity of the full column by incorporating

the column elastic stiffness into the term Sc . Hence, the value of Sc is positive, and the

magnitude of the term ψP/L is insignificant with a small applied load; correspondingly,

Eq. (3.27) could yield a negative brace stiffness. From the physical perspective, even without

the lateral brace, the column’s additional lateral displacement will not exceed the initial

imperfection when the applied load is very small due to considering the continuity of the

column. As a consequence, if the brace stiffness obtained from Eq. (3.27) is negative, then it

means that no lateral bracing is needed to satisfy the stiffness requirement.

For a column with pinned ends and subjected to its critical buckling load, with P = Pe ,

Sc =−Pe /L, ψ= 1.333 and Sb,id = Pe /L, Eq. (3.27) becomes

Sb = Pe

L
ψ−

(
−Pe

L

)
= (1+ψ)

Pe

L
= 2.333Sb,id (3.28)
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That is to say, the required brace stiffness is 2.333 times the ideal brace stiffness based on

Eq. (3.27). As expected, the bracing stiffness requirement increases if the effect of column

initial curvature is considered. For a single semi-rigidly connected column, rearranging

Eq. (3.27) gives:

Sb =
(
− P

Sc,crL
ψ+1

)
Sb,id =αbSb,id (3.29)

where αb is a scale factor representing the ratio of the required brace stiffness to the ideal

brace stiffness. For a semi-rigidly connected column subjected to its critical buckling load

P = Pcr , if ∆=∆0 is taken as the stiffness requirement, then the variation of αb with re is

presented in Fig. 3.10.
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Figure 3.10: Variation of the required brace stiffness scale factor αb with the end-fixity factor

re for a single semi-rigidly connected column

The analytical results depicted in Fig. 3.10 indicate that for a semi-rigidly connected

column subjected to Pcr , the required brace stiffness scale factor increases as the end-

fixity factor increases from 0 to 0.65, achieving the maximum value of αb = 2.849 when

re = 0.65, and then decreases until re = 1.0. More importantly, a semi-rigidly connected

column (re > 0) requires a greater brace stiffness scale factor than a column with pinned

ends. Hence, taking the scale factor as 2.0 as per the standards [10, 11] is insufficient for the

displacement tolerance (∆=∆0) of semi-rigidly connected columns.

If αb in Eq. (3.29) is adopted, the corresponding brace force Qb is:

Qb =
(
ψ− Sc L

Pcr

)
2Pcr∆0

L
ψ (3.30)
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Based on Eq. (3.30), the effect of the end-fixity factor on the ratio of the brace force Qb to

the critical buckling Pcr is illustrated in Fig. 3.11. It is of no surprise that for a column with

pinned ends, adopting a larger brace stiffness scale factor of αb = 2.333 leads to a lower

brace force of 0.93%Pcr , compared to the brace force of 1.067%Pcr with the αb = 2.0. In

addition, the ratio Qb/Pcr decreases as re increases.
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Figure 3.11: Variation of Qb/Pcr with re

3.6 Modified Design Procedures for a Semi-rigidly Connected

Column

Although the specifications in current standards regarding the bracing requirements only

apply to pin-connected columns, the corresponding design philosophies provide significant

guidance for assessing the bracing requirements for semi-rigidly connected columns. In this

section, two different procedures are proposed to evaluate the bracing requirements for a

semi-rigidly connected column by following the design philosophies of AISC 360-16 [10]

and CSA S16-19 [21].
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3.6.1 AISC 360-16

For a semi-rigidly connected column, following the bracing stiffness requirement in AISC

360-16, the corresponding brace stiffness shall be greater than

Sb,AISC = 2Sb,ids =−4Sc,cr (3.31)

If the simplified equation in Eq. (3.15) is used, Eq. (3.31) becomes

Sb,AISC = Ec Ic

L3
(−79.06+24.67re −7.84r 2

e −42.21r 3
e ) (3.32)

With the brace stiffness being two times the ideal brace stiffness in Eq. (3.19), the strength

of the brace shall be greater than

Qb,AISC = −4Sc,cr

−2Sc,cr +Sc

P∆0

L
ψ (3.33)

Thus, the cross-section area of the bracing satisfying the requirements in Eq. (3.31) and

Eq. (3.33) can be determined.

3.6.2 CSA S16-19

As stated in CSA S16-19, the additional lateral displacement shall not exceed the initial

imperfection of the column; thereby, the brace stiffness for the full-length column from

Eq. (3.27) shall be greater than

Sb,CSA = 2

(
P

L
ψ−Sc

)
(3.34)

Once the brace stiffness is obtained from Eq. (3.34), the corresponding brace force is

Qb,CSA = 2

(
1− Sc L

ψP

)
P∆0

L
ψ (3.35)

which is attained by substituting Eq. (3.27) into Eq. (3.19).

If the design philosophy of CSA S16-19 [21] is followed, the cross-section area of the

bracing can be determined by satisfying the requirements in Eq. (3.34) and Eq. (3.35).

3.7 Example of a Single Column

In this section, the design procedures stipulated in AISC 360-16 [10] and CSA S16-19 [21]

are followed to investigate the bracing requirements of a steel column with intermediate
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bracing (Fig. 3.12) by adopting the proposed half-length column model. This column has

a length of 6000mm (2L) and is made of a W150×24 section, of which the properties are

Ix = 13.4×106 mm2, Iy = 1.83×106 mm2 (in-plane), and A = 3600mm2. The diagonal braces

in Fig. 3.12 are tension-only. The elastic modulus and yield strength of the column and

brace are E = 200000MPa and fy = 345MPa, respectively. Take ∆0 = L/500 = 6mm as the

column initial imperfection. Two cases are considered to illustrate the effects of applied

load and end-fixity factor on the bracing requirements for the single column.

�

����

����

 !

 !

θ

����

Figure 3.12: Diagram of Example 3.7

3.7.1 Effect of axial load

In this case, the column is assumed to be pin-connected at both ends (re = 0) and subjected

to different applied axial loads. As such, the equations for computing the brace force speci-

fied in AISC 360-16 [10] and CSA S16-19 [21] are viable for this case, and the corresponding

results are compared against those by adopting the proposed equations in this section.

Because re = 0, the critical buckling load is

Pcr = π2E I

L2
= π2 ×2×105 MPa×1.83×106 mm4

30002
= 401364N

The ideal brace stiffness for the half-length column is

Sb,id =−Sc = Pcr /L = 401364/3000 = 133.8N/mm
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By substituting Sb = 2Sb,id into Eq. (3.19), the brace forces subjected to different axial load

ratios are obtained, as tabulated in Table 3.2. Note that all the brace forces discussed and

shown in this study are in the horizontal direction.

Table 3.2: Brace force for a single column with different load ratios

αp Sc /(Pe /L) ψ Analytical Qb(N) FEM Qb(N) Error (%)

0.3 -0.062 1.238 615.2 615.4 -0.03

0.4 -0.187 1.247 883.2 883.6 -0.04

0.5 -0.314 1.257 1196.9 1197.3 -0.03

0.6 -0.444 1.268 1569.9 1572.1 -0.14

0.7 -0.576 1.281 2022.4 2026.5 -0.20

0.8 -0.713 1.296 2585.5 2592.7 -0.28

0.9 -0.853 1.313 3309.2 3316.8 -0.23

1 -1.000 1.333 4281.2 4309.9 -0.67

For verification purposes, the finite element analysis (FEA) software ABAQUS was used

to establish the column-brace model. The results are shown in Table 3.2, indicating good

agreements between the analytical and FEA results.

For comparison purposes, the brace forces associated with various applied load ratios

obtained from the analytical method, FEA, AISC S360-16 [10] (1%P ), and CSA S16-19 [21]

direct method (0.8%P ) are presented in Fig. 3.13. It can be seen that the brace force increases

nonlinearly with the increase of the applied load. Theoretically, the brace force obtained

from AISC 360-16 [10] is lower than the analytical result when P > 0.95Pe but is higher when

αp < 0.95; the brace force obtained from CSA S16-19 [21] is lower than the analytical result

when P > 0.8Pe but is higher when P < 0.8Pe . The factored compressive resistance of the

column Pr is 313.4kN (AISC 360-16) and 300.5 kN (CSA S16-19), respectively, corresponding

to the load ratio being 0.786 and 0.749. When P = Pr , the brace strength requirements in

both AISC 360-16 and CSA S16-19 are conservative for this case. The good agreements

between the analytical and FEA results demonstrate the accuracy of the proposed analytical

method.
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Figure 3.13: Brace forces for a pin-connected column with different load ratios

For the diagonal bracing shown in Fig. 3.12, the required cross-sectional area associated

with the stiffness requirement is

Ab = SbLb

E cos2θ
(3.36)

where Sb is obtained from either Eq. (3.31) or Eq. (3.34).

In addition, the required cross-sectional area for the diagonal bracing associated with

the strength requirement is

Ab = Qb

fy cosθ
(3.37)

where Qb is obtained from either Eq. (3.33) or Eq. (3.35).

The required cross-sectional areas of the diagonal bracing obtained from different design

philosophies for the column with different applied loads are tabulated in Table 3.3, in which

Ab(Qb) and Ab(Sb) represent the minimum cross-sectional area satisfying the strength

requirement and stiffness requirement, respectively, and Ab (Final) is the maximum value of

Ab(Qb) and Ab(Sb).

It can be seen that when αp ≤ 0.9 the minimum required cross-sectional areas of the

diagonal bracing obtained by following the design philosophy of AISC 360-16 are the same

because they are governed by the stiffness requirement: Ab(Sb) > Ab(Qb). As the strength

requirement increases with the increase of the applied load, the required cross-sectional area

of the diagonal bracing is governed by Ab(Qb) when αp = 1. With the brace stiffness being

twice the ideal brace stiffness, the additional lateral displacement ∆ is less than the initial
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imperfection ∆0 when αp ≤ 0.8. Therefore, the required cross-sectional areas associated

with the stiffness requirement Ab(Sb) in CSA S16-19 (∆=∆0) are less than Ab(Sb) in AISC

360-16 (Sb = 2Sb,id). Accordingly, the attained cross-sectional areas associated with the

strength requirement Ab(Qb) in CSA S16-19 are larger than Ab(Qb) in AISC 360-16 when

αp ≤ 0.9. Conversely, when αp ≥ 0.9, Ab(Sb) in CSA S16-19 is larger than that in AISC 360-16.

Overall, with different applied loads, all the required cross-sectional areas of the diagonal

bracing obtained by following the design philosophy of CSA S16-19 are governed by the

stiffness requirement. The predictions following the design philosophy of AISC 360-16 are

greater than those following CSA S16-19 when αp ≤ 0.8 but are smaller when αp ≥ 0.9 in this

example.

Table 3.3: Comparison of the required cross-sectional areas of the diagonal bracing obtained

from different design philosophies under different applied loads

αp

AISC 360-16 CSA S16-19

Ab (Sb) Ab (Qb) ∆ Ab (Final) Ab (Sb) Ab (Qb) ∆ Ab (Final)

mm2 mm2 mm mm2 mm2 mm2 mm mm2

0.3 16.1 2.5 1.1 16.1 3.5 2.9 6 3.5

0.4 16.1 3.6 1.7 16.1 5.5 4.5 6 5.5

0.5 16.1 4.9 2.2 16.1 7.6 6.2 6 7.6

0.6 16.1 6.4 2.9 16.1 9.7 7.9 6 9.7

0.7 16.1 8.3 3.8 16.1 11.8 9.7 6 11.8

0.8 16.1 10.6 4.8 16.1 14.0 11.5 6 14.0

0.9 16.1 13.6 6.2 16.1 16.3 13.4 6 16.3

1 16.1 17.5 8.0 17.5 18.7 15.4 6 18.7

3.7.2 Effect of end-fixity factor

If αp = 0.8, the brace forces with different end-fixity factors obtained from Eq. (3.19) and

FEA model, together with the parameters needed in the calculations, are tabulated in Table

3.4. It can be seen that as re increases, P increases, but ψ decreases. However, there is

no monotonicity for the variations of Sc and Sb with re . The reason for that is given in

Section 3.4. For semi-rigidly connected columns, a rotational spring is employed to simulate
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the connection at both ends of the column in the FEM, and its rotational stiffness R is

computed by Eq. (2.16).

Table 3.4: Brace forces for a single column with different end-fixity factors

re P ψ Sc Sb,id Qb (Analytical) Qb (FEA) Error

kN N/mm N/mm N N %

0 321.1 1.296 -95.3 267.6 2585.5 2592.7 -0.28

0.1 341.7 1.276 -90.9 259.9 2681.8 2689.7 -0.29

0.2 364.8 1.255 -86.8 253.7 2784.8 2793.6 -0.31

0.3 390.6 1.233 -83.5 249.4 2895.6 2905.1 -0.33

0.4 419.5 1.209 -81.2 247.9 3015.1 3025.5 -0.34

0.5 451.8 1.183 -80.1 250.3 3144.8 3155.9 -0.35

0.6 487.5 1.156 -80.9 257.7 3285.9 3297.6 -0.35

0.7 526.7 1.129 -83.7 271.3 3439.1 3451.1 -0.35

0.8 568.7 1.101 -88.9 291.7 3603.4 3615.7 -0.34

0.9 612.7 1.075 -96.5 319.0 3776.0 3788.2 -0.32

1 656.9 1.050 -106.3 352.0 3951.5 3963.6 -0.31

The calculation results regarding the required cross-sectional areas of the diagonal

bracing Ab for the column with different re are tabulated in Table 3.5. For this case with

αp = 0.8, all the cross-sectional areas of the diagonal bracing Ab with different end-fixity

factors are controlled by the stiffness requirement. Thus, Ab associated with the stiffness

requirement of Sb = 2Sb,id (AISC 360-16) decreases as re increases from 0 to 0.4 and then

increases as re increases from 0.4 to 1.0. However, if the brace stiffness is required to satisfy

the criterion of ∆=∆0 (CSA S16-19), the required brace stiffness and corresponding required

cross-sectional area increase as re increases.
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Table 3.5: Comparison of the required cross-sectional areas of the diagonal bracing obtained

from different design philosophies with different end-fixity factors

re

AISC 360-16 CSA S16-19

Ab (Sb) Ab (Qb) ∆ Ab (Final) Ab (Sb) Ab (Qb) ∆ Ab (Final)

mm2 mm2 mm mm2 mm2 mm2 mm mm2

0 16.1 10.6 4.8 16.1 14.0 11.5 6 14.0

0.1 15.6 11.0 5.2 15.6 14.2 11.6 6 14.2

0.2 15.2 11.4 5.5 15.2 14.4 11.8 6 14.4

0.3 15.0 11.9 5.8 15.0 14.6 12.0 6 14.6

0.4 14.9 12.4 6.1 14.9 15.0 12.3 6 15.0

0.5 15.0 12.9 6.3 15.0 15.5 12.7 6 15.5

0.6 15.5 13.5 6.4 15.5 16.1 13.2 6 16.1

0.7 16.3 14.1 6.3 16.3 16.9 13.9 6 16.9

0.8 17.5 14.8 6.2 17.5 17.9 14.6 6 17.9

0.9 19.1 15.5 5.9 19.1 19.0 15.5 6 19.0

1 21.1 16.2 5.6 21.1 20.2 16.5 6 20.2

3.8 Conclusions

A new half-length column model is proposed in this chapter to account for the effects

of semi-rigid connections, column initial curvature, and column stiffness on the bracing

requirements for a single column braced at its mid-height. The following conclusions are

drawn:

1. A coefficient is introduced to assess the effect of column initial curvature on the addi-

tional lateral displacement of a semi-rigidly connected column induced by the applied

axial load. It is found that if the column is assumed to be pinned supported and the

applied load is the column’s full critical buckling strength, considering the column

initial curvature leads to a 33.3% increase of the additional lateral displacement and

brace force. The column initial curvature coefficient increases as the applied load

increases but decreases as the end-fixity factor increases.

54



2. It is discovered that the ideal brace stiffness of a single elastic column decreases with

the increase of end-fixity factor in a region re = [0,0.392] and increases once re ≥ 0.392.

An efficiency factor is introduced to characterize the relationship between column

critical buckling load and ideal brace stiffness corresponding to different values of re .

The efficiency factor reaches the maximum value when re = 0.77.

3. The strength requirement of bracing specified in AISC 360-16 [10], EN 1993-1-1 [24],

and AISI S100-16 [11] , 1%Pr , is found to be conservative if the effect of column

stiffness and initial curvature is considered. However, the direct method in CSA S16-

19 [21] neglects the effect of column initial curvature on the brace force, and thus

may underestimate the brace force in some cases. The bracing stiffness requirements

specified in current standards [10, 11] (twice the ideal brace stiffness) need to be

increased to 2.33 times the ideal brace stiffness if the effect of column initial curvature

is considered.

4. Theoretically, the bracing requirements in current standards only apply to columns

with pinned ends. By employing the expressions derived in this chapter, the design

procedures in AISC 360-16 and CSA S16-19 are extended to assess the bracing require-

ments for a semi-rigidly connected column considering the effect of column initial

curvature.

5. Through the verification against the finite element analyses, it is demonstrated that the

proposed half-length column model and corresponding derived analytical equations

provide accurate evaluations of the brace forces for a semi-rigidly connected column

with the considerations of column initial curvature and column lateral stiffness.
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Chapter 4

Bracing Requirements for Multi-column

Systems

4.1 Introduction

Chapter 3 proposed a new half-length column model to assess the bracing requirements

for a single column with semi-rigid connections. In this chapter, the application of the

proposed half-length column model is extended to multi-column systems. The previous

research regarding the ideal brace stiffness for multi-column systems [5, 8, 9] was focused on

cases in which all the columns were identical and reached their critical load simultaneously.

Furthermore, due to their reliance on Winter’s model [7], those studies assumed the column

ends to be pin-connected. To investigate the effects of semi-rigid column end connections

and nonidentical columns on the ideal brace stiffness of multi-column systems, an analytical

method is proposed by adopting the equivalent lateral stiffness concept [3] and adapting

the storey-based stability method developed by Xu [35]. The influence of column stiffness

interaction associated with semi-rigid connections, column sizes, and applied loads is

theoretically considered in the determination of the ideal brace stiffness for multi-column

systems. The content of this part is also available on the reference [1].

Besides the ideal brace stiffness, the brace forces for multi-column systems are investi-

gated in this chapter. Although the aforementioned research [8, 14–16] and current provi-

sions [10,11,26] regarding the brace forces for multiple columns have been well documented,

there are some issues that need to be addressed.

56



• The previous studies [8, 10, 11, 13–16] assume that the column ends are either pinned

or fixed. In practice, column ends possess a certain degree of rotational restraints;

thereby, column ends should be considered semi-rigid in order to accurately predict

the stability of the column [101–103].

• As Winter’s model simulates the column as two perfectly straight rigid members, it

neglects the column’s flexibility and initial curvature, which will magnify the additional

displacement induced by the applied load and consequently increase the brace force

[10, 17]. Therefore, the effect of column initial curvature on brace forces in multiple

columns needs to be investigated.

• Considering the previous studies were limited to the system in which the lateral

stiffnesses of all columns are identical, there is a lack of research on the system with

nonuniform column stiffness. The nonuniform stiffness can result from differences in

column sizes, end connections, and applied loads in the system.

Hence, an analytical method is derived in this chapter to address the issues listed above

by formulating the stiffness interaction among the columns and braces. The research

presented in this chapter is also available in the references [1, 2].

4.2 Equivalent Lateral Stiffness of a System Considering Beam

Axial Deformations

For a steel frame consisting of n −1 beams and n columns, the lateral stiffness of the frame

ΣS is given in Eq. (2.19) [35]. The frame is stable only if the summation of the lateral

stiffnesses of individual columns is greater than zero (ΣSc,i > 0), and is laterally unstable

when ΣSc,i = 0. It should be noted that the reason the column lateral stiffnesses are additive

in Eq. (2.19) is that all the beams are assumed to be axially rigid [35], which is a normal

practice when accounting for the presence of concrete slabs in building structures. When

the axial deformations of beams need to be considered, Ma et al. [3] derived the solution to

the lateral deflection ∆i of each column induced by a lateral load Q in a storey frame shown

in Fig. 4.1, wherein SL is the lateral stiffness provided by external braces that can provide

reaction forces.
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Δ1 Δ2 Δn-1 Δn

SL,1

P1 P2 Pn-1 Pn

SL,2 SL,n-1 SL,n

Figure 4.1: A semi-braced storey frame subjected to gravity loading

The solution varies depending on the number of columns in the frame and which column

the lateral load is applied on, but it can be expressed in a general form:

∆i = Q

Seq,i
(4.1a)

Seq,i = SNUM

SDEN,i
(4.1b)

where Seq,i is the equivalent lateral stiffness of column i .

Ma et al. [3] show that for a given number n of columns, the denominator SDEN,i is

different for each column and will vary if the lateral load is applied on a different column.

Nevertheless, the numerator SNUM is constant regardless of which column the lateral load

is applied on. Due to this characteristic, the numerator SNUM can be considered as an

indicator of the stability in the frame. If SNUM becomes zero, the deflections of all columns

are theoretically infinite, and the frame will fail in lateral instability.

Assuming that a fictitious lateral load is applied on the left-most column, SNUM can be

obtained from the equivalent lateral stiffness of the left-most column, Seq,1. The equivalent

spring stiffness concept [104] is adopted to attain Seq,1. By doing so, the frame shown in

Fig. 4.1 is simulated as a system of springs in parallel and in series, as shown in Fig. 4.2,

in which Sb is the axial stiffness of the beam. Note that the column lateral stiffness Sc has

incorporated the effects of semi-rigid connections and axial load.
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Q
Δ2 Δn-1Δ1 Δn

SL,1

Sc,1 Sc,1 Sc,n-1 Sc,n

Sb,1 Sb,n-1

SL,2 SL,n-1 SL,n

Figure 4.2: Deformed state of the equivalent spring system for a storey frame

The procedure for calculating Seq,1 is as follows. Starting from the right end of the frame

in Fig. 4.2, since the nth column and the nth external brace have the same displacement of

∆n , they are in parallel, and their stiffnesses are additive. Hence, this column-brace system

can be represented by using an equivalent spring with spring stiffness being Sc,n +SL,n , as

shown in Fig. 4.3.

Q
Δ2 Δn-1Δ1

SL,1

Sc,1 Sc,1 Sc,n-1

Sb,1 Sb,n-1

SL,2 SL,n-1

SL,n+Sc,n

Figure 4.3: Replacing a column and its external brace in parallel with an equivalent spring

The deformation of beam n −1 is ∆n−1 −∆n . As such, the equivalent spring in Fig. 4.3

that represents the column-brace system is in series with the axial stiffness of beam n −1,

since the sum of their displacements equals the displacement of the left end of beam n −1,

∆n −1. For the sake of brevity, the symbol of “∼” is introduced to denote the series spring

stiffness operation, as below:

S1 ∼ S2 =
[

1

S1
+ 1

S2

]−1

(4.2)

Accordingly, if the stiffness of beam n −1 is incorporated into the equivalent spring stiffness,

the system in Fig. 4.3 becomes the system in Fig. 4.4 with the equivalent spring stiffness
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being Sb,n−1 ∼ (SL,n +Sc,n).

Q
Δ2 Δn-1Δ1

SL,1

Sc,1 Sc,1 Sc,n-1

Sb,1

SL,2 SL,n-1

Sb,n-1~(SL,n+Sc,n)

Figure 4.4: Replacing a beam and column-brace system in series with an equivalent spring

Basically, if the member to be combined with the equivalent spring can provide lateral

reaction force, the spring modelling the member and the equivalent spring are in parallel

and additive. Conversely, they are in series if the member cannot provide a lateral reaction

force. Therefore, columns and external braces are in parallel with the equivalent spring, but

the beams (internal braces) are in series with the equivalent spring. The process of replacing

the springs and calculating the equivalent spring stiffness is repeated until all the members

of the frame are lumped into a single equivalent spring with the spring stiffness being Seq,1,

as shown in Fig. 4.5.

Q

Seq,1

Figure 4.5: Using an equivalent spring stiffness, Seq,1, to represent the entire storey frame

Following the aforementioned procedure, the stiffness of the equivalent spring, Seq,1,

can be generally expressed as Eq. (4.3).

Seq,1 =
{[(

Sc,n +SL,n
)∼ Sb,n−1 +Sc,n−1 +SL,n−1

]∼ Sb,n−2

+Sc,n−2 +SL,n−2
}∼ · · · ∼ Sb,1 +Sc,1 +SL,1

(4.3)
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Once Seq,1 is obtained, SNUM and SDEN,i can be obtained by simplifying Seq,1 to a single

quotient SNUM/SDEN,1 given in Eq. (4.1b), which is expressed algebraically in terms of Sc,i ,

Sb,i and SL,i . The frame will fail in lateral sway buckling when SNUM = 0. Getting the

expression of SNUM becomes more cumbersome as the number of columns increases. For

convenience, the built-in function numden provided by MATLAB [105] can be used to

directly obtain the symbolic expression of SNUM from Seq,1.

4.3 Ideal Brace Stiffness of Multiple Columns Obtained from

Equivalent Lateral Stiffness

Presented in Fig. 4.6a is a system consisting of n parallel semi-rigidly connected columns

anchored by both sides and subjected to gravity loads. By incorporating the proposed half-

length column model, the system can be simulated by two identical half-length systems

(frames) with two external rigid braces, as shown in Fig. 4.6b. The column length and brace

stiffness are half of those of the original system. For the system in Fig. 4.6a, when sway

buckling of the full-length columns occurs simultaneously, the mid-height lateral deflections

of the columns reach infinity, which corresponds to the lateral sway buckling of the frame

in Fig. 4.6b. As a consequence, for the system in Fig. 4.6a, the problem of determining the

ideal brace stiffness for the non-sway buckling can be alternatively solved by determining

the ideal brace stiffness to prevent the lateral sway buckling of the equivalent frame shown

in Fig. 4.6b.

Right anchorLe! anchor

2Sb,id 2Sb,id 2Sb,id 2Sb,id

Pcr,1 Pcr,2 Pcr,n-1 Pcr,n

(a) Full-length column model

2×

Pcr,1 Pcr,2 Pcr,n-1 Pcr,n

SL,1 Sb,id Sb,id SL,n+1

(b) Half-length column model

Figure 4.6: Half-length column model for a multi-column system with ideal brace stiffness
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For the equivalent frame shown in Fig. (4.6b), SL,1 and SL,n+1 are the stiffness resulting

from the anchor and adjacent tie brace [5], which is given in Eq. (4.4).

SL = 1(
1

San
+ 1

Sb

) = 1(
1+ Sb

San

)Sb = 1

(1+ c)
Sb (4.4)

where c is the ratio of tie bracing stiffness Sb to the anchor-bracing stiffness San .

If the tie braces possess the ideal brace stiffness Sb,id, since there are no external braces

provided to the interior columns in the system, Eq. (4.3) becomes

Seq,1 =
{[(

Sc,n+1 +SL,n+1
)∼ Sb,id

]∼ Sb,id

+Sc,n−1
}∼ · · · ∼ Sb,id +Sc,1 +SL,1

(4.5)

Equation (4.5) is also applicable for the system anchored on one side with SL,1 = 0 and the

rigidly anchored system with SL = Sb (c = 0).

The ideal brace stiffness of the equivalent frame Sb,id can be computed by solving

Eq. (4.6) with Pi = Pcr,i , which signifies that the non-sway and sway buckling loads of

the frame are the same with the brace stiffness being the ideal brace stiffness. With known

column dimensions and corresponding critical buckling load Pcr , the lateral stiffness of the

half-length column Sc,i can be computed via Eq. (3.10). By presupposing the value of c,

Eq. (4.6) can be directly solved since it only has one unknown variable, Sb,id. Equation (4.6)

has multiple solutions of Sb,id; the one with the maximum value governs.

SNUM(Sc,i ,Sb,i ,SL,i ) = 0 (4.6)

As an example, the solution to Sb,id for a system consisting of two columns anchored

only on one side is provided below.

Seq,1 =
[(

Sc,2 +SL,2
)−1 + (

Sb,id
)−1

]−1 +Sc,1

Seq,1 =
(
Sc,1

)(
Sc,2 +SL,2

)+Sb,id
(
Sc,1

)+Sb,id
(
Sc,2 +SL,2

)
Sb,id +

(
Sc,2 +Sc,1

) = SNUM

SDEN,1

Then, the solution to Sb,id can be obtained by finding the maximum root of

SNUM = Sc,1Sc,2 +
(

2+ c

1+ c
Sc,1 +Sc,2

)
Sb,id +

1

1+ c

(
Sb,id

)2 = 0

According to Fig. 4.6, the brace stiffness of the equivalent frame is half of the brace

stiffness of the system with full-length columns. As a result, the ideal brace stiffness for the

multi-column system is:

Sb,idt = 2Sb,id (4.7)
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Because Eq. (4.5) accounts for the stiffness interaction among columns and braces in

the system, and Eq. (2.20) considers the effect of axial load on column lateral stiffness, the

proposed method is comprehensively applicable to the systems with variable column size

(Ic,i ), applied loading (Pi ) and semi-rigid connections (re,i ).

4.3.1 Ideal brace stiffness of multi-column systems with uniform column

lateral stiffness

If a multi-column system is composed of identical columns having the same section size (Ic )

and end-fixity factor (re ) and all columns are subjected to the critical buckling load (Pcr ),

the lateral stiffness Sc,cr for all the half-length columns would be the same. In that case, if

the system is rigidly anchored on one side (c = 0 and SL,1 = 0), Eq. (4.6) can be simplified as

Eq. (4.8) by introducing an unknown scale factor a so that Sb,id =−aSc,cr.

f (a)(Sc,cr)n = 0 (4.8)

where f (a) is an (n)th-order polynomial. Since Sc,cr is a nonzero value, the roots of f (a) = 0

are the solutions to the scale factor a and Sb,id. Because the maximum root amax governs,

(−amaxSc,cr) is taken as the solution of Sb,id. In this study, it is found that the f (a) is identical

to that derived by Ziemian and Ziemian [5]. Based on the analytical results, Ziemian and

Ziemian [5] proposed an easy-to-use expression given in Eq. (2.4) to predict the value of

amax, which also applies to the systems anchored on two sides and systems with flexible

anchors.

It can be seen from Eq. (4.8) that the end-fixity factor re only affects the value of Sc,cr and

has no influence on amax. Due to this, Eq. (2.4) can be extended to determine the ideal brace

stiffness of multiple semi-rigidly connected columns with identical column lateral stiffness,

as given in Eq. (4.9); Sb,ids is the ideal brace stiffness of a single semi-rigidly connected

column, computed by Eq. (3.13). In this way, the effect of semi-rigid connections on the

ideal brace stiffness of multi-column systems is explicitly considered in the term Sb,ids.

Sb,idt =
[
0.4N 2 + (0.4+ c)N +0.2

]
Sb,ids (4.9)

Note that the extension to Ziemian and Ziemian’s method is only applicable to cases

in which all the column dimensions, connections, and brace stiffnesses are the same. For
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such cases in elastic analysis, the conclusions drawn in Chapter 3 for a single column also

apply to the multi-column systems: re = 0.392 is the optimum value for design as it requires

the minimum brace stiffness (Fig. 3.3), and re = 0.77 yields the maximum efficiency factor

(Fig. 3.5).

4.3.2 Computational procedure

A summary of the procedure established in MATLAB that can be followed to compute the

ideal brace stiffness of multiple semi-rigidly connected columns using the equivalent lateral

stiffness is provided as follows.

1. Specify the brace stiffness ratio, c . Determine the basic properties of members (Lc , Lb ,

Ec , Eb , Ib , and Ic ) and end-fixity factor (re ) or end connection stiffness R.

2. With K0,i = 1.0 being the initial guess, solve Eq. (3.12) using the built-in nonlinear

system solver fsolve in MATLAB to obtain the exact effective length factor Ki and

the critical buckling load Pcr,i for each column. If the column inelastic behaviour is

considered, Eq. (2.26) is to be used to calculate the tangent modulus Et ,i with known

re , and Eqs. (2.27) are to be solved to calculate Kp,i and τb,i .

3. If re was not determined, calculate the value of it for each column by Eq. (2.16) with

known end connection stiffness, R. Substitute φi =π/Ki into Eq. (3.10) to attain the

lateral stiffness Sc,i for each column. The elastic modulus Ec and effective length

factor K should be replaced by Et and Kp , respectively, to account for the inelasticity

of columns.

4. If the system possesses uniform column lateral stiffness, the extended Ziemian and

Ziemian equation in Eq. (4.9) can be used to compute the ideal brace stiffness. If not,

follow the below procedure.

5. With the obtained values of Sc,i , obtain the expression of Seq,1 by substituting Sb,i =
Sb,id and SL,1 = SL,n+1 = Sb,id/(1+ c) into Eq. (4.5). Then the expression of SNUM can

be obtained by employing the built-in function, numden, in MATLAB.

6. Use the numerical solver vpasolve in MATLAB to compute the roots of SNUM = 0. The

maximum value of the roots is taken as the value of the ideal brace stiffness of the
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half-length column system, Sb,id. For the whole system, the ideal brace stiffness is

Sb,idt = 2Sb,id.

4.4 Examples of a 23-column System

4.4.1 Example 1

The problem studied by Sputo and Beery [12] as well as Ziemian and Ziemian [5] is adopted

in this study to demonstrate the proposed method and the corresponding computational

procedure. The system shown in Fig. 4.7 consists of 23 parallel cold-formed steel columns

serving as the studs in a load-bearing wall. Different from the original problem in which the

columns are pin-pin connected, all the columns in this example are semi-rigidly connected

with re = 0.3; the corresponding rotational stiffness of connection R = 7242532N/mm is

obtained from Eq. (2.16). The two exterior columns are used as lateral bracing to anchor the

system. The tie bracing is modelled as the truss members between columns and located

at column mid-height. The centre-to-centre spacing of the columns is 610 mm, and each

column has a length of 2.4 m (2L).

Anchor

1 3 20 22 234 122

Tie

Anchor

Pcr Pcr Pcr Pcr Pcr Pcr Pcr Pcr

re

re

re

re

re

re

re

re

re

re

re
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re

re

re

re

re

re

re

re

Figure 4.7: Model of a system with 23 semi-rigidly connected columns

The 250S137-54 studs are adopted as the interior column section with an in-plane mo-

ment of inertia I = 33299mm4 and cross-sectional area A = 204mm2. The elastic modulus

E and yield stress fy of cold-formed steel are 203000MPa and 345MPa, respectively.
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In this example, all the tie bracing has the same axial stiffness. This problem aims to

evaluate the minimum cross-sectional area Ab of tie bracing and the minimum moment of

inertia Ian of the anchor columns. Both Ab and Ian can be obtained once the ideal brace

stiffness of tie bracing Sb,idt for the system is obtained.

Analytical results

The computational procedure for evaluating the ideal brace stiffness based on the computa-

tional procedure described in subsection 4.3.2 for elastic analysis is:

1. Since design specifications generally presume the stiffness of tie bracing to be signif-

icantly greater than the stiffness of the anchor [5], assume the brace stiffness ratio

c = 100.

2. By adopting K0 = 1.0 as the initial guess, the exact value of effective length factor K

is computed via Eq. (3.12) by employing a nonlinear system solver fsolve provided in

MATLAB, K = 0.9067. The corresponding non-sway buckling load of the half-length

column Pcr is

Pcr = π2E I

(K L)2 = π2 (203000)(33299)

(0.9067×1200)2 = 56360N

3. By substituting K = 0.9067, re = 0.3 into Eq. (3.10), the calculation of the lateral stiffness

of each half-length column is attained as Sc =−35.98N/mm

4. Substituting Sc,i = −35.98N/mm, Sb,i = Sb,id, and SL,1 = SL,n+1 = Sb,id/(1 + c) into

Eq. (4.5) yields the expression of Seq,1. The numden function provided in MATLAB can

be used to obtain the symbolic expression of SNUM. After that, the solutions of Sb,id

can be numerically solved from SNUM = 0 via a solver vpasolve in MATLAB. The maxi-

mum solution of Sb,id is taken as the ideal brace stiffness for the equivalent unbraced

frame. In this example, Sb,id = 43187N/mm. Accordingly, the ideal brace stiffness for

the system Sb,idt is

Sb,idt = 2Sb,id = 2×43187N/mm = 86374N/mm

5. Based on Sb , calculate the associated area of tie bracing Ab and the anchor’s moment
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of inertia Ian .

Sb = E Ab

Lb
≥ Sb,idt → Ab ≥ 86374

(
610

203000

)
= 259.6mm2

San = 48E Ian

L3
≥ Sb,idt

c
→ Ian ≥ 86374

100

(
24003

48×203000

)
= 1.225×106 mm4

For comparison purposes, the analysis is repeated with assuming all the columns are

pin-connected. In that case, the critical buckling load Pcr is 46330 N; the brace area Ab

and Ian for ideal bracing are 278.5 mm2 and 1.315×106 mm4, respectively. Thus, it is clearly

demonstrated that for the case with the semi-rigid connections (re = 0.3), the system has a

larger buckling load and requires a lower ideal brace stiffness.

For the inelastic analysis, the inelastic stiffness reduction factor τb in Eq. (2.27) needs to

be incorporated in the calculation of Pcr and Sc . The values of τb and K are numerically

solved from Eq. (2.27) using the fsolve routine with initial values of τb = 1 and Kp = 1. For

this example, τb = 0.8469 and Kp = 0.8952. Calculate Pcr using Eq. (2.26):

Pcr = π2Eτb I(
Kp L

)2 = π2 (203000)(0.8469)(33299)

(0.8952×1200)2 = 48958N

With Pcr = 48958N, it is confirmed that Pcr /Py = 0.696 > 0.5. The inelastic lateral stiffness of

the half-length column is Sc =−30.36N/mm.

By repeating Step 4, the ideal brace stiffness for the system in the inelastic analysis is

obtained as Sb,idt = 72888N/mm. The corresponding tie bracing’s cross-sectional area and

anchor’s moment of inertia are Ab = 219.0mm2 and Ian = 1.034×106 mm4, respectively. As

expected, the ideal brace stiffness obtained from the inelastic analysis is less than that from

the elastic analysis.

FEM results

Finite element analyses were carried out to verify the results obtained from the proposed

method by following the instructions in Appendix A. The cross-sectional and material prop-

erties as well as the length of the columns and tie bracing are identical to those stated in

Section 4.4.1.

Buckling analyses were performed with the Subspace eigensolver to obtain the first

buckling mode and corresponding buckling load. Ziemian and Ziemian [5] stated that
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the ideal brace stiffness could be established by varying the brace stiffness and repeating

the analysis until the critical buckling mode just changed from sway buckling mode to

non-sway buckling mode or the other way around. The corresponding brace stiffness at

which this conversion occurs is determined as the ideal brace stiffness for the system. The

sway buckling mode was obtained from FEM (Fig. 4.8a) if the area of the tie bracing and

moment of inertia of the anchor column were taken as the predicted values from the elastic

analysis in Section 4.4.1. By increasing Ian from 1.225×106 mm4 to 1.226×106 mm4, the

failure changed from sway buckling to non-sway buckling mode, as shown in Fig. 4.8b.
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+0.00e+00
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+1.67e−01
+2.50e−01
+3.33e−01
+4.17e−01
+5.00e−01
+5.83e−01
+6.67e−01
+7.50e−01
+8.33e−01
+9.17e−01
+1.00e+00

Step: Step−1
Mode         1: EigenValue =   56351.
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +4.00e+02X

Y

Z

(a) Sway buckling mode: Ab = 259.6mm2 and Ian = 1.225×106 mm4
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+8.33e−02
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+3.33e−01
+4.17e−01
+5.00e−01
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Step: Step−1
Mode         1: EigenValue =   56362.
Primary Var: U, Magnitude
Deformed Var: U   Deformation Scale Factor: +4.00e+02X

Y

Z

(b) Non-sway buckling mode: Ab = 259.6mm2 and Ian = 1.226×106 mm4

Figure 4.8: Deflected shapes and buckling loads of Example 1 (elastic analysis) obtained

from ABAQUS

The analytical results of inelastic buckling were also verified by FEM with Et = τbE

for columns. With Ab = 219.0mm2 and Ian = 1.034×106 mm4 attained from the analytical

method, non-sway buckling mode was obtained with Pcr = 48960N. By decreasing Ian

from 1.034×106 mm4 to 1.033×106 mm4, the buckling mode switched to sway buckling
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with Pcr = 48852N. Consequently, analytical and finite element analysis (FEA) results are

consistent.

Results of the proposed simplified method

For this example, as all the columns are identical, Eq. (3.13) and Eq. (3.15) together with

Eq. (2.4) can be utilized to develop a simplified procedure for evaluating the ideal brace

stiffness without the iterative process of determining column effective length factor K for

non-sway buckling. The simplified procedure is as follows:

1. Given the system has two anchored ends, j = 2, N = n/ j = 11.5.

2. Assume c = 100.

3. Calculate the ideal brace stiffness needed for a single column through Eq. (3.13) and

Eq. (3.15).

βu =−0.8235+0.257re −0.0815r 2
e −0.4397r 3

e

=−0.8235+0.257(0.3)−0.0815(0.3)2 −0.4397(0.3)3 =−0.7656

Sb,ids =−24Ec Ic

L3
βu =−24(203000)(33299)

12003
(−0.7656) = 71.88N/mm

4. Calculate the value of amax via Eq. (2.4).

amax = 0.4(11.5)2 + (0.4+100)(11.5)+0.2 = 1207.7

5. Calculate the ideal brace stiffness for the system.

Sb,idt = amaxSb,ids = 1207.7×71.88 = 86809N/mm

For the inelastic analysis, the computational procedure is the same as that of the elastic

one shown above, with the elastic modulus E being replaced by the reduced modulus Et . In

that case, τb needs to be calculated prior to Step 3, as illustrated in Section 4.4.1. In this case,

with τb = 0.8469, re = 0.336 is obtained from Eq. (2.16). Repeating the calculation stated in

Step 3 yields βu = 0.7630 and Sb,ids = 60.67N/mm. As the ratio amax is still 1207.7, Sb,idt of

the system in the inelastic analysis is 1207.7×60.67 = 73269N/mm. Based on the foregoing

elastic and inelastic analyses, the predicted ideal brace stiffness from the simplified method

is only 0.5% greater than the exact analytical value.
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4.4.2 Example 2

The previous example focuses on the case in which the system is composed of the same

columns. As the proposed method is also applicable to a system with nonidentical columns,

this example is presented to investigate the effect of different column sizes on the ideal

brace stiffness for the system. The system adopted in this example is the same as that in

Example 1, except that the three centre columns are replaced by a back-to-back 250S137-54

section with Ic,m = 120681N/mm4. Assume the rotational stiffnesses of the connections

are the same for all the columns, R = 7242532N/mm. Note that the simplified method

presented in Section 4.4.1 is not applicable, as different column sizes exist in this example.

Two cases are considered: 1) all the columns are subjected to the same critical buckling load;

2) all the columns are subjected to their own critical buckling load. Only elastic buckling is

considered.

Analytical results: Case 1

The procedure described in Section 4.3.2 is followed. Since the three centre columns have a

larger moment of inertia, the associated end-fixity factor re is no longer 0.3. The re for the

three centre columns is obtained as 0.1057 via Eq. (2.16). As computed in Example 1, the

lateral stiffness of the original columns is Sc =−35.98N/mm. For this case, as the buckling

load is governed by the critical buckling load of the original column, the lateral stiffness

of the three centre half-length columns is computed as Sc,m =−3.17N/mm. By comparing

the column lateral stiffness, it concludes that the centre columns are “stiffer” than other

original columns. The maximum root of Eq. (4.6) is attained with obtained column lateral

stiffnesses: Sb,id = 37883N/mm. The corresponding ideal brace stiffness for the system

Sb,idt is 2Sb,id = 75766N/mm. Consequently, the minimum required area of tie bracing and

moment of inertia of the anchor column are Ab = 227.7mm2 and Ian = 1.075×106 mm4,

respectively. Compared to the results of Example 1 presented in Section 4.4.1, the ideal brace

stiffness is reduced by 20.03% due to the presence of the “stiffer” columns.
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Analytical results: Case 2

In this case, all the columns are subjected to their own critical buckling loads. The ef-

fective length factor K and critical buckling load of the three centre columns Pcr,m are

0.9676 and 179534N, respectively. Using Eq. (2.20) to compute the lateral stiffness of the

three centre half-length columns gives Sc,m =−135.72N/mm, which is less than the lateral

stiffness of the original columns. The ideal brace stiffness for the system is obtained as

Sb,idt = 118990N/mm, and the corresponding Ab and Ian are 357.6 mm2 and 1.688×106 mm4,

respectively. It can be seen that the ideal brace stiffness for Case 2 is much greater than

that of Example 1 with identical columns. This is because the three centre columns possess

less lateral stiffness with their own critical buckling loads, which is more detrimental to the

stability of the system, even though the three centre columns have a greater moment of

inertia.

FEM results: Case 1

By modifying the FEM developed in Example 1 by accounting for the three centre columns,

buckling analyses were carried out. Using the section properties predicted from Section 4.4.2,

sway buckling mode was obtained from FEM with buckling load Pcr = 56359N. By increasing

the moment of inertia of the anchor column Ian from 1.075×106 mm4 to 1.076×106 mm4,

the buckling shape switched from sway buckling mode to non-sway buckling mode with the

corresponding buckling load being Pcr = 56361N.

FEM results: Case 2

In this case, the applied loads on the three centre columns and the original columns were

set as Pcr,m/Pcr and unity, respectively. With the section properties predicted from the

previous analytical analysis, sway buckling mode was obtained from FEM with buckling

load Pcr = 56361N. By increasing Ian from 1.688×106 mm4 to 1.689×106 mm4, the buckling

shape switched from sway buckling mode to non-sway buckling mode with Pcr = 56361N.

The good agreements between analytical and FEA results demonstrate that the proposed

method can accurately assess stiffness interaction among columns in the determination of

the ideal brace stiffness of the system.
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4.5 Formulation of Stiffness Interaction in Multi-column Sys-

tems

The derivations of ideal brace stiffness and brace forces in multiple semi-rigidly connected

columns are presented in this section by formulating the stiffness interaction among columns

and braces. Note that the expressions presented in this section are based on the half-length

column model shown in Fig. 4.6. Therefore, the obtained ideal brace stiffness and brace

forces need to be doubled for the full-length multi-column system.

By adopting the proposed model, the multi-column system can be simulated as two

equivalent frames. As shown in Fig. 4.9, each half-length column is subjected to a gravity

load Pi , and the internal force in each brace is represented as Qi . Two kinds of systems can

be simulated using the diagram presented in Fig. 4.9: 1) the system anchored on one side

with braces that can resist compressive and tensile forces; 2) the system anchored on both

sides with tension-only braces.

P1

Q1

Q2

Δ1

Qn-2

Q2 - Q1 Q1 Qn-2 - Qn-1 Qn-1 - Qn 

Qn-1

P2

Δ2 Δn-1 Δn

Pn-1 Pn

Qn 

Figure 4.9: A storey frame anchored on one side subjected to gravity loading

For each column in the system shown in Fig. 4.9, the total lateral load applied on the

column’s upper end is the difference between adjacent brace forces, Qi −Qi−1, except for

the left-most column, on which the lateral load equals the brace force, Q1. An equivalent

lateral force Q0 is introduced to represent the influences of the axial load (P ), column initial

imperfection (∆0), and initial curvature (ψ) on the mid-height lateral deflection, as given in
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Eq. (4.10).

Q0 = P∆0ψ/L (4.10)

By doing so, Eq. (3.8) can be written as

∆= Q +Q0

Sc
(4.11)

Subsequently, adopting Eq. (4.11) gives:

∆1 =
Q0,1 −Q1

Sc,1
(4.12a)

∆i =
Q0,i +Qi−1 −Qi

Sc,i
i = {2, ...,n} (4.12b)

For braces 1 to n − 1, the axial deformation of the brace is the lateral displacement

difference between adjacent columns ∆i −∆i+1; for brace n, since it is the external brace, its

axial deformation is the same as the lateral deflection of the adjacent column. Assuming the

axial deformation of brace i is the ratio of brace force Qi and brace stiffness Sb,i yields

Qi /Sb,i =∆i −∆i+1 i = {1,2...,n −1} (4.13a)

Qn/Sb,n =∆n (4.13b)

If the system is anchored on both sides and the braces are designed to be able to bear

compressive forces, as illustrated in Fig. 4.10, the stiffness interactions expressed in Eq. (4.12)

and Eq. (4.13) become Eqs. (4.14) and (4.15), respectively.

P1 P2 Pn-1 Pn

Q1
Qn+1 Q2 Qn-2

Qn-1
Qn 

Q2 - Q1 Q1 - Qn+1 Qn-2 - Qn-1 Qn-1 - Qn 

Δ1 Δ2 Δn-1 Δn

Figure 4.10: A storey frame anchored on both sides subjected to gravity loading

∆1 =
Q0,1 −Q1 +Qn+1

Sc,1
(4.14a)

∆i =
Q0,i +Qi−1 −Qi

Sc,i
i = {2, ...,n} (4.14b)
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Qi /Sb,i =∆i −∆i+1 i = {1,2...,n −1} (4.15a)

Qn/Sb,n =∆n (4.15b)

Qn+1/Sb,n+1 =−∆1 (4.15c)

4.5.1 Ideal brace stiffness

Section 4.3 indicates that the ideal brace stiffness for multiple columns can be obtained

by finding the maximum root of SNUM = 0. Nevertheless, SNUM requires establishing the

expression of the system’s equivalent lateral stiffness with a sequence of series and parallel

operations, which is still not straightforward enough for engineering practice. In this subsec-

tion, an alternative method for determining the ideal brace stiffness for multiple semi-rigidly

connected columns is proposed.

For the system anchored on one side, substituting Eqs. (4.13) into Eqs. (4.12) to eliminate

Qi gives:

∆1Sc,1 =Q0,1 − (∆1 −∆2)Sb,1 (4.16a)

∆i Sc,i =Q0,i + (∆i−1 −∆i )Sb,i−1 − (∆i −∆i+1)Sb,i i = {2, ...,n −1} (4.16b)

∆nSc,n =Q0,n + (∆n−1 −∆n)Sb,n−1 −∆nSb,n (4.16c)

For the system anchored on both sides, substituting Eqs. (4.15) into Eqs. (4.14) to elimi-

nate Qi gives:

∆1Sc,1 =Q0,1 − (∆1 −∆2)Sb,1 −∆1Sb,n+1 (4.17a)

∆i Sc,i =Q0,i + (∆i−1 −∆i )Sb,i−1 − (∆i −∆i+1)Sb,i i = {2, ...,n −1} (4.17b)

∆nSc,n =Q0,n + (∆n−1 −∆n)Sb,n−1 −∆nSb,n (4.17c)

The recursive relationships in Eqs. (4.16) and Eqs. (4.17) can be expressed in a general

format of [K ]{∆} = {Q0}, as follows:
Sb,1 +Sb,n+1 +Sc,1 −Sb,1

−Sb,1 Sb,1 +Sb,2 +Sc,2
. . .

. . . . . . −Sb,n−1

−Sb,n−1 Sb,n−1 +Sb,n +Sc,n





∆1

∆2

...

∆n


=



Q0,1

Q0,2

...

Q0,n


(4.18)
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If the system is anchored on one side, Sb,n+1 in Eq. (4.18) equals zero. Let the term

“perfect system” represent the corresponding system without the initial imperfection and

curvature. Thus, the equilibrium shown in Eq. (4.18) for the perfect system can be written as

[K ] {∆i } = 0 (4.19)

where [K ] is the stiffness matrix shown in Eq. (4.18). For the homogeneous system given in

Eq. (4.19), the nonlinear trivial solution exists when the determinant of [K ], det[K ], equals

zero [5]:

det[K ] = 0 (4.20)

The solution to Eq. (4.18) does not exist if the determinant of the coefficient matrix det[K ]

equals zero, which indicates the buckling of the corresponding perfect system.

If all the braces are assumed to have the same axial stiffness Sb , then det[K ] is an

n-th order polynomial consisting of one unknown variable Sb with known Sc,i and ∆0,i .

Consequently, the maximum root of Eq. (4.20) is the ideal brace stiffness for the frame, Sb,id.

It is found that finding the maximum root of Eq. (4.20) yields the same results as the method

proposed in Section 4.3 [1].

4.5.2 Brace forces

For the system anchored on one side, substituting Eqs. (4.12) into Eqs. (4.13) to eliminate ∆i

gives:

Q1

Sb,1
= Q0,1 −Q1

Sc,1
− Q0,2 +Q1 −Q2

Sc,2
(4.21a)

Qi

Sb,i
= Q0,i +Qi−1 −Qi

Sc,i
− Q0,i+1 +Qi −Qi+1

Sc,i+1
i = {2, ...,n −1} (4.21b)

Qn

Sb,n
= Q0,n +Qn−1 −Qn

Sc,n
(4.21c)

The system of n equations in Eqs. (4.21) can be converted to a linear system AX = B , as

expressed in Eq. (4.22).
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

1
Sb,1

+ 1
Sc,1

+ 1
Sc,2

− 1
Sc,2

− 1
Sc,2

1
Sb,2

+ 1
Sc,2

+ 1
Sc,3

− 1
Sc,3

− 1
Sc,3

. . . . . .

. . . 1
Sb,n−1

+ 1
Sc,n−1

+ 1
Sc,n

− 1
Sc,n

− 1
Sc,n

1
Sb,n

+ 1
Sc,n





Q1

Q2

...

Qn−1

Qn


=



Q0,1
Sc,1

− Q0,2
Sc,2

Q0,2
Sc,2

− Q0,3
Sc,3

...
Q0,n−1
Sc,n−1

− Q0,n
Sc,n

Q0,n
Sc,n


(4.22)

For the system anchored on both sides, the equilibrium equations and corresponding

matrix format is given in Eqs. (4.23) and Eq. (4.24), respectively.

Q1

Sb,1
= Q0,1 −Q1 +Qn+1

Sc,1
− Q0,2 +Q1 −Q2

Sc,2
(4.23a)

Qi

Sb,i
= Q0,i +Qi−1 −Qi

Sc,i
− Q0,i+1 +Qi −Qi+1

Sc,i+1
i = {2, ...,n −1} (4.23b)

Qn

Sb,n
= Q0,n +Qn−1 −Qn

Sc,n
(4.23c)

Qn+1

Sb,n+1
=−Q0,1 +Qn+1 −Q1

Sc,1
(4.23d)



− 1
Sb,n+1

+ 1
Sc,1

1
Sc,1

− 1
Sc,1

1
Sb,1

+ 1
Sc,1

+ 1
Sc,2

− 1
Sc,2

− 1
Sc,2

. . . . . .

. . . 1
Sb,n−1

+ 1
Sc,n−1

+ 1
Sc,n

− 1
Sc,n

− 1
Sc,n

1
Sb,n

+ 1
Sc,n





Qn+1

Q1

...

Qn−1

Qn


=



Q0,1
Sc,1

Q0,1
Sc,1

− Q0,2
Sc,2

...
Q0,n−1
Sc,n−1

− Q0,n
Sc,n

Q0,n
Sc,n


(4.24)

With known Pi , Sb,i and Sc,i , the brace forces Qi for systems with nonuniform column

lateral stiffnesses can be attained by solving the linear system in Eq. (4.22) or Eq. (4.24). It is

worth noting that the brace stiffness Sb,i has to be greater than the ideal brace stiffness, Sb,id.

Only in this way can the expressions in Eq. (4.22) and Eq. (4.24) have physical meaning.

4.6 Bracing Requirements for Systems with Uniform Column

Lateral stiffness

If columns in a system have the same size and end-fixity factor, and are subjected to the

same load, the column lateral stiffness in the system is uniform. In this section, the formulae
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proposed in Section 4.5 are simplified for the special case in which all braces possess the

same stiffness and all columns have the same lateral stiffness. In addition, all the columns

are assumed to have the same initial imperfection ∆0. The brace forces become infinity

when the columns are subjected to critical buckling loads and the ideal brace stiffness is

adopted, which is structurally unacceptable. Therefore, a bracing stiffness ratio αb , the

ratio of the required brace stiffness to the ideal brace stiffness, is introduced to increase the

brace stiffness and reduce the braces forces accordingly. With Sb,i =αbSb,id, Sc,i = Sc , and

Q0,i =Q0, Eq. (4.22) and Eq. (4.24) can be simplified as Eq. (4.25) and Eq. (4.26), respectively.

2
Sc

+ 1
αb Sb,id

− 1
Sc

− 1
Sc

2
Sc

+ 1
αb Sb,id

− 1
Sc

− 1
Sc

. . . . . .

. . . 2
Sc

+ 1
αb Sb,id

− 1
Sc

− 1
Sc

1
Sc

+ 1
αb Sb,id





Q1

Q2

...

Qn−1

Qn


=Q0



0

0
...

0

1
Sc


(4.25)



− 1
Sc

− 1
αb Sb,id

1
Sc

− 1
Sc

2
Sc

+ 1
αb Sb,id

− 1
Sc

− 1
Sc

2
Sc

+ 1
αb Sb,id

− 1
Sc

− 1
Sc

. . . . . .

. . . 2
Sc

+ 1
αb Sb,id

− 1
Sc

− 1
Sc

1
Sc

+ 1
αb Sb,id





Qn+1

Q1

Q2

...

Qn−1

Qn


=Q0



1
Sc

0

0
...

0

1
Sc


(4.26)

When the number of columns n is even, Eq. (4.26) can be transformed to a general format

shown in Eq. (4.27) using Gaussian elimination.
AX1 =−B

C X2 = 0

AX3 = B

(4.27)

where
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A =



2
Sc

+ 1
αb Sb,id

. . .

. . . . . . − 1
Sc

− 1
Sc

2
Sc

+ 1
αb Sb,id

− 1
Sc

− 1
Sc

1
Sc

+ 1
αb Sb,id

 (4.28a)

X1 =



Qn/2−1

...

Q1

Qn+1


X2 =

{
Qn/2

}
X3 =



Qn/2+1

...

Qn−1

Qn


(4.28b)

B =



0
...

0

1
Sc


(4.28c)

The above transformation indicates that the linear system AX3 = B in Eq. (4.27) has the

same solution as Eq. (4.25). In addition, Qn/2(X2) equals zero. That is to say, if the number

of columns n in a system anchored by both sides is even, the system can be vertically

divided at the middle brace into two equivalent half-systems anchored on one side in which

the number of columns is n/2. Subsequently, the brace forces in one half-system can be

obtained from Eq. (4.25): the magnitudes of brace forces in the two half-systems have a

mirror relationship; the signs of brace forces in the two half-systems are opposite; and

the force of the middle brace is zero. For the system anchored on both sides with an odd

number of columns, Eq. (4.26) is required to obtain the brace forces.

4.6.1 Maximum brace force for a system with uniform column lateral

stiffness

In practice, the magnitude of the maximum brace force Qn is of interest. The explicit solution

of Qn for systems with uniform column lateral stiffness and brace stiffness is explored in this

section. For the linear system AX = B given in Eq. (4.25), the solution of X can be obtained

by:

X = A−1B (4.29)

Because A is a non-singular tridiagonal matrix, the inverse of it can be explicitly obtained
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[106]. Let A = [
ai j

]
represent the tridiagonal matrix such that ai i = ai , ai ,i−1 = bi , ai ,i+1 = ci ,

and ai j = 0 for
∣∣i − j

∣∣> 1. As such, the inverse of A is given by

(
A−1)

i j =


(−1)i+ j bi · · ·b j−1θi−1τ j+1/θn if i < j

θi−1τ j+1/θn if i = j

(−1)i+ j ci · · ·c j−1θi−1τ j+1/θn if i > j

(4.30)

where θi and τi satisfy the recurrence relations given in Eqs. (4.31) with initial conditions

θ0 = 1, θ1 = a1, τn+1 = 1 and τn = an .

θi = aiθi−1 −bi−1ci−1θi−2 i = 2,3, ...,n (4.31a)

τi = aiτi+1 −bi ciτi+2 i = n −1, ...,1 (4.31b)

Simplify Eq. (4.25) as

M1 −1

−1 M2
. . .

. . . . . . −1

−1 Mn−1 −1

−1 Mn





Q1

Q2

...

Qn−1

Qn


=Q0



0

0
...

0

1


(4.32a)

Mi = 2− Sc

αb amaxSc,cr
i = {1,2, ...,n −1} (4.32b)

Mn = 1− Sc

αb amaxSc,cr
(4.32c)

where Sc,cr is the lateral stiffness of a column with critical buckling load, and amax is a scale

factor, as follows:

amax =−Sb,id/Sc,cr (4.33)

For the system consisting of identical braces and in which all the columns have the same

lateral stiffness, the closed-form solution for amax is given in Eq. (4.34) [9].

amax =
[

2

(
1+cos

2Nπ

2N +1

)]−1

(4.34)

where N = n/ j ; n is the number of columns, j is the number of anchors, j = 1 or 2.

It can be obtained from Eq. (4.29) that Qn =Q0
(

A−1
)

nn . With Eq. (4.30) and Eq. (4.32),

the solution of Qn can be expressed in an explicit form:

Qn =Q0
θn−1

θn
=Q0

1

Mn − θn−2
θn−1

=Q0
1

Mn − 1

Mn−1− θn−3
θn−2

= ·· · =Q0
1

Mn − 1
Mn−1− ···

M2− 1
M1

(4.35)
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4.6.2 Approximation of the maximum brace force Qn

For a system with uniform column lateral stiffness, the ratio of Qn to Q0 depends not only

on the number of columns and anchors, but also on the magnitude of the applied load

and end-fixity factor, as indicated in Eq. (4.35). This is because both the applied load and

end-fixity factor affect the column lateral stiffness, which is considered in the half-length

column model. As a result, Qn obtained from Eq. (4.35) does not vary linearly with the gravity

loading, demonstrated for a single column in Chapter 3. If all applied loads are presumed

to be the critical buckling load, the term Sc /Sc,cr in Eq. (4.33) becomes unity irrespective of

end-fixity factors, and thus the ratio of Qn to Q0 is determined by the recursive term θi−1/θn ,

which is related to the bracing stiffness ratio, αb . As stipulated in the AISC specification [10],

the brace stiffness shall be at least two times the ideal brace stiffness. Provided α= 2 and

P = Pcr , the variation of Qn with the number of columns n is investigated in this section.

Sputo and Beery [12] indicated that there is a linear relationship between the brace force

and the number of columns in a system, as shown in Eq. (4.36).

Qn = nQ̄1 (4.36)

where Q̄1 is the brace force for a single column. However, Blum et al. [13] pointed out that

the assumption that the bracing force is linearly accumulated leads to conservative results

because the column supports will participate in resisting the lateral force.

For a single column, with αb = 2 and P = Pcr , the induced brace force Q̄1 is 4Q0. The

analytical results of Qn/Q̄1 obtained from Eq. (4.34) and Eq. (4.35) are presented in Fig. 4.11,

in which the results from Eq. (4.36) are also presented for comparison. The results indicate

that Eq. (4.36) provides more conservative results than the analytical results. Since Qn/Q̄1 is

almost proportionate with the number of columns, a simple-to-use expression in Eq. (4.37)

was obtained by linear fitting to predict the value of Qn/Q̄1 associated with the number of

columns. The fitting results agree well with the analytical results, as shown in Fig. 4.11.
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Figure 4.11: Maximum brace forces for n-column system anchored on one side

Qn = (0.915n +0.15)Q̄1 n ≥ 2 (4.37)

With Q̄1 = 4Q0, Eq. (4.37) becomes Eq. (4.38).

Qn = (0.6+3.66n)Q0 n ≥ 2 (4.38)

Note that the influences of semi-rigid connections and initial imperfections on the brace

forces are explicitly considered in the term Q0 in Eq. (4.38).

If the number of columns n is even, it is theoretically proved that the maximum force in

an n-column system anchored on both sides is the same as that in an n/2-column system

anchored on one side. For such cases, the proposed equation in Eq. (4.38) can be extended

to consider the case anchored on both sides by introducing a coefficient j .

Qn = [(0.6+3.66n)Q0]
/

j n ≥ 2 (4.39)

where j is the number of anchors, j = 1 or 2. Note that if the braces are designed as tension

only, two anchors shall be provided with j taken as 1.

The analytical results obtained from Eq. (4.26) indicate that the maximum brace force in

a system anchored on both sides also exhibits an almost linear relationship with the number

of columns, as shown in Fig. 4.12. Because of that, Eq. (4.39) also applies to a system with

an odd number of columns.
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Figure 4.12: Maximum brace forces for n-column system anchored on both sides

4.6.3 Randomness of column initial imperfection

The derivation of brace forces for systems with uniform column lateral stiffness in Section

4.6.1 is based on the assumption that all the columns have the same initial imperfection in

the same direction. This assumption is conservative because the magnitude and direction

of column initial imperfections are random in reality, which has a favourable effect on brace

force requirements. One way to investigate the effect of the randomness of column initial

imperfections on the brace forces in multiple columns is to conduct stochastic analysis, as

presented by Zhang et al. [14] and Zhao et al. [15] in which the probability density function

of mid-height brace forces is established, but this is not considered in this study. The other

prevailing practice is to assume that all the columns still have the same initial imperfection,

but the magnitude of the initial imperfection for multiple columns, ∆0,mul, decreases with

the number of columns:

∆0,mul = η∆0 (4.40)

where η is a reduction factor of the initial imperfection for multiple columns, a function of

number of columns n.

Although the Australian standard AS4100-2020 [27] considers the effect of nonuniform

loading patterns on the brace force requirement, it neglects the effect of initial imperfection

randomness as indicated in Eq. (2.12), which tends to be conservative. For the other current

standards, the brace strength requirement for multiple columns is related to the accumu-

lation of all the forces, ΣP , and the reduction factor, η. The brace strength requirements

stipulated in different standards are tabulated in Table 4.1.
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Table 4.1: Brace strength requirements in different standards

Standard Q̄1 ∆0 η

AISC 360-16 [10] 0.01 Pr L/500 1/
p

n

EN 1993-1-1 (2005) [24] 0.01 Pr L/500
p

0.5(1+1/n)

AISI S100 [11] 0.01 Pr L/500 0.5
(
1+1/

p
n

)
/ j

CSA S16-19 [21] 0.008 Pr L/500 0.2+0.8/
p

n

GB 50017-2017 [26] Pr /60 - 0.6+0.4/n

Pr is the required column strength as stipulated in the corresponding standard. It is

specified in GB50017-2017 that the number of columns should not exceed eight, n ≤ 8. The

variations of η with number of columns in different standards are presented in Fig. 4.13,

indicating noteworthy discrepancies of η among different standards, in which EN 1993-1-1

is the most conservative, followed by AISI S100 [11], GB 50017-2017 [26], CSA S16-19 [21],

and AISC 360-16 [10]. Replacing ∆0 by ∆0,mul enables Eq. (4.39) to account for the effect of

column initial imperfection randomness on the maximum brace force of the parallel column

system. Alternatively, the effect of the column initial imperfection randomness on the brace

forces in parallel columns can be investigated by conducting stochastic analysis using the

formulae proposed in Section 4.5, which is not within the scope of this study, though.
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Figure 4.13: Comparison of the reduction factor of initial imperfection specified in different

standards
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4.7 Computational Procedure

The computational procedure of determining the ideal brace stiffness and brace forces in

parallel semi-rigidly connected columns is summarized as follows.

1. Adopt the half-length column model in Fig. 4.6 to mimic the system as two equivalent

frames. Calculate the elastic critical buckling load Pcr,i of each half-length column in

the equivalent frame using Eq. (3.12). If the inelastic stiffness reduction needs to be

considered, check if the column is subjected to inelastic buckling using Eq. (2.26).

2. With obtained Pcr,i , the lateral stiffness Sc,i of each half-length column can be calcu-

lated using Eq. (3.10). Note that the reduced modulus Et in Eq. (2.26a) needs to be

incorporated to replace E in Eq. (3.10) if the column behaves inelastically.

3. Calculate the ideal brace stiffness for the equivalent frame Sb,id by solving Eq. (4.20) to

find the maximum root. If the columns have the same lateral stiffness, Eq. (4.34) can

alternatively be used to calculate the value of the scale factor amax and subsequently

attain the value of Sb,id using Eq. (4.33).

4. Use Eq. (3.11a) to compute the value of curvature coefficient ψi .

5. Determine the value of bracing stiffness ratio αb , and let Sb,i equal αbSb,id. With the

obtained Pcr,i , ψi , Sc,i , and Sb,i , use Eq. (4.22) or Eq. (4.24) to calculate the brace

forces in the equivalent unbraced frame. Note that the obtained brace forces need to

be doubled for the whole system. For systems with uniform column lateral stiffness,

Eq. (4.35) can be alternatively adopted to calculate the maximum brace force Qn ; and

if αb = 2 and P = Pcr , Eq. (4.39) can be used to compute Qn for convenience.
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4.8 Examples of Multi-column Systems

4.8.1 Example 1: System with uniform column lateral stiffness

Effect of the end-fixity factor on brace force

The system consisting of five semi-rigidly connected columns rigidly anchored by one

side with compression-tension braces shown in Fig. 4.14 was selected to investigate the

influence of semi-rigid connections on brace forces and verify the validity of the formulae

proposed in Section 4.6. The centre spacing of the columns is assumed to be 2400 mm,

and each column has a length of 6000 mm. All columns were made of A992 steel ( fy =
345MPa;E = 200000MPa). W360×60 (W12×40) was adopted as the column section with an

in-plane moment of inertia I = 1.83×106 mm4 and cross-sectional area Ac = 3060mm2. The

magnitude of the initial imperfection ∆0 of all columns was taken as a thousandth full-length

of the column (Lc /1000). Four different connections at column ends were considered: re = 0

(pinned), re = 0.3, re = 0.6 and re = 1.0 (fixed). As stipulated in the AISC [10], bracing ratio

αb is taken as 2.0 for all cases.

Q1 Q2 Q3 Q4 Q5

Pcr

re

re

Pcr

re

re

Pcr

re

re

Pcr

re

re

Pcr

re

re

Figure 4.14: A system consisting of five parallel semi-rigidly connected columns anchored

on one side
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Analytical results

Take the case with re = 0.6 as an example and follow the computational procedure in Section

4.7 to calculate the brace forces.

1. Calculate the critical buckling load Pcr of the half-length column. By Employing the

non-linear system solver fsolve in MATLAB to solve Eq. (3.12) with K0 = 1 being the

initial value, the exact value of effective length factor K is computed as K = 0.8116.

The corresponding elastic critical buckling load Pcr is

Pcr = π2E I

(K L)2 = π2 (200000)
(
1.83×106

)
(0.8116×3000)2 = 609.3kN

Since Pcr /Py > 0.5, the inelasticity needs to be considered by adopting the stiffness

reduction factor τb . Because the end-fixity factor is given, τb is attained as 0.982 from

Eq. (2.27a). With τb = 0.982, the inelastic critical buckling load is

Pcr = π2Eτb I

(K L)2 = 598.5kN

Since it is confirmed that Pcr /Py > 0.5, the column behaves inelastically, and the

corresponding critical buckling load of the column is 598.5 kN.

2. By substituting K = 0.8116, re = 0.6 and E = 0.982×200000MPa into Eq. (3.10), the

lateral stiffness of each half-length column is obtained as Sc =−126.6N/mm.

3. Since the system possesses uniform column lateral stiffness, Eq. (4.33) and Eq. (4.34)

can be used to obtain the ideal brace stiffness: amax = 12.34, and Sb,id = −12.34×
(−126.6) = 1562.2N/mm.

4. Using Eq. (3.11a), the value of the curvature coefficient was obtained as ψ= 1.1707.

5. With the obtained Pcr , ψ, Sc and Sb,id, solving Eq. (4.25) gives the solutions of Q1 to

Q5 for the half-length column model, which shall be doubled for the whole system.

Following the above procedure, the analytical results for other cases are attained and

tabulated in Table 4.2 and Table 4.3, in which Qi are the brace forces for the whole system.
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Table 4.2: Analytical results for a system with five parallel columns

re 0 0.3 0.6 1

ψ 1.3333 1.2606 1.1707 1.052

τb 1.0 1.0 0.982 0.873

Pcr (kN) 401.4 488.3 598.5 716.4

Q0 (N) 1070.3 1231.0 1401.3 1507.2

Sc (N/mm) -133.8 -124.7 -126.6 -153.6

Sb,id(N/mm) 6605.7 6155.9 6248.7 7581.8

Table 4.3: Comparison of brace forces between analytical and FEM results for a five-column

system anchored on one side

Method re Q1 (N) Q2 (N) Q3 (N) Q4 (N) Q5 (N)

Analytical 0 4778.3 9363.0 13568.5 17224.3 20182.5

FEM 0 4769.6 9343.6 13537.6 17182.6 20132.0

Analytical 0.3 5495.8 10768.9 15605.8 19810.6 23212.9

FEM 0.3 5483.7 10741.8 15562.3 19751.4 23141.0

Analytical 0.6 6256.2 12258.9 17765.1 22551.7 26424.7

FEM 0.6 6242.8 12228.0 17714.5 22481.8 26338.9

Analytical 1 6728.6 13184.7 19106.7 24254.7 28420.3

FEM 1 6721.6 13166.1 19073.7 24206.6 28358.7

The results indicate that the brace force is not linearly accumulated to the anchored

end, which confirms the observation by Blum et al. [13]. The analytical results achieve good

agreements, with the FEM results for all the cases with the maximum discrepancy being

0.6%. The good agreements demonstrate the validity of the proposed formulae regarding

brace forces and the curvature coefficient ψ. It can be seen from Table 4.2 that Pcr increases

as re increases, although the stiffness reduction factor τb decreases as re increases. However,

Q0 increases slightly from re = 0 to re = 0.6 and decreases from re = 0.6 to re = 1. This is

due to the consideration of the column curvature coefficient ψ, which decreases with the

increase of re .
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Effect of column axial load on the maximum brace force

For the system shown in Fig. 4.14, if all columns are assumed to be pin-connected, re = 0,

the maximum brace forces, Qn , with different applied loads obtained from the analytical

expression in Eq. (4.35), fitting expression in Eq. (4.39), AISC 360-16 [10] and CSA S16-

19 [21] are presented in Fig. 4.15. In the comparison, the initial imperfection reductions for

multiple columns in Table 4.1 are not considered, i.e., η= 1.
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Figure 4.15: Effect of load ratio on the maximum brace force

When P = Pcr , the predictions obtained from the analytical, fitting, and AISC 360-16

expressions are practically the same, which is different from the observation on a single

column, as discussed in Chapter 3. This indicates that the analytical result is noticeably

greater than the prediction from AISC 360-16. In the case of a single column, the initial

curvature coefficient is 1.333 when P = Pcr , which consequently leads to a 33.3% increase in

the brace force. Such an increase is greater than the 25% increase considered in AISC 360-16

due to the compensation for neglecting the column flexibility and continuity in Winter’s

model. However, the theoretical value of the maximum brace force for multiple columns

is lower than the results obtained from the summation of the brace force of each column,

as shown in Fig. 4.11. Consequently, the prediction by AISC 360-16 happens to be close to

the analytical result for multiple columns when P = Pcr . The fitting expression and AISC

360-16 yield similar results. As the applied load decreases, the brace force obtained from the

fitting expression in Eq. (4.39) decreases faster than that obtained from AISC 360-16 because
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Q0 in Eq. (4.39) accounts for the effect of the column initial curvature, which decreases as

the applied load decreases. Theoretically, the fitting expression and specification in AISC

360-16 [10] are applicable to cases with P = Pcr . For cases in which P < Pcr , the brace forces

obtained from the fitting expression and AISC 360-16 are conservative compared to the

analytical results due to neglecting the contribution of column lateral stiffness. Different

from AISC 360-16, CSA S16-19 does not increase the results obtained from Winter’s model,

and thus the brace force predicted from CSA S16-19 can be unconservative when P/Pcr > 0.8.

Effect of the bending direction of columns’ initial imperfections on brace forces

The above two cases of this example are based on the worst scenarios in that all the columns’

initial imperfections bend toward the same direction, which neglects the randomness of

column initial imperfections in reality. Basically, the randomness of column initial imper-

fections is associated with three parts: the shape, magnitude, and bending direction of

the initial imperfection. In this subsection, the effect of the bending direction of columns’

initial imperfections on the brace forces in multi-column systems are preliminarily inves-

tigated. All the columns are subjected to the critical buckling load with the fixed ends,

re = 1. It is assumed that the initial imperfection magnitudes of all the columns are the same

(∆0,i = Lc /1000), whereas the initial imperfections of two columns have a different direction

from others, as shown in Fig. 4.16.
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Figure 4.16: Columns arrangement associated with the pattern of {1,−1,1,−1,1}

The multiplier “1” is used to indicate the direction of the column initial imperfection

bend towards the left in this case, so that the corresponding equivalent lateral force towards
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the left, which will yield the tensile force in the brace adjacent to the anchor and vice versa.

By doing so, the arrangement of the columns presented in Fig. 4.16 exemplifies the pattern

of {1,−1,1,−1,1}.

By varying the locations of the two columns with the initial imperfection towards the

right (“−1”), the results of the brace forces in the system are obtained, as tabulated in

Table 4.4.

Table 4.4: Effects of the directions of columns’ initial imperfections on the brace forces

No. Pattern
∆0,1 Q1 ∆0,2 Q2 ∆0,3 Q3 ∆0,4 Q4 ∆0,5 Q5

dir. (N) dir. (N) dir. (N) dir. (N) dir. (N)

1 {1,1,1,−1,−1} ← 5115.4 ← 10023.5 ← 14525.7 → 12410.7 → 9793.1

2 {1,1,−1,1,−1} ← 4635.6 ← 9083.4 → 7134.6 ← 10925.5 → 8245.2

3 {1,−1,1,1,−1} ← 4218.5 → 2237.5 ← 6194.6 ← 9900.7 → 7177.0

4 {−1,1,1,1,−1} → -2147.6 ← 1820.5 ← 5714.8 ← 9377.6 → 6631.9

5 {1,1,−1,−1,1} ← 4112.6 ← 8058.5 → 5649.4 → 3011.5 ← 6280.2

6 {1,−1,1,−1,1} ← 3695.5 → 1212.7 ← 4709.3 → 1986.6 ← 5212.1

7 {−1,1,1,−1,1} → -2670.6 ← 795.6 ← 4229.6 → 1463.6 ← 4667.0

8 {1,−1,−1,1,1} ← 3215.7 → 272.6 → -2681.7 ← 501.4 ← 3664.2

9 {−1,1,−1,1,1} → -3150.4 ← -144.5 → -3161.4 ← -21.6 ← 3119.0

10 {−1,−1,1,1,1} → -3567.5 → -6990.4 ← -4101.5 ← -1046.5 ← 2050.9

In Table 4.4, the underlined values represent the maximum brace force in the relative

pattern. It can be seen that the maximum tensile brace force decreases as the two columns

of which the initial imperfections toward the right, namely ∆0 direction being →, become

farther away from the anchor. This is because if a column with ∆0 towards the right becomes

farther away from the anchor, the corresponding applied axial load and initial imperfection

will reduce the lateral displacement of the columns (←) between this column and the anchor,

and thus the applied axial loads on the in-between columns will induce smaller brace forces.

The results demonstrate that considering the different directions of columns’ initial

imperfections will decrease the maximum brace force in multi-column systems, as expected.

More importantly, the results provide specific practical guidance to engineers if the columns
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can be arranged on purpose to ensure that their initial imperfections toward different

directions, which is easier to implement for cold-form steel channel columns. For instance,

given that the braces are designed as capable of resisting both compressive and tensile

forces in this example, pattern No. 9 is the optimum pattern because the maximum brace

force of pattern No. 9 is less than those of other patterns. Accordingly, if the columns can be

arranged according to pattern No. 9, it will reduce the maximum brace force by 88.9% from

28420.3 N associated with the worst pattern (Table 4.3) to 3161.4 N.

In this example, if the braces in the system are to be designed as tension-only, pattern

No. 6, in which the columns with different directions of initial imperfections are arranged

alternately, can be seen as the optimum pattern because the maximum brace force of

pattern No. 6 is the smallest among the patterns with brace forces in tension. Additionally,

the arrangement of pattern No. 6 is symmetrical about the centre of the system, which

applies to systems anchored on both sides.

4.8.2 Example 2: System with nonuniform column lateral stiffness

The influence of nonuniform column lateral stiffness on brace forces is investigated in

this section. In practice, nonuniform column lateral stiffness may exist in a system due to

differences in column sizes, end connections, or applied loads. In such cases, the stiffness

interaction is likely different from the system with the uniform column lateral stiffness

discussed previously. In the nonuniform column stiffness case, the ideal brace stiffness needs

to be determined by Eq. (4.18), and the brace forces can be obtained by either Eq. (4.21) or

Eq. (4.23).

This example investigates the bracing requirements for a rigidly anchored system which

consists of nine parallel cold-formed steel columns representing the studs in a load-bearing

wall, as shown in Fig. 4.17.
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Figure 4.17: Diagram of a cold-formed load-bearing wall anchored on both sides

The column spacing and the height are 610 mm and 2400 mm, respectively. Only in-

plane buckling is considered in this example. The 250S137-54 studs are adopted as the

typical column section with a moment of inertia I = 33299mm4 and cross-sectional area

Ac = 204mm2. The elastic modulus E and yield strength fy of cold-formed steel are taken

as 203000MPa and 345MPa, respectively. The bracing stiffness ratio αb is taken as 2.0 as

per AISI S100-16 [11]. It is assumed that there is a distinctive column made of back-to-back

250S137-54 sections with Ic,v = 120681mm4. All the columns have the same end-fixity factor,

re = 0.3. Note that all the columns are subjected to their own critical buckling loads. Since

the inelastic stiffness reduction factor τb has yet to be introduced in AISI S100-16 [11], the

possible influence of inelastic behaviour on the stud lateral stiffness is not considered in this

example. As described in Appendix A, finite element analyses were carried out to verify the

results obtained from the proposed analytical method. Good agreements were achieved with

a maximum discrepancy of 0.6% between the FEM and analytical results. Only analytical

results are presented in this section for brevity.

Anchored on one side

Following the procedure presented in Section 4.7, the parameter values of the typical and

distinctive columns are tabulated in Table 4.5.
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Table 4.5: Calculation results regarding the ideal brace stiffness

R re Pcr Sc ψ Q0

(1×106 N/mm) (kN) (N/mm) (N)

Typical column 7.24 0.3 56.36 -36.0 1.2606 142.1

Distinctive column 26.25 0.3 204.26 -130.4 1.2606 515.0

If all the braces shown in Fig. 4.17 are to be designed as tension-only, only one anchor

needs to be considered. Assume that the initial imperfection ∆0 causes the columns in the

system to bend towards the left, then the brace connecting to the left anchor will fail in

compression, and thus the left anchor and the adjacent brace should be removed in the

analytical modelling. In that case, the analytical results of ideal brace stiffness and brace

forces for different cases are tabulated in Table 4.6. The acronym “LDC” stands for the

location of the distinctive column, which counts from left to right, and “None” means that

there is no distinctive column in the system. If there is no distinctive column in the system,

the ideal brace stiffness is Sb,idt = 2638.1N/mm. However, Sb,idt equals 3465.9N/mm if the

distinctive column is located in the middle (5th) of the system. This is because the lateral

stiffness of the distinctive column is less than that of the typical columns when the columns

are subjected to their critical buckling loads Pcr (Table 4.5), which is more detrimental to

the stability of the system and requires larger brace stiffness, even though the distinctive

column possesses a larger moment of inertia than the typical columns.

It is worth noting that the ideal brace stiffness increases as the LDC becomes farther

away from the available anchor. Except for the brace adjacent to the rigid anchor (named

exterior brace), the interior braces are in series with the adjacent column [1]. Therefore,

if the distinctive column becomes farther away from the anchor, as the number of braces

between the column and the anchor increases, the corresponding lateral stiffness provided

by those braces decreases. Consequently, when the column becomes farther away from the

anchor, it requires greater brace stiffness to maintain the system stability. In other words,

the farther the column is from the anchor, the more impact it has on the stability of the

system.

By comparing the systems with and without the distinctive column, perceptible brace

force increments are found in the braces to the right of the distinctive column. However, the
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forces in the braces to the left of the distinctive columns change slightly due to the removal

of the left anchor in the analysis model to mimic the tension-only brace assumption.

Table 4.6: Analytical results of the ideal brace stiffness and brace forces for the system

anchored on one side

LDC Sb,idt Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

(N/mm) (N) (N) (N) (N) (N) (N) (N) (N) (N)

None 2638.1 638.2 1267.6 1879.8 2466.3 3019.2 3530.9 3994.4 4403.5 4752.5

1st 4183.8 2257.5 2860.9 3439.8 3989.1 4504.1 4980.3 5413.8 5800.6 6137.6

2nd 4059.7 619.5 2844.7 3433.4 3991.8 4514.8 4997.7 5436.4 5826.9 6165.7

3rd 3893.3 619.9 1234.0 3418.4 3989.6 4523.8 5016.3 5462.4 5858.0 6199.5

4th 3692.1 623.9 1241.7 1847.4 3977.4 4526.3 5031.2 5487.0 5889.3 6234.3

5th 3465.9 631.4 1256.2 1867.9 2460.3 4514.6 5034.6 5502.3 5912.9 6262.1

6th 3228.7 641.6 1276.0 1896.2 2495.3 3066.6 5013.0 5494.2 5914.2 6268.3

7th 2999.0 652.4 1297.0 1926.0 2532.0 3107.5 3645.8 5438.0 5867.3 6226.2

8th 2806.2 659.2 1309.9 1943.8 2552.8 3129.1 3665.2 4154.4 5734.1 6096.4

9th 2680.0 655.4 1301.9 1931.0 2534.2 3103.3 3630.8 4109.5 4533.1 5847.6

For all cases, the right-most brace has the maximum brace force Q9. The variations

of the required brace area and maximum brace force Q9 with the LDC are presented in

Fig. 4.18. It can be seen that Q9 varies with the LDC and achieves the maximum value when

the 6th column is distinctive.
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Figure 4.18: Influence of the distinctive column’s location on the ideal brace stiffness and

maximum brace force for the system anchored on one side

Intuitively, the brace force increases as the brace stiffness decreases. However, as the

location of the distinctive column changes, the variation of the brace stiffness cannot reflect

how the stiffness of the system to support the column varies. The effective lateral stiffness

of the column, Sef, the ratio of the lateral load applied on the column to the induced lateral

displacement of the column, is introduced to describe the total stiffness of the system

regarding the column. Eq. (4.18) can be used to attain the effective lateral stiffness, Sef. For

example, if the effective lateral stiffness of the first column is to be determined, with the

equivalent lateral force applied on the column Q0,1 set to be unit and other equivalent lateral

forces zero, the displacement of the first column ∆1 can be obtained by solving Eq. (4.18)

with known Sb,i and Sc,i . For the whole system, the effective lateral stiffness of the first

column Sef,1 is 2/∆1. The effective lateral stiffnesses of columns when the distinctive column

is located at different places are represented in Table 4.7. The underlined values in Table 4.7

represent the effective lateral stiffnesses of the distinctive column for different cases. On the

one hand, although the brace stiffness decreases as the distinctive column becomes closer

to the anchor, the effective lateral stiffness of the distinctive column increases, which has

a favourable effect on the maximum brace force. On the other hand, the effective lateral

stiffnesses of the typical columns decrease as the brace stiffness decreases (except for that

95



Table 4.7: Effective lateral stiffnesses of columns in the system anchored on one side

LDC Sef,1 Sef,2 Sef,3 Sef,4 Sef,5 Sef,6 Sef,7 Sef,8 Sef,9

(N/mm) (N/mm) (N/mm) (N/mm) (N/mm) (N/mm) (N/mm) (N/mm) (N/mm)

None 315.5 345.2 391.3 462.1 573.2 758.2 1098.1 1845.3 4296.3

1st 477.1 540.1 629.3 759.1 956.1 1275.6 1850.0 3086.7 7056.9

2nd 477.4 516.6 601.7 725.8 914.6 1221.4 1774.4 2967.8 6810.0

3rd 468.7 508.4 565.4 682.0 859.9 1149.8 1674.1 2809.7 6480.2

4th 451.8 491.1 548.1 630.4 795.3 1065.0 1554.8 2620.7 6083.7

5th 427.8 465.8 521.7 603.3 724.9 972.2 1423.7 2411.5 5641.4

6th 398.6 434.8 488.6 568.2 688.4 878.4 1290.1 2196.8 5182.4

7th 367.7 401.6 452.8 529.4 646.9 836.0 1167.6 1997.4 4749.6

8th 340.1 371.8 420.4 494.0 608.3 795.5 1131.4 1841.4 4401.7

9th 321.6 351.9 398.6 470.0 582.0 767.4 1106.2 1843.0 4199.9

Sef,1 increases a little when the LDC changes from the 1st to the 2nd), which is unfavourable

to the maximum brace force. Therefore, the variation of the maximum brace force with the

LDC does not exhibit obvious regularity.

It is not considered in the foregoing study that the initial imperfection ∆0 will induce

the system to bend towards the right side of the system. However, the results for such a

case can be obtained based on the mirror relation with those presented in this example. For

instance, if the 9th column is distinctive and the system bends towards the right side due to

the presence of ∆0, the corresponding ideal brace stiffness and brace forces are the same

as the results associated with LDC being the 1st column in Table 4.6. In this way, the ideal

brace stiffness obtained with assuming that the system bends toward the right side governs

because the ideal brace stiffness is larger than that with assuming the system bends towards

the left side.

Anchored by both sides

If the system is designed as anchored on both sides with braces capable of resisting com-

pressive forces, the analytical results of the brace forces for different cases are tabulated in
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Table 4.8. Since the system is symmetric, it suffices to consider the LDC to be at the 5th to

9th. Comparing the results between the systems without and with the distinctive column in

the system indicates that the farther the brace is away from the distinctive column, the less

the brace force increases, similar to that in the cases the system is anchored on one side.

The variations of maximum brace force Q9 and ideal brace stiffness Sb,idt with the LDC

are presented in Fig. 4.19. It can be seen that the ideal brace stiffness decreases as the

LDC becomes farther away from the middle of the system. This indicates that for a system

anchored on both sides, the closer the column is to the middle, the more impact it has on

the stability of the system. The maximum brace force increases as the LDC changes from the

middle (5th) to 8th but decreases as the LDC moves from 8th to 9th. The results for systems

anchored by one side and by both sides indicate that the LDC significantly influences both

ideal brace stiffness and brace forces for the system, even though the summations of gravity

loads of the system for all cases are the same.

Table 4.8: Analytical results of ideal brace stiffness and brace forces for the system anchored

on both sides

LDC Sb,idt Q10 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

(N/mm) (N) (N) (N) (N) (N) (N) (N) (N) (N) (N)

None 735.1 -2419.5 -2016.9 -1515.6 -940.1 -318.6 318.6 940.1 1515.6 2016.9 2419.5

5 1154.0 -3108.1 -2727.0 -2260.9 -1724.3 -1133.9 1133.9 1724.3 2260.9 2727.0 3108.1

6 1123.6 -2931.8 -2553.8 -2093.9 -1567.0 -989.9 -381.1 1869.4 2430.5 2913.8 3303.8

7 1035.8 -2786.6 -2405.6 -1941.1 -1409.1 -828.2 -218.5 398.8 2585.7 3099.3 3505.2

8 905.7 -2684.5 -2293.6 -1811.7 -1257.8 -653.9 -24.0 606.8 1213.5 3237.6 3667.5

9 780.8 -2595.6 -2191.8 -1687.0 -1104.5 -471.0 184.1 830.7 1439.1 1981.2 3614.8
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Figure 4.19: Influence of the distinctive column’s location on the ideal brace stiffness and

maximum brace force for the system anchored on both sides

As shown in Table 4.9, the effective lateral stiffness of the distinctive column increases,

but the effective lateral stiffness of typical columns decreases as the distinctive column

becomes farther away from the middle of the system. Similar to the system anchored by

one side, the variation of the maximum brace force with the LDC has no obvious pattern for

the system anchored by both sides.

Table 4.9: Effective lateral stiffnesses of columns in the system anchored on both sides

LDC Sef,1 Sef,2 Sef,3 Sef,4 Sef,5 Sef,6 Sef,7 Sef,8 Sef,9

N/mm N/mm N/mm N/mm N/mm N/mm N/mm N/mm N/mm

None 1288.2 614.3 418.4 342.9 322.2 342.9 418.4 614.3 1288.2

5th 2116.3 1021.9 687.0 542.2 476.8 542.2 687.0 1021.9 2116.3

6th 2086.8 1020.2 694.7 556.1 497.2 487.4 627.6 950.2 2008.6

7th 1923.0 943.6 647.3 523.9 476.0 477.3 528.4 817.3 1778.1

8th 1655.0 806.7 553.6 451.4 416.3 427.9 492.5 653.1 1470.4

9th 1387.1 666.1 454.8 372.2 347.8 366.2 438.6 623.4 1209.5
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4.9 Discussion on the maximum brace force with nonuni-

form column lateral stiffness

The analytical results of the example with nonuniform column lateral stiffness indicate

that the maximum brace force is influenced by the location of the distinctive column, i.e.,

different nonuniform lateral stiffness cases. This section discusses what if the effect of

nonuniform column lateral stiffness is ignored in the design of braces.

In Section 4.6.2, an empirical formula in Eq. (4.39) is proposed to evaluate the maximum

brace force of systems with uniform column lateral stiffness when the bracing stiffness ratio

equals two. Eq. (4.39) can be reformulated as

Qn =
(

0.6

n
+3.66

)∑
Q0/ j =

(
0.6

n
+3.66

)
∆0ψ

L

∑
Pcr / j n ≥ 2 (4.41)

That is to say, the maximum brace force Qn in Eq. (4.39) is actually obtained by scaling the

summation of critical buckling loads of columns, and such a hypothesis can also be found

in current standards [10, 11, 21, 24]. If Eq. (4.41) is to be extended to calculate the maximum

brace force of systems with nonuniform column lateral stiffness, it can be adapted as:

Qn =
(

0.6

n
+3.66

)∑
Q0,i / j =

(
0.6

n
+3.66

)∑ ∆0,i Pcr,iψi

L
/ j (4.42)

Eq. (4.42) implies that all the column axial loads contribute equally to the maximum

brace force Qn regardless of the magnitude and location of the loading.

Eq. (4.42) is used to compute the maximum brace force of the system in Example 2. If

the tension-only braces are adopted so that the system shall be designed being anchored by

one side, the maximum brace force obtained from Eq. (4.42) equals 6155.6N, which is lower

than the analytical results of the cases in each of which the 2nd to 7th column is distinctive,

as tabulated in Table 4.6. If the system can be designed as anchored on both sides, the

maximum brace force is 3077.8N from (4.42), which is less than all the analytical results

in Table 4.8. Therefore, the brace force can be underestimated by scaling the summation

of applied column loads without considering the location of the distinctive column. For

that reason, it is recommended to employ the proposed analytical method to assess the

maximum brace force of systems with nonuniform column lateral stiffness.
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4.10 Conclusions

By adopting the proposed half-length column model and formulating the stiffness inter-

action among columns and braces, analytical methods are proposed to assess the ideal

brace stiffness and brace forces of a system consisting of parallel semi-rigidly connected

columns. The proposed methods are comprehensively applicable to systems with different

column sizes, end-fixity factors and applied loads. The methods perform well in all the

presented examples and achieve good agreements with the finite element analysis results.

The conclusions obtained from this chapter are summarized as follows:

1. Provided the system is composed of the same columns with the same connections,

the method proposed by Ziemian and Ziemian [5] for determining the ideal brace

stiffness of multi-column systems with pin ends can be extended to account for the

effect of semi-rigid connections by incorporating the applicable equations developed

in this chapter. For such cases, re = 0.392 can be taken as the optimum value for

semi-rigid connections in elastic analysis, as it corresponds to the minimum ideal

brace stiffness and provides a higher critical buckling compared to the columns with

pin connections.

2. It is found that the influence of the difference of column lateral stiffness resulting

from different column sizes, end-fixity factors or applied loads should be considered

in the evaluation of the ideal brace stiffness for systems with nonidentical columns; in

other words, the ideal brace stiffness obtained from a system with multiple identical

columns is not applicable to a system with multiple nonidentical columns.

3. For systems with uniform column lateral stiffness, the analytical results indicate that

assuming the brace forces as linearly accumulated leads to conservative results. The

explicit solution for the maximum brace force for such systems is derived. According

to the analytical results, a simple-to-use formula is proposed to evaluate the maximum

brace force. The formula explicitly considers the effects of semi-rigid connections and

initial imperfections on the maximum brace force and can incorporate the column

initial imperfection randomness.

4. If the column retention lateral stiffness is considered, the brace force predicted by AISC
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360-16 [10] is conservative when the applied load is lower than the theoretical critical

buckling load. However, the prediction from CSA S16-19 [21] may be unconservative

in some cases due to neglecting the effect of column initial curvature on brace force.

5. It was found that the maximum brace force in multi-column systems can be signifi-

cantly reduced if the columns’ initial imperfections can be arranged to bend toward

different directions.

6. The presented examples investigate the effect of nonuniform column lateral stiffness

on the bracing requirements for multi-column systems by introducing a distinctive

column with a greater moment of inertia. The results indicate that the location of

the distinctive column will affect the magnitudes of the ideal brace stiffness and

brace forces. Therefore, it is recommended to employ the proposed analytical method

to assess the bracing requirements for the system with nonuniform column lateral

stiffness; otherwise, it may yield inaccurate results.
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Chapter 5

Optimum Brace Stiffness

5.1 Introduction

Conventionally, the American standards, AISC 360-16 [10] and AISI S100-16 [11], adopt the

bracing stiffness scale factor being 2.0 as the brace stiffness requirement, i.e., twice the

ideal brace stiffness (Sb = 2Sb,idt), which has been incorporated in the previous numerical

examples. Based on Winter’s model, Blum et al. [13] indicated that for some cases where

providing 2Sb,idt is practically infeasible, a lower bracing stiffness scale factor of 1.33 also

could reduce the brace force from infinity to an acceptable value. However, since the column

initial curvature is not considered in Winter’s model to assess the brace forces, as presented

in Chapter 3, the value 1.33 suggested by Blum et al. [13] may lead to a relatively high brace

strength requirement. In that case, if the cross-sectional area of the brace is governed by the

strength requirement, then adopting Sb = 1.33Sb,idt finally leads to a greater stiffness scale

factor, αb . Nevertheless, the recommendation made by Blum et al. is still worth noting that

an alternative value for αb could be considered in practice.

Alternatively, the Canadian standard CSA S16-19 [21] specifies that the actual lateral

displacement of multiple columns, including the displacement induced by the applied load,

connection deformation, and the displacement due to the installation misalignment, etc.,

shall not exceed the initial imperfection of the column. The specifications in American and

Canadian standards represent two different design philosophies regarding the brace stiffness

requirement. The stiffness requirement in AISC 360-16 and AISI S100-16 (Sb = 2Sb,idt) is

derived from the criterion that the displacement induced by the applied load equals the
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initial imperfection of the column, ∆=∆0. However, this derivation not only neglects the

adverse effect of column initial curvature, as discussed in Chapter 3; more importantly,

since it is derived from a single column, whether it still applies to multiple columns is

yet to be answered. Although the Canadian standard CSA S16-19 [21] explicitly stipulates

the displacement limit, it does not provide a specific technique to evaluate the lateral

displacement of multi-column systems induced by the applied axial loads.

A concept of optimum brace stiffness is introduced in this section to represent the min-

imum required brace stiffness that can satisfy both strength and stiffness requirements.

The equations for evaluating the optimum brace stiffness of a single column and multiple

columns are proposed with considering the effects of column initial curvature and nonuni-

form column lateral stiffness. By employing the proposed equations, the optimum brace

stiffness for a single column and multiple columns following the design philosophies of

AISC 360-16 [10] and CSA S16-19 [21] are compared.

Following AISC 360-16 [10], the brace stiffness Sb can be predetermined as twice the

ideal brace stiffness 2Sb,idt to calculate the corresponding brace force Qb induced by the

axial load applied on the column. Next, the required brace stiffness is determined to satisfy

the stiffness requirement, Sb ≥ 2Sb,idt, and the strength requirement, Pr ≥Qb . Assuming no

buckling issues exist for the braces, the brace strength Pr is the yield strength, Ab fy . Thus,

the required brace stiffness per AISC 360-16 [10] is

Sb,AISC = max


2Sb,idt Stiffness requirement

QbLb/
(

fy Eb
)

Strength requirement
(5.1)

5.2 Design Philosophies in Current Standards

Fig. 5.1 illustrates the variations of the strength requirement with the selected brace stiffness

scale factor, αb,pre. The case with αb,pre = 1 signifies that the brace stiffness is taken as

the ideal brace stiffness. As αb,pre = 1 increases, the stiffness requirement increases, while

the strength requirement decreases. Presupposing a brace stiffness scale factor such as

αb,pre = 2.0 as per AISC 360-16 [10] could be either of the two cases shown in Fig. 5.1 and

Fig. 5.2, wherein the shaded regions are the feasible domains for the brace stiffness scale

factor.
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Figure 5.1: Required brace stiffness scale factor in stiffness-control cases
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Figure 5.2: Required brace stiffness scale factor in strength-control cases

For the “stiffness control” case, as the design is governed by the stiffness requirement,

the presupposed stiffness scale factor αb,pre can be directly used to compute the corre-

sponding required cross-sectional area of bracing Ab,pre. For the “strength control” case

presented in Fig. 5.1, as the design is governed by the strength requirement, the required
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cross-sectional area of bracing shall be computed according to the brace force; however,

this area corresponds to a higher value of αb than the presupposed value αb,pre, i.e., greater

brace stiffness, which consequently reduce the brace force. That is to say, adopting such a

design philosophy yields overestimated results for the “strength control” case — decreasing

αb to some extent can still satisfy the brace strength and stiffness requirements.

Different from the specifications in AISC 360-16 [10] and AISI S100-16 [11], CSA S16-

19 [21] requires that the additional lateral displacement of the multi-column system shall not

exceed the column initial imperfection. The design philosophy of the direct method in CSA

S16-19 is as follows. First, calculate the brace force induced by the applied load by assuming

∆=∆0. Second, determine the cross-sectional area of bracing Ab according to the attained

brace force. Third, check the stiffness requirement if the additional lateral displacement

exceeds the column initial imperfection with the determined Ab . If the stiffness requirement

is not satisfied, choose a larger Ab and repeat the foregoing steps. However, there are some

issues with this procedure: 1) the iteration due to the selected Ab not satisfying the stiffness

requirement can be tedious and may yield a quite conservative design; 2) the equation for

assessing the brace force in CSA S16-19 does not consider the column initial curvature; 3)

the method regarding the lateral displacement for multiple columns is not available in CSA

S16-19. Hence, to address the aforementioned issues, the value of the brace stiffness scale

factor that can equate the additional lateral displacement induced by the applied load to

the column initial imperfection is investigated in this section.

5.3 Optimum Brace Stiffness for a Single Semi-rigidly Con-

nected column

5.3.1 Brace stiffness scale factor satisfying the strength requirement

The brace stiffness scale factor, αb,force, is proposed to represent the minimum value of αb

that satisfies the strength requirement. With αb,force, the yield strength of the brace is the

same as the brace force, as illustrated in Fig. 5.2 and expressed in Eq. (5.2).

Qb

fy
= SbLb

Eb
(5.2)
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For a single half-length column, Eq. (5.3) can be obtained by incorporating Eq. (3.19) into

Eq. (5.2).
αb,forceSb,id

αb,forceSb,id +Sc

ψP∆0

fy L
= αb,forceSb,idLb

Eb
(5.3)

Rearranging Eq. (5.3) gives

αb,force =
ψP∆0

L fy

Eb

Sb,idLb
+Sc /Sc,cr (5.4)

Eq. (5.4) indicates that αb,force is related to the end-fixity factor, applied load, steel yield

strength, elastic modulus, and brace length. For the critical case where the column is

subjected to the critical buckling load (P = Pcr ) and the column ends are assumed to be

ideally pin-connected (re = 0), Eq. (5.4) is simplified as

αb,force = 1.333
∆0

fy

Eb

Lb
+1 (5.5)

Thus, the brace stiffness scale factor obtained from Eq. (5.5) can be directly utilized to

assess the minimum required cross-sectional area of bracing for a column with pinned-ends

satisfying the strength requirement, which is economical. For other cases where the column

is semi-rigidly connected (re > 0) and the beneficial effect of the applied load being lower

than the critical buckling load ( P < Pcr ) can be considered, Eq. (5.4) can be used to compute

the value of αb,force.

5.3.2 Brace stiffness scale factor satisfying the stiffness requirement

If the additional displacement is assumed to be entirely induced by the applied force (ne-

glecting the displacement induced by the installation misalignment, the connection defor-

mations, etc.), the stiffness requirement of CSA S16-19 is ∆<∆0. Thus, for a single column,

the brace stiffness scale factor shall be no less than the limit αb,disp in Eq. (5.6).

αb,disp = Sc

Sc,cr
− P/L

Sc,cr
ψ (5.6)

Eq. (5.6) is obtained from Eq. (3.18) with ∆ = ∆0 considering the effect of column initial

curvature. For a single column with pinned ends (re = 0) and subjected to the critical

buckling load (P = Pcr ), since Sc = Sc,cr =−Pcr /L, the value of αb,disp is 2.333.
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Here, the optimum brace stiffness, Sb,op, is proposed, which signifies the minimum

required brace stiffness satisfying the strength requirement, Pr =Qb , and stiffness require-

ment, ∆=∆0. Accordingly, let αb,op be the optimum brace stiffness scale factor, and its value

is governed by:

αb,op = max
{
αb,force,αb,disp

}
(5.7)

Thus, an analytical method is proposed in this section to evaluate the minimum required

brace stiffness for a single semi-rigidly connected column by solving αb,op in Eq. (5.7). Once

the value of αb,op is attained, the corresponding optimum brace stiffness is

Sb,op =αb,opSb,ids (5.8)

Accordingly, the optimum cross-sectional area for a horizontal bracing is

Ab,op = Sb,opLb

Eb
(5.9)

Compared to the methods in current standards [10, 11, 21], the advantages of the pro-

posed method are: 1) it considers the adverse effect of column initial curvature on the

bracing requirements; 2) it can apply to columns with semi-rigid connections; 3) for strength-

control cases, it may help to reduce the required cross-sectional area of bracing; 4) it avoids

the possible iteration process.

5.3.3 Example of a Single Column

To illustrate the advantages of the proposed method, the required cross-sectional area of

bracing for a single column shown in Fig. 5.3 are obtained by following the provisions in AISC

360-16 [10] with taking αb = 2.0 and obtained from the proposed method. This column is

made of a W150×24 section, of which the moment of inertial (in-plane) is Iy = 1.83×106 mm4.

The elastic modulus and yield strength of the column and brace are E = 200000MPa and

fy = 345MPa, respectively. Take ∆0 = L/500 = 6mm as the column initial imperfection.
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Figure 5.3: Diagram of Example 5.3.3

When re = 0, the critical buckling load of the column Pcr is

Pcr =
π2E Iy

L2
= π2 ×2×105 ×1.83×106

30002 = 401363N

The corresponding ideal brace stiffness Sb,id is

Sb,id = Pcr

L
= 401363N

3000mm
= 133.8N/mm

Following AISC 360-16 [10], if the brace stiffness scale factor is taken as 2.0 then the required

stiffness and cross-sectional area of the bracing associated with the stiffness requirement

are

Sb = 2αbSb,id = 2×2×133.8N/mm = 535.2N/mm

Ab = SbLb

Eb
= 535.2N/mm×3000mm

2×105 MPa
= 8.03mm2

The brace force with αb = 2.0 is

Qb = 4Pcr∆0ψ

L
= 4×401363N×1.333

500
= 4281.2N

As mentioned in Chapter 3, the evaluation of the brace force in AISC 360-16 [10] neglects

the effect of column initial curvature because it is based on Winter’s model [7]. To better

elucidate the difference between the method of AISC 360-16 and the proposed method, the

effect of column initial curvature (ψ) is also considered when evaluating the brace strength
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requirement in AISC 360-16. Thus, the required cross-sectional area of bracing associated

with the strength requirement is

Ab = Qb

fy
= 4281.2N

345MPa
= 12.41mm2

Consequently, the required cross-sectional area of bracing obtained according to the AISC

specification [10] is Ab,AISC = 12.41mm2, which is governed by the strength requirement.

The optimum cross-sectional area of bracing with consideration of both stiffness and

strength requirements can be obtained as follows. For the case with re = 0 and P = Pcr of

αb,force can be obtained from Eq. (5.5):

αb,force = 1.333
∆0

fy

Eb

Lb
+1 = 1.333× 1

500
× 2×105 MPa

345MPa
= 2.546

From Eq. (5.6), the value of αb,disp is

αb,disp = Sc

Sc,cr
− P/L

Sc,cr
ψ= Sc,cr

Sc,cr
− Pcr /L

Sc,cr
ψ= 1+1.333 = 2.333

Thus, the optimum brace stiffness scale factor is

αb,op = max
{
αb,force,αb,disp

}= 2.546

With αb,op = 2.546, the corresponding optimum cross-sectional area of bracing can be

directly attained:

Ab,op = αb,opSb,idsLb

Eb
= 2.546×267.6N/mm×3000mm

2×105 MPa
= 10.22mm2

For this case, with the required cross-sectional area of bracing governed by the strength

requirement, i.e., αb,op = αb,force, the evaluation of the brace force and corresponding re-

quired cross-sectional area of bracing are practically unnecessary because the obtained

cross-sectional area of bracing satisfies the strength requirement as well as the stiffness

requirement. Nevertheless, the calculation of Ab obtained from the brace force is presented

for illustrative and verification purposes. The brace force with αb =αb,force is

Qb = 2× αb,opSb,id

αb,opSb,id +Sc,cr

ψPcr∆0

L
= 2× 2.546

2.546−1
× 1.333×401363N

500
= 3525N

The corresponding required cross-sectional area of bracing is

Ab,force =
Qb

fy
= 3525

345MPa
= 10.22mm2
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For this case, therefore, adopting the optimum scale factor decreases the required cross-

sectional area of bracing by 17.7% compared to that of AISC 360-16 [10].

Following the same procedure shown above, the required cross-sectional area of bracing

for different magnitudes of applied loads obtained from AISC 360-16 [10] (with the consider-

ation of column initial curvature, ψ) and the proposed method are tabulated in Table 5.1.

Note that the variation of required brace stiffness is demonstrated in the required cross-

sectional of bracing as the brace length and elastic modulus are the same for all cases. The

reason for presenting the required cross-sectional area of the bracing instead of the required

brace stiffness is to avoid the ambiguity led by the similarity between the terminologies,

“required brace stiffness” and “stiffness requirement”, in the following discussion.

Table 5.1: Minimum required brace cross-sectional areas for a pin-ended column with

different load ratios obtained from AISC 360-16 and the proposed method

αp

AISC 360-16 [10] Proposed method Reduction

of Abαb,AISC Qb ∆ Ab,AISC αb,force Qb αb,disp ∆ Ab,op

(N) (mm) (mm2) (N) (mm) (mm2) (%)

0.6 2.000 1569.9 1.92 8.03 1.326 1836.1 1.205 2.40 5.32 33.7%

0.7 2.000 2022.4 2.24 8.03 1.616 2237.7 1.473 2.40 6.49 19.2%

0.8 2.000 2585.5 2.56 8.03 1.915 2651.0 1.749 2.40 7.68 4.3%

0.9 2.390 3309.2 2.88 9.59 2.223 3078.9 2.035 2.40 8.92 7.0%

1 3.092 4281.2 3.20 12.41 2.546 3525.3 2.333 2.40 10.22 17.7%

Based on the design philosophy of AISC 360-16 [10], the brace stiffness requirement

remains unchanged while the brace force decreases as the applied load decreases. Because

of that, when the applied load ratio αp decreases from 0.9 to 0.8, the governing criterion to

determine the required cross-sectional area of bracing switches from strength to stiffness,

and the required cross-sectional area of bracing remains the same when αp decreases from

0.8 to 0.6. The optimum required cross-sectional area of bracing Ab,op decreases as the

applied load decreases. The optimum brace stiffness scale factor αb,op is greater than 2.0

for cases in which the required cross-sectional area of bracing is controlled by the strength

requirement and is less than 2.0 for cases in which the required cross-sectional area of
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bracing is controlled by the stiffness requirement. It should be noted that the Qb for AISC

360-16 [10] in Table 5.1 corresponds to the results obtained from αb = 2.0, and it is not

the actual brace force when the required cross-sectional area of bracing, i.e., the required

brace stiffness, is determined by the strength requirement, as illustrated in Fig. 5.2. Table

5.2 shows the results of Ab,op and Ab,AISC for this example with different end-fixity factors.

Assume the column is subjected to its critical buckling load (P = Pcr ).

Table 5.2: Minimum required brace cross-sectional areas for a single column subjected to

Pcr with different re

re

AISC 360-16 [10] Proposed method Reduction

of Abαb,AISC Qb ∆ Ab,AISC αb,force Qb αb,disp ∆ Ab,op

(N) (mm) (mm2) (N) (mm) (mm2) (%)

0 3.092 4281.2 8.00 12.41 2.546 3525.3 2.333 6.0 10.22 17.7

0.1 3.331 4480.3 8.62 12.99 2.665 3585.4 2.436 6.0 10.39 20.0

0.2 3.576 4694.4 9.25 13.61 2.788 3659.8 2.542 6.0 10.61 22.0

0.3 3.816 4924.1 9.87 14.27 2.908 3752.5 2.646 6.0 10.88 23.8

0.4 4.030 5169.7 10.43 14.98 3.015 3867.7 2.738 6.0 11.21 25.2

0.5 4.193 5431.1 10.85 15.74 3.096 4010.9 2.808 6.0 11.63 26.2

0.6 4.279 5707.6 11.07 16.54 3.140 4187.6 2.845 6.0 12.14 26.6

0.7 4.272 5997.2 11.05 17.38 3.136 4402.5 2.842 6.0 12.76 26.6

0.8 4.171 6297.1 10.79 18.25 3.086 4658.3 2.799 6.0 13.50 26.0

0.9 4.000 6603.2 10.35 19.14 3.000 4952.5 2.725 6.0 14.36 25.0

1 3.793 6910.0 9.82 20.03 2.897 5276.7 2.636 6.0 15.29 23.6

It can be seen that Ab,op and Ab,AISC increase as the end-fixity factor increases and are

controlled by the strength requirement for all cases. However, αb,disp and αb,force do not

monotonically increase with re ; they increase as re increases from 0 to 0.6 and decrease as

re increases from 0.6 to 1. The reduction of Ab from the result obtained by following the

philosophy of AISC 360-16 to that obtained by following the proposed method achieves the

maximum value of 26.6% at re = 0.6.
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5.4 Optimum Required Brace Stiffness for Multi-column Sys-

tems

This section discusses the calculation for the optimum brace stiffness scale factor αb,op for

multi-column systems. The criterion for αb,op in Eq. (5.7) still holds true for the systems

consisting of multiple columns, while the explicit expressions given in Eq. (5.4) and Eq. (5.6)

cannot be used to obtain the values of αb,force and αb,disp because they only apply to cases

of a single column.

5.4.1 αb,force for multiple columns

For multi-column systems anchored on both sides with tension-only braces and multi-

column systems anchored on one side with tension-compression braces, the value of αb,force

can be determined as follows. Incorporating Eq. (5.2) into Eq. (4.21) yields

Q1

αb,forceSb,id
= Q0,1 −Q1

Sc,1
− Q0,2 +Q1 −Q2

Sc,2
(5.10a)

Qi

αb,forceSb,id
= Q0,i +Qi−1 −Qi

Sc,i
− Q0,i+1 +Qi −Qi+1

Sc,i+1
i = {2, ...,n −1} (5.10b)

Qn

αb,forceSb,id/(1+ c)
= Q0,n +Qn−1 −Qn

Sc,n
(5.10c)

Qn = αb,forceSb,idLb fy

Eb
(5.10d)

The set of nonlinear equations shown in Eqs. (5.10) consists of n +1 equations and n +1

unknown variables, Q1 to Qn and αb,force. Because of the order-of-magnitude difference

between αb,force and Qi , solving Eqs. (5.10) to attain the value of αb,force will likely encounter

an issue of non-convergence. To avoid this problem, eliminating αb,force in Eqs. (5.10) yields:

Q1

Qn

Lb fy

Eb
= Q0,1 −Q1

Sc,1
− Q0,2 +Q1 −Q2

Sc,2
(5.11a)

Qi

Qn

Lb fy

Eb
= Q0,i +Qi−1 −Qi

Sc,i
− Q0,i+1 +Qi −Qi+1

Sc,i+1
i = {2, ...,n −1} (5.11b)

Lb fy (1+ c)

Eb
= Q0,n +Qn−1 −Qn

Sc,n
(5.11c)

The accuracy of the numerical solution to a set of nonlinear equations highly depends

on the selected initial values of variables and the numerical method. It is found that the
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built-in solver fsolve in MATLAB is capable of obtaining the accurate solution to Eq. (5.11)

when the initial values of Q1 to Qn are taken from the solution of Eq. (4.22) with Sb,i = 2Sb,id.

For a multi-column system with tension-compression braces and anchored on both

sides, if the system is symmetric (e.g., the column lateral stiffness is uniform or the column

lateral stiffness distribution is symmetric) then the magnitudes of Qn and Qn+1 in Fig. 4.10

are identical. In addition, since the derivation for the brace force presented in Section 4.5

is based on that all the column initial imperfections toward the left, Qn is in tension and

positive. Therefore, for a symmetric system anchored on both sides, Qn can be solved from

Eq. (5.12), which is obtained by incorporating Eq. (5.2) into Eq. (4.23).

Q1

Qn

Lb fy

Eb
= Q0,1 −Q1 +Qn+1

Sc,1
− Q0,2 +Q1 −Q2

Sc,2
(5.12a)

Qi

Sb,i

Lb fy

Eb
= Q0,i +Qi−1 −Qi

Sc,i
− Q0,i+1 +Qi −Qi+1

Sc,i+1
i = {2, ...,n −1} (5.12b)

Lb fy (1+ cr )

Eb
= Q0,n +Qn−1 −Qn

Sc,n
(5.12c)

Qn+1

Qn

Lb fy (1+ cl )

Eb
=−Q0,1 +Qn+1 −Q1

Sc,1
(5.12d)

If a multi-column system is asymmetric (i.e., the column lateral stiffness distribution is

asymmetric), either Qn or Qn+1 could be the maximum brace force. For that case, it should

be noted that in addition to solving Qn from Eqs. (5.12), the value of Qn+1 also needs to be

attained. As a matter of fact, the magnitude of Qn+1 can be obtained by solving Qn using the

established equations by reversing the order of the column indexes. Then, the maximum

value of attained Qn and Qn+1 is taken as the maximum brace force Qmax. Once Qmax is

obtained, αb,force is

αb,force =
QmaxEb

Sb,idLb fy
(5.13)

5.4.2 αb,disp for multiple columns

For a multi-column system anchored on one side in analysis, because the column farthest

from the anchor has the largest lateral displacement, as illustrated in Fig. 4.9, the criterion

for brace stiffness requirement stipulated in current standards [10, 11] becomes ∆1 = ∆0.
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Thus, substituting

∆1 =∆0 (5.14a)

Sb,i =αb,dispSb,id (5.14b)

into Eqs. (4.16) gives:

∆0Sc,1 =Q0,1 − (∆0 −∆2)αb,dispSb,id (5.15a)

∆2Sc,2 =Q0,i + (∆0 −2∆2 +∆3 )αb,dispSb,id (5.15b)

∆i Sc,i =Q0,i + (∆i−1 −2∆i +∆i+1)αb,dispSb,id i = {3, ...,n −1} (5.15c)

∆nSc,n =Q0,n + (∆n−1 −2∆n)αb,dispSb,id/(1+ c) (5.15d)

Eqs. (5.15) are a set of nonlinear equations consisting of n equations and n unknown

variables, ∆2 to ∆n and αb,disp. To achieve accuracy, the initial value of αb,disp can be taken

as 2.0, and the initial values of ∆2 to ∆n can be taken as the results obtained from Eqs. (4.16)

with Sb,i = 2Sb,id.

For the cases with uniform lateral stiffness of columns, Eqs. (5.15) becomes

∆0 =Q0/Sc,cr + (∆0 −∆2)αb,dispamax (5.16a)

∆2 =Q0/Sc,cr − (∆0 −2∆2 +∆3 )αb,dispamax (5.16b)

∆i =Q0/Sc,cr − (∆i−1 −2∆i +∆i+1)αb,dispamax i = {3, ...,n −1} (5.16c)

∆n =Q0/Sc,cr − (∆n−1 −2∆n)αb,dispamax/(1+ c) (5.16d)

If the columns are subjected to the critical buckling load Pcr then the term, Q0/Sc,cr, in

Eq. (5.16) becomes

Q0
/

Sc,cr = ψPcr∆0

L

/
Ec Icβu

12L3
= ψEc Icπ

2∆0

(K L)2L

/
Ec Icβu

12L3
= 12ψπ2∆0

βuK 2
(5.17)

It can be seen from Eq. (5.17) that if the applied load equals Pcr then Q0/Sc,cr is only

related to the end-fixity factor. The following is to prove that the magnitude of ∆0 will not

alter the solution of αb,disp in Eqs. (5.18) for cases with uniform column lateral stiffness. Let

C2 = 12ψπ2/(βuK 2), and Eqs. (5.16) can be written as:

∆0 =C2∆0 + (∆0 −∆2)αb,dispamax (5.18a)

∆2 =C2∆0 − (∆0 −2∆2 +∆3 )αb,dispamax (5.18b)

∆i =C2∆0 − (∆i−1 −2∆i +∆i+1)αb,dispamax i = {3, ...,n −1} (5.18c)

∆n =C2∆0 − (∆n−1 −2∆n)αb,dispamax/(1+ c) (5.18d)
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Let ∆′
0 =C3∆0, then Eqs. (5.18) become

∆′
0 =C2∆

′
0 + (∆′

0 −C3∆2)αb,dispamax (5.19a)

C3∆2 =C2∆
′
0 −

(
∆′

0 −2C3∆2 +C3∆3
)
αb,dispamax (5.19b)

C3∆i =C2∆0 − (C3∆i−1 −2C3∆i +C3∆i+1)αb,dispamax i = {3, ...,n −1} (5.19c)

C3∆n =C2∆
′
0 − (C3∆n−1 −2C3∆n)αb,dispamax/(1+ c) (5.19d)

Let ∆′
i =C3∆i (i = 2,3, ...,n), then Eqs. (5.19) become

∆′
0 =C2∆

′
0 + (∆′

0 −∆′
2)αb,dispamax (5.20a)

∆′
2 =C2∆

′
0 −

(
∆′

0 −2∆′
2 +∆′

3

)
αb,dispamax (5.20b)

∆′
i =C2∆0 −

(
∆′

i−1 −2∆′
i +∆′

i+1

)
αb,dispamax i = {3, ...,n −1} (5.20c)

∆′
n =C2∆

′
0 −

(
∆′

n−1 −2∆′
n

)
αb,dispamax/(1+ c) (5.20d)

Because Eqs. (5.20) are equivalent to Eqs. (5.18), it indicates that the solution of αb,disp is

not related to the magnitude of ∆0 but depends on the value of C2 and the number of total

equations, i.e., the end-fixity factor and the total number of columns in the system. Thus,

the solution of αb,disp in Eqs. (5.16) is constant with a given number of columns and column

end-fixity factor. The effects of the number of columns and end-fixity factors on the values

of αb,disp for multi-column systems with uniform column lateral stiffness are presented in

Fig. 5.4.
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Figure 5.4: Variations of the brace stiffness scale factor αb,disp with end-fixity factors re for

multi-column systems with uniform lateral stiffness and different numbers of columns n
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For comparison purposes, the variation of αb,disp for a single column with re (n = 1) is

also presented in Fig. 5.4. It can be seen that the variations of αb,disp with re for multiple

columns and a single column follow a similar trend that they all achieve the maximum value

at re = 0.64. The results indicate that when re is given, then αb,disp increases as the number

of columns increases. However, the rate of increase of αb,disp is considerably slower when

the number of columns is more than five. Due to this characteristic, when the number

of columns is more than five, 2.67 can be taken as the design value of the brace stiffness

scale factor satisfying the stiffness requirement for multiple columns with pinned ends

and uniform column lateral stiffness. Furthermore, an empirical formula in Eq. (5.21) is

proposed to represent the upper bounds of αb,disp for multiple columns with semi-rigid

connections, as presented in Fig. 5.4, thus circumventing solving the nonlinear system in

Eqs. (5.16).

αb,disp = 2.9+0.4sin(3.44re −0.636) (5.21)

By neglecting the effect of column initial curvature (ψ = 1), the variations of αb,disp

with different end-fixity factors and numbers of columns are presented in Fig. 5.5 to solely

observe the influence of the number of columns on the value of αb,disp.
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Figure 5.5: Variations of the brace stiffness scale factor αb,disp with end-fixity factor re for

multi-column systems with uniform lateral stiffness and different numbers of columns n

without considering the effect of column initial curvature, ψ

It can be seen that even though the column initial curvature is not considered, the values
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of αb,disp increase as the number of columns increases. Additionally, αb,disp achieves the

maximum value for each case at re = 0.77 instead of re = 0.64. As expected, the values of

αb,disp neglecting the effect of column initial curvature are less than those considering the

effect of column initial curvature, signifying that the initial curvature needs to be considered.

In a nutshell, for multiple columns with uniform column lateral stiffness and subjected to

the critical buckling load, the value of αb,disp is affected by the end-fixity factor re , column

initial curvature ψ, and the number of columns n.

The analytical results of αb,disp are presented in Fig. 5.6 with ∆n =∆0 to demonstrate the

validity of the criterion in Eq. (5.14b). It can be seen that if the minimum displacement ∆min

(∆n) is taken as ∆0, the value of αb,disp decreases and approaches unity as the number of

columns increases. In that case, the maximum displacement of the system can be quite

large since the magnitude of the brace stiffness is close to that of the ideal brace stiffness.

Therefore, taking ∆1 =∆0 as the criterion to determine the value of αb,disp is imperative.
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Figure 5.6: Variations of αb,disp with re for multiple columns with uniform lateral stiffness

when ∆min =∆0

It is worth noting that the criterion in Eq. (5.14b) does not hold true for a system an-

chored on both sides because which column has the maximum displacement is unknown,

especially for cases with nonuniform column lateral stiffness. Since varying the value of αb

will not affect the location of the maximum displacement, the location of the maximum

displacement can be found by obtaining the displacements from Eq. (4.18) with Sb,i = 2Sb,id.

Finally, the value of αb,disp can be obtained by Eq. (4.17) with Sb,i =αb,dispSb,id and setting
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the corresponding maximum displacement as ∆0. If the system is anchored on both sides in

analysis and has uniform column lateral stiffness, Eq. (5.21) can still be used for reasons of

conservation and simplicity.

5.4.3 Computational procedure

The computational procedure of calculating the optimum cross-sectional area of bracing for

multi-column systems is summarized below.

1. Follow the computational procedure given in Section 4.7 to obtain the ideal brace

stiffness Sb,id and the brace forces with the brace stiffness being the twice ideal brace

stiffness, i.e., Sb = 2Sb,id.

2. If the system is anchored on one side in the analysis, solve Eqs. (5.11) by employing

the nonlinear solver fsolve in MATLAB to obtain the value of Qn satisfying the criterion

in Eq. (5.2), with the initial values being taken as the brace forces associated with

Sb = 2Sb,id obtained from the previous step. If the system is anchored on both sides

in the analysis, solve Eqs. (5.12) twice with the actual and reversed order of column

indexes to obtain the maximum value of Qn .

3. With the obtained maximum brace force and given Lb , Eb , and fy , compute the value

of αb,force by Eq. (5.13).

4. Calculate the lateral displacements, ∆1 to ∆n , associated with Sb = 2Sb,id by solving

Eqs. (4.16).

5. If the system is anchored on one side in the analysis, obtain the value of αb,disp by

solving Eqs. (5.15) by employing fsolve in MATLAB and adopting 2.0 as the initial

guess of αb,disp and the lateral displacements associated with Sb = 2Sb,id as the initial

values of ∆2 to ∆n . If the system is anchored by both sides, find the location of the

maximum displacement from the previous step. Solve Eq. (4.17) with Sb,i = αbSb,id

and setting the corresponding maximum displacement as ∆0 to obtain the value of

αb,disp. The initial guess of αb,disp can be taken as 2.0, and the initial values of the other

displacements, except for the maximum displacement, can be taken as the results of

the previous step. In particular, if the system consists of columns with uniform lateral
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stiffness, then Eq. (5.21) can be directly utilized to compute the value of αb,disp for

simplicity.

6. Take the maximum value of αb,force and αb,disp as the optimum brace stiffness scale

factor, αb,op, and compute the optimum cross-sectional area of bracing for the system,

as below:

Ab,op = 2αb,opSb,idLb

Eb
(5.22)

5.4.4 Example with uniform lateral stiffness

The required cross-sectional areas of bracing for the example with five semi-rigidly con-

nected columns presented in Section 4.8.1 are obtained using the proposed method, as

tabulated in Table 5.3, in which the results obtained by following the design philosophy of

AISC 360-16 [10] are provided from comparison. The computational procedure presented

in Section 5.4.3 is followed without using the empirical equation in Eq. (5.21), which is

applicable to this case, though.

The cross-sectional areas of bracing predicted following the design philosophy of AISC

360-16, Ab,AISC, are primarily controlled by the stiffness requirement except for cases when

the end-fixity factor re ranges from 0.5 to 0.7. Consequently, the brace stiffness scale factors

are 2.0 for most cases and approximate 2.0 for the other cases. Hence, as shown in Fig. 3.3,

the variation of Ab,AISC with re in this example follows a similar trend of the variation of

Sb,id with re : Ab,AISC decreases as re increases from 0 to 0.4, achieving the minimum value

at re = 0.4, and increases as re increases from 0.4 to 1.0. The strength requirement (Qn)

obtained by following AISC 360-16 increases as re increases.

The required cross-sectional areas of bracing obtained from the proposed method Ab,op

are all controlled by the stiffness requirements, i.e., αb,op =αb,disp, for all cases. The values

of the brace stiffness scale factor associated with the strength requirement and stiffness

requirement, αb,force and αb,disp, increase as re increases from 0 to 0.6 and decrease as re

increases from 0.6 to 1.0. Nevertheless, the brace force Qn (strength requirement) corre-

sponding to αb,force monotonically increases as re increases. It is worth noting that Ab,op

increases as re increases, indicating the different variation from αb,disp. In this example,

since the system is composed of five identical columns with uniform lateral stiffness, the
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Table 5.3: Minimum required brace cross-sectional areas for a five-column system subjected

to Pcr with different re

re

AISC 360-16 [10] Proposed method Increase

of Abαb,AISC Qn ∆ Ab,AISC αb,force Qn αb,disp ∆ Ab,op

(N) (mm) (mm2) (N) (mm) (mm2) (%)

0 2.000 20485.2 9.9 80.46 1.731 24019.5 2.637 6.0 106.09 31.9%

0.1 2.000 21438.0 10.6 78.16 1.789 24124.5 2.763 6.0 107.97 38.1%

0.2 2.000 22462.2 11.4 76.27 1.849 24329.7 2.892 6.0 110.28 44.6%

0.3 2.000 23561.1 12.2 74.98 1.908 24678.8 3.018 6.0 113.14 50.9%

0.4 2.000 24736.5 12.8 74.54 1.961 25210.8 3.130 6.0 116.67 56.5%

0.5 2.002 25987.5 13.4 75.33 2.002 25987.5 3.216 6.0 121.02 60.7%

0.6 2.043 27310.2 13.6 79.16 2.022 27032.9 3.261 6.0 126.37 59.6%

0.7 2.039 28696.0 13.6 83.18 2.020 28428.6 3.257 6.0 132.86 59.7%

0.8 2.000 30131.2 13.3 87.72 1.993 30161.8 3.205 6.0 140.55 60.2%

0.9 2.000 31595.8 12.8 95.92 1.953 32320.7 3.115 6.0 149.38 55.7%

1 2.000 33063.7 12.1 105.85 1.902 34736.4 3.006 6.0 159.09 50.3%

ideal brace stiffness for all cases is Sb,idt = amaxSb,ids, in which Sb,ids is the ideal brace for

a single column. In Chapter 4, it has been demonstrated that the ratio of the ideal brace

stiffness for multi-column systems to that for a single column, amax, does not depend on

the value of re if the system consists of uniform lateral stiffness. Thus, the variation of Ab,op

(Sb,op) in this example is related to the product of αb,disp and Sb,ids.

Presented in Fig. 5.7 are the variations of Sb,op, αb,disp, and Sb,ids with re , which are

normalized by dividing by the values of Sb,op, αb,op, and Sb,ids at re = 0, respectively. It

can be seen that Sb,ids decreases as re increases from 0 to 0.392 (investigated in Chapter

3) and increases as re increases from 0 to 0.392 to 1.0; particularly, the increasing rate

of Sb,ids becomes considerably large after re = 0.64, after which αb,disp decreases with re .

As a consequence, as the product of αb,disp and Sb,ids, the optimum brace stiffness Sb,op

monotonically increases with re .

120



0.0 0.2 0.4 0.6 0.8 1.0
0.9

1.0

1.1

1.2

1.3

1.4

1.5

Ra
tio

re 

 b,disp / b,disp (re = 0)
 Sb,ids / Sb,ids (re = 0)
 Sb,op /Sb,op (re = 0)

re= 0.392 re= 0.64

Figure 5.7: Normalized variations of Ab,op, αb,disp, and Sb,ids with re

Overall, due to considering the effects of column initial curvature and accumulation

of displacement for multi-column systems on the stiffness requirement, the predictions

obtained from the proposed method are larger than those following the design philosophy

of AISC 360-16 [10]. The maximum increase of Ab from the prediction of AISC 360-16 to the

prediction of the proposed method is 60.7%, which is significant. Therefore, to some extent,

the stiffness requirement Sb = 2Sb,id in AISC 360-16 may be unconservative because its

original assumption of ∆=∆0 cannot be satisfied, especially for the multi-column systems.

5.4.5 Example with nonuniform lateral stiffness

The effect of the nonuniform column lateral stiffness on the optimum required brace stiff-

ness is investigated by analyzing the example presented in Section 4.8.2. Assume that the

braces are tension-only and the columns are pin-connected at both ends. The analytical

results for different locations of the distinctive column (LDC) are tabulated in Table 5.4. As

specified in AISI S100-16 [11], anchors on both sides shall be provided for a tension-only

braced system, while only one anchor should be considered in the analysis. In this example,

assume the right anchor is available in the analysis.
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Table 5.4: Optimum required cross-sectional areas of bracing for a nine-column system with

different locations of a distinctive column

LDC

AISC 360-16 [10] Proposed method Increase

of Abαb,AISC Qb ∆ Ab,AISC αb,force Qb αb,disp ∆ Ab,op

(N) (mm) (mm2) (N) (mm) (mm2) (%)

None 2.0 4752.5 4.92 16.09 1.846 5125.3 3.039 2.4 24.45 51.9

1 2.0 6137.6 4.71 25.52 1.687 7426.9 2.955 2.4 37.70 47.7

2 2.0 6165.7 4.66 24.76 1.713 7316.7 2.936 2.4 36.35 46.8

3 2.0 6199.5 4.66 23.75 1.749 7166.2 2.938 2.4 34.89 46.9

4 2.0 6234.3 4.72 22.52 1.797 6981.1 2.961 2.4 33.34 48.0

5 2.0 6262.1 4.82 21.14 1.855 6764.2 3.002 2.4 31.73 50.1

6 2.0 6268.3 4.97 19.69 1.921 6523.8 3.057 2.4 30.10 52.9

7 2.0 6226.2 5.12 18.29 1.981 6251.4 3.115 2.4 28.50 55.8

8 2.0 6096.4 5.21 17.67 2.034 6005.6 3.152 2.4 26.97 52.6

9 2.0 5847.6 5.16 16.95 2.040 5751.6 3.132 2.4 25.60 51.0

Following the specifications of AISC 360-16 [10], the required cross-sectional areas of

bracing are stiffness-controlled when the LDC ranges from the left-most to the 7th and

strength-controlled when the LDC is at the 8th and the 9th. The actual brace stiffness

scale factor ratios when the LDC is at 8th and 9th are slightly greater than 2.0, indicating

that the required cross-sectional areas of bracing associated with the strength and stiffness

requirements are very close to each other for these two cases. Thus, the magnitudes of

αb,force for these two cases are slightly lower than αb . As discussed in Section 4.8.2, the ideal

brace stiffness Sb,id decreases as the distinctive column with lower lateral stiffness than the

typical columns is closer to the anchor. Therefore, Ab,AISC decreases as the LDC becomes

closer to the anchor since the required cross-sectional area of bracing for most cases is

controlled by the stiffness requirement.

However, all the optimum required brace cross-sectional areas obtained from the pro-

posed method are controlled by the stiffness requirements and are greater than the required

cross-sectional areas of bracing obtained by following AISC 360-16. The first reason is that

the specifications in AISC 360-16 neglect the adverse impact of column initial curvature on
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the additional lateral displacement, i.e., the stiffness requirement. The second reason is that

taking brace stiffness as twice the ideal brace stiffness neglects the increase of αb,disp as the

number of columns increases; the criterion, αb = 2.0, is derived from a single column. As a

consequence, if the cross-sectional area of bracing is governed by the stiffness requirement,

following the specifications in AISC 360-16 yields underestimated results.

As the distinctive column becomes closer to the anchor (from the 1st to the 9th), the

values of αb,force and αb,disp gradually increase except that αb,disp decreases from 3.152 to

3.132 when the LDC moves from the 8th to the 9th column. However, the optimum cross-

sectional area of bracing Ab,op decreases as the LDC becomes closer to the anchor because

in this example the optimum brace stiffness Sb,op is a product of αb,disp and the ideal brace

stiffness Sb,idt, which decreases as the LDC becomes closer to the anchor.

It is worth noting that the analysis assuming the left anchor is available is also required

for a system with tension-only braces. Since there is only one distinctive column in this

example, the results shown in Table 5.4 also represent the predictions from the analysis

in which the left anchor is available by reversing the order of column index the LDC. For

example, if the LDC is at the 7th column, the optimum cross-sectional area of bracing is

28.5 mm2 when the right anchor is available and 34.89 mm2 when the left anchor is available,

and thus the optimum cross-sectional area of bracing should be taken as 34.89 mm2 for this

scenario. Hence, Ab,op achieves the minimum value when the LDC is at the centre of the

system.

5.5 Conclusions

With the consideration of the effects of semi-rigid connections and column initial curva-

ture, an analytical method is proposed in this chapter to evaluate the minimum required

brace stiffness, which satisfies both strength and stiffness requirements. The expressions for

determining the minimum brace stiffness scale factor associated with the strength require-

ment, αb,force, and the stiffness requirement, αb,disp, are proposed for a single column and

multi-column systems. The following conclusions are drawn from this chapter:

1. For a single column, it is found that if the required brace stiffness is controlled by the

strength requirement then the proposed method yields smaller results than following
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AISC 360-16 [10] due to adopting αb,force which is the minimum value of brace stiffness

scale factor satisfying the strength requirement, which leads to more economical

designs.

2. For multi-column systems with uniform lateral stiffness, the variations of αb,disp (the

value of the brace stiffness scale factor corresponding to ∆max =∆0) with the end-fixity

factor re and number of columns n are investigated. It is found that the relationships

between αb,disp and re are in a similar trend regardless of the number of columns in the

system. Once the number of columns n is given, αb,disp increases as re increases from

0 to 0.64, achieves the maximum value at re = 0.64, and decreases as re increases from

0.64 to 1.0. If the value of re is predetermined, αb,disp increases as n increases with a

decreasing rate, while the rate of increase is considerably slow when n is greater than

5. Due to this characteristic, a simplified expression as a function of re is proposed to

assess the maximum value of αb,disp for multiple columns with semi-rigid connections,

thus circumventing solving the nonlinear equations.

3. Due to neglecting the effect of column initial curvature and the displacement accumu-

lation for multiple columns, for multiple columns the stiffness requirement in AISC

360-16 that the brace stiffness shall be taken as twice the ideal brace stiffness may

not fulfill its original intention that the additional displacement is less than the initial

imperfection. Consequently, if the required brace stiffness is controlled by the stiffness

requirement (twice the ideal brace stiffness), the proposed method yields a larger

cross-sectional area of bracing than following the specifications in AISC 360-16.
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Chapter 6

Nonuniform Bracing of Multi-column

Systems

The previous research [1, 5, 9] regarding assessing the bracing stiffness requirement assumed

the stiffness of all the braces is identical, which is referred to as uniform bracing in this

chapter. However, the uniform bracing pattern may not always be feasible or economical in

practice. For example, solid blocking is often intermittently placed in a cold-formed steel

wall framing to prevent the studs from twisting, as shown in Fig. 6.1. In such cases, the

contribution of solid blocking to the stability of the wall studs is yet to be investigated.
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Figure 6.1: Flat strip bridging system [107]

For that reason, the following two issues are going to be investigated in this chapter.
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1. How does nonuniform brace stiffness, such as the intermittent solid blocking brace,

affect the requirements for tie bracing in a multi-column system?

2. In addition to the uniform bracing pattern, are there any alternative bracing patterns

satisfying the bracing requirements and resulting in a more efficient or economical

bracing design?

6.1 Effect of Solid Blocking on Bracing Requirements

In practice, the solid blocking is placed at intervals within a load-bearing wall to provide

resistance to the rotational tendency of the studs within the wall [107]. Conventionally,

the section of the solid blocking is predetermined in such a way that it is in accordance

with the dimension of the studs, and the intervals are determined by design engineers. It is

predictable that the presence of solid blocking could reduce the bracing requirement of tie

bracing in the system, whereas this favourable effect induced by solid blocking has not been

quantitatively investigated.

Illustrated in Fig. 6.2 is a multi-column system anchored by both sides or one side with

the solid blocking placed at the column’s mid-height.

2Sbl,n+1 

2Sb,n+1 2Sb,1 2Sb,2 2Sb,i 2Sb,n 

2Sbl,1 2Sbl,2 2Sbl,i 2Sbl,n 

Solid blocking

Le  anchor

San,l = 2Sb,n+1/cl

Right anchor

San,r = 2Sb,n/cr

P1 P2 P3 Pi Pn

Figure 6.2: A multi-column system with solid blocking

Let Sbl ,i be the axial stiffness of solid blocking. Since the solid blocking is placed inter-

mittently, Sbl ,i = 0 if the solid blocking is not placed at the location of brace i . cr and cl are
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the ratios of brace stiffness to the stiffness of the right anchor and left anchor, respectively.

The following two assumptions are made for simplicity.

1. The solid blocking is made of the same material as the tie bracing, and the length

difference between the solid blocking and the brace is neglected. As such, the tie

bracing and the solid blocking have the same mechanical properties (E and fy ) and

length (L).

2. Like tie bracing, the stiffness of solid blocking in the half-length column model is

assumed to be half of that in the whole system. In addition, the local buckling of

solid blocking is not considered. Thus, the stiffness of solid blocking in the half-length

column model is

Sbl =
Abl Eb

2Lb
(6.1)

where Abl is the cross-sectional area of the solid blocking.

With the assumptions made above, the multi-column system with solid blocking can be

simulated using the proposed half-length column model, as per Fig. 6.3.

Sb,1+Sbl,1 

Sc,1 

Sb,2+Sbl,2 Sb,i+Sbl,i 

P1 P2 P3 Pi Pn

Sb,n+1/cl ~ (Sb,n+1+Sbl,n+1)  Sb,n/cr ~ (Sb,n+Sbl,n)  

Sc,2 Sc,3 Sc,i Sc,n 

Figure 6.3: A multi-column system with uniform tie bracing and solid blocking simulated

using the proposed model

As introduced in Chapter 4, the symbol “∼” is used to represent the operation in series

for simplicity. For example, the stiffness of the right-most brace is

Sb,n+1

cl
∼ (

Sb,n+1 +Sbl ,n+1
)= (

cl

Sb,n+1
+ 1

Sb,n+1 +Sbl ,n+1

)−1

(6.2)
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6.1.1 αb,force for multi-column systems with solid blocking

In Chapter 4, the relationship between the multi-column system stiffness and displacements

is derived and presented in Eq. (4.18). As per Fig. 6.3, substituting

Sb,i = Sb,i +Sbl ,i (i < n) (6.3a)

Sb,n = (Sb,n/cr ) ∼ (Sb,n +Sbl ,n) (6.3b)

Sb,n+1 = (Sb,n+1/cl ) ∼ (Sb,n+1 +Sbl ,n+1) (6.3c)

into the stiffness matrix in Eq. (4.18) yields the stiffness matrix for the multi-column system

with uniform tie bracing and solid blocking:

Kbl =



 Sb,1 +Sbl ,1 +Sc,1+
Sb,n+1

cl
∼ (Sb,n+1 +Sbl ,n+1)

 −Sb,1 −Sbl ,1

−Sb,1 −Sbl ,1

 Sb,1 +Sb,2 +Sbl ,1+
Sbl ,2 +Sc,2

 . . .

. . . . . . −Sb,n−1 −Sbl ,n−1

−Sb,n−1 −Sbl ,n−1

 Sb,n−1 +Sbl ,n−1 +Sc,n+
Sb,n
cr

∼ (Sb,n +Sbl ,n)




(6.4)

Thus, the ideal brace stiffness of the tie bracing for multi-column systems considering solid

blocking can be attained by finding the maximum root of the determinant of Kbl being zero

with Sb,i = Sb,id.

Once the ideal brace stiffness of tie bracing is obtained, the bracing requirements can

be assessed by following the proposed procedure in Chapter 5 by computing the brace

stiffness scale factors, αb,disp and αb,force. As discussed in Chapter 4, for multi-column

systems anchored on one side, it is arguably that the brace adjacent to the anchor has the

maximum brace force due to the accumulation of brace forces; thereby, it is reasonable to

attain αb,force by equating the force in brace n and the strength of brace n. However, when it

comes to multi-column systems with solid blocking, the force in brace n may not be the

largest because the solid blocking bears a part of the force. Consequently, the force in the

brace without the solid blocking and closest to the anchor may be larger than the force in

brace n. Therefore, the requisite of calculating αb,force for multi-column systems with solid
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blocking is to locate the brace possessing the maximum brace force Qmax. With uniform tie

bracing stiffness, the magnitude of the brace stiffness scale factor will not affect the order of

brace forces’ magnitudes. For that reason, the brace with Qmax can be located by solving

Eqs. (6.5).

FQ = D (6.5a)

F =



1
2Sb,id+Sbl ,1

+ 1
Sc,1

+ 1
Sc,2

− 1
Sc,2

− 1
Sc,2

1
2Sb,id+Sbl ,2

+ 1
Sc,2

+ 1
Sc,3

− 1
Sc,3

− 1
Sc,3

. . . . . .

. . . 1
2Sb,id+Sbl ,n−1

+ 1
Sc,n−1

+ 1
Sc,n

− 1
Sc,n

− 1
Sc,n

1
(2Sb,id/cr )∼(2Sb,id+Sbl ,n) +

1
Sc,n


(6.5b)

Q =



Q1

Q2

...

Qn−1

Qn


D =



Q0,1
Sc,1

− Q0,2
Sc,2

Q0,2
Sc,2

− Q0,3
Sc,3

...
Q0,n−1
Sc,n−1

− Q0,n
Sc,n

Q0,n
Sc,n


(6.5c)

in which all the brace stiffness can be taken as twice the ideal brace stiffness 2Sb,id. Once

the brace forces are attained from Eqs. (6.5), let k represent the index of the brace with the

maximum internal force. Subsequently, letting the force in brace k equal the brace strength

yields:
Qk

fy

Sb,k

Sb,k +Sbl ,k
= Sb,k Lb

Eb
(6.6)

Subsequently, for multi-column systems anchored on one side, if the stiffness of solid

blocking is considered, the nonlinear equations in Eqs. (5.11) regarding the brace forces

become

Q0,1 −Q1

Sc,1
− Q0,2 +Q1 −Q2

Sc,2
= Q1

αb,forceSb,id +Sbl ,1
(6.7a)

Q0,i +Qi−1 −Qi

Sc,i
− Q0,i+1 +Qi −Qi+1

Sc,i+1
= Qi

αb,forceSb,id +Sbl ,i
i = {2, ...,n −1} (6.7b)

Q0,n +Qn−1 −Qn

Sc,n
= Qn(

αb,forceSb,id
)

/cr ∼
(
αb,forceSb,id +Sbl ,n

) (6.7c)
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in which

αb,force =
(

Qk Eb

Lb fy
−Sbl ,k

)/
Sb,id (6.8)

For multi-column systems anchored on both sides, substituting Sb,i = 2Sb,id +Sbl ,i into

Eq. (4.24) gives

FQ = D (6.9a)

F =



− cl
2Sb,id

− 1
2Sb,id+Sbl ,n+1

+ 1
Sc,1

1
Sc,1

− 1
Sc,1

1
2Sb,id+Sbl ,1

+ 1
Sc,1

+ 1
Sc,2

− 1
Sc,2

− 1
Sc,2

. . . . . .

. . . 1
2Sb,id+Sbl ,n−1

+ 1
Sc,n−1

+ 1
Sc,n

− 1
Sc,n

− 1
Sc,n

cr
2Sb,id

+ 1
2Sb,id+Sbl ,n

+ 1
Sc,n


(6.9b)

Q =



Qn+1

Q1

...

Qn−1

Qn


D =



Q0,1
Sc,1

Q0,1
Sc,1

− Q0,2
Sc,2

...
Q0,n−1
Sc,n−1

− Q0,n
Sc,n

Q0,n
Sc,n


(6.9c)

Accordingly, the set of nonlinear equations regarding αb,force for multi-column systems

anchored on both sides considering the stiffness of solid blocking is

Q0,1 −Q1 +Qn+1

Sc,1
− Q0,2 +Q1 −Q2

Sc,2
= Q1

αb,forceSb,id +Sbl ,1
(6.10a)

Q0,i +Qi−1 −Qi

Sc,i
− Q0,i+1 +Qi −Qi+1

Sc,i+1
= Qi

αb,forceSb,id +Sbl ,i
i = {2, ...,n −1} (6.10b)

Q0,n +Qn−1 −Qn

Sc,n
= Qn(

αb,forceSb,id
)

/cr ∼
(
αb,forceSb,id +Sbl ,n

) (6.10c)

−Q0,1 +Qn+1 −Q1

Sc,1
= Qn+1(

αb,forceSb,id
)

/cl ∼
(
αb,forceSb,id +Sbl ,n+1

) (6.10d)

in which

αb,force =
( |Qk |Eb

Lb fy
−Sbl ,k

)/
Sb,id (6.11)

Note that the brace forces can be negative if the system is anchored on both sides,

indicating the braces are in compression, and thus the absolute value of Qk should be
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adopted in Eq. (6.11). As mentioned in Section 5.4, the built-in solver fsolve in MATLAB can

be adopted to solve Eqs. (6.7) or Eqs. (6.10), with the initial values of Q1 to Qn being the

solutions of Eqs. (6.5) or Eqs. (6.9). Once Qk , i.e., the maximum brace force, is obtained,

the brace stiffness scale factor associated with the strength requirement (αb,force) for multi-

column systems considering the solid blocking can be computed via Eq. (6.11).

6.1.2 αb,disp for multi-column systems with solid blocking

For multi-column systems anchored on one side in analysis, incorporating the stiffness of

solid blocking into Eq. (5.15) yields:

∆0Sc,1 =Q0,1 − (∆0 −∆2)
(
αb,dispSb,id +Sbl ,1

)
(6.12a)

∆2Sc,2 =Q0,i + (∆0 −2∆2 +∆3 )
(
αb,dispSb,id +Sbl ,2

)
(6.12b)

∆i Sc,i =Q0,i + (∆i−1 −2∆i +∆i+1)
(
αb,dispSb,id +Sbl ,i

)
i = {3, ...,n −1} (6.12c)

∆nSc,n =Q0,n + (∆n−1 −∆n)
(
αb,dispSb,id +Sbl ,n−1

)−∆n
[
αb,dispSb,id/cr ∼

(
αb,dispSb,id +Sbl ,n

)]
(6.12d)

In this way, the brace stiffness scale factor satisfying the stiffness requirement (∆1 =∆max =
∆0), αb,disp, considering the solid blocking stiffness can be obtained by solving Eqs. (6.12).

Once again, since the condition ∆1 = ∆max only applies to systems anchored on one

side, an additional step is required for systems anchored on both sides: the location of

the maximum displacement should be found by solving Eq. (4.18) with Sb,i = 2Sb,id +Sbl ,i .

Assume column k has the maximum displacement, then αb,disp for multi-column systems

anchored on both sides considering solid blocking can be attained by solving Eqs. (6.13).

∆1Sc,1 =Q0,1 − (∆1 −∆2)
(
αb,dispSb,id +Sbl ,1

)−∆1
[
αb,dispSb,id/cl ∼

(
αb,dispSb,id +Sbl ,n+1

)]
(6.13a)

∆2Sc,2 =Q0,i + (∆1 −2∆2 +∆3 )
(
αb,dispSb,id +Sbl ,2

)
(6.13b)

∆i Sc,i =Q0,i + (∆i−1 −2∆i +∆i+1)
(
αb,dispSb,id +Sbl ,i

)
i = {3, ...,n −1} (6.13c)

∆nSc,n =Q0,n + (∆n−1 −∆n)
(
αb,dispSb,id +Sbl ,n−1

)−∆n
[
αb,dispSb,id/cr ∼

(
αb,dispSb,id +Sbl ,n

)]
(6.13d)

in which

∆k =∆0 (6.14)
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6.1.3 Example with solid blocking

The system consisting of 23 cold-formed steel studs described in Section 4.4.1 is selected

to investigate the effect of different solid blocking patterns on the bracing requirements.

Assume the system is anchored on both sides. If the tie bracing in the system is capable

of resisting both tension and compression forces, then the system can be simulated with

anchored on both sides. However, if the braces are to be designed as tension-only, then

only one side of the system is anchored in the analysis even though the system is actually

anchored on both sides, which is to simulate that one of the anchors in compression will fail

first. In accordance with the dimension of the stud section 250S137-54, the solid blocking is

made of 250T125-54 with a cross-section area of 181.9mm2 (0.282in2).

In this example, since all the solid blocking patterns in the following analysis are assumed

to be symmetrically placed about the centre of the system, plus all the tie bracing and

column stiffness are uniform, removing either the left or right anchor will yield the same

results. Based on this condition, assume the tie bracing adjacent to the left anchor will

buckle first, and therefore the left anchor is removed in the analysis. The influences of the

solid blocking associated with the location, interval, and flexible anchor on the bracing

requirements for the multi-column system are investigated.

Effect of the location of solid blocking

In this case, for the purpose of investigating the effect of solid blocking’s location on the

ideal brace stiffness and bracing requirements, there is a pair of solid blocking symmetrically

placed in the system, as shown in Fig. 6.4. It is assumed that the braces are capable of

resisting both compression and tension forces and the system is rigidly anchored on both

sides. Table 6.1 presents the analytical results regarding the ideal brace stiffness and required

cross-sectional area of tie bracing for the system when the pair of solid blocking is placed

at different locations. The results for the case without the solid blocking (“None”) are also

tabulated in Table 6.1 for comparison.
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Figure 6.4: Different patterns of solid blocking with various locations

Table 6.1: Effect of the location of a pair of solid blocking on the bracing requirements for

the 23-column system with braces being capable of resisting tension and compression forces

Case
Sb,id αb,force Qmax αb,disp ∆max Ab,op

(N/mm) (N) (mm) (mm2)

None 2102.8 1.682 3667.1 3.047 2.4 38.50

1 2101.4 1.683 3666.0 3.036 2.4 38.34

2 2069.8 1.697 3640.5 3.019 2.4 37.55

3 1963.1 1.744 3548.5 3.060 2.4 36.10

4 1840.4 1.792 3419.8 3.125 2.4 34.56

5 1785.3 1.747 3234.1 3.103 2.4 33.30

In general, the optimum cross-sectional area of bracing Ab,op for all cases is controlled by

the stiffness requirement as αb,disp is greater than αb,force. As expected, the presence of solid

blocking always reduces the ideal brace stiffness and requirements for tie bracing. It is worth

noting that the ideal brace stiffness is greater as the solid blocking moves toward anchors.

Although the brace stiffness scales factors, αb,disp and αb,force, do not show monotonic varia-

tions with the change of the solid blocking location, the strength and stiffness requirements
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of tie bracing (indicated by Qmax and Ab,op, respectively) both decrease as the pair of solid

blocking moves closer to the anchor. By comparing the results of the case without the solid

blocking against those of Case 1, it can be seen that the pair of solid blocking located at the

centre of the system reduces the ideal brace stiffness of tie bracing from 2102.8 N/mm to

2101.4 N/mm and reduces αb,disp from 3.047 to 3.036, resulting in an insignificant reduction

of the required cross-sectional area of tie bracing from 38.50 mm2 to 38.34 mm2. While the

solid blocking is placed adjacent to the anchor (Case 5), the resulting reduction for the ideal

brace stiffness is 15% and for the required cross-sectional area of bracing is 13.5%. In all

cases, the middle column has the maximum lateral displacement: ∆12 =∆0 = 2.4mm in the

calculation regarding αb,disp. The maximum brace force Qmax occurs in the tie brace next to

the anchor (k = 23) except for Case 5, where the maximum brace force is in the second tie

brace from the right end (k = 22) as the solid blocking bears a part of the lateral force.

If the braces in the system are designed as tension-only, then only one anchor can be

considered in the analysis [11]. In that case, the analytical results for all cases are shown in

Table 6.2.

Table 6.2: Effect of the location of a pair of solid blocking on the bracing requirements for

the 23-column system with tension-only braces

Case
Sb,id αb,force Qmax αb,disp ∆max Ab,op

(N/mm) (N) (mm) (mm2)

None 8055.9 1.3420 11208.0 3.0479 2.4 147.564

1 7534.2 1.3760 10747.1 3.1068 2.4 140.675

2 7529.4 1.3757 10738.7 3.1085 2.4 140.662

3 7522.6 1.3737 10712.9 3.1109 2.4 140.643

4 7518.3 1.3696 10674.8 3.1123 2.4 140.626

5 7516.2 1.3587 10586.8 3.1128 2.4 140.611

Assume the system bends towards the left and the brace adjacent to the left anchor fails

in compression. By doing so, the left anchor and its adjacent brace are removed from the

analysis model, and consequently only one solid blocking is placed in Case 5. In all cases,

the cross-section area of tie bracing is controlled by the stiffness requirement. As the pair of

solid blocking moves far away from the middle of the system, the ideal brace stiffness of the
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tie bracing Sb,id and the required cross-sectional area of tie bracing Ab,op decrease. However,

compared to the cases anchored on both sides, the discrepancies of Ab,op due to different

solid blocking locations are negligible. Even though Case 5 only has one solid blocking, the

corresponding stiffness requirement (Ab,op) is less than that of Case 4, while the strength

requirement (Qmax) is greater than that of Case 4. Similar to the observations found in

cases in which the analytical model is anchored on both sides, the strength requirement is

governed by force in the second brace from the end (k = 22) in Case 5 and by force in the

brace closest to the anchor (k = 23) in other cases. In general, considering the presence of a

pair of solid blocking approximately decreases the optimum required cross-sectional area of

tie bracing by 5% for the system anchored on one side (tension-only braces).

Overall, considering the solid blocking will decrease the ideal brace stiffness Sb,id and

optimum required cross-sectional area of tie bracing Ab,op for a multi-column system, as

expected. In addition, it is found that the solid blocking will have a larger impact on Sb,id

and Ab,op if the solid blocking is placed farther away from the centre of the system. If the

system can be simulated as anchored on both sides, the presence of solid blocking has a

larger influence on Ab,op and the differences of Ab,op due to different solid blocking locations

are more pronounced compared to the cases in which the system should be simulated as

anchored on one side. This can be attributed to the following reason. For a multi-column

system, the ideal brace stiffness and corresponding bracing stiffness requirement can be

significantly reduced if one more anchor is added. Consequently, the ratio of solid blocking

stiffness to required brace stiffness in cases with two anchors is considerably greater than

that with one anchor. Therefore, the solid blocking will have a larger impact on the multi-

column system’s bracing requirements if the system can be simulated as anchored on both

sides.

Effect of different solid blocking spacing

In practice, solid blocking is spaced intermittently with a solid blocking always being placed

next to the anchor. Hence, four cases with different solid blocking spacing, as illustrated

in Fig. 6.5, are analyzed in this subsection. If the system is anchored on both sides in the

analysis and the braces are capable of resisting both tension and compression forces, the

results are tabulated in Table 6.3.
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Figure 6.5: Different patterns and spacing of solid blocking

Table 6.3: Effect of the solid blocking spacing on the bracing requirements for the 23-column

system with braces capable of resisting tension and compression forces

Case
Sb,id αb,force Qmax αb,disp ∆max Ab,op

(N/mm) (N) (mm) (mm2)

None 2102.8 1.682 3667.1 3.047 2.4 38.50

1 1578.0 1.866 3052.1 3.122 2.4 29.61

2 1479.4 1.930 2960.6 3.140 2.4 27.92

3 1324.4 2.049 2813.6 3.189 2.4 25.39

4 1005.9 2.409 2511.6 3.261 2.4 19.71

Once again, the optimum required cross-sectional areas of tie bracing obtained from the

proposed method are controlled by the stiffness requirement for all five cases. As the spacing

of solid blocking reduces, the ideal brace stiffness of tie bracing Sb,id decreases. Because of

that, the brace stiffness scale factors associated with the strength and stiffness requirements,

αb,force and αb,disp, increase as the solid blocking spacing decreases. Overall, the magnitude

of required strength (Qmax) and stiffness (Ab,op) of tie bracing reduce as the solid blocking

spacing decreases. This is because the presence of solid blocking always enhances the total

stiffness of the multi-column system, and such enhancement increases as the spacing of
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solid blocking decreases. In fact, the number of solid blocking is the same in Case 2 and

Case 3, whereas the Sb,id and Ab,op for Case 3 are less than those for Case 2 because of closer

solid blocking spacing near the anchor in Case 3. This confirms the conclusion drawn in

the previous subsection that the farther the solid blocking is to the centre of the system (or

closer to the anchor), the larger impact it has on the bracing requirements for multi-column

systems. It can be observed that the contribution of solid blocking to bracing requirements

can be significant. Even for Case 1 in which there are six solid blocking, considering the

presence of solid blocking results in 23% reduction of the required cross-sectional area of tie

bracing Ab,op from 38.5 mm2 to 29.61 mm2. When the solid blocking spacing reduces to one

column spacing as per Case 1, the corresponding reduction of Ab,op is 49% from 38.5 mm2

to 19.71 mm2.

For comparison purposes, the results obtained by assuming only one anchor located

at the right end of the system (tension-only braces) are presented in Table 6.4. It can be

seen that the ideal brace stiffness and bracing requirements decrease as the number of

solid blocking increases. The differences of Sb,id and Ab,op for Case 2 and Case 3 are almost

unnoticeable compared to the results associated with two anchors.

Table 6.4: Effect of the solid blocking spacing on the bracing requirements for the 23-column

system with tension-only braces

Case
Sb,id αb,force Qmax αb,disp ∆max Ab,op

(N/mm) (N) (mm) (mm2)

None 8055.9 1.155 9644.8 3.048 2.4 147.56

1 6393.5 1.442 9559.5 3.273 2.4 125.75

2 5808.1 1.500 9030.7 3.372 2.4 117.71

3 5803.5 1.493 8983.9 3.374 2.4 117.69

4 4556.7 1.658 7834.6 3.650 2.4 99.94

Effect of flexible anchor

The effect of solid blocking on the optimum required cross-sectional area of tie bracing

considering the flexible anchor is investigated in this subsection. Different flexible anchors

are considered by varying the ratio of tie bracing stiffness to the anchor stiffness, c. If c = 0,
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it means the system is rigidly anchored. Since the differences between cases anchored on

one side and anchored on both sides have been investigated previously, only the cases with

two anchors are considered in this subsection. The ratios of tie bracing stiffness to the right

anchor and left anchor are presumed as the same, cr = cl = c. Assume the flexible anchor is

an unloaded column with the same height and material as other studs. Thus, the moment

of inertia of the end column on both sides are

Ian = Ab,opEb

cLb

L3
c

48Ec
(6.15)

The results regarding the optimum cross-section area of tie bracing for the multi-column

system with and without solid blocking (case 4) are obtained from the proposed method to

illustrate the effects of solid blocking on the bracing requirements with different values of c ,

as tabulated in Table 6.5.

Table 6.5: Effect of ratios of tie bracing stiffness to anchor stiffness on the bracing require-

ments for the 23-column system with braces capable of resisting tension and compression

forces

c
Solid

blocking

Sb,id αb,force Qmax αb,disp ∆max Ab,op Ian
Ab,op(with Sbl )

Ab,op(without Sbl )

(N/mm) (N) (mm) (mm2) 106 mm4 %

0 None 2102.8 1.682 3667.1 3.047 2.4 38.50 Infinity

0 Case 4 1005.9 2.409 2511.6 3.261 2.4 19.71 Infinity 51.2

10 None 6026.2 1.258 7861.2 2.843 2.4 102.96 4.86

10 Case 4 5106.3 1.291 6834.7 2.907 2.4 89.21 4.21 86.6

30 None 14248.2 1.110 16401.4 2.734 2.4 234.11 3.68

30 Case 4 13529.3 1.109 15549.7 2.768 2.4 225.07 3.54 96.1

50 None 22510.0 1.070 24968.7 2.702 2.4 365.57 3.45

50 Case 4 21912.3 1.067 24230.9 2.725 2.4 358.80 3.39 98.1

It can be seen that the ideal brace stiffness Sb,id and required cross-sectional area Ab,op

of tie bracing increase as the ratio c increases because a larger value of c corresponds to a

more flexible anchor, which needs stiffer braces. Accordingly, the required stiffness of the

flexible anchor (Ian) decreases as the value of c increases. On the other hand, the brace
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stiffness scale factor associated with strength and stiffness requirements decreases as the

ratio c increases. When c = 10, considering the contribution of the solid blocking could still

considerably reduce the required stiffness of tie bracing and anchor (represented as Ab,op

and Ian , respectively) by 13.4%. Nevertheless, the reduction of Ab,op associated with the

solid blocking decreases as the value of c increases, indicating that the influence of solid

blocking dwindles as c increases. This can be attributed to the decreasing ratio of solid

blocking stiffness to tie bracing stiffness.

6.2 Optimum Ideal Brace Stiffness

So far, the analyses presented in this thesis involving the ideal brace stiffness presuppose

a uniform brace pattern in which the stiffness is the same for all tie braces. This section

introduces the concept of nonuniform bracing patterns in that the stiffness of each brace in

a system can vary independently to satisfy the ideal brace stiffness requirement. Thereby,

the determination of the ideal brace stiffness of a system with nonuniform bracing involves

not only one but n variables. In this way, there are numerous solutions to ideal brace

stiffness that can satisfy Eq. (4.20). Hence, criteria for identifying the most appropriate

bracing pattern are necessary. For example, the minimum steel consumption can be used

as the objective for economical purposes. As such, a problem is proposed to determine

the optimum bracing stiffness pattern for minimum bracing steel consumption and can be

mathematically described as follows:

minimize

{
f =∑

Ab,i Lb,i =
∑ Sb,id,i L2

b,i

Eb

}
(6.16a)

Subjected to det[K ] = 0 (6.16b)

Sb,id,i > 0 (6.16c)

where the ideal brace stiffness Sb,id,i of each tie bracing is the variable to be determined by

solving the optimization problem stated in Eqs. (6.16). The objective function in Eq. (6.16a)

corresponds to the minimum steel consumption of braces, as calculated by the sum of each

brace’s volume.

Aiming to find the minimum of a constrained nonlinear multi-variable function, fmincon

solver in the Optimization Toolbox in MATLAB can be used to address the problem shown in
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Eqs. (6.16), in which Eq. (6.16a) is the objective function, Eq. (6.16b) is the nonlinear equality

constraint, and Eq. (6.16c) represents the lower bound of the variables Sb,id,i . The default

algorithm, interior-point, in fmincon solver is selected and is found to be feasible for finding

the minimum value of the function in Eq. (6.16a). The ideal brace stiffness associated with

the uniform bracing pattern is taken as the initial points of Sb,id,i .

6.2.1 Optimum nonuniform bracing for minimum stiffness

For systems with nonuniform column lateral stiffness, it is not likely to derive the general

solutions to Sb,id,i , which vary on the different column section properties, applied axial loads,

and boundary conditions. For a multi-column system with uniform column lateral stiffness,

its ideal brace stiffness associated with the uniform bracing pattern can be expressed as

amaxSb,ids, in which Sb,ids is the ideal brace stiffness for the single column in the system

and amax is the ratio of the ideal brace stiffness for multiple columns to that of a single

column. It has been shown in Chapter 4 that the value of amax can be obtained by finding

the maximum roots of Eq. (4.20) and only relates to the number of columns and the number

of anchors; in other words, if the number of columns and the number of anchors are known,

the solution of amax is unique. Therefore, this section investigates solutions of ideal brace

stiffness associated with nonuniform bracing patterns for systems with uniform column

lateral stiffness.

If a system consists of multiple columns that have uniform lateral stiffness, and are

evenly spaced and rigidly anchored, as the length of all braces is the same, the objective

function in Eq. (6.16a) becomes

minimize
{∑

Sb,id,i
}

(6.17)

By doing so, the objective of the optimization problem is to find the minimum total brace

stiffness ΣSb,id,i , and the final solution is referred to as the optimum nonuniform bracing

with minimum total stiffness. Following the procedure by Ziemian and Ziemian [5] on a

multi-column system with uniform column lateral stiffness, by substituting the scale factor,

ai =−Sb,i /Sc,cr, into Eq. (4.20), Sb,i and Sc,cr are eliminated. Sc,cr is the lateral stiffness of

the half-length column with the applied load being the critical buckling load, P = Pcr . In
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consequence, the problem of finding the minimum total brace stiffness becomes

minimize
{

f =∑
ai

}
(6.18a)

Subjected to det[K (ai )] = 0 (6.18b)

an ai ai

Pcr

a2 a1

Qn Qi Q2 Q1

a1 a2 an

QiQ1 Q2 Qn

Pcr Pcr Pcr Pcr Pcr Pcr Pcr

Figure 6.6: Optimum nonuniform bracing pattern for systems anchored on one side and

systems anchored on both sides with an even number of columns

The ideal brace stiffnesses in such cases can be obtained by finding the maximum

solution of ai satisfying Eq. (6.18a). For systems anchored on one side in analysis, the

maximum solutions of ai for different numbers of columns n are tabulated in Table 6.6,

in which amax corresponds to the scale factor associated with the uniform bracing pattern

and is obtained from Eq. (4.34). The locations of Sb,i are shown in Fig. 6.6. Compared to

the uniform bracing pattern, the optimum nonuniform bracing pattern possesses a lower

total brace stiffness, and the reduction of total brace stiffness from uniform bracing pattern

to optimum nonuniform bracing pattern increases as the number of columns increases.

Particularly, the closer the brace is to the anchored side, the greater ideal brace stiffness is

required.
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Table 6.6: Optimum nonuniform bracing pattern for a system anchored on one side

n
Uniform bracing Optimum nonuniform bracing Reduction of the total stiffness

amax namax a1 a2 a3 a4 a5 a6 a7 Σai 1−Σai /(N amax)

2 2.62 5.24 2 3 5 4.5%

3 5.05 15.15 3 5 6 14 7.6%

4 8.29 33.16 4 7 9 10 30 9.5%

5 12.34 61.72 5 9 12 14 15 55 10.9%

6 17.20 103.21 6 11 15 18 20 21 91 11.8%

7 22.88 160.16 7 13 18 22 25 27 28 140 12.6%

The general expression of ai for multi-column system anchored on one side in analysis

is:

ai = i n − i (i −1)/2 (6.19)

If a system with an even number of columns is anchored by both sides, it can be equiva-

lently divided by two parts at the centre brace, as shown in Fig. 6.6. In that case, the ideal

brace stiffnesses of each part are the same as those of a system consisting of n/2 columns

and anchored on one side, and the ideal brace stiffnesses of the two parts have a mirror

relationship. Theoretically, the stiffness of the middle brace can be arbitrarily determined

since there is no brace force in it, as mentioned in Chapter 4. Consequently, the results in

Table 6.6 also apply to the system that can be simulated as anchored on both sides and

consists of an even number of columns, as per Fig. 6.6.

With the bracing scale factor αb taken as 2.0, as per AISC 360-16 [10] and AISI S100-

16 [11], the brace forces in the multi-column system in Fig. 6.6 associated with the optimum

nonuniform bracing pattern are obtained from Eq. (4.22), as tabulated in Table 6.7. qi

represents the ratio of the force in i th brace Qi to the equivalent lateral force, Q0, induced

by the initial imperfection ∆0 and applied axial load Pi , as given in Eq. (4.10). Compared to

the uniform bracing, adopting the optimum nonuniform bracing yields a smaller magnitude

of the maximum brace force, as indicated by qn in Table 6.7. The reduction of qn increases

as the number of columns increases, thus leading to a smaller strength requirement for

brace n. However, it is worth noting that the forces in the braces far away from the anchor
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associated with the optimum nonuniform bracing could be greater than those associated

with the uniform bracing, e.g., q1 and q2 in the case with n = 5. This is because the brace

stiffness in the optimum nonuniform bracing pattern decreases as the brace moves farther

away from the anchor. As such, the stiffness requirements for the braces far away from

the anchor decrease but the strength requirements increase. Consequently, the strength

requirement for these braces may govern the design.

Table 6.7: Comparison of brace forces between uniform and optimum nonuniform bracing

patterns for systems anchored on one side

n Pattern q1 q2 q3 q4 q5 q6 q7 Reduction of qn (%)

2 Uniform 4.32 7.81

2 Optimum 4.36 7.64 2.17

3 Uniform 4.41 8.38 11.52

3 Optimum 4.51 8.28 11.21 2.69

4 Uniform 4.45 8.62 12.28 15.19

4 Optimum 4.60 8.62 12.02 14.76 2.83

5 Uniform 4.46 8.75 12.68 16.09 18.86

5 Optimum 4.65 8.83 12.52 15.69 18.30 2.97

6 Uniform 4.48 8.82 12.91 16.62 19.86 22.51

6 Optimum 4.68 8.98 12.86 16.32 19.32 21.84 2.98

7 Uniform 4.48 8.87 13.06 16.96 20.50 23.59 26.16

7 Optimum 4.71 9.08 13.11 16.76 20.04 22.92 25.37 3.02

For systems with an odd number of columns anchored on both sides, as illustrated in

Fig. 6.7, the results of ai associated with the optimum bracing are shown in Table 6.8. Similar

to the results in Table 6.6, the braces being rigidly anchored possess the maximum ideal

stiffness in the optimum nonuniform bracing pattern. As the brace becomes far away from

the anchor, its ideal stiffness decreases.
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Figure 6.7: Optimum bracing nonuniform pattern for system anchored on one side or system

anchored on both sides with an odd number of columns

Table 6.8: Optimum nonuniform bracing for systems anchored on both sides

n
Uniform bracing Optimum nonuniform bracing Total stiffness reduction

amax (n +1)amax a1 a2 a3 a4 a5 a6 a7 Σai 1−Σai /[(n +1)amax]

3 1.71 6.83 1 2 6 12.1%

5 3.73 22.39 1.5 3.5 4.5 19 15.2%

7 6.57 52.55 2 5 7 8 44 16.3%

9 10.22 102.16 2.5 6.5 9.5 11.5 12.5 85 16.8%

11 14.67 176.09 3 8 12 15 17 18 146 17.1%

13 19.94 279.20 3.5 9.5 14.5 18.5 21.5 23.5 24.5 231 17.3%

The general expression of ai for systems anchored on both sides in the analysis is:

ai = 1

2

[(
n +1

2

)2

−
(

n +1

2
− i

)(
n +1

2
+1− i

)]
(6.20)

With αb = 2, the brace forces in the multi-column system in Fig. 6.7 associated with the

optimum nonuniform bracing pattern are obtained from Eq. (4.24), as tabulated in Table 6.9.

Similar to the observations from Table 6.7 for systems anchored on one side in the analysis,
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adopting the optimum nonuniform bracing yields a smaller magnitude of the maximum

brace force than adopting the uniform bracing. However, the reduction of qn decreases as

the number of columns increases, showing an opposite trend to that observed for systems

anchored on one side in the analysis.

Table 6.9: Comparison of brace forces between uniform and optimum nonuniform bracing

for systems anchored on both sides

n Pattern From q(n+1)/2 to qn Reduction of qn (%)

3 Uniform 2.19 5.92

3 Optimum 2.29 5.71 3.51

5 Uniform 2.22 6.37 9.67

5 Optimum 2.36 6.30 9.34 3.42

7 Uniform 2.24 6.54 10.34 13.36

7 Optimum 2.39 6.58 10.11 12.92 3.29

9 Uniform 2.24 6.62 10.67 14.19 17.03

9 Optimum 2.41 6.74 10.56 13.82 16.48 3.23

11 Uniform 2.25 6.66 10.84 14.66 17.98 20.68

11 Optimum 2.42 6.85 10.85 14.40 17.47 20.02 3.19

13 Uniform 2.25 6.68 10.95 14.95 18.57 21.72 24.33

13 Optimum 2.42 6.92 11.05 14.80 18.16 21.08 23.57 3.12

6.3 Conclusions

This chapter primarily investigates the effect of solid blocking on the bracing requirements,

and the ideal brace stiffness associated with the nonuniform bracing pattern for multi-

column systems. The following conclusions are drawn:

1. With the consideration of the presence of solid blocking, the formulae for evaluating

the ideal brace stiffness of tie bracing, brace stiffness scale factor satisfying the strength

and stiffness requirements, αb,force and αb,disp, are proposed.
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2. An example of a 23-column system is presented to investigate the effect of solid block-

ing on the bracing requirements. According to the predictions from the proposed

method, it is verified that considering the solid blocking will always reduce the ideal

brace stiffness and the bracing requirements for tie bracing in multi-column systems.

The following are how the effects of the solid blocking on ideal brace stiffness and

bracing requirements for tie bracing vary with different solid blocking locations and

spacing, and rigidity of anchors. First, the ideal brace stiffness and bracing require-

ments decrease as the solid blocking is located closer to the anchor. Second, the solid

blocking has a larger impact on the ideal brace stiffness and bracing requirements if

the multi-column system is anchored on both sides instead of one side in the analysis.

Third, the ideal brace stiffness and bracing requirements decrease as the spacing of

solid blocking reduces. Fourth, the influence of solid blocking on the ideal brace

stiffness and bracing requirements decreases as the ratio of tie bracing stiffness to

anchor stiffness increases, i.e., as the anchor becomes more flexible.

3. An optimization problem is proposed to minimize the total bracing stiffness for

nonuniform bracing. For systems with uniform column lateral stiffness, the solu-

tions of ideal brace stiffnesses having the minimum total bracing stiffness, referred

to as the optimum nonuniform bracing, are presented. It is found that the optimum

nonuniform bracing has a pattern of stiffness that the brace stiffness increases as the

brace is closer to the anchor. With the same brace stiffness scale factor (αb = 2.0),

the maximum brace force in the multi-column system obtained by adopting the opti-

mum nonuniform bracing pattern is less than that obtained by adopting the uniform

bracing.
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Chapter 7

Evaluating Column Deflection at Elevated

Temperatures Considering Creep Effect

The foregoing research in this thesis regarding the bracing design for multi-column systems

is limited to the analysis at the ambient temperature. Nowadays, as fire analysis has become

an inseparable part of steel structural design, it is necessary to extend the proposed method

to evaluate the fire resistance of braced multi-column systems. A numerical method is

proposed in this chapter to evaluate the column’s mid-height deflection at elevated tem-

peratures considering the nonlinear stress-strain relationships and thermal creep effect. In

particular, the proposed method aims to investigate the creep buckling behaviour of steel

columns at elevated temperatures.

In practice, the steel members are required to be protected with insulation to acquire

higher fire resistance. Steel columns, as primary load-bearing components in steel structures,

often require two hours of fire resistance or more in practice [74]. Provided the creep effect is

ignored, the heating rate will not affect the critical temperatures of steel members. However,

for a steel structure subjected to a long fire exposed duration, creep strains develop as

the increase of time, which consequently reduces stiffness and increases deformations of

columns, leading to a premature failure of the structure. Therefore, the adverse effect of

creep on steel columns at elevated temperatures has attracted researchers’ attention in

recent years.

Despite the fact that extensive studies [72, 73, 75, 82, 88, 97] have been carried out to

assess the steel column’s fire-structural response with the consideration of thermal creep
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effects, it is hard to gauge the accuracy of the techniques of incorporating the creep effect

adopted in these studies. For that reason, the creep buckling tests are the best resource to

verify a proposed method that can accurately assess the creep effect on steel columns. The

creep buckling tests [83] were carried out to solely observe the creep-induced deflection of

steel columns at a constant load and elevated temperature levels, thus providing referential

results to verify a proposed method that can accurately assess the creep effect on steel

columns. In this section, a numerical method is proposed to predict the creep-induced

lateral deflection of steel columns at elevated temperatures by tracing the variations of the

cross-sectional stress and strain distributions. Verified against the creep buckling tests on

steel columns at elevated temperature, the proposed method reveals the failure mechanism

of column’s creep buckling that the lateral deflection associated with the creep effect of an

axially loaded steel column at elevated temperatures is initiated by the gradient of stress

and strain distributions on the cross-section of the column.

7.1 Beam Deflection Analysis by Harmathy [108]

Harmathy [108] proposed a method to evaluate the deflection of a simply-supported beam

subjected to a concentrated load at mid-span at elevated temperatures considering the creep

effect. A brief summary of Harmathy’s method [108] is presented below for the purpose of

the development of the proposed method for predicting the mid-height lateral deflection of

a steel column with consideration of the creep effect at elevated temperatures.

In Harmathy’s model, the mid-span cross-section of a steel beam is divided into n strips,

in which two strips are located in each flange, and the rest of n −4 strips are in the web, as

shown in Fig. 7.1. The heating time is also divided into a series of time steps, and the stress

and strain of each strip can be calculated through Eqs. (7.1).

ε
j
i = a j Z j

i +b j (7.1a)

ε
j
i = f

(
σ

j
i

)
(7.1b)

n∑
i=1

σ
j
i A j

i = 0 (7.1c)

n∑
i=1

σ
j
i A j

i (Z j
i −H/2) = M (7.1d)
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where the subscript i and superscript j are employed to identify the strip and time step,

respectively; σ and ε are the normal stress and strain, respectively. A is the cross-sectional

area; Z is the distance from the centroid of a strip to the extreme fibre of the bottom flange;

H is the overall depth of the beam; and M is the internal bending moment at mid-span.

Eq. (7.1a) is based on Euler-Bernoulli’s hypothesis, where a and b are parameters associated

with the linear strain distribution of the cross-section.
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Figure 7.1: Beam mid-span cross-section model proposed by Harmathy [108]

At elevated temperatures, total strain ε consists of three components: the instantaneous

mechanical strain εst induced by the stress, the thermal strain εth corresponding to thermal

expansion, and creep strain εcp, as expressed in Eq. (7.2).

ε
j
i = (εst)

j
i + (εth)

j
i +

(
εcp

) j
i (7.2a)

(εst)
j
i =

σ
j
i

(ET )
j
i

(7.2b)

where ET is the elastic modulus at elevated temperature.

Note that Harmathy assumes the relationships between the instantaneous strain and

stress at elevated temperatures to be perfectly linear, as given in Eq. (7.2b). The thermal

strain can be calculated based on the temperature and corresponding thermal expansion

coefficient. Then the strain of each strip at the same time step can be calculated from

Eq. (7.1a). As the creep strain rate is highly related to the stress and temperature, creep
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strains at each time step vary with the changing stress distribution at elevated temperatures.

The transcendental relationship in Eq. (7.1a) makes the equation difficult to be solved at the

same step. Therefore, an iterative procedure is adopted such that the creep strain at time

t = j can be calculated through the stress and temperature distributions at the previous

time step t = j −1, and the total creep strain is obtained from the accumulation of creep

strains at previous time steps. This iterative approach is shown in Eqs. (7.3).

(
εcp

) j
i =

(
εcp

) j−1
i + (

∆εcp
) j

i (7.3a)(
∆εcp

) j
i = f

(
T j−1

i ,σ j−1
i

)
(7.3b)

Considering that creep strains are not presented in the first step of calculating σ0
i , ε0

i ,

Eqs. (7.1) contain 2n+2 variables (nσi ,nεi , a and b) and 2n+2 equations, in which Eq. (7.1a)

and Eq. (7.1b) consist of n equations, respectively. The general solutions of the coefficients,

a and b, at each time j can be obtained by solving Eqs. (7.1). Once the strain distribution is

obtained, the mid-span beam deflection ∆ j can be calculated as given in Eq. (7.4).

∆ j = L2

π2

ε
j
1 −ε

j
n

Zn −Z1
(7.4)

The derivation of Eq. (7.4) for calculating the beam deflection through strain difference

on the cross-section is represented in the Appendix B.

7.2 Proposed Method of Evaluating Column Lateral Deflec-

tion at Elevated Temperatures Considering Creep Effect

The method established by Harmathy [108] accounts for the effects of the creep and cross-

sectional temperature gradients by adopting the Euler-Bernoulli beam theory. However, the

general solutions of coefficients a j and b j in Eq. (7.1a) are derived based on the assumption

that the stress-strain relationships of steel are perfectly elastic at elevated temperatures and

the yield strength reductions of steel at elevated temperatures are not considered. Apparently,

neglecting inelastic deformations and yield stress reductions at elevated temperatures may

lead to an underestimation of the deflection.

The assumption in Harmathy’s method is adopted that the maximum deflection of a steel

member can be derived according to the difference between the strains of the extreme fibre
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of flanges at the location of the maximum moment. The method is extended to evaluate the

mid-height deflection of steel columns at elevated temperatures. The sinusoidal function is

taken as the deformed shape of the column at elevated temperatures. Different from the

beam at elevated temperatures in which the bending moment at mid-span remains un-

changed as there is no interaction of applied load and the deflection, the bending moment

at mid-height of a column is induced by the interaction of axial load and lateral deflec-

tion, i.e., the second-order effect. Thus, the increased deflection associated with stiffness

deterioration resulting from the elevated temperature will amplify the second-order effect.

Therefore, the equilibrium conditions expressed in Eqs. (7.1a) need to be updated at each

time step based on the deflection obtained from the previous step. Besides updating the

equilibrium equations in each time step, nonlinear stress-strain relationships are incorpo-

rated to characterize the material behaviour of steel at elevated temperatures. The following

is the proposed procedure to predict the lateral deflection of an unrestrained steel column

subjected to elevated temperatures.

1. Specify the geometric parameters of the column section, column length L, elastic

modulus E0, and yield strength fy,0 of steel at ambient temperature. Specify the creep

model and stress-strain relationships of steel at elevated temperatures.

2. Input the axial load P applied on the column and the initial out-of-straightness of

column ∆0.

3. Divide the column mid-height cross-section into n strips and calculate the area of

each strip Ai and the distance Zi from the centroid of each strip to the bottom.

4. Input the corresponding heating curve of each strip. Let time step j = 1.

5. Calculate the elastic modulus ET , yield strength fyT of steel and the thermal strain

εth of each strip based on the heating curve. Establish and solve the equilibrium

equations expressed in Eqs. (7.5) to obtain the stress and strain distributions. If j = 1,

let the creep strains
(
εcp

) j
i = 0 and ∆ j−1 =∆0 = 0; if j > 1, the creep strains

(
εcp

) j
i are

calculated through the stress distributions of the previous time step based on the
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specified creep model.

ε
j
i = a j Z j

i +b j (7.5a)

ε
j
i = (εst)

j
i + (εth)

j
i +

(
εcp

) j
i (7.5b)

n∑
i=1

σ
j
i A j

i = P (7.5c)

n∑
i=1

σ
j
i A j

i (Z j
i −H/2) = P

(
∆ j−1 +∆0

)
(7.5d)

6. Based on the strain distribution, calculate the column lateral deflection, ∆ j , using

Eq. (7.4).

7. If the total lateral deflection of the column ∆ j +∆0 ≥ L/15, stop; otherwise, let j = j +1

and go to Step 5.

Note that this study adopts L/15 as the failure criterion of creep buckling, and a discussion

of the criterion is presented in the Appendix. The adopted stress-strain relationships and

creep model of steel at elevated temperatures as well as the process of obtaining the creep

strain are elaborated on in Section 7.3.

To satisfy the equilibrium conditions at each time step, a set of 2n +2 equations which

contains 2n +2 unknown variables (nσi , nεi , a, and b) and known parameters (Zi , (εcp)i

, (εth)i , Ai , P , H , ∆, and ∆0) as shown in Eqs. (7.5), can be solved by employing the

nonlinear system solver fsolve provided in MATLAB. The initial values of the unknown

variables can be taken as the results of the previous time step to guarantee the accuracy

of the solution, except for the first time step in which the initial values are taken as zero.

The finite difference type and termination tolerance in the nonlinear system solver was set

as “central” and 1×10−10, respectively. For an axially restrained steel column at elevated

temperature, as the thermal expansion is restrained, the internal axial force will increase

with the increase of the temperature, which can lead to premature failure of the column [88].

The foregoing procedure is also applicable to evaluate the fire response of axially restrained

steel columns at elevated temperatures. In that case, the internal force P in Eqs. (7.5c) and

(7.5d) need to be updated at each time step to account for internal force induced by thermal

restraint.
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7.3 Validation

The two types of tests adopted for the validation of the proposed method are the ISO 834

standard fire tests [109] and creep buckling tests of Q690 high-strength steel columns. In

each standard fire test, the axial load applied on the steel column was maintained as con-

stant, and the gas temperature was heated according to the ISO 834 standard curve [109]

until the column failed. The creep buckling test on a steel column was conducted by apply-

ing a constant axial load and constant elevated temperature until failure. Lateral deflections

at the column’s mid-height were recorded in both types of tests. The comparison of results

obtained from the proposed method and the standard fire tests aims to demonstrate the

applicability of the proposed method of evaluating the column lateral deflection and critical

temperature. The comparison made to the creep buckling tests aims to validate the accuracy

of the proposed method in predicting creep-induced column lateral deflection upon the

incorporation of the Fields-and-Fields creep model [67] and implementation of different

creep strain evaluation procedures.

7.3.1 Material properties

Mechanical property reductions and stress-strain relationships

For steel structural fire analysis, reductions of yielding strength and elastic modulus at

elevated temperatures are key factors affecting the fire behaviour of steel members. The

experimental investigations on temperature-dependent material properties of high-strength

steels [45, 65] show that the degradationof mechanical properties exhibits different varia-

tions with heating temperature among different steel grades [73], especially between mild

steels and high-strength steels. The degradation of steel mechanical properties at elevated

temperatures specified in current design standards is primarily obtained from the tension

test results of mild steel. Maraveas et al. [110] found that adopting the specification in some

existing standards may overestimate the mechanical properties of high-strength steels.

As shown in Fig. 7.2, there are obvious discrepancies between the reduction factors spec-

ified in Eurocode 3 [41] and the experimental results of Q690 steel. Therefore, the reduction

factors of yield strength and elastic modulus of Q690 high-strength steel at elevated temper-
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atures obtained from experimental results [45] were adopted for numerical simulations for

better accuracy.
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Figure 7.2: Comparison of reduction factors of mechanical properties at elevated tempera-

tures between Eurocode 3 and Q690 steel

The format of a model proposed by Ramberg and Osgood [58] is adopted as the stress-

strain relationships of Q690 steel at elevated temperatures, as expressed in

ε= σ

ET
+α

(
σ

f1.0

)n

(7.6)

Since Ramberg-Osgood model is differentiable, it avoids the non-convergence issue that

may occur for piecewise models in the iterative computation. Note that Ramberg-Osgood

equation [58] is modified by incorporating the f1.0 (nominal yield strength corresponding

to 1% residual strain at elevated temperature). By doing so, the fitting results have a better

agreement with the experimental results of stress-strain curves at elevated temperatures, as

shown in Fig. 7.3. The fitting results of the coefficients, a and n, at elevated temperatures

are tabulated in Table 7.1.
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Table 7.1: Fitting coefficients for Q690 steel in Ramberg-Osgood model

Temperature (◦C) ET (MPa) ET /E f1.0 (MPa) f1.0/ fy α(10−3) n

300 197000 0.93 747.7 0.94 6.21 40.43

400 165000 0.78 678.6 0.85 5.36 13.92

500 123000 0.58 549 0.69 5.04 19.52

550 106000 0.50 361 0.45 5.54 6.77

600 59000 0.28 205.5 0.26 5.68 6.81

700 21000 0.10 60 0.075 6.31 5.62

800 13000 0.06 41.9 0.053 6.85 7.47
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Figure 7.3: Fitting results of Q690 high-strength steel stress-strain curves at elevated temper-

atures

Creep model

The empirical equation in the form of power-law proposed by Fields and Fields [67] in

Eq. (7.7) is employed to compute the creep strain of Q690 steel at elevated temperatures.

εcp = at bσc (7.7)

where εcp is the creep strain, %; t is time in minute; σ is stress in MPa; a, b and c are the

coefficients that need to be determined from experimental results. For Q690 steel, the curve
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fitting results of a, b and c are tabulated in Table 7.2 or expressed in Eqs. (7.8) based on the

reported data [45]. The samples presented in Fig. 7.4 indicate that the Fields-and-Fields

creep model with fitted coefficients agrees well with the test results. As the fitting process

was carried out according to the steady creep test results at certain temperature levels, the

predictions associated with the parameters in Table 7.2 are more accurate than Eqs. (7.8).

Thereby, it is suggested Table 7.2 and Eqs. (7.8) be used for assessing the creep effect on

steel members at constant temperature and heating temperature, respectively.

Table 7.2: Coefficients of Fields-and-Fields creep model for Q690 steel

Temperature (◦C) a b c

450 6.25×10−42 1 14.47989

500 3.47×10−31 0.999075 11.00699

550 3.08×10−22 0.996882 8.36215

600 4.40×10−15 0.991713 5.97602

700 3.69×10−6 0.950795 2.7462

800 2.05×10−4 0.723366 2.04585

a = 10−218.6676+0.5559T−3.5897×10−4×T 2
(7.8a)

b =
 175.17203−0.7863×T +0.00129T 2 −7.51542×10−7T 3450 ≤ T ≤ 600

77.68907−0.19475×T +1.25209×10−4T 2600 < T ≤ 800
(7.8b)

c = 1.0069−3.0446×10−7 ×eT /58.3 (7.8c)
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Figure 7.4: Comparison between tests and fitted results of creep strain curves of Q690 steel
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As the stress level and creep strain rate is assumed to be constant in each time step

for the iterative procedure, an equation for calculating the creep strain rate is necessary.

Creep strain rate can be obtained in terms of either time-hardening or strain-hardening. In

the case of time-hardening, the formulation of creep strain can be written as a function of

time, as shown in Eq. (7.9). Since the time-hardening formulation is an explicit equation,

the creep strain increment of each time step can be calculated based on the stress of the

previous time step as expressed in Eq. (7.10). Then the creep strain can be formed as the

sum of the creep strain increments during the time increment, ∆t , as shown in Eq. (7.3a).

ε̇cp = abt b−1σc (7.9)

(
∆εcp

) j =∆t · (ε̇cr ) j =∆t
(
abt b−1

(
σ j−1

)c)
(7.10)

In the format of strain-hardening, the creep strain rate formulation can be defined as

a function of creep strain, as shown in Eq. (7.11). In the case that the strain-hardening

formulation is adopted, the creep strain rate can be obtained by solving Eq. (7.12).

ε̇cp = (a)
1
b b

(
εcp

) b−1
b (σ)

c
b (7.11)

(
εcp

) j − (
εcp

) j−1 =∆t (a)
1
b b

(
εcp

) b−1
b (σ)

c
b (7.12)

7.3.2 ISO-834 standard fire tests on steel columns

Results obtained from fire tests on two unprotected Q690 high-strength steel columns [77]

are selected to validate the proposed method. The two tested I-shape columns have a length

of 2700 mm with a 16 mm thick end plate being welded at each end. The I-shape section is

designated as 200×50 with a nominal section depth, H , and flange length, B , being 200mm

and 150mm, respectively. The nominal thickness of the web and flanges are 14mm. The

column ends are hinge-supported about the column’s weak axis, whereas the upper end of

the column is not axially restrained. The two tested columns, designated as F-1 and F-2,

were subjected to an axial load of 300kN and 500kN, respectively.

Franssen et al. [111] indicated that the mean temperature at the column’s mid-height

when the column collapsed could be taken as the failure temperature of the steel column. In

this study, the average temperature curve obtained from measured ones at mid-height cross-

section is adopted in the numerical simulations. The yield strength and elastic modulus of
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steel at ambient temperature are taken as 821MPa and 187200MPa, respectively, which are

the measured values from the coupon tension tests. The initial deflections at the mid-height

of steel columns at ambient temperatures and corresponding applied loads are taken as

the measured values from the tests and shown in Table 7.3. Since the effect of residual

stress on column capacity at elevated temperatures is considerably less than that at ambient

temperature because the residual stress is released due to the thermal effect [87], the residual

stress distribution is not considered in the subsequent validations.

Table 7.3: Parameters of Q690 steel columns in fire tests

Specimen No. Cross-section Load (kN) Initial imperfection ∆0 (mm)

F-1 200×150 300 1.37

F-2 200×150 500 1.43

Presented in Fig. 7.5 are comparisons of column mid-height lateral deflections obtained

from the standard fire tests and the proposed method. To explore the creep effect on the

predicted column lateral deflections in standard fire tests, three cases were simulated by the

proposed method. They are a case without considering the creep effect, a case adopting

the time-hardening formulation, and a case adopting the strain-hardening formulation. It

can be seen from Fig. 7.5 that the lateral deflections obtained from the proposed method

are similar to those of the tests. In the early loading phase, since the cross-sectional stress

distribution at the mid-height of the column is in the elastic range, the lateral deflections

of the steel column increase very slowly. At a later phase, the rate of lateral deflection

accelerates due to the fact that the strain on a portion of the cross-section exceeds the

elastic limit at elevated temperatures. Finally, the lateral deflection increases dramatically,

which leads to failure as the full cross-section becomes plastic. As demonstrated in the

figure, the proposed method provides reasonable predictions on the structural responses of

steel columns at elevated temperatures.
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Figure 7.5: Comparison of column lateral deflections between standard fire tests and pro-

posed method

The lateral deflection prediction of specimen F-1 shows a relatively larger discrepancy

to the test results at the final phase compared to that of specimen F-2. Discrepancies be-

tween the test results and numerical predictions can be attributed to the following reasons.

First, the fire behaviour of a steel column highly depends on the degradation of mechanical

properties at elevated temperatures; however, the actual mechanical properties at elevated

temperatures of the steel used in the tests might not be identical to the measured results

by Wang et al. [45]. In addition, the steel mechanical properties at elevated temperatures

adopted in the evaluation were computed by linear interpolation of the measured values at

an increment of 100◦C, which was an approximation. Furthermore, non-uniform tempera-

ture distribution along the column length in the tests was not considered in the proposed

method.

The comparison between the predictions with and without considering the creep effect

indicates that the creep effect is negligible in standard fire tests. This is because the columns
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are exposed to fire without insulation and experience relatively short fire duration. So, it

is necessary to utilize the creep buckling tests to demonstrate if the proposed method can

accurately assess the creep effect.

7.3.3 Creep buckling tests on steel columns at elevated temperatures

Unlike that in the standard fire test, the deformation of the column in the creep buckling

test is mainly induced by the creep strain, as there is no transient degradation of mechanical

properties in steel when it is subjected to a constant elevated temperature. Therefore, as an

alternative failure mode, creep buckling is primarily attributed to the creep behaviour of the

steel at elevated temperatures. Since the proposed method assumes that the creep strain

rate is invariant in each time increment and calculated based on the stresses of the previous

time step, the predicted deflections are sensitive to the creep model and the magnitude

of the time step. Thus, it is necessary to validate the adopted creep model and proposed

method against the results obtained from the creep buckling tests.

A set of creep buckling tests on high-strength Q690 steel columns at elevated temper-

atures carried out by the author [112] is utilized for the validation. The information of

column specimens is tabulated in Table 7.4. All the columns have the same nominal length,

dimensions and boundary conditions described in Section 7.3.2, except that specimens

C-3 and C-4 have a different cross-section, 200×200: H = 200mm and B = 200mm. Note

that in practical cases columns are not likely to be exposed to a temperature higher than

800◦C. The experiments aim to solely observe the column deflections due to the creep

effect. By utilizing the experimental results, the proposed method is verified, and the failure

mechanism of creep buckling phenomenon is explored in this chapter.

Table 7.4: Parameters of Q690 steel columns in creep buckling tests

Specimen No. T (◦C) Cross-section Load (kN) ∆0 (mm)

C-1 800 200×150 35 0.47

C-2 800 200×150 65 2.61

C-3 800 200×200 55 2.55

C-4 800 200×200 105 2.23
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As shown in Fig. 7.6, a creep buckling test on steel columns at elevated temperatures

consists of the heating phase, loading phase and creeping phase. In the heating phase, no

axial load was applied to the column, and the furnace temperature was heated up to a target

level. When the column temperature reached the target value, the axial load was applied

to a predetermined magnitude, and this phase was referred to as the loading phase. In the

creeping phase, both the axial load and temperature were maintained as invariant from

their corresponding target values.
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Figure 7.6: Creep buckling test on a steel column at the elevated temperature

The axial deformation of the column increased in the heating phase due to the thermal

expansion and then remained almost constant because the column temperature increasing

rate was slow when approaching the furnace temperature. It took a few minutes for the

temperatures along the column height to reach the target temperature. In the loading phase,

the axial deformation of the column decreased with increasing load magnitude, primarily

resulting from the variation of instantaneous mechanical strain. In the creeping phase, the

axial deformation of the column decreased gradually over time until the failure associated

with creep buckling occurs. The lateral deflection of the column varied slightly in the heating

and loading phases and accumulated at an increasing rate in the creeping phase. In the later

period of the creep phase, the instantaneous inelastic deformation due to the increasing

second-order effect accelerated the increase of the column lateral deflection. Finally, the

creep buckling occurred when the lateral deflection became considerably large (approximate

120 mm), consequently the column failed to resist the applied axial load.
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As the load was not applied to the column in the heating phase and the heating time

was relatively short compared to the creeping phase, the creep effect in the heating phase is

negligible. Therefore, the numerical simulations in this paper only account for the loading

and creeping phases. It is noted that the measured lateral deflection shown in Fig. 7.6

is initially moved toward one direction in the heating phase but reverses its direction in

the loading phase with a further increase in the creeping phase. The initial deflection in

the heating phase likely resulted from the combination of column expansion and thermal

effect on measurement devices. For that reason, the variation of the lateral deflection

associated with the heating phase was neglected in the simulation, and the measured initial

imperfection of the column at ambient temperature ∆0 was taken as the initial lateral

deflection at the beginning of the loading phase. In this way, the measured deflection was

modified by adding the difference between ∆0 and the measured value at the beginning

of the loading phase. The temperature was set as 800◦C, and the recorded loading curve

from each test was fed into the analysis. The analysis would continue with the associated

predetermined target axial load if the column did not reach failure during the loading phase.

The mechanical properties defined in the model were the same as illustrated in Section

7.3.2.

In this section, the time- and strain-hardening formulations are adopted respectively

to carry out the analyses. In general, a smaller time increment size in numerical analysis

yields higher accuracy in results but requires a longer computation time. In the following

analyses, the time increment is 10 seconds, which is appropriate for acquiring relatively

accurate results with reasonable computational time.

Presented in Fig. 7.7 are the creep-induced lateral deflections at the column’s mid-height

obtained from the test and predicted results. As the trivial deflection in the heating phase is

neglected, the start point of the deflection curves in Fig. 7.7 corresponds to the initiation of

the loading phase. For the purpose of comparison, the predictions without accounting for

the creep effect are also presented in Fig. 7.7. If the creep effect is neglected, the column

lateral deflection increases slightly as the applied load increases and remains unchanged

when the applied load is invariant. By contrast, when the creep effect is considered, the

lateral deflections of the steel columns increase slowly in the initiation of the creep phase

and then grow with an increasing deformation rate until the occurrence of creep buckling.

The predictions and test results are in good agreement, as shown in Fig. 7.7, which indicates
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that the creep strain calculation in the proposed method is coherent with the deformation

mechanism of the steel columns in the creep buckling tests.
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Figure 7.7: Comparisons of lateral deflections of steel columns subjected to creep buckling

between test and predicted results

It is worth noting that compared to the predictions associated with using the time-

hardening formulation, the predictions adopting the strain-hardening formulation yield

shorter creep buckling time and a better agreement with test results. Since the time exponent

coefficient b in Eq. (7.7) is smaller than unity at 800◦C, the creep strain rate decreases over

time, which leads to unconservative results if the time-hardening formation is adopted for

computing creep strain. The comparisons confirm the conclusion drawn by the previous

studies [70,108] that the analyses with the incorporation of the strain-hardening formulation

yield more accurate results for cases with variable stress history.

163



7.4 Parametric Study

A parametric study is carried out to investigate the influences of some key factors on the

creep buckling behaviour of steel columns at elevated temperatures. The analysis proce-

dures illustrated in Section 7.2 are followed. The yielding strength and elastic modulus of

steel are taken as 690MPa and 200000MPa, respectively. The column length is 3000mm.

The parameters investigated in this study include load ratio αp , temperature T , initial im-

perfection ∆0 and slenderness ratio λ, with benchmark values of the parameters being 0.7,

600◦C, L/1000 and 62, respectively.

All the columns have an identical I-shape section with thicknesses of both flanges and

web being 14mm. The strain-hardening formulation in Eq. (7.12) is adopted to calculate the

creep strain. As the creep buckling time of the column can be extremely long in some cases,

the analysis will be terminated if the fire duration exceeds 10 hours.

7.4.1 Load ratio

The load ratio is one of the primary factors affecting the behaviour of steel columns at

elevated temperatures. As illustrated in Section 7.3.3, the creep buckling time of the steel

column decreases with a higher load ratio because the higher load will lead to higher stress

on the cross-section and a larger creep strain rate. The load ratio αp is taken as the ratio of

the applied load and the column critical load at elevated temperature. The critical load of the

column at elevated temperature, Ncr,T , is calculated based on the critical stress method [113]

as expressed in Eqs. (7.13).

Ncr,T =σcr,T Ac (7.13a)

σcr,T = 1

2

{
(1+∆0)σE ,T + fy,T −

√[
(1+∆0)σE ,T + fy,T

]2 −4 fy,TσE ,T

}
(7.13b)

where σcr,T is the critical stress at elevated temperature T ; ∆0 is the initial eccentricity,

which is determined by the section type and slenderness ratio of the column; σE ,T is the

Euler buckling stress of the column at elevated temperatures and equals π2ET Ic /L2
c .
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Figure 7.8: Influence of load ratio on creep buckling time of column when ∆0 = L/1000,T =
600◦C and λ= 62

With the increase of the load ratio, the creep buckling time reduces considerably; par-

ticularly, when the applied load approaches the column’s critical load at the elevated tem-

perature (αp ≥ 0.8), the corresponding creep buckling time can be very short. This can be

explained as follows. First, as the exponent of stress, i.e., coefficient c , in Eq. (7.7) approaches

6, the creep strain rate increases dramatically with the increase of stress. Second, when the

applied load approaches the critical load, the instantaneous inelastic deformation of the

column becomes dominant, and thus the column stiffness deteriorates rapidly. As a result,

the larger creep strain rate and instantaneous inelastic deformation lead the column to fail

in a very short time.

7.4.2 Temperature

With the same load ratio, the load applied on the column decreases with a higher tempera-

ture because the magnitude of the corresponding critical load is lower. Consequently, the

reduced applied load will lead to lower stresses and lower creep strain rates. However, the

creep strain rates increase with a higher temperature; thereby, there is a need to investigate

the influence of temperature on the creep buckling behaviour of the column. The column

deflection and corresponding creep buckling time at different temperatures are presented in

Fig. 7.9.
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It is noted is that the column failed within only one minute when the temperature is

700◦C or 800◦C. Besides the influence of the higher creep strain rate at a higher temperature,

the other reason for creep buckling time being short is that the critical load obtained

from the critical stress method neglects the adverse effect associated with the large plastic

deformation at elevated temperatures. Therefore, when αp = 0.7 and T = 700◦C (800◦C),

the instantaneous plastic deformation in the column becomes dominant, which leads to

the column failing immediately. For the temperature below 700◦C, the creep buckling time

increases as temperature decreases.
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Figure 7.9: Influence of temperature on creep buckling time of column when λ= 0.7,∆0 =
L/1000 and λ= 62

7.4.3 Slenderness ratio

The influence of the column slenderness ratio on the creep buckling time of steel columns

is illustrated in Fig. 7.10. For all cases, the length of the column is 3000mm, and the

slenderness ratio of the column varies by varying flange widths B . The slenderness ratios, 62,

70, 80 and 94, correspond to the cross-section 200×200, 200×180, 200×160 and 200×140,

respectively. With a larger slenderness ratio, the column failure is more likely dominated by

instability instead of yielding; thereby, a larger slenderness ratio results in a smaller critical

load and thus the lower magnitude of the stress in the column. For cases with large stress,

the creep strain rate can be quite large, which consequently accelerates the formation of the

instantaneous plastic deformation. Consequently, the creep buckling time of steel columns
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at elevated temperatures decreases for the column with a smaller slenderness ratio, as shown

in Fig. 7.10.
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Figure 7.10: Influence of slenderness ratio on creep buckling time of column when αp =
0.7,∆0 = L/1000 and T = 600◦C

7.4.4 Initial imperfection

As shown in Fig. 7.11, the creep buckling time of the steel column increases as the mag-

nitude of the initial imperfection reduces. Such phenomenon can be explained from the

deformation mechanism of creep buckling as follows: 1) The initial imperfection influences

the internal bending moment at column mid-height, which induces the stress gradient; the

stress gradient in the current time step results in a larger strain gradient due to the creep

effect and larger deflection in the next time step; and the larger deflection will consequently

lead to further increase on stress gradient and creep strain rate. According to such inter-

action, the lateral deflection, stress gradient, creep strain rate and strain gradient increase

interactively in each time increment until the occurrence of creep buckling. 2) A larger

initial imperfection also leads to larger magnitudes of the stress at extreme fibres in column

cross-section, which results in a higher creep strain rate in Fields-and-Fields creep model.
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Figure 7.11: Influence of initial imperfection on column creep buckling time when αp =
0.7,T = 600◦C and λ= 62

The analysis results indicate that the creep buckling time of steel columns at elevated

temperatures is highly influenced by the initial imperfections of steel columns. Theoretically,

if a concentrically loaded column is assumed to be perfectly straight without initial imper-

fection and not subjected to any lateral disturbing force, the creep effect only influences the

axial deformation of the column. In that case, the lateral deflection will not occur due to

the lack of a stress gradient in the column cross-section, and thus the creep buckling of the

column will not happen. Therefore, the initial imperfection can be regarded as the premise

condition of column creep buckling.

The current standards [10, 26, 114] stipulate that the maximum acceptable initial im-

perfection of columns is L/1000. As presented in the parametric study, the creep buckling

time may be considerably short with ∆0 = L/1000. Due to this observation, decreasing

the maximum acceptable initial imperfection of steel columns can be an effective way to

increase the creep buckling time at elevated temperatures.

7.5 Conclusions

A method to evaluate the creep buckling behaviour of steel columns at elevated temperatures

is proposed. The proposed method has been validated against the results of the standard
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fire tests and creep buckling tests of Q690 high-strength steel columns. The conclusions

obtained from this study are summarized in the following:

1. The stress-strain relationships and creep strain variations of Q690 high-strength steel

at elevated temperatures are simulated. The simulation results agree well with the test

results and can be utilized in the fire design of Q690 high-strength steel structures.

2. The time-hardening and strain-hardening formulations are separately incorporated

in the validation analyses against creep buckling tests. It is found that the strain-

hardening model yields more accurate results for the cases with variable stress history.

3. The failure mechanism of creep buckling of steel columns is associated with the creep-

induced lateral deflection, which is resulted from the cross-sectional strain gradient

distribution and the nonuniform stress distribution triggered by the column initial

imperfection. Therefore, the creep buckling will theoretically not occur, provided the

initial imperfection is neglected because the stress is uniformly distributed on the

cross-section.

4. When the applied load approaches the theoretical critical load of the column at ele-

vated temperature (αp ≥ 0.8), the creep buckling phenomenon can be easily observed;

therefore, possible creep buckling of steel columns may occur in a certain fire scenario,

which signifies the necessity of considering the creep effect in the fire design of steel

columns.

5. Based on the outcome of the parametric study, it is concluded that the creep buckling

time of the steel columns decreases with an increase in load ratio, temperature, and

initial imperfection but a decrease in slenderness ratio of the columns.

As the proposed method demonstrates that the creep effect on the structural response of

steel columns in fire is induced by the column initial imperfection, the adverse effect of creep

can be explicitly considered in the evaluation of column critical temperature and critical

load by incorporating a time-dependent factor to amplify the column initial imperfection.

More importantly, the proposed numerical method’s philosophy has been demonstrated

to accurately consider the creep effect on column lateral deflection—the creep-induced

deflection can be obtained by analyzing the cross-sectional strain gradient at the mid-height.
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Following this philosophy, a simplified method is proposed in Chapter 8 to consider the

creep effect on the lateral deflection of steel columns at elevated temperatures.
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Chapter 8

Fire Resistance of Multi-column Systems

8.1 Introduction

Due to steel’s high thermal conductivity and pronounced deterioration of mechanical prop-

erties, steel structures are vulnerable to fire hazards, and therefore fire safety assessment

becomes an inseparable part of the design of steel structures. Given the complicated interac-

tion of members and nonlinear behaviour of steel, unlike the case at ambient temperature,

the development of an analytical method to evaluate the fire resistance of steel structure

would be impractical. Hence, a simplified numerical method is proposed in this chapter to

assess the fire resistance of multi-column systems by incorporating the effects of nonlinear

stress-strain relationships, thermal expansions, creep, and partial yielding.

8.2 Effect of Thermal Expansion of Braces

The thermal expansion of beams was not considered in the previous research regarding the

storey-based stability of multi-column systems at elevated temperatures [37, 98, 99], which

is feasible for cases in which the beams are restrained by concrete slabs. However, for the

braces in multi-column systems without the restraint from the concrete slabs, neglecting

their thermal expansion may lead to unconservative design mainly due to the following

two reasons. First, it has been shown in the Cardington fire tests that the columns are

subjected to higher bending moments caused by additional deflection induced by the

thermal expansion of connecting beams at elevated temperatures [115], as shown in Fig. 8.1,
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which expedites the formation of plastic hinge in the column and subsequently cause the

premature failure. Second, the thermal expansion of braces is restrained by the columns and

anchors, and thus the additional forces will be induced in the braces, which may result in

the brace yielding prematurely, as per Fig. 8.2. Hence, the additional lateral displacements of

columns and forces in braces induced by the thermal expansion of braces for multi-column

systems are investigated in this subsection.

Static axial load

Restraint induces 

axial load into beam

Expansion induces 

moments into column

Figure 8.1: Structural behaviour of a braced column at elevated temperatures [115]

8.2.1 Thermal expansion of a single brace in a multi-column system

Fig. 8.2 illustrates the structural behaviour of a typical brace in the thermal expansion that it

is restrained by the left and right subsystems.
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Right anchorLe! anchor

P P P P P

Restraint from 
the le! subsystem

Restraint from 
the le! subsystem

Brace i in thermal expansion

Figure 8.2: Thermal expansion of a brace in a multi-column system

If the restraints from the left and right subsystems are represented using two equivalent

springs, the relationships among the deformations, additional force, and stiffness of brace i

can be depicted as Fig. 8.3.

Seql,i Sb,i Seqr,i

Δthl,i

Δepl,i

Δthr,i+1

Δepr,i

Qth,i Qth,i

Figure 8.3: Diagram of a restrained brace in thermal expansion

In Fig. 8.3, Seql,i and Seqr,i are the equivalent lateral stiffness of the left and right sub-

systems, respectively, and they can be attained using the method described in Section 4.2.

∆epl,i and ∆epr,i are the deformations induced by free thermal expansion at the left and right

ends of brace i , respectively; ∆thl,i and ∆thr,i are respectively the final deformations induced

by the thermal expansion at the left and right ends of brace i subjected to the restraints from

Seql,i and Seqr,i ; and Qth,i is the additional internal force induced by the thermal restraint.

The difference between the total deformation in free thermal expansion (∆epl,i +∆epr,i ) and

the total final deformation in thermal restraint (∆thl,i +∆thr,i ) is the compressive deformation
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of the brace induced by the additional internal force Qth,i . Thus,

∆epl,i +∆epr,i − (∆thl,i +∆thr,i ) = Qth,i

Sb,i
(8.1)

Let ∆ep,i equal (∆epl,i +∆epr,i ), representing the total change in the brace length if the

brace expands freely. ∆ep,i depends on the temperature change ∆Ti , brace length Lb,i , and

thermal expansion coefficient αth,i :

∆ep,i = Lb,i

∫
αth,i dTi (8.2)

Then, Eq. (8.1) can be written as:

∆ep,i − (∆thl,i +∆thr,i ) = Qth,i

Sb,i
(8.3)

According to the equilibrium in Fig. 8.3, it yields

∆thl,i =
Qth,i

Seql,i
(8.4a)

∆thr,i =
Qth,i

Seqr,i
(8.4b)

From Eq. (8.3) and Eqs. (8.4a), the solutions of Qth,i , ∆thl ,i , and ∆thl ,i can be obtained:

∆thl,i =∆ep,i
Seqr,i Sb,i

Seqr,i Seql,i +Sb,i
(
Seqr,i +Seql,i

) for Seql,i > 0, Seqr,i > 0 (8.5a)

∆thr,i =∆ep,i
Seql,i Sb,i

Seqr,i Seql,i +Sb,i
(
Seqr,i +Seql,i

) for Seql,i > 0, Seqr,i > 0 (8.5b)

Qth,i =∆thl,i Seql,i for Seql,i > 0, Seqr,i > 0 (8.5c)

It should be noted that Eqs. (8.5) only hold true when Seqr,i and Seql,i are positive. If the

equivalent stiffness of one subsystem becomes zero or negative, it means that this subsystem

relies on the support from the remaining part of the system and cannot restrain the thermal

expansion of the brace. In that case, the brace will expand freely towards the side with

negative equivalent stiffness, and there is no additional force in the brace induced by the

thermal restraint, as expressed in Eqs. (8.6).

∆thl,i =∆ep,i , ∆thr,i = 0, if Seql,i ≤ 0 (8.6a)

∆thr,i =∆ep,i , ∆thl,i = 0, if Seqr,i ≤ 0 (8.6b)

Qth,i = 0 if Seqr,i ≤ 0 or Seql,i ≤ 0 (8.6c)
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8.2.2 Thermal expansion of multiple braces in a multi-column system

The thermal-induced additional force and deformations of a single brace are formulated

as Eqs. (8.5) and Eqs. (8.6). Nevertheless, in a multi-column system, it is not likely that

only one brace is heated in fire scenarios. Then, the final additional force in a brace will

be affected by the additional forces in other braces induced by the thermal expansions.

By adopting the proposed half-length column model, the interplay of thermal-induced

additional forces in a multi-column system anchored on the right side is depicted in Fig. 8.4.

Note that the superposition principle is adopted that the internal forces induced by the

initial imperfections and applied axial loads and those induced by thermal expansion are

additive. Therefore, the internal forces induced by the initial imperfections and applied axial

loads are not considered in Fig. 8.4 for clarity.

P1

Qth,1

Qth,2

Δth,1

Qth,n-2

Qth,2 - Qth,1 Qth,1 Qth,n-2 - Qth,n-1 Qth,n-1 - Qth,n 

Qth,n-1

P2

Δth,2 Δth,n-1 Δth,n

Pn-1 Pn

Qth,n 

Figure 8.4: Thermal-induced additional forces in a multi-column system anchored on the

right side simulated using the half-length column model

In Fig. 8.4, ∆th,i is the lateral displacement of column i induced by the thermal expan-

sion of braces. Thus, for brace i (i = {1,2, ...,n −1}), the final length change is ∆th,i −∆th,i+1,

and the compressive deformation, i.e., the difference between the length change in free

expansion and the final length change, is ∆ep,i −
(
∆th,i −∆th,i+1

)
. Similarly, the compressive

deformation of brace n is ∆ep,n −∆th,n . In addition, the compressive deformation of each

brace equals the ratio of the internal force and the axial stiffness of the brace. In conse-

quence, Eqs. (8.7) are attained based on the compatibility of each brace in a multi-column

system anchored on the right side.
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Qth,i =
(
∆ep,i −∆th,i +∆th,i+1

)
Sb,i i = {1, ...,n −1} (8.7a)

Qth,n = (
∆ep,n −∆th,n

)
Sb,n (8.7b)

According to the equilibrium of each column in the system,

Qth,1 =∆th,1Sc,1 (8.8a)

Qth,i −Qth,i−1 =∆th,i Sc,i i = {2, ...,n} (8.8b)

Eliminating ∆th,i in Eqs. (8.7) and Eqs. (8.8) yields

Qth,1

Sb,1
=∆ep,1 −

Qth,1

Sc,1
+ Qth,2 −Qth,1

Sc,2
(8.9a)

Qth,i

Sb,i
=∆ep,i −

Qth,i −Qth,i−1

Sc,i
+ Qth,i+1 −Qth,i

Sc,i+1
i = {2, ...,n −1} (8.9b)

Qth,n

Sb,n
=∆ep,n − Qth,n −Qth,n−1

Sc,n
(8.9c)

The set of linear equations in Eqs. (8.9) can be expressed as



1
Sb,1

+ 1
Sc,1

+ 1
Sc,2

− 1
Sc,2

− 1
Sc,2

1
Sb,2

+ 1
Sc,2

+ 1
Sc,3

− 1
Sc,3

− 1
Sc,3

. . . . . .

. . . 1
Sb,n−1

+ 1
Sc,n−1

+ 1
Sc,n

− 1
Sc,n

− 1
Sc,n

1
Sb,n

+ 1
Sc,n





Qth,1

Qth,2

...

Qth,n−1

Qth,n


=



∆ep,1

∆ep,2

...

∆ep,i

∆ep,n


(8.10)

As such, the additional brace forces induced by the thermal expansion effect can be

attained by solving the linear system in Eq. (8.10). Since the thermal-induced brace forces

Qth,i in the above derivation are compressive while the brace forces induced by the initial

imperfections and applied axial loads in tension are assumed to be positive, the final brace

force considering the thermal expansion effect is Qi −Qth,i . It is found that the flexibility

matrix in Eq. (8.10) is the same as that in Eq. (4.22), except that the thermal-induced brace

forces Qth,i obtained from Eq. (8.10) shall be positive, as explained previously.

Eliminating Qth,i in Eqs. (8.7) and Eqs. (8.8) yields

∆th,1Sc,1 =
(
∆ep,1 −∆th,1 +∆th,2

)
Sb,1 (8.11a)

∆th,i Sc,i =
(
∆ep,i −∆th,i +∆th,i+1

)
Sb,i −

(
∆ep,i−1 −∆th,i−1 +∆th,i

)
Sb,i−1 i = {2, ...,n −1}

(8.11b)

∆th,nSc,n =(
∆ep,n −∆th,n

)
Sb,n − (

∆ep,n−1 −∆th,n−1 +∆th,n
)

Sb,n−1 (8.11c)

The matrix format of Eqs. (8.11) is
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
Sb,1 +Sc,1 −Sb,1

−Sb,1 Sb,1 +Sb,2 +Sc,2
. . .

. . . . . . −Sb,n−1

−Sb,n−1 Sb,n−1 +Sb,n +Sc,n





∆th,1

∆th,2

...

∆th,n


=



∆ep,1Sb,1

∆ep,2Sb,2 −∆ep,1Sb,1

...

∆ep,nSb,n −∆ep,n−1Sb,n−1


(8.12)

In this way, the column lateral displacements induced by the thermal expansion of braces

in a multi-column system anchored on one side can be attained by solving Eqs. (8.12).

For multi-column systems anchored on both sides, the diagram of thermal-induced

forces is shown in Fig. 8.5.

P1

Qth,1

Qth,n+1 Qth,2

Δth,1

Qth,n-2

Qth,2 - Qth,1 Qth,1-Qth,n+1 Qth,n-2 - Qth,n-1 Qth,n-1 - Qth,n 

Qth,n-1

P2

Δth,2 Δth,n-1 Δth,n

Pn-1 Pn

Qth,n 

Figure 8.5: Thermal-induced additional forces in a multi-column system anchored on both

sides simulated using the half-length column model

Following the above analytic process, the compatibility and equilibrium equations of the

system in Fig. 8.5 are given in

Qth,i =
(
∆ep,i −∆th,i +∆th,i+1

)
Sb,i i = {1, ...,n −1} (8.13a)

Qth,n = (
∆ep,i −∆th,i

)
Sb,n (8.13b)

Qth,n+1 =
(
∆ep,n+1 +∆th,1

)
Sb,n+1 (8.13c)

Qth,1 −Qth,n+1 =∆th,1Sc,1 (8.13d)

Qth,i −Qth,i−1 =∆th,i Sc,i i = {2, ...,n} (8.13e)

The linear equations for solving the brace forces and column lateral displacements induced

by the thermal expansion of braces are shown in Eq. (8.14) and Eq. (8.15), respectively.
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

1
Sb,n+1

+ 1
Sc,1

− 1
Sc,1

− 1
Sc,1

1
Sb,1

+ 1
Sc,1

+ 1
Sc,2

− 1
Sc,2

− 1
Sc,2

. . . . . .

. . . 1
Sb,n−1

+ 1
Sc,n−1

+ 1
Sc,n

− 1
Sc,n

− 1
Sc,n

1
Sb,n

+ 1
Sc,n





Qth,n+1

Qth,1

...

Qth,n−1

Qth,n


=



∆ep,n+1

∆ep,1

...

∆ep,n−1

∆ep,n


(8.14)


Sb,1 +Sc,1 +Sb,n+1 −Sb,1

−Sb,1 Sb,1 +Sb,2 +Sc,2
. . .

. . . . . . −Sb,n−1

−Sb,n−1 Sb,n−1 +Sb,n +Sc,n





∆th,1

∆th,2

...

∆th,n


=



∆ep,1Sb,1 −∆ep,n+1Sb,n+1

∆ep,2Sb,2 −∆ep,1Sb,1

...

∆ep,nSb,n −∆ep,n−1Sb,n−1


(8.15)

As shown above, with known elevated temperatures and corresponding thermal expan-

sion coefficient values, the additional brace forces and column lateral displacements of

multi-column systems induced by the thermal expansion of braces can be assessed using

the expressions derived in this subsection.

8.3 Effect of Thermal Expansions of Columns

Columns will expand at different rates if subjected to different heating rates. As a result,

an additional axial force may form in the column with a higher temperature induced by

the restraint provided by adjacent beams and thereafter, the increased internal axial forces

will lead the column to premature failure. The equations proposed by Xu and Zhuang [98]

are adopted in this research to calculate the thermal-induced axial forces Pth in columns,

while the elastic modulus in their equations is replaced by tangent modulus at elevated

temperatures to signify the nonlinear behaviour of steel columns at elevated temperatures,

as given in Eq. 8.16.

Pth = P +kbLc
∫
αthdT

1+kbLc (Ec,0 −Ec,tan)/(Ec,0Ec,tan Ac )
−P (8.16)
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where Ec,0 is the elastic modulus of the column at ambient temperature, and kb is the

restraining stiffness of adjacent beams, as below:

kb = 12(r1 + r2 + r1r2)

4− r1r2

Eb Ib

L3
b

(8.17)

in which r1 and r2 are the end-fixity factors at beam ends. For rigid frames, with r1 = r2 = 1.0,

Eq. 8.17 can be simplified as

kb = 12Eb Ib

L3
b

(8.18)

For multi-column systems with intermediate bracing, since the end connections of

braces are assumed to be pinned, the restraining stiffness kb becomes zero with r1 = r2 =
0. It should be noted that since the additional axial force Pth is induced by the unequal

thermal expansion of columns, the bounds of the integral term in Eq. 8.16 correspond to

the temperature difference between the target column and the adjacent column.

8.4 Effect of Partial Yielding on Steel Columns

In their preliminary investigation of storey-based stability of steel frames at elevated temper-

atures, Xu and Zhuang [98] investigated the lateral stiffness of a steel column at elevated

temperatures by incorporating the reduction factor of elastic modulus at elevated temper-

atures into Eqs. (2.20) derived by Xu [35]. Ma and Xu [99] adopted the tangent modulus

instead of the elastic modulus of steel at elevated temperatures, which is more consistent

with the realistic nonlinear stress-strain relationships of steel at elevated temperatures. The

average stress on the column’s cross-section was used to determine the tangent modulus

for the reason of simplicity. However, as temperature increases, the stress gradient in the

cross-section becomes more pronounced with an increasing internal moment. Subsequently,

the portion of the cross-section with greater stress possesses a lower magnitude of tangent

modulus. In that case, adopting the average cross-sectional stress may overestimate the

column lateral stiffness at elevated temperatures if the exterior stress on the cross-section

exceeds the proportional limit.
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8.4.1 Comparison of column lateral stiffness at elevated temperatures

with and without considering the partial yielding effect

To better illustrate the effect of partial yielding on the column lateral stiffness, the lateral dis-

placement variations of a cantilever column (with a length of 1.18 m and an IPE 80 section)

with heating temperature are investigated by Eqs. 2.20 with adopting tangent modulus of

steel at elevated temperatures and by a finite element model (FEM) established via ABAQUS,

respectively. The column is assumed to be subjected to an axial load of P = 50kN and a

lateral load of Q = 2.5kN at its upper end. The steel yield strength and elastic modulus

at ambient temperature are taken as 355MPa and 210GPa, respectively. The column is

assumed to be initially perfectly straight and will bend about its strong axis. The retention

factors of steel mechanical properties at elevated temperatures are taken as specified in EN

1993-1-2 [41].

If the partial yielding effect is not considered, the lateral stiffness of the column at

elevated temperature, Sc,T , can be evaluated using the following equation [99]:

Sc,T = 12Ec,tanIc,i

L3
c,i

βT (8.19a)

where Ec,tan is the tangent modulus of the column at the elevated temperature depending

on the temperature and stress levels; βT is the modification factor at elevated temperature

obtained from Eqs. (2.20) with Ec = Ec,tan.

Since the partial yielding effect is not considered, the average stress on the cross-section

σ= P/A is used to evaluate the value of Ec,tan. Thus, the lateral displacement of the column

at elevated temperature induced by the applied load, ∆T , can be obtained from:

∆T =Q/Sc,T (8.20)

In the finite element analysis (FEA), the 2-D BEAM element B23, which neglects the

effect of shear deformations, is adopted to model the column. As B23 elements account

for the effect of stress gradient on the deformation, the effect of partial yielding on the

column lateral stiffness can be reflected in the numerical results from FEA. Because the

creep effect is not considered in both methods, the heating rate will not affect the results;

thereby, the temperature heating curve is arbitrarily set as 1◦C per step. In both methods,
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the nonlinear stress-strain relationships of steel at elevated temperatures specified in EN

1993-1-2 [41] are adopted, as depicted in Fig. 8.6. For comparison purposes, the results

with the elastic-perfectly plastic stress-strain relationships obtained from the FEM are also

attained.

Stress, σ

Strain, ε

fy,T

fp,T

εp,T εy,T εt,T εu,T

Elastic-perfectly plastic

EC3

Figure 8.6: Nonlinear stress-strain curve in Eurocode 3 [41] and elastic-perfectly plastic

stress-strain curve at the elevated temperature

Presented in Fig. 8.7 are the variations of column lateral displacement with heating tem-

perature obtained from Eq. (8.20) and the FEA. The boundary lines in Fig. 8.7 denote when

σec,T reaches the proportional limit fp,T and yield stress fy,T at the elevated temperature,

respectively.
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Figure 8.7: Comparison of lateral displacement variations with heating temperature between

the FEA and analytical method
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As the temperature increases, the stress gradient on the cross-section of the column

increases due to the increasing lateral displacement and the accompanying increasing

second-order effect. For the lateral displacement variation obtained from Eq. (8.20), the

corresponding maximum exterior stress in compression on the cross-section is

σec,T = P

Ac
+ QLc +P∆T

Sx
(8.21)

where Sx is the elastic section modulus about the strong axis.

When the maximum exterior stress is below the proportional limit (σec,T ≤ fp,T ), the

tangent modulus distribution on the cross-section is uniform because the tangent modulus

is the same as the elastic modulus. In that case, partial yielding has not occurred, and

thus the predictions obtained from the analytical method and FEA are the same. Once the

maximum exterior stress exceeds the proportional limit (σec,T > fp,T ), the lateral displace-

ment obtained from the FEA with EC3 model increases faster than those obtained from

FEA with the elastic-perfectly plastic model and the analytical method with EC3 model.

This is because when the stresses on a portion of the cross-section exceed the proportional

limit fp,T , the tangent modulus distribution on that portion is less than the elastic modulus,

which leads to a reduction in the column lateral stiffness. However, such an effect is not

considered in the analytical method and the FEA with the elastic-perfectly plastic model in

which the tangent modulus is still the same as the elastic modulus when the stress exceeds

the proportional limit, as presented in Fig. 8.7.

After the maximum exterior stress reaches the yield stress (σec,T = fy,T ), the lateral

displacement predicted from the FEA with the elastic-perfectly plastic model increases

dramatically. This is because when σ = fy,T the tangent modulus in the elastic-perfectly

plastic model is theoretically zero (Ec,tan = 0), and consequently the stiffness of the portion

with σ= fy,T diminishes. Although the tangent modulus is adopted in the analytical method,

the average stress on the cross-section remains within the elastic state. Because of that,

the lateral displacement calculated from the analytical method increases steadily as the

temperature increases, even though the exterior stress reaches the yield stress (σec,T =
fy,T ), which results in an underestimation of the lateral displacement. Finally, the lateral

displacement predicted by the analytical method reaches infinity, i.e., the lateral stiffness

approaches zero, when the average stress reaches the yield stress (P/Ac = fy,T ).
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8.4.2 Modification of column lateral stiffness to mimic the partial yielding

effect

As discussed above, using the average stress to evaluate the column lateral stiffness neglects

the adverse influence of the spread of plasticity, which leads to overestimated column lateral

stiffness at elevated temperatures. Hence, the column lateral stiffness in the analytical

expressions in Eq. (8.19) should be reduced gradually after the initial yield state is reached to

consider the partial yielding effect, especially for fire analysis. In this section, the modified

plastic-hinge approach proposed by King et al. [116] is adapted to modify the column lateral

stiffness at elevated temperatures. The initial yield surface without considering the effect of

residual stresses [117] is expressed in

P

Py
+ f M

Mp
= 1.0 (8.22)

where f is the shape factor of the cross-section, the ratio of the plastic section modulus Zx

to the elastic section modulus Sx .

Based on the work by Duan and Chen [118], the full yield surface describing the cross-

section strength without considering the adverse effect of residual stresses can be expressed

as (
P

Py

)ξ
+ M

Mp
= 1.0 (8.23)

where the exponent ξ depends on the shape of the member section and which axis the

member bends about. For example, ξ equals 1.3 for wide-flange sections bending about the

strong axis.

The initial yield surface and full yield surface are plotted in Fig. 8.8, wherein the par-

tial yielding state is the region between the initial and full yield surfaces. The reduction

coefficient ρ in Eq. (8.24) proposed by King et al. [116] is adopted to consider the gradual

reduction from column’s elastic lateral stiffness at the onset of yielding to the inelastic lateral

stiffness associated with a full plastic hinge at the location with maximum bending moment.

0 ≤ ρ = M −Myc

Mpc −Myc
≤ 1 (8.24)

where Myc and Mpc are the bending moments at the initial yield and full yield, respectively,

associated with the applied load P .
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From Eq. (8.22) and Eq. (8.23), Myc and Mpc are given in

Myc =
(
1− P

Py

)
My (8.25)

Mpc =
[

1−
(

P

Py

)ξ]
Mp (8.26)
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Figure 8.8: Cross-section strength surface (full yield) and initial yield surface neglecting the

effect of residual stresses [116]

Alternatively, an initial surface that accounts for the effect of residual stresses can be

adopted, as given in Eq. 8.27 and plotted in Fig. 8.9 [116].

P

0.8Py
+ f M

0.9Mp
= 1.0 (8.27)

It was stated in [116] that Eq. (8.27) is more appropriate for use with the modified plastic-

hinge method for wide-flange sections [116]. If Eq. (8.27) is adopted, then the term Mpc in

Eq. (8.24) becomes

Myc =
(
1− P

0.8Py

)
0.9My (8.28)
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Figure 8.9: Full yield surface and initial yield surface considering the effect of residual

stresses [116]

Using the simple incremental method, the column lateral stiffness considering the partial

yielding effect at step j is

S j
c,mod = S j

c,T (1−ρ j ) (8.29)

where ρ j is computed based on the additional lateral displacement of the previous step j −1

and the moment criteria (Myc and Mpc ) at the current step j , as below:

0 ≤ ρ j =
M(∆ j−1)−M j

yc,T

M j
pc,T −M j

yc,T

≤ 1.0 (8.30a)

∆ j−1 = Q

S j−1
c,mod

(8.30b)

By adopting the modified column lateral stiffness in Eq. (8.29), the lateral displacement

variations of the column presented in Section 8.4 with heating temperature are obtained

and plotted in Fig. 8.10. As residual stresses were not considered in the FEA and analytical

analysis, Eq. (8.25) is used to compute the reduction coefficient ρ.

Different from the case at the ambient temperature that My = fy Sx , the elastic moment

resistance My,T at the elevated temperature should be taken as fp,T Sx if the nonlinear stress-

strain relationships of steel are used. For comparison purposes, the variation of the column
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lateral stiffness associated with My,T = fy,T Sx is also presented in Fig. 8.10. It can be seen

that the results using the modified column lateral stiffness with My,T = fp,T Sx show better

agreement with the FEA results than the analytical results without account for the partial

yielding. Nonetheless, the results associated with My,T = fy,T Sx cannot consider the stiffness

degradation induced by partial yielding after the exterior stress reaches the proportional

limit σec,T = fp,T .
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Figure 8.10: Comparison of lateral displacement between FEA and analytical methods with

and without considering partial yielding

8.5 Effect of Thermal Creep on Column Lateral Stiffness

A numerical method was proposed in Chapter 7, to qualify the effect of thermal creep strain

on the mid-height lateral deflection of steel columns. This method is mainly based on the

assumptions that the deformed shape of the steel column is proportional to the column’s

mid-height deflection as temperature increases, and that the mid-height deflection depends

on the strain gradient on the cross-section of the column’s mid-height, as indicated in

Eq. (8.31).

∆T = L2

π2

εec,T −εet ,T

d
(8.31)

where εec,T and εet ,T respectively represent the strains of the exterior edge in compression

and in tension (after deducting the stress led by the axial force, P/A) at the elevated temper-

ature T ; d is the height of the cross-section. The term L2/π2 is associated with assuming
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the column’s deformed shape to be a sinusoidal curve.

Attaining precise values of εec,T and εet ,T is highly related to the accuracy of the cross-

section stress and strain distributions. Illustrated in the left diagram of Fig. 8.11 is a typical

cross-sectional normal stress distribution of a column subjected to axial load and bending

moment. The stress gradient on the cross-section is nonlinear due to the nonlinear stress-

strain relationships of steel at elevated temperatures, especially for the portion exceeding the

proportional limit. Admittedly, if the nonlinear stress distribution is considered, obtaining

the magnitudes of the exterior stresses and strains is rather complex, as illustrated in Chap-

ter 7. Therefore, the cross-sectional stress gradient is assumed to be linear for simplicity, as

illustrated in the right diagram in Fig. 8.11. Upon the plane section hypothesis, this assump-

tion is feasible because of two reasons: 1) for the portion in which the stress distribution is

below the proportional limit, the stress gradient is almost linear; 2) for the yielding portion

in which the stress exceeds the proportional limit, assuming the stress gradient to be linear

is conservative because it neglects the stress relaxation effect due to the reduced modulus.

σ = P/A

σ = fp,T

σec,T

σet,T σet,T = P/Ac - Mmax/Sx

σ = P/A

σ = fp,T

σec,T = P/Ac + Mmax/Sx

d

Figure 8.11: Cross-sectional normal stress distributions at elevated temperatures

By adopting the assumption of linear stress distribution, the exterior stresses are

σec,T = P

Ac
+ Mmax

Sx
(8.32a)

σet ,T = P

Ac
− Mmax

Sx
(8.32b)

If the column bends about the weak axis, replace Sx in Eq. (8.32) with Sy .

If the cross-sectional temperature distribution is assumed to be uniform, then the strains

in Eq. (8.31) consist of two parts: the instantaneous mechanical strain εst induced by the
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stress and the thermal creep strain εcp:

ε= εst +εcp (8.33)

In addition to the assumption that the deflection is related to the cross-sectional strain

gradient in Eq. (8.31), the modified deflection ∆cp considering the creep effect can be

attained by

∆cp = εst|σ=σec,T − εst|σ=σet ,T +εcpc −εcpt

εst|σ=σec,T − εst|σ=σet ,T

∆T =αcp∆T (8.34)

in which the exterior strains εec,T and εet ,T are determined according to the nonlinear

stress-strain relationships of steel at elevated temperatures with known stress values. The

exterior creep strains εcpc and εcpt can be determined using either the time-hardening

formulation in (7.10) or the strain-hardening formulation in Eq. (7.12). Let αcp correspond to

the amplification factor of the lateral displacement considering the creep effect. Meanwhile,

αcp is the reduction factor of the column lateral stiffness:

Sc,cp = Sc

αcp
(8.35)

where Sc,cp is the modified column lateral stiffness considering the thermal creep effects.

Determining the bending moment at the mid-height of the column is the precondition of

computing the exterior stresses as well as the exterior strains.

For semi-rigidly connected columns with known end-fixity factor re , the bending mo-

ment at the mid-height is

Mm =Ω1LQ +Ω2
P∆0

L
(8.36)

where Q is the lateral load applied on the mid-height of the column; for a column in a

multiple-column system, the lateral load applied on the column is the difference between

the internal forces in adjacent braces. Ω1 and Ω2 are coefficients related to the load factor

(φ) and end-fixity factor (re ):

Ω1 =
3re

(
1−cosφ

)+φsinφ (1− re )

φ(φcosφ (1− re )+3re sinφ)
(8.37a)

Ω2 =π2 φcosφ (1− re )−6φre /π+3re sinφ

(π2 −4φ2)(φcosφ (1− re )+3re sinφ)
(8.37b)

Since Eq. (8.36) is derived from the equilibrium illustrated in Fig. 3.2, it accounts for the

effect of column initial curvature on the bending moment at the column mid-height.
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8.6 Evaluating the Critical Temperature of Multi-column Sys-

tems

8.6.1 Problem formulation

This section proposes a numerical method for evaluating the critical temperature of multi-

column systems. The calculation procedure is incremental because of considering the

effects of partial yielding and creep. Based on Eq. (4.18), the force-displacement relationship

without considering the thermal expansion effects for a multi-column system at time j can

be written as

S j D j = Q j
0 (8.38)

where the vector of the equivalent lateral forces Q j
0 is

[
Q j

0,1,Q j
0,2, ...,Q j

0,n

]T
, in which Q0

is attained from Eq. (4.10), and the vector of the column mid-height deflections D j is[
∆

j
1,∆ j

2, ...,∆ j
n

]T
. The stiffness matrix for the multi-column system is

S j =


S j

b,1 +S j
b,n+1 +S j

c,1 −S j
b,1

−S j
b,1 S j

b,1 +S j
b,2 +S j

c,2
. . .

. . . . . . −S j
b,n−1

−S j
b,n−1 S j

b,n−1 +S j
b,n +S j

c,n

 (8.39)

At elevated temperatures, the adverse effects of material degradation, partial yielding, and

creep on the stiffness of members shall be considered. On account of those factors, S j
c,i in

Eq. (8.39) is

S j
c,i =

1−ρ j
i

α
j
cp,i

S j
c,T,i (8.40)

where ρ j
i and α

j
cp,i are attained from Eqs. (8.30a) and Eq. (8.34), respectively.

Since the possible buckling of braces is neglected in this study, the axial stiffness of

braces associated with the tangent modulus can be attained based on the magnitude of

the average cross-sectional stress. In that case, the modified secant modulus Ecp given in

Eq. (8.41) proposed by Li et al. [119] can be adopted to account for the creep effect on the

brace stiffness at elevated temperatures for simplicity.

Ecp = Etan

Etan
εcp

σ
+1

(8.41)
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Adopting the modified tangent modulus in Eq. (8.41), S j
b,i in Eq. (8.39) considering the

creep effect at elevated temperatures is

S j
b,i =

E j
cp,i Ab,i

Lb,i
(8.42)

With the above equations, the column displacements induced by the applied axial

loads and initial imperfections at elevated temperatures can be attained from Eq. (8.38).

Furthermore, the vector of column displacements caused by the thermal expansions of

braces, Dth
j , can be obtained from Eq. (8.12) or Eq. (8.15). As such, considering the effects

of partial yielding, creep, and braces’ thermal expansion, the total displacements of columns

in the system at time j is

Dtotal
j = D j +Dth

j (8.43)

Attaining S j
b,i requires knowing the value of the cross-sectional stress in the brace, which

is determined by the internal force in the brace. Due to considering the creep effect, the

relationships among the column displacements, column stiffness, brace stiffness, and brace

forces become transcendental, and therefore, S j
b,i is determined based on the total brace

forces at the previous step j −1, which can be obtained from

Q j−1
total = Q j−1 −Q j−1

th (8.44)

where Q j−1
th is the vector of thermal-induced brace forces at time j −1, which is attained

from either Eqs. (8.10) or Eq. (8.14). Q j−1 is the vector of brace forces induced by the applied

axial loads, which can be obtained by solving

F j−1Q j−1 = D j−1
dif (8.45)

where D j−1
dif is the vector of the column lateral displacement differences induced by the axial

loads, and F j−1 is the equivalent flexibility matrix of the multi-column system.

For the systems anchored on one side and on both sides, the expressions of Q j−1, D j−1
dif ,
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and F j−1 are given in Eqs. (8.46) and Eqs. (8.47), respectively.

F j−1 =



1

S
j−1
b,1

+ 1

S
j−1
c,1

+ 1

S
j−1
c,2

− 1

S
j−1
c,2

− 1

S
j−1
c,2

1

S
j−1
b,2

+ 1

S
j−1
c,2

+ 1

S
j−1
c,3

− 1

S
j−1
c,3

− 1

S
j−1
c,3

. . . . . .

. . . 1

S
j−1
b,n−1

+ 1

S
j−1
c,n−1

+ 1

S
j−1
c,n

− 1

S
j−1
c,n

− 1

S
j−1
c,n

1

S
j−1
b,n

+ 1

S
j−1
c,n


(8.46a)

Q j−1 =



Q j−1
1

Q j−1
2
...

Q j−1
n−1

Q j−1
n


D j−1

dif =



Q0,1

S
j−1
c,1

− Q0,2

S
j−1
c,2

Q0,2

S
j−1
c,2

− Q0,3

S
j−1
c,3

...
Q0,n−1

S
j−1
c,n−1

− Q0,n

S
j−1
c,n

Q0,n

S
j−1
c,n


(8.46b)

F j−1 =



− 1

S
j−1
b,n+1

+ 1

S
j−1
c,1

1

S
j−1
c,1

− 1

S
j−1
c,1

1

S
j−1
b,1

+ 1

S
j−1
c,1

+ 1

S
j−1
c,2

− 1

S
j−1
c,2

− 1

S
j−1
c,2

. . . . . .

. . . 1

S
j−1
b,n−1

+ 1

S
j−1
c,n−1

+ 1

S
j−1
c,n

− 1

S
j−1
c,n

− 1

S
j−1
c,n

1

S
j−1
b,n

+ 1

S
j−1
c,n


(8.47a)

Q j−1 =



Q j−1
n+1

Q j−1
1
...

Q j−1
n−1

Q j−1
n


D j−1

dif =



Q0,1

S
j−1
c,1

Q0,2

S
j−1
c,1

− Q0,3

S
j−1
c,2

...
Q0,n−1

S
j−1
c,n−1

− Q0,n

S
j−1
c,n

Q0,n

S
j−1
c,n


(8.47b)

It is worth noting that the equations proposed in this section for evaluating the structural

responses of multi-column systems braced at columns’ mid-height are also applicable for

that of single-storey braced or unbraced frames with minor revisions.
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8.6.2 Failure criteria and assumptions

The critical temperature of the multi-column system can be determined when satisfying any

one of the following failure criteria at time j :

S j
eq,1 ≤ 0 (8.48a)

Pi +P j
th ≥ P j

cr,T,i (8.48b)

Pi +P j
th ≥ P j

y,T,i (8.48c)

σ
j
ec,T,i ≥ f j

y,T,i (8.48d)

∆
j
max ≥∆limit (8.48e)

Q j
total,i ≥ f j

y,T,i Ab,i (8.48f)

The term S j
eq,1 in Eq. (8.48a) is the equivalent stiffness of the whole multi-column system,

which is attained from Eq. (4.3) with known stiffness of columns and braces at time j .

Eq. (8.48a) signifies the state when the system reaches its overall lateral instability. The

criteria in Eqs. (8.48b) to (8.48d) indicate the failure of individual columns. In practice, the

criterion in Eq. (8.48e) may be required to ensure that the maximum lateral displacement

of the multi-column system will not exceed a certain value to damage the adjacent robust

firewalls, thus preventing the fire from spreading to other buildings [71]. The criterion in

Eq. (8.48f) denotes the yield strength failure of the brace.

The foregoing proposed equations of assessing the critical temperature of braced multi-

column systems are established based on the following assumptions:

1. The temperature distributions throughout each column and brace are assumed to

be uniform, and the maximum temperature in the member is used to attain the

corresponding deteriorated mechanical properties for being conservative.

2. The other possible failure modes except those indicated in Eqs. (8.48) are neglected,

such as buckling of braces, torsional buckling and local buckling of columns as well as

connections’ failure.

3. The axial deformations of columns are neglected, and as such the braces are assumed

to be horizontal during the fire.
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8.6.3 Computational procedure

An incremental procedure for predicting the critical temperature of a braced multi-column

system is presented in this subsection.

1. Establish known and constant properties of the system, including the cross-sectional

properties and lengths for each member (Lc,i , Ac,i , Ic,i , and Lb,i ), the end connection

stiffness for each column Ri , and the steel mechanical properties at ambient tempera-

ture fy and E . Define the number of anchors in analysis. If flexible anchor(s) exists,

specify the value of cr (and cl ); if not, cr = cl = 0. Specify the gravity loads on each

column, Pi .

2. According to the steel grade and type, designate the stress-strain relationships and

retention factors of mechanical properties at elevated temperatures. Based on the

heating curves, assign the temperatures of each member and end connections at each

step.

3. Identify the maximum allowable lateral displacement of the system at elevated tem-

peratures, ∆limit, if required.

4. Calculate the resulting temperature-dependent mechanical properties of each member

in the system, including the elastic modulus ET,i , proportional limit fp,T,i , and yield

strength fy,T,i . Based on the obtained column and end connection stiffnesses, calculate

the value of end-fixity factor re,i .

5. Following the computation procedure given in Chapter 5, compute the required brace

area Ab,i and brace stiffness S1
b,i for the multi-column system. With obtained S1

b,i ,

calculate the column displacements D1, and brace forces Q1 at ambient temperatures.

Set the column displacements and brace forces induced by the thermal expansions,

D1
th and Q1

th, as zero. Knowing the magnitudes of brace forces, calculate the bending

moment at the column mid-height M 1
i using Eq. (8.36) and Eq. (8.37). Set the time

step j = 2.

6. Obtain the values of S j
c,i and S j

b,i using Eq. (8.40) and Eq. (8.42), respectively. Establish

and solve the linear equations in Eq. (8.38) to obtain the values of column lateral
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displacements D j . Establish and solve the linear equations in Eq. (8.45) to attain the

values of brace forces Q j .

7. Calculate the thermal-induced brace forces Q j
th using either Eqs. (8.10) or Eq. (8.14).

Calculate the column lateral displacements induced by the thermal expansion of

braces D j
th using Eq. (8.12) or Eq. (8.15). Obtain the total column displacements and

brace forces, D j
total and Qtotal, from Eq. (8.43) and Eq. (8.44), respectively.

8. Attain the value of S j
eq,1 using Eq. 4.3 and the values of column cross-sectional maxi-

mum stress σ j
ec,T,i .

9. Check if the failure criteria specified in Eqs. (8.48) have been exceeded. If any failure

criterion has been exceeded, terminate the calculation procedure and output the

temperature at the current step as the critical temperature; if not, set the time step as

j = j +1 and return to Step 6.

8.7 Validation

The foregoing proposed numerical method is validated using the results of a fire test on

a two-bay steel frame (ZSR1), which was conducted by Rubert and Schaumann [60]. Due

to the lack of experimental results regarding large-scale multi-column systems at elevated

temperatures, this test data has been widely adopted by previous researchers [59, 71, 120].

The dimensions of the frame and the magnitudes of external loads are shown in Fig. 8.12.

All the members in the frame are made of IPE 80 section bending about its strong axis. The

moment of inertia, elastic section modulus, plastic section modulus, and cross-sectional

area of IPE 80 section are Ix = 8.01×105 mm4, Sx = 2.00×104 mm3, Zx = 2.32×104 mm3, and

Ac = 764mm2, respectively. The decrease of the force in the left column and increase of the

force in the right column due to the lateral force are considered when calculating the column

lateral stiffness in the analysis. The yield strength and elastic modulus of steel at ambient

temperature are 355 MPa and 210 GPa, respectively. The retention factors of steel mechanical

properties and stress-strain relationships at elevated temperatures specified in Eurocode

3 [41] are adopted. The creep effect is not considered in the validation for the following

reasons. First, the gas and members’ heating curves were not provided by Rubert and
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Schaumann [60], which are necessary for considering the creep effect. Second, the stress-

strain relationship of steel stipulated in Eurocode 3 follows the same format of the stress-

strain relationship proposed by Rubert and Schaumann, except that Eurocode 3 includes a

decay phase. As stated by Rubert and Schaumann [60], this stress-strain relationship has

implicitly considered the creep effects for heating rates within 2 ≤ Ṫ ≤ 30K/min.

As illustrated in Fig. 8.12, only the left bay of the frame was uniformly heated without

protection, while the right bay was protected and not heated. Because of that, Rubert and

Schaumann [60] assumed that all the members exposed to fires possess uniform heating

temperature distribution, and the temperature of protected members remained at room

temperature (20 ◦C), as per Fig. 8.12. This assumption is adopted in the following numerical

analysis. As the measured maximum angles of the member chord of the columns are

approximately 1/600, the out-of-plumbness of all columns is taken as Lc /600 towards the

right in the same direction as the lateral load. The column initial curvature is not considered

in the analysis because the maximum initial mean deflection of the single column is less

than Lc /3000, which is negligible. The initial yield surface given in Eq. (8.27) is adopted to

account for the effect of residual stresses.
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Figure 8.12: Unbraced frame in the fire test by Rubert and Schaumann

Not reported by Rubert and Schaumann, the thermal expansion coefficient is computed
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using the expression given in [121], as below:

αth = (0.004T +12)10−6 ◦C−1 (8.49)

The comparison of the variations of column lateral displacements between experimental

results and numerical analysis results are plotted in Fig. 8.13. In the test, mainly due to the

thermal expansion of the fire-exposed beam, the lateral displacement of the left column

∆3 increased slower than that of the middle column ∆2, which is also reflected in the

numerical analysis results. The numerical results show good agreements with experimental

results before the heating temperature reaches 250 ◦C, while the discrepancies increases

afterwards. This may be explained that the fire behaviour of beam-column connections was

neglected in the numerical analysis, which would lower the lateral stiffness of the frame

and consequently lead to larger lateral displacements. As the temperature exceeded 265 ◦C,

the reduction coefficient ρ for the middle column became greater than zero, indicating the

inelastic behaviour in the middle column. Finally, with the increasing lateral displacements

induced by the deteriorated stiffness of members, the assessed exterior stress in the middle

column reached the yield strength at 549 ◦C, achieving a good agreement with the critical

temperature obtained from the experimental result, 547 ◦C.
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Figure 8.13: Comparison of structural responses of ZSR1 tested by Rubert and Schaumann

between experimental results and numerical analysis results

For comparison, the predictions from the proposed numerical method without consider-

ing the thermal expansion of beams and without considering the partial yielding effect are
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presented in Fig. 8.14 and Fig. 8.15, respectively.
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Figure 8.14: Comparison between experimental results and numerical analysis results with-

out considering the thermal expansion of beams
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Figure 8.15: Comparison between experimental results and numerical analysis results with-

out considering the partial yielding of columns

It can be seen that if the thermal expansion of the fire-exposed beam is neglected, the

difference between the column lateral displacements is just the beam deformation induced

by the internal axial load, which is negligible. As a consequence, without the contribution of

the beam’s thermal expansion, the lateral displacement of the middle column ∆3 increases
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slower, and consequently the inelastic behaviour in the middle column emerges when the

column temperature surpasses 300 ◦C. At the end, the critical temperature obtained from the

numerical analysis without considering the beam’s thermal expansion is 557 ◦C. Provided

that the partial yielding is neglected, the column lateral displacements increase slowly and

steadily before 500 ◦C. Once the temperature exceeds 500 ◦C, there is an obvious acceleration

in the column lateral displacements due to the more severe deterioration of the tangent

modulus of columns Ec,tan. In this case, the critical temperature is 582 ◦C based on the

criterion that the exterior stress exceeds the yield strength. Therefore, the effects of the

thermal expansion of beams and partial yielding shall not be neglected in assessing the

critical temperature of multi-column systems at elevated temperatures; otherwise, it may

lead to overestimated results.

8.8 Conclusions

Methods for investigating the effects of the thermal expansion of braces, partial yielding and

thermal creep of columns on the fire behaviour of multi-column systems are proposed in

this Chapter. Analytical expressions are derived to compute the additional internal forces in

braces and lateral displacements of columns induced by the thermal expansions of braces

in multi-column systems. These expressions are comprehensively applicable to cases with

different applied axial loads, column sizes, and heating rates of members. It has been shown

that the inelastic behaviour of steel columns’ cross-section, i.e., the partial yielding effect,

has a significant influence on the lateral stiffness of steel columns at elevated temperatures.

Hence, the partial yielding effect on steel columns at elevated temperatures is considered

by adopting the modified plastic-hinge method. It has been proved in Chapter 7 that the

creep-induced deflection at elevated temperatures can be accurately assessed by computing

the stress and strain gradients on the column’s cross-section. In light of this discovery, a

simplified method is proposed to consider the thermal creep effect on the lateral stiffness of

steel columns at elevated temperatures, which can be adopted in assessing the fire behaviour

of multi-column systems. Finally, a numerical method is proposed for evaluating the critical

temperature of multi-column systems with the considerations of the foregoing discussed

three factors. The proposed method is verified using fire test results of an unbraced frame,

and good agreements have been achieved between numerical and experimental results.

198



Chapter 9

Summary and Conclusions

9.1 Introduction

Intermediate bracing has been commonly used in multi-column systems such as industrial

buildings and cold-formed load-bearing walls to increase the system’s strength and stability.

The bracing must satisfy both the strength and stiffness requirements to ensure that the

system can reach its full buckling strength. Due to adopting Winter’s model [7], the previous

research [5, 8, 9, 18–20, 22] and the provisions in current standards [10, 11, 24, 26] regarding

the bracing requirements are based on the assumptions of uniform stiffness, which requires

that 1) all the columns have the same size, are subjected to the identical axial load, and are

connected with pinned-ends; 2) all the braces have the same stiffness. Such assumptions

certainly restrict the applications of the design specifications in current standards. Therefore,

this research project was initiated to investigate the bracing requirements for multi-column

systems with nonuniform stiffness for both columns and braces by adapting the storey-based

stability concept. In addition, the fire behaviour of multi-column systems is investigated as

it has been an inseparable part of the design of steel structures. In particular, the detrimental

effects of thermal expansion of braces, partial yielding of columns, and creep strains on the

stability of multi-column systems at elevated temperatures are considered.
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9.2 Bracing Requirements for a Single Semi-rigidly Connected

Column

As the prerequisite of considering the effects of nonuniform stiffness and semi-rigid end

connections of columns on the bracing requirements for multi-columns, a new half-length

column model is proposed in lieu of Winter’s model. The proposed model is capable of

accounting for the effects of semi-rigid connections, column initial curvature, and column

stiffness on the additional displacement of a single column braced at its mid-height. By

adopting the proposed model, the bracing requirements for a single semi-rigidly connected

column are analyzed. In particular, a coefficient is introduced to assess the effect of column

initial curvature on the additional column lateral displacement induced by the axial load,

which consequently increases the bracing requirement. It has been found that the column

initial curvature coefficient increases as the applied load increases but decreases as the

end-fixity factor increases. The design procedures in AISC 360-16 [10] and CSA S16-19

[21] are extended to assess the bracing requirements for a semi-rigidly connected column

considering the effect of column initial curvature. Both the proposed half-length column

model and corresponding derived analytical equations are demonstrated and validated via a

numerical example and finite element analysis.

9.3 Bracing Requirements for Multi-column Systems

By extending the proposed half-length column model to multi-column systems, two ana-

lytical methods are proposed to evaluate the ideal brace stiffness of systems consisting of

multiple semi-rigidly connected columns. The first analytical method adopts the equivalent

spring concept to condense the whole multi-column system into an equivalent spring, and

as such the equivalent spring’s stiffness being zero or negative is an indicator of the system’s

lateral instability. The second analytical method relates the derivation of the stiffness matrix

of the system by formulating the stiffness interaction among columns and braces in the

system. In addition, the second method is capable of evaluating the brace forces in the

system with known magnitudes of column initial imperfections. Overall, both methods are

comprehensively applicable to multi-column systems with nonuniform stiffness, which may
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result from different column sizes, end-fixity factors, applied axial loads, or brace sizes.

Provided the system possesses uniform column lateral stiffness, the expressions pro-

posed by Ziemian and Ziemian [5] for determining the ideal brace stiffness of multi-column

systems in which the column ends are pin-connected are extended to consider the effect

of semi-rigid column end connections. Furthermore, the explicit solution to the maximum

brace force of the multi-column system with uniform stiffness is derived with the considera-

tions of column end rotational stiffness, applied axial load, column initial curvature, and

column initial imperfection. Examples with a distinctive column are presented to investigate

the nonuniform column stiffness on the bracing requirements for multi-column systems.

It has been found that the location of the distinctive column would affect the ideal brace

stiffness and braces forces of the system. In particular, if the distinctive column possesses

smaller stiffness than the rest of typical columns, then the required ideal brace stiffness

and brace strength are larger than those obtained by assuming the system is composed

of identical columns. In such cases, the effect of nonuniform column stiffness has to be

considered in evaluating the bracing requirements for multi-column systems for the reason

of safety.

9.4 Optimum Brace Stiffness for Multi-column Systems

Following the design philosophies in AISC 360-16 [10] and CSA S16-19 [21] and adopting

the established stiffness matrices in Chapter 4, the required brace stiffness can be assessed

by computing the brace forces and displacements of the multi-column system with the

presupposed brace stiffness. However, it may involve a procedure with tedious iteration,

which may overestimate the bracing requirements due to the interactive relationship be-

tween the brace stiffness and brace force. Therefore, a method is proposed to evaluate

the minimum required stiffness of tie bracing (referred to as the optimum brace stiffness,

Sb,op) that satisfies both the bracing stiffness and strength requirement for multi-column

systems. Compared to following the design philosophies of current standards [10, 21], the

advantages of the proposed method for computing Sb,op are as follows. First, if the required

bracing is governed by the strength, the magnitude of Sb,op is smaller than that obtained by

following the design philosophies in standards [10, 21], which leads to a more economical

result. Second, if the required brace stiffness is controlled by the stiffness requirement
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(∆ < ∆0), adopting the proposed method avoids a tedious trial-and-errors procedure to

determine the brace stiffness to satisfy the stiffness requirement. Third, due to considering

the effect of column initial curvature, it has been found that the proposed method yields

a higher stiffness requirement than that of twice the ideal brace stiffness, as stipulated in

AISC 360-16 [10].

9.5 Nonuniform Bracing of Multi-column Systems

The research presented in Chapters 4 and 5 is based on the assumption that all braces in the

multi-column system have identical axial stiffness. In Chapter 6, the effects of nonuniform

bracing, including the presence of solid blocking and different tie bracing stiffnesses on the

bracing requirements, are explored. The expressions proposed in Chapter 5 are extended

to consider the stiffness of solid blocking. As expected, the presence of solid blocking

always reduces the stiffness and strength requirements of tie bracing in multi-column

systems. In particular, it has been found that the presence of solid blocking leads to a

larger reduction of required tie bracing cross-sectional area if the solid blocking is placed

closer to an end anchor, the solid blocking has smaller spacing, or the anchor has larger

rigidity. An optimization problem is proposed to minimize the total bracing stiffness with

nonuniform bracing, and the corresponding solution to brace stiffnesses is referred to as

optimum nonuniform bracing. For multi-column systems with uniform column lateral

stiffness, the optimum bracing has a pattern in which the brace stiffness increases as the

brace is closer to the end anchor.

9.6 Effect of Thermal-creep on Lateral Deflection of Steel

Columns

Chapter 7 proposes a numerical method for evaluating the creep-induced lateral deflection

of steel columns at elevated temperatures. It is demonstrated and validated against the

experimental results that the creep buckling behaviour of steel columns can be accurately

assessed using the proposed method by observing the creep-induced lateral deflection of

the column. More importantly, it has been found that the creep-induced lateral deflection
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of steel columns results from the cross-sectional strain gradient and nonuniform stress

distribution, which are triggered by the column initial imperfection. Thus, it is concluded

that the creep buckling will theoretically not occur if the column initial imperfection is

not considered because the strain and stress are uniformly distributed on the cross-section.

Based on the outcome of the parametric study, it has been discovered that the creep buckling

time of steel columns decreases with an increase of load ratio, temperature, and initial

imperfection, but a decrease of slenderness ratio of columns. In addition, if the applied

load approaches the theoretical critical buckling load of the column at elevated temperature

(αp ≥ 0.8), the creep buckling phenomenon may occur in a considerably short period, which

signifies the necessity of considering the creep effect in evaluating the fire resistance of steel

columns.

9.7 Fire Resistance of Multi-column Systems

Chapter 8 proposes methods for investigating a variety of effects that have not yet been

considered in the storey-based stability analysis at elevated temperatures, including effects

of thermal expansion of braces (beams), partial yielding of column, and thermal creep. For

the purposes of considering the effects of thermal expansion of braces on the critical temper-

ature of multi-column systems, analytical expressions are derived to attain displacements of

columns and internal forces induced by the thermal expansion of braces in multi-column

systems. The effect of partial yielding on the lateral stiffness of steel columns is considered

by adopting the modified plastic-hinge method proposed by King et al. [116]. Because the

creep-induced deflection at elevated temperatures can be accurately assessed via assessing

the strain gradients on the column’s cross-section, as proved in Chapter 7, a simplified

method is proposed to consider the thermal creep effect on the lateral stiffness of steel

columns at elevated temperatures. Finally, a numerical method is proposed for evaluating

the critical temperature of multi-column systems with the considerations of the above fac-

tors. The proposed method is verified by the fire test results reported by [60], and good

agreements have been achieved between numerical and experimental results.
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9.8 Recommendations for Future Research

The following are some possible research areas related to the study presented in this thesis,

which are mainly aimed at refining and addressing some assumptions of the proposed

methods as well as extending the applicability of the proposed methods.

9.8.1 Randomness of columns’ initial imperfections

It is important to realize that all the foregoing research presented in this thesis regarding

computing the brace forces in multi-column systems assumes all the initial imperfections

of columns have the same direction and magnitude, which is quite conservative due to

neglecting the randomness of columns’ initial imperfections in reality. The simple prevailing

method to account for the randomness of columns’ initial imperfections on brace forces

is to incorporate a reduction factor into the expressions obtained by assuming identical

column initial imperfections, as discussed in Chapter 4. However, it has been found that

the location of the applied load would affect the brace forces in the system. Thereupon,

stochastic analyses can be carried out to establish the probability density function of brace

forces for multi-column systems to obtain corresponding reduction factors for different

engineering applications with the proposed expressions in this thesis.

9.8.2 Initial imperfections of braces

The initial imperfections of braces are neglected in this research, which is feasible for a

multi-column system with tension-only braces. However, if the braces are to be designed

to be capable of resisting both tension and compression forces, the initial imperfections of

braces would have a detrimental effect on the brace stiffness in compression and lead to

additional lateral displacement and brace forces of the system, which subsequently requires

larger bracing requirements. Hence, the investigation of the effects of initial imperfections of

braces on the bracing requirements of multi-column systems could be carried out. A possible

and viable way is to introduce the effects of the brace force and brace initial imperfection

on the brace stiffness into the proposed expressions.
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9.8.3 Longitudinal nonuniform column stiffness

The derivation of the relationship among the lateral deflection, applied axial load, and

external lateral load in the proposed half-length column model assumes the column pos-

sesses the uniform flexural stiffness E I along the column length. At elevated temperatures,

the longitudinal nonuniform column stiffness commonly exists due to the longitudinal

nonuniform temperature distribution. As presented in Appendix C, the half-length column

model is divided into two segments with different elastic modulus, and the corresponding

lateral deflection induced by the applied axial and lateral loads are derived. By doing so,

some equations presented in this thesis can be directly applied and further extended to

evaluate the fire-structural responses of multi-column systems at elevated temperatures

with considering the longitudinal nonuniform column stiffness.

9.8.4 Multiple bracing points along the column length

The scope of this research is limited to the multi-column systems with bracing at columns’

mid-height, i.e., there is only one bracing point along the column length. Since bracing can

be placed at multiple points along the column length in practice, it is necessary to extend

the present research to assess the bracing requirements for multi-column systems braced

at multiple points. This requires alternative derivations for relationships between column

deflection and applied loads. Appendix D exemplifies how to derive the lateral deflection of

a semi-rigidly connected column with two equally spaced braces.

9.8.5 Torsional buckling in storey-based stability analysis

The concept of storey-based stability signifies that the overloaded columns in a multi-

column system can be laterally supported by other columns as long as the capacity of the

whole system is not exceeded. However, the current research relating to the storey-based

stability analysis focuses on the flexural buckling of columns. In practice, columns may

fail in torsional buckling depending on their cross-sectional shapes, especially for columns

made in cold-formed steel, which may govern the strength of the whole structural system.

Consequently, torsional bracing may need to be placed in multi-column systems, and a

column with lower torsional buckling resistance could be supported by other columns with
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higher torsional buckling resistance. For that reason, the concept of storey-based stability

could be extended to exploit the effect of such interplay among the torsional buckling of

columns on the system’s stability.

9.8.6 Experimental validation

The proposed methods in this thesis have been shown to be theoretically accurate by the

validation in finite element analyses. Nevertheless, there is always a difference between

theory and reality owing to many possible factors being neglected. In fact, the original plan

of this research included the thermal-creep tests on steel columns to observe the creep

effect on the lateral stiffness of steel columns at elevated temperatures; however, it was

not able to conduct the tests due to the pandemic. Thus, as desired, further validation of

the proposed methods regarding the bracing requirements of multi-column systems and

the creep effect on the lateral stiffness of steel columns at elevated temperatures can be

achieved via conducting experiments in a structural laboratory.
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Appendix A

General Features of Finite Element

Modelling

From Chapter 3 to Chapter 6, given that the proposed methods are purely theoretical, finite

element analyses are used just to verify the analytical results. In order to avoid repetition of

description regarding the modelling and make it easy for readers, the general features of the

finite element are presented in this section.

The finite element analysis (FEA) software ABAQUS is used to establish the models for a

single braced column and multiple braced columns, in which the columns and braces are

modelled using B23 elements, neglecting the effect of shear deformations. The sensitivity

analysis was performed to investigate the effect of the number of elements modelling the

members on the numerical results. It was found that the variation of the results was almost

unnoticeable when the number of elements used for each member exceeded 20. Therefore,

20 elements were used to model each column and each brace in the FEM. The tie bracing

is pin-connected at the mid-height between each column. The semi-rigid connections are

simulated by a rotational spring at each end of the columns. The rotational stiffness R of

the spring defined in ABAQUS is calculated by

R = 3Ec Ic

Lc (1/re −1)
(A.1)

Since braces are assumed to be elastic and perfectly straight, the cross-sectional area of

bracing Ab is computed by

Ab = SbLb/E (A.2)
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The discrepancies between the analytical and FEA results are quite insignificant (within

0.7%), mainly resulting from the assumption that there is no rotation at the columns’ mid-

height. Consequently, the FEA results are not presented in some examples for the sake of

brevity.

A.1 Ideal Brace Stiffness

Unlike the proposed analytical methods in which the ideal brace stiffness can be set as an

unknown variable and directly obtained, employing the established finite element model

to attain the ideal brace stiffness requires a series of iterations. The ideal brace stiffness

is the minimum stiffness for the bracing, ensuring that the full buckling strength of the

system can be achieved. In other words, once the brace stiffness exceeds the ideal brace

stiffness, increasing the brace stiffness will not increase the buckling strength of the system.

Therefore, buckling analyses are performed in ABAQUS using the Subspace eigensolver to

obtain the first buckling mode and corresponding buckling load with presupposed brace

stiffness. Subsequently, the ideal brace stiffness can be found by varying the brace stiffness

and repeating the analysis until the critical buckling mode just changed from sway buckling

mode to non-sway buckling mode or the other way around [5]. The corresponding brace

stiffness at which this conversion occurs is determined as the ideal brace stiffness.

A.2 Brace Forces and Displacements

Once the ideal brace stiffness is obtained, the brace stiffness can be determined by amplify-

ing the ideal brace stiffness with a proper scale factor. Subsequently, with the determined

brace stiffness, static analysis in ABAQUS can be used to capture the columns’ lateral dis-

placements and brace forces.

In order to introduce the columns’ initial imperfections into the static analysis, the buck-

ling analysis should be conducted first. It should be noted that different from the buckling

analysis carried out to attain the ideal brace stiffness, there is no horizontal displacement

restraint applied on the ends, and all the columns are pin-connected at both ends. This is

to ensure that all the columns have the same magnitude of lateral deflection in the buck-
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ling analysis and that the column buckling shape is in a half-sine wave. By doing so, the

column’s initial shape in a half-sine wave with the same magnitudes can be introduced in

the subsequent static analysis. In the static analysis, the NLgeom option shall be turned on

to consider the effect of nonlinear geometry. All the loads applied on the columns in the

finite element model are the same as the loads in the theoretical analyses.
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Appendix B

Derivation of Column Lateral Deflection at

the Mid-height

From the Euler-Bernoulli beam theory, the relationship between the radius of curvature of

the centroidal axis ρ and strain ε is shown in Figure B.1 and can be expressed as Eqs. (B.1).

ρ

Z

z

(1+ε0)dx
(1+ε)dx

x

Figure B.1: Relationship between the radius of curvature of the centroidal axis and strain

ρ+Z

ρ
= (1+ε)d x

(1+ε0)d x
(B.1a)

ρ = Z
(1+ε0)

(ε−ε0)
(B.1b)

If the strains are considered small compared to unity, Eq. (B.1b) becomes Eq. (B.2).

ρ = Z

(ε−ε0)
(B.2)
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Meanwhile, the general curvature equation is given as

1

ρ
= ∂2 y/∂x2[

1+ (
∂y/∂x

)2
]1.5 (B.3)

Utilizing small deflection theory [122], if

f ′(x)=π
L
∆cos

πx

L
≤ 0.2 (B.4)

Eq. (B.3) can be simplified as
1

ρ
= ∂2 y

∂x2
(B.5)

At the mid-height of column (x = L/2), Eq. (B.4) is equivalent to Eq.(B.6).

∆≤ 0.0637L ≈ 1

15
L (B.6)

Therefore, within the small deflection range (∆≤ L/15), the following calculation pro-

cedure is applicable. The failure of a steel column at elevated temperature is said to occur

when the deflection rate exceeds 0.003L/mm [123], where L is the column length. Unlike the

steel columns in a fire, the mid-height lateral deflection of the column subjected to creep

buckling exhibits a relatively lower deformation rate until failure. Therefore, the criterion

of deflection rate is not suitable for the failure associated with creep buckling. Therefore,

L/15 is selected as the failure criterion of the column’s creep buckling in this paper. When

subjected to elevated temperature, the deformed shape curve of the column can be written

as Eq. (B.7).

fT (x) =∆T sin
(πx

L

)
(B.7)

where ∆T is the corresponding maximum displacement at elevated temperature. The second

derivative of fT (x) can be written as

fT
′′ (x) =−∆T

π2

L2
sin

(πx

L

)
(B.8)

For column lateral deflection at mid-span where x = L/2, by substituting Eq. (B.5) into

Eq. (B.8), the mid-height deflection can be obtained as expressed in Eq. (B.9b).

−∆T
π2

L2
= 1

ρ
(B.9a)

∆T = L2

π2

ε1 −εn

Zn −Z1
(B.9b)
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Appendix C

Derivation for the Lateral Deflection of the

Half-length Column Model with two

segments

If the proposed half-length column model consists of two segments with different moment

of inertia or elastic modulus (E I ), as per Fig. C.1, its lateral deflection induced by the axial

and lateral loads considering the initial curvature and imperfection is derived as follows.

Me

P

x

y

P

Mm

Q

yu
M

θe
Q

Δ0

yu,1

yl
yl,1

L

Re

Lu

Ll

Δ

Figure C.1: Half of the deformed axially loaded column with two segments
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The relationship between the bending moment and rotational stiffness at the lower end

of the half-length column is:

Me = Reθe (C.1)

Thus, based on the equilibrium of the half-length column:

Mm +Reθe =QL+P (∆+∆0) (C.2)

The governing differential equations associated with the flexural deformation of the half-

length column shown in Fig. C.1 can be written as:

−(E I )l
d 2 yl

d x2
= P (yl + yl ,1)−θe Re +Qx (C.3a)

−(E I )u
d 2 yu

d x2
= P (yu + yu,1)−θe Re +Qx (C.3b)

By solving the differential equation, the deformation and rotation of the column can be

obtained from Eqs. (C.4).

yl (x) =C1 cos

(
φl x

L

)
+C2 sin

(
φl x

L

)
+ θe Re

P
−∆0

4φ2
l

4φ2
l −π2

sin(πx/2L)

P
− Q

P
x (C.4a)

y ′
l (x) =−C1

φl

L
sin

(
φl x

L

)
+C2

φl

L
cos

(
φl x

L

)
−∆0

4φ2
l

4φ2
l −π2

π

2L

cos(πx/2L)

P
− Q

P
(C.4b)

yu (x) =C3 cos

(
φu x

L

)
+C4 sin

(
φu x

L

)
+ θe Re

P
−∆0

4φ2
u

4φ2
u −π2

sin(πx/2L)

P
− Q

P
x (C.4c)

y ′
u (x) =−C3

φu

L
sin

(
φu x

L

)
+C4

φu

L
cos

(
φu x

L

)
−∆0

4φ2
u

4φ2
u −π2

π

2L

cos(πx/2L)

P
− Q

P
(C.4d)

where φu and φl are the axial load coefficients, defined as

φu =
√

PL2

(E I )u
= φp

uu
(C.5a)

φl =
√

PL2

(E I ) l
= φp

ul
(C.5b)

in which uu and ul are the retention factors for the flexural stiffness of the upper and lower

segments, respectively.

C1, C2, C3, and C4 are coefficients to be determined by the boundary conditions, namely:
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yl (0) = 0 (C.6a)

yu(L) =∆ (C.6b)

yl (Ll ) = yu(Ll ) (C.6c)

y ′
l (0) = θe (C.6d)

y ′
u(L) = 0 (C.6e)

y ′
l (Ll ) = y ′

u(Ll ) (C.6f)

By substituting the boundary conditions and Eq. (C.2) into Eqs. (C.4), the system of seven

equations is obtained and then solved for ∆, C1, C2, C3, C4, Mm , and θe . The lateral dis-

placement of the column ∆ is therefore obtained:

∆= Q + P∆0
L ψ2

12Ec Ic
L3 β2

(C.7)

where β2 and ψ2 are the lateral stiffness modification factor and column initial curvature

coefficient for a half-column with two segments, as given in:

β2 =
φ2

[
φ2φuτl (1− rl ) A1 +3φlφurl A2

]
12(φ2(1− rl )τl A3 +3rl A4)

(C.8)

ψ2 =
2φ2φuτl (1− rl ) A5 +6φuφl rl

[
A6 −πφl

(
4φ2

u −π2
)(
φl + A1

)−2φ2
u

(
4φ2

l −π2
)

A2
](

4φ2
l −π2

)(
4φ2

u −π2
)[

(1− rl )τlφ2 A3 +2rl A4
] (C.9)

where

A1 =φuSlCu sinφu −φlCl Su sinφu −φuSl Su cosφu −φlClCu cosφu (C.10a)

A2 =φuCl Su cosφu −φuClCu sinφu −φl Sl Su sinφu −φl SlCu cosφu (C.10b)

A3 =
(
cosφu +φu sinφu

)(
φlCl Su −φuCuSl

)− (
sinφu −φu cosφu

)(
φlClCu +φuSl Su

)
(C.10c)

A4 =
(
Sl Su cosφu −CuSl sinφu

)(
φ2

l +φ2
u

)+φlφu(2ClCu cosφu +2Cl Su sinφu −2− A2)

(C.10d)

A5 =π2 (
φ2

l −φ2
u

)(
πSl cos

πLl

2L
−2sin

πLl

2L
Clφl

)
−2φ2

u

(
4φ2

l −π2) A1 (C.10e)

A6 =π2 (
φ2

u −φ2
l

)[
πcos

πLl

2L

(
Cl −Cu cosφu −Su sinφu

)+2sin
πLl

2L

(
φl Sl +φuCu sinφu −φuSu cosφu

)]
(C.10f)

Sl = sin

(
Llφl

L

)
; Su = sin

(
Llφu

L

)
; Cl = cos

(
Llφl

L

)
; Cu = cos

(
Llφu

L

)
(C.10g)
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Since the internal bending moment at the mid-height Mm is of significant to assess the

onset of column’s yielding at elevated temperatures, the attained solution of Mm considering

the partial yielding effect is presented herein.

Mm = QL3 A7 + P∆0
L A8

E I
[
φ4φuτl (1− rl ) A1 +3φ2φuφl rl A2

] (C.11)

where

A7 =−τlφ
2 (1− rl )

(
φuSl Su +φlClCu

)−3rl
(
φlφu sinφu +φ2

l SlCu −φlφuCl Su
)

(C.12a)

A8 =
2L3φuπsinφu

 φ2τlπ
(
φ2

u −φ2
l

)
(1− rl )

(
2φl sinαlCl −πcosαl Sl

)
+3rlφl

(
φ2

l

(
π2 −4φ2

u

)−π(
2φl sinαl Sl +πcosαlCl

)(
φ2

l −φ2
u

))


(
4φ2

u −π2
)(

4φ2
l −π2

)
(C.12b)
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Appendix D

Derivation for the Mid-height Deflection of

a Semi-rigidly Connected Column with

Two-point Bracing

In this section, the relationship among the lateral load Q, axial load P , and the mid-height

deflection ∆ for a semi-rigidly connected column braced at two points is derived, which will

be served as the basis for extending the foregoing research to investigate the requirements

of multi-point bracing.

For the column with two equally spaced braces, i.e, the brace is located at the one

third and two thirds of the column’s full-length, the equilibrium of the half-length column

is illustrated in Fig. D.1. The relationship between the bending moment and rotational

stiffness at the lower end of the half-length column is:

Me = Reθe (D.1)

Thus, based on the equilibrium of the half-length column:

Mm +Reθe = 2

3
QL+P (∆+∆0) (D.2)

The governing differential equations associated with the flexural deformation of the half-

length column shown in Fig. D.1 can be written as:

−E I
d 2 y1

d x2
= P (y1 + y1,0)−θe Re +Qx, 0 ≤ x ≤ 2

3
L (D.3a)

−E I
d 2 y2

d x2
= P (y2 + y2,0)−θe Re ,

2

3
L ≤ x ≤ L (D.3b)

228



P

x

y

P

Mm

Q

y2

M

θe
Q

Δ0

y2,0

y1,0y1

L/3

2L/3

Δ

ΔQ

Me

Re

Figure D.1: Half of the deformed axially loaded column with two equally-spaced braces

By solving the differential equation, the deformation and rotation of the column can be

obtained from Eqs. (D.4).

y1 (x) =C1 cos

(
φx

L

)
+C2 sin

(
φx

L

)
+ θe Re

P
−∆0

4φ2

4φ2 −π2

sin
(
πx
2L

)
P

− Q

P
x, 0 ≤ x ≤ 2

3
L (D.4a)

y2 (x) =C3 cos

(
φx

L

)
+C4 sin

(
φx

L

)
+ θe Re

P
−∆0

4φ2

4φ2 −π2

sin
(
πx
2L

)
P

,
2

3
L ≤ x ≤ L (D.4b)

C1, C2, C3, and C4 are coefficients to be determined by the boundary conditions, namely:

y1(0) = 0 (D.5a)

y2(L) =∆ (D.5b)

y1(2L/3) = y2(2L/3) (D.5c)

y ′
1(0) = θe (D.5d)

y ′
2(L) = 0 (D.5e)

y ′
1(2L/3) = y ′

2(2L/3) (D.5f)

By substituting the boundary conditions and Eq. (D.2) into Eqs. (D.4), the system of eight

equations is obtained and then solved for ∆, C1, C2, C3, C4, Mm , and θe . The lateral dis-
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placement of the column ∆ is therefore obtained:

∆= Q + P∆0
L ψef,2b

Sef,2b
(D.6)

where Sef,2b is the effective lateral stiffness of the half-length column subjected to the axial

applied load P and lateral load Q considering the initial curvature, as below:

Sef,2b =3E I

L3
βef,2b = 3E I

L3

A2b

βef,2b,DEN
(D.7a)

A2b =φ3 [
3re sinφ+φcosφ (1− re )

]
(D.7b)

βef,2b,DEN =
 3φsin

(
2φ
3

)
−2φ2 cos

(
2φ
3

)
(1− re )−6φre sin

(
φ
3

)
−

9re

(
cosφ+φsin

(
2φ
3

)
+cos

(
2φ
3

)
−cos

(
φ
3

)
−1

)
 (D.7c)

The expression of ψef,2b is

ψef,2b = 6φ2
[
2φ2 cosφ (1− re )+3πre

(
cosφ−1

)+6φre sinφ
](

π2 −4φ2
)
βef,2b,DEN

(D.8)

Thus, the deflections at column’s mid-height for multi-column systems braced at the one

third and two thirds of the full length can be analyzed by adopting Eq. (D.6).

Knowing the expressions of C1, C2, θe , the solution to ∆Q can be attained from Eq. (D.4)

with x = 2L/3:

∆Q = Q + P∆0
L ψ2b

S2b
(D.9)

where

S2b = 3E I

L3

2A2b

β2b,DEN
(D.10a)

β2b,DEN =
 3φ

(
sinφ+ sin

(
φ
3

))
−2

(
cosφ+cos

(
φ
3

))
(1− re )

−27re

(
cosφ−cos

(
φ
3

))
−9φre

(
sinφ+3sin

(
φ
3

))
 (D.10b)

and

ψ2b = 24φ4 sin π
3 cosφ (1− re )+36φ2re

(
2φsin π

3 sinφ+πcosφ−πcos π3
)(

π2 −4φ2
)
β2b,DE N

(D.11)
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