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Abstract

Flagellated bacteria categorized as microorganisms, play vital roles in human life such
that their beneficial and detrimental effects on different aspects of the ecosystem are indis-
putable. Flagellated bacteria propel themselves in fluids by rotating one or more flexible
filaments, known as flagella, driven by independent flagellar motors. Depending on the
rotation direction of the motors and handedness of the helical filaments, the flagella either
pull or push the cell body. Entrapment of swimming bacteria near surfaces, observed in
some species, may lead to biological processes such as biofilm formation and wound infec-
tion. Previous experimental and numerical studies of bacterial locomotion have illustrated
that several behaviors exhibited by the bacteria have roots in hydrodynamic interactions
between the bacteria components and the surrounding fluid.

In this thesis, we numerically study flagellated bacterial locomotion in bounded and
unbounded spaces. The physical properties of the model bacteria in this study are de-
scribed based on experimental data available for various species of uni-, bi-, and multi-
flagellated bacteria. Specifically, we choose Vibrio alginolyticus, Magnetococcus marinus
and Escherichia coli to focus on their motility to shed light on some of the unique be-
havior observed in each one. Depending on the species, the model bacteria have either a
spherical or a spherocylindrical cell body and the flexible flagellar filaments are connected
to the cell body membrane directly or via very flexible straight hooks. The flagella are
independently driven by either constant or variable torque motors. Despite a similar flag-
ellar structure, uni- and multiflagellated bacteria employ different mechanisms to swim on
straight trajectories or reorient.

Here, we use the boundary element method (BEM) and the Kirchhoff rod model to
develop a comprehensive elastohydrodynamic framework in order to model the motility
of uni- and multiflagellated bacteria in a Newtonian viscous fluid. For this purpose, the
boundary integral equations (BIE) are numerically evaluated over the cell body surface
and along the flagella which are described by distributions of regularized Stokeslets and
Rotlets. By assuming that the flagella are inextensible and unshearable, the linear the-
ory of elasticity is used to estimate the internal moments along the flagella. Adding the
hydrodynamics and elasticity equations to the total force/torque balance and kinematic
equations leads to a system of linear equations which are solved to find the velocities and
update the swimmer configuration accordingly.

Motivated by experimental observations of Vibrio alginolyticus locomotion in which it
is shown that there is an interesting correlation between the near-surface entrapment of
bacteria and the concentration of certain ions in the swimming medium, we numerically in-
vestigate its motility in different concentrations of NaCl. Our simulations demonstrate that
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changing the concentration of NaCl in the swimming fluid affects the tendency of pusher-
mode bacteria to remain near the surfaces by altering the averaged swimming speed and
inducing the different degrees of deformations along the flagellum. In addition to the ion
concentration, our results indicate the flagellum/hook stiffness, the flagellar motor torque,
and the cell body aspect ratio may affect whether the uniflagellated model bacterium
escapes from the surface or becomes trapped in circular orbits.

By simulating the locomotion of a bi-flagellated model bacterium with a spherical cell
body, one puller, and one pusher flagellum, we show that the bacteria with such config-
uration mainly swim along double helical trajectories. Comparing the properties of the
obtained trajectories with the Magnetococcus marinus ’s trajectories measured experimen-
tally, indicate that this species has likely puller-pusher configuration. Varying the stiffness,
orientations, or positions of the flagella significantly changes the swimming characteristics.
Notably, when either the applied torque to the pusher flagellum is higher than a critical
value and/or its stiffness is lower than a critical stiffness, the pusher flagellum exhibits
overwhirling motion, resulting in a more complicated swimming style and a lower swim-
ming speed. For a moderate flagellum stiffness, the swimming speed is insensitive to the
rest orientation of the flagella over a wide range of orientation angles because the flagella
deform to maintain alignment with the swimming direction.

Numerical investigation of multiflagellated bacteria locomotion in unbounded fluid in-
dicates that the arrangement of the flagella on the cell body provides no advantages in
the average swimming speeds of bacteria. However, the trajectory of the bacteria could be
either relatively straight or double helical trajectory depending on the degree of asymmetry
that exists in the distribution of the flagella. Our results indicate that the multiflagellated
bacteria in the “run” state may have several stable swimming modes in which the swim-
ming properties such as speeds and trajectories could be different. The tumbling event,
stopping of the flagellar motor, and interaction with other bacteria are likely some rea-
sons which cause the bacteria to switch between the different modes. High viscous torque
due to the presence of a no-slip boundary slightly changes the swimming properties of the
multiflagellated bacteria such as bundling time, the translational and angular speeds. Re-
markably, the flagella arrangement is one of the key factors determining how the swimming
properties vary in response to the presence of a surface.
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ĵ = 1, 2, 3}, is obtained by interpolation of the triads of the neighboring
segments. B) The hook, connecting the rotor to the first segment of the
filament, is discretized into NH = 2 equal-length (∆sH) segments. . . . . . 35

2.8 Schematic view of a model bacterium with two flagella. Several position
vectors and local frames are used to define the configuration of the bacterium 37

2.9 Pairwise steric repulsive forces prevent the bacteria components from touch-
ing each other. The repulsive force is also applied between the bacteria
components and the walls. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.10 Each coarse time step [ti, ti+1] is split into n fine time steps [ti,m, ti,m +
∆ tfine], m = 0, . . . , n− 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.11 Flowchart of the iterative method to find the rotor orientation, the motor
speed, and the internal moment at the joint connects the hook to the rotor.
The rotor and the corresponding triad are marked by blue color. The first
segment on the hook is also represented by the red dashed line. . . . . . . 45

2.12 Comparison of the obtained results for swimming speed of a uni-flagellated
bacterium with Higdon’s. Uswim/Uw is the progressive speed non-dimensionalized
by the linear wavespeed of the flagellum. R and l are the cell body radius and
the flagellum length, respectively. Nλ represents the flagellum wavenumber. 46

xiii



3.1 A schematic view of the uniflagellated model bacterium. . . . . . . . . . . 50

3.2 A) The relationship between the swimming speed of the model bacterium
and the motor torque in three flagellum stiffnesses and two swimming modes
(puller/pusher). A constant motor torque is applied, ranging from 0 to 1
in dimensionless units, and the steady swimming speeds in the puller and
pusher modes are obtained. Comparing the steady shapes of the pusher
and puller flagella indicates that the amplitude of the pusher flagellum is
smaller than the puller one. B) By varying the motor torque from 0 to
1, the rotation speeds of the flagellar motor are obtained in the different
stiffnesses of the flagellum and the swimming modes. There is almost a
linear relationship between the motor torque and motor speed. When it is
allowed that the motor torque dynamically changes according to the black
torque-speed curve (which is a characteristic of the motor performance), the
intersection of the colored and the black curves is the steady point where
the motor torque and speed converge to. . . . . . . . . . . . . . . . . . . . 53

3.3 The steady-state swimming speed and motor torque of the model bacterium
in an unbounded fluid. These results are obtained for different shapes of
hook and filament at the rest configurations. The rest (stationary in the
absence of motor torques) configurations of the three models are depicted
in A. The physical properties of the model bacteria in these simulations are
stated in Tab. 3.1. The reported values for the swimming speeds are not
accurate during the transition period because of the limitations that exist
in using Eq. 3.4 for the transition period. The transition periods are shown
here to compare the convergence times. . . . . . . . . . . . . . . . . . . . . 56

3.4 Swimming trajectory of the model bacterium near a flat surface in pusher
mode. In higher concentrations of NaCl, the bacterium immediately escapes
from the surface with a relatively large angle (αe = 10.98◦). The escaping
angle αe represents the angle between the swimming trajectory during the
escaping state and the surface. The initial distance and angle with respect
to the surface are respectively 3 and 15◦. Simulation times are Ts = 23000,
Ts = 17000, and Ts = 7000 for the low, medium, and high concentrations,
respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xiv



3.5 Near surface swimming trajectory of the model bacterium in the puller
mode. In different concentrations of NaCl, the model bacterium is entrapped
by the surface. The NaCl concentration in the swimming medium changes
the radius of the circular trajectories (Rc). The initial conditions are the
same as the pusher mode. Simulation times are Ts = 17000, Ts = 15000,
and Ts = 6800 for the low, medium, and high concentrations, respectively. . 59

3.6 Variation of the motor load as the bacterium swims toward the surface and
then is entrapped/pushed back by the surface. . . . . . . . . . . . . . . . . 60

3.7 Swimming trajectories of the pusher-mode model bacterium in two different
initial distances (H0 = 1.1, 3) from the surface and two attack angles (α0 =
15◦,α0 = 45◦). LC, MC, and HC are respectively abbreviations of the low,
medium, and high concentrations of NaCl. . . . . . . . . . . . . . . . . . . 62

3.8 Swimming trajectories of the pusher-mode model bacterium in the different
flagellum and hook stiffnesses. The concentration of NaCl is medium in all
cases. Excluding the flagellum/hook stiffness, the physical properties of the
model bacteria are according to Tab. 3.1. . . . . . . . . . . . . . . . . . . . 64

3.9 The uniflagellated model bacterium with rigid flagellum is entrapped by the
surface, whereas it is pushed back as the flagellum is flexible. The amplitude
growing factor kE = p is used to describe the flagellum shape and align the
flagellum and cell body axes. There is no hook and the entire filament’s
relative stiffness is kF = 3.23. The concentration of NaCl is medium. . . . 65

3.10 Swimming trajectories of the puller-mode model bacterium in different flag-
ellum and hook stiffnesses. The concentration of NaCl is medium in all
cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.11 High viscous forces near a planar surface increase the load applied to the
hook and make it unstable. As the bacterium gets away from the surface,
the hook becomes stable and the bacterium travels on a straight trajectory.
When the hook’s relative stiffness is slightly above its critical value (kH =
0.106), the bacterium is unable to escape from the surface. . . . . . . . . . 68

3.12 Swimming trajectories of the pusher-mode model bacterium in different cell
body aspect ratios. The bacteria with the largest cell body’s aspect ratio,
αCell = 2.5, escape from the surface with relatively large angles. In the
smallest aspect ratio, αCell = 1.75, the bacteria are entrapped near the
surface. The concentration of NaCl is medium in all cases. . . . . . . . . . 69

xv



3.13 Changing the ions concentration from medium to high causes the boundary
accumulating pusher-mode bacteria to escape from the boundary. In these
simulations, αcell = 1.75, and the other parameters are stated in Tab. 3.1. . 70

4.1 A schematic view of the model bacterium in which different bases and vectors
are used to describe the position and orientation of the components. α and
β angles represent the position and orientation of the rotors on the cell body
and are defined with respect to ~e

(B)
1 . The internal moment between the nth

and (n + 1)st segments is denoted by ~N (i)n+ 1
2 . Note that the thickness of

the flagella in the figures does not reflect the actual thickness of the flagella
in the model bacterium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

4.2 Swimming trajectories of three studying cases which differ in number and
types of flagella. All physical parameters are chosen according to Supple-
mentary Information table S1 and the initial conditions and orientations are
set to be equal for three cases. . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.3 A) Model bacteria with two asymmetric pusher flagella. B) Trajectories of
the model bacteria with two asymmetric pusher flagella . . . . . . . . . . . 79

4.4 The time-averaged orientations of the cell body (ηCell), the puller (ηPuller) and
pusher (ηPusher) flagella with respect to the time-averaged direction of the
swimming. These plots are presented for A) Different flagella stiffnesses.
B) Different flagella orientations. C) Different motors torques ratios. D)
Different flagella positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Influences of the pusher flagellum overwhirling motion on the swimming
trajectory of the model bacterium. In this motion, the flagellum experiences
large deformations and the free end of the flagellum is close to the driven end. 83

4.6 The swimming trajectory of the biflagellated model bacterium projected on
XY and XZ planes in different flagella stiffnesses (kF ). . . . . . . . . . . . 84

4.7 The swimming trajectory of the biflagellated model bacterium projected on
XY and XZ planes as a function of the flagella orientations (β). . . . . . . 86

4.8 The swimming trajectory of the biflagellated model bacterium projected on
XY and XZ planes by changing the flagella placed on the cell body (α). . . 87

4.9 The swimming trajectory of the model bacterium projected on XY and XZ
planes as a function of motor torque ratio RT . . . . . . . . . . . . . . . . . 89

xvi



4.10 Uniflagellated model bacteria undergo U-turns in response to the reversal
of external magnetic field. The magnetic moment direction which is fixed
inside the cell body is marked by a red bubble. Initially, the red bubble
and the external magnetic field are in − ~X direction. All other physical
and geometrical parameters are stated in Tab. 4.1. The magnetic field is
reversed at Ts = 1000. A)TMag = 0.1,Ts = 6000. B)TMag = 0.5,Ts = 3500.
C)TMag = 1,Ts = 3000. D)TMag = 2,Ts = 2500. E)TMag = 5,Ts = 2000. . . . 91

4.11 Pusher-pusher model bacteria undergo U-turns in response to the reversal
of external magnetic field. The magnetic moment direction which is fixed
inside the cell body is marked by a red bubble. Initially, the red bubble
and the external magnetic field are in − ~X direction and all other physical
and geometrical parameters are chosen from Tab. 4.1. The magnetic field is
reversed at Ts = 1000. A)TMag = 0.1,Ts = 6000. B)TMag = 0.5,Ts = 4000.
C)TMag = 1,Ts = 3500. D)TMag = 2,Ts = 2500. E)TMag = 5,Ts = 2000. . . . 92

4.12 A) Diameter of U-turns that the pusher and pusher-pusher model bacteria
undergo in response to the reversal of the external magnetic field. TMag =

|| ~B|| · || ~MMag|| denotes the dimensionless maximum magnetic torque applied
to the cell body in this plot. B) The relationship between the diameter of
the U-turns and the maximum magnetic torque is shown in the log-log scale.
The solid and dashed lines show the power of -1 relationships for comparison. 93

5.1 Schematic view of a model bacterium with three flagella. Several position
vectors and local frames are used to define the configuration of the bacterium. 98

5.2 Three different arrangements of the flagella on the cell body are taken into
account in this chapter to investigate their effects on the swimming proper-
ties of the peritrichous model bacteria. The anchoring points of the hooks on
the cell body are displayed in two different views. In the top-right picture,
the cell body is viewed from the side, and in the bottom-right picture, the
cell body is viewed from the hemispherical end such that the direction ~e

(B)
1

points toward the observer. . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xvii



5.3 Bundle formation for cells with different flagellar arrangements. The propul-
sion induced by the flagella in the different directions causes the cell body
to reorient at the beginning of the swimming. In the Star and the Lateral
arrangements, a single bundle is formed at the rear whereas, in the Linear
arrangement, the bundle bends around the cell body (due to the instability
of the hooks) so that the base of the bundle is at the front of the body. The
properties of the bacteria in these simulations are as stated in Tab. 5.1. . . 102

5.4 Swimming trajectories of the model bacteria with different flagellar arrange-
ments and hook stiffnesses. The instability of the hook in the Linear arrange-
ment and the lower stiffness of the hook causes the bacterium to move on a
double helical trajectory. The physical properties of the model bacteria are
described at Tab. 5.1. Dimensionless swimming time is Ts = 700 in these
simulations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Variation of bundling index with respect to time in three different flagellar
arrangements. During the flagellar bundling process, the average pairwise
distances between the evaluation points on the flagella (named bundling
index) decrease so that it reaches its minimum steady value as the single
bundle forms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.6 Four different anchoring points are chosen on the cell body surface to attach
the single flagellum. These positions and the flagellum orientations are
inspired by the flagella arrangement in the multiflagellated bacteria (i.e.
Fig. 5.2). The cell body and the flagellum sizes are consistent with the
multiflagellated model bacteria. . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 The variation of the bending angle of the filament in Position A. The bend-
ing angle of the filament represents the angle between the rotor axis and
the line which connects the two ends of the filament. When the hook’s rel-
ative stiffness is below the buckling threshold, the bending angle gradually
increases. Decreasing of the bending angle means that the hook is stable in
that specific relative stiffness. . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 The steady-state swimming properties of the multiflagellated model bacteria
with Star arrangement and different curvatures of the flagella helix (κF ) and
a constant torsion τF=0.3. The other parameters are as stated in Tab. 5.1. 109

5.9 The steady-state swimming properties of the multiflagellated model bacteria
with the Star arrangement and different torsion of the flagella helix (τF ) and
constant curvature κF=0.03. The other parameters are as stated in Tab. 5.1. 110

xviii



5.10 The steady-state swimming properties of the multiflagellated model bacteria
with the Star arrangement in the different stiffnesses of the flagellar filaments
and hooks. The physical parameters excluding the stiffnesses are described
at Tab. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

5.11 A) The flagellar bundle unravels after switching the rotation direction of one

flagellum (marked with purple color) to ~e
(1)
1 direction for 60 units of time

starting from t =400. The single bundle forms again, after all the flagella
rotate in the same direction [i.e. −~e(i)

1 ] starting at t =460. B) Swimming
trajectories of the model bacteria with the Star and Lateral arrangements
on XZ and XY planes before, during, and after the motor reversals. C)
Bundling index of the flagella during the bundling, before and after the
motor reversals. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5.12 Bundling of flagella as the model bacterium vertically escapes or approaches
to the wall. The results in the left and right columns are respectively for the
Star and Lateral arrangements. The transparent model bacterium displays
the initial position and configuration. The physical properties of the model
bacteria are stated in Tab. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . 116

5.13 A) Initial configurations of the model bacteria with the Star and Lateral ar-
rangements. Other simulation and physical parameters are chosen according
to Tab. 5.1. B) Variation of the average swimming speed in ~X direction with
respect to the initial distance from the surface. C) Variation of the average
rotational speed of the cell body with respect to the initial distance from
the surface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

5.14 Swimming trajectories of the model bacteria with Star (A) and Lateral (B)
flagella arrangement near a planar surface. The trajectories are shown for
different initial conditions and hooks’ stiffnesses. The attack angle for the
black and red trajectories is α0 = 18◦ and for the green and blue trajectories
is α0 = 0◦. The physical parameters of the model bacteria are stated at
Tab. 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.15 Angle between the long axis of the cell body and the planar surface over time,
as the model bacteria with the Star and Lateral arrangements, swim near
the wall. The results in this graph correspond to the presented trajectories
in Fig. 5.14. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.16 Swimming properties of multiflagellated model bacterium with Star arrange-
ment inside a rectangular channel with curved edges. The physical proper-
ties of the model bacterium are described in Tab. 5.1. . . . . . . . . . . . . 122

xix



B.1 Progressive speed of a uniflagellated model bacterium with flexible and rigid
flagellum at constant motor speed. Uswim/Uw is the progressive speed non-
dimensionalized by the linear wavespeed of the flagellum. As expected, the
progressive speed of the model bacterium converges to the rigid model as
the stiffness of the flagellum increases. In this model bacterium, the physical
parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π, akE = 1,NS = 30 and

NB = 180. There is no hook in this model bacterium, but it is assumed
that the first segment of the flagellum is straight and the helical shape of
the flagellum starts after the first segment. In order to align the flagellum
axis with the cell body axis, amplitude envelope growth rate kE is used to
describe the flagellum shape. In fact, the bacterium configuration in this
simulation is according to Higdon’s model [46] with minor differences in
connecting the flagellum to the cell body. . . . . . . . . . . . . . . . . . . . 148

B.2 Convergence of the numerical method with respect to the cell body mesh
refinement for a bacterium with flexible flagellum swimming in free space and
constant motor speed. The steady-state progressive speed, U , increasingly
converges to its most accurate value. The speeds in this graph are scaled
by the value obtained at the finest mesh (Ns = 480), Ufine. In this model
bacterium, the physical parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π,

akE = 1, NS = 30 and kF = 3. In order to align the flagellum axis with the
cell body axis, amplitude envelope growth rate kE is used to describe the
flagellum shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

B.3 Convergence of the numerical method with respect to the flagellum mesh re-
finement for a bacterium with flexible flagellum swimming in free space and
constant motor speed. The steady-state progressive speeds, U , which are
scaled by the value obtained at the finest grid, are reported in the different
numbers of the segments on the flagellum. Unlike Fig. B.2, the progressive
speed decreasingly converges to its most accurate value. In this model bac-
terium, the physical parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π,

akE = 1, NB = 180 and kF = 3. In order to align the flagellum axis with
the cell body axis, amplitude envelope growth rate kE is used to describe
the flagellum shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

xx



B.4 Convergence of the numerical method with respect to the cell body and
flagellum meshes refinement. The steady-state progressive speeds, U , which
are scaled by the value at the highest refinement level 6, are presented in
the different levels of the flagellum and cell body meshes refinement. The
number of segments and the element at each level of refinement are described
in Tab. B.1. For the refinement level 3 and more the error is less than 1.5%.
The model bacterium has a flexible flagellum and swims in free space with
a constant motor speed. The physical parameters are defined as l

R
= 5,

ε
R

= 0.02, p
a

= 2π, akE = 1 and kF = 3. In order to align the flagellum
axis with the cell body axis, amplitude envelope growth rate kE is used to
describe the flagellum shape. . . . . . . . . . . . . . . . . . . . . . . . . . 151

B.5 Test for the time step independency of the numerical scheme developed in
this thesis. The progressive speeds of the model bacterium are calculated
explicitly using the forward Euler method with different time steps. The
convergence of the absolute error is shown in the log-log scale. The absolute
error is defined as δ = |U−U ref |; where U ref is the progressive speed obtained
at the finest time step ∆ tfine = 6 × 10−8. In the studied model bacterium,
the physical parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π, akE = 1,

NB = 180, NS = 30, ∆ tcoarse

∆ tfine
= 100 and kF = 3. In order to align the

flagellum axis with the cell body axis, amplitude envelope growth rate kE is
used to describe the flagellum shape. . . . . . . . . . . . . . . . . . . . . . 152

B.6 Impact of the ratio of the twisting stiffness GJ to the bending stiffness EI of
the flagellum on the progressive speed of the model bacterium. The steady-
state progressive speeds of the model bacterium in free space and constant
motor speed are calculated using different ratios Υ for the flagellum. These
speeds are scaled by the value obtained at the case with Υ = 1 (as a reference
ratio used in this thesis). In smaller ratios (Υ < 0.2), the twisting of the
flagellum changes the effective amplitude and the number of turns along the
flagellum, and therefore, the progressive speed decreases. In higher ratios,
the swimming properties remain fairly constant. In this model bacterium,
the physical parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π, akE = 1,

NB = 180, NS = 30 and kF = 3. In order to align the flagellum axis with
the cell body axis, amplitude envelope growth rate kE is used to describe
the flagellum shape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

xxi



B.7 Impact of the regularization parameter ε
R

on the progressive speed of the
model bacterium. The steady-state progressive speeds of the model bac-
terium in free space and constant motor speed are calculated using different
regularization parameters ε

R
for the flagellum. These speeds are scaled by

the value obtained at the case with ε
R

= 0.02 (as a reference regularization
parameter used in the verifications). In smaller regularization parameters
( ε
R
< 0.05), the progressive speed’s dependency on the regularization pa-

rameter is considerable. In this model bacterium, the physical parameters
are defined as l

R
= 5, p

a
= 2π, akE = 1, NB = 180, NS = 30 and kF = 3. In

order to align the flagellum axis with the cell body axis, amplitude envelope
growth rate kE is used to describe the flagellum shape. . . . . . . . . . . . 154

B.8 Impacts of the regularization parameter (A), the number of the flagellum’s
segments (B), and the flagellum’s stiffness (C) on the largest time step ∆ tmax

fine

for ensuring the solution stability. The graphs are plotted in the log-log scale
and the data points are obtained manually by increasing the time step with
increments of 10−8 until the largest value in which the solution is numerically
stable. We decide on the stability of the solution by checking the obtained
results in the first 100 steps. The obtained results indicate that the time
step required to solve the stiff ODEs (discussed in section 2.7) significantly
depends on the regularization parameter ( ε

R
) and the number of segments on

the flagellum (Ns). The time step is less sensitive to the flagellum stiffness
(kF), comparatively. In the uniflagellated model bacterium with a flexible
flagellum, the physical parameters are defined as l

R
= 5, p

a
= 2π, akE = 1,

NB = 180, NS = 30 and kF = 3. Obviously, the parameter that varies at
each graph is not fixed at the given value. In order to align the flagellum
axis with the cell body axis, amplitude envelope growth rate kE is used to
describe the flagellum shape. . . . . . . . . . . . . . . . . . . . . . . . . . 155

xxii



List of Tables

3.1 Physical properties of the model bacterium . . . . . . . . . . . . . . . . . 51

3.2 Escaping angles of the pusher-mode bacterium in different initial conditions
and NaCl concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Parameters defining the shape of the biflagellated model bacterium and
simulation settings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Comparing the swimming features of three model bacteria which differ in
terms of number and types of the flagella. . . . . . . . . . . . . . . . . . . 80

4.3 Comparing the swimming features of the puller-pusher model bacterium in
different flagella stiffness . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Comparing the swimming features of the puller-pusher model bacterium in
different flagella orientations . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.5 Comparing the swimming features of the puller-pusher model bacterium in
different flagella positions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.6 Comparing the swimming features of the puller-pusher model bacterium in
different motors torques ratio. . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Physical and mechanical properties of the multiflagellated model bacterium. 99

5.2 The steady-state swimming properties of the multiflagellated model bacteria
in different flagellar arrangements. . . . . . . . . . . . . . . . . . . . . . . 105

5.3 The hook’s buckling thresholds in four different anchoring points of the
flagellum on the cell body. The hook is unstable in the lower bound of each
interval and is stable in the upper bound. . . . . . . . . . . . . . . . . . . 108

xxiii



5.4 Swimming properties of multiflagellated model bacterium with Star arrange-
ment before and after the reversal of one of the three motors. The physical
properties of the model bacterium are described in Tab. 5.1. . . . . . . . . 114

B.1 Mesh refinement level for convergence test . . . . . . . . . . . . . . . . . . 147

xxiv



Chapter 1

Introduction

Microorganisms have prominent roles in ecosystems. They break down complex compounds
into more basic and usable molecules, eliminate other organisms’ waste products, adjust
the level of nutrients in the environment, etc. They directly or indirectly impact human
health and welfare. While pathogenic microorganisms are responsible for many diseases and
death, some other microorganisms carry out some processes in agriculture, food industries,
and energy systems which have immense value to human society [5, 36, 72, 101].

1.1 Motivations

Some evidence indicates that most bacteria behave differently in their natural habitat and
nutrient-rich media in laboratories. In nature, some kinds of bacteria form sessile mi-
crocolonies, where an extensive glycocalyx protects the bacteria against the antibacterial
agents. In contrast, they do not follow their routine methods in microcolonies formation as
they are tested in laboratories. In particular, their colicin sensitivity, antibiotic suscepti-
bility, mating ability, etc. change in the nutrient-rich media where the competitive natural
environment and its challenges are removed. In this regard, doing numerical studies are
more affordable than recreating the natural environment to understand bacterial behavior
better. Definitely, these investigations improve our understanding of the effects of several
physical and geometrical parameters on bacterial behavior and significantly decrease the
number of experiments required to be carried out in the laboratory or nature to discover
the microorganisms world [15, 26, 69].

Positive and negative impacts of bacteria on human life have spurred interest in devel-
oping practical techniques to culture, sort, and purify the bacteria for various purposes or
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fight against them. A deep understanding of bacterial behavior including their locomotion
in bounded and unbounded environments facilitates the development of these techniques.
Below, some beneficial and harmful effects of bacteria on human life are reviewed. In ad-
dition, recent development in designing and fabricating microrobots inspired by bacteria,
and using the bacteria for biomedical applications are discussed.

Biofilms, which are the result of bacteria colonization, cause major problems in many
industries [111]. Some food industries including brewing, dairy processing, fresh produce,
poultry, and red meat processing are faced with this problem, for example. In particular,
biofilm formation on equipment and work surfaces could lead to some serious hygiene prob-
lems and product spoilage. The microorganisms in the biofilm, facilitate the equipment
corrosion by increasing the rate of chemical and biological reactions as well [111]. The
thick biofilms reduce the efficiency of heat exchangers by preventing convection from the
surfaces. It is estimated that the cost related to the heat exchangers biofouling alone in the
UK is £ 300-500 million per year [32]. Regularly cleaning and replacing the tanks, pipes,
and heat exchangers are the only practical solutions against biofilms in many industries.
Biofouling on hulls of ships increases the drag force and accelerates metal corrosion and
causes considerable economic losses for the transportation industry every year. Other in-
dustry sectors including refinery, power generation, etc. are also affected by the destructive
effects of biofilm growth.

Today, approximately 45 percent of all nosocomial infections arise from implant devices.
Defense systems of living cells usually eliminate bacterial colonization and contamination,
but the implant surfaces as an external object are vulnerable to bacterial colonization. The
contaminated implants can cause chronic infection or tissue necrosis which are extremely
resistant to antibiotics and persist until the contaminated implant is removed [100]. Si-
multaneously, the biofilms on the implant surfaces provide a desirable environment for
other kinds of harmful microbes to grow and be released into the body. In this regard,
the interaction between the swimming bacteria and the surfaces is the first step in the
formation of biofilm. For this reason, examining their behavior in this step, especially the
hydrodynamic attraction between the swimming cells and the surfaces, sheds light on the
main reasons and aspects of biofilm development. Then, more effective solutions against
biofilm formation and its destructive consequences are achievable.

Designs of many swimming micro- and nanoscale robots are inspired by the microor-
ganisms’ structure. The design of these tiny robots requires a swimming mechanism that
operates at low Reynolds numbers, hence they should execute a non-reciprocal motion
to be able to swim and overcome the viscous forces. Like the microorganisms, these mi-
croscale swimmers are powered by chemically driven motors, otherwise, external stimuli,
such as ultrasonic or magnetic fields have been proposed as alternatives. These controllable
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Figure 1.1: Artificial bacterial flagella under low-strength rotating magnetic fields can be
used for drug delivery [91]. Reprinted from Sensors and Actuators B: Chemical, Vol 196, Famin Qiu,

Rami Mhanna, Li Zhang, Yun Ding, Satoshi Fujita, and Bradley J Nel- son, Artificial bacterial flagella

functionalized with temperature-sensitive liposomes for controlled release, Pages 676-681, Copyright (2022),

with permission from Elsevier (License Number: 5396640965689).

machines enable us to get access to additional locations in the human body not possible
before. Therefore new diagnoses and treatments become achievable by employing them.
The microrobots have enormous potential for a variety of applications including directed
drug delivery (Fig. 1.1), sensing of biological targets, detoxification, and also precision
surgery [102, 64]. Interestingly, using live bacteria to implement some biomedical tasks
had optimistic results. In this regard, Felfoul et al. used M. marinus bacteria to deliver
a drug to tumor regions under magnetic field guidance. They showed that this method of
drug delivery significantly improves the therapeutic index. These kinds of applications are
not limited to magnetotactic bacteria (MTB); naturally non-magnetic microorganisms can
also be directed by magnetic field after incorporation of magnetic particles ([84, 4]). In
all the mentioned applications, the competition between the hydrodynamic forces and the
external stimuli (magnetic field in the last example) has an important role in directing the
microswimmers toward the target, so discovering the different aspects of these interactions
facilitates the development of the swimmer microrobots.

Separating, sorting, and purifying some specific species of bacteria are inseparable parts
of their applications in medicine, agriculture, industry, etc. Recently and for these pur-
poses, several microfabricated devices have been designed and employed to separate some
bacteria with specific features from the other microorganisms. As an illustration, the bacte-
ria hydrodynamic entrapment near the surfaces offer interesting ways to manipulate them.
It has been shown that motile Escherichia coli bacteria can be separated from non-motile
cells by using a series of funnel walls between two or more reservoirs [41]. In another ex-
perimental study, a combination of ratcheting microchannels is used to sort E. coli by the
cells’ lengths [50]. Indeed, designing and fabricating such devices are not possible without
a better understanding of the hydrodynamic interactions between the surfaces and the
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bacteria.

Many pathogenic bacteria that cause disease in plants, animals, and humans are motile
and use flagella to move. In these bacteria, motility is a key factor in the life cycle,
especially in the initial phase of the infection. Some experimental studies have shown that
Helicobacter species should have a complete motility organelle to initiate and develop an
infection, for example. In this regard, some other observations have shown that H. mustelae
and H. pylori mutants lacking flagella are completely unable to colonize [51].

All in all, studying the locomotion of the flagellated bacteria behavior not only sheds
light on different aspects of their life (which can be used to control their harmful effects
and maximize the benefits) but also provides inspiration to design artificial microrobots
and microdevices.

1.2 Bacteria overview

According to the ribosomal RNA sequences, living cells phylogenetically can be classi-
fied into three major groups: Bacteria, Archaea and Eukarya. As shown in Fig. 1.2,
Prokaryotes which include Bacteria and Archaea have a simpler structure than Eukaryotes
which are fundamental units of animals, plants and fungi. In this figure, Prokaryotes are
placed at the top and separated by a circular arc from the other microorganisms. The
groups of microorganisms possessing flagella are within the central circle, and the flagel-
lated Prokaryotes (including flagellated bacteria) are inside the overlap seen in the figure.
Prokaryotes cell size varies from 0.1-0.2 µm to more than 50 µm in diameter and can be
more than 0.5 mm in length [72]. Some specific species of flagellated bacteria as sub-group
of Prokaryotes are the topic of interest in this thesis. Swimming flagellated bacteria have
one or several flagella protruding from the cell membrane. Length, composition, and ar-
rangement of flagella on the bacteria differ among species. In monotrichous (uniflagellated)
bacteria, a flagellum is mainly attached to one end of the cell body, whereas in peritrichous
(multi-flagellated) bacteria, the flagella can protrude from anywhere around the cell body.
The rotation mechanism of each flagellum is almost the same among the monotrichous and
peritrichous bacteria but their swimming mechanisms are completely different.

Monotrichous bacteria swim forward and backward by reversing the rotation direction
of the flagellum from clockwise (CW) to counterclockwise (CCW) and vice versa. In
this regard, the observations have illustrated that the monotrichous bacteria reorient by
exhibiting different kinds of instabilities in the flagellar hook (universal joint which connects
the flagellar motor to the flagellar filament) [115]. On the other hand, peritrichous bacteria
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Figure 1.2: A general overview of microorganisms. Reproduced from [65]. Copyright 1976 Society

for Industrial and Applied Mathematics. Reprinted with permission. All rights reserved.

mainly use bundling of flagella and tumbling to move in a specific direction or change their
orientation, respectively [30].

As shown in Fig. 1.3, the flagellum structure consists of three different parts: a basal
body, a hook, and a filament. The basal body is embedded in the inner membrane and
forms the base of the flagellum. It includes four rings in gram-negative bacteria and two
stacked rings in gram-positive bacteria which encompass a relatively rigid straight rod
that connects the motor to the hook. The rotation of the flagellum is generated by a
rotary motor that belongs in the basal body. In this regard, the motor power comes from
the ion motive force in which the ion translocation (usually H+ and/or Na+) through a
transmembrane stator induces the central rod rotation [78].
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The hook that connects the central rod to the flagellar filament and transmits the
torque, is composed of a special protein called hook protein [125]. A unique structure
of this protein allows the hook to be more flexible than the filament. The level of hook
flexibility is important because its deformations and instabilities play a prominent role
in the locomotion of uni and multiflagellated bacteria. Particularly, the hook bending
in peritrichous bacteria allows the flagella to bundle together and push the cell body
forward [80]. On the other hand, the uniflagellated bacteria benefit from the specific
structure of the hook to exhibit buckling instability and change the swimming direction.
The hook’s buckling leads to a misalignment between the cell body and the filament axes
and results in a reorientation of the cell body [115]. In addition to the hook stiffness, its
length can also affect the stability of bacterial locomotion. A longer/more flexible hook
buckles more easily and causes buckling instability, whereas a shorter/stiffer hook is not
flexible enough to act as a universal joint [78].

Figure 1.3: Structure of bacterial flagellum with a rotary motor embedded in the inner
membrane. Adapted from Yamaguchi et al. (2021), Structure of the molecular bushing of the

bacterial flagellar motor [129].

The flagellar filament is relatively flexible and forms the main part of the flagellum. Ex-
perimental measurements have demonstrated that the flagellar filaments are longer (≈ 50
times) and stiffer (≈ 100-1000 times) than the hook and are mostly helical in uni and
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multiflagellated bacteria [78, 115]. For example, some measurements on E. coli and S.
typhimurium have shown that the helical filament length and diameter are approximately
5-10 µm and 20 nm, respectively; and the properties are almost uniform along the fila-
ment [125]. Since the filament sub-units, called Flagellin, are not identical among the
bacteria, the filament stiffness varies among the species [78].

Observations show that some motile bacteria tend to adhere to surfaces and establish
microcolonies. The attachment to a surface becomes possible by using some protein fibrils
called fimbriae, and/or nonfibrillar substances or secreting extracellular materials called
Glycocalyx. Fimbriae protrude from the surface of most gram-negative bacteria and have
adhesion which enables the bacteria to stick to the surfaces [125]. When the bacteria adhere
to a surface, they start to grow and divide. During this process, the exuded polysaccharides
and lipopolysaccharides (LPS) on the cell walls provide a permeability barrier especially
for hydrophobic compounds (e.g. antibiotics, bile salts, hydrophobic dyes, etc.) [72]. By
continuous division and joining to the microcolony, the bacteria develop a biofilm which is
resistant to antibacterial chemicals and organisms.

1.3 Bacterial locomotion and flagellar arrangements

1.3.1 General experimental observations and modeling

Analysis of microscopic organisms’ swimming in a viscous fluid began with Taylor [117,
118]. He noted that the stresses due to the viscosity on the microorganisms’ bodies are
many thousands of times greater than inertia. By ignoring the inertia effect, he described
the different forces acting on microorganisms’ bodies and employed Slender Body Theory
(SBT) [16, 44] to calculate their magnitudes. Gray and Hancock [43] first implemented
Resistive-Force Theory (RFT) to calculate the hydrodynamic forces along the tail of a
spermatozoon of Psammechinus miliaris. RFT and SBT are closely related and use the
slenderness of the flagellum to reduce the object to a one-dimensional structure [110].
Many studies [20, 55, 65, 46] have used these theories and published their analytical and
numerical results for a microswimmer with a spherical cell body and helical or sinusoidal
flagella in the unbounded viscous fluid. These theories are successful in the prediction of
microswimmers’ dynamics in unbounded fluids except where the hydrodynamic interactions
between different parts of the microswimmer are considerable because the theories ignore
such interactions.

Phan-Thien et al. [89] used the boundary-element method (BEM) to model the motion
of a microswimmer with an ellipsoidal cell body and a rigidly rotating helical flagellum.
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There was a good agreement between their results and Higdon’s [46] who used SBT. In 2001,
Fujita and Kawai [40] used BEM and performed an optimization on the parameters which
represent the cell body and the flagellum shape. The numerically optimized architecture
had a good agreement with the shape of typical bacteria except for the flagellum cross-
section shape. These results imply that the shape of actual microorganisms is close to
optimal in terms of power efficiency.

As already mentioned, each bacterial flagellum is driven by an independent rotary
motor. Several experimental studies [17, 18] have been done to uncover the characterization
of the flagellar motors. In this respect, the torque-speed curve of the E. coli ’s flagellar
motors indicates that depending on the motor’s speed, the torque decreases gradually to a
certain value and then drops to zero. For this reason, in many numerical simulations done
to study the locomotion of this bacteria in low and medium speeds [80, 95, 96], the motor
torque is assumed to be constant. In this thesis and depending on the bacteria species,
we assume that the motor torque is constant or dynamically varies with the motor speed.
However, some experimental studies [17, 73, 77] have shown that environment temperature
and intracellular pH can change the motor’s torque-speed curve. As a result, the constant
torque or speed assumption is only valid in a short range of the environment temperature
and the intracellular pH.

Experimental observations have shown that biofilm is formed when the bacteria sense
that environmental conditions are suitable for life on surfaces. For instance, E. coli K-12
and Vibrio cholera form biofilm in the environment where enough amino acids resources
exist; whereas P. aeruginosa and P. fluorescens do under any conditions. The first step
of biofilm formation consists of cell-cell and cell-surface interactions, and it is the most
important and complex stage in the transition from a planktonic mode to a community-
based mode [83]. Consequently, understanding the bacteria behavior in this step paves
the way for finding effective protection against the biofilm. The motile bacteria’s role in
biofilm formation has directed recent scientific research toward studying bacterial locomo-
tion either near surfaces or in confined spaces. Berke et al. [9] observed a strong increase of
E. coli concentration at the boundaries when they deposited a uniform distribution of the
cells between two glass plates. They theoretically demonstrated that the hydrodynamic
interactions of cells and the boundary redirect the cells’ orientation to the parallel with the
surface where the cells are being attracted. Li et al. [62] observed a heavy accumulation
of Caulobacter crescentus (mutant cells to swim exclusively forward (pusher mode)) near
a surface when they deposited the cells on a glass slide. They reported that collisions
between the cells and the surface cause the cells to be aligned parallel to the surface. They
also found that the cells only spend a brief time close to the surface and do not follow a cir-
cular trajectory; hence the biofilm formation chance becomes low. Unlike the mutant cells,
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they observed that the wild-type cells follow a circular path and be trapped by the surfaces
when they move backward (puller mode). Lopez and Lauga [71] theoretically indicated
that both slippery and non-slippery rigid surfaces reorient the bacteria parallel to the wall,
but the direction of the circular orbits is different in these surfaces. Nevertheless, some
experimental observations showed that both clockwise (CW) and counterclockwise (CCW)
directions are seen near the slippery boundaries. Further investigations [61] indicated that
some particles and surfactants in the swimming medium can change the boundary condi-
tion on slippery surfaces and reverse the rotation direction. These polymers can even alter
the rotation direction close to non-slippery boundaries.

Observing the swimming patterns of M. marinus, P. putida and V. fischeri near a flat
surface has had interesting results. Lin’s observations [67] showed some circular trajectories
for P. putida; these kinds of trajectories have been previously reported for peritrichous
bacteria such as E. coli [59] and monotrichous bacteria like Caulobacter crescentus [63].
Several experiments have shown that all these species are hydrodynamically attracted to
the surfaces, therefore a correlation between the exhibiting circular trajectories and being
trapped to the surfaces is conceivable. Next, he found that V. fischeri ’s swimming pattern
is more random than M. marinus and P. putida. It swims at a constant speed in a straight
line and then stops for a long period of time. He hypothesized that van der Waals and
electrostatic forces may be the reason for such behavior. His observation on M. marinus
indicated that this bacterium prefers to swim in straight trajectories with a high constant
speed and fewer turns in the bulk, but it reduces the speed and turns away at the side
boundaries.

Besides the experimental studies, some models have been introduced to investigate
the microorganisms’ behavior near surfaces or through confined environments. In 1995,
Reynolds [98] developed Taylor’s model to study an infinite waving sheet’s behavior near
a wall and between two parallel walls. His results indicate that the propulsive speed, first,
rises slightly and then drops as the swimmer (the waving sheet) approaches the wall. Katz
and Blake [53] found approximate resistance coefficients for slender bodies near a plane
and between two parallel planes. These coefficients can be used in RFT to calculate the
hydrodynamic forces on the microorganisms’ flagella.

In 2009, Smith and Blake [114] tried to mathematically model the spermatozoa’s ten-
dency to swim near a surface. They used SBT and the boundary integral method to
calculate the hydrodynamic forces on the cell body and the flagellum, respectively. As
a study case, they showed the surface accumulation behavior of sperm cells. They also
demonstrated that the sperm cell’s size and shape are key factors in their tendency to
swim near surfaces. Ramia et al. [93] used BEM to model the motion of slender and sphere
bodies near a planar boundary. They compared their results with exact analytical solutions
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and also SBT results and found an excellent agreement. They then applied their model to
simulate the swimming of a microorganism with a spherical cell body and a rotating rigid
flagellum. They investigated its swimming behavior near a planar boundary and between
two parallel surfaces. Their results indicate less than 10% increase in the swimmer’s mean
speed which arises from the flagellar propulsive advantage near a solid boundary. Like
many other studies, they also showed that the model bacterium moves on a circular path
when it swims near a planar surface. In this regard, Frymier et al. [39] suggested that
hydrodynamic interactions alone can not explain the bacteria’s tendency to remain near
the surfaces. They calculated the interaction potential energy, consisting of electrostatic
repulsive and van der Waals attractive potentials, between the solid planar surface and
the bacterium, then showed that this potential is minimum when the bacterium swims
adjacent to the surface. As a result, it is concluded that the interaction potential might
also play a role in trapping the cells close to the surfaces. A few years later, experimental
observations by Vigeant et al. [123] refuted this argument. They observed two distinct
behaviors of E. coli close to a planar surface: some motile bacteria which swim on a cir-
cular path and some non-motile bacteria. By this observation, they found that the motile
bacteria are too distant from the surface to be affected by electrostatic interactions; there-
fore, the hydrodynamic interaction draws the cells to swim along the surface. In fact, the
electrostatic interactions are only responsible for the adhesion of non-motile bacteria.

In the current thesis, we will study the locomotion of uni-, bi- and multiflagellated
bacteria separately. In studying the behavior of uniflagellated bacteria we will mainly
focus on Vibrio alginolyticus. For the biflagellated and multiflagellated bacteria, we will
mainly explore the locomotion of Magnetococcus marinus and Escherichia coli. For this
reason, we review the experimental and theoretical findings specific to these different groups
of bacteria.

1.3.2 Uniflagellated bacteria

Monotrichous bacteria, such as Vibrio alginolyticus, have a single flexible flagellum that
mainly extends from one pole of the cell body. The flagellum is approximately helical and
is connected to the cell body via a very flexible and short hook. Previous experimental
observations of monotrichous bacteria locomotion show that the bacteria move forward and
backward by rotating the flagellum in two opposite directions, and changing the swimming
orientation by buckling the hook [115, 126].

V. alginolyticus is one of many gram-negative bacteria. It can live and grow in the
highly salted (with concentrations of 10%) marine environment. V. alginolyticus is known
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as one of the pathogenic bacteria in humans since it may cause eye, ear, and wound
infections [97]. Clinical data show that many patients suffering from this kind of infection
have already been in contact with the seawater at the beaches. This species also lives in
the bodies of animals such as pufferfish, where it produces the potent neurotoxin [70].

Whereas the flexibility of the hook and flagellum plays a subtle role in the movement of
monotrichous bacteria, there are several studies that model their locomotion by assuming
that the hook and flagellum are rigid. Shum et al. demonstrated that the hydrodynamic
interactions of uniflagellated bacteria and a surface may cause the bacteria to become
trapped in circular paths. Furthermore, their results indicated that the bacteria’s tendency
to swim close to the surfaces and their stable distances strongly depend on the cell body
shape and the flagellum length [110]. They also showed that the uniflagellated bacteria are
still attracted to a surface and exhibit stable periodic orbits when they swim between two
parallel surfaces or at the corner of a rectangular channel [109, 108]. Even though these
results are consistent with the experimental observations in some aspects, their model is
unable to disclose the effects of the swimming speed, and hook/flagellum stiffness on the
bacterial behavior.

To study the effects of hook bending on monotrichous bacteria motility, Shum and
Gaffney assumed that a spherical rigid cell body is connected to a rigid flagellum via
a naturally straight and flexible hook. Unlike the most common models in which an
amplitude envelope factor is described to connect the flagellum to the cell body, in this
study the hook joins tangentially to the helical flagellar filament. They found that effective
swimming is possible if the hook stiffness and its length belong in specific intervals at a
given motor torque. In addition, they indicated that steady swimming of the bacteria near
a surface is very sensitive to hook rigidity, cell body, and flagellum shapes [107]. Park
et al. revealed more details about the dynamics of the monotrichous bacterial flagellum
by studying the instabilities of a flagellum with and without a hook. They demonstrated
that a flexible rotating rod can get into three dynamical states: stable twirling, unstable
whirling, and stable overwhirling, depending on physical properties like rotation frequency
and filament stiffness. In addition, and in order to model the flagellum flick observed in
V. alginolyticus, they assumed that motor reversal causes the hook to get into the relaxed
mode in which the hook acquires smaller stiffness and becomes susceptible to buckling.
In this regard, they calculated the buckling angle for different relaxed bending moduli
by assuming that the hook remains in the relaxed mode for 0.03 seconds. It should be
emphasized that even though the hook elastic properties change by the hook’s load in
their model, it is assumed that the bending moduli are constantly minimal during the flick
state, independent of the hook’s load, curvature, and twistness [86]. By adding a spheroidal
cell body to the flagellum, they completed their model and reported the hook stiffness and
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the rotation frequency critical thresholds for buckling instability. By assuming that the
hook is in a relaxed mode for a short period of time, they investigated the effects of the
hook stiffness and the rotation frequency on the buckling angles [88]. In another study,
Park et al. numerically simulated the locomotion of a uniflagellated bacterium with a rigid
cell body and a flexible flagellum close to a planar surface. They studied the influences
of geometrical parameters, rotation frequency, and flagellum stiffness on the swimming
features of the model bacterium [87].

Experimental observations of the locomotion of V. alginolyticus in a chemically ho-
mogeneous medium and near a source of attractant have underpinned that it executes a
three-step strategy (forward, reverse and flick) to migrate. Moreover, the flagellar flicking
is only seen in the transition from backward (puller mode) to forward (pusher mode) swim-
ming. There is no flagellar instability in the transition from forward to backward swim-
ming, and for this reason, this transition is three times faster than backward-flick-forward
one [127]. Son et al. quantified the flagellar flicking process by imaging the locomotion
of V. alginolyticus. They demonstrated that reorientation of the cell body occurs 10 ms
after the onset of forward swimming. In addition, they measured the hook’s bending stiff-
ness in both relaxed and loaded states by applying thermal fluctuations. In this regard,
their measurements indicate that the loaded hook is approximately 6 times stiffer than
the relaxed hook and this difference likely initiates the flagellar flicking. In particular, the
hook unwinds on motor reversal and becomes susceptible to buckling. After the flagellar
flicking, the hook is loaded and stable forward swimming is achieved [115].

In modeling of V. alginolyticus it is mainly assumed that the motor applies either
constant torque or speed to the flagellum. However, Sowa et al. [116] demonstrated that
the torque generated by the V. alginolyticus ’s motor increases with NaCl concentration in
the swimming medium. Moreover, the rotation rate of the motor is inversely proportional to
the motor load. Motivated by the conclusions of Sowa et al., we use three different torque-
speed relationships for three levels of NaCl concentrations (50, 10 and 3 mM) to actuate
the flagellar motor in simulating the locomotion of V. alginolyticus. In another study, the
entrapment of three different strains of V. alginolyticus near surfaces is experimentally
studied by Wu et al. [126]. They found that the cells can be entrapped near a surface in
both puller and pusher modes. However, the entrapment behavior strongly depends on
the cells’ swimming speeds controlled by sodium concentration in the aqueous medium.
Investigating the behavior of V. alginolyticus near a surface, in either puller or pusher
modes and in different levels of NaCl concentrations is another aim of the present study.
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1.3.3 Biflagellated bacteria

As already stated, the interest in using bacteria or fabricating bacterium-mimicking mi-
crorobots has grown in recent years [64, 36]. In this regard, magnetotactic bacteria (MTB)
are of particular interest since they can be steered by applying external magnetic fields.
Among the magnetotactic bacteria, Magnetococcus marinus (MC-1) is commonly studied
and its biomedical applications for drug delivery have already been examined [36]. One
of the striking differences between the M. marinus and widely studied bacteria, such as
E. coli, is that M. marinus has two sheathed bundles of flagella on one side of the cell
body. Each bundle is composed of seven flagellar filaments and many fibrils enveloped in
a sheath. This structure of two bundles allows the bacteria to swim at speeds of up to
500 µm s−1 [6]. Magnetosomes, intracellular structures containing iron sulfide or iron oxide
nanoparticles, allow M. marinus to navigate by the Earth’s magnetic field [74].

Whereas the locomotion of uniflagellated bacteria has been well studied and, in many
cases, a uniflagellated model adequately reproduces behavior in experiments even with
multi-flagellated bacteria [108, 88, 87, 119], more specialized models are required to under-
stand bundling, wrapping, and other complex phenomena with multiple flagella [37, 23, 80].
The unusual morphology and swimming style of M. marinus warrants further study. In
earlier theoretical studies of M. marinus, it is assumed that the two flagellar bundles are
behind the cell body and their synchronous rotations push the cell forward. Based on this
assumption, the model bacterium swims in a relatively straight trajectory in the absence
of a magnetic field [106]; it exhibits helical motion when a magnetic field is applied [130].
These results are inconsistent with some experimental observations [6], indicating that
M. marinus travels along a double helical trajectory in the absence of magnetic field ef-
fects. Numerical simulations based on the Stokesian dynamics simulation method showed
that such a double helical trajectory can be produced if one of the flagellar bundles pushes
the cell while the other pulls.

Yang et al. [130] numerically and experimentally studied the effects of an external mag-
netic field on the locomotion of M. marinus. In their model, two rigid helical flagella push
forward a prolate spheroidal cell body containing a magnetosome chain in a specific align-
ment. They employed resistive force theory (RFT) to model the hydrodynamic interactions
and showed that there is a good agreement between the numerical and experimental results
as they apply a wide range of magnetic fields for different inclinations of magnetic moment.

Shum [106] used a boundary element method (BEM) to simulate the motion of a model
bacterium with two rigid pusher flagella near a surface. He found that placing the two
flagella far apart reduces the cell body rotation rate. This could help the bacterium to
move faster and achieve a better alignment with an external magnetic field. In addition, he
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showed that the position and orientation of the flagella are two main factors that determine
the bacterium’s behavior in remaining trapped at a solid surface or escaping back to the
bulk fluid.

Mohammadinejad et al. [74] developed a model based on Stokesian dynamics and Kirch-
hoff’s rod model to investigate the locomotion of an MTB with a flexible pusher flagellum
and spherical cell body in the presence of an external magnetic field. They focused on the
response of MTB to the reversal of the external magnetic field and found that the diameter
of the U-turn and the turning time are smaller for stronger magnetic fields. Moreover, they
noted that the model bacterium undergoes a double helical motion when, simultaneously,
the magnetic field is strong and the angle between the flagellum axis and the magnetic
moment is large enough.

1.3.4 Multiflagellated bacteria

Peritrichous and monotrichous motile bacteria have different swimming mechanisms. In
E. coli as a peritrichous bacteria, the hydrodynamic interactions between the flagella can
lead to flagellar bundling, when all motors rotate CCW. It is discovered that the hydro-
dynamic interactions between the helical flagella are sufficient to induce the attraction
and synchronize the flagella if they have sufficient flexibility [56, 94]. A switch in the
rotation direction of any of the motors causes the bundled configuration to unravel and
the cell begins to change orientation unpredictably, known as tumbling. Measurements
have demonstrated that the duration of the “run” state (i.e. forward swimming) in E. coli
swimming in bulk fluid is approximately 1s, whereas tumbling takes only 0.1s to be com-
pleted [75, 35]. In this regard, several experimental observations have reported that the
averaged angle of change in the swimming direction of E. coli after a tumbling event is
about 57◦ [121, 120].

In 2005, Flores et al. [37] employed regularized Stokeslets and Rotlets to model the
hydrodynamic interactions among the three flagella and used a network of elastic springs
to describe the flagella deformation. Since the modeling of the flagella is done by discrete
points, they define a repulsive force to prevent the flagella from crossing each other. Reigh
et al. [95] used a combination of molecular dynamic simulation (MD) and multiparticle
collision dynamics (MPC) to simulate the bundling process of the flagella. They reported
that increasing the number of flagella at a fixed radius decreases the bundling time. Huang
and Jawed [49] numerically investigated the bundling behavior of two flexible filaments
rotating close to each other. They concluded that the propulsive force decreases as the
filaments are brought closer during the bundle formation. Kanehl et al. [52] numerically
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investigated the swimming of multiflagellated bacteria by using BEM. They assumed that
the cell body is a rigid ellipsoid and the flagellar filaments are rigid helices suspended on
flexible hooks. They showed that flagellar bundling is possible with rigid filaments. They
noted that the propulsive efficiency, defined as a function of swimming speed, increases by
the number of flagella. In contrast, the energetic efficiency decreases. They also indicated
that the cell body counter rotation and the number of flagella facilitate the bundling of
flagella by decreasing the processing time.

Nguyen and Graham [80] numerically investigated the uni- and multiflagellated bacte-
rial locomotion in an unbounded viscous fluid. They used SBT to compute the hydrody-
namic forces on the swimmer and applied Kirchhoff’s classical theory to model the flagella
deformations. They investigated the possibility of stable swimming and bundle formation
in different stiffness of the hook and the filaments. Finally, they found that the range of
stiffness for stable swimming strongly depends on the number of flagella. In other words,
they showed that a specific hook and filament’s stiffness which leads to stable swimming
in a biflagellar swimmer might cause an unstable motion in a quadriflagellar swimmer.

Following some experimental observations [54, 47], Liu et al. [68] studied the impacts of
an upcoming fluid flow on run and tumble behavior of wild-type E. coli. They numerically
and experimentally showed that the imposed fluid flow affects the bacteria behavior by
decreasing the tumbling time and increasing the run time. In another study, Qu et al. [92]
numerically and experimentally studied the effects of the fluid viscosity on the behavior
of E. coli. They noted that bundling time and skewness of the speed distribution increase
with the viscosity whereas the average swimming speed decreases.

Molaei et al. [75] experimentally showed that within 20 µm of a surface, the tumbling
behavior of E. coli is suppressed by 50%. Their results also illustrate that the mean
run time near the surfaces is approximately two times longer than the bulk fluid and
its swimming speed during the run is 9% higher. The high viscous forces due to a no-
slip boundary are responsible for these differences. In other experimental observations, it
is demonstrated that E. coli swims in a circular trajectory when it is close to a planar
boundary [8]. In this respect, by employing RFT and simulating the locomotion of E. coli,
it is confirmed that the cells exhibit circular trajectories near solid surfaces [58]. Watari
et al. [124] used the bead-spring model to reproduce the experimentally observed behavior
of E. coli including the flagella bundling, tumbling, and polymorphic transformation. They
showed that a flagellum polymorphic transformation enhances the cell body reorientation
during the tumbling.

Clopes et al. [21] studied the impacts of flagellar arrangement on the swimming speed
and the bundle formation in peritrichous bacteria. They compared three helical, ring, and

15



random anchoring patterns and found that regular patterns (helical, ring) do not provide
any advantages in terms of the swimming speed in comparison with the random pattern,
but they lead to single-bundle configuration.

1.4 Outline of the thesis

This thesis is comprised of six chapters. In chapter 1, we introduce the morphology of the
flagellated bacteria as a subgroup of the microorganisms. Then, we describe the motiva-
tions and the reasons behind the investigation of bacterial locomotion. since we separately
focus on the behavior of the uni, bi-, and multiflagellated bacteria, the literature review
has three sub-sections for each group of bacteria.

In chapter 2, we describe our model and present the governing equations including
hydrodynamic, elasticity, kinematics, force and torque balance equations, etc. In this
chapter, we explain how we discretize the cell body surface and the flagella into some curved
triangular elements and straight segments. In the rest of the chapter, we employ several
numerical techniques to evaluate the relevant equations and speed up the calculations. At
the end, we verify our model by comparing the obtained results with other analytical and
numerical studies.

Chapter 3 is dedicated to investigating the locomotion of uniflagellated bacteria in
unbounded fluid and near a planar surface. We mainly focus on the locomotion of V. al-
ginolyticus and quantitatively shed light on the differences between the pusher and puller
modes. We then investigate the effects of different physical parameters including hook/flagellum
rigidity, cell body aspect ratio, initial condition, ions concentration, etc. on the tendency
of the bacteria to swim close to the planar surfaces. At the end, the obtained results are
compared with the experimental measurements.

Motivated by the experimental observation of MC-1, we dedicate chapter 4 to studying
the locomotion of a biflagellated model bacterium with a spherical cell body and puller-
pusher flagella. We examine how the bacteria migrate with puller-pusher flagella and why
the bacteria move along a double-helical trajectory. Next, we investigate the effect of the
flagella rigidity, the position and/or orientation of the flagella, and the motor torque ratio
on the properties of the helical trajectory. We also show how overwhirling of the pusher
flagellum changes the swimming characteristics. In the rest of chapter 4, we demonstrate
how an external magnetic field is employed to direct the magnetotactic bacteria in a de-
sirable direction. At the end, we compare the obtained results with the experimental
measurements to shed light on the morphology of MC-1.
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In chapter 5, we look into the behavior of multiflagellated bacteria by focusing on
the swimming properties and the flagellar bundling. We specifically examine how the
flagella arrangement and hook/flagella rigidity change the peritrichous bacteria’s trajectory,
swimming speed, and bundling time of the flagella. We show that the tumbling event may
cause the bacteria to switch between the first and second stable swimming modes. In
the rest of the chapter, the impacts of a planar surface on the swimming properties are
explored. At the end, the variation of the translational and rotational speeds of the model
bacteria with respect to the width of a rectangular confined channel is investigated.

Chapter 6 summarizes the methodology and results of the thesis, and also provides
suggestions for future works.
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Chapter 2

Governing Equations and Numerical
Methods

2.1 Introduction

In the last four decades, the boundary element method (BEM) has been a powerful nu-
merical technique to address a variety of complicated problems in science and engineering.
The ability of the method in solving problems with complex geometry in an efficient way is
one of the advantages of this method which has made it more popular over the traditional
methods [90] such as Resistive Force Theory (RFT), Slender Body Theory (SBT), etc.
The complexity of the bacteria geometry encourages us to employ this method to model
the hydrodynamic interactions in the swimming of bacteria. Implementation of BEM in
our framework has four steps: deriving the boundary integral equations, discretizing the
swimmer surfaces into triangular elements and straight segments, approximating the inte-
grals over the elements, and solving the boundary integral equations. In this respect, the
weak singularity that exists in the fundamental Stokes solution forces us to employ the
regularized Stokeslet approach in evaluating the integral along the flagella [24]. The image
system for the Green’s function, which is introduced by Blake [13] and developed by Cortez
et al. [25, 3], is used here to model the hydrodynamic interactions near a planar surface. In
our framework, we combine these methods with the standard Kirchhoff rod model to track
the deformations of the rotating flagella in the viscous fluid. At the end, we construct a
system of linear equations by including the kinematic and force/torque balance equations
and solve it for the velocity vectors to update the bacterium configuration accordingly. In
this chapter, we derive these equations and explain the numerical techniques utilized in
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our framework.

2.2 Hydrodynamic equations

Brownian motion might pose a challenge in the modeling of bacterial locomotion, but
findings of Dusenbery and Slovak et al. [34, 113] show that the effects of the Brownian
motion are negligible for microorganisms with lengths of at least 1.73 µm. In this thesis,
all the studied bacteria meet this condition so those effects will be neglected in the proposed
model.

In modeling of the bacterial locomotion, the Reynolds number is very small (≈ 10−5 −
10−4). Consequently, the inertia term in the Navier-Stokes equation is neglected and the
hydro-dynamic interactions are governed by the incompressible Stokes equations:

−∇p+ µ∆~u+ ~Fb = ~0, (2.1)

∇ · ~u = 0, (2.2)

where µ is the fluid viscosity, p is the fluid pressure, ~u is the fluid velocity, and ~Fb is
the force per unit volume applied to the fluid by the immersed body. In our model, the
bacterium exerts a distribution of viscous stress ~fB over the surface B of the cell body
(3D spherical or spherocylindrical cell body) and distributions of the viscous stress ~fF and
viscous torque ~nF along the centerlines of the flagella Γ(i).

In a Lagrangian description, the elastic filaments Γ(i), which rotate and deform in time,
and the cell body B are represented by a three-dimensional space curve ~γ(s, t) and surface
~Ψ(θ, φ, t), respectively. The variables s, θ, and φ are respectively material coordinates
along the filament (initialized as arclength) and the cell body surface, and t is time. To

ease the presentation, we let the variables ~fF(s, t), ~nF(s, t), and ~γ(s, t) denote the respective
quantities for all flagella with the understanding that the integral over Γ(i)(i = 1, 2, · · · , NF)
involves the variables associated with the respective flagellum. Using these definitions, the
body force ~Fb is written as:

~Fb(~x, t) =

∮
B

~fB(θ, φ, t)δ(~x− ~Ψ(θ, φ, t))dA(θ, φ) +

NF∑
i=1

∫
Γ(i)

~fF(s, t)δ(~x− ~γ(s, t))ds

+

NF∑
i=1

1

2
∇×

∫
Γ(i)

~nF(s, t)δ(~x− ~γ(s, t))ds, (2.3)
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where NF denotes the number of flagella in the model bacteria. The evaluation point ~x
can be anywhere in R3 including the model bacterium surface. To represent the flagella
thickness and avoid the singularity to enhance the stability of the solution, we use regular-
ized stokeslet formulation for the flagella. For this reason, we replace the delta function (δ)
with cut-off functions ψε and Φε in the integrals. The radially symmetric cut-off functions
approximate the delta function in three dimensions, and have the following property:∫

R3

ψε(~x)d~x =

∫
R3

Φε(~x)d~x = 1. (2.4)

Following Park et al. scheme [87], we choose cut off function Φε to regularize the rotlet
and ψε to regularize the other kernels. These functions are defined as:

ψε(~x) =
15ε4

8π(‖~x‖2 + ε2)7/2
, (2.5)

Φε(~x) =
3ε2

4π(‖~x‖2 + ε2)5/2
, (2.6)

where we assume that εF = d
2

to represent the effective flagellum radius. The idea behind
employing two different cut-off functions is related to applying the image system. In fact,
the different decay rates of the two functions are necessary for finding combinations to
exactly cancel out on the wall and satisfy the boundary conditions in the image system.
terms [25, 3].

The solution for the Stokes equation with the body force Eq. 2.3 can be written as the
boundary integral equation (see ref. [87, 24] for more details):

~u(~x, t) =

∮
B

~Us(~fB, ~rB, εB)dA(θ, φ) +

NF∑
i=1

∫
Γ(i)

[
~Us(~fF , ~rF , εF ) + ~Ur(~n,~rF , εF )

]
ds, (2.7)

where ~rB = ~x− ~Ψ(θ, φ), ~rF = ~x− ~γ(s) are respectively the vectors from points on the cell

body and flagella to the evaluation point ~x. In this equation, ~Us(~f, ~r, ε) and ~Ur(~n,~r, ε) are
respectively the velocities at the relative position ~r from a regularized stokeslet of strength
~f and a regularized rotlet of strength ~n, with regularization parameter ε, given by the
formulas [82]:

~Us(~f, ~r, ε) =
1

8πµ

[
~fJ1(r, ε) +

(
~f · ~r

)
~rJ2(r, ε)

]
, (2.8)

~Ur(~n,~r, ε) =
1

8πµ

[1

2
P (r, ε)

(
~n× ~r

)]
, (2.9)
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where r = |~r|. The other functions in Eqs. 2.8-2.9 are defined as below:

J1(r, ε) =
2ε2 + r2

(r2 + ε2)3/2
, (2.10)

J2(r, ε) =
1

(r2 + ε2)3/2
, (2.11)

P (r, ε) =
5ε2 + 2r2

(r2 + ε2)5/2
. (2.12)

It is worth mentioning that the regularized stokeslet formulation is only used for flagella,
and that is because we approximate the surface integral over the flagellum with a line
distribution of forces and torques along the centerline. Such integrals are singular when
the evaluation point is also on the centerline; therefore, regularization is required here to
evaluate the velocity field on the flagellum and the regularization parameter corresponds
to the effective radius of the flagellum. On the other hand, the weakly singular forms of
the boundary integral equations are evaluated over the cell body surface, as explained in
section 2.4; in other words, it is assumed that εB = 0 in the presented equations. Therefore,
functions in Eqs. 2.10-2.12 take a simple form in terms of rB for the cell body.

By taking curl of the flow velocity, the angular velocity equation is obtained and sim-
plified in the following form:

~w(~x, t) =
1

2
∇×~u(~x, t) =

∮
B

~Ws(~fB, ~rB, εB)dA+

NF∑
i=1

∫
Γ(i)

[
~Ws(~fF , ~rF , εF ) + ~Wr(~nF , ~rF , εF )

]
ds,

(2.13)

where ~Ws and ~Wr are respectively the angular velocities of the regularized stokeslet and
rotlet, given as:

~Ws(~f, ~r, ε) =
1

8πµ

[1

2
P (r, ε)

(
~f × ~ri

)]
, (2.14)

~Wr(~n,~r, ε) =
1

8πµ

{
−1

4

[
K3(r, ε)~n+K4(r, ε)

(
~n · ~r

)
~r
]}
. (2.15)

The functions K3(r, ε) and K4(r, ε) are also defined as:

K3(rε) =
−4ε2 + 2r2

(r2 + ε2)5/2
, (2.16)

K4(rε) =
−6

(r2 + ε2)5/2
. (2.17)
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Figure 2.1: The image system to satisfy no-slip boundary condition on the planar boundary.
An image point across the planar boundary is considered to satisfy this condition. The
point force and torque are applied at ~x0 and the image point associated with ~x0 = (x0, y0, h)

is ~̂x0 = (x0, y0,−h). ~x is the evaluation point of the velocity and angular velocity fields.

The translational and angular velocities of the regularized stokeslet and rotlet developed
thus far are based on Green’s function in the absence of any boundary. In this thesis, we
study bacterial locomotion near a planar surface as well. Therefore, a revised version of
Green’s function is required to satisfy the no-slip boundary condition on the plane bound-
ary. In this regard, the image system is employed here to enforce this boundary condition
into the model. The idea behind the image system is to assume an image point across the
planar boundary (see Fig. 2.1), apply the singular solutions of the Stokes equations at that
image point, and use the linear combination of the singular solutions for the real point
and its image, so that the flow velocity becomes zero at the wall. Following the scheme of
Cortez et al. [24], the translational and angular velocities at the evaluation point ~r due to

a regularized stokeslet and rotlet (i.e. ~Us, ~Ur in Eqs. 2.8-2.9 and ~Ws, ~Wr in Eqs. 2.14-2.15)
in the image system are revised as:
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~Us(~f, ~r, ~̂r, ε) =
1

8πµ

{[
~fJ1(r, ε) +

(
~f · ~r

)
~rJ2(r, ε)

]
−
[
~fJ1(r̂, ε) +

(
~f · ~̂r

)
~̂rJ2(r̂, ε)

]
+ h2

[
−
(
~b · ~̂r

)
~̂rK2(r̂, ε)−~bK1(r̂, ε)

]
+ 2h

[(
~b · ~e3

)
~̂rJ2(r̂, ε)

+
(
~̂r ·~b

)
~e3

(
J3(r̂, ε)− J2(r̂, ε)

)
+
(
~̂r · ~e3

)
~bJ2(r̂, ε)

+
1

2

(
~̂r · ~e3

)(
~̂r ·~b

)
~̂rK2(r̂, ε)

]
+ 2hJ3(r̂, ε)

(
~m× ~̂r

)}
, (2.18)

~Ur(~n,~r, ~̂r, ε) =
1

8πµ

{
1

2

[
P (r, ε)

(
~n× ~r

)
− P (r̂, ε)

(
~n× ~̂r

)]
+ h
[
~pK1(r̂, ε) +

(
~p · ~̂r

)
~̂rK2(r̂, ε)

]
−
[[(

~p · ~̂r
)
~e3 +

(
~e3 · ~̂r

)
~p
]
J3(r̂, ε) +

(
~e3 · ~̂r

)(
~p · ~̂r

)
~̂rK2(r̂, ε)

]
− J3(r̂, ε)

(
~q × ~̂r

)
+ h2 J4(r̂, ε)

(
~n× ~̂r

)
− h
[
~pJ3(r̂, ε) +

(
~e3 · ~̂r

)(
~n× ~̂r

)
J4(r̂, ε)

]}
, (2.19)

~Ws(~f, ~r, ~̂r, ε) =
1

8πµ

{
1/2
[
P (r, ε)

(
~f × ~r

)
− P (r̂, ε)

(
~f × ~̂r

)]
+ h2J4(r̂, ε)

(
~b× ~̂r

)
+ h
[
K2(r̂, ε)

− J4(r̂, ε)
](
~b · ~̂r

)(
~e3 × ~̂r

)
+ h

[
~m
[
r̂2J4(r̂, ε) + 2J3(r̂, ε)

]
− J4(r̂, ε)

(
~m · ~̂r

)
~̂r

]
+ hP (r̂, ε)~m

}
, (2.20)
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~Wr(~n,~r, ~̂r, ε) =
1

8πµ

{
−1

4

[
K3(r, ε)~n+K4(r, ε)

(
~n · ~r

)
~r −K3(r̂, ε)~n−K4(r̂, ε)

(
~n · ~̂r

)
~̂r
]

+
(
~p · ~̂r

)(
~e3 × ~̂r

)
+

1

2

[
J4(r̂, ε)−K2(r̂, ε)

](
~e3 · ~̂r

)(
~p× ~̂r

)
− hJ4(r̂, ε)

(
~p× ~̂r

)
− 1

2

[
r̂2J4(r̂, ε) + 2J3(r̂, ε)

]
~q +

1

2
J4(r̂, ε)

(
~q · ~̂r

)
~̂r

− h

2

[[
r̂2J5(r̂, ε) + 3J4(r̂, ε)

](
~e3 · ~̂r

)
~n− J4(r̂, ε)

[(
~n · ~e3

)
~̂r +

(
~p× ~̂r

)]
− J5(r̂, ε)

(
~e3 · ~̂r

)(
~n · ~̂r

)
~̂r

]
+
h2

2

[
~n
[
2J4(r̂, ε) + r̂2J5(r̂, ε)

]
− J5(r̂)

(
~n · ~̂r

)
~̂r

]}
, (2.21)

where ~̂r connects the image point to the evaluation point and

~b = 2(~f · ~e3)~e3 − ~f, (2.22)

~m = ~f × ~e3, (2.23)

~p = ~n× ~e3, (2.24)

~q = ~n− (~n · ~e3)~e3, (2.25)

J3(r, ε) =
−3ε2

(r2 + ε2)5/2
, (2.26)

J4(r, ε) =
15ε2

(r2 + ε2)7/2
, (2.27)

J5(r, ε) =
−105ε2

(r2 + ε2)9/2
, (2.28)

K1(r, ε) =
−10ε4 + 7ε2r2 + 2r4

(r2 + ε2)7/2
, (2.29)

K2(r, ε) =
−21ε2 − 6r2

(r2 + ε2)7/2
. (2.30)

2.3 Elasticity

In our model, the flagella are flexible filaments rotated by independent motors, and their
shapes and positions change over time. Generally, a time-dependent curve in a three-

24



�

�
� �, )

�
�
,�
) �

�

�1(�, �)

�2(�, �)

Figure 2.2: Configuration of a space curve as the flagella centerline.

dimensional space can be defined by a continuously differentiable vector-valued function
γ [19]:

γ : I × R+ ⊂ R× R+ → E3. (2.31)

This function maps any open interval I ∈ R into Euclidean space E3 at time t. In fact,
for each s ∈ I the vector ~γ(s, t) gives the position of the point specified by s at t. We
assume that the parameter s represents the arc length and the curve ~γ(s, t) is a regular
curve, i.e. ~γ′(s, t) 6= 0 (derivative with respect to s). By this definition, the unit tangent
vector to the curve ~γ is ~τ(s, t) = ~γ′(s, t) for any s ∈ I.

To describe the orientation of the material points in the cross-section of flagella at s,

we need to introduce a right-handed orthonormal frame
{
~D1(s, t), ~D2(s, t), ~D3(s, t)

}
which

specifies the orientation at each s, as shown in Fig. 2.2. Since the flagella in our model are
inextensible, unshearable, we assume that ~D3(s, t) is always the tangent vector to the curve

γ [i.e. ~D3(s, t) = τ(s, t)] to simplify the model. As we move along the arc-length s the

frame
{
~D1(s, t), ~D2(s, t), ~D3(s, t)

}
changes smoothly with respect to a frame {~e1, ~e2, ~e3}.

In this regard, the evolution of
{
~D1(s, t), ~D2(s, t), ~D3(s, t)

}
with respect to the arc-length

s and time t can be found by [42]

~D′i(s, t) = ~κ(s, t)× ~Di(s, t), (2.32)

~̇Di(s, t) = ~ω(s, t)× ~Di(s, t). (2.33)

Where (′) and ( ˙) stand for derivatives with respective to arc-length and time, respectively,
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Figure 2.3: The cell body surface is covered by curved triangular elements. Each triangle
element is defined by three nodes at the vertices and three nodes at the middle of the edges

and ~κ(s, t) and ~ω(s, t) are the twist and spin vectors.

The hydrodynamic forces exerted on the flagellar filaments deform the flagella out of
their static equilibrium configurations. To model the deformations, we use the standard
Kirchhoff rod model and assume that the flagella are inextensible, unshearable, and only
allowed to bend and twist. If the centerline of the flagella at the rest configuration is
represented by the space curve ~γ(s), and the orientation of the local orthonormal triads

is denoted by the twist vector ~̂κ(s), based on the linear theory of elasticity, the internal

moments ~N(s, t) transmitted along the flagella can be computed by

~N(s, t) = EI
[
(κ1(s, t)−κ̂1(s)) ~D1(s, t)+(κ2(s, t)−κ̂2(s)) ~D2(s, t)+Υ(κ3(s, t)−κ̂3(s)) ~D3(s, t)

]
,

(2.34)
where ~κ(s, t) = (κ1, κ2, κ3) is the twist vector at point s and time t, and Υ = GJ

EI
is the

ratio of twisting stiffness GJ to bending stiffness EI. In this thesis, we assume that the
flagella are homogeneous, isotropic and Υ = 1[87, 88].

2.4 Discretization

To evaluate the boundary integral equations (i.e. Eqs. 2.7 and 2.13) over the cell body
surface (B), a finite number (NB) of triangular elements is generated on the cell body
surface. To yield better accuracy, a tessellation of curved triangles is used to cover the
cell body surface, where six nodes are required to construct an element. Three nodes are
vertices and the other three nodes are in the middle of the three edges (see Fig. 2.3).
We aim to use the Gauss-Legendre quadrature method to evaluate the integrals over the
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Figure 2.4: Each triangular element on the cell body is mapped to a right-angled isosceles
in ξ − η parameter space. Gauss points on a standard triangle are used to describe the
distribution of the force densities on the elements. The force and torque densities along
each segment of the flagella are distributed according to Gauss-Legendre abscissas.

elements. In this regard, we fit a quadratically varying force density on each triangular
element and map the surface of the triangles to a right-angled isosceles in ξ− η parameter
space, following Pozrikidis’s scheme [90]. In this scheme, the mapping from the physical
elements to a standard element is mediated by:

~x =
6∑
i=1

~xiφi(ξ, η). (2.35)

where φi(ξ, η) are the cardinal interpolation functions defined as:

φ2 =
1

1− α1

ξ(ξ − α1 +
α1 − α2

1− α2

η),

φ3 =
1

1− α3

η(η − α3 +
α3 + α2 − 1

α2

ξ),

φ4 =
1

α1(1− α1)
ξ(1− ξ − η),

φ5 =
1

α2(1− α2)
ξη,

φ6 =
1

α3(1− α3)
η(1− ξ − η),

φ1 = 1− φ2 − φ3 − φ4 − φ5 − φ6, (2.36)
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and

α1 =
1

1 + |~x4−~x2|
|~x4−~x1|

, α2 =
1

1 + |~x6−~x3|
|~x6−~x1|

, α3 =
1

1 + |~x5−~x2|
|~x5−~x3|

. (2.37)

If ~x4, ~x5 and ~x6 are located at the middle of the edges then α1 = α2 = α3 = 0.5 and φi(ξ, η)
are simplified to:

φ1 = (1− ξ − η)(2− 2ξ − 2η − 1), φ2 = ξ(2ξ − 1), φ3 = η(2η − 1),

φ4 = 4ξ(1− ξ − η), φ5 = 4ξη, φ6 = 4η(1− ξ − η). (2.38)

Unlike a flat triangle, the surface metric at a point on the curved surface is not constant
and is calculated by:

hs(ξ, η) = |~eξ × ~eη| =
∣∣∣∣∂~x∂ξ × ∂~x

∂η

∣∣∣∣ . (2.39)

At the end, the integral of the function g(~x) (here ~Us, ~Ws) over a curved triangular CT
element is given by: ∫

CT

g(~x)dA(~x) =

∫ 1

0

∫ 1−ξ

0

g[~x(ξ, η)]hs(ξ, η)dη dξ. (2.40)

The force densities ~f appear in the integrand of all the integrals over the curved triangles.
We can assume that the force density quadratically vary with respect to the local triangle
and use the same interpolation functions φ(ξ, η) to approximate it as before. Therefore,
the jth component of the force density at each element can be written as:

f (j)(ξ, η) =
6∑
i=1

f
(j)
i φi(ξ, η), (2.41)

where f
(j)
i is the jth component of the force density at the ith evaluation point of a

triangular element.

Each hook and filament in our model is respectively discretized into NH and NS con-
nected equal-length straight rods called segments. We assume that the stokeslet and rotlet
vary along each segment, and a second-order polynomial interpolation is employed to ex-
press the stokeslet/rotlet strengths along a segment in terms of the nodal force/torque
densities at the evaluation points, located at the middle and ends of each segment (blue
points in Fig. 2.4).
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2.4.1 Gaussian quadrature method

According to the Gaussian quadrature method the integral of a function g(x) over the
range [−1, 1] is approximated by:∫ 1

−1

g(x)dx ≈
NQ∑
q=1

g(xq)ωq, (2.42)

where we evaluate the function at NQ Gauss-Legendre abscissas denoted by xq and use
appropriate weightings for each evaluation. Table of Gauss-Legendre abscissas (xq) and
weightings (ωq) can be found in [31].

By scaling the interval length, this method can be used for more general intervals. In
one-dimensional integrals, the scaling can be done in the following form:∫ au

al

g(x)dx ≈ au − al
2

NQ∑
q=1

g(xq)ωq, (2.43)

where xq = au+al
2

+ xqn · au−al2
, xqn and ωq are standard Gauss-Legendre abscissas and

weightings. In this thesis, we use this method to evaluate the boundary integral equations
over each segment of the flagella.

Similarly, the integral of a function g(~x) over a standard triangle ∆ = {(ξ, η)|ξ ≥ 0, η ≥
0, ξ + η ≤ 1} is approximated by:∫

∆

g[~x(ξ, η)]dA ≈ 1

2

NQ∑
q=1

g[~x(ξq, ηq)]ωq, (2.44)

where the function g(~x) is evaluated at NQ quadrature points (ξq, ηq) and multiplied by
the corresponding weightings ωq. The table of the pairs (ξq, ηq) and weightings ωq for
triangular quadrature scheme is available at [33]. In order to evaluate the integral over a
general triangular element, it is necessary that the surface of the triangle is mapped to a
right-angled isosceles in ξ − η parameter space.

The first integral in Eq. 2.7 is weakly singular when the evaluation point ~x lies on
the body B due to the singularity of the kernels Eqs. 2.10, and 2.11 when r = 0 and
ε = 0. This motivates us to distinguish between non-singular boundary elements of B and
singular elements of B In particular, when the evaluation point (blue points in Fig. 2.4) lies
on a triangular element we evaluate the integral over, that element is known as singular.
Otherwise, the element is non-singular. We apply different numerical schemes to each
group of triangles, to resolve the singularity and yield better accuracy.
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2.4.2 Non-singular triangle

We use the triangular quadrature scheme to integrate the non-singular curved triangles
(CT ). In this regard, the two-dimensional integrals are approximated by:∫

CT

g(~x)dA(~x) =

∫ 1

0

∫ 1−ξ

0

g[~x(ξ, η)]hs(ξ, η)dη dξ ≈ 1

2

NQ∑
q=1

g(~xq)hs(ξ
q, ηq)ωq. (2.45)

In this expression, the value of function g(~x) (~Us and ~Ws in boundary integral equations)
is evaluated at the qth quadrature point, and each contribution to the quadrature is scaled
by hs reflects the transformation from the curved elements to the standard triangle (i.e.
~xq → [ξq, ηq].

2.4.3 Singular triangle

When ~Us and ~Ws are evaluated at the evaluation points (blue points in Fig. 2.4), they
exhibit O(1

r
) singularities, where r represents the distance from a stokeslet to an evaluation

point. This singularity is due to the characteristic of the Green’s function in solving
Laplace’s equation in three dimensions.

Suppose that the singularity is lied at one vertex, say ~x1, of the curved triangle. Without
loss of generality, we can assume that this vertex corresponds to the vertex η = ξ = 0 in
the standard triangle. After the transformation to the standard triangle, we change the
coordinate system to polar. With our assumption, the integral over a curved triangle can
be written in the following form:

I =

∫
CT

q(~x)

r(~x)
dA, (2.46)

where r(~x) = |~x − ~x1|. If we transform the integral into the standard triangle, we obtain
the following double integral:

I =

∫ 1

0

∫ 1−ξ

0

hs(ξ, η)q(~x(ξ, η))

r(~x(ξ, η))
dηdξ. (2.47)

By change the coordinate system to polar, and defining ξ = ρ cos(θ) and η = ρ sin(θ), the
integral can be expressed as:

I =

∫ π
2

0

∫ R(θ)

0

hs(ρ, θ)q(~x(ρ, θ))

r(~x(ρ, θ))
ρ dρdθ, (2.48)
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whereR(θ) = 1/[cos(θ)+sin(θ)]. In Eq. 2.48, the inner and outer integrals can be accurately
computed by two sequential Gauss-Legendre quadratures in one dimension. In this regard,
the distribution of ρ and θ is required to be based on standard Gauss-Legendre abscissas in
the standard triangle. According to this distribution, many numbers of the stokeslets are
located close to the evaluation point which increases the accuracy of the integration over
the singular elements (see Fig. 2.5A). By applying these rules, the integral is approximated
by:

I =
π

8

NQ∑
i=1

ωi

cos(θi) + sin(θi)

NQ∑
j=1

ωj(
hijs ρ

ij

rij
)qij, (2.49)

where

θi =
π

4
(1 + xi), (2.50)

ρij =
1

2[cos(θi) + sin(θi)]
(1 + xj), (2.51)

xi,xj, ωi and ωj are standard Gauss-Legendre abscissas and the corresponding weightings.
If the original element is a standard triangle, then r and ρ can be canceled out from the
numerator and denominator of the integrand, and therefore the singularity disappears. In
a general triangular element, the ratio (hijs ρ

ij/rij) is about unity as long as the quality of
the meshing on the cell body is good. Therefore, we do not have a large numerical error
due to the integrand singularity.

If the singularity is located at a point on the edge, the element is divided into four
descendant triangles as shown in Fig. 2.5B. In this division, one element 4○ is a non-singular
element, and three other elements ( 1○- 3○) are singular. Depending on the condition, the
schemes mentioned above are applied to each sub-triangle separately.

2.4.4 Construct a system of linear equations

As stated so far, we apply the Gauss-Legendre quadrature method to evaluate the boundary
integral equations (Eqs. 2.7,2.13 ) over the cell body and along the flagella. Moreover, we
use the proper interpolation functions to express the stokeslets and rotlets at the Gauss
points along the segments in terms of the force/torque densities at the evaluation points.
If we let NPB

denote the number of evaluation points (blue points in Fig. 2.4) on the cell
body and NPF

= 2(NH +NS)+1 denotes the number of evaluation points on each flagellum,
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Figure 2.5: A) If the singularity is at a vertex of a singular element, the integral is trans-
formed into the polar coordinate to yield better accuracy. B) If the singularity is at a point
on the edge, the element is divided into four descendant triangles which results in three
singular elements and one non-singular element.

the boundary integral equations 2.7 and 2.13 can be summarized as:

~u1
...

~uNPB
+NF·NPF

~ω1
...

~ωNF·NPF


=

[
A1

A2

]


~f1
...

~fNPB
+NF·NPF

~n1
...

~nNF·NPF


, (2.52)

where ~ui is the translational velocity of ith evaluation point on the cell body and flagella,
and ~ωj is the angular velocity of jth evaluation point on the flagella. A1 and A2 are
dense matrices with dimensions of 3(NPB

+ NF · NPF
) × 3(NPB

+ 2NF · NPF
) and 3(NF ·

NPF
)× 3(NPB

+ 2NF · NPF
) constructed based on the coefficients in Eqs. 2.7 and 2.13, the

mapping and the interpolation matrices. Constructing the matrices A1 and A2 is the most
time-consuming process in our numerical scheme at each time step. In this process, the
pairwise distances between all the evaluation points and the stokeslets, and subsequently
the kernels of the boundary integral equations are calculated. The computational cost of
this process quadratically increases with the product of the number of evaluation points
and the number of stokeslets.
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2.4.5 Discretization of channel walls

To study the locomotion of the model bacteria inside a rectangular channel, we need to
discretize the four walls of the channel and evaluate the boundary integral equations over
the channel surfaces in addition to over the bacteria components. In this respect, the
surface of the walls is covered by flat triangular elements and the singular form of the
boundary integral equations are evaluated over them. Moreover, the edges of the channel
are filleted to maintain a continuously varying normal vector. This avoids singular solutions
of the stokeslet distribution, which may reduce the results’ accuracy. A mesh gradient is
defined along the channel to reduce computational costs. In the gradient, the grids away
from the bacterium are coarse and the grids close to the cell body are fine.

The channel is stationary with respect to the model bacterium (zero velocity), but
depending on the position of the model bacterium at each time step, we move the channel
in ~X direction to ensure that the closest regions to the bacterium have always fine grids.
In addition to the ~X direction, we have defined gradients in ~Y and ~Z directions such that
the center of the gradient is updated by the position of the model bacterium in YZ plane.
This adaptive meshing method is a great way to ensure accuracy by guaranteeing that
the surfaces close to the bacterium are covered by fine grids. Some stokeslets with zero
velocity on the channel walls reflect the walls’ effect on the model bacterium and the fluid
flow inside the channel. The schemes used to evaluate the integral over the elements on
the walls are exactly the same as the cell body’s schemes. The only difference is that the
elements on the cell body have unknown transnational velocities, whereas the velocity of
the elements on the walls are always zero. Consequently, equation 2.52 is modified to:

~u1
...

~uNPB
+NF·NPF

~01
...

~0NPW

~ω1
...

~ωNF·NPF


=

[
A1

A2

]


~f1
...

~fNPB
+NF·NPF

+NPW

~n1
...

~nNF·NPF


, (2.53)

where NPW
represents the number of the evaluation points on the walls. The dimensions

of matrices A1 and A2 change to 3(NPB
+NPW

+NF · NPF
)× 3(NPB

+NPW
+ 2NF · NPF

)
and 3(NF · NPF

)× 3(NPB
+NPW

+ 2NF · NPF
), respectively.
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Figure 2.6: The surface of the rectangular channel is covered by flat triangular elements.
The adaptive meshing method is employed to reduce the computational cost and maintain
the accuracy of the numerical solution.

2.4.6 Discretization of flagella

We discretize each hook and filament into NH and NS segments, respectively, by introducing
uniform intervals ∆sH = lH/NH and ∆sF = (l − lH)/NS of the Lagrangian variable s. The
length of the hook is lH and the total length of the flagellum (hook and filament) is l.

Following the scheme presented in section 2.3, the triads ~D
(i)n

î
(n = 1, 2, ..., NH + NS,

î = 1, 2, 3, i = 1, ..., NF), which are updated over the time as the segments rotate, are
employed in our model to represent the orientation of the nth segment of the ith flagellum
(see Figs. 2.7 and 2.8). The segment with index n = NH is the last segment of the hook
and index n = NH + 1 represents the first segment of the filament. Since the segments
on the hook are identical in length, the principal square root of the rotation matrix M (i)n

that maps the triad { ~D(i)n

î
} to the triad { ~D(i)n+1

î
} is used to describe the orientation at

the joint between neighboring segments (see Fig. 2.7A). A similar technique is applied to
the segments on the filament.
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Figure 2.7: A) Positions ~γ(i)j and triads { ~D(i)j

ĵ
, ĵ = 1, 2, 3}, at two successive segments

j = n and j = n + 1 of filament i. The triad at the joint, denoted { ~D(i)n+ 1
2

ĵ
, ĵ = 1, 2, 3},

is obtained by interpolation of the triads of the neighboring segments. B) The hook,
connecting the rotor to the first segment of the filament, is discretized into NH = 2 equal-
length (∆sH) segments.

M (i)n =
3∑
î=1

~D
(i)n+1

î
( ~D

(i)n

î
)T , (2.54)

~D
(i)n+ 1

2

î
=
√
M (i)n ~D

(i)n

î
. (2.55)

By discretizing Eq. 2.34 and following Lim et al. scheme [66], the internal moments at the
joints between segments are defined by:

N
(i)n+ 1

2

î
= E%I%

 ~D
(i)n+1

ĵ
− ~D

(i)n

ĵ

∆s%
· ~D(i)n+ 1

2

k̂
− κ̂(i)n+ 1

2

î

 , (2.56)

~N (i)n+ 1
2 =

3∑
î=1

N
(i)n+ 1

2

î
~D

(i)n+ 1
2

î
, (2.57)

where subscript % = H,F distinguishes the hook from the filament (% = H for segment
indices n = 1, ..., NH and % = F for n = NH + 1, ..., NH + NS − 1); (̂i, ĵ, k̂) is any cyclic

35



permutation of (1, 2, 3); ~N (i)n+ 1
2 is the internal moment transmitted from nth to (n+ 1)st

segment of the ith flagellum; κ̂
(i)n+ 1

2

î
represents the twist vector’s îth component in the rest

configuration, and n = 1, ..., NH +NS denotes the segment number.

~N (i) 1
2 denotes the internal moment transmitted from the rotor to the first segment of

the hook. In the present scheme, the magnitude and direction of ~N (i) 1
2 are estimated by

employing a sub-iterative method (explained in section 2.7) to impose the motor torque
and satisfy the Kirchhoff rod model, simultaneously.

2.5 Kinematics

In this thesis, the model bacteria consist of one rigid spherical or spherocylindrical cell body,
and some puller and/or pusher flagella. As a sample model and in order to introduce the
different position vectors and frames used to govern the kinematic equations, a schematic
view of a model bacterium with two flagella is displayed in Fig. 2.8. The cell body has

centroid position denoted by ~X(B) and orientation described by the basis
{
~e

(B)
1 , ~e

(B)
2 , ~e

(B)
3

}
.

The first flagellum has position ~X(1) and basis
{
~e

(1)
1 , ~e

(1)
2 , ~e

(1)
3

}
, and the second one has

position ~X(2) and basis
{
~e

(2)
1 , ~e

(2)
2 , ~e

(2)
3

}
. In this study, it is assumed that all flagella have

identical physical and elastic properties and their initial and rest configurations are right-
handed helices. In the proposed model bacteria, the flagella complexes, depending on the
model, are driven by constant or variable torque motors. Let ~U (B) and ~Ω(B) denote the
translational and rotational velocity of the cell body, respectively. Let ~ω

(i)1
s represent the

angular velocity vector of the first segment of the ith flagellum relative to the cell body and
~ω

(i)n
s denote the angular velocity of the nth segment of the ith flagellum with respect to the

(n− 1)st segment, for n = 2, 3, ..., NH +NS. Then, the overall instantaneous translational

velocity of any given evaluation point ~XE on the swimmer can be written as:

~U( ~XE) =


~U (B) + ~Ω(B) ×

(
~XE − ~X(B)

)
, ~XE on cell body,

~U (B) + ~Ω(B) ×
(
~XE − ~X(B)

)
+

m∑
n=1

~ω(i)n
s × ~X

(i)n
rel ,

~XE on mth segment of ith flagellum,

(2.58)

where
~X

(i)n
rel = ~XE − ~X(i) − ~γ(i)n− 1

2 n = 1, 2, ..., NH +NS, (2.59)
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Figure 2.8: Schematic view of a model bacterium with two flagella. Several position vectors
and local frames are used to define the configuration of the bacterium

and ~γ(i)n− 1
2 is the position vector of the nth joint with respect to the flagellum fixed frame,

as shown in Fig. 2.8. The angular velocity of any given point ~XE on the flagella is written
as:

~ω( ~XE) = ~Ω(B) +
m∑
n=1

~ω(i)n
s , ~XE on mth segment of ith flagellum. (2.60)

According to Eqs. 2.58 and 2.60, the translational velocities at NPB
evaluation points on

the cell body, and the translational and rotational velocities at NF · NPF
evaluation points

on the flagella are summarized in terms of ~ω
(i)n
s , ~U (B), and ~Ω(B) in the following form:

 ~u1
...

~uNPB
+NF·NPF

 = A3

[
~U (B)

$

]
,

 ~ω1
...

~ωNF·NPF

 = A4$, $ =



~Ω(B)

~ω
(1)1
s
...

~ω
(1)(NH+NS)
s

...

~ω
(NF)1
s

...

~ω
(NF)(NH+NS)
s


. (2.61)

The matrices A3 and A4 are functions of the position vectors employed in Eqs. 2.58 and
2.60. Since the position vectors vary as the model bacterium makes a progress, these
matrices are updated at each time step.
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2.6 Forces and torques

In addition to the hydrodynamic and elastic forces and torques, steric repulsive force and
magnetic torque might be applied to the model bacteria. In particular, we apply the steric
repulsive force to avoid collisions, and the magnetic torque to model the magnetotactic
bacteria locomotion under an external magnetic field.

2.6.1 Steric repulsive force

When the flagella get close to each other and/or to the cell body, they likely collide.
Moreover, the bacteria components are susceptible to touching the surfaces as the bacteria
swim too closely. In this regard, any collision causes the model to break, therefore we apply
steric repulsive forces between the components and the wall at a short-range distance to
keep them away. As shown in Fig. 2.9, we apply these pairwise repulsive forces between
the evaluation points on the cell body and flagella.

Following [80, 1], a truncated Lennard-Jones potential is employed here to calculate the
potential energy and the corresponding repulsive forces between the nodes. Specifically,
we calculate the magnitude of the repulsive force between the ith evaluation point and
the wall by finding the derivative of the Lennard-Jones potential (U i

LJ(hi)) with respect
to the vertical distance of the point from the surface (hi). Then, this force is applied to
the point in the direction of the surface’s normal vector. In applying the repulsive force
between the bacterium components, the magnitude of the steric repulsive force between a
pair {i, j} of the evaluation points is obtained by finding the derivative of the Lennard-
Jones potential (U i,j

LJ(ri,j)) with respect to the distance between the points (ri,j). Then two
forces in opposite directions are applied to the pair such the force vectors are coincident
with the line connecting the points (see Fig. 2.9).

U i
LJ(hi) =

Fsσ

6

[( σ
hi

)12

−
( σ
hi

)6
]
H(21/6σ − hi), (2.62)

~F i
rep = −dU

i
LJ

dhi
~e3, (2.63)

U i,j
LJ(ri,j) =

Fsσ

6

[( σ

ri,j

)12

−
( σ

ri,j

)6
]
H(21/6σ − ri,j), (2.64)

~F i,j
rep = −~F j,i

rep = −dU
i,j
LJ

dri,j
~r i,j. (2.65)
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Figure 2.9: Pairwise steric repulsive forces prevent the bacteria components from touching
each other. The repulsive force is also applied between the bacteria components and the
walls.

We use a Heaviside step function H to restrict the range of the repulsive forces to distances
less than the defined threshold 21/6σ between interacting points. In these equations, σ is
the cut-off distance, and the parameter Fs is the repulsion strength. Our tests indicate
that the magnitude of the repulsion strength does not have a significant impact on the
locomotion of the flagella and cell body as long as it is large enough to avoid collisions. For
this reason, we choose a medium value for Fs which guarantees no collision. Moreover, we
choose 21/6σ fairly greater than the thickness of the filaments to ensure that the filaments
do not intersect. The values for these parameters are given in each chapter, separately.

2.6.2 Magnetic torque

In the presence of a uniform magnetic field ~B, the magnetic force on the cell body is zero
and the magnetic torque is given by [130]:

~TMag = ~MMag × ~B, (2.66)

where ~MMag is the magnetic moment of the cell body. This magnetic moment is due to
the presence of chains of magnetosomes, intracellular structures containing iron sulfide or
iron oxide nanoparticles, inside the cell body. We non-dimensionalize the magnetic torque
TMag with the motor torque in chapter 4, where the motor torque is constant.
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2.6.3 Total force and torque balance

Since bacteria swim at a low Reynolds number, the inertial term is neglected. Furthermore,
we assume that there is no gravity acting on the bacteria or the bacteria are neutrally
buoyant and the center of the mass coincides with the center of the volume. Based on these
assumptions, we impose the total torques and forces balance equations on the model [110,
106], i.e.

NB∑
n=1

∫
Bn

~fBdAn +

NF∑
i=1

NH+NS∑
n=1

∫
Γ(i)n

~fFdsn +

NPB
+NF·NPF∑
i=1

~F i
rep = ~0. (2.67)

In our model, the total force balance Eq. 2.67 includes the integrals of viscous force den-
sities over the cell body elements (first integral) and along the straight segments of the
flagella (second integral). Moreover, the steric repulsive forces applied from the wall to the
bacteria’s components are taken into account in this equation. By applying the Gauss-
Legendre quadrature method (as explained in section 2.4), these integrals are expressed in

terms of the nodal force densities at the evaluation points (i.e., ~f1, . . . , ~fNPB
+NF·NPF

).

In the torque balance Eq. 2.68, the integrals represent the total viscous torques about
the center of the cell body. The magnetic torque ~TMag, and the torques due to the steric

forces ~Trep are also added to the equation. Like the force balance equation, the torque bal-
ance equation is written in terms of the nodal force and torque densities at the evaluation
points (i.e., ~f1, . . . , ~fNPB

+NF·NPF
, ~n1, . . . , ~nNF·NPF

).

NB∑
n=1

∫
Bn

(~Ψ− ~X(B))× ~fBdAn +

NF∑
i=1

NH+NS∑
n=1

∫
Γ(i)n

( ~X(i) + ~γ − ~X(B))× ~fFdsn

+

NF∑
i=1

NH+NS∑
n=1

∫
Γ(i)n

~nFdsn + ~TMag + ~Trep = ~0. (2.68)

To complete the system of the equations, we balance the torques about each joint of the
flagella chains with the transmitted internal moment. These torque balance equations are
expressed as:

NH+NS∑
n=m

(∫
Γ(i)n

(~γ − ~γm−
1
2 )× ~fFdsn +

∫
Γ(i)n

~nFdsn + ~T (i)2n
rep + ~T (i)2n+1

rep

)
+ ~N (i)m− 1

2 = ~0,

(2.69)

where m = 1, . . . , NH + NS and i = 1, · · · , NF. In the above equation, ~T
(i)2n
rep and ~T

(i)2n+1
rep

represent the torques caused by the steric repulsive forces at (2n)th and (2n+1)st evaluation
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points of ith flagellum. In fact, the torque balance Eq. 2.69 is written for all the joints we
have on the flagella, thus NF · (NH + NS) torque balance equations are obtained in total.
These equations are also written in terms of the nodal force and torque densities at the
evaluation points on the flagella.

2.7 Overview

To sum up, substituting Eq. 2.59 in Eq. 2.52 gives 3(NPB
+ NF · 2NPF

) linear equations
in which the unknowns are the components of the nodal force and torque densities at the
evaluation points, the components of the angular velocities of the segments (3(NF · (NH +
NS)) unknowns) and the components of the cell body’s angular and translational velocities
(6 unknowns). By adding Eqs. 2.67, 2.68 and 2.69, a solvable system of linear equations
is constructed. In this thesis, mldivide solver (based on QR decomposition) in Matlab is
used to evaluate the system of the equations and determine the unknowns.

Since quaternions have a lot of advantages over rotation matrices, they are employed
in this study to transfer the parameters between the different frames of reference (Motor-
fixed, body-fixed and global). We prefer the quaternions because only 4 of 9 elements
in a rotation matrix are independent and so using the rotation matrix seems redundant.
Moreover, the geometrical interpretation of the rotational matrix is not as obvious as
the quaternion in which the rotational axis and angle can be trivially recovered. Besides
these advantages, quaternions are also more efficient and straightforward in composing a
sequence of rotations. As a brief definition, a quaternion q has four components and is
defined as the sum of a scalar part q0 and a vector part ~q,

q = q0 + ~q = q0 + q1î+ q2ĵ + q3k̂. (2.70)

By using quaternion, the rotation of a vector ~νq ∈ R3 through an angle θq about a unit
vector ~uq (as the rotation axis) is obtained by:

~Lq(~νq) = q~νqq
∗, (2.71)

where q∗ = q0 − q1î − q2ĵ − q3k̂ is the conjugate of q, and q = q0 + q1î + q2ĵ + q3k̂ =
cos θq

2
+ ~uq sin θq

2
is a unit quaternion (i.e.

√
qq∗ = 1). More details about the quaternion

algebra and their relationships with rotation matrices are available in [104, 99, 48].

If the connections between the frames are established by quaternions, the state of the
model bacteria at each time step can be represented by a state vector ~Q defined as:

~Q =
[
~X(B), q(B), q(1)1, · · · , q(1)NH+NS , · · · , q(NF)1, · · · , q(NF)NH+NS

]
(2.72)
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where q(B) represents the orientation of the cell body with respect to the global frame and
q(i)j, i = 1, · · · , NF and j = 1, · · · , NH +NS, represent the orientations of the segments of
the flagella with respect to the body frame. The state vector ~Q evolves over time according
to the system of ODEs

~̇X(B) = ~U (B), q̇(B) =
1

2
W (q(B))~Ω(B), q̇(i)n =

1

2
W (q(i)n)

n∑
j=1

~ω(i)j
s , (2.73)

where

n = 1, 2, ..., NH +NS,

i = 1, · · · , NF, (2.74)

W (q) =


−q1 −q2 −q3

q0 q3 −q2

−q3 q0 q1

q2 −q1 q0

 , (2.75)

and ~U (B), ~Ω(B), and ~ω
(i)n
s have already been determined by solving the system of linear

equations.

Combining a boundary element method with a Kirchhoff rod model to simulate the
dynamics of a flexible filament in viscous fluid leads to a stiff set of ODEs that is compu-
tationally expensive to solve using general implicit schemes. Instead, we use an explicit
multirate time integration scheme, as suggested by Bouzarth et al. [14] (without imple-
menting their proposed spectral deferred corrections). In this approach, we update the
nodal force densities and the angular and translational velocities of the cell body on coarse
time steps while nodal force and torque densities on the flagella and angular velocities of
the flagellar segments are updated on finer time steps (50-100 fine time steps per coarse
time step), as shown in Fig. 2.10.

This splitting procedure significantly decreases the computational cost because the non-
stiff cell body portion is solved less frequently. By comparing the multirate method with
simply using a single (fine) time step size in a test simulation, we found a 55% reduction in
computational time and only a 0.85% relative difference in the computed net displacement.
In fact, we divided the difference in the displacement by the net displacement).

Since we are faced with a stiff set of ODEs, computational speed is crucial in the
implementation of the numerical scheme. For this reason, we compared the computational
speeds between Python, Fortran, and Matlab and decided to choose Matlab to implement
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Figure 2.10: Each coarse time step [ti, ti+1] is split into n fine time steps [ti,m, ti,m +
∆ tfine], m = 0, . . . , n− 1.

the model. Matlab provides not only a competitive computational speed (in comparison
with Fortran) but also many built-in functions which ease the development of the code.
We used Matlab R2019b-2022b to implement the model and conduct the simulations. The
developed code is serial, and thus CPUs with higher clock speeds 2.8-3.7GHz are mainly
used to conduct the simulations. Among the several types of CPUs employed in this project,
“Intel(r) Xeon (r) gold 6244 @ 3.60GHz” and “Intel(r) core (tm) i9-10900 @3.7GHz” are
on the top of the usage list. The minimum RAM required to conduct the simulations in the
unbounded and near-wall spaces is 1.5GB. Depending on the complexity of the geometry,
the swimming space (bounded/unbounded), the stiffness of the flagella, and the duration
of the simulation, the actual simulation time varies from a few days to three months.

After proposing the current numerical scheme, we can highlight the main differences
between our scheme and the popular schemes used in the literature to simulate bacterial
locomotion. Unlike the previous schemes in which the penalty method is mainly used to
enforce the rigidity of the cell body [87, 88, 85], we already assume that the cell body is
rigid and boundary integral equations are solved over the cell body surface. In the penalty
method, a network of stiff springs is employed to enforce the rigidity, therefore very small
time steps are required to solve the resultant ODEs. Furthermore, the regularized stokeslet
is used in those schemes to model the hydrodynamic interactions between the cell body
and the surrounding fluid and it adds regularization error (O(ε) or O(ε2)) to the obtained
results, whereas we solve the singular form of the boundary integral equations over the cell
body without the regularization error.

In our numerical scheme, the flagellum complex is composed of a chain of some rigid
segments, therefore inextensibility of the flagella is already satisfied. However, very large
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stretching and shear moduli are assigned to the flagella in the previous schemes to ensure
that the flagella remain inextensible and unshearable [86, 82]. These moduli lead to smaller
time steps and increase the computational cost.

As already stated in section 2.4.6, ~N (i) 1
2 which denotes the internal moment transmitted

from the rotor to the first segment of the hook is computed using a sub-iterative method.
At the beginning of the simulations, since the first segment of the hook is aligned with the
rotor, we can take ~N (i) 1

2 = Ti~e
(i)
1 . However in the next time steps, this identity is not valid

anymore, and ~N (i) 1
2 should be computed in a way such that the motor torque constraint

and Kirchhoff rod model are satisfied at the rotor-hook joint, simultaneously. In our model,
the orientation of the rotor is determined by the axial direction ~e

(i)
1 , i = 1, · · · , NF, which

are fixed relative to the cell body frame. At the joint connecting the hook to the rotor, the
projection of the internal moment onto ~e

(i)
1 is equal to the motor torque, i.e.,

~N (i) 1
2 · ~e(i)

1 = Ti, i = 1, · · · , NF. (2.76)

In this equation, ~e
(i)
1 and Ti are known, and ~N (i) 1

2 is determined by employing a sub-iterative
method explained below.

To simplify notation in this section, we explain our model for a single flagellum and
drop indices for distinguishing between the flagella. We define the orientation vectors of
the flagellum {~e1, ~e2, ~e3}, to be those of the rotor. The rotor axis is ~e1, and is fixed in the
cell body frame. The transverse direction vectors ~e2 and ~e3 rotate about the rotor axis
with a variable rotational speed W rot that we calculate iteratively at each time step to be
consistent with the prescribed motor torque.

In our model, the rotor, denoted by superscript 0, is embedded inside the cell body
and its length is supposed to be equal to the hook’s segments. For the Kirchhoff rod
description, we adopt the common convention that the third director, ~D3, is the tangential
direction along the curve. Thus, we define the relationships for the rotor segment

~D0
3 = ~e1, ~D0

1 = ~e2, ~D0
2 = ~e3. (2.77)

At any given time, we assume that all positions and orientations of the segments are known.
The angular velocities ~ωns , n = 1, 2, .., Nfl, are determined by solving the system of linear
equations described in the main text. The orientations of segments n = 1, 2, ..., Nfl are
determined at the next time step using an explicit time integration rule. The orientation
of the rotor, however, is not updated in this manner because explicit time-stepping would
generally not satisfy the motor torque constraint Eq. 2.76, where the torque transmitted
from the rotor to the hook ~N

1
2 depends on the directors at the zeroth and first segments
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of the rod according to the Kirchhoff rod model [Eqs. 2.56-2.57 with n = 0]. Note that
this motor torque condition prescribes only the component of torque in the axial direction.
The other two components of torque are due to bending.

In our methodology, we use an iterative method to adjust ~e2 and ~e3 at each time step so
that Eq. 2.76 is satisfied. We start with an initial trial value of the rotor angular velocity
W rot equal to its value at the previous time step. We next update ~e2 and ~e3 based on
their values at the previous time step and the estimate for W rot. Then, the projection
of ~N

1
2 onto ~e1 is compared with the target value of T . According to the obtained error,

W rot is adjusted and the iteration continues so that a desirable error for the motor torque
constraint is achieved. The steps of this iterative method are presented schematically in
Fig. 2.11.
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Figure 2.11: Flowchart of the iterative method to find the rotor orientation, the motor
speed, and the internal moment at the joint connects the hook to the rotor. The rotor and
the corresponding triad are marked by blue color. The first segment on the hook is also
represented by the red dashed line.
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2.8 Verification

We begin with a comparison of numerical results from our method with those obtained
by Higdon et al. [46] to verify our boundary element method. In this test, we calculate
the swimming speed of a model bacterium with a single rigid flagellum and a spherical
cell body. The flagellum is divided into 30 and 60 segments for the shorter (l/R = 5) and
longer (l/R = 10) flagellum, respectively, and we choose the other parameters according
to Higdon’s model. As shown in Fig. 2.12, the swimming speeds of the model bacterium
for two different flagellum lengths are in good agreement with the published results.
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Figure 2.12: Comparison of the obtained results for swimming speed of a uni-flagellated
bacterium with Higdon’s. Uswim/Uw is the progressive speed non-dimensionalized by the
linear wavespeed of the flagellum. R and l are the cell body radius and the flagellum
length, respectively. Nλ represents the flagellum wavenumber.

To verify the elastic model, the equilibrium shape of a flexible filament settles in a
viscous fluid is compared with an analytical solution derived by Xu et al. [128] for the case
of small deformation amplitudes. In particular, if it is assumed that a flexible filament with
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dimensionless length 2 and a large bending modulus (3 in our test) settles horizontally under
a uniform force, by applying the force correction factor (according to the source reference)
the maximum dimensionless deflection becomes about 0.07 and so the given solution is
valid. If the filament is discretized into n = 30 segments, the relative l2-norm of the
deviation of the numerical displacements ynum from the analytical solution yan evaluated

at corresponding discrete points is El2 =
√∑n

j=1 |yan
j − ynum

j |2/
∑n

j=1 |yan
j |2 ≈ 0.022. Since

the deflection of the filament is small, the drag coefficient of the flexible filament should be
comparable with a rigid straight rod in a viscous fluid (CN = 4πµl/(ln(2l/d) + 0.5) [27]).
The minimum difference between the drag coefficients achieved in higher stiffnesses is
about 3.8%. Such a difference is reasonable because our filament has a finite length and
a relatively large thickness, whereas the mentioned formula is accurate only for very long
and thin filaments. In the last step of the numerical verification, it is verified that the
swimming speed of a uni-flagellated bacterium with a flexible flagellum converges to the
rigid model as the stiffness of the flagellum increases. In particular, if we consider Higdon’s
model bacterium with Nλ = 1 and l/R = 5, the swimming speeds of the model bacterium
with flagellum stiffnesses kf = 3, kf = 10 and kf = 15 are respectively 93.6%, 97.4% and
98.7% of the rigid model speed. It is worth mentioning that the swimming speeds of this
model bacterium with a flexible flagellum are always lower than that with a rigid flagellum.
Please see Appendix. B, for the convergence test of the numerical methods.
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Chapter 3

Locmotion of Uniflagellated Bacteria

3.1 Introduction

The hydrodynamic interactions between the bacteria living in aqueous media and surround-
ing surfaces could significantly impact bacterial locomotion. Depending on the species, the
bacteria are sometimes trapped close to the surfaces [126, 110, 87]. Entrapment of swim-
ming bacteria near surfaces may lead to some biological processes such as biofilm formation
which is a major problem in many industries and biomedical sectors [22, 100]. Finding
practical solutions against biofilm formation needs a deep understanding of the preforma-
tion stages including the hydrodynamic interactions between the bacteria and the desired
surfaces. We use our elastohydrodynamic model in this chapter to simulate the locomotion
of a uniflagellated bacterium with a flexible hook and flagellum in free and near-surface
spaces.

The vital role of hook in the locomotion of uniflagellated bacteria is experimentally and
numerically proven [115, 86, 107]. For this reason, it is expected that the hook’s stiffness,
at the rest configuration, and types of filament and cell body connection considerably
affect bacterial behavior. These effects and their importance on bacterial locomotion are
further investigated in the first part of this chapter. We use the physical properties of
V. alginolyticus to construct the model bacterium. Furthermore, we apply a dynamic
torque to the flagellum according to the torque-speed relationship obtained experimentally
for V. alginolyticus, unlike the other studies in which it is assumed that the motor applies
either constant torque or constant speed to the flagellum. In this regard, investigations from
Sowa et al. [116] demonstrate that the torque generated by the V. alginolyticus ’s motor
increases with NaCl concentration in the swimming medium. Moreover, the higher rotation
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rate of the motor is achieved at lower loads. The reported torque-speed relationships for
three levels of NaCl concentrations (50, 10, and 3 mM), are used in this chapter to rotate the
flagellum [116]. This feature in our model distinguishes the obtained results in this section
from the other studies already conducted to explore the locomotion of the uniflagellated
bacteria.

Entrapment of three different strains of V. alginolyticus near surfaces is experimentally
studied by Wu et al. [126]. They found that V. alginolyticus can be entrapped near a
surface in both puller and pusher modes. However, the entrapment behavior strongly
depends on the cells’ swimming speeds which are controlled by sodium concentration in
the aqueous medium. Investigating the behavior of V. alginolyticus near a surface, in
either puller or pusher modes and in different levels of NaCl concentrations is another aim
of this chapter. The importance of the hook and flagellum flexibility and the cell body
aspect ratio in near-surface entrapment of the uniflagellated bacteria is investigated in the
rest of the chapter.

3.2 Geometric model and mechanical properties

Following the dimensions and properties reported for V. alginolyticus by Son et al. [115],
the uniflagellated model bacterium consists of a spherocylindrical cell body, flexible helical
filament, and a very flexible straight hook which connects the filament to a pole of the cell
body. As shown in Fig. 3.1, the cell body is a cylinder with two hemisphere caps, and
we call it spherocylinder. A small gap is defined between the cell body and the hook to
avoid singularities in the numerical scheme. The position and configuration of the model

bacterium are described by three reference frames including
{
~e

(1)
1 , ~e

(1)
2 , ~e

(1)
3

}
as motor-fixed,{

~e
(B)
1 , ~e

(B)
2 , ~e

(B)
3

}
as body-fixed and

{
~X, ~Y , ~Z

}
as global frames. In this model bacterium,

it is assumed that the initial and rest configurations of the hook and flagellum are straight
and right-handed helix, respectively. In the global frame, the flagellum center line is given
by

~Λ(ξ) = ~X(1) + (0.02l + ξ)~e
(1)
1 + a cos (λξ)~e

(1)
2 + a sin (λξ)~e

(1)
3 , (3.1)

where ~X(1) denotes the position of the flagellum on the cell body and λ = 2π/p is the
wavenumber. The variable ξ parameterizes the distance along the axis of the helix with
0 6 ξ 6 LF . In addition, a and p represent the helix amplitude and pitch, respectively. All
lengths in the model bacterium are non-dimensionalized by the average cell body radius
R = 0.81µm. In particular, this value is the radius of an equivalent sphere with the same
volume as the cell body. Physical properties of the model bacterium are given in Table 3.1.

49



��
�

��
�

��
�

��
�

��
�

��
�

�

�

�

� �

� �

	 �

− �
�
� �


 �
�


������


LF

Figure 3.1: A schematic view of the uniflagellated model bacterium.

In this study, motor torques, flagellum, and hook stiffnesses are non-dimensionalized
with the maximum motor torque Tmax = 3.8 pN µm [116] in V. alginolyticus. We define
the relative stiffnesses of the flagellum and hook k%(% = F,H) as:

k% =
(EI)%

TmaxR
, (3.2)

where E is Young’s modulus of the material, I denotes the moment of inertia of the cross
sections of the flagellum and hook, and R is the average cell body radius.

As already stated, the flagellar motor torque is adjusted according to the rotation
frequency of the flagellum. In this regard, torque-speed relationships of V. alginolyticus
at three different concentrations of NaCl are non-dimensionalized and employed here to
apply a proper torque at a given medium concentration and motor rotation frequency.
If we split the torque-speed plot into two parts, high torque-low speed, and low torque-
high speed, and suppose that the relationship is linear in each part, a piece-wise function
can be constructed to relate the motor torque to its rotation frequency. The two linear
pieces intersect at the crossover point and the motor torque at a given frequency is the
minimum of the two linear functions at that frequency. Specifically, for three levels of NaCl
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Table 3.1: Physical properties of the model bacterium

Description Symbol Dimensionless value Dimensional value

Cell body short radii R2, R3 0.675 0.546 µm
Cell body long radius R1 2.5R2 1.366 µm

Flagellum/Hook diameter d 0.12 0.097 µm
Flagellum total length l 5.53 4.479 µm

Flagellum rest/initial pitch p 1.83 1.482 µm
Flagellum rest/initial amplitude a 0.172 0.138 µm

Hook length lH 0.02l 0.089 µm
Flagellum relative stiffness kF 3.23 -

(Flexural rigidity) (EI)F - (9.94 pN µm2)
Loaded hook relative stiffness kH 0.125 -

(Flexural rigidity) (EI)H - (0.38 pN µm2)
Repulsion strength of

Lennard-Jones potential
Fs 0.1 0.469 pN

Cut-off distance of
Lennard-Jones potential

21/6σ 0.2 0.162 µm

Number of segments on filament NS 23 -
Number of segments on hook NH 2 -

Number of triangular elements
on the cell body

NB 112 -

Regularization parameter εF 0.5d 0.049 µm
Fluid viscosity µ 1 0.001 N s m−2

Fine time step ∆tfine 3.5× 10−4 4.98× 10−8 s
Coarse time step ∆tcoarse 3.5× 10−2 4.98× 10−6 s

concentration, we model the torque-frequency relationships as

TH(ν) = min {−1.203ν + 1,−25.197ν + 2.543},
TM(ν) = min {−1.691ν + 0.789,−24.572ν + 1.562},
TL(ν) = min {−1.071ν + 0.551,−33.079ν + 1.164}, (3.3)

where ν represents the dimensionless motor frequency, and TH , TM , and TL denote the
dimensionless motor torques at 50, 10, and 3 mM concentrations of NaCl, respectively.
In both puller and pusher modes, the motor torque follows the same curves with a sign
change.
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3.3 Unbounded fluid

In this section, we investigate the locomotion of the model bacterium in free space. First,
we compare the swimming speed of the model bacterium in both puller and pusher modes.
Then, we explore the impacts of the hook’s shapes and types of hook-flagellum connection
on the swimming properties of the model bacterium.

3.3.1 Swimming speed

Before comparing the swimming speeds, it is necessary that a clear definition is given for
the swimming speed of the uniflagellated model bacteria. In general, for steady swimming,
the instantaneous velocity vector is not constant but precesses about an axis of average
motion as the flagellum and cell body rotate. This causes the bacteria to move on helical
trajectories. Following Higdon’s formulation [45], we define the (average) swimming speed
of the uniflagellated bacteria as:

Uswim =
(~Ω(B) − ~ω0

s) · ~U (B)

||~Ω(B) − ~ω0
s ||

. (3.4)

This formula is accurate as long as the solution such as the instantaneous translational and

angular velocities are time-independent on the motor-fixed frame
{
~e

(1)
1 , ~e

(1)
2 , ~e

(1)
3

}
. In our

model bacterium, ~e
(B)
1 is the axisymmetric axis of the cell body, and the flagellar motor

is only allowed to spin in ±~e(B)
1 directions. Consequently, the flagellum rotates about the

axis of the cell body after it reaches a steady shape and the assumptions are satisfied. The
quantities in the formula are evaluated at any instant but the result is time-independent.
As shown in Fig. 3.2A, the swimming speeds in both modes (puller/pusher) and various
flagellum stiffnesses increase almost linearly with the motor torque. We increase the motor
torque so that the rotation of the flagellum is stable. For this reason, the maximum
torque in the more flexible flagellum is roughly up to their torque threshold. It is worth
stating that when the motor torque surpasses the threshold, the pusher flagellum exhibits
overwhirling rotation (will be discussed in section 4.4) and the puller flagellum bends
toward the cell body and tends to wrap around it. Interestingly, these results demonstrate
that the stiffness of the flagellum does not significantly affect the swimming speed of the
model bacterium as long as the motor generates a constant torque and the rotation of
the flagellum is stable. Conversely, in a constant motor speed, the results show that the
swimming speed of the model bacterium decreases with the flagellum flexibility (i.e. lower
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Figure 3.2: A) The relationship between the swimming speed of the model bacterium and
the motor torque in three flagellum stiffnesses and two swimming modes (puller/pusher).
A constant motor torque is applied, ranging from 0 to 1 in dimensionless units, and the
steady swimming speeds in the puller and pusher modes are obtained. Comparing the
steady shapes of the pusher and puller flagella indicates that the amplitude of the pusher
flagellum is smaller than the puller one. B) By varying the motor torque from 0 to 1,
the rotation speeds of the flagellar motor are obtained in the different stiffnesses of the
flagellum and the swimming modes. There is almost a linear relationship between the
motor torque and motor speed. When it is allowed that the motor torque dynamically
changes according to the black torque-speed curve (which is a characteristic of the motor
performance), the intersection of the colored and the black curves is the steady point where
the motor torque and speed converge to.
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stiffness kF , lower speed). See Fig. B.1, for example. Comparing the rotation frequency of
the flagellum in puller and pusher modes reveals that the flagellum slightly rotates faster
in the pusher mode (Fig. 3.2B). Closer inspection of the flagellum shape indicates that
the flagellar helix amplitude slightly increases from its rest amplitude in the puller mode;
and, conversely, it slightly decreases in the pusher mode. Therefore, the pusher flagellum
can rotate faster at a constant torque because of lower hydrodynamic resistance. The
steady shapes of the rotating pusher and puller flagella are displayed in Fig. 3.2A. Unlike
the swimming speed, the rotation frequency of the puller and pusher flagella are affected
by the stiffness, such that the most flexible flagellum gets the maximum rotation speed
in the pusher mode. In a wider perspective, it is expected that a more flexible flagellum
in pusher mode produces lower propulsion at a constant rotation speed, but at constant
torque, the propulsion in the more flexible flagellum is comparable with the stiffer one
because the more flexible flagellum rotates faster. In puller mode, these correlations exist
but in opposite directions, such that higher flexibility results in lower rotation frequency.

The slope of the curve in Fig. 3.2B indicates the effective rotational drag coefficient
of the flagellum and is dependent on the flagellum stiffness. In contrast, the slope of the
curve in Fig. 3.2A is found to be relatively insensitive to the flagellum stiffness. This is an
interesting observation because even though the flagellum deforms at higher torques and
the rotational drag coefficient changes, the swimming speed maintains a linear relationship
with the torque.

In Fig. 3.2B, the intersection of the colored lines and the torque-speed relationships at
different concentrations of NaCl (Eq. 3.3) represents the steady motor’s torque and speed
at the given flagellum stiffness and the ions concentration.

3.3.2 Hook shape

The hook, which acts as a universal joint to transmit the torque from the rotor to the
flagellar filament, could be intrinsically straight or helical [115, 103]. Motivated by this
difference, we numerically study the effects of the hook shape on the stable motor torque
(when it dynamically changes with the rotation speed) and the swimming speed in an
unbounded fluid with a medium concentration of NaCl.

The actual molecular structure of the filament is uniform so a pure helical shape is
expected when the filament is stationary. However, in the rigid flagellum models, the helical
filament is described with an amplitude envelope growth rate kE to align the flagellum’s
axis with the cell body’s axis. In this description, the pure helix equation (i.e. Eq. 3.1) is
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revised to:

~Λ(ξ) = ~X(1) + (0.02l + ξ)~e
(1)
1 + Ξ(ξ) cos (λξ)~e

(1)
2 + Ξ(ξ) sin (λξ)~e

(1)
3 , (3.5)

where Ξ(ξ) = a(1−e−(kEξ)
2
) is the helix amplitude function and kE represents the amplitude

growth rate (the amplitude grows from zero to a over a region of length roughly 2
kE

). Such
a simplification is widely used in the literature but its effect on the swimming properties
has not been quantitatively compared with the pure helical filament.

To do these comparisons, three model bacteria with different filament and hook con-
figurations are taken into account. In the first configuration, the hook is straight and the
shape of the filament at rest is pure helical as described by Eq. 3.1. In the second model
bacterium, we assume that the hook is straight and the filament’s shape at rest is described
using a growing helical amplitude as in Eq. 3.5. In the third one, the hook’s shape at rest
is helical with the same helix shape as the filament and the filament is pure helical, as
shown in Fig. 3.3.

The obtained results indicate that in the second configuration (i.e. employing kE), the
model bacterium in both puller and pusher modes reaches steady-state monotonically and
very quickly and its stable motor torque is smallest among the studied cases. In contrast,
in the first (straight hook and pure helical filament) and third (helical hook and filament)
configurations, the swimming speed and motor torque converge with damped oscillations
to steady states, as displayed in Fig 3.3. These oscillations are due to the misalignment of
the filament axis and the swimming orientation at the beginning of the swimming. After a
few rotations of the flagellum, those axes are aligned and the swimming properties become
steadily smooth.

Even though the rotation rate of the pusher flagellum in the second configuration is
the largest, its swimming speed is the smallest, and that is because the average amplitude
of the filament in this configuration is smaller than in the others. Interestingly, the model
bacterium with a helical hook has the highest swimming speed whereas it has the lowest
motor speed. The variation of the motor speed with time is not specifically sketched here
but by using the obtained results for the motor toque and according to the torque-speed
curve at the medium concentration of NaCl the motor speed is achievable. The swimming
speeds in the puller mode are almost identical, but the steady motor torque is the smallest
in the second configuration. This is an interesting observation because this bacterium
swims as fast as the other model bacteria by applying a smaller torque in the puller mode.
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Figure 3.3: The steady-state swimming speed and motor torque of the model bacterium in
an unbounded fluid. These results are obtained for different shapes of hook and filament at
the rest configurations. The rest (stationary in the absence of motor torques) configurations
of the three models are depicted in A. The physical properties of the model bacteria in
these simulations are stated in Tab. 3.1. The reported values for the swimming speeds
are not accurate during the transition period because of the limitations that exist in using
Eq. 3.4 for the transition period. The transition periods are shown here to compare the
convergence times.

3.4 Near a surface

The current section mainly focuses on the behavior of V. alginolyticus in a half space
to discover more details about its tendency to swim next to a surface or escape from a
planar wall in puller and pusher modes. To achieve this aim, the influences of the swimming
modes, NaCl concentration, flagellar filament/hook stiffness, initial state, and the cell body
aspect ratio on V. alginolyticus ’s tendency to remain near a surface are investigated. In the
following simulations, the cell body in the model bacterium is spherocylindrical and a pure
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helical and flexible filament is connected to one pole of the body through a straight and
very flexible hook. The rotor axis is always perpendicular to the cell membrane (i.e. aligned

with ~e
(B)
1 ) and the initial configuration is matched to the rest configuration according to

Fig. 3.1.

3.4.1 Concentration of sodium chloride

V. alginolyticus utilizes a Na+-driven type flagellar motor to rotate the flagellum complex
in the CW and CCW directions. The concentration of sodium chloride in the swimming
medium limits the maximum torque (stall torque) generated by the motor. For this reason,
the torque-speed relationship varies with the sodium chloride concentration, as expressed
in Eq. 3.3 and plotted in Fig. 3.2B.

The swimming trajectories in Fig. 3.4 demonstrate that the model bacterium in the
pusher mode tends to escape from the surface in the different concentrations of NaCl.
Moreover, these results illustrate that the escaping angle is significantly smaller in the
lower concentrations and the bacterium has a strong tendency to swim close and almost
parallel to the surface. These results are consistent with the experimental observation of
V. alginolyticus in which a high concentration of cells is observed next to the surface when
a dilute solution of ions is used in the swimming medium [126]. Closer inspections reveal
that this difference in the escaping angles is related to the magnitude of the hydrodynamic
drag forces on the cell body. Typically, when a bacterium with a flagellum at the rear
swims near a surface, the cell body slightly points upward (away from the surface) to
balance the hydrodynamic torques on the body. In the high concentration of NaCl, the
propulsive force generated by the flagellum and the hydrodynamic drag force on the cell
body are large. Thus, the large bending moment induced by these forces causes the hook
to bend more, and so the long axis of the cell body finds a larger angle with respect to
the surface. This variation in the cell body orientation increases the drag force on the cell
body and facilitates escaping from the surface. Specifically, the maximum angles between
the cell body’s long axis and the surface in the studied concentrations are 14.05◦, 8.79◦

and 7.01◦, respectively, in decreasing order of NaCl concentrations.

As displayed in Fig. 3.5, the model bacterium in the puller mode is attracted to the
surface, regardless of the ions concentration. Our numerical results show that the model
bacterium moves on smaller orbits in higher concentrations of NaCl. Furthermore, the cell
body’s long axis becomes more parallel to the surface in higher concentrations because of
large hydrodynamic drags on the cell body at higher swimming speeds. Even though the
negative dipolar hydrodynamic field and also the viscous torque due to no-slip boundary
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Figure 3.4: Swimming trajectory of the model bacterium near a flat surface in pusher
mode. In higher concentrations of NaCl, the bacterium immediately escapes from the
surface with a relatively large angle (αe = 10.98◦). The escaping angle αe represents
the angle between the swimming trajectory during the escaping state and the surface.
The initial distance and angle with respect to the surface are respectively 3 and 15◦.
Simulation times are Ts = 23000, Ts = 17000, and Ts = 7000 for the low, medium, and
high concentrations, respectively.

drag tend to change the orientation of the long axis of the cell body such that ~e
(B)
1 points

toward the surface, the hydrodynamic drag overcomes these effects and enforces the cell
body to be more parallel to the surface in higher concentrations. In our model bacterium,
the mean angle between the cell body’s long axis and the surface in High, Medium, and
Low concentrations of NaCl are 2.66◦, 3.32◦ and 4.11◦, respectively. It is worth mentioning
that in the puller mode, the steric repulsive force between the wall and the swimmer avoids
the cell body and the flagellum colliding with the surface. According to these explanations,
the stable orientation of the cell body might be different in other cell body shapes or sizes.

Fig. 3.6 represents the variation of the motor torque as the model bacterium swims
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Figure 3.5: Near surface swimming trajectory of the model bacterium in the puller mode.
In different concentrations of NaCl, the model bacterium is entrapped by the surface. The
NaCl concentration in the swimming medium changes the radius of the circular trajectories
(Rc). The initial conditions are the same as the pusher mode. Simulation times are
Ts = 17000, Ts = 15000, and Ts = 6800 for the low, medium, and high concentrations,
respectively.
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next to a surface. After a very short transition period, the mean value of the motor torque
does not change significantly as the model bacterium swims toward or escapes from the
surface. However, when the flagellum is so close to the surface, the motor torque fluctuates
between a minimum and maximum value at each rotation of the flagellum due to the
variation of the no-slip boundary drag on the flagellum. The steric repulsive force between
the flagellum and the wall is also responsible for those fluctuations in the puller mode.
Closer inspection indicates that in all cases the mean motor torque is higher in the puller
mode. The different stable shape of the helical filament in the puller and pusher modes
explains those differences in the stable motor torque.

Figure 3.6: Variation of the motor load as the bacterium swims toward the surface and
then is entrapped/pushed back by the surface.
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Table 3.2: Escaping angles of the pusher-mode bacterium in different initial conditions
and NaCl concentrations

Concentration H0 = 3 H0 = 3 H0 = 1.5 H0 = 1.1
α0 = 45◦ α0 = 15◦ α0 = 15◦ α0 = 15◦

Low 1.65◦ 1.24◦ 1.55◦ 1.74◦

Medium 6.19◦ 4.80◦ 5.76◦ 6.17◦

High 28.12◦ 10.98◦ 18.04◦ 42.81◦

3.4.2 Initial condition

We showed that the escaping angle of the pusher-mode model bacterium varies with the
concentration of sodium chloride. To ensure that this near-surface behavior is independent
of the initial distance and orientation, we compare the swimming trajectories of the model
bacterium when it is initially placed in different distances (H0 = 1.1, 3) and angles (α0 =
15◦, 45◦) from the surface. As shown in Fig. 3.7, the model bacteria mainly remain near
the surface in the lowest concentration of NaCl (green trajectories), and conversely, they
exhibit a weak tendency to remain longer near the surface in the highest concentration of
NaCl (see red trajectories). The escaping angles are quantitatively compared in Tab. 3.2.
These results clearly illustrate that regardless of the initial condition, pusher-mode bacteria
strongly tend to swim close to the surface in the lower concentrations of the ions. Such a
correlation between the concentration and the tendency to mainly move next to the surface
is consistent with the experimental observations of Wu et al. [126]. The obtained results
in Tab. 3.2 also demonstrate a meaningful correlation between the escaping angle and the
initial distance and attack angle. In this respect, the bacterium escapes from the surface
with a larger angle as it is initially placed closer to the surface and/or approaches the surface
with a larger attack angle. Comparing the obtained angles indicate that the dependency
of the escaping angle to the initial condition is notable in the high concentration of NaCl,
and it is fairly negligible in the medium and low concentrations.

3.4.3 Flagellum/Hook stiffness

The hydrodynamic interactions between the uniflagellated bacteria and a planar surface
have already been studied well when a single rigid helix mimics the role of the flagellum [93,
58, 105]. This simplification is taken into account in many studies whereas the flexibility
of the hook and the flagellum could impact the mean swimming speed, the orientation of
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Figure 3.7: Swimming trajectories of the pusher-mode model bacterium in two different
initial distances (H0 = 1.1, 3) from the surface and two attack angles (α0 = 15◦,α0 =
45◦). LC, MC, and HC are respectively abbreviations of the low, medium, and high
concentrations of NaCl.

the cell body, and the flagellum with respect to the surface. Therefore, it likely changes
the boundary accumulating behavior of the bacteria close to the surfaces. To fill the
research gap and better understand the behavior of different flagellated microorganisms
near the surfaces, we study the locomotion of the model bacterium near the surface as
different stiffnesses are assigned to the flagellum filament and the hook. As shown in
Fig. 3.8, decreasing the rigidity of the filament and/or the hook helps the pusher-mode
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model bacterium to escape from the surface more easily. When the cell body is pushed
near the surface, the viscous torque tends to tilt up the cell body. Therefore, when the
filament or hook is more flexible, they bend easily and do not resist changing the orientation
of the cell body. Consequently, the angle between the cell body’s long axis and the surface
increases with time, and the bacterium escapes from the wall at a large angle.

Motivated by the obtained results which indicate that the escaping angle decreases
by increasing the flagellum/hook rigidity, we compare the behavior of two model bacteria
with the flexible and rigid flagellum. In both cases, we inevitably describe the flagellum
helical shape with an amplitude envelope kE to align the flagellum with the cell body axes.
Interestingly, our simulations (Fig. 3.9) show that the model bacterium with rigid flagellum
is entrapped by the surface whereas the bacterium with flexible flagellum escapes from the
surface with a small escaping angle. The simulations are continued so that it is ensured
that the average swimming speeds of the model bacterium in ~Z direction remain zero and
positive in the rigid and flexible flagella, respectively. The obtained results in the last two
simulations demonstrate that the flexibility of the flagellum in pusher-mode bacteria likely
facilitates the escape from the surfaces.

Comparing the trajectories in the puller mode (Fig. 3.10) shows that the model bac-
terium moves on smaller circular orbits when it has a more flexible hook or flagellum.
Furthermore, the radius of the orbits mainly changes with the filament stiffness than the
hook stiffness. Calculating the stable orientation of the cell body demonstrates that the
long axis of the cell body is more parallel to the surface as the hook or the filament is
stiffer. In our simulations, this angle varies from 6.4◦ to 3.3◦, depending on the stiffnesses.
Like the pusher mode, the cell body more freely tilts upwards when the filament and hook
are more flexible, hence the cell body gets a larger angle with respect to the surface.

3.4.4 Hook instability

As already stated in section 1.2, the hook in uniflagellated bacteria is very flexible and
easily becomes unstable (buckled) if it is subjected to a load which is more than a critical
value. When bacteria swim toward a boundary, the load on the hook gradually increases
due to the no-slip boundary viscous forces, and therefore the hook is much more susceptible
to becoming unstable.

In this section, we choose the hook’s relative stiffness and the motor torque in a way
such that the hook is stable and the applied load to the hook is very close to its critical value
as the pusher model bacterium swims in an unbounded fluid. Our tests in unbounded space
show that in a fixed motor torque T = 1, the critical rigidity of the hook is kH ≈ 0.105.
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Figure 3.8: Swimming trajectories of the pusher-mode model bacterium in the different
flagellum and hook stiffnesses. The concentration of NaCl is medium in all cases. Excluding
the flagellum/hook stiffness, the physical properties of the model bacteria are according to
Tab. 3.1.
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Figure 3.9: The uniflagellated model bacterium with rigid flagellum is entrapped by the
surface, whereas it is pushed back as the flagellum is flexible. The amplitude growing factor
kE = p is used to describe the flagellum shape and align the flagellum and cell body axes.
There is no hook and the entire filament’s relative stiffness is kF = 3.23. The concentration
of NaCl is medium.

Therefore, we choose the minimum rigidity kH = 0.106 for the hook, and the motor torque
T = 1 to study the locomotion of the pusher mode model bacterium near a surface. The
other parameters are according to Tab. 3.1.

As shown in Fig. 3.11, the viscous forces due to the no-slip boundary cause the hook
to become unstable. In this situation, the angle between the cell body’s long axis and
the flagellum axis increases so that the flagellum touches the cell body surface. In our
simulations, the steric repulsion prevents the flagellum from touching the cell body surface.
Misalignment of the cell body and flagellum axes results in a repetitive circular trajectory
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Figure 3.10: Swimming trajectories of the puller-mode model bacterium in different
flagellum and hook stiffnesses. The concentration of NaCl is medium in all cases.
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displayed in Fig. 3.11. In the low relative stiffness kH = 0.106, it seems that the load on
the hook is always above its critical value and thus the thrust from the flagellum causes
spinning motion of the cell rather than directional propulsion of the body. As a result, the
model bacterium is entrapped near the surface. Interestingly, experimental observations of
V. fischeri ’s locomotion near a surface have shown that some bacteria are locally entrapped
at some points of the surface [119]. The hook instability, similar to what we see in this
simulation, likely explains the high accumulation of V. fischeri at some points near the
surface. By increasing the hook stiffness, the hook becomes more stable in wider ranges
of viscous loads, therefore the angle between the cell body’s long axis and the flagellum
changes with the load applied to the hook. In this situation, the bacterium gradually gets
away from the surface and the hook remains in its stable state by decreasing the no-slip
boundary viscous load. In higher stiffness kH = 0.13, the hook remains stable even near
the surface and the bacterium moves on a trajectory as already seen in this section.

3.4.5 Cell body aspect ratio

Our results thus far have shown that the model bacterium (with aspect ratio αcell = 2.5)
escapes from the surface regardless of the different flagellum stiffness, NaCl concentrations,
and the initial conditions chosen in this study. Previous numerical investigations have
shown that decreasing the aspect ratio of the cell body increases the pusher-mode bacteria’s
chance of entrapment near the surfaces [105]. To emphasize the importance of cell body
aspect ratio in the entrapment of pusher-mode bacteria, we reduce the cell body’s aspect
ratio from 2.5 to 2.25 and 1.75. As expected and shown in Fig. 3.12, the escaping angle
of the model bacterium decreases when the aspect ratio becomes 2.25. Further reduction
of the aspect ratio (to αcell = 1.75), causes the bacterium to be entrapped by the surface.
Our simulations demonstrate that independent of the initial distance from the surface, the
bacterium reaches a unique stable distance Hc = 1.71 from the surface when the aspect
ratio is αcell = 1.75.

Having found that for αcell = 1.75, the model bacterium with flexible flagellum and
hook is attracted to the surface, we next consider the motion under higher concentrations
of NaCl to see whether this qualitatively affects the behavior near boundaries, Interest-
ingly, the model bacterium escapes from the surface when the concentration increases from
medium to high, as shown in Fig. 3.13. This result is consistent with experimental evidence
that the concentration of ions changes the pusher-mode bacteria’s behavior in boundary
accumulating; specifically, they tend to escape from the surfaces at higher concentrations
of NaCl.
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Figure 3.11: High viscous forces near a planar surface increase the load applied to the
hook and make it unstable. As the bacterium gets away from the surface, the hook becomes
stable and the bacterium travels on a straight trajectory. When the hook’s relative stiffness
is slightly above its critical value (kH = 0.106), the bacterium is unable to escape from the
surface.
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Figure 3.12: Swimming trajectories of the pusher-mode model bacterium in different cell
body aspect ratios. The bacteria with the largest cell body’s aspect ratio, αCell = 2.5,
escape from the surface with relatively large angles. In the smallest aspect ratio, αCell =
1.75, the bacteria are entrapped near the surface. The concentration of NaCl is medium
in all cases.
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Figure 3.13: Changing the ions concentration from medium to high causes the boundary
accumulating pusher-mode bacteria to escape from the boundary. In these simulations,
αcell = 1.75, and the other parameters are stated in Tab. 3.1.

3.5 Summary and conclusion

The main aim of this chapter is to model and analyze the near-surface motion of uni-
flagellated bacteria with flexible hook and filament by focusing on V.alginolyticus. By
employing experimental measurements to relate the flagellar motor torque to its frequency,
we note that the steady-state point in the torque-frequency plot is different in the puller
and pusher modes. In comparison to the pusher mode, the larger amplitude of the flagellum
in the puller mode changes the steady-state point and causes the model bacterium to swim
faster in this mode. Unlike the constant speed flagellar motor, our results in this study
indicate that the swimming speed of the model bacterium does not change significantly
with the flagellum stiffness as the motor applies a constant torque to the flagellum.
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Experimental observations have shown that the accumulation of V. alginolyticus near
surfaces changes with the concentration of sodium chloride in the swimming medium.
Depending on the swimming mode (pusher/puller), the relationship between the ions con-
centration and the tendency to swim near the surfaces could be direct or inverse [126]. We
confirm that changing the ions concentration affects the near-surface behavior of bacteria.
In particular, for certain geometries and mechanical properties of the model bacterium,
the pusher mode swimmer is attracted to surfaces at low ion concentrations and escapes
at high concentrations. In this regard, comparing the escaping angles of the pusher-mode
model bacterium in different concentrations of NaCl shows an inverse relationship between
these parameters. Further investigation indicates that this conclusion is independent of
the initial conditions of the bacteria.

By contrast, our results in the puller mode show that if the model bacterium with a
certain geometry is attracted to a surface in a specific concentration of NaCl, variation
in the ion concentration only impacts the size of the circular orbits and also the stable
orientation of the cell body with respect to the surface. In particular, the model bacterium
tends to move on smaller circular paths in higher concentrations of NaCl. Despite the fact
that several simplifications are taken into account to mimic the V. alginolyticus locomotion,
the radius of the circular orbits in the puller mode (Rc ≈17.5 µm dimensionalized by the
averaged radius R) are comparable with the experimental measurements of Wu et al.
(Rc ≈10-155 µm) [126].

In addition to V. alginolyticus, boundary accumulating and boundary escaping behavior
has been observed in Caulobacter crescentus [62]. It is shown that this species is attracted
to and escaped from the surfaces in the puller and pusher modes, respectively. Caulobacter
crescentus is a monotrichous bacterium with a roughly spherocylindrical cell body and its
flagellum length is close to V. alginolyticus. Therefore, the obtained results in this chapter
and subsequently the explanations provided for the behavior of the model bacterium near
the surfaces can extend to Caulobacter crescentus to justify its boundary accumulating or
escaping behavior.

We note that the flexibility of the hook and filament (as long as they are in a stable
state) facilitates the escaping from the surface by allowing the cell body to tilt upward
more freely. Our simulations illustrate that the flexibility of the flagellum may change a
pusher-mode model bacterium state from boundary accumulating to boundary escaping,
for example. In general, it seems that there is an inverse relationship between the cell
body’s long axis angle with the surface and the hook/filament’s relative stiffness in either
puller or pusher modes.

Higher viscous forces applied to the flagellum and the cell body as the bacterium swims
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near the surface, may cause the hook to become unstable. It requires that the load tolerated
by the hook surpasses a critical value which exists for that specific rigidity of the hook.
This kind of instability may lead to local entrapment of the bacteria near the surfaces.
The variation in the viscous load near the surfaces may lead to a shift from an unstable to
a stable state and vice versa. This transition between the states may help the bacteria to
get away from the surface.

The simulations show that the pusher-mode bacterium with a flexible hook and filament
is entrapped by the flat surface when the cell body has a small aspect ratio. This transition
from escaping state to entrapment state in a specific aspect ratio of the cell body is already
well studied for the bacteria with rigid flagellum [105]. Here, comparing the near-surface
behavior of a model bacterium with a rigid and flexible flagellum, demonstrates that the
flexibility of the flagellum can slightly change the threshold of the cell body aspect ratio
for the surface entrapment.

To sum up, whereas a lot of investigations in studying the uniflagellated bacteria lo-
comotion are done by assuming that the bacterial flagellum is rigid, our results in this
chapter clearly show the hook and flagellum flexibility may change the bacteria behavior,
especially in contact with a planar surface. For example, it may change the bacteria’s
behavior from boundary accumulating to boundary escaping or cause the bacteria to be
locally entrapped near the surfaces. Therefore, it is necessary that more special attention is
given to the hook and filament flexibility in studying the uniflagellated bacterial behavior.
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Chapter 4

Locomotion of Biflagellated Bacteria

4.1 Introduction

A deep understanding of bacterial morphology and behavior is crucial to minimize un-
desirable and maximize the beneficial effects of microorganisms on human health and
welfare. Interestingly, functionalities and mechanisms of some microrobots with promis-
ing biomedical applications are motivated by flagellated bacteria; therefore, investigating
the influences of different types of flagella (puller/pusher) and their arrangement on the
microrobots’ locomotion paves the way to optimize and enhance the performance of the
microrobots.

Motivated by experimental observations of MC-1 locomotion in unbounded fluid [6],
we use our elastohydrodynamic model to study the motility of a biflagellated bacterium
with one puller and one pusher flagella in this chapter. The pusher and puller flagella are
both right-handed helices but rotate in the clockwise (CW) and counterclockwise (CCW)
directions respectively (viewed with the flagellum between the cell body and the observer)
and hence apply “pushing” and “pulling” forces respectively on the cell body. Generally,
the bacterium then swims with the pusher flagellum at the rear of the cell body and the
puller flagellum in front of the body. Such a morphology is inspired by the observations
of Bente et al. [6], in which they concluded that M. marinus most likely swims with one
puller and one pusher flagellar bundle.

Since the structure of the hook and its properties in MC-1 (a strain of M. marinus)
are not well studied, there would be a lot of uncertainties in modeling the hook effects on
the swimming of MC-1. For this reason, we neglect the specific role of the hook in our
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model bacterium in this chapter, assuming that the properties of the hook are the same as
those of the rest of the flagellum. Unlike many kinds of bacteria, MC-1 has two sheathed
bundles of flagella on one side of the cell body. Since each bundle of flagella is modeled
by a single flexible filament, wherever we refer to a flagellum or flexible filament in our
results, it should be interpreted as a sheathed flagellar bundle in MC-1.

In this chapter, we first compare the swimming styles of three model bacteria (pusher,
pusher-pusher, puller-pusher) to shed light on the effects of the flagella type on the swim-
ming properties of the bacteria. Next, the influences of various parameters including the
flagellar stiffness, position, orientation, and the ratio of the two motors’ torques on the
swimming characteristics of the puller-pusher bacterium are studied and compared with
the experimental measurements. We finally investigate the influences of an external mag-
netic field and its variation on the locomotion of the model bacteria with one and two
pusher flagella.

4.2 Geometric model

The model bacterium consists of one rigid spherical cell body, one puller flagellum (dark
slate gray), and one pusher flagellum (gray), as shown in Fig. 4.1. The cell body has

centroid position denoted by ~X(B) and orientation described by the basis
{
~e

(B)
1 , ~e

(B)
2 , ~e

(B)
3

}
.

The pusher flagellum has position ~X(1) and basis
{
~e

(1)
1 , ~e

(1)
2 , ~e

(1)
3

}
, and the puller flagellum

has position ~X(2) and basis
{
~e

(2)
1 , ~e

(2)
2 , ~e

(2)
3

}
. All of the aforementioned bases are right-

handed and orthonormal. In this study, it is assumed that the two flagella have identical
physical and elastic properties and their initial and rest configurations are right-handed
helices with centerlines given by

~Λ(i)(ξ) = ~X(i) + ξ~e
(i)
1 + Ξ(ξ) cos (2πξ/p)~e

(i)
2 + Ξ(ξ) sin (2πξ/p)~e

(i)
3 , (4.1)

where i = 1, 2 for the pusher and the puller flagella respectively; the variable ξ parame-
terizes the distance along the axis of the helix with 0 6 ξ 6 LF , Ξ(ξ) = a(1− e−(kEξ)

2
) is

the helix amplitude function, and a, p, and kE represent the maximum helix amplitude,
the helix pitch, and the amplitude growth rate (the amplitude grows from zero to a over a
region of length roughly 2

kE
), respectively.

The position and orientation of the puller flagellum is specified by two angles α and β
defined on the ~e

(B)
1 –~e

(B)
3 plane through the center of the cell body. The pusher flagellum

is placed symmetrically on the other side of the cell body with the same acute angles as
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Figure 4.1: A schematic view of the model bacterium in which different bases and vectors
are used to describe the position and orientation of the components. α and β angles
represent the position and orientation of the rotors on the cell body and are defined with
respect to ~e

(B)
1 . The internal moment between the nth and (n + 1)st segments is denoted

by ~N (i)n+ 1
2 . Note that the thickness of the flagella in the figures does not reflect the actual

thickness of the flagella in the model bacterium.

the puller flagellum (Fig. 4.1). In all simulations, except one set of simulations where we
specifically study the influence of β angle, we assume that the flagella rotors are normal
to the cell membrane (i.e. β = α). In studying the influence of β, we fix the angle α, and
|α− β| represents how much the rotors deviate from being normal to the cell membrane.

The experimental observations have shown that M. marinus cell body is approximately
spherical [6, 119]. Based on the measurements for MC-1, the cell body diameter is 1.3 ±
0.1 µm and the flagellum length is 3.3 ± 0.4 µm [6]. We are unaware of any study that
measures the flexibility of the flagella or flagellar bundles in MC-1. Recalling that a
filament in our model represents multiple flagella in a bundle, we use values of the rigidity
about 1.5-11 times that of a flagellum in E. coli (3.5 pN µm2 [29]). Other parameters in this
study, such as the motors’ torques, helical pitch and amplitude are chosen from the values
given by [6, 74] and [106]. Here, these parameters are non-dimensionalized by the averaged
cell body radius 0.65 µm [6], M. marinus ’s motor torque which is roughly 12 pN µm [6] and
the swimming fluid viscosity µ = 10−3 Pa s. We characterize the flexibility of the flagella
by a relative stiffness defined as

kF =
EI

T R
, (4.2)

where E is Young’s modulus of the material, I is the moment of inertia of the flagella cross
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Table 4.1: Parameters defining the shape of the biflagellated model bacterium and simu-
lation settings.

Description Symbol Dimensionless Dimensional

Radius of cell body R 1 0.65 µm
Flagella diameter d 0.1 0.065 µm

Each filament total length l 5 3.25 µm
Flagella rest/initial pitch p 2 1.3 µm

Flagella rest/initial amplitude a 0.2 0.13 µm
Amplitude growth factor kE 2 4.73 µm−1

Flagella relative stiffness kF 1 -
(Flexural rigidity) (EI) - (7.8 pN µm2)

Number of segments on each flagellum NS 30 30
Number of triangular elements on the cell body NB 112 112

Pusher flagellum motor torque

in
~
e

(1)
1 direction

T1 -1 -12 pN µm

Puller flagellum motor torque

in
~
e

(2)
1 direction

T2 1 12 pN µm

Flagella rest/initial orientation

(rotor orientation) with respect to ~e
(B)
1

β 45◦ 45◦

Motor position with respect to ~e
(B)
1 α 45◦ 45◦

Fine time step ∆tfine 4× 10−4 9.2× 10−9 s
Coarse time step ∆tcoarse 3.2× 10−2 7.36× 10−7 s

Total swimming time Ts 1000 0.023 s

section, T = T1+T2

2
is the averaged motor torque, and R is the radius of the cell body. By

Eq. 4.2, the dimensionless relative stiffness value kF = 1 is achieved for the motor torque
and the cell body radius stated above, and flexural rigidity EI = 7.8 pN µm2, which is 2.2
times the rigidity of an E. coli flagellum.

4.3 Swimming style

We first compare the swimming trajectories and speeds of three model bacteria with one
pusher flagellum, two pusher, and puller-pusher flagella. In this regard, all physical pa-
rameters of the models are as listed in Tab. 4.1 and only the number of the flagella and
the motors’ rotation direction differ between the cases.
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As shown in Fig. 4.2, when the model bacterium has one or two pusher flagella and the
position and orientation of the flagella are symmetric, it approximately swims in a straight
line. Closer inspection indicates a wiggling of the cell body about the swimming line. In
fact, the trajectories are actually helical with very small amplitudes and pitches induced
by the flagella rotations. In general, the rotating flagellum produces thrust that is not
precisely aligned with its axis, and therefore the instantaneous swimming velocity is not
perfectly parallel to the flagella axes. As presented in Tab. 4.2, comparing the averaged
swimming speed (U), calculated as the norm of the average of the instantaneous velocity
vector over an integer number of periods of the trajectory, indicates that the pusher-pusher
model bacterium swims about 60% faster than the pusher model bacterium. We note that
this is less than the 85% speed increase reported in a previous numerical study [106], where
the flagella were rigid and the motors were aligned with the swimming direction (β = 0). In
our simulations, we use β = 45◦, which means that the motor torques are not aligned with
the swimming direction. More significantly, the flexibility of our flagella allows them to
bend under viscous stresses, altering the propulsion efficiency. The flexibility is particularly
consequential when the rest orientations of the two flagella are not symmetrical. In such a
configuration, the bundling effect of two pusher flagella decreases the degree of asymmetry
and helps the bacterium to move on a smooth trajectory. In particular, the bacterium
exhibits a kind of double helical trajectory with small amplitude and long pitch

Unlike the swimming speed, the rotation rate of the cell (calculated as the norm of the
average of the instantaneous angular velocity vector) does not differ significantly between
the pusher cases. In other words, increasing the number of flagella from one pusher to two
with β = 45◦ and α = 45◦, the swimming speed increases whereas the rotation rate of the
cell body is not significantly changed. Adding a flagellum increases the total torque on the
cell body from the motors so one might expect the body rotation rate to increase. Placing
the motors far apart, as in the present case, reduces the rotation rate necessary to balance
the increased torque. A reduced body rotation rate could have a beneficial effect on the
propulsive thrust because the cell body rotation diminishes the net rotation of the flagella
with respect to the ambient fluid.

The puller-pusher bacterium has a qualitatively different swimming style from the
pusher and pusher-pusher (Fig. 4.2). The difference in average swimming direction, com-
pared with a pusher-pusher bacterium with the same initial configuration, is due to an
inversion of the propulsion direction of the puller flagellum. The puller-pusher bacterium
swims with the pulling flagellum in front and the pushing flagellum at the rear. The asym-
metric distributions of propulsive forces and torques from the two flagella cause the model
bacterium to move on a double helix trajectory. The helical form with a longer pitch and
larger amplitude corresponds to the slow rotation of the cell body about the swimming
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Figure 4.2: Swimming trajectories of three studying cases which differ in number and types
of flagella. All physical parameters are chosen according to Supplementary Information
table S1 and the initial conditions and orientations are set to be equal for three cases.

direction while the smaller pitch, smaller amplitude oscillations are due to the revolutions
of the flagella. Moving on such a trajectory decreases the model bacterium displacement
and leads to a smaller averaged translational speed than the pusher-pusher case.

As already stated, pusher-pusher configurations of two flagella may lead to double
helical trajectories in addition to the puller-pusher configuration. Our simulations indicate
that there is a correlation between the degree of the asymmetry (asymmetric cell body
shape, flagella positions and orientations, the magnitude and orientations of the propulsive
forces) and the properties of the large helices. In the studied puller-pusher model bacteria,
the rest configurations are almost symmetrical but the differences in the magnitude and
orientations of two propulsive forces (one for the pusher flagellum and one for the puller
one) induce a torque on the cell body that leads to the rotation of the cell body in the
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Figure 4.3: A) Model bacteria with two asymmetric pusher flagella. B) Trajectories of the
model bacteria with two asymmetric pusher flagella
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Table 4.2: Comparing the swimming features of three model bacteria which differ in terms
of number and types of the flagella.

Case U × 103 Ω× 103

Pusher 14.2 36.15
Pusher-Pusher 23.1 36.19
Puller-Pusher 20.9 34.05

directions other than its spinning. In fact, this rotation is responsible for the appearance
of the second (large) helix.

In a pusher-pusher model bacterium with a symmetrical configuration, the average ef-
fective torque induced by the propulsive forces on the cell body is near zero, and therefore
the bacterium moves on a single helical trajectory, as shown in Fig. 4.2. The second (larger)
helix appears in the trajectory of the pusher-pusher model bacterium as the rest configu-
ration of the model bacterium is geometrically asymmetrical. To quantitatively compare
the properties of the trajectories in puller-pusher and pusher-pusher model bacteria, we
have plotted the trajectories of two pusher-pusher model bacteria with different degrees of
asymmetry in Fig. 4.3. The properties of both model bacteria are as stated in Tab. 4.1 and
only the orientation of the first flagellum distinguishes Case 1 from Case 2. As expected,
the size of the large helix increases by the degree of asymmetry. Our measurements indi-
cate that the pitch and diameter of the large helix in Case 1 (less-symmetrical) are 2.52
and 0.15, respectively, whereas they are 3.71 and 0.26, respectively, in Case 2. Comparing
these values with the closest case in the puller-pusher configuration (pitch: 3.91 and diam-
eter: 1.08) demonstrates that the amplitude of the large helix is several times smaller in
the pusher-pusher configuration. This difference is likely due to the bundling effect of the
two pusher flagella; flexible flagella have a tendency to bend towards each other, reducing
the degree of the asymmetry in the pusher-pusher configuration and therefore causing the
bacterium to swim smoothly on a smaller helix.

To characterize the locomotion of the bi-flagellated bacteria with puller-pusher flagella,
we study the influences of different physical parameters, including the flagella stiffness
(kF ), position (α angle), orientation (β angle) and the motor torque ratio (RT ), on the
swimming characteristics of the model bacterium. In the presented trajectories, the initial
orientation of the model bacterium is as shown in Fig. 4.1 and the physical parameters
are according to Tab. 4.1 except a parameter studied specifically. One of the aims of this
study is to compare the properties of the swimming trajectories with the experimental
measurements to shed light on the morphology of MC-1. It is worth mentioning that we
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do this comparison by assuming that the bacterium has puller-pusher flagella and the cell
body is approximately spherical. The measurements of Bente et al. [6] have demonstrated
that MC-1 cells move on a large helix with dimensionless pitch 8.1± 2, diameter 2.6± 0.3
and instantaneous speed (3.5− 17.6)× 10−3. Since changing the flagella arrangements and
motors torques mainly affect the size of the large helices, our focus is on comparing the
size of the large helices in this study.

We characterize the orientations of the cell body, the puller, and pusher flagella with
respect to the swimming direction (axis of the large helix) by introducing the acute angles
ηCell, ηPuller and ηPusher. In this regard, ηCell represents the time-averaged (over one complete

turn on the large helix) angle between −~e(B)
1 and the swimming direction. We also calculate

ηPuller and ηPusher by time-averaging the acute angle between the line connecting the driven
ends of the flagella to their free ends and the swimming line. Variations of these angles
with respect to the studied parameters are presented in Fig. 4.4. We will refer back to this
figure in each of the following subsections.

4.4 Flagella stiffness

Forces and torques from hydrodynamic interactions and the flagellar motors deform the
flagella out of their initial equilibrium configuration. These deformations are significant
if the flagella have low relative stiffnesses and negligible if they have high stiffnesses. We
varied the relative stiffness kF from 0.7 to 5 as listed in Tab. 4.3, using the same stiffness for
the puller and pusher flagella in each case. Our simulations demonstrate that the pusher
flagellum reaches a stable overwhirling state [86] when its relative stiffness is kF = 0.75 or
lower; the rotation is stable twirling for all of the higher values of kF . We observed stable
twirling motion of the puller flagellum in all the studied cases. As shown in Fig. 4.5, the
overwhirling motion of the pusher flagellum significantly affects the small helices of the
trajectory and decreases the pitch of the large helix.

It is also evident that the axis of the twirling pusher flagellum is approximately aligned
with the swimming direction whereas the overwhirling pusher flagellum is not aligned
with the swimming direction. This is shown quantitatively in Fig. 4.4A, where we plot the
orientation angles between the axes of the flagella and the average swimming direction. The
pusher flagellum orientation angle changes from almost parallel to the swimming direction
(ηPusher ≈ 23◦) for twirling motion at kF = 0.85 to almost perpendicular (ηPusher ≈ 77◦)
for overwhirling motion at kF = 0.7. The overwhirling flagellum is therefore unable to
effectively propel the cell body, leading to a significant drop in swimming speed at the
onset of the overwhirling regime (see Tab. 4.3).
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Figure 4.4: The time-averaged orientations of the cell body (ηCell), the puller (ηPuller) and
pusher (ηPusher) flagella with respect to the time-averaged direction of the swimming. These
plots are presented for A) Different flagella stiffnesses. B) Different flagella orientations.
C) Different motors torques ratios. D) Different flagella positions.

Since we prescribe a rest orientation angle β = 45◦ between the axes of the flagella
and the ~e

(B)
1 direction, the flagella are not well aligned with the swimming direction if

the relative stiffness kF is high. Therefore, the cell body moves on larger helices and
exhibits larger oscillations (Fig. 4.6) that result in smaller averaged translational and rota-
tional speeds. For lower relative stiffnesses, provided the flagellum remains in the twirling
regime, the flagella bend more and align better with the swimming direction (as illustrated
in Fig. 4.5). Thus, the model bacterium undergoes less wiggling and travels on helical tra-
jectories with smaller pitches and diameters. The reported results in Tab. 4.3 indicate that
the instantaneous speed changes much less than the average speed at the transition between
the twirling and the overwhirling motion of the pusher flagellum. This suggests that the
overwhirling flagellum still produces thrust but a large component of this thrust is in the
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OverwhirlingTwirling

Figure 4.5: Influences of the pusher flagellum overwhirling motion on the swimming trajec-
tory of the model bacterium. In this motion, the flagellum experiences large deformations
and the free end of the flagellum is close to the driven end.

lateral direction. The maximum instantaneous speed is attained at intermediate values of
relative stiffness, around kF = 1.5. In this study, the instantaneous speed (Û) is calculated
by dividing the arc length of one turn of the large helix by the time period for completing
one turn. Comparing the obtained results with the experimental measurements (dimen-
sionless pitch 8.1±2.0, diameter 2.6±0.3, speed (3.5−17.6)×10−3) indicates that for high
flagella stiffnesses (kF = 3, 5) the diameters and the pitches of the swimming trajectories
are within the range measured experimentally, whereas the simulated instantaneous speeds
are about 40% higher than the high end of the experimental range. The obtained results,

Table 4.3: Comparing the swimming features of the puller-pusher model bacterium in
different flagella stiffness

Stiffness Pitch Diameter U × 103 Ω× 103 Û × 103

0.70 1.58 1.09 9.3 34.6 20.1
0.75 2.11 1.19 11.3 33.6 19.2
0.85 4.05 1.07 20.6 33.7 26.7
1.00 3.91 1.08 20.9 34.1 27.0
1.50 4.17 1.32 20.2 30.0 28.8
3.00 6.22 2.39 16.1 16.6 24.7
5.00 6.81 2.83 14.7 13.5 23.3
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presented in Fig. 4.4A, indicate that the swimming direction is well aligned with the puller
flagellum, but this tendency for the alignment slightly decreases at higher stiffnesses.

Y
Z

X

Figure 4.6: The swimming trajectory of the biflagellated model bacterium projected on
XY and XZ planes in different flagella stiffnesses (kF ).

4.5 Flagella orientations

The orientation of the flagella relative to the cell body is an important aspect of the
bacterial morphology but accurate experimental measurement of the orientations could be
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Table 4.4: Comparing the swimming features of the puller-pusher model bacterium in
different flagella orientations

β Pitch Diameter U × 103 Ω× 103 Û × 103

0◦ 2.26 0.25 21.9 60.7 23.0
15◦ 2.63 0.47 22.1 54.4 26.4
30◦ 2.96 0.73 21.9 45.5 26.9
45◦ 3.91 1.08 20.9 34.1 27.0
60◦ 5.45 1.79 17.4 20.4 24.4
75◦ 5.86 3.37 8.9 9.7 17.6

quite challenging. We numerically investigate the sensitivity of swimming features to this
parameter. By fixing α = 45◦ and varying β from 0◦ to 75◦, we note that the pitches
and diameters of the helical trajectories strictly increase with β, as shown in Fig. 4.7.
Closer inspection indicates that the diameter grows faster than the pitch, so the helix
angle (angle between axis direction and helix tangent) increases by β. Consequently, the
projection of the bacterium displacement on the helical axis decreases; this explains the
inverse correlation between β and the averaged translational speed. Investigation of the
flagella orientations with respect to the swimming direction (Fig. 4.4B) can also justify the
smaller swimming speeds for larger β (β > 45◦) in which both puller and pusher flagella
do not effectively propel the cell body in the swimming direction. Moreover, the reported
results in Fig. 4.4B demonstrate that ηPusher and ηPuller are insensitive to β when β < 45◦

and hence the averaged swimming speed is expected to remain constant in this range.
This sensitivity analysis shows that population variability and errors in measurement of β
should not significantly affect predictions of swimming speeds of bi-flagellated bacteria as
long as β is within the given range. As reported in Tab. 4.4, the simulations show that the
instantaneous swimming speed Û becomes maximum when the flagella are perpendicular
to the cell body (i.e. β = 45◦).

Since the cell body rotates to balance the vector sum of the two motor torques, changes
in the motor torque directions can directly affect the cell body’s rotation speed. Larger
β leads to smaller magnitudes of the total torque from the puller and pusher motors;
therefore, an inverse correlation is seen between the rotational speed of the cell body and
β. Our results indicate that the angle between the swimming direction and the cell body
orientation indicator (ηCell) becomes maximum when β is about 60◦.
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Figure 4.7: The swimming trajectory of the biflagellated model bacterium projected on
XY and XZ planes as a function of the flagella orientations (β).

4.6 Flagella position

Hydrodynamic behaviors of multi-flagellated bacteria are mainly determined by the num-
ber, type, and distribution of flagella on the cell body. In the case of M. marinus, we
are unaware of any precise experimental characterization of the relative positions of the
flagella bundles on the cell body. Therefore, different possibilities for the flagella position
on M. marinus are considered by varying α and keeping the flagella perpendicular to the
cell body. We found that both pitch and diameter of the helical trajectories increase as the
two flagella are placed closer together. For α = 0◦, the two flagella extend from opposite
poles of the cell body and share a common axis, resulting in a relatively straight trajectory,
as shown in Fig. 4.8. In this state, the instantaneous and the averaged velocities are almost
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aligned and the averaged speed reaches its maximum. In contrast, the maximum instan-
taneous speed is achieved by the model bacterium when there is a small angle, α = 15◦,
between the flagella and the cell body axis (see Tab. 4.5). The averaged cell body rota-
tion rate reaches its maximum at α = 0◦, which is the configuration that maximizes the
magnitude of the vector sum of the two motor torques. As shown in Fig. 4.4, the position
of the flagella strongly affects the averaged swimming direction as well; particularly, the
angle between −~e(B)

1 and the average swimming direction increases by placing the flagella
close together.

Figure 4.8: The swimming trajectory of the biflagellated model bacterium projected on
XY and XZ planes by changing the flagella placed on the cell body (α).

Comparing the experimental measurements with the obtained results in Tab. 4.4 and
Tab. 4.5, we see that the pitches and diameters of the large helices are almost all smaller
than the experimental ranges (8.1±2.0 and 2.6±0.3, respectively, in dimensionless units).
Recall that in section 4.4, we showed that the pitch and diameter of the large helix are
closest to experimental values if the flagellar stiffness is about kF = 3. Simulations for
varying α and β were carried out with the lower stiffness of kF = 1, which is roughly
the value used in the simulations of Bente et al. [6]. We expect that closer matching to
experiments could be achieved by simultaneously varying all three parameters, kF , α, β.
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Table 4.5: Comparing the swimming features of the puller-pusher model bacterium in
different flagella positions.

α Pitch Diameter U × 103 Ω× 103 Û × 103

0◦ NA NA 23.0 71.7 23.0
15◦ 2.25 0.34 22.9 66.1 28.0
30◦ 2.77 0.67 22.5 51.6 26.8
45◦ 3.91 1.08 20.9 34.1 27.0
60◦ 5.47 1.90 15.4 17.3 22.1

Nevertheless, our results demonstrate the sensitivity to the configuration of puller and
pusher flagella; we obtain pitches varying by more than a factor of 2.5 and helical diameters
varying by more than a factor of 13 as α and β are varied (excluding α = β = 0◦).

4.7 Motor torques

Depending on the external load and environmental stimuli like nutrient concentration,
pH, etc., the flagella motors can generate different torques in both directions (CW/CCW)
in many kinds of flagella-driven bacteria [78, 116]. In all simulations thus far, it is as-
sumed that the puller and pusher flagella motors generate equal torques; however, some
experimental observations have shown that bacterial flagellar motors are not necessarily
symmetric [131]. To study the effects of the motor torques on the hydrodynamic behavior,
we fix the sum |T1| + |T2| = 2 of absolute values for the two dimensionless torques about
their respective axes and distribute the torques between the two motors with the ratio
RT = |T1|/|T2|. When less or equal torque is applied to the pusher flagellum (RT 6 1), our
results indicate that both flagella exhibit stable twirling rotations, and the cell body moves
normally on a double helical trajectory; see Fig. 4.9. A quantitative comparison of these
cases in Tab. 4.6 indicates that the swimming characteristics are relatively insensitive to
the motor torque ratio as it varies from 0.2 to 1. Increasing RT to 2 causes the pusher
flagellum to transition to the overwhirling state as the pusher motor torque exceeds a crit-
ical value. In this state, the flagellum is oriented almost perpendicular to the direction
of swimming (Fig. 4.4), which means that rather than contributing propulsive thrust, it
acts as a brake. Further increase of the torque ratio decreases the total propulsion and
leads to a smaller average translational speed. Moreover, the pusher flagellum rotation
frequency increases and so it completes each cycle of the overwhirling rotation in a shorter
time period. This results in a higher number of small loops in the trajectory for RT = 5
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in comparison with the case RT = 2 (see Fig. 4.9).

Z
Y

X

Figure 4.9: The swimming trajectory of the model bacterium projected on XY and XZ
planes as a function of motor torque ratio RT .

4.8 External magnetic field

Intracellular magnetosomes enable MTB to change their swimming direction in response
to external magnetic fields. In particular, the external magnetic field applies torque to the
magnetosome chain inside the cell body to align the magnetic moment with its direction.
It means that the magnetic torque is continuously applied to the cell body as long as the
magnetic moment is not perfectly aligned with the magnetic field. This feature of MTB
enables us to guide them along the desired path. Assume that a magnetotactic bacterium
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Table 4.6: Comparing the swimming features of the puller-pusher model bacterium in
different motors torques ratio.

RT Pitch Diameter U × 103 Ω× 103 Û × 103

0.2 3.19 0.95 19.1 38.7 25.7
0.5 3.34 0.95 20.3 38.7 28.2
1.0 3.91 1.08 20.9 34.1 27.0
2.0 1.59 1.26 6.67 27.2 35.9
5.0 0.49 1.64 1.56 20.7 40.2

steadily swims under the effect of a magnetic field. If the direction of the magnetic field is
suddenly reversed, the cell body experiences a large magnetic torque which tends to realign
the magnetic torque with the new direction of the magnetic field. If the external magnetic
field is strong enough, the cell body and so the swimming direction change in response to
this external stimulus. Depending on the bacterium configuration and the orientation of
the magnetic moment inside the cell body, the swimming directions might change 180◦,
and the bacterium performs a U-turn. The diameter of the U-turn strongly depends on
the strength of the magnetic field and the bacteria’s magnetic moment. This technique is
practically used to measure the strength of the magnetic moments in the magnetotactic
bacteria [76]. In this study, we assume that the magnetosomes are placed linearly in the

direction of the propulsion axis (~e
(B)
1 ) in both pusher and pusher-pusher model bacteria.

The bacteria are initially located at the origin and toward − ~X direction. By starting the
simulation the external magnetic field is applied in − ~X direction for the first 1000 units of
the time and then it is reversed. As expected, the cell body starts to turn after switching
the field direction; depending on strength of the magnetic field, the time and the diameters
of the U-turns differ in the studied cases.

As shown in Fig. 4.10 and Fig. 4.11, for strong magnetic fields, the model bacteria
exhibit sharp turns which are not perfectly U-shaped, and there are some extra turns which
are direct results of the flagella deformations. In fact, since the flagella are flexible, there
is a time gap between the cell body reorientation and full reorientation of the flagella.
Consequently, the complexity in the trajectories is due to the gradual changing of the
propulsive force direction during the time gap.

Here, the diameters of the U-turns are obtained by measuring the perpendicular dis-
tances between two parallel arms of U trajectories. Our results show that the number of
flagella is one of the main factors which impacts the U-turn diameter, especially under a
weak magnetic field. Comparing the diameter of U-turns in uni- and biflagellated bacte-
ria with almost symmetrical configurations (Fig. 4.12A) indicates that the diameter could
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Figure 4.10: Uniflagellated model bacteria undergo U-turns in response to the reversal of
external magnetic field. The magnetic moment direction which is fixed inside the cell body
is marked by a red bubble. Initially, the red bubble and the external magnetic field are in
− ~X direction. All other physical and geometrical parameters are stated in Tab. 4.1. The
magnetic field is reversed at Ts = 1000. A)TMag = 0.1,Ts = 6000. B)TMag = 0.5,Ts = 3500.
C)TMag = 1,Ts = 3000. D)TMag = 2,Ts = 2500. E)TMag = 5,Ts = 2000.

be twice larger in the pusher-pusher model bacterium. Under strong magnetic fields, the
magnetic torque is dominant within the torques acting on the cell body, and therefore
the bacteria swimming orientation and its variations are mainly dictated by the magnetic
torque. As a result, the quick reversals of the stronger magnetic fields cause smaller U-turn
diameters. In the pusher-pusher model bacterium, the hydrodynamic torque acting on the
cell body and the total motors torques are both larger than the uniflagellated one, thus
the magnetic torque is less dominant and reorientation of the swimmer takes longer time
and leads onto a larger U-turn.

As we look at the relationships between the magnetic torque and the diameter of
the U-turns in the log-log scale (Fig. 4.12B), we note a kind of power-law relationship
between these parameters. In fact, the power of -1 relationship between these parameters
is expected if we simplify the problem into the turning of a spherical particle in response
to the reversal of a constant magnetic field. However, the complexity of the geometries
and the deformations of the flagella slightly change the relationship. To visualize those
changes, two lines representing the power of -1 relationships are sketched in Fig. 4.12. We
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have sketched two distinct lines because the differences in the translational speed of the
model bacteria with Pusher and Pusher-Pusher flagella modify the constant proportionality
in the power-law relationships.

Figure 4.11: Pusher-pusher model bacteria undergo U-turns in response to the reversal of
external magnetic field. The magnetic moment direction which is fixed inside the cell body
is marked by a red bubble. Initially, the red bubble and the external magnetic field are in
− ~X direction and all other physical and geometrical parameters are chosen from Tab. 4.1.
The magnetic field is reversed at Ts = 1000. A)TMag = 0.1,Ts = 6000. B)TMag = 0.5,Ts =
4000. C)TMag = 1,Ts = 3500. D)TMag = 2,Ts = 2500. E)TMag = 5,Ts = 2000.

4.9 Summary and conclusion

The aim of this chapter is to model and analyze the motion of a bacterium with two
flagella or flagellar bundles. Experimental observation of M. marinus locomotion and its
double helical trajectory in unbounded fluid inspired us to focus on different aspects of
such a motion, including a comparison between propulsion by two pusher flagella and by
a pusher-puller combination. The results presented can be interpreted to understand the
morphology of M. marinus as MTB and to design microrobots with specific characteristics.
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Figure 4.12: A) Diameter of U-turns that the pusher and pusher-pusher model bacteria

undergo in response to the reversal of the external magnetic field. TMag = || ~B|| · || ~MMag||
denotes the dimensionless maximum magnetic torque applied to the cell body in this plot.
B) The relationship between the diameter of the U-turns and the maximum magnetic
torque is shown in the log-log scale. The solid and dashed lines show the power of -1
relationships for comparison.

Furthermore, the presented scheme can be used to model the motion of other kinds of
microorganisms in a viscous fluid.

We confirm that the model bacterium with one puller and one pusher flagella moves
on a double helical trajectory in which the small helices are due to the revolutions of the
flagella and the large helices are the result of the cell body rotation. The amplitudes and
pitches of the small helices are smaller in our results than in those reported by Bente
et al. [6]. The difference is likely due to the choice of flagellum shape, which we did not
vary in our study. In practice, the size of the small helices changes if a different pitch,
amplitude, and length are chosen for the flagellum. Apart from this, some quantitative
discrepancy with experiments can be expected as we make simplifying assumptions about
the morphology and swimming mechanisms of M. marinus in our model.

We have focused on reporting the diameter and pitch of the larger helix as well as the
averaged translational and rotational speed, the instantaneous speed, and the swimming
orientation. These swimming features are strongly dependent on the flagella position, ori-
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entations and stiffness and are less sensitive to the ratio of motor torques. The motor
torque ratio becomes important when it causes the pusher flagellum to enter the over-
whirling state. In this state, the pusher flagellum exhibits large deformations and does not
effectively propel the cell body. The result is lower translational speed and some sharp
turns in the swimming trajectory. Decreasing the pusher flagellum stiffness below a critical
value (in our study kF ≤ 0.75) can also put the pusher flagellum in the overwhirling state.

We note that the diameters and pitches of the helical trajectories increase with the
parameters kF , α, and β, whereas the averaged translational and rotational speeds vary
inversely with these parameters.

In all the studied cases, the puller flagellum has better alignment with the swimming
direction (Fig. 4.4) than the pusher flagellum and exhibits twirling rotation. One interpre-
tation is that the generated thrust by the puller flagellum is more effectively used to propel
the bacterium in the swimming direction. These results reveal the importance of the puller
flagella in propelling the cell body and stabilizing the microorganism’s locomotion.

In our simulations, the pitch and diameter of the large helices are closest to experimen-
tally observed values when the flagella are stiff (kF ≥ 3) and the angles α and/or β are
large specific ranges. We expect greater sensitivity to the β parameter when the stiffness
is higher because, for low stiffnesses, the flagella tend to align with the swimming direction
rather than maintaining the orientation defined by β. We note that kF = 3 corresponds to
a flexural rigidity approximately seven times as high as that of a single E. coli flagellum,
which is reasonable given that the flagellar bundle of M. marinus contains seven flagella.
Interestingly, the average swimming speed is maximized by having low stiffness (while still
avoiding overwhirling) and small α, β, which are the opposite requirements from matching
the observed large helical trajectories. This suggests that the locomotion of M. marinus
is not optimized purely for average speed; the large amplitude helical motion could serve
other purposes.

Experimental observations of helically swimming organisms indicate that they mainly
orient the axis of the helical trajectory with the direction of the stimulus [38, 28]. It is
hypothesized that moving on a helical trajectory could be a sampling strategy for some
microorganisms. In particular, if there is a gradient in a background stimulus field, then
this motion modulates the stimulus intensity encountered by the microswimmer and allows
the microorganism to respond to the gradient. Investigation of the sampling mechanism
in phototactic and chemotactic free-swimming microorganisms has shown that the prop-
erties of helical trajectory including its radius, pitch angle, etc., play an important role in
detecting the chemical concentration gradient and the light direction [28].

Our results demonstrate that the properties of the helix are determined not only by
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static geometric and material parameters but also by the motor torques, which can be
adjusted dynamically to give time-dependent trajectory characteristics. Specifically, for
lower motor torques [equivalent to higher relative stiffnesses of the flagella], the flagella
do not deform enough to become aligned with the swimming direction, leading to helical
motion with a larger radius. At higher motor torques, the flagella are better aligned and
the trajectory becomes more linear. We note that this torque-dependent alignment is due
to the arrangement of the puller and pusher flagella on the same side of the cell body
(α, β ≈ 45◦). Axisymmetric configurations (α, β ≈ 0◦) would give rise to approximately
linear trajectories and be less sensitive to changes in motor torque.

It would be interesting to determine experimentally whether M. marinus or similar
bacteria exhibit helical trajectories that vary consistently with our simulations and whether
these bacteria modulate their motor torques under different conditions. As an application
to microrobotic swimmers, the simulation results suggest that the swimmer can switch
between a fast, linear mode for ballistic motion and a slower, helical mode for sensing
gradients.
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Chapter 5

Locomotion of Multiflagellated
Bacteria

5.1 Introduction

The peritrichous bacteria such as Escherichia coli and Bacillus subtilis induce locomotion
through the use of multiple flagella anchored at random locations around the cell body.
Similar to the uniflagellated and biflagellated bacteria, very flexible short hooks connect
the flagella to the independent rotary motors. When all the flagellar motors rotate in a
same direction, the observations have shown that the flagella tend to gather to form a
single helix [7, 122]. This phenomenon, known as bundling of flagella, leads to the forward
swimming of the bacteria. Any change in the rotation direction of at least one motor causes
the bundle to unravel, and therefore the cell body starts to move in random directions.
In fact, the peritrichous bacteria employ this movement, known as tumbling, between the
forward movements, called “run” state, to stochastically change the swimming direction
toward a more favorable environment [8].

Several studies have numerically investigated the flagellar bundling progress and discov-
ered that the hydrodynamic interactions between the flexible helical flagella might induce
the flagella to form a bundle. In previous studies, the specific roles of the hooks and the cell
body in the flagellar bundling are neglected [37] or it is assumed that the flagellar filaments
are rigid and only bending of the hooks leads to the flagellar bundling [124, 52, 92, 68].
Nguyen and Graham [80] investigated the possibility of the bundling formation in different
ranges of flexibility for the hook and filament, and they did not examine the locomotion of
the bacteria. One of the most comprehensive numerical studies exploring multiflagellated
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bacteria behavior was conducted by Lee et al. [60]. They studied the impacts of the number
and distribution of the flagella on the swimming properties of the multiflagellated bacteria
in free space. Moreover, they mainly focused on the polymorphic transformations of the
flagella and their effects on the tumbling behavior of multiflagellated bacteria.

In this chapter, we use our model to numerically study the locomotion of a multi-
flagellated bacterium in bounded and unbounded spaces. We examine how the physical
parameters such as the flagella arrangement, rigidity, torsion, and curvature change the
swimming properties of the bacteria. Moreover, we study the behavior of the bacteria near
a planar surface to clarify which features of the bacteria are affected by the presence of the
boundary. We compare these results with the experimental measurements to validate the
obtained results and provide evidence to improve our understanding of the peritrichous
bacteria morphology and behavior.

5.2 Geometric model and mechanical properties

Our model bacterium in this chapter is comprised of a spherocylindrical cell body and
three flexible flagella distributed on the cell body surface. Since the physical properties of
E. coli are well studied, our peritrichous model bacterium is described based on E. coli ’s
properties. Even though E. coli usually have 5-10 flagella we describe the model bacterium
with only three flagella to reduce the computational cost. We assume that each flagellum
complex includes a stiff pure helical filament and a very flexible short straight hook con-
necting the filament to a constant-torque motor. Like the uni- and biflagellated model
bacteria, a global frame, a body-fixed frame, and three flagella-fixed frames are used to
describe the configuration of the model bacterium, as displayed in Fig. 5.1. All flagella
have identical physical and elastic properties and their initial and rest configurations are
right-handed helices with centerlines given by

~Λ(i)(ξ) = ~X(i) + (0.02l + ξ)~e
(i)
1 + a cos (λξ)~e

(i)
2 + a sin (λξ)~e

(i)
3 , (5.1)

where i = 1, 2, 3 is the index of the flagellum; λ = 2π/p is the wavenumber; a, p are the
helix amplitude and pitch, respectively.

The experimental measurements have shown that the cell body in E. coli is roughly
spherocylindrical with a diameter 0.88 µm and a length 2.5 µm [30]. In this study, the radius
of an equivalent sphere R = 0.68 µm, which has the same volume as the cell body, is used to
non-dimensionalize the lengths. In addition to the average radius, the stable motor torque
in E. coli Tavg = 0.8 pN µm and the viscosity of pure water µ = 10−3 Pa s are employed
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Figure 5.1: Schematic view of a model bacterium with three flagella. Several position
vectors and local frames are used to define the configuration of the bacterium.

here to non-dimensionalize the other mechanical properties like the flagella/hook rigidity
(Eq. 3.2), etc. The dimensionless physical and mechanical parameters used to describe the
model bacterium in this chapter are specified in Tab. 5.1.

5.3 Flagella arrangement

It is traditionally assumed that the distribution of the flagella on the cell body surface is
random in peritrichous bacteria. On the other hand, identifying the anchoring points and
the arrangements of the flagella on the cell membrane is experimentally difficult [21]. For
this reason, the role of the flagella arrangement on the flagella bundling and the swimming
properties of the peritrichous bacteria is not experimentally well understood.

In order to elucidate the impacts of the flagella arrangement on the behavior of peritric-
hous bacteria, we compare the swimming properties of the model bacteria in three different
arrangements named Star, Lateral, and Linear in this section. As displayed in Fig. 5.2,
in Linear arrangement, all flagella perpendicularly protrude from one hemispherical end
of the cell body. In Star arrangement, the flagella are radially connected to the end of
the cylindrical part of the cell body. Furthermore, the angle between the anchoring points
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Table 5.1: Physical and mechanical properties of the multiflagellated model bacterium.

Description Symbol Dimensionless Dimensional

Cell body short radii R2, R3 0.65 0.44 µm
Cell body long radius R1 2.84R2 1.25 µm

Flagella/Hook diameter d 0.15 0.10 µm
Flagella total length l 10.4 7.07 µm

Flagella rest/initial pitch p 3.33 2.26 µm
Flagella rest/initial amplitude a 0.31 0.21 µm

Hook length lH 0.02l 0.14 µm
Flagellum relative stiffness kF 3 -

(Flexural rigidity) (EI)F - (1.63 pN µm2)
Hook relative stiffness kH 0.12 -

(Flexural rigidity) (EI)H - (0.065 pN µm2)
Motors Torques T1, T2, T3 1 0.8 pN µm

Repulsion strength of Lennard-Jones potential Fs 0.1 0.12 pN
Cut-off distance of Lennard-Jones potential

between the flagella
21/6σF 0.18 0.2 µm

Cut-off distance of Lennard-Jones potential
between the wall and the cell body components

21/6σW 0.3 0.34 µm

Cut-off distance of Lennard-Jones potential
between the cell body and the flagella

21/6σH 0.2 0.22 µm

Number of segments on filament NS 36 -
Number of segments on hook NH 2 -

Number of triangular elements on the cell body NB 264 -
Regularization parameter εF 0.5d 0.05 µm

Fluid viscosity µ 1 0.001 Nsm−2

Fine time step ∆tfine 9× 10−4 3.58× 10−7 s
Coarse time step ∆tcoarse 7.2× 10−2 2.86× 10−5 s

(120◦) in the Star arrangement is chosen in a way such that the vector sum of the motors’
torques on the cell body is zero. Motivated by some observations in which the flagella
in E. coli protrude from middle of the cell body [121], Lateral arrangement is taken into
account. In this arrangement, a flagellum is radially connected to the middle of the cell
body and two others are still on the hemispherical end.

By applying identical and unidirectional constant torque to the flagellar motors, the
flagella start to rotate in a same direction. They eventually synchronize their rotation
and finally form a flagellar bundle. As shown in Fig. 5.3, in the studied arrangements,
all flagella get entangled in a single bundle behind the cell body. Typically, the flagellar
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Star Arrangement

Linear Arrangement

Lateral Arrangement

Figure 5.2: Three different arrangements of the flagella on the cell body are taken into
account in this chapter to investigate their effects on the swimming properties of the
peritrichous model bacteria. The anchoring points of the hooks on the cell body are
displayed in two different views. In the top-right picture, the cell body is viewed from the
side, and in the bottom-right picture, the cell body is viewed from the hemispherical end
such that the direction ~e

(B)
1 points toward the observer.
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bundles align with the cell body’s long axis, and the propulsion induced by the bundle
is mainly applied in the direction of the cell body cylinder axis, similar to what we see
in the Star and Lateral arrangements. However, if the stresses along the hooks surpass
the buckling threshold, the hooks become unstable, and therefore the bundle forms a large
angle (> 90◦) with respect to the cell body cylinder axis. This kind of instability is observed
in the Linear arrangement when the relative stiffness of the hooks is small, kH = 0.12. For
the larger stiffness of the hooks, the bundle is like in the other configurations (i.e. Star
and Lateral).

In Fig. 5.4, the swimming trajectory of the bacteria in different flagellar arrangements
and hooks’ relative stiffness are compared. In the Linear arrangement with more flexible
hooks, i.e. kH = 0.12, the instability of the hooks causes the model bacterium to move on a
double helical trajectory. In this state, the flagella bundle bends toward the cell body, and
the steady angle between the bundle axis and the cell body’s long axis becomes ≈ 100◦,
as shown in the last row of Fig. 5.3. In the stiffer hooks, i.e. kH = 0.15, the hooks remain
stable and the bacterium swims on a relatively straight trajectory with the bundle trailing
behind the cell body.

In Star arrangement, the model bacterium travels on a relatively straight trajectory,
because the propulsion induced by the flagella is almost axisymmetric and the flagellar
bundle effectively thrusts the cell body in the direction of the long axis. In the Lateral
arrangement where one of the flagella protrudes from the side of the cell body cylinder,
the propulsion is not perfectly in the direction of the cell body’s major axis, hence the
precession of the cell body’s long axis around the swimming direction is observed. By
changing the hooks’ stiffness, no significant differences are observed in the trajectories of
the bacteria with the Star and Lateral arrangements.

The swimming properties of the bacteria are quantitatively compared in Tab. 5.2. In
this table, the average swimming speed (U) and rotation speed (Ω) represent the norm of
the average of the instantaneous translational and rotational velocity of the cell body over
one complete cycle of the cell body rotation, respectively. In order to express the degree
of bundling completion quantitatively, we define a bundling index as:

Ibundle =
1

3

NPF∑
i=1

min
j

{∥∥∥~r i(1) − ~r j(2)
∥∥∥}+ min

j

{∥∥∥~r i(1) − ~r j(3)
∥∥∥}+ min

j

{∥∥∥~r i(2) − ~r j(3)
∥∥∥}, (5.2)

where ~r i(m) denotes the position vector of the ith evaluation point on the mth flagellum
and each of the minima are over j ∈ {1, 2, ..., NPF

}. In fact, the bundling index repre-
sents the average of the minimum pairwise distances between the evaluation points on the
flagella. Based on this definition, the progress of the flagella bundling is complete as the
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Figure 5.3: Bundle formation for cells with different flagellar arrangements. The propul-
sion induced by the flagella in the different directions causes the cell body to reorient at
the beginning of the swimming. In the Star and the Lateral arrangements, a single bundle
is formed at the rear whereas, in the Linear arrangement, the bundle bends around the cell
body (due to the instability of the hooks) so that the base of the bundle is at the front of
the body. The properties of the bacteria in these simulations are as stated in Tab. 5.1.
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Figure 5.4: Swimming trajectories of the model bacteria with different flagellar arrange-
ments and hook stiffnesses. The instability of the hook in the Linear arrangement and the
lower stiffness of the hook causes the bacterium to move on a double helical trajectory.
The physical properties of the model bacteria are described at Tab. 5.1. Dimensionless
swimming time is Ts = 700 in these simulations.
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Figure 5.5: Variation of bundling index with respect to time in three different flagellar ar-
rangements. During the flagellar bundling process, the average pairwise distances between
the evaluation points on the flagella (named bundling index) decrease so that it reaches its
minimum steady value as the single bundle forms.

bundling index reaches its minimum steady value. In this regard, the flagella bundling
time (TBundling), denotes the dimensionless time from starting the rotation of the flagella
until the bundling index becomes steady. As shown in Fig. 5.5, the bundling indices in
all the studied arrangements are initially large and their values eventually decrease as the
flagella get closer. Since the initial distances between the flagella are not identical in the
studied arrangements (initial configurations are like Fig. 5.2), the bundling indices have
different values at the beginning.

Disregarding the case in which the hooks become unstable (Linear arrangement with
kH = 0.12), our results indicate that the flagellar arrangements and the hooks’ stiffness do
not significantly affect the average swimming speeds of the bacteria. Unlike the swimming
speed, the average rotation speed of the cell body is slightly affected by the flagellar
arrangements, such that our results show that the cell body in the Linear arrangement
rotates 40% faster than in the Lateral arrangement. Due to the fact that the cell body
rotates in response to the motor torques, the position and orientation of the motors strongly
affect the rotation speed of the cell body by changing the vector sum of the effective torques
on the cell body. Since the motors in Linear arrangement point to a same side, the reactant
torque on the cell body is higher than the other arrangements, and hence the cell body
spins faster. Interestingly, despite the fact that the reactant torque on the cell body is
initially zero in the Star arrangement, the cell body rotation rate in this arrangement is
still comparable with the other cases. This means that the flagella deformations and their
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entanglement in the bundle are responsible for the rotation of the cell body. As expected,
the flagella bend together more easily in the lower stiffness of the hooks (kH = 0.12), thus
it takes a shorter time to form a single bundle. Comparing the bundling time for different
hook stiffnesses in Tab. 5.2 sheds light on the importance of the hooks’ stiffness in the
bundling time.

Experimental measurements demonstrate that the average swimming speed of wild-
type E. coli in a bulk fluid is about 14.1±8.0 µm/s (dimensionless value is 8.2±4.7) [75].
The obtained swimming speeds for all the studied cases in this chapter are within the
measured range for E. coli. In this respect, Qu et al. measurements [92] show that the
bundling time of the flagella in wild-type E. coli and in a Newtonian liquid with viscosity
0.001 Pa.s is about 0.09 -0.12 s (dimensionless value is 226-301). Our results, especially in
the Star and Lateral arrangements, are in good agreement with these measurements.

Table 5.2: The steady-state swimming properties of the multiflagellated model bacteria in
different flagellar arrangements.

Arrangement kH U × 103 Ω× 103 TBundling

Star 0.12 11.5 83.5 254
Star 0.15 11.3 76.2 288

Lateral 0.12 11.8 68.2 251
Lateral 0.15 11.8 68.7 260
Linear 0.12 9.2 29.8 312
Linear 0.15 12.7 107.3 173

5.4 Hook instability

In the previous section, we note that the flagellar hooks become unstable when their
relative stiffness is kH = 0.12 and the flagella have Linear arrangement. Interestingly, this
instability is only observed in the Linear arrangement of the flagella. Motivated by this
observation, we investigate the impacts of a single flagellum anchoring point on the stability
of the hook. To achieve this aim, four different points are chosen on the spherocylindrical
cell body to attach the flagellum. These points and the flagellum orientation are inspired
by the multiflagellated model bacteria. We describe the flagellum in Positions A and B
according to the positions and orientations of the two flagella in the Linear arrangement.
The anchoring points in Position C and D are according to the position of one of the flagella
in the Star and Lateral arrangements, respectively. By fixing the filament relative stiffness
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at kF = 3 and varying the hook relative stiffness from kH = 0.1, · · · , 0.25 with a step size
of 0.01, the threshold for the instability of the hook is roughly obtained. The cell body
and the flagellum sizes and also the motor torque on each flagellum are consistent with
the multiflagellated model bacteria. In this section, the critical thresholds are obtained
as the hook is discretized into two straight segments. Our investigations indicate that the
thresholds well depend on discretization. As we refine the discretization of the hook, the
critical threshold decreasingly converges to a specific stiffness. The decision about hook
stability is made by looking into the variation of the filament bending angle. As shown
in Fig. 5.7, the filament bending angle represents the angle between the rotor axis and a
line that connects the two ends of the filament (flagellum excluding the hook). When the
hook stiffness is below the buckling threshold, the bending angle of the filament eventually
increases over time so that the filament gets into the steric repulsive distance from the cell
body’s surface. In this swimming mode, the model bacterium migrates on a double helical
trajectory. In contrast, the bending angle of the filament gradually converges to a steady
value (which is typically a small value because the filament tends to be aligned with the
rotor axis) when the hook’s stiffness is above the buckling threshold. The variation of the
bending angle for Position A is displayed in Fig. 5.7, for example. Based on this graph,
the hook is unstable at kH = 0.23 and is stable at kH = 0.24, and therefore the relative
stiffness threshold is within kH ∈ (0.23, 0.24). Similarly, these intervals are obtained for
Positions B, C, and D and reported in Tab. 5.3. Interestingly, these results show that the
buckling threshold of the hook varies significantly with the flagellum anchoring point. In
particular, the hook becomes unstable easier as it is placed closer to the cell body’s end.
It is worth mentioning that we do these simulations for the different initial phases of the
flagellum motor and notice that the critical stiffness of the hook remains in an identical
interval but the transition time from the beginning of the simulation until the flagellum
touches the cell body surface is considerably different.

Position A Position B Position C Position D

Figure 5.6: Four different anchoring points are chosen on the cell body surface to attach
the single flagellum. These positions and the flagellum orientations are inspired by the
flagella arrangement in the multiflagellated bacteria (i.e. Fig. 5.2). The cell body and the
flagellum sizes are consistent with the multiflagellated model bacteria.

Comparing the critical values of the hook’s stiffnesses in the uni- and multiflagellated
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Figure 5.7: The variation of the bending angle of the filament in Position A. The bending
angle of the filament represents the angle between the rotor axis and the line which connects
the two ends of the filament. When the hook’s relative stiffness is below the buckling
threshold, the bending angle gradually increases. Decreasing of the bending angle means
that the hook is stable in that specific relative stiffness.

bacteria demonstrate remarkable differences. For instance, the hook’s critical stiffness
in the Linear arrangement of the multiflagellated bacterium is within kH ∈ (0.14, 0.15)
whereas it is within kH ∈ (0.23, 0.24) or kH ∈ (0.22, 0.23) in Positions A or B, respectively.
Similar differences are observed between the Star arrangement and Position C and also
between the Lateral arrangement and Position D. One interpretation is that the bundling
effect in the multiflagellated bacteria directs the flagella toward a specific orientation and
avoids the hooks bending more and getting a large angle with respect to the cell body’s
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main axis. For this reason, stable locomotion in the multiflagellated bacteria is achievable
in the lower rigidity of the hook in comparison with the uniflagellated bacteria. This
conclusion likely explains why the hooks’ rigidity in the multiflagellated bacteria is mainly
smaller than in the uniflagellated bacteria.

In the model bacterium with the Linear arrangement and kH = 0.12, the hooks’ relative
stiffnesses in all the anchoring points are sufficiently small in comparison with the buck-
ling threshold and therefore the flagella bundle bends toward a direction that is roughly
perpendicular to the plane passing through the three anchoring points.

Table 5.3: The hook’s buckling thresholds in four different anchoring points of the flagellum
on the cell body. The hook is unstable in the lower bound of each interval and is stable in
the upper bound.

Position A B C D
kH,critical ∈ (0.23,0.24) (0.22,0.23) (0.15,0.16) (0.15,0.16)

5.5 Flagellar filament curvature and torsion

During the bundling process, the rotating helical flagella come close and synchronize due
to the hydrodynamic interactions. For this reason, it is expected that the properties of the
flagellar filaments in peritrichous bacteria affect the flagellar bundling process by changing
the flow regime around the bacteria, and also the rotation rate of the cell body. The cell
body rotation rate plays an important role in this respect because its counter-rotation
speeds up the bundle formation. In this section, the influences of the flagellar filament’s
curvature (κF ) and torsion (τF ) on the bundling time, and the swimming properties of a
multiflagellated model bacterium with the Star arrangement are investigated.

By fixing τF=0.3 and varying κF from 0.01 to 0.08, we note that the average swimming
speed of the model bacterium becomes maximum as κF ≈0.02, disregarding the fact that
the flagella in this curvature rotate slower than κF=0.01 (see Figs. 5.8A, C). Comparing
the rotation rate of the flagella in Fig. 5.8C indicates that the flagella rotation rate strictly
decreases with increasing κF . Even though it is expected that the bundling time of the
flagella becomes longer in lower rotation rates of the cell body, the obtained results do
not show an inverse correlation between the cell body rotation rate and the bundling time
in the different curvatures. This means that the role of the flagellum curvature in the
bundling time is more significant than the cell body’s rotation rate (compare Figs. 5.8B,
D).
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Figure 5.8: The steady-state swimming properties of the multiflagellated model bacteria
with Star arrangement and different curvatures of the flagella helix (κF ) and a constant
torsion τF=0.3. The other parameters are as stated in Tab. 5.1.

We investigate the effects of the filament torsion on the model bacterium behavior in free
space by fixing κF=0.03 and varying the torsion from 0.15 to 0.45. Like the curvature effect,
there is an optimum value, τF=0.35, for the filament torsion to maximize the swimming
speed. As presented in Figs. 5.9 C, D, the flagella rotation rate and the bundling time
strictly decrease with the filaments torsion. In this respect, the angular speed of the cell
body, which rotates to balance the motors’ torques, becomes minimum when the torsion
is about 0.25.
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Figure 5.9: The steady-state swimming properties of the multiflagellated model bacteria
with the Star arrangement and different torsion of the flagella helix (τF ) and constant
curvature κF=0.03. The other parameters are as stated in Tab. 5.1.

5.6 Flagella and hooks stiffnesses

In our original model bacteria, we assume that the flagellar filaments and the loaded hooks’
stiffnesses are kF = 3 and kH = 0.12, respectively. In this section, we specifically study
the effects of these stiffnesses on the swimming features of multiflagellated bacteria. To
achieve this aim, we fix the hooks’ stiffness at kH = 0.12 and vary the filaments’ stiffnesses
from 2 to 5 in the Star arrangement of the flagella. Interestingly, our results show that the
average swimming speed of the model bacterium slightly increases with the stiffness of the
filaments (Fig. 5.10A), in the uniflagellated model bacterium we see that the swimming
speed is almost insensitive to the filament’s stiffness as a constant torque is applied by
the motor (see Fig. 3.2). This difference between the uni- and multiflagellated bacteria is
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probably related to the bundle structure and relatively larger deformations of the filaments
in the multiflagellated bacteria. Our results demonstrate that in the small relative stiffness
of the filaments, i.e. kF=2, the rotation speeds of the cell body and the flagellar bundle
are minimum. The longer bundling time in this stiffness is likely due to the low rotation
speed of the cell body.

Figure 5.10: The steady-state swimming properties of the multiflagellated model bacteria
with the Star arrangement in the different stiffnesses of the flagellar filaments and hooks.
The physical parameters excluding the stiffnesses are described at Tab. 5.1.

Fixing the filaments’ stiffness at kF = 3 and varying the hooks’ stiffness from 0.1 to
0.5, significantly change the swimming features. The obtained results indicate that the
bacterium swims faster as the hook is more flexible and stable. The average rotation
speeds of the cell body and the flagella bundle strictly decrease with the hooks’ stiffness.
By increasing the stiffness, the hooks resist bending which is induced by the bundling
effects of the flagella, and hence the bundling time rises sharply. In higher stiffnesses
kH ≥0.35, the hooks resistance prevents the flagella to get closer and form a single bundle.
For this reason, the bundling time is not reported for the higher stiffnesses of the hooks in
Fig. 5.10H.
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5.7 Reversal of a motor

Recalling that reversing the rotation direction of at least one motor causes the flagella
bundle to unravel, we numerically explore its impact on the locomotion of multiflagellated
bacteria. Even though several experimental observations have shown that the reversed
flagellum executes polymorphic transformation and its rest configuration changes to semi-
coiled [124, 57, 35] during the tumbling event, we disregard such a transformation in this
section. In particular, we assume that the flagellum rest configuration remains a right-
handed helix during the motor reversals. As shown in Fig. 5.11, during the bundling
progress and the “run” state t ∈[0 400], the flagella bundle together and propel the cell
body forward. At t=400, one flagellar motor switches the direction and applies an identical
torque, but in the opposite direction, to the flagellum marked with the purple color. The
viscous forces normal to the axes of the flagellum push it to move apart and unravel. Sudden
variation in the torque associated with this process reorients the cell. The bundling index,
which represents the average distances between the flagella, increases after the reversal
of the motor (see Fig. 5.11C). The motor applies the opposite constant torque to the
flagellum for 60 units of time and then comes back to its original direction at t=460. The
flagella get closer again and rebuild the single bundle. Interestingly, the bundle forms on
the other side of the cell body after the reversal of the motor when the bacterium has
the Star arrangement of the flagella. In this mode, called the second mode, the flagella
wrap around the spherocylindrical cell body and the base of the bundle is at the front
of the body. Unlike the first mode in which the bundle axis is roughly aligned with the
cell body’s long axis, these axes are not aligned in the second mode. Since the stable
configuration of the model bacterium in the second mode is no longer axisymmetric, the
swimming trajectory is double helical. The swimming trajectories of the model bacteria
during the “bundle-run-reversal-run“ states are displayed in Fig. 5.11B.

Our interpretation is that more than one stable swimming mode is possible in multiflag-
ellated bacteria with a spherocylindrical cell body when most of the flagella perpendicularly
protrude from the cylindrical part of the cell body. In such an arrangement, since the rest
configuration of the flagella is not biased toward one end of the cell body, the bundle may
form in any orientation with respect to the cell body. In fact, the initial positions and ori-
entations of the flagella dictate the stable orientation of the flagellar bundle with respect
to the cell body.

Comparing the bundling index before and after the reversal of the motor in the Star
arrangement indicates that the steady gap between the flagella is slightly larger in the
second mode. Furthermore, a quantitative comparison of the swimming properties reveals
that the average translational and rotational speed of the bacterium and the rotation
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B

C

Swimming trajectories before, during, and after a motor reversals

Figure 5.11: A) The flagellar bundle unravels after switching the rotation direction of one

flagellum (marked with purple color) to ~e
(1)
1 direction for 60 units of time starting from

t =400. The single bundle forms again, after all the flagella rotate in the same direction
[i.e. −~e(i)

1 ] starting at t =460. B) Swimming trajectories of the model bacteria with the
Star and Lateral arrangements on XZ and XY planes before, during, and after the motor
reversals. C) Bundling index of the flagella during the bundling, before and after the motor
reversals.
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Table 5.4: Swimming properties of multiflagellated model bacterium with Star arrangement
before and after the reversal of one of the three motors. The physical properties of the
model bacterium are described in Tab. 5.1.

Status U × 103 ΩH × 103 ΩF × 103

First mode (before reversal) 11.5 83.5 450
Second mode (after reversal) 10.2 40.7 320

speed of the flagellar bundle all are lower in the second mode, as reported in Tab. 5.4.
Our simulation in the higher stiffness of the hook, i.e. kH = 0.15, shows that the model
bacterium with Star arrangement is still transformed from the first mode to the second one
after the motor reversals. The major difference appears in the orientation of the flagellar
bundle in the second mode. In particular, the angle between the bundle axis and the long
axis of the cell body is smaller in the higher stiffness and the bacterium configuration is
more axisymmetric than kH=0.12.

In the lateral arrangement, the configuration of the model bacterium is identical before
and after the reversal of the motor. Comparing the swimming trajectory and the bundling
index in Fig. 5.11, confirm that the configuration is identical. However, the obtained results
show that the forward swimming orientation of the model bacterium slightly changes after
the reversal of the motor.

5.8 Flagella bundling near a wall

Experimental measurements indicate that peritrichous bacteria exhibit slightly different be-
havior near the surfaces and inside confined channels in terms of the tumbling probability,
duration of forward swimming, swimming speed [75] etc. Motivated by these observations,
we look into the bundle formation of the flagella when the model bacterium escapes from
or swims toward a planar wall in this section. As shown in Fig. 5.12, two different ar-
rangements of flagella (Star/Lateral) are chosen for the model bacteria to compare the
behavior. The model bacteria are initially placed at a medium distance from the surface
to avoid any collisions between the bacteria components and the surface. For this reason,
it is expected that the effects of the boundary on the swimming properties of the bacteria
are small. By comparing the bundling indices (Fig. 5.12E, F), we note that the bundling
progress near the surfaces is almost similar to the free space. However, the results show
that the bundling time is slightly longer near the surfaces. In fact, viscous torque due
to the presence of a no-slip boundary causes the cell body to spin slower, and therefore
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the advantage of the cell body counter rotation in bundle formation is less effective near
the surfaces. As displayed in Fig. 5.12F, the bundling index slightly increases after the
formation of the bundle as the bacterium approaches the surface. This variation is due
to the tilting of the cell body in contact with the surface. In particular, the titling of the
cell body causes the Lateral flagellum (protruding from the middle of the cylindrical part)
gets away from the main bundle, and hence it increases the average distance between the
filaments.

5.9 Swimming properties near a wall

Previous experimental measurements have shown that the swimming speed of E. coli near
a surface is 9% higher than its speed in a bulk fluid [75]. The increase in the swimming
speed is likely due to the variation of the shear forces near the surfaces. The presence of
a no-slip boundary increases the drag forces and torques on the cell body; on the other
hand, it improves the propulsion generated by the flagella. For these reasons, it is expected
that the physical properties of the bacteria such as cell body size, flagella length, flagella
arrangement, etc. have consequential effects on the forward swimming and rotational
speeds of the bacteria near the surfaces. In this section, we aim to explore the effect of the
flagella arrangement on the variation of the forward swimming and rotational speeds of
the bacteria as they swim at different distances from a surface. As displayed in Fig. 5.13A,
the model bacteria with Star and Lateral arrangements are initially placed parallel to the
surface such that the distance between the cell body’s long axis and the surface is H0.
We are interested to obtain the swimming properties in “run” state, so we use the steady
configurations of the bacteria in the bulk fluid as the initial condition.

Fig. 5.13B represents the variation of the average swimming speed in ~X direction (UX)
with respect to the initial distance from the surface H0. UX is calculated as the average
of x component of the instantaneous velocity vector over one complete rotation of the cell
body. After a short transition period, we calculate the properties before having a significant
change in the distance from the surface. Like the free space, the model bacterium with
Lateral arrangement swims faster than Star one as it is close to the surface (H0 ≤ 4), and

its maximum speed in ~X direction is up by 7% than its speed in the bulk fluid. The results
indicate that the swimming speed of the model bacterium with Lateral arrangement strictly
decreases with the distance from the surface. One interpretation is that improvement in
the propulsion generated by the flagella is more than the increment in the drag forces on
the cell body near the surface. Since the cell body in the Lateral arrangement continuously
tilts up and down, the variation in the hydrodynamic forces is not as straightforward as the
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Figure 5.12: Bundling of flagella as the model bacterium vertically escapes or approaches
to the wall. The results in the left and right columns are respectively for the Star and
Lateral arrangements. The transparent model bacterium displays the initial position and
configuration. The physical properties of the model bacteria are stated in Tab. 5.1.
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Initial Con iguration in Lateral Arrangement Initial Con iguration in Star Arrangement

X

Figure 5.13: A) Initial configurations of the model bacteria with the Star and Lateral
arrangements. Other simulation and physical parameters are chosen according to Tab. 5.1.
B) Variation of the average swimming speed in ~X direction with respect to the initial
distance from the surface. C) Variation of the average rotational speed of the cell body
with respect to the initial distance from the surface.

bacteria with a simpler swimming pattern. In the Star arrangement, the variation in the
swimming speed is not as large as in the Lateral arrangement. However, high drag forces
on the cell body cause the bacterium to reach its minimum swimming speed as H0=1.
A slight increase in the distance from the surface (from H0=1 to H0=1.25) results in a
considerable enhancement in the swimming speed.

The average rotational speed of the cell body ΩH denotes the norm of the average of
the instantaneous angular velocity vector over one complete rotation of the cell body. The
increase in the rotational speed with the distance from the surface nicely represents the
decrease in the viscous shear torque applied to the cell body (Fig. 5.13). Since the motors
apply constant torque to the cell body, the total torque on the cell body is almost constant,
if we ignore the elastic bending moments transmitted from the flagella to the body. For
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this reason, such a smooth increase in the rotational speed of the cell body is obtained.
A relatively large rotational speed in the Lateral arrangement at H0=1 is likely the result
of the elastic bending moments. In both arrangements, the rotational speeds approach to
their values in the bulk fluid, reported in Tab. 5.2.

5.10 Swimming trajectories near a wall

It has experimentally verified that some kinds of multiflagellated bacteria such as E. coli
exhibit circular trajectories in interaction with the planar surfaces. Unlike the uniflagel-
lated bacteria, the tendency of the multiflagellated bacteria to swim close to the surfaces
is not well examined. As shown in Fig. 5.14, the model bacteria with Star and lateral ar-
rangements migrate on circular arcs as they interact with the wall. Our results show that
all the studied model bacteria have a strong tendency to remain close to the surfaces. The
obtained trajectories in this study are not long enough to conclude whether the bacteria
are fully entrapped by the surface or not, but according to the maximum escaping angle
which is αe < 1◦, the chance of entrapment in all the cases is evaluated very high. The
results show the radii of the circular arcs in the model bacteria with the Star arrangement
are slightly smaller than the Lateral arrangement. Since the model bacterium with the
star arrangement has smaller translational and larger rotational speeds than the Lateral
arrangement (see Fig. 5.13), it turns more at a unit length of the swimming path. Recall
the discussion in section 3.4.3, the bacteria with more flexible hooks exhibit smaller circular
trajectories. Whereas experimental observations of E. coli locomotion along the surfaces
have shown that the cell body slightly points toward the surface (nose down) [2, 10, 11],
numerical simulations of uniflagellated bacterial locomotion with a rigid flagellum have
indicated that the cell body tilts toward the bulk fluid (nose up) to balance the torques
on the cell body [109]. One of the aims of this chapter is to look into this inconsistency
that exists between the numerical and experimental results. To do this, we quantify the
orientation of the cell body with respect to the planar surface by calculating the angle
αOrientation = 90◦ − 〈~e(B)

1 , ~eZ〉. The variation of this angle is shown in Fig. 5.15 when the
model bacteria swim near a wall. In this graph, the positive value for αOrientation means
that the cell body points up (toward the bulk fluid) and the negative value corresponds to
the cell body which points down. In the Lateral arrangement, the cell body continuously
tilts toward the bulk fluid and the wall; for this reason, αOrientation oscillates between the
negative and positive values. However, the time averaging of the angles in all the studied
cases (Lateral/Star) is positive; it means that the model bacteria with flexible hook and
flagella, and either Star or Lateral flagellar arrangement generally point toward the bulk
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Near a surface trajectory of the model bacterium with Star arrangement

Near a surface trajectory of the model bacterium with Lateral arrangement

A

B

Figure 5.14: Swimming trajectories of the model bacteria with Star (A) and Lateral (B)
flagella arrangement near a planar surface. The trajectories are shown for different initial
conditions and hooks’ stiffnesses. The attack angle for the black and red trajectories is
α0 = 18◦ and for the green and blue trajectories is α0 = 0◦. The physical parameters of
the model bacteria are stated at Tab. 5.1.
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Figure 5.15: Angle between the long axis of the cell body and the planar surface over
time, as the model bacteria with the Star and Lateral arrangements, swim near the wall.
The results in this graph correspond to the presented trajectories in Fig. 5.14.

fluid. We conclude that if the average orientation of the cell body in the experimental mea-
surements is positive, the bacteria have likely some specific swimming modes which are not
considered in this section, or there is another explanation rather than the hydrodynamic
interactions for this inconsistency.

5.11 Swimming properties inside a rectangular chan-

nel

Motivated by some experimental observations in which the locomotion of uni- and multi-
flagellated bacteria inside a confined channel are monitored [119, 67, 12], we investigate
the swimming properties of a model bacterium with Star arrangement inside a confined
rectangular channel. To do this, we choose channels to be aligned with the ~X vector in the
global frame, and the model bacterium is facing the ~X direction. To shorten the transi-
tion period and skip the flagella bundling progress, the steady configuration of the model
bacterium in the bulk fluid is chosen as the initial condition, as displayed in Fig. 5.16.
It is worth mentioning that the rest configuration of the model bacterium is as shown
in Fig. 5.2. The model bacterium is initially placed at the middle of the channel such
that ~e

(B)
1 is aligned with the centerline of the channel, and two ends of the bacterium
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have identical distances from two ends of the channel. This position guarantees that the
closest grids of the walls to the bacterium’s surface have a fine mesh size. We choose
channels with identical dimensionless length LChannel = 30, a dimensionless radius of fillet
RFillet = 0.1, and varying dimensionless widths WChannel = 3.5, · · · , 10 to investigate the
impacts of the channel’s width on the swimming properties. We choose this length for the
channels to approximate the infinite long channel by relying on previous numerical analysis
by Shum [105]. In this analysis, it is shown that a channel with a length 2-3 times the
combined body and flagellum length (i.e. LChannel ∈ [2× 14, 3× 14]) is sufficient to mimic
the role of an infinite-length channel. In this regard, the channel surfaces are covered with
1760 flat triangular elements generated by 3568 evaluation points (NPW = 3568), recalling
section 2.4.5 and Fig. 2.6.

Our results indicate that the significantly high shear forces/torques on the cell body and
flagella notably reduce the rotational speeds of the flagella bundle and the cell body in the
narrowest channel (i.e. WChannel = 3.5). The small rotation rate of the bundle in addition
to the large drag forces on the cell body lead to a relatively small forward swimming speed
for the model bacterium in this channel, as displayed in Fig. 5.16. A slight increase in the
channel’s width increases the rotation frequency of the flagellar bundle and weakens the
drag forces on the cell body; the result is a considerable increase in the swimming speed.
Similar to what we see for the variation of the swimming speed near a planar surface (i.e.
Fig. 5.13B), a local maximum is also observed for the swimming speed as the bacterium
is inside a relatively narrow channel. Interestingly, such a sharp variation in the mean
swimming speed of E. coli is already observed by Biondi et al. [12]. In this study, it is
shown that E. coli ’s mean speeds inside the channels with widths 3µm and 2µm are 10%
higher and 25% lower than its speed in the bulk fluid, respectively.

By increasing the channel’s width, the drag forces on the cell body and the flagellar
bundle smoothly decrease, and hence the rotational and translational speeds of the model
bacterium rise accordingly. As expected, the indices of the swimming properties gradually
converge to the obtained results in the free space.

5.12 Summary and conclusion

In this chapter we reproduce the behavior of peritrichous bacteria such as flagellar bundling,
reversal of motor, and run motion in free and half spaces to shed light on the different
aspects of their behavior and qualitatively elucidate the influences of the several physical
parameters on their swimming properties and style.
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Initial position and 

con iguration

Figure 5.16: Swimming properties of multiflagellated model bacterium with Star arrange-
ment inside a rectangular channel with curved edges. The physical properties of the model
bacterium are described in Tab. 5.1.
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We find that the feasible interval for the hook’s rigidity to result in stable locomotion
is altered not only by the number of the flagella (as studied by Nguyen and Graham [80])
but also by the flagellar arrangement. Our simulations indicate that whereas the model
bacteria with the Star or Lateral arrangements at kH = 0.12 execute stable forward lo-
comotion, the hooks’ instability in the Linear arrangement causes the flagella bundle to
touch the cell body which results in a double helical trajectory. In particular, the minimum
relative stiffnesses of hooks required for stable forward locomotion in the Star, Lateral, and
Linear arrangements are in the ranges kH,critical ∈ [0.09, 0.10], kH,critical ∈ [0.11, 0.12] and
kH,critical ∈ [0.14, 0.15], respectively. By comparing the buckling thresholds in the uni- and
multiflagellated bacteria, we note that the bundling effect between the flagella helps the
hooks remain stable in the lower rigidity of the hooks. This comparison provides an ex-
planation for why the hooks’ stiffness in the multiflagellated bacteria is mainly lower than
in the uniflagellated bacteria according to the experimental measurements. Moreover, we
show that the hook’s stiffness threshold is low for the flagellum that protrudes perpen-
dicularly from the cylindrical part of the cell body and is highest for the flagellum that
protrudes from the cell body’s hemispherical ends.

In the studied flagellar arrangements (i.e. Star, Lateral, Linear), there are no notable
differences in the average swimming speed of the model bacteria as long as the hooks are
stable. However, the bundling time of the flagella and the average rotational speed of the
cell body vary between the model bacteria with different arrangements. Our results show
that the bacteria with non-axisymmetric flagellar arrangement likely swim on a double
helical trajectory because the vector sum of the motor torques on the cell body is not
aligned with the swimming orientation. This explains why the model bacterium with the
Lateral arrangement moves on the double helical trajectory. A double helical trajectory
can be observed in the bacteria with axisymmetric rest configurations as well because
the vector sum of bending moments transmitted from the hook to the cell body does
not align with the swimming orientation. The double helical trajectory observed in the
second swimming mode of the model bacterium with the Star arrangement is due to the
bending moments, for example. From an evolutionary point of view, the locomotion of
multiflagellated bacteria on double helical trajectories does not provide any advantages in
terms of the swimming speed; therefore, such locomotion could serve other purposes such
as sampling strategy, etc.

The helical flagella curvature and torsion can significantly change the swimming prop-
erties of the multiflagellated bacteria. Our results show that the correlation between the
flagella curvature/torsion and the rotation rate of the flagella bundle is monotonic. How-
ever, the correlation is non-monotonic for the average translational and rotational speeds
of the bacteria. In this respect, the curvature and torsion can be chosen in a way that
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maximizes the average swimming speed and/or minimizes the rotational speed of the cell
body and/or minimize the bundling time. Interestingly, our results reveal that the curva-
ture and torsion of the flagella in E. coli are optimal for the swimming speed. Even though
it is expected that a higher rotation speed of the cell body decreases the bundling time in
the multiflagellated bacteria, our results demonstrate the influences of the flagellum cur-
vature and torsion in the bundling time are more important than the cell body’s rotation
speed. We make this conclusion because higher body rotation does not necessarily lead
to a smaller bundling time as we vary the curvature and/or torsion of the flagella. This
conclusion can not be generalized for a wider range of the hook and the flagella rigidity. It
is fair to expect that the role of the cell body rotation on the bundling is more significant
in the bacteria with more flexible hooks and filaments because the flagella deform easily
and are entangled together due to the cell body rotation.

The swimming speed in the model bacterium with the Star arrangement is maximized
when the hook has the lowest stiffness and the filament has the highest stiffness within the
studied intervals. Considering the real hook and filament stiffnesses in the multiflagellated
bacteria, it seems that the flagella structure in these bacteria is optimized for the average
swimming speed. The obtained results in this chapter show that the most flexible hook
yields the shortest bundling time, but this is not true for filaments. In particular, the
bundling time is minimum in a bacterium with flagellar filaments of intermediate stiffness.

We note that the multiflagellated bacteria may have more than one swimming stable
mode. Our interpretation is that the flagella arrangement on the cell body and their orien-
tations at rest are two main factors that determine the number of stable swimming modes
in the bacteria. Combining these modes with the modes due to the existence of several
flagellar bundles [21], may lead to many stable swimming modes in some peritrichous
bacteria. Our simulations disclose that the swimming properties and the trajectory of the
multiflagellated bacteria may notably change in the different swimming modes. They can
swim fast on a straight trajectory in the first mode, and move slowly on a double helical
trajectory in the second mode, for example. The tumbling event, any pause in the flagellar
motors, collision with surfaces, etc. can result in a switch to another mode.

Our studies show that the bundling time of the flagella in the peritrichous bacteria
slightly increases near the surfaces. This is due to the smaller rotation rate of the cell
body near the no-slip boundaries. Depending on the flagella arrangement, the variation
of the swimming properties near the surfaces is different. Whereas the average swimming
speed of the model bacterium with Lateral arrangement reduces strictly with the distance
from the surface, it varies non-monotonically in the Star arrangement. Remarkably, the
average swimming speed of the model bacterium with Lateral arrangement is about 7%
more than the Star arrangement when both bacteria swim close (i.e. H0 = 1) to the surface.
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Such a difference in the swimming speeds could be helpful in designing some microdevices
to sort the multiflagellated bacteria according to their flagella arrangement.
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Chapter 6

Summary and Conclusion

In this thesis, we develop a comprehensive elastohydrodynamic model to simulate the
locomotion of the flagellated micro-organisms, specifically bacteria, in a bounded and un-
bounded viscous fluid. The model bacteria consist of a spherical or a spherocylindrical
cell body, flexible filament(s), very flexible hook(s), and flagellar motor(s). In our model,
Boundary Integral Equations (BIE), relating the fluid velocity and stress distributions over
the cell body and flagella, are solved to calculate the hydrodynamic interactions between
the bacterium components and the surrounding fluid. For this purpose, the cell body
surface is discretized into a finite number of curved triangular elements and the Gauss-
Legendre quadrature method is used to evaluate the integrals over each triangle. The hook
and flagellar filaments are discretized into a finite number of rigid straight segments that
are joined end to end but allowed to rotate with respect to each other. The one-dimensional
Gauss-Legendre method is used to approximate the line integral of regularized Stokeslets
and rotlets along the flagella. The main aim of employing these methods is to represent
the translational and angular velocities of the evaluation points in terms of the force and
torque densities which are distributed on the boundary.

The hydrodynamic forces exerted on the flagellar filaments deform the flagella out of
their static equilibrium configurations. Discretization of the standard Kirchhoff rod model
enables us to represent the internal moments at the joints connecting the flagella segments
in terms of the segments’ orientations. These internal moments are used to write the
torque balance equations about each joint on the flagella. It is worth mentioning that a
sub-iterative method is employed in our numerical scheme to estimate the internal moment
at the joint connecting the rotor to the first segment of the hook, to satisfy the Kirchhoff
rod equation and the motor torque constraint.
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In our model, steric repulsive forces are applied between the components of the bac-
terium, and between the bacterium and the boundaries to avoid collisions and instabilities
of the numerical scheme due to practical limitations on time step sizes. All the introduced
forces and torques come together to satisfy the total force and torque balance equations
on the model bacterium. At the end, the kinematic equations in which the translational
and angular velocities of each evaluation point on the swimmer are represented in terms
of the angular velocities of the segments, the cell body’s translational and angular veloc-
ities, are added to the hydrodynamic and force/torque balance equations to construct a
system of linear equations. The system is solved for the force/torque densities and the
velocities. Then, the configuration of the model bacterium is updated according to our
ODE integration scheme.

Our results indicate that the steady motor torque and the swimming speed are different
in the puller and pusher modes of uniflagellated model bacteria. In particular, a slight
difference in the amplitude of the helical flexible filament in puller and pusher modes
causes the swimming properties to be different. Moreover, our simulations demonstrate
that the tendency of the uniflagellated model bacteria to swim close to surfaces changes
with the concentration of NaCl in the swimming fluid. Since the model bacteria swim
faster in the higher concentrations of ions, the cell body and flagellum are exposed to
larger hydrodynamic forces due to no-slip boundary drag. These forces apply a larger
bending moment to the hook and induce a larger bending angle. Therefore, the angle
between the cell body’s long axis and the surface gradually increases and the cell body
escapes from the surface more easily. This conclusion is consistent with the experimental
observation of V. alginolyticus locomotion near the surfaces as it is in the pusher mode.
In the puller mode, changing the concentrations does not change the tendency of the
model bacteria to swim near the surfaces and the bacteria always accumulate near the
surfaces. Boundary accumulating behavior in the puller mode has already been observed
in Caulobacter crescentus which has a similar shape to the studied uniflagellated model
bacterium in this thesis. Based on our modeling assumptions in this thesis, changing the
concentrations of the ions is effectively equivalent to changing the flagella stiffness as the
important quantity is the ratio of the motor torque to flexural rigidity. Therefore, a similar
correlation exists between the flagella stiffness and the bacteria’s behavior near surfaces. In
addition, we note the cell body aspect ratio is one of the key parameters in the tendency
of the uniflagellated bacteria for the boundary accumulating. Remarkably, our results
show that if a model bacterium with a rigid flagellum is attracted to the surfaces it does
not guarantee that it is still entrapped by the surface when the flagellum is flexible. Our
simulations reveal that if the loaded hook stiffness in the uniflagellated bacteria is close to
the buckling threshold, the high shear forces due to a no-slip boundary may make the hook
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unstable. In some cases, this instability may cause the bacteria to be locally entrapped
near the surfaces.

A biflagellated model bacterium with a spherical cell body, one puller, and one pusher
flagellum moves on a double helical trajectory except when α = β = 0◦ in Fig. 4.1. Our
results show that the size of the large helices in the swimming trajectory varies according to
the degree of the asymmetry, the flagella’s position, orientation, and stiffness. Comparing
the properties of the trajectories obtained numerically with the trajectories of M. marinus
measured experimentally, discloses that this bacterium has likely one puller and one pusher
flagella, and the flagella are relatively stiff in comparison with the other species. Moreover,
our simulations indicate that the puller flagellum has better alignment with the swimming
direction. One interpretation is that the generated thrust by the puller flagellum is more
effectively used to propel the bacterium in the swimming direction. We note that the
pusher flagellum may exhibit overwhirling stable rotation as either the torque applied to
the flagellar filament surpasses a critical value and/or the flagellum rigidity is below a
critical value.

Studying the locomotion of multiflagellated bacteria with three flagella and sphero-
cylindrical cell body (inspiration from E. coli) shows that a single flagellar bundle forms
behind the cell body as the helical flagella start to rotate in a same direction. The simu-
lations demonstrate that the flagellar bundle unravels and the cell body reorients when at
least one motor switches the rotation direction. We note that depending on the degree of
the axisymmetry in the rest configuration of the bacteria, they likely move on relatively
straight trajectories or double helical trajectories. By comparing the swimming properties
in the different flagellar arrangements, we find that the average swimming speed is less
affected by the flagellar arrangements as long as the flagella rotations are stable. Our
investigations disclose that there is an optimum value for the flagella curvature and torsion
to maximize the averaged swimming speed and/or minimize the bundling time in the mul-
tiflagellated bacteria. Interestingly, the flagella curvature and torsion in E. coli are close
to those optimums. Remarkably, our results show that the multiflagellated bacteria may
possess several swimming modes with unique properties at each mode. For this reason, a
variety of speeds and trajectories are expected to be observed in one specific kind of bac-
teria or in an individual cell. One interpretation is that each swimming mode is optimized
for a particular purpose. For example, the bacterium switches to a mode with a small
swimming speed and a large double-helical trajectory in the “sampling” state, and to a
mode with a large swimming speed and a relatively straight trajectory in the “run” state.

Depending on the flagella arrangement, the response of the multiflagellated bacteria
to the surfaces may be different. For instance, the angular speed of the bacteria with the
Lateral arrangement is less affected by the surfaces in comparison with the bacteria with
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the Star arrangement. Conversely, the variation in forward swimming is more notable in
the Lateral arrangement. These differences in the responses cause the bacteria to move
on circular arcs with different radiuses as they swim near a surface. The bacteria with
the Star arrangement move on smaller circles because they have smaller translational and
larger rotational speeds in comparison with the Lateral arrangement.

6.1 Recommendations for future works

The following topics are recommended for future works in studying bacterial locomotion:

Reduce the computational time: The major issue we were faced with in the present
thesis was the small time step required to model the deformations of the flexible filaments
in a viscous fluid. Employing the multirate time integration scheme reduced the computa-
tional time by 50%. Furthermore, several programming languages including Fortran and
Python, and different numerical methods were tested in terms of computational speeds. In
addition, the prepared code in Matlab was optimized in different aspects, but the computa-
tional time still prevents us from studying much more complicated phenomena. Therefore,
employing other numerical techniques like the Fast Multipole Method and using GPU
computing will be beneficial in future works.

Bacterial locomotion in Non-Newtonian fluid: Throughout the current study, it
is assumed that the bacteria swim in a Newtonian fluid, such as fresh water. However,
many kinds of bacteria naturally live in biological fluids, such as mucus, which are mainly
non-Newtonian. The locomotion of flagellated bacteria in non-Newtonian media is largely
unexplored and some more investigations are still required to elucidate the different aspects
of their behavior in their natural habitat. Furthermore, designing some bacterial mimicking
microrobots with biomedical applications is not possible without a deep understanding of
the role of non-Newtonian fluids on the dynamics of the microswimmers. If the boundary
integral equations employed here are adjusted to be used for non-Newtonian fluids, then the
presented scheme can be applied to this purpose. Otherwise, some other numerical methods
like Immersed Boundary Method can be used to model the hydrodynamic interactions
between the non-Newtonian fluids and the bacteria components.

Inhibit biofilm formation: The results obtained in chapter 3 indicated that increas-
ing the NaCl concentration in the swimming medium could keep the pusher-mode bacteria
away from the surfaces, and therefore reduces the chance of biofilm formation. A relatively
similar correlation between the ions’ concentration and boundary accumulating behavior
is likely expected for other species as well. It is concluded that changing the ions con-
centration near the susceptible surfaces might decelerate the process of biofilm formation.
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In addition, an analysis by Sipos et al. [112] has demonstrated that the tendency of the
bacteria to swim near convex surfaces changes with the convexity radius. Bacteria swim
away from surfaces with a convexity radius smaller than some critical value (R∗∗) that
depends on the bacterium length and the stable angle of the bacterium with the wall when
the bacterium is entrapped near a flat wall. This critical radius is about R∗∗ = 57 µm for
E. coli. Since this analysis is conducted by assuming that the convexity radius is much
larger than the cell body size, the feasibility range of radius for repelling the bacteria is
limited. This preliminary analysis indicates that the chance of biofilm formation is likely
low on a wavy surface in which the curvature of any point on the surface is slightly larger
than 1

R∗∗ . However, a comprehensive study is required to investigate the interaction be-
tween the swimming bacteria and such a wavy surface to conclude about reducing biofilm
formation through changing the surface topology.

Variable hook stiffness: Experimental measurements have illustrated that hook stiff-
ness in bacteria dynamically changes by the load. Such a strain-stiffening mechanism allows
the hook to be flexible when either the flagellar bundle forms or the bacterium tends to flick
and be stiffer under high hydrodynamic loads [81, 115]. In the present work, we assumed
that the hook stiffness is always constant and equal to its stiffness in the loaded state.
Based on this assumption, we were unable to mimic the flagellum flicking in V. alginolyti-
cus. It seems that the dynamic stiffing of the hook plays a key role in the flicking of the
flagellum. However, some more simulations with this assumption are required to discover
different aspects of this and some other special phenomena in bacteria.

Wrapping of the puller flagellum: In chapter 4, we showed that if the torque
applied to a pusher flagellum surpasses a threshold, it enters an overwhirling state in
which the flagellum experiences large deformations and the free end of the flagellum gets
close to the driven end. Our preliminary simulations indicated that if the torque applied
to a puller flagellum surpasses a threshold, which is different from the threshold that exists
for the pusher flagellum, the puller flagellum bends toward the cell body and tends to wrap
around it. Similar behavior was recently reported by Park et al. [85], where it is shown that
the puller flagellum’s wrapping mode can help the bacteria to escape from the surfaces.
Different aspects of this model and how it affects the behavior of uni- and multiflagellated
bacteria are not well understood yet and there are still several unanswered questions in this
respect to be answered. For instance, is the wrapping mode only observed in uniflagellated
bacteria? Is the wrapping of the flagellum possible under the effect of the rotation of the
other flagella in multiflagellated bacteria? What is the role of the cell body shape in the
wrapping of the flagellum?

Polymorphic transformations of the flagellum during tumbling event: In
this study, we simply showed that if at least one flagellum switches its rotation direction
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in a bundle, the bundle unravels, the corresponding flagellum leaves the bundle and the
cell body is reoriented. However, several experimental observations have shown that the
corresponding flagellum executes polymorphic transformation and its shape changes to
semi-coiled [124, 57, 35] during the tumbling event. Consequently and in order to better
understand the tumbling behavior in multiflagellated bacteria and see how the bacteria
exploit it to randomly change their orientation toward the desirable environments, it is
necessary that this transformation is considered in upcoming studies.

U-turn inside a confined channel: Experimental observations of bacteria motility
inside straight narrow channels (their width are in the order of the cell body sizes) have
illustrated that bacteria (uni- or multiflagellated) sometimes execute U-turns inside the
channel. According to these observations, the size, shape, and length of the cell bodies and
the flagella are some key factors that determine the fraction of the bacteria which exhibit
U-turns [119]. Some numerical simulations to reproduce the bacteria motility inside the
channels could shed light on different aspects of this interesting behavior. Our results in
this thesis indicated the translational and angular velocities of the bacterium vary sharply
with position inside the channel. It would be interesting to explain the reasons behind
these sharp variations. It is recommended that fine grids are used to cover the walls and
the cell body surface to yield better numerical accuracy in the narrow channels. However,
some optimization in terms of computational time and memory usage are also required in
the presented scheme to do such simulations in a reasonable time period.

Unique structure of the flagella in M. marinus: As described in chapter 4, the
flagella structure in M. Marinus is different from other kinds of bacteria. Each bundle
in M. marinus is composed of seven flagellar filaments and many fibrils enveloped in a
sheath. We are unaware of any numerical or experimental studies to provide data about
the overall stiffness of the flagella filament and hook in this kind of bacteria, Moreover,
the role of such a structure in the swimming and behavior of the bacteria is still unclear.
Therefore, some experimental and numerical studies could improve our knowledge about
the morphology of this bacterium, especially because its biomedical applications for drug
delivery have already been proven.
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Appendix A

Model bacterium with rigid flagella

A.1 Governing equations

In some sections of the thesis, the swimming behavior of the model bacteria with the
flexible flagellum is compared with the rigid model. In this section, we briefly simplify our
framework for the model bacteria in which the flagella are rigid.

Like the flexible model, we discretize the flagella into a finite number of straight seg-
ments. However, the segments are assumed to be fixed with respect to each other in the
rigid model. Therefore, the Kirchhoff rod model which is employed to estimate the internal
moments between the flagella joints is removed from the system of equations. Moreover,
the complexity of the kinematic equations reduces because the angular and translational
velocity of each point on the model bacterium surface can be represented in terms of three
unknowns ~U (B), ~Ω(B) and ~ω

(i)
r . As a result, Eq. 2.58 is rewritten as:

~U( ~XE) =

~U
(B) + ~Ω(B) ×

(
~XE − ~X(B)

)
, ~XE on cell body,

~U (B) + ~Ω(B) ×
(
~XE − ~X(B)

)
+ ~ω

(i)
r × ~X

(i)
rel ,

~XE on ith flagellum,
(A.1)

where
~X

(i)
rel = ~XE − ~X(i) , (A.2)

and ~ω
(i)
r is the rotational velocity of the ith flagellar rotor.

Similarly, Eq. 2.60 is revised as:

~ω( ~XE) = ~Ω(B) + ~ω(i)
r , ~XE on ith flagellum. (A.3)
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Accordingly, Eq. 2.61 changes to:

 ~u1
...

~uNPB+NF·NPF

 = A′3



~U (B)

~Ω(B)

~ω
(1)
r
...

~ω
(NF)
r

 ,
 ~ω1

...
~ωNF·NPF

 = A′4


~Ω(B)

~ω
(1)
r
...

~ω
(NF)
r

 , (A.4)

where the matrices A′3 and A′4 are determined by using the position vectors, according to
Eqs. A.1 and A.3.

Like the flexible model, the total torques and forces acting on the bacterium complex
are zero. However, the torque balance equations about the flagella joints (i.e. Eq. 2.69)
are removed from the system of linear equations, and instead, torque balance equations
to satisfy the motor torque constraints are added to the equations. This equation for ith
flagellum is expressed as:

~e
(i)
1 ·

(∫
Γ(i)

~γ × ~fFds+

∫
Γ(i)

~nds

)
+ Ti = 0. (A.5)

The first and second integrals represent the torque induced by the hydrodynamic forces
and torques along the ith flagellum, respectively. The projection of this torque on the
rotor axis is balanced by the motor torque. Since the rotational velocity vector of each
rotor is expressed as W (i)rot~e

(i)
1 , Eq. A.5 is solved in coupled with the other equations in

the system of the linear equations for the scalar unknown W (i)rot which denotes the ith
motor’s rotation rate. By applying these simplifications, the simplified form of the system
of the linear equations is solved for three unknowns W (i)rot, ~U (B) and ~Ω(B). In the next
step, the configuration of the model bacterium is updated according to these translational
and angular velocities.
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Appendix B

Convergence of numerical methods

In addition to the verifications presented in section 2.8, we conduct the following simula-
tions to test the convergence of the swimming properties to the rigid model (Fig. B.1), the
convergence of the swimming properties with the mesh refinement (Figs. B.2-B.4), stability
of the numerical solutions (Fig. B.5), impacts of the twisting stiffness to the bending stiff-
ness ratio Υ and the regularization parameter on the progressive speed (Figs. B.6-B.7), and
the sensitivity of the maximum time step to some most important parameters (Fig. B.8).

Table B.1: Mesh refinement level for convergence test

Refinement Level NS NB

1 12 24
2 18 60
3 24 112
4 30 180
5 36 264
6 42 364
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Figure B.1: Progressive speed of a uniflagellated model bacterium with flexible and rigid
flagellum at constant motor speed. Uswim/Uw is the progressive speed non-dimensionalized
by the linear wavespeed of the flagellum. As expected, the progressive speed of the model
bacterium converges to the rigid model as the stiffness of the flagellum increases. In this
model bacterium, the physical parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π,

akE = 1,NS = 30 and NB = 180. There is no hook in this model bacterium, but it is
assumed that the first segment of the flagellum is straight and the helical shape of the
flagellum starts after the first segment. In order to align the flagellum axis with the cell
body axis, amplitude envelope growth rate kE is used to describe the flagellum shape. In
fact, the bacterium configuration in this simulation is according to Higdon’s model [46]
with minor differences in connecting the flagellum to the cell body.
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Figure B.2: Convergence of the numerical method with respect to the cell body mesh
refinement for a bacterium with flexible flagellum swimming in free space and constant
motor speed. The steady-state progressive speed, U , increasingly converges to its most
accurate value. The speeds in this graph are scaled by the value obtained at the finest
mesh (Ns = 480), Ufine. In this model bacterium, the physical parameters are defined as
l
R

= 5, ε
R

= 0.02, p
a

= 2π, akE = 1, NS = 30 and kF = 3. In order to align the flagellum
axis with the cell body axis, amplitude envelope growth rate kE is used to describe the
flagellum shape.
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Figure B.3: Convergence of the numerical method with respect to the flagellum mesh re-
finement for a bacterium with flexible flagellum swimming in free space and constant motor
speed. The steady-state progressive speeds, U , which are scaled by the value obtained at
the finest grid, are reported in the different numbers of the segments on the flagellum.
Unlike Fig. B.2, the progressive speed decreasingly converges to its most accurate value.
In this model bacterium, the physical parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π,

akE = 1, NB = 180 and kF = 3. In order to align the flagellum axis with the cell body
axis, amplitude envelope growth rate kE is used to describe the flagellum shape.
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Figure B.4: Convergence of the numerical method with respect to the cell body and
flagellum meshes refinement. The steady-state progressive speeds, U , which are scaled
by the value at the highest refinement level 6, are presented in the different levels of the
flagellum and cell body meshes refinement. The number of segments and the element at
each level of refinement are described in Tab. B.1. For the refinement level 3 and more
the error is less than 1.5%. The model bacterium has a flexible flagellum and swims in
free space with a constant motor speed. The physical parameters are defined as l

R
= 5,

ε
R

= 0.02, p
a

= 2π, akE = 1 and kF = 3. In order to align the flagellum axis with the cell
body axis, amplitude envelope growth rate kE is used to describe the flagellum shape.

151



3.0E-07

3.0E-06

3.0E-05

5.0E-08 5.0E-07

Figure B.5: Test for the time step independency of the numerical scheme developed in this
thesis. The progressive speeds of the model bacterium are calculated explicitly using the
forward Euler method with different time steps. The convergence of the absolute error is
shown in the log-log scale. The absolute error is defined as δ = |U−U ref |; where U ref is the
progressive speed obtained at the finest time step ∆ tfine = 6× 10−8. In the studied model
bacterium, the physical parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π, akE = 1,

NB = 180, NS = 30, ∆ tcoarse

∆ tfine
= 100 and kF = 3. In order to align the flagellum axis with the

cell body axis, amplitude envelope growth rate kE is used to describe the flagellum shape.
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Figure B.6: Impact of the ratio of the twisting stiffness GJ to the bending stiffness
EI of the flagellum on the progressive speed of the model bacterium. The steady-state
progressive speeds of the model bacterium in free space and constant motor speed are
calculated using different ratios Υ for the flagellum. These speeds are scaled by the value
obtained at the case with Υ = 1 (as a reference ratio used in this thesis). In smaller ratios
(Υ < 0.2), the twisting of the flagellum changes the effective amplitude and the number of
turns along the flagellum, and therefore, the progressive speed decreases. In higher ratios,
the swimming properties remain fairly constant. In this model bacterium, the physical
parameters are defined as l

R
= 5, ε

R
= 0.02, p

a
= 2π, akE = 1, NB = 180, NS = 30 and

kF = 3. In order to align the flagellum axis with the cell body axis, amplitude envelope
growth rate kE is used to describe the flagellum shape.
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Figure B.7: Impact of the regularization parameter ε
R

on the progressive speed of the
model bacterium. The steady-state progressive speeds of the model bacterium in free
space and constant motor speed are calculated using different regularization parameters ε

R

for the flagellum. These speeds are scaled by the value obtained at the case with ε
R

= 0.02
(as a reference regularization parameter used in the verifications). In smaller regularization
parameters ( ε

R
< 0.05), the progressive speed’s dependency on the regularization parameter

is considerable. In this model bacterium, the physical parameters are defined as l
R

= 5,
p
a

= 2π, akE = 1, NB = 180, NS = 30 and kF = 3. In order to align the flagellum axis with
the cell body axis, amplitude envelope growth rate kE is used to describe the flagellum
shape.
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Figure B.8: Impacts of the regularization parameter (A), the number of the flagellum’s
segments (B), and the flagellum’s stiffness (C) on the largest time step ∆ tmax

fine for ensuring
the solution stability. The graphs are plotted in the log-log scale and the data points are
obtained manually by increasing the time step with increments of 10−8 until the largest
value in which the solution is numerically stable. We decide on the stability of the solution
by checking the obtained results in the first 100 steps. The obtained results indicate
that the time step required to solve the stiff ODEs (discussed in section 2.7) significantly
depends on the regularization parameter ( ε

R
) and the number of segments on the flagellum

(Ns). The time step is less sensitive to the flagellum stiffness (kF), comparatively. In
the uniflagellated model bacterium with a flexible flagellum, the physical parameters are
defined as l

R
= 5, p

a
= 2π, akE = 1, NB = 180, NS = 30 and kF = 3. Obviously, the

parameter that varies at each graph is not fixed at the given value. In order to align
the flagellum axis with the cell body axis, amplitude envelope growth rate kE is used to
describe the flagellum shape.
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