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Abstract

This thesis addresses the questions of how uncertain corn market and weather factors af-

fect optimal fertilizer application decisions of the farmer and the social planner, and what

factors drive the divergence between the two. Nutrient runoff from agricultural activities

has become a primary source of surface water quality deterioration worldwide. Over-

application of fertilizer in agricultural production represents a non-point source pollution

which is causing extensive nutrient loading in water bodies and has a severe impact on

the global environment. There is evidence that farmers apply more fertilizer than is so-

cially optimal and more than is recommended by government agencies. This thesis first

investigates the farmer’s optimal fertilizer application under crop price uncertainty by con-

structing an inter-temporal farmer’s decision model under two alternative stochastic price

processes. Closed form results are derived, which indicate that an increase in price un-

certainty implies a reduction in the quantity of fertilizer applied in the farmer’s optimal

decision problem. Numerous factors that could impact the optimal fertilization decision

are examined as well. The farmer’s decision model is then enhanced by allowing for two

possible fertilizer application times in the growing season and the inclusion of additional

stochastic state variables such as rainfall and temperature, in the corn yield model. The

model is parameterized for average conditions in Iowa corn growing regions. Employing

a Monte Carlo approach, numerical results conclude that for a wide range of parameter

assumptions the farmer’s optimal strategy is to apply fertilizer at planting rather than later

as a side dressing. This thesis analyzes the impacts of price uncertainty, fertilizer cost and

other economic parameters on the farmer’s optimal fertilizer application strategy. The the-

sis also analyzes the optimal decisions of a social planner whose objective function includes

an estimate of the damages caused by nitrogen leakage and denitrification. Numerical re-

sults show that including the damages from pollution affect both the quantity and timing
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of fertilizer application. Assumptions about the frequency and quantity of rainfall have an

important impact on the optimal decision. This is an important consideration for public

policy as climate change affects weather patterns over the next decade and beyond.
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Chapter 1

Introduction and Motivation

Over the past century, humans have successfully adopted advanced fertilization tech-

niques and applied high-efficiency fertilizers for boosting agricultural productivity. How-

ever, the runoff of nutrients from agricultural uses of fertilizer has become a primary source

of water quality deterioration in surface water (USEPA1 and Chen (2007)). Intensive fer-

tilizer application in agricultural production is causing extensive nitrogen and phosphorus

discharge, a non-point source pollution which is a challenge to control. In high concen-

trations, these nutrients lead to nuisance algal blooms, which yield unpleasant odor and

appearance resulting in declines in fishing and swimming and hurting local tourism. As

algae die and decompose, dissolved oxygen levels decline, resulting in high fish mortality.

Harmful algal blooms can produce toxins which are dangerous to humans and animals,

raising treatment costs for drinking water (USEPA2). Based on a recent U.S. Geological

Survey3, in their 20 Study Units, it is estimated that about 90 percent of nitrogen and 75

1United States Environmental Protection Agency, source:https://www.epa.gov/nutrientpollution [Ac-
cessed on 7th December, 2017]

2United States Environmental Protection Agency, source:www.epa.gov/nutrientpollution/harmful-
algal-blooms

3Sources of nutrients and pesticides. Available from:https://pubs.usgs.gov/circ/circ1225/pdf/sources.pdf
[Accessed on 7th December, 2017]
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percent of phosphorus originates from non-point sources, while the remaining percentages

are from point sources.

In North America, the Great Lakes contain one fifth of the world’s fresh surface water

supply, provide healthy drinking water to tens of millions of Canadians and Americans

and are important to the economies of both countries, supporting manufacturing, trans-

portation, farming, tourism, recreation, and other forms of economic activity. The Great

Lakes Basin is a major world supplier of crops such as corn and soybeans which are highly

dependent on nitrogen and other fertilizers. However, excess nutrient loading in Lake Erie

and near-shore areas of Lakes Huron, Michigan and Ontario are causing severe impacts

on the local environment due to the formation of toxic and nuisance algae. During the

1960s, water quality issues in the Great Lakes became a public concern. In particular,

Lake Erie was perceived to be “dying” because of extensive algal growth that occurred

throughout the lake as a result of excessive emission of phosphorus. By the late 1960s,

Canada and the United States were in agreement that limiting phosphorus inputs to the

Great Lakes, particularly Lake Erie, was the key to controlling excessive algal growth. In

1972, the signing of the Great Lakes Water Quality Agreement (GLWQA) by the govern-

ments of Canada and the United States commits both countries to working cooperatively

to restore and protect the water quality and aquatic ecosystem health of the Great Lakes.

In the 1980s, efforts were successful at reducing nutrient-related runoff and conditions in

the Great Lakes improved. These efforts included the regulation of phosphorus concentra-

tions in detergents and investments in water treatment plants. However, in the mid-1990s,

excessive algal growth began to re-emerge as a problem in the Great Lakes. Nowadays,

nitrogen and phosphorus remain primary factors in influencing excessive algal growth. In

2017, the Report of the State of the Great Lakes4 evaluated the environmental status of

4The report was published by Canada-US Collaboration for Great Lakes Water Quality. Available
from: https://binational.net/wp-content/uploads/2017/06/SOGL17−EN.pdf
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the Great Lakes using a set of 9 indicators of ecosystem health. That report showed the

Great Lakes still have a nutrient imbalance problem, which has resulted in a deterioration

in the overall trend of water quality indicators. Algal blooms are still causing harm to

both ecosystem and human health. The western basin of Lake Erie and some parts of

Lake Ontario have experienced a resurgence of algal blooms since 2008, strongly and neg-

atively impacting ecosystem health as well as commercial fishing, drinking water systems

and recreational activities. Algal blooms are particularly harmful when it comes to their

impact on drinking water safety.

Most of the nutrients that are applied to agricultural lands serve their intended purpose

of increasing crop yields, but also cause significant pollution of ground and surface water.

Iowa is the largest corn producer in the U.S., and the second largest producer of nitrate

pollution in the Mississippi River Basin5. Despite of hundreds of millions of dollars spent to

stem nutrients entering the waterways, nitrogen pollution flowing out of Iowa to the Gulf of

Mexico has grown by close to 50% over nearly two decades6. Nitrogen and phosphorus losses

from farm fields have been driven by a variety of factors. Since the mid-twentieth century,

statewide corn and soybean acres have increased as extended rotations, hay, and pasture

declined. Compared to perennial crops and small grain rotations, according to Iowa State

University7, corn-soybean and continuous corn rotations are leaky systems. They require

increased fertilizer rates creating vulnerability to nutrient loss, have a lower capacity for

capturing and holding nitrogen during wet conditions. In addition, Iowa has made very

limited progress in solving the fertilizer over-application problem. According to the Sierra

5See details in https://www.nationalgeographic.com/science/article/iowa-agriculture-runoff-water-
pollution-environment

6See details in https://www.desmoinesregister.com/story/money/agriculture/2018/06/22/iowa-water-
pollution-gulf-mexico-dead-zone-nitrogren-missouri-mississippi-river-quality-nirtate/697370002/

7See details in “Measuring Conservation and Nutrient Reduction in Iowa Agriculture”, source:
https://crops.extension.iastate.edu/cropnews/2020/07/measuring-conservation-and-nutrient-reduction-
iowa-agriculture
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Club8, the Iowa Nutrient Research and Education Council surveyed farmers in 2017, 2018

and 2019, and found that they did not follow ISU’s fertilizer recommendations and were

applying fertilizer at rates more than 30 pounds greater than guidelines recommended

by the Iowa State University maximum return to nitrogen (MRTN) calculator9. As a

result, substantial nutrient flows from fields into waterways, where they degrade water

quality in Iowa’s streams, lakes, and groundwater, create challenges for local communities

in maintaining safe nitrate levels in drinking water. It is interesting to note how US corn

acreage and yields have increased since 1970, with much of the growth caused by expanded

ethanol production which accounts for nearly 40% of total production in 202110. A wide

range of management practices have been developed and a growing body of agricultural

practitioners have engaged in to reduce the non-point nutrient pollution associated with

fertilizer application11.

Similar problems have been reported in China where intensive agricultural practices

have contributed substantially to the emission of the pollutants (excessive nitrogen and

phosphorus) into water bodies and soils (Smil 1997). China is the world’s second largest

producer of corn. Water bodies in China have become seriously polluted since the 1990s

and there has been no marked improvements in recent years. According to an evaluation

of eutrophication in 131 major lakes in 2000 in China, about 50% of them were eutrophic

(Yuan 2000), and for 75% of these lakes the eutrophication is getting worse. Over half

8See details in “Over-application of Fertilizer on Iowa’s Farm Fields-Although Fertilizer is Expensive,
Farmers are Indeed Wasting It”. https://www.sierraclub.org/sites/www.sierraclub.org/files/sce/iowa-
chapter/Ag-CAFOs/FertilizerRates.pdf

9Iowa, Illinois, Minnesota, Wisconsin, Indiana, Michigan, and Ohio corn N fertilizer application rec-
ommendations are based on extensive N response trials conducted over several years in each state. These
trials have determined the N rate at which the last pound of added nitrogen fertilizer returns a yield
increase large enough to pay for the cost of the additional fertilizer, which is called the maximum return
to nitrogen (MRTN). The widely adopted calculator in finding the MRTN, initiated by the Iowa State
University, can be accessed by http://cnrc.agron.iastate.edu

10USDA Economic Research Service, Feedgrains Sector at a Glance, https://www.ers.usda.gov/topics/
crops/corn-and-other-feedgrains/feedgrains-sector-at-a-glance

11More details regarding current nutrient management practices in Iowa and Ontario are discussed in
Appendix A.
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of the rivers and about two-thirds of the lakes in the seven river systems and 28 major

lakes were assessed to be of poor quality during 2000−2008 (SEPA 2000−2008)12. Nitrogen

concentrations in large rivers, especially the Yangtze and Yellow river, have been increasing

in recent years (Tao et al. 2010).

The socially efficient fertilizer application rate balances the tradeoff between crop nu-

tritional needs and damages to the environment and human health caused by nutrient

pollution. Quantification of societal damages is a difficult challenge and the subject of

much current research, as is reviewed in Chapter 4. However, even ignoring damages from

nutrient pollution there is evidence that in many locations farmers apply more than the

recommended amount of fertilizer and more than the amount that maximizes farming prof-

its. Data on nitrogen use efficiency (the ratio of nitrogen input to nitrogen uptake by the

crop) is instructive as an indicator of the potential over-use of fertilizer. Data from Food

and Agriculture Organization of the United Nations13 shows a huge variation in fertilizer

use efficiency per hectare across the world, likely implying some regions would benefit by

more fertilizer use and others by reductions. There is also a large variation in nitrogen use

efficiency worldwide. In Canada and the US nitrogen use efficiency from 2000-2014 was in

the range of 60 to 70 percent (Lassaletta et al. (2014), Ritchie (2021)).

From the farmer’s viewpoint, the efficient fertilizer application rate will depend on a

host of factors including weather, soil and market conditions all of which are uncertain.

In addition to these factors, the efficient application rate from society’s viewpoint will

depend on environmental conditions that affect fate and transport of applied nitrogen

in a farmer’s field and the associated damages. The extent to which the farmer’s optimal

choices differ from the social planner’s dictate the degree of market failure from agricultural

fertilizer use. This thesis undertakes an in depth analysis through economic modelling and

12State Environment Protection Agency (SEPA), 2000−2008. Report are found on the State Environ-
ment website in Chinese. http://www.sepa.gov.cn/

13Nitrogen fertilizer use per hectare of cropland, 1961-2019, https://ourworldindata.org/fertilizers
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numerical computation of the factors affecting the socially efficient fertilizer application

rate in contrast with the efficient rate from the farmer’s point of view.

Farmers’ decisions on fertilizer use are based on profitability considerations and are

influenced by regulations and, recommendations from government agencies and fertilizer

manufacturers. Nitrogen fertilizer recommendations have typically reflected the amount

of fertilizer required to meet a crop yield goal (Vanotti & Bundy (1994)). For example,

some general fertilizer recommendations in Ontario such as those found in OMAFRA14

publications are formed based on expected grain yield levels15. A general fertilizer recom-

mendation by an Ontario grain agribusiness firm16 is reported as 1 pound (lb) nitrogen

for every bushel (bu) of yield goal. The total (fall and spring) nitrogen recommendations

for soft winter wheat in Indiana, Michigan and Ohio were based on wheat yield targets

(Culman et al. (2020)). However, a uniform recommendation will not be optimal for all

farms or in all years (Vanotti & Bundy (1994)). Nitrogen and phosphorus not fully uti-

lized by growing plants can be washed away by significant rain events or as snow melts.

More specific recommendations in U.S. and Ontario are based on soil testing and provide

a wide range of recommendations, depending on the test results or spring nitrate nitrogen

content17. Evidence from Babcock (1992) suggested that typical U.S. farmers apply more

nitrogen inputs than the economically optimum rate, defined as the point where the last

unit increment of fertilizer returns a grain yield increase large enough to pay for that unit of

fertilizer. Newer empirical evidence from Shi et al. (2016) indicates the extent to which fer-

tilizer was over-applied relative to the nutrient needs for normal crop growth was 50.74% on

average in China based on provincial level cost-benefit survey data of agricultural products

14OMAFRA refers to the Ontario Ministry of Agriculture, Food and Rural Affairs.
15Greg Stewart, OMAFRA Corn Specialist, 2001, “Table: General recommended nitrogen rates for

corn”. www.gocorn.net/v2006/Nitrogen/articles/Setting%20Nitrogen%20Rate%20Targets.html
16Source: The Andersons, source: https://www.thompsonslimited.com/2017/06/22/
17The information on soil test-based fertilizer suggestions can be found in Culman et al. (2020) and

Table 1-18 in OMAFRA (2017a)
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from 2004 to 2013.

The reasons for over-application of fertilizer are not well understood. Moreover, the

term over-application as used in the scientific literature or the popular press can have

several different meanings. Over-application can be relative to expert recommendations,

relative to the economically optimal amount from the farmer’s point of view, or relative

to the economically optimal amount from society’s viewpoint. Over-application may also

be considered in an ex-ante context at the start of the growing season or in an ex-post

context once the crop has matured. Considering first the ex-ante context, farmers may

follow expert recommendations based on target yield goals18 or simply follow the maxi-

mum yield principle19, but may be overly optimistic about their yield goal. Further, expert

recommendations may be based on average rules of thumb that are not appropriate for

a given farmer’s circumstances. Expert recommendations, based on yield goals, may not

represent the economically optimal application rate for the farmer. Estimates of the eco-

nomically optimal amount for the farmer may be incorrect due to a failure to take into

account key factors such as weather and price uncertainty. Ex-post, given the growing

conditions that prevailed, it may be evident that too much fertilizer was applied. Finally,

the optimal (ex-ante) fertilizer application should be considered in terms of environmental

impacts. The evidence of significant damages from excess nutrients in groundwater and

surface water is an indication the fertilizer application levels are not optimal and represent

an over-application from a societal point of view.

The extent to which a farmer’s economically optimal fertilizer decision differs from

18According to a report by Montana State University, the sufficiency approach of N application recom-
mends applying the minimum amount of fertilizer necessary to maximize yield in the current year. Source:
https://landresources.montana.edu/soilfertility/documents/PDF/pub/FertRecAgMT200703AG.pdf

19For example, farmers in two Iowa watersheds (Floyd and Rock) were applying nitrogen fertilizer at
more than double the ISU recommendation rate, which may be attributed to their willingness to maximize
crop yields. See Erin Jordan, “Iowa State University’s fertilizer recommendations “flawed”, Farm Bureau
says”. https://www.thegazette.com/agriculture/iowa-state-university-fertilizer-recommendations-flawed-
farm-bureau-says/
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standard recommendations has been a subject of study in the literature. One possibility

suggested in the literature is that standard recommendations do not account for uncertainty

(Babcock (1992), Sheriff (2005) and Rajsic et al. (2009)). The focus in the literature has

been on weather uncertainty, rather than crop price uncertainty, and most analysis has used

a static model framework. A few papers undertake dynamic analysis but there is rarely

much discussion of the detailed specification of weather or crop price models. Farmers’

optimal decisions regarding fertilizer application will depend on how uncertainty in key

variables affects the return on fertilizer application. Empirical studies have revealed that

agricultural crop yields are highly affected by weather conditions, especially by growing

season weather (Qian et al. (2002)). Farmers can update their decisions over time in

response to both weather and price, which implies that a dynamic decision framework is

most appropriate.

To the best of our knowledge, optimal fertilizer application under both price and

weather uncertainties from a farmer’s and a social planner’s perspective have rarely been

examined in the literature in a dynamic framework. Detailed literature reviews are in-

cluded in Chapters two through four. Briefly, some previous studies have analyzed the

impact of weather or climate variables on crop yield (including Dixon et al. (1994), Aggar-

wal (1995), Mavromatis & Hansen (2001), Turvey (2001), Derby et al. (2005), Schlenker

& Roberts (2006), Lobell et al. (2007), Cabas et al. (2010), Ortiz-Bobea (2013), Shi et al.

(2013) and Kablan et al. (2017)). These studies have examined relations between weather

and crop yield given various land conditions and climate assumptions, but the agricultural

nutrient input and crop price factors are omitted. Some other studies investigated optimal

agricultural nutrient use but include very simplified models for crop price and crop yield

without incorporating weather uncertainties as inputs (including SriRamaratnam et al.

(1987), Babcock (1992), Ramaswami (1992), Isik (2002), Rajsic et al. (2009)). Thus, to

the best of our knowledge, there are no studies which examine the optimal nitrogen appli-
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cation by a farmer in a dynamic model, incorporating realistic models of crop price and

climate variability. Further, incorporating these factors into a social planner’s problem has

also not been undertaken.

The main research question of this thesis is a follows: “How do uncertain corn market

and weather factors affect optimal fertilizer application decisions of the farmer and the

social planner, and what factors drive the divergence between the two?”. In Chapter 2,

the impact of price uncertainty, on the optimal fertilization decision from the farmer’s

perspective is explored, in an environment in which the evolution of crop price is described

by two alternative stochastic processes. A real options approach is used in that the crop

price model is specified in the Q-measure (risk neutral equivalent measure). The farmer’s

optimal control problem is expressed as a Hamilton-Jacobi-Bellman equation (HJB). Under

various simplifying assumptions about the farmer’s decision problem, we derive closed form

solutions for the optimal fertilizer choice under crop price uncertainty.

In Chapter 3, the farmer’s economic model is enhanced to include both price and

weather uncertainties as well as the option to apply fertilizer at two times over the growing

season. A crop yield function is specified which gives crop output as a function of average

soil nutrient content and weather conditions over the crop growing season. Stochastic state

variables in the model include corn price, cumulative Corn Heat Units over growing season

and cumulative precipitation over growing season. Due to the complexity caused by the

number of stochastic variables and path dependent state variables, there is no closed form

solution to the associated HJB equation. Implementation of a numerical solution based

on the finite difference approach is also problematic since more than 3 state variables

and path-dependent variables included. As an alternative, we parameterize the model

and undertake Monte Carlo simulations to describe the expected outcomes for a range of

possible optimal controls. By limiting the number of possible controls the optimal solution

can be found by exhaustive search. In the numerical example, corn and nitrogen are the
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crop and the fertilizer choice studied, as Iowa is the largest corn producer in the U.S. and

corn plants need high quantities of nitrogen to grow (N:P:K=1:0.3:0.5). In addition, corn

is also a major crop around the Great Lakes in Ontario and in the US Heartland region.

The models and subsequent analysis in this chapter enhance our understanding of how

key economic and environmental factors affect optimal fertilizer decisions from a private

perspective, which will be informative for farmers and policy makers seeking to implement

or design effective regulations and best management practices.

The social planner’s problem regarding fertilizer application is discussed in Chapter 4,

combining the farmer’s decision model in Chapter 3 and the social damage model from

nitrogen fertilizer application. Social damages from agricultural nitrogen leaching and den-

itrification are constructed in two ways: a linear damage model and a threshold damage

model. An extensive literature survey on the measurement of externalities and social costs

of agricultural nitrogen pollution is included. Socially optimal fertilizer application deci-

sions from both social damage models are derived and compared with the private optimal

results in Chapter 3. A wide range of sensitivity analysis regarding parameter assumptions

is performed. The findings concluded in this chapter broaden our understanding of the

degree of market failure from agricultural fertilizer use which is dictated by the extent to

which the farmer’s optimal choice differs from the social planner’s decision. In addition,

analysis on how parameter assumptions affect the socially optimal fertilizer applications

from a social planner’s perspective is informative for helping policy makers knowing the

sophistication of considering farmer’s behaviour and social cost of N as a whole.

This thesis is organized as follows: Chapter 2 presents a theoretical model examining

the optimal fertilizer application under price uncertainty, and derives closed-forms for the

farmer’s optimal strategies for fertilizer application. Chapter 3 develops a more realistic

model of the farmer’s fertilizer application decision with both price and weather uncertain-

ties taken into account. This model is analyzed using Monte Carlo analysis. Chapter 4
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elaborates the social planner perspective. Chapter 5 summarizes and presents conclusions.
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Chapter 2

Optimal Fertilizer Application Under

Crop Price Uncertainty

Current expert recommendations for fertilizer application rates typically do not consider

crop price or production uncertainty. However corn price uncertainty is a key consideration

for farmer decisions as is evidenced by attention paid to the outlook for corn prices in

agricultural trade magazines1. Some farmers may reduce the impact of price uncertainty

by purchasing futures contracts on the Chicago Mercantile Exchange (CME). A recent

study found that in 2016 over 10 percent of corn and soybean farmers traded in futures

contracts while 20–25 percent used marketing contracts. In the U.S., some farmers also

draw on commodity support programs and Federal crop and livestock insurance, as well as

private insurance (Prager et al. (2020)). Similarly in Canada, crop production insurance is

available through the AgriInsurance program2 and revenue insurance is available through

1See for example, Successful Farming, an agronomy news agency, “Continued uncer-
tainty is seen for 2021, agricultural experts say”, Dec 4, 2020, by Mike McGinnis. Source:
https://www.agriculture.com/markets/analysis/continued-uncertainty-is-seen-for-2021-agricultural-
experts-say

2AgriInsurance is a federal-provincial-producer cost-shared program, delivered provincially, that stabi-
lizes your income by minimizing the economic effects of primarily production losses caused by severe but
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the AgriStability program3. Farmer’s risk management strategies vary by the specifics of

a farming operation including size of farm and by farmer characteristics, and the cost and

availability of insurance.

This chapter takes a first step at modelling optimal fertilizer application under crop

price uncertainty, which is presented as a stochastic optimal control problem using a real

option approach in the spirit of Insley & Lei (2007) and Insley & Wirjanto (2010), assuming

fertilizer application is a one-off decision made at the beginning of planting. Historical corn

prices in U.S. dollars from 2010 to 2019 are plotted in the following Figure 2.1, which shows

significant volatility for past two decades.

Figure 2.1: Corn Price from 2010 to 2019

Crop prices are modelled as a simple Ito process in this chapter, either geometric

Brownian motion (GBM) or mean reverting (MR). Closed form solutions are derived and

uncontrollable natural hazards. The AgriInsurance Program is described on the Government of Canada
website: https://agriculture.canada.ca/en/agricultural-programs-and-services/agriinsurance-program.

3AgriStability protects Canadian producers against large declines in farming income
for reasons such as production loss, increased costs and market conditions. Source:
https://agriculture.canada.ca/en/agricultural-programs-and-services/agristability
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comparative statics undertaken to examine optimal farmer responses to changes in key

parameters such as crop price volatility and fertilizer cost.

2.1 Optimal fertilization and uncertainty: An overview

of selected literature

A substantial volume of literature has been devoted to optimal fertilizer application

under uncertainty. One early empirical paper by SriRamaratnam et al. (1987) evaluated

the farmer’s optimal fertilizer decisions using subjective beliefs about future crop yields

and prices. His study found the relationship between farmers’ subjective beliefs and ex-

perimental data on the yield response of crops to different nitrogen levels. In particular,

to model the fertilization decision, SriRamaratnam et al. (1987) used a single-decision-

variable response process: Y = f(N |X2, .., Xk|Xk+1, ..., Xm), where Y is grain yield, N is

a single input, X2...Xk are predetermined state variables, soil type ,etc, and Xk+1...Xm

are uncertain random variables. The farmer’s objective function is to maximize expected

utility over a single growing season with choice input variable N . To assess subjective

yield probabilities, SriRamaratnam et al. (1987) conducted a field survey with Texas farm-

ers, and obtained a distribution of beliefs about future crop yield. Subjective grain price

probabilities were obtained by a mail survey from participating producers. SriRamarat-

nam et al. (1987) solved for optimal fertilization rates and concluded that expected utility

maximization could explain actual fertilizer use better than expected profit maximization.

An early theoretical paper by Ramaswami (1992) examined how production uncertainty

affects optimal input use. The static profit function Ramaswami (1992) used is π(q, x) =

q − wx, x is input, w is normalized input price and output q is a random variable with a

cumulative density function F (q, x) which specifies output q as a normal distribution. By
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Ramaswami (1992), an input is defined to be risk-increasing if it increases the variability of

the deviations from output mean. He reached a conclusion that whether farmers use more

or fewer inputs under production uncertainty depends on whether the sign of marginal risk

premium is negative or positive, which is determined by risk preference and technology.

One early paper that studies the nitrogen over-application problem was Vanotti &

Bundy (1994), who compared the yield goal-based nitrogen recommendation rate in Wis-

consin and recommendations based on soil- and year-specific data. They found that, in

most areas of the U.S., corn nitrogen recommendations are based on yield goals with some

adjustments for soil characteristics, which could lead to an overestimate of actual nitro-

gen needs. As a result, nitrogen was over-applied and there were nitrate losses to the

environment. In an attempt to remedy this problem, Vanotti & Bundy (1994) separated

Wisconsin experimental data into groups based on high-yielding years and low-yielding

years, on which the high-yielding and low-yielding recommended nitrogen rates were built

respectively. They investigated the feasibility of basing corn N recommendations on soil

and year-specific data rather than on yield goals. Vanotti & Bundy (1994) were the first to

calculate recommended nitrogen rates based on historical low and high yield productivity

scenarios. The crop yield response functions they used were quadratic and quadratic-

plateau forms with nitrogen rate as the independent variable. However, they found their

results to be immune to the choice between these two yield response functional forms. Van-

otti & Bundy (1994) computed for the optimum nitrogen rate based on field productivity

in terms of low and high yield levels, but did not consider weather uncertainty.

Also focusing on the fertilizer over-application problem, Rajsic & Weersink (2008) ex-

amined empirically whether the differences in the economically optimal application rate

of fertilizer across functional forms for yield response could provide a rationale for over-

application. After statistically comparing four yield response functions, they calculated the

cost of fertilizer over-application as: Cost(NA
st) = Pc[fst(N

MERN
st )−fst(NA

st)]−PN [N
MERN
st −
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NA
st ] , Pc and PN are price of corn and nitrogen, fst is the estimated production function for

site s and year t, NA
st is the ex ante recommendation rate for site s in year t, NMERN

st is the

calculated ex post profit maximizing nitrogen rate for site s in year t. Rajsic & Weersink

(2008) concluded that the major reason why farmers would apply more fertilizer than the

level recommended by Ontario’s Agricultural Extension Services was that the form of yield

response function underlying the recommendations may be incorrect or differs from farmer

perceptions, which means general recommendations are not appropriate for their individual

situations.

Uncertainties associated with optimal input use have been suggested as the possible

reason for fertilizer over-application relative to recommended rates in crop planting (in-

cluding Babcock (1992), Sheriff (2005) and Rajsic et al. (2009)). Both Babcock (1992) and

Rajsic et al. (2009) investigated possible reasons for fertilizer over-application. Specifically,

Babcock (1992) employed a linear crop production function where weather factors W is

included without specifying the functional form of f(W ):

F (Nitrogen,Weather) = min(α + βN, f(W ))

where N is the applied nitrogen and W is the random weather variable that refers to

rainfall in their paper, α, β are constant parameters. Using this linear plateau function,

Babcock (1992) analyses the impact of weather uncertainty and soil nitrate uncertainty

on the optimal nitrogen application which is derived from solving a static expected profit

maximization problem. Babcock (1992) found that three sort of uncertainties could result

in fertilizer over-application. The first is estimation uncertainty which could arise from

production functional form specification error. Recommended rates are generally based

on the estimated production function which is treated as the “true” underlying function.

However, this usually ignores the uncertainty inherent in this estimated production rela-
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tionship. The second is weather uncertainty could be taken as another reason for excess

fertilizer application. Because farmers do not know for sure what the growing conditions

will be in the future, it is optimal for them to plan for good growing years (plentiful rainfall

and sunshine), apply larger amounts of nitrogen fertilizer, so that fertilizer will not limit

their potential profits. Third, nitrogen availability uncertainty, which is uncertainty about

the amount of nitrogen or concentration present in the soil, was considered as a reason why

farmers would apply excessive fertilizer to reduce yield risk. Nitrogen losses are mainly

from leaching and denitrification, which are uncertain and depend on weather or the type

of crop. As a conclusion, they found that the conventional perception that farmers should

reduce fertilizer use for the reason that nitrogen is risk-increasing is contradicted by their

empirical results, which indicated that risk-neutral farmers would reduce the possibility of

a nitrogen shortfall by applying more fertilizer than recommended amounts.

Rajsic et al. (2009) examined the effect of production risk on a farmer’s fertilizer appli-

cation by using time series corn yield data from field trials in Ontario over 1993 to 2001.

By Rajsic et al. (2009), an input is defined to be risk-increasing if higher input increases

the variance of profit. Yield functions employed by Rajsic et al. (2009) are in quadratic

and quadratic plateau forms, which are respectively

Y = α + β1N + β2N
2

and

Y =

 α + β1N + β2N
2 when N ≤ − β1

2β2

Y max otherwise
(2.1)

where Y is the corn yield, Y max is the constant yield level and N is the amount of ap-

plied fertilizer. The effect of unforeseeable growing conditions on yield, representing the

production risk, is assumed to have a normal distribution. The effect of production risk
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on optimal nitrogen application for risk-averse farmers is examined in an expected utility

maximization model, while that for risk-neutral farmers is examined through the expected

profit maximization model. In conclusion, results by Rajsic et al. (2009) suggested that

the optimal fertilization rate varies significantly across time (8 years). For risk-neutral

farmers, production risk could increase fertilizer application if the expected return from

over-applying fertilizer is higher than that from the recommended rate. For risk-averse

farmers, production risk may lower the fertilization rate if the variance of return associ-

ated with the recommended rate is smaller. Both Babcock (1992) and Rajsic et al. (2009)

found nitrogen fertilizer to be risk-increasing, but over-application can still be justified

because of a higher expected return. However, by Rajsic et al. (2009), uncertainty cannot

justify fertilizer over-application for those risk-averse farmers.

Isik (2002) examines the impacts of environmental and agricultural policies on a risk-

averse farmer’s input use, especially for changed taxes on profits, inputs, and outputs under

output price and production uncertainty. As part of a policy implementation analysis,

he examines the impacts of production and output price uncertainty on input use. A

yield specification from Just and Pope (1979) is used: y = f(x) + h(x)ϵ to represent the

production uncertainty, where y is output, x is an input, ϵ is a random variable. Output

price P = P̄ + θ, where P̄ is the expected price value, captures price uncertainty. After

solving a static expected utility maximization problem, Isik (2002) concluded that a risk-

averse farmer applies less input under both uncertainties (production and output price

uncertainty) if input is risk-increasing, which is equivalent to the conclusion Ramaswami

(1992) reached. If the input is risk decreasing, the impact of uncertainties depend on

the degrees of both uncertainties. Interestingly, considering another sort of uncertainty in

his later research, Isik (2004) analyzed how uncertainty about cost-share subsidy policies

(aimed at reducing pollution) would impact adoption decisions of new farming systems.

As part of his option value method, adoption return and adoption cost uncertainties were
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all described as GBM processes. Then the adoption decision problem was to maximize net

returns by choosing the optimal time to adopt a new farming system. Numerical simulation

results indicated that policy uncertainty has the potential to impact a farmer’s investment

decision. If the policy maker wants to accelerate the adoption of new environmentally

friendly farming technologies through providing cost-share subsidies, the best strategy

would be to enact a subsidy program right away, threaten to remove it soon, and promise

never to restore it again.

To examine the uncertainty in yield model parameter estimation on fertilizer recom-

mendations, Henke et al. (2007) quantified the impact of using different yield response

functional forms. They used several yield response models to estimate optimum nitrogen

fertilization rates: quadratic, linear plateau and a quadratic plateau function. The objec-

tive function was specified as: max
∑I

i=1(pwYi(N) − pnN). Yi(N) is the yield in year i,

I is the total number of years, pw is the crop price, pn is price of fertilizer. Experimental

data from a field experiment were used to compute optimal fertilizer recommendations.

After carrying out Monte-Carlo simulations of yield functions of years 1996, 1997, 1998,

1999 and 2002, Henke et al. (2007) reached a conclusion that uncertainty tends to increase

the optimal fertilization rate. Since each parameter of the yield model is uncertain and

has its own distribution, the only sort of uncertainty they investigated was happened in

estimation process instead of price or production uncertainty.

Another focus of the literature is the specification of the crop yield function. A wide

variety of yield models have been discussed in different research papers (e.g., Gandorfer

& Rajsic (2008), Rajsic & Weersink (2008), Rajsic et al. (2009), Meyer-Aurich et al.

(2010), Hyytiäinen et al. (2011), Boyer et al. (2013), Leslie et al. (2017) and Kablan et al.

(2017)). Most of these studies adopted a quadratic form corn yield response function,

Y (N) = aN2+bN+c, where a, b, c, are constant parameters, omitting any weather variables

(e.g., Rajsic & Weersink (2008), Rajsic et al. (2009) and Leslie et al. (2017)). Rajsic
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et al. (2009) contributed to the estimation of a quadratic yield response using Ontario site-

specific experimental data. Leslie et al. (2017) compared the environmentally recommended

fertilizer application rate with the actual application rate by adopting the estimated yield

response function from Rajsic et al. (2009), namely Y = 1431 + 48.33N − 0.1364N2.

Gandorfer & Rajsic (2008) and Meyer-Aurich et al. (2010) studied winter wheat yield

response to nitrogen input. They both estimated a quadratic yield response function using

experimental data for winter wheat on different sites and under given experimental field

climate states (precipitation and temperature). Furthermore, Schlegel & Havlin (2017)

estimated the corn quadratic-form yield response function to nitrogen based on various

climate factors, soil PH and soil NH+
4 properties, using a 50-year field study data-set.

In conclusion, these selected papers address the optimal fertilization under uncertainty

problem from different perspectives. A common conclusion is that risk-averse farmers tend

to apply less fertilizer than recommended rates because fertilizer is risk-increasing, Rajsic

et al. (2009) studied only temporal production risk while Isik (2002) studied both produc-

tion and price uncertainty with specified stochastic processes. In analyzing the fertilizer

over-application problem empirically, Babcock (1992) attributed it to three uncertainties

while Rajsic & Weersink (2008) found improper yield function choice should be respon-

sible for over-application. Besides, Henke et al. (2007) argued that uncertainties in the

production function and optimal nitrogen application rate estimation could result in ex-

cess fertilizer application. Using a different approach from Ramaswami (1992) to measure

production uncertainty, Rajsic et al. (2009) found a result that was consistent with the

conclusion made by Babcock (1992) that fertilizer could be over-applied by risk-neutral

farmers. Despite achieving the economically efficient principle from farmer’s perspective,

the nitrogen still is over-applied relative to the recommended rate. Different from his earlier

paper (Isik 2002), Isik (2004) measured policy uncertainty using an option value approach.

However, these selected papers that involve uncertainties in optimal fertilizer applica-
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tion research have rarely much discussion of the specification of weather or price uncertainty

models. For example, SriRamaratnam et al. (1987), Ramaswami (1992), Babcock (1992),

Vanotti & Bundy (1994), Isik (2002), Sheriff (2005), Rajsic & Weersink (2008) and Ra-

jsic et al. (2009) derived their conclusions with price or yield uncertainty represented by

a normally distributed stationary random variable. As well, in the associated yield func-

tion estimation, little attention has been devoted to the dynamics of the crop production

progress. For example, the timing of the input decision and output benefit occur have

rarely been considered. The objective function is typically static expected utility maxi-

mization or profit maximization and these studies do not consider crop growth in a realistic

inter-temporal way (e.g. profit can only be realized after one growth cycle), which makes

the derivation of site-specific agri-environmental policy less reliable.

2.2 Farmer’s decision model

2.2.1 Yield response function

To choose a reasonable model that can describe the relationship between fertilizer

application and crop output, this paper surveyed previous empirical research on the crop

yield-nitrogen relationship. A wide variety of crop yield models have been studied in

the literature including linear and quadratic functional forms (e.g., Cerrato & Blackmer

(1990), Dahnke et al. (1990), Willcutts et al. (1998), Bélanger et al. (2000), Gandorfer &

Rajsic (2008), Rajsic & Weersink (2008), Rajsic et al. (2009), Meyer-Aurich et al. (2010),

Hyytiäinen et al. (2011), Boyer et al. (2013), Leslie et al. (2017) and Kablan et al. (2017)).

The concave quadratic model has been very popular for describing the crop yield response

to nitrogen, Y (N) = aN2 + bN + c, where a, b, c, are constant parameters, omitting any

weather variables (e.g., Rajsic & Weersink (2008), Rajsic et al. (2009) and Leslie et al.
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(2017)).

From an ecological point of view, excessive application of nitrogen fertilizer will in-

terrupt the soil salinity balance and weaken disease resistance and lodging resistance of

crops, which accordingly may result in a decline in fertilizer efficiency and yield (Hilbert

et al. (2015) and Kong et al. (2017)). The quadratic model is able to capture this adverse

effect. Thus, we employ the following quadratic model in this chapter as the representative

deterministic relation between crop yield and fertilizer input.

QT = a1N
2
t + a2Nt + a3, 0 ≤ t ≤ T (2.2)

where QT is crop output level at crop maturity time T , Nt is the total amount of fertilizer

used at time t, a1 < 0, a2, a3 > 0 are parameters which need to be estimated by crop yield

data. Ecologically, a3 > 0 denotes the natural productivity of soil without fertilizer.

2.2.2 Modelling corn price uncertainty

Like other commodities, corn prices tend to be highly volatile, which needs to be taken

into account by farmers in making the optimal fertilizer application decisions. Geomet-

ric Brownian motion (GBM) and mean reversion (MR) are two stochastic processes that

are extensively used for describing commodity prices (Schwartz (1997) and Chen & In-

sley (2012)), and are also adopted in our analysis. Schwartz (1997) argues that some

commodities prices, especially for most natural resources, follow mean-reverting processes

(MR) with a long-run mean price level determined by market factors such as the cost of

substitutes. We contrast results derived from the GBM and mean reverting (MR) models.

We first present these price processes in the P-measure, meaning that the drift terms
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are not risk adjusted. The common GBM process is given as

dPt = αPtdt+ σ1PtdZt (2.3)

where Pt is the crop price at time t. α is the drift rate4. The first term on the RHS

denotes the drift term and the remaining term represents the random disturbance in the

level of crop price with σ1 representing the price volatility. This disturbance may be the

result of crop market fluctuations, temporary changes in government market policy, and

other factors those are not captured by the drift term. The term dZt is an increment in a

stochastic process Z that follows the standard Brownian motion.

The choice of mean reverting model is a common variation of the Ornstein-Uhlenbeck

process (P-measure):

dPt = θ
(
P̄ − Pt

)
dt+ σPtdZt (2.4)

where P̄ is the constant long-run mean or equilibrium of the crop price and θ is constant

as the speed of mean reversion. As the OU process is used to model price mean reverting

behaviour we have θ > 0. σ represents the price volatility.

2.2.3 Farmer’s value function

Consider a representative profit-maximizing farmer who chooses the quantity of fer-

tilizer application N at the fixed application time t = 0 (spring seeding date), over one

typical crop production cycle. The crop market price will evolve continuously as speci-

fied by the assumed Ito process, however, the spot transaction price will not be realized

until the crop reaches maturity, denoted time T , which is assumed to be the fixed fall

4Another associated concept is the risk-adjusted drift rate µ under Q-measure. The relation between α
and µ is µ = α−λPσ1, where λP represents the market price of risk for crop prices. The contrast between
P-measure and Q-measure valuation is elaborated on Appendix C. Under the Q-measure, the risk adjusted
price process would substitute µ for the drift rate, rather than α.
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harvesting date. Considering only one typical crop production cycle, the payoff at t = T

is πT = PT (a1N
2 + a2N + a3). Our objective function for the representative farmer is the

maximization of the following expected net profit flow:

V (P,N, t = 0) = max
N

EQ

{
e−rTPT (a1N

2 + a2N + a3)− cN

}
, P (0) = p0 (2.5)

where V (P,N, t) denotes the value of the corn at time t when N is chosen optimally. For

the GBM scenario, we use r > 0 as the constant risk free discount rate assuming that

the expected crop price is found under the risk-neutral or Q-measure. Using the standard

contingent claims approach, the P-measure price processes given in section 2.2.2 can be

transformed to the Q-measure by deducting a risk premium. This is elaborated on in

Appendix C as well as in Dixit et al. (1994). The initial crop price p0 is observed by

the farmer. c is the constant price of per unit of fertilizer. N is the fertilizer application

decision made at the seeding date. It is assumed that the farmer not only has rational

expectations on the future price but also realizes the future price is a stochastic process.{
e−rTPT (a1N

2 + a2N + a3)

}
is the present value of total crop revenue received at T . The

yield level at maturity is predetermined when the fertilization decision is made. cN is the

current cost of fertilizer.

2.3 Closed form solutions

Crop price follows GBM

In this simple setting, we are able to derive closed form expressions for the optimal

fertilization decision. We are looking for the fertilizer choice at time zero that maximizes

the expected value of discounted net benefits from planting the crop. This is easy to do

under the GBM assumption as we can find the expectation directly. First determine the
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expected value under the Q-measure. Let µ denoted the risk adjusted drift rate. Then,

the expected value of price at maturity is given as E(PT ) = p0e
µT where µ is defined as

µ = α − λPσ1 and λP is the market price of risk5. Substituting this expected value back

into Equation (2.5), we can rewrite the objective function as:

V (P,N, t = 0) = max
N

{
e−rTp0e

µT
(
a1N

2 + a2N + a3
)
− cN

}
(2.6)

Then, we can find the optimal solution through the first order condition:

∂V

∂N
= e−rTp0e

µT (2a1N + a2)− c = 0

Therefore, after necessary substitution, we can write the closed form expression for the

optimal amount of fertilization under the assumption that price follows a GBM process as

N⋆gbm =
1

2a1

[
c

p0
e(r−µ)T − a2

]
, where µ = α− λpσ1 (2.7)

or equivalently,

N⋆gbm =
1

2a1

[
c

p0
e(r−α+λpσ1)T − a2

]
(2.8)

With the restriction of N⋆gbm > 0, and given a1 < 0 and a2 > 0, it follows that a2 >

c
p0
e(r−α+λpσ1)T is a necessary constraint.

Crop price follows MR process

We now consider the optimal decision under the mean-reverting price uncertainty as-

sumption. With a generalized mean-reverting process assumption, we can no longer directly

find an expression for the expected price at time T in the Q-measure. Instead we use the

5The derivations of E(PT ) and λP can be found in Appendix B and C.
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contingent claims approach to derive a partial differential equation describing the value of

the farmer’s asset. This PDE can be solved analytically (Insley & Lei (2007) and Insley &

Wirjanto (2010)).

Applying Ito’s lemma to Equation (2.5) and using standard contingent claim arguments,

we can derive the following Hamilton-Jacobi-Bellman (HJB) equation that describes the

value function V :

[
θ(P̄ − P )− λPσP

]
VP +

1

2
σ2P 2VPP − rV + Vt = 0, t > 0, P (0) = p0 (2.9)

We omit the time subscript on P when there is no ambiguity. At the initial time t = 0,

P = p0. VP and VPP are first order and second order partial derivatives respectively. Vt

is the partial derivative with respect to time variable Vt = ∂V
∂t
. Also, we have a value

matching condition for the maturity payoff:

V (N,P, t = T ) = PT

(
a1N

2 + a2N + a3
)

(2.10)

To solve for the value function V in the PDE Equation (2.9), we first rewrite Equation

(2.9) to the following form:

Vτ =
[
θP̄ − (θ + λPσ)P

]
VP +

1

2
σ2P 2VPP − rV (2.11)

where τ defined as τ = T − t denotes the remaining time to crop maturity. Vτ is the partial

derivative with respect to time variable Vτ = ∂V
∂τ
.

The partial differential equation (2.11) can be analytically solved by first guessing the

solution for V as V = A(τ)P + B(τ). Substituting Vτ = AτP + Bτ where Aτ = ∂A(τ)
∂τ

,

Bτ = ∂B(τ)
∂τ

, VP = A(τ) and VPP = 0 back into Equation (2.11) gives us the following
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identity:

AτP +Bτ = θP̄A(τ)− rB(τ)− PA(τ)(θ + r + λPσ) (2.12)

Equating corresponding parts gives us Aτ = −A(τ)(θ+r+λPσ) and Bτ = θP̄A(τ)−rB(τ)

which implies

A(τ) = A0e
−(θ+r+λP σ)τ (2.13)

Bτ + rB(τ) = P̄ θA0e
−(θ+r+λP σ)τ (2.14)

Solving Equation (2.14) by employing the integrating factor technique, we use the fact

∂
∂τ
[erτB(τ)] = erτ [Bτ + rB(τ)]. Then Equation (2.14) will evolve to

e−rτ ∂

∂τ
[erτB(τ)] = Bτ + rB(τ) = P̄ θA0e

−(θ+r+λP σ)τ (2.15)

Rearranging and integrating (2.15) between the interval [0, τ ] for both sides at the same

time, ∫ τ

0

∂

∂τ ′

[
erτ

′
B(τ ′)

]
dτ ′ =

∫ τ

0

P̄ θA0e
−(θ+λP σ)τ ′dτ ′ (2.16)

erτ
′
B(τ ′)

∣∣∣τ
0
= − P̄ θA0

θ + λPσ
e−(θ+λP σ)τ ′

∣∣∣∣τ
0

(2.17)

which finally gives the expression for B(τ),

B(τ) = B0e
−rτ +

P̄ θA0

θ + λPσ

(
e−rτ − e−(θ+r+λP σ)τ

)
(2.18)

Substituting (2.13) and (2.18) back into V = A(τ)P +B(τ) results in:

V (N,P, τ) = A0Pe
−(θ+r+λP σ)τ +B0e

−rτ +
P̄ θA0

θ + λPσ

(
e−rτ − e−(θ+r+λP σ)τ

)
(2.19)

Using value matching condition for the maturity payoff V (N,P, τ = 0) = PT (a1N
2 + a2N + a3)
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to solve for A0 = (a1N
2 + a2N + a3), B0 = 0. Then combining A0, B0 and rearranging

Equation (2.19) gives the closed form expression for the value function, with the current

one-off fertilizer cost cN at initial seeding date t = 0 (τ = T ):

V (N,P, t = 0) = (a1N
2+a2N+a3)

[
Pe−(θ+r+λP σ)T +

P̄ θ

θ + λPσ

(
e−rT − e−(θ+r+λP σ)T

)]
−cN

(2.20)

To determine the optimal fertilizer application amount N , we simply take the first order

derivative for V (N,P, t = 0) with respect to N and set it to 0, which eventually gives the

optimal fertilizer application amount N under the Q-measure:

N⋆mr
Q =

1

2a1

 c

e−(θ+r+λP σ)T
(
p0 − P̄ θ

θ+λP σ

)
+ P̄ θ

θ+λP σ
e−rT

− a2

 (2.21)

With the restriction of N⋆mr
Q > 0, and given a1 < 0, it follows that

a2 >
c

e−(θ+r+λP σ)T
(
p0 − P̄ θ

θ+λP σ

)
+ P̄ θ

θ+λP σ
e−rT

as a constraint.

2.4 Results analysis

This section analyzes the results that are derived from both closed form expressions of

the farmer’s optimal fertilization decision under GBM and MR assumptions.
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2.4.1 The GBM case

From Equation (2.7), under the GBM scenario, it may be observed that crop price

uncertainty (σ1) shows up explicitly as a component of the risk premium λPσ, which

means price uncertainty has a direct impact on the initial one-off fertilization decision. λP ,

called the market price of risk of P , represents the excess return over the risk free rate per

unit of variability. λPσ reflects the total excess return over the risk free return demanded

by investors in order to be willing to hold assets that depend on P . In particular, assuming

λP > 0, a higher σ or σ1 implies a higher risk premium, λPσ or λPσ1.

Using the fact that a1 < 0, we have ∂N⋆gbm

∂σ1
< 0 implying that a higher level of uncer-

tainty as reflected in a higher σ1 will reduce the optimal fertilizer quantity, assuming that

λP > 0. The fertilizer application is irreversible and the decision is made (at t0) before

the corn price realized at maturity (T ). Higher price volatility implies that the corn price

has both higher upside and lower downside potentials (relative to the lower price volatility

scenario). If prices at maturity are very low, farmers will have lost money on the fertilizer

application. If corn prices are very high at maturity, farmers will benefit from a boost in

total corn revenue, but there is still a decreasing marginal benefit from fertilizer as a result

of a1 < 0 - a concave yield function property.

From Equation (2.7), we observe that a larger value of current price p0 or a lower value

of fertilizer cost, c, will increase the optimal quantity of fertilizer. For example, an input

tax policy will give a larger unit cost c′ = c(1+ tax) which will correspondingly reduce the

farmer’s optimal fertilizer application amount.

Next, we consider how maturity date T , will affect fertilizer application. Since a1 < 0

in Equations (2.7 and 2.8), the impact of T depends on the sign of (r − α + λPσ). If

r > α − λPσ, the risk free discount rate exceeds the risk adjusted expected crop price

return, implying that farming the type of crop with a longer growth cycle will reduce
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the optimal fertilizer quantity. Intuitively, a longer time before crop maturity reduces the

present value of applying fertilizer at the margin. Instead, if α−λPσ > r, a longer time to

crop maturity increases the marginal benefit of applying fertilizer. Finally we observe from

Equation (2.8) that ∂N⋆gbm

∂α
> 0. An increase in the P-measure price drift rate, increases

the optimal quantity of fertilizer. This implies that the farmer’s excessive application of

fertilizer might be explained by the case where the farmer overestimates the actual crop

price return α. A summary of the comparative statics for the GBM process is provided in

Table (2.1).

In many agricultural papers such as Baethgen et al. (1995) and Cui et al. (2010), the key

dilemma facing farmers is specified as how to maximize yield based on the yield response

curve. Cui et al. (2010) provide evidence that pursuing high grain yield has been the top

priority in many regional recommendation policies and site-level farming practices. Let

N⋆maxyield refers to the optimal fertilizer application when the goal is yield maximization.

As a1 < 0 and c > 0, it is easy to show the relation N⋆GBM < N⋆maxyield = − a2
2a1

,

which means using the yield maximization principle, instead of crop value maximization

principle, will lead to an over-application of nutrients. Therefore, our results from the

GBM scenario suggest that current over-application of nutrient relative to the economically

optimal amount could be attributed to the fact that the current fertilizer recommendation

is mistakenly built on the yield-maximizing principle, as well as the farmer’s potential

overestimation of crop price return. Even though an increase in price uncertainty will

increase the optimal amount of fertilizer applied, which is not an over-application from

the farmer’s viewpoint, this ignores the negative environmental consequences of increased

fertilizer use.

30



2.4.2 The MR case

From Equation (2.21), it may be observed that when prices follow a mean reverting

stochastic process, crop price uncertainty (σ) has an impact on the initial one-off fertil-

ization decision. We show in Appendix D that
∂N∗mr

Q
∂σ

< 0, which is consistent with what

was shown for the GBM case, ∂N∗gbm

∂σ1
< 0. An increasing level of price uncertainty as

represented by a higher σ will reduce the optimal fertilizer application. Since a1 < 0, from

Equation (2.21), a higher observed initial price p0 will also cause the farmer apply more

fertilizer.

Measuring the effect of the mean reverting speed θ is less straightforward, as shown

in Appendix D. Intuitively, even though the current crop price is below the mean level

or certain critical value, an observed higher reversion speed could describe a “promising

future” to the farmer, which will increase the amount of fertilizer use as a result. Similarly,

even if a high price above the mean level presents for now, a higher reversion speed may

indirectly lower the amount of fertilizer the farmer will apply by describing a “dismal

prospect”.

Interestingly, if we relax the assumption that true mean reversion speed θ is observed

as part of the information set at initial time, then our results could partially explain

the fertilizer over-application problem. Regarding θ (the true mean-reverting speed) as an

unobserved information, farmers with full knowledge of P0 and P̄ would use all information

they have to form an estimate (could be denoted as θ̂). However, this estimation θ̂ could be

larger or smaller than the true value θ as a result of estimation errors. If the overestimation

θ̂ > θ (or underestimation θ̂ < θ) happens with the low observed initial price P0 < P̄ (or

high observed initial price P0 > P̄ ), the over-application of fertilizer will be present relative

to the economically optimal amount. Therefore, fertilizer over-application problem could

be partially attributed to the misspecification or estimation error regarding price process
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caused by asymmetric information on crop market.

Similar to the GBM scenario, our results under the mean-reverting process could provide

an explanation for the fertilizer over-application resulting from mistakenly adopting the

yield-maximizing principle, as showed in Appendix D. A summary of the comparative

statics is provided in the following Table 2.1:

Table 2.1: A summary of parameter sensitivity results

Parameter Sensitivity Under GBM assumption Under MR assumption

∂N
∂c

< 0 < 0

∂N
∂P0

> 0 > 0

∂N
∂α

or ∂N
∂θ

> 0 > 0 iff P̄ (1 + F ) > P0

∂N
∂σ

< 0 < 0

∂N
∂T

> 0 iff r < α− λσ > 0 iff P0

P̄
< ψQ

Note that λP is assumed to be positive.

where ψQ =
[
1− re(θ+λP σ)T

θ+λPσ+r

]
θ

θ+λPσ and F = 2θ
θ+λσ + 2θ+λσ

T (θ+λσ)2

[
e(θ+λσ)T − 1− (θ + λσ)T

]
.

These findings, of course, depend on the particular modelling assumptions. For exam-

ple, to derive the closed-form solution for optimal fertilizer application, a simplified crop

price process (GBM or MR) is assumed. Thus, the effect of price uncertainty on optimal

fertilization may vary with the change of price process choice. Parameter sensitivity may

also differ from these results when we depart from our particular decision model setting to

a more complex scenario. In this price uncertainty discussion, our decision model assumes

the farmer makes a one-off unchangeable decision regarding fertilizer application that af-

fects total profit only at the payoff at maturity. This implies that the farmer does not have

any options to adjust the fertilizer decision.

In later Section 3.5.2, an exponential corn yield function is proposed in Equation 3.16.
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Correspondingly, using the exponential corn yield function and assuming the farmer makes

a one-off unchangeable decision, we re-derive the closed form optimal fertilizer applications

under GBM and MR assumptions (Equation (2.8) and (2.21)) as Equation (E.2) and (E.4).

Details are presented in Appendix E. Results based on the exponential corn yield model

give us the same sensitivity conclusions as Table 2.1.

2.5 Limitations and conclusion

In this chapter we explored the impact of crop price uncertainty on a farmer’s optimal

fertilizer application decision using two different models of prices. Given the simplifying

assumptions in the decision model, closed form solutions are derived. A simplified crop

yield function popular in the literature is adopted for the analysis. Crop prices are specified

following as geometric Brownian motion or a generalized mean-reverting process. Both

closed form solutions indicate that price uncertainty has a negative effect on farmer’s one-

off fertilizer application decision in our model setting. Many other factors or parameters

that could affect the optimal decision are found and examined in this paper. In addition,

two possible reasons of fertilizer over-application are also discussed. Assuredly, we should

treat this model as a simplified unique growth cycle problem which provides a benchmark

for comparison with more detailed models.

Much research remains to be done in the field of optimal fertilization under uncertainty.

First, instead of using a deterministic crop production function, a stochastic crop yield

function with both fertilizer input and weather uncertainty need to be examined in the next

chapter. Second, as part of the optimal fertilization problem for farmers, the assumption

of an one-off application needs to be relaxed. Optimal fertilizer choices with more than one

application date, weather variation and price uncertainty are analyzed in the next chapter.
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Chapter 3

Optimal Fertilizer Application Under

Price and Weather Uncertainties

3.1 Introduction

Agricultural crop yields are highly affected by weather conditions. In addition to the

impact on overall crop health, weather conditions may also affect farmers’ fertilizer appli-

cation decisions. For example, N (Nitrogen) can be lost from the soil in a rain intensive

season and as a result, crops may have a low N uptake efficiency. Qian et al. (2002) note

that precipitation regimes are perceived as playing an essential role in agricultural water

management, which in return affects crop productivity. As a result, farmers’ fertilizer

application decisions are expected to be adjusted in a response to current or anticipated

weather states. Thus, to fully understand farmers’ fertilizer application decisions, both

weather and crop price uncertainties need to be examined.

The key question this chapter tries to answer is how farmers will change their optimal

fertilizer application in the presence of growing season weather and crop price uncertain-
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ties. Several papers have attempted to address these impacts, as discussed in the literature

review section in Chapter 2. To summarize, uncertainty associated with optimal input use

has been suggested as a possible reason for the fertilizer over-application of fertilizer (Bab-

cock (1992) and Sheriff (2005)). In investigating this issue, both Babcock (1992) and Rajsic

et al. (2009) found nitrogen fertilizer to be risk-increasing, meaning that a higher fertilizer

rate increases the variance of crop profit. For a risk neutral farmer, Rajsic et al. (2009)

found that increased production risk could increase the expected return from applying more

than recommended amounts. However, risk averse farmers may lower fertilizer application

rates in response to the increased production risk. It should be noted that these papers

use static objective functions and there is limited analysis of the specification of weather

and price uncertainty.

In this chapter, we extend the farmer’s decision model of Chapter 2 to include crop

price uncertainty, weather factors and two fertilizer decisions. In practice, more than two

fertilizer decisions may be made during the growing season, but we restrict our model to

only two decisions for simplicity. We specify the farmer’s fertilizer application decision

problem as an optimal control problem. The farmer maximizes net benefit through the

optimal choice of fertilizer amounts at both split application dates. A crop yield function

for corn is specified and estimated which gives crop output as a function of average soil

nutrient content and weather conditions over the crop growing season. We focus on the

optimal application of nitrogen fertilizer. Soil nutrient content is determined by fertilizer

application as well as nutrient loss due to daily precipitation.

Weather conditions over the growing season are uncertain and are summarized by an

index which reflects cumulative heat effects as indicated by corn heat units (H̄) and cu-

mulative precipitation (R̄). H̄ is calculated from daily temperature variables, which are

modelled as mean-reverting stochastic processes. Precipitation is characterized by two

models: the first capturing whether or not rain occurs in a given time period, and the
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second capturing the rainfall rate per unit of time. The crop price is modelled as a mean

reverting stochastic process as is done in Chapter 2. Harvesting is assumed to happen at a

fixed time at the end of the growing season. The fertilizer application decision is made at

two points during the corn growing cycle, which reflects a typical one rotation period farm

operation whereby fertilizer may be applied at the beginning of the growing cycle and then

a second application may be done several weeks later, if deemed desirable.

Given the number of stochastic and path dependent state variables, closed form so-

lutions are not available. Numerical solution using a dynamic programming algorithm is

also impractical. Instead, our approach is to specify the HJB partial differential equation

(PDE) that fully describes the decision problem. We then undertake Monte Carlo analysis

to determine the expected value of a range of possible farmer decisions regarding fertilizer

application. By limiting the number of admissible controls, we are able to determine the

optimal solution through exhaustive search. The decision model is parameterized using

data on weather, corn growth and fertilizer application from Iowa, which is a main corn

growing area and is the source of serious nitrogen pollution in local water bodies and in

the Mississippi River watershed. Our results provide considerable intuition about the op-

timal fertilizer application principle from a rational farmer’s perspective. Our numerical

example applies to corn planting, so we will refer to the crop as corn, although the model

is applicable to a number of different crops.

3.2 Literature on weather modelling

The uncertainty analysis in this thesis requires a crop output model as a function of

weather (temperature effect as measured by Crop Heat Units, H, and cumulative precip-

itation, R̄) as well as soil nutrient content, S. Soil nutrient content depends on fertilizer

application, N , as well as daily nutrient losses due to rainfall. There is a large volume
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of current literature that models temperature and precipitation as inputs to agricultural

production. However, there is a lack of literature addressing weather and fertilizer impacts

as joint crop production inputs. In this section, we integrate and compare the existing di-

verse research linking weather factors to crop yields as background for our crop production

model which relates crop output to both temperature, precipitation and fertilizer input.

3.2.1 Stochastic weather generators

Stochastic weather generators, including Weather GENerator (WGEN) (Richardson

(1981) and Richardson & Wright (1984)), the CLIMate GENerator (CLIMGEN) (Nicks

& Gander (1994), Nicks et al. (1995) and Stöckle et al. (1999)), Weather Generators

(WeaGETS) (Chen et al. (2012a) and Chen et al. (2012b)) and the Long Ashton Research

Station-Weather Generator (LARSWG) (Semenov & Barrow (2002)), have been used in

climate and agronomic research for many years to create synthetic time series of weather

data for describing the distribution of future weather patterns at particular locations (Chen

& Brissette (2014)). These weather generator models have focused on modelling of the pre-

cipitation process and temperature on a long time series basis. Chen & Brissette (2014)

compare these popular stochastic weather generator models in terms of their ability to

simulate precipitation and temperature for a particular region in China. Depending on the

particular application, other weather variables such as humidity and wind speed are also

included in some of weather generator models.

Wilks & Wilby (1999) and Ailliot et al. (2015) have provided good overviews of weather

generator models which include daily maximum, minimum temperature model and daily

precipitation models. Maximum and minimum daily temperature models are discussed in

Wilks (1999b), Mavromatis & Hansen (2001), Qian et al. (2002) and Mraoua (2007). For

example, in classic weather generator WGEN and WTGROWS models (Wilks (1999b) and
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Qian et al. (2002)), meteorological variables like minimum and maximum daily temperature

have been generally modeled by autoregressive processes. This also applies to the Matlab-

based daily weather generator WeaGETS (Chen et al. (2012a) and Chen et al. (2012b)).

In most weather generator models, the occurrence of daily precipitation and the amount

of daily precipitation are modelled separately. The occurrence of daily precipitation is typ-

ically modelled as a Markov chain of first order (including Qian et al. (2002), Yusuf et al.

(2014), Kannan & Farook (2015) and Hersvik & Endrerud (2017)). For example, Wilks &

Wilby (1999) and Qian et al. (2002) model daily precipitation occurrence, daily precipita-

tion amounts, maximum or minimum temperature as a first-order two-state Markov model,

a double exponential distribution and a first-order autoregression model respectively. Yusuf

et al. (2014) study the possibility of daily low rainfall, moderate rainfall and high rain-

fall based on a Markov chain model for daily precipitation occurrence. Kannan & Farook

(2015) use the classic first-order Markov chain for simulating daily precipitation occurrence

and a double exponential distribution for generating daily rainfall intensity, which are most

commonly used in weather generators WGEN and LARS-WG. In WeaGETS (Chen et al.

(2012a) and Chen et al. (2012b)), exponential distribution is used to produce wet day

precipitation quantity.

An alternative to using Markov chain models to generate the occurrence of wet and

dry days, are spell-length models (Wilks (1999a), Schoof & Pryor (2008) and Li et al.

(2014)). For example, Wilks (1999a) examined different formulations for the occurrence-

and amounts-components of stochastic daily precipitation models with respect to the over-

all goodness of fit. For the first-order Markov model, the frequencies of the lengths of

dry or wet spells (x consecutive days) follow the simple geometric distribution. That is,

a geometric spell lengths model is equivalent to the first-order Markov model, and the
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probability distribution function for the spell length is

Pr(X = x) = p(1− p)x−1, p = pij, i = 0, 1; j = 0, 1;x = 1, 2, 3...

where X is the number of consecutive days being wet, p = p01 is the transition probability

from dry to wet for dry spells and p = p11 is for remaining in wet spells. Using this simple

version of a spell-length model, precipitation occurrence is not simulated day by day, but

rather the length x of the next spell (alternating between wet and dry spells) is simulated.

In addition, Schoof & Pryor (2008) compare the distributions of wet and dry spells length

from simulated first order Markov chains and those from spell-length models with the

observed monthly rainfall occurrence process at 831 stations in the contiguous United

States. They find that results from spell-length models are consistent with those from

Markov chain models for the majority (68.4%) of all the stations and months examined.

Precipitation amounts are strongly skewed to the right with frequent small amounts of

daily precipitation along with rarer large precipitation occurrences. Common models of

daily precipitation amount include the exponential distribution, the gamma distribution,

and mixed exponential distribution (Todorovic & Woolhiser (1975), Woolhiser & Roldan

(1982), Wilks (1999a), Wilks (1999b), Qian et al. (2002), Martin-Vide (2004), Brissette

et al. (2007), Chen et al. (2012a), Chen & Brissette (2014) and Li et al. (2014)). Wilks

& Wilby (1999) compare the fitted values from these three probability distributions with

historical data for precipitation at Ithaca, New York, from 1900 to 1998, and indicate

that the mixed exponential distribution provides the best fit. Besides, Wilks (1999a) and

Qian et al. (2002) find that using gamma distributions to represent precipitation amounts

appears to be clearly inferior to the mixed exponential distributions. One-parameter ex-

ponential distribution is first employed by Todorovic & Woolhiser (1975) and Woolhiser

& Roldan (1982) to model daily precipitation distribution. Afterwards, both Martin-Vide
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(2004) and Brissette et al. (2007) have attempted to model daily rainfall amounts dis-

tribution as the simple exponential distribution. Martin-Vide (2004) contends that the

distribution of rainfall amount frequencies can be represented by exponential distribution

for the reason that in a given period many small daily amounts of precipitation will occur,

whereas few large daily amounts will do. These authors also note that most stochastic

weather generators assume precipitation amounts conditional on precipitation occurrence

are independent. In Chen et al. (2012a), the gamma and exponential distributions are

both examined as models of the daily rainfall amount distribution at the Ottawa and

Churchill weather stations. Their results demonstrate that the most widely used model,

the first-order Markov chain, is adequate at producing precipitation occurrence and the

gamma distribution seems better than the exponential distribution in generating precip-

itation quantity. However, both the exponential and gamma distributions reproduce the

uncertainty of daily precipitation very well. Thus, in our thesis, we will compare the sim-

ulated daily precipitation using a one-parameter exponential distribution and a gamma

distribution.

3.2.2 Weather models for valuing financial derivatives

The stochasticity of weather in agriculture is creating an emerging market for weather

derivatives which serve as a new agricultural risk management tool to hedge weather risks.

For example, there are weather options and a futures market for contracts on weather

indices such as heating and cooling degree-days (Turvey (2001), Sun & van Kooten (2015),

Wang et al. (2015), Wang et al. (2015), Sun & van Kooten (2015), Ivana et al. (2016)

and Gyamerah et al. (2019)). The finance literature has sought parsimonious models of

temperature that could adequately capture temperature uncertainty for pricing weather

derivatives. Ivana et al. (2016) have given a good summary of insights from the literature
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on the hedging effectiveness of weather derivatives in agriculture. The underlying index in

most weather derivatives is built on temperature or precipitation.

Starting from the farmers’ profit maximization problem, Turvey (2005) includes the

weather variable W (represented by cumulative degree-days) into a crop production func-

tion Q(W ) as the unique input. In Turvey (2005),W is described as following a continuous

time stochastic differential equation (geometric Brownian motion process) and is used in

the pricing of degree-day derivatives. Besides, daily averaged temperature has been mod-

elled as a mean reverting Ornstein-Uhlenbeck processes in most literature (Alaton et al.

(2002), Benth & Benth (2007), Mraoua (2007), Wang et al. (2015), Sun & van Kooten

(2015) and Gyamerah et al. (2019)). The main differences among these studies is the

seasonality factor and the volatility form in their temperature processes. For example,

Gyamerah et al. (2019) presented a seasonal fluctuation component (sin(·)) in the long

run mean of averaged daily temperature, while Benth & Benth (2007) modeled the volatil-

ity of daily average temperature to be a seasonal function where seasonality was captured

by a combination of sin(·) and cos(·) functions.

However, most of these finance papers focus only on weather derivatives pricing with

daily average temperature as the underlying weather index and employ long run time series

weather index data for empirical studies. Rare attention has been paid to incorporating

the weather model into the crop yield process as well as modelling precipitation in the

stochastic manner.

3.3 Literature on crop growth modelling

It is common in the agricultural economics literature to use stylized models whereby

crop growth is a function of either nitrogen application or weather, depending on the focus
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of the study. In this thesis we seek to include both weather (temperature and precipitation)

and nitrogen application as determinants of crop growth. To support our modelling choices

we first present a review of the relevant literature.

3.3.1 Literature on yield and fertilizer application

Several papers have attempted to examine the relation between corn yield and fertilizer

inputs (Babcock (1992), Sheriff (2005) and Rajsic et al. (2009)). Specifically, Babcock

(1992) employed a Leontief crop production function that involves nitrogen input in a

linear form:

F (Nitrogen,Weather) = min(α + βN, f(W ))

where N is the applied nitrogen and W is the random weather variable that refers to

rainfall in there paper, α, β are constant parameters. Using this linear plateau function,

Babcock (1992) analyses the impact of weather uncertainty and soil nitrate uncertainty

on the optimal nitrogen application which is derived from solving a static expected profit

maximization problem. Rajsic et al. (2009) employed quadratic and quadratic plateau

yield functions to represent the relation between corn yield Y and nitrogen input N , which

are

Y = α + β1N + β2N
2

and

Y =

 α + β1N + β2N
2 when N ≤ − β1

2β2

Y max otherwise
(3.1)

respectively, where α and β1 > 0, β2 < 0. Using the above functions, Rajsic et al. (2009)

examines the effect of production risk on farmers’ optimal nitrogen rate and contrasts objec-

tive functions featuring expected profit maximization with expected utility maximization.
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Equation (3.1) shows yield rising at a decreasing rate with the quantity of nitrogen

applied up to a maximum yield level, after which any applied nitrogen has no impact. An

alternative is a concave exponential yield function such as Y = α(1− e−βN) for α, β > 0.

A concave exponential curve can describe the natural corn growth process where corn yield

will rise at a decreasing speed with respect to the soil nutrient level and will peak at the

end of growing season when maturity conditions are met. This type of corn production

function is also reasonable for describing the impact of other inputs into corn production,

such as corn heat units. Concave exponential type crop growth curves have been used in

several empirical studies (including Budantsev et al. (2010), Tadesse & Kim (2014), Pires

et al. (2015), Dasgupta (2018), Abid et al. (2018) and Addy et al. (2020)).

Tadesse & Kim (2014), Pires et al. (2015) and Addy et al. (2020) used experimental

data to estimate the exponential grain yield-nitrogen relationship. For instance, a concave

exponential yield-input form was adopted by Pires et al. (2015) to describe the yield-

nitrogen effect. Calculating nitrogen-use efficiency (NUE) over a period of 1970-2011 in

Brazil, Pires et al. (2015) estimated the effect of applied nitrogen fertilizer on cereal yield as

a statistic form: Y ield = 4.8096(1− e−0.0009N), where Y ield is in ton/ha and N is nitrogen

fertilizer in 1000 tons unit. Tadesse & Kim (2014) also estimated two concave exponential

grain yield-nitrogen relations for maize by conducting experiments in two locations of

Ethiopia. A recent study focuses on the inter-annual weather effect on cereal yield function;

Addy et al. (2020) used a long-term winter wheat and barley yield experiment from 1968 to

2016 to estimate the linear-plus-exponential (LEXP) yield-nitrogen response curve, which

is generally modelled as y = a+ brN + cN , where y is grain yield in ton/ha, N is nitrogen

in kg/ha, a is the asymptotic yield, b, c, r are parameters that need to be estimated while

r relates to the curvature of the response. Estimated parameters a, c, and r were positive,

while b was negative. The fitted yield-nitrogen relations across different years are plotted

in the Figure 3.1:
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Figure 3.1: Relationship between winter wheat grain yield and applied nitrogen by Addy
et al. (2020)

Weather conditions at key stages of crop development period were found to have a

significant effect on the difference of estimated nitrogen-yield response curves across years,

and thus will significantly change the nitrogen-yield parameter estimates (in Figure 3.1).

Yield function in Addy et al. (2020) implies concave-shape yield-nitrogen response curves

that indicate yield increases with respect to nitrogen at a decreasing rate, peaking at a

certain level and remaining stable thereafter, which is consistent with findings from all the

other studies.

3.3.2 Literature on yield and weather variables

This literature review section lists and discusses the existing studies on representing the

relationship between crop yields and weather variability. There are a large number of papers

on this topic across the agronomic and agricultural economics literature encompassing a

wide variety of approaches. Literature is classified into four groups: statistical regression

models; process-based models; statistical models with a Just-Pope stochastic production

function; and models describing yield or return uncertainty as an Ito process. This section
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makes a contribution to the literature by integrating and comparing how a range of different

studies describe the link between weather factors and crop production.

One key distinction in the literature is between process bases and statistical models.

Roberts et al. (2017) provides a good review of this issue. Process-based approaches

use data and assumptions about key factors known to affect crop growth (such as soil

characteristics, solar radiation, rainfall, temperatures, management practices) as inputs

into mathematical models of plant growth and seed formation to arrive at yield predictions.

The impact of changes in the levels and variability of any of the key factor inputs can

thereby be examined. The statistical model approach uses statistical regression models to

examine the historical relation between key determinants of crop growth (the independent

variables) and yields. The estimated statistical relationship is used to make predictions

about future yields under alternative scenarios for the independent variables. Roberts et al.

(2017) notes that the two approaches are similar to what economists call structural and

reduced form methods.

Statistical regression models Among those studies that examined the statistical re-

lation between crop yield and weather indices, Vanotti & Bundy (1994) is an early paper

to consider nitrogen recommendations and variations in corn yield, possibly caused by

weather. In most areas of U.S., corn nitrogen recommendations are based on yield goals,

sometimes with adjustments for soil characteristics. The paper reports a lack of consensus

with how yield goals should be determined and notes that recommended nitrogen levels

may be inconsistent with the yield potential of a particular area. Overestimating actual

nitrogen needs results nitrate losses to the environment. Vanotti & Bundy (1994) sep-

arated Wisconsin experimental data into high-yielding years and low-yielding years and

determined the associated optimal nitrogen application rates. They find that the optimal

nitrogen rate for a specific soil is not closely related with the corn yield obtained. High
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corn yields resulted in more crop nitrogen uptake than lower yields, but did not necessarily

require higher nitrogen application rates. The authors explored the feasibility of basing

environment-friendly corn nitrogen recommendations on soil and year-specific data rather

than on yield goals. Vanotti & Bundy (1994) was one of the first to link nitrogen appli-

cation rates with corn yield regimes. The corn yield response functions assumed to be

quadratic and quadratic-plateau forms, which produced similar results.

Turvey (2001) empirically examined the impact of cumulative rainfall and a heat index

(degree-days) on corn and soybean yields in Oxford County, Ontario. Yield data was ob-

tained from OMAFRA1 reports and weather data was selected from corresponding weather

stations. Correlations between rainfall, heat and yields indicate that the most significant

factor for corn and soybean yields is heat. Rainfall did not appear to contribute signifi-

cantly to corn or soybean yield variability. Using a Cobb-Douglas form yield function, he

obtained the following estimated equations

log(Ycorn) = 3.33 + 0.03Rain+ 0.18GDD

log(Ysoybean) = 1.62 + 0.03Rain+ 0.26GDD

where Ycorn and Ysoybean are corn yield and soybean yield in bushels per acre (BU/A) unit,

Rain and GDD refer to the cumulative rainfall in mm unit and cumulative degree-day

heat units from June 1 to August 31 each year. Their results indicated a low statistical

significance of Rain in both above regressions and higher corn or soybean yield always

comes with a higher temperature-rainfall combination. A sensitivity analysis of yield to

weather variability was performed. Rain and heat effects were classified to 3 regimes: High,

Mean, Low. As a result, Turvey (2001) found that higher corn or soybean yield always

comes with a higher temperature-higher rainfall regime.

1Ontario Ministry of Agriculture, Food and Rural Affairs . http://www.omafra.gov.on.ca/english/
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Building a fixed-effect model in which temperature is perfectly substitutable over time

and using a unique data set of corn yields and daily weather records for 1950-2004 from

more than 2000 eastern US counties, Schlenker & Roberts (2006) found a nonlinear rela-

tionship between the effect of a 1-day period at a given temperature relative to 8oC and

the percentage change of annual corn yield. For example, a day of 36oC will reduce annual

corn yield by 3.1 percent and the threshold when temperature becomes harmful is 30oC.

In other words, corn yields were found to increase with moderate temperature raises, but

decrease once above 30oC.

Another paper that covered the effects of both temperature and precipitation on crop

yields is Lobell et al. (2007), who collected data on six Californian crops (e.g. vegetables and

fruits, excluding grain crops) and Californian climate data (daily maximum and minimum

temperature, monthly precipitation) in their research. To assess the effect of climate on

yields, they modeled yield as a function of time and two climate variables:

Y = a0t+ a1X1 + a2X2 + a11X
2
1 + a22X

2
2

where X1 and X2 are monthly mean temperature and monthly total precipitation. As a

primary conclusion, Lobell et al. (2007) listed, for each individual type of all six crops

respectively, the most significant weather factor for yield or flowering (one of maximum or

minimum temperature, precipitation) and the crucial growth periods that affecting yields.

All studies that examine impacts of climate change on crop yields are distinct from

each other in their location of interest, crop type, weather variable choice and statisti-

cal crop-weather model. Lobell et al. (2006) used 1980–2003 records of state-wide yield,

monthly average temperatures (minimum and maximum) and rainfall variations to esti-

mate statistical yield responses to weather for six perennial crops in California. Lobell

et al. (2006) argued that the advantage of using a statistical yield function is it intrinsi-
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cally accounts for a wide range of mechanisms that can affect yields, while uncertainties in

process-based models are often difficult to measure. Perennial crop yield response models

are then used with monthly simulations of minimum, maximum temperatures and precip-

itation for 1980–2099 to evaluate yield uncertainty. The effect of climate uncertainty was

represented by the yield distribution resulting from applying statistical yield models to

each individual climate model scenarios. For example, the statistical response function of

wine grapes yields to temperature and precipitation changes used in his study was

Y = 2.65Tn,4 − 0.17T 2
n,4 + 4.78P6 − 4.93P 2

6 − 2.24P9 + 1.54P 2
9 − 10.50

where Y is the yield level (ton/acre), Tn,a is the monthly average minimum temperature

(n) of ath month, Pa is the monthly rainfall of ath month. One unique contribution made by

Lobell et al. (2006) is that they specify the weather variable effects in terms of the month

of the year. However, the statistical crop models his study used did not allow explicit

consideration of nutrient inputs.

Even though Chen et al. (2016) note that agronomic literature has long suggested pre-

cipitation, temperature and radiation as the three most important factors for plant growth,

radiation has been emphasised as an important input only for rice and wheat growth. Like

the previous articles, Mearns et al. (1984), Wheeler et al. (2000) and Lobell et al. (2011)

also examined the role that temperature plays in the crop growth and yield. These three

articles are distinct in emphasizing temperature effects using data sets from different coun-

tries. Wheeler et al. (2000) reviewed the significance of temperature variability for annual

crop yields, say, wheat or corn, but without giving any explicit statistical form for the

relation between crop yield and weather variables. It is found that doubling the standard

deviation of daily temperature with an unchanged seasonal mean would reduce grain yield

to the same extent as a 2oC increase in mean seasonal temperature.
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Similar to Schlenker & Roberts (2006) in methodology, Lobell et al. (2011) found evi-

dence for a nonlinear relationship between heat and maize yield in tropical regions using

historical maize trials data from Africa. The effect of temperature on maize yield was mod-

eled using a linear fixed-effect model, with an assumption that yield growth is a nonlinear

function of heat, which included GDD8,30 (Growing degree days between 8oC and 30oC)

and GDD30+ as temperature variables. GDD8,30 indicated a normal maize growing condi-

tion and GDD30+ indicated harmful heat. The estimations showed a decreasing concave

nonlinear relationship between the yield change from 1oC warming at different average

growing-season temperature. A negative effect of GDD30+ was also found, which indicated

that daytime heating is more harmful to maize than night-time warming. Mearns et al.

(1984) studied the impact of extreme high temperature events on crop yields in U.S. with-

out including an average temperature index or other weather variables. Both Mearns et al.

(1984) and Lobell et al. (2011) selected 35oC as the basic threshold for defining extreme

weather events as well as examined how significant a change in the probability of extreme

high temperature would affect crop yields. However, a statistical relation between crop

yield and specified weather indices is not presented in their studies.

The most frequent statistical yield-weather model employed by the weather impact

studies is a quadratic weather-yield relation. For example, Dixon et al. (1994), Cabas

et al. (2010) and Shi et al. (2013) modelled precipitation and temperature as having a

quadratic effect on yield, whereas Roberts et al. (2012) modelled the quadratic effect of

growing Degree-day (GDD). Derby et al. (2005) is unique in analyzing the effects of four

different inputs: nitrogen, soil characteristics, weather and irrigation variation on corn

yield. The weather-yield models in the above papers are diverse, but all results indicate

that corn yield has a nonlinear relationship with weather variation, which is consistent

with Schlenker & Roberts (2006) and Lobell et al. (2011). Instead of using growing-season

average temperature and cumulative precipitation, Hansen (1991) and Kaufmann & Snell
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(1997) did statistical regressions of corn yield on July variables (average temperature,

rainfall, irrigation and daily maximum temperature).

Chen et al. (2016) developed an empirical framework to estimate the relation between

corn and soybean yields and weather factors in China. The study used estimated coef-

ficients for weather variables to quantify the economic impact of changing climate con-

ditions on China’s corn and soybean crops. A non-linear and inverted U-shape relation-

ship between crop yields and weather variables (temperature, precipitation and radiation)

was found. It is worth noting that crop yield yi is assumed as an endogenous function

yi = yi(xi,k, weather, technology), which can be expressed as function

yi = yi(Pcrop, Pinput, xi,k, H, precp, precp
2, rad, rad2)

where xi,k is the quantity of input k of crop i, precp is the precipitation, rad is the radiation

length, Pcrop is expected crop price, Pinput is input price, H is heat accumulated over crop

growing season. Empirically assuming that the climate effects on yields are cumulative

and substitutable over crop growing seasons, Chen et al. (2016) estimated the fixed effect

model:

logYr,t = Hr,tβ0 + Zr,tβ1 + Sr,tβ2 + cr + λt + ϵ

where Yr,t is yield in county r and year t, Hr,t is the seasonal heat accumulation, Zr,t is the

sum of precipitation and radiation variables, Sr,t includes socioeconomic variables, cr is the

time-invariant county fixed effect and λt is year fixed effect. Yields for corn and soybeans

were obtained from the National Bureau of Statistics of China. Weather data are obtained

from the China Meteorological Data Sharing Service System, which records daily minimum,

maximum, and average temperatures, precipitation, and solar radiation for 820 weather

stations in China. Compared with Mearns et al. (1984) and Lobell et al. (2011) selecting

35oC as the threshold for defining extreme weather events, their study found that yields
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increase with temperature up to 29oC for corn and 28oC for soybeans, temperatures above

these thresholds are very harmful for crop growth. Results also indicated the existence

of nonlinear and inverted U-shaped relationships between weather variables and corn or

soybean yields.

The other recent study relevant to the weather-yield impact is Tao et al. (2017), who

highlighted the different impacts of maximum (Tmax) and minimum temperature (Tmin)

during different growth stages for winter wheat in China. Using 1981-2009 experimental

time series data of average maximum temperature, minimum temperature, solar radiation

(SRD) and accumulated precipitation (P ) during each of five growth stages, the study

constructed a multiple linear regression to estimate yield responses to climate variables:

Y dt = β0 + β1t+ βi2Tmax ti + βi3Tmin ti + βi4Pti + βi5SRDti + ϵt

This regression was used to estimate the sensitivity of yield to changes in weather variables

for each growth stage of wheat at each experimental station during 1981-2009. Y dt repre-

sents annually observed yields in year t, t is time trend, Tmax and Tmin are daily maximum

and minimum temperature, ti means the averaged value during the i− th growth stage (5

growth stages in total) in year t. The yield response function did not take fertilizer input

into account.

Distinguished from all former statistical studies on estimating the weather impact on

crop yields, Paltasingh et al. (2012) use the composite aridity index variable in the yield-

weather regression model. The aridity index was designed to distinguish dry climates from

moist climates of different regions. The original application of the aridity index was a

consideration of the evapotranspiration process of crops. Rainfall and temperature were

recognized as two important weather factors that affect crop yields and the evaporation

process in his studies. In econometric modelling of the impact of weather on crop yields,
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Paltasingh et al. (2012) proposed similar models that take evapotranspiration into con-

sideration, for example, the following equations show different versions of crop-weather

models:

Y = β0 + β1(
P

T
) + β2T + β3t+ β4t

2 + β5t
3 + ϵ

Y = µ0 + µ1(
P

T + 10
) + µ2T + µ3t+ µ4t

2 + µ5t
3 + ϵ

Y = θ0 + θ1(
P

1.07T
) + θ2T + θ3t+ θ4t

2 + θ5t
3 + ϵ

where Y is the yield of crop per acre, P is the average precipitation during the growing

period in mm. June, July and August were taken as growing period in the study by

Paltasingh et al. (2012), T is average daily maximum temperature of same period and

t is time variable. The inclusion of aridity index (the fraction in bracket) in the model

underlined the standing point that the yield response of precipitation dY
dP

is a function of

temperature instead of a constant that is typically assumed by other literature.

Process-based models Process-based models, which are based on a series of ecological

processes, provide a useful framework to incorporate specific crop growth responses to

altered environmental conditions. Process-based models are usually designed to predict

crop yields from the simulation of plant functioning, and can offer significant advantages

in predicting the effects of global climate change on crop yield as compared to purely

statistical models based on historical data. Among studies that estimate weather effects

by employing process-based models, an early paper by Aggarwal (1995) quantified the

effect of soil and weather inputs uncertainties on crop nitrogen uptake, evapotranspiration

and yield. The crop growth simulation model WTGROWS was used to simulate the

effects of climate and management factors on the productivity of spring wheat. From the

study, grain yield depends on the accumulation of dry matter as well as temperature and

applied nitrogen. The grain growth process will be terminated when the crop reaches
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physiological maturity. The results showed that yield uncertainties will increase as the

production environment changed from a sufficient inputs scheme to a scheme where water

and nitrogen inputs were constrained. Modelling crop yield and inputs in a linear way:

y = b0 +
n∑

j=1

bjxj

where y and xj are the total uncertainty captured by the percent deviation in output and

input relative to the deterministic level respectively, n is the number of inputs, Aggarwal

(1995) estimated the importance of each input uncertainty to the overall yield uncertainty.

Mavromatis & Hansen (2001) compared four stochastic weather generators in their abil-

ity to simulate inter-annual variability of monthly climate. Rather than giving a formal

statistical crop yield model, they used the process-based crop simulation model CERES

to simulate harvest maturity and final maize yields in response to generated weather for

given soil parameters. A key strength of such a process-based crop model is that it pro-

vides a clear physiological mechanism for linking weather to crop yield outcome, with many

of the essential parameters in this model having been established through laboratory ex-

periments. For example, CERES can simulate the process of daily plant growth based

on many weather variables variability. Weather variables discussed in the study involve

precipitation, temperature, solar radiation.

In the field of agronomy research, there have also been numerous empirical studies

exploring the impact of climate change on crop production since 1990s (Racsko et al. (1991),

Lobell et al. (2006), Janjua et al. (2014), Chen et al. (2016), Tao et al. (2017) and Challinor

et al. (2018)). For example, as an early paper that used weather generators in modelling

weather impacts, Racsko et al. (1991) discussed processes for three weather variables,

by using a weather generator that includes 3-dimensional stochastic weather processes.

The weather generator is able to provide as long a time series as their study needed.
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Using Hungary as an example, Racsko et al. (1991) stated that daily average temperature,

precipitation and solar hours are the main three factors that need to be considered into

crop production risk analysis. Sharing a similar objective, Challinor et al. (2018) conducted

a comprehensive ecological literature review on crop modelling for integrated assessment

of risks from climate change.

Predicting crop yield changes due to climate change but different from others’ research

that studied similar climate effects, Lobell & Burke (2010) used three types of data (time

series, panel, and cross-sectional) to estimate the effect of changed growing-season average

temperature and total precipitation on yield. For example, The log-linear weather impact

panel model for 198 sites, with 39 years simulated data was:

log(Yi,t) = βi,0 + β1Ti,t + β2Pi,t + β3T
2
i,t + β4P

2
i,t + ϵi,t

where Yi,t, Pi,t, Ti,t are simulated maize yield, growing-season total precipitation and

growing-season average temperature for site i and year t. Maize yields were simulated

using CERES-Maize (version 4.0.2.0), a commonly used process-based model in agronomic

research, and simulated weather data are obtained from the MarkSIM model. Estimates for

linear term were all positive and all negative for the quadratic terms, which was consistent

with Chen et al. (2016) in finding the inverted U-shape nonlinear relationship.

A most recent paper by Kabir et al. (2021) adopted a process-based model of nitrogen

fluxes from agricultural soils (DeNitrification and DeComposition model) for simulating

corn yields and environmental N losses based on various combinations of weather and

split N application strategies. The data used to parameterize the DNDC model were

collected from a field trial at Elora, Ontario. For each combination of split N application

plan and weather scenario, simulated corn yields from the DNDC model are combined

with prices and costs to estimate the profit of corn. Weather uncertainty in Kabir et al.
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(2021) is restricted to nine simulated weather scenarios (five rainfall scenarios and five

temperature scenarios) under which the effects of eleven split N application strategies

(varying in split timing and amount) on corn yield, profit, and environmental N losses

were evaluated. Results showed that grain yield in wetter weather was generally greater

than that achieved in average weather. The greatest yield was achieved when the growing

season was warmer and wetter than average. Pre-plant fertilizer application maximizes

profit only under average weather conditions. Split N application is beneficial to corn yield

only in wet scenarios and is more profitable in certain non-average weather scenarios where

yield is greater and loss is lower. Split N application reduces leaching, volatilization, and

denitrification under most of the weather conditions compared to pre-plant application.

As an important conclusion for policy making, Kabir et al. (2021) found that the lowest

V13 split application in dry weather scenarios will achieve a “win-win” scheme where both

profit and environmental benefit are maximized. However, no “win-win” strategy is found

in all non-dry weather scenarios. It is worthwhile noting that the corn price is assumed to

be constant, and the environmental loss is measured in kg/ha.

Statistical models with a Just-Pope stochastic production function In contrast

to the previous papers that have examined explicit relationships between crop yields, fer-

tilizer input or weather variables, the Just-Pope stochastic production function (Just &

Pope (1979)) was used in weather impact studies Chen et al. (2004), Chen & Chang (2005),

Kim & Pang (2009) and Cabas et al. (2010). Among these papers, the Just-Pope produc-

tion function is usually constructed without specifying the statistical relation between each

weather input and production. The production function is represented by

Y = f(X) + h(X)ϵ
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Y is the yield level, X is a set of independent variables such as climate variables, ϵ is the

stochastic term and follows a standard normal distribution. E(ϵ) = 0 and var(ϵ) = 1. f(X)

represents the average effect of weather variables on yield, h(X) represents the variance

effect on yield. Kim & Pang (2009) used this approach to find that the average rice yield

in Korea is positively related to temperature and adversely related to precipitation, and

weather variables (both temperature and precipitation) will enlarge the rice yield variability

as risk-increasing inputs. The finding from Kim & Pang (2009) is partly consistent with

previous literature conclusions that there exists a positive relationship between yield and

temperature. Kim & Pang (2009) used two functional forms for estimation, which were

(Cobb-Douglas)

f(X|β) = β0 + βtT +
∏
j

X
βj

j

and

(Linear-Quadratic)

f(X|β) = β0 + βtT +
∑
j

β1jXj +
∑
j

β2jX
2
j +

∑
j

∑
k

βjkXjXk

with h(X) = α0 + αtT +
∏

j Xj, T is a time trend variable, Xj and Xk are inputs in-

cluding weather variables. Chen & Chang (2005) adopted a log-linear form, focused on

weather impacts on crop yield and implications for crop insurance, using pooled time-

series cross-sectional data for seven major crops for Taiwan. Monthly mean temperature

and precipitation are regarded as the major climate input variables in X. Chen & Chang

(2005) concluded that increased variation in temperature and precipitation increases corn

yields. Besides, Chen & Chang (2005) compared uncertain yields with and without a crop

insurance policy. However, fertilizer input was neither explicitly nor separately examined

in assumed yield functions in both Chen & Chang (2005) and Kim & Pang (2009).
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The Just-Pope stochastic production function was also used in Chen et al. (2004) and

Cabas et al. (2010). Rather than addressing climate change effects on mean yields, Chen

et al. (2004) studied how weather has an impact on yield variance using panel data for

corn, soybean, cotton and other major US crops. Similar to Kim & Pang (2009), Chen

et al. (2004) adopted linear and Cobb-Douglass form of f(X|β), and temperature and

precipitation are included as inputs in X. In contrast to the Kim & Pang (2009) rice yield

study, rainfall and temperature are separately found to have opposite effects on yield levels

and variability for corn and cotton. For example, corn yields increase with more rainfall

and decrease with higher temperatures. On the other hand, higher temperature was found

to have a positive effect on soybean yields and a negative effect on wheat yields.

Using a different data2 from southwestern Ontario over the period 1981-2006 and the

Just-Pope yield function, Cabas et al. (2010) find that climate variables (average tem-

perature and precipitation, such as monthly average or seasonal average temperature and

rainfall) have a major impact on mean yield and the length of the growing season (measured

as GrowDays) had a positive effect on mean yield for the main crops around Great Lakes:

corn, soybean and winter wheat. Nevertheless, the marginal effect decreases with the in-

creasing number of growing degree days. Average crop yields were examined increased at a

decreasing rate with the quantity of inputs used. Both temperature and precipitation were

found to be statistically significant for corn and wheat yields. Cabas et al. (2010) found

that increases in the variability of temperature and precipitation decrease mean yield and

increase its variance. This result is consistent with Chen et al. (2004) that the variability

effect was found to be negative on corn yields for average temperature over the season.

For example, according to Cabas et al. (2010), for a given length of growing season, corn

2Yield data were collected from 1981 to 2006 for the counties of Essex, Kent, Elgin, Huron, Perth,
Haldimand-Norfolk, Middlesex and Lambton, which are sub-units within the province of Ontario. The
basis for their selection of these counties is data availability and the importance of the field crops in this
region of Ontario over the period of study. Climate data in their research were obtained from Environment
Canada based on a representative weather station that located centrally within the county.
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and wheat yields are higher for a lower and more evenly dispersed heat pattern. However,

precipitation is found to be the only factor that affects soybean yield, which has an inverse

effect on yields. Total precipitation over growing season was found to decrease soybean

yield but increases corn and wheat yields.

Furthermore, according to Cabas et al. (2010), even though the length of growing season

and its mean temperature are major determinants of average yield, the timing of the heat

or precipitation matters. Warmth in the spring allows the crop to be planted sufficiently

early to allow for the possibility of full maturity, and warmth in the fall allows the crop

to be harvested with less field loss. In a moderate range, an increase in temperature

for the summer months will contribute to a higher yield growth rate. However, excess

heat in summer can leave crops under heat stress and lower yields. Similarly, increases in

precipitation at the beginning of growing season will increase yield at a decreasing rate

while the inverse impact on yield will present for the time around planting and harvesting.

Models describing yield or return uncertainty as Ito processes Several papers

have studied the effects of uncertainties on farm investment decisions, but have not ex-

plicitly modelled the effects of weather, fertilizer input on crop yield (Price & Wetzstein

(1999), Khanna et al. (2000) and Furtan et al. (2003)). Price & Wetzstein (1999) examined

optimal entry and exit thresholds for Georgia commercial peach production by using an

option value framework. Price & Wetzstein (1999) used Geometric Brownian motion to

represent peach yield (q) uncertainty,

dq = αqqdt+ σqqdZq

with peach price process

dp = αppdt+ σppdZp
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E(dZp, dZq) = ρdt

where ρ is the correlation between two standard Brownian motion. Khanna et al. (2000) ex-

amined the effect of uncertainty on optimal timing of crop management system investment

while Furtan et al. (2003) investigated the optimal time to license the genetically modified

wheat technology. Khanna et al. (2000) assumed the value (V ) represents the present value

of rent of farmland, which could be approximated by the SDE dV/V = αV dt+ σV dz. The

same GBM model was employed by Furtan et al. (2003) where V represents the returns

to Canadian wheat industry from licensing a policy. Another paper on the farmer’s in-

vestment decision problem is Song et al. (2011), who studied a farmer’s optimal decision

to make a conversion between traditional cropland and energy crop farmland. Instead of

including weather or fertilizer input in farmland value, Song et al. (2011) assumed that

the overall farmland uncertainty, which is the return to planting corn-soybean rotation or

switch-grass, denoted by π(t), could be characterized by an Ito’s process, which is similar

to the processes used by Price & Wetzstein (1999), Khanna et al. (2000) and Furtan et al.

(2003):

dπ(t) = α(π, t)dt+ σ(π, t)dz

Though these papers provide us alternative ways to assess weather’s contribution to corn

yield, a deficiency is that nutrient input was omitted in yield modeling.

3.4 Literature on estimating the loss of nitrogen ap-

plied as fertilizer

Our objective is to summarize the complex relationship between rainfall and soil ni-

trogen loss in terms of the average nitrogen loss per millimeter of rainfall. This section
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reviews empirical estimates of nitrogen loss. The main sources of fertilizer loss are leaching,

erosion, surface runoff, ammonia volatilization, and denitrification. Figure 3.2 depicts the

fate and transport processes of nitrogen added to the soil.

Figure 3.2: The fate and transport processes of nitrogen in the soil, by Koch Agronomic
Services3

Nitrogen losses from the soil can be influenced by the fertilizer application method,

quantity, timing, management practices, mineralization of organic N, precipitation, rota-

tion and soil characteristics. Ju et al. (2004) illustrated potential reasons for the variability

in nitrogen leaching process. An unbalanced N:P:K (Nitrogen:Phosphorous:Potassium) ra-

tio in the fertilizer is examined as a main source for the N leaching variability. Similar

findings were also concluded in Zhao et al. (2011), Sun et al. (2012) and Lawniczak et al.

3This graph is published online with the article title is “What is Nitrogen Loss in Plants?”,
by Koch Agronomic Services, Source: https://kochagronomicservices.com/knowledge-center/what-is-
nitrogen-loss2217.aspx
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(2016), who used surveyed or experimental data to find that different leaching rates oc-

curred when different N:P:K ratios adopted in mixed chemical fertilizer application.

Wortmann et al. (2013) presents information on tons of nitrogen used in agricultural

production from 1965 to 2005 in Heartland region states. In Iowa, the most used fertilizer is

anhydrous ammonia (about 48%), urea-ammonium-nitrate solutions (UAN) (about 29%)

and urea (about 10%), with percentages given for 2005. Ammonium nitrate constitutes

a negligible proportion while other nitrogen sources constitute the remaining 14%. All

of these forms of fertilizer are subject to loss through leaching and denitrification. How-

ever, volatilization can easily be minimized through proper application techniques (Nielsen

(2006a) and Wortmann et al. (2013)).

In our model of farmer decision making, it will be assumed that denitrification and

leaching are the only two sources of nitrogen loss. The partitioning of soil N loss between

denitrification and leaching appears heavily weighted toward denitrification over leaching

in the Community Land Model (Nevison et al. 2016). The partitioning of inorganic N loss

varies considerably among different models, with particularly large differences in nitrate

leaching. In Nevison et al. (2016), the denitrification
leaching

ratio from their crop model is 75%
25%

and

can be as high as 90%
10%

in the other model. Nitrous oxide (N2O) is a potent greenhouse gas

that emitted from the denitrification process and contributes to climate change.

We seek an estimate of the portion of applied nitrogen (or soil nutrient content) that

is lost to the environment and its relationship to the quantity of rainfall. In particular,

we will summarize this relationship in terms of the average N loss per mm of rain. Lots

of research has examined the N losses from nitrogen fertilizer use, but results vary widely

across different papers (Horner (1975), Kanwar (1991), Patni et al. (1996), Yadav (1997b)

Gentry et al. (1998), Ju et al. (2004), Jalali (2005), Nielsen (2006b), Mart́ınez & Albiac

(2006), Sawyer (2008), Bakhsh et al. (2010), Zhao et al. (2011) Sun et al. (2012), Lock-
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hart et al. (2013), Basso et al. (2016), Camberato (2017), Yu et al. (2021), Paudel &

Crago (2021)). For example, a statistical analysis by Paudel & Crago (2021) examined

the impact of fertilizer use on the concentration of agricultural pollutants in surface water

bodies (including streams, rivers, lakes and estuaries) over a period from 1951 to 2005,

by regressing the log nitrate concentration on a series of explanatory variables including

annual averaged precipitation, temperature, upstream precipitation, upstream nitrogen

pollutant, GDP and population. Paudel & Crago (2021) found that, on average for the

U.S. as a whole, a 10% increase in the use of nitrogen (kg) leads to a 1.52% increase in the

concentration of nitrogen across watersheds. Current-year fertilizer application was found

to have a significant impact on concentration of agricultural pollutants in the same year.

In contrast, the effect of current-year fertilizer use on nitrogen pollutant in subsequent

1 to 10 years was not statistically different from zero. Paudel & Crago (2021) conclude

that this provides justification for their focus on the contemporaneous impacts of nitrogen

applications. In addition, the concave quadratic parameters are tested insignificant at a

5% level for the annual averaged precipitation, but tested significant for the annual aver-

aged temperature in all of their regression specifications. Upstream precipitation is found

insignificant on effecting the nitrogen concentration, while upstream pollutant is found sig-

nificant on effecting the nitrogen concentration. Results in Paudel & Crago (2021) indicate

that the estimated elasticities of agricultural pollutants with respect to fertilizer use have

not changed drastically across several decades.

Yadav (1997b) estimated that about 15% of applied fertilizer leached into the groundwa-

ter in Minnesota every year. Sun et al. (2012) found that, in China, the total N fertilizer

loss is about 19.1% of applied fertilizer, of which only 2% is leached. In contrast, the

experiment-based total N loss rate in China by Zhao et al. (2011) is 31% of applied fertil-

izer, of which 25% is leached. According to Sawyer (2008), research conducted in Illinois

indicated approximately 4% to 5% loss of nitrate-N by denitrification per day that soils
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were saturated. An all-nitrate fertilizer was applied when corn was in the V1 to V3 growth

stage (late May to early June). Sawyer (2008) estimated that excess water application can

result in loss of 60 to 70 lb N/acre on silt loam and clay loam soils, due to denitrification

loss. The climatic conditions in different years can significantly affect N loss and corn

responsiveness to applied N in subsequent years. In a wetter year, the overall annual N

loss would be in the range of perhaps twice the “normal year” loss amount. According to

Sawyer (2008), at the Gilmore City, Iowa drainage research site where tile-flow nitrate has

been monitored since 1990, nitrate leaching loss is greater in years with higher precipitation

above normal level and hence greater tile flow. Nielsen (2006b) states that the two predom-

inant N loss mechanisms that affect Indiana corn fields are leaching and denitrification of

the nitrate-N form of nitrogen. Nitrogen loss due to volatilization of surface-applied urea-

based products is the third source of N loss for some fields. Volatilization of the nitrogen

gas can result in N losses of as much as 5% of the available nitrate-N per day, while 15%

- 20% of the urea-based nitrogen may volatilize within a week after application. Rainfall,

sunshine, and temperature all influence the rate of volatilization of surface-applied urea-

based products. The timing and amounts of rainfall will influence the rates of leaching

and denitrification losses of available nitrate-N. According to Nielsen (2006b), the use of

a side-dress application strategy remains one of the easiest and least expensive ways to

maximize nitrogen use efficiency.

On estimating the relation between N application and leaching amount, Basso et al.

(2016) carried a field study in Venice Lagoon, Italy, and utilized a validated crop sim-

ulation model to simulate N leaching amounts to different N fertilization rates for three

experimental zones (Zone 1, 2 and 3). The results from Basso et al. (2016) showed that the

leaching amounts for Zone 3 were 14.4 and 15.8 kg/ha when N applications were 150 and

350 kg/ha, while the leaching amounts for another experimental zone (Zone 2) were 13.5

and 14.8 kg/ha when N applications were 150 and 350 kg/ha. N leaching was lower in the
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zones where variable rates of N were applied when compared to uniform N fertilization. In

Basso et al. (2016), precipitation was neither included as the factor that affects N leaching

nor measured for the associated N leaching.

By designing a paddy field experiment in China in 2008, Yu et al. (2021) examined

the nitrogen loss and its relation to rainfall under traditional flooding drainage (TID) and

controlled irrigation drainage (CID) scenarios. Nitrogen loss was measured by the changes

in NO−
3 and NH+

4 concentrations in field runoff water. Surface runoff formed by rainfall

was found as an important way for nitrogen loss. According to Yu et al. (2021), annual N

application was 480 kg/ha, with 200, 70, 140, 70 kg/ha applied on 10 June, 20 June, 20

July and 5 August (Table 2 in Yu et al. (2021)). The growing season cumulative rainfall

was 366.04 mm (Table 4 in Yu et al. (2021)). TN refers to the total nitrogen. Relations

between rainfall and N discharge in Yu et al. (2021) are listed in the following Figure 3.3.

From Figure 3.3, under TID scenario, one mm rain increase will cause 0.077 kg/ha total

nitrogen discharge, which means an average discharge rate per mm rain can be calculated

as 0.077
480

= 0.016 × 10−2. Similarly, the NO−
3 discharge rate per mm rain is calculated as

0.034
480

= 0.007×10−2. These results in Yu et al. (2021) are found highly sensitive to drainage

methods in China.
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Figure 3.3: Regressions of rainfall and discharge load using daily data (Figure 8 in Yu et al.
(2021))

Bakhsh et al. (2010), Kanwar (1991) and Gentry et al. (1998) used experimental studies

to examine the effect of N application on N leaching losses into groundwater. For instance,

the field experiments in Bakhsh et al. (2010) were conducted at the Iowa State University’s

northeastern research center near Nashua, Iowa from 2001 through 2005, on corn-soybean

rotation plots under chisel plow system. Bakhsh et al. (2010) found that the spatial

variability effects from plot to plot in some cases can result in differences of nitrate leaching

losses in the range of three to four times. The uniform nitrogen fertilizer (168 kg/ha) was

applied once at the beginning of growing season between the end of April and the start

of May for each year of 2001 to 2005. The growing season precipitation (mm) from 2001

to 2005 was recorded by months (the growing season cumulative rainfall, March through

November, from 2001 to 2005 was 674, 719, 604, 885, 839 mm in total), and the leaching

loss amount was measured as 17.2, 2.2, 13.8, 18.2, 8.0 kg/ha from 2001 to 2005 on average.

For instance, the N leaching loss rate per mm of rain for the year of 2001 can be calculated

as 17.2
674∗168 = 0.0152 × 10−2. Thus, we can conclude the average leaching loss rate for all

years 2001-2005 as 0.0152×10−2, 0.0018×10−2, 0.0136×10−2, 0.0122×10−2, 0.0057×10−2,

respectively.
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Sharing the same experimental site location (Iowa State University’s Northeast research

center at Nashua, Iowa) as Bakhsh et al. (2010), Kanwar (1991) studied the monthly

average NO−
3 losses to the groundwater as a function of tillage (chisel plow, ridge tillage

and no-tillage) and crop rotation (continuous corn received 200 kg/ha and corn-soybean

rotation received 168 kg/ha). In the second field experiment begun in 1984 at Iowa State

University’s Agronomy and Agricultural Engineering Research Center near Boone, Iowa,

N fertilizer application changed to two management practices (a single application of 175

kg/ha and three applications:25+50+50 kg/ha) for continuous corn using no-tillage and

conventional tillage practices. They found a NO−
3 concentration of 10 mg/L threshold was

exceeded by almost 100 percent of events for all tillage systems and crop rotations. N

losses in Kanwar (1991) were found two to three times greater under continuous corn in

comparison with the corn-soybean rotation.

Patni et al. (1996) found N loss as a range from 10 to 39 kg /ha under conventional

tillage on maize fields in Ontario (around 7 to 30% of applied fertilizer), with loss primarily

a function of precipitation amount during the dormant season. Patni et al. (1996) stated

that the total nitrogen loss as nitrate can represent more than 20% of the amount applied

as anhydrous ammonia. Annual loss can range from 10% to 30%. Using the experiment

in Greenbelt Research Farm of Agricultural and Agri-food Canada, near Ottawa, Ontario,

Patni et al. (1996) concluded the average nitrate-N loss rates over the 40-month study

period from Jan 1991 to May 1994 were 23.7% of total N applied under no-tillage scenario

and 21.1% of total N applied lost under conventional-tillage scenario. However, there is no

link between these leaching rate and rainfall information.

From this survey of the literature we observe that estimates of nitrogen loss are highly

variable and depend on environmental factors and farming characteristics. Most studies

associate increased rainfall with higher levels of nitrogen loss. Gentry et al. (1998) is

particularly relevant for our thesis since they not only evaluated the fate of applied N
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fertilizer in US, but also has a direct link to rainfall amount. For our numerical example,

we will base our nitrogen loss rate assumption on information from Gentry et al. (1998).

The predominant cropping system in Central Illinois is a corn-soybean rotation where only

corn production receives N fertilization, at an average rate in Champaign County of 196

kg/ha. All experimental fields in Gentry et al. (1998) were planted during the third week

in May and harvested during the third week in September, which is close to our growing

period setting.

By analyzing the soil samples collected from an agricultural watershed located 25 km

south of Champaign-Urbana, over a 2-year period beginning in 1993, Gentry et al. (1998)

found that 38 and 64 kg/ha nitrogen leached out of the watershed through tile drainage for

the 1995 and 1996 water years. By evaluating nitrogen cycling in a corn watershed and the

overall grain N accumulations for the year 1994 and 1995 growing seasons (May through

August), Gentry et al. (1998) found that 33% of the total N input was corn N accumulation

with leaching losses representing 29%. The balance of 38% may have remained in the soil

or denitrified. Assuming 33% of the total N input represents corn N uptake, the rest 29%

and 38% represent leaching and denitrification, we calculate the total N loss rate = 1 -

33% =67% of the total N input for the 1994 and 1995 growing seasons. The total growing

season rainfall was recorded as 720 mm (320 mm and 400 mm for the year 1994 and 1995

growing season), the rainfall induced N loss rate per mm rain is thus calculated as 67%
720

=

0.093×10−2 of the total N input over 1994-1995 growing seasons, of which 43.3% (29%
67%

) is

attributed to leaching loss and 56.7% (38%
67%

) is attributed to denitrification.

Selected key useful conclusions regarding N leaching loss rate among above studies is

presented in the following table:
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The total N loss rate per mm rain by Gentry et al. (1998) including all sources of

nitrogen loss is larger than the estimated N loss rates per mm rain solely by leaching

reported by Kanwar (1991) and Bakhsh et al. (2010). Due to the complexity of N losses

from the soil, we define the total rainfall-induced N loss as the nitrogen that moves out of

the crop rooting zone and is not available for crop uptake as soil nutrient stock S. The

total N loss rate is used to calculate the soil nutrient stock. In this thesis, we assume

0.093×10−2 of soil nutrient stock as the total N loss rate per mm rainfall, of which 43.3%

is attributed to leaching loss and the rest 56.7% is attributed to denitrification loss.
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3.5 Formulation of the farmer’s fertilizer application

decision model

3.5.1 State and control variables

In this section we specify a general model of the farmer’s decision problem regarding

the quantity of fertilizer applied to the crop. Our decision model is applicable to a number

of different types of crops, however, we refer to the crop as corn since that is used in our

numerical example. There are numerous mathematical notations used in this chapter and

the following chapter, for reader’s convenience, the meanings for notations of key variables

are summarized in Appendix K.

Corn Prices It is observed in the literature that agricultural commodity prices exhibit

mean-reversion to production costs4. Historical U.S. corn spot prices (in U.S. dollars per

bushel) on a daily basis for the period between 1959 and 2019 are plotted in Figure 3.4.

Figure 3.4: Daily corn price for the period of 1959-20195

4For example, Bessembinder et al. (1995), Hart et al. (2016) and Jin et al. (2012).
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Corn prices are observed to be highly volatile. Reversion to a mean or equilibrium

price level is also in evidence and that mean or equilibrium level appears to have shifted

over time. Because the analysis focuses on only one growing season, we adopt the mean

reverting price process6 with a fixed mean that was used in Section 2. The assumed corn

price process in the Q-measure is given as:

dP = α(κ− P )dt+ σPPdZt (3.2)

where P is the corn price in U.S. dollars per bushel. The parameters α and κ are the long

run mean level of price and mean-reversion rate respectively, under the Q-measure (i.e.

parameters are risk adjusted). σ is the price volatility and Zt follows standard Brownian

motion.

Corn yield, denoted by the yield response function Y , is modelled as a function of

cumulative daily corn heat units in the growing-season, H̄, growing-season cumulative

rainfall, R̄, average soil nutrient content, S̄, and yearly time variable, t:

Y = Y (H̄, R̄, S̄, t) (3.3)

Corn heat units A corn heat unit is an index developed by OMAFRA (2017a) to

represent the effective contribution from temperatures to the corn growth. Similar to

growing degree days but designed specifically for warm-season crops (especially for corn) in

Ontario, daily corn heat units are calculated as a function of daily minimum and maximum

5Historical U.S. daily corn spot prices are collected from MARCROTRENDS, source:
//www.macrotrends.net/2532/economic-historical-daily-dollar

6Some researchers suggest that models of commodity prices should include jumps (including Hilliard
& Reis (1999), Brigo et al. (2007), Schmitz et al. (2014), Patrick (2016) and Aiube & Levy (2019)).
However, including a jump diffusion in the estimation of corn price process using Q-measure method
requires determination of the historical risk adjusted jump probability. The estimation of a jump diffusion
corn price model is beyond the scope of this thesis.
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temperatures. The state variable in Equation (3.3) is cumulative corn heat units, H̄, over

the growing season.

Wilks (1999b), Qian et al. (2002) and the weather generator WeaGETS (Chen et al.

(2012a)) model minimum and maximum daily temperature as discrete autoregressive pro-

cesses, while Mraoua (2007), Benth & Benth (2007), Wang et al. (2015) and Gyamerah

et al. (2019) model daily temperature as mean reverting process with a seasonality long-

run mean function. Denote the maximum and minimum daily temperatures as X1 and X2

respectively and let the daily temperature difference δ = X1 −X2. For specifying the HJB

equation, we define a continuous time mean reverting processes as the data generating

processes for X1 and δ:

dX1 = ϕ1[η1(t)−X1]dt+ σX dZ1t (3.4)

and

dδ = ϕδ[ηδ(t)− δ]dt+ σδ δdZδt (3.5)

where δ = X1 −X2, η1(t), ηδ(t) are the long run means of X1 and δ, respectively and are

dependent on time which reflects seasonality. X1 and δ may be correlated: corr(X1, δ) = ν.

We choose to model δ rather than X2 directly so that there is no probability that X2 goes

above X1, since dδ → 0 as X2 → X1.

In order to define daily corn heat units, we specify a set of daily dates, ΩD:

ΩD = {t0 = 0 < ... < tm < ... < tM̂ ... < tM = T}, m = 1, ..., M̂ , ...,M. (3.6)

where tM̂ is the corn maturity date and tM = T is the date when harvested corn is sold.

Then daily corn heat units are given as:

Hti = H((X1)ti , (X2)ti), ti ∈ ΩD (3.7)
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Note that Hti is updated only at the daily dates in ΩD. The precise definition of the

Hti function as specified by OMAFRA (2017a) in terms of maximum and minimum daily

temperatures is given in Section 3.7.2.

Cumulative corn heat units at time t = tm denoted as H̄tm , is given by:

H̄tm = H̄tm−1 +Htm , ti ∈ ΩD, H̄t0 = h0 (3.8)

Rainfall Define a two state continuous time Markov chain, wt, to describe switching

between two rainfall regimes, wt ∈ {0, 1}. wt = 0 is the dry regime with no rain, while

wt = 1 is the wet regime when some rainfall occurs. wt is governed by a Poisson processes

qwt→1−wt with intensity λwt→1−wt . This implies:

dqwt→1−wt =

 1 with probability (λwt→1−wtdt),

0 with probability (1− λwt→1−wtdt).
(3.9)

Let Rwt denote the instantaneous rainfall rate in regime wt at time t. If wt = 0,

Rwt = 0. If wt = 1, Rwt follows a known probability distribution f(R). R̄t denotes

cumulative rainfall at time t and is described by the differential equation:

dR̄t = Rwtdt. (3.10)

Average Soil Nutrient Content and Fertilizer Decision S denotes the soil nutrient

stock due to applied nitrogen fertilizer. It does not reflect the background level of nitrogen

in the soil prior to the the addition of fertilizer. S is reduced in the event of rain, through

natural processes such as denitrification, runoff and leaching. In addition, S is increased

through fertilizer applications, Nt, which are permitted at fixed decision times, tf1 and tf2
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in ΩF :

ΩF = {tf1, tf2} 0 ≤ tf1 ≤ tf2 < T, ΩF ⊂ ΩD. (3.11)

Define a control set which contains all possible controls, Nt:

K = {Nt|t ∈ ΩF , Nt ∈ ZN}, (3.12)

where ZN is the admissible set for fertilizer application.

For t ∈ ΩF ,

St+ = St− +N(t), St=0 = 0. (3.13)

For times other than fertilizer application times, t /∈ ΩF , St is affected only by rainfall:

dSt = −ls Rwt Stdt, (3.14)

where ls is an assumed constant parameter reflecting the percent loss of S per mm of

rainfall. As is discussed further in Section 3.5.2, corn yield is assumed to depend on the

average soil nutrient content. The average soil nutrient stock at time ti, S̄ti , is given as:

S̄ti =

∫ ti

t=0

St

ti
dt, 0 < ti ≤ tM̂ . (3.15)

Where tM̂ refers to the maturity date of the corn, which is different than the date the

harvested corn is sold, at tM = T.

3.5.2 Corn yield function

The previous cropping decisions will influence the amount of available nitrogen and

the variability in yields. For example, the inclusion of cover crops has been found to
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improve soil health and reduce the downside risk of yields. However, in our analysis, we

assume there is no previous crop planted in the corn farmland, neither continuous corn nor

corn-soybean rotation.

Exponential yield-input response function is commonly used to model the crop yield in a

finite time region, especially for a single growing season. Compared with linear-plateau and

quadratic model, exponential model not only has fewer parameters need to be estimated,

but has a strong ability in explaining the actual crop growth process where crop yield grows

with the increased input at a decreasing absorbing rate and peaks when the limit of root

absorbing capacity reached. In this thesis we require a parsimonious model of corn yield

that includes the key factors that will affect yield and also may affect a farmers fertilizer

decision. The proposed model is specified as Equation (3.16), which captures key stylized

facts about corn growth and behaves appropriately at the upper and lower limits of the

state variables. Details regarding to the corn yield model are discussed in later Section 3.8.

Y = θ(α1R̄ + α2R̄
2)(1− e−β1S̄)(1− e−β2H̄) (3.16)

where Y is the corn yield in bu/a at harvest time T , R̄ is the growing season cumulative

precipitation in mm, S̄ is the growing season averaged soil nutrient stock in lb/a, H̄ is the

growing season cumulative corn heat units, θ, α1, α2, β1, β2 are parameters.

In Equation (3.16), corn yield is the product of the effects from cumulative rainfall

(R̄), the seasonal averaged soil nutrient level (S̄) and seasonal cumulative corn heat units

(H̄). If any of these variables is zero, corn yield is also zero. The contribution from each

input variable to corn yield is dependent on the levels of all other variables. The functions

relating to S̄ and H̄ are both concave exponential functions, implying that yield increases

at a decreasing rate in S̄ and H̄. This reflects the reasonable assumption that beyond a

certain level of S̄ and H̄, there will be no significant positive impact on corn yield Y .
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Since H̄ reflects the cumulative corn heat units, it does not take account of the distri-

bution of heat over the entire growing season. For example, a season with several weeks

of extremely hot weather coupled with low temperature in other weeks, compared with a

season of moderate temperatures throughout, corn yield may be at the same level for a

particular H̄ at harvest time. This is a weakness of the model. A more accurate depiction

of the impact of the timing of heat would require a more detailed specification of the crop

growth function, and is beyond the scope of this thesis.

The average nutrient stock, S̄, reflects the application of fertilizer by the farmer, poten-

tially reduced by rainfall through leaching. Since soil residual N levels are usually measured

in ppm (or mg N/kg soil) and hard to transformed into application unit lb/acre, we assume

the initial soil nutrient stock as zero for simplicity. In the model the fertilizer application

is restricted to two specific times: the starter application and the side-dressing. All things

equal, the earlier application of fertilizer will have a larger impact on S̄ and hence on crop

yield than the later application. This favours the starter application in the farmer’s deci-

sion. Offsetting this is the fact that the starter application has more possibility of being

washed away by rainfall, since it is on field longer. These two characteristics of the starter

and side dressing application, along with the cost of fertilizer application will affect the

farmer’s decision regarding fertilizer timing.

Using S̄ in the corn yield function is a device to reflect the fact that the starter applica-

tion and the side dressing are not perfect substitutes. From a reading of the trade literature

on corn farming, it appears that farmers prefer to apply some fertilizer early in the season

to ensure its presence during crucial corn development stages. While side-dressing at the

appropriate time may also meet corn needs, the risk of delaying fertilizer application is

that inclement weather or other unexpected issues would make it infeasible to apply side

dressing, and hence the window of opportunity for fertilizer application would be missed.
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Cumulative rainfall R̄ is shown to affect yield via a quadratic function in the literature.

The parameter associated with R̄2 will be negative, capturing the negative consequences

for yield of excessive rain. In our corn yield model, we do not include moisture from

irrigation, however, this is taken account of indirectly by precipitation.

3.5.3 Value function

The value of the farmer’s crop at time t = ti is the expected value, under the Q-measure,

of cash flows from the crop planted at time t0 = 0 and sold at time tM = T , with optimal

fertilizer amounts applied at time tf1 and tf2 , given starting values of state variables. We

follow the common practice of letting lower case variables denote realizations of random

variables except for δ where we use δ̃ to represent a particular value:

V (p, h̄, x1, δ̃, r̄, r, w, s, s̄, ti) = sup
K

EQ
K

{ fertilizer cost︷ ︸︸ ︷∑
tj∈ΩF

[
− e−ρ(tj−ti)cNj

N(tj)

]

+

revenue from harvest at T︷ ︸︸ ︷
e−ρ(T−ti)P (T )Y (p, h̄, x1, δ̃, r̄, r, w, s, s̄, T )−

fixed and variable cost︷ ︸︸ ︷
e−ρ(T−ti)

[
cF + cV Y (p, h̄, x1, δ̃, r̄, r, w, s, s̄, T )

]
∣∣∣∣P (ti) = p, H̄(ti) = h̄, X1(ti) = x1, δ = δ̃, R̄(ti) = r̄, R(ti) = r, wti = w, S(ti) = s, S̄(ti) = s̄

}
(3.17)

where cF denotes the fixed cost paid at time T , including labor cost and harvest machinery

cost. cNj
denotes the per unit cost associated with the application at tj. cV is the variable

cost on corn yield, excluding fertilizer use. The expectation is with respect to control set

K and ρ is the risk free discount rate.

We now derive the HJB equation which describes the evolution of crop value V between

dates defined by ti ∈ ΩD. Note that at dates in ΩD, H̄ (cumulative corn heat units) is
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updated; between these dates H̄ is fixed. At dates ΩF ⊂ ΩD the farmer applies the chosen

fertilizer amounts. In between dates specified in ΩD, the value of the crop changes as

a result of changes in price, soil nutrient levels, cumulative rainfall, and minimum and

maximum temperature levels. No cash flows occur at times not in ΩD.

Let t−m denote the instant before tm and t+m denote the instant after tm. Consider a

small time interval ∆t < (tm+1−tm). For small ∆t, according to the dynamic programming

principle,

V (p, h̄, x1, δ̃, r̄, r, w, s, s̄, ti) = sup
K

EKe
−ρ∆t

{

V

(
P (ti+∆t), H̄(ti), X1(ti+∆t), δ(ti+∆t), R̄(ti+∆t), R(ti+∆t), w(ti+∆t), S(ti+∆t), S̄(ti+∆t), ti+∆t

)
∣∣∣∣P (ti) = p, H̄(ti) = h̄, X1(ti) = x1, δ = δ̃, R̄(ti) = r̄, R(ti) = r, wti = w, S(ti) = s, S̄(ti) = s̄

}
, ti /∈ ΩD

(3.18)

Equation (3.18) can be rewritten as follows:

V (p, h̄, x1, δ̃, r̄, r, w, s, s̄, ti) = sup
K

EKe
−ρ∆t

{
V (p, h̄, x1, δ̃, r̄, r, wti , s, s̄, ti) + dV (·)

∣∣∣∣P (ti) = p, H̄(ti) = h̄, X1(ti) = x1, δ = δ̃, R̄(ti) = r̄, R(ti) = r, wti = w, S(ti) = s, S̄(ti) = s̄

}
, ti /∈ ΩD

(3.19)

Rearranging and substituting (1− ρ∆t) for e−ρ∆t under small time interval ∆t gives:

(ρ∆t)V (p, h̄, x1, δ̃, r̄, r, wti , s, s̄, ti) = sup
K

(1− ρ∆t)EK

{
dV (·)

}
t /∈ ΩD (3.20)

The term −ρ∆tEK{dV (·)} in Equation (3.20) can be omitted because it includes terms
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that are powers of ∆t which go to zero faster than ∆t. Dividing Equation (3.20) by ∆t

and let ∆t→ 0 gives:

ρ V (p, h̄, x1, δ̃, r̄, r, wti , s, s̄, ti) = sup
K

1

dt
EK

{
dV (·)

}
(3.21)

Then use Ito’s lemma for a jump process (cumulative rainfall) and a diffusion process (crop

price) to evaluate dV .

dV (·) =∂V
∂t
dt+

[
α(κ− p)

∂V

∂p
+

1

2
σ2
p p

2 ∂
2V

∂p2

]
dt+ σp p

∂V

∂p
dZt (3.22)

+

[
ϕ1(η1 − x1)Vx1 +

1

2
σ2
x1

∂2V

∂x21

]
dt+ σx1dZt +Rwt

∂V

∂R̄

+

[
ϕ2(η2 − δ̄)

∂V

∂δ̃
+

1

2
σ2
δ δ̃

2∂
2V

∂δ̃2

]
dt+ σδ δ̃dZt + ν σx1σδ

∂2V

∂x1∂δ̃
dt

+

[
V (p, h̄, x1, δ̃, r̄, r, (1− wti), s, s̄, ti)− V (p, h̄, x1, δ̃, r̄, r, wti , s, s̄, ti)

]
dq

Take the expected value of dV and substitute into Equation (3.21) to get the following

HJB partial differential equation (PDE) describing V (·) for ti /∈ ΩD:

ρ V (p, h̄, x1, δ̃, r̄, r, wti , s, s̄, ti) = sup
K

{
∂V

∂t
+

expected value gain from price︷ ︸︸ ︷
α(κ− p)

∂V

∂p
+

1

2
σpp

2∂
2V

∂p2
(3.23)

+

expected value change from the change of temperature state variables︷ ︸︸ ︷[
ϕ1(η1 − x1)Vx1 +

1

2
σ2
x1

∂2V

∂x21

]
+

[
ϕ2(η2 − δ̄)

∂V

∂δ̃
+

1

2
σ2
δ δ̃

2Vδ̃δ̃

]
+ ν σx1σδ

∂2V

∂x1δ̃
dt

+

expected value change from change in rainfall state variables︷ ︸︸ ︷
E(R)

∂V

∂R̄
+

[
V (p, h̄, x1, δ̃, r̄, r, (1− wti), s, s̄, ti)− V (p, h̄, x1, δ̃, r̄, r, wti , s, s̄, ti)

]
λwt→1−wt

}
, ti /∈ ΩD

Now we specify what happens at fixed dates ΩD and ΩF . For t ∈ ΩD cumulative corn
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heat units, soil nutrient stock and cumulative precipitation are updated:

V (p, h̄t, x1, δ̃, r̄, r, wt, s, s̄t− , t
−) = V (p, h̄t +Ht, x1, δ̃, r̄ +Rwt , r, wt, s, s̄t+ , t

+), t ∈ ΩD

(3.24)

At decision dates defined by ΩF = {tf1 , tf2}, the optimal control, N is chosen control which

affects soil nutrient level, S.

V (p, h̄, x1, δ̃, r̄, r, wt, S, S̄t− , t
−) = max

N
V (p, h̄, x1, δ̃, r̄, r, wt, S, S̄t−+Nt, t+), t ∈ ΩF (3.25)

Equations (3.23), (3.24), and (3.25) do not have a closed form solution. Further, a

numerical solution using a standard approach such as the finite difference method and semi-

Lagrangian approach7 is problematic given that there are five stochastic state variables,

(P,X1, δ, wt, R) and four path dependent variables (R̄, S, S̄, H̄). As an alternative to solving

the decision problem directly, we instead explore the characteristics of the value function

through Monte Carlo analysis. If we limit the possible controls to a few discrete choices,

an optimal solution can be found through exhaustive search.

3.6 Data description

This section briefly describes the historical data sets used to calibrate the corn yield

function and estimate the parameters of the stochastic differential equations describing

corn heat units, rainfall and corn prices. The models of the stochastic state variables are

used to generate simulated data to evaluate optimal nutrient application in the Monte

Carlo analysis presented in Section 3.9.3.

We analyze the decisions of a hypothetical corn farming operation located in Iowa using

7See Insley (2017) and references therein.
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relevant Iowa data8. Historical Iowa weather data are collected on daily basis over 29 years

(1990-2018), annual state-level averaged nitrogen application rates and state-level averaged

corn yields are collected over 19 years (1990-2003, 2005, 2010, 2014, 2016, 2018) for Iowa

state in the United States. This time frame coincides with available state-level survey data

for average nitrogen application in Iowa.

Historical weather data, consisting of daily precipitation (in mm), daily maximum and

minimum temperature (in oC) over the corn development period (May 01-Oct 30, 183

days), is obtained from Iowa Average Station9over 29 years (1990-2018), to represent the

averaged Iowa state-level weather conditions. Historical daily corn heat units (H) are then

derived using daily temperature data and the definition given in Section 3.7.2. Cumulative

precipitation R̄ and cumulative corn heat units H̄ are calculated by summing up daily

precipitation and daily corn heat units H over the specified growing period. Corn spot

price on a daily basis in U.S. dollars per bushel is collected from Macrotrends10 over the

period from Jan 01, 2010 to July 28, 2019. Cost parameters including fixed and variable

costs are collected in U.S. dollars from Ag Decision Maker, an agricultural guidance

website initiated by Iowa State University11.

Iowa state-level annual averaged corn yield information (measured in bu/acre) and

state-level averaged nitrogen fertilizer application (measured in lb/acre/year) are collected

8This research initially intended to model a hypothetical corn growing operation in On-
tario. Based on the Ontario Corn Yield Map (www.agricorp.com/en-ca/News/2019/Pages/PI-
MapShows2018CornYields.aspx), we located 5 interest areas around lake Erie in Ontario: Essex county (3
cities), Chatham-Kent county (8 cities), Elgin county (9 cities), Norfolk county (6 cities) and Haldimand
county (5 cities). We investigated historical corn yield, weather and nitrogen application data on city or
county level. However, this research was not pursued due to a lack of data.

9Data is collected from the Iowa Average station. The station ID is IA0000, with
a latitude of 41o75

′
N , a longitude of −93o25

′
W and elevation (m) is 259. Source:

https://mesonet.agron.iastate.edu/request/coop/fe.phtml
10Daily corn prices are collected from https://www.macrotrends.net/2532/corn-prices-historical-chart-

data
11Details are listed on “Estimated costs of crop production in Iowa 2022”, Page 2, Corn Following Corn

section, source: https://www.extension.iastate.edu/agdm/crops/pdf/a1-20.pdf
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from the USDA National Agricultural Statistics12 over a period of 19 years (1990-2003,

2005, 2010, 2014, 2016 and 2018). A summary of collected data characteristics is presented

in the following Table 3.1:

Table 3.1: The characteristics of collected data

Data min mean max s.d.

Daily minimum temperature (daily,1990-2018,oC) -7.8 12.3 24.4 5.9

Daily maximum temperature (daily,1990-2018,oC) 1.1 24.6 37.2 5.8

Daily precipitation (daily,1990-2018,mm) 0 3.3 40.9 5.4

Annual averaged corn yield (annual,19 years,bu/a) 80 149.4 203 28.2

Annual averaged nitrogen application (annual,19 years,lb/a) 114 128 150 9.8

Corn price (daily,2010-2019,$/bu) 3.1 4.6 8.3 1.4

Note: min refers to the minimum value; max refers to the maximum value; s.d. refers to the standard

deviation.

Daily maximum and minimum temperature will be used to calibrate daily temperature

models and to compute Iowa historical cumulative corn heat units H. Historical average

nitrogen application data for Iowa will be used to estimate the corn yield function. Thus,

the historical annual averaged soil nutrient stock (S) can be computed using historical daily

precipitation, averaged nitrogen application and the rainfall-induced loss process that is

discussed in Section 3.5.1 with a total N loss rate of 0.093×10−2 permm rainfall. Historical

daily precipitation will be used to calibrate daily precipitation model and compute the

cumulative level R. Historical H, R and S will be used to estimate the corn yield model

in latter Section 3.8.

12Both Iowa data sets are collected from U.S. Department of Agriculture (USDA) National Agricultural
Statistics Service, Survey Program. Source: https://quickstats.nass.usda.gov
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3.7 Parameters estimation and data simulation for

price, temperature and rainfall models

This section provides the details of the parameter estimation of the stochastic models

of corn prices, rainfall and temperature. The models are then used to create simulated

data for these variables.

3.7.1 Corn price model: Parameter estimation and data simula-

tion

As discussed in Sections 2.2.2 and 3.5.1, this paper adopts a mean reverting corn price

process13 which in the P-measure is given as:

dP = θ(P̄ − P )dt+ σPPdZt (3.26)

The price model will be estimated in the P-measure and then converted to the Q-

measure using an estimated market price of risk. The discretized approximation of Equa-

tion (3.26) is given as:

Pt = Pt−1 + θ△tP̄ − θ△tPt−1 + σPPt−1ϵ
√

△t, 1 ≤ t ≤ T (3.27)

where ϵ follows standard normal distribution. A series of daily spot corn prices from Jan

01, 2010 to July 26, 2019 is obtained from MacroTrends14 in U.S. Dollars per bushel. Using

13The link between this P-measure process (3.26) and the former assumed Q-measure process (3.2) is

that, α = θ + λPσ and κ = θP̄
θ+λPσ , where λP refers to the market price of risk.

14Daily corn spot prices were accessed on Aug 13, 2020 and downloaded from the source
https://www.macrotrends.net/2532/corn-prices-historical-chart-data
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maximum likelihood for estimating the associated parameters (in MATLAB), we present

the estimated parameters of the price process (Equation (3.26)) in Table 3.2:

Table 3.2: Parameters summary for risk adjusted corn price process calibration

Input Parameter Value

Annual market return of S&P500 index ρm 0.1783

One-year risk free interest rate ρ 1.76%

Estimated Parameter Value

Mean reversion rate θ 0.4282

Mean level of corn price P̄ , US$/Bushel 4.6720

Volatility of price σP 0.2547

Initial corn price P0, US$/Bushel 4.1450

Market price of risk for price λP 0.0976

P-value 0.0155

* Standard error of θ is 0.3491, 95% confidence interval is [-0.2561, 1.1125].

* Standard error of P̄ is 0.6108, 95% confidence interval is [3.4748, 5.8692].

* Standard error of σP is 0.0037, 95% confidence interval is [0.2475, 0.2619].

The above estimates are in the P-measure. We need an estimate of the market price

of risk (λP ) to convert to a risk-adjusted corn price process (Q-measure). Our estimation

uses the simplified approach suggested by Hull (2003) and employed by Insley & Lei (2007)

and Insley & Wirjanto (2010). Details are provided in Appendix F. The resulting estimate

of λP is 0.0976 (see Table 3.2).

A simulation of 110000 paths of the estimated risk-neutral corn price process with three

percentile lines is shown in the following Figure 3.5.
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Figure 3.5: 5%, median and 95% percentile lines of simulated risk neutral corn prices

3.7.2 Corn heat units model: Parameter estimation and data

simulation

Equation (3.4) describes the maximum daily temperature X1
t as a mean reverting

stochastic process with the long run mean a function of η1(t). Equation (3.28) below

presents a discrete version of Equation (3.4), with η1(t) replaced by a sine function:

η1(t) = m + a sin(b t + c) to capture seasonality (Wilks & Wilby (1999) and Qian et al.
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(2002)).

X1
t = [m+ a sin(b t+ c)]ϕ1∆t+ (1− ϕ1∆t)X

1
t−1 + σXϵX

√
∆t (3.28)

The daily temperature difference model in Equation (3.5) can be discretized as:

δt = (1− ϕδ∆t) δt−1 + ϕδ∆t ηδ(t) + σδδt−1ϵδ
√
∆t (3.29)

where the long-run mean level of the temperature difference, ηδ(t) = ηδ, is assumed as

constant in estimation. m,ϕ1, a, b, c, σX , ϕδ, σδ are all constant parameters, t is time vari-

able, ϵX and ϵδ follow standard normal distributions. The daily minimum temperature is

Xmin
t = X1

t − δt.

The maximum likelihood technique is employed for estimating parameters (mle function

in MATLAB). Data (as described in Section 3.6) comprises 29 years (1990-2018) of daily

temperature data in Iowa, total data points are 10585. Recall that the partial differential

equation describing the value of the corn field (Equation (3.23)) has a term that includes

the correction coefficient between δt and X
1
t . The sample correlation coefficient between

δt and X
1
t is ρ(δt, X

1
t )=0.1905. This was judged to be small enough that it can be ignored

for simplicity. The temperature models in Equation (3.4) and (3.5) are estimated as

dX1 = 89.2941 [15.0196 + 15.4501 sin(6.2780 t− 1.8573)−X1]dt+ 69.3473 dZ1t (3.30)

and

dδ = 113.4981 [11.5787− δ]dt+ 2.8384 δdZδt (3.31)

with standard errors and 95% confidence intervals of estimates are summarized in Table

3.3:
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Table 3.3: Estimated Parameters for Equation (3.28) and (3.29)

Parameter Estimates s.d. 95% Confidence interval

ϕ1 89.2941 2.3289 [84.7293, 93.8589]

m 15.0196 0.0606 [14.9008, 15.1384]

a 15.4501 0.0768 [15.2996, 15.6006]

b 6.2780 6.12e-04 [6.2768, 6.2792]

c -1.8573 0.0097 [-1.8763, -1.8383]

σX 69.3473 0.4765 [68.4134, 70.2812]

ϕδ 113.4981 2.7396 [108.1285, 118.8678]

ηδ 11.5787 0.5156 [10.5681, 12.5893]

σδ 2.8384 0.0137 [2.8115, 2.8653]

∆t 1
2920

N/A N/A

ρ(δt, X
1
t ) 0.1905 N/A N/A

Note: Correlation coefficient between daily maximum temperature X1
t and daily temperature

difference δt is assumed to be zero for the simulation exercise.

110000 paths of daily temperature are simulated using the estimated model. Simu-

lated daily temperatures and 29 years historical daily temperatures are plotted together

in the following Figure 3.6 and 3.7, with the x-axis representing the i-th day over the

183-day length corn development period. Our simulation model can provide a reasonable

representation for temperature seasonality and uncertainty.

Three percentile lines (5%, 50% and 95%) are plotted in Figure 3.6. From Figure 3.6, we

can find the majority (95%) of our simulated daily temperature paths are located around

the seasonality median trend line (50% percentile). This feature of simulated data can

guarantee us a good representation of temperature uncertainty and accordingly a reliable
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daily corn heat units calculation.

Figure 3.6: 5%, median and 95% percentile lines of historical and simulated daily maximum
temperature
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Figure 3.7: 5%, median and 95% percentile lines of historical and simulated daily minimum
temperature
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Figure 3.8: Comparison of historical and simulated daily temperature difference

Daily corn heat unit (Hti) are calculated using the simulated daily maximum and

minimum temperatures and the following definition from OMAFRA (2017a):

Definition 3.7: Daily corn Heat Units

Hti =
x̂max
ti

+ x̂min
ti

2

where x̂max
ti

= max

{
3.33 ∗ (Xmax

ti
− 10) − 0.084 ∗ (Xmax

ti
− 10)2, 0

}
, x̂min

ti
= max

{
1.8 ∗

(Xmin
ti

− 4.4), 0

}
, Xmax

ti
and Xmin

ti
are the daily maximum and minimum temperature at

day ti. Cumulative corn heat units at maturity H̄tM̂
are calculated by summing up daily
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corn heat units Hti from the seeding date ti = t0 to the maturity date ti = tM̂ .

3.7.3 Daily precipitation

The model for rainfall was described in Equations (3.9) and (3.10). Equation (3.9)

defined dry and wet days as governed by two Poisson processes. The instantaneous rainfall

rate R was specified as following a known probability distribution f(R). This is consistent

with previous literature (including Richardson (1981) and Brissette et al. (2007)) and the

weather generator WeaGETS (Chen et al. (2012a) and Chen et al. (2012b)). The Poisson

process described in Equation (3.9) is represented here as a discrete time first-order Markov

chain. The daily precipitation amount is modelled to follow an exponential distribution.

Like daily temperature, daily precipitation has a seasonal cycle and variability, with higher

probabilities and amounts of precipitation in summer and autumn (Bhandari et al. (2016),

Cropper & Cropper (2016), Patil et al. (2019) and the U.S. National Weather Service

(NWS)15). To accounting for the seasonal variability, the transition state probabilities

Pij(t) = P{wt = j |wt−1 = i}, i, j ∈ {0, 1} are estimated for each day of the year, where

subscript 0 means dry state and 1 means wet state. For example, the probability of

changing from dry state at day t− 1 of the year to dry state at day t of the year, P00(t),

is estimated by taking total number of days changing from dry at day t − 1 to dry at

day t across the 29-year (1990-2018) period and divide by the total number of days where

state is dry at day t − 1 across the 29-year (1990-2018) period. Estimates for transition

probabilities P00, P01, P10 and P11 for all days of the year are plotted in Figure 3.9.

15Seasonal Variability of Climate Time Series. Source: https://training.weather.gov/pds/climate/pcu2/
statistics/Stats/part1/CTS SeaVar.htm

90



Figure 3.9: Estimates for transition probabilities P00, P01, P10 and P11 for all days of the
year

Daily precipitation amounts on wet days, Rwt=1, are assumed to have an exponential

probability density function in Equation (3.32). To account for the seasonal variability, the

parameter γt, is estimated for each day of the year over the 29-year (1990-2018) period.

For the day t of the year, we calculate the total number of days with positive precipitation

across 29 years and divided by the total precipitation amounts on day t across 29 years.

Estimates and standard errors for γt are plotted in Figure 3.10 with the 95% confidence

interval is the blue-shaded area. The density function is

f(Rt) = γt · e−γt·Rt (3.32)

Note that for an exponential distribution mean E(R) = 1/γ and variance V ar(R) = 1/γ2.

From Figure 3.10, γ has a larger variation in winter and spring and rainfall amounts are
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higher in summer and fall, evidencing the seasonal variability.

Figure 3.10: Estimates for γt for all days of the year

The basic algorithm to simulate a series of daily precipitation is presented as the fol-

lowing Algorithm 1:
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Algorithm 1 Simulate daily precipitation

Input: Assume day t = 0 is dry state, estimated exponential distribution pdf f(Rt) in

Equation (3.32) and transition probabilities Pij(t) in Figure 3.9.

Output: daily precipitation series R(t)

1: for t= 1:365 days do

2: if day t− 1 is dry then

3: Prob = P00(t);

4: if day t− 1 is wet then

5: Prob = P10(t);

6: Generate a random number U(t) from the uniform distribution

7: if U(t) ≤ Prob then

8: day t is dry; ELSE day t is wet;

9: if day t is dry then

10: R(t) = 0;

11: if day t is wet then

12: generate R(t) from the density function f(Rt);

13: return daily precipitation vector of R

Apart from the exponential distribution, the gamma distribution is considered as an

alternate candidate for modeling rainfall rate on a day when precipitation occurs. The

gamma distribution has also been used in the literature in simulating daily precipitation

(including Roldan &Woolhiser (1982), Woolhiser & Roldan (1982) and Liang et al. (2012)).

A comparison of historical precipitation, simulated precipitation under exponential distri-

bution and simulated precipitation under gamma distribution is presented in the Figure

3.11:
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Figure 3.11: 5%, median and 95% percentile lines of Iowa historical and simulated daily
precipitation

From Figure 3.11 we can see that, in contrast with the simulated precipitation from

gamma distribution, the range of simulated precipitation from exponential distribution

gets closer to the historical record. The exponential distribution works better in describing

historical daily precipitation amounts compared to gamma distribution. In our thesis, we

will use the exponential distribution for simulating daily precipitation (including Brissette

et al. (2007), Chen et al. (2012a) and the weather generator WeaGETS).
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From the second picture in Figure 3.11, we can see that 95% of simulated paths are

located below the black line, which means even though we have large outliers beyond the

black 95% percentile line as a result of volatility, the majority of our simulated paths is

in the similar range with Iowa historical precipitation. That gives us an evidence that

our daily precipitation simulation is a good representation for the actual precipitation

uncertainty.

3.8 Calibration of the corn yield model

3.8.1 Corn growth stages

Corn planting in Iowa occurs between mid-April and mid-May depending on the par-

ticular area of Iowa and seasonal weather conditions16. A warm, dry period during the

last week of April often allows a small amount of corn to be planted early and a few

cooler events may limit planting activity until the end of the second week of May (May

14) when field work resumed on lighter textured soils. In this thesis, May 1 is chosen as

the representative planting date based on information about Iowa farming practices.

In Iowa most corn harvesting is done in October, although a portion may be done in

September and in cooler years harvesting may be delayed to November 17. In this thesis,

October 30 is the assumed harvest date.

Nitrogen (N) is typically the most yield-limiting nutrient for corn yield and relative

to other nutrients, nitrogen is more susceptible to losses due to rainfall. We therefore

use nitrogen fertilizer as the representative fertilizer. Nitrogen fertilizer application date

16Source: Iowa State University Extension and Outreach, Best Corn Planting Dates for Iowa, March
2012, https://crops.extension.iastate.edu/cropnews/2012/03/best-corn-planting-dates-iowa

17Iowa Corn FAQs, Iowa Corn Growers’ Association, https://www.iowacorn.org/education/faqs.
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and frequency, varies by region. According to crop experts18, the effective time to apply

phosphorus and potassium is before planting in the spring as long as the soil test levels are

above the very low range. As for nitrogen fertilizer, the efficiency of pre-plant or side-dress

applications depends largely on prevailing weather conditions. Thus, applying nitrogen at

multiple times, usually including the time of maximum nitrogen uptake speed can lower

the risk of N loss. Nitrogen uptake stages for corn in Mississippi as reported by Erick

Larson Crop Situation, are shown in the following Figure 3.12:

Figure 3.12: Nitrogen uptake stages for corn19

As the graph indicates, the most rapid N uptake stage for most crops (corn and soybean)

starts from V6 stage20, which is from the week after June, 6 to the week after July, 15, a

period that roughly covers more than 30 days. According to Dupont Pioneer21, nitrogen

18See for example, Mississippi Crop Situation of the Mississippi State University Extension,
https://www.mississippi-crops.com and firm Dupont Pioneer, https://www.pioneer.com

19Source: www.mississippi-crops.com/2017/04/07/importance-of -nitrogen-timing-and-methods-
for-southern-corn/

20V3 means plant switches from kernel reserves to photosynthesis and nodal roots begin to take over.
V3 stage corn is usually about 5 to 7 inches tall. V6 stage means the growing point finally moves above
the soil surface. V6 corn is normally 14 to 20 inches tall. At V9 stage, tassel is developing rapidly, but is
not yet visible. New leaves appear every 2 to 3 days and ear shoots are developing. Tassel stage means the
bottom-most branch of tassel completely visible. Milk stage means the kernel looks yellow outside, milky
white fluid inside. Dent stage means most kernels at least partially dented.Maturity means the maximum
dry weight is attained.

21Nitrogen Application Timing in Corn Production, by Dupont Pioneer, source:
www.pioneer.com/us/agronomy/nitrogenapplicationtiming.html
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may be applied by US growers at multiple times: early spring (pre-plant), at planting,

and in the growing season (side-dress). However, a pre-plant application is at a high

risk of loss due to a low uptake efficiency and excessive rainfall in early spring. Delaying

fertilizer application until after the crop has emerged (i.e. a side dressing) is beneficial

as the farmer can respond to spring weather conditions which have affected N content in

the soil. However it is considered risky to rely solely on a side dressing because weather

conditions may be such that the farmer misses the crucial time when corn is most in need

of nutrients22. In our numerical exercise, it is assumed that the farmer applies fertilizer

at the planting date and may apply additional fertilizer in the growing season (side-dress

application). For example, if wet spring weather results in N loss, the farmer will have a

second chance in growing season to avoid yield loss caused by nitrogen deficit, side-dress

rate may then be increased. Thus, the farmer in this chapter is assumed to have two

split-time nutrient applications (at the seeding date and in-season side-dressing). Usually

side-dress application occurs near the time of maximum plant N uptake speed (mid-June).

According to OMAFRA (2017a), June 18 can be targeted as the side-dressing date when

rapid stem elongation begins and a tassel is visible upon plant dissection, without posing

threat of root damage. The assumed date of maturity for our analysis is the 141st day (Sept

18) from the seeding date. This is a later date than what is shown for Mississippi region

in Figure 3.12 because several climate factors may delay the maturity in some areas. Sept

18 is the end of reproductive growth stage and is assumed as the latest date when corn

maturity achieved. It is not uncommon for farmers to delay harvesting after corn plants are

physically mature to allow corn kernels more drying time, which lengthens the time corn

can be stored.23 In Iowa, some corn farmers begin early harvesting from mid-September,

though most of the harvest is takes place in October. In unfavorable weather conditions,

22See Steve Butzen, ”Nitrogen Application Timing in Corn Production”, Crop Insights, Pioneer.
https://www.pioneer.com/us/agronomy/nitrogenapplicationtiming.html

23Iowa Corn Growers Association, Corn FAQs, https://www.iowacorn.org/education/faqs
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much of Iowa’s corn isn’t harvested until the end of October. It is assumed in this analysis

that the corn is completely harvested and sold in the market on the 183rd day (October

30) from the seeding date, six weeks after corn maturity.

In summary, this chapter will adopt May 01 as the uniform seeding date and as the

first nutrient application date, and June 18 as the second fertilizer application date. Phys-

iological maturity, at the end of growing season, is targeted for September 18 when kernels

have achieved maximum dry weight and weather accumulation will have no impact on

corn grain filling and yield after then. After September 18, it is assumed that the crop is

harvested and then sold on October 30. The corn growing season can be partitioned into

multiple key growth stages, as is illustrated in the Figure 3.13:

Figure 3.13: Corn growth stages in our model24

3.8.2 Corn yield estimation

As discussed in Section 3.3, empirical research has examined the effects of weather on

crop yields, often as part of the larger question on how changing climate might affect future

24In actual corn growth periods, especially in the middle of growing season, corn will become increasingly
sensitive to yield reduction by heat or drought events. Pollen viability may be reduced by high temperature.
In our model, key stages and dates are assumed according to OMAFRA (2017a).
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yields and fertilizer demand25.

The unknown parameters of Equation (3.16) were calibrated using the Iowa historical

data sets (H̄, R̄, S̄) that are described in Section 3.6. We used the Matlab function

lsqcurvefit for the estimation of the non-linear function. The fitted model is given as

Equation (3.33):

Y = 0.0153 ∗ year ∗ (3.5438 ∗ R̄− 0.0033 ∗ R̄2)(1− e−0.0766∗S̄)(1− e−0.0006∗H̄) (3.33)

The calibration was done using nineteen years of historical data. The term “year” was

set at 1 through 19 to capture exogenous productivity improvements over the estimation

period (Recall that the corn yield data includes 1990-2003, 2005, 2010, 2014, 2016, and

2018.). For the modeling exercise the year is set to 20, which implies θ = 0.3060 in Equation

(3.16).

Table 3.4: Ranges of Iowa historical state variables (1990-2003, 2005, 2010, 2014, 2016,
2018)

Value H̄ R̄ S̄

[min, mean, max] [3180.7, 3400.3, 3619.9] [409.9, 512.0, 870.7] [78.2, 101.4, 120.1]

∗ All three state variables are in 19×1 dimension

Ranges of Iowa historical H̄, R̄ and S̄ are displayed in the above Table 3.4. Figure 3.14

plots the estimated corn yield function versus one of H̄, R̄ or S̄, with the remaining two

variables set at their mean levels. For example, the first row of Figure 3.14 has a fixed H̄

and R̄ at their mean levels. The second row of Figure 3.14 has a fixed S̄ and R̄ at their

mean levels. The third row of Figure 3.14 has a fixed H̄ and S̄ at their mean levels.

25For example, see Addy et al. (2020) and references therein.
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Figure 3.14: 2-dimensional plots of corn yield model. Each figure shows yield versus an
independent variable with the other 2 variables at their historical mean. The first column
shows the horizontal axis over the historical range; The second column shows a more
extreme range for the horizontal axis.

In Figure 3.14, the left column represents the plot of corn yield model against one

variable, which varies in its historical range while keeping other two variables constant at

historical mean level. The right column in Figure 3.14 presents a more extreme range for

the horizontal axis. We observe corn yield as a concave function of H̄ and S̄, with the peak

yield at around 250 bu/acre. Over the historical range corn yield is a near linear function

of H̄ (left column, second row in Figure 3.14). The third row shows a significant negative
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response of corn yield to cumulative rainfall amounts R̄ beyond about 550 mm.

(a) H̄ is fixed at historical mean (b) R̄ is fixed at historical mean

(c) S̄ is fixed at historical mean

Figure 3.15: 3-dimensional plots of corn yield model (3.33)

We can get a more clear perspective from the 3-D plot of corn yield model from above

Figure 3.15 with only one variable held fixed. For example, in Figure 3.15 (a), the change

of cumulative precipitation R̄ does not affect the shape of yield-nitrogen effect but changes
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the maximum yield threshold corn can reach. A similar pattern can also be found from

Figure 3.15 (b) and (c), which shows each of the inputs are limiting to the overall yield.

Even if excessive soil fertility S̄ and heat accumulation H̄ are not harmful to the corn yield,

excessive rainfall will result in the yield loss.

Figure 3.16: Simulated corn yield path

Monte Carlo simulations of corn yield paths over time are plotted in the above Figure

3.16. Daily corn heat unit and daily precipitation for each path are used to calculate the

corresponding cumulative levels for H̄ and R̄ on a daily basis. Simulated daily precipitation

and the mean level of historical annual nitrogen application in Iowa (128 lb/a in Table 3.1

is assumed as the uniform one-off application at the seeding date) are used to calculate

the 110000 paths for the cumulative mean level of S̄ on a daily basis. The calibrated corn
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yield model Equation (3.33) is then used to compute the corresponding corn yield path

over time. Three percentile lines are also plotted in the figure. The above Figure 3.16

indicates that corn will start to grow after seeding stage with a rising speed (May) and

enters the rapid root development and grain filling stage with steady growth speed (June

through August), after which maturity season will arrive and the yield will no longer be

impacted by the input and weather accumulation.

A comparison of Figure 3.16 and Figure 3.12 in Section 3.8.1 can show us the advantage

of our proposed corn yield model in describing realistic corn growth. Several green paths

show a decline in yield at the end of the period in Figure 3.16, which can be attributed to

our quadratic rainfall R effect term in Equation (3.33) (huge late-season rainfall amount

will lower the yield).

3.9 Monte Carlo Analysis

As noted previously, with four stochastic state variables (H, R, S and P ) and three path

dependent variables (S̄, R̄, and H̄), no closed-form solution is available for the farmer’s

decision problem. A numerical solution using dynamic programming is also not practical.

However, if the number allowed controls is restricted, then it is possible to determine the

optimal actions using Monte Carlo simulation and exhaustive search. In this section, the

values of the hypothetical corn operation over the range of restricted farmer controls are

computed. The optimal fertilizer strategy is determined and results are contrasted with

the closed form results presented in Chapter 2.

The representative farmer is assumed to apply fertilizer twice: at the seeding date t0

(May, 01) as a starter and at the beginning of growing season t1 (Jun, 18) as side-dressing,

with fertilizer amounts represented by of N0 and N1. Given a pair of application strategy
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(N0, N1), the expected value of the crop at the seeding date V (t0) can be computed:

V (t0|(N0, N1)) = e−rTE[V (T |(N0, N1))] (3.34)

with

V (T ) =

corn revenue︷ ︸︸ ︷
Y (S̄[0,tM̂ ], H̄ [0,tM̂ ], R̄[0,tM̂ ]) p(T )−

total fertilizer variable costs︷ ︸︸ ︷
cN N0 e

r(T−t0) − c′N N1 e
r(T−t1)−

fixed cost︷︸︸︷
cF

−

total variable costs excluding fertilizer inputs︷ ︸︸ ︷
cV Y (S̄[0,tM̂ ], H̄ [0,tM̂ ], R̄[0,tM̂ ])

(3.35)

where tM̂ refers to the maturity date of the corn, cV is the variable cost on corn yield

excluding fertilizer use (e.g., grain haul, storage), cN is the unit variable cost of starter

application while c′N is the unit variable cost of side-dressing fertilizer application including

fertilizer cost, cF is the fixed machinery cost associated with both fertilizer applications and

harvest. t0 is the seeding time and T is the harvest date, Y (·) represents the estimated corn

yield model Equation (3.33). R̄[t0,tM̂ ] is the accumulation of precipitation amount over the

period from seeding date t0 = 0 to the end of the growing season tM̂ , p(T ) is the simulated

risk neutral corn price at the harvesting date T = tM , H̄ [t0,tM̂ ] is the accumulation of daily

corn heat units over the period from seeding date t0 = 0 to the end of the growing season.

S̄[t0,tM̂ ] is the average amount of soil nutrient stock over the same growing season period.

Soil nutrient content S equals nutrient application less rainfall induced nutrient loss. Note

that it is appropriate to discount using the risk free rate since corn prices are modelled in

the Q-measure for equivalent risk neutral valuation. Rain and corn heat units are modelled

in the P-measure, but it is assumed that these are diversifiable risks.

The algorithm to compute the simulated soil nutrient stock is created as the following

Algorithm 2:
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Algorithm 2 Compute average soil nutrient stock S̄

Input: Simulated daily precipitation Rwt(t), t ∈ ΩD, nutrient application (N0, N1), ls

Output: S̄

1: Initial soil nutrient stock s̄0 = 0;

2: for i=1 : number of simulated paths do

3: S̄(i, t0) = N0;

4: for j=t0+1 : tM do

5: if j ∈ ΩF then

6: S(i, j) = (1− ls ∗Rmj−1(i, j − 1)) ∗ S(i, j − 1) +N1

7: else

8: S(i, j) = (1− ls ∗Rmj−1(i, j − 1)) ∗ S(i, j − 1)

9: return S̄(i, :) = mean(S(i, t0 : tM))

3.9.1 Variable and fixed costs

Due to differences in soil characteristics, the variation in the quality and quantity of

inputs and other agricultural-economic factors, production costs vary from farm to farm.

Ag Decision Maker26 provides cost estimates based on data from several sources,

including Iowa State University, surveys of selected agricultural cooperatives and other

input suppliers around the Iowa state. These cost estimates are intended to represent

the average costs for farms in Iowa. Very large or small farms may have lower or higher

fixed costs per acre. Using this information and assuming 162 bushels per acre as target

yield scenario, the variable cost of fertilizer for both starter and side-dressing applications

is assumed as cN = c′N = $0.72/lb. The fixed preharvest machinery cost is assumed as

26Ag Decision Maker, an agricultural guidance website initiated by Iowa State University, specified the
production costs. Details are listed on “Estimated costs of crop production in Iowa 2022”, Page 2, Corn
Following Corn section, source: https://www.extension.iastate.edu/agdm/crops/pdf/a1-20.pdf
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$24.8/acre. The fixed harvest machinery cost is $39.28/acre. Labor cost ($47.6/acre) has

been treated as a fixed cost in the report since most labor on Iowa farms is supplied by

the operator or permanent hired labor. The total fixed cost associated with both split

applications and harvesting is assumed as cF = 24.8 + 39.28 + 47.6 = 111.68 $/acre. The

variable costs in Ag Decision Maker, consisting of preharvest machinery, seed, herbicide,

chemical fertilizer, harvest machinery variable costs, etc, is estimated as $464.02/acre. The

total variable cost excluding chemical fertilizer is 464.02-113.76 (Nitrogen variable cost)-

37.82 (Phosphate variable cost) -27.44 (potash variable cost) =$285/acre, based on per

acre 162 bushels yield target scenario. The base case variable cost per bushel corn yield is

calculated as cV = 285
162

= $1.7593 /bushel. In later sensitivity analysis sections, the total

variable cost that only include haul grain, dry grain and store grain is assumed as 0.2645

$/bu for sensitivity examination. Since the fixed costs cF covers harvest machinery and all

labor cost, cF is assumed to be paid at maturity date. The total variable costs per bushel

on corn yield will be paid at maturity date as well.
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Algorithm 3 Compute value V0 at t = 0 and the optimal fertilizer strategy (N⋆
0 , N

⋆
1 )

Input: nutrient application set (N0(1×size(N0)), N1(1×size(N1))), cN , c
′
N , cF , cV , growing

season H̄(M×1), R̄(M×1), S̄(M×1), PT (M×1), ρ, tf1 , tf1 ∈ ΩF

Output: V0, the optimal strategy (N⋆
0 , N

⋆
1 )

1: for i= 1:size(N0) do

2: Ñ0=N0(i)

3: for j= 1:size(N1) do

4: Ñ1 = N1(j)

5: Compute S̄(M×1) using given (Ñ0, Ñ1) and Algorithm 2.

6: VT=PT Y (H̄, S̄, R̄)− cNÑ0e
r(T−tf1 ) − c′NÑ1e

r(T−tf2 ) − cF − cV Y (H̄, S̄, R̄)

7: V0(i, j) = e−ρ(T−t0)mean(VT )

8: [a, b]=find(V0=max(V0));

9: return a, b

10: (N⋆
0 , N

⋆
1 ) = (N0(a), N1(b));

3.9.2 Starting values for state variables and costs

Assumed starting values are required of all state variables for the Monte Carlo sim-

ulation, which are detailed below in Table (3.5). Assumed starting values for the state

variable corn price is P0=$4.145/bushel, which is the spot price on July 26, 2019 spot

price. Assumed starting values for daily maximum temperature X1 and temperature dif-

ference δ are values on December 31, 2018. Both temperature state variables are simulated

from December 31 to next year September 18 (maturity date). Simulated daily minimum

temperature is computed using X1 − δ. For daily precipitation simulation, we assume the

first day (January 01) of a year is dry state with no rainfall, we then use P01 and P00 to

simulate 365 days rainfall series with rainfall amounts are generated from the estimated
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exponential distribution. We take growing season period (May 01-Sept 18, from seeding

date to maturity date) from simulated data in our computation.

Table 3.5: Starting Values for Simulating State Variables

State Variables Starting Values Interpretation

Daily maximum temperature 2.8oC

Use Dec 31, 2018 data as

starting value to simulate

until next year maturity

date Sept 18.

Daily minimum temperature -8.3oC

Use Dec 31, 2018 data as

starting value to simulate

till next year maturity date

Sept 18.

Daily temperature difference 11.1oC

Use daily maximum

temperature minus daily

temperature difference.

Daily precipitation
Assume the initial

state (day 0) is dry

Simulate 365-day rainfall

series and use May 01

to Sept 18 period

for computation.

Corn price $4.145/bushel

Use Jul 26, 2019 spot price as

starting value to simulate

until next year Oct 30.
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3.9.3 Monte Carlo Results

Nitrogen applications N0, N1 are in lb/acre, all cost and price parameters are in U.S.

dollars. The admissible set of (N0, N1) is a set of 3721 (61×61) pairs that start from (0, 0)

to (120, 120) lb/a with a uniform step size of 2 for each Ni (i = 0, 1). The optimal fertilizer

application strategy with the maximized corn value V0 is chosen by exhaustive search over

these pairs of possible strategies,

V ⋆
0 = max

(N0,N1)
E
{
V (t0|(N (1)

0 , N
(1)
1 )), V (t0|(N (1)

0 , N
(2)
1 )), ..., V (t0|(N (61)

0 , N
(61)
1 ))

}
(3.36)

The above Algorithm 3 is thus created to describe how to compute the value of the corn

field V0 and determine the optimal nutrient application strategy.

The values per acre of corn over a range of fertilizer application decisions are depicted

in the value surface in Figure 3.17. Each node on the value surface represents the expected

value of corn under a given fertilizer application strategy (N0 = Nt0 , N1 = Nt1) given the

assumed stochastic models for corn prices, rain and corn heat units. The surface in Figure

3.17 is concave with the maximized value (V0 = $453.22/acre) at (N0, N1) = (66, 0) lb/a.

This result indicates that the farmer’s optimal strategy is applying all the fertilizer at the

seeding date, based on our base case parameter assumptions. Based on our model setting,

starter application can provide higher seasonal soil average N stock with less fertilizer

amount compared to side-dressing.

The value surface in Figure 3.17 is relatively flat around the optimal application. After

examining the V0 values for each bundle of (N0, N1), we find that the farm value (V0(i, j))

changes by very small amounts across contiguous allocations (N0(i−1), N1(j)), (N0(i+1),

N1(j)), (N0(i), N1(j+1)) and (N0(i), N1(j− 1)). Since we use the averaged soil N level as

the state variable in our model, N0 is more favourable and has a more significant impact
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on corn yield and farmland value compared to the same amount N1. We can see this in

Figure 3.18, where both the soil nutrient stock and the value from (N0 > 0, N1 = 0) are

higher than those from (N0 = 0, N1 > 0). However, as the application amount increases,

the farmer’s benefit (V0) from “all as starter” (red line) and “all as side-dressing” (blue

line) are getting closer, which can be explained by the exponential corn yield model that

generate very near yield levels when the soil nutrient stock are high enough (as showed in

Figure 3.14).

Figure 3.17: Corn Value Surface V0, ordered triple is (First application, Second application,
Value)

In Figure 3.17, V0 rises rapidly as N0 and N1 are increased from zero. However, the

surface declines as either N0 or N1 is increased after reaching certain threshold. This

finding can be explained by the concave exponential corn yield assumption that excessive
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fertilizer application (soil fertility accumulation) will have no further significant positive

impact on corn yield level after the nutrient absorbing capacity is reached, but will decrease

the net value V0 as a result of fertilizer application costs increase.

(a) The average soil nutrient stock (b) Corn value V0

Figure 3.18: The average soil nutrient stock and corn value when (N0 = 0, N1 > 0) and
(N0 > 0, N1 = 0)

The farmer’s optimal total fertilizer application of 66 lb/acre is much less than the

historical average in Iowa of 128 lb/acre over all farms surveyed in the years 1990-2003,

2005, 2010, 2014, 2016 and 2018. Over these same years the minimum average applied is

114 lb/acre and the maximum is 150 lb per acre. This is likely a reflection of the simplified

modelling assumptions we have made. We may be underestimating the potential for soil

fertility loss over the growing season. Another explanation is that farmers are using more

fertilizer than is optimal. The factors that can affect the changes of optimal fertilizer

applications are examined in the later sensitivity analysis section.

For a more detailed look at the impact of fertilizer side-dressing application N1 on

the value V0 given various scenarios of applied N0, a series of figures are presented in the

following Figure 3.19. Figure 3.19 shows the response of V0 to side-dressing N1 at different
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fixed starter N0 levels. At low levels of starter amount N0 = 0, 10, 20 lb/a that are far below

the overall crop nutrient requirement, an increase in N1 increases V0 up to a maximum level

after which the value curve starts to steadily decline. Even if N fertilizer is under-applied

at seeding time, farmers can fully benefit from the option of the nutrient side-dressing

strategy. Under-application can be compensated through exercising the option for a later

side-dressing. Our model assumes there is no permanent damage to corn yield from too

little N application at the early season. In Figure 3.19, beyond a certain threshold, the

increased N1 will result in a reduction in total value due to more variable costs and no

further benefits in corn growth.

Figure 3.19: Response of V0 to N1 with different given N0 (Numbers in blue show optimal
N1 amount in pounds and value in $/acre given the specified N0 amount)

In our base case example, a positive fertilizer application followed by a zero side-dressing
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application represents the optimal strategy. This result is consistent with Hyytiäinen

et al. (2011), who examined the benefit of a split fertilizer decision for managing malting

barley crops in Finland, using a process-based model COUP . They found that, without

a pollution tax, the farmer’s optimal decision is to apply fertilizer only once as the first

application rather than through three later split applications. In their model this was due

to the added fixed costs of each additional application.

The farmer’s optimal strategy is determined by several factors including the relative

cost of the two split fertilizer applications, the impact of application timing on soil nutrient

level and hence plant growth, the expected outlook for rainfall and the expected corn price

at the harvesting time. The cost of the starter and side dressing applications are assumed

to be the same in this base case, so relative cost is not a factor. However, our assumption

that plant growth depends on the average soil nutrient level is important, as it implies

that the starter application has a larger effect on S̄, other things equal. Uncertain corn

prices and rainfall intensification may make it beneficial for the farmer to delay fertilizer

application since the side-dressing application comes with the benefit of more information

about the realizations of both these variables. While a large amount of starter application

N0 may increase the average soil nutrient content, it is also subject to being washed away

by rainfall. Intense rainfall conditions or a crash in corn prices in the season may make the

farmer regret the initial application. The private optimal N application strategy balances

all of these factors and given our assumptions in this base case, the farmer prefers to use

only the starter application.

To see the evolution of the daily soil nutrient stock S(t), averaged soil nutrient stock

S̄(t) and the cumulative N loss, we plot the simulated paths in the Figure 3.20, given

the fertilizer application are at the optimal level (N0 = 66, N1 = 0)lb/a. Figure 3.20(a)

indicates the decrease of daily soil nutrient stock as a result of rainfall and Figure 3.20(b)

indicates the decrease of averaged soil nutrient stock computed on a daily basis. Figure
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3.20(c) indicates the increase of the cumulative N loss caused by rainfall.

(a) Simulated daily soil nutrient stock S(t) (b) Simulated averaged soil nutrient stock S̄(t)

(c) Simulated cumulative N loss

Figure 3.20: Simulated paths for S(t), S̄(t) and the total N loss, when application is at
optimal level (N0 = 66, N1 = 0)lb/a

As discussed in Chapter 1, over-application of fertilizer is partially attributed to the

adoption of the maximized yield target. A contrast between the farmer’s optimal appli-

cation and the application based on maximum yield principle is presented in Figure 3.21.

Note that our corn yield model in Equation 3.33 uses soil nutrient stock as the fertility

variable instead of application amount. Given a fertilizer application amount applied at
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the seeding date, we compute the corn yield for each path of simulated H̄, R̄ and S̄, and

take average on these simulated corn yields as the yield response to the given application

amount. Since the exponential yield model does not generate a unique maximized yield

like the quadratic model does, we regard the red point in Figure 3.21 as the “maximum-

yield” application decision, which generates a higher 247 bu/acre yield, a lower corn field

value, and a higher fertilizer cost compared to the privately optimal choice. Following

the “maximum-yield” fertilizer application principle will create a $31.7/acre fertilizer cost

increase and a $19/acre field value loss. Like our conclusions in Section 2.4, Figure 3.21

shows that the farmer’s optimal application is lower than the applications based on the

maximum-yield principle, suggesting that fertilizer over-application relative to the econom-

ically efficient amount can be attributed to recommendations built on the yield-maximizing

principle or the farmer’s desire to achieve higher yield targets. The corn yield level from

the blue point (242.55 bu/a) is 97% of the maximum yield 247 bu/a, showing that the

privately optimal N application rate will not hinder corn productivity.

(a) Corn yield response to N application (b) A segment in (a) with 50 to 150 lb/a application

Figure 3.21: Contrasting the farmer’s optimal fertilizer application, (N0 = 66, N1 = 0)lb/a,
and application based on the maximum yield principle, (N0 = 110, N1 = 0)lb/a
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3.9.4 Sensitivity analysis: Variable costs

The variable cost of N application may vary depending on when, how and what nitrogen

fertilizer is applied and whether specialized capital equipment, stabilizer or inhibitor is used

(Sellars (2019), farmdoc daily27 and GoCorn28).

Sensitivity on fertilizer application variable costs To examine the impact of vari-

able costs regarding starter and side-dressing fertilizer application on the optimal strategy,

a sensitivity analysis is performed by varying the starter unit application cost cN and the

side-dressing unit cost c′N from their original base level. The base level of application vari-

able cost is c′N = cN = $0.72/lb. The optimal application (N0, N1) and N0 +N1 are then

derived for each (cN , c
′
N) scenario, which are presented in the following Table 3.6.

Table 3.6: Sensitivity of (N0, N1)
V0 to different levels of variable application cost

cN

c′N 0.72
4

0.72 0.72 ∗ 4

0.72
4

(90, 0)492.8815 (90, 0)492.8815 (90, 0)492.8815

0.72 (0, 116)486.8625 (66, 0)453.2912 (66, 0)453.2912

0.72 ∗ 4 (0, 116)486.8625 (0, 84)434.7589 (42, 0)340.4626

∗ N0, N1 are in lb/a. cN refers to the unit cost of the starter application. c′N refers to the variable

cost of the side-dressing, $/lb.

In Table 3.6, a reduction in c′N or an increase in cN relative to the base case can cause a

switch in the optimal timing fertilizer application such that all fertilizer should be applied

27Source: “Fertilizer Prices, Rates, and Costs for 2023”, https://farmdocdaily.illinois.edu/2022/09/fertilizer-
prices-rates-and-costs-for-2023.html

28Source: Greg Stewart, OMAFRA Corn Specialist, “Side-dressing Nitrogen in Corn: Profit or Pain”,
2006, http://www.gocorn.net/v2006/Nitrogen/articles/Sidedressing%20Nitrogen %20in%20Corn.html
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as a side dressing. V0 decreases going left to right along a row or down along any column

in response an increase in either cN or c′N that changes the optimal decision.

(a) when cN = 0.72
4 (b) when cN = 0.72

(c) when cN = 0.72 ∗ 4

Figure 3.22: Sensitivity of the optimal application (N0, N1) to cost ratio
c′N
cN
. Blue line is

optimal N0 application (left hand y-axis). Red line is optimal N1 application (right hand
y-axis)

Figure 3.22 depicts how changes in the the cost ratio
c′N
cN

affect the optimal application
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(N0, N1) (more details are listed in Appendix G).

The sensitivity of (N0, N1) to the cost ratio is shown at three different values of cN :

in cN = 0.72
4
, cN = 0.72 and cN = 0.72 ∗ 4 $/lb. Recall that our base case is c′N = cN =

$0.72/lb. In Figure 3.22, it will be observed that in a narrow range around a cost ratio
c′N
cN

of 0.72, it is optimal to apply some fertilizer in both starter and side dressing applications.

Outside of this narrow range, the optimal decision is to apply all fertilizer either at planting

or as a side dressing, but not both. We conclude that the optimal split decision is highly

dependent on the relative fertilizer application cost,
c′N
cN
, which may vary from region to

region depending on technology in use and other site specific conditions.

Sensitivity on the variable cost The total variable cost, cV , on corn yield, excluding

chemical fertilizer variable cost, are examined in Table 3.7. The total variable cost is varied

from 1.7593
4

to 1.7593∗4 $ per bushel. Unlike fertilizer variable costs, the total variable cost

will not alter the optimal N1 = 0 conclusion, instead, N0 strictly decreases with the rise of

total variable cost, and so does the maximized value V0.

Table 3.7: Sensitivity of (N0, N1) and V0 to different levels of total variable cost

Total variable cost 1.7593
4

1.7593
2

1.7593 1.7593× 2 1.7593× 4

(N0, N1) (lb/a) (74, 0) (70, 0) (66, 0) (46, 0) (0, 0)

V0 ($/a) 770.7598 664.4021 453.2629 35.34 0

3.9.5 Sensitivity analysis: Corn price volatility and speed of

mean reversion

The sensitivity of the optimal fertilizer application to corn price uncertainty is examined

in this section by varying corn price volatility σ and mean reversion speed θ as shown in
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the following Table 3.8. In general, a higher price volatility and/or lower speed of mean

reversion imply that the farmer is faced with greater uncertainty when choosing fertilizer

application levels. Three levels of price volatility and mean reversion are set to represent

different levels of price uncertainty. The original σP and θ are estimated in Table 3.2.

Table 3.8: V0 (N0, N1) for different price sensitivity regimes (θ,σP )

parameters σP

2
σP 2σP

θ
2

446.3(66, 0) 430.2(64, 0) 412.9(60, 0)

θ 462.3(70, 0) 453.5(66, 0) 444.7(64, 0)

2θ 501.1(72, 0) 492.7(68, 0) 477.0(66, 0)

From Table 3.8, the optimal fertilizer application (N0, N1) as well as the value V0 are

found sensitive not only to corn price volatility, but also to the mean reversion speed. More

specifically, at a given mean reversion speed level, both starter application N0 (which is also

the total application) and the maximized value, V0 (blue colored number on the left-top of

each pair) are found to decline with the rising of price volatility level from σP

2
to 2σP . This

finding is consistent with the previous result ∂N
∂σ

< 0 we found in Table 2.1 (Chapter 2) in

our closed form solution for a much simpler model. Increased corn price volatility has a

negative impact on the fertilizer application amount.

Considering mean reversion sensitivity if we compare (N0, N1) and V0 along any column

in Table 3.8 it will be observed that under a given price volatility level, the optimal fertilizer

application increases with an increase of the mean reversion speed from θ
2
to 2θ. Both value

V0 and total application are sensitive to the mean reversion speed with ∂(N0+N1)
∂θ

> 0 and

∂N0

∂θ
> 0, which is consistent29 with the result ∂N

∂θ
> 0 in Table 2.1 (in Section 2). As long

29Using the price process estimates in Table 3.2, we can calculate the value of P̄ (1 + F ) in Table 2.1,
which is P̄ (1 + F ) = 15.9104 > P0 = 4.1450. Thus, the sensitivity of the total amount N0 +N1 on mean
reversion speed θ is consistent with our previous finding ∂N

∂θ > 0 in Table 2.1.
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as P̄ exceeds the average variable cost of fertilizer application, as is the case under our

assumptions, a higher speed of mean reversion increases the value of the crop and makes

it worthwhile for the farmer to use more fertilizers.

A higher starting value for corn price simulation in Table 3.5 will shift all simulated

price paths upward, resulting in higher trading prices PT at the end of the period. To see

how an increase in p0 affects the optimal decision in our base case, we raise the starting

value in Table 3.5 from $4.145/bushel to $6.145/bushel. The farmer’s optimal application

increases from (66, 0) lb/a to (76, 0), and the value V0 per acre increases from $453.2184

to $935.6317. Consistent with the findings in Chapter 2, a higher corn price starting value

will increase the optimal application amount. Intuitively, a good current corn market gives

farmers incentive to apply more fertilizer, the marginal benefit from corn yield dominates

the marginal cost from fertilizer use.

In conclusion, results indicate that price volatility and mean reversion speed will have

impacts on the optimal fertilizer application as well as the optimal value. We have char-

acterized an increase in volatility and a decrease in mean reversion speed as representing

an increase in uncertainty. Both these effects will lower the optimal quantity of N applied.

The benefits of increased N in terms of a higher corn yield do not outweigh the increased

risk of an unfavourable corn price at harvest time when corn prices are more volatile. These

two parameters are found to only affect the optimal application amount, not split decision

between starter and side dressing.

3.9.6 Sensitivity analysis: Precipitation

In this section we consider the impact of a change in the probability of wet and dry days

as well as a change in the expected value and variance of the quantity of rain. We vary

the likelihood of rain, represented by transition probabilities between wet and dry days,

120



defined in Figure 3.9. For representing the wetter scenario (with a larger rain likelihood),

we increase the transition probabilities P11 and P01 by 15% respectively, where 0 indicates

the state of dry and 1 indicates the state of wet. For the drier scenario (with a smaller

rain likelihood), we increase two transition probabilities P00 and P10 by 15% respectively.

Precipitation occurrence is thus classified into three regimes according to rain likelihood

as seen in Table 3.9. In addition, we examine the effect of the daily precipitation amount

by varying the parameter γt in Equation (3.32) from the original base case (estimates in

Figure 3.10) to 2γt (Less expected rainfall amount and lower variance scenario) and 1
2
γt

(More expected rainfall amount and greater variance scenario). Simulations of the nine

precipitation scenarios are plotted in Figure 3.23. The increased variance of Rm is evident

in the figure as γ is increased moving from left to right along a given row from “Less” to

“Base” to “More”. The optimal application results under each pair of rainfall likelihood

and daily amount are presented in Table 3.9. All parameters are using our base case

assumptions.
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Figure 3.23: Simulated daily precipitation (mm) in 9 sensitivity scenarios. In the plot
titles the first label refers to rain likelihood and the second label refers to the rain amount.

Table 3.9: Sensitivity of (N0, N1)
V0 to different rainfall scenarios (The total variable cost

is base case 1.7593 $/bu)

Rain likelihood

Rain amount
Less Base Case More

Smaller (Dryer) (52, 0)240 (64, 0)424 (68, 0)382

Base Case (56, 0)304 (66, 0)453 (64, 0)229

Larger (Wetter) (58, 0)346 (68, 0)437 (50, 0)29

Rainfall impacts the decision maker through two avenues: (i) the impact on soil nutrient

level as rain causes leaching of nitrogen, and (ii) the impact on corn growth, as too much

rain causing a reduction in yield. A priori we cannot say how an increase in the likelihood,

expected quantity or variance of rainfall will change the optimal quantity and timing of
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fertilizer application. When expected rainfall likelihood is small (Dryer scenario), more

expected daily rainfall amount will increase the fertilizer application as a way to compensate

the N loss, N0 rises from 52 to 64 to 68 lb/a. In contrast, when rainfall events become

more frequent (Wetter scenario), an increase in the expected daily rainfall amount will

initially increase N (moving along the third row), but when we reach the “more” entry,

reflecting the largest rain amount, the optimal N amount drops significantly to 50 lb/a,

and V0 also falls precipitously. The entry in the third row, third column of the table reflects

the negative impact of too much rain on corn yield. Corn farming is less profitable under

these circumstances because of the lower yield and also because a significant amount of

any N applied will be leached away. Similarly, at Less or BaseCase rainfall amount level,

more frequent rainfall events will increase the fertilizer application N0 (from 52 to 58 and

from 64 to 68), as a fertility compensation measure to rainfall-induced N losses. However,

in more expected rainfall amount scenario, more frequent rainfall will lower the application

from 68 to 50 lb/a. These findings can be explained by the trade-off between corn yield

and state variable nutrient soil stock (S) in our corn yield model, which is augmented by

fertilizer application but reduced as a result of rainfall event.

Sensitivities for precipitation & the total variable cost To see the impact of a lower

total variable cost on the rainfall sensitivity results, the total variable cost is assumed as

0.2645 $/bu and results are listed in the following Table 3.10.
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Table 3.10: Sensitivity of (N0, N1)
V0 when the total variable cost is 0.2645 $/bu

Rain likelihood

Rain amount
Less Base Case More

Smaller (Dryer) (60, 0)471 (70, 0)770 (76, 0)702

Base Case (62, 0)573 (74, 0)812 (72, 0)457

Larger (Wetter) (66, 0)641 (76, 0)790 (58, 0)131

Comparing Table 3.23 and Table 3.10, we can find the decrease of total variable cost

will neither alter the precipitation sensitivity pattern nor change the optimal application

timing, but increases the fertilizer application amount under each rainfall scenario.

Sensitivities for precipitation & the fertilizer cost ratio To see how the fertilizer

cost ratio
c′N
cN

will interact with the precipitation effect in changing the optimal application,

we repeat the analysis in Table 3.23 incorporating the cost ratio sensitivity (ranging from

c′N
cN

= 0.5 to
c′N
cN

= 1). Details of results are listed in Appendix H, results are visualized in

the following Figure 3.24.
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Figure 3.24: Sensitivity results regarding precipitation and cost ratio
c′N
cN
. Blue line is

optimal N0 application (left hand y-axis. Red line is optimal N1 application (right hand
y-axis)

We can see from Figure 3.24 that fertilizer cost ratio
c′N
cN

is decisive for the optimal

application timing and amount, the delayed application N1 is sensitive to rainfall as well

as to the fertilizer cost ratio. One way to look at Figure 3.24 is to consider at what cost

ratio it is optimal to set N1 = 0 and apply fertilizer only via N0. Looking at the first

column in Figure 3.24 (the less rain quantity scenario), moving from row 1 to row 2 (from

less frequent rain to the base case), the decision maker sets N1 = 0 for
c′N
cN

at rough 0.7

and above. Moving to the third row with more frequent rain N1 = 0 for
c′N
cN

at about 0.8

and above. In other words, moving down the first column in Figure 3.24, an increasing

frequency of rain means that N1 > 0 will be chosen for a wider range of the cost ratio. This

is as expected because wetter conditions give a benefit to N1 since the later application
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date implies less opportunity for fertilizer to be leached away.

In conclusion, rainfall likelihood and the expected daily amount will interact with each

other in a complex way in affecting the evolution of the soil nutrient content, through

N losses, and thus will affect the private optimal fertilizer application. Farmers’ opti-

mal fertilizer application amounts are based on the trade-off between application cost,

rainfall-induced fertilizer loss and gain from yield. Depending on the
c′N
cN

ratio, the optimal

application timing is found to be sensitive to rainfall likelihood, expected quantity and

variance.

3.9.7 Sensitivity analysis: Starting soil N-level

In reality, nitrogen can carryover from one growing season to the next, providing a

vital fertility resource for farmer’s next crop. Some amount of nitrogen, coming from the

mineralization of soil organic matter or unused fertilizer, is retained in the soil as the

form of nitrate. The corn yield functions estimated by ISU (2018) (Figure 1, 2 and 3)

for different corn rotations indicates a potential corn yield even with zero or very little

fertilizer application. To examine how involving soil N residue in our corn yield model will

affect the farmer’s optimal decision, we assume the initial soil fertility at the beginning of

the season is S̄t0 = 5 lb/acre. The corn yield model (Equation (3.37)) is calibrated using

Iowa historical data sets (H̄, R̄, S̄) and Matlab function lsqcurvefit, which are identical

to Section 3.8.

Y = 0.3505 ∗ (3.0645 ∗ R̄− 0.0029 ∗ R̄2)(1− e−0.0839∗S̄)(1− e−0.0007∗H̄) (3.37)

The following Figure 3.25 plots the corn yield model in Equation (3.37) versus one of

H̄, R̄ or S̄, with the remaining two variables set at their mean levels. As opposed to Figure
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3.14 in Section 3.8, accounting for a 5 lb/a soil N residue at the beginning of the season

does not change the overall effect of each input variable on corn yield, as showed in Figure

3.25.

Figure 3.25: 2-dimensional plots of corn yield model with 5 lb/a initial soil N stock.
Each figure shows yield versus an independent variable with the other 2 variables at their
historical mean. The first column shows the horizontal axis over the historical range; The
second column shows a more extreme range for the horizontal axis.

The corn yield response to N applications and the farmer’s optimal application decision

are examined in the following Figure 3.26. As opposed to Figure 3.21, Figure 3.26(a) has a

positive intercept greater than 50 bu/a indicating a potential corn yield still can exist even

when no fertilizer applied. In comparison to the farmer’s optimal application (N0 = 66,

N1 = 0) lb/a in Figure 3.17, Figure 3.26(c) shows that the incorporation of soil N residue

will lower the optimal application amount to (N0 = 58, N1 = 0) lb/a, rather than affect

127



the optimal application timing. This may be attributed to the fact that soil N residue

works as the same function in increasing soil nutrient stock as starter application, at the

beginning of the season. The reduction in N0 (66-58=8 lb/a) is slightly higher than the

compensation from soil N residue (5 lb/a), which may be explained by the fact that soil

N residue comes with no cost and our results are subject and sensitive to the corn yield

model estimates. Accounting for the soil N residue gives us a higher farmer’s net benefit,

V0 = $476.5851/acre, contrasting to the base case V0 = $453.2184/acre in Figure 3.17.

This benefit improvement may comes from the saved cost. In Figure 3.26(c), when the

total N application is zero, the potential yield from the positive soil residue gives a non-

negative value V0. In addition, same as Figure 3.21, the farmer’s optimal application (58,

0)lb/a (the blue point in Figure 3.26(b)) is lower than the application based on the yield

maximizing principle ((110, 0)lb/a, the red point in Figure 3.26(b)). Compared to the

privately optimal choice, following the “maximum-yield” fertilizer application principle

will generate a $27/acre field value loss.

Like many soil sampling-based fertilizer recommendations show, our results indicate

that the adoption of pre-plant soil tests in assessing soil N availability can reduce farmers’

fertilizer applications and save their costs without a scarification of net benefit, which will

eventually lower the risk of fertilizer over-application and potential agricultural N loss.
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(a) corn yield response to N applications (b) corn yield response to N applications

(c) The farmer’s optimal decision

Figure 3.26: The farmer’s optimal decision and corn yield response to N applications

3.10 Conclusions

In this chapter, we explored how farmers will change their optimal fertilizer application

in the presence of growing season weather and crop price uncertainties. The farmer’s deci-
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sion model in Chapter 2 is extended to include crop price and weather uncertainties. Two

fertilizer application dates are allowed. A corn yield function is specified and estimated,

which gives corn yield as a function of average soil nutrient content and weather condi-

tions over the growing season. Soil nutrient content is determined by fertilizer application

as well as nutrient loss due to daily precipitation. The decision model is parameterized

using data on weather, corn growth, and fertilizer application from Iowa, which is a main

corn-growing area and is the source of serious nitrogen pollution in local water bodies and

in the Mississippi River watershed. Undertaking Monte Carlo analysis, we find that, based

on our base case parameter assumptions, the farmer’s optimal strategy is applying all the

fertilizer at the seeding date. This is partially due to our model setting stating that the

starter application can bring a higher seasonal average soil N stock with a lower fertilizer

application compared to the side-dressing.

Our results in sensitivity analysis provide considerable intuition about the optimal

fertilizer application from the farmer’s perspective. The farmer’s optimal strategy is deter-

mined by several factors, including the relative cost of the two split fertilizer applications,

the impact of application timing on the soil nutrient level and hence plant growth, the ex-

pected outlook for rainfall, and the expected corn price at harvest time. Like our conclusion

in Section 2.4, the farmer’s optimal application is lower than the application rates based

on the maximum-yield principle, suggesting that fertilizer over-application relative to the

economically efficient level can be attributed to the recommendations built on the yield-

maximizing principle or the farmer’s desire to achieve higher yield targets. The optimal

application amount and timing are highly dependent on the relative fertilizer application

cost, which may vary from region to region depending on site-specific conditions. Consis-

tent with the result we found in Chapter 2, a higher level of price uncertainty, represented

by a higher corn price volatility and a lower mean reverting speed, has a negative im-

pact on the fertilizer application amount but has no impact on the split decision between
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starter and side dressing. Furthermore, optimal N applications are found to change in a

non-monotonic manner with increased rainfall scenarios. In some cases, increased rainfall

amount or likelihood does not necessarily increase N use. Rainfall likelihood and expected

daily amount will interact in a complex way to affect the evolution of soil nutrient content

via N losses, and thus the optimal private fertilizer application.
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Chapter 4

Socially Optimal Fertilizer

Application Decisions Under

Uncertainty

4.1 Introduction

Nitrogen is mobile in soils, and can leach into surface waters or percolate into ground-

water. Groundwater quality is a concern in alluvial aquifers underlying agricultural areas

worldwide. Surplus nitrogen can also volatilize to the atmosphere and be redeposited

far downwind as acid rain or dry pollutants that may eventually reach distant aquatic

ecosystems(Xepapadeas (2011)). According to the United States Environmental Protec-

tion Agency, leaching and denitrification from farmland applied nitrogen fertilizers have

become significant anthropogenic sources of nitrate (NO−
3 ) contamination in groundwater

and greenhouse gas N2O atmospheric pollution. Agricultural N use is also a prevalent

cause of water quality deterioration in local streams and lakes. Most of such agricultural
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nutrient losses is nonpoint source pollution (NPS), which refers to pollution coming from

diffuse sources where it can be difficult, or impossible, to estimate the amount of pollution

from each source. Nonpoint source agricultural pollution tends to be highly stochastic, as

it depends on the timing, frequency, and intensity of fertilizer application and precipitation

(Abler 2015).

Numerous studies have discussed the situation and the impact of agricultural N pol-

lution, especially the adverse effects of elevated nitrate concentrations in groundwater on

human health (U.S.EPA (2001), Jalali (2005), Su et al. (2013), Lockhart et al. (2013),

Lawniczak et al. (2016), Keeler et al. (2016), Tang et al. (2018), Giannadaki et al. (2018),

Isiuku & Enyoh (2020), Folkens et al. (2020) and Gourevitch et al. (2018)). For exam-

ple, nitrate removal costs to public water supply and private well owners, lost recreational

benefits and human health impacts are all considered by Tang et al. (2018) as different

results from severe nitrate contamination in Iowa groundwater. According to Tang et al.

(2018) and the Iowa Community Private Well Study, nitrate was detected in 57% of wells

in Iowa, and violations of nitrate maximum contaminant levels (MCL) occurred in nearly

one-quarter of the wells. In California, 46% of collected well water samples in Tul/Kings

county exceeded the MCL for nitrate (Lockhart et al. (2013)). Nitrite formed via reduc-

tion of nitrate in the human body can react with secondary amines to form nitrosamines,

which can be carcinogenic (Almasri & Kaluarachchi (2007)). In Germany, about 74% of

the drinking water produced comes from groundwater and spring water reservoirs. The

contaminated water will be technically treated or mixed with water from other sources,

which results in increased costs for the water suppliers. Presently, the legal limit of 10

mg/L nitrate-N of fresh water is still exceeded frequently in Germany, especially in agri-

cultural areas (Folkens et al. (2020)). Consumption of such groundwater as drinking water

can cause low blood oxygen in infants, a condition known as methemoglobinemia.

In addition, agricultural denitrification and ammonia emissions strongly contribute to
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N2O greenhouse gas and fine particulate air pollution (PM2.5) with significant impacts on

respiratory health, contributing to mortality (Su et al. (2013), Giannadaki et al. (2018)

and Isiuku & Enyoh (2020)).

Current research exploring the reasons for worldwide agricultural NPS pollution in-

cludes Chen et al. (2005), Wang (2006), Sun et al. (2012), Lockhart et al. (2013) and

Lawniczak et al. (2016), who focused on different aspects including irrigation with un-

treated water, overuse of fertilizer, legislation and governmental financing, difficulty of

monitoring, lack of soil type-based standards, technology restrictions, and farmers’ atti-

tude for adopting BMPs. The design and choice of measures to address agricultural NPS

pollution is complicated by the typically unobservable and stochastic nature of nutrient

emissions (including leaching and denitrification), as well as the site-specific nature of such

NPS problems.

Many regulations have been enacted by different countries and authorities to mitigate

agricultural NPS problems. For example, to alleviate groundwater nitrate pollution, the

EU Nitrate Directive has been in force since 1991. It aims to improve water quality in

Europe by protecting groundwater and surface water against nitrate pollution from agri-

cultural sources. In the U.S., implementing approaches to reduce emissions from nonpoint

sources are largely under the purview of states via the Total Maximum Daily Load (TMDL)

program. Under this program, states are tasked with identifying the sources of urban and

agricultural nonpoint source emissions that lead to waterway impairments, and also with

implementing approaches to reduce those impairments. In 1996, the South Florida Agricul-

tural Management District attempted to lower the nitrogen levels in the Everglades Agri-

cultural Area groundwater by implementing a best management permitting program such

as on-site verification and monitoring. Similarly in Ontario, the Ministry of Environment

and Energy (MOEE)1 establishes safe limits to the amount of groundwater degradation

1Water Management: Policies, Guidelines, Provincial Water Quality Objectives, by the Ministry of the
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and provides the waste control requirements for the regulated activities (such as landfills

and waste disposal) on a case by case basis. For the non-point source activities that do

not require specific approval under the Ontario Water Resources Act or the Environmental

protection Act but have the potential to contribute to ground water contamination, the

treatment or elimination of pollution will be required where it is demonstrated that such

measures are necessary to prevent further degradation or improve water quality. There

are a number of mechanisms available to ensure the safety of groundwater, which include

the use of ministerial orders, outside consultants and voluntary programs. For example, in

1993, Ontario began a voluntary educational program: Environmental Farm Plan (EFP),

to help farmers address site-specific environmental risks and to increase farmers’ awareness

and motivation to implement BMPs.

This chapter contributes to the literature on socially optimal N fertilization decisions by

formulating a stochastic optimal control model for a social planner and parameterizing it

for the cultivation of corn in Iowa. Both corn price and weather uncertainties are included

in our social welfare model. The social damage from N fertilizer use is modelled using

two different approaches: a linear damage function and a threshold damage function. Our

modelling exercise seeks to illuminate how key factors affect the optimal fertilizer choice

from the social planner’s point of view.

The literature on agricultural NPS pollution control largely focuses on evaluating the

efficiency of various policy tools, such as voluntary programs, command and control pro-

grams and economic instruments (input taxes, ambient taxes, tradable permits, and lia-

bility rules) (Horan et al. (1998), Shortle & Horan (2001), Horan et al. (2002), Ju et al.

(2004), Wang (2006), Semaan et al. (2007), Dowd et al. (2008), O’Shea & Wade (2009),

Xepapadeas (2011), Sun et al. (2012), Rabotyagov et al. (2014a), Abler (2015), Drevno

Environment and Energy. Source: https://www.ontario.ca/page/water-management-policies-guidelines-
provincial-water-quality-objectives#section-5
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(2016a), Tang et al. (2016) and Horan & Shortle (2017)). For example, Shortle & Horan

(2001), Horan et al. (2002) and Xepapadeas (2011) discuss the paucity of information as

a tangible limitation when implementing NPS pollution abatement tools. The advantage

of an input-based tax is that observed inputs can be used as proxies of the unobserved

individual emissions. However, a first-best solution can be achieved only when a polluter’s

impact on ambient conditions, nonpoint emissions, fate and transport functions, and other

essential information can be quantified. In addition, a tax on the use of one input may

increase the demand for a non-targeted input that could also be harmful to the environ-

ment. Likewise, liability rules may be inefficient when a polluter may not be held liable

due to difficulties in identifying the source and proving responsibility. Ambient taxes have

the advantage of directly addressing the moral hazard problem when asymmetric informa-

tion presents, and they have fewer informational requirements for the regulator, as only

ambient pollution needs to be measured. Yet, since an ambient tax penalizes polluters ac-

cording to their collective emissions and environmental performance, a polluter’s response

to an ambient tax will depend on its own expectations about the impact of its choices, the

choices of others, and natural events on ambient conditions. In other words, the efficiency

of ambient based instruments may be restricted by polluters’ expectations (or conjectural

variations) about other polluters’ behavior, and the regulator’s knowledge of these expec-

tations (Shortle & Horan (2001) and Xepapadeas (2011)). In addition, Horan et al. (2002)

demonstrate that ambient taxes cannot achieve first-best outcomes when polluters are risk

averse, but an approach mixing input taxes with an ambient tax can. In conclusion, either

input tax or ambient tax require perfect information to attain efficiency. The use of one

single policy tool, without site-specific integrated or mixed policy instruments, will lead to

a loss of efficiency.2 It is beyond the scope of our thesis to evaluate different policy options

2An early paper by Shortle & Dunn (1986) described a nonlinear input tax scheme that can obtain
the first-best solution under asymmetric information about profit types in the limiting case of a single
nonpoint polluter and zero transactions costs. Horan et al. (1998) showed that the linear ambient tax is

136



to achieve the efficient social NPS abatement outcome. This is left for future research.

4.2 Social costs of agricultural nitrogen pollution: a

literature overview

In the literature, the measurement of externalities or social costs of agricultural nitrogen

pollution has been addressed by a large volume of studies (Horner (1975), U.S.EPA (2001),

Mart́ınez & Albiac (2006), Murdock (2006), Almasri & Kaluarachchi (2007), Egan et al.

(2009), Abidoye et al. (2012), Su et al. (2013), Van Houtven et al. (2014), Rabotyagov et al.

(2014a), Tang et al. (2018), Long et al. (2019), Schmid et al. (2019) Folkens et al. (2020),

Isiuku & Enyoh (2020) and Sihvonen et al. (2021)). One early research paper by Horner

(1975) first proposed the concept that charging farmers the costs on the basis of nitrate

concentration in the drainage water from their lands can represent the internalization of

externalities. The cost function Horner (1975) used for removal of nitrate from the drainage

water was developed through testing by a U.S. government study group as detailed in a

U.S EPA report cited in the paper:

C = $282144 + $21.52W + $0.12Z

where C is cost in dollars at a particular treatment centre in California,W is the amount of

drainage water in acre-feet and Z is the pounds of nitrate in acre-feet. The paper calculates

and compares the county-based farmland revenue reductions and abatement costs using

efficient in providing the correct incentives to attain the desired ambient pollution only under restricted
conditions where the choice set of polluters is sufficiently small or the marginal damages and the marginal
effects of polluters’ choices on the distribution of the ambient pollutants are independent. In contrast to
the linear ambient taxes, a nonlinear tax of the expected ambient damage can also achieve efficiency, where
each polluter pays an amount equals to the total damages. Shortle & Horan (2001), Xepapadeas (2011)
and Drevno (2016a) concluded that an integrated approach mixing input taxes with ambient taxes can
obtain the first-best outcomes.
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this cost function under different policy scenarios.

A common approach to measure the social cost of nitrate is to focus on how to measure

and internalize the treatment costs of groundwater resources (Lewandowski et al. (2008),

Vedachalam et al. (2018b) and Folkens et al. (2020)). For instance, since the nitrate-

contaminated groundwater (NO−
3 concentration > MCL) in some areas in Europe needs to

be technically treated or mixed with water from other sources for drinking, associated water

treatment costs are incurred. Both Lewandowski et al. (2008) and Folkens et al. (2020)

investigated the associated cost from alleviating the groundwater nitrate contamination,

including the cost of NO−
3 removal system construction. Especially, the latest nitrate

pollution case study in Germany by Folkens et al. (2020) quantified external pollution

costs by estimating the fixed cost for installing the system of substitutable drinking water

supply and the variable cost from external water supply for mixing with local contaminated

well water, with the use of municipality data of Hauneck, Germany. The findings from

Folkens et al. (2020) indicated that around 54% of the current drinking water price is

directly linked to the internalization of externality costs. Similarly, a report published by

Vedachalam et al. (2018b) investigated the costs of nitrate treatment for three counties

(Des Moines, Decatur and Vermilion county) in the Mississippi river basin. Daily nitrate-

as-nitrogen concentration data in Vedachalam et al. (2018b) were obtained from each of

the study sites for a 10-year period beginning on January 1, 2008 and ending on December

31, 2017. In their study, Des Moines and Vermilion county operate their nitrate treatment

units when the nitrate concentration in the intake waters exceeds 9.5 mg/L, while Decatur

county uses 8.5 mg/L as a threshold for operating the nitrate removal unit. Thus, the

estimated average annual nitrate treatment cost per unit volume (in $/kilogallons) are

different for Des Moines, Decatur and Vermilion county, which are 0.04, 0.06 and 0.12

respectively. However, in other nearby locations such as Hastings, Minnesota, this average

nitrate treatment cost per unit volume is as high as $0.22 per kilo gallons, which shows
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that the variation of groundwater nitrate treatment cost is dependent on safe concentration

levels, technologies and different sites.

An alternative approach to measure social cost of nitrate is to look at the health con-

sequences of elevated nitrate levels in groundwater. In this context, van Grinsven et al.

(2010), Su et al. (2013) and Isiuku & Enyoh (2020) all tried to determine the relation

between nitrate concentration and health risks by employing various indicators of health

impacts. For example, Su et al. (2013) based their health risk assessment of groundwater in

Northeast China on the non-carcinogens health risk model (recommended by U.S. EPA).

Similarly, Isiuku & Enyoh (2020) adopted different indices (Hazard Quotient, Nutrient

Pollution Index and Chronic Daily Intake) to measure waterbody quality and health risks.

Attempts to quantify the social cost of such health impacts are less common. An exception

is van Grinsven et al. (2010) who use data on colon cancer incidence, nitrogen leaching,

drinking water supply in the EU and one epidemiological study in Iowa to estimate the

monetary value of the increased incidence of colon cancer attributed to the nitrate con-

tamination of groundwater-based drinking water in EU. The estimated unit health damage

cost from nitrate leaching by van Grinsven et al. (2010) for the 11 EU countries ranges

between 0.1 and 2.4 ¤per kg leached N, with an average of 0.7 ¤per kg leached N.

A recent study of socially optimal fertilizer management was performed by Sihvonen

et al. (2021) in a situation where both water and atmosphere externalities were considered.

In Sihvonen et al. (2021), the social net present value (NPV) equals the discounted profit

from crop production minus the discounted monetary value of the environmental damage,

and thus the social planner’s problem is the maximization of NPV where the monetary

value of environmental damage in year t was presented as

µNeNt + µcect + µGHGeGHG
t
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µN and µc are the constant external marginal damage cost of the N loss (¤/kg) and carbon

loss (¤/kg), eNt and ect are the annual N loss (kg/ha) and annual carbon loss (kg/ha) for

year t. eGHG
t is annual net GHG emissions (kg/ha). The annual GHG emissions are

valued with the constant social cost of carbon µGHG (¤/kg, measured as CO2 or CO). The

marginal damage cost of N loss, µN , used in Sihvonen et al. (2021) is derived from Gren &

Folmer (2003), which gave us the unit social cost of N: µN = 6.6 ¤/kg. A comparison can

be made between Sihvonen et al. (2021) and an earlier paper by Mart́ınez & Albiac (2006),

using constant social cost parameter per kg of N pollutant, both of them linearly modeled

social damages of N, however, Mart́ınez & Albiac (2006) only considered leaching whereas

Sihvonen et al. (2021) include leaching and greenhouse gas emission. In Mart́ınez & Albiac

(2006), the cost of nitrogen leaching was represented by λlet, where let is nitrogen leaching

in kg/ha and λ is the marginal pollution damage λ = 1.23 ¤/kg. In Sihvonen et al. (2021),

the mean social damage from N leaching in coarse soils is 374.06 ¤/ha. In contrast, the

base scenario social damage from N leaching in Planteros soil is 187.58 ¤/ha in Mart́ınez

& Albiac (2006), which is almost the half of social damage in Sihvonen et al. (2021).

Rather than directly linking the cost to the nitrate leaching amount (in kg), an empirical

study by Rabotyagov et al. (2014a) used a hydrological model and simulation-optimization

algorithm to examine the relation between the watershed-level cost and the percentage

of nitrate concentration reductions (as in Figure 4.1). Boone River Watershed in Iowa

was used for empirical demonstration and the data for populating the watershed-based

hydrological model (Soil Water Assessment Tool, SWAT) was collected at the scale of a

“Common Land Unit” level.
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Figure 4.1: Total nitrate abatement cost curve in Boone river watershed, Iowa (Rabotyagov
et al. (2014a))

In dealing with the unobservable and nonlinear characteristics of the transport and fate

of agricultural non-point source pollutants, Rabotyagov et al. (2014a) proposed and eval-

uated a range of policy approaches for regulating emissions that are focused on abatement

actions at the farm scale. In particular, Rabotyagov et al. (2014a) addressed three types

of second-best policies and explored cost estimates for each proposed abatement action.

Costs for conservation practices were expressed as opportunity costs in dollars per acre, for

example, the mean cost of reducing fertilization rate by 20% is $7.4 per acre. However, this

sort of cost estimate was based on the abatement action (target-based, or action-based)

instead of a measure from socially optimal perspective.

Non-market valuation studies estimating household’s willingness-to-pay (WTP) for re-

duced nitrate pollution (or improved water quality) represent another approach to mea-

suring the social cost of pollution from agricultural sources (Murdock (2006), Egan et al.

(2009),Abidoye et al. (2012) and Van Houtven et al. (2014)). The U.S.EPA (2001) sur-

veyed the valuations of recreational welfare loss, which is national in scope, characterizing

households’ annual willingness to pay for improving water quality from baseline condi-

tions to fishable or swimmable quality. Since random utility model (RUM) can avoid the

bias in welfare estimation caused by unobserved site characteristics, both Murdock (2006)
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and Abidoye et al. (2012) adopted the random utility model (RUM) and travel cost ap-

proach to predict the welfare change from lake quality improvement through estimating

lake visitors’ demand for lake recreational services and their utility. In contrast, integrating

environmental modeling and expert elicitation, Van Houtven et al. (2014) utilized a stated

preference survey to predict the welfare change from a given lake quality improvement,

and estimated households’ WTP. Distinct from Van Houtven et al. (2014), Egan et al.

(2009) estimated compensating variation per household as the WTP for achieving certain

water quality improvements by developing a repeated mixed logit model of recreational

lake usage. Like Murdock (2006), Abidoye et al. (2012) and Van Houtven et al. (2014), the

non-market valuation of water quality improvement in Egan et al. (2009) are based on the

lake quality improvement scenarios and relies on a wide combination of attributes (e.g.,

total nitrogen, total phosphorus, chlorophyll). However, the separate social valuation of

agricultural nitrogen loss and the linkage between the social damage of N and agricultural

N use are not explored in this research.

Estimating the social cost of nitrogen (SCN) in a monetary value is challenging since N

is lost to aquatic, regional atmospheric, and global atmospheric pools in a variety of forms.

These loss pathways are associated with damages to water quality, air quality, and climate

change, respectively, which can occur over heterogeneous spatial and temporal scales. Even

though Mart́ınez & Albiac (2006) and Sihvonen et al. (2021) have proposed a monetary

measurement of pollution from N, neither of these cost parameters can be used directly

as the social cost of N in this thesis. For example, in Mart́ınez & Albiac (2006), the cost

of removing per kilogram of leached nitrogen from groundwater in Spain is estimated as

¤1.23, based on a 2.8 cents/m3 engineering estimate to remove nitrogen from water, which

may not be applicable to the US. Sihvonen et al. (2021) gave the marginal damage of N

loss from barley production in Finland as ¤6.6 per kg N. However, this estimate may not

apply in a U.S. context, and this cost refers to the annual N loss with separate costs for
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leaching or denitrification is not given.

Several studies have explicitly examined the social cost of N (SCN) for three main

channels of agricultural nitrogen loss in the U.S. (Keeler et al. (2016), Gourevitch et al.

(2018) and Giannadaki et al. (2018)). Both Keeler et al. (2016) and Gourevitch et al.

(2018) focused on the three end points of interest making up the greatest fraction of

the total N-related social damage in Minnesota: greenhouse gas emissions (N2O) from N

denitrification, air pollutants (PM2.5 formed from NOx and NH+
3 ) from N volatilization,

and groundwater nitrate contamination (NO−
3 ) from N leaching. The social damages of N

in both papers are measured at the county level in Minnesota. Specifically, the costs due

to global climate change from N2O emissions in both papers are estimated by applying the

non-CO2 gas social cost valuation method with N2O converted into CO2 equivalents. They

first estimated the long-term N2O-specific damages using integrated assessment models

(IAMs). Using this approach, the authors developed the social cost ratios for N2O relative

to CO2, and got the unit social cost of N2O by scaling the social cost of carbon (a standard

value of $0.038/kg, as defined by the U.S. Goverment Interagency Working Group). In

Keeler et al. (2016), social damages from nitrate pollution in both private and public water

sources were represented by the costs incurred in Minnesota due to water treatments needed

to comply with federal drinking water standards. The costs of private well contamination

were estimated on the basis of surveyed costs, including the weighted average annualized

costs of well owners that opted to construct a new well, purchase bottled water, or invest in

a nitrate removal system. For public water suppliers in Minnesota, the authors assembled

costs for treatment, monitoring, and wellhead protection from survey data.

Applying the same approach as Keeler et al. (2016) for estimating the climate-related

damage caused by denitrification, Gourevitch et al. (2018) estimated the social cost of

N2O by scaling the social cost of carbon relative to the ratio of damages for N2O relative

to CO2, which can be understood as the avoided damages from reducing N2O emissions.
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Nevertheless, distinct with Keeler et al. (2016) in measuring costs from leaching, Gourevitch

et al. (2018) adopted and contrasted six different approaches (reported in their Table

1, labelled as model W1 through W6) in estimating the costs of exposure to nitrate in

groundwater. Two approaches (models W1 and W2) are based on a suite of stated and

revealed preference non-market valuation methods. The economic value of groundwater is

estimated as the household’s stated annual willingness to pay (WTP) for nitrate-free and

nitrate-safe drinking water. For example, in their model W1, they surveyed the household’s

annual WTP ($/year) for nitrate-free drinking water by asking the respondent a series of

questions such as “Suppose the local water agency could install and maintain a filter in

your home that can completely eliminate nitrates in your drinking water. Would you pay

for it if it costs $∗∗ per month?” Then, the county-level total damages from elevated nitrate

in groundwater water are derived by multiplying the household’s annual WTP ($) by the

number of affected households in each county. They estimated the per-unit social cost

($/kg) of nitrate from N fertilizer application in each county by dividing the county-level

total damage ($) by the county-level annual on-farm N fertilizer application quantity (kg).

The social cost estimates in model W3, similar to Keeler et al. (2016), are based on the

treatment costs of adopting the least-cost water treatment option, assuming all households

with drinking water exceeds the MCL choose the least-cost treatment option (install a

reverse-osmosis system). Model W4 through W6 are based on the weighted-average cost

of observed household’s responses to nitrate contaminated drinking water, which include

install a reverse osmosis system, drill a deeper well, install a distillation system, buy bottled

water and do nothing. As opposed to model W4 that assumes no health impacts from “do

nothing”, model W5 and W6 incorporate the costly health impacts borne by households

with exposure to contaminated drinking water from “do nothing”, which are premature

mortality and lost quality-adjusted life years, respectively.

Distinguished in objective from Keeler et al. (2016) that focused on valuing social cost
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of N, Gourevitch et al. (2018) estimated socially optimal N fertilizer application rates for

corn in Minnesota (0-161 kg/ha) and compared with the private optimum (165 kg/ha), with

the social cost of N was internalized. Lowering application rates from what is privately

optimal results in marginal benefits to society that outweigh the costs to farmers. As an-

other contribution, Gourevitch et al. (2018) explicitly examined how different non-market

valuation techniques affected the cost estimates by varying the modeling assumptions. Do-

mestic well data from the County Well Index and concentration data from community and

non-community public water supplies currently treating or monitoring for NO−
3 in Min-

nesota were used in both Keeler et al. (2016) and Gourevitch et al. (2018) to estimate the

exposure to nitrate concentrations in groundwater for Minnesota households that rely on

drinking water wells. The Intervention Model for Air Pollution (InMAP) was also used in

both papers to examine the climate effects from N2O emissions.

Results in Keeler et al. (2016) confirm that there is no uniform SCN, instead, changes

in N management will result in different N-related costs depending on where N moves

and the location, vulnerability, and preferences of populations affected by N. The authors

found that the SCN per kilogram of N fertilizer applied in Minnesota ranges over several

orders of magnitude, from less than $0.001/kg N to greater than $10/kg N, illustrating the

importance of considering the site, the form of N, and end points of interest. In Keeler

et al. (2016), the social cost of nitrogen per kilogram of N fertilizer applied in Minnesota

associated with leaching (NO−
3 ) and denitrification (N2O) were $0.01 per kg applied N

(with a range of 0-0.23, from their Table S1) and $0.22 per kg applied N, respectively.

Nevertheless, for groundwater nitrate contamination in Gourevitch et al. (2018), model

W1 (the willingness to pay for nitrate-free drinking water) and W2 (the willingness to

pay for nitrate-safe drinking water) generated a median social cost of $0.66 per kg N and

$0.005 per kg N, respectively. Model W3, based on the costs of adopting the least-cost

water treatment option, gave a median of $0.023 per kg N, whereas model W4, W5 and W6
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were based on the cost of households observed response to contaminated drinking water

assuming no health impacts, premature mortality and lost quality-adjusted life years, which

gave a median of $0.039, $0.044 and $0.077 per kg N, respectively. The median cost of

N2O emissions (model C1) is estimated as roughly $0.07 per kg N (Fig.1 in Gourevitch

et al. (2018)). In addition, the location of N application was found to cause significant

variation in the estimates of the SCN, for instance, the SCN of NO−
3 based on W1 model

(the willingness to pay for nitrate-free drinking water) can reach as high as around $100

per kg N (Fig.1 in Gourevitch et al. (2018)). The social cost estimates for different counties

in MN can vary in a range of $0-$50 per kg applied N (Keeler et al. (2016)).

Groundwater quality deterioration and adverse climate change effects from agricultural

production are serious issues in Iowa. According to the Iowa Department of natural Re-

sources3, about 26% of global greenhouse gas emissions are caused by food production and

over 75% of Iowans rely on groundwater as their primary source of drinking water. Around

230000 people in Iowa rely on private well water. The Iowa Community Private Well Study,

conducted in 2003 by Iowa State University and USGS, detected nitrate in 57% of wells

and 8-25% of wells in different regions exceeded the maximum contaminant level limit (10

mg/L by USEPA). In the recent 16 years (2001-2016) the proportion of private wells with

nitrate concentrations exceeding MCL was found increased. Thus, valuing the social cost

of N in terms of groundwater nitrate NO−
3 contamination and greenhouse gas N2O effect

is very important in Iowa.

Since both Keeler et al. (2016) and Gourevitch et al. (2018) estimated the social cost

of N from both leaching and denitrification for Minnesota state in the U.S., their results

are judged to be the most relevant papers for our research in Iowa, and will be used for

our social decision-making problem. Our objective is to link the rainfall-induced N loss

3Iowa Department of natural Resources. Source: www.iowadnr.gov/Environmental-Protection/Water-
Quality/Water-Monitoring/Groundwater
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amounts to the social damages, by choosing the estimates from these papers as proxies for

the cost of elevated nitrogen in groundwater and atmosphere. The social cost estimates

in these papers are per kilogram of applied nitrogen, and these are not explicitly tied

to the portion of nitrogen that is lost through leaching or denitrification. In contrast in

our model, social damages from nitrogen relate only to the portion subject to leaching and

denitrification. The social cost estimates from these papers are thus not directly applicable

given our modeling assumptions and should be grossed up by a factor that accounts for the

portion of N applied that actually causes damages. However, given the wide range of social

cost estimates reported, it was decided to account for this issue via sensitivity analysis.

As a result, we use the values of social costs from Keeler et al. (2016) and Gourevitch

et al. (2018) as the base case in our model and allow for additional cost values to be

examined in a later sensitivity analysis sections. The social cost estimates in both papers

are conservative because other damages associated with N fertilizer application are omitted

due to our limited understanding of adverse impacts, and the subsequent transformation

of N is not included (Gourevitch et al. (2018)). Because the social cost per kilogram of

denitrified or leached N will be greater than what the authors estimated in terms of per

kilogram of applied N, the highest median value of $0.66 (from model W1 in Gourevitch

et al. (2018)) is preferred as the base case for the cost from N leaching (per kilogram of

leached N), which reflects the economic value of removing every unit of nitrate pollutant

in groundwater. Similarly, $0.22 (from Table S1 in Keeler et al. (2016)) is assumed as the

base case for the cost from N denitrification (per kilogram of denitrified N). Gourevitch

et al. (2018) discovered that the social cost per kg of applied N in Minnesota ranges over

several orders of magnitude from less than $0.001 to greater than $10. In the sensitivity

analysis sections, the social cost of N for leaching, dL, is assumed as $0.01, $0.66 (Base

Case), $10, $20, $30, $40 and $50 per kilogram leached N, and the social cost of N2O

denitrification, dD, is assumed as $0.01, $0.22 (Base Case), $10, $20, $30, $40 and $50
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per kilogram denitrified N. These assumed cost levels are all within the range of marginal

social costs of N for all Minnesota counties, as estimated by Keeler et al. (2016) and shown

in Fig.1.

4.3 Literature on modelling nitrogen emissions for pol-

icy analysis

There is a significant literature studying the negative externalities caused by nitrogen

fertilizer and optimal policies to address these issues. Of particular interest for this thesis is

the modelling of nitrogen fate and transport and the factors that affect harmful emissions

into waterways and the atmosphere. This section reviews a selection of that literature.

A number of economics papers develop optimal control models of nitrogen usage given

an objective function to maximize a social welfare function from agricultural activities over

infinite time, or a very long time horizon. Typically, there is no uncertainty involved. They

include a leaching function for nitrogen and a state variable that keeps track of nitrogen

concentration in water. Some papers include an empirical component whereby the model

is parameterized using data for a particular region or watershed. Kim et al. (1993), Kim

et al. (1996) and Lee & Kim (2002) develop a stylized model to evaluate the efficiency of

different policies for regulating nitrogen emissions. The papers assume a fixed proportion of

nitrogen fertilizer is leached into groundwater. The former two papers also assume a delay

between the time that nitrogen is added to the field and then leaches to the groundwater.

The time delayed equation of motion for nitrogen in the soil is given as:

Ṅt = αnt−τ + βkNt−τ − ρNt
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where N is the stock of nitrates in groundwater, α and β are exogenous proportionate

leaching coefficients, n is applied fertilizer quantity, ρ is the rate of N discharge from the

aquifer, τ represents a constant time lag between fertilizer application and its arrival to

the groundwater.

Yadav (1997b) and Yadav (1997a) present optimal control models to study optimal

nitrogen use. Both authors used a nitrate concentration function, based on the work by

Kim et al. (1993), keeping track of the stock of nitrogen. They calibrated an equation of

motion for nitrate concentration that includes additions from fertilizer as well as natural

attenuation, which was

Ct+1 = (1− γ)ηNt−τ − (1− δ)Ct

where Ct is contamination concentration at aquifer at time t, Nt−τ is nitrogen-related ac-

tivity (N application) at time t−τ , δ is the degradation rate of nitrogen in the groundwater

aquifer, γ is the degradation rate of nitrogen at the surface level including volatilization

and runoff, η is a scaling parameter describing conversion of applied nitrogen into nitrate

pollutant, τ is residence time of nitrogen in the vadose zone (area between root zone and

water table). They derived an expression showing total nitrate contamination of ground-

water in year t as a function of C at time 0 and all subsequent N applications. A simplified

equation of motion for nitrogen was used by Yadav (1997a) for an empirical analysis of

the socially optimal nitrogen use using 1987-1990 experimental data based on three sites

in Minnesota. Since the literature did not report an aggregate nitrate social damage func-

tion that includes costs to human health as well as to the environment, in their social

net benefit model, the aggregated social cost of nitrate contamination was assumed as a

general quadratic function of the concentration: θC2
t . Solving the social planner’s problem

resulted in an optimal application rule (a closed form solution) that depends on Ct. They

also analyzed the dynamics and steady state equilibrium of N application N∗ and nitrate
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concentration C∗. Because of the assumed form of their objective function, Yadav (1997b)

and Yadav (1997a) are able to derive an optimal policy rule for nitrogen use.

Hart (2003) uses a dynamic optimal control model to evaluate the groundwater con-

tamination and optimal restoration of marine ecosystems. The model is parameterized

using data for Sweden. His model consists of two control measures, one upstream (agri-

cultural abatement) and one downstream (mussel cultivation at the coast). Hart (2003)

first derived a simple optimal control model where all pollution is assumed to come from a

single basin. The equation of motion for the pollution stock is similar to those of the two

previous articles Yadav (1997b) and Yadav (1997a): Gt+1 = (1− δ)(Lt+(1− k)Gt), where

Gt is pollution amount in a groundwater reservoir at period t, Lt is the nitrogen leachates

enter the reservoir, a proportion δ is attenuated through processes such as denitrification

or decay, kGt is the pollution mass flow out from the reservoir. In his second model,

Hart (2003) divides land area into three zones with different properties, and includes a

model of simulating river and groundwater flows. The three zones have different soil and

climate characteristics that affect the cost of reducing N use to the farm. Hart (2003)

finally modelled N abatement cost as a quadratic function of the degree of abatement, and

a quadratic social damage function for N pollution (a quadratic function of N quantity re-

moved by mussel farming and a decreasing function of the stock of N pollution) is assumed

in his paper.

Fishman et al. (2012) examined a cost efficient input tax policy to address drinking

water contamination by nitrogen fertilizer under varying conditions of water scarcity. They

study the use of revenue from tax payments to cover groundwater contamination treatment

costs. Their equation of motion for groundwater nitrogen concentration, includes the

contribution of nitrogen in rain, the contribution of nitrogen in irrigation water and the

contribution of nitrogen fertilizer application.
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Another class of papers incorporates process-based or structural models (water quality

models) to simulate on-ground nitrogen loading, soil dynamics, and finally determine the

fate and transport of nitrate in groundwater in response to different regulatory policies and

under different agricultural practices. Various hydrological and hydro-chemical simulation

models are mentioned in the literature. These models were calibrated using experimen-

tal data. For example, the Soil and Water Assessment Tool (SWAT) is a water quality,

watershed-based hydrological model developed by the US Department of Agriculture to

simulate the impact of point and non-point source emissions, was adopted by Rabotyagov

et al. (2014a). The soil-plant-atmosphere model CoupModel was employed by Sihvonen

et al. (2021) for running long-term simulations, where inorganic and organic N fertilizers

are given in different amounts as inputs. The modular design of such process-based model

allows plugging in any choice of process descriptions for various parts of different natural

ecosystems. One important feature of such process-based model is its capability to handle

more than one site.

Other relevant papers include Almasri & Kaluarachchi (2007), Puckett et al. (2008),

Welch et al. (2011), Huang et al. (2013). These papers mainly employed a large set of

metadata, structural tools, bio-physical simulation models, process-based models, such as

the Soil and Water Assessment Tool (SWAT), to model complex relationships between land

activities and water quality. The advantage of these mechanistic water quality models is

the ability to reflect the key nonlinearities and interactions between different bio-physical

factors in predicting contaminant transport and fate, however, such process-based models

may be too complex to statistically simplifies the description of the hydro-geologic systems

and the nitrogen cycle.
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4.4 Model Specification

In this section we consider the optimal actions of a social planner or regulator con-

cerned with maximizing the total net benefits from corn harvest. The regulator’s objective

function includes two negative externalities from nitrogen fertilizer: damages from the

leaching of nitrogen into groundwater and damages from greenhouse gas emissions due to

denitrification. N leaching and denitrification are assumed as fixed proportions of the total

N loss. There are two social damage models proposed in this thesis: linear damage model

and threshold damage model.

Recall that for times other than fertilizer application dates, t /∈ ΩF , soil nutrient content

St (as defined in Equation (3.14)) is affected only by the instantaneous rate rainfall Rwt ,

where wt ∈ {0, 1} refers to the two rainfall regimes defined in Equation (3.9).

dS = −lsRwtS(t)dt , (4.1)

where ls is an assumed constant parameter reflecting the total N loss rate of S per mm of

rainfall. In this chapter, L(t) is defined as the cumulative amount of nitrogen that has

travelled to groundwater by time t as a result of leaching. The change in the cumulative

leaching dL is assumed to be a constant proportion le of the change in soil nutrient level

S.

dL = −ledS = lelsR
wtS(t)dt ,

where le is an assumed constant parameter reflecting the proportion of leached nitrogen in

the total N loss amount. The other portion of lost nitrogen is due to denitrification, where

Υ refers to cumulative denitrification losses.:

dΥ = −(1− le)dS = (1− le)lsR
wtS(t)dt (4.2)
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The social damage from nitrogen is defined as the present value of all damages, over

an infinite future time frame, caused by an increase in a unit of nitrogen today at a

particular site. We define dL to be the social cost of nitrogen related to groundwater

nitrate contamination from leaching and dD as the social cost of nitrogen related to the

release of greenhouse gas emissions due to denitrification. For simplicity, we calculate the

social damages of nitrogen only at the end of the season at time T , ignoring the timing

of when that nitrogen was deposited over the growing season. Then for the linear social

damage function, the monetary value (in dollars per acre) of damages at time T from

leaching and denitrification is specified as:

D(T ) = dLL(T ) + dDΥ(T ) (4.3)

Note that since L(T ) and Υ(T ) are measures of cumulative nitrogen emissions from leaching

and denitrification, respectively, D(T ) represents the present value of all future damages

that arise from cumulative nitrogen emissions up to time T .

For the threshold social damage function, damages from leaching occur only when the

cumulative nitrogen in the groundwater exceeds a specific concentration threshold. If the

simulated N concentration is above that threshold, the social damage of N leaching will be

calculated according to the linear damage model, which is the product of leaching amount

and unit nitrate social cost plus the denitrification amount times the per unit cost from

N2O emissions. If the nitrogen concentration in groundwater is less than the threshold,

then the social damage of N leaching vanishes in the regulator’s model and only social

damage of denitrification remains. The N concentration in groundwater is a state variable

denoted as Θ (mg/L). The relationship between leaching amount and Θ is assumed as:

dΘ = ϖdL, given Θ(t = 0) = Θ0 (4.4)
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where ϖ is the constant parameter. Social damages now depend on nitrate concentration

at the end of the season, Θ(T ). Denote the N concentration threshold for leaching damages

as Θ̂.

D(T ) =


dDΥ(T ) if Θ(T ) < Θ̂

dLL(T ) + dDΥ(T ) if Θ(T ) ≥ Θ̂

(4.5)

The regulator’s objective function is specified below.

V (p, h̄, x1, δ̃, r, wti , r̄, s, s̄, Υ̃, l, ti) = sup
K

EQ
K

{ Discounted revenue from corn harvest at T︷ ︸︸ ︷
e−ρ(T−ti)P (T )Y (h̄, x1, δ̃, r, wti , r̄, s, s̄, T )

−

Total fertilizer cost︷ ︸︸ ︷∑
tj∈ΩF

[
e−ρ(tj−ti)cNN(tj)

]
−

Social damages︷ ︸︸ ︷
e−ρ(T−ti)D(T )−

Discounted total variable and fixed cost︷ ︸︸ ︷[
e−ρ(T−ti)(cF + cV Y (h̄, x1, δ̃, r, wti , r̄, s, s̄, T ))

]
∣∣∣∣P (ti) = p, H̄(ti) = h̄, X1(ti) = x1, δ(ti) = δ̃, R̄(ti) = r̄, R(ti) = r, wti = w, S(ti) = s,

S̄(ti) = s̄,Υ(ti) = Υ̃, L(ti) = l

}
(4.6)

where cV is the total variable cost for corn yield excluding fertilizer, and cF is the

total fixed cost associated with both fertilizer applications and harvest machinery use.

The expectation is with respect to control set K and other notation is consistent with

the previous farmer’s decision model (3.17). We explore the characteristics of the social

planner’s problem through Monte Carlo analysis.

4.5 Detailed specification of Monte Carlo analysis

This section describes the choice of parameters for the leaching and denitrification

equations as well as the associated social costs.
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4.5.1 Parameter specification

Agronomists usually define leaching loss as N moving out of the crop rooting zone

(not available for crop uptake) while environmentalists consider its entering the water

bodies. Given the complexity of the agricultural N cycle in the soil, this thesis adopts

the simplifying assumption that N leaching and denitrification are fixed proportions of the

total N loss. This allows us to employ two unit social costs of N representing the average

damages from nitrogen leaching and denitrification. Specifically, this chapter assumes in

the base case that leaching losses represent 43.3% of the total N loss and denitrification

represents the rest 56.7%, which is consistent with Gentry et al. (1998). As noted in Section

3.4, in a modelling exercise using the Community Land Model, Nevison et al. (2016) found

high variation in the proportion of N-loss due to leaching versus denitrification4. Sensitivity

analyses regarding N loss partition are performed in later sections where the denitrification
leaching

ratio is assumed as 90%
10%

and 10%
90%

.

Assumptions for the social cost of leaching are based on the estimates of Keeler et al.

(2016) who provided a range of estimates for the social cost of nitrogen due to agriculture

in Minnesota. We assume the costs in Iowa will be similar. The social cost of nitrogen

is intended to reflect the present value of damages resulting from an incremental increase

in nitrogen at a particular site, such as groundwater or the atmosphere. The social cost

from N leaching causing groundwater contamination by NO−
3 is assumed to be dL =0.66

$/kg and from denitrification due to the contribution of N2O emissions to climate change

is assumed to be dD =0.22 $/kg, as the base case. In later sensitivity sections, the social

cost of nitrate leaching (dL) is varied as 0.01, 10, 20, 30, 40, 50 $/kgN, and the social

cost of N2O denitrification (dD) is varied as 0.01, 10, 20, 30, 40, 50 $/kgN. All social cost

parameters are transformed into $/lb and examined in the later sensitivity analysis section.

4The Community Land Model is maintained by the Climate and Global Dynamics Laboratory at the
National Center for Atmospheric Research in the United States.
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For the threshold damage model, the initial N concentration is assumed as zero, Θ0 = 0.

According to U.S. Environmental Protection Agency5, a nitrate concentration in ground-

water greater than 3 mg/L generally indicates contamination from human activity, thus,

we assume Θ̂ = 3 mg/L.

An estimate is needed for the parameter ϖ in Equation (4.4), which reflects the change

in N concentration as a result of nitrogen leaching. The units of ϖ will be (mg/litre

in N concentration) ÷ (mg/acre in quantity of N leached). The concentration measure

would reflect a value at a particular location, or an average over several locations where

N concentration is monitored. An estimate of ϖ is derived using historical averages from

Iowa:

• (i) Quantity of N leached. We utilize the base case assumptions for the total N

loss rate (percent of N applied that is lost to the environment ÷ mm of rainfall),

base case leaching proportion of the total N loss, historical Iowa fertilizer application

for 1993-2003, 2005, 2010, 2014, 2016 and 2018 (averaged county-level, in lb/acre)

and historical Iowa daily precipitation to compute the total N leaching amount for

each year in Iowa. We assume the N fertilizer is all applied as starter without soil N

legacy.

• (ii) Nitrate concentration. Iowa groundwater nitrate concentration data is ob-

tained from the AQuIA database6, which comes from different wells or springs in

Iowa. The raw concentration data (in mg/L) includes 5672 observations, for the

5Nitrate concentrations greater than 3 mg/L generally indicate contamination, according to “Estimated
Nitrate Concentrations in Groundwater Used for Drinking”, by U.S. Environmental Protection Agency.
Source:www.epa.gov/nutrient-policy-data/estimated-nitrate-concentrations-groundwater-used-drinking

6AQuIA database, Water Quality Monitoring System, Department of natural Resources, Iowa, ac-
cessed on March 01, 2021 (Source: https://programs.iowadnr.gov/aquia/search). Since the separate
nitrate concentration data on the website is discontinuous in years, we choose inorganic nitrogen (ni-
trate and nitrite) concentrations to use. Indeed, in the environment, nitrite generally converts to ni-
trate, which means nitrite occurs very rarely in groundwater (Source: waterquality.montana.edu/well-
ed/interpretingresults/fsnitratenitrite.html)
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period of 1993-2003, 2005, 2010, 2014, 2016 and 2018, from different days of the year

and from different sites across Iowa state. To represent the annual Iowa state-level

nitrate concentration in groundwater, we take the average of observations for the

same year. A summary of the data is presented in the following Table 4.1.

• (iii) The estimated ϖ (concentration per unit of leached nitrogen) in Iowa for the

period of 1993-2003, 2005, 2010, 2014, 2016 and 2018 is derived from

ϖ = mean

{
Annual nitrate concentration (red font in Table 4.1, mg/l)

Annual N leaching amount (from step (i), mg/a)

}
=

1

1647200

This is clearly a rough approximation of the value of ϖ, based on averages, and is used

for illustrative purposes. Ideally we would like to know how an increase in N leaching

affects concentration levels at the margin.
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Table 4.1: Summary of groundwater nitrate concentration data in Iowa (in mg/L)

Year # of observations [min, mean, max]

1993 296 [0.1, 9.23, 35]

1994 392 [0.1, 9.0, 34.5]

1995 379 [0.1, 6.5, 24]

1996 351 [0.1, 6.03, 38]

1997 212 [0.1, 6.89, 20.1]

1998 245 [0.1, 7.31, 40]

1999 142 [0.1, 9.51, 46]

2000 140 [0.1, 9.18, 44]

2001 98 [0.1, 11.34, 94]

2002 255 [0.1, 3.16, 35]

2003 258 [0.1, 4.65, 250]

2005 274 [0.1, 3.83, 118]

2010 87 [0.1, 8.8, 20]

2014 45 [0.1, 6.23, 17]

2016 114 [0.1, 3.53, 40]

2018 91 [0.1, 4.57, 29.98]

4.5.2 Monte Carlo algorithms

In this section the algorithms are presented for calculating the linear and threshold

based damages. Both Algorithm 4 and Algorithm 5 share the same way in calculating social

damages from denitrification dDΥ. However, for damages from leaching, in Algorithm 5,

if the simulated nitrate concentration crosses the contamination threshold 3 mg/L, the
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associated path will be regarded as “leaching damage ocurred”, we then use the product of

total N leaching amount and unit social cost of NO−
3 (dLL)as the leaching damage in the

social damages D as the Algorithm 4 does. Otherwise, the social damage for the associated

path will be set to zero as a result of insignificant detrimental social leaching impacts by

low nitrate concentration, and the social damage will be identical to the denitrification

damage, D = dDΥ.

Algorithm 4 Compute linear social damage

Input: Simulated daily precipitation Rwt(tm), tm ∈ ΩD, given nutrient application

(N0, N1), le, ls, unit social cost of leaching and denitrification: dL and dD;

Output: L, Υ, D

1: for i=1 : number of simulated paths do

2: S(i, t0) = N0;

3: L(i, t0) = le ∗ ls ∗Rwt0 (i, t0) ∗ S(i, t0);

4: Υ(i, t0) = (1− le) ∗ ls ∗Rwt0 (i, t0) ∗ S(i, t0);

5: for j=t0+1 : tM do

6: if j ∈ ΩF then

7: S(i, j) = (1− ls ∗Rwj−1(i, j − 1)) ∗ S(i, j − 1) +N1

8: L(i, j) = le ∗ ls ∗Rwj(i, j) ∗ S(i, j) + er∆t ∗ L(i, j − 1)

9: Υ(i, j) = (1− le) ∗ ls ∗Rwj(i, j) ∗ S(i, j) + er∆t ∗Υ(i, j − 1)

10: else

11: S(i, j) = (1− ls ∗Rwj−1(i, j − 1)) ∗ S(i, j − 1)

12: L(i, j) = le ∗ ls ∗Rwj(i, j) ∗ S(i, j) + er∆t ∗ L(i, j − 1)

13: Υ(i, j) = (1− le) ∗ ls ∗Rwj(i, j) ∗ S(i, j) + er∆t ∗Υ(i, j − 1)

14: end

15: D(i, tM = T ) = dLL(i, tM = T ) + dDΥ(i, tM = T )
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16: end
17: The discounted cumulative damages over the entire season, at time t0 is D̂(t0) =

e−r(tM−t0) ∗mean(D(tM)).

Algorithm 5 Compute threshold social damage

Input: Rwt(tm), tm ∈ ΩD, (N0, N1), le, ls, dL, dD, ϖ;

Output: L, Υ, Θ, D;

1: for i=1 : number of simulated paths do

2: S(i, t0) = N0;

3: L(i, t0) = le ∗ ls ∗Rwt0 (i, t0) ∗ S(i, t0); Θ(i, t0) = ϖL(i, t0);

4: Υ(i, t0) = (1− le) ∗ ls ∗Rwt0 (i, t0) ∗ S(i, t0);

5: for j=t0+1 : tM do

6: if j ∈ ΩF then

7: S(i, j) = (1− ls ∗Rwj−1(i, j − 1)) ∗ S(i, j − 1) +N1

8: L(i, j) = le ∗ ls ∗Rwj(i, j) ∗ S(i, j) + er∆t ∗ L(i, j − 1)

9: Θ(i, j) = Θ(i, j − 1) +ϖ(L(i, j)− L(i, j − 1))

10: Υ(i, j) = (1− le) ∗ ls ∗Rwj(i, j) ∗ S(i, j) + er∆t ∗Υ(i, j − 1)

11: else

12: S(i, j) = (1− ls ∗Rwj−1(i, j − 1)) ∗ S(i, j − 1)

13: L(i, j) = le ∗ ls ∗Rwj(i, j) ∗ S(i, j) + er∆t ∗ L(i, j − 1)

14: Θ(i, j) = Θ(i, j − 1) +ϖ(le ∗ ls ∗Rwj(i, j) ∗ S(i, j))

15: Υ(i, j) = (1− le) ∗ ls ∗Rwj(i, j) ∗ S(i, j) + er∆t ∗Υ(i, j − 1)

16: end

17: if Θ(i, tM = T ) < 3 then D(i, tM = T ) = dDΥ(i, tM = T )

18: else D(i, tM = T ) = dLL(i, tM = T ) + dDΥ(i, tM = T )

19: end

20: D̂(t0) = e−r(tM−t0) ∗mean(D(tM)).
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4.5.3 Monte Carlo results

The value surfaces of social net welfare are computed respectively from incorporating

the linear social damage and the threshold social damage functions into the social planners

objective function. Results are presented in the following Figure 4.2. The impact of

fertilizer side-dressing application N1 on the value V0 given various starter applications N0,

is presented in the following Figure 4.3 and 4.4.

(a) Linear damage model (b) Threshold damage model

Figure 4.2: Social welfare surface, the ordered triplet shows (N0, N1, and Value at time 0)

From Figure 4.2, the socially optimal fertilizer application strategy is (N0 = 64, N1 = 0)

lb/acre when using the linear damage model and (N0 = 62, N1 = 0) lb/acre when using

the threshold damage model. Compared with the private optimal application (N0 = 66,

N1 = 0) in Figure 3.17, Figure 4.2 indicates that the optimal fertilizer application amount

is reduced by 2 lb/a and 4 lb/a with the presence of social cost of N, whereas the optimal

application timing remains the same. It might be anticipated that including a social

damage function would cause the optimal fertilizer split to shift to the side dressing, since

this leaves a shorter length of time for rainfall induced N-losses. However this effect is not
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evident under our base case assumptions.

When comparing Figure 4.2 (a) and (b), we can note that, in our base case, using the

threshold social cost function gives us a slightly lower fertilizer application amount. In

our base case, the mean nitrate concentration for (N0 = 64, N1 = 0)lb/a is 3.0527 mg/L,

whereas the mean concentration for (N0 = 62, N1 = 0)lb/a is 2.9926 mg/L which is lower

than the threshold implying there is no leaching damage. This gives the social planner

incentive to choose a lower application plan. Comparing the social monetary net benefit

in Figure 4.2(a) and (b), we can find the threshold social damage framework implies a

very slightly higher value of V0 = $449.42/acre compared to V0 = $447.99/acre for the

linear damage function. In summary, under our base case assumptions, the incorporation

of social costs of N will not alter the optimal application timing, but will decrease the

application amount compared with private optimal results.

Figure 4.3: Response of V0 to N1 with different given N0 (linear damage model), the
ordered pair shows (N1, V0)
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Figure 4.4: Response of V0 to N1 with different given N0 (threshold damage model), the
ordered pair shows (N1, V0)

To compare the results from sole split application, we assume N0 = 0 or N1 = 0 and

increase the other fertilizer application from 0 to 110 lb/a to see how the average soil

nutrient stock, corn value, total leaching amount and the estimated corn yield from linear

damage model will be changed, which are plotted in Figure 4.5. The blue line represents

the results from (N0 = 0, N1 > 0) and the red line represents the results from (N0 > 0,

N1 = 0). Figure 4.5(a) tells us the fact that starter application will always bring a higher

soil nutrient level compared with the same amount of side-dressing application. This

finding explains our results that for a social optimum all fertilizers should be applied as

starter despite a higher amount of leaching compared to side-dressing (as in Figure 4.5(c)).

(N0 > 0, N1 = 0) generates a higher corn value compared to (N0 = 0, N1 > 0) in Figure

4.5(b). As showed in Figure 4.5(d), a higher averaged soil nutrient level gives a higher corn

yield when other weather variables are the same.
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(a) The average soil nutrient stock (b) Corn value V0

(c) The total leaching amount (d) The estimated corn yield

Figure 4.5: The average soil nutrient stock, corn value, total leaching amount and the
estimated corn yield from linear damage model under (N0 = 0, N1 > 0) and (N0 > 0,
N1 = 0)

A more detailed look into the evolution of the average soil nutrient stock S̄ is presented

in the following Figure 4.6, where green colored paths are from (N0 = 64, N1 = 0) and

cyan color represents the simulated paths given (N0 = 0, N1 = 64). In Figure 4.6, even if

later side-dressing application has a shorter loss period and a smaller amount of N waste,

the averaged soil nutrient levels from side dressing-only plan (cyan colored) are lower than
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those from starter-only plan (green colored). As a result, at maturity date September 18,

the average growing season soil nutrient stock from (N0 = 64, N1 = 0) is higher than that

from (N0 = 0, N1 = 64), and so does the corn yield.

The simplifying assumption that corn yield depends on average soil N levels has a

significant effect on the results. As discussed previously, this assumption captures the

fact that these two fertilizer application times are not perfect substitutes. More detailed

modelling of the effect of the N application date versus corn growth is beyond the scope of

this thesis. The quantitative results derived must be considered illustrative.

Figure 4.6: The simulated average soil nutrient stock for (N0 = 64, N1 = 0) shown in green
and (N0 = 0, N1 = 64) shown in cyan

The social damage of N from the linear and threshold damage models under (N0 = 0,

N1 > 0) and (N0 > 0, N1 = 0) are examined in Figure 4.7. Since both leaching and

denitrification damages are included in the linear damage model, Figure 4.7(a) shows the

total damages increase almost linearly with the rising of fertilizer application, and starter

application brings a higher social damage compared to side dressing. In contrast, as the
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social damage of N depends on whether the nitrate concentration threshold is triggered or

not, the non-linearity feature of the social damage curve (both lines in Figure 4.7(c), as

marked with a rectangle) is therefore found. Scatter plots of N concentration and social

damages are presented in Figures 4.7(b) and 4.7(d), respectively.

(a) Linear damage model (b) Concentration levels when N1 = 0 in (c)

(c) Threshold damage model (d) Social damages when N1 = 0 in (c)

Figure 4.7: The social damage of N from linear and threshold damage model under (N0 = 0,
N1 > 0) and (N0 > 0, N1 = 0)

In addition, we plot the simulated paths for daily leaching amount, cumulative leaching

166



amount L(t) and N concentration Θ(t) in groundwater in the following Figure 4.8.

(a) Simulated daily leaching amount when (N0 =

62, N1 = 0)

(b) Simulated L(t) when (N0 = 62, N1 = 0)

(c) Simulated Θ(t) when (N0 = 62, N1 = 0) (d) Simulated Θ(t) when (N0 = 64, N1 = 0)

Figure 4.8: Simulated paths for daily leaching amount, cumulative leaching amount L(t)
and groundwater N concentration Θ(t)

Given the socially optimal application (N0 = 62, N1 = 0)lb/a from the threshold dam-

age model, Figure 4.8(a) presents the daily leaching amount caused by daily rainfall, Figure

4.8(b) presents the simulated paths for cumulative leaching amount at day t. To compare

the simulated nitrate concentration paths given the two socially optimal results, Figure

4.8(c) and (d) are presented for (N0 = 62, N1 = 0)lb/a and (N0 = 64, N1 = 0)lb/a, respec-

tively. The mean nitrate concentration level at time T in Figure 4.8(d), 3.0527 mg/L, is
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slightly higher than that in Figure 4.8(c), 2.9926 mg/L.

We compare the total net returns and marginal returns from our model (using base

case assumptions) to results in Gourevitch et al. (2018) as both studies examined the

private and socially optimal N fertilizer application in a midwest state. The Gourevitch

et al. (2018) paper studies N application in Minnesota. Distinct from our approach, both

private and socially optimal decisions in Gourevitch et al. (2018) are derived from the

static net benefit models without incorporating any uncertainty of corn price or weather,

as well as the total amount of N applications are not split. We calculate total net returns

V0 with and without social damages from the linear damage model at each level of N

application, assuming all N fertilizers are applied at planting rather in season. Marginal

return is calculated as the change in net return resulting from an additional N application.

Returns to N fertilizer as the rate of application increases are presented in Figure 4.9

where the total net returns to N (lb/a) are shown on top and marginal returns are shown

on the bottom. Figure 4.10 shows the same information for the Gourevitch et al. (2018)

study (as presented in their Figure 3). Note that the units are not the same in Figures

4.9 and 4.10. The social cost parameter used in the demonstrative example in Gourevitch

et al. (2018) is SCN = $0.50/kg, which is close to our base case values dL = $0.66/kg

and dD = $0.22/kg. As in Gourevitch et al. (2018), in Figure 4.9, we find that there are

diminishing marginal returns to N as the rate of N application increases. Private returns

are higher than social returns, which implies a lower socially optimal N application rate.

Gourevitch et al. (2018) shows a higher value for a cornfield, with value peaking at around

$1700/ha (around $688/acre) for the social planner compared to our value of $448/acre,

and around $1800/ha (around $728/acre) for the private decision maker compared to our

value of $453/acre. Their optimal N application rates for the private and socially optimal

cases are 165 kg/ha and 137 kg/ha (147 lb/a and 122 lb/a), which are significantly higher

than our value of 66 lb/a and 64 lb/a.
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Figure 4.9: Returns to N fertilizer as the application rate increases

Figure 4.10: Returns to N fertilizer as the rate of application increases, Fig. 3 in Gourevitch
et al. (2018)
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Our results depend not only on the features of state variables in the model, but on

parameter assumptions which we know are highly site-dependent. Optimal decisions for

N0 and N1 will change for different assumptions about variable cost of fertilizer, social

cost of leaching and denitrification, and rainfall intensification. To get a complete picture

of how the optimal decision formed in our model, a wide range of sensitivity analysis is

performed in the next section to examine the factors that could affect optimal application

amount and timing. Key parameters tested in the sensitivity are listed in the following

Table 4.2, where the sensitivity level represents the values varied from the baseline case.

Table 4.2: Parameter levels in sensitivity analysis

Parameter Base case Sensitivity level

Fertilizer application cost ratio,
c′N
cN

1 as specified in tables or figures

Starter application variable cost, cN 0.72 $/lb [0.72
4
, 0.72

2
, 0.72, 0.72*2, 0.72*4]

Side-dressing application variable cost, c′N 0.72 $/lb [0.72
4
, 0.72

2
, 0.72, 0.72*2, 0.72*4]

social cost of N from leaching, dL 0.66 $/kg [0.01, 10, 20, 30, 40, 50]

social cost of N from denitrification, dD 0.22 $/kg [0.01, 10, 20, 30, 40, 50]

leaching
denitrification

= le
1−le

in the total N loss 43.3%
56.7%

90%
10%

and 10%
90%

Variable cost, cV 1.7593 $/bu 0.2645

4.5.4 Sensitivity analysis: Variable costs

Sensitivity on fertilizer application variable costs Fertilizer application variable

costs cN and c′N are examined in the same way as Section 3.9.4, other parameters used in

Table 4.3 are set at the base case. N0, N1 are in lb/a. cN refers to the unit cost of the

starter application. c′N refers to the variable cost of the side-dressing, $/lb. Sensitivity

results are displayed in the following Tables 4.3 and 4.4. Similar to Table 3.6 in Section
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3.9.4, fertilizer costs are found to determine both the optimal application amount and

optimal timing. Both threshold and linear damage models give us very similar results.

Comparing with the private optimal cases in Table 3.6, we can observe that the optimal

fertilizer application for the social planner is less than or equal to that of the private decision

maker who ignores social costs from nitrogen. The optimum value V0 in social planner’s

model is lower than the private model. However, the variations in V0 are relatively small.

Sensitivity analysis regarding the social costs of N will be performed in the next sections.

Table 4.3: Sensitivity of (N0, N1)
V0 to variable application costs (linear damage method)

cN

c′N 0.72
4

0.72 0.72 ∗ 4

0.72
4

(84, 0)486.65 (84, 0)486.65 (84, 0)486.65

0.72 (0, 100)481.27 (64, 0)447.99 (64, 0)447.99

0.72 ∗ 4 (0, 100)481.59 (0, 82)431.68 (42, 0)337.17

Table 4.4: Sensitivity of (N0, N1)
V0 to variable application costs (threshold damage

method)

cN

c′N 0.72
4

0.72 0.72 ∗ 4

0.72
4

(84, 0)486.68 (84, 0)486.68 (84, 0)486.68

0.72 (0, 100)481.54 (62, 0)449.46 (62, 0)449.46

0.72 ∗ 4 (0, 100)481.54 (0, 82)432.96 (42, 0)339.54

Further comparison between private and socially optimal results (N0, N1)V0 when
c′N
cN

varies is presented in the following Table 4.5. Within a small range of cost ratio, the

socially optimal application timing, as well as the amount in each split application are
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highly depend on the damage model choice. In the threshold damage model, we observe

that there is a wider range of cost ratios for which the social planner chooses N1 > 0.

Increased side dressing reduces the likelihood of leaching. However, there is a cost to

delaying to the side planting in terms of corn growth, since average soil fertility is reduced.

The social planner must balance these offsetting effects. Furthermore, we observe that for

particular cost ratios where the social planner chooses N1 > 0, the total fertilizer used is

actually greater than that by the private decision maker, however, when the social planner’s

optimal choice at particular cost ratios is N1 = 0, the total amount used is less than that

by the private decision maker. Notice that for the range of cost ratios shown, all N1 > 0

in the threshold damage model which contrasts with the linear damages model. There is

a potential leaching damage saving in the threshold damage model, which gives the social

planner more incentive to delay N application and reduce the concentration level.

Table 4.5: A comparison between private and socially optimal results (N0, N1)
N0+N1
V0

when
c′N
cN

changes

c′N
cN

Socially optimal
Private optimal

Linear damage Threshold damage

0.721 (0, 90)90447.86 (2, 84)86449.82 (40, 36)76452.39

0.723 (14, 70)84447.73 (12, 70)82449.71 (66, 0)66452.38

0.725 (50, 20)70447.67 (22, 56)78449.62 (66, 0)66452.38

0.727 (64, 0)64447.66 (42, 28)70449.55 (66, 0)66452.38

0.729 (64, 0)64447.66 (46, 22)68449.51 (66, 0)66452.38

0.731 (64, 0)64447.66 (54, 10)64449.49 (66, 0)66452.38

0.733 (64, 0)64447.66 (60, 2)62449.48 (66, 0)66452.38

0.735 (64, 0)64447.66 (60, 2)62449.47 (66, 0)66452.38

0.737 (64, 0)64447.66 (60, 2)62449.47 (66, 0)66452.38
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Sensitivity on the variable cost The variable cost (cV , excluding fertilizer application

cost) is examined in the following Table 4.6. Recall that the total variable cost is defined

to exclude the cost of fertilizer. Like Table 3.7 from the private decision maker’s model,

increasing variable cost decreases the optimal fertilizer use since farming is less profitable.

Application amounts in Table 4.6 are generally lower than those in Table 3.7, and as are

the optimal values V0.

Table 4.6: Sensitivity of (N0, N1)
V0 to different levels of total variable cost

Total variable cost 1.7593
4

1.7593
2

1.7593 1.7593× 2 1.7593× 4

linear damage model (72, 0)765.5 (70, 0)659.3 (64, 0)447.7 (44, 0)32.4 (0, 0)0

threshold damage model (68, 0)766.4 (66, 0)660.6 (62, 0)449.4 (46, 0)34.9 (0, 0)0

4.5.5 Sensitivity analysis: Social costs of nitrogen

The sensitivity of the socially optimal fertilizer application strategy (N0, N1) to different

social cost parameters of N, computed respectively from linear damage and threshold dam-

age model, is examined in the following tables: Tables 4.7 and 4.8 (Leaching is assumed as

the base case 43.3% of total N losses, the total variable cost is the base case $1.7593/bu),

Tables 4.9 and 4.10 (leaching is assumed as 10% of total N losses, the total variable cost

is the base case $1.7593/bu), Tables 4.11 and 4.12 (leaching is assumed as 90% of total

N losses, the total variable cost is the base case $1.7593/bu). dL indicates the social cost

in terms of NO−
3 leaching and dD indicates the cost in terms of N2O denitrification. All

social cost parameters (the social cost of leaching, dL and the social cost of denitrification,

dD) displayed in the following tables are in $/kg.

From Tables 4.7 and 4.8, increasing either denitrification or leaching social costs will

reduce the total application amount regardless of which damage model we adopt. Since all
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social damages caused by N use have to be paid in the linear damage model, the optimal

fertilizer application amount in Table 4.7 strictly decreases with the increase of either

social cost parameter. In contrast, since the damages from leaching are paid only when the

nitrate contamination threshold is triggered in the threshold damage model, application

amounts in Table 4.8 are less sensitive to leaching cost dL but more sensitive to the increase

in denitrification cost dD. Results from the base case parameter assumptions are bold in

font in the subsequent tables.

Table 4.7: Sensitivity of (N0, N1) to social cost parameters: Linear damage model (all
other parameters are set at base case)

Linear damage (N0, N1)
dD, in $/kg

0.01 0.22 10 20 30 40 50

d
L
,
in

$/
k
g

0.01 (66, 0) (66, 0) (52, 0) (44, 0) (38, 0) (34, 0) (30, 2)

0.66 (64, 0) (64, 0) (50, 0) (44, 0) (38, 0) (34, 0) (30, 2)

10 (54, 0) (54, 0) (46, 0) (40, 0) (36, 0) (32, 0) (28, 2)

20 (46, 0) (46, 0) (40, 0) (36, 0) (32, 0) (30, 0) (0, 38)

30 (42, 0) (42, 0) (38, 0) (34, 0) (30, 0) (2, 36) (0, 36)

40 (38, 0) (38, 0) (34, 0) (30, 2) (24, 6) (0, 36) (0, 34)

50 (36, 0) (36, 0) (32, 0) (28, 2) (0, 38) (0, 34) (0, 32)
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Table 4.8: Sensitivity of (N0, N1) to social cost parameters: Threshold damage model (all
other parameters are set at base case)

Threshold damage
dD, in $/kg

0.01 0.22 10 20 30 40 50

d
L
,
in

$/
k
g

0.01 (66, 0) (66, 0) (52, 0) (44, 0) (38, 0) (34, 0) (30, 2)

0.66 (62, 0) (62, 0) (52, 0) (44, 0) (38, 0) (34, 0) (30, 2)

10 (54, 0) (54, 0) (50, 0) (44, 0) (38, 0) (34, 0) (30, 2)

20 (54, 0) (54, 0) (50, 0) (44, 0) (38, 0) (34, 0) (30, 2)

30 (52, 0) (52, 0) (50, 0) (44, 0) (38, 0) (34, 0) (30, 2)

40 (52, 0) (52, 0) (50, 0) (44, 0) (38, 0) (34, 0) (30, 2)

50 (52, 0) (52, 0) (50, 0) (44, 0) (38, 0) (34, 0) (30, 2)

When looking at the optimal application timing in Table 4.7 and 4.8, we can find

that it is optimal to delay some application to the side dressing for very high social cost

parameters. Even though application as starter has more impact on increasing the average

soil N level, side-dressing is favoured when social costs of N are at a high level ($20-50

per kg). These effects are more prominent in Table 4.7, in such cases, the demerits from

delaying application, the loss of decreased averaged soil N level, can be compensated by the

benefit from the shorter period for N losses and reduced social N damages. In Table 4.8,

since a low application amount will not trigger the harmful nitrate concentration threshold

and only denitrification damages occur, the optimal application timing and amounts are

found more sensitive to dD. Thus, the delaying effect of application is not as prominent as

Table 4.7. This result follows from our assumption that the initial nitrogen concentration

level is very low. At a high initial concentration level, the linear and threshold models

would coincide.
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Sensitivities for SCN & leaching proportion To examine if the change of assumed

leaching proportion will affect the optimal application amount and timing, we consider two

further sensitivities in which we assume leaching constitutes 10% and 90% of the total N

loss. Table 4.9 and 4.10 shows that denitrification cost parameter dD has a more prominent

impact on the optimal fertilizer application decision when denitrification constitutes by far

the largest proportion of total N loss. In contrast, when leaching constitutes the most in

the N loss, Table 4.11 and 4.12 indicate that both optimal application amounts and timing

are less sensitive to dD, but more sensitive to dL.

Thus, we can conclude that, when the social cost parameters go above certain level,

fertilizer application will be shifted from starter to side-dressing with the total fertilizer

amounts falling significantly. In the linear damage model, either of social cost parameters

(dL and dD) increasing can cause the drop of fertilizer application amount as well as

affect the application timing. In the threshold damage model, the optimal application

amount and timing are more sensitive to the denitrification cost dD when the denitrification

proportion is not very low, and more sensitive to the leaching cost dL when the leaching

proportion is very high. The constitution ratio of total N loss, leaching
denitrification

, can change the

optimal fertilizer decisions through varying the sensitivity of social welfare to two social

costs of N (dL and dD).
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Table 4.9: Sensitivity of (N0, N1) to social cost parameters: Linear damage model
( leaching
denitrification

= 10%
90%

, all other parameters are set at base case)

Linear damage (N0, N1)
dD, in $/kg

0.01 0.22 10 30 50

d
L
,
in

$/
k
g

0.01 (66, 0) (66, 0) (46, 0) (32, 0) (0, 34)

0.66 (66, 0) (64, 0) (46, 0) (32, 0) (0, 34)

10 (62, 0) (62, 0) (46, 0) (32, 0) (0, 34)

30 (56, 0) (56, 0) (44, 0) (30, 0) (0, 32)

50 (52, 0) (52, 0) (42, 0) (28, 2) (0, 32)

Table 4.10: Sensitivity of (N0, N1) to social cost parameters: Threshold damage model
( leaching
denitrification

= 10%
90%

, all other parameters are set at base case)

Threshold damage (N0, N1)
dD, in $/kg

0.01 0.22 10 30 50

d
L
,
in

$/
k
g

0.01 (66, 0) (66, 0) (46, 0) (32, 0) (0, 34)

0.66 (66, 0) (66, 0) (46, 0) (32, 0) (0, 34)

10 (66, 0) (66, 0) (46, 0) (32, 0) (0, 34)

30 (66, 0) (66, 0) (46, 0) (32, 0) (0, 34)

50 (66, 0) (66, 0) (46, 0) (32, 0) (0, 34)
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Table 4.11: Sensitivity of (N0, N1) to social cost parameters: Linear damage model
( leaching
denitrification

= 90%
10%

, all other parameters are set at base case)

Linear damage (N0, N1)
dD, in $/kg

0.01 0.22 10 30 50

d
L
,
in

$/
k
g

0.01 (66, 0) (66, 0) (62, 0) (56, 0) (52, 0)

0.66 (64, 0) (64, 0) (60, 0) (56, 0) (52, 0)

10 (46, 0) (46, 0) (46, 0) (44, 0) (42, 0)

30 (32, 0) (32, 0) (32, 0) (30, 0) (28, 2)

50 (0, 34) (0, 34) (0, 34) (0, 32) (0, 32)

Table 4.12: Sensitivity of (N0, N1) to social cost parameters: Threshold damage model
( leaching
denitrification

= 90%
10%

, all other parameters are set at base case)

Threshold damage (N0, N1)
dD, in $/kg

0.01 0.22 10 30 50

d
L
,
in

$/
k
g

0.01 (66, 0) (66, 0) (62, 0) (56, 0) (52, 0)

0.66 (64, 0) (64, 0) (60, 0) (56, 0) (52, 0)

10 (26, 4) (26, 4) (26, 4) (26, 4) (28, 0)

30 (24, 4) (24, 4) (24, 4) (24, 4) (26, 0)

50 (26, 0) (26, 0) (26, 0) (26, 0) (26, 0)

The sensitivity of leaching proportion assumption and application timing on the N con-

centration level is illustrated by the following Figure 4.11, where the application is assumed

as (N0 = 64, N1 = 0) and (N0 = 0, N1 = 64), and leaching
denitrification

is assumed as 43.3%
56.7%

and 90%
10%

.

In Figure 4.11, side-dressing application can reduce the N concentration compared to the

same amount starter application. Changing either the assumption of leaching proportion

or the level of concentration threshold can change the risk of concentration threshold being
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crossed and therefore will affect the socially optimal decision.

(a) (N0 = 64, N1 = 0), leaching
denitrification = 43.3%

56.7% (b) (N0 = 0, N1 = 64), leaching
denitrification = 43.3%

56.7%

(c) (N0 = 64, N1 = 0), leaching
denitrification = 90%

10% (d) (N0 = 0, N1 = 64), leaching
denitrification = 90%

10%

Figure 4.11: Simulated paths for N concentration Θ(t) when different fertilizer applications
and leaching proportions assumed

Sensitivities for the SCN & the total variable cost To see how social cost of N

interacts with the total variable cost, we perform sensitivity analysis in the following Table

4.13, 4.14 and 4.15 with black font representing the results from linear damage method and

blue font representing the results from threshold damage method. Leaching proportion is
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varied from 10% to 90% in three tables, where the base case is 43.3%. A conclusion can be

derived from Table 4.13, 4.14 and 4.15 that a lower total variable cost will not change the

way social costs affect optimal fertilizer decisions, but only increase the total application

amount.

Table 4.13: Sensitivity of (N0, N1)V0 to social cost parameters ( leaching
denitrification

= 10%
90%

, the

total variable cost is $0.2645/bu, all other parameters are set at base case)

dL

dD
Model choice 0.01$/kg 0.22$/kg 50$/kg

0.01 $/kg linear damage (74, 0) 813 (72, 0) 810 (0, 44) 458

threshold damage (74, 0) 813 (72, 0) 810 (0, 44) 458

0.66 $/kg linear damage (74, 0) 812 (72, 0) 809 (0, 44) 458

threshold damage (74, 0) 812 (72, 0) 809 (0, 44) 458

50 $/kg linear damage (60, 0) 754 (60, 0) 752 (0, 42) 432

threshold damage (74, 0) 811 (72, 0) 808 (0, 44) 458

Table 4.14: Sensitivity of (N0, N1)V0 to social cost parameters ( leaching
denitrification

= 43.3%
56.7%

, the

total variable cost is $0.2645/bu, all other parameters are set at base case)

dL

dD
Model choice 0.01$/kg 0.22$/kg 50$/kg

0.01 $/kg linear damage (74, 0) 813 (74, 0) 812 (38, 2) 559

threshold damage (74, 0) 813 (74, 0) 812 (38, 2) 559

0.66 $/kg linear damage (72, 0) 809 (72, 0) 808 (38, 2) 559

threshold damage (70, 0) 810 (70, 0) 808 (38, 2) 559

50 $/kg linear damage (42, 0) 608 (42, 0) 606 (0, 42) 432

threshold damage (52, 2) 795 (52, 2) 794 (38, 2) 559
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Table 4.15: Sensitivity of (N0, N1)V0 to social cost parameters ( leaching
denitrification

= 90%
10%

, the

total variable cost is $0.2645/bu, all other parameters are set at base case)

dL

dD
Damage model 0.01$/kg 0.22$/kg 50$/kg

0.01 $/kg linear damage (74, 0) 813 (74, 0) 812 (60, 0) 755

threshold damage (74, 0) 813 (74, 0) 812 (60, 0) 755

0.66 $/kg linear damage (72, 0) 806 (72, 0) 805 (60, 0) 749

threshold damage (72, 0) 806 (72, 0) 805 (60, 0) 749

50 $/kg linear damage (0, 44) 459 (0, 44) 458 (0, 42) 432

threshold damage (24, 4) 647 (24, 4) 646 (24, 4) 623

Sensitivities for the SCN & fertilizer cost ratio We examine the joint sensitivity

of value and optimal decisions to the fertilizer cost ratio and social costs in the following

Figure 4.12 and 4.13. More details on these results are displayed in Appendix I. The x-axis

in both figures is the SCN, assuming dL = dD from $5/kg to $50/kg with a step size of 5.

The cost ratio of the two application variable costs,
c′N
cN
, is assumed as 0.8, 0.9 and 1. The

blue line represents the optimal N0 on the left y-axis, the red line represents the optimal

N1 on the right y-axis.

We can conclude from Figure 4.12 and 4.13 that, the choice of social damage model

(linear damage or threshold damage) has a strong effect on the socially optimal applica-

tion amounts and timing. For both damage models, the rising of social cost of N (SCN)

decreases the optimal starter amount N0 and increases the side-dressing N1. However, in

the threshold damage model it takes a higher SCN, compared to the linear damage model,

to trigger the switch to a positive side dressing application. This is because nitrogen is less

damaging under the threshold model as long as the N application is such low that con-
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centration level of nitrogen is below the threshold. In addition, we find that the relative

cost of two split fertilizer applications,
c′N
cN
, can determine the level of SCN at which each

split application is zero or positive. For example, the cost ratio
c′N
cN

increasing from 0.8 to 1

will make the SCN “threshold” for triggering a positive side-dressing application (N1 > 0)

larger. While all the values of the corn harvest (V0) fall sharply as the SCN is increased,

the cost ratio
c′N
cN

has only a very limited effect on the optimal value V0 variation.

Figure 4.12: Sensitivity on social costs and fertilizer application cost ratio
c′N
cN

(Linear
damage model results), the blue line represents the optimal N0 on the left y-axis, the red
line represents the optimal N1 on the right y-axis
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Figure 4.13: Sensitivity on social costs and fertilizer application cost ratio
c′N
cN

(Threshold
damage model results), the blue line represents the optimal N0 on the left y-axis, the red
line represents the optimal N1 on the right y-axis

In summary, the socially optimal N0 and N1 amounts are found to be sensitive to

the leaching proportion assumption, social cost parameters, the relative cost of two split

fertilizer applications, and the model for measuring social damage. In most scenarios where

leaching proportion and social costs are in moderate range, results from the linear damage

model and results from the threshold damage model are close. However, in some extreme

cases of leaching proportion and/or social costs, socially optimal application decisions

from two damage models are significantly divergent. The social damage from leaching has

to be counted regardless of N concentration is high or low in the linear damage model,
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which offsets to some extent the benefit to corn of earlier fertilizer application. However,

in the threshold damage model, choosing N to maximize profits from the corn harvest,

and minimize denitrification costs is the objective as long as the harmful N concentration

threshold is not triggered. Early season fertilizer application N0 at t0 always means a

longer period for N loss than N1 applied at t1. Yet, the relationship between corn yield

and fertilizer use is driven by our model assumption that the seasonal averaged soil nutrient

content S is what matters. Thus, the optimal N0 applications from the threshold damage

model are generally higher than those from the linear damage model in all of Table 4.7,

4.8, 4.9, 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15.

4.5.6 Sensitivity analysis: Precipitation

In our model, social damages from nitrogen application are highly dependent on the

quantity and frequency of rainfall. Given changing expected rainfall patterns associated

with climate change, it is instructive to consider how optimal nitrogen fertilizer decisions are

affected by the frequency of rainfall as well as the expected quantity and variance. Optimal

application amounts under different rainfall scenarios are presented in the following Table

4.16. The parameters describing the probability of rainfall, Pij, i, j = {0, 1}, as well as the

γ parameter in the exponential distribution for the quantity of rainfall, are varied in the

same way as in Section 3.9.6. All other parameters are set as the base case level.

Similar to the conclusions drawn in Section 3.9.6 regarding Table 3.9, Table 4.16 shows

that whether an increasing likelihood of rainfall (rainfall frequency) will increase or decrease

the optimal application amount depends on the expected daily rainfall quantity. Similarly,

the effect of expected rainfall amount on the optimal application depends on the level of

rainfall frequency. In both damage models, more frequent rainfall reduces the optimal

application amount only when the expected daily precipitation amount is high (moving
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down the third column of numbers). As well, an increase in the expected daily rainfall

amount will reduce the optimal application amount only when the rain likelihood is high

(along the fifth and sixth rows). When comparing results from both damage models,

socially optimal application amounts from the threshold damage model are less than or

equal to those from the linear damage model, especially in those cases where intensified

rainfall happens (More and/orWetter scenario). This is because the risk for concentration

exceeding the threshold is higher with more leaching as a result of increased rainfall.

Table 4.16: Sensitivity of (N0, N1) to rainfall scenarios (Base case)

Rain likelihood

Rain amount
Less Base Case More

Smaller (Dryer) linear damage (52, 0) (62, 0) (66, 0)

threshold damage (52, 0) (62, 0) (64, 0)

Base Case linear damage (56, 0) (64, 0) (62, 0)

threshold damage (56, 0) (62, 0) (62, 0)

Larger (Wetter) linear damage (58, 0) (66, 0) (46, 0)

threshold damage (58, 0) (62, 0) (40, 0)

Comparing both first columns in Table 4.16 and Table 3.9, the social planner’s optimal

results are identical to results from the private decision maker’s model. This may be

attributed to the insufficiently large base case social cost parameters and daily rainfall

amounts, which underpin a social N damage that is insufficiently significant to change the

optimal decision.

Sensitivities for precipitation & SCN To see the joint impact of precipitation and

increased social cost on the socially optimal application, we increase the parameter from
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the base case dL = 0.66$/kg, dD = 0.22$/kg to the higher level dL = dD = 30$/kg. Results

are displayed in the following Table 4.17. We can see in Table 4.17 that N applications

are generally higher under the threshold damage function compared to the linear damage

function, which is as expected since those N applications under the threshold damage

function cause no leaching damage. With the increase in the expected quantity of rainfall,

the groundwater nitrate concentration due to leaching is more likely to touch the threshold,

and thus the application amount is reduced and some fertilizer is applied as side-dressing.

With higher social costs, the rainfall-induced social damage becomes more prominent and

thus can change the socially optimal application decision. For example, under the More

expected daily rain amount scenario, delayed application (side-dressing N1 > 0) is favoured

by the social planner as a result of the higher social damages of N caused by higher N losses.

Table 4.17: Sensitivity of (N0, N1) to rainfall scenarios (when dL = dD = 30 $/kg)

Rain likelihood

Rain amount
Less Base Case More

Smaller (Dryer) linear damage (32, 0) (32, 0) (0, 36)

threshold damage (38, 0) (40, 0) (34, 2)

Base Case linear damage (32, 0) (30, 0) (0, 30)

threshold damage (38, 0) (38, 0) (28, 2)

Larger (Wetter) linear damage (32, 0) (26, 4) (0, 26)

threshold damage (38, 0) (36, 2) (24, 4)

Sensitivities for precipitation , SCN & the total variable cost To see how total

variable cost (excluding the fertilizer use) will affect the socially optimal applications, we

examine the sensitivity of (N0, N1) by repeating the above analysis in Table 4.16 and 4.17

assuming the total variable cost cV is decreased from 1.7593 to 0.2645 $/bu. Results are
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displayed in the following Table 4.18. Two social cost scenarios are presented: the base

case dL = 0.66, dD = 0.22 and dL = dD = 30 $/kg. From the table, several conclusions

can be made: First, a lower variable cost on corn yield will increase the socially optimal

application amount. Intuitively, a lower variable costs increases the benefits from the

corn harvest. The marginal profit obtained from a unit of fertilizer application is thereby

increased, thereby increasing the optimal quantity.

Second, the increase in social cost parameters will significantly reduce the optimal

fertilizer application amounts in all precipitation scenarios, regardless of which of the social

damage models is chosen.

Table 4.18: Sensitivity of (N0, N1) rainfall, when the total variable cost is cV = $0.2645/bu

dL = 0.66, dD = 0.22 dL = dD = 30

Rain amount

Less Base More Less Base More

R
ai
n
li
ke
li
h
o
o
d S
m
al
le
r

linear damage (58, 0) (70, 0) (74, 0) (38, 0) (38, 2) (0, 48)

threshold damage (60, 0) (68, 0) (74, 0) (44, 0) (46, 0) (38, 4)

B
as
e linear damage (62, 0) (72, 0) (70, 0) (38, 0) (36, 2) (0, 36)

threshold damage (62, 0) (70, 0) (70, 0) (46, 0) (44, 0) (36, 0)

L
ar
ge
r

linear damage (64, 0) (74, 0) (56, 0) (38, 0) (34, 4) (0, 20)

threshold damage (64, 0) (74, 0) (56, 0) (46, 0) (44, 0) (30, 0)

Third, the effect of a change in the frequency and expected value (and variance) of

rainfall is much more apparent when the social cost of damages is high. Higher social

costs can make the damage large enough that optimal application decisions can be altered

significantly, not only in amounts but in timing. For example, (N0, N1) in the left half

of Table 4.18 are not significantly varied with all N1 = 0. However, with higher social
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nitrogen loss costs (right half of Table 4.18), intensified rainfall with higher likelihood and

daily amounts will both lower application amounts and change the optimal application

timing (delay the application for a shorter period of loss, marked in red color).

Sensitivities for precipitation & the fertilizer application cost ratio Since the

cost ratio of variable costs for two split applications,
c′N
cN
, is found to be decisive for optimal

timing in private decision maker’s model in Section 3.9.4, we examine both
c′N
cN

and rainfall

as part of our joint sensitivity analysis. The main findings are depicted in the following

Figure 4.14 and 4.15, details regarding results are listed in Appendix J. The cost ratio
c′N
cN

in Figure 4.14 and 4.15 is varied from 0.5 to 1, with a step size of 0.1.

Among our tested values of
c′N
cN
, the effect of cost ratio on socially optimal application

timing is found to be immune to the social damage model choice (linear damage or threshold

damage). For example, in the (Dryer,Base) rainfall case, both damage models give N0 = 0

when
c′N
cN

= 0.7 and N1 = 0 when
c′N
cN

= 0.8. However, this finding does not contradict the

findings from Table 4.5, which used a much smaller cost ratio range (from 0.721 to 0.737).

For both damage functions in Figure 4.14 and 4.15, we see the range of cost ratios at

which N0 > 0 and N1 = 0 varies with changes in the expected quantity of rainfall. As

the expected rainfall quantity increases, the cost ratio
c′N
cN

at which N1 falls to zero rises,

implying a wider range of cost ratios at for which side-dressing N1 > 0.
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Figure 4.14: Sensitivities for precipitation and the cost ratio
c′N
cN

(Linear damage results)
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Figure 4.15: Sensitivities for precipitation and the cost ratio
c′N
cN

(Threshold damage results)

In conclusion, our assumptions about the frequency and quantity of rainfall have a

strong effect on the optimal quantity of fertilizer application, and also interact with other

parameters such as the fertilizer variable costs, social costs of N and the total variable

cost. There is a trade-off between early and delayed fertilizer application. Starter N0 has

the advantage of being on the field longer and contributes more to average soil nutrient

content, but it is also more likely to get washed away and cause a higher social damage.

Side-dressing N1 has a shorter N loss period and thus can lower the social damage of N,

however, average soil nutrient content is lower unless using more N1. Conclusions about the

optimal application decision will depend critically on empirical estimates of the farmer’s

costs and damages from nitrogen applications, as well as on modelling assumptions about

corn growth, leaching, denitrification, rainfall, etc.

We are left with the puzzle as to why the optimal fertilizer quantities calculated in this
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thesis are all lower than the historical average application amounts in Iowa. For example,

the highest amount of optimal fertilizer application in Appendix H is 102 lb/a, still lower

than the 1990-2018 historical averaged N application in Iowa (a minimum of 114 lb/a, a

mean of 128 lb/a and a maximum of 150 lb/a). Further discussion of this puzzle is left to

Chapter 5.

4.5.7 Sensitivity analysis: Corn price volatility and speed of

mean reversion

The sensitivity of the socially optimal fertilizer application to corn price parameters is

examined by varying volatility σP and mean reversion speed θ as shown in the following

Table 4.19. Three levels of price volatility and mean reversion are set to represent different

levels of price uncertainty. The original σP and θ are estimated in Table 3.2.

Table 4.19: (N0, N1)V0 for different price sensitivity regimes (θ,σP ) (All other parameters
are at base level)

Parameter Model choice σP

2
σP 2σP

θ
2

linear damage (64, 0) 440 (62, 0) 429 (60, 0) 400

threshold damage (62, 0) 441 (60, 0) 427 (60, 0) 414

θ linear damage (66, 0) 471 (64, 0) 447 (62, 0) 436

threshold damage (64, 0) 473 (62, 0) 449 (60, 0) 433

2θ linear damage (68, 0) 503 (66, 0) 495 (62, 0) 475

threshold damage (66, 0) 506 (64, 0) 494 (62, 0) 480

In Table 4.19, both linear damage and threshold damage models give us similar findings.

First, at a given mean reversion speed level in Table 4.19, both starter applicationN0 (which

is also the total application) and the maximized value, V0 (on the right-bottom of each pair)
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are found to decline with the rising of price volatility level from σP

2
to 2σP . Increased corn

price volatility has a negative impact on the fertilizer application. Second, it is observed

that under a given price volatility level, the optimal fertilizer application increases with an

increase of the mean reversion speed from θ
2
to 2θ. For both linear damage and threshold

damage models, as long as P̄ exceeds the average variable cost of fertilizer application, as

is the case under our assumptions, a higher speed of mean reversion increases the value of

the crop and makes it worthwhile for the farmer to use more fertilizers.

To see how an increase in p0 affects the socially optimal decision in our base case,

we raise the starting value in Table 3.5 from $4.145/bushel to $6.145/bushel. The social

planner’s optimal application increases from (64, 0) lb/a to (74, 0), and the value V0 per

acre increases from $447.9946 to $930.2216. A higher corn price starting value is examined

to increase the socially optimal application amount.

Similar to the results in Section 3.9.5, price volatility and mean reversion speed will

have impacts on the socially optimal fertilizer application as well as the optimal value.

Both an increase in volatility and a decrease in mean reversion speed will lower the optimal

quantity of N applied. However, when other parameters set at base case levels, the optimal

split decisions between starter and side dressing are found not sensitive to these two price

parameters.

Sensitivities for SCN & corn price parameters To see how SCN interacts with corn

price in affecting the socially optimal application, we increase the social cost of N from the

base case, dL = $0.66/kg and dL = $0.66/kg, to dL = dD = $30/kg. Results from both

damage models are presented in the Table 4.20.
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Table 4.20: (N0, N1) for different price sensitivity regimes (θ,σP ) (dL = dD = $30/kg, all
other parameters are at the base level)

Parameter Model choice σP

2
σP 2σP

θ
2

linear damage (30, 0) (28, 0) (26, 0)

threshold damage (38, 0) (36, 0) (32, 0)

θ linear damage (34, 0) (30, 0) (28, 0)

threshold damage (40, 0) (38, 0) (36, 0)

2θ linear damage (36, 0) (32, 0) (32, 0)

threshold damage (42, 0) (40, 0) (40, 0)

From Table 4.20, both an increase in volatility and a decrease in mean reversion speed

will lower the optimal quantity of N applied, same as the conclusion we found from Table

4.19. The optimal split decisions between starter and side dressing are also found not

sensitive to price parameters. The socially optimal application amount from threshold

damage model are larger than those from linear damage model, and the amount differences

between two damage results are larger than those in Table 4.19. We can conclude that the

rising of social cost separately will not change the way corn price uncertainty affects the

socially optimal fertilizer application, but lower the application amount and amplify the

amount gap between results from linear and threshold damage models.

Sensitivities for precipitation & corn price parameters To see if the corn price

uncertainty effect will be changed by the increased frequency of rainfall as well as the

increased expected quantity and variance, we vary the rainfall scenario from the base case

to (Wetter, Base), (Base,More) and (Wetter,More), where changed rainfall parameters

are described in Section 3.9.6. Results from both damage models are presented in the

Table 4.21, 4.22 and 4.23.
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Table 4.21: (N0, N1) for different price sensitivity regimes (θ,σP ) ((Wetter, Base) rainfall
scenario, other parameters are at the base level)

Parameter Model choice σP

2
σP 2σP

θ
2

linear damage (66, 0) (64, 0) (62, 0)

threshold damage (62, 0) (60, 0) (60, 0)

θ linear damage (68, 0) (66, 0) (64, 0)

threshold damage (64, 0) (62, 0) (60, 0)

2θ linear damage (70, 0) (68, 0) (64, 0)

threshold damage (64, 0) (64, 0) (62, 0)

Table 4.22: (N0, N1) for different price sensitivity regimes (θ,σP ) ((Base,More) rainfall
scenario, other parameters are at the base level)

Parameter Model choice σP

2
σP 2σP

θ
2

linear damage (62, 0) (60, 0) (58, 0)

threshold damage (62, 0) (62, 0) (60, 0)

θ linear damage (64, 0) (62, 0) (60, 0)

threshold damage (66, 0) (62, 0) (62, 0)

2θ linear damage (66, 0) (64, 0) (60, 0)

threshold damage (66, 0) (64, 0) (64, 0)
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Table 4.23: (N0, N1) for different price sensitivity regimes (θ,σP ) ((Wetter,More) rainfall
scenario, other parameters are at the base level)

Parameter Model choice σP

2
σP 2σP

θ
2

linear damage (46, 0) (44, 0) (42, 0)

threshold damage (40, 0) (40, 0) (36, 0)

θ linear damage (48, 0) (46, 0) (42, 0)

threshold damage (44, 0) (40, 0) (38, 0)

2θ linear damage (50, 0) (48, 0) (46, 0)

threshold damage (44, 0) (42, 0) (40, 0)

From Table 4.21, 4.22 and 4.23, either an increase in volatility or a decrease in mean

reversion speed will lower the optimal quantity of N application, as prior discussion. The

optimal split decisions between starter and side dressing are also found not sensitive to price

parameters. We can conclude that, like the SCN, the rising of rainfall amount and/or fre-

quency will not change the way corn price uncertainty affects the socially optimal fertilizer

application.

In addition, we find that results from both damage models are close in Table 4.22, with

the amount differences are 0, 2, or 4 lb/a. The amount gap between results from both

damage models in Table 4.21 and 4.23 are larger, with the largest gap is 6 lb/a. In Table

4.21 and 4.23, the socially optimal application amount from threshold damage model are

smaller than those from linear damage model, and the amount differences between two

damage results are larger than those in base case, Table 4.19.

Sensitivities for SCN, precipitation & corn price parameters Since the effect of

corn price uncertainty on the socially optimal fertilizer applications are not altered in the

presence of the increased frequency and the expected quantity of rainfall, or the increased
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SCN, we need to see if both increased precipitation and SCN can jointly affect the optimal

decisions, especially the optimal split decisions between starter and side dressing. To

do so, we increase the social cost of N from the base case, dL = $0.66/kg and dD =

$0.22/kg, to dL = dD = $30/kg, as well as vary the rainfall scenario from the base case

to (Wetter, Base), (Base,More) and (Wetter,More). Results from both damage models

are presented in the Table 4.24, 4.25 and 4.26.

Table 4.24: (N0, N1) for different price sensitivity regimes (θ,σP ) ((Wetter, Base) rainfall
scenario, dL = dD = $30/kg)

Parameter Model choice σP

2
σP 2σP

θ
2

linear damage (28, 2) (26, 2) (24, 2)

threshold damage (36, 2) (36, 0) (34, 0)

θ linear damage (30, 2) (26, 4) (24, 4)

threshold damage (38, 2) (36, 2) (34, 2)

2θ linear damage (30, 4) (28, 4) (28, 4)

threshold damage (38, 4) (38, 2) (38, 2)

Table 4.25: (N0, N1) for different price sensitivity regimes (θ,σP ) ((Base,More) rainfall
scenario, dL = dD = $30/kg)

Parameter Model choice σP

2
σP 2σP

θ
2

linear damage (0, 30) (0, 28) (0, 28)

threshold damage (30, 2) (28, 2) (28, 0)

θ linear damage (0, 32) (0, 30) (0, 28)

threshold damage (30, 2) (28, 2) (28, 2)

2θ linear damage (0, 34) (0, 32) (0, 30)

threshold damage (34, 2) (32, 2) (30, 2)
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Table 4.26: (N0, N1) for different price sensitivity regimes (θ,σP ) ((Wetter,More) rainfall
scenario, dL = dD = $30/kg)

Parameter Model choice σP

2
σP 2σP

θ
2

linear damage (0, 28) (0, 26) (0, 24)

threshold damage (26, 4) (24, 2) (24, 2)

θ linear damage (0, 28) (0, 26) (0, 24)

threshold damage (26, 4) (24, 4) (24, 4)

2θ linear damage (0, 30) (0, 28) (0, 26)

threshold damage (30, 4) (28, 4) (26, 4)

It is observed that, from Table 4.24, 4.25 and 4.26, an increase in price volatility or a

decrease in mean reversion speed reduces the socially optimal total fertilizer application.

We can conclude that the socially optimal application quantity and timing from each level

of price parameters are sensitive to the level of precipitation and social cost of N. For

example, increasing from σP to 2σP will reduce N1 from 2 to 0 in the threshold model

in Table 4.25, whereas will not change their counterparts in Table 4.26. In addition, the

impact of price uncertainty on socially optimal split application decisions, starter N0 and

side-dressing N1, are found sensitive to the social damage model choice. For example,

for N0 and N0 + N1 in Table 4.24, 4.25, 4.26 and N1 in Table 4.25 and 4.26, the rising

of price volatility will decrease or not change them for both damage models in all cases.

However, in Table 4.24, with the rising of volatility, N1 increases or is unchanged for the

linear damage model while N1 decreases or unchanged for the threshold damage model.

Like previously found, in Table 4.24, 4.25 and 4.26, the decreasing mean reversion speed

will lower or not change both split applications and the total application amount for both

damage models.
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Therefore, we can make the conclusions that, the total application amount, as well

as both split application amounts increase or remain the same with the increase of mean

reversion speed regardless of how we vary SCN, rainfall or the choice of social damage

model. The optimal split decisions are determined jointly by a series of multiple factors

including SCN, rainfall and price parameters. Rising price volatility will decrease or not

change the starter applicationN0, the total applicationN0+N1, and almost all side-dressing

N1 regardless of what SCN, rainfall and damage model assumptions are.

4.5.8 Sensitivity analysis: Starting soil N-level

As what we did in Section 3.9.7, we examine the effect of corn yield model (Equation

(3.37)) on the socially optimal decision. The following Figure 4.16 plots the socially optimal

fertilizer applications and the social welfare surface from both damage models, using the

new estimated corn yield function in Equation (3.37).

(a) Using the linear damage model (b) Using the threshold damage model

Figure 4.16: The socially optimal fertilizer applications and the social welfare surface, the
ordered triplet shows (N0, N1, and Value at time 0)

As the finding in Section 3.9.7, assuming a 5 lb/a soil N residue at the beginning of
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the season decreases the socially optimal application amount from (N0 = 64, N1 = 0) and

(N0 = 62, N1 = 0) lb/a in Figure 4.2 to (N0 = 56, N1 = 0) and (N0 = 54, N1 = 0) lb/a

in Figure 4.16, with the optimal application timing left unchanged. The socially optimal

application amount from using the linear damage model is 2 lb/a higher than that from

using the threshold damage model, which is identical to what is found in Figure 4.2. The

social welfare, V0, increase from $447.9946 and $449.4196 per acre in Figure 4.2 to $472.1701

and $474.5329 per acre in Figure 4.16, suggesting pre-plant soil tests are beneficial from

the social planner’s perspective.

A higher potential of agricultural N loss and over-application may present when farmers

didn’t use soil test prior to starter application. They may base their fertilizer applications

on their yield-maximizing rule or improper expectations on weather and yield targets. Our

results show that the adoption of pre-plant soil test in assessing soil N availability prior to

starter application will reduce both the farmer’s and social planner’s optimal total fertilizer

application amounts, which will not only lower the risk of fertilizer over-application, save

their costs without a scarification of net benefit, but also increase the social welfare.
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Chapter 5

Discussion and Conclusions

Intensive fertilizer application is causing extensive nutrient pollution. Nutrient losses

from agricultural uses of fertilizer, especially in forms of leaching and denitrification, has

become the most pressing non-point source pollution problem in Iowa. Most of the nutrients

that are applied to agricultural lands serve their intended purpose of increasing crop yields,

but also cause groundwater quality deterioration and contribute to climate change, which

are detrimental to human health and the environment. As outlined in the Introduction,

nutrient pollution is a problem worldwide. This thesis focuses its analysis on Iowa, largely

because of data availability. The modelling approach and conclusions derived are more

generally applicable.

Despite the Iowa Nutrient Reduction Strategy and other best management practices,

Iowa has relied mostly on farmers’ voluntary efforts in avoiding excess fertilizer applica-

tion. Many farmers in Iowa are not adhering to the recommendations based on maximum

economic return to N, and excess fertilizer application is frequently observed. As a con-

sequence, more than two hundred of Iowa’s community water systems struggle with high

nitrate levels, periodically issuing “Do Not Drink” orders. The application of nitrogen

200



fertilizer on Iowa farms has increased about 15 percent on average across counties over the

past 40 years. Iowa has become the second-largest contributor of nitrates to the Mississippi

River Basin.1 According to a study by the Union of Concerned Scientists (UCS)2, Iowans

will be on the hook for up to 333 million dollars over the next five years to remove nitrates

polluting the state’s drinking water supplies and threatening public health. Algal blooms

also makes surface water unfit for recreational use.

The purpose of this thesis is to analyze the impact of corn price uncertainty and weather

factors (precipitation and heat) on the farmer’s and social planner’s optimal fertilizer ap-

plications, and the divergence between them, by constructing a model of the stochastic

optimal control problem for each decision maker. This thesis first investigates the farmer’s

optimal fertilizer application under crop price uncertainty in Chapter 2 by constructing

an inter-temporal farmer’s decision model under two alternative stochastic price processes

for corn: geometric Brownian motion and mean reversion. Corn yield is assumed to be

a simple quadratic function of applied fertilizer. Employing a real options approach, a

Hamilton-Jacobi-Bellman equation is developed describing the value of the corn field. We

derive closed form results for the farmer’s optimal fertilizer application decision. Numerous

factors that could impact the optimal fertilization decision are examined as well.

The farmer’s decision model is then enhanced in Chapter 3 by allowing for two possible

fertilizer application times in the growing season and the inclusion of additional stochastic

state variables or path-dependent variables such as average soil nutrient stock, rainfall and

temperature, in the corn yield model. Significant care is taken in developing reasonable

models for all these state variables. Key modelling assumptions are summarized below.

• Corn prices and daily temperatures are modelled as mean reverting stochastic pro-

1Source: https://www.nationalgeographic.com/science/article/iowa-agriculture-runoff-water-
pollution-environment

2Source: https://www.ucsusa.org/about/news/rural-iowans-bear-brunt-water-treatment-costs-nitrate-
pollution-farms-and-cafos
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cesses.

• The probability of rainfall follows a continuous time Markov chain, while the rainfall

quantity follows an exponential distribution.

• Corn yield depends on cumulative rainfall, cumulative corn heat units, and average

soil nutrient level.

A Hamiltonian-Jacobi-Bellman equation describing the value of the corn field is derived

for this much more complex decision model. With nine state variables, a closed form

solution is not available. Numerical solution using a standard semi-Lagrangian approach

is also not practical. Instead, the choice set of optimal controls is restricted, and a Monte

Carlo approach is employed to explore model solutions. The model is parameterized for

average conditions in Iowa corn growing regions. Numerical results conclude that for a

wide range of parameter assumptions the farmer’s optimal strategy is to apply fertilizer at

planting rather than later as a side dressing.

In Chapter 4, the thesis analyzes the optimal decisions of a social planner whose objec-

tive function includes an estimate of the damages caused by nitrogen leakage and denitri-

fication. Socially optimal fertilizer applications are compared with the privately optimal

results in Chapter 2 and 3. In addition, as parameters are highly site-dependent, sensitivity

analysis is performed to analyze the impacts of price uncertainty, precipitation, fertilizer

cost and other economic parameters on the farmer’s and socially optimal fertilizer applica-

tions. The findings concluded in Chapter 3 and 4 not only broaden our understanding of

the degree of market failure from agricultural fertilizer use which is dictated by the extent

to which the farmer’s optimal choice differs from the social planner’s decision, but also

reveal the most significant factors that drive the divergence between the two. A compre-

hensive literature survey is also performed in our thesis, which investigates and summarizes
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the soil nitrogen cycle, the social cost of N, the modeling of rainfall and temperature, the

impact of weather and nitrogen use on corn yield.

The findings of the analysis in this thesis provide answers to the main questions raised at

the beginning of our thesis and also point to further questions requiring more research. In

summarizing the results we focus on the difference between the farmer’s and social planner’s

optimal decisions as well as on factors that change the optimal total N application and the

split between the two application times. Under our base case assumptions, the farmer’s

optimal fertilizer application (66 lb/a) is slightly higher than the socially optimal ones (64

and 62 lb/a for the linear and the threshold damage functions, respectively), whereas both

farmer and social planner are found to prefer to apply all fertilizer at planting rather than

in season. This is, in part, because of our specific corn yield model assumption that starter

has the advantage of being on the field longer and contributes more to the averaged soil N

level compared to side-dressing. The fertilizer applied at planting has more opportunity to

contribute to N-pollution than does mid-season application, but the relatively low social

cost of N assumed in the base case ensures this outcome. In average weather conditions, we

find the socially optimal strategy deviating from the private optimal strategy, indicating a

market failure from agricultural fertilizer use, similar to the finding in Kabir et al. (2021).

These results depend on a host of factors including the average soil nutrient level which is

subject to losses by uncertain rainfall, the relative cost of two split fertilizer applications,

the expected outlook for corn price and rainfall, the total variable cost on yield and corn

yield model choice. Apart from these factors, the socially optimal fertilizer application is

further impacted by social cost parameters from leaching and denitrification, and social

damage model choice.

Both the farmer’s corn value surface and social welfare surface are concave in the

N-application as we use the concave exponential corn yield function in Chapters 3 and

4. After a certain point further fertilizer application will have no significant additional
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positive impact on corn yield, but will decrease the net revenues as a result of increased

costs. As an important finding, we show that the farmer’s optimal application is lower than

the applications based on higher yield targets, suggesting that fertilizer over-application

relative to the economically efficient amount may be attributed to recommendations built

on the yield-maximizing principle or the farmer’s desire to achieve higher yield targets.

For the effect from corn price uncertainty, results in Chapter 2 indicate that an increase

in price volatility implies a reduction in the farmer’s fertilizer application amount while an

increase in the speed of mean reversion for corn prices implies an increase in the nitrogen

application. The benefits of increased N in terms of a higher corn yield do not outweigh the

increased risk of an unfavorable corn price at harvest time when prices are more volatile.

This finding is also confirmed in Chapter 3 where private optimal decisions are examined

under weather uncertainty and with two different fertilizer application times. In Chapter

4, in accordance with the other two chapters, the increase of price volatility will decrease

or not change the socially optimal starter application, total application and almost all

side-dressing applications. However, in some scenarios in Chapter 4, the socially optimal

side-dressing amount can shift between zero and positive without changing the starter

amount, showing that the corn price effects are subject to other factors such as rainfall,

social cost parameters and damage model choice, and are more complex especially when

elevated rainfall and the social damages from nitrogen are present.

We find that, in both Chapter 3 and Chapter 4, the relative cost of the two split

fertilizer applications, which may vary from region to region, is a key determinant of the

optimal application amount and timing. A variation in the relative cost over a rather small

range can cause a drastic switch between the allocation of fertilizer over the two possible

application times. As expected, an increase in total variable costs reduces the optimal

N-application but does not alter the optimal application timing.
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Rainfall affects the decision maker through two avenues: (i) the impact on soil nutrient

levels as rain causes losses of nitrogen, and (ii) the impact on corn growth as excessive rain

causes a reduction in yield. Unlike conventional arguments that precipitation has a one-way

effect (increases or decreases) on N application (Bora (2022)), we have found that, rainfall

has a complex impact on N application through two dimensions: rainfall likelihood (rainfall

frequency) and expected daily rainfall amount. Whether an increase in one of them will

decrease or increase the private and socially optimal fertilizer application depends on the

level of the other one. For example, from the perspectives of farmers and social planners,

when rainfall events are less frequent, a higher expected daily rainfall amount will increase

the fertilizer application as a way to compensate the fertility loss. However, when rainfall

events become more frequent, an increase in the daily rainfall amount above certain level

will decrease N use as a response to save the cost of wasting N and social damage. This

reduction effect is more prominent in social planner’s model as social damages are more

significant in the intensified rainfall scenarios. Similarly, given a low expected daily rain

amount, more frequent rain will bring a higher N use while given a high expected rain

amount more frequent rain will bring a lower N use. Corn farming becomes less profitable

under the most intensive rainfall circumstances as a result of the negative impact of too

much rain on corn yield and a significant amount of N waste. It is worth noting that

under the low expected daily rainfall amount scenario in our base case, the social planner’s

optimal choices are identical to the farmer’s, which is because low social damages in our

base case have only a small effect on the socially N application behavior. In addition, since

the social damages are determined by rainfall-induced N losses and social cost parameters,

the rainfall effects are much more apparent when the social cost levels are very high,

at which point social damages become more prominent, and the increase in the expected

quantity of rainfall will reduce the total application amount, shifting from the starter to the

side dressing application. The choice of damage model also matters, the socially optimal
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choice in the threshold damage model prefers starter application whereas side-dressing is

favorable in the linear damage model especially when social cost parameters are very high.

The effect of fertilizer relative cost on side-dressing is also examined subject to rainfall.

More frequency or expected quantity of rainfall implies a wider range of the cost ratios for

which a positive side-dressing will be chosen by the farmer or social planner.

For the social planner, increasing either denitrification or leaching social costs can

reduce the total fertilizer application and more N is shifted to side-dressing regardless of

which damage model we adopt. However, in the threshold damage model, as the damages

from leaching are paid only when the nitrate contamination threshold is triggered, optimal

amounts are less sensitive to leaching cost but more sensitive to the denitrification cost.

Even though starter has more impact on increasing the average soil N level, side-dressing

is favored when social costs of N (SCN) are above certain level as the loss of yield benefits

from decreased averaged soil N level caused by delayed application can be compensated

by the saving from the reduced social N damages. The assumption regarding leaching and

denitrification proportion in the total N loss also matters as is discussed in Chapters 3 and

4. For both damage models, the increase of both SCN decreases the starter application

and increases the side-dressing amount, as side-dressing has a shorter period for N loss.

However, in the threshold damage model it takes a higher SCN, compared to the linear

damage model, to trigger the switch to side-dressing application. This is because nitrogen

is less damaging under the threshold model as long as the N concentration level is below

the threshold.

Therefore, conclusions on private and socially optimal fertilizer applications depend

critically on the separate or joint effect from: (i) The cost estimates of both split fertilizer

applications; (ii) The empirical estimates of social damages from nutrient pollution which is

highly location-specific; (iii) Assumptions about volatility and mean reversion rates in the

corn price model; and (iv) The models describing and integrating the impact of fertilizer
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use quantity, timing, N losses, soil nutrient dynamics and weather factors on corn yield.

For reader’s convenience, a brief summary of main sensitivity conclusions are presented in

Table 5.1 where whether there is a switch between (N0 > 0, N1 = 0) and (N0 ≥ 0, N1 > 0)

also showed in the table as “Affects timing?”.

One of our contributions is in developing a theoretical model of the farmer’s and social

planner’s fertilizer application decision that incorporates economic and environmental un-

certainty, which provide richer details than any other models in the economics literature.

It is also simpler and more transparent than approaches that rely on process-based mod-

els which specify detailed fate and transport relationships in the subsurface. Our results

are complementary to the existing agricultural economics literature starting with Babcock
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(1992) who examined the effects of uncertainty on optimal N applications. The findings

concluded in our thesis have broadened our understanding of the factors that drive the

variability of agricultural fertilizer application decision, and the degree of market failure

which is dictated by the extent to which the farmer’s optimal choice deviates from the so-

cial planner’s decision. As the most vital conclusion to private and public decision-maker,

the influence from one factor on the optimal decision is found neither monotonic nor uni-

form but depends on the levels of the other factors. Although the model is parameterized

for corn and for weather conditions in Iowa that allow only one corn harvest per year, the

approach is more generally applicable.

As another contribution to the literature, our findings can provide numerous insights

for policy-maker seeking to design effective regulations and best management practices to

mitigate nitrogen pollution. To begin with, conclusions on rainfall effects are important for

public policy as climate change affects weather patterns over the next decade and beyond.

At certain fertilizer relative costs, an increase in frequency, expected quantity and variance

of rainfall leads to a larger divergence between the farmer’s and social planner’s decisions,

indicating the greater is the market failure. This implies that if we expect climate to

become rainier or more volatile rain events present in the future, there is an increased need

for strict regulation of N emissions by government. Technical measures to improve N use

efficiency and minimize N losses should be the key of policy work.

Our numerical results are sensitive to modeling assumptions and should be viewed as

illustrative only. Important limitations that should be mentioned are summarized below.

• Our corn yield model excludes the effect of some yield-limiting factors such as extreme

heat or frost in the growing season. In addition, delayed fertilizer applications present

yield risks, especially close to R1 (vegetative-stage). Further, corn growth depends

on average soil nutrient stock, which oversimplifies the impact of fertilizer timing.
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• The corn yield model is calibrated using Iowa state-level average data and may be

less accurate for a particular field or an individual decision-maker.

• The modeling of leaching and denitrification may not be a good representation of

reality and ignores the time delay effects between nitrogen application and subse-

quent leaching and denitrification. There is a developing agronomy and soil science

literature on this topic.

• The social damages of nitrogen are based on estimates from the literature, which is

not well developed. Current social damage estimates tend to focus on the treatment

costs incurred in dealing with groundwater for drinking purposes, ignoring the dam-

ages to ecosystem services, climate change, and human health caused by excess N

pollutants.
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Bréchet, T. & Jouvet, P.-A. (2008), ‘Environmental Innovation and the Cost of Pollution

Abatement Revisited’, Ecological Economics 65(2), 262–265.

Brigo, D., Dalessandro, A., Neugebauer, M. & Triki, F. (2007), ‘A Stochastic Processes

Toolkit for Risk Management’, Available at SSRN 1109160 .

Brissette, F., Khalili, M. & Leconte, R. (2007), ‘Efficient Stochastic Generation of Multi-

site Synthetic Precipitation Data’, Journal of Hydrology 345(3-4), 121–133.

Browner, C. M., Fox, J. C., Frace, S. E., Goodwin, J. & John-son, R. S. (2001), ‘Economic

Analysis for the Proposed Revisions to the National Pollutant Discharge Elimination

System Regulation and the Effluent Guidelines for Concentrated Animal Feeding Oper-

ations’, Environmental Protection 20460.

Budantsev, A. Y., Uversky, V. N. & Kutyshenko, V. P. (2010), ‘Analysis of the Metabolites

in Apical Area of Allium Cepa Roots by High Resolution NMR Spectroscopy Method’,

Protein and Peptide Letters 17(1), 86–91.

213



Cabas, J., Weersink, A. & Olale, E. (2010), ‘Crop Yield Response to Economic, Site and

Climatic Variables’, Climatic Change 101(3-4), 599–616.

Cabrera, F., Fernández Boy, E., Aparicio, M., Murillo Carpio, J. M. & Moreno Lucas, F.

(1995), ‘Leaching of Nitrate from a Sandy Loam Soil under Corn and Two N fertiliza-

tions’.

Camberato, J. (2017), Soil Sampling to Assess Current Soil Nitrogen Availability, Technical

report, Purdue Extension Agriculture Agronomy, Purdue University.

Camberato, J. & Nielsen, R. (2017), ‘Soil Sampling to Assess Current Soil N Availability’,

Purdue University. url: https://www. agry. purdue. edu/ext/corn/news/timeless/asses-

savailablen. html .

Carson, R. T. & LaRiviere, J. (2018), ‘Structural Uncertainty and Pollution Control: Opti-

mal Stringency with Unknown Pollution Sources’, Environmental and resource economics

71(2), 337–355.

Castellano, M. J., Helmers, M. J., Sawyer, J. E., Barker, D. W. & Christianson, L. (2012),

‘Nitrogen, Carbon, and Phosphorus Balances in Iowa Cropping Systems: Sustaining the

Soil Resource’.

Cerrato, M. & Blackmer, A. (1990), ‘Comparison of Models for Describing Corn Yield

Response to Nitrogen Fertilizer’, Agronomy Journal 82(1), 138–143.

Challinor, A. J., Müller, C., Asseng, S., Deva, C., Nicklin, K. J., Wallach, D., Vanuytrecht,

E., Whitfield, S., Ramirez-Villegas, J. & Koehler, A.-K. (2018), ‘Improving The Use of

Crop Models for Risk Assessment and Climate Change Adaptation’, Agricultural Systems

159, 296–306.

214



Chen, B. (2007), ‘Climate Change and Pesticide Loss in Watershed Systems: A Simulation

Modeling Study’, Journal of Environmental Informatics 10(2).

Chen, C.-C. & Chang, C.-C. (2005), ‘The Impact of Weather on Crop Yield Distribution

in Taiwan: Some New Evidence from Panel Data Models and Implications for Crop

Insurance’, Agricultural Economics 33, 503–511.

Chen, C.-C., McCarl, B. A. & Schimmelpfennig, D. E. (2004), ‘Yield Variability as Influ-

enced by Climate: A Statistical Investigation’, Climatic Change 66(1-2), 239–261.

Chen, J., Brissette, F. & Leconte, R. (2012a), ‘Weagets-A Matlab-Based Daily Scale

Weather Generator for Generating Precipitation and Temperature’, Procedia Environ-

mental Sciences 13, 2222–2235.

Chen, J. & Brissette, F. P. (2014), ‘Comparison of Five Stochastic Weather Generators

in Simulating Daily Precipitation and Temperature for the Loess Plateau of China’,

International Journal of Climatology 34(10), 3089–3105.

Chen, J., Brissette, F. P. & Leconte, R. (2012b), ‘Downscaling of Weather Generator

Parameters to Quantify Hydrological Impacts of Climate Change’, Climate Research

51(3), 185–200.

Chen, J., Tang, C., Sakura, Y., Yu, J. & Fukushima, Y. (2005), ‘Nitrate Pollution from

Agriculture in Different Hydrogeological Zones of the Regional Groundwater Flow Sys-

tem in the North China Plain’, Hydrogeology Journal 13(3), 481–492.

Chen, S., Chen, X. & Xu, J. (2016), ‘Impacts of Climate Change on Agriculture: Evidence

from China’, Journal of Environmental Economics and Management 76, 105–124.

Chen, S. & Insley, M. (2012), ‘Regime Switching in Stochastic Models of Commodity

215



Prices: An Application to an Optimal Tree Harvesting Problem’, Journal of Economic

Dynamics and Control 36(2), 201–219.

Chen, Y.-h., Wen, X.-w., Wang, B. & Nie, P.-y. (2017), ‘Agricultural Pollution and Regu-

lation: How to Subsidize Agriculture?’, Journal of cleaner production 164, 258–264.

Cropper, T. E. & Cropper, P. E. (2016), ‘A 133-Year Record of Climate Change and

Variability from Sheffield, England’, Climate 4(3), 46.

Cui, Z., Zhang, F., Chen, X., Dou, Z. & Li, J. (2010), ‘In-season Nitrogen Management

Strategy for Winter Wheat: Maximizing Yields, Minimizing Environmental Impact in

an Over-fertilization Context’, Field Crops Research 116(1), 140–146.

Culman, S., Fulford, A., Camberato, J. & Steinke, K. S. (2020), Tri-State Fertilizer

Recommendations for Corn, Soybean, Wheat, and Alfalfa, Technical report, Col-

lege of Food, Agricultural, and Environmental Sciences, The Ohio State University.

https://agcrops.osu.edu/FertilityResources/tri-stateinfo.

Dahnke, W., Olson, R. et al. (1990), ‘Soil Test Correlation, Calibration and Recommen-

dation’, Soil Test Correlation, Calibration and Recommendation. pp. 45–71.

Dasgupta, R. (2018), Tuber Crop Growth Model, Performance Rate, and Some Character-

ization Theorems, in ‘Advances in Growth Curve and Structural Equation Modeling’,

Springer, pp. 95–103.

Davis, J. (2007), Nitrogen Efficiency and Management, Tech-

nical report, United States Department of Agricultural.

https://directives.sc.egov.usda.gov/OpenNonWebContent.aspx?content=18563.wba.

Derby, N. E., Steele, D. D., Terpstra, J., Knighton, R. E. & Casey, F. X. (2005), ‘Inter-

216



actions of Nitrogen, Weather, Soil, and Irrigation on Corn Yield’, Agronomy Journal

97(5), 1342–1351.

Dixit, A. K., Dixit, R. K. & Pindyck, R. S. (1994), Investment under Uncertainty, Princeton

university press.

Dixon, B. L., Hollinger, S. E., Garcia, P. & Tirupattur, V. (1994), ‘Estimating Corn Yield

Response Models to Predict Impacts of Climate Change’, Journal of Agricultural and

Resource Economics pp. 58–68.

Dowd, B. M., Press, D. & Los Huertos, M. (2008), ‘Agricultural Nonpoint Source Water

Pollution Policy: The Case of California’s Central Coast’, Agriculture, ecosystems and

environment 128(3), 151–161.

Drevno, A. (2016a), ‘Policy Tools for Agricultural Nonpoint Source Water Pollution control

in the US and EU’, Management of Environmental Quality: An International Journal .

Drevno, A. (2016b), ‘Policy Tools for Agricultural Nonpoint Source Water Pollution Con-

trol in the US and EU’, Management of Environmental Quality: An International Jour-

nal .

Eagle, A. J., Locklier, K., Heffernan, J., Bernhardt, E., Vegh, T. & Olander, L. P. (2015),

Nitrogen Losses: A Meta Analysis of 4R Nutrient Management in US Corn Based Sys-

tems, Technical report, 4R Research Fund Project, Duke University.

Egan, K. J., Herriges, J. A., Kling, C. L. & Downing, J. A. (2009), ‘Valuing Water Quality

As a Function of Water Quality Measures’, American Journal of Agricultural Eco-nomics

91(1), 106–123.
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Appendix A

Nutrient management practices and

policies in Iowa and Ontario

In this appendix, an overview of main nutrient management practices and policies in

Iowa and Ontario is presented. A wide range of BMPs have been developed by US Envi-

ronmental Protection Agency to reduce water pollution from agricultural, which includes

conservation tillage, crop nutrient management, pest management, irrigation management,

erosion control and conservation buffers. In Iowa for example, to reduce the loading of ni-

trogen and phosphorus in water bodies, nutrient management programs are implemented

at the county level, which include Iowa 4R and 4R Plus nutrient stewardship practices1

and Iowa Nutrient Reduction Strategy (INRS)2.

14R: the right source applied at the right rate and the right time, in the right place. Launched by a
grant from chemical fertilizer industries in Iowa, 4R Plus is being guided by a coalition of agricultural
and conservation organizations as a part of the Iowa 4R program to support farmers’ efforts to implement
precise nutrient management and conservation practices that boost soil health, crop productivity, and
profitability.

2In 2013, the state of Iowa released the Iowa Nutrient Reduction Strategy, including the science and
technology assessments for both non-point and point source pollution. The strategy document highlights
numerous pathways through which farmers and agricultural stakeholders can take action toward attain-
ment of those objectives, including prioritization of watersheds, determine watershed goals and ensure
effectiveness of nutrient permits.
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The Iowa Nutrient Reduction Strategy (INRS) is a science and technology-based frame-

work to assess and reduce nutrients to Iowa waters and the Gulf of Mexico. It made efforts

to reduce nutrients in surface water from both point and nonpoint sources in a scientific,

reasonable, and cost-effective manner. According to Iowa State University Extension and

Outreach3, INRS established a number of conservation options that reduce N and P loss

ranging from in-field fertilizer and soil management practices to strategic conversion of row

crop acres to perennial systems. The INRS identifies practices as follows.

• In-field management practices are annual management practices including cover

crops, reduced and no-tillage, and fertilizer management.

• Edge-of-field and erosion control practices are structural practices or vegetation

that prevent nitrate and/or eroded soil from leaving the field and entering nearby

surface water or subsurface drainage. These practices include bioreactors, saturated

buffers, terraces, and nutrient removal wetlands.

• Land use change is the practice that incorporate additional crops or convert row

crops to perennial vegetation, which include extended rotations, conversion to pasture

or prairie, and perennial bio-energy crops.

According to Iowa Nutrient Reduction Strategy 2018-19 Annual Progress Report4, sev-

eral changes in statewide efforts toward meeting the INRS goals including acres of various

conservation practices such as cover crops, tillage, are made. For instance, cover crops

planted in Iowa increased from 379000 acres in fall 2011 to 973000 in fall 2016. No-tillage

acreage increased from 6.9 million acres in 2012 to 8.2 million in 2017. Iowa has 86 nitrate-

removal wetlands that treat 107000 acres, an additional 30 wetlands are currently under

3See details in “Measuring Conservation and Nutrient Reduction in Iowa Agriculture”.
https://crops.extension.iastate.edu/cropnews/2020/07/measuring-conservation-and-nutrient-reduction-
iowa-agriculture

4Report was published by Iowa State University, Iowa Department of Agriculture and Land Stewardship
and Iowa Department of Natural Resources. Source: https : //store.extension.iastate.edu/product/15915
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development for completion in the coming years. Since 2011, approximately 22.5 million

feet of terraces have been constructed using state cost-share funds. These terraces treated

174000 acres of land and reduced phosphorus losses by 40 tons in 2018.

In addition, Iowa, Illinois, Minnesota, Wisconsin, Indiana, Michigan, and Ohio have

adopted updated corn N fertilizer rate recommendations that are based on extensive N

response trials conducted over several years in each state. These trials have determined

the N rate at which the last pound of added nitrogen fertilizer returns a yield increase large

enough to pay for the cost of the additional fertilizer. This approach, called the maximum

return to nitrogen (MRTN) which considers the region where the fields are located and soil

characteristics, the price of corn, and the price of fertilizer.

Across Canada, programs are implemented at and across multiple levels. In Ontario for

example, these include: farm-level nutrient management plans; Municipal nutrient man-

agement by-laws; Watershed strategies such as Domestic Action Plans under development

for the Lake Erie basin; Provincial legislation and International agreements such as the

Great Lakes Agreement between Canada and U.S. In particular, OMAFRA has created

a series of publications describing Best Management Practices and Nutrient Management

Practice for agriculture5. These BMP guide books can help growers determine what nu-

trients they need and how to apply them for maximum efficiency and minimal risk to the

environment. For example, OMAFRA has made up an agronomy guide for field crops in-

cluding soil managing, nutrient use and soil fertility tests (Table 1-18 and 1-19, OMAFRA

(2017a)). In this guide, OMAFRA has a detailed suggestion on the soil sampling time,

how to deal with soil tests, and give a nitrogen guidelines based on soil test results. Actual

nitrogen suggestions are decreasing with the increased nitrate-nitrogen concentration level

from tested soil. Even more specific, OMAFRA has made nitrogen guidelines based on

5The complete series of Best Management Practices (BMP library) by OMAFRA can be obtained from
http://www.omafra.gov.on.ca/english/environment/bmp/series.htm
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pre-side-dress nitrate-nitrogen levels from soil. However, such nitrogen recommendations

do not rely on the type of crop, but on the soil test results.

The Nutrient Management Act in Ontario (O.Reg 267/03 and O.Reg 338/096) has

defined the legally maximum application rules for different types of fertilizer and soil

types. The act specifies detailed reporting requirements referred to as Nutrient Manage-

ment Strategies (NMS) and Nutrient Management Plans (NMP). A Nutrient Management

Strategy is applicable to manure management for farming operations with five or more

nutrient units. As a rough guide, this would represent about 15 head of cattle being raised

for beef. An NMP outlines “nutrient applications in farm fields, crop rotation, tillage,

projected yields and other management approaches to optimize the utilization of nutri-

ents by the crops.” (OMAFRA, 2018)7. A farm is required to have an NMP when it has

livestock greater than or equal to 300 nutrient units (about 900 head of beef cattle) or it

is a phased-in farm (i.e. required to have a NMS) and is located within 100 metres of a

municipal well. As an example of limitations of nutrient application, the maximum land

nitrogen application is regulated by O.Reg 267/03 and O.Reg 338/09 as:

(1) The maximum application rate to land with reference to plant available nitrogen

is a rate such that the plant available nitrogen that is applied to the land per hectare, for

any 12-month period, does not exceed the lesser of,

(a) the quantity determined under subsection (2); and

(b) 200 kilograms per hectare.

(2) The quantity for the purposes of clause (1) (a) is the greater of,

(a) the crop production requirements for nitrogen, minus plant available nitrogen sup-

6Nutrient Management Act, 2002. Source: https://www.ontario.ca/laws/regulation/030267#BK4
7“Ontario Nutrient Management Act, 2002, Understanding when farms require and NMS, NMP or

NASM Plan”, Fact Sheet Agdex720/538, Publication Date: March 2018. http://www.omafra.gov.on.ca/
english/engineer/facts/18-009.htm#NMS)
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plied by other nutrient sources; and

(b) the quantity of nitrogen removed from the field in the harvested portion of the crop,

minus plant available nitrogen supplied by other nutrient sources.

(3) the plant available nitrogen shall be calculated in accordance with the formula for

plant available nitrogen in Nutrient Management Protocol.

Correspondingly, agricultural planning tools (NMAN and MDS8) were developed by the

Ministry of Agriculture, Food and Rural Affairs (OMAFRA) to deliver farmers nutrient

management strategies and plans, demonstrating compliance with the Nutrient Manage-

ment Act and its protocols. For example, crop growers can use these tools to create

agricultural or field management plans by calculating the estimated on-farm nutrient gen-

eration, the required nutrient storage they need and nutrient application rates that will

maximize crop production. All nutrient management plans must be filed with OMAFRA

and renewed every five years9. For all prescribed materials (such as manure and fertilizers)

destined to be land applied on farm units, the nutrient management plan requires detailed

information, including the type and quantity of prescribed material, the date farm units re-

ceived those materials, etc. Further, all prescribed materials intended for land application

must meet the quality standards by providing laboratory nutrient analysis. Farm-level field

properties must also be reported in the nutrient management plan for each farm unit. Be-

sides, the nutrient management plan needs a specified report on farm-level soil sampling,

tillage practices and nutrient application. Specifically, the nutrient application method,

timing and frequency must be reported in the nutrient management plan (NMP). A rate of

application for each prescribed material intended to be applied to land must be determined

8AgriSuite is a web application that hosts OMAFRA’s nutrient management planning
software, called NMAN, and the Minimum Distance Separation (MDS) Formulae software.
http://www.omafra.gov.on.ca/english/nm/nman/agrisuite.htm

9“Nutrient Management Protocol for Ontario Regulation 267/03 Made under the Nutrient Management
Act”, OMAFRA, 2002. http://www.omafra.gov.on.ca/english/nm/regs/nmpro/nmpro07-jun03.htm#1
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for each part of the land managed in the farm unit (for example, each field). Application

rates are based on many factors including: the characteristics of the land, and cropping

and nutrient information set out in the nutrient management plan.

In summary, Ontario legislation specifies maximum allowed fertilizer application on

fields. In addition, farms meeting certain criteria regarding livestock production and near-

ness to municipal wells must complete Nutrient Management Strategies and Nutrient Man-

agement Plans, which are subject to approval by OMAFRA. Fertilizer recommendations

tend to be based on yield goals, and in some documents soil fertility is not considered.

In other documents, recommendations are based on soil fertility as indicated by soil test

results. Current recommendations do not appear to account for weather uncertainty and

do not consider the economically optimal fertilizer application.
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Appendix B

Deriving the expectation of the GBM

process

In this appendix, we formally derive the expectation of the GBM process. Assuming

the GBM process is

dPt = µPtdt+ σ1PtdZt

In order to solve for P (t), we apply Ito’s lemma to dlnP (t)

dlnP (t) = µdt+ σ1dZt −
1

2
σ2
1dt

Then we integrate between [0, t] to get:

lnP (t)− lnP (0) = (µ− 1

2
σ2
1)t+ σ1[Z(t)− Z(0)]

P (t) = P (0)e(µ−
1
2
σ2
1)t+σ1[Z(t)−Z(0)]
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We now take the expectation of the above expression, with Z(0) = 0:

E[P (t)] = E[P (0)e(µ−
1
2
σ2
1)t+σ1Zt ]

= P (0)e(µ−
1
2
σ2
1)tE[eσ1Zt ]

= P (0)e(µ−
1
2
σ2
1)te

1
2
σ2
1t

E[P (t)] = P (0)eµt
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Appendix C

Contrasting P-measure and

Q-measure valuation framework

In this appendix, we review the two approaches to asset valuation commonly used

in the literature. This section is based on Dixit et al. (1994) and Insley & Wirjanto

(2010). One approach uses Q-measure Contingent Claims (CC) arguments which is based

on the risk-neutral valuation framework. The other approach is the P-measure Dynamic

Programming (DP) with a risk-adjust discount rate instead of risk-free interest. To contrast

both approaches, we first define the value of farming one growth cycle as V (P, t). Crop

price follows the general unadjusted Ito’s process:

dP = a(P, t)dt+ b(P, t)dZ = adt+ bdZ (C.1)

For the GBM process:

dP = adt+ bdZ = αPdt+ σPdZ
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For the MR process:

dP = adt+ bdZ = θ
(
P̄ − P

)
dt+ σPdZ

Under dynamic programming, we form the HJB equation and solve the value of a project

by backward induction using a risk adjusted discount rate. CC allows us to construct

a risk free portfolio consisting of underlying risky project and another asset or contract

which tracks the underlying’s uncertainty. This paper use CC more than DP for the reason

that CC is preferred when market data is accessible which allows us to estimate the market

price of risk. Another advantage of using CC is we could avoid estimating the risk adjusted

discount rate by using constant risk free rate.

C.1 Dynamic programming P-measure approach

The value of farming V depends on the crop price P . Employing the dynamic pro-

gramming method, we need to use the risk-adjusted discount rate ζ and P-measure price

process Equation (2.4). By Ito’s lemma,

dV =

(
Vt + aVP +

1

2
b2VPP

)
dt+ bVPdZ

where Vt =
∂V
∂t
, VP = ∂V

∂P
, VPP = ∂2V

∂P 2 , a = a(P, t), b = b(P, t). Using risk-adjusted discount

rate (or return rate) ζ, we could write the partial differential equation (PDE) that derived

from the equilibrium condition that E(dV ) = ζV dt

ζV = Vt + aVP +
1

2
b2VPP (C.2)
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The difficulty with using dynamic programming approach is in determining the appropriate

value for ζ. Once using dynamic programming, we would not expect ζ to be a constant as

it will depend on the ratio VP

V
.

C.2 Contingent claims Q-measure approach

Contingent Claims approach assumes we have access to asset markets that are suffi-

ciently complete so that price risk can be eliminated through hedging with another risky

asset or contract. We also assume no arbitrage principle when using this approach. We de-

note the value of farming by V1, the value of another hedging asset or contract that depends

on crop price (e.g. share of ownership of the underlying farmland) by V2. The value of our

hedging portfolio with n1 of V1, n2 of V2 is π = n1V1 + n2V2. Then dπ = n1dV1 + n2dV2.

By Ito’s lemma, for i = 1, 2:

dVi =

(
(Vi)t + a(Vi)P +

1

2
b2(Vi)PP

)
dt+ b(Vi)PdZ

Rewriting above process into

dVi
Vi

=

(
(Vi)t + a(Vi)P +

1

2
b2(Vi)PP

)
1

Vi
dt+

b

Vi
(Vi)PdZ = µidt+ sidz

where

µi =

(
(Vi)t + a(Vi)P +

1

2
b2(Vi)PP

)
1

Vi
(C.3)

si =
b

Vi
(Vi)P (C.4)

Now, to eliminate price risk in this portfolio, we choose n1, n2 such that the following
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is satisfied:

n1s1V1 + n2s2V2 = n1b(V1)P + n2b(V2)P = 0 (C.5)

which means the risk term dZ is eliminated in our hedging strategy. Without price risk,

the portfolio π must earn a constant risk-free return r, which implies dπ = rπdt.

Combining dV1, dV2, π and Equation (C.5), we form a 2-by-2 linear system equations:

 n1(µ1V1 − rV1) + n2(µ2V2 − rV2) = 0

n1b(V1)P + n2b(V2)P = 0

Solving the homogeneous system equations, we can define a constant

λP =
(µ1 − r)V1
b(V1)P

=
µ1 − r

s1
=
µ2 − r

s2
(C.6)

λP is called market price of risk of P and represents the excess return over the risk free rate

per unit of variability. Then λPσ is the total value obtained from uncertainty. Dropping

the subscript i = 1, 2, we obtain the following PDE using the above result (C.6):

λP
b

V
VP =

1

V
(Vt + aVP +

1

2
b2VPP )− r

which evolves to the PDE:

rV = Vt + (a− λP b)VP +
1

2
b2VPP (C.7)

The term a−λP b = a(P, t)−λP b(P, t) is the risk adjusted drift rate that reflects the extra

return required to compensate for price risk. The PDE must be satisfied by the value of

farming and assuming that price uncertainty could be hedged. This could be compared

with the PDE which can be derived assuming no risk hedging and earn a risk-adjusted
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return ζ.

Specifically, to make results from two approaches are equivalent, we set the correct risk

adjusted discount rate ζ = r + λP s where s = b(P,t)
V

VP . This rate should change with the

value of project. Under certain simplifying assumptions the risk adjusted discount rate

will be constant: ζ = r + λPσ.
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Appendix D

Proofs of sensitivity analysis in

Section 2.4

In this appendix, we provide proofs of associated sensitivity analysis in Chapter 2.

First, to provide a proof of the negative price uncertainty effect (
∂N⋆mr

Q
∂(λP σ)

< 0) in Chapter 2,

we take the first order derivative on Equation (2.21) and get:

∂N⋆mr
Q

∂(λPσ)
= − c

2a1

P0e
−(θ+r+λP σ)T (−T ) +

(
e−rT − e−(θ+r+λP σ)T

) −P̄ θ
(θ+λP σ)2

+ P̄ θ
θ+λP σ

(
Te−(θ+r+λP σ)T

)[
P0e−(θ+r+λP σ)T + P̄ θ

θ+λP σ
(e−rT − e−(θ+r+λP σ)T )

]2
After rearranging the above equation, the sign of above equation is the same with the sign

of the following part

−P0T −
(
e(θ+λP σ)T − 1

) P̄ θ

(θ + λPσ)2
+

P̄ θ

θ + λPσ
T (D.1)

which is

−P0T +
P̄ θ

(θ + λPσ)

[− (
e(θ+λP σ)T − 1

)
(θ + λPσ)

+ T

]
(D.2)
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Now, we can use Taylor expansion ex−1 = x+Rn, for the term
−(e(θ+λP σ)T−1)

(θ+λP σ)
in Equation

(D.2), where x = (θ+λPσ)T and Rn is the remainder term. Given that the mean reverting

speed θ > 0 and market price of risk λP > 0, we have the remainder Rn > 0. Substituting

ex − 1 = x+Rn and x = (θ + λPσ)T into Equation (D.2),

−P0T − T P̄ θ

x

[
(x+Rn)T

x
− T

]
= −P0T − T P̄ θ

x

RnT

x

With Rn > 0, θ > 0, x > 0, P̄ > 0, P0 > 0 and T > 0, we have Equation (D.2) is negative,

which equivalents to
∂N⋆mr

Q
∂(λP σ)

< 0. Therefore, by assuming λP > 0, we can conclude that

∂N⋆mr
Q

∂σ
< 0

To measure the effect of the mean reverting speed θ on N⋆mr
Q , we take the first order

derivative for N⋆mr
Q with respect to θ:

∂N⋆mr
Q

∂θ
=

c

2a1

[
− 1(

e−(θ+r+λP σ)T (p0 − P̄ θ
θ+λP σ

) + P̄ θ
θ+λP σ

e−rT

)2

]
︸ ︷︷ ︸

>0

[
e−rT

(
P̄

θ + λPσ
− P̄ θ

(θ + λPσ)2

)
︸ ︷︷ ︸

A

+

(
p0 −

P̄ θ

θ + λPσ

)
e−(θ+r+λP σ)T (−T ) + e−(θ+r+λP σ)T

(
− P̄

θ + λPσ
+

P̄ θ

(θ + λPσ)2

)]
︸ ︷︷ ︸

A

Since a1 < 0,c > 0, the sign of A is identical to the sign of
∂N⋆mr

Q
∂θ

. After rearrangement

of A, we can have

A = e−rT 1

(θ + λPσ)2

[
P̄ λPσ + e−(θ+λP σ)T

(
− P̄ λPσ − T ((θ + λPσ)

2p0 − P̄ θ(θ + λPσ))

)]
︸ ︷︷ ︸

B
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Since e−rT 1
(θ+λP σ)2

> 0, the sign of A is identical to the sign of B, which can be evolved

into

B = e−(θ+λP σ)T︸ ︷︷ ︸
> 0

[
e(θ+λP σ)T P̄ λPσ − P̄ λPσ − T ((θ + λPσ)

2p0 + T P̄ θ(θ + λPσ)

]

Thus, we have

B


> 0 iff p0 <

P̄ λP σ
T (θ+λP σ)2

(e(θ+λP σ)T − 1) + P̄ θ
θ+λP σ

< 0 iff p0 >
P̄ λP σ

T (θ+λP σ)2
(e(θ+λP σ)T − 1) + P̄ θ

θ+λP σ

which means,

∂N⋆mr
Q

∂θ
=


> 0 iff p0 < P̄F (θ, λPσ, T )

< 0 iff p0 > P̄F (θ, λPσ, T )

where F (θ, λPσ, T ) =
λP σ

T (θ+λP σ)2
(e(θ+λP σ)T − 1) + θ

θ+λP σ
.

Under the mean-reverting process and From Equation (2.21), to show the fertilizer

over-application can result from mistakenly adopting the yield-maximizing principle, we

use the fact that e(θ+λP σ)T > 1, Thus, we can show that

P0+
P̄ θ

θ + λPσ

(
e(θ+λP σ)T − 1

)
> 0 ⇐⇒ P0e

−(θ+r+λP σ)T+
P̄ θ

θ + λPσ

(
e−rT − e−(θ+r+λP σ)T

)
> 0

which indicates the denominator part inside Equation (2.21), is positive, thus N⋆mr
Q <

N⋆maxyield = − a2
2a1
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Appendix E

Deriving closed forms of N⋆ in

Chapter 2 using the exponential corn

yield model

In this appendix, closed form results for the optimal fertilizer application in Section

2.3 are re-derived using the exponential corn yield function in Chapter 3 instead of the

quadratic form in Chapter 2. Using the exponential corn yield model in Equation (3.16)

with the soil nutrient stock S̄ replaced by fertilizer application variable N , We can rewrite

the objective function in Equation (2.6) as:

V (P,N, t = 0) = max
N

{
e−rTp0e

µT

[
θ(α1R̄ + α2R̄

2)(1− e−β1N)(1− e−β2H̄)

]
− cN

}
(E.1)

Then, we can find the optimal solution through the first order condition:

∂V

∂N
= e−rTp0e

µT

[
θ(α1R̄ + α2R̄

2)(1− e−β2H̄)β1e
−β1N

]
− c = 0
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After necessary rearrangement, the closed form expression for the optimal amount of fer-

tilization under the assumption that price follows a GBM process is

N⋆gbm = − 1

β1

{
ln

[
c

p0θ(α1R̄ + α2R̄2)(1− e−β2H̄)β1

]
+ (r − α + λpσ1)T

}
(E.2)

With the restriction ofN⋆gbm > 0, and given β1 > 0, it follows that c

p0θ(α1R̄+α2R̄2)(1−e−β2H̄)β1
<

e(α−λpσ1−r)T as a constraint.

When crop price is assumed to follow MR process, Equation 2.20 in Section 2.3 can be

rewrote as

V (N,P, t = 0) = Y

[
Pe−(θ+r+λP σ)T +

P̄ θ

θ + λPσ

(
e−rT − e−(θ+r+λP σ)T

)]
− cN (E.3)

where Y = θY (α1R̄ + α2R̄
2)(1 − e−β1N)(1 − e−β2H̄). To determine the optimal fertilizer

application amount N⋆, we simply take the first order derivative for V (N,P, t = 0) with

respect toN and set it to 0, which eventually gives the optimal fertilizer application amount

N under the Q-measure:

N⋆mr
Q = − 1

β1
ln

{
c[

e−(θ+r+λP σ)T
(
p0 − P̄ θ

θ+λP σ

)
+ P̄ θ

θ+λP σ
e−rT

]
θY (α1R̄ + α2R̄2)(1− e−β2H̄)β1

}
(E.4)

With the restriction of N⋆mr
Q > 0, and given β1 > 0, it follows that

[
e−(θ+r+λP σ)T

(
p0 −

P̄ θ

θ + λPσ

)
+

P̄ θ

θ + λPσ
e−rT

]
θY (α1R̄ + α2R̄

2)(1− e−β2H̄)β1 > c

as a constraint. Since there is a common factor in the denominator in both optimal

decisions (Equation (E.4) and (2.21)), we take advantage of the proofs in Appendix D

and find that the parameter sensitivity conclusions are identical to results in Table 2.1

in Section 2.4. Therefore, as presented in the following Table E.1, the farmer’s optimal
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fertilizer applications (Equation (E.2) and (E.4)) based on the exponential corn yield model

will give us the same conclusions as Section 2.4.

Table E.1: A summary of parameter sensitivity results

Parameter Sensitivity Under GBM assumption Under MR assumption

∂N
∂c

< 0 < 0

∂N
∂P0

> 0 > 0

∂N
∂α

or ∂N
∂θ

> 0 > 0 iff P̄ (1 + F ) > P0

∂N
∂σ

< 0 < 0

Note that λP is assumed to be positive.

where ψQ =
[
1− re(θ+λP σ)T

θ+λPσ+r

]
θ

θ+λPσ and F = 2θ
θ+λσ + 2θ+λσ

T (θ+λσ)2

[
e(θ+λσ)T − 1− (θ + λσ)T

]
.
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Appendix F

Corn market price of risk calculation

In this appendix, we provide the calculation of the corn market price of risk λP in

Section 3.7.1. Using the classic CAPM (Capital Asset Pricing Model, Insley & Lei (2007)),

we assume the expected return of corn price is described as:

µ⋆ = ρ+ [E(ρm)− ρ]β

where ρm is the return on the S&P 500 index, β is parameter, which is positive in our

estimation. Under no-arbitrage principle, we know

µ⋆ = ρ+ λPσP

which means

λP =
[E(ρm)− ρ]β

σP
(F.1)

The risk-free interest rate used in price process estimation is ρ=1.76%, which is averaged

from Q1, 2018 to Q2, 20191. Annual market return of S&P500 index ρm is computed using

1Quarterly reported Government of Canada benchmark bond yields for 1-year term are collected as
risk free interest rates from http://assurage.com/en/blog. The risk free interest rate used in this paper is
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the daily data from Jan 01, 2010 to Jul 26, 2019. σP = 0.2547 in Table 3.2, the estimated

standard deviation of corn price. The estimated value β is determined by OLS regression

of µ⋆ − ρ on ρm − ρ. Historical values for µ⋆ and ρm are the series of percentage change in

corn price and S&P 500 index, thus the estimated β is 0.1547. Annual expected return on

S&P 500 index is E(ρm) = 0.1783. Thus, the market price of risk is

λP =
[E(ρm)− ρ]β

σP
=

[0.1783− 0.0176]× 0.1547

0.2547
= 0.0976

ρ=1.76%, which is quarterly averaged from Q1, 2018 to Q2, 2019.
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Appendix G

Fertilizer variable cost sensitivity

results in the farmer’s optimal

decisions

This appendix provides the detailed results presented graphically in Figure 3.22. The

optimal split fertilizer applications and farm value under each cost ratio are listed as below:
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c′N
cN

cN = 0.72
4 $/lb cN = 0.72 $/lb cN = 0.72 ∗ 4 $/lb

N0 N1 V0 N0 (lb/a) N1 (lb/a) V0 ($/a) N0 N1 V0

0.5000 18 100 496.8552 0 100 467.5603 0 68 380.7548

0.6000 18 100 495.0594 0 96 460.5113 0 64 361.8330

0.7000 18 100 493.2637 0 92 453.7393 0 60 344.0326

0.7185 20 96 492.9326 0 92 452.5168 0 60 340.8433

0.7189 20 96 492.9257 0 92 452.4904 0 60 340.7744

0.7193 20 96 492.9188 0 92 452.4639 4 54 340.7093

0.7197 26 88 492.9120 10 78 452.4411 4 54 340.6473

0.7201 26 88 492.9057 20 64 452.4217 14 40 340.5938

0.7205 36 74 492.9001 30 50 452.4055 24 26 340.5534

0.7209 46 60 492.8953 40 36 452.3926 30 18 340.5265

0.7213 56 46 492.8914 46 28 452.3831 40 4 340.5162

0.7217 62 38 492.8884 56 14 452.3777 40 4 340.5116

0.7221 72 24 492.8863 66 0 452.3753 40 4 340.5070

0.7225 82 10 492.8849 66 0 452.3753 40 4 340.5024

0.8000 90 0 492.8815 66 0 452.3753 42 0 340.4626

0.9000 90 0 492.8815 66 0 452.3753 42 0 340.4626

1.0000 90 0 492.8815 66 0 452.3753 42 0 340.4626

1.1000 90 0 492.8815 66 0 452.3753 42 0 340.4626

1.2000 90 0 492.8815 66 0 452.3753 42 0 340.4626
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Appendix H

Precipitation sensitivity results in

the farmer’s optimal decisions

This appendix provides the detailed results presented graphically in Figure 3.24. The

optimal fertilizer application (N0, N1) under each rainfall scenario, for each fertilizer cost

ratio
c′N
cN

are listed as below. Parameters used here are base case, the total variable cost is

$1.7593/bu.
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Rain likelihood
c′N
cN

Rain amount

Less Base Case More

Smaller (Dryer)

0.5 (0, 84) (0, 98) (0, 102)

0.6 (0, 80) (0, 94) (0, 96)

0.7 (52, 0) (0, 90) (0, 92)

0.8 (52, 0) (64, 0) (68, 0)

0.9 (52, 0) (64, 0) (68, 0)

1 (52, 0) (64, 0) (68, 0)

Base Case

0.5 (0, 88) (0, 100) (0, 96)

0.6 (0, 84) (0, 96) (0, 92)

0.7 (56, 0) (0, 92) (0, 88)

0.8 (56, 0) (66, 0) (64, 0)

0.9 (56, 0) (66, 0) (64, 0)

1 (56, 0) (66, 0) (64, 0)

Larger (Wetter)

0.5 (0, 90) (0, 102) (0, 76)

0.6 (0, 86) (0, 98) (0, 72)

0.7 (58, 0) (0, 94) (0, 68)

0.8 (58, 0) (68, 0) (50, 0)

0.9 (58, 0) (68, 0) (50, 0)

1 (58, 0) (68, 0) (50, 0)
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Appendix I

Sensitivity results for fertilizer cost

ratio and SCN in the socially optimal

model

This appendix provides the detailed results presented graphically in Figure 4.12 and

4.13. The socially optimal N0, N1 and V0 for both damage models are listed as below.

Social cost parameter are set as dL = dD = SCN , all other parameters are set at base

case.
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Appendix J

Precipitation sensitivity results in

the socially optimal model

This appendix provides the detailed results presented graphically in Figure 4.14 and

4.15. The socially optimal fertilizer application (N0, N1) under each rainfall scenario, for

each fertilizer cost ratio
c′N
cN

are examined as below. Parameters used here are base case,

with the total variable cost is $1.7593/bu, nitrate social cost is $0.66/kg, denitrification

social cost is $0.22/kg.
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Table J.1: Rainfall sensitivity with fertilizer cost ratio (linear damage model)

Rain likelihood
c′N
cN

Rain amount

Less Base Case More

Smaller (Dryer)

0.5 (0, 82) (0, 94) (0, 98)

0.6 (0, 80) (0, 92) (0, 94)

0.7 (52, 0) (0, 88) (0, 90)

0.8 (52, 0) (62, 0) (66, 0)

0.9 (52, 0) (62, 0) (66, 0)

1 (52, 0) (62, 0) (66, 0)

Base Case

0.5 (0, 86) (0, 98) (0, 92)

0.6 (0, 82) (0, 94) (0, 88)

0.7 (54, 2) (0, 90) (0, 84)

0.8 (56, 0) (64, 0) (62, 0)

0.9 (56, 0) (64, 0) (62, 0)

1 (56, 0) (64, 0) (62, 0)

Larger (Wetter)

0.5 (0, 90) (0, 98) (0, 72)

0.6 (0, 86) (0, 94) (0, 68)

0.7 (56, 2) (0, 90) (0, 64)

0.8 (58, 0) (66, 0) (46, 0)

0.9 (58, 0) (66, 0) (46, 0)

1 (58, 0) (66, 0) (46, 0)

270



Table J.2: Rainfall sensitivity with fertilizer cost ratio (threshold damage model)

Rain likelihood
c′N
cN

Rain amount

Less Base Case More

Smaller (Dryer)

0.5 (0, 82) (0, 94) (0, 96)

0.6 (0, 80) (0, 90) (0, 92)

0.7 (52, 0) (0, 88) (0, 88)

0.8 (52, 0) (62, 0) (64, 0)

0.9 (52, 0) (62, 0) (64, 0)

1 (52, 0) (62, 0) (64, 0)

Base Case

0.5 (0, 88) (0, 94) (0, 90)

0.6 (0, 84) (0, 90) (0, 86)

0.7 (56, 0) (0, 88) (0, 84)

0.8 (56, 0) (62, 0) (62, 0)

0.9 (56, 0) (62, 0) (62, 0)

1 (56, 0) (62, 0) (62, 0)

Larger (Wetter)

0.5 (0, 90) (0, 96) (0, 70)

0.6 (0, 86) (0, 90) (0, 62)

0.7 (58, 0) (0, 88) (0, 58)

0.8 (58, 0) (62, 0) (40, 0)

0.9 (58, 0) (62, 0) (40, 0)

1 (58, 0) (62, 0) (40, 0)
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Appendix K

A summary of notations for key

variables in this thesis

Since there are numerous mathematical notations used in Chapter 3 and 4, for reader’s

convenience, the meanings for notations of key variables are summarized in this appendix.

This appendix also provides the equation numbers where these variables are modeled.
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Table K.1: A summary of notations for key variables

Notation Variable name

P Corn price, in Equation (3.2) and (3.26)

Y Corn yield, in Equation (3.16) and (3.33)

H Daily corn heat units, in Equation (3.7) and Definition 3.7

H̄ Cumulative corn heat units, in Equation (3.3)

X1 Daily maximum temperature, in Equation (3.4) and (3.28)

δ Daily temperature difference, in Equation (3.5) and (3.29)

wt Daily rainfall regime, in Equation (3.9)

Rwt Daily rainfall amount, in Equations (3.10) and (3.32)

R̄ Cumulative rainfall amount, in Equation (3.10)

S Daily soil nutrient stock, in Equation (3.14)

S̄ Seasonal averaged soil nutrient stock, in Equation (3.15)

L Cumulative amount of nitrogen from leaching, in Equation (4.4)

Υ Cumulative amount of nitrogen from denitrification, in Equation (4.2)

D(T ) Total damages at time T, in Equation (4.3)

Θ N concentration in groundwater, in Equation (4.4)
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