
Adapting to Data Drift in Encrypted
Traffic Classification Using Deep

Learning

by

Navid Malekghaini

A thesis
presented to the University of Waterloo

in fulfillment of the
thesis requirement for the degree of

Master of Mathematics
in

Computer Science

Waterloo, Ontario, Canada, 2023

© Navid Malekghaini 2023

Author’s Declaration

This thesis consists of material all of which I authored or co-authored: see Statement
of Contributions included in the thesis. This is a true copy of the thesis, including any
required final revisions, as accepted by my examiners. I understand that my thesis may
be made electronically available to the public.

ii

Statement of Contributions

Content and images from the paper “Data Drift in DL: Lessons Learned from Encrypted
Traffic Classification” [35] are borrowed in Chapters 1 through 5.

iii

Abstract

Deep learning models have shown to achieve high performance in encrypted traffic clas-
sification. However, when it comes to production use, multiple factors challenge the per-
formance of these models. The emergence of new protocols, especially at the application-
layer, as well as updates to previous protocols affect the patterns in input data, making
the model’s previously learn patterns obsolete. Furthermore, proposed model architectures
are usually tested on datasets collected in controlled settings, which makes the reported
performances unreliable for production use. In this thesis, we start by studying how the
performances of two high-performing state-of-the-art encrypted traffic classifiers change
on multiple real-world datasets collected over the course of two years from a major ISP’s
network, Orange telecom. We investigate the changes in traffic data patterns highlight-
ing the extent to which these changes, a.k.a. data drift, impact the performance of the
two models in service-level and application-level classification. We propose best practices
to manually adapt model architectures and improve their accuracy in the face of data
drift. We show that our best practices are generalizable to other encryption protocols and
different levels of labeling granularity. However, designing efficient model architectures
and manual architectural adaptations is time-consuming and requires domain expertise.
Neural architecture search (NAS) algorithms have been shown to automatically discover
efficient models in other domains, such as image recognition and natural language process-
ing. However, NAS’s application is rather unexplored in Encrypted Traffic Classification.
We propose AutoML4ETC, a tool to automatically design efficient and high-performing
neural architectures for Encrypted Traffic Classification, given a target dataset and cor-
responding features. We define three powerful search spaces tailored specifically for the
prominent categories of features in the Encrypted Traffic Classification state-of-the-art,
i.e., packet raw bytes, flow time-series, and flow statistics. We show that a simple search
strategy over AutoML4ETC’s search spaces can generate model architectures that out-
perform the state-of-the-art Encrypted Traffic Classification models on several benchmark
datasets, including real-world datasets of TLS and QUIC traffic collected from a major
ISP network. In addition to being more accurate, the AutoML4ETC’s architectures are
significantly more efficient and lighter in terms of the number of parameters. We fur-
ther showcase the potential of AutoML4ETC by experimenting with state-of-the-art NAS
techniques and model ensembles generated from different search spaces. We also use Au-
toML4ETC to analyze the state of adoption of the QUIC protocol.

iv

Acknowledgements

I want to express my gratitude to my supervisor, Professor Raouf Boutaba, for his tire-
less assistance, encouragement, and compassion in both this study and our other research
endeavours.

I would also like to thank Elham Akbari Azirani, my dear friend and colleague who
supported me throughout the hard times and assisted me with the related works of the
research. Iman Akbari Azirani who helped me to understand and on-board the research
project as easy as possible. Professor Noura Limam for her continuous help with publica-
tions and thoughtful comments. Professor Mohammad Ali Salahuddin for his suggestions
and help writing the papers. Matheus Vrech Silveira Lima with assisting on the QUIC
labeling procedure. Our colleagues in Orange Labs for providing the datasets used in this
thesis. And all my friends that supported me throughout these years.

My kindest and deepest gratitude to my parents and sister for their help and affection,
which helped me strive harder and accomplish more in both my personal life and my time
in the University of Waterloo.

v

Dedication

To all the innocent lives that were taken during the Iran protests and Ukraine war. To
anyone who helps other human beings unconditionally. In memory of #mahsaamini.

vi

Table of Contents

List of Figures x

List of Tables xiii

1 Introduction 1

2 Background & Related Works 4

2.1 Reinforcement Learning . 4

2.2 Deep Learning Background . 5

2.3 Encrypted Traffic Classification . 5

2.4 Data Drift . 6

2.5 Neural Architecture Search . 8

2.6 Neural Architecture Search for Traffic Classification 11

3 Methods & Models for the Manual Approach 13

3.1 Deep Learning models . 13

3.1.1 UW Tripartite Model . 13

3.1.2 UCDavis CNN Model . 14

3.2 Datasets description . 17

3.3 Software stack and performance metrics . 20

vii

4 Investigating Data Drift 22

4.1 Baseline performance . 22

4.2 Robustness to performance decay . 23

4.3 Traffic data drift . 35

5 Manual Architecture Adaptation 41

5.1 Ensuring model convergence . 41

5.2 Adjusting to dataset size . 43

5.3 QUIC results . 45

6 Methodology for Automatic Approach 50

6.1 Search Spaces . 50

7 Evaluation of the Automatic Approach 57

7.1 Datasets . 57

7.2 Packet Raw Bytes-oriented NAS . 60

7.3 Flow Time-series-oriented NAS . 65

7.4 Combining AutoML4ETC Models . 69

7.5 Traffic Measurement . 73

8 Conclusion & Future Work 74

References 76

APPENDICES 83

.1 Flow-based statistics from CICFlowMeter [29] 83

.2 UW Tripartite Model Details . 88

.3 Acronyms . 90

.4 DeepTraffic Software API Code Examples 91

.4.1 Pre-processing . 91

viii

.4.2 Usage . 91

.5 Software and Hardware Stack for the Automatic Approach 95

.6 Using Stack of Cells . 95

.7 AutoML4ETC for Flow Statistics . 95

.8 Training Child Networks . 96

.9 Search Algorithms . 97

ix

List of Figures

2.1 Generating deep model descriptions and skip connections for each layer with
a controller RNN [63] . 8

2.2 Overview of Neural Architecture Search with RL [63] 9

3.1 UW Model and decomposed parts . 15

3.2 UW Decomposed parts (cont.) . 16

3.3 UCDavis CNN architecture [42] . 17

3.4 Service-level class distribution of the TLS datasets 20

3.5 Application-level class distribution of the TLS datasets 21

4.1 Model performance when trained on baseline 07-2019 dataset and tested
(notation →) on target datasets . 24

4.2 Performance decay of UW-H and UCDavis CNN in service-level classification
(up) and application-level classification (down) 25

4.3 Confusion matrix of UW-H when training and target datasets are two years
(up) and two months (down) apart . 29

4.4 Confusion matrix of the UCDavis CNN model when training and target
datasets are two years (up) and two months (down) apart 30

4.5 Top-k accuracy for the UW-H when training and target datasets are two
years (up) and two months (down) apart 33

4.6 Logarithmic weighted mean of top-k (k = 1, 2, 3) accuracy with the service-
level classes . 34

4.7 Per-application class top-k accuracy of the UW-H model when training and
target datasets are two years apart . 34

x

4.8 UW-H performance on datasets with similar sizes (dark blue: 04-2021 size,
light blue: 05-2021 size) . 36

4.9 UW-H performance with ALPN filter on similar size datasets 38

4.10 UW-H performance with ALPN obfuscation 39

5.1 Confusion matrix for UW-F (up) vs. its adapted version (down) on the
QUIC-05-2021 dataset in service-level classification 46

5.2 UW-F performance with and without adaptations on the QUIC-05-2021
dataset in service-level classification . 47

5.3 UW-F performance with and without adaptations on the QUIC-05-2021
dataset in application-level classification 47

5.4 Confusion matrix of the UW-F (up) vs. its adapted version (down) on the
QUIC-05-2021 dataset with application level-classification 49

6.1 MLP search space overview . 52

6.2 CNN search space overview . 52

6.3 Example cell components . 53

6.4 Factorized Reduction hyper-layer modules 54

6.5 AutoML4ETC for the packet raw bytes search space 55

6.6 AutoML4ETC for the flow time-series search space 55

7.1 Overview of the pre-processing procedure for real-world datasets 58

7.2 Comparison of average accuracy of top-N child models using different search
algorithms . 63

7.3 Accuracy of top 10 child models with different training epochs; the × mark
is the average for each epoch. 66

7.4 Confusion matrix for the AutoML4ETC (left) and the performance metrics
for AutoML4ETC vs UW-F [4] (right) on the QUIC - UCDavis dataset.
The dotted border is only for 10 epochs, whereas the rest is for 20. 69

7.5 Combining AutoML4ETC models results 71

7.6 Example of hybrid model from combining the packet raw bytes and flow
time-series search spaces, generated by AutoML4ETC on the May 2021
dataset . 72

xi

7.7 Measurement estimation on the unknown part of the TLS (left) and QUIC
(right) datasets captured in May 2021 . 73

xii

List of Tables

3.1 Service-level datasets properties . 14

3.2 Application-level datasets properties . 18

3.3 Service-level and corresponding application-level classes for TLS datasets . 18

4.1 Model performance on the 07-2019 TLS dataset in service-level classification 23

4.2 Model performance on the 07-2019 TLS datasets in application-level classi-
fication . 23

4.3 Drop in model’s predictive accuracy when trained on the baseline 07-2019
dataset and tested on subsequent datasets 24

4.4 Per-service class accuracy of UW-H and UCDavis CNN on (a) the 04-2021
dataset, and (b) the 07-2019 dataset . 27

4.5 Adoption of HTTP/2 and SPDY protocols over time 35

4.6 Distribution of ALPN field values for different datasets 37

4.7 UW-H performance based on ALPN . 37

4.8 UW-H performance on datasets merged based on the ALPN filter 40

5.1 Model performance across the 2021 datasets in service-level classification . 41

5.2 Model performance across the 2021 datasets in application-level classification 42

5.3 UW-F adaptation best practices for service-level classification 43

5.4 UW-F adaptation best practices for application-level classification 43

5.5 UW-F architecture adaptation rules . 45

6.1 MLP search space parameters, values, and types 51

xiii

6.2 CNN search space parameters, values, and types 51

6.3 AutoML4ETC flow time-series parallel SLSTM search space parameters . . 51

7.1 Dataset properties . 59

7.2 Packet raw bytes search spaces comparison 61

7.3 Partial training of child models (10 epochs) vs full training (40 epochs)
during the searching time in the packet raw bytes search space 64

7.4 AutoML4ETC versus UC Davis CNN [42] and UW-H [4] for the packet raw
bytes search space . 67

7.5 AutoML4ETC vs state-of-the-art [4, 42] in terms of computing operations
for the packet raw bytes search space . 67

7.6 Flow time-series search spaces comparison 68

7.7 Partial training of child models (10 epochs) vs full training (30 epochs)
during the searching time in the flow time-series search space 68

7.8 AutoML4ETC vs UW-F [4] for the flow time-series search space 69

1 Architecture of the UW tripartite model with 1-D convolutions in the flow
side from the [4]. 88

2 Architecture of the UW tripartite model with stacked LSTM’s in the flow
side from the [4]. 89

3 The available configurations for the DeepTrafficV2 library, their default
value and their description. 95

4 AutoML4ETC vs UW MLP [4] for flow statistics features 96

xiv

Chapter 1

Introduction

Deep learning (DL) models have shown superior performance in encrypted traffic classifi-
cation [42, 4, 31]. However, when it comes to deploying a DL model in production, there
is more to consider than model performance, which is dependent on the target dataset. In
practice, the model performance on a given dataset is tightly coupled with the intrinsic
properties of the dataset. The effect of the target dataset on model accuracy has been
previously highlighted by comparing the performances of traffic classification models on
datasets [4, 3].

The need for datasets with sample distributions that reflects real-world data is a known
issue in traffic classification. The fact that network traffic datasets are often collected under
controlled settings or generated synthetically is not due to a dismissal of this principle, but
rather it is a reflection of the difficulty of labeling real-world network traffic. Even if
perfectly collected and labeled data existed at some point, it is likely to become irrelevant
just a few months later, due to the dynamic nature of network traffic. Over time, network
traffic patterns are affected by the protocols, software, and devices that generate them.
This pattern evolution is known as data drift, also known as concept drift, in the machine
learning (ML) literature.

Data drift is a phenomenon in which the distribution of input data over classes changes
with time. For example, a service may switch to another transport protocol leading to
a different flow time-series (i.e., traffic shape). A flow time-series-based classifier is then
likely to decay in identifying the new traffic. Hence, data drift refers to a change in the
distribution of real-world data caused by the network’s dynamic nature, which leads to
model decay, significantly impacting model performance.

In this thesis, we study the effect of data drift on the performance of two state-of-

1

the-art encrypted network traffic classifiers [4, 42]. Using several datasets of real-world
network traffic collected from a major ISP’s mobile network, we show that model perfor-
mance degradation does indeed occur in a production setting, i.e., when a model trained
on (i.e., seen) old data attempts to classify new data (i.e., unseen). We offer an expla-
nation for the degradation, based on traffic input that the models struggle on. We also
analyse the architecture of the models, offering guidelines for designing architectures that
we empirically show are more robust to data drift. In practice, several factors in the data
collection process affect the number of possible labeled samples, and the datasets on which
the models train can be of various sizes. Therefore, we also study the effect of dataset
size on model performance. The above findings clearly emphasise the need for re-training
a traffic classifier over several, newer datasets in practice. More importantly, we suggest
that for a classifier to remain effective over time, a domain expert must manually re-tune
the hyper-parameters of the model, e.g., model architecture, which is time-consuming and
primarily based on trial-and-error. Therefore, we also focuse on automatically finding an
efficient model architecture for encrypted traffic classification, given a specific network
traffic dataset.

The problem of choosing the suitable model hyper-parameters is not new to DL. It
has been previously addressed under meta-learning [48, 21], where the use of a supervi-
sory neural network was suggested to learn the hyper-parameters of a subordinate neural
network. Recently, the related domain of Neural Architecture Search (NAS) [16, 63] was
introduced as a sub-field of Automated Machine Learning (AutoML) [18], which addresses
the problem of learning the best architecture for a neural network. The introduction of
NAS was a response to the need for extensive model “architectural engineering” for each
new image classification dataset, which closely aligns with the practical problem described
above for traffic classification. NAS requires choosing building blocks for the target ar-
chitecture, which constitutes the search space that requires domain knowledge. Therefore
applying NAS for Encrypted Traffic Classification, which is a non-trivial task.

The main contributions of this thesis can be summarized as:

• We study the data drift phenomenon using five real-world TLS datasets collected over
a course of more than two years from a major ISP’s mobile network. To the best
of our knowledge, we are the first to address the problem of data drift in real-world
encrypted traffic classification.

• We provide insights into the type of data drift that happens in network traffic at
different levels of labeling granularity, i.e., service-level and application-level classes.
These insights are useful to practitioners working with traffic classification models in
production.

2

• We perform an ablation study to analyze the impact of data drift on two state-of-
the-art features for encrypted traffic classification: (i) TLS header bytes, and (ii)
flow time-series information. We reason data drift on these features, and quantify
the drift per service class and corresponding applications.

• We offer guidelines for designing models that are robust to a change of dataset,
labeling granularity, and encryption protocol. Our guidelines have the distinction of
being empirically tested on real-world data with different encryption protocols and
for both service- and application-level classification.

• We propose AutoML4ETC, a tool to automatically design efficient and high-performing
neural network architectures for Encrypted Traffic Classification, given a target
dataset and corresponding features. We show that in addition to being more ac-
curate, the AutoML4ETC’s architectures are significantly more efficient and lighter
in terms of the number of parameters than baseline state-of-the-art encrypted traffic
classifiers, while the amount of resources needed for designing such architectures is
reasonable.

• We define three powerful search spaces tailored specifically for the prominent cate-
gories of features in the Encrypted Traffic Classification state-of-the-art: (i) packet
raw bytes, (ii) flow time-series, and (iii) flow statistics. We show that a simple search
strategy over AutoML4ETC’s search spaces can generate model architectures that
outperform state-of-the-art Encrypted Traffic Classification models on several bench-
mark datasets, including real-world TLS and QUIC traffic collected from a major ISP
network.

• We evaluate the potential of AutoML4ETC by experimenting with state-of-the-art
neural architecture search techniques and model ensembles generated from the same
or across search spaces.

• We provide traffic measurement estimations for TLS and QUIC protocols with En-
crypted Traffic Classification to analyze the state of adoption of the QUIC protocol
with our real-world datasets. Additionally, results on the publicly available QUIC
dataset are also presented to show the generalizability of our approach to other (non-
proprietary) datasets.

3

Chapter 2

Background & Related Works

2.1 Reinforcement Learning

Reinforcement Learning (RL) is a branch of ML that is influenced by behavioural psychol-
ogy. . It pertains to how software/hardware agents should operate in a given environment
to maximize a cumulative reward. The RL algorithm uses states to observe the environ-
ment and find the appropriate action for the agent at a given step. The process is iterative,
i.e., the RL agent executes different actions and monitors the states and rewards to finally
converge to a set of rules or policy for choosing the best action based on a given state.

Because of the iterative nature of RL algorithms, there is always a trade-off between
choosing the optimal action from the policy (i.e., exploit) or try other actions (i.e., explore)
and see the outcome at a given step. REINFORCE [61] is one of the oldest RL policy-based
algorithms that addresses the trade-off with stochastic policies i.e., the action is chosen from
a probability distribution. Another solution to balance the trade-off is to use an Upper
Confidence Bound (UCB) with exploitation. In Equation 2.1, the term argmaxaR̃(a) uses
exploitation to choose the action that achieves the highest reward. Moreover, the addition

of
√

2 lnn
na

results in higher exploration by incorporating the number of times a specific

action a is chosen (i.e., na) out of the total chosen actions (i.e., n).

argmaxaR̃(a) +

√
2 lnn

na

(2.1)

4

2.2 Deep Learning Background

A Multi Layer Preceptron is simply a set of interconnected perceptrons (i.e., artificial
neurons) stacked into dense layers. These dense layers can capture smaller patterns in the
input data, so the full model would be able to solve more complex problems given a larger
number of layers. An MLP network is used to consume input data that are independent.
In other words, the data points in the training set can be reordered without affecting the
result.

However, if the input data is of a sequential nature, then Recurrent Neural Networks
(RNNs) must be used. The Long Short Term Memory (LSTM) model, an RNN, is ca-
pable of learning long term dependencies with a dataset. Due to this nature, LSTM is
a popular component in neural networks for natural language processing. A popular use
for LSTMs is sequence-to-sequence learning, which pretains to generating a sequence as
output from a sequence of input (e.g., generating future model descriptions from current
model descriptions).

Another useful neural network is Convolutional Neural Networks (CNNs). The advan-
tage of CNNs is in capturing patterns spatial-invariant in the input data by using filters.
Moreover, the use of filters and shifting it over the input with shared training parameters,
reduces the number of training parameters significantly compared to MLP. This feature
makes CNNs an ideal choice for network traffic raw bytes feature where information can
be shifted in the input data.

Furthermore, Dropout layers in deep learning are useful to improve the generalizability
of the model. The dropout layer sets the weights of the previous layer to zero with a given
probability. This will force the model to try to learn from different parts of the information
input from the previous layer thus, making it more generalizeable. Additionally, another
hyperparameter to discuss is the Learning Rate. An optimization approach known as
gradient descent is used to train deep-learning neural networks. When the model weights
are changed, a hyperparameter called Learning Rate determines how much the model
weights will be tweaked to account for the anticipated loss.

2.3 Encrypted Traffic Classification

In light of the obfuscation of previously reliable features by encryption, such as application-
layer payload, the traffic classification literature turned to features (e.g., packet size, times-
tamp, direction and their statistics) that were difficult to tweak without affecting quality

5

of service. Before the advent of DL, the performance of several traditional supervised
ML models, such as Näıve Bayes, AdaBoost, and Support Vector Machine (SVM), was
evaluated using these features for encrypted traffic classification (e.g., [28, 5]). Further-
more, semi-supervised approaches based on Gaussian Mixture Models, k-Means, k-Nearest
Neighbour clustering, and Multi-Objective Genetic Algorithms were studied for real-time
encrypted traffic classification (e.g., [12, 8, 9]). A survey of traditional ML approaches is
available in [56, 13].

The capacity to automatically extract feature vectors from raw data in DL provided
new opportunities for encrypted traffic classification. These opportunities were explored
using various DL models including Multi-Layer Perceptrons, Stacked Autoencoders, Con-
volutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) (e.g., [42, 31,
44, 25]). The models were primarily evaluated using public mixed-protocol datasets such as
ISCXVPN2016 [30] and ISCXIDS2012 [51]. The work in [3] uses a proprietary dataset to
evaluate numerous application-level classification methods that use DL models. A survey
of DL models used for network traffic analysis is available in [2].

2.4 Data Drift

Several works in Website fingerprinting (WF) attacks against The Onion Router (Tor) ob-
serve the need for retraining ML models on fresh traffic traces to ensure attack effectiveness.
Herrmann et al. [20] show that their Näıve Bayes approach is robust to data drift when
the training and test data were collected within two days of one another. Their approach
works on packet size and direction sequences of flows similar to the flow time-series feature
used in this thesis. Rimmer et al. [45] evaluate the resilience of several state-of-the-art DL
models to data drift on traffic periodically collected over two months. The authors show
that different DL models age differently, with their accuracies dropping from around 95%
to between 55% and 75% in the course of two months. A critical study of WF attacks
[23] evaluates the effect of data staleness on WF by measuring an SVM-based classifier’s
accuracy on the data over the course of 90 days. The data is gathered by crawling Alexa
Top 100 pages at different instants in time. The authors show that the classifier’s accuracy
drops from around 80% to around zero in less than 90 days when the number of sites
(i.e., the number of classes) is 100, with the accuracy dropping below 50% in less than 10
days. To provide a solution to data staleness, the authors in [59] and [53] propose models
that use less data to train, so that crawling the websites and collecting the necessary traces
to re-train the model is feasible in the small window of time in which the model decays.

Andresini et al. [6] address robustness to data drift for intrusion detection in network

6

traffic, a context in which data drift is especially important because of the continuously
evolving nature of attacks. Their proposed approach consists of three phases: (i) initial
training on historical data, (ii) incremental learning on unlabelled data facilitated by a
learned oracle, and (iii) an explanation phase for how the model adapts to new attack
categories. The authors use variable length time windows that span several minutes rather
than fixed time splits to evaluate the model. Their approach is evaluated on a recently
published version of the CICIDS2017 dataset [17], a dataset of benign and malware traffic
traces spanning over 5 days. The time window they consider is much shorter than the
time windows considered in this thesis. Furthermore, their domain is also different to ours
(i.e., intrusion detection versus service/application detection).

Ma et al. [34] propose a framework to detect and adjust to data drift in an anomaly
detection system. The authors define data drift as a sudden change in the distribution of the
key performance indicator (KPI) stream. Since the number of KPIs in their base anomaly
detector is large, they especially focus on automatic threshold setting for the data drift
detection algorithm to free operators from manually tuning per-KPI parameters. Their
data drift adaptation algorithm is based on linearly transforming the new concept to the
old concept in each time window. Their work differs from ours, as they deal with a different
domain where input data is in the form of a continuous stream, so applying standard data
drift algorithms to their domain is rather straightforward.

Saurav et al. [47] consider the problem of an anomaly detection model losing its rel-
evance when trained on historical data and used in a dynamically changing and non-
stationary environment, where the definition of normal behavior changes. Their proposed
model, a recurrent neural network (RNN) trained incrementally on a data stream, is used to
make predictions while continuously adapting to new data when prediction errors increase.
They show that their model is able to adapt to different types of data drift, e.g., sudden,
gradual and incremental drift.

Taylor et al. [54] study the effect of training on one dataset and testing on another,
building up on their previous work AppScanner, an automatic tool for fingerprinting smart-
phone apps from encrypted data. They collect five datasets of app generated traffic, four
of which were collected six months after the first one and differ from the first one in a
subset of three factors: (i) time of collection, (ii) app device, and (iii) app version. The
authors test the effect of each factor on the accuracy of the model when trained on the
base dataset and tested on the target dataset, and conclude that mere time passing has
the least effect on the model’s accuracy, whereas the model’s accuracy drops from around
70% to 19% when tested on the dataset with new app versions and devices.

Although the work in [54] is based on traditional ML models, it relates to ours in

7

Number
of

Filters

Skip connection

Anchor
Point

Filter
Height

Filter
Width

Stride
Height

Model Description for Layer MModel Description for Layer M - 1 Model Description for Layer M+1

Stride
Width

M-1 Skip Connections

Anchor
Point

Number
of

Filters

Filter
Height

Filter
Width

Figure 2.1: Generating deep model descriptions and skip connections for each layer with a
controller RNN [63]

the recognition of the effect of ambiguous flows in confounding the classifier, as well as
confirming the phenomenon of model decay in mobile app fingerprinting. As opposed to
the synthetic datasets employed in [54], our work is based on real-world datasets.

2.5 Neural Architecture Search

NAS, first proposed in [63], leverages a RNN to generate a sequence that represents a
neural network architecture, as depicted in Figure 2.1. For example, assuming that the
architecture consists of convolutional layers only, each layer in the CNN is described by a
sequence of tokens. Each token determines a separate characteristic of the convolutional
layer, such as filter size and stride. The sequences denoting each convolutional layer follow.
The possible combinations and permutations of the sequences determine the models that
can potentially be generated, i.e., the search space. The controller RNN is trained by RL
where actions are the choice of tokens and the reward signal is the validation accuracy of
the model specified by the sequence. RL consists of a series of trials, where a child model is
created by sampling the parameter values generated by the RNN at the end of each trial.
As shown in Figure 2.2, the sampled model is trained and evaluated on a dataset per trial
to compute the reward function, which makes NAS computationally expensive.

The RL algorithm described above operates within a space of possible sequences. This
space is decided by the set of possible tokens that the controller RNN can generate at each
time step. It is up to a domain expert to determine the set of possible tokens for RNN,

8

With probability p, sample architecture A

The controller
(Recurrent Neural

Network)

Calculate gradient of p with scaling it by R
for updating the controller

Training a child neural
network with architecture

A and gain validation
accuracy R

Figure 2.2: Overview of Neural Architecture Search with RL [63]

which is similar to the set of words in the dictionary of a language generator. Authors in [63]
propose two different search spaces for creating both CNNs and RNNs. The authors further
increase the complexity of the convolutional models by introducing anchor points into the
search space, which determine the probability of skip connections existing between a layer
and its previous layers, allowing the architecture to contain branching or skip connections
similar to the ones in ResNet [19]. Their results show that the generated CNN models
perform within a 1% error rate of the state-of-the-art image classifiers on the CIFAR-10
[27] dataset. However, this is achieved by training 12,800 architectures in total, using
800 GPUs for concurrently training 800 models, which makes such experiments resource
intensive.

Authors in [64] enhance the search space or the set of tokens, i.e., architectural building
blocks that the RNN generates in [63]. Their work is based on the observation that state-
of-the-art image classifier architectures have repeated network motifs, i.e., small building
blocks in the architecture’s graph that are repeated. Their proposed search space consists
of a sequence of Normal cells and Reduction cells, in which only the reduction cells reduce
the size of the feature map. The Interior structure of the normal and reduction cells
varies between different architectures in the search space. Each cell is made up of a
constant number of network motifs, where each motif consists of two inputs fed into two
blocks aggregated by a function. The types of blocks (e.g., separable convolution, identity,
1x1 convolution) and the aggregation function (e.g., add or concatenate) are determined
by the controller RNN along with the connections between the motifs. Their method
performs slightly better than the best record on CIFAR-10, with the added benefit of
being transferable to the larger ImageNet dataset despite the computational complexity of
NAS. The authors leverage a transfer learning approach to speed up child model training

9

and ensure transferability.

Both previous approaches suffer from high computational complexity. To tackle this
problem, [38] improve NAS’s time efficiency by a factor of 1000 and ensure the best error
rate within 0.3% of NAS, by introducing parameter sharing among all child models, which
is inspired by the transfer learning approach [64] and multi-task learning [46]. The authors
named their approach Efficient Neural Architecture Search (ENAS). ENAS uses a more
restrictive search space in which the only child models considered are the ones that can
be represented by a directed acyclic graph (DAG). Moreover, the authors propose a micro
search space in which non-separable convolutional blocks are not considered. The results
of the micro search space are then compared to those of the search space in NAS, i.e., the
macro search space. Our proposed search space is inspired by the search space in ENAS.

The choice of the search algorithm has also been explored in NAS, where some works
leverage RL while others resort to Evolutionary Algorithms (EAs). Outside the realm
of NAS, [26] proposed Monte Carlo Tree Search (MCTS) which extends the well-known
Multi-armed Bandit technique in RL to tree-structured search spaces. This inspired an
interesting approach in [58] for improving the controller by using MCTS to find the best
architecture hyper-parameters. Using MCTS with UCB is best known to balance the
exploitation and exploration in the searching process to overcome possible sub-optimal
solutions. The main idea is to use MCTS to find the model’s hyper-parameters in a
layer-by-layer fashion in the child model descriptions. Selection, Expansion, Playout with
simulation, and Backpropagation are the main steps of MCTS. To estimate the search
directions in MCTS, the child networks should be trained multiple times. The authors
suggest using a simulation network to estimate the child network’s accuracy to only train
each child network once on the dataset as opposed to multiple times. The model’s accuracy
is then estimated by aggregating the training and simulation results.

EAs are an alternate to RL for searching the neural architecture search space [40, 39].
Authors in [40] evolve an initial population of strings representing neural architectures
using a tournament selection algorithm, where after each pairwise comparison the worse
individual dies and the better one mutates. The fitness of each string is determined by
the respective architecture’s validation accuracy after being trained on a dataset. More
closely to [38], authors in [39] use an EA to search the NASNet search space. The authors
use a tournament selection algorithm similar to [40] and introduce the concept of aging to
individuals. Comparing their algorithm to the RL baseline, the authors show that their
EA reaches higher accuracy faster than the RL-based method, however, methods converge
to the same accuracy asymptote. The authors argue that the EA-based method may be of
higher importance in larger search spaces where reaching the optimum can require more
resources than available. We leverage and compare the EA algorithm in [39] to other search

10

algorithms for our search space in Chapter 7.

2.6 Neural Architecture Search for Traffic Classifica-

tion

The automatic generation of a network traffic classifier has been explored in a few works in
the literature. Authors in [22] propose an AutoML framework where an ensemble classifier
is automatically generated on a collected dataset for malware detection. The ensemble is
created by picking the three best performing models out of 7 possible classical machine
learning (ML) models. The models are then stacked, with each model repeated at most 10
times in the stack. Only one of the possible models is a neural network, which performs
the worst on the given dataset. They make use of an open-source python package for
automatically tuning the hyper-parameters of each model. Their contribution lies in the
automatic creation and parameter tuning of an encrypted traffic classifier. Their work
differs from ours in that they examine AutoML for classical ML algorithms. The number
of hyper-parameters to be tuned in a model determines the number of variables of the
AutoML problem and thus its complexity. Therefore, the space of possible solutions that
an AutoML algorithm for classical ML models needs to search is orders of magnitude
smaller than that of a AutoML algorithm. Hence, approaches such as NAS both restrict
the search space and make use of RL or EA-based algorithms to search the space. In short,
AutoML for deep networks is a fundamentally different problem from AutoML for classical
ML models.

The closest works to ours are [60, 33]. Authors in [60] designed a search space and
used several EA strategies including multi-objective swarm optimization to perform NAS
for the IDS2012 and ISCX VPN datasets [30]. Their search space consists of 4 types of
CNNs connected via add and concatenate operations. Their generated classifiers operate
on the first 160 bytes of payload from the first 10 packets of each flow (i.e., 1600 bytes in
total). Their approach achieves above 99% precision and recall on both datasets, while a
simple baseline k-NN is within 1 to 2% of the NAS-generated model. However, in our pre-
liminary experiments, the performance for k-NN on our datasets was inferior. Classifying
the mixed-protocol ISCX VPN dataset has been shown to be an easier classification task
than classifying a full encrypted single-protocol TLS or QUIC dataset [4], similar to the
datasets employed in this thesis. This may have contributed to the differences in challenges
encountered and higher performance in [60] versus our work.

Authors in [33] proposed an approach for a network intrusion detection task over three

11

datasets. Their search space consists of layers of stacked cells, with two types of cells called
normal and reduction cells, where reduction cells halve the size of the input feature map.
Each cell is a DAG of 5 connected nodes, with each node containing one of 12 operations.
The operations are different convolution or pooling operations. For the search strategy,
they use and compare three different multi-objective EAs. To increase the efficiency of
their approach, the authors train several classical ML models to predict the performance
of the generated models in each iteration of the EA. The models used for training are the
initial population plus the selected best models added at the end of each round. Their
generated model, NAS-NET, is evaluated at near 100% F1-score on all three datasets,
with baseline models being within 1-2% range of NAS-NET in F1-score. Out of the three
datasets used for evaluation, one is HTTP-based and unencrypted, whereas the other two
are mixed-protocol CIC-DDoS2019 [50] and ISCXIDS2012 [52] datasets.

Contrary to [60, 33], our work focuses on fully encrypted datasets of TLS and QUIC
traffic. We target the traffic classification task, as opposed to [33] which targets the in-
trusion detection task. In contrast to [60], we evaluate our work on datasets that were
collected from 2019 onwards, and thus are more recent than the ISCX VPN dataset col-
lected in 2016. We argue that our TLS dataset presents a more difficult classification task
than the datasets presented in [60, 33], given the near 100% performance of all ML mod-
els, including classical ones, on their datasets. This is far from what we observed on our
TLS dataset. Results on the publicly available QUIC dataset are presented to show the
generalizability of our approach to other (non-proprietary) datasets.

12

Chapter 3

Methods & Models for the Manual
Approach

3.1 Deep Learning models

3.1.1 UW Tripartite Model

The University of Waterloo Tripartite model (UW) is a DL model proposed in our previous
work [4]. The UW model achieves an accuracy of over 90% on purely encrypted TLS
network traffic. It is a three-part model, as depicted in Figure 3.1a, where each part is
designed to operate on a different type of input data. Note that the orange and yellow boxes
in the figure depict convolution and max-pooling layer kernels, respectively. Furthermore,
each layer’s output vector is depicted by a white box accompanied by its size.

Firstly, the model consists of a series of CNNs operating on header bytes from the
first three packets of the TLS handshake. CNNs are useful for extracting shift-invariant
information which makes them suitable for header bytes. Secondly, the model contains a
series of LSTM layers operating on flow time-series data, which includes a three-dimensional
array of packet sizes, packet directions, and packet inter-arrival times for each flow. LSTMs
are renowned for relating useful information in a time-series data. The output of the LSTMs
passes through a dropout layer before being concatenated to other parts’ outputs. Lastly,
a series of dense layers in the model is designed to work on statistical flow data, which
includes 77 features. The statistical features are called auxiliary features in this thesis.
Our experiments suggest that the auxiliary features have the least effect on the model’s

13

Table 3.1: Service-level datasets properties

Protocol Dataset
Total flows

(K)
Labeled flows

(K)
Labeled flows

(%)

TLS

07-2019 762.7 119.8 15.7
09-2020 411.7 89.9 21.8
04-2021 284.8 42.3 14.8
05-2021 124.0 17.5 14.1
06-2021 261.2 51.2 19.6

QUIC QUIC-05-2021 37.8 26.0 68.0

performance. The outputs of the three parts are then concatenated and passed through
two dense layers and a softmax layer to obtain the final classification.

To the best of our knowledge, the UW model obtains the highest accuracy to date
on a fully encrypted dataset, for service-level classification. In this thesis, we perform an
ablation study on the different parts of the UW model. The decomposed parts of UW,
i.e., for TLS header bytes (UW-H), flow time-series information (UW-F), and auxiliary
features (UW-A), are depicted in Figure 3.1b, Figure 3.2a, and Figure 3.2b, respectively.

3.1.2 UCDavis CNN Model

The authors in [42] propose a CNN model for early classification of network traffic flows.
Their CNN model operates on the first six packets of a flow, for each of which, the first
256 raw bytes from L3 and above are extracted and concatenated together to form the
input feature vector. The model consists of convolutional, max-pooling and dense layers as
shown in Figure 3.3. We leverage the UCDavis CNN model in this thesis, as it was shown
in [4] that after the UW model, the UCDavis CNN obtains the best accuracy on their fully
encrypted dataset among a number of evaluated models. This model was designed for
performing on packet raw bytes. Therefore, it’s only used in the comparisons performed
on the packet raw bytes (e.g., not on the flow time-series information).

14

(a) UW model architecture [4]

2

2

TLS Handshake Bytes

Conv1D

Conv1D

256

2

Max Pooling

3x600

Max Pooling

Dense

Dense

Softmax

128

128

Conv1D

Conv1D

256
2

128

128
2

128
2

(b) UW-H, i.e., decomposed TLS header part of
UW

Figure 3.1: UW Model and decomposed parts

15

3x1024

512

Dense

Flow Time-series

Dense

Dense

Softmax

128

128

Dropout

LSTM

LSTM

LSTM

(a) UW-F, i.e., decomp. flow time-series part of
UW

77

200

200

Dense

Dense

Auxiliary

Dense

Dense

Softmax

128

128

(b) UW-A, i.e., decomposed statistical part of
UW

Figure 3.2: UW Decomposed parts (cont.)

16

Figure 3.3: UCDavis CNN architecture [42]

3.2 Datasets description

We use a total of six datasets in this thesis which consist of TLS and QUIC traffic traces
collected from a major ISP’s mobile network. The source and destination IP addresses are
obfuscated and the packets are truncated after 400 bytes, except for the TLS handshake
packets. A flow is assumed to be a quintuple of source IP, destination IP, source port,
destination port and protocol.

Preprocessing and labeling modules are used to turn the packet captures into labeled
datasets of traffic flows. Both modules are implemented as in [4]. The preprocessed data
includes raw TLS header bytes from the flows, as well as flow time-series information
consisting of an array of packet sizes, packet inter-arrival times, and packet directions for
each flow. Moreover, it consists of 77 auxiliary features for each flow, extracted using
CICFlowMeter [30]. The auxiliary features include statistical information about flows,
e.g., mean, median, minimum, and maximum of packet sizes in each direction.

The labeling module is used to label the flows according to the Server Name Indica-
tion (SNI) field. The flows are labeled at two levels of granularity: (i) service-level, and
(ii) application-level. Service-level labels consist of 8 classes each representing a service
category, namely, chat, download, games, mail, search, social, streaming, and web. For
each service-level, there is a corresponding set of applications. For example, the mail class

17

Table 3.2: Application-level datasets properties

Protocol Dataset
Total flows

(K)
Labeled flows

(K)
Labeled flows

(%)

TLS

07-2019 762.7 83.1 10.9
09-2020 411.7 59.8 14.52
04-2021 284.8 26.3 9.2
05-2021 124.0 11.1 9.0
06-2021 261.2 34.6 13.2

QUIC QUIC-05-2021 37.8 9.3 24.6

Table 3.3: Service-level and corresponding application-level classes for TLS datasets

Service-level class Application-level classes

chat Facebook Snapchat Whatsapp -

download Apple GooglePlay - -

mail Gmail Hotmail Outlook -

search Google - - -

social Facebook Instagram Twitter -

streaming Facebook Netflix Snapchat Youtube

web Amazon AppleLocalization Microsoft -

games - - - -

consists of mailGmail, mailHotmail, and mailOutlook applications. There are a total of 19
applications, which act as a finer level of labeling per service class. Note that not all the
applications in a service class have enough flows to be categorized as an application class.
Therefore, the number of labeled flows in the application-level is smaller than service-level.
The service-level classes and corresponding applications are presented in Table 3.3. The
games service class does not have corresponding application classes, as it consists of many
applications with a very small number of flows. Nevertheless, these applications’ flows
together form the games class at the service-level.

The employed datasets can be categorized into two types based on encryption protocol,
i.e., TLS and QUIC.

(i) TLS datasets : We leverage five datasets encrypted with the TLS protocol, each
containing one to two hours of packet traces. The datasets are captured chronologically
and named in the MM-YYYY format, i.e., 07-2019, 09-2020, 04-2021, 05-2021, and 06-2021,

18

respectively.

(ii) QUIC dataset : The QUIC dataset, QUIC-05-2021, is extracted from a packet trace
of QUIC traffic captured at the same time as the TLS 05-2021 dataset. The TLS handshake
bytes are tightly coupled to the TLS protocol and thus irrelevant to QUIC. Therefore, the
QUIC dataset only consists of flow time-series information. Auxiliary data was not added
to this dataset as the effect of flow statistics on model performance was negligible in our
experiments. The QUIC dataset is used to show that our architecture adaptation best
practices, which are centered around UW-F model, generalizes to non-TLS encrypted data
(cf. Section 5).

Tables 3.1 and 3.2 show the total number of flows, labeled flows, and the percentage
of labeled flows, for service-level and application-level datasets, respectively. The number
of labeled flows depict the size of each dataset. The percentage of labeled flows in each
dataset highlights the performance of the employed labeling module for the TLS flows.
Evidently, the percentage of the labeled flows across the datasets are more or less inline
with each other, asserting the suitability of the labeling module. Additionally, the labeled
distribution of TLS flows for service and application classes are depicted in Figure 3.4 and
Figure 3.5, respectively. There is insignificant difference in class distribution across the
datasets. Therefore, we use the accuracy as the primary performance metric for evaluating
the models across the datasets. To deal with class imbalance we adopt a weighting strategy,
i.e., we up-sample classes with smaller number of flows.

There are several interesting takeaways when we compare the distribution of appli-
cation classes. Notably, downloadApple has the highest number of flows. Furthermore,
streamingNetflix has the lowest number of flows among all applications. This implies that
although Netflix is an extremely popular application, not many users watch Netflix on
their mobile devices when compared to Snapchat, Facebook, and Youtube. Note that the
datasets were captured on the ISP’s mobile network.

For labeling the QUIC dataset, we change the classes in the TLS dataset. Since QUIC
is still not widely adopted by services across the web, not all classes from the TLS dataset
have enough flows in the QUIC dataset. For instance, QUIC is known for enhanced secu-
rity and faster connections, which makes it more suitable for time-sensitive applications,
e.g., streaming services. Therefore, it makes sense that we did not see any flows labeled as
the download class in the QUIC dataset. Hence, we keep the games, social, streaming, and
web classes, while adding some new classes, i.e., e-commerce and resources. The resources
class corresponds to the flows that are essentially shared among different websites that
mostly deliver tools, such as JavaScript APIs or design content for websites. The new
labeling module can label up to 68% of the flows, a large improvement over the less than

19

0.0

0.1

0.2

0.3

0.4

chat download games mail search social streaming web

07-2019 09-2020 04-2021 05-2021 06-2021

Figure 3.4: Service-level class distribution of the TLS datasets

20% labeling performance on the TLS datasets. We attribute this to fewer services using
QUIC and most of them corresponding to the resources class. Therefore, the SNIs are not
as varied in this dataset as they are in the TLS datasets.

3.3 Software stack and performance metrics

The software stack for data pre-processing, model training, and evaluation includes Ten-
sorflow with Keras API, CUDA, PySpark, SCAPY, and TShark.1 The use of these well-
established technologies ensure that the code base is horizontally scalable and resilient.
Training was conducted on 80% of each dataset, while the remaining 20% was used for
validation. A multi-class classification problem can be seen as a set of many binary classi-
fication problems, one for each class. Each binary classification task may result into True
Positives (TP), False Positives (FP), True Negatives (TN), and False Negatives (FN). The
performance of each binary classifier can be measured in terms of:

Precision =
TP

TP + FP
× 100

1The code repository: shorturl.at/iuvV1 also contains the comprehensive technical information on how
the library should be used and how its environment should be configured on Linux platforms.

20

0.00

0.05

0.10

0.15

0.20

ch
atF
ac
eb
oo
k

ch
atS
na
pc
ha
t

ch
atW

ha
tsa
pp

do
wn
loa
dA
pp
le

do
wn
loa
dG
oo
gle
Pla
y

ma
ilG
ma
il

ma
ilH
otm

ail

ma
ilO
utl
oo
k

se
arc
hG
oo
gle

so
cia
lFa
ce
bo
ok

so
cia
lIn
sta
gra
m

so
cia
lTw
itte
r

str
ea
mi
ng
Fa
ce
bo
ok

str
ea
mi
ng
Ne
tfli
x

str
ea
mi
ng
Sn
ap
ch
at

str
ea
mi
ng
Yo
utu
be

we
bA
ma
zo
n

we
bA
pp
leL
oc
ali
za
tio
n

we
bM
icr
os
oft

07-2019 09-2020 04-2021 05-2021 06-2021

Figure 3.5: Application-level class distribution of the TLS datasets

Recall =
TP

TP + FN
× 100,

F1 − score =
2 × Precision×Recall

Precision + Recall
× 100,

Accuracy =
TP + TN

TP + TN + FP + FN
× 100.

In this thesis, we measure the performance of the multi-class classifiers in terms of the
most standard metrics in this domain such as accuracy, and weighted average F1-score,
recall, and precision, where weighted average is the average of the corresponding metric
across all classes weighted by the number of data points that we could label for each class.

Another metric that we use is top-k accuracy. This metric measures how often the
model is able to predict the right class in the first k guesses. For instance, top-1 accuracy
corresponds to the accuracy metric defined above. The logarithmic weighted mean of top-k
accuracies is the weighted average of top-k accuracies, where the weights logarithmically
decrease as k increases.

21

Chapter 4

Investigating Data Drift

In this chapter, we study the performance of UW model when trained on a baseline TLS
dataset and tested on a different, target TLS dataset. We investigate model decay in time
by leveraging the decomposed models and experimenting with different TLS datasets.

4.1 Baseline performance

We start by highlighting the performance of the UW model on the 07-2019 dataset, which
is the oldest and biggest TLS dataset. To provide insight into the performance of each
part of the UW model separately by conducting experiments on the decomposed models
(i.e., UW-H, UW-F and UW-A). Table 4.1 shows the performance of these models in
service-level classification.

We notice that, when we train the decomposed models on the 07-2019 dataset, the
UW-H model shows the highest accuracy, which is 0.3% higher than the accuracy of the
UW model on the same dataset. We attribute this to more data leakage in TLS headers
at the time of the corresponding dataset collection (cf. Section 4.3). The UW-A model
shows the lowest accuracy of 43.8%. With such a low accuracy, it is evident that the flow
statistics are not helping, resulting in an even inferior performance to the UW-H model.

The results for application-level classification are depicted in Table 4.2. These results
concur with the previous findings, with similar trends for UW and decomposed models
with the exception of UW-H. The UW-H model achieves the highest accuracy of 96%,
which is even better than the UW model, while the auxiliary input achieves the worst

22

Table 4.1: Model performance on the 07-2019 TLS dataset in service-level classification

Dataset
Accuracy (%)

UW UW-H UW-F UW-A

07-2019 94.5 94.8 86.3 43.8

Table 4.2: Model performance on the 07-2019 TLS datasets in application-level classifica-
tion

Dataset
Accuracy (%)

UW UW-H UW-F UW-A

07-2019 95.7 96.0 84.2 29.1

performance (i.e., 29.1% accuracy). We will provide more details on the reasoning behind
this phenomena for the UW-H in the latter chapters.

4.2 Robustness to performance decay

We study the performance of the UW model in service- level classification on different
target (i.e., test) TLS datasets after training it on the baseline 07-2019 dataset. The
target datasets, i.e., 09-2020, 04-2021, 05-2021, 06-2021, were collected at different points
in time within two years from the 07-2019 dataset. As our experiments have shown that
the performance of UW-A is inferior with little to no impact on UW model performance,
we focus our study on the UW-H and UW-F models.

The results of the first set of experiments is shown in Figure 4.1. Evidently, the predic-
tion ability of the model decays over time, which is quantified in Table 4.3. We see that the
performance decay of the UW model is at its lowest on the 09-2020 dataset (i.e., 35.7%)
and at its highest on the 06-2021 dataset (i.e., 41.1%). Note that the 07-2019 dataset and
the 06-2021 dataset are about two years apart.

Model performance decay over time is an expected phenomenon. Nevertheless, we
see that it does not have an equal impact on the UW-H and UW-F models. In fact,
the performance of UW-H decays 7% more on average than the performance of UW-F

23

A
cc

ur
ac

y
(%

)

20

40

60

80

100

07-2019 -> 09-2020 -> 04-2021 -> 05-2021 -> 06-2021

UW UW-H UW-F

Figure 4.1: Model performance when trained on baseline 07-2019 dataset and tested (no-
tation →) on target datasets

(i.e., 40.75% compared to 33.02%). This suggests that using the traffic shape features,
which is captured by the UW-F input, make the model more robust to decay over time.
This also suggests that the TLS headers contribute more to the drop in accuracy over time
for the UW model.

The previous experiments also highlight that performance decay correlates with the
time difference between the training and target datasets. Therefore, we run experiments to
further investigate this observation. In particular, we train UW-H using different datasets,
i.e., 07-2019, 09-2019, 04-2021 and 05-2021, and measure how much the performance of

Table 4.3: Drop in model’s predictive accuracy when trained on the baseline 07-2019
dataset and tested on subsequent datasets

Model
Target datasets Avg. accuracy

drop (%)09-2020 04-2021 05-2021 06-2021

UW 35.7 40.5 40.8 41.1 39.52

UW-H 38.3 40.3 41.7 42.7 40.75

UW-F 31.4 32.1 34.0 34.6 33.02

24

D
ro

p
in

 a
cc

ur
ac

y
(%

)

0

25

50

75

100

07-2019 -> 06-2021 09-2020 -> 06-2021 04-2021 -> 06-2021 05-2021 -> 06-2021

Drop in accuracy of the UW-H model Drop in accuracy of the UCDavis CNN model

D
ro

p
in

 a
cc

ur
ac

y
(%

)

0

25

50

75

100

07-2019 -> 06-2021 09-2020 -> 06-2021 04-2021 -> 06-2021 05-2021 -> 06-2021

Drop in accuracy of the UW-H model Drop in accuracy of the UCDavis CNN model

Figure 4.2: Performance decay of UW-H and UCDavis CNN in service-level classification
(up) and application-level classification (down)

25

the trained model decays by 06-2021. We conduct the same set of experiments with the
UCDavis CNN model and compare the performance of both models. Given that the size of
training set, has an impact on the accuracy of a DL model, we down-sample the training
datasets to the size of the smallest one (i.e., 05-2021 dataset) and average the results on
all samples.

The performance decay in decreasing order of time span is shown in Figure 4.2. It is
evident that the closer the datasets are in time of capture, the lower the performance decay
of the UW-H model. For example, the accuracy of UW-H in service-level classification
decays by 43.9%, 26.1%, 10.3%, and 7.2% roughly after 2 years, 1 year, 2 months, and
1 month, respectively. We attribute this to a discrepancy in data distribution between
the training and target datasets, i.e., data drift, which we will investigate in the next
subsection.

The same trend can be seen for the UCDavis CNN model up to 04-2021, although the
performance decay is even more noticeable than on UW-H. For instance, when the training
and target datasets are 2 years apart, the accuracy of the UCDavis CNN model decays
by 49.6%, compared to 43.9% for UW-H in service-level classification. Two aspects of the
UW-H model could be contributing to its comparatively higher robustness to data drift:
(i) more regularization layers, which prevents the model from overfitting to the training
dataset, and (ii) feature engineering, in which the TLS handshake header bytes are used
as input as opposed to any header bytes, reducing the noise in the model’s input. We note
that the performance decay of the UCDavis CNN model in service-level classification is
lower in the span of 2 months (i.e., between 04-2021 and 06-2021) compared to the span
of 1 month (i.e., between 05-2021 and 06-2021), hence breaking the previous trend. This
suggests that the model simply overfits the training dataset rather than naturally decay as
data drifts over time. Furthermore, the UCDavis CNN model seems be less generalizable
than the UW-H model.

Figure 4.2 also shows that the accuracy of UW-H in application-level classification
decays by 40.5%, 26%, 6.5%, and 3.7% over the span of 2 years, 1 year, 2 months, and
1 month respectively, similar to service-level classification. The performance decay of the
UCDavis CNN model in application-level classification also follows the same trend as in
service-level classification. Specifically, the drop in accuracy decreases from 59.9% over the
span of 2 years, to 27.8% over the span of 1 year, to 10.2% over the span of 2 months, and
increases again to reach 13.2% when the datasets are 1 month apart. Indeed, the decay is
much worse with the UCDavis CNN model than UW-H in application-level classification.
This suggests that the UCDavis CNN model is even more susceptible to data drift and
overfits to the training datasets in application-level classification.

26

Table 4.4: Per-service class accuracy of UW-H and UCDavis CNN on (a) the 04-2021
dataset, and (b) the 07-2019 dataset

(a)

Class
Accuracy (%)

UW-H UCDavis CNN

chat 77 84

download 86 82

games 95 82

mail 83 89

search 87 83

social 82 82

streaming 88 82

web 86 79

(b)

Class
Accuracy (%)

UW-H UCDavis CNN

chat 96 92

download 95 89

games 97 88

mail 97 95

search 99 95

social 96 93

streaming 93 82

web 92 91

27

In the following, we investigate which service classes are most affected by data drift.
Furthermore, we investigate which service is confused with, as time passes. Finally, we
investigate whether this confusion holds across different architectures or not. We strate-
gically focus our study on two particular scenarios. The first is when the training and
testing datasets are 2 years apart (i.e., the model is trained on the 07-2019 dataset and
used to classify the 06-2021 dataset). That is when the datasets are the furthest apart
and the effect of data drift is most noticeable on the overall performance of UW-H as well
as UCDavis CNN, both in service-level and application-level classification. The second
is when the datasets are only 2 months apart (i.e., the model is trained on the 04-2021
dataset and used to classify the 06-2021 dataset). This is when data drift affects the per-
formance of UCDavis CNN the least. Tables 4.4 (a) and (b) present the baseline per-class
accuracies, i.e., when the target dataset is the same as the training dataset

Figure 4.3 depicts the confusion matrix of UW-H in service-level classification, in each
of the above scenarios. When the training and test datasets are 2 years apart, streaming
and download are the two services UW-H misclassifies the most, achieving 22% and 16%
accuracy on these classes, respectively, and hence a drop of roughly 70% and 80% in
classification accuracy. In particular, the model misclassifies 53% of the streaming flows
and 50% of the download flows as web flows. We note that web is the class most of
the misclassified flows are confused with, e.g., 53% of the streaming flows, 50% of the
download flows, 25% of the games flows, and 25% of the mail flows. streaming is the
second most confused with, e.g., 27% of the games flows, 23% of the chat flows, and 17%
of the download flows. We can associate the model’s tendency to misclassify flows as web
to the higher percentage of web flows in the training set, which creates a bias for this class.
Therefore, web is the default label the model selects for a flow when its confidence in the
true label is low.

When the training and target datasets are 2 months apart, however, we see a drastic
increase in the model’s ability to correctly classify all flows in general, in particular the
streaming and download flows, i.e., 65% and 75% accuracy respectively. Some but fewer
flows remain misclassified as web flows, e.g., 22% of the games flows, 16% of the streaming
flows, and 10% of the download flows, compared to the previous 25%, 53%, and 50%,
respectively. However, the model seems also to have a bias for the games class, as it now
confuses more flows with games flows, e.g., 21% from the chat class, 15% from search,
and 13% from download. In general, the games and web are the classes the model is most
confused with and about, whether the training and the target datasets are close in time or
far apart.

Figure 4.4 presents the confusion matrices of the UCDavis CNN model. Evidently,
when the training and target datasets are two years apart, the UCDavis CNN model has

28

Figure 4.3: Confusion matrix of UW-H when training and target datasets are two years
(up) and two months (down) apart

29

Figure 4.4: Confusion matrix of the UCDavis CNN model when training and target datasets
are two years (up) and two months (down) apart

30

a much higher tendency to misclassify flows than UW-H. While streaming and games are
the two classes with highest misclassification rates, i.e., the accuracy of the classifier not
exceeding 1.7% and 6.2% respectively on these classes thus experiencing a drop of over 90%
in per-class accuracy, the UCDavis CNN also misclassifies over 75% of the chat, download,
and mail flows, confusing these with web traffic most of the time. Similarly to UW-H but at
a larger extent, web is the class UCDavis CNN most confuses other classes with. UCDavis
CNN also seems to be confused about more classes than UW-H. For instance, in addition
to the web, UCDavis CNN equally misclassifies flows as search or social, e.g., 17% of chat
flows are misclassified as search and 14% as social, 12% of download flows are misclassified
as search and 16% as social, 21% of streaming flows are misclassified as search and 18% as
social, and 12% of web flows are misclassified as search and 12% as social. We attribute
this higher misclassification and confusion rate of the UCDavis CNN model to the noisy
features (i.e., encrypted data) that are input to the model, as discussed earlier. We note
that, the misclassification and confusion rates drop significantly when the datasets are 2
months apart, and UCDavis CNN exhibits similar behaviour to UW-H.

In the following, we attempt to study the extent to which classes are affected by data
drift in traffic, leveraging the top-k accuracy measure. Some traffic classes may be impacted
by data drift more than others such that it would take the model several more guesses to,
eventually, classify them correctly.

Figure 4.5, presents the top-k accuracy of UW-H when the target and training datasets
are 2 years and 2 months apart, for k=1, 2 and 3. Evidently, considering the model’s
top-2 or top-3 guesses significantly increases the model’s accuracy on particular classes,
thus increasing the model’s overall accuracy. For example, when the target and training
datasets are 2 years apart, the accuracy of the model on the download class increases from
16.5% to 54.2% and 77.3% with k=2 and 3, respectively. On the contrary, the accuracy
of the model on mail does not increase much when k is increased to 2 or 3, i.e., after the
second guess UW-H still misclassifies 47% of mail flows and 42% after 3 guesses. This
suggest that mail traffic data has shifted so much since 07-2019 (recall that the baseline
accuracy of UW-H in classifying 07-2018 mail traffic is 97%) that it would take more than
3 guesses for the model to correctly classify 06-2021 mail flows. Indeed, we can see that
the download and mail traffic drifted relatively less in the span of 2 months, as the model
achieves relatively higher classification accuracy on these two classes, which also increases
with k= 2 or 3. These findings are also inline with conclusions drawn earlier from the
confusion matrices.

In Figure 4.6, we summarize the top-k accuracy plots by averaging the top-k accuracies
(for k=1, 2, and 3) using a logarithmic weighted mean function. Logarithmically decreasing
weights are applied to the top-k accuracies with increasing k, giving higher weights to top-1

31

accuracies. The goal is to study and compare, in a simplified way, the data drift in traffic
data across service classes after 2 years versus 2 months.

We notice that download and streaming are the classes with the lowest average top-k
accuracy when the training and test target sets are 2 years apart. Not only are they the
most impacted by data drift but also this is where there is the most obvious correlation
between data drift and time span between the training dataset and target dataset. The
games class is also highly affected by the data drift due to the 2-year-time span between
the training dataset and the 06-2021 datatset. However, interestingly, it is equally highly
impacted by the 2-month-time span, experiencing roughly 50% drop in classification ac-
curacy in both scenarios. On the contrary, search, social, and web are equally much less
affected by data drift regardless of the time span between the training and test datasets;
the average top-k accuracies being equally relatively high in both scenarios. Interestingly,
the games class is the most diverse among all application classes. Several different SNIs
are matched to the games class, and the class does not seem to be dominated by some
major games. Thus, for the drop in accuracy to be this noticeable, it seems like online
games and underlying protocols are in constant shift.

While we uncovered what traffic classes are most impacted by the data drift in network
traffic data, at the service-level, it is worth investigating which applications within service
classes are most susceptible to data drift. We conduct the 2-year-time span experiment at
the application-level, and measure the impact of data drift across application classes using
the logarithmic weighted mean top-k metric, as reported in Figure 4.7.

Figure 4.7 depicts interesting findings. For instance, in the chat service class, the high-
est drop in accuracy is experienced by the WhatsApp application. In fact, the model fails
to correctly classify all 06-2021 WhatsApp flows. Plus top-2 and top-3 classifications fail to
boost the accuracy on this particular class. In the download service class, we can see that
GooglePlay is more affected by data drift with a lower logarithmic weighted mean top-k
accuracy compared to the Apple applications. In the mail service class Gmail is drastically
affected by data drift, much more than the other mailing applications. More interestingly,
in the social class, the biggest impact is experienced by the Twitter application, which
makes Facebook and Instagram traffic seem more stable. Furthermore, almost all appli-
cations in the streaming service class experience roughly the same drop in accuracy and
are affected almost equally by the data drift. Finally, for the web service class, the most
stable traffic seem to belong to the Microsoft applications and the most affected traffic by
the data drift is the one for the AppleLocalization application. The applications that are
more affected by data drift (e.g., Whatsapp, Twitter, etc.) seem to be the most popular
ones within their respective service classes. For instance, Whatsapp had more daily active
users in France (i.e., the country of dataset collection) compared to Facebook according to

32

To
p

K
 A

cc
ur

ac
y

(%
)

0

25

50

75

100

chat download games mail search social streaming web

K=1 K=2 K=3

To
p

K
 A

cc
ur

ac
y

(%
)

0

25

50

75

100

chat download games mail search social streaming web

K=1 K=2 K=3

Figure 4.5: Top-k accuracy for the UW-H when training and target datasets are two years
(up) and two months (down) apart

33

Lo
ga

rit
hm

ic
 w

ei
gh

te
d

m
ea

n
of

 to
p-

k
ac

cu
ra

cy
 (%

)

0

25

50

75

100

chat download games mail search social streaming web

Two years apart Two months apart

Figure 4.6: Logarithmic weighted mean of top-k (k = 1, 2, 3) accuracy with the service-level
classes

A
cc

ur
ac

y
(%

)

0

25

50

75

100

ch
atF

ac
eb

oo
k

ch
atS

na
pc

ha
t

ch
atW

ha
tsa

pp

do
wnlo

ad
App

le

do
wnlo

ad
Goo

gle
Play

mail
Gmail

mail
Hotm

ail

mail
Outl

oo
k

se
arc

hG
oo

gle

so
cia

lFac
eb

oo
k

so
cia

lIn
sta

gra
m

so
cia

lTwitte
r

str
ea

ming
Fac

eb
oo

k

str
ea

ming
Netf

lix

str
ea

ming
Sna

pc
ha

t

str
ea

ming
You

tub
e

web
Amaz

on

web
App

leL
oc

ali
za

tio
n

web
Micr

os
oft

K=1 K=2 K=3 Logarithmic weighted Mean

Figure 4.7: Per-application class top-k accuracy of the UW-H model when training and
target datasets are two years apart

34

Table 4.5: Adoption of HTTP/2 and SPDY protocols over time

Protocol
Time

2018-2019 2019-2020 2019-2021

HTTP/2 + 40.6% + 31.0% + 53.5%

SPDY - 93.4% - 66.6% - 83.3%

July 2021 statistics [37].

4.3 Traffic data drift

The considerable drop in both model’s performances when they are trained on 07-2019 and
tested on 2021 datasets, as well as the fact that the performance drop correlates with the
difference in time of capture between datasets, indicates that the data distributions the
models are learning may be changing over time, thus making the learned patterns obsolete.
To investigate this, we take a closer look at the L5 protocol distribution in the datasets,
primarily looking for any time-related changes that we could identify. Note that since the
data is encrypted, only some application-layer protocols are identifiable. Furthermore, as
we filter on the application-layer protocols, we only perform the investigation for service-
level classification.

Table 4.5 shows the adoption of HTTP/2 and SPDY protocols [57]. From 2018 to 2021,
the adoption of HTTP/2 increased while the usage of SPDY, which is the predecessor to
HTTP/2, drastically decreased. From 2019 to 2021, we can see that there is a 83.3%
decrease in the usage of SPDY and a 53.5% rise in the adoption of HTTP/2. This may
in part explain the drift in the datasets and, in particular, the different patterns in the
raw header bytes, from 2019 to 2021. Unlike HTTP/2, SPDY uses a dynamic compression
algorithm in the headers that makes it more vulnerable to chosen plain text attacks. Indeed,
SPDY leads to more information leakage than HTTP/2 and is easier to classify. Moreover,
we expect to see a change in the accuracy of UW-H model even when it is trained and
tested on the newest datasets. We hypothesize better results on the 07-2019 datasets where
there could be considerably more SPDY flows than the 2021 datasets.

We know that for DL models the dataset size has a direct impact on the overall classi-
fication accuracy. Therefore, in order to have a fair comparison, we reduced the number of
flows in the 07-2019 dataset to the number of flows in the 04-2021 and 05-2021 datasets.

35

A
cc

ur
ac

y
(%

)

0

25

50

75

100

04-2021 06-2021 07-2019 05-2021 06-2021 07-2019

Figure 4.8: UW-H performance on datasets with similar sizes (dark blue: 04-2021 size,
light blue: 05-2021 size)

Since we reduce the dataset using random sampling, we perform multiple experiments and
report the average accuracy. The results are depicted in Figure 4.8. As can be seen, the
accuracy of the model on the reduced 07-2019 datasets is still around 8% to 10% higher
than on the other datasets. This suggests that the TLS headers in the 07-2019 dataset are
easier to classify than the TLS headers in the newer datasets.

To confirm our hypothesis about the impact of the application-layer protocols, we
conduct experiments based on the Application-Layer Protocol Negotiation (ALPN) header
field of the TLS protocol. Table 4.6 shows the distribution of ALPN field values for different
datasets. Note that all the 2021 datasets are merged. There are two main reasons for doing
this: (i) 07-2019 and 09-2020 datasets consist of roughly 119K and 89K flows, respectively.
In contrast, the 2021 datasets are considerably smaller and merging them results in 98.9K
flows, which is comparable in size to the larger datasets; (ii) 2021 datasets are captured
closer in time, which makes their data patterns rather similar as evident in Figure 4.2.

From Table 4.6, it is evident that between 62%-77% of flows in the considered datasets
do not have an ALPN field value, i.e., Missing ALPN. Moreover, around 10%-20% of flows
consist of HTTP/1 and HTTP/2 application-layer protocols, which are only a small portion
of flows in each dataset. Therefore, we evaluate model performance in three different
scenarios, where the flows in the datasets are either HTTP/1, HTTP/2, or unknown. It

36

Table 4.6: Distribution of ALPN field values for different datasets

ALPN filter
Dataset

07-2019 09-2020 Merged-2021

HTTP/2 0.12 0.09 0.09

HTTP/1 0.25 0.15 0.14

Missing ALPN 0.62 0.76 0.77

Table 4.7: UW-H performance based on ALPN

Dataset
Accuracy (%)

HTTP/2 HTTP/1 Missing ALPN

07-2019 93.5 97.5 93.2

09-2020 94.6 94.8 80.7

Merged-2021 91.6 96.9 81.1

is unknown for a flow with Missing ALPN, i.e., it may use HTTP/1, HTTP/2, or neither
HTTP/1 nor HTTP/2. Table 4.7 illustrates the performance of UW-H on each dataset
based on the ALPN field value. For HTTP/1 and HTTP/2, model performance across
the datasets is more or less the same. However, the performance gap between the 07-2019
dataset and other datasets on flows with Missing ALPN is considerable. Specifically, UW-
H achieves around 93.2% accuracy on the flows with Missing ALPN extracted from the
07-2019 dataset, while the performance is around 81% on the other datasets. This further
substantiates that the TLS headers in the 07-2019 dataset are easier to classify, and the
majority of this ease comes from flows with Missing ALPN.

By examining the ALPN of all the datasets, we found a few flows with application-
layer protocols other than web protocols (e.g., Apple push-notification). Interestingly, the
07-2019 dataset is the only dataset that contains flows with the ALPN fields indicating
the SPDY protocol. Recall from Table 4.5 that in the time frame corresponding to the
07-2019 dataset SPDY was still highly used, which we speculate as the reason for superior
classification performance on the Missing ALPN portion of this dataset. Additionally, from
Table 4.5 it can be seen that from 2019 to 2021 the adoption of HTTP/2 has increased by
more than 83.3%, which substantiates previous findings.

For a fair comparison, we then reduce the number of HTTP/1, HTTP/2, and Missing

37

A
cc

ur
ac

y
(%

)

0

25

50

75

100

07-2019 09-2020 04-2021 05-2021 06-2021

HTTP/1 HTTP/2 Missing ALPN Original

Figure 4.9: UW-H performance with ALPN filter on similar size datasets

ALPN flows in each dataset to the smallest across all the datasets (i.e., the number of
HTTP/2 flows in the 05-2021 dataset). The results are depicted in Figure 4.9. It is
evident that UW-H yields similar performance on HTTP/1 and HTTP/2 protocols. The
accuracy is over 80% for all datasets on either HTTP/1 or HTTP/2 flows. However,
the model shows inferior performance, i.e., around 60% average accuracy on the Missing
ALPN portion of the datasets, except for the 07-2019 dataset which has a relatively higher
accuracy of around 75%. Additionally, for the 09-2020 dataset, the performance of the
model is lower than 07-2019 and higher than 04-2021 datasets. All of these results are
inline with the increase in the adoption of HTTP/2 and decrease in SPDY usage over time
in Table 4.5. This further substantiates our hypothesis that the Missing ALPN portion
in the 07-2019 dataset is easier to classify. As the majority of the original flows (i.e., no
filter on ALPN) are from the Missing ALPN portion, the performance of the model on the
original flows is similar or slightly better than the Missing ALPN flows alone. It is better
because of the small portion of HTTP/1 or HTTP/2 flows available in the original dataset
compared to Missing ALPN flows.

We then investigate whether the model is biased on the ALPN field. Indeed, this could
lead to better model performance when the ALPN field value is either HTTP/1 or HTTP/2.
To investigate this, we obfuscate the ALPN field in the raw traffic bytes (e.g., replace with
random bytes) and re-pre-process the data. We re-evaluate the UW-H model with the
obfuscated ALPN field on HTTP/1 and HTTP/2 flows. Note that we leverage datasets

38

A
cc

ur
ac

y
(%

)

0

25

50

75

100

04-2021 05-2021 06-2021

HTTP/1 with clear ALPN HTTP/1 with obfuscated ALPN
HTTP/2 with clear ALPN HTTP/2 with obfuscated ALPN

Figure 4.10: UW-H performance with ALPN obfuscation

with similar sizes as before and present average accuracy across multiple experiments. As
shown in Figure 4.10, the ALPN field has an impact on classification performance, with
lower performance when it is obfuscated. However, the performance degradation is only
around 1%-2% in accuracy. For example, on the 04-2021 dataset, the model achieves 83.2%
and 81.3% accuracy on HTTP/1 with clear ALPN and obfuscated ALPN, respectively.
For HTTP/2, the accuracy is 83.25% versus 82.8%. Hence, a clear ALPN field is not the
primary reason behind the model’s performance gap between HTTP/1 and HTTP/2 flows
with known ALPN, and other flows with Missing ALPN.

There are more protocols over TLS than HTTP/1 and HTTP/2 (e.g., Apple push-
notification), and new and updated web protocols are likely to emerge over time. However,
HTTP/1 and HTTP/2 are well established standard web protocols, and it is plausible
that the model’s performance over HTTP/1 and HTTP/2 protocols will remain rather
consistent across different datasets in comparison to the unknown protocols. The results in
Figure 4.9 support this claim with similar model performance for HTTP/1 and HTTP/2
web protocols. These results can be attributed to the existence of more information in
flows that contain web traffic (e.g., HTTP/1 and HTTP/2) compared to other protocols
(e.g., Apple push-notification). Therefore, web-related flows are easier to classify for the
UW-H model.

Another hypothesis is that due to the negligible changes of the established protocols

39

Table 4.8: UW-H performance on datasets merged based on the ALPN filter

ALPN HTTP/1 or HTTP/2 Missing

Accuracy (%) 95.2 83.0

over time, training the model on all historical HTTP/1 and HTTP/2 improves the model’s
accuracy, while training it on all unknown flows confuses the model despite the large
number of samples in the dataset. To test this hypothesis, we merge all HTTP/1 and
HTTP/2 flows of all datasets in one dataset, and all unknown flows of all datasets in
another dataset. Table 4.8 illustrates the accuracy of the UW-H model on the HTTP/1
and HTTP/2 flows of all the datasets versus the merged unknown portion of all datasets.
We see that the model shows an accuracy of 95.2% on the first dataset, compared to an
accuracy of 83.04% on the second one. We also notice that the accuracy on the unknown
portion is low, despite the large number of flows. Therefore, it seems that training the
model on a merged dataset of HTTP/1 and HTTP/2 flows helps its performance, whereas
training the model on more unknown flows seems to confuse the model, possibly because
of the more varied patterns and protocols in that portion of the dataset.

40

Chapter 5

Manual Architecture Adaptation

In this chapter, we examine the performance of the UW model on the 2021 datasets.
Observing a drop in model accuracy, we suggest updating the model architecture that
improves accuracy on several datasets, thus making it more robust to data drift.

5.1 Ensuring model convergence

We start by training and testing the UW model and the decomposed models on datasets
from 2021. Again, we skip the UW-A as its performance is negligible compared to the
other models. The results of these experiments for service-level classification are shown in
Table 5.1.

Although suffering a drop from the baseline 2019 dataset, the accuracy of the UW
model is reasonable at 83.4% and 87.1% on 05-2021 and 06-2021 datasets, respectively.

Table 5.1: Model performance across the 2021 datasets in service-level classification

Model
Accuracy (%)

04-2021 05-2021 06-2021

UW 40.0 83.4 87.1

UW-F 11.0 81.0 85.9

UW-H 84.3 79.0 85.8

41

Table 5.2: Model performance across the 2021 datasets in application-level classification

Model
Accuracy (%)

04-2021 05-2021 06-2021

UW 85.2 79.6 88.9

UW-F 81.2 84.2 86.4

UW-H 85.9 74.1 86.5

However, the model has a rather peculiar accuracy of only 40% on the 04-2021 dataset,
which is primarily attributed to UW-F, showing a mere accuracy of 11% (i.e., worse than
a random classifier). On the other hand, the UW-H performs reasonably on the same
dataset.

Before we delve into the reasons for the under performance of UW-F, we note that
the lower performance of the model on 2021 datasets compared to 07-2019 dataset can
be attributed to dataset size. 07-2019 dataset had 119K labeled flows, whereas 04-2021,
05-2021 and 06-2021 datasets have 42K, 17K and 51K flows, respectively. Therefore, given
a much larger amount of training data, we expect the model to achieve a higher accuracy
on 07-2019 dataset regardless of the architecture. However, the dismal accuracy on 04-2021
dataset cannot be simply explained by dataset size, and has to do with the model itself.

The results for the same experiment in application-level classification are summarized
in Table 5.2. The overall classification results are better than for service-level classification,
which is inline with the previous experiments (i.e., 2019 dataset). Furthermore, the same
trends as service-level classification more or less hold in application-level classification.
UW-H model performs relative to the dataset sizes, i.e., it achieves the highest and lowest
accuracies on the biggest and smallest datasets, respectively. Moreover, the trends for
UW-F are similar as for service-level classification but with more promising results. With
application-level classification, there is no performance peculiarity for UW-F on the 04-
2021 dataset. Nevertheless, UW-F performs the worst (i.e., 81.2% accuracy) on the 04-2021
dataset, albiet much better than the accuracy in service-level classification (i.e., 11%).

To troubleshoot the UW-F model performance on 04-2021 dataset, we examined the
confusion matrix and accuracy of the model in the training phase, epoch by epoch. We
found that the model does not converge, and the same class is predicted for all samples in
each epoch. We tried two alterations to the model to alleviate this problem: (i) Learning
Rate reduction—The learning rate for the optimizer was reduced from the default value
of 0.001 [4] to 0.0001 (i.e., 10x reduction); (ii) Masking Layer addition—A masking layer

42

Table 5.3: UW-F adaptation best practices for service-level classification

Dataset Adaptation Training flows Accuracy (%)

04-2021
Dropout + Learning Rate 33,900 89.4

Dropout + Learning Rate + Masking Layer 33,900 90.1

05-2021
Dropout 14,024 87.3

BLSTM + Dropout 14,024 88.2

Table 5.4: UW-F adaptation best practices for application-level classification

Dataset Adaptation Training flows Accuracy (%)

04-2021
Dropout + Learning Rate 21,040 88.6

Dropout + Learning Rate + Masking Layer 21,040 90.2
BLSTM + Dropout + Learning Rate + Masking Layer 21,040 90.1

05-2021
Dropout 8,861 85.8

BLSTM + Dropout 8,861 85.3
CONV1D + Learning Rate + Masking Layer 8,861 85.9

was added at the beginning of the UW-F. The masking layer acts as a de-noising layer to
filter out time-steps that do not have any information. Therefore, these time-steps can be
skipped in the LSTM layer.

The above alterations boosted the accuracy of the UW-F model on the 04-2021 dataset
from 11% to 88.3% in service-level classification. A smaller learning rate makes it more
likely for the model to eventually converge to global optima, although it increases training
time. A masking layer reduces data noise, while adding to the complexity of the model.
Despite the downsides, evidently, in the case of the 04-2021 dataset, these alterations are
necessary for the model to achieve reasonable performance in service-level classification.

5.2 Adjusting to dataset size

Given that dataset size can contribute to the model’s drop is accuracy on the 2021 datasets,
we suggest a number of best practices in designing a model architecture for smaller datasets,
based on a number of experiments carried out on the two smallest datasets, i.e., 04-2021
and 05-2021.

43

Dropout rate reduction

The stacked LSTM in the UW-F model is followed by a dropout layer. The dropout layer
randomly sets the units of LSTM output to zero based on the dropout rate, which is often
used to avoid model overfitting. We found that in a smaller dataset, a high dropout rate
does not help, as it sets units of valuable information to zero, thus leaving the final layers
of the model with little information to work with. By reducing the dropout rate from 0.5
(i.e., default in [4]) to 0.3, we saw a boost in model accuracy on both 04-2021 and 05-2021
datasets, the two smallest datasets, as shown in Table 5.3 for service-level classification.
With the same adaptation, a performance boost is also noticeable in application-level
classification for the 04-2021 and 05-2021 datasets, as depicted in Table 5.4.

UW-F simplification

The stacked LSTM layer proposed in [4] is a complex UW-F model for flow time-series input
with too many parameters for a small dataset. By reducing the number of LSTM layers
by one, thus turning the stacked LSTM to a bidirectional LSTM (BLSTM), we were able
to obtain better results on datasets with less than 20K flows, as shown for 05-2021 dataset
in Table 5.3. We further found that on datasets smaller than 10K flows, even reducing the
stacked LSTM layer to a 1D Convolution (CONV1D) layer helps UW-F performance in
achieving comparable or better results with a lower number of parameters (i.e., a lighter
and faster to train model), contrary to what was shown in [4] for large datasets.

The results for application-level classification with similar adaptations are shown in Ta-
ble 5.4. For application-level classification the reduction of stacked LSTM layers to BLSTM
results in a slightly lower model accuracy on the 05-2021 dataset (i.e., 85.3%). However,
since this dataset has smaller than 10K flows, we leverage CONV1D layers masking layer
addition and learning rate reduction). Evidently, with these adaptions, the UW-F model
achieves the best performance in application-level classification with an accuracy of 85.9%.

Best practices

Table 5.5 summarizes our recommended best practices based on a given dataset’s size. We
suggest that when leveraging the UW model, UW-F should be adapted to the training
dataset’s size. When there are fewer than 50K training flows, reducing the dropout layer
value (e.g., 0.3) is sufficient. If the number of samples are fewer than 20K, a simpler
architecture such as BLSTM is preferred over stacked LTSM. In the UW model architecture

44

Table 5.5: UW-F architecture adaptation rules

Number of flows Adaptation

<= 50K Dropout reduction

<= 20K BLSTM

<= 10K 1D Convolutions [4]

shown in Figure 3.1a, changing the stacked LSTM to a BLSTM would simply remove the
last LSTM layer in the stack, as each LSTM works in reverse direction to the previous
one. As an example, since 04-2021 dataset has 21K training flows in application-level
classification, we leveraged the BLSTM architecture instead of stacked LSTM layers. This
resulted in a similar accuracy of 90.1% which is only 0.1% lower than the accuracy of the
more complex stacked LSTM architecture, as shown in Table 5.4. Finally, if the dataset
has fewer than 10K flows, using simple 1D Convolutions (i.e., depicted in [4] appendix) is
adequate and preferable over the LSTM layer.

5.3 QUIC results

We also evaluate the performance of the UW model on real-world QUIC data, before
and after employing the adaptation best practices proposed in the previous subsection.
We show that these guidelines indeed improve model accuracy on a dataset consisting
of QUIC flows, thus showing that our adaptation best practices generalize to encrypted
protocols other than TLS.

UW-F was shown to achieve over 99% accuracy on a synthetic QUIC dataset [4]. How-
ever, on our real-world QUIC data, i.e., QUIC-05-2021, the model achieved 86.7% and
83% accuracy in service-level and application-level classification, respectively. Therefore,
we chose the following architectural adaptations for the model: (i) decreasing the initial
learning rate, (ii) adding a masking layer, and (iii) reducing the dropout rate to 0.4. The
performance of UW-F before and after adaptions for service-level and application-level
classification are shown in Figure 5.2 and Figure 5.3, respectively.

The model achieves an accuracy of 86.7% before adaptation, whereas the adapted model
achieves 95.6% for service-level classification. Furthermore, the application-level classifica-
tion accuracy is boosted from 83% to 91%. A similar trend is visible in other performance
metrics, such as weighted average F1-score, precision, and recall, where the adapted model

45

Figure 5.1: Confusion matrix for UW-F (up) vs. its adapted version (down) on the QUIC-
05-2021 dataset in service-level classification

46

(%
)

0

25

50

75

100

Accuracy Weighted Avg.
F1-score

Weighted Avg.
Precision

Weighted Avg.
Recall

UW-F model Adapted UW-F model

Figure 5.2: UW-F performance with and without adaptations on the QUIC-05-2021 dataset
in service-level classification

(%
)

0

25

50

75

100

Accuracy Weighted Avg.
F1-score

Weighted Avg.
Precision

Weighted Avg.
Recall

UW-F model Adapted UW-F model

Figure 5.3: UW-F performance with and without adaptations on the QUIC-05-2021 dataset
in application-level classification

47

outperforms the original UW-F model by 3% to 9% in service-level classification and by
3.8% to 8% in application-level classification. The precision for both models is quite high,
however, the main advantage of the adapted model is correctly predicting a larger portion
of flows for each class, which results in a 9% and 8% increase in recall for service-level and
application-level classification, respectively. Figure 5.1 and Figure 5.4 show the confusion
matrices of UW-F and its adapted version for service-level and application-level classifica-
tion, respectively. The recall increase is visible in the confusion matrices, where the adapted
model achieves a higher accuracy per class in service-level classification. Furthermore, for
application-level classification the adapted UW-F model receives significantly higher accu-
racy across 75% of the application classes, especially for classes with the lowest accuracy
without adaptation. Therefore, the adaptations allow the model to achieve a higher classi-
fication accuracy across classes. The most significant increase is for the resources class with
10% increase in accuracy for service-level classification. Similarly, the adaptation results in
a 19% increase in accuracy for the resourcePbstck class in application-level classification.

For the ease of use, we created a software API for the full pipeline of data pre-processing
to adaptation of models with just a few configurations and lines of code in Python. The
software API is described in Appendix .4.

48

Figure 5.4: Confusion matrix of the UW-F (up) vs. its adapted version (down) on the
QUIC-05-2021 dataset with application level-classification

49

Chapter 6

Methodology for Automatic
Approach

In this Chapter, we discuss the search spaces designed for each feature type. We also briefly
explain the state-of-the-art Encrypted Traffic Classification models used in this work to
showcase the benefits of AutoML4ETC over the existing manual approaches.

6.1 Search Spaces

We design search spaces for: (i) flow statistics, (ii) packet raw bytes, and (iii) flow time-
series. All search spaces should be connected to a Softmax layer to produce the final
classification. With respect to the terminology used in Tables 6.1, 6.2, and 6.3, Choice
corresponds to the search algorithm choosing a value from a range of values for the pa-
rameter; Optional means that the layer is optional; Permutation only organizes the best
permutation of values; Reduce factor defines the sequential amount of reduction in dense
units.

(i) Flow Statistics Search Spaces

The state-of-the-art ETC models typically resort to a simple architecture for consuming
flow statistics (e.g., [4, 30]). Therefore, for the flow statistics search space, referred to as
MLP, we use a sequence of dense layers and a permutation of dropout, batch norm, and
activation layers between every two dense layers, as depicted in Figure 6.1. We repeat this

50

Table 6.1: MLP search space parameters, values, and types

Parameter Dense units Number of Dense layers Reduce factor Activation Batch norm Dropout -

Values [100, 200, 400] [3, 4, 5] [1, 0.7] [relu, elu] Boolean (0.3,0.5) [dropout, batch norm, activation]
Type Choice Choice Choice Choice Optional Real number Permutation

Table 6.2: CNN search space parameters, values, and types

Parameter CONV Block Repeat Kernel size Filter size Dropout - Pooling layer Activation Batch norm

Values [2,3,4,5,6] [(1,1), (2,2)] [32, 64] (0,.05) [dropout, activation, batch norm] [MaxPool, AveragePool] [relu, elu] Boolean
Type Choice Choice Choice Real Permutation Choice Choice Optional

Dense Block several times, which is specified by the Dense Block Repeat parameter. These
blocks are connected and the number of units in the dense layer is reduced in the next
block by the Reduce factor parameter. The parameters of the flow statistics search space
are summarized in Table 6.1.

(ii) Packet Raw Bytes Search Spaces

For packet raw bytes, we implement two different search spaces: (i) CNN + MLP, and (ii)
AutoML4ETC.

CNN + MLP

The CNN + MLP search spaces are inspired by the ETC state-of-the-art [14, 4, 42, 43].
The overall structure for the CNN (i.e., 2-D CNNs or 1-D CNNs) search space is depicted in
Figure 6.2. Each CONV Pool Block is a sequence of one or more CONV Blocks connected
to a pooling layer. The number of CONV Pool Blocks in the sequence is determined
by the CONV Pool Block Repeat parameter. Moreover, the inner CONV Block is also
sequentially repeated CONV Block Repeat times, where the two repeat parameters are
independent of one another. Additionally, for the first two CONV Pool Blocks, we set
the CONV Block Repeat to two repetitions. Thereafter, the search algorithm can choose
CONV Block Repeat from a range of 3 to 5 which is a typical number of convolutional

Table 6.3: AutoML4ETC flow time-series parallel SLSTM search space parameters

Parameter Initial dense units Number of LSTM layers LSTM Direction LSTM unit size Activation Dropout

Values [256, 512] [1, 2] Boolean [128, 256, 512] [relu, elu] (0.3,.05)
Type Choice Choice Mandatory Choice Choice Real

51

Batch Norm

Dense Activation

Dropout

Permutation

Dense
Block Dense Block

Repeat

Figure 6.1: MLP search space overview

Batch Norm

CNN Activation

Dropout

Permutation

CONV
Block

CONV Pool Block
CONV Pool Block

Repeat
CONV Block

Repeat

Pooling

Figure 6.2: CNN search space overview

layers in ETC [4, 42]. Also, the number of filters is cut in half in the following repetitions
of CONV Block, i.e., after the first two CONV Pool Blocks. The parameters for this search
space are summarized in Table 6.2. The CNN search space is sequentially connected to
the MLP search space to construct the CNN + MLP search space.

AutoML4ETC

The core of AutoML4ETC search space is derived from the ENAS micro search space,
which offers maximum flexibility and parameter efficiency combined with CNN + MLP
search space. More specifically, the search algorithm only generates a single Normal cell
and a single Reduction cell. The incentive for this approach is to learn simpler and more
generalizable models instead of complex sequential convolutional architectures, as depicted
in Figure 6.5.

Each cell contains four nodes. Figure 6.3 shows an example of the inside of a cell with
four nodes. For each node, the search algorithm makes the following decisions:

1. Choose Input 1 and Input 2 from the output of the previous nodes. If it is the first
node, choose from the inputs of the cell.

2. Choose the operation for Input 1 and Input 2 from: (i) identity, (ii) separable con-
volution hyper-layer with kernel size 3 or 5, and (iii) average or max pooling with
kernel size 3.

3. Add the output of the two operations and return this as the output of the node.

A separable convolution hyper-layer is based on [64], consisting of sequentially connected
layers of Relu, separable convolution, batch normalization, and 0.4 dropout rate. We find
that forcing a high-rate dropout layer during search results in a more generalizable model

52

Input 1 Input 2

Operation Operation

+

Node 1

Previous cell
output

Previous
Previous cell

output

Input 1 Input 2

Operation Operation

+

Node 3

Input 1 Input 2

Operation Operation

+

Node 2

Input 1 Input 2

Operation Operation

+

Node 4

Cell

Figure 6.3: Example cell components

53

Relu Average Pooling Convolution

Zero Pad Cropping

Input

Average Pooling Convolution

Concat OutputBatch Norm

Figure 6.4: Factorized Reduction hyper-layer modules

with less overfitting over the training data. Furthermore, similar to [64], we also use two
sequentially connected separable convolution hyper-layers every time the search algorithm
chooses this operation.

As depicted in Figure 6.5, the input goes through a hyper-layer before entering a cell.
This hyper-layer is either a Filter Alignment or a Factorized Reduction layer depending on
the cell type.

• Filter Alignment hyper-layer : A Normal Cell is preceded by a Filter Alignment layer
which consists of sequential Relu, convolution, and batch normalization. This layer
ensures the existence of the number of filters that need to be at the beginning (i.e., 64
initial filters).

• Factorized Reduction Hyper-layer: A Reduction Cell is preceded by a Factorized
Reduction layer with a structure depicted in Figure 6.4. This layer simply processes
and reduces the input size to half.

• Loose ends : In some cases, the search algorithm may not choose the outputs of all
the nodes inside a cell to be used by other nodes. We call these unused outputs Loose
ends. Since Loose ends may also contain useful information, they are fed to the add
operation at the output of the last node of the cell.

(iii) Flow Time-series Search Spaces

For the flow time-series we implement two different search spaces: (i) AutoML4ETC, and
(ii) SLSTM + MLP.

54

CNN Batch Norm + Activation Global Average
Pooling

Normal Cell

Reduction Cell

Filter
Alignment

Layer

Factorized
Reduction

Layer

Figure 6.5: AutoML4ETC for the packet raw bytes
search space

LSTM LSTM

LSTM LSTM

+

1 or 2 layers

LSTM

Masking
Layer

Dropout

Dense Activation Batch
Norm

Figure 6.6: AutoML4ETC for the flow time-series search
space

AutoML4ETC

Sequential LSTM layers [4] have shown to be the most effective neural architecture for
time-series information in ETC. However, the core idea behind AutoML4ETC is to use the
benefits of ResNet-inspired architectures combined with sequential LSTM layers. Specif-
ically, instead of one sequential LSTM layer (i.e., SLSTM), the outputs of two parallel
SLSTM layers are added to one another. This method enables the neural network to
extract different useful time-series information in each parallel SLSTM layer. Figure 6.6
depicts this search space. The initial processing layers consist of a Masking layer followed
by dense, activation, and batch normalization layers. The Masking layer simply skips the
time-steps whose value is meaningless, e.g., zero-padded, to denoise the input. The output
of the initial processing layers is fed to a parallel SLSTM structure. The search algorithm
chooses the number of LSTM layers, directions, and units in each branch. The outputs of
the two parallel SLSTM structures are added to one another and passed to a final SLSTM
layer. Finally, there is a dropout layer to reduce overfitting. This search space is followed
by the MLP search space and a final softmax layer to produce classification results. The
parameters of this search space are summarized in Table 6.3.

55

SLSTM + MLP

The SLSTM + MLP search space is similar to AutoML4ETC, except it contains sequential
SLSTM layers instead of parallel SLSTM addition layers. This approach is based on the
state-of-the-art ETC methods for time-series information (e.g., [4, 32]). The motivation
for having this search space is to show the advantage of a parallel over a sequential LSTM
structure.

56

Chapter 7

Evaluation of the Automatic
Approach

In this chapter, we start by describing the datasets and the data pre-processing pipeline in
Section 7.1. The software and hardware stack are described in Appendix .5. We evaluate
AutoML4ETC ’s packet raw bytes and flow time-series search spaces in Section 7.2 and
Section 7.3, respectively; we compare them against state-of-the-art search spaces, study
the performance of different search algorithms on the search spaces, investigate child-model
performance estimation through partial training, and compare AutoML4ETC -generated
architectures against state-of-the-art models using different datasets. In Section 7.4, we
experiment with combining and ensembling AutoML4ETC -generated models within and
across search spaces. Finally we provide insights in Section 7.5 about traffic measurements
for TLS and QUIC real-word datasets. All of the reported metrics here are validated on
the testing part of each dataset.

7.1 Datasets

Our approach is evaluated on five real-world datasets of traffic traces captured on a major
ISP network, as well as a public synthetically-generated and pre-processed QUIC dataset.
Three of the real-world datasets consist of TLS traffic and the other two consist of QUIC
traffic. The real-world datasets were created by pre-processing and labeling the collected
traffic traces and named after their year and month of capture. A brief description of the
datasets is available in Table 7.1. In each dataset, we reserve 80% of the labeled data
samples for training and 20% for validation.

57

Pcap
Extract SNIs

label TLS flows with
look-up table

mapping SNIs to
Labels

label adjacent or
same-session flows

with main flow's label

Filter TLS/QUIC flows

Only for TLS flows

TLS/QUIC flows

TLS/QUIC flows

Vectorization

Handshake
Raw bytes

Flow
statistics

Flow time-
series

Figure 7.1: Overview of the pre-processing procedure for real-world datasets

The overall procedure for pre-processing and labeling raw packet captures (i.e., PCAP
files) into ML-usable datasets is shown in Figure 7.1. As the first pre-processing step,
packet payloads beyond the TLS or QUIC header were removed and the IP addresses
masked to preserve user privacy. The resulting pcap files were broken into flows, where
each flow consists of packets close in time that share source IP, destination IP, source port,
destination port, and protocol. From each TLS flow, three types of data were extracted:

• Flow time-series is a sequence of packet inter-arrival times and signed packet sizes,
where packet direction determines the sign.

• TLS raw bytes include headers of the first three TLS handshake packets, in which
the TLS Server Name Indication (SNI) and TLS cipher information are obfuscated.

• Flow statistics are extracted using CICFlow-meter [30] on the datasets during the
pre-processing step. These statistics include standard deviation, mean, minimum,
maximum of packet sizes, inter-arrival times, and TCP flags, amongst others.

We only use Flow time-series and Flow statistics for QUIC datasets as it has been
shown in [4, 43] that they are effective for ETC.

58

Table 7.1: Dataset properties

Protocol Type Dataset name
Percentage of

labeled flows (%)
Number of labeled
flows (thousand)

Dataset classes

TLS
Real-world

July 2019 16 119.8 chat, download, games,
mail, search, social,

streaming, Web
April 2021 15 42.3
May 2021 41 51.2

QUIC
QUIC - April 2021 72 37.5 web, social, streaming,

ecommerce, resources, gamesQUIC - May 2021 68 26.0

Synthetic QUIC - UCDavis [43] 100 3.63
Google Docs, Google Drive,

Google Music, Google Search, YouTube

The real-world datasets were labeled based on the SNI field in each flow, which is
one reason why we obfuscate the SNI value in preprocessing. Not all flows contain a
readable SNI value. Moreover, the utilization of clear SNI is likely to decline in favor of
the proposed Encrypted SNI (ESNI) extension [41]. Hence, we need traffic classifiers that
learn the intrinsic characteristics of the flows rather than a trivial mapping from SNIs to
classes.

We use an approximate labeling function to extract labels from SNIs. We developed a
look-up table by visiting top websites in each service class and extracting regular expres-
sions from their domain names that are matched with the SNI value to map each SNI to a
label. Because not all flows contain an SNI value, we also label adjacent flows (i.e., flows
with the same TLS session-id or close-enough starting time) based on the main flow that
has an SNI to increase the number of labeled flows.

The labeling module was initially designed based on the TLS datasets and then adapted
to the QUIC datasets. We observed from the SNI s in the QUIC dataset, that some of
the TLS dataset classes did not have any instances in the QUIC datasets. However, some
other classes such as resources, ecommerce appeared that did not fit in the TLS categories.

Resources class consists of flows that contain materials for the page content, such as
JS APIs, that are often offered by some major providers (e.g., Cloudflare). Additionally,
ecommerce is mostly referred to the marketing and commercial-related services.

There are two main reasons for having slightly different classes for QUIC and TLS:
(i) QUIC is still a relatively new protocol and is not yet as widely adopted as TLS, and
(ii) QUIC offers a higher connection speed than HTTP over TLS; therefore, many of the
less time-sensitive applications (e.g., mail, download services) switched to QUIC. On the
other hand, more time-sensitive services such as resources have adopted QUIC which has
an impact on the loading time of websites.

59

7.2 Packet Raw Bytes-oriented NAS

In this section, we focus on evaluating our proposed packet raw bytes-oriented neural ar-
chitecture search method. We leverage various TLS datasets for this part as it has been
shown that TLS handshake raw bytes can achieve high classification accuracy [42, 4].

Our method has three major components: (i) search space, (ii) search algorithm, and,
(iii) the training strategy for child models. We start by evaluating and discussing our
proposed packet raw bytes-oriented search space. Then, we evaluate and compare different
state-of-the-art neural architecture search algorithms on our search space. We also evaluate
and compare different child model training strategies. For all of the above experiments,
we use the May 2021 TLS dataset which is the smallest of our TLS datasets. Finally,
we compare our AutoML4ETC -generated architecture to the state-of-the-art ETC models
across all the real-world TLS datasets to show the effectiveness of our approach.

Evaluation of the search space

In this section, we focus on the search space design for the packet raw bytes features. The
end goal for a packet raw bytes-based traffic classifier is to achieve high performance in
terms of classification accuracy, preferably with low complexity in terms of the number
of parameters of the neural architecture for faster predictions. These two characteristics
combined are desirable for the early classification of TLS flows [4, 42].

We use the same baseline search algorithm, i.e., Random Search (RS), across all the
studied neural architecture search spaces as the focus here is on the impact of the search
space on the performance of the best possible child model. Table 7.2 summarizes our
findings on the May 2021 TLS dataset when the child model is trained for 40 epochs.
We will experiment with different numbers of epochs and other datasets in the following
sections.

The best child model generated from the CNN-2D + MLP search space after 200
trials achieves a 77.55% accuracy with almost 22 million parameters. This search-space
represents a naive approach towards using NAS for ETC where the input is transformed
into an image format and NAS is applied the same way as in image classification (i.e., [49]
with NAS). However, turning raw bytes into 1-D vectors and using 1-D CNNs can boost
the performance of the model. This is because images have 2 dimensions (i.e., pixels) and
both dimensions of them have a meaning. However, raw bytes are not actual images to
have a meaningful 2 dimensional representation. Evidently, on the CNN-1D + MLP search

60

Table 7.2: Packet raw bytes search spaces comparison

Search
Space

Search
Algorithm

Trials
Accuracy

(%)
Parameters
(Thousand)

AutoML4ETC RS 100 82.86 111.5
CNN-2D + MLP RS 200 77.55 21,940.5
CNN-1D + MLP RS 200 78.75 12,116.1

ENAS micro RS 200 80.4 120.6

space, it is possible to obtain a child model that achieves 78.75% accuracy with almost
half the number of parameters after 200 trials.

RS on the ENAS micro search space can find a much lighter model (i.e., 120.6 thousand
parameters) that achieves higher accuracy (i.e., 80.4%), after 200 trials as well. However,
with the AutoML4ETC search space, that combines ideas from the above spaces, it is
possible to generate a classifier that is not only more accurate (i.e., 82.86% classification
accuracy) but also lighter (i.e., 111.5 thousand parameters) than any of the above after
only half the number of trials (i.e., 100 trials). Hence, our AutoML4ETC search space
outperforms state-of-the-art search spaces both in terms of accuracy and complexity of the
best child model on this dataset.

Comparison of Search Algorithms

In this section, we explore different neural architecture search algorithms and study their
impact on the performance and complexity of the best child model. More precisely, we
experiment with RL [38], MCTS [58], and EA [39], and compare them against the baseline
RS algorithm. These search algorithms (excluding RS) were previously developed and
evaluated based on the NASNet or ENAS Micro search space from which we derived our
packet raw bytes search space. Therefore, comparing them against each other is particularly
relevant here.

For a fair comparison, we fix the other parameters of our AutoML4ETC method as
follows. We set the number of child model training epochs to 10 for faster training and
set the total number of trials to 100. We will discuss the effectiveness of the 10 epochs of
child model training in the next section.

We compare the mean accuracy of the top-N child models found by each of the search
algorithms for N=1, 5, 10, 20, and 30. This is because we are not only interested in
comparing the performance of the global best child models, but also we want to compare the
overall ability of each search algorithm to find reasonably good (i.e., reasonably accurate)
child models throughout the search process.

61

Performance evaluation results are depicted in Figure 7.2. Several interesting observa-
tions can be made here. First, concerning the global best child models (i.e., top-1 child
models), it is evident that all of the search algorithms lead to equally well-performing best
child models; the standard deviation of the accuracy distribution across the best child
models is only 0.25%. This result highlights in particular the power of our search space,
where the simplest search algorithm (i.e., RS) can perform as well as much more complex
search algorithms at the cost of a more parameters (i.e., 206.53, 231.62, 242.12, and 258.24
thousand for the RL, MCTS, EA, and RS, respectively).

Indeed, as pointed out earlier, many of these algorithms were previously validated in
a setting that is not available to any ordinary user, in terms of resources (more than
400 GPUs [39, 63, 64]) and time complexity (e.g., up to 50,000 trials [64], 310 epochs
for architecture search [38], etc.). This may suggest that in a more prevalent cost-effective
setting, these algorithms may not converge to their best results. From another perspective,
even with massive resources, RS remains competitive, achieving comparable results as the
other more complex search algorithms. In [58], the authors compared a variation of EA
and MCTS to RS and the spectrum of the measured accuracy ranges between 94.1 and
94.2%. The same applies to [63, 38, 39] showing that the performance of RS is within 1%
of the performance of the other algorithms.

Another interesting observation is that as N increases, the gap between the mean ac-
curacies of the top-N child models grows. While the MCTS algorithm is the top performer
for N=5,..,30, RL scores the worst performance. Moreover, in this same range, the EA
and RS algorithms perform almost identically and score in between MCTS and RL. This
suggests that MCTS can build more top-performing models with a few trials and child
model training epochs.

All of these findings and observations suggest that designing a good search space is
more important than the search algorithm itself when using fewer trials and epochs for
child model training. A good search space is when most of the architecture combinations
result in reasonably good accuracy, and this applies to our search space. Therefore, in
our next experiments, for the sake of simplicity and efficiency, to use RS as our search
algorithm. However, the search spaces in AutoML4ETC can be combined with any other
search algorithm to realize any other desiderata.

Evaluation of Child Model Training Strategies

The time complexity of our NAS approach is the total time spent in each of the following
steps: (i) search algorithm, (ii) child architecture composition, and (iii) training of child

62

A
cc

ur
ac

y
(%

)

65

70

75

80

Top-1 Mean Top-5 Mean Top-10 Mean Top-20 Mean Top-30 Mean

MCTS RS EA RL

Figure 7.2: Comparison of average accuracy of top-N child models using different search
algorithms

models. In our experiments the first and second steps take 0.1 seconds long on average using
the RS algorithm. This means that the most time-consuming step of our NAS approach is
the third step and the other parts have a negligible performance impact. Every time a child
architecture is composed, it is trained over several epochs and then tested to measure its
performance. Therefore, our goal is to reduce the child model training time (i.e., number
of epochs) as much as possible without compromising the performance of the NAS.

In this section, we investigate the impact of different child model training strategies,
i.e., full training versus partial training. Full training implies training child models on as
many epochs as needed to generate the best possible architecture. With partial training,
we train child models on a smaller number of epochs.

For this, we start by searching for an upper bound on the number of training epochs
needed to find the best child model. To find this number, we conduct a set of experiments
where we increase the number of training epochs starting from 10 and validate every 10
epochs on the testing dataset. Figure 7.3 is the mean validation accuracy of the top-10
child models for a varying number of training epochs. We can see that the average accuracy
of the top-10 child models (i.e., black line curve) flattens beyond 40 epochs. Therefore, 40
epochs can be set as our upper bound for the full training of child models.

63

Table 7.3: Partial training of child models (10 epochs) vs full training (40 epochs) during
the searching time in the packet raw bytes search space

Child model
training epochs

Child model
accuracy (%)

Full train
accuracy (%)

Total
parameters

10 epochs 77.61 79.72 263,368

40 epochs 82.86 - 111,560

From another perspective, if we partially train the child models over 10 epochs only,
we can save approximately 75% of the total NAS time. With this method we just use 10
epochs for training child models, then extract the top child model and train it for extra
30 epochs. However, the best child model resulting from partial training is an estimate of
the global best child model.

Table 7.3 further shows the trade-off between the accuracy and complexity of the top
child model. We can see that with a 10-epoch partial training strategy, the top child model
achieves 79.71% accuracy. However, with the full training strategy, i.e., training over 40
epochs, the top child model can achieve a higher accuracy of 82.86%. Additionally, the
number of parameters of the top child model resulting from the full training approach is
less than half of its counterpart. Therefore, the trade-off can be diluted down to a loss
of ∼3% in accuracy with twice as many parameters for a ∼75% lower time complexity
(i.e., search time).

Since the AutoML4ETC for packet raw bytes models are lighter in general (i.e., number
of parameters) and the difference in accuracy is noticeable, a 40 epoch full training strategy
seems to be a better option over this particular search space.

AutoML4ETC versus State-of-the-art

In the previous sections, we concluded that using RS as the search algorithm and 40
epochs for child model training would be our choices for the packet raw bytes search space.
In this section, we compare the AutoML4ETC-generated model to other state-of-the-art
architectures.

The first state-of-the-art model is UC Davis CNN [42] and the second is UW-H [4].
We use the same batching size for all models and also use the [4] input features (i.e., TLS
handshake header) for our AutoML4ETC method.

Table 7.4 presents the performance of the AutoML4ETC and other state-of-the-art
ETC models. It is evident that the AutoML4ETC approach outperforms the state-of-the-

64

art models across all the datasets. In fact, the AutoML4ETC -generated model is ∼1 to
5% more accurate than state-of-the-art. Moreover, it is simpler and lighter, with over 50
times fewer parameters than state-of-the-art models on average.

Another insight is that the number of parameters of the AutoML4ETC model decreases
as the dataset size decreases. This means that AutoML4ETC detects that a simpler model
(in terms of parameters) is more appropriate for smaller datasets to achieve better results.
The reason would be that with a complex model and small dataset, the model would not
have enough data to learn the best parameter values.

To have a better understanding of the effect of the number of parameters, we report the
computing power of each of these models across different datasets in Table 7.5. The number
of FLOPS (in millions) for AutoML4ETC models is 1.46 to 2.53 times less than the state-
of-the-art models. Specifically, the range of FLOPS for AutoML4ETC models is 263.01 to
389.04 whereas, the range for the state-of-the-art models is 568.26 to 666.1. Additionally,
we compare the two major operations (in terms of computing) in these neural architectures,
which are convolution and matrix multiplication (e.g., dense layers in neural networks).
We can see that the comparison between the total number of FLOPS for the AutoML4ETC
models and state-of-the-art models roughly holds for the convolution operations as well.
However, the matrix multiplication for the AutoML4ETC models are on average 6,815
times less than the state-of-the-art models. We also compared the prediction time of the
AutoML4ETC models and the state-of-the-art models in terms of average milliseconds per
batch. We can see that GPU processing time for the AutoML4ETC models is roughly
half of the state-of-the-art models, which makes them faster in terms of total prediction
time. Additionally, the GPU processing time is almost the same regardless of the dataset
for the AutoML4ETC model as opposed to the state-of-the-art models. The reason is that
the AutoML4ETC tunes the child model’s parameters based on the size and the inherent
characteristics of the dataset, which makes it more stable. For these experiments, we used
a computer with A40 GPU (see Appendix .5). Moreover, the GPU processing time is
averaged across multiple runs.

7.3 Flow Time-series-oriented NAS

In this section, we evaluate the search space and the resulting model generated by Au-
toML4ETC for flow time-series data. We evaluate the search spaces by evaluating the best
model generated when searching each search space by the same search strategy. We also
compare the best models generated when partial versus full training is employed as child
model training strategy.

65

A
cc

ur
ac

y
(%

)

50

60

70

80

90

100

10 epochs 20 epochs 30 epochs 40 epochs 50 epochs

Figure 7.3: Accuracy of top 10 child models with different training epochs; the × mark is
the average for each epoch.

Search Space Evaluation

Contrary to the search space for packet raw bytes, we only use model accuracy to evaluate
the search space for flow time-series data. Flow time-series features summarize each packet
in the flow in two numbers, signed (i.e., +/- for the incoming/outgoing direction) packet
size and inter-arrival time. Therefore, they are not informative if the flow is cut to the first
few packets and fast detection is not an evaluation metric.

Table 7.6 compares the AutoML4ETC flow time-series search spaces by comparing the
accuracies of their best models. To obtain these accuracies, we fixed the number of trials
to 200, the search algorithm to baseline RS, and used partial training as the child model
training strategy (as discussed in the next section). The models are evaluated on the May
2021 dataset.

Partial versus Full training of Child Models

Training the child models in the AutoML4ETC flow time-series search space is compu-
tationally expensive because they are LSTM-based. LSTM-based neural networks are
generally more time-consuming to train than training MLP or CNN-based networks since
they have a significantly higher number of parameters. AutoML4ETC time-series search

66

Table 7.4: AutoML4ETC versus UC Davis CNN [42] and UW-H [4] for the packet raw
bytes search space

Dataset Model
Accuracy

(%)
W Avg.

F-1 score (%)
W Avg.

recall (%)
W Avg.

precision (%)
Total parameters Trainable parameters

July 2019
AutoML4ETC 95.99 95.98 95.99 96 182,984 179,656

UW-H 94.87 94.87 94.87 94.93 7,588,360 7,588,360
UC Davis CNN 90.95 90.92 90.95 90.93 6,507,016 6,507,016

April 2021
AutoML4ETC 86.21 86.89 86.21 89.4 121,544 118,984

UW-H 84.59 86.62 84.59 90.95 - -
UC Davis CNN 82.17 82.3 82.17 82.87 - -

May 2021
AutoML4ETC 82.86 84.03 82.85 88.2 111,560 109,256

UW-H 79 80 79 83.86 - -
UC Davis CNN 79.29 79.38 79.29 79.56 - -

Table 7.5: AutoML4ETC vs state-of-the-art [4, 42] in terms of computing operations for
the packet raw bytes search space

Dataset Model Total params
MATmul FLOPS

(million)
Convolution FLOPS

(million)
Total FLOPS

(million)
ms/batch

(GPU)

July 2019
AutoML4ETC 179,656 0.002 370.71 389.04 8

UW-H 7,588,360 14.71 649.67 666.1 15
UC Davis CNN 6,507,016 12.55 554.24 568.26 14

April 2021
AutoML4ETC 118,984 0.002 282.24 296.53 8

UW-H - - - - 14
UC Davis CNN - - - - 19

May 2021
AutoML4ETC 109,256 0.002 252.75 263.01 7

UW-H - - - - 5
UC Davis CNN - - - - 19

space contains models with parallel Stacked LSTM layers, therefore, the corresponding
models are even more time consuming to train than simple LSTMs.

We found that 30 epochs were enough for the full training of the child models on the
AutoML4ETC flow time-series search space. The number of epochs is lower than that of
the AutoML4ETC packet raw bytes search space because LSTM-based models are more
susceptible to overfitting than CNN or MLP-based models. Aiming for a lower computation
time for the AutoML4ETC time-series search space, we took a partial training strategy in
which the child models are only trained for 10 epochs, and only the best model is trained for
20 more epochs for accuracy evaluation. We call 10-epoch training sessions partial training
and 30-epoch sessions full training. Table 7.7 shows the accuracy of the best model when
all child models are fully trained versus when the partial training strategy was employed.
We see in partial training that the accuracy of the resulting model is only 0.09% less than
in full training while computation time is reduced by threefold.

67

Table 7.6: Flow time-series search spaces comparison

Search
Space

Search
Algorithm

Trials
Child model
Accuracy (%)

Full train
Accuracy (%)

AutoML4ETC RS 200 85.25 88.27

ENAS micro RS 200 77.4 83.02

AutoML4ETC
[packet raw bytes]

RS 200 52.34 64.04

SLSTM + MLP RS 200 82.99 86.9

Table 7.7: Partial training of child models (10 epochs) vs full training (30 epochs) during
the searching time in the flow time-series search space

Child model
training epochs

Child model
accuracy (%)

Full train
accuracy (%)

10 epochs 85.25 88.27

30 epochs 88.36 -

AutoML4ETC versus State-of-the-art

In this section, we compare the performance of the model generated by AutoML4ETC to
the state-of-the-art UW-F model [4] on the flow time-series data. The UW-F model [4]
achieves higher accuracy than other notable works [43, 42]. For these comparisons, we use
200 trials, the child models partial training strategy, and RS as the search algorithm.

Table 7.8 reveals the significantly higher performance of the AutoML4ETC models
compared to the UW-F across all datasets and metrics. Interestingly, over some datasets,
the difference in performance exceeds 10%.

In more detail, the UW-F model does not converge on the April 2021 dataset and
achieves only 0.05% accuracy, whereas the AutoML4ETC achieves 90.52% accuracy. More-
over, on the QUIC May 2021 dataset UW-F results in 44.9% accuracy, whereas the Au-
toML4ETC finds a model with 89.7% accuracy. For the other datasets the gap between
the accuracy of the AutoML4ETC UW-F models is in the range of ∼3-10%. This signifi-
cant difference and the fact that the state-of-the-art model may not even converge on some
datasets, promotes the significance of the AutoML4ETC automatic method.

Lastly, we also compare the performance of the AutoML4ETC to the UW-F model on
the QUIC - UCDavis dataset. It is evident that although the UW-F model achieves high
accuracy of 99.4% with 20 epochs, the AutoML4ETC can achieve an even higher accuracy
of 99.7% with just 10 epochs, which is 0.5% higher than UW-F. Note that, the best model

68

GoogleDoc GoogleDrive GoogleMusic GoogleSearch Youtube
Predicted

GoogleDoc

GoogleDrive

GoogleMusic

GoogleSearch

Youtube

Ac
tu

al

1 0 0 0 0

0 1 0 0 0

0 0.0089 0.98 0 0.0089

0 0 0 1 0

0 0.0092 0 0 0.99

(%
)

80

85

90

95

100

Accuracy
10 epochs

Accuracy
20 epochs

W Avg. F-1
score

W Avg.
recall

W Avg.
precision

AutoML4ETC UW SLSTM

Figure 7.4: Confusion matrix for the AutoML4ETC (left) and the performance metrics for
AutoML4ETC vs UW-F [4] (right) on the QUIC - UCDavis dataset. The dotted border
is only for 10 epochs, whereas the rest is for 20.

Table 7.8: AutoML4ETC vs UW-F [4] for the flow time-series search space

Dataset Model Accuracy (%) W Avg. F-1 score (%) W Avg. recall (%) W Avg. precision (%)

July 2019
AutoML4ETC 89.31 89.35 89.31 89.46

UW-F 86.32 86.4 86.32 86.64

April 2021
AutoML4ETC 90.52 90.54 90.52 90.63

UW-F 0.05 0.005 0.052 0.002

May 2021
AutoML4ETC 88.27 88.31 88.27 88.58

UW-F 81 81.05 81 81.8

QUIC May 2021
AutoML4ETC 96.25 96.3 96.25 96.36

UW-F 86.79 88.84 86.79 93

QUIC April 2021
AutoML4ETC 89.7 91.87 89.7 94.98

UW-F 44.99 58.34 44.99 88.82

and method for QUIC - UCDavis dataset in the original paper [43] can achieve the highest
accuracy of 98%. Detailed results of the performance metrics and the confusion matrix for
this dataset are shown in Figure 7.4.

7.4 Combining AutoML4ETC Models

Across Search Spaces

AutoML4ETC can find the best model for both flow time-series and packet raw bytes. In
this part, we want to combine these two powerful models to increase the overall classifi-
cation accuracy (i.e., build a hybrid model). The intuition behind this is that for some

69

samples and classes where the packet raw bytes are not doing well (i.e., have low accuracy),
the flow time-series may do better and help boost the classification accuracy.

For this, we take the best flow time-series and packet raw bytes models and freeze the
learned weights in the neural network. Each of these models produces a probability per
class in their last layer (i.e., Softmax layer). Therefore, we only need to add a simple
method such as logistic regression to learn how to best combine these probabilities. In
our approach, we use a thin layer of MLP. We concatenate the output probabilities of the
AutoML4ETC models, then add a single layer of MLP with 11 units (i.e., 2/3 number
of inputs) followed by ReLU activation layer. The output is connected to a final softmax
layer and trained for up to 20 epochs with early stopping and patience of 3.

Figure 7.5a depicts the performance difference of the combined AutoML4ETC approach
versus the UW Tripartite model [4]. Both of the models use the same input features for the
flow time-series and packet raw bytes. Additionally, UW Tripartite model also uses flow
statistical features as the third input feature. It is evident that combining with only two
feature sets is outperforming the UW Tripartite model over all of the TLS datasets with
a difference in accuracy ranging from 0.27-49.81%. This significant difference shows the
effectiveness of the simple combining method over the more complicated UW Tripartite
model dense layers [4].

As an example, the combined model of discovered neural architectures by AutoML4ETC
along with its details is shown in Appendix Figure 7.6 for the May 2021 dataset.

Within a Search Space

In ML it is often believed that instead of using the most powerful classifier (i.e., with
the highest accuracy), an ensemble of weaker classifiers can result in higher classification
accuracy. For instance, Random Forest algorithm is an ensemble of Decision Trees (DT).

The same is also applicable to DNNs. However, the ensembling approach is often
overlooked in DNNs since training a single DNN is a more time-consuming task than a
classical ML algorithm, such as DT. With the AutoML4ETC we already have multiple
child models trained on our target dataset.

We use the packet raw bytes models as we already have executed the full training of
child models strategy during searching. Furthermore, we use the last 4 child models that
have shown increasing validation accuracy and combine these models with the previous
section method (i.e., single layer MLP). The use of last 4 increasing instead of top 4 child
models is to simulate the weaker classifier condition of ensembling approaches. Meaning

70

A
ut

oM
L4

E
TC

U
W

 T
rip

ar
tit

e

A
ut

oM
L4

E
TC

U
W

 T
rip

ar
tit

e

A
ut

oM
L4

E
TC

U
W

 T
rip

ar
tit

e

A
cc

ur
ac

y
(%

)

20

40

60

80

100

July 2019April 2021May 2021

(a) Hybrid AutoML4ETC models’ performance
vs the UW Tripartite model [4]

Dataset Ensembled
Accuracy

(%)

W Avg.
F-1 score

(%)

Total
parameters

May 2021
× 82.86 84.03 111,560
✓ 83.85 85.05 505,733

April 2021
× 86.21 86.89 121,544
✓ 86.86 87.53 620,933

(b) Ensembling approach for the AutoML4ETC
models in increasing accuracy order

Figure 7.5: Combining AutoML4ETC models results

that the first three classifiers have lower accuracy than the fourth one which is the best
child model.

Figure 7.5b shows the results for this ensembling approach. It is evident that the
ensembling approach indeed helps to boost the performance from ∼ 0.6 to 1% accuracy.
Additionally, the number of parameters increases by around ∼ 4.5 to 5 times more than
the best child model. Therefore, there is a trade-off between achieving higher accuracy and
the number of parameters that could be increased by using more than 4 child models. We
omitted the July 2019 dataset as AutoML4ETC found the best child model on the first
trial.

71

ensemble_1_0_input: InputLayer
input:

output:

[(None, 3, 600)]

[(None, 3, 600)]

ensemble_1_0_input_Flatten: Reshape
input:

output:

(None, 3, 600)

(None, 1800, 1)

ensemble_1_0_stem_conv1d: Conv1D
input:

output:

(None, 1800, 1)

(None, 1800, 192)

ensemble_1_0_stem_bn: BatchNormalization
input:

output:

(None, 1800, 192)

(None, 1800, 192)

ensemble_1_1_normal_C1_input0_filter_alignment: FilterAlignment
input:

output:

(None, 1800, 192)

(None, 1800, 64)
ensemble_1_2_reduction_C1_0reduction_: FactorizedReduction_K

input:

output:

(None, 1800, 192)

(None, 900, 128)

ensemble_1_1_normal_C1_N0_L_maxpooling3x3_pool_: MaxPooling1D
input:

output:

(None, 1800, 64)

(None, 1800, 64)
ensemble_1_1_normal_C1_N0_R_avgpooling3x3_pool_: AveragePooling1D

input:

output:

(None, 1800, 64)

(None, 1800, 64)

ensemble_1_1_normal_C1_N0_add_: Add
input:

output:

[(None, 1800, 64), (None, 1800, 64)]

(None, 1800, 64)

ensemble_1_1_normal_C1_N1_L_avgpooling3x3_pool_: AveragePooling1D
input:

output:

(None, 1800, 64)

(None, 1800, 64)

ensemble_1_1_normal_C1_N1_add_: Add
input:

output:

[(None, 1800, 64), (None, 1800, 64)]

(None, 1800, 64)

ensemble_1_1_normal_C1_N3_add_: Add
input:

output:

[(None, 1800, 64), (None, 1800, 64)]

(None, 1800, 64)

ensemble_1_1_normal_C1_N2_R_maxpooling3x3_pool_: MaxPooling1D
input:

output:

(None, 1800, 64)

(None, 1800, 64)

ensemble_1_1_normal_C1_N2_add_: Add
input:

output:

[(None, 1800, 64), (None, 1800, 64)]

(None, 1800, 64)

ensemble_1_1_normal_C1_N3_L_sepconv3x3_relu_0_: Activation
input:

output:

(None, 1800, 64)

(None, 1800, 64)

ensemble_1_1_normal_C1_N3_L_sepconv3x3_sepconv1d_0: SeparableConv1D
input:

output:

(None, 1800, 64)

(None, 1800, 64)

ensemble_1_1_normal_C1_N3_L_sepconv3x3_bn_0_: BatchNormalization
input:

output:

(None, 1800, 64)

(None, 1800, 64)

ensemble_1_1_normal_C1_N3_L_sepconv3x3_bn_dropout_0_: Dropout
input:

output:

(None, 1800, 64)

(None, 1800, 64)

ensemble_1_1_normal_C1_N3_L_sepconv3x3_relu_1_: Activation
input:

output:

(None, 1800, 64)

(None, 1800, 64)

ensemble_2_Module_Input_1: InputLayer
input:

output:

[(None, 1024, 3)]

[(None, 1024, 3)]

ensemble_2_initial_mask: Masking
input:

output:

(None, 1024, 3)

(None, 1024, 3)

ensemble_1_1_normal_C1_N3_L_sepconv3x3_sepconv1d_1: SeparableConv1D
input:

output:

(None, 1800, 64)

(None, 1800, 64)
ensemble_2_initial_dense: Dense

input:

output:

(None, 1024, 3)

(None, 1024, 256)

ensemble_1_1_normal_C1_N3_L_sepconv3x3_bn_1_: BatchNormalization
input:

output:

(None, 1800, 64)

(None, 1800, 64)
ensemble_2_initial_dense_activation: Activation

input:

output:

(None, 1024, 256)

(None, 1024, 256)

ensemble_1_1_normal_C1_N3_L_sepconv3x3_bn_dropout_1_: Dropout
input:

output:

(None, 1800, 64)

(None, 1800, 64)
ensemble_2_Module_BatchNormalization_1: BatchNormalization

input:

output:

(None, 1024, 256)

(None, 1024, 256)

ensemble_2_SLSTM_second_layer0: LSTM
input:

output:

(None, 1024, 256)

(None, 1024, 512)

ensemble_2_SLSTM_first_layer0: LSTM
input:

output:

(None, 1024, 256)

(None, 1024, 512)
ensemble_1_2_reduction_C1_1reduction_: FactorizedReduction_K

input:

output:

(None, 1800, 64)

(None, 900, 128)
ensemble_2_SLSTM_second_layer1: LSTM

input:

output:

(None, 1024, 512)

(None, 1024, 512)

ensemble_1_2_reduction_C1_N2_L_sepconv3x3_relu_0_: Activation
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N2_R_sepconv3x3_relu_0_: Activation

input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_2_Module_Add_1: Add

input:

output:

[(None, 1024, 512), (None, 1024, 512)]

(None, 1024, 512)

ensemble_1_2_reduction_C1_N2_L_sepconv3x3_sepconv1d_0: SeparableConv1D
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N2_R_sepconv3x3_sepconv1d_0: SeparableConv1D

input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_2_last_LSTM: LSTM

input:

output:

(None, 1024, 512)

(None, 512)

ensemble_1_2_reduction_C1_N2_L_sepconv3x3_bn_0_: BatchNormalization
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N2_R_sepconv3x3_bn_0_: BatchNormalization

input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_2_last_LSTM_Dropout_FIX: Dropout

input:

output:

(None, 512)

(None, 512)

ensemble_1_2_reduction_C1_N2_L_sepconv3x3_bn_dropout_0_: Dropout
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N2_R_sepconv3x3_bn_dropout_0_: Dropout

input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_2_Module_Dense_1: Dense

input:

output:

(None, 512)

(None, 200)

ensemble_1_2_reduction_C1_N2_L_sepconv3x3_relu_1_: Activation
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N2_R_sepconv3x3_relu_1_: Activation

input:

output:

(None, 900, 128)

(None, 900, 128)

ensemble_1_2_reduction_C1_N0_L_avgpooling3x3_pool_: AveragePooling1D
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N0_R_avgpooling3x3_pool_: AveragePooling1D

input:

output:

(None, 900, 128)

(None, 900, 128)

ensemble_2_Module_Dropout_1: Dropout
input:

output:

(None, 200)

(None, 200)

ensemble_1_2_reduction_C1_N2_L_sepconv3x3_sepconv1d_1: SeparableConv1D
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N2_R_sepconv3x3_sepconv1d_1: SeparableConv1D

input:

output:

(None, 900, 128)

(None, 900, 128)

ensemble_1_2_reduction_C1_N0_add_: Add
input:

output:

[(None, 900, 128), (None, 900, 128)]

(None, 900, 128)

ensemble_2_Module_Activation_1: Activation
input:

output:

(None, 200)

(None, 200)

ensemble_1_2_reduction_C1_N2_L_sepconv3x3_bn_1_: BatchNormalization
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N2_R_sepconv3x3_bn_1_: BatchNormalization

input:

output:

(None, 900, 128)

(None, 900, 128)

ensemble_1_2_reduction_C1_N1_L_maxpooling3x3_pool_: MaxPooling1D
input:

output:

(None, 900, 128)

(None, 900, 128)

ensemble_1_2_reduction_C1_N1_add_: Add
input:

output:

[(None, 900, 128), (None, 900, 128)]

(None, 900, 128)
ensemble_1_2_reduction_C1_N3_R_avgpooling3x3_pool_: AveragePooling1D

input:

output:

(None, 900, 128)

(None, 900, 128)

ensemble_2_Module_Dense_2: Dense
input:

output:

(None, 200)

(None, 200)

ensemble_1_2_reduction_C1_N2_L_sepconv3x3_bn_dropout_1_: Dropout
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_1_2_reduction_C1_N2_R_sepconv3x3_bn_dropout_1_: Dropout

input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_2_Module_Dropout_2: Dropout

input:

output:

(None, 200)

(None, 200)

ensemble_1_2_reduction_C1_N2_add_: Add
input:

output:

[(None, 900, 128), (None, 900, 128)]

(None, 900, 128)

ensemble_1_2_reduction_C1_N3_add_: Add
input:

output:

[(None, 900, 128), (None, 900, 128)]

(None, 900, 128)

ensemble_2_Module_Activation_2: Activation
input:

output:

(None, 200)

(None, 200)

ensemble_1_2_reduction_C1_add_: Add
input:

output:

[(None, 900, 128), (None, 900, 128)]

(None, 900, 128)
ensemble_2_Module_Dense_3: Dense

input:

output:

(None, 200)

(None, 200)

ensemble_1_classification_relu: Activation
input:

output:

(None, 900, 128)

(None, 900, 128)
ensemble_2_Module_Dropout_3: Dropout

input:

output:

(None, 200)

(None, 200)

ensemble_1_classification_global_avgpool: GlobalAveragePooling1D
input:

output:

(None, 900, 128)

(None, 128)
ensemble_2_Module_Activation_3: Activation

input:

output:

(None, 200)

(None, 200)

ensemble_1_classification_logit: Dense
input:

output:

(None, 128)

(None, 8)
ensemble_2_predictions: Dense

input:

output:

(None, 200)

(None, 8)

concatenate: Concatenate
input:

output:

[(None, 8), (None, 8)]

(None, 16)

dense: Dense
input:

output:

(None, 16)

(None, 11)

dense_1: Dense
input:

output:

(None, 11)

(None, 8)

Figure 7.6: Example of hybrid model from combining the packet raw bytes and flow time-
series search spaces, generated by AutoML4ETC on the May 2021 dataset

72

Web
44.2%

streaming
7.4%

chat
8.1%

download
14.4%

games
4.2%
mail
2.7%

search
11.3%
social
7.6%

games
0.1%

resources
57.8%

web
21.4%

social
5.0%

streaming
11.0%

ecommerce
4.8%

Figure 7.7: Measurement estimation on the unknown part of the TLS (left) and QUIC
(right) datasets captured in May 2021

7.5 Traffic Measurement

One of the end goals of having an Encrypted Traffic Classifier is to estimate the volume and
distribution of unknown traffic in the network. In other words, we build an approximate
look-up table to label a portion of the real-world collected dataset. This labeling module
is just capable of labeling a part of a dataset (i.e., SNI to service mapping is easy for
humans); hence, a major portion of encrypted data is still unlabeled and referred to as
unknown.

Figure 7.7 shows the flow distribution of the unknown traffic for May 2021 (TLS) and
QUIC - May 2021 datasets. For this experiment we used the best models found by the
AutoML4ETC. For the TLS dataset, we can see that nearly half of the flows (i.e., 44.2%)
are related to the web class. However, the web class contains around half of this number for
the QUIC dataset (i.e., 21.4%). Furthermore, we can see that nearly half of the flows for
the QUIC dataset (i.e., 57.8%) are related to the resources class. Interestingly, the social,
streaming classes have a rather similar percentage for both the TLS (i.e., 7.6, 7.4%) and
QUIC datasets (i.e., 5.0, 11%). Overally, by comparing the traffic measurements between
TLS and QUIC datasets captured at the same time, it can be inferred that still QUIC has
a long way to be adopted for majority of services other than resource delivery.

73

Chapter 8

Conclusion & Future Work

In this thesis, we investigated the effect of data drift on two state-of-the-art deep encrypted
traffic classification models. We examined the robustness of these models to data drift,
providing insights about the type of drift that occurs in network traffic data. We showed
that a model that operates on the traffic shape is more resilient to data drift than one that
operates on TLS headers. Also, we examined the impact of model architecture and feature
engineering on model robustness by comparing the two models over the same datasets.

We investigated how model architectures are affected by data drift using confusion
matrices for both UW-H and UCDavis CNN models. Furthermore, we presented the top-k
accuracy and its logarithmic weighted mean to measure the amount of confusion due to
data drift amid service classes when training and test datasets are close (i.e., 2 months)
and far (i.e., 2 years) apart. We also analysed the contribution of each application towards
performance drop over a long period among different service classes. We examined the
impact of the application-layer protocols on model robustness, demonstrating that the
model performance improves by selecting more stable protocols (e.g., HTTP/1, HTTP/2)
for the model to train on, regardless of dataset collection time.

To warrant the need for architectural adaptations, we showcased the performance and
convergence issues that arise when a state-of-the-art model is trained on different datasets
with no adaptations. We performed an ablation study and examined the performance of
decomposed models, as well as the effect of changing structural parameters, to propose
best practices for designing an architecture that performs well on unseen and possibly
newer datasets. We showed results for application-level and service-level classification to
highlight generalizability of proposed adaptions at different levels of labeling granularity.
We also showed the generalizability of our proposed guidelines to different encryption

74

protocols by testing the adapted architecture on a dataset of QUIC traffic for service- and
application-level classification, which resulted in up to 9% higher classification accuracy
than the default model without adaptations.

The adaptation approaches proposed in the first part of the thesis are manual. To auto-
mate this approach we introduced AutoML4ETC, a fully automated and efficient method
for NAS in Encrypted Traffic Classification. We designed multiple search spaces tailored
specifically for the well-known feature sets in Encrypted Traffic Classification based on
both Encrypted Traffic Classification literature and other domains such as image classi-
fication. Furthermore, we evaluated the effectiveness of our search space with a simple
RS search algorithm. We showed that the found model outperforms the expert-designed
state-of-the-art Encrypted Traffic Classification models in terms of accuracy while having
fewer parameters. We showed that AutoML4ETC models’ performance can be boosted
by using simple ensembling techniques. Lastly, we measured the adoption of the QUIC
protocol in comparison with TLS on our real-world datasets using the Encrypted Traffic
Classification model.

There are three main future directions for this work. The first is to focus on improving
the search spaces. As an example, Attention Networks [55] can be incorporated into the
flow time-series search space with LSTM or CNN layers as recently they shown promising
results in the NLP domain. The second direction is to make the overall process efficient,
for example by using one-shot approaches [11] or transfer learning [10]. The last direction
is to improve the generalizability of the classifier by using incremental learning methods
that leverage previously learned knowledge, both to reduce training time and increase
performance on new datasets.

75

References

[1] TensorFlow: Large-scale machine learning on heterogeneous systems, 2015. Software
available from tensorflow.org.

[2] Mahmoud Abbasi, Amin Shahraki, and Amir Taherkordi. Deep learning for network
traffic monitoring and analysis (ntma): a survey. Computer Communications, 170:19–
41, 2021.

[3] Giuseppe Aceto, Domenico Ciuonzo, Antonio Montieri, and Antonio Pescapé. Mobile
encrypted traffic classification using deep learning: Experimental evaluation, lessons
learned, and challenges. IEEE Transactions on Network and Service Management,
16(2):445–458, 2019.

[4] Iman Akbari, Mohammad A. Salahuddin, Leni Ven, Noura Limam, Raouf Boutaba,
Bertrand Mathieu, Stephanie Moteau, and Stephane Tuffin. A look behind the cur-
tain: Traffic classification in an increasingly encrypted web. Proc. ACM Meas. Anal.
Comput. Syst., 5(1), 2021.

[5] Riyad Alshammari and A Nur Zincir-Heywood. Can encrypted traffic be identified
without port numbers, ip addresses and payload inspection? Computer networks,
55(6):1326–1350, 2011.

[6] Giuseppina Andresini, Feargus Pendlebury, Fabio Pierazzi, Corrado Loglisci, Annal-
isa Appice, and Lorenzo Cavallaro. Insomnia: Towards concept-drift robustness in
network intrusion detection. In Proceedings of the 14th ACM Workshop on Artificial
Intelligence and Security, pages 111–122, 2021.

[7] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the multi-
armed bandit problem. Machine learning, 47(2):235–256, 2002.

76

[8] Carlos Bacquet, A Nur Zincir-Heywood, and Malcolm I Heywood. Genetic optimiza-
tion and hierarchical clustering applied to encrypted traffic identification. In 2011
IEEE symposium on computational intelligence in cyber security (CICS), pages 194–
201. IEEE, 2011.

[9] Roni Bar-Yanai, Michael Langberg, David Peleg, and Liam Roditty. Realtime classifi-
cation for encrypted traffic. In International Symposium on Experimental Algorithms,
pages 373–385. Springer, 2010.

[10] Shai Ben-David, John Blitzer, Koby Crammer, Alex Kulesza, Fernando Pereira, and
Jennifer Wortman Vaughan. A theory of learning from different domains. Machine
learning, 79(1-2):151–175, 2010.

[11] Gabriel Bender, Pieter-Jan Kindermans, Barret Zoph, Vijay Vasudevan, and Quoc V.
Le. Understanding and simplifying one-shot architecture search. In ICML, 2018.

[12] Laurent Bernaille and Renata Teixeira. Early recognition of encrypted applications.
In International Conference on Passive and Active Network Measurement, pages 165–
175. Springer, 2007.

[13] Raouf Boutaba, Mohammad A Salahuddin, Noura Limam, Sara Ayoubi, Nashid
Shahriar, Felipe Estrada-Solano, and Oscar M Caicedo. A comprehensive survey on
machine learning for networking: evolution, applications and research opportunities.
Journal of Internet Services and Applications, 9(1):1–99, 2018.

[14] Zhitang Chen, Ke He, Jian Li, and Yanhui Geng. Seq2img: A sequence-to-image
based approach towards ip traffic classification using convolutional neural networks.
In IEEE International conference on big data (big data), pages 1271–1276, 2017.

[15] François Chollet et al. Keras. https://keras.io, 2015.

[16] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:
A survey. The Journal of Machine Learning Research, 20(1):1997–2017, 2019.

[17] Gints Engelen, Vera Rimmer, and Wouter Joosen. Troubleshooting an intrusion detec-
tion dataset: the cicids2017 case study. In 2021 IEEE Security and Privacy Workshops
(SPW), pages 7–12. IEEE, 2021.

[18] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel
Blum, and Frank Hutter. Efficient and robust automated machine learning. In
C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and R. Garnett, editors, Advances
in Neural Information Processing Systems, volume 28. Curran Associates, Inc., 2015.

77

https://keras.io

[19] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for
image recognition. In IEEE conference on computer vision and pattern recognition,
pages 770–778, 2016.

[20] Dominik Herrmann, Rolf Wendolsky, and Hannes Federrath. Website fingerprinting:
attacking popular privacy enhancing technologies with the multinomial näıve-bayes
classifier. In Proceedings of the 2009 ACM workshop on Cloud computing security,
pages 31–42, 2009.

[21] Sepp Hochreiter, A Steven Younger, and Peter R Conwell. Learning to learn using
gradient descent. In International conference on artificial neural networks, pages 87–
94. Springer, 2001.

[22] Didier Frank Isingizwe, Meng Wang, Wenmao Liu, Dongsheng Wang, Tiejun Wu,
and Jun Li. Analyzing learning-based encrypted malware traffic classification with
automl. In IEEE International Conference on Communication Technology (ICCT),
pages 313–322, 2021.

[23] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. A crit-
ical evaluation of website fingerprinting attacks. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 263–274,
2014.

[24] Guolin Ke, Qi Meng, Thomas Finley, Taifeng Wang, Wei Chen, Weidong Ma, Qiwei
Ye, and Tie-Yan Liu. Lightgbm: A highly efficient gradient boosting decision tree. In
NIPS, 2017.

[25] Amirhossein Khajehpour, Farid Zandi, Navid Malekghaini, Mahdi Hemmatyar,
Naeimeh Omidvar, and Mahdi Jafari Siavoshani. Deep inside tor: Exploring website
fingerprinting attacks on tor traffic in realistic settings. In 2022 12th International
Conference on Computer and Knowledge Engineering (ICCKE), pages 148–156, 2022.

[26] Levente Kocsis and Csaba Szepesvári. Bandit based monte-carlo planning. In Euro-
pean conference on machine learning, pages 282–293. Springer, 2006.

[27] Alex Krizhevsky, Vinod Nair, and Geoffrey Hinton. Cifar-10 (canadian institute for
advanced research).

[28] Yuichi Kumano, Shingo Ata, Nobuyuki Nakamura, Yoshihiro Nakahira, and Ikuo Oka.
Towards real-time processing for application identification of encrypted traffic. In 2014

78

International Conference on Computing, Networking and Communications (ICNC),
pages 136–140. IEEE, 2014.

[29] Arash Habibi Lashkari. CICFlowMeter. https://github.com/ahlashkari/

CICFlowMeter, 2022. [Online; GitHub Repository].

[30] Arash Habibi Lashkari, Gerard Draper-Gil, Mohammad Saiful Islam Mamun, and
Ali A Ghorbani. Characterization of tor traffic using time based features. In ICISSp,
pages 253–262, 2017.

[31] Mohammad Lotfollahi, Mahdi Jafari Siavoshani, Ramin Shirali Hossein Zade, and
Mohammdsadegh Saberian. Deep packet: A novel approach for encrypted traffic
classification using deep learning. Soft Computing, 24(3):1999–2012, 2020.

[32] Bei Lu, Nurbol Luktarhan, Chao Ding, and Wenhui Zhang. Iclstm: Encrypted traffic
service identification based on inception-lstm neural network. Symmetry, 13:1080, 06
2021.

[33] Renjian Lyu, Mingshu He, Yu Zhang, Lei Jin, and Xinlei Wang. Network intrusion
detection based on an efficient neural architecture search. Symmetry, 13(8):1453, 2021.

[34] Minghua Ma, Shenglin Zhang, Dan Pei, Xin Huang, and Hongwei Dai. Robust and
rapid adaption for concept drift in software system anomaly detection. In 2018 IEEE
29th International Symposium on Software Reliability Engineering (ISSRE), pages
13–24. IEEE, 2018.

[35] Navid Malekghaini, Elham Akbari, Mohammad A. Salahuddin, Noura Limam, Raouf
Boutaba, Bertrand Mathieu, Stephanie Moteau, and Stephane Tuffin. Data drift in
dl: Lessons learned from encrypted traffic classification. In 2022 IFIP Networking
Conference (IFIP Networking), pages 1–9, 2022.

[36] Navid Malekghaini and Iman Akbari. DeepTrafficV2. shorturl.at/cfglD, 2022.
[Online; Private GitHub Repository].

[37] M. Mehner. Whatsapp, wechat and meta messenger apps - global usage of messaging
apps, penetration and statistics. Accessed Oct. 14, 2022.

[38] Hieu Pham, Melody Guan, Barret Zoph, Quoc Le, and Jeff Dean. Efficient neural
architecture search via parameters sharing. In International conference on machine
learning, pages 4095–4104. PMLR, 2018.

79

https://github.com/ahlashkari/CICFlowMeter
https://github.com/ahlashkari/CICFlowMeter
shorturl.at/cfglD

[39] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V Le. Regularized evolution
for image classifier architecture search. In AAAI conference on artificial intelligence,
volume 33, pages 4780–4789, 2019.

[40] Esteban Real, Sherry Moore, Andrew Selle, Saurabh Saxena, Yutaka Leon Suematsu,
Jie Tan, Quoc V Le, and Alexey Kurakin. Large-scale evolution of image classifiers.
In International Conference on Machine Learning, pages 2902–2911. PMLR, 2017.

[41] Eric Rescorla, Kazuho Oku, Nick Sullivan, and Christopher A. Wood. TLS Encrypted
Client Hello. Internet-Draft draft-ietf-tls-esni-14, Internet Engineering Task Force,
February 2022. Work in Progress.

[42] Shahbaz Rezaei, Bryce Kroencke, and Xin Liu. Large-scale mobile app identification
using deep learning. IEEE Access, 8:348–362, 2020.

[43] Shahbaz Rezaei and Xin Liu. How to achieve high classification accuracy with just a
few labels: A semi-supervised approach using sampled packets. 2018.

[44] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. Automated website fingerprinting through deep learning. arXiv preprint
arXiv:1708.06376, 2017.

[45] Vera Rimmer, Davy Preuveneers, Marc Juarez, Tom Van Goethem, and Wouter
Joosen. Automated website fingerprinting through deep learning. arXiv preprint
arXiv:1708.06376, 2017.

[46] Sebastian Ruder. An overview of multi-task learning in deep neural networks, 2017.

[47] Sakti Saurav, Pankaj Malhotra, Vishnu TV, Narendhar Gugulothu, Lovekesh Vig,
Puneet Agarwal, and Gautam Shroff. Online anomaly detection with concept drift
adaptation using recurrent neural networks. In Proceedings of the acm india joint
international conference on data science and management of data, pages 78–87, 2018.

[48] Tom Schaul and Jürgen Schmidhuber. Metalearning. Scholarpedia, 5(6):4650, 2010.

[49] Tal Shapira and Yuval Shavitt. Flowpic: Encrypted internet traffic classification is as
easy as image recognition. In IEEE INFOCOM 2019 - IEEE Conference on Computer
Communications Workshops (INFOCOM WKSHPS), pages 680–687, 2019.

[50] Iman Sharafaldin, Arash Habibi Lashkari, Saqib Hakak, and Ali A. Ghorbani. De-
veloping realistic distributed denial of service (ddos) attack dataset and taxonomy.

80

In 2019 International Carnahan Conference on Security Technology (ICCST), pages
1–8, 2019.

[51] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A Ghorbani. Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion detection.
computers & security, 31(3):357–374, 2012.

[52] Ali Shiravi, Hadi Shiravi, Mahbod Tavallaee, and Ali A. Ghorbani. Toward devel-
oping a systematic approach to generate benchmark datasets for intrusion detection.
Computers Security, 31(3):357–374, 2012.

[53] Payap Sirinam, Nate Mathews, Mohammad Saidur Rahman, and Matthew Wright.
Triplet fingerprinting: More practical and portable website fingerprinting with n-shot
learning. In Proceedings of the 2019 ACM SIGSAC Conference on Computer and
Communications Security, pages 1131–1148, 2019.

[54] Vincent F Taylor, Riccardo Spolaor, Mauro Conti, and Ivan Martinovic. Robust
smartphone app identification via encrypted network traffic analysis. IEEE Transac-
tions on Information Forensics and Security, 13(1):63–78, 2017.

[55] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances
in neural information processing systems, pages 5998–6008, 2017.

[56] Petr Velan, Milan Čermák, Pavel Čeleda, and Martin Drašar. A survey of methods
for encrypted traffic classification and analysis. International Journal of Network
Management, 25(5):355–374, 2015.

[57] W3Techs. Historical yearly trends in the usage statistics of site elements for websites.
Accessed Feb. 2022.

[58] Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca. Neural
architecture search using deep neural networks and monte carlo tree search. In AAAI
Conference on Artificial Intelligence, volume 34, pages 9983–9991, 2020.

[59] Tao Wang and Ian Goldberg. On realistically attacking tor with website fingerprinting.
Proc. Priv. Enhancing Technol., 2016(4):21–36, 2016.

[60] Xiaojuan Wang, Xinlei Wang, Lei Jin, Renjian Lv, Bingying Dai, Mingshu He, and
Tianqi Lv. Evolutionary algorithm-based and network architecture search-enabled
multiobjective traffic classification. IEEE Access, 9:52310–52325, 2021.

81

[61] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3):229–256, 1992.

[62] Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Arm-
brust, Ankur Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J.
Franklin, Ali Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache spark:
A unified engine for big data processing. Commun. ACM, 59(11):56–65, oct 2016.

[63] Barret Zoph and Quoc V. Le. Neural architecture search with reinforcement learning.
In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017.

[64] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V Le. Learning trans-
ferable architectures for scalable image recognition. In IEEE conference on computer
vision and pattern recognition, pages 8697–8710, 2018.

82

APPENDICES

.1 Flow-based statistics from CICFlowMeter [29]

• Duration of the flow in Microsecond

• Duration of the flow in Microsecond

• Total packets in the forward direction

• Total packets in the backward direction

• Total size of packet in forward direction

• Total size of packet in backward direction

• Minimum size of packet in forward direction

• Maximum size of packet in forward direc-
tion

• Mean size of packet in forward direction

• Standard deviation size of packet in forward
direction

• Minimum size of packet in backward direc-
tion

• Maximum size of packet in backward direc-
tion

• Mean size of packet in backward direction

• Standard deviation size of packet in back-
ward direction

• Number of flow packets per second

• Number of flow bytes per second

• Mean time between two packets sent in the
flow

• Standard deviation time between two pack-
ets sent in the flow

• Maximum time between two packets sent in
the flow

• Minimum time between two packets sent in
the flow

• Minimum time between two packets sent in
the forward direction

• Maximum time between two packets sent in
the forward direction

• Mean time between two packets sent in the
forward direction

• Standard deviation time between two pack-
ets sent in the forward direction

83

• Total time between two packets sent in the
forward direction

• Minimum time between two packets sent in
the backward direction

• Maximum time between two packets sent in
the backward direction

• Mean time between two packets sent in the
backward direction

• Standard deviation time between two pack-
ets sent in the backward direction

• Total time between two packets sent in the
backward direction

• Number of times the PSH flag was set in
packets travelling in the forward direction
(0 for UDP)

• Number of times the PSH flag was set in
packets travelling in the backward direction
(0 for UDP)

• Number of times the URG flag was set in
packets travelling in the forward direction
(0 for UDP)

• Number of times the URG flag was set in
packets travelling in the backward direction
(0 for UDP)

• Total bytes used for headers in the forward
direction

• Total bytes used for headers in the back-
ward direction

• Number of forward packets per second

• Number of backward packets per second

• Minimum length of a packet

• Maximum length of a packet

• Mean length of a packet

• Standard deviation length of a packet

• Variance length of a packet

• Number of packets with FIN

• Number of packets with SYN

• Number of packets with RST

• Number of packets with PUSH

• Number of packets with ACK

• Number of packets with URG

• Number of packets with CWE

• Number of packets with ECE

• Download and upload ratio

• Average size of packet

• Average size observed in the forward direc-
tion

• Average number of bytes bulk rate in the
forward direction

• Length of header for forward packet

• Average number of bytes bulk rate in the
forward direction

• Average number of packets bulk rate in the
forward direction

• Average number of bulk rate in the forward
direction

• Average number of bytes bulk rate in the
backward direction

84

• Average number of packets bulk rate in the
backward direction

• Average number of bulk rate in the back-
ward direction

• The average number of packets in a sub flow
in the forward direction

• The average number of bytes in a sub flow
in the forward direction

• The average number of packets in a sub flow
in the backward direction

• The average number of bytes in a sub flow
in the backward direction

• The total number of bytes sent in initial
window in the forward direction

• The total number of bytes sent in initial
window in the backward direction

• Count of packets with at least 1 byte of TCP
data payload in the forward direction

• Minimum segment size observed in the for-
ward direction

• Minimum time a flow was active before be-
coming idle

• Mean time a flow was active before becom-
ing idle

• Maximum time a flow was active before be-
coming idle

• Standard deviation time a flow was active
before becoming idle

• Minimum time a flow was idle before be-
coming active

• Mean time a flow was idle before becoming
active

• Maximum time a flow was idle before be-
coming active

• Standard deviation time a flow was idle be-
fore becoming active

• Total packets in the forward direction

• Total packets in the backward direction

• Total size of packet in forward direction

• Total size of packet in backward direction

• Minimum size of packet in forward direction

• Minimum size of packet in backward direc-
tion

• Maximum size of packet in forward direc-
tion

• Maximum size of packet in backward direc-
tion

• Mean size of packet in forward direction

• Mean size of packet in backward direction

• Standard deviation size of packet in forward
direction

• Standard deviation size of packet in back-
ward direction

• Total time between two packets sent in the
forward direction

• Total time between two packets sent in the
backward direction

• Minimum time between two packets sent in
the forward direction

• Minimum time between two packets sent in
the backward direction

85

• Maximum time between two packets sent in
the forward direction

• Maximum time between two packets sent in
the backward direction

• Mean time between two packets sent in the
forward direction

• Mean time between two packets sent in the
backward direction

• Standard deviation time between two pack-
ets sent in the forward direction

• Standard deviation time between two pack-
ets sent in the backward direction

• Number of times the PSH flag was set in
packets travelling in the forward direction
(0 for UDP)

• Number of times the PSH flag was set in
packets travelling in the backward direction
(0 for UDP)

• Number of times the URG flag was set in
packets travelling in the forward direction
(0 for UDP)

• Number of times the URG flag was set in
packets travelling in the backward direction
(0 for UDP)

• Total bytes used for headers in the forward
direction

• Total bytes used for headers in the back-
ward direction

• Number of forward packets per second

• Number of backward packets per second

• Number of flow packets per second

• Number of flow bytes per second

• Minimum length of a flow

• Maximum length of a flow

• Mean length of a flow

• Standard deviation length of a flow

• Minimum inter-arrival time of packet

• Maximum inter-arrival time of packet

• Mean inter-arrival time of packet

• Standard deviation inter-arrival time of
packet

• Number of packets with FIN

• Number of packets with SYN

• Number of packets with RST

• Number of packets with PUSH

• Number of packets with ACK

• Number of packets with URG

• Number of packets with CWE

• Number of packets with ECE

• Download and upload ratio

• Average size of packet

• Average size observed in the forward direc-
tion

• Average number of bytes bulk rate in the
forward direction

• Average number of packets bulk rate in the
forward direction

• Average number of bulk rate in the forward
direction

86

• Average size observed in the backward di-
rection

• Average number of bytes bulk rate in the
backward direction

• Average number of packets bulk rate in the
backward direction

• Average number of bulk rate in the back-
ward direction

• The average number of packets in a sub flow
in the forward direction

• The average number of bytes in a sub flow
in the forward direction

• The average number of packets in a sub flow
in the backward direction

• The average number of bytes in a sub flow
in the backward direction

• Minimum time a flow was active before be-
coming idle

• Mean time a flow was active before becom-
ing idle

• Maximum time a flow was active before be-
coming idle

• Standard deviation time a flow was active
before becoming idle

• Minimum time a flow was idle before be-
coming active

• Mean time a flow was idle before becoming
active

• Maximum time a flow was idle before be-
coming active

• Standard deviation time a flow was idle be-
fore becoming active

• The total number of bytes sent in initial
window in the forward direction

• The total number of bytes sent in initial
window in the backward direction

• Count of packets with at least 1 byte of TCP
data payload in the forward direction

• Minimum segment size observed in the for-
ward direction

87

.2 UW Tripartite Model Details

Table 1: Architecture of the UW tripartite model with 1-D convolutions in the flow side
from the [4].

Type Shape Connection

In (3, 600) Header Input
Reshape (1800, 1)
Convolution1D (1799, 256)
ReLU
Convolution1D (1799, 256)
ReLU
MaxPooling1D (899, 256)
Convolution1D (898, 128)
ReLU
Convolution1D (897, 128)
ReLU
MaxPooling1D (448, 128)
Flatten (57344)

In (61) Flow Meter Input
Dense (200)
BatchNorm
LeakyReLU
Dropout(0.2)
Dense (200)
BatchNorm
LeakyReLU
Dropout(0.5)

In (1024, 3) Flow Input
Convolution1D (1024, 128)
BatchNorm
ELU
Convolution1D (1024, 128)
BatchNorm
ELU
MaxPooling1D (512, 128)
Convolution1D (512, 64)
BatchNorm
ELU
Convolution1D (512, 64)
BatchNorm
ELU
MaxPooling1D (256, 64)
Flatten (16384)

Concatenate (73928)
Dense (128)
LeakyReLU
Dropout(0.5)
Dense (128)
LeakyReLU
Dropout(0.5)
Dense (8)
Softmax

88

Table 2: Architecture of the UW tripartite model with stacked LSTM’s in the flow side
from the [4].

Type Shape Connection

In (3, 600) Header Input
Reshape (1800, 1)
Convolution1D (1799, 256)
ReLU
Convolution1D (1799, 256)
ReLU
MaxPooling1D (899, 256)
Convolution1D (898, 128)
ReLU
Convolution1D (897, 128)
ReLU
MaxPooling1D (448, 128)
Flatten (57344)

In (61) Flow Meter Input
Dense (200)
BatchNorm
LeakyReLU
Dropout(0.2)
Dense (200)
BatchNorm
LeakyReLU
Dropout(0.5)

In (1024, 3) Flow Input
Dense(Distributed) (1024, 512)
BatchNorm
LeakyReLU
LSTM(Forward) (1024, 256)
LSTM(Backward) (1024, 256)
LSTM(Forward) (256)
Dropout(0.5)

Concatenate (57800)
Dense (128)
LeakyReLU
Dropout(0.5)
Dense (128)
LeakyReLU
Dropout(0.5)
Dense (8)
Softmax

89

.3 Acronyms

Acronym Meaning

ALPN Application-Layer Protocol Negotiation
CNN Convolutional Neural Network
DL Deep Learning

DNS Domain Name System
ISP Internet Service Provider

LSTM Long Short-term Memory
BLSTM Biderctional LSTM
SLSTM Stacked LSTM

ML Machine Learning
MLP Multi-layer Perceptron
WF Website Fingerprinting
KPI Key Performance Index
RNN Recurrent Neural Network
UW University of Waterloo Tripartite model

UW-H TLS header part of UW
UW-F flow time-series part of UW
UW-A statistical part of UW

IP Internet Protocol
TP True Positive
FP False Positive
TN True Negative
FN False Negative

PCAP Packet Capture
LR Learning Rate

CONV1D 1-D Convolutional Layer
HTTP Hypertext Transfer Protocol
QUIC Quick UDP Internet Connections

RF Random Forest
SAE Stacked Auto-encoder
SNI Server Name Indication

SVM Support Vector Machine
TC Traffic Classification

ETC Encrypted Traffic Classification
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol

90

.4 DeepTraffic Software API Code Examples

DeepTrafficV2 is the name of the software API created as a result of the research presented
in this thesis. The Deep Traffic GitHub [36] repository has the complete documentation
for the code base. Here, we offer several code samples of the library’s application for
pre-processing network traces, and training models. The model modifications based on
this thesis are included in the latest version of DeepTraffic. Additionally, it offers the
classification of the QUIC protocol at the service level and application level, together with
all of the relevant modules like the look-up table for labeling datasets.

Our library’s implementation is based on Tensorflow 2.1, CUDA 10.1, TensorRT 6.0.1.5,
and CuDNN 7.6.5. By creating automatic installation scripts, we have made it easier for
DeepTraffic’s environment to be set up on Ubuntu 18.04 LTS and later. Listing 1 shows
how these scripts are used for QUIC traffic.

1 # Installs dependencies and activate the python virtual environment

2 ./install-deps-QUIC.sh

3 ./install-py-QUIC.sh

4 . activate-env-38-QUIC.sh

5

Listing 1: Set-up the environment for DeepTrafficV2

.4.1 Pre-processing

Packet traces (PCAP files) are used as the input for the pre-processing, which outputs
binary files in a specific output directory in a customised folder structure.

A single command, as displayed in Listing 2, may readily be used to run the complete
pipeline.

.4.2 Usage

DeepTraffic’s Python library, which can handle all the difficult chores associated with
loading the data, doing training on GPUs or CPUs, assessing the results, loading and

91

1 # Pre-process the PCAP file at pcap-file and store the resulting in the output-dir

2 # and keep the cache and YAF output as well

3 ./pcap_to_dataset_quic.sh /path/to/pcap-file -o /path/to/output-dir --keep-cache

Listing 2: Converting an input PCAP file with QUIC protocol to pre-processed dataset

saving models, etc., with just a few lines of code, is where the program’s essential features
are implemented. Additionally, it is intended to function with zero configurations.

The loading of the dataset supplied by the command (cf. Listing 2), which is undoubt-
edly the initial step in any data pipeline in DeepTrafficV2, is shown as a complete ML
pipeline in Python in Figure Listing 3. The training is then carried out by the Training
object, which is created together with the model. The same dataset is used to conduct
volumetry on the model once it has been visually verified.

1 import deeptraffic.train

2 import deeptraffic.model

3 import deeptraffic.dataset

4

5 # load data-set with service-level labeling

6 dataset = deeptraffic.dataset.DataSet("/path/to/dataset", labeling="service")

7

8 # create the UW model with two feature categories (Flow time-series and TLS headers)

9 model = deeptraffic.model.Sigmetrics2021ModelSpec(dataset, features="fh")

10

11 # train the model

12 training = deeptraffic.train.Training(model, dataset)

13 training.train_model("/path/to/output.model")

14

15 # model validation (with PyPlot visualization of confusion matrix)

16 training.validate(plot=True)

Listing 3: A full ML pipeline from loading the dataset to computing the volumetry in
DeepTrafficV2

92

Configuration

DeepTrafficV2 was created with ease of use and simplicity in mind. However, if required,
the user may adjust and fine-tune all of the model’s training and application-specific fea-
tures. The possible settings are displayed in Table 3 . The configurations are made using
a YAML file named conf.yml.

Configuration Name Default Description

cores 64 number of Spark executors
spark.driver.memory 8g Spark driver memory
spark.executor.memory 4g Spark executors memory
preproc.cfm.replace nan 0 whether should replace NaN

in CFM results and if so,
with what value

preproc.cfm.replace pos inf 2 whether should replace +inf
in CFM results and if so,
with what value

preproc.cfm.replace neg inf -2 whether should replace -inf in
CFM results and if so, with
what value

model.packet cutoff 600 cut-off threshold for TLS
headers in bytes

model.max flow size 1024 maximum flow packets in-
cluded in training

model.num headers 3 maximum handshake packets
included in training

model.activation relu neuron activation function
model.sigmetrics.header channel size 256 no. channels in each layer of

the model in the side process-
ing raw traffic

model.sigmetrics.flow channel size 512 no. channels in each layer of
the model in the side process-
ing traffic shape time-series

model.ifip.flow dropout size 0.5 The dopout rate after the
SLSTM layers

93

model.ifip.use maskinglayer True accepted values: [”True”,
”False”] whether to use
masking layer at the begin-
ing of flow time-series or
not

model.ifip.slstm layers SLSTM accepted values: [”SLSTM”,
”BLSTM”, ”CONV1D”] Use
of architecture for Flow time-
series side

model.sigmetrics.aux channel size 200 no. channels in each layer of
the model in the side process-
ing statistical features

model.sigmetrics.dense channel size 128 no. channels in each layer
of the model in the part af-
ter concatenation of the three
parts (fully-connected layers)

model.sigmetrics.recurrent units 256 no. channels in the model’s
SLSTM part

training.dataset.alpn filter None accepted values:
[”None”,”h1”, ”h2”, ”h1h2”,
”noh1h2”] ALPN filtering

training.analysis.use top k False accepted values: [”1”, ”2”,
”3”, ”4”, ”False”] whether to
use top-k accuracy analysis

training.validation set ratio 5 ratio of validation set to
training set

training.models dir ./Models directory for storing model
weights backup at check-
points

training.epochs 10 how many epochs to train for
training.learning rate checkpoint 3 how many epochs between

decimations of the learning
rate

training.learning rate discount 0.1 co-efficient for discounting
learning-rate at checkpoints

94

training.initial learning rate 0.001 initial learning rate in train-
ing

labeling.domains path path to directory of domains
data used for labeling rela-
tive to the execution path

Table 3: The available configurations for the DeepTrafficV2 library, their default value and
their description.

.5 Software and Hardware Stack for the Automatic

Approach

The tests were run on multiple computers. One NVIDIA Tesla P40 GPU with 24GB
of RAM, 56 Intel(R) Xeon(R) Gold 5120 2.20GHz CPU, and 376 GB of RAM. Three
computers with NVIDIA Tesla A100 GPU with 40GB of RAM, 2x AMD EPYC 7302 16-
Core CPUs, and 512GB of RAM. Two computers with NVIDIA Tesla A40 GPU with 48GB
of RAM, 2x AMD EPYC 7272 12-Core CPUs, and 512GB of RAM. Tensorflow 2.2 [1] with
Keras [15], PySpark 2.4.4 [62] make up the neural architecture design and pre-processing
software stack.

.6 Using Stack of Cells

Through experiments with the AutoML4ETC on the packet raw bytes features, we saw that
adding a stack of Normal Cells and Reduction Cells (e.g., ”NRNR”) will not only lead to
less generalization because of the perfect fitting over the training dataset but also has a
negligible effect on the classification accuracy while increasing the number of parameters
significantly.

.7 AutoML4ETC for Flow Statistics

To show the effectiveness of the flow statistics search space, we use the simple setting of the
AutoML4ETC method on the two smallest QUIC and TLS real-world datasets. We use
only partial training of child models strategy to find the best model and further train the

95

Table 4: AutoML4ETC vs UW MLP [4] for flow statistics features

Dataset Model
Accuracy

(%)

W Avg.
F-1 score

(%)

W Avg.
recall
(%)

W Avg.
precision

(%)

May 2021
AutoML4ETC 64.37 64.16 64.37 66.54

UW MLP 45 43.03 45 49.6

QUIC
May 2021

AutoML4ETC 50.45 61.32 50.45 89.32
UW MLP 24.07 32.92 24.07 87.9

best model for additional 30 epochs. Table 4 compares the performance of AutoML4ETC
to the UW MLP part of their Tripartite model [4]. It is evident that the AutoML4ETC
gains significantly higher accuracy with a 19.37 and 26.38% difference on the May 2021
and QUIC - May 2021 datasets, respectively. However, these features alone show inferior
classification performance compared to the packet raw bytes and flow time-series features
as they contain summarized information of a flow. The inferior performance of the flow
statistics was highlighted at beginning of the thesis when evaluating the UW-A model on
the baseline dataset.

.8 Training Child Networks

Each child network is trained with an initial learning rate of 0.001 for packet raw bytes
search space and 0.0001 for flow time-series. Furthermore, we cut the learning rate in half
every 10 epochs through the training of child models. This method suggests better conver-
gence and a finer resolution searching for the gradient descent algorithm. Moreover, we use
the Adam optimizer and ”sparse categorical crossentropy” loss function to train the child
networks. The Factorized Reduction and Filter Alignment hyper layers for ENAS micro
search space were used along with the searching algorithms implementations. Tensorflow
[1] FLOPS reporter was used to produce results in Table 7.5.

96

.9 Search Algorithms

RL

The RL algorithm is based on the RNN controller in [38] that uses REINFORCE with
baseline and adam as the optimizer. The RNN controller is a single-layer LSTM with 100
Tanh constant 1.5 applied to the controller logits. Baseline decay is set to 0.999. The norm
of gradients was clipped at 5.0. The learning rate for adam optimizer is 1e-3.

MCTS

The MCTS algorithm is based on the [58] that uses UCT [7]. The maximum node ex-
pansion is set to 10. When rolling out, the sample size for the simulation network to
assess potential pathways is set to 10. The meta-learner is LightGBM [24] with default
parameters.

EA

The EA algorithm is based on the [39]. The population size is set to 20. Furthermore, the
number of parent candidates selected per evolution cycle is set to 5.

RS

Makes random decisions at each step and does not have any state to update itself from
previous decisions.

97

	List of Figures
	List of Tables
	Introduction
	Background & Related Works
	Reinforcement Learning
	Deep Learning Background
	Encrypted Traffic Classification
	Data Drift
	Neural Architecture Search
	Neural Architecture Search for Traffic Classification

	Methods & Models for the Manual Approach
	Deep Learning models
	UW Tripartite Model
	UCDavis CNN Model

	Datasets description
	Software stack and performance metrics

	Investigating Data Drift
	Baseline performance
	Robustness to performance decay
	Traffic data drift

	Manual Architecture Adaptation
	Ensuring model convergence
	Adjusting to dataset size
	QUIC results

	Methodology for Automatic Approach
	Search Spaces

	Evaluation of the Automatic Approach
	Datasets
	Packet Raw Bytes-oriented NAS
	Flow Time-series-oriented NAS
	Combining AutoML4ETC Models
	Traffic Measurement

	Conclusion & Future Work
	References
	APPENDICES
	Flow-based statistics from CICFlowMeter cicflowmeter
	UW Tripartite Model Details
	Acronyms
	DeepTraffic Software API Code Examples
	Pre-processing
	Usage

	Software and Hardware Stack for the Automatic Approach
	Using Stack of Cells
	AutoML4ETC for Flow Statistics
	Training Child Networks
	Search Algorithms

