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Abstract  

 

Lakes cover a significant fraction of the landscape in many northern countries. They play 

a key role in regulating weather and climate and also have a significant impact on northern 

communities since the presence (or absence), extent and thickness of lake ice affect transportation 

(ice roads), food availability, recreational activities, and tourism in wintertime. The drastic decline 

in in-situ observations of lake ice phenology (i.e., freeze-up and break-up dates and ice cover 

duration) and lake ice thickness globally over the last three decades make remote sensing 

technology a viable means for monitoring lake ice conditions. Although satellite radar altimetry 

has been used in various cryospheric and hydrological studies, little work has been conducted on 

lake ice compared to, for example, sea ice and the estimation of lake water levels.  

This study was carried out using Sentinel-3A/B SAR altimetry data acquired over three ice 

seasons (2018-2019, 2019-2020 and 2020-2021) at 11 large lakes across the Northern Hemisphere. 

We explored the information provided by radar waveforms to discriminate between open water, 

first (young) ice, growing ice and melting ice using machine learning models. To characterize the 

waveforms, seven waveform parameters were derived: Leading Edge Width (LEW), Offset Center 

of Gravity (OCOG) Width, Pulse Peakiness (PP), backscatter coefficient (Sigma0), late tail to peak 

power (LTTP), early tail to peak power (ETTP) and the maximum value of the echo power. Four 

machine learning algorithms including Random Forest (RF), Gradient Boosting Trees (GBT), K 

Nearest Neighbour (KNN) and Support Vector Machine (SVM) classifiers were tested to assess 

their capability in classifying the lake surfaces across all years. Manual class labelling based on 

Sentinel-3 Synthetic Aperture Radar Altimeter (SRAL) waveforms and complementary satellite 

data (Sentinel-1 imaging SAR data, Sentinel-2 Multispectral Instrument (MSI) Level 1C data, and 

MODIS Aqua/Terra data) was performed to create training and test samples for the classifiers. 

Accuracies greater than 95% were achieved across all classifiers using a 4-parameter combination 

(Sigma0, PP, OCOG Width, and LEW). Amongst all waveform parameters, Sigma0, OCOG width 

and PP were found to be the most important parameters for discriminating between lake ice and 

open water. Despite showing comparable classification performances in the overall classification, 

RF and KNN are found to be a better fit for global lake ice mapping as both are less sensitive to 

their internal hyperparameters and have faster processing speeds. Additionally, consistent results 
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(>93.7% accuracy in all classifiers) achieved on the accuracy assessment carried out for each lake 

revealed the strength of the classifiers for spatial transferability. Implementation of RF and KNN 

could be valuable in a pre-or post-processing step for identifying lake surface conditions under 

which the retrieval of water level and ice thickness may be limited or not possible and, therefore, 

inform algorithms currently used for the generation of operational or research products. While the 

research focused on 11 of the largest lakes of the Northern Hemisphere, the classification approach 

has potential for application on smaller lakes too since SAR mode data (~300 m along-track 

resolution) is used in the study. 

 

Keywords: SAR altimetry, lake ice, classification, waveform, machine learning 
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Chapter 1 

General Introduction 

1.1 Motivation 

Lakes are effective sentinels for climate change since their physical, chemical, and 

biological properties respond quickly to changes associated with climate (Rosenzweig et al., 2007; 

Adrian et al., 2009). As the response variables are major determinants of the changes in the lake 

properties and can act as indicators of climate change, the Global Climate Observing System 

(GCOS) recognizes lakes as an Essential Climate Variable (ECV) and in particular the following 

six thematic products - lake surface water temperature, lake water extent, lake water level, lake ice 

cover, lake ice thickness and lake colour (lake water-leaving reflectance) (Belward et al., 2016; 

Buontempo et al., 2022). Changes in lake surface water temperature and water level have been 

documented globally (Birkett et al., 2011; Crétaux et al., 2011; Sharma et al., 2015; Carrea & 

Merchant, 2019). In the Northern Hemisphere, changes in lake ice cover/phenology, and to a lesser 

extent ice thickness, have also been documented largely from in situ observations (e.g., Sleator, 

1995; NSIDC, 1995; Benson et al., 2000; NSIDC, 2004; Sharma et al., 2021). Historical satellite 

records are increasing in length, especially since the 1990s, and there has also been significant 

progress made in the development of retrieval algorithms (e.g., Du et al., 2017; Wu et al., 2021; 

Cai et al., 2022), such that satellite remote sensing is playing an increasingly important role in 

monitoring lakes globally (Duguay et al., 2015).  

One of the satellite technologies used for monitoring changing lake conditions is radar 

altimetry. Unlike imaging sensors, altimetry instruments are profiling systems that collect 

information in the form of radar echoes along the earth surface (i.e., tracks). Such radar echoes are 

recorded as a histogram of energy backscattered by the ground surface to the satellite with respect 

to time; they are referred to as waveforms. Radar altimetry has been widely used in the monitoring 

of lake water levels in the past few decades (Birkett, 1995; Crétaux & Birkett, 2006; Sarmiento & 

Khan, 2010; Shu et al., 2020a; Ziyad et al., 2020) and serves as an essential contributor for many 

globally distributed water level databases such as Hydroweb, G-REALM, DAHITI and the 

European Space Agency's (ESA) CCI Lake product (Crétaux et al., 2011; Birkett et al., 2011; 

Schwatke et al., 2015; Crétaux et al., 2020). Compared to, for example, sea ice and the estimation 
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of ocean and lake water levels, little attention has been given to the application of radar altimetry 

data to monitor lake ice cover or estimate lake ice thickness. Although altimetry has been used to 

estimate water level in lakes, it has only recently been recognized that the presence of ice cover 

and its growth during the winter season introduces errors in the retrieval of water level estimates 

(Birkett & Beckley, 2010; Sarmiento & Khan, 2010; Ricko et al., 2012; Shu et al., 2020a; Nielsen 

et al., 2020). This water level retrieval error happens as the presence of ice modifies the shape of 

the radar echoes, which in turn, affects height estimations (Tseng et al., 2013). To resolve this 

limitation, it would be helpful to know the surface types of the lake surface so that one could avoid 

such bias-inducing observations or estimate any other equivalent measurements. Even in the 

context of lake ice thickness estimation, knowledge of the surface types associated with each 

altimetry observation is useful. This is because the current altimetry-based lake ice thickness (LIT) 

retrieval algorithms fail to provide true thickness estimates until the young ice reaches a certain 

thickness or as soon as melt onset begins (Mangilli et al., 2022). 

To date, algorithms to determine the presence of ice and open water from altimetric 

missions have relied on the combination of brightness temperature and backscatter (low-resolution 

mode or LRM) measurements (Kouraev et al., 2003; Kouraev et al., 2007). Using simultaneous 

multi-frequency radiometer (18 to 37 GHz) and radar altimetry data (Ku-band) from several 

satellites (TOPEX/Poseidon, Jason-1, ENVISAT, Geosat Follow-On), Kouraev et al., 2007 

conducted a case study on Lake Baikal and demonstrated the potential of satellite altimetry and 

radiometry to discriminate between lake ice and open water. Linear equations developed from 

simple classification thresholds paved the way to determine freeze-up and break-up dates on large 

lakes in relation to atmospheric forcings (Kouraev et al., 2008). Ziyad et al. (2020) proposed a 

threshold-based method to classify ice-covered and open water areas in Canadian lakes (Great 

Slave Lake, Lake Athabasca, Lake Winnipeg, and Lake of the Woods) during freeze and thaw 

periods. The authors used three different parameters extracted from the Jason-2 radar (Ku-band) 

altimetry data, including backscatter coefficient, brightness temperature (average value of the 

brightness temperature at 18.7 GHz and 37 GHz) and pulse peakiness to create the threshold-based 

algorithm. Using simultaneous brightness temperature measurements provided by microwave 

radiometer channels at 23.8 GHz and 36.5 GHz onboard the Sentinel-3 satellite mission, Shu et al. 

(2020a) were able to detect the presence of ice in several lakes. Both Ziyad et al. (2020) and Shu 

et al. (2020a) developed classification approaches with in mind the presence of ice as a limiting 
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factor in the estimation of lakes water levels (i.e., the presence of ice in lakes introduces biases in 

water level estimates).  

The magnitude and the shape of a radar echo (waveform) vary with the 

properties/conditions of the target surface. Thus, one approach for discriminating between ice 

cover and open water is to extract waveform parameters that define the waveform. This approach 

has most notably been applied to sea ice (Zygmuntowska et al., 2013; Ricker et al., 2014; Nilsson 

et al., 2015; Wernecke & Kaleschke, 2015; Rinne & Similä, 2016; Shen et al., 2017; Shen et al., 

2017; Müller et al., 2017; Shu et al., 2020b; Fredensborg Hansen et al., 2021) and in a more limited 

extent to lake ice (Ziyad et al., 2020). Given the limited research on the topic of lake ice from radar 

altimetry and in light of recent and upcoming altimeter missions offering data in higher-resolution 

synthetic aperture radar (SAR) mode (e.g., Sentinel-3, Sentinel-6, Surface Water and Ocean 

Topography (SWOT)), this thesis focuses on assessing machine learning (ML) algorithms applied 

to SAR altimetry data from the Sentinel-3 mission to classify ice and open water over a selection 

of large lakes across the Northern Hemisphere.  

1.2 Research objectives 

The main goal of this research is to evaluate the capability of different machine learning 

algorithms in discriminating between open water and lake ice using waveform parameters and 

backscatter coefficients. To achieve this goal, the following objectives are set:  

1) Determine the optimal parameter combination to achieve the best classification 

performance and calculate the feature importance. 

2) Examine the sensitivity of the classifiers to their internal hyperparameters and find the 

best hyperparameters for the study. 

3) Evaluate the capability of the classifiers to cope with spatial heterogeneity in the dataset. 

 

1.3 Thesis Outline  

 Including this introduction chapter, this thesis is organized into four chapters. Chapter 2 

reviews the existing literature to provide background on lake ice, satellite altimetry and waveform 

parameter-based classification. Chapter 3 contains the draft of a paper to be submitted to the 

journal Remote Sensing of Environment, titled "Machine Learning Based Classification of Lake 

ice and Open Water from SAR Altimetry Waveform Parameters". Finally, Chapter 4 summarizes 

the study, identifies some limitations, and provides recommendations for future work. 
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Chapter 2  

Background 

  

2.1. Lake Ice Phenology 

The term 'lake ice phenology' defines the stages of lake ice formation, ice-covered duration 

and ice decay (Duguay et al., 2015). In other words, lake ice phenology comprises three main 

periods: 1) freeze-up, 2) ice growth, and 3) break-up. These periods occur as a result of an energy 

surplus or deficit in the energy balance of the lake ice cover (Carrea et al., 2015). 

 

2.1.1 Freeze-up 

Freeze-up refers to the duration between the start of ice formation and the establishment of 

a complete sheet of ice on a lake surface (Kang et al., 2012). Freeze-up occurs during the fall/ early 

winter. Timing varies depending on the morphometry and latitude of the lake, and weather/climate 

conditions (Brown & Duguay, 2010). Once the temperature of the lake falls to 4 C (the 

temperature at which freshwater reaches its maximum density), due to heat loss, the surface water 

becomes denser and sinks. This process repeats itself until all the water column reaches its 

maximum density. With further cooling and ceased of mechanical mixing, a thin layer of ice forms 

on the surface when the surface water cools to the freezing point. This initial layer of ice is called 

skim ice, which often forms first at the calm, protected borders of the lake. This ice development 

process can happen several times until the lake surface becomes entirely ice-covered (Jeffries et 

al., 2005). 

Over the ice season, two types of ice may be observed in lakes: 1) congelation ice (Figure 

2-1 (a)) and 2) snow ice (Figure 2-1 (b)). Ice that usually forms first and is comparatively clear is 

called congelation ice (Brown & Duguay, 2010). It is also referred to as "black ice" as the 

underlying water is clearly visible. This dark appearance occurs due to its high optical 

depth/significant light transmittance (Jeffries et al., 2005). Water freezing at the base of the initial 

ice layer results in the thickening of the skim ice and the formation of congelation ice growing 

downward. Such basal freezing and ice formation produce two distinct texture types of ice. One is 

the most common and has horizontally oriented c-axes (S1) with a columnar texture of vertically 
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elongated crystals. The other has vertical c-axes (S2) of many massive crystals. Comparatively, 

S1 ice has a higher albedo than S2 ice (Jeffries et al., 2005). 

 

   

Figure 2- 1 (a) Congelation ice and (b) Snow ice (Source: Duguay et al. 2002) 

The second dominant lake ice type, particularly prevalent at mid-latitude lake locations, is 

snow ice which is often referred to as "white ice" due to its high light scattering and albedo (Jeffries 

et al., 2005). White ice can be formed in two ways. One is when the snow mass on the ice surface 

is large enough to overcome the buoyancy of the ice and pushes the ice surface below the 

piezometric water level. Thus, flooding at the snow-ice interface occurs and leads to slush 

formation. Rapid freezing of the slush forms snow-ice (Ashton, 2011). The other way of snow ice 

formation happens when the meltwater or rainwater seeps through the snow to the ice layer and 

eventually becomes frozen (Bengtsson, 1986). 

 

2.1.2 Ice growth 

Temperature and precipitation are the leading factors that influence lake ice during its 

growth season (Brown & Duguay, 2010). Adams (1976) found that ice growth occurs as the heat 

continues to be released from the lake through the upper ice surface. This heat loss happens due to 

the temperature gradient difference between the underlying warmer water and the colder air above. 

Trends in ice thickness have also been linked to variations in air temperature. In addition, snow on 

ice influences ice growth.  A larger amount of snowfall over lake ice leads to snow ice formation, 

which enhances ice growth and influences the composition of lake ice (Brown and Duguay, 2010).  

(a) (b) 
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2.1.3 Break-up  

The breakup process majorly comprises decay and fracture; however, in some scenarios, 

ice drifting may happen on large lakes and later gets removed by outflowing rivers (Jeffries et al., 

2012). The ice disintegration process is regulated by several factors, including heat input from the 

atmosphere, state of ice and snow, wind, fluxes, and inflow from streams/ land runoff (Brown & 

Duguay, 2010; Williams, 1965). Break up usually happens sequentially, at first, snow, then snow 

ice (if any) and finally, black ice melts. However, the rapid break-up may take place in the presence 

of clear ice as it absorbs more shortwave radiation due to its low albedo nature (Kang et al., 2012). 

Due to the changes happening both at the ice surface and internally, the albedo varies over the 

season. The albedo of the lake ice reduces with the porosity of the ice cover and increases with the 

minimum ice density (Heron & Woo, 1994). Heron & Woo (1994) also observed that the thawing 

of overlying c-axis ice crystals (vertical orientation) causes an albedo decrease from 0.45 to 0.2. 

This albedo decline exposes the underlying c-axis ice (horizontal orientation) crystals where the 

inner melting has not started yet. 

 

2.2 Satellite radar altimetry 

2.2.1 Satellite altimeter missions 

The first altimeter satellite, Skylab, was launched in 1973. It was the first experimental 

mission sent out to space with the primary goal of determining the geoid based on the concept of 

altimetry. With further improvements in the altimeter system, GEOS-3 was launched in 1975. 

Successively, SEASAT and GEOSAT were launched in 1978 and 1985. These missions were 

beneficial in further understanding the altimetry technique, thereby helping to improve the range 

precision and accuracy of the orbit in future missions (PODAAC, 2022). However, these satellites 

were short-lived, and the altimeter era was considered to begin only in 1991 with the launch of the 

ERS-1 satellite by the European Space Agency (ESA). Following ERS-1, several altimeter satellite 

missions (Table 2-1) were launched into space and started providing continuous altimetric 

measurements. Figure 2-2 shows the past, present and future radar altimetry missions. 
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Table 2- 1 Satellite altimetry missions and their main characteristics (Aviso+, 2022) 
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Figure 2- 2 Timeline of the radar altimetry missions since 1991. Source: Aviso+ (2022) 

 

2.2.2 Basic principle of satellite radar altimetry 

 In satellite radar altimetry, a nadir-pointing satellite carrying an altimeter system sends a 

series of microwave pulses to the target on the Earth. These pulses get reflected by the target to 

the satellite and are recorded in the form of echoes. The two-way travel time between the 

transmission and reception of the radar pulse is used to measure the surface height (distance 
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between the satellite and the surface of the target) through the range measurement. Figure 2-3 

presents the basic principle of satellite altimetry. The range 𝑅̂ is calculated (Fu and Cazenave, 

2000) as  

𝑅̂ =
𝑐𝑡

2
(2.1) 

 

where c is the speed of light in vacuum (~3x108 𝑚𝑠−1), and t is the time the signal takes to travel 

from the satellite to the target and its way back to the satellite. As the signal travels through the 

atmosphere, it gets affected by the refraction from the particles. This interaction with particles 

reduces the speed of the signal. Hence, the range 𝑅̂ needs to be corrected for various components 

(∆𝑅𝑗) of atmospheric refraction, instrumental bias and sea-state effects (Fu and Cazenave, 2000). 

The corrected range R is estimated by 

𝑅 =  𝑅̂ − ∑ ∆

𝑗

𝑅𝑗 (2.2) 

 

Using the corrected range measurement, the surface height h can be easily calculated by 

ℎ = 𝐻 − 𝑅 (2.3) 

where H is the height (altitude) of the satellite relative to the reference ellipsoid and can be 

obtained by the orbital parameters of the satellite.  
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Figure 2- 3 A schematic of the principle of satellite altimetry (Source: Fu and Cazenave, 

2000) 
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2.2.3 Conventional and delay/Doppler altimeters 

The signal reflected from the target is sampled as the reflected power over time, referred 

to as waveform or radar echo. In other words, a waveform represents a histogram of energy 

backscattered by the target surface with respect to time. Interestingly, the construction of the 

waveform and the area illuminated on the target surface differs with the type of altimeter system 

used aboard the satellite. Currently, two types of altimeter systems are widely in use: conventional 

and delay/Doppler altimeters. Figure 2-4 presents the comparison of the above-mentioned 

altimeters and the waveforms constructed by them. Conventional altimeters are often referred to 

as Low-Resolution Mode (LRM) or pulse-limited altimeters. This is because the area illuminated 

by the LRM altimeters is limited by the width of the transmitted pulse from the altimeter systems. 

In contrast, the area illuminated by the delay/Doppler altimeters called Synthetic Aperture Radar 

Mode (SARM) altimeters depends on the beamwidth of the radar used in the altimeter instrument. 

Hence, SARM altimeters are called beam-limited altimeters.  

Although there is a long history of pulse-limited satellites, SARM altimeters are considered 

more advantageous than the pulse-limited ones as they efficiently utilize the power reflected from 

the surface using the delay/Doppler technique. Through the SAR processing mode, groups of 

transmitted pulses collected along the satellite track are coherently processed and thus offer multi-

look processing, resulting in a high-resolution dataset (Raney, 1998). Figure 2-5 illustrates the 

sampling of a LRM and a SAR waveform at 1Hz and 20 Hz.  
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Figure 2- 4 Comparison of conventional altimeter's (a) illumination geometry (side view) 

and footprint (plan view) and (b) LRM waveform to a delay/Doppler altimeter's (c) 

illumination geometry and footprint and (d) SARM waveform (Source: Raney, 1998; 

Tournadre & Chaprono, 2020) 
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Figure 2- 5 Along track and range sampling of LRM and SAR mode altimeters (Sentinel-3 

User Guides, 2022) 

 

2.3 Classification of ice and open water with data from satellite altimetry 

missions 

 This section is divided into two subsections to present the background knowledge relevant 

to the classification approach developed in the study. Section 2.3.1 covers previous studies on the 

classification of lake ice and open water. An extensive discussion on sea ice studies for surface-

type classification methods, including the waveform parameterization approach and ML 

algorithms, is presented in section 2.3.2.  

2.3.1 Lake ice 

 A combination of active and passive microwave observations from several LRM radar 

altimetry (Ku-band) missions (TOPEX/Poseidon, Jason-1, ENVISAT and Geosat Follow-On) 

complemented by SSM/I (Special Sensor Microwave/Imager) passive microwave data were used 

to develop a threshold-based classification algorithm for discriminating between lake ice and open 
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water in Lake Baikal (Kouraev et al., 2007). In radar altimetry data, backscatter from young or 

newly formed ice is high; however, the brightness temperature value is relatively low. Further 

growth in ice induces a decrease in backscatter values while brightness temperature values 

gradually increase. Additionally, snow accumulation and ice decay also impact the backscatter and 

brightness temperature values (Kouraev et al., 2007). According to the authors, backscatter and 

brightness temperature values are low for open water and high for ice cover, respectively. Since 

the backscatter and brightness temperature (average of the brightness temperature values at two 

frequencies) values vary with the formation, growth and decay of the lake ice, Kouraev et al. 

(2007) applied a threshold limit to these values to distinguish between lake ice and open water. 

These threshold values are unique to each satellite. Figure 2-6 shows histograms of two distinctive 

clusters (open water and lake ice) separated by a dashed line (threshold limit) for all altimetry 

mission data. Threshold values that classify open water and ice are converted into a linear equation 

and applied to each satellite data. This approach was used to estimate the specific dates for ice 

formation, the first appearance of open water and the ice-free date.   
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Figure 2- 6 Two-dimensional histograms of several altimetry missions for Lake Baikal 

(1992-2002). Here the x-axes and y-axes show the backscatter coefficient in Ku-band and 

the average value of brightness temperature (TB) values at two frequencies. The dashed 

line represents the separation between open water and lake ice clusters.                      

(Source: Kouraev et al., 2007). 

 

Another classification algorithm proposed by Ziyad et al. (2020) uses pulse peakiness (PP) 

(derived from LRM radar altimetry waveforms), backscatter coefficient (Ku-band) and brightness 

temperature values (average value from 18.7 GHz and 37 GHz measurements) of the Jason-2 
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mission to discriminate between open water and different ice types in Canadian lakes (Great Slave 

Lake, Lake Athabasca, Lake of the Woods, and Lake Winnipeg). To classify the altimetry 

observations into different clusters (open water, ice cover, ice freeze-up, and ice break-up), the 

authors identified the optimal thresholds of the three parameters by implementing unsupervised 

clustering methods, including K-means and hierarchical clustering. In the study, the backscatter 

and PP values fluctuated during ice break-up and decreased until they attained stableness during 

the open water period. During freeze-up, ice cover formation resulted in an increase in these two 

parameters; however, the parameter values decreased gradually with ice growth. In contrast, 

brightness temperature values were higher during the ice-covered period and lowered during the 

open-water season. The temporal variability of backscatter and average brightness temperature 

values in Ziyad et al. (2020) was nearly similar to that reported in Kouraev et al. (2007). Figure 2-

7 presents the annual time series of the monthly averages (red) and standard deviations (black) of 

the mean value of the parameters, including backscatter, PP and average brightness temperature. 

These values were obtained along the ascending and descending Jason-2 tracks covering the Great 

Slave Lake (2008-2016).  

 



 17 

 

Figure 2- 7 Jason -2 temporal variation of backscatter, peakiness and average brightness 

temperature values on Great Slave Lake from 8 September 2008 to 21 September 2016. 

The red and black lines indicate the monthly averages and standard deviations, 

respectively. computed from the mean value of the parameters (Source: Ziyad et al., 2020)  

Since brightness temperature values are sensitive to the ice cover formation (Kang et al., 

2012), Shu et al. (2020a) used simultaneous brightness temperature measurements (at 23.8 GHz 

and 36.5 GHz) provided by the passive microwave radiometer aboard the Sentinel-3 satellite to 

discriminate between open water and ice. Shu et al. (2020a) conducted a research study on 15 lakes 

and reservoirs in Finland, Canada, USA, and Sweden to detect the presence of ice using brightness 

temperature values. Notably, Shu et al. (2020a) did not use altimetry data to classify open water 

and lake ice. The classification approach was developed as a part of the study, as the main aim was 

to develop a bimodal correction algorithm to generate temporally consistent lake water levels. As 

water level estimation depends on altimetry data, the authors analyzed the altimetry waveforms 

observed throughout the year. Figure 2-8 shows the waveforms observed at Great Slave Lake 



 18 

during winter 2016-2017. It is important to note that the altimetry waveform shape is unique to 

each surface type and changes temporally over the ice season. For example, thin ice has a single 

peak waveform, while growing ice (thick ice) has a waveform with two peaks. Both Ziyad et al. 

(2020) and Shu et al. (2020a) developed lake ice and open water classification approaches to 

improve the estimation of lake water levels from altimetry data, as the presence of ice on a lake 

introduces bias in water level estimates.  

Although these previous studies suggested some classification approaches to discriminate 

between lake ice and open water, the use of radiometry data (brightness temperature 

measurements) and LRM altimetry data in the classification approaches present some limitations. 

The former limits the application of the method to very large lakes as the microwave radiometer 

observes with a large footprint (~10-35 km) and produces coarser-resolution data. The latter leads 

to a significant data loss as LRM altimetry observations can greatly be affected by land 

contamination.  In addition, LRM data have lower along track & across-track resolution (~2-20 

km), which limits the applicability of the method to smaller lakes. The approach developed in this 

thesis presents an advancement over these previous studies since it focuses on the application of 

machine learning algorithms applied to high-resolution SARM data (backscatter and waveforms) 

and without the need of coarse resolution brightness temperature measurements. 
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Figure 2- 8 The time series of Sentinel-3 SAR altimetry waveforms observed on Great Slave 

Lake during the 2016-2017 ice season. The date format is MM/DD/YYYY and  represents 

the epochs produced by SAMOSA-3 retracker (Source: Shu et al., 2020a).  

 

2.3.2 Sea ice  

Altimetry waveform parameter-based ice cover classification approach has already been 

proven to have the potential to discriminate between ice and open water and is widely used in 

many sea ice classification studies. For instance, Zygmuntowska et al. (2013) presented a Bayesian 
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classification approach based on the maximum power of the waveform (Max), PP, Leading Edge 

Width (LEW), Trailing Edge Width (TEW) and Trailing Edge Slope (TES) parameters to classify 

first-year ice (FYI), multi-year ice (MYI) and leads over Arctic Sea ice. Through this method, they 

were able to classify 80% of the waveforms correctly, and the altimetry data used in the study was 

obtained from an Airborne Synthetic Aperture and Interferometric Radar Altimeter System 

operating at Ku- band.  

To discriminate between the ocean, lead, and sea ice over Arctic Sea ice, Ricker et al. 

(2014) developed a threshold-based algorithm using Cryosat-2 (Ku-band) waveform parameters, 

including PP, stack kurtosis (K), stack standard deviation (SSD), pulse peakiness left (𝑃𝑃𝑙), pulse 

peakiness right (𝑃𝑃𝑟), sea-ice concentration (IC) and the width of the OCOG box (OCOG Width). 

Wernecke & Kaleschke (2015) also carried out a study over Arctic Sea ice and used several 

waveform parameters (Max, PP, 𝑃𝑃𝑙, 𝑃𝑃𝑟, LEW, TEW, SSD, K) from Cryosat-2 (Ku-band) data 

to find an optimized threshold for lead detection. Among all the waveform parameters, a threshold 

of 2.58 x 10−11 Watts on the maximum power of the waveform (Max) performed well (68% 

accuracy) in discriminating the leads from the sea ice. In addition, a K- Nearest Neighbors (KNN) 

based classification method was employed by Rinne & Similä (2016) to distinguish different sea 

ice types (thin FYI, thick FYI and MYI) and open ocean over Arctic Mediterranean (Barents and 

Kara seas). Cryosat-2 waveform parameters used in the classification approach were PP, LEW, 

late tail to peak power (LTPP), early tail to peak power (ETPP), SSD, 𝑃𝑃𝑙 and 𝑃𝑃𝑟. The automation 

approach was able to produce an overall classification accuracy of >90% for discriminating 

between open ocean and ice.  

Shen et al. (2017a) applied a random forest (RF) classification based on PP, LEW, TEW, 

SSD, Max and Sigma0 to distinguish open water, FYI and MYI and achieved an overall accuracy 

of 85%.  In the study, the Cryosat-2 (Ku-band) data acquired over the Arctic Sea ice region was 

used. Shen et al. (2017b) used the same Cryosat-2 waveform parameters to discriminate between 

FYI, MYI and open water over Arctic Sea ice by applying six different classifiers, including 

convolutional neural network (CNN), Bayesian, KNN, Support Vector Machine (SVM), RF, and 

back propagation neural network (BPNN). In the study, RF scored the highest mean accuracy of 

89.15%, followed by Bayesian, SVM, and BPNN classifiers achieving ~86%. Overall, CNN and 

KNN yielded the lowest classification accuracy of ~82%.   
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Müller et al. (2017) developed an approach to classify open ocean, sea ice and leads over 

the Greenland Sea and the Fram Strait by implementing a combination of partitional clustering (K-

medoids) and classification method (KNN) based on waveform maximum, trailing edge decline, 

waveform noise, waveform width, leading edge slope and TES. The authors conducted a 

quantitative assessment to test the classification performance and achieved an accuracy of 70.7% 

and 76.9% for Envisat (Ku-band) and SARAL/AltiKa (Ka-band), respectively. Shu et al. (2020b) 

proposed an Object-based Random Forest (ORF) method to distinguish FYI and MYI over Arctic 

Sea ice using Cryosat-2 data. The ORF approach used waveform parameters including LEW, 

TEW, Sigma0, PP, SSD and Max to generate different feature layers and achieved an overall 

accuracy of 90.1%. Likewise, Fredensborg Hansen et al. (2021) implemented four classifiers, 

including threshold-based classification, Bayesian classification, KNN and RF based on five 

SARAL/AltiKa (Ka-band) waveform parameters (Max, PP, LEW, TES and Sigma0) to 

discriminate between FYI and MYI in the Arctic. For FYI, the authors achieved a high 

classification performance with an accuracy of 93% (Bayesian classifier); however, for MYI, only 

39% classification accuracy (threshold-based classifier) was attained. 

The above studies illustrate the possibility of sea ice (FYI/MYI) and open water 

classification from machine learning approaches, including leads, based on altimeter waveforms 

and demonstrate that different ice types tend to display distinct waveform shapes. It is also clear 

that altimetry waveform parameters are useful for discriminating open water and different sea ice 

types. Thus, this thesis draws the concept of parameterization from the above-mentioned literature 

to implement and assess machine learning algorithms using waveform parameters for classifying 

open water and ice cover on northern lakes. 

  

2.4 Concept of waveform parameterization  

To characterize the altimetry waveforms, seven waveform parameters were extracted in    

this study: Leading Edge Width (LEW), Offset Center of Gravity (OCOG) Width, Pulse Peakiness 

(PP), backscatter coefficient (Sigma0), late tail to peak power (LTTP), early tail to peak power 

(ETPP) and the maximum value of the echo power (Max). These parameters are described below 

and shown schematically in Figure 2-9.  Like other parameters, the peakiness of the waveform 

(i.e., how peaky the waveform is) is hard to pinpoint in the figure. Hence PP and the parameters 

based on peakiness, including LTPP and ETPP, are not labelled in Figure 2-9. 
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1) Max is the maximum power value of the echo waveform (Figure 2-9). 

2) LEW is the distance between the first bin position containing equal to or greater than 10% 

of the power maximum and the bin position of the maximum waveform power (Figure 2-

9). 

3) PP is the ratio of the maximum power to the accumulated echo power. PP used in this study 

was defined by Ricker et al. (2014) as  

𝑃𝑃 = 128 ∗
𝑃𝑚𝑎𝑥

∑ 𝑃𝑖
128
𝑖=1

 (2.4) 

where 𝑃𝑚𝑎𝑥 is the maximum power in the echo waveform and 𝑃𝑖 is the power in the 𝑖𝑡ℎ 

bin. 

4) OCOG Width provides information about the width of the waveform, which is derived 

from the Offset Centre of Gravity retracker (OCOG) algorithm. Wingham et al. (1986) 

developed the OCOG retracker algorithm to calculate the waveform's centre of gravity 

(COG) by approximating the waveform with a rectangular box. The width of the 

rectangular box, which is the OCOG width, is computed as follows, 

𝑊 =  (
(∑ 𝑃𝑖

2128
𝑖=1 )

2

∑ 𝑃𝑖
4128

𝑖=1

) (2.5) 

where 𝑃𝑖 is the power in the 𝑖𝑡ℎ bin. 

5) LTPP is the ratio of the late tail to the peak power and is defined by (Rinne & Similä, 

2016) as 

 

𝐿𝑇𝑇𝑃 =  

1
21 ∗ ∑ 𝑃𝑖

max + 70
𝑖=max + 50

𝑃𝑚𝑎𝑥 
 (2.6) 

 

where max is the bin position with maximum power, 𝑃𝑚𝑎𝑥 is the maximum power in the 

echo waveform and 𝑃𝑖 is the power in the 𝑖𝑡ℎ bin. 

6) ETPP is the ratio of the early tail to the peak power and is defined by (Rinne & Similä, 

2016) as 

𝐸𝑇𝑇𝑃 =  

1
6

∗ ∑ 𝑃𝑖
max + 6
𝑖=max + 1

𝑃𝑚𝑎𝑥
 (2.7) 
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where max is the bin position with maximum power, 𝑃𝑚𝑎𝑥 is the maximum power in the 

echo waveform, and 𝑃𝑖 is the power in the 𝑖𝑡ℎ bin. 

7) Unlike other waveform parameters, Sigma0 is delivered in the Synthetic Aperture Radar 

Altimeter (SRAL) L2 data product. It is computed from the returned power of the echo 

pulse by OCOG retracker algorithm.  

 

 

 

 

 

 

 

 

 

 

 

            

 

Figure 2- 9 Schematic visualization of different waveform parameters (Max, LEW and 

OCOG Width) 

 

2.5 Limitations of past studies on lake ice from altimetry missions and 

contributions of thesis 

Compared to sea ice studies, we have seen limited work on lake ice and using coarse 

resolution (~10-35 km) brightness temperature and LRM altimetry measurements. In addition, the 

only lake ice classification study based on the waveform parameterization concept (Ziyad et al., 

2020) considered only a limited number of lakes to develop their classification algorithm (e.g., 

focused only on four lakes). Moreover, none of the studies used SAR altimetry data in their lake 

ice and open water classification algorithms. The coarser resolution brightness temperature 

measurements and LRM data limit the applicability of these approaches to very large lakes. 
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Recent investigations for sea ice have examined a larger set of waveform parameters (5-8) 

than for lake ice (1-3) and have also assessed several machine learning (ML) algorithms, obtaining 

accuracies between 75.37% to 91.83 % for FYI, 39% to 82.80% for MYI, and 88.26% to 93.87% 

for open water. 

In this thesis, we draw from the important literature on sea ice to assess, for the first time, 

the use of waveform parameters from SAR altimetry, without the need for coarse-resolution 

brightness temperature data, and the evaluation of several ML algorithms to classify open water 

and ice cover at various stages of development and decay, beyond what has been published to date. 

The next chapter describes such advancement, including the parameterization of SAR waveforms, 

application of four ML algorithms and assessment of spatial cross-validation over the 11 study 

lakes. 
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Chapter 3 

Machine Learning Based Classification of Lake ice and Open water 

from SAR Altimetry waveform features 

 

3.1 Introduction 

Lakes cover vast expanses of land at northern high latitudes and, therefore, play a key role 

in regulating weather and climate (Brown & Duguay, 2010). The lakes are ice-covered for several 

months of the year which makes them an important component of the cryosphere. As the physical, 

chemical and biological properties of lakes respond quickly to the changes associated with climate, 

lakes are considered effective sentinels of climate change. Lakes also have a significant impact on 

the northern communities since the presence (or absence), extent and thickness of lake ice affect 

transportation (ice roads), food security, recreational activities, and tourism in wintertime (Duguay 

et al., 2003; Adrian et al., 2009; Brown & Duguay, 2010). To acknowledge the importance of lakes 

for global climate monitoring, the Global Climate Observing System (GCOS) identifies them as 

Essential Climate Variables (ECVs); in particular, the attributes (or thematic products) are lake 

surface water temperature, lake extent, lake water level, lake ice cover, lake ice thickness and lake 

colour (water-leaving reflectance) (Belward et al., 2016; Buontempo et al., 2022). In the case of 

lake ice, in-situ observations of ice cover and its phenology (i.e., dates associated with freeze-up, 

break-up and ice cover duration) as well as lake ice thickness have significantly declined over the 

last three decades (Murfitt and Duguay, 2021). To deal with the erosion of in-situ observation 

networks in many northern countries, satellite remote sensing is assuming a greater role in the 

mapping and monitoring of lake ice (Duguay et al., 2015). Among the different sensor systems, 

passive microwave radiometers (Kang et al., 2012; Kang et al., 2014) and synthetic aperture radars 

(SARs) (Murfitt and Duguay, 2021) provide a viable means to monitor lake ice cover and lake ice 

thickness due to their capability of day/night acquisitions and under cloudy conditions.  

Satellite altimetry is one of the radar remote sensing technologies that has shown great 

potential for the monitoring of lakes globally. Unlike imaging sensors, altimeters are profiling 

systems that collect data in the form of radar echoes along the earth's surface (i.e., tracks). Such 

radar echoes are recorded as a histogram of energy backscattered by the ground surface to the 
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satellite with respect to time; they are referred to as waveforms. Satellite altimetry has been used 

in hydrological and cryosphere applications for several years; however, little work has been 

conducted on lake ice compared to, for example, sea ice and the estimation of lake water levels 

(Birkett, 1995; Crétaux & Birkett, 2006; Kouraev et al., 2007; Sarmiento & Khan, 2010; Ricker et 

al., 2014; Zakharova et al., 2015; Gao et al., 2019). As altimetry is a well-established technique 

for water level monitoring, there exist several altimetry-based global water level databases, such 

as Hydroweb, G-REALM, and DAHITI as well the European Space Agency's (ESA) Climate 

Change Indicators (CCI) Lakes dataset which contains water level as one of the thematic products 

(Crétaux et al., 2011; Birkett et al., 2011; Schwatke et al., 2015; Crétaux et al., 2020). However, 

research is increasingly recognizing the presence of ice cover on lakes as a source of uncertainty 

in the retrieval of winter water levels (Birkett & Beckley, 2010; Sarmiento & Khan, 2010; Ricko 

et al., 2012; Shu et al., 2020a ; Nielsen et al., 2020). To address this issue, there is a need to develop 

approaches to classify surface conditions (open water and ice types) on lakes as to reduce errors 

or at least flag dates of the year when estimates of water level may be more uncertain. This is also 

true for the estimation of lake ice thickness (Beckers et al., 2017; Mangilli et al., 2022) where 

knowledge of surface conditions at the time of altimeter acquisitions would be useful. This is 

because current altimetry-based lake ice thickness (LIT) retrieval algorithms fail to provide 

accurate thickness estimates up until the young ice reaches a certain thickness (~ 0.26 m) or with 

surface melt (either episodic or generalized melt in spring) (Mangilli et al., 2022). 

A limited number of studies have suggested approaches for the classification of lake ice 

and open water using data from satellite altimetry missions (Kouraev et al., 2007; Shu et al., 2020a; 

Ziyad et al., 2020). A threshold-based classification algorithm based on the combination of radar 

altimeter (backscatter coefficient) and multi-frequency (18 to 37 GHz) passive microwave 

radiometer (brightness temperature) observations from several LRM Ku-band altimetry missions 

(TOPEX/Poseidon, Jason-1, ENVISAT and Geosat Follow-On) complemented by SSM/I (Special 

Sensor Microwave/Imager) data has been proposed for discriminating between lake ice and open 

water in Lake Baikal (Kouraev et al., 2007). More recently, Ziyad et al. (2020) used the pulse 

peakiness (PP) values (derived from LRM radar altimetry waveforms) in addition to the 

backscatter coefficient (Ku-band) and brightness temperature values (average value from 18.7 

GHz and 37 GHz measurements) of the Jason-2 mission to design a classification algorithm to 

discriminate between open water and different ice types (ice cover, ice freeze-up and ice break-
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up) in the Canadian lakes (Great Slave Lake, Lake Athabasca, Lake of the Woods, and Lake 

Winnipeg). Using simultaneous brightness temperature (23.8 GHz and 36.5 GHz) measurements 

provided by the passive microwave radiometer aboard the Sentinel-3 satellite mission, Shu et al. 

(2020a) were able to detect the presence of ice in the lake as brightness temperature values are 

sensitive to the ice cover formation (Kang et al., 2012). Both Ziyad et al. (2020) and Shu et al. 

(2020a) developed classification approaches to improve the estimation of lake water levels from 

altimetry data as the presence of ice on lakes introduces biases in the water level estimates.  

As mentioned above, only a few studies have proposed algorithms for the classification of 

lake ice types and open water from altimetry missions. However, a larger body of literature exists 

on the development and assessment of approaches for the classification of sea ice and open water. 

Most sea ice investigations propose the use of backscatter coefficients and parameters extracted 

from radar waveforms of the altimetry missions including high-resolution mode Cryosat-2 (Ricker 

et al., 2014; Wernecke & Kaleschke, 2015; Rinne & Similä, 2016; Shen et al., 2017a; Shen et al., 

2017b; Shu et al., 2020b), Envisat (Müller et al., 2017), SARAL/AltiKa (Müller et al., 2017; 

Fredensborg Hansen et al., 2021) and Airborne Synthetic Aperture and Interferometric Radar 

Altimeter System (Zygmuntowska et al., 2013)  to classify sea ice types and open water. All of 

these studies have achieved good overall classification accuracies (70.7% to >90%) for 

discriminating different sea ice types and open water, showing that the parameterization of 

waveforms provides great potential for discrimination between different sea ice types. This paper 

draws from the important body of work from the sea ice community by assessing several machine 

learning algorithms and waveform parameters to discriminate between different lake ice types and 

open water. Our study is the first one to apply the parameterization approach to SAR altimetry 

waveforms for lake ice cover classification. 

 The aim of the study is to evaluate the capability of different machine learning algorithms 

in classifying the lake surface conditions (open water and ice types) across ice seasons (freeze-up, 

ice growth and break-up periods) using waveform parameters and backscatter coefficients acquired 

by the radar altimeter aboard the Sentinel-3 satellite series from by the European Space Agency 

(ESA). To achieve this goal, the following objectives are set: 1) find the optimal combination of 

parameters to attain the best classification performance; 2) test the sensitivity of the classifiers to 

their internal hyperparameters; and 3) assess whether the classifiers’ accuracies are affected by the 

spatial variation in the dataset or not from the selection of several lakes across the Northern 
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Hemisphere. The paper is organized as follows: Section 3.2 introduces the lake regions of interest 

and datasets used. It also describes the various classification algorithms tested. Section 3.3 presents 

the results and discussion, including the broader implications of the study. Finally, Section 3.4 

summarizes the key findings and provides suggestions for future work. 

 

3.2 Data and methods 

3.2.1 Study area and altimetry data 

Eleven lakes (Figure 3-1) distributed across the Northern Hemisphere were selected to train 

and evaluate several machine learning classifiers (see Section 3.2.4). The lakes are located in 

different geographical regions and experience a wide range of ice-cover conditions during winter. 

The selection of several lakes across different regions is meant to develop a classifier that is of 

global application. Table 3-1 lists the lakes considered in this study and some of their 

characteristics.  
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Figure 3- 1 Location of lakes selected for this study. Yellow rectangles with black labels 

indicate regions of spatial clusters (a lake or set of lakes in a specific region are grouped 

into a single cluster) 

High-resolution Sentinel-3A/B level 2 SAR altimetry data acquired over three ice seasons 

(2018-2019, 2019-2020 and 2020-2021) were used in this study and downloaded from the 

CREODIAS platform (https://finder.creodias.eu/). CREODIAS is one of the five Data and 

Information Access Services (DIAS) online platforms that provide access to Copernicus data and 

information. The Sentinel-3 satellite series was developed by European Space Agency (ESA) as a 

part of the Copernicus programme. It consists of a constellation of two identical satellites: Sentinel-

3A and Sentinel-3B launched on 16 February 2016 and 25 April 2018, respectively. The satellites 

are near polar sun-synchronous orbiting with an inclination of 98.65 and a repeat cycle of 27 days. 

One of the payloads of Sentinel-3 is a dual-frequency (C and Ku-band) radar instrument called 

synthetic aperture radar altimeter (SRAL), which measures in two modes, low-resolution mode 

(LRM) and SAR mode. In SAR mode, the SRAL instrument releases bursts of 64 Ku-band pulses 

surrounded by two C-band pulses and provides an along-track resolution of ~300 m. Only data 

acquired at Ku-band were used in this study. 

https://finder.creodias.eu/
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Table 3- 1 List and characteristics of lakes selected for the study (Messager et al., 2016) 

 

* Five of the lakes form a complete (full) ice cover, five form a partial ice cover (fractional 

coverage less than 100%), and one forms an intermittent ice cover (some portions of the lake 

form an ice cover but with multiple freeze/melt episodes that make the ice cover last for only 

a few days) in each winter. 

 

Previous studies have shown that altimetry observations are sensitive to land contamination 

(up to 2 km for SAR) and can influence the accuracy of the results (Liibusk et al., 2020). Hence, 

we excluded data points closer than 3 km from shorelines and islands to minimize the impact of 

reflections from land and land-to-water transition. The distance-to-land dataset produced by ESA’s 

CCI Lakes project was used as the lake mask to delineate the study lakes (Carrea et al., 2015).  
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3.2.2 Auxiliary data 

3.2.2.1 Satellite imagery 

 Imagery from optical and SAR sensors was used to collect sample data (i.e., training and 

testing set of the classifiers) along the altimetry tracks. For labelling, we collected samples through 

visual interpretation of Moderate Resolute Imaging Spectroradiometer (MODIS), Sentinel-2 

Multispectral Instrument (MSI) and Sentinel-1 SAR images. Images used were captured either on 

the same date or within one day of Sentinel-3 SRAL acquisitions. The MODIS instrument on Aqua 

and Terra satellites covers the Earth's surface every 1-2 days, and more frequently at high latitudes, 

in 36 spectral bands from visible to thermal infrared wavelengths at 250 m, 500 m and 1000 m 

spatial resolutions. We used the corrected reflectance (true colour) product with 250 m spatial 

resolution obtained from https://worldview.earthdata.nasa.gov/. The Sentinel-2 mission has been 

providing a revisit period of 5 days with both A/B satellites in orbit since 2017. The MSI onboard 

Sentinel-2 acquires data in 13 spectral bands with a 12-bit radiometric resolution at 10 m, 20 m 

and 60 m spatial resolutions. The 10 m true colour imagery (MSI Level 1C) downloaded from 

https://scihub.copernicus.eu/dhus/#/home was used. Since optical imagery can be obscured by the 

presence of cloud cover, SAR imagery was also used to complement information provided from 

optical imagery. Sentinel-1 level-1 Ground Range Detected (GRD) SAR product was downloaded 

from Alaska Satellite Facility (https://asf.alaska.edu/) to further help with class labelling. The SAR 

images were processed using the Sentinel Application Platform (SNAP) software. The 

preprocessing procedure included the following steps: thermal noise removal, radiometric 

calibration, speckle removal (using a Refined Lee filter) and terrain correction.  

 

3.2.2.2 Temperature data 

 ERA5-Land is a reanalysis dataset that offers global hourly estimates of a wide range of 

land climatic variables and is available at a spatial resolution of ~9 km (1950 to present). This 

study used the 2-m near-surface air temperature variable to determine the melting condition, i.e., 

whether the melting is happening or not. Since melting class labelling mainly relies on the ERA5 

temperature measurements, it was ensured that the hourly timing of the sampled temperature and 

the observed timing of the altimetry data remains are nearly the same. 

 

https://worldview.earthdata.nasa.gov/
https://scihub.copernicus.eu/dhus/#/home
https://asf.alaska.edu/
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3.2.3 Method 

 In this paper, we distinguish open water and different lake ice types (open water, young 

ice, growing ice and melting ice) using satellite radar altimetry data and machine learning models 

(ML). The following flowchart (Figure 3-5) presents the main steps involved in the classification 

approach that was developed to classify different surface types of lakes. 

 

 

Figure 3- 2 Flowchart of processes performed to classify different surface types in the 

lakes. 

 

3.2.3.1 Selection of waveform parameters  

To characterize the altimetry waveforms, seven waveform parameters were extracted: the  

maximum value of the echo power (Max), Leading Edge Width (LEW), Pulse Peakiness (PP), 

Offset Center of Gravity (OCOG) Width, late tail to peak power (LTTP), early tail to peak power 

(ETPP) and backscatter coefficient (Sigma0). Figure 3-2 shows the schematic of a radar waveform 

labelled with some parameters (Max, LEW, TEW and OCOG_W) and parts of the waveform 

(Leading Edge and Trailing Edge). The following waveform-based parameters are extracted for 

the study: 

1) Max is the maximum power value of the echo waveform.  

2) LEW is the distance between the first bin position containing equal to or greater than 10% 

of the power maximum and the bin position of the maximum waveform power.  
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3) PP is the ratio of the maximum power to the accumulated echo power. PP used in this study 

was defined by Ricker et al. (2014) as  

𝑃𝑃 = 128 ∗
𝑃𝑚𝑎𝑥

∑ 𝑃𝑖
128
𝑖=1

(3.1) 

where 𝑃𝑚𝑎𝑥 is the maximum power in the echo waveform and 𝑃𝑖 is the power in the 𝑖𝑡ℎ 

bin. 

4) OCOG Width provides information about the width of the waveform, which is derived 

from the Offset Centre of Gravity retracker (OCOG) algorithm. Wingham et al. (1986) 

developed the OCOG retracker algorithm to calculate the waveform's centre of gravity 

(COG) by approximating the waveform with a rectangular box. The width of the 

rectangular box, which is the OCOG width, is computed as follows, 

𝑊 =  (
(∑ 𝑃𝑖

2128
𝑖=1 )

2

∑ 𝑃𝑖
4128

𝑖=1

) (3.2) 

 

where 𝑃𝑖 is the power in the 𝑖𝑡ℎ bin. 

5) LTPP is the ratio of the late tail to the peak power and is defined by (Rinne & Similä, 

2016) as 

𝐿𝑇𝑇𝑃 =  

1
21 ∗ ∑ 𝑃𝑖

max + 70
𝑖=max + 50

𝑃𝑚𝑎𝑥 
(3.3) 

 

where max is the bin position with maximum power, 𝑃𝑚𝑎𝑥 is the maximum power in the 

echo waveform and 𝑃𝑖 is the power in the 𝑖𝑡ℎ bin. 

6) ETPP is the ratio of the early tail to the peak power and is defined by (Rinne & Similä, 

2016) as 

𝐸𝑇𝑇𝑃 =  

1
6 ∗  ∑ 𝑃𝑖

max + 6
𝑖=max + 1

𝑃𝑚𝑎𝑥

(3.4) 

 

where max is the bin position with maximum power, 𝑃𝑚𝑎𝑥 is the maximum power in the 

echo waveform, and 𝑃𝑖 is the power in the 𝑖𝑡ℎ bin. 
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7) Unlike other waveform parameters, Sigma0 is delivered in the SRAL L2 data product. It 

is computed from the returned power of the echo pulse by OCOG retracker algorithm.  

                          

Figure 3- 3 Schematic showing parameters of the radar waveform 

Four classes were considered in this study: 1) open water, 2) young ice, 3) growing ice, and 4) 

melting ice. Figure 3-3 shows an example of SRAL waveforms for each class.  

 

Figure 3- 4 SRAL waveform examples for a) open water, b) young ice, c) growing ice, d) 

melting ice and e) melting ice 

Max 

LEW 

Trailing 
Edge 

Leading 
Edge 

Sentinel-3 
SAR 

P
o

w
er

 (
co

u
n

ts
) 

Bin 

OCOG Width 

a) b) c) 

d) e) 



 35 

 

Open water (OW) – Figure 3-3 a show the typical waveform shape of open water. The waveform 

of the open water can be easily identified as it has a single strong return (i.e., one peak) with a 

steep leading edge and a slowly decaying trailing edge. However, the presence of inhomogeneous 

surfaces (such as land area or a mixture of other surface types) within the altimeter footprint may 

lead to complicated shapes with many peaks. 

 

Young ice (YI) – Skim (thin) ice formation in the lake at the beginning of freeze-up results in a 

sharp increase in backscatter coefficients. This sudden rise is due to the high reflectivity of newly 

formed ice. Thus, young ice is characterized by a high 𝜎0 value (Kouraev et al., 2007). The specular 

scattering of a mirror-like surface (thin/skim ice) produces a single narrow sharp peak (Figure 3-3 

b). Hence, the backscatter coefficient values, and the shape of the waveform are considered for 

labelling an observation as young ice.  

 

Growing ice (GI) – Beckers et al. (2017) and Mangilli et al. (2022) suggested that the double 

peaks on the leading edge of the altimetry waveform at the Ku-band represent the radar reflections 

from the snow-ice and ice-water interfaces. The authors proposed algorithms to estimate lake ice 

thickness using the bin distance between these two peaks. Thus, double backscattering on the 

leading edge of waveforms is indicative of ice growth and thus labelled as growing ice (Figure 3-

3 c).  

 

Melting ice (MI) – Ice and overlying snow cover experiencing melt was categorized as melting 

ice. Since it is hard to recognize a melt event using optical data alone, ERA5 temperature data was 

used to assist in the labelling of melting ice. If the 2-m height air temperature above the lake surface 

during the ice season is greater than 0 C, it is labelled as melting ice. In a few cases where the 

melt was apparent from altimetry waveform and in SAR imagery, a lower threshold limit of the 

temperature was extended to -5 C (Wiese et al., 2015). Unlike the other surface types, melting ice 

has no unique altimetry waveform shape. If there is any melting ice, the altimetry signal will show 

either open water (Figure 3-3 d) or young ice (Figure 3-3 e) waveform shape. Although melting 

ice waveforms look similar to Figure 3-3 a or Figure 3-3 b, the backscatter value range differs 

which helps to identify MI from other classes. Based on the visual assessment of altimetry 
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waveforms and auxiliary satellite images, it has been known that the melting ice usually gives off 

a young waveform shape (when there is little or no snow on the melting ice). Only during the 

initial melting stage is the open water waveform shape observed.  

 

3.2.3.2 Variation in waveform parameter values on different surface types 

Depending on the surface type of the lake, the signal reflected from it gives off different 

echo shapes. Thus, the waveform parameters’ and backscatter coefficient values derived from such 

echo also vary. Waveform parameters including Max, ETPP and LTPP were eliminated from the 

subsequent analysis. The poor contribution of Max and ETTP parameters to the classification 

performance, evident through the feature importance chart (not shown), results in the elimination 

of the two parameters from the study. As we aim to develop an optimal classification algorithm 

which effectively classifies all four surface types (open water, young ice, growing ice and melting 

ice), we removed the LTPP parameter as Eq. 3.3 fails to estimate LTPP values over young ice.  

However, LTPP was found to be useful for distinguishing other surface types (except young ice).  

Figure 3-4 shows an example of the variability in waveform parameters and Sigma0 values over 

different surface types (open water, young ice, growing ice and melting ice). As expected, Sigma0, 

PP, LEW, and OCOG_W values have different value ranges across the different surface types, 

showing their capability to discriminate between different surface types. Compared to other 

waveform parameters, Sigma0 values are unique and have substantial value range differences 

when the echoes bounce off from open water, young ice, growing ice and melting ice. Similar to 

Kouraev et al. (2007), we also observe very high Sigma0 values (greater than 60 dB) for the young 

ice class. As young ice starts to grow, Sigma0 values decrease gradually until the melt onset. This 

agrees with the study conducted by Kouraev et al. (2007) and Kouraev et al. (2008) which reported 

that ice growth and snow accumulation on the ice induce a decrease in backscatter coefficient 

values.  

During the early melt onset, an abrupt decrease (less than ~22 dB) in Sigma0 is observed, 

especially on the ice with the presence of snow on the top of the surface. Following this, Sigma0 

continues to fluctuate over the melt period before stabilizing at the end of this stage. This 

fluctuation may be due to the rapid melting and refreezing events, formation of melt ponds on the 

lake surface, effects of rainfall, wind and loss of snow on the ice surface. Less absorption of the 

altimetry signal occurs at the lake surface when there is less or no snow. Interestingly, Sigma0 
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reaches a maximum value greater than ~60 dB amidst the value fluctuation phase during melt. 

Previous studies have also noticed such variability in backscatter coefficients during the break-up 

(Kouraev et al., 2007; Ziyad et al., 2020).  

Melting snow or the presence of meltwater on ice limits the penetration of the radar signal; 

thus, the surface scattering dominates during this period. This explains the transition of double 

peak (growing ice) to single peak waveform once the melt starts. Additionally, at the early stage 

of melt, melt ponds form on the lake ice surface which is confused as the open water by the 

altimetry observation. This confusion happens as the current processing techniques of the radar 

altimeter data make it difficult for the altimeter to distinguish the melt pond from open water 

(Tilling et al., 2020). This suggests why one of the melting ice classes has an open water waveform 

shape (Figure 3-3 d).  

During the open water period, all the waveform parameter values are stable; however, 

Sigma0 values are in two different value ranges (23-27 dB or 45-48 dB). The reason may be due 

to the influence of wind during the Sentinel-3 acquisitions. Overall, the variations in PP are similar 

to Sigma for all surface types except open water. This behaviour is clearly visible in Figure 3-4. 

Like Sigma0, PP reaches maximum values in the first (young) ice formation stage. 

 

  

 a) 

 b) 
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Figure 3- 5 Evolution of the waveform parameter values along Sentinel-3 track 341 on 

Great Slave Lake during the stages of a) open water, b) young ice, c) growing ice, and d) 

melting ice 

3.2.4 Classifiers  

 To perform the classification of lake ice types and open water with different configurations 

of waveform parameters, four ML algorithms were evaluated: Support Vector Machine (SVM), K 

Nearest Neighbours (KNN), Random Forest (RF) and Gradient Boosting Trees (GBT). The details 

of each classifier and associated hyperparameters are described below. All four classifiers were 

implemented using the scikit-learn package in python. The following classifier functions of the 

package were used: svm.SVC (SVM), neighbors.KNeighborsClassifier (KNN), 

ensemble.RandomForestClassifier (RF), and ensemble.GradientBoostingClassifier (GBT). 

 Support Vector Machine (SVM) is a simple machine learning algorithm commonly used 

in classification problems. The main focus of SVM is finding an optimal hyperplane in N-

dimensional space (N- the number of features) that distinctly segregates the data points into 

different classes. The data points closer to the hyperplane are called support vectors, which 

influence the position and orientation of the hyperplane. SVM, in general, is a linear classifier. 

 c) 

 d) 
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However, the kernel function in SVM can perform a non-linear classification by transforming the 

low-dimensional space into a higher-dimensional space where the data points can be linearly 

separable. The radial basis function (RBF) kernel was used in SVM to handle the non-linear 

problem. In addition, the hyperparameters, including Cost and Gamma, were tuned to achieve the 

best accuracy. Cost is a regularization constant, and Gamma is the kernel width of the RBF. 

The K Nearest Neighbours (KNN) classifier uses the proximity of the data points to 

perform classification, i.e., if any data points are close to each other, then they belong to the same 

class. Thus, the distance metric acts as a decision boundary that classifies the data points. The 

distance metric used in KNN is Manhattan distance which calculates the distance between two 

real-valued vectors. The hyperparameters considered for tuning the KNN classifier are 

n_neighbours (the number of proximity neighbours) and leaf_size (the minimum number of data 

points in a node). 

Random Forest (RF) is an ensemble method that generates a large number of decision trees 

to make predictions. In each decision tree, samples are selected randomly from the original dataset 

with replacements called Bootstrapped datasets.  This bootstrapping approach ensures that not all 

decision trees have the same sample, making the model less sensitive to the original dataset. 

Moreover, features are also selected randomly during the construction of decision trees to reduce 

the correlation between the trees. Each decision trees make predictions, and the final result is 

decided based on the majority voting. This process of combining results from multiple models is 

called Aggregation. Such randomness created from Bootstrap Aggregation (or Bagging) and 

random feature selection helps to limit overfitting in Random Forest. The number of decision trees 

that need to be built before taking the majority voting (n_estimators) and the number of features 

that need to be considered for the best split (max_features) are the two hyperparameters used to 

tune the RF classifier. 

  Gradient Boosting Trees (GBT) is another ensemble method that falls under the category 

of boosting algorithms. Unlike RF, in this classifier, decision trees are connected sequentially. The 

objective of GBT is to minimize the errors of the previous model, thereby developing a robust 

model. GBT achieves it by iteratively learning from each of the weak learners and updating the 

weights of the wrongly classified data points before feeding them into the next model. The 

hyperparameters used in GBT are n_trees (number of decision trees) and lr (learning rate). 
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Waveform features and backscatter coefficients extracted from the SAR altimetry 

waveforms were used as the sample data for the ML classifiers. Each sample was categorized 

under open water, young ice, growing ice and melting ice classes described earlier. Manual class 

labelling based on Sentinel-3 SRAL waveforms and complementary satellite imagery (Sentinel-1 

imaging SAR, Sentinel-2 MSI Level 1C data, and MODIS Aqua/Terra) was performed to create 

training and test samples for the classifiers. For each lake, samples of all four classes (wherever 

available) were collected for the period 2018-2021 (i.e. three ice seasons). The collected samples 

consisted of 104,558 waveforms (open water: 29,131, young ice: 22,258, growing ice: 25,920, and 

melting ice: 26,249), of which 80% and 20% were used as training and testing sets, respectively, 

for the classifiers. Figure 3-5 presents the methodology of the classification approach to 

discriminate between open water and lake ice types. 

 

3.2.5 Feature Importance 

 Feature importance helps in finding the waveform parameters crucial for correctly 

classifying the surface type classes of the lake. Here, the permutation-based variable importance 

approach (PBVI) was applied to calculate the importance of each waveform parameter. The PBVI 

estimates and ranks the feature importance based on the model's prediction error increase when a 

feature value is randomly permuted. To implement the PBVI method, the permutation_importance 

function in sklearn's inspection package was used in this study (Wu et al., 2021). 

 

3.2.6 Validation Approaches 

 The accuracy score of each classifier is considered as a measure to evaluate the 

classification performance. A classifier may perform well with a specific dataset but not with any 

unseen or additional dataset. Thus, one needs to guarantee that the model works well with any new 

samples and is not refined to the specific training samples.  Hence, two strategies were 

implemented to ensure the model's efficacy and reliability. One is the random k-fold cross-

validation (CV) method to calculate the overall accuracy of the classifier. In k-fold CV, the total 

dataset is split into k number of subsamples called folds of equal sizes. Then, a single subsample 

is validated against the model developed with k-1 subsamples until each subsample is used as a 

testing set at least once. 
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Another validation strategy, Spatial CV, was implemented to examine the classifier's 

capability to cope with the spatial heterogeneity in data. In this approach, the training and testing 

sets are resampled from the whole dataset based on the spatial information attached to each sample. 

Lakes geographically close to each other are considered a single cluster; hence, herein, 11 lakes 

are grouped into 8 clusters (Table 3-2). In accordance with this method, this strategy is similar to 

a k-fold CV, except that each cluster represents each fold. The two validation approaches helped 

to carry out a bias-reduced assessment of the classifier's predictive performance and, thus, assisted 

in avoiding overfitting. 

 

Table 3- 2 The clusters of spatial CV 

 

  

3.3 Results and discussion 

3.3.1 Comparison of parameter combinations  

 Seven waveform parameter configurations were considered to examine the variation in the 

classifier's performance with different configurations and to find the optimal parameter 

combination for classifying open water and different lake ice types with ML classifiers. Since 

some studies on lake ice (and sea ice) and open water classification have shown that Sigma0 is a 

significant parameter for distinguishing surface types, it is included in all parameter configurations 

(Kouraev et al., 2007; Shen et al., 2017a, Shen et al., 2017b, Tilling et al., 2018; Ziyad et al., 2020). 

As Figure 3-6 shows, the overall accuracy of the classifiers improves in the parameter 

Clusters Lakes

Ath Lake Athabasca

Bai Lake Baikal

GBL Great Bear Lake

GLs Lake Superior, Lake Huron, Lake Erie

GSL Great Slave Lake

OL Lake Onega, Lake Ladoga

Van Lake Vanern

Win Lake Winnipeg
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configurations with three or more waveform parameters. However, the overall accuracy is not 

consistently increasing with the addition of more parameters. For instance, the mean accuracies of 

the 7-parameter configuration in all classifiers are lower than the three and four parameter 

configurations. Compared to other combinations, the mean accuracies of the Sigma0 + PP + 

OCOG_W + LEW combination are high (95.46% - 95.88 %) across all classifiers. In addition, the 

interquartile range of the boxplots for this combination are relatively very less (short box length), 

suggesting that the overall accuracies obtained by different folds of the 10-fold CV are close to 

each other (less variation in the accuracy values). Hence, it is found that the Sigma0 + PP + 

OCOG_W + LEW combination is the optimal parameter configuration and is therefore used to 

implement for all subsequent analyses.  

 

 

Figure 3- 6 Overall classification accuracies achieved with a) SVM, b) KNN, c) RF and d) 

GBT for different waveform parameter combinations 

 

 

Figure 3-7 shows the permutation-based feature importance (PBVI) values of the most 

important parameters for each classifier. For all four classifiers, Sigma0 has a very high feature 

importance, followed by OCOG_W and PP. LEW is the least significant parameter contributing 

a 

b 

c 
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to the classification's performance. The OCOG_W remains the second most important parameter 

in three of the four classifiers, suggesting that OCOG_W has comparable capability in 

discriminating the lake ice (young ice, growing ice and melting ice) and open water classes. 

 

 

Figure 3- 7 Comparison of parameter importance obtained by permutation-based variable 

importance for a) SVM, b) KNN, c) RF and d) GBT classifiers 

 

3.3.2 Sensitivity analysis of hyperparameters 

 The hyperparameters of each classifier were tested with different values to examine 

their influence on classification accuracy. The GridSearchCV function in the sklearn's model 

selection package with a 10-fold setting was used to perform the sensitivity analysis of 

hyperparameters and to determine the best parameters that provide the best classification accuracy. 

Table 3-3 shows the testing values of hyperparameters and the best ones for each classifier. Figure 

3-8 shows how much the classification accuracies of the four classifiers vary when trained with 

different hyperparameter values. The accuracy scale on all plots is set to the same limit to provide 

a better visual comparison.  

As shown in Figure 3-8 a, SVM is sensitive to its two key hyperparameters, Cost and 

Gamma. A small value of Cost and Gamma results in a lower accuracy of 91.68%. However, 
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training with a high value of Gamma combined with a high value of Cost also results in a slight 

drop in classification accuracy. SVM is less sensitive to Gamma than Cost with the former 

providing relatively stable classification accuracies (95.3% - 96.14%) at 0.01 and 0.1. Fig 3-8 b 

shows the classification accuracy of the KNN classifier by varying n_neighbors and leaf_size at 

p=1. From this figure it is clear that the KNN's accuracy does not vary greatly with a change in 

hyperparameter values. Classification accuracy remains stable across a range of values of the 

hyperparameters. Hence, the KNN classifier is less sensitive to hyperparameters. 

In the case of RF, the classifier's performance is less affected by the hyperparameter values 

(Figure 3-8 c). For RF accuracies range between 95.83% and 95.88%. Since using a large number 

of decision trees (n_estimators) demands more computational power and running time, 500 trees 

were used. Figure 3-8 d illustrates the sensitivity of the GBT classifier to the hyperparameters. 

With a high learning rate (lr=0.1), the number of decision trees (n_trees) does not influence the 

classifier's overall performance. However, smaller learning rate (lr=0.01) combined with a small 

number of trees (n_trees =50, 100) significantly impact accuracies by leading into a large drop 

from ~95.5% to ~92%. 



 45 

 

 

Figure 3- 8 Comparison of classification accuracies with a change in hyperparameter 

values for a) SVM, b) KNN, c) RF and d) GBT 

 

 

 a b 

 d c 
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Table 3- 3 Classifiers with hyperparameters tested in sensitivity analysis 

 

 

3.3.3 Spatial transferability assessment 

  Results of the spatial assessment carried out on the spatial clusters (Table 3-2) are 

summarized in Table 3-4. Interestingly, all four classifiers achieved a comparable mean accuracy, 

which indicates that they all performed well across the clusters and did not suffer much from spatial 

variation. Classification accuracies above 90% were achieved for all clusters except Vanern. The 

poorer classification performance at Lake Vanern may be due to its irregular and compact shoreline 

structure. Such sheltered lakes do not form high waves and are easily subjected to land 

contamination which could affect the altimetry waveform shape, even if care was taken to create 

lake buffers to eliminate this effect prior to classification. The high accuracy consistency across 

the clusters suggests that the waveform parameter-based classification approach possesses good 

spatial transferability and that it could likely achieve high accuracies if applied to other lakes of 

the Northern Hemisphere that form a seasonal ice cover.  

 

Classifier Hyperparameter & its testing values Best hyperparameter

SVM C: 0.1, 1, 10, 100

Gamma: 0.001, 0.01, 0.1, 1

C = 100

Gamma = 0.01

KNN leaf_size: 1, 2, 3, 4

n_neighbors:10, 11, 12, 13, 14, 15, 16

leaf_size = 1

n_neighbors = 15

RF n_estimators: 50, 100, 500, 1000, 2000, 3000

max_features: sqrt, log2

n_estimators = 500

max_features = sqrt

GBT n_trees: 50, 100, 500, 1000, 2000, 3000

learning_rate: 0.1, 0.05, 0.01

n_estimators = 500

learning_rate = 0.05
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Table 3- 4 Spatial CV accuracy of the lake clusters across all classifiers 

 

 

3.3.4 Surface type predictions along altimeter tracks 

Figure 3-9 shows prediction results of the four classifiers for the different surface types 

(growing ice, melting ice, young ice and open water) along Sentinel-3 altimeter track 346 over 

Great Slave Lake. Figure 3-9 a shows the prediction results obtained during freeze-up on GSL 

(November 21, 2017). Unlike the other examples, Figure 3-9 a presents two main surface types 

along the track: young ice and open water. On the MODIS image, young ice is visually easier to 

identify compared to open water which is largely covered by fog or low-level clouds. Although 

the young ice and open water classes are predicted well, there are some misclassifications too. It 

is important to note that the location of these misclassifications occurs at the transition from young 

ice to open water and vice-versa along the track. This implies that the altimetry signal is affected 

by ice presence even though areas occupied by ice are not situated directly under the nadir viewing 

angle of the altimeter but in the vicinity. Compared to other classifiers, RF performed best and 

correctly predicted the growing ice class without any misclassification on March 23, 2017 (Figure 

3-9 b). The other classifiers predicted the growing ice class also relatively well with a few 

classification errors. As shown in Figure 3-9 c, the majority of the prediction results correspond to 

melting ice (May 16, 2017) while a few are incorrectly classified as growing ice. It is worth noting 

Clusters SVM (%) KNN (%) RF (%) GBT (%)

Ath 94.88 94.5 95.08 95.09

Bai 97.86 97.74 97.74 97.9

GBL 97.85 97.95 97.51 97.31

GLs 95.59 92.51 91.08 92.59

GSL 94.23 94.06 94.87 94.61

OL 99.02 98.59 98.47 98.60

Van 86.66 84.9 83.58 83.87

Win 92.48 89.98 92.51 91.87

Mean accuracy 94.82 93.78 93.86 93.98
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that all classifiers predict growing ice almost at the same locations, which are near or on pressure 

ridges formed on the ice surface (see bright areas of underlying MODIS image in Figure 3-9 c). 

This pattern indicates that the altimetry signals are sensitive to deformation features such as 

pressure ridges and that the classifiers are good at recognizing the different (or complex) waveform 

shapes. Since there is no specific class for ridges, our classification approach tried to accommodate 

the different waveforms by categorizing them under a class (Growing ice) with shapes closely like 

them. This may be the reason as to why most of the other classes in Figure 3-9 c are growing ice. 

It is clear from the along-track spatial analysis that most of the misclassifications shown in Figure 

3-9 occurred due to the complex-shaped waveforms (look similar to waveforms in Figure 3.3 but 

with additional peaks and/or step like feature) over transition areas or in the presence of ridges on 

the lake ice surface. 

 

 

SVM KNN RF GBT 

 a) 
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Figure 3- 9 Prediction results of different surface types, including a) Young ice, Open water 

[November 21, 2017], b) Growing ice [March 23, 2017], and c) Melting ice [May 16, 2017] 

and. The Sentinel-3 altimeter track 346 is overlaid on MODIS images acquired on the same 

day or within one day 

 

3.3.5 Implications of classification results for the retrieval of ice thickness and 

lake levels 

 The satellite radar altimetry technique acts as a basis for creating many water level datasets 

and has a long history of utilization for the estimation of lake water levels. However, only recently 

have researchers started to recognize that the presence of ice on lakes introduces errors in 
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calculating the surface height, which affects water level retrievals (Birkett & Beckley, 2010; 

Sarmiento & Khan, 2010; Ricko et al., 2012; Shu et al., 2020a; Nielsen et al., 2020). To improve 

existing water level estimation approaches or to develop a new lake level retrieval method, 

identification of surface type (various ice classes and open water) would be beneficial to flag 

surface conditions and associated dates when the quality of retrievals may be highly uncertain. 

With knowledge of surface type, for example as to whether altimeter observations are over lake 

ice or not, researchers could choose to either eliminate such error-inducing measurements (Ziyad 

et al., 2020) or to estimate an equivalent water level (Shu et al., 2020a).  

In addition to discriminating between lake ice and open water, the classification algorithms 

presented herein did well at distinguishing between different ice types (young ice, growing ice and 

melting ice). Such information would be helpful for identifying times when lake ice thickness 

retrievals may be limited or not possible. Current algorithms based on altimetry data fail to provide 

reasonable thickness estimates with the start of melt onset in spring and during the early stage of 

ice formation in fall/winter. For example, Mangilli et al. (2022) developed a new retracker called 

LRM_LIT to retrieve the lake ice thickness (LIT) from Jason-2/3 LRM radar altimetry (Ku-band) 

data. Compared to previous studies, the retrieval approach developed by Mangilli et al. (2022) 

offers a significant improvement for the estimation of LIT (~0.10 m accuracy once the lake ice 

cover is well established and prior to melt onset). The method is currently being implemented as 

part of ESA’s CCI+ Lakes project to generate LIT time series. However, the LIT retracker cannot 

estimate LIT precisely when the lake ice is too thin due to range resolution and when the snow on 

ice begins to melt. 

Figure 3-10 shows the LIT analysis carried out for the 2015-2016 ice season at Great Slave 

Lake by Mangilli et al. (2022). It is clear from this figure that the LRM_LIT retracker-based ice 

thickness estimates are close to those obtained with a numerical lake ice model (Duguay et al., 

2003) and in-situ thickness measurements except during the initial days of freeze-up and after melt 

onset. The waveform parameter-based classification algorithms could, for example, be used as part 

of a pre- or post-processing step to flag surface conditions along with dates under which LIT 

retrievals may be least and more uncertain. 

Most of the available altimetry data are in LRM, while the classifiers evaluated in this 

paper were based on the processing of high-resolution SAR altimetry data. Thus, further work is 
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needed to explore the potential of transferring the waveform parameter-based classification 

method to LRM altimetry data. 

 

 

Figure 3- 10 Comparison between lake ice thickness estimates over GSL (2015-2016 winter) 

from Jason-2 (triangles) and Jason-3 (stars), CLIMo simulations with varying amounts of 

snow on ice (diamonds) and in-situ measurements from Black Bay (circles) (Source: 

Mangilli et al., 2022) 

 

3.4 Conclusions  

This study assessed four ML algorithms applied to SAR altimetry measurements for the 

classification of open water, young ice, growing ice and melting ice. Based on the results obtained 

from the comparison of various parameter combinations, Sigma0, PP, OCOG_W and LEW 

achieved high classification accuracies (95.46% to 95.88 %) for all four classifiers and, therefore, 

found to be the optimal combination for discriminating between open water and different lake ice 

types. Additionally, Sigma0, OCOG_W and PP were determined to be the most important 

parameters to the classification performance in accordance with the permutation-based feature 

importance results. It is important to note that all four classifiers (SVM, KNN, RF and GBT) 

achieved comparable accuracies in both k-fold classification and spatial cross-validation tests 

conducted on 11 large lakes in the Northern Hemisphere. However, on the aspect of 
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hyperparameters sensitivity and prediction duration, RF and KNN are found to be a better fit for 

global lake ice mapping as they are less sensitive to their internal hyperparameters and provide 

faster processing speeds.  

In the case of melting ice, the waveform shape is similar to that of young ice or open water 

waveforms. This similarity in waveform shapes introduces fuzziness into the classification 

algorithms which limits the approach in distinguishing melting ice from other classes. To 

overcome this limitation, near-surface air temperature data (such as ERA5 2-m near-surface air 

temperature) could be used as an additional input parameter into the ML models along with the 

best waveform parameters and backscatter coefficient values. Introducing 2-m air temperature into 

the classifiers would likely allow for discrimination between melting ice and young ice that forms 

at sub-zero temperatures; misclassification of surface type classes from such cases could be 

avoided. Based on our findings, some misclassifications occur near or on pressure ridges formed 

on the ice surface. This shows that altimetry signals are sensitive to the presence of deformation 

features such as pressure ridges. Hence, a follow-up investigation should be conducted on the 

assessing the capability of the altimetry signals to identify pressure ridges in addition to the classes 

covered in this study. Overall, the results demonstrate that waveform parameters extracted from 

SAR altimetry can be used to discriminate between open water and different ice types (young ice, 

growing ice and melting ice).  
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Chapter 4  

General Conclusion 

4.1 Summary 

 This thesis presented an approach to classify open water and ice types (young ice, growing 

ice, and melting ice) on lakes using SAR altimetry data and machine learning models. Considering 

the fact that there are not many lake ice classification methods out there compared to sea ice, this 

study addresses a research gap in finding an optimal lake ice classification algorithm which will 

be helpful to researchers looking for an approach to assess water-level biases introduced by the 

presence of the ice and also identifying times of the ice season when the estimation of lake ice 

thickness may be limited (thin ice at the beginning of freeze-up) or simply not possible (melting 

ice with the onset of break-up). 

 Chapter 3 presented a study evaluating the performance of the four ML algorithms in lake 

ice classification from SAR altimetry data. This study shows that all the waveform configurations 

achieved very good classification performance with overall mean accuracies ranging from 88.06% 

to 96.16%. However, the Sigma0+PP+OCOG_W+LEW combination is considered the best 

waveform parameter configuration as it scored the best k-fold (k=10) CV accuracy across all 

classifiers. Despite showing comparable classification performances in overall classification, the 

random forest and K Nearest Neighbours classifiers are found more suitable for global lake ice 

mapping based on the 11 lakes included in this study. This is because both classifiers are less 

sensitive to their internal hyperparameters and provide faster processing speeds (~2-3 minutes per 

track for prediction with the trained model). Also, Sigma0, OCOG_W and PP are the most 

important waveform parameters contributing to the lake ice and open water classification. 

Overall, the results are promising and show the usefulness of waveform parameters in 

discriminating between open water and different ice types. In addition, all four classifiers achieved 

excellent spatial cross-validation accuracies ranging from 91.08% to 99.02% in all lakes with the 

exception of Lake Vanern (83.58-86.66%). The high spatial cv accuracies indicate that our 

classification approach can cope with the spatial variability in the altimetry datasets. Besides, the 

irregular shoreline and compact shape of Lake Vanern may be the reason behind their 

comparatively lower spatial cv accuracies.  
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4.2 Limitations and recommendations for future work 

 Since melting ice (or overlaying melting snow) does not display a unique waveform shape 

and its waveform appears similar to the waveform shape of young ice (or open water), it causes 

fuzziness in the classification. This was evident through some prediction results where the 

observations over the melting ice class were misclassified as young ice classes. It makes sense 

because the backscatter coefficient is the only parameter that helps to discriminate melting ice 

from other classes. Ice undergoing melt does not show a unique waveform shape. To reduce the 

fuzziness and to further optimize the model, near-surface air temperature data (such as ERA5 2-m 

near-surface air temperature) could be fed into the machine learning model along with the 

waveform parameters and backscatter coefficient values for each observation. In this way, we 

could provide the algorithm another parameter to distinguish melting ice from young ice that forms 

at sub-zero temperatures. It is very much possible to avoid such a kind of misclassification.  

Based on the prediction results generated by our classification algorithms, it is clear that a 

few misclassifications occur near or on pressure ridges formed on the ice surface. This supports 

the fact that altimetry signals are sensitive to the presence of deformation features such as pressure 

ridges. Hence, a further study on the capability of the altimetry signals to identify pressure ridges 

would be helpful.  

Moreover, in our study, only a three-year dataset was used, which limited us from 

performing temporal cross-validation and further investigating temporal changes in the lakes 

investigated. The timing of ice formation, decay and ice cover duration varies annually due to 

weather conditions. As a result, the occurrence of each surface type (open water, young ice, 

growing ice or melting ice) on the lake may not be the same across years; for example, on the same 

date, one year may be characterized by more growing ice due to cold conditions, and another year 

may show more young ice due to later ice formation and milder temperatures.  Thus, to maintain 

a class balance in temporal cross-validation, more ice seasons (dataset of many years) could be 

added in a follow-up study, and a large sample of different classes could be collected to feed into 

our machine learning classifiers. 

 The classification algorithms developed in this thesis were designed for use with SAR 

backscatter and waveforms only; hence, further work is needed to assess the potential of the 

algorithms introduced herein to LRM waveforms. This is because LRM and SAR waveform 

shapes are different (not shown here), especially the trailing edge of the LRM waveforms displays 
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many peaks, and few of the parameters applied in this thesis to data acquired in SAR mode depend 

on the peak. In addition, the along-track resolution of the LRM (~2-20 km) is low compared to 

SAR (~300 m). However, most of the available altimetry data are from conventional altimeters 

(dating back to about 1991), which produce LRM waveforms. As we aim to create an optimal 

classification approach, our algorithm must be compatible with all the available radar altimetry 

datasets. Future studies will be conducted to attain this goal. 
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