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Abstract

Navigation graphs were introduced by Hurley & Oldford (2011a) as a graph-theoretic
framework for exploring data sets, particularly those with many variables. They allow the
user to visualize one small subset of the variables and then proceed to another subset,
which shares a few of the original variables, via a smooth transition. These graphs serve
as both a high level overview of the dataset as well as a tool for a first-hand exploration
of regions deemed interesting.

This work examines the nature of cliques in navigation graphs, both in terms of type
and magnitude, and speculates as to what their significance to the underlying dataset
might be. The questions answered by this body of work were motivated by the belief that
the presence of cliques in navigation graphs is a potential indicator for the existence of an
interesting, possibly unanticipated, relationship among some of the variables.

In this thesis we provide a detailed examination of cliques in navigation graphs, both
in terms of type, size and number. The study of types of cliques informs us of the po-
tential significance of highly connected structures to the underlying data and guides our
approach for examining the possible clique sizes and counts. On the other hand, the preva-
lence of large clique sizes and counts is suggestive of an interesting, possibly unexpected,
relationship between the variates in the data.

To address the challenges surrounding the nature of cliques in navigation graphs, we
develop a framework for the derivation of closed-form expressions for the moments of count
random variables in terms of their underlying indecomposable summands is established.
We use this framework in conjunction with a connection between intersecting set families
to obtain edge counts within a clique cover and thus, obtain closed-form expressions for
the moments of clique counts in random graphs.
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Exploratory data analysis is detective work – numerical detective work – or
counting detective work – or graphical detective work.
A detective investigating a crime needs both tools and understanding. If he
has no fingerprint powder, he will fail to find fingerprints on most surfaces. If
he does not understand where the criminal is likely to have put his fingers, he
will not look in the right places. Equally, the analyst needs both tools and
understanding.

– John W. Tukey (Tukey, 1977)

John Tukey argued that statisticians neglected exploratory data analysis (EDA), the
exploration of data and the search for new directions of research, in favour of confirmatory
data analysis. Tukey (1977) emphasized quantitative and visual techniques which reveal
possibly unanticipated structure in the data. For example, the simple scatterplot can reveal
various patterns in data.

For instance, consider the scatterplot in Figure 1.1 due to Kobak & Shpilkin (2021) and
reproduced by The Economist . The scatterplot plots the percentage of voter turnout on the
x−axis, the percentage of support for the United Russia, the current ruling government,
for each polling station for every year from 2000 to 2021. It reveals the presence of a
monotonic relationship between voter turnout and support for the political party United
Russia, several clusters (top right, center and bottom left) and a surprising granularity.

Figure 1.1: Each point stands for a polling station among the 96,325 stations.The raw
data was scraped by Kobak & Shpilkin (2021) from the official Russian polling websites
maintaining the voter turnout and candidate totals for various regions. Thus, outside of
categorical variables, such as region identifiers, their scraped data contains only rows with
integer values and hence, decimal rounding does not explain the prevalence of integer peaks
in the scatterplot.
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These grid lines observed as multiples of five arose suspicions of electoral fraud, hence
generating an interesting hypothesis to be tested: how likely is such an unusual high
number percentage of voter-turnouts and share to be this tidy? In examining this data,
the analysts had suspicions of election fraud based on the granularity of election results
(namely, the integer peaks present in polling data) on previous work (Kobak et al., 2016),
and thus it was an obvious choice to examine the distribution of percentage voter turnout
and percentage of voter turnout in their dataset.

1.0.1 Scagnostics

After cleaning, Kobak & Shpilkin’s (2021) data consisted of only three non-categorical
variates: number of voters turned out, the number of eligible voters in a region and the
percentage of support for United Russia. In addition to their subject matter expertise, the
small number of variables made it manageable to explore the relationships present in the
data. In practice, even a modest number of variables can significantly tax the analyst’s
time.

For instance, consider Hofert & Oldford’s (2020a) dataset de_elect, consisting of n1

=68 variables from German elections in 2002 and 2005. Outside of District and State,
all other 66 variables are numeric. This results in

(
66
2

)
= 2145 scatterplots that can be

examined.
1Traditionally, the letter p represents the number of variables in a dataset. However, in the interest of

being consistent with the established mathematical notation from Johnson graphs, we use the letter n.
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Figure 1.2: A scatterplot matrix of the first 10 numeric variables in the de_elect dataset.
The i−th row and j−th column entry plots the scatterplot of the i−th variable and versus
the j-th variable in the data.

Even when focusing on only a small number of n = 10 of the 66 possible numeric
variables, there are

(
10
2

)
= 45 scatterplots to examine for patterns. As n increases, the

task of closely investigating each of the
(
n
2

)
scatterplots becomes quickly intractable. It is

therefore advantageous for the analyst to carefully choose the scatterplots to be explored.
Thus, there is a need for tools that not only aid the analyst in exploring their data, but
also do so in a manner that respects the analyst’s time.

Tukey & Tukey (1985) suggested culling the number of scatterplots examined by only
focusing on those with the most extreme scores according to some precomputed measures
of interest, so-called scatterplot diagnostic measures (scagnostics). Scagnostics assign a
quantity between 0 and 1 to a scatterplot based on how strongly it exhibits a particular
property of interest.
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For instance, consider the stringyness of a scatterplot – the tendency of a scatterplot
to resemble a string. This measure can be captured by embedding a dataset into the
Euclidean plane, computing its minimum spanning tree T and evaluating the ratio

diameter(T )

sum(T )
,

where diameter(T ) is the length of the longest shortest path between two nodes and the
denominator is the sum of all of the edge weights of T . If this value is approximately 1,
then the longest path between two nodes approximately travels through all vertices in the
minimum spanning tree and hence there are very few branches – so T has a string-like
shape.

The stringy scagnostic is among a collection of graph-theoretic measures developed by
Wilkinson et al. (2005) in their extension to Tukey & Tukey’s (1985) work. A complete list
of scatterplot attributes and measurements examined and developed by Wilkinson et al.
(2005) is given as follows. Shape can be assessed via clumpy, skewed, sparse, striated,
convex, skinny, and stringy. Additionally, the presence of many outliers can be measured
via outlying, and the trend can be measured through monotonicity, the square of the
Pearson correlation coefficient of the ranks of the two variables.

Figure 1.3: Examples of scatterplots and their scoring on the nine scagnostics measures
(Dang & Wilkinson, 2014).

Using scagnostics, Tukey & Tukey (1985), sought to detect anomalies in the density,
shape and trends of scatterplots. In the Tukeys’ design, after evaluating these measures,
a scatterplot matrix of the measures would be constructed. According to Wilkinson et al.
(Section 2 2005), Paul Tukey suggested viewing the scagnostic scatterplot matrices as a
display of pointers (links to scatterplots), which can be assessed to identify irregularities

5



(a) Monotonic versus clumpyness of all(
66
2

)
= 2145 scatterplots.

(b) The top 10 percentile of monotonic and
top 2 percentile of clumpy scatterplots.

Figure 1.4: Scagnostic measures of monotonic (x-axis) and clumpyness (y-axis) of the 2004
German election dataset de_elect from Hofert & Oldford (2020b). The dataset contains
66 numeric variables on 299 observations from the 2004 German election. The data has no
scatterplots scoring high on clumpyness.

among the scatterplots and hence the variables. With interactive data visualization soft-
ware, such as loon (Waddell, 2016; Waddell & Oldford, 2018), anomalous scatterplots
could be interactively identified from the scagnostics scatterplot matrix. This reduces the
problem of examining

(
n
2

)
scatterplots to examining

(
k
2

)
scatterplots, where k is the num-

ber of scagnostic measures of interest to the analyst, and then examining only the most
interesting plots.

Work on scagnostics has been extended in several ways, such as the development of
measures that apply to three-dimensional scatterplots (Fu, 2009) and the implementation
of scagnostics-like measures to time series data (Dang et al., 2012). Another interesting
direction for extension lies with providing the analyst’s with a bird’s eye view of the data,
indicating which variables are driving the relationships present in the most interesting
scatterplots. The navigation graph framework introduced by Hurley & Oldford (2011a)
serves as a natural candidate for a graph-theoretic representation of these relationships.

1.1 Navigation graphs

Let V denote the set of all variables in a dataset, and n = |V| and m, k ∈ N be fixed with
n ≥ m ≥ k. The node set of a navigation graph consists of m−subsets of the n variables
in the dataset along with an additional attribute, a visualization of the corresponding
m−dimensional space. Two nodes are adjacent in a navigation graph if they share k
variables together.

6



(a) Scatterplot matrix of the iris dataset. (b) iris navigation graph.

Figure 1.5: The scatterplots and navigation graph of the iris dataset. The navigation
graph consists of transitions in 3 dimensional space – there are three variables corresponding
to a union of two adjacent nodes and two variables on every node.

For instance, consider iris dataset, first popularized by Fisher (1936), consists of 150
observations on n = 5 variates (Sepal.Length, Sepal.Width, Petal.Length, Petal.Width
and Species). Figure 1.5b illustrates the corresponding navigation graph.

Waddell & Oldford’s (2018) implementation of navigation graphs aids the analyst by

1. facilitating the visualization of a projection onto a subset of the variables and their
smooth transition to another subset; and

2. providing the analyst with a high level overview of their dataset.

The benefit in visualizations created through smooth transitions is in allowing the analyst
to grasp a higher dimensional space than any of the separate projections on their own
(Buja & Asimov, 1986).

For instance, transitioning smoothly from one 2-dimensional space to another results in
a 3-dimensional movie that may reveal a relationship between the variables as points in the
scatterplot shift from one projection to the other. Since the size of intersection of adjacent
spaces is controlled by a parameter k, one can also examine higher dimensional projection
transformations. Figure 1.6 illustrates two of the other possible navigation graphs on the
iris dataset: 4d transition navigation and the union of the 3d and 4d transition navigation
graphs.

The advantage of a high level overview of the data can be realized through the exam-
ination of the data via graph theoretic means. This is the focus point of the majority of
the research in this thesis.

7



(a) iris 4d transition navigation graph. (b) Union of the iris 3d and 4d transition
navigation graphs.

Figure 1.6: Two spaces are adjacent in the navigation graph if they share no variables in
common or at most 2 variables in common, respectively. These two graphs are instances
of the so-called generalized Johnson family of graphs.

In spite of the advantages of navigation graphs, there remains a challenge similar to the
one addressed by the Tukeys via scagnostics: as n and m increase, the number of spaces
to be visited and the resulting navigation graph becomes unmanageably large. Therefore,
it is imperative to cull the navigation graph, and the spaces examined, to only the most
interesting ones.

1.1.1 Subgraphs of navigation graphs

While the analyst may begin by constructing their navigation graph with all
(
n
m

)
pro-

jections, and hence a node set of size
(
n
m

)
, a large proportion of spaces can be excluded

from further investigation if they are deemed uninteresting to the analyst. As a result, we
present a framework under which subgraphs of navigation graphs could be generated.

Let w :
(V
2

)
→ R be a function quantifying the ‘interestingness’ of a relationship between

an unordered pair of variables such that more peculiar spaces get mapped to larger values
of w, and R is a subset of R the set of all real numbers. There are two mechanisms we
consider for the generation of navigation subgraphs. These are based on a fixed cutoff
value and the empirical distribution of w:

M1 Fixing a cutoff value t and choosing the induced subgraph where consisting of all
2-subsets {X, Y } for which w({X, Y }) > t.

M2 Fixing a proportion q and picking the induced subgraph with node set consisting of
all subspaces in the top q−th percentile according of the empirical distribution of w.

In contrast with M2, M1 relies on the analyst having an understanding of the underlying
distribution of w. Regardless of the mechanism chosen, both paradigms produc e a graph
consisting of the most interesting spaces based on the analyst’s criterion of choice.
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(a) Monotonic versus clumpyness of all(
66
2

)
= 2145 scatterplots.

(b) The top 10 percentile of monotonic and
top 2 percentile of clumpy scatterplots.

Figure 1.7: Scagnostic measures of monotonic (x-axis) and clumpyness (y-axis) of the 2004
German election dataset de_elect from Hofert & Oldford (2020b). The dataset contains
66 numeric variables on 299 observations from the 2004 German election. The data has no
scatterplots scoring high on clumpyness.

An instance of the navigation graph produced via Mechanism M1 is given by Figure 1.8.
Starting with the variable graph, the graph whose node set consists of all variables in the
dataset, and filtering for edges scoring above a fixed threshold t according to a scagnostic
of interest, we obtain a subgraph of the complete graph. Then, applying a line graph
operator (Section 2.1.1), we obtain the subgraph of the navigation graph corresponding to
Mechanism M1.

An example of Mechanism M2 is in Figure 1.9, which depicts a navigation graph re-
sulting by filtering for the most interesting spaces according to the empirical distribution
of scagnostic measures of interest. Under certain assumptions, Mechanism M1 allows us to
examine the resulting navigation graph using a class of random graphs (Section 2.2). More-
over, regardless of the mechanism used to generate subgraphs from a navigation graph, we
shall see that all subgraphs are isomorphic to subgraphs of a well-known family of graphs:
the generalized Johnson graphs (Godsil & Royle, 2001).
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(a) Variable graph with respect to the
correlation measure of interest.

(b) Corresponding navigation subgraph with t = 0.5
according to Mechanism M1.

Figure 1.8: The variable graph of the iris data with correlation measure of interest.
The edges were pruned at a cutoff of 0.5 and the corresponding navigation subgraph was
generated by the line graph operator.

Figure 1.9: The navigation graph of the most monotonic and clumpy variates according to
Figure 1.7. Note that Linke.02 appears in the majority of the scatterplots.

We note that under some assumptions regarding the weight function w, the graph
resulting from the first construction is a realization of a line graph of a random graph.
Moreover, both approaches result in graphs are the induced subgraphs of a well-known
family of graphs known as the Johnson graphs (Godsil & Royle, 2001). Therefore, un-
derstanding the graph structure of Johnson graphs is essential for our understanding of
the ‘most interesting’ subgraphs of navigation graphs. While there are many notions of
structure that can be interesting to examine in these graphs, the emphasis of the present
work is to study subgraphs that exhibit maximal cohesiveness – cliques.
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1.2 Cliques

A clique in a graph G is a set of nodes H such that the induced graph G[H] forms a complete
graph. Research on complete subgraphs has roots in the graph-theoretic reformulation of
Ramsey theory (Erdős & Szekeres, 1935), a branch of mathematics that extends the notion
of the pigeon-hole principle: no matter how one partitions a ‘large’ structure into smaller
substructures, one of the substructures will contain a ‘large’ structure. However, it was
not until 1949 that interest in cliques surged when Luce & Perry (1949) popularized the
term ‘clique’ and identified its relevance in sociology: cliques are the quintessential cohesive
structure where node connectivity is maximized.

Cliques encapsulate the notion that all of the elements within a group are connected or
similar. Luce & Perry (1949) used matrix analysis techniques to examine highly connected
group structures in subgraphs of a network. Moreover, they were the first to introduce the
clique problem: the computational problem of finding cliques in a graph. In 1957, Harary
& Ross (1957) presented the first documented solution to the clique problem. Their work
led to several interesting generalizations of the concept of cohesive structure, such as the
so-called n−clans (as will be discussed in Chapter 7). Furthermore, the study of cliques
influenced scientific disciplines outside of graph theory and the social sciences.

Today, researchers examine cliques and their variants in numerous other disciplines,
such as neuroscience and computational biology. Community detection algorithms, which
are relaxations of clique finding algorithms, are used to study the organization of brain
networks (Ashourvan et al., 2019). For instance, segregation in brain networks has been
examined (Sporns, 2013), (Stam & Reijneveld, 2007) via the network’s modularity: the ten-
dency of a network to organize its nodes into cliques. Additionally, a fundamental measure
of segregation on these networks is the clustering coefficient, which measures the connec-
tivity density among nodes and their nearest neighbours. The higher the density, the more
likely they will form a cluster or a clique. He et al. (2008) found that Alzheimer’s disease
patients’ brain networks displayed high local clustering and larger shortest path linking
individual regions than the control group – participants without Alzheimer’s disease. The
loss of efficiency in communication between distant brain regions was later examined by
studying the average shortest path distance between all pairs of nodes in a network (Lo
et al., 2010). This value is smaller when there is a more prominent global clustering coef-
ficient, and hence losses in cognitive function can be explained by the clique topology of
the brain network (Yao et al., 2010).

Three of the main problems concerning the cliques are (Bomze et al., 1999):

1. The maximum clique enumeration problem - listing all maximum cliques in a graph
(Jain & Seshadhri, 2020; Östergård, 2002);

2. The maximal clique enumeration problem - listing all maximal cliques (Ouyang et al.,
1997);

3. The maximum clique optimization problem - identifying the size of the largest clique,
i.e. the clique number (Pardalos & Xue, 1994).
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These three problems are in general hard – for instance, the maximum clique optimization
problem is one of the first problems to be shown to be NP-hard (Gross & Yellen, 2003,
Section 5.3). Nonetheless, in this dissertation, we present solutions to these problems in the
context of Johnson graphs. These insights aid us in interpreting the possible significance
behind the appearance of certain cliques as well as indicate to us which clique configurations
are feasible in navigation graphs.

1.3 Cliques in navigation graphs

Since the clique is a prototype of community-like structure in graphs, it is a natural question
to ask: what does the presence of cliques suggest about the variables of the underlying
navigation graph? In other words, what do communities look like in navigation graphs?

For instance, consider the two cliques from Figure 1.9, one consisting of the many nodes
sharing the variable Linke.02 and a smaller one, consisting of the four spaces sharing the
variable Linke.05.

Figure 1.10: Blue nodes correspond to a large clique surrounding Linke.02. Red nodes
correspond to a small clique surrounding Linke.05.

Imagine a clique in a navigation graph: each node has m variables and every pair of
nodes share k variables. Of interest would be, which variables appear in the clique (what is
the clique’s union)? Also of interest, of these variables, which of any appear in every node
(what is the clique’s intersection)? What is the size of the clique? What configurations of
variables can appear together in a cohesive structure? What is the maximum possible size
of a clique?
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In navigation graphs, cohesive, community-like structures could suggest the presence
of interesting relationships between the underlying variables. This thesis focuses on de-
veloping the mathematical foundations for a clique-centric study of navigation graphs.
Borrowing Tukey’s analogy, we believe the presence of cliques, both in terms of magnitude
and quantity, will serve as fingerprint powder.

1.4 Overview

The aim of this work is to exploit the connection between navigation graphs, random
graphs and Johnson graphs to examine the possible significance behind cliques in naviga-
tion graphs. The main two contributions of this work towards the clique-centric study of
navigation graphs can be summarized in the following two results:

Theorem 1.4.1. Let V denote the set of all n underlying distributions of random variables
in a dataset. Let G be the complete variable graph obtained from model M1 under the
assumptions A1 and A2, where the cutoff value is chosen so that Pr(F > t) = p. Let H
be the corresponding navigation subgraph. Let Cr, Xr, Zr be the random variables where

1. Cr is recording the number of maximal r−cliques in H,

2. Xr is recording the number of r−cliques in G(n, p), and

3. Zr is recording the number of nodes with degree exactly r in G.

Then the moments of Cr are given by

E(Ck
r ) =

{
E(Zk

r ), r ≥ 4

E((Z3 +X3)
k), r = 3

,

where

E(Xk
3 ) =

k∑
m=1

∑
{i1,··· ,im}⊆I3

S(k,m)pe(i1,...,im),

i1, . . . , im are distinct triangles in I3 the set of all 3-subsets of [n], and

E(Zk
ℓ ) =

k∑
m=1

(
k

m

)
S(k,m)

∑
e∈Em

p|e|(1− p)(
m
2 )−|e|×

m∏
i=1

(
n−m

ℓ−
∑

j∈[n]\{i} eij

)
pℓ−

∑
j∈[n]\{i} eij(1− p)n−m−ℓ+

∑
j∈[n]\i eij ,

where En denotes the set of all vector combinations of subgraphs of the complete graph
{e : e = (eij){i,j}⊂[n], eij ∈ {0, 1}}.

The following theorem states that there are only two types of non-trivial cliques in
Johnson graphs.
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Theorem 1.4.2. Let V denote the set of all n random variables observed in a dataset, let
H be its navigation graph where m = k+1 and fix an integer r ≥ 3. If C is an r−clique in
H, then C has either intersection of cardinality k or union of cardinality m but not both.

At their core, Theorems 1.4.1 and 1.4.2 exploit the fact that a navigation graph is
the line graph of a variable graph. Since cliques arise only as stars and triangles in this
configuration, there are only two types of cliques that we may encounter and they are
uniquely captured through the distributions of stars and triangles in a random graph.

More broadly, we use and develop algebraic combinatorics tools that specialize to derive
closed-form expressions for the moments of clique counts in random graphs (and hence,
navigation graphs under certain assumptions), describe the number of cliques induced by
a clique cover and demonstrate that Johnson graphs, and hence navigation graphs where
m = k + 1, have only two types of cliques.

Chapter 2 provides a brief introduction to the necessary mathematical background
required for the remaining chapters. Connections between navigation graphs, Johnson
graphs and random graphs are discussed. The challenge with the problem of computing
the distributions for clique counts and sizes is discussed and an approximate solution is
discussed.

Chapter 3 introduces Bernoulli sums, a framework for studying count random variables
– random variables with support on the natural numbers. The framework captures the
relationship between the moments of a count random variable and the joint distribution of
its underlying indecomposable parts.

To apply the Bernoulli sums theory to clique counts in random graphs, one needs to
derive the number of edges present in a collection of cliques. Chapter 4 solves the problem
of identifying how many cliques are induced by a clique cover. A connection between
graphs and intersecting families of sets is established through an orbit partition related
to the clique cover. This relationship leads to closed-form expressions for the number of
cliques of any size contained within the collection.

While the theory established in Chapters 3 and 4 addresses the questions of how many
cliques typically appear in a navigation graph, Chapter 5 investigates the possible meaning
behind large clique. In particular, we show that there are only two types of cliques on John-
son graphs, prove that almost all cliques are of a certain type as n grows asymptotically,
derive the size of a maximal clique, identify the clique partition number and enumerate
the clique counts.

Chapter 6 interprets the results of the previous chapters in the context of several models
of navigation graphs. We prove Theorems 1.4.1 and 1.4.2. A discussion of the limitations
and implications follows.

Chapter 7 introduces problems related and describes some of our progress in attacking
them. The chapter concludes with a reflection of the body of work presented here.
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2
Preliminaries
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We begin with the necessary mathematical background required for the results in the
following chapters. In Section 2.1, graph theoretic terminology is reviewed. We introduce
line graph operators, describe Whitney’s isomorphism theorem and it’s exceptions (Theo-
rem 2.1.3) and describe a construction for Johnson graphs. Section 2.2 introduces random
graphs, their univariate degree distributions and a background on the history of the clique
counting problem on random graphs. Section 2.3 describes the terms and basic theory of
algebraic combinatorics we use in our results. In particular, the multinomial theorem and
principle of inclusion and exclusion are revisited.

2.1 Graph theory

Throughout this thesis, we let [n] denote the set of the first n natural numbers {1, 2, . . . , n}.
The set of all natural numbers {1, 2, . . .} is denoted by N, and the set of all nonnegative
integers is denoted by N0. Given a set A, the set containing all subsets of A will be denoted
by P(A).

A graph G is an ordered tuple of sets (V,E) where E is a subset of V ×V . In this thesis,
any graph G is assumed to be a simple graph which means that E can be viewed as a set
of 2−subsets of V . If G is a graph, we will denote by V (G), E(G) the set of nodes/vertices
and edges of G, respectively.

For two vertices u, v ∈ V , we call u and v neighbours or adjacent if e = {x, y} ∈ E. In
such scenario, we say the vertices u and v are incident with e. If u is adjacent to exactly
k vertices, then we say that u has degree k.

If e and f are edges in E and e and f share exactly one vertex in common, we say that
e and f are incident.

Figure 2.1: A simple graph on 9 nodes.

We call G′ = (V ′, E ′) a subgraph of G = (V,E) if V ′ ⊆ V and E ′ ⊆ E. Let U ⊆ V be a
subset of the set of vertices of V . We call the graph G[U ] with the nodeset U the subgraph
induced by U if every edge between nodes of U in G is present in G[U ].
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We say that two graphs G = (V,E) and H = (V ′, E ′) are isomorphic if there is a
bijection f : V → V ′ for which u, v are adjacent in G if and only if f(u), f(v) are adjacent
in H. In such case we write G ≃ H.

1

2

3

4

5

Figure 2.2: The complete graph on 5 vertices, K5.

Example 2.1.1. The complete graph on n vertices is the graph where every two distinct
vertices are adjacent. In this thesis, we will denote this graph by Kn, where n is the number
of vertices of the graph.

An important graph related to the complete graph we examine in the construction of
navigation subgraphs (Section 1.1.1) is the variable graph. The variable graph is a weighted
complete graph, where edges are weighted according to a measure of interest w :

(V
2

)
→ R,

such as a scagnostic (Section 1.0.1). Throughout this work, a trimmed or a pruned variable
graph is one with edge weights above a certain threshold (as described by Mechanisms M1
and M2, for example).

Figure 2.3: A realization of a pruned variable graph of the Ozone dataset (Breiman &
Friedman, 1985) recreated by Hurley & Oldford (2011a). The variables Ozone, Temp, InvHt,
Pres and Vis score highly according to some scagnostic measure of interest. The figure on
the right is the corresponding navigation graph.
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If G is a graph and H is a subgraph of G for which H ≃ Kn for some n ∈ N, then we
say that H is a clique in G. If H is not a proper subgraph of a larger clique in G, then
we say that H is a maximal clique. We call H a maximum clique if no other clique in G
has more vertices than H. We note that any maximum clique is maximal but not every
maximal clique is a maximum clique.

If H is a maximum clique in G and H has ℓ vertices, then we say that the clique number
of G is ℓ and write ω(G) = ℓ.

Given a collection C = {C1, . . . , Cm} of cliques, we say that C is a vertex clique cover
of the graph G if every Ci is a subgraph of G and every node in G belongs to some clique
Ci in C. Moreover, if C is a vertex clique cover for which every edge e ∈ E(G) appears in
some clique Cr in C, then we say that C is an edge clique cover of G.

For example, consider the simple graph G from Figure 2.1. The cliques A,B,C where
A = {1, 2, 3, 5, 6}, B = {1, 2, 4, 7, 8}, C := {1, 2, 3, 4, 9} form a vertex clique cover and an
edge clique cover of G. Of course, there are other vertex and edge clique covers of G – for
instance, consider the edge clique cover formed by using the edges. We will see in Chapter
6 how the problem of evaluating moments of clique count distributions on random graphs
is related to edge clique covers.

If every vertex in a graph G has the same degree, say k, we call the graph G a k−regular
graph. For instance, the complete graph Kn is (n− 1)−regular as every vertex is adjacent
to all other vertices.

Example 2.1.2. Graphs are frequently used to model relations between discrete objects
in the real world. When discussing a real world phenomena, some researchers use the term
network to emphasize that a graph’s vertices and edges stand for real world objects, such
as professors in a department and their collaboration count, respectively.
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Figure 2.4: A graph where the vertices are professors in the UWaterloo Statistical and
Actuarial Science department and edges indicate collaboration within the last 5 years
Ogyanova (2020).

A walk in a graph G is a sequence of edges (e1, e2, . . . , eℓ) such that there exist vertices
v1, v2, . . . , vℓ+1 with the property that edge ei connects nodes vi and vi+1 in G. If all of the
vertices corresponding to the walk are distinct, this walk is known as a path. If all of the
vertices except the first and the last are distinct, we call the walk a cycle. Clearly, up to
isomorphism there is only one cycle on n vertices for n ≥ 3.

Figure 2.5: A cycle on 4 vertices.
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When nodes on a graph have an additional structure (for instance, as sets), we will
distinguish between nodes on a graph and their inherent structure through the use of the
ν(·) notation. For instance, if G is the complete graph on [n], then although the intersection
of vertices is has no meaning in our context, the intersection of the labels of vertices will
be of relevance. In other words, if a, b ∈ V , we will identify a and b with ν(a) and ν(b),
respectively, and let their intersection be denoted by ν(a) ∩ ν(b).

2.1.1 Graph operations

There are many operations defined on graphs. In the following chapters, we use graph
unions, intersections and line graph operators which we recall are defined as follows.

Let G1 = (V1, E1), G2 = (V2, E2) be two graphs. Then the graph union and graph
intersection of G1, G2 are given by G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) and G1 ∩ G2 = (V1 ∩
V2, E1 ∩ E2), respectively.

Figure 2.6: The dashed blue edges become nodes in L(G) and they are adjacent because
they are incident in G. This figure has been reproduced from Oldford & Waddell (2011)
with permission.

In graph theory, the line graph of a graph G = (V,E) is the graph L(G) = (V ′, E ′)
that is constructed in the following way: each v ∈ V ′ corresponds to an edge e in E; two
vertices u, v ∈ V ′ are adjacent in L(G) if they share exactly one vertex in G.
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Figure 2.7: The exceptions to Whitney’s isomorphism result. Left: The complete graph
K3 on three nodes. Right: The star graph K1,3 on degree 3.

As will be discussed in Chapter 6, the line graph operator bridges random graphs and
navigation graphs under suitable assumptions. To examine cliques in navigation graphs
under this model, we need to understand how cliques arise in random graphs and when
the line graph operator translates subgraphs into cliques. Whitney’s isomorphism theorem
states that the action of the line graph operator on connected graphs is injective except
for two graphs: the triangle graph K3 and the star K1,3.

Theorem 2.1.3 (Whitney graph isomorphism theorem). Let G1 and G2 be two connected
graphs not equal to the triangle K3 or the star K1,3. Then G1 and G2 are isomorphic if
and only if L(G1) and L(G2) are isomorphic.

Proof. See Whitney (1992).

It is easy to check that L(K3) = K3 = L(K1,3). Moreover, by Theorem 2.1.3, it follows
that cliques of size r ≥ 4 are the images of stars K1,r under the line graph operator.

Example 2.1.4. Consider the complete graph K5 with node set V (K5) = [5] = {1, 2, 3, 4, 5},
and edge set

E(K5) = {{1, 2}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4}, {2, 5}, {3, 4}, {3, 5}, {4, 5}}.
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By construction, the node set of L(K5) is the edge set of K5 and hence V (L(K5)) =
E(K5) and two nodes u1, u2 are adjacent if and only if u1 and u2 share a node in K5, which
is equivalent to

|ν(u1) ∩ ν(u2)| = 1.

The Johnson graph J5(2, 1)

1:2

1:3

1:41:5

2:3

2:4

2:5

3:4 3:5

4:5

Figure 2.8: The line graph of K5.

There are many other graph theoretic operations on graphs and the interested reader is
encouraged to consult Bondy & Murty (2008). We are interested in the line graphs of com-
plete graphs as they form a special case of a family of graphs known as the Johnson graphs.

2.1.2 Johnson graphs

The Johnson graph Jn(m,m−1) has
(
n
m

)
vertices, each labelled by a unique set ν(v) ∈

(
[n]
m

)
where two distinct nodes vi and vj are adjacent if, and only if, |ν(vi) ∩ ν(vj)| = m − 1.
Figure 5.1 shows two examples – J4(2, 1) in (a) and J5(3, 2) in (b).

Brouwer et al. (1989) provide a comprehensive examination of Johnson graphs and
some of their other properties, such as distance regularity.

Example 2.1.5. The line graph of the complete graph on 5 nodes from example 2.1.4 has
two distinct variables from [5] associated to each node. Moreover, two nodes are adjacent
precisely when they intersect in one variable and hence the line graph of K5 is J5(2, 1).

The example above is an instance of a more general result: the line graph of Kn is the
Johnson graph Jn(2, 1). Moreover, if the edges of a complete graph Kn are equipped with
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a weight function w : E(Kn) → [0, 1], the weighted Johnson graph obtained can be turned
into a navigation graph akin to the first method discussed in Subsection 1.1.1. That is,
if w records the prevalence of a particular facet in scatterplot between two variables (e.g.
monotonic or convexity) in a dataset and we omit all edges below a desired threshold, the
resulting line graph would have the exact graphic structure of the navigation subgraph
described in method 1) of Subsection 1.1.1.

More generally, the Johnson graphs can be viewed as a special case of a larger family
of graphs known as the generalized Johnson graphs, where the intersection condition is
specified via the parameter k. In other words, if n > m > k ≥ 1 are fixed integers, the
generalized Johnson graph Jn(m, k) is the graph whose vertices are the m−subsets of [n],
where two vertices v1 and v2 are adjacent if |ν(v1) ∩ ν(v2)| = k.

(a) J4(2, 1) (b) J5(3, 2)

Figure 2.9: Two separate Johnson Jn(m,m− 1) graphs with label sets ν(v) shown on each
node v. Nodes are identified as v1, v2, . . . , beginning from the right most node in each
graph and from there in counter-clockwise order. Two maximal cliques are marked on each.
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The Johnson graph J5(3, 1)

1, 2, 3

1, 2, 4

1, 2, 51, 3, 4

1, 3, 5

1, 4, 5

2, 3, 4

2, 3, 5 2, 4, 5

3, 4, 5

Figure 2.10: The generalized Johnson graph J5(3, 1).

If x1, x2, . . . , xn are the variables of a dataset, the Johnson graph Jn(m,m − 1) with
the addition of visualizations on each of the nodes consisting of the m−dimensional sub-
spaces of the data would constitute as a navigation graph on the dataset (as discussed in
Section 1.1). Figure 5.1 depicts several different types of cliques that occur in the John-
son graph. For instance, (a) illustrates a two different three-spaces, {1, 2}, {1, 3}, {1, 4}
and {2, 3}, {3, 4}, {3, 4}. Not only are their labels different, but in this thesis, we argue
that they suggest different types of relationships between the underlying variables. The
structure of Johnson graph cliques will be examined in Chapter 5.

Because the analyst is typically restricted by time and computational resource con-
straints, only the most ‘interesting’ subspaces of the Johnson graph will be explored. As
we will describe in Chapter 6, random graphs aid us by serving as components in a model
for the navigation graphs we may encounter by when searching for the most interesting
spaces.

2.2 Random graphs

The study of random graphs dates to Erdős & Rényi (1959), who used probabilistic ideas
to prove the existence of graphs with seemingly conflicting properties. At its core, their
idea was that if a collection of objects did not contain an object of a particular type, then
the probability of randomly sampling an object of that type must be zero. Therefore,
one can prove an object’s existence with desired properties by showing that a suitable
mechanism for sampling from the collection yielded an object of that type with nonzero
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probability. This idea was later applied to several other subdisciplines of mathematics,
including number theory, real analysis and linear algebra.

Their idea inspired several more general techniques for non-constructive, existence
proofs that rely on the tools of probability. In Chapter 3, we describe moments results
that are similar in nature to the main technique of Alon & Spencer (2016, Chapter 2),
which serves as a standard reference in the field. Our results are later specialized to special
models of networks.

Any model network where the values of some properties are fixed a priori and the rest
are random is known as a random graph. The simplest example of a random graph is
attributed to Erdős and Rényi.

We say that G is a random graph with parameters G(n,M) if G was selected uniformly
at random from the collection of all graphs on n nodes and M edges. In this case, we write
G ∼ G(n,M).

Some of the properties of the G(n,M) are easy to deduce, such as the number of edges,
M , and the average degree: 2M/n. Other properties are not as easy to derive (Newman,
2018). This led to the study of a slightly more flexible model.

We say that G is a homogeneous Erdős-Rényi random graph from the G(n, p) model if
G has n vertices and an edge between every pair of vertices has an equal probability p of
appearing, independently of all other edges. In this case, we write G ∼ G(n, p).

Random graphs are often studied because they provide insight into the topology of net-
works and they provide a foundation on which one can build an understanding of processes
taking place on networks, such as the spread of disease (Newman, 2018).

Since there are many potential graphs that arise under various schemes of random
graphs (for instance, there are 2(

n
2) possible graphs we could encounter under the G(n, p)

model for p ∈ (0, 1)), one often studies the properties of the typical random graph by
examining the average of a particular property instead. Thus, if X(G) is some theoretical
property of networks of interest, such as the count of cliques, one might choose to investigate
the average

E(X) =
∑
G

P (G)X(G),

where the summation is over all members of the particular class of random graphs.

This idea is useful for several reasons. For one, it is often possible to express E(X)
precisely, and in some cases, it is even possible to derive its limiting behaviour as a function
of network parameters (i.e. its value when n gets large or p is arbitrarily small). Moreover,
if the typical behaviour of a random graph is of interest, then the average is a good proxy.

For instance, the complete graph on n vertices has
(
n
3

)
triangles while the empty graph

has none - both graphs are equally probable under G(n, 0.5). Lastly, it has been shown
that the distribution of values for many of the commonly used network measures is sharply
peaked, becoming concentrated more narrowly around the average as the size of network
becomes large, so that all values one is likely to encounter are close to the mean (Bollobás,
2001; Bollobas & Erdős, 1976; Newman, 2018).
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Some random graph statistics are easily derived. For instance, since we may view edge
inclusions in a homogeneous Erdős-Rényi model as independent identically distributed
Bernoulli(p) trials, it is clear that the degree of a vertex in G(n, p) has a binomial distri-
bution:

P (deg(v) = k) =

(
n− 1

k

)
pk(1− p)n−1−k.

Other random graph distributions and statistics are more challenging – despite the sim-
plicity of the degree distribution for a fixed node, there are very few results on the joint
degree distribution of the graph itself.

Chapter 6 establishes a connection between random graphs and navigation graphs which
served as the initial motivation for this thesis’s exploration of cliques in random graphs.
Identifying the distribution of cliques in random graphs is a challenging problem which
remains without a closed-form solution. To the best of our knowledge, the earliest attempts
to resolve this were due to Bollobas & Erdős (1976). Their work presented the following
approach for deriving the first and second moments.

Fix r ≥ 3 an integer and let Xr denote the number of cliques of size r in G ∼ G(n, p).
For a set A of r nodes in G to span a complete graph, all of the

(
r
2

)
edges between the

nodes to be present. Let Edge(A) denote the set of all possible edges between nodes in A.
For an edge e ∈ Edge(A), let Ye be the indicator random variable recording if e is present
in G and let ZA be the indicator random variable recording if A is an r−clique in G. So,
the set A is a clique in G if Ye = 1 for all e ∈ Edge(A). By independence of the Ye,

Pr(ZA = 1) = Pr(Ye = 1,∀e ∈ E(A)) = p(
r
2).

Since any r−subset of [n] could form an r−clique in G, the number Xr(G) of r−cliques in
G is given by

Xr(G) =
∑

I⊆[n]:|I|=r

ZA.

By linearity of expectation,

E(Xr(G)) =

(
n

r

)
p(

r
2).

By first deriving E(ZAZB) for all pairs of r−subsets A,B, Bollobas & Erdős (1976) adapted
the argument above to derive the second moment of Xr(G):

E(Xr(G)2) =
r∑

ℓ=0

(
n

r

)(
r

ℓ

)(
n− r

r − ℓ

)
p2(

r
2)−(

ℓ
2).

In short, the method described above relies on decomposing a complicated, count ran-
dom variable into a sum of simple, well-understood indicator random variables. This idea
allows one to derive the expected value of a random variable whose distribution is un-
known. Chapter 3 expands this idea and presents an expression for all of the moments of
any random variable that is a sum of indicator random variables.

26



2.3 Algebraic combinatorics

This subsection serves as a short review of the basics of generating series. We borrow the
notation and terminology found in (Wilf, 2005), (Goulden & Jackson, 1983).

Let (an)n≥0 be a sequence of complex numbers and q an indeterminate. We define the
generating series A(q) of (an)n≥0 to be the formal sum

A(q) :=
∑
n≥0

anq
n.

We call any such summation a formal power series. We let R[[q]] denote the set of all
formal power series in q with coefficients in R. In the following chapters, we write [qn]A(q)
to denote the extraction of the n−th coefficient of A(q). That is,

[qn]A(q) = an

for all n ∈ Z where we use the convention ak = 0 for k < 0. We define addition of two
formal power series in the usual way:∑

n≥0

anq
n +

∑
n≥0

bnq
n =

∑
n≥0

(an + bn)q
n.

We extend the usual definition of multiplication of polynomials to formal power series as
follows: (∑

n≥0

anq
n

)(∑
n≥0

bnq
n

)
=
∑
n≥0

(
n∑

k=0

akbn−k

)
qn.

With respect to these two operations, the set R[[q]] forms a ring.

Example 2.3.1. Let (an)n≥0 be the sequence defined by an = 1 for all n ∈ N. The power
series A(q) which corresponds to it is given by

A(q) =
∑
n≥0

anq
n =

∑
n≥0

qn =
1

1− q
,

and we note that it is easily verified that
∑

n≥0 q
n is the multiplicative inverse of (1 − q)

in R[[q]].

In the previous example, 1
1−q

is an instance of a closed-form expression for a generating
series. Throughout this thesis, we write closed-form expression for a generating series to
mean a finite expression in terms of basic arithmetic operations and elementary functions
(such as polynomials, trigonometric functions, etc.).

We recall a few standard results regarding expansions of powers of multinomials.

Theorem 2.3.2. (Binomial theorem) For x, y indeterminates and n ≥ 0 a positive integer,

(x+ y)n =
∑
k≥0

(
n

k

)
xkyn−k.
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Isaac Newton generalized the binomial theorem by incorporating real exponents. The
following generalization also holds for complex numbers.

Theorem 2.3.3 (Newton’s generalized binomial theorem). If x, y are indeterminates and
r ∈ R, then

(x+ y)r =
∑
k≥0

(
r

k

)
xkyr−k,

where (
r

k

)
:=

r(r − 1) · · · (r − k + 1)

k
.

If r is a negative integer, then by applying substitutions x 7→ 1, y 7→ −y into Newton’s
generalized binomial theorem we obtain

(1− y)r =
∑
k≥0

(
k − 1− r

k

)
yk.

Since binomials are a special case of multinomials, one can also view the binomial
theorem as a special case of the multinomial theorem, which is critical to the results
presented in Chapter 3.

Theorem 2.3.4 (Multinomial theorem). Let y1, . . . , yn be a sequence of commutative ele-
ments over some ring and fix k ≥ 1. Then

(y1 + · · ·+ yn)
k =

∑
ℓ1+···+ℓn=k

ℓi≥0,∀i

(
k

ℓ1, · · · , ℓn

)
yℓ11 · · · yℓnn .

Proof. The statement follows immediately from the binomial theorem and a simple induc-
tive argument on m.

We shall use the following well-known Principle of Inclusion and Exclusion. This count-
ing technique enumerates the elements in a finite union of finite sets by counting the number
of elements appearing in each possible type of intersection of the underlying sets.

Proposition 2.3.5 (Principle of Inclusion and Exclusion). If A1, . . . An is a collection of
finite sets, then∣∣∣∣∣

n⋃
i=1

Ai

∣∣∣∣∣ =
n∑

i=1

|Ai|−
∑

1≤i<j≤n

|Ai∩Aj|+
∑

1≤i<j<k≤n

|Ai∩Aj∩Ak|−· · ·+(−1)n+1|A1∩A2∩An|.

Proof. For an algebraic proof, see (Goulden & Jackson, 1983, pg 47) or (Wilf, 2005, pg
119). For a combinatorial proof, see (Aigner & Axler, 2007, pg 180).
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2.3.1 Directions

The mathematical ideas reviewed above are essential to the clique-centric study of naviga-
tion graphs approach in the following chapters. The next three chapters are dedicated to
building upon the foundation described above to capture a general theory for the moments
of count random variables, obtain expressions for the number of cliques present in a clique
cover, describe the clique structure of Johnson graphs and obtain novel expressions for the
moments of clique counts in random graphs.
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3
Bernoulli sums
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As mentioned in Chapter 2, the random graph model for the study of cliques in navi-
gation graphs requires a careful enumeration of the edges associated with a configuration
of cliques. In this chapter, we examine a related and more general problem of deriving the
moments of a count random variable – a random variable taking on values in N0.

Consider the random variable
X =

∑
i∈I

Yi

which sums (not necessarily independent) Bernoulli random variables Yi ∈ {0, 1} over some
countable index set I. When Yi is an indicator function for some event A, the Bernoulli
sum X counts the number of occurrences of the event in the set I and, as such, arises in
numerous applications of probability. Of interest here is the determination of the moments,
central moments, and factorial moments of any arbitrary Bernoulli sum.

We develop expressions for these moments in terms of the expectation of products of the
Bernoulli Yis. This leads to novel proofs and/or expressions for the moments in many well
known problems and to novel approaches to determining such moments for any random
variable expressible as a Bernoulli sum.

This chapter is organized as follows. Section 3.1 shows that the power of a sum of
idempotents is expressible in terms of the number of surjections from one finite set to
another times a sum of their products. This follows as a special case of the multinomial
theorem. Section 3.2 builds on this to develop the main general results for the moments
of a Bernoulli sum. Both finite and infinite sums are considered and special attention is
given to factorial moments and generating functions.

These results are then applied to develop expressions for various classic distributions
and problems in Section 3.3. These include the binomial, poisson binomial, hypergeometric,
and Conway-Maxwell-Poisson binomial distributions, the Poisson limit of a binomial by
moment convergence, and the classic empty urns problem and the matching problem.

Section 3.4 considers the moments for any count random variable, developing expres-
sions based on the upper tail probability of that count. This general theory is then demon-
strated on the geometric, Poisson, Ideal Soliton, and Benford distributions.

3.1 Idempotent multinomial theorem

As per Chapter 2, recall that [k] denotes the set {1, . . . , k} for any finite integer k. Let
S(k,m) denote the number of surjections from [k] to [m]. If k < m, no surjective function
exists and S(k,m) = 0; otherwise, S(k,m) can be written as

S(k,m) =
m−1∑
v=0

(−1)v
(
m

v

)
(m− v)k

(e.g., see Wilf (2005)). The number S(k,m) figures prominently in the closed form expres-
sions which follow.
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In particular, S(k,m) (for all m ≤ k) will be shown to appear in expressions for the kth
moments of a Bernoulli sum. To calculate the smaller moments of importance in statistical
inference (say k ≤ 4), it will be convenient therefore to have S(k,m) evaluated for a few
m ≤ k. Whenever k is at least as large as the second argument, the following values
are obtained: S(k, 0) = 0, S(k, 1) = 1, S(k, 2) = 2k − 2, S(k, 3) = 3k − 3 · 2k + 3, and
S(k, 4) = 4k − 4 · 3k + 6 · 2k − 4. These will appear in calculations up to the 4th moment
(e.g. to determine kurtosis). Again, note that S(k,m) = 0 whenever m > k.

Moments of X are expectations of powers of X which, in the case of X =
∑n

i=1 Yi,
suggests beginning with a multinomial theorem (see Theorem 2.3.4):

Xk = (Y1 + · · ·+ Yn)
k =

∑
ℓ1+···+ℓn=k

ℓi≥0,∀i

(
k

ℓ1, · · · , ℓn

)
Y ℓ1
1 · · ·Y ℓn

n .

In this section, we only consider the Yis which are idempotents, as they are in the
definition of a Bernoulli sum, only those Yi with ℓi ≥ 1 remain and simplify to Y ℓi

i = Yi.
This leads to the following version of the multinomial theorem where now S(k,m) appears.

Proposition 3.1.1. Let y1, . . . , yn be a sequence of commutative idempotents over some
ring. Then

(y1 + · · ·+ yn)
k =

k∑
m=1

S(k,m)
∑

{i1,...,im}⊆[n]

yi1 · · · yim

where S(k,m) is the number of surjections from [k] onto [m].
(It is understood that the interior sum has m ≤ min {k, n}.)

Proof. Naively expanding (y1 + · · ·+ yn)
k gives

(y1 + y2 + · · ·+ yn)
k =

∑
(j1,j2,...,jk)∈[n]k

yj1yj2 · · · yjk . (3.1)

Let F denote the set of all functions f : [k] → [n]. For a product yj1yj2 · · · yjk on the
right-hand side of Equation 3.1, let f be the function which maps ℓ ∈ [k] to jℓ. Since
every jℓ ∈ [n], this defines a function f ∈ F . Conversely, a unique summand of the form
yf(1)yf(2) · · · yf(k) can be assigned to each function f ∈ F . That is, the naive expansion
of (y1 + · · ·+ yn)

k results in nk summands of the form yf(1)yf(2) · · · yf(k) for some function
f : [k] → [n].

Since y1, . . . , yn are commutative idempotents, each product yj1 · · · yjk resolves to a
unique yi1 · · · yim with indices i1 < . . . < im, for some m ∈ [k]. Equation 3.1 then becomes

(y1+y2+ · · ·+yn)
k =

∑
(j1,j2,...,jk)∈[n]k

yj1yj2 · · · yjk =
k∑

m=1

a(k,m)
∑

{i1,...,im}⊆[n]

yi1 · · · yim . (3.2)
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Here a(k,m) counts the number terms yi1 · · · yim that simplify to yj1 · · · yjk . It remains
only to show that a(k,m) equals S(k,m), the number of surjective maps from [k] onto [m].

To see this, first fix {i1, . . . , im} ⊆ [n] and let F ⊆ F denote the subset of functions
for which yf(1) · · · yf(k) simplifies to yi1 · · · yim . The count a(k,m) is identical to |F |.
Then consider the set, G, of all surjections g : [k] → {i1, . . . , im}, which must have size
|G| = S(k,m). If F = G, then |F | = |G| and a(k,m) = S(k,m), as required.

Now F = G iff every f ∈ F is also in G and every g ∈ G is also in F . If f ∈ F , then
yf(1) · · · yf(k) = yi1 · · · yim , giving f([k]) = {i1, . . . , im}, and hence f ∈ G. If g ∈ G, then
clearly

yg(1) · · · yg(k) =
∏

ℓ∈g([k])

yℓ =
∏

ℓ∈{i1,...,im}

yℓ,

and so g ∈ F .

Note that the inner sum
∑

{i1,...,im}⊆[n] yi1 · · · yim vanishes whenever m > n and hence
(y1+ · · ·+yn)

k is expressible as a sum of at most min(k, n) terms involving the coefficients
S(k,m).

A generalization of the result to powers of infinite sums, subject to convergence having
been settled for all particular values of the yis (as is the case, for instance, when the sum
of any partial product of terms is absolutely convergent), is relatively straightforward.

Proposition 3.1.2. Let (yi)i≥1 be a sequence of formal, commutative, idempotents over
some ring. Then

(
∞∑
i=1

yi

)k

=
k∑

m=1

S(k,m)
∑

{i1,...,im}⊂N

yi1 · · · yim

where S(k,m) is the number of surjections from {1, . . . , k} onto {1, . . . ,m}.

Proof. Since the (yi)i≥1 are formal, commutative idempotents over some ring, the proof
follows that of Proposition 3.1.1.

Because Propositions 3.1.1 and 3.1.2 express a product as a summation, we can now
obtain moment expressions for count random variables via the linearity of expectation.

3.2 Moments of Bernoulli sums

Consider the Bernoulli sum random variable X of Section 3.1 with finite index set I of size
n. The set I can always be re-indexed to have X appear as

X =
n∑

i=1

Yi.

Expressions for the moments of X can now be derived via Proposition 3.1.1.
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Proposition 3.2.1. When X is expressible as a finite Bernoulli sum X =
∑n

i=1 Yi, the
kth moment of X is expressible as

E(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊆[n]

E(Yi1 · · ·Yim).

Proof. Since Y 2
i = Yi for all i, it follows from Proposition 3.1.1 that

Xk = (Y1 + · · ·+ Yn)
k =

k∑
m=1

S(k,m)
∑

{i1,...,im}⊆[n]

Yi1 · · ·Yim . (3.3)

The result follows by applying expectation E(·) operator to each side of Equation 3.3.

Note that a similar result holds for any linear operator L applied to both sides of
equation 3.3:

L(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊆[n]

L(Yi1 · · ·Yim).

Now, since
E(Yi1 · · ·Yim) = Pr(Yi1 = 1, · · · , Yim = 1)

Proposition 3.2.1 shows that the moments of any finite Bernoulli sum random variable
can be investigated via the joint distribution of those Bernoulli random variables used to
construct it – indeed, Proposition 3.2.1 could be rewritten in terms of this probability.

The central moments are generally of more statistical interest and a similar result is
found for them by applying Proposition 3.2.1. In this case, let pi = Pr(Yi = 1) = E(Yi)
denote the ith marginal mean in the sum and µ = E(X) =

∑n
i=1 pi the mean of X. A

similar expression for the kth central moment is given in Proposition 3.2.2.

Proposition 3.2.2. When X is expressible as a finite Bernoulli sum X =
∑n

i=1 Yi, with
pi = Pr(Yi = 1) = E(Yi), then the kth central moment of X is expressible as

E((X − µ)k) = (−µ)k +
k∑

ℓ=1

(
k

ℓ

)
(−µ)k−ℓ

ℓ∑
m=1

S(ℓ,m)
∑

{i1,...,im}⊆[n]

E(Yi1 · · ·Yim)

where µ = E(X) =
∑n

i=1 pi.
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Proof. Applying the binomial expansion, then Proposition 3.2.1, yields

E((X − µ)k) =
k∑

ℓ=0

(
k

ℓ

)
E(Xℓ)(−µ)k−ℓ

=

(
k

0

)
· 1 · (−µ)k +

k∑
ℓ=1

(
k

ℓ

)
(−µ)k−ℓE(Xℓ)

= (−µ)k +
k∑

ℓ=1

(
k

ℓ

)
(−µ)k−ℓ

ℓ∑
m=1

S(ℓ,m)
∑

{i1,...,im}⊆[n]

E(Yi1 · · ·Yim)

Of course, whenever the Yis are also independently distributed, the above moment
expressions (and those which follow) simplify by replacing E(Yi1 · · ·Yim) by pi1 · · · pim ,
where each Yi ∼ Bernoulli(pi).

3.2.1 Moments of an infinite sequence

Consider now an infinite sequence

(Yi)i≥1 = Y1, Y2, . . .

of Bernoulli random variables and their sum

X =
∞∑
i=1

Yi

being such that Pr(X < ∞) = 1. For example, this condition is satisfied whenever the
first moment of X is bounded, that is, whenever E(X) =

∑∞
i=1E(Yi) =

∑
i≥1 pi = µ < ∞.

From this it follows (e.g., by the Borel-Cantelli lemma) that Pr(lim supn→∞ Yn = 1) = 0,
and, so, that the probability is zero that infinitely many of the Yis will be 1.)

In this case, Proposition 3.1.2 gives the kth moment for this sum of countably infinite
Bernoulli random variables (whenever all relevant sums converge).

Proposition 3.2.3. Let X =
∑∞

i=1 Yi be the sum of the sequence of Bernoulli random
variables (Yi)i≥1, with pi = Pr(Yi = 1) = 1− Pr(Yi = 0), then we may write

E(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊂N

E(Yi1 · · ·Yim).

In the special case where the Yis are also independent, then Proposition 3.2.3 allows us
to draw the interesting conclusion that a bounded first moment of X implies that all higher
order moments are also bounded. This result is formally given in Proposition 3.2.4:
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Proposition 3.2.4. Let (Yi)i≥1 be a sequence of independent Bernoulli(pi) random vari-
ables with

∑
i≥1 pi = µ < ∞. For the Bernoulli (infinite) sum random variable X =∑

i≥1 Yi, and for any k ≥ 1,
E(Xk) < ∞.

Proof. By Proposition 3.2.3 and independence of the Yi,

E(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊂N

pi1 · · · pim

≤
k∑

m=1

S(k,m)

(∑
i≥1

pi

)m

=
k∑

m=1

S(k,m) µm

< ∞.

In this special case of an infinite sequence of independent Bernoulli random variables,
an expression for the moments involving only the first moments of the Yis and of X can
be easily had as well.

Proposition 3.2.5. Let (Yi)i≥1 be a sequence of independent Bernoulli(pi) random vari-
ables with

∑
i≥1 pi = µ < ∞. For the Bernoulli (infinite) sum random variable X =∑

i≥1 Yi, and for any k ≥ 2, the kth moment of X is

E(Xk) =
k∑

m=1

S(k,m)

µm −
k−2∑
s=0

µs(m− 1− s)
∑

{i1 ...,im−1−s}⊂N

p2i1(pi2 · · · pim−1−s)

 .

Proof. Fix an integer r ≥ 2 and note that∑
{i1,...,ir}⊂N

pi1 · · · pir =
∑

{i1,...,ir−1}⊂N

pi1 · · · pir−1

 ∑
i ̸∈{i1,...,ir−1}

pi


=

∑
{i1,...,ir−1}⊂N

pi1 · · · pir−1

µ−
∑

i∈{i1,...,ir−1}

pi


= µ

∑
{i1,...,ir−1}⊂N

pi1 · · · pir−1 − (r − 2)
∑

{i1,...,ir−1}⊂N

p2i1 · · · pir−1 ,

where the last equality follows from the fact that∑
{i1,...,ir−1}⊂N

p2i1pi2 · · · pir−1 =
∑

{i1,...,ir−1}⊂N

pi1p
2
i2
· · · pir−1 = · · · =

∑
{i1,...,ir−1}⊂N

pi1pi2 · · · p2ir−1
.

Recursively rewriting
∑

{i1,...,ir}⊂N pi1 · · · pir in terms of sums over one fewer index (viz.,
r − 1 indices) each time gives the desired result via Proposition 3.2.1.
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3.2.2 Factorial moments

The kth falling factorial of x is the kth degree polynomial in x

[x]k := x(x− 1)(x− 2) · · · (x− (k − 1)) =
k−1∏
m=0

(x−m),

where k ∈ N and x ∈ R. Replacing x by a random variable X, the corresponding kth
factorial moment is defined to be E ([X]k). Like E(Xk) this is the expected value of
the product of k terms. Note this is different from E(X!), the expected factorial of X,
where the number of products in X! is itself be a random variable (viz., X).

The kth power of x can be expressed (Stanley, 2011) in terms of falling factorials as

xk =
k∑

m=1

S2(k,m)[x]m,

where S2(k,m) is the Stirling number of the second kind, typically defined as the number
of ways to partition a set of k labelled objects into m nonempty unlabelled subsets. It
follows, then, that these are directly related to the number of surjections from a k−set
onto an m−set as

S(k,m) = m! S2(k,m)

and hence that

xk =
k∑

m=1

S(k,m)

m!
[x]m =

k∑
m=1

S(k,m)

(
x

m

)
.

Similarly, the falling factorial is written as a sum of powers as

[x]k =
k∑

m=1

S1(k,m)xm

where S1(k,m) is the Stirling number of the first kind. Similar expressions may now be
found involving a Bernoulli sum X in place of x.

First, we relate
(
X
m

)
to the Bernoulli random variables that define X.

Proposition 3.2.6. If X is a Bernoulli sum X =
∑

i∈I Yi for some countable indexing set
I, then for m ≥ 1, (

X

m

)
=

∑
{i1,...,im}⊆ I

Yi1 · · ·Yim .

Proof. Let J = {i ∈ I : Yi = 1} denote the subset of the indices in I for which Yi = 1.
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Then ∑
{i1,...,im}⊆I

Yi1 · · ·Yim =
∑

{i1,...,im}⊆ J

Yi1 · · ·Yim

=
∑

{i1,...,im}⊆ J

1

=

(
|J |
m

)
=

(
X

m

)
.

An earlier, inductive, proof of this result for the case of finite I is given by Iyer (1958).

A similar approach yields a general result relating X! to its Bernoulli constituents.

Proposition 3.2.7. Let X =
∑

i∈I Yi be a Bernoulli sum, where I is a countable indexing
set. Then we may write X! in terms of the (Yi) as follows

X! =
∑
H⊆I

|H|!

(∏
i∈H

Yi

∏
i ̸∈H

(1− Yi)

)
.

Proof. Consider the set J := {i ∈ I : Yi = 1}. In this case, |J | = X and |J |! = X!. For
any other set H ⊆ I, either H = J , or H ̸= J .

If H = J , then ∏
i∈H

Yi

∏
i ̸∈H

(1− Yi) =
∏
i∈H

1
∏
i ̸∈H

(1− 0) = 1

If H ̸= J , then there exists j for which j ∈ J but j ̸∈ H. Then,∏
i∈H

Yi

∏
i ̸∈H

(1− Yi) =
∏
i∈H

Yi × 0 = 0.

Together these give

∑
H⊆I

|H|!

(∏
i∈H

Yi

∏
i ̸∈H

(1− Yi)

)
= |J |!

∏
i∈J

Yi

∏
i ̸∈J

(1− Yi) = |J |! = X!

Taking expectations yields the following expressions for a Bernoulli sum X =
∑

i∈I Yi:
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• the kth factorial moment in terms of the Bernoulli random variables

E([X]k) = k!
∑

{i1,...,ik}⊆ I

E(Yi1 · · ·Yik)

or, in terms of the moments of X as

E([X]k) =
k∑

m=1

S1(k,m)E(Xm)

• the kth moment in terms of the factorial moments of X

E(Xk) =
k∑

m=1

S2(k,m) E([X]m)

• the kth central moment

E((X − µ)k) = (−µ)k +
k∑

j=1

(
k∑

m=j

S2(m, j)

(
k

m

)
(−µ)k−m

)
E([X]j)

• and the expected factorial in terms of the Bernoulli random variables

E(X!) =
∑
H⊆I

|H|! × E

[∏
i∈H

Yi

∏
i ̸∈H

(1− Yi)

]
.

Central moments for small k can always be written in terms of the moments or in terms
of the factorial moments. When k = 2, a nice symmetry appears in either expression for
the variance of X:

V ar(X) = E(X2)− (E(X))2 = E([X]2)− [E(X)]2.

3.2.3 A statistical interpretation

Central moments are statistically meaningful for any random variable X where available.
However, when X is a Bernoulli sum a few more meaningful interpretations are available.

Imagine a collection of individuals i ∈ I, from which a random number X provides
a population J of size X. Samples of fixed size k are to be drawn from the resulting
population J . Here, X =

∑
i∈I Yi and J = {i ∈ I : Yi = 1} with (possibly dependent)

random variables Yi ∼ Bernoulli(pi) (indicating inclusion in the population J when Yi = 1
and exclusion when Yi = 0).

In this case, the expected number of samples of size k

• is the kth factorial moment E([X]k) when sampling without replacement and

• is the kth moment E(Xk) when sampling with replacement.

The expected factorial E(X!) is the expected number of permutations one would have in
the indices found by forming a population in this way.
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3.2.4 Generating functions

Various generating functions for a Bernoulli sum X are now easily had by substitution of

• E(Xk) in the moment generating function

MX(s) = E(esX) = 1 +
∞∑
k=1

E(Xk)
sk

k!

• E([X]k) in the factorial moment generating function (e.g., see p. 59 of Johnson et al.
(2005))

HX(s) = 1 +
∞∑
k=1

E([X]k)
sk

k!

• and, from Fréchet (1943),

Pr(X = x) =
∑
j≥x

(−1)x+j

(
j

x

)
E([X]j)

j!
,

or, after substitution for the factorial moments,

Pr(X = x) =
∑
j≥x

(−1)x+j

(
j

x

) ∑
{i1,...,ij}⊆ I

E(Yi1 · · ·Yij),

the probability Pr(X = x) into the probability generating function

GX(s) = E(sX) =
∞∑
k=0

skPr(X = k).

The factorial moment generating function, HX(s), can be related (again, see Johnson et al.
(2005) [p. 59]) to the probability generating function, GX(s), as

HX(s) = GX(1 + s) = E((1 + s)X).

It follows that whenever factorial moments are such that HX(s) has a tidy closed form, the
probability generating function of X might be easily obtained through the reverse relation

GX(s) = HX(s− 1). (3.4)

This approach will be illustrated for the binomial distribution in Section 3.3.1, and for
the classic matching problem of Section 3.3.5, to determine expressions for the probability
generating function of X in each of these classic cases.
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3.3 Classic examples

Bernoulli sums naturally arise in many classic problems and lead to well known distribu-
tions. In this section, the results of Section 3.2 are applied to several of these where the
Bernoulli sum is over a finite index set (of size n), namely

X =
n∑

i=1

Yi

where Yi ∼ Bernoulli(pi) with pi = Pr(Yi = 1) = 1− Pr(Yi = 0) for i = 1, . . . , n.

3.3.1 Binomial X

The simplest case where the Yis are independent and identically distributed (i.i.d.) with
pi = p ∀ i, X ∼ binomial(n, p). The kth moment of X can be written as

E(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊆[n]

pm

=
k∑

m=1

S(k,m)

(
n

m

)
pm.

An equivalent expression is found by Knoblauch (2008) using a recursive argument. In con-
trast, the result is easily had here from simple application of the more general Proposition
3.2.1. Central moments follow from Proposition 3.2.2:

E((X − µ)k) = (−np)k +
k∑

ℓ=1

(−np)k−ℓ

ℓ∑
m=1

S(ℓ,m)

(
n

m

)
pm.

The kth factorial moment has a appealingly simple expression E([X]k) = [n]k pk derived
as

E([X]k) = k!
∑

{i1,...,ik}⊆[n]

pi1 · · · pik = k!

(
n

k

)
pk = [n]k pk,

the familiar E(X) = np being the special case when k = 1.

Note that whenever k ≥ n, many terms disappear in the above moment expressions
since S(n,m) vanishes whenever m > n and the sum

∑
{i1,...,ik}⊆[n] is over the empty set.

The moment generating function of a binomial X also has a new expression following
application of Equation 3.5,namely

MX(t) = 1 +
∑
k≥1

tk

k!

k∑
m=1

S(k,m)

(
n

m

)
pm (3.5)
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compared to MX(t) = (1− p+ pet)n.

Recall that the probability generating function of X ∼ binomial(n, p) is

GX(s) = ((1− p) + ps)n .

By Equation 3.4, we find that the factorial moment generating function for X is

HX(s) = ((1− p) + p(1 + s))n

=
n∑

m=0

sm

(
n∑

r=m

n−r∑
ℓ=0

(
n

r

)(
r

m

)
(−1)ℓpℓ+r

)
,

by applying the binomial theorem and changing the order of summation. This provides us
an additional expression for the k−th factorial moment of X:

[n]kp
k =

n∑
r=k

n−r∑
ℓ=0

(
n

r

)(
r

k

)
(−1)ℓpℓ+r.

Poisson binomial X

If Yi ∼ Bernoulli(pi) independently for all i but pi ̸= pj for (at least one) i ̸= j, the
distribution of X is called a Poisson binomial distribution (e.g., see Shah (1973)). The
various moments of X are exactly as given by the relevant results of Section 3.2 with
E(Yi1 · · ·Yim) everywhere replaced by pi1 · · · pim . So too for its moment generating function.

3.3.2 Hypergeometric X

Consider a sample of size n randomly drawn without replacement from a population of N
individuals where g of them have some trait which is absent from the remaining N − g.
The indicator random variable, Yi, records if the ith individual selected has the desired
trait (Yi = 1) or not (Yi = 0) and X =

∑n
i=1 Yi counts the number in the sample having

the trait.

The ith draw is a a Bernoulli random variable Yi with probability

pi =
g − ℓ

N − (i− 1)

where ℓ is the number of previous (i− 1) draws having the trait. A sample of m of these
Bernoullis satisfies

E(Yi1 · · ·Yim) =
g(g − 1) · · · (g −m+ 1)

N(N − 1) · · · (N −m+ 1)
=

[g]m
[N ]m

provided m ≤ g and is zero whenever m > g (since at least one Yi must be zero).
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The kth moment of X, following Proposition 3.2.1, is now

E(Xk) =

min k,g∑
m=1

S(k,m)
∑

{i1,...,im}⊆[n]

[g]m
[N ]m

=

min k,g∑
m=1

S(k,m)

(
n

m

)
[g]m
[N ]m

,

where the last equality followed from m−symmetry. Similarly, the central moments are

E((X − µ)k) =
(
−n

g

N

)k
+

M∑
ℓ=1

(
k

ℓ

) ℓ∑
m=1

S(ℓ,m)

(
n

m

)
[g]m
[N ]m

(
−n

g

N

)k−ℓ

where M = min k, g.

The factorial moments again have a pleasingly simple expression when k ≤ g (zero
whenever k > g), namely,

E([X]k) = k!

(
n

k

)
[g]k
[N ]k

= [n]k
[g]k
[N ]k

.

Where the binomial E([X]k) = [n]kp
k, the hypergeometric now has [g]k

[N ]k
in place of pk, as

one might expect.

3.3.3 CMP-binomial X

For n ∈ N, p ∈ [0, 1], ν ∈ R, a random variable X has a Conway-Maxwell-Poisson (CMP)
binomial distribution with parameters (n, p, ν) if its probability mass at X = j (j ∈ [n]) is
given by

Pr(X = j) =
1

Cn,p,ν

(
n

j

)ν

pj(1− p)n−j,

where Cn,p,ν is the normalizing constant

Cn,p,ν =
n∑

j=0

(
n

j

)ν

pj(1− p)n−j.

The distribution is formed from a Conway-Maxwell-Poisson (CMP) random variable condi-
tional on the sum of that variable and another one independently generated from a different
CMP-distribution.

Just as the CMP-distribution generalizes a Poisson random variable to model count
data having variability larger (over dispersed) or smaller (under dispersed) than that of
a Poisson, the CMP-binomial generalizes the binomial distribution. A CMP-binomial
distribution is binomial when ν = 1 and has larger (smaller) variance than a binomial
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when ν < 1 (ν > 1). When ν = 0, the most extreme values of 0 and n are favoured; when
ν → ∞ the count X achieves the middle value of n/2 when n is even and (n± 1)/2 when
n is odd. See Shmueli et al. (2005) for details.

As noted by Shmueli et al. (2005), the random variable X can also be viewed as a sum
of exchangeable, Bernoulli random variables Yi with joint probability

Pr(Y1 = y1, . . . , Yn = yn) =
1

Cn,p,ν

(
n∑n
i=1 yi

)ν−1

p
∑n

i=1 yi(1− p)n−
∑n

i=1 yi ,

where ν > 1 in the case of negatively correlated trials and ν < 1 for positively correlated
trials. This observation allows an expression to be written for the moments of X from an
expression Pr(Yi1 = 1, . . . , Yim = 1) for an arbitrary m−set {i1, . . . , im} ⊆ [n].

Pr(Yi1 , . . . , Yim) =
∑

yj∈{0,1}
∀j ̸∈{i1,...,im}

Pr(Yi1 = 1, . . . , Yim = 1, and Yj = yj,∀j ̸∈ {i1, . . . , im})

=
∑

yj∈{0,1}
∀j ̸∈{i1,...,im}

1

Cn,p,ν

(
n

m+
∑

j ̸∈{i1,...,im}yj

)ν−1

× pm+
∑

j ̸∈{i1,...,im} yj(1− p)n−(m+
∑

j ̸∈{i1,...,im} yj)

=
1

Cn,p,ν

n−m∑
s=0

∑
yj∈{0,1}

∀j ̸∈{i1,...,im}∑
j ̸∈{i1,...,im} yj=s

(
n

m+ s

)ν−1

× pm+s(1− p)n−(m+s)

=
1

Cn,p,ν

n−m∑
s=0

(
n−m

s

)(
n

m+ s

)ν−1

pm+s(1− p)n−(m+s)

=
1

Cn,p,ν

n∑
ℓ=m

(
n−m

ℓ−m

)(
n

ℓ

)ν−1

pℓ(1− p)n−ℓ.
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The kth moment of X ∼ CMP − binomial(n, p, ν) is then

E(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊆[n]

E(Yi1 · · ·Yim)

=
1

Cn,p,ν

k∑
m=1

S(k,m)

(
n

m

)minn,k∑
ℓ=m

(
n−m

ℓ−m

)(
n

ℓ

)ν−1

pℓ(1− p)n−ℓ

=
1

Cn,p,ν

k∑
m=1

S(k,m)

minn,k∑
ℓ=m

(
ℓ

m

)(
n

ℓ

)ν

pℓ(1− p)n−ℓ.

Similarly, the kth central moment is

(−np)k +
1

Cn,p,ν

k∑
ℓ=1

(
k

ℓ

)
(−np)k−ℓ

ℓ∑
m=1

S(ℓ,m)

minn,k∑
ℓ=m

(
ℓ

m

)(
n

ℓ

)ν

pℓ(1− p)n−ℓ

and the kth factorial moment

E([X]k) =
k!

Cn,p,ν

n∑
ℓ=k

(
ℓ

k

)(
n

ℓ

)ν

pℓ(1− p)n−ℓ.

3.3.4 The empty urns problem

Consider the problem of assigning ℓ indistinguishable balls uniformly at random into n
distinguishable urns. Let Yi be 1 if urn i is empty and 0 otherwise, and X =

∑n
i=1 Yi be

the Bernoulli sum counting the total number of empty urns.

Through a straightforward counting argument, it can be shown that there are
(
ℓ+n−1

n

)
ways to distribute ℓ indistinguishable balls into n distinguishable urns and therefore

Pr(Yi = 1) =
# ways to distribute m balls into n− 1 urns
# ways to distribute m balls into n urns

=

(
n+ℓ−2

ℓ

)(
n+ℓ−1

ℓ

)
=

n− 1

ℓ+ n− 1
.

By the same argument, for a subset {i1, . . . , im} of [n],

Pr(Yi1 = 1, Yi2 = 1, . . . , Yim = 1) =
(n− 1)(n− 2) · · · (n−m)

(ℓ+ n− 1)(ℓ+ n− 2) · · · (ℓ+ n−m)
=

[n− 1]m
[ℓ+ n− 1]m

.
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The kth moment of X is

E(Xk) =
k∑

m=1

∑
{i1,...,im}⊆[n]

S(k,m)E(Yi1 · · ·Yim)

=
k∑

m=1

S(k,m)

(
n

m

)
[n− 1]m

[ℓ+ n− 1]m
,

the kth central moment (from Proposition 3.2.2)

E((X − µ)k) = (−µ)k +
k∑

ℓ=1

(
k

ℓ

)
(−µ)k−ℓ

ℓ∑
m=1

S(ℓ,m)

(
n

m

)
[n− 1]m

[ℓ+ n− 1]m
,

where µ = n n−1
ℓ+n−1

. The kth factorial moment has a particularly simple representation as

E([X]k) =
[n]k[n− 1]k
[ℓ+ n− 1]k

.

Matching moments shows X of the urn problem to have a Hypergeometric distribution
with parameters (n, n− 1, ℓ+ n− 1).

3.3.5 The matching problem

The matching problem dates back to de Montmort (1713) and is the problem of taking
n paired elements, randomly permuting the first elements over all pairs, then letting X
be the number of correctly matched pairs after the random permutation. Examples are n
letters matched correctly to n envelopes, couples separated at a dance and dance partners
formed by randomly assigning one of each sex to the pair, and so on. The random variable
X can be expressed as a sum of Bernoulli random variables taking value 1 when a correct
match occurs and zero otherwise.

More abstractly, let f : [n] → [n] be a permutation on [n] and let X denote the number
of fixed points of f (i.e., the number of i ∈ [n] for which f(i) = i). If f is picked uniformly
at random from the set of all permutations on [n], denoted Sym(n), then the distribution
of X can be shown to tend to Poisson(1) as n → ∞. We do that by expressing X as a
sum of Bernoullis and then examining and comparing moments.

Let Yi be the Bernoulli random variable recording if f(i) = i. As f is chosen uniformly
at random from Sym(n),

Pr(Yi = 1) =
1

n

for all i = 1, . . . , n.

Fix m ≤ n and consider an m−subset {i1, . . . , im} ⊆ [n]. The probability that all
{i1, . . . , im} are fixed points of f is (n − m)!/n!. This is because if f(ij) = ij for all
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j ∈ {1, . . . ,m}, one must only consider how to assign the other (n −m) points so that f
is a bijection. There are (n−m)! ways to do this as |Sym(n−m)| = (n−m)!. Therefore,

Pr(Yi1 = 1, . . . , Yim = 1) =
(n−m)!

n!
.

By Proposition 3.2.1, for k ≤ n

E(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊆[n]

Pr(Yi1 = 1, . . . , Yim = 1)

=
k∑

m=1

S(k,m)
∑

{i1,...,im}⊆[n]

(n−m)!

n!

=
k∑

m=1

S(k,m)

(
n

m

)
(n−m)!

n!

=
k∑

m=1

S(k,m)

m!

=
k∑

m=1

S2(k,m)

= Bk,

where Bk is the k−th Bell number, the number of ways to partition a set of size k into a
family of nonempty, unlabelled, pairwise disjoint subsets. On the other hand, for k > n,
the inner sum vanishes whenever m > n and hence

E(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊆[n]

Pr(Yi1 = 1, . . . , Yim = 1)

=
n∑

m=1

S(k,m)
∑

{i1,...,im}⊆[n]

Pr(Yi1 = 1, . . . , Yim = 1)

=
n∑

m=1

S(k,m)

m!

=
n∑

m=1

S2(k,m)

= Bk −
k∑

m=n+1

S2(k,m),

which can be interpreted as the number of ways to partition a set of size k into at most n
classes.
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For k ≤ n, the k−th factorial moments of X is given by

E([X]k) = k!
∑

{i1,...,ik}⊆[n]

Pr(Yi1 = 1, . . . , Yik = 1)

= k!
(n− k)!

n!

(
n

k

)
= 1.

Therefore, the factorial moment generating function of X is given by

HX(s) =
n∑

k=0

sk

k!
,

which by Equation 3.4 gives us that the probability generating function of X is

GX(s) = HX(s− 1)

=
n∑

k=0

(s− 1)k

k!

=
n∑

ℓ=0

sℓ
n∑

k=ℓ

(
k

ℓ

)
(−1)k−ℓ

k!
,

which provides us with another method for deriving the probability distribution of X
without using the principle of inclusion and exclusion or counting derangements in permu-
tations.

Now, the exponential generating function for Bk given by (e.g., see Stanley (2011) p.
74) ∑

k≥0

Bk
tk

k!
= ee

t−1

is a special case (viz., λ = 1) of the moment generating function for a Poisson(λ) random
variable W

MW (t) =
∑
k≥0

E(W k)
tk

k!
= eλ(e

t−1).

For k ≤ n, the moments of X match those of W ∼ Poisson(1); as n → ∞, the moment
generating functions agree and X converges to a Poisson(1) random variable.

3.3.6 The Poisson limit of a binomial

Proposition 3.2.1 can also be used to provide a novel proof that a binomial(n, p) random
variable approaches a Poisson(λ) with np → λ as n → ∞.
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For X =
∑n

i=1 Yi, each Yi is independent, identically distributed Bernoulli(p) random
variable and, as seen earlier, the kth moment

E(Xk) =
k∑

m=1

S(k,m)

(
n

m

)
pm

=
k∑

m=1

S(k,m)

(
n

m

) (np
n

)m
=

k∑
m=1

S(k,m)

m!

(
[n]m
nm

)
(np)m .

As n → ∞, the ratio
(

[n]m
nm

)
→ 1, np → λ, and

E(Xk) →
k∑

m=1

S(k,m)

m!
λm =

k∑
m=1

S2(k,m)λm

which is the kth moment of a Poisson(λ) random variable expressed as a Touchard poly-
nomial in λ (e.g., see Riordan (1937)). It follows that as n → ∞, X ∼ binomial(n, p)
converges to a Poisson(λ) with λ = limn→∞ np.

When p = 1
n
, then binomial X converges to Poisson(1) and its kth moment is the Bell

number Bk, as in the matching problem of Section 3.3.5.

3.4 Counts more generally

Focus has been on Bernoulli sums that arise naturally as counts of events. In this section,
we consider any “count random variable" N to be that having support on any subset of
the extended natural numbers N0. Previous results are extended to N by matching it to a
Bernoulli sum X constructed from the upper tail probabilities of N .

Proposition 3.4.1. Let N denote any discrete random variable on N0. Consider the
Bernoulli random variable Yi indicating whether N ≥ i or not; that is

Yi =


1 if N ≥ i,

0 otherwise.

Then the Bernoulli sum X =
∑∞

i=1 Yi has the same distribution as N .

Proof.

Pr(X = x) = Pr

(
∞∑
i=1

Yi = x

)
= Pr([Yi = 1,∀i : i ≤ x] ∩ [Yi = 0, ∀i : i > x])

= Pr(N = x).
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The moments of N are identified with those of X and the Bernoullis Yi defined above.
The results for the moments and factorial moments now follow.

Proposition 3.4.2. For any discrete random variable N on N0, the kth moment of N is

E(Nk) =
k∑

m=1

S(k,m)
∑
M≥m

(
M − 1

m− 1

)
Pr(N ≥ M),

and the kth factorial moment is

E([N ]k) = k!
∑
M≥k

(
M − 1

k − 1

)
Pr(N ≥ M).

Proof. From Proposition 3.2.1,

E(Nk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊂N

Pr(Yi1 = 1, . . . , Yim = 1)

Now, ∑
{i1,...,im}⊂N

Pr(Yi1 = 1, . . . , Yim = 1) =
∑

{i1,...,im}⊂N

Pr(max(i1, . . . , im) ≤ N)

=
∞∑

M=1

∑
{i1,...,im−1}⊆M−1

Pr(N ≥ M)

=
∞∑

M=1

(
M − 1

m− 1

)
Pr(N ≥ M).

Therefore,

E(Nk) =
k∑

m=1

S(k,m)
∞∑

M=1

(
M − 1

m− 1

)
Pr(N ≥ M).
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As for the factorial moment,

m!
∞∑

M=m

(
M − 1

m− 1

)
Pr(N ≥ M) = m!

∑
M≥m

∑
ℓ≥M

Pr(N = ℓ)

(
M − 1

m− 1

)

= m!
∑
ℓ≥m

Pr(N = ℓ)
ℓ∑

M=1

(
M − 1

m− 1

)
= m!

∑
ℓ≥m

Pr(N = ℓ)

(
ℓ

m

)
= m!

∑
ℓ≥m

[ℓ]m
m!

Pr(N = ℓ)

=
∑
ℓ≥m

[ℓ]mPr(N = ℓ)

=
∑
ℓ≥0

[ℓ]mPr(N = ℓ)

= E([N ]m) by definition.

Note that an expression for E(Nk) has also recently been derived by (Chakraborti et al.,
2019, eq. 10), namely

E(Nk) =
∞∑
i=0

((i+ 1)k − ik)Pr(N > i).

Chakraborti et al. (2019) claim their formulation to be the first for E(Nk) expressed in
terms of the upper tail probability of N ; if so, then Proposition 3.4.2 may provide the
second for E(Nk) and the first for E([N ]k). These results are best appreciated whenever
the cumulative distribution function of N has form allowing simplification, especially when
multiplied by binomial coefficients.

The remainder of this section explores application of Proposition 3.4.2 to several familiar
cases.

3.4.1 Geometric distribution

Suppose interest lay in the number X of tosses of a coin at which the first head occurs;
X is a geometric(p) distribution with p being the probability of heads (p = 0.5 for a fair
coin). Surprisingly, the random variable X can be written as a Bernoulli sum X =

∑∞
i=1 Yi

for suitably defined Bernoulli Yis, allowing the previous results to be applied.

The representation is as follows. Take (Zi)i≥1 to be the sequence of independent
Bernoulli(p) random variables representing the sequence of potential coin tosses (Zi = 1
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for heads and zero otherwise). Let N be the index of the first Zi = 1 in the sequence, that
is

N = min{i : Zi = 1}.
Consider now the Bernoulli random variables formed from the upper tail of the distribution
of the index N :

Yi =

{
1 if N ≥ i
0 otherwise

The Bernoulli sum X =
∑∞

i=1 Yi is the number of coin tosses (Zis) that have occurred when
the first head (Zi = 1) appears in the sequence. While X = N , each provides a different
way of looking at the same random variable.

Given the Bernoulli sequence (Yi)i≥1 and any m−set of indices {i1, . . . , im} ⊆ [n], the
joint probability of m Yis can be written as

Pr(Yi1 = 1, . . . , Yim = 1) = Pr(N ≥ i1, . . . , N ≥ im)

= Pr(N ≥ max i1, . . . , im).

Then by Proposition 3.2.3

E(Xk) =
k∑

m=1

S(k,m)
∑

{i1,...,im}⊂N

E(Yi1 · · ·Yim)

=
k∑

m=1

S(k,m)
∑

{i1,...,im}⊂N

Pr(N ≥ max i1, . . . , im)

=
k∑

m=1

S(k,m)
∑
M≥1

∑
{i1,...,im−1}⊆[M−1]

Pr(N ≥ M) (M being the max index)

=
k∑

m=1

S(k,m)
∑
M≥1

(
M − 1

m− 1

)
[Pr(N > M) + Pr(N = M)]

=
k∑

m=1

S(k,m)
∑
M≥1

(
M − 1

m− 1

)
[(1− p)M + (1− p)M−1p]

=
k∑

m=1

S(k,m)
∑
M≥1

(
M − 1

m− 1

)
(1− p)M−1.

For an indeterminate y and k ∈ N,∑
n≥0

(
n

k

)
yn =

yk

(1− y)k+1

from which it follows that∑
M≥1

(
M − 1

m− 1

)
(1− p)M−1 =

(1− p)m−1

pm
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giving the expression for the kth moment to be

E(Xk) =
k∑

m=1

S(k,m)
(1− p)m−1

pm
.

Similarly, the kth factorial moment has the simpler expression

E([X]k) =
(1− p)k−1

pk
.

We note that since the probability generating function of X has the closed form expression

GX(s) =
p

1− s(1− p)
,

by Equation 3.4, the factorial moment generating function is given by

HX(s) =
p

1− (1 + s)(1− p)

= p
∑
ℓ≥0

[(1 + s)(1− p)]ℓ.

3.4.2 Poisson distribution

In Section 3.3.6 the tidy expression

E(Nk) =
k∑

m=1

S2(k,m)λm

for the kth moment of N ∼ Poisson(λ) appeared. The proof of this result given by
Riordan (1937) is recursive. It can also be proved by direct application of Proposition
3.4.2 as follows:

E(Nk) =
k∑

m=1

S(k,m)
∞∑

M=m

(
M − 1

m− 1

)
Pr(N ≥ M)

=
k∑

m=1

S(k,m)
∞∑

M=m

(
M − 1

m− 1

) ∞∑
ℓ=M

e−λλ
ℓ

ℓ!

= e−λ

k∑
m=1

S(k,m)
∞∑

ℓ=m

λℓ

ℓ!

ℓ∑
M=1

(
M − 1

m− 1

)
by reorganizing the sums

= e−λ

k∑
m=1

S2(k,m)m!
∞∑

ℓ=m

λℓ

ℓ!

(
ℓ

m

)
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as
∑ℓ

M=1

(
M−1
m−1

)
=
(
ℓ
m

)
,

= e−λ

k∑
m=1

S2(k,m)λm

∞∑
ℓ=m

λ(ℓ−m)

(ℓ−m)!

= e−λ

k∑
m=1

S2(k,m)λmeλ

=
k∑

m=1

S2(k,m)λm.

Following the same route as for E(Nk), the kth factorial moment of N ∼ Poisson(λ)
has the even simpler expression:

E([N ]k) = λk.

3.4.3 Ideal soliton distribution

The ideal soliton distribution appears in erasure correcting codes, a subject of coding
theory concerned with using information redundancy to accommodate for missing data.
Luby (2002) introduced the ideal and robust soliton distributions as initial models for the
transmission of messages over a noisy medium (e.g., see MacKay et al., 2003, Chapter 50).
In this section, we apply our theory to derive the moments of the ideal soliton distribution.
To the best of our knowledge, this has not been described before in the literature.

For an integer r with r ≥ 2, we say that N follows the ideal soliton distribution,
soliton(r), when

Pr(N = 1) =
1

r
,

Pr(N = i) =
1

i(i− 1)
,

for i ∈ {2, . . . , r} and is zero otherwise. It can be shown by induction that

ℓ∑
i=2

1

i(i− 1)
=

ℓ− 1

ℓ
.

From this it follows that

Pr(N ≤ ℓ) =
1

r
+

ℓ− 1

ℓ
for ℓ = 1, 2, . . . r

and

Pr(N ≥ ℓ) =


1 when ℓ = 1

r−1
r

− ℓ−2
ℓ−1

ℓ = 2, 3, . . . , r.

To derive the moments and factorial moments, we need the following lemma.
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Lemma 3.4.3. For any m, r ∈ N,

r∑
M=0

M [M ]m = (m+ 1)!

(
r + 1

r −m− 1

)
+m ·m!

(
r + 1

r −m

)
.

Proof. First, an expression for the ordinary generating function f(x) =
∑

i≥0 i[i]m−2 xj

corresponding to the sequence (i[i]m−2)i≥0 is determined. Multiplying by 1
1−x

then gives
the generating series for (

∑r
i=0 i[i]m−2)r≥0.

Since
∑

i≥0 x
i = 1

1−x
, differentiating with respect to x and then multiplying by x gives∑

i≥0

ixi =
x

(1− x)2
.

Differentiating with respect to x, (m− 2) times, the left hand side becomes∑
i≥0

i× i(i− 1) · · · (i−m− 1) xi−m−2 =
∑
i≥0

i[i]m−2 xi−m−2.

Applying the general Leibniz rule, the same derivative of right hand side is

x(m− 1)!

(1− x)m
+ (m− 2)

(m− 2)!

(1− x)m−1
.

Multiplying both sides by
xm+2

(1− x)
gives

∑
r≥0

r∑
i=0

i[i]m−2x
r =

xm+3(m− 1)!

(1− x)m+1
+ (m− 2)

xm+2(m− 2)!

(1− x)m
.

Since
1

(1− x)k
=
∑
n≥0

(
n+ k − 1

n

)
xn,

the claim immediately follows.

Proposition 3.4.4. Let N follow the soliton(r) distribution with r ≥ 2. For k ≥ 1, the
moments of N are given by

E(Nk) = Hr +
k∑

m=2

S(k,m)

[
r − 1

r

(
r

m

)
−
(
r − 3

m

)
− (m− 2)2

(
r − 3

m− 1

)]
For k ≥ 2, the k−th factorial moment of N is

E([N ]k) = k!

[
r − 1

r

(
r

k

)
−
(
r − 3

k

)
− (k − 2)2

(
r − 3

k − 1

)]
.
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Proof. Once more, by Proposition 3.2.1 and Proposition 3.2.6, we need to evaluate sums
of the form

r∑
M=m

(
M − 1

m− 1

)
Pr(N ≥ M).

If m = 1, this becomes

r∑
M=m

(
M − 1

m− 1

)
Pr(N ≥ M) =

r∑
M=1

Pr(N ≥ 1)

=
r∑

M=1

r∑
ℓ=M

Pr(N = ℓ)

=
r∑

ℓ=1

ℓ∑
M=1

Pr(N = ℓ)

=
r∑

ℓ=1

ℓ Pr(N = ℓ)

=
1

r
+

r∑
j=2

j

j(j − 1)
= Hr.

Otherwise, for m ≥ 2,

r∑
M=m

(
M − 1

m− 1

)
Pr(X ≥ M) =

r∑
M=m

(
M − 1

m− 1

)[
r − 1

r
− M − 2

M − 1

]
=

r − 1

r

r∑
M=m

(
M − 1

m− 1

)
−

r∑
M=m

(
M − 1

m− 1

)
M − 2

M − 1
.

By straightforward algebraic manipulation,

r∑
M=m

(
M − 1

m− 1

)
M − 2

M − 1
=

1

(m− 1)!

r∑
M=m

(M − 2)[M − 2]m−2.

By replacing m and r by m − 2 and r − 2, respectively, in Lemma 3.4.3 and dividing by
(m− 1)! it follows that

1

(m− 1)!

r∑
M=m

(M − 2)[M − 2]m−2 =
1

(m− 1)!

r−2∑
M=m

(M)[M ]m−2

=

(
r − 1

r −m− 1

)
+ (m− 2)2

(
r − 1

r −m

)
.

The result now follows from a straightforward application of Propositions 3.2.6 and 3.2.1.
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3.4.4 Benford distribution

Benford’s distribution encapsulates the notion that in many real world settings, the leading
digits in a numerical data set are more likely to be small. In particular, we say that D
follows Benford’s distribution if for a digit d ∈ {1, . . . , 9},

Pr(D = d) = log10(d+ 1)− log10(d).

Due to its telescoping nature, the complementary CDF of D is given by

Pr(D ≥ d) = 1− log10(d).

Therefore, by Proposition 3.4.2, the k−th moment of D is

E(Dk) =
k∑

m=1

S(k,m)
9∑

M=m

(
M − 1

m− 1

)
(1− log10(M))

=
k∑

m=1

S(k,m)

[(
9

m

)
−

9∑
M=m

(
M − 1

m− 1

)
log10(M)

]
,

and factorial moments with the form

E([D]k) = k!

[(
9

k

)
−

9∑
M=k

(
M − 1

k − 1

)
log10(M)

]
,

for k ≤ 9. Of course, the results above extend to any general base b by noting that Db ∼
Benford(b) satisfies

b−1∑
M=m

(
M − 1

m− 1

)
Pr(Db ≥ M) =

[(
b− 1

m

)
−

b−1∑
M=k

(
M − 1

k − 1

)
logb(M)

]
.

3.5 Discussion

A multinomial theorem for commutative idempotents (Proposition 3.1.1) led to new general
expressions for the moments (including central and factorial) of a Bernoulli sum (e.g.,
Propositions 3.2.1 to 3.2.3) as well as corresponding generating functions. The general
expressions depend on the determination of the expected product of subsets of the Bernoulli
random variables. By evaluating these in particular cases a number of new expressions for
moments and generating functions of many common distributions and classic problems.

The success of the approach in these examples mark it as potentially fruitful in more
novel distributions and problems where this expectation might be more readily available.
To that end, the representation of

(
X
m

)
for random count X and fixed m (Proposition 3.2.6),

and of X! (Proposition 3.2.7), as the product of Bernoullis may also be more generally
useful.
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In other instances, the general representation of the various moments for a count vari-
able N expressed in terms of the upper probability of that N (Proposition 3.4.2) may be
valuable in yet other problems, as shown in the examples of Section 3.4.

The Bernoulli sum approach provides another tool for problems involving count data,
particularly those where expectations of products of the individual Bernoulli random vari-
ables are easily accessed. The results presented here apply in Chapter 6 to derive novel
expressions for the moments of clique counts when combined with the edge counts derived
in Chapter 4. Additional directions for application of the theory are discussed in Chapter
6.
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4
Clique covers
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Before deriving the expressions for the moments of clique counts in a random graph
using the Bernoulli sums framework of Chapter 3, we need to evaluate probabilities of the
form

Pr(ci is a clique : i = 1, . . . ,m)

for a collection of subsets of [n]. Due to the independence and homogeneity assumptions
of random graphs, it follows that

Pr(ci is a clique : i = 1, . . . ,m) = pe(c1,...,cm),

where p is the probability of an edge inclusion, and e(C) is the number of edges induced
by a set of cliques C. The overarching goal of this chapter is to derive expressions for er(C)
the number of r−cliques contained in a collection of cliques C by presenting a connection
between clique covers and intersecting families of sets through a special kind of partition,
which translates some commonly studied objects from extremal set theory into the language
of graph theory.

Section 4.3 introduces and illustrates these concepts using the three clique collection
example of Figure 4.1. Section 4.4 then provides a more general treatment with formal
definitions and proved results. The general Γ-partition is derived in Section 4.4.1 for any
collection of subsets of [m] and applied to clique collections. It is shown to be an orbit
partition in Section 4.4.2 and its quotient graph defined. Support and signatures are
formally defined in Section 4.4.3 and used to define different types of isomorphic graphs.
Section 4.4.3 establishes some counting results on signatures as does Section 4.4.3 as they
relate to subgraph connectedness. Section 4.4.3 ends with a generating function for the
number of induced connected subgraphs of size k. Section 4.4.3 shows H induces a clique
if, and only if, its support is an intersecting family; Theorem 4.4.13 provides the conditions
for the clique to be maximal. Section 4.4.3 shows how the quotient graph, G/Γ, can be
used to directly determine cliques and maximal cliques in the original graph union G and
ends with some minor results on the number of maximal cliques and the clique number of
G.

Section 4.5 uses the framework of Section 4.4 to finally get down to counting cliques.
Results include expressions for the number of cliques containing any particular clique H,
the number of cliques of size r, and, in Theorem 4.5.3, a generating function for clique
counts in the graph union of m cliques. Theorem 4.5.3 is then applied to give a new
expression for the number of r-cliques and for the number of edges induced by a collection
of m cliques of size r. We apply the results with an application of the “hand-shaking
lemma” to yield an expression for the number of edges induced by any collection of cliques.

4.1 Clique covers

Recall that for any graph G = (V,E) and node subset H ⊆ V , the induced subgraph G[H]
has nodes H and those edges in E whose endpoints lie in H. A clique of size r is induced
whenever G[H] is a complete graph on r nodes. Allowing trivial cliques (i.e., r = 1 or
r = 2), a collection of cliques C = {c1, . . . , cm} can always be found (for some m) which
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covers the graph G – in the sense that the graph union, G[c1] ∪G[c2] ∪ · · · ∪G[cm], of the
induced subgraphs has the same vertex set as G.

Such a collection is called a vertex clique cover of G. When its cliques are also non-
intersecting (i.e., ci ∩ cj = ∅ ∀i ̸= j), then the collection will be called a clique cover
partition, so as to clearly identify this special case.

A collection of cliques whose graph union contains all edges in G is called an edge clique
cover (e.g., see Roberts, 1985). In what follows, interest lies in counting the number of
cliques, of any specified size r, formed by the graph union over any of these clique covers,
indeed over any collection of cliques of G.

Suppose the graph G has n nodes numbered 1 to n, so that the power set, P([n]), of
[n] = {1, . . . , n} identifies, by node indices, all possible induced subgraphs of G. For index
set i ⊆ [n], provided G is understood, the induced subgraph G[i] may be more simply
denoted by its index set i. A collection of cliques, then, is denoted by a family of sets
C = {c1, . . . , cm} ⊆ P([n]), provided each cj ∈ C identifies a clique induced in G.

For example, suppose n ≥ 9 and G contains three cliques A := {1, 2, 3, 5, 6}, B :=
{1, 2, 4, 7, 8} and C := {1, 2, 3, 4, 9}, each of size 5. Then C = {A,B,C} is a collection of
three size 5 cliques, being a vertex clique cover only if n = 9 (and not if n > 9). Its graph
union is shown in Figure 4.1. It may, or may not, also be an edge clique cover, depending

Figure 4.1: The graph union of C = {A,B,C} with A := {1, 2, 3, 5, 6}, B := {1, 2, 4, 7, 8}
and C := {1, 2, 3, 4, 9}. How many cliques are there of size r = 1, 2, 3, . . .?

on whether, or not, the union contains all edges of G. It is not a clique cover partition
because the intersection of at least one pair of A, B, and C is non-null (here all pairs
intersect).

Our interest lies in determining the number of cliques of any size r in the union. When
r = 5, there are exactly three 5-cliques, namely A, B and C. Consulting Figure 4.1,
there are no cliques in the union of size r ≥ 6, though this need not be true in general –
e.g., were the 3-clique D := {4, 5, 6} added to the collection C, the 6-clique {1, 2, 3, 4, 5, 6}
would arise. For r < 5, the intersections of the cliques in C must also be considered. If all
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intersections are null, then C would be clique cover partition of its union, and the number
of cliques of size r ≤ 5 would simply be the sum of the number of r-cliques within each
clique of C. But that is not the case here – e.g., the 3-clique {1, 2, 3} appears in both A
and C – so care is needed to avoid overcounting. Careful examination of Figure 4.1 will
yield 15 cliques of size 4, 28 of size 3, and 24 of size 2.

Given a clique cover C = {c1, . . . , cm} of a graph G, an expression for the number
of cliques of size r in G = ∪m

i=1ci can be had by applying the principle of inclusion and
exclusion. This is done in Section 4.2.

A richer approach is to first form a partition of G = ∪m
i=1ci based on index sets J , now

consisting of the indices from {1, . . . ,m} which identify the cliques in the collection (or
cover) C. That is, each partition cell is identified with one set J ∈ P([m]); the set of graph
node indices in cell J will be denoted ΓJ ∈ P([n]) and the partition called a Γ-partition.
The cardinality of ΓJ will be denoted γJ . This is the primary approach introduced and
explored in this chapter.

Subgraphs H of G = ∪m
i=1ci will have nodes appearing in some cells ΓJ (for some

J ∈ P([m])) and not in others. The clique index cells J whose ΓJ contain nodes in the
subgraph H will be called the support of H and the tuple containing the count of nodes
of H in each ΓJ its signature. Whether H is connected, or is a clique of size r, or forms
a maximal clique, can be determined using characteristics of its support and/or signature.
This is shown by connecting these concepts to intersecting sets and intersecting families
of sets (e.g., see Meyerowitz, 1995).

The Γ-partition is itself an orbit partition and hence an equitable partition. The quo-
tient graph, G/Γ, which results compresses and contains all information needed to deter-
mining connected subgraphs, cliques, and maximal cliques on G.

We begin by considering the approach which does not rely on the partition.

4.2 Counting by Principle of Inclusion and Exclusion

As the example of Section 4.1 suggests, the key to clique counting over the graph union
of a collection of cliques will be identifying the intersection of the various index sets.
Unsurprisingly, then, our first approach to enumerating cliques makes use of the Principle
of Inclusion and Exclusion.

This yields the following result for the count of the number of r-cliques in the union of
an arbitrary collection of cliques.

Proposition 4.2.1. Let C = {c1, . . . , cm} be a collection of cliques. The total number of
r−cliques that are induced by {c1, . . . , cm} is∑

J :∅̸=J⊆{1,...,m}

(−1)|J |+1

(
IJ
r

)
,

where IJ := |
⋂

j∈J cj|.
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Proof. We count the number of r−cliques that are induced by at least one of the cliques
in C. Let

(
cj
r

)
:= {{v1, . . . , vr} ⊆ cj : v1 ̸= · · · ̸= vr} denote the set of r−cliques induced by

the clique cj. We will prove that for any nonempty J ⊆ {1, . . . ,m},∣∣∣∣∣⋂
j∈J

(
cj
r

)∣∣∣∣∣ =
(
IJ
r

)
,

by showing that ⋂
j∈J

(
cj
r

)
=

(⋂
j∈J cj
r

)
.

If {v1, . . . , vr} ∈
⋂

j∈J
(
cj
r

)
, then {v1, . . . , vr} ⊂ cj for all j ∈ J and so

{v1, . . . , vr} ∈
(⋂

j∈J cj
r

)
.

Conversely, if {v1, . . . , vr} ∈
(⋂

j∈J cj
r

)
then {v1, . . . , vr} ⊂ cj for all j ∈ J . Therefore,

{v1, . . . , vr} ∈ cj,

for all j ∈ J and the claim follows.

Therefore, the total number of r−cliques within A is
∣∣∣∣⋃j∈{1,...,m}

(
cj
r

)∣∣∣∣. By Principle

of Inclusion and Exclusion (Proposition 2.3.5),∣∣∣∣∣⋃
j∈J

(
cj
r

)∣∣∣∣∣ = ∑
∅≠J⊆{1,...,m}

(−1)|J |+1

∣∣∣∣∣⋂
j∈J

(
cj
r

)∣∣∣∣∣ = ∑
∅≠J⊆{1,...,m}

(−1)|J |+1

(
IJ
r

)
,

as needed to be shown.

This leads to an expression for the total number of typically interesting cliques (i.e.,
r ≥ 3; non-trivial: no single edge, no single vertex, cliques):

Corollary 4.2.2. Let {c1, . . . , cm} be a collection of cliques. The total number of non-
trivial cliques that are contained within {c1, . . . , cm} is∑

J :∅≠J⊆{1,...,m}

(−1)|J |+1

(
2IJ −

(
IJ
2

))
−

∣∣∣∣∣
m⋃
j=1

cj

∣∣∣∣∣− 1.

Proof. By Proposition 4.2.1, the total number of cliques is given by
∞∑
r=0

∑
J :∅≠J⊆{1,...,m}

(−1)|J |+1

(
IJ
r

)
=

∑
J :∅≠J⊆{1,...,m}

(−1)|J |+1

∞∑
r=0

(
IJ
r

)

=
∑

J :∅≠J⊆{1,...,m}

(−1)|J |+1

∞∑
r=0

2IJ ,
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by the Binomial Theorem. Now, since there is only one 0−clique on a set of nodes, the
1-cliques correspond to the

∣∣∣⋃m
j=1 cj

∣∣∣ vertices and 2-cliques is the number of edges,

∑
J :∅≠J⊆{1,...,m}

(−1)|J |+1

∞∑
r=0

2IJ =
∑

J :∅≠J⊆{1,...,m}

(−1)|J |+1

(
2IJ −

(
IJ
2

))
−

∣∣∣∣∣
m⋃
j=1

cj

∣∣∣∣∣− 1.

For example, let r = 3 and let C = {c1, c2} be a collection of the two triangles c1 =
{1, 2, 3} and c2 = {2, 3, 4}. If ej is the number of edges induced by triangle j, then the
total number of edges in the collection is given by

e1 + e2 −
(
|c1
⋂

c2|
2

)
=

(
|c1|
2

)
+

(
|c2|
2

)
−
(
2

2

)
= 3 + 3− 1 = 5

since
(
|c1
⋂

c2|
2

)
is the number of edges common to both c1 and c2 (one edge for every 2

vertices).

4.3 A partition framework

Consider again the example of Section 4.1, where the collection C = {A,B,C} consisting
of the three 5-cliques A = {1, 2, 3, 5, 6}, B = {1, 2, 4, 7, 8}, and C = {1, 2, 3, 4, 9} in some
graph. Figure 4.3 shows the graph union over the cliques of C.

Because various intersections of the cliques in C are important to identify, we introduce
a separate notation to distinguish those subgraphs, of the graph union over C, that uniquely
appear in an intersection of specified cliques in C but not in any of the unspecified cliques.
We call this partition Γ and its cells Γ− sets.

The set of indices is denoted by Γ with the specified cliques identified by subscript are
shown in Figure 4.2 for a collection of cliques C = {A,B,C}. The Γ sets partition its
graph union while the indexing on Γ partitions the power set of C, which we denote by
{∅, A,B,C,AB,AC,BC,ABC}.

For each cell in Γ, its cardinality is denoted by γ = |Γ| – e.g., γAB = |ΓAB|. Figure 4.3
shows the partition of the graph union of C from Figure 4.1 according to its Γ sets, as in
Figure 4.1. The contents of each Γ set are easily read off from the graph, as shown. The
γs are simply the cardinalities of the sets. For example, the cell ΓAB contains no nodes
from the collection because every element common to both A and B is also common to C.

The Γ-sets turn out to have useful properties related to cliques. From Figures 4.2 and
4.3, note that each original clique A = ΓA∪ΓAB∪ΓAC∪ΓABC , B = ΓB∪ΓAB∪ΓBC∪ΓABC ,
and C = ΓC∪ΓAC∪ΓBC∪ΓABC , is the union of Γ-sets whose subscript sets have a common
intersection, namely A, B, or C. Moreover, the size of each clique is simply the sum of
the corresponding γs. Similar results hold for the union of any two Γ-sets ΓJ1 and ΓJ2 . If
the index sets are such that J1 ∩ J2 ̸= ∅, then the union ΓJ1 ∪ ΓJ2 forms a clique of size
γJ1 + γJ2 ; if J1 ∩ J2 = ∅, then there is no clique spanning ΓJ1 and ΓJ2 .
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ΓA = A ∩B ∩ C
ΓB = A ∩B ∩ C
ΓC = A ∩B ∩ C
ΓAB = A ∩B ∩ C
ΓAC = A ∩B ∩ C
ΓBC = A ∩B ∩ C
ΓABC = A ∩B ∩ C
Γϕ = A ∩B ∩ C

Figure 4.2: The Γ sets for C = {A,B,C}.

ΓA = {5, 6} =⇒ γA = 2
ΓB = {7, 8} =⇒ γB = 2
ΓC = {9} =⇒ γC = 1
ΓAB = ∅ =⇒ γAB = 0

ΓAC = {3} =⇒ γAC = 1
ΓBC = {4} =⇒ γBC = 1

ΓABC = {1, 2} =⇒ γABC = 2
Γϕ = ∅ =⇒ γϕ = 0

Figure 4.3: A partition of the graph union of C = {A,B,C} with A = {1, 2, 3, 5, 6}, B =
{1, 2, 4, 7, 8}, and C = {1, 2, 3, 4, 9} according to its Γ sets, together with their sizes γ.
This is also a decomposition of [9] following Proposition 4.4.1.
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4.3.1 An orbit partition

Consider any Γ-set in Figure 4.2 and the node numbers it contains in Figure 4.3. The
node numbers within any Γ-set could be permuted without any change in the structure of
the graph in Figure 4.3. These cells are called orbits and the partition an orbit partition
(e.g., see Lerner, 2005, Definition 9.3.4 and Proposition 9.3.5). That the Γ-sets, as defined
above, form an orbit partition in general will be proved in Proposition 4.4.5.

For any equitable partition (e.g., an orbit partition), Γ = {Γ1, . . . ,Γm}, of the vertex set
of a graph G, a directed multi- (or weighted) quotient graph can be defined having nodes
Γi and bij edges (or edge weights) from Γi to Γj where bij is the number of neighbours in Γj

of every vertex in Γi – called the quotient of G modulo Γ and denoted G/Γ (e.g., Lerner,
2005, Definition 9.3.2).

For the graph union of Figure 4.3, the partition Γ = {ΓA,ΓB,ΓC ,ΓAC ,ΓBC ,ΓABC}
produces the quotient graph and matrix B = [bij] shown in Figure 4.4. This graph can

orbit ΓA ΓB ΓC ΓAC ΓBC ΓABC

ΓA

ΓB

ΓC

ΓAC

ΓBC

ΓABC


1 0 0 1 0 2
0 1 0 0 1 2
0 0 0 1 1 2
2 0 1 0 1 2
0 2 1 1 0 2
2 2 1 1 1 1

 = B

Figure 4.4: The quotient graph of the graph union of C modulo Γ and its edge weight
matrix B = [bij]. Edges are shown with width proportional to their weight in B.

be thought of as a compression of the original graph union. As such, some information
will be lost, but much remains. Its (weighted) adjacency matrix and graph are enough to
determine several properties of the graph union (e.g., see Godsil & Royle, 2001)

including the path distances between nodes, the graph diameter, and a partial spectral
decomposition – the characteristic roots of B are a subset of those of the adjacency matrix
A of the graph union.

4.3.2 Equivalent graphs

The orbit partition, Γ, has particular features. For example, if any node u in ΓJ1 connects
to k nodes in ΓJ2 , then every node in ΓJ1 connects to the same k nodes in ΓJ2 , and vice
versa. And, since permuting node numbers in any Γ-set does not change the graph, if
u ∼ v for any u ∈ ΓJ1 and any v ∈ ΓJ2 , then all nodes in ΓJ1 connect to all nodes in ΓJ2 .
It follows, then, that the nodes of ΓJ1 ∪ ΓJ2 form a clique of size γJ1 + γJ2 (since each of
ΓJ1 and ΓJ2 also form cliques).
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This suggests that the orbit partition, given by the Γ-sets, provides a structure to
identify sets of equivalent subgraphs which may, or may not, form a clique. If we choose
an ordering of the orbits, say (ΓA,ΓB,ΓC ,ΓAB,ΓAC ,ΓBC ,ΓABC), then a unique tuple of
the counts of nodes from each orbit identifies a set of subgraphs which are isomorphic to
one another (under node permutation within each orbit). For example, both {1, 3, 6} and
{2, 3, 6} share the tuple (1, 0, 0, 0, 1, 0, 1), but {1, 2, 3} with tuple (0, 0, 0, 0, 1, 0, 2)
is a unique subgraph (under permutation within orbits). Each of these forms a 3-clique.
The size of the subgraph is the sum of the tuple elements and the number of subgraphs
the tuple represents is the product of the size of the orbit choose that element of the tuple
(e.g., here

(
2
1

)
×
(
1
1

)
×
(
2
1

)
= 4 in total, the remaining two being {1, 3, 5} and {2, 3, 5}).

The index sets associated with each non-zero tuple element determine whether sub-
graphs produced by the tuple are also a clique. For example, the tuple (1, 0, 0, 0, 1, 0, 1)
takes nodes from ΓA, ΓAC , and ΓABC whose index sets are {A}, {A,C}, and {A,B,C}.
The intersection of these index sets is non-null, and every subgraph induced by this tuple
is a clique of size equal the sum of its elements. In contrast, the index sets {B} and {C}
corresponding to the tuple (0, 2, 0, 1, 0, 0, 0) have null intersection and this tuple’s induced
graph does not form a clique. A tuple induces a clique if, and only if, the intersection of
any two of its index sets is non-null – this is formally established by Proposition 4.4.2. The
tuple associated with a clique we call its signature, and cliques having the same signature
are of the same type.

4.3.3 Maximal cliques

Consider the problem of finding all maximal cliques which contain some specific clique.
For example, from Figure 4.3, find all maximal cliques which contain the 2-clique {1, 2}.
These are

(i) M1 = {1, 2, 3, 5, 6} = ΓA ∪ ΓAC ∪ ΓABC ,

(ii) M2 = {1, 2, 4, 7, 8} = ΓB ∪ ΓBC ∪ ΓABC , and

(iii) M3 = {1, 2, 3, 4, 9} = ΓC ∪ ΓAC ∪ ΓBC ∪ ΓABC .

The maximal cliques help enumerate the total number of cliques which contain a specified
clique by identifying the nodes which can be added to expand that clique. In the case
of {1, 2}, M1 provides three additional nodes (viz., 3, 5, and 6) and so 23 − 1 = 7 larger
cliques containing {1, 2}. The same holds for M2 and M3, but care must be taken for double
counting. The total number of cliques containing {1, 2} (including itself) is expressed in
terms of its maximal cliques as

3∑
i=1

(
2|Mi|−|{1,2}| − 1

)
−

∑
{i,j}⊂{1,2,3}

(
2|Mi∩Mj |−|{1,2}| − 1

)
+
(
2|M1∩M2∩M3|−|{1,2}| − 1

)
+ 1

= (7 + 7 + 7)−
(
(20 − 1) + (21 − 1) + (21 − 1)

)
+ (1− 1) + 1 = 20,
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where the last summand 1 corresponds to the edge {1, 2} on its own. A general expression
for this count is given in Proposition 4.5.1.

We might call the union M1 ∪ M2 ∪ M3, of its maximal cliques, the clique extension
of {1, 2} within the cover, or simply the clique extent of {1, 2}. In this case, the extent
of {1, 2} is the entire cover but this is not generally the case (e.g., the extent of {5, 6} is
simply the set A = {1, 2, 3, 5, 6}). More generally, if the intersection of all cliques in the
collection is non-null, then the clique extension of any node (or clique) in that intersection
will generate the entire cover. In a social network context, for example, such individuals
(or cliques) might be deemed to be highly influential in the entire cover – wherever they
are located in the cover, those having larger clique extents might be regarded as more
influential than those having smaller ones.

4.3.4 Intersecting families

Reading off the set of subscripts from the Γ-sets defining each of the maximal cliques,
M1,M2,M3, respectively, gives the sets:

(i) F1 = {{A}, {A,C}, {A,B,C}},

(ii) F2 = {{B}, {B,C}, {A,B,C}},

(iii) F3 = {{C}, {A,C}, {B,C}, {A,B,C}}.

Each of these sets, Fi, is called an intersecting family (e.g., see Meyerowitz, 1995), meaning
that each set Fi is a subset of the power set of {A,B,C} and that its elements have non-null
pairwise intersection. When the context is clear, the notation for an intersecting family
will be simplified, from a set of sets, to a set of the subscripts identifying the corresponding
Γ-sets – so, the contents of F1 can be simplified to {A,AC,ABC}. Being cliques, each of
the above families share the additional property that they have non-null intersection over
all of their elements, not just pairwise.

When an intersecting family F is not a proper subset of any other intersecting fam-
ily, it is called a maximally intersecting family (Meyerowitz, 1995). The family F3 =
{C,AC,BC,ABC} is a maximally intersecting family and corresponds to the maximal
clique c3. The families F1 and F2 are not; though, since ΓAB = ∅, adding AB to each will
make them maximally intersecting as well (i.e., equivalently, M1 = ΓA∪ΓAB ∪ΓAC ∪ΓABC

and M2 = ΓB ∪ ΓAB ∪ ΓBC ∪ ΓABC). Note that maximal intersecting families do not
necessarily produce maximal cliques. For example, the only other maximal intersecting
family here is F4 = {AB,AC,BC,ABC} corresponds to the 4-clique {1, 2, 3, 4} which is
not maximal. Necessary and sufficient conditions for an intersecting family to determine
a maximal clique are given in Theorem 4.4.13 provides the necessary and sufficient condi-
tions for a clique to be maximal. Intersecting families have interesting structure (e.g., see
Meyerowitz, 1995).

We call a collection of sets F path intersecting if, for any A,B ∈ F there exists a
sequence sets J1, J2, . . . , Jℓ in F from A = J1 to B = Jℓ having that Jj ∩ Jj+1 ̸= ∅ for all
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j = 1, 2, . . . , ℓ−1. The set collection {{A}, {B}, {C}, {A,B}, {A,C}} is path intersecting,
but is not an intersecting family.

In Section 4.4.2, the sequence of index sets of nodes along any path in the quotient
graph is shown to be path intersecting and the set of index sets from any clique to be an
intersecting family.

4.4 The general approach

By example, a number of results were illustrated in Section 4.3 relating the properties of
a particular partition of the vertex set of the graph union of a collection of cliques to the
cliques within the union. In this section, we show more generally that this kind of partition
is a link between cliques in the union of a clique collection and certain intersecting families
of sets. This link allows for a nuanced enumeration of several clique counting problems on
these graphs, including total number of cliques, maximal cliques, maximum cliques and
cliques containing any specific subset of interest. Finally, as with the example of Section
4.3, we establish that this kind partition is an orbit partition, hence capturing salient
features of the original graph.

The example clique collection of Section 4.3 had three maximal 5-cliques as its elements
– while possibly desirable, this is not necessary. In this section, general results for cliques
in the graph union of any collection of cliques are derived (i.e., each of any size, including
possibly as a single edge). We begin with the general construction of a vertex partition
of the graph union which permits a deeper examination of all cliques through intersect-
ing families derived from that partition. Maximal intersecting families will be shown to
correspond to the largest cliques obtainable from particular sub-collections of cliques.

4.4.1 The partition

The general construction of the partition, and its cells, are defined in Proposition 4.4.1.
Here, for any set J ⊆ [m], its set complement is with respect to [m] and is denoted as
J := [m] \ J .

Proposition 4.4.1. For any m ≥ 1, given a sequence (Ai)
m
i=1 of subsets of [n] = ∪m

i=1Ai,
the family of sets given by

Γ :=

⋂
i∈J

Ai \

⋃
i∈J

Ai

 : J ⊆ [m]

 := {ΓJ : J ⊆ [m]}

is a partition of [n].

Moreover, for any i ∈ [m],
Ai =

⋃
J⊆[m]: i∈J

ΓJ .
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Proof. First, we show that

⋃
J⊆[m]

ΓJ =
⋃

J⊆[m]

⋂
i∈J

Ai \

⋃
i∈J

Ai

 = [n].

For every J ⊆ [m],

ΓJ =

⋂
i∈J

Ai \

⋃
i∈J

Ai

 ⊆ [n],

as each Ai ⊆ [n]. To see the reverse inclusion, fix any choice x ∈ ∪m
i=1Ai = [n] and let

Jx := {i : x ∈ Ai} ⊆ [m] denote the set of all indices i with x ∈ Ai, and its complement in
[m] as Jx = ([m] \ Jx). Now x ∈ [n] appears in at least one Ai, since ∪m

i=1Ai = [n], so it
follows that x ∈ ∩i∈JxAi and x ̸∈ ∪i∈Jx Ai. Thus,

x ∈

⋂
i∈Jx

Ai \

⋃
i∈Jx

Ai

 = ΓJx

for any x ∈ [n], and hence
[n] =

⋃
x∈[n]

ΓJx =
⋃

J⊆[m]

ΓJ .

It remains only to show that the intersection of any two distinct non-null members of Γ is
empty – the proof is by contradiction. Let J,H ⊆ [m] be distinct, respectively producing

ΓJ =

[⋂
i∈J

Ai \

(⋃
i ̸∈J

Ai

)]
and ΓH =

[⋂
i∈H

Ai \

(⋃
i ̸∈H

Ai

)]

as members in Γ. Suppose x ∈ ΓJ ∩ ΓH ̸= ∅, then x ∈ ΓJ =⇒ x ∈ Ai ∀i ∈ J and
x ∈ ΓH =⇒ x ∈ Ai ∀i ∈ H. Since J and H are distinct, there exists some k ∈ J \H for
which x ∈ ΓJ appears in Ak. Now k ̸∈ H means k ∈ H and hence Ak appears in the union
∪i ̸∈HAi being removed from ∩i∈HAi in the definition of ΓH . Therefore x ̸∈ ΓH and, so,
x ̸∈ ΓJ ∩ΓH , a contradiction. It follows that ΓJ and ΓH are disjoint, whenever J ̸= H and
hence that the sets of Γ form a partition of their union, [n].

Finally, for any i ∈ [m], it remains only to show that the original sets Ai are the union
of those Γ-sets, ΓJ , whose index set J contains i. That is,

Ai =
⋃

J⊆[m]: i∈J

ΓJ .

If i ∈ J , then ΓJ =
[⋂

j∈J Aj \
⋃

j∈J Aj

]
intersects Ai, and hence ΓJ ⊆ Ai whenever i ∈ J .

It follows, then, that ⋃
J⊆[m]: i∈J

ΓJ ⊆ Ai.
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Conversely, for every x ∈ Ai, then i ∈ Jx and

x ∈

⋂
j∈Jx

Aj \
⋃
j∈Jx

Aj

 = ΓJx ⊆
⋃

J⊆[m]: i∈J

ΓJ .

So Ai ⊆
⋃

J⊆[m]: i∈J ΓJ ⊆ Ai, and it follows that Ai =
⋃

J⊆[m]: i∈J ΓJ .

We will call a partition produced as in Proposition 4.4.1, a Γ-partition and note that
it will be peculiar to the sets Ai from which it is constructed.

Applied to a clique collection

For a collection of cliques C = {c1, . . . , cm}, defined by index sets cj ⊂ [n], with graph
union

⋃m
j=1 cj = [n], Proposition 4.4.1 provides a general means to find Γ-sets, namely as

(ΓJ)J⊆[m] with

ΓJ =

(⋂
j∈J

cj

)
∩

(⋂
j ̸∈J

cj

)
where complement is with respect to [n]. That is, each cell ΓJ is the set of vertices common
to all cj for all j ∈ J and absent from every cj for which j ̸∈ J . Again, the cardinality of
ΓJ is denoted as γJ = |ΓJ |.

The Γ-partition provides an equivalence relation on nodes u, v ∈ [n] via the indices of
those cliques which contain u or v – namely, Ju = {j ∈ [m] : u ∈ cj} and Jv = {j ∈ [m] :
v ∈ cj}. The nodes u and v are equivalent, u ≡ v, if, and only if, Ju = Jv; that is, u and v
are in the same Γ-set.

The Γ-partition can also be used directly to infer some properties of the graph union.
For example, as in Section 4.3.2, the adjacency of nodes in the graph union is related to
the intersection of those Γ-sets which contain them:

Proposition 4.4.2. Let u and v be two nodes in the graph union,
⋃m

j=1 cj, of the clique
collection C = {c1, c2, . . . , cm}. If u ∈ ΓJu and v ∈ ΓJv , then u ∼ v if, and only if,
Ju ∩ Jv ̸= ∅.

Proof. We note that u ∼ v if, and only if, for some j ∈ [m], u ∈ cj and v ∈ cj, which is
equivalent to Ju ∩ Jv ̸= ∅.

It follows, for example, that u ∼ v for every pair of nodes u, v ∈ ΓJ (for any J ⊆ [m]).
Moreover, the cardinalities, γJ , determine the degree of every vertex in ΓJ . Proposition
4.4.3 establishes that all nodes in a cell of Γ have the same degree.

Proposition 4.4.3. For a non-null set J ⊂ [m], every vertex in ΓJ has degree dJ where

dJ =
∑

I⊆[m] : I∩J ̸=∅

γI − 1.
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Proof. If u ∈ ΓJ , then u ∼ v if, and only if,

v ∈
⋃

I⊆[m] : I∩J ̸=∅

ΓI =
⋃
j∈J

cj,

with v ̸= u. Therefore, the degree of u is

deg(u) =

∣∣∣∣∣⋃
j∈J

cj

∣∣∣∣∣− 1

=

∣∣∣∣∣⋃
j∈J

( ⋃
I:j∈I

ΓI

)∣∣∣∣∣− 1

=
∑

I:j∈I, for some j∈J

γI − 1.

Note that different clique collections having the same graph-union produce different
Γ-partitions, these being peculiar to the particular cliques in the collection. The cliques of
the collection in Section 4.3, for example, were all of size 5; had they all been of size 3 the
same graph union of (now many more) cliques in the collection would be the same but the
resulting Γ-sets would be different.

The special case that the collection consists of exactly m cliques of size r, as in Section
4.3, can also be determined from the cardinalities, γJ . For Γ to have been formed from a
collection of m distinct r−cliques, the following must hold:∑

J⊆[m]

γJ = n, . . . for the graph union to have n nodes

∑
J⊆[m] : j∈J

γJ = r . . . for each cj to have r nodes

∑
J⊆[m] : {j,k}⊆J

γJ < r . . . to ensure distinct cliques: when j ̸= k, cj ̸= ck.

Of these, only the last may not be self-evident; it follows from:

Proposition 4.4.4. Let C = {c1, . . . , cm} be a collection of r−cliques and fix I ⊆ [m].
Then {ci : i ∈ I} consists of a single clique if, and only if,∑

J :I⊆J

γJ = r.

Proof. By Proposition 4.4.1 ⋂
i∈I

ci =
⋂
i∈I

⋃
J⊆[m]:i∈J

ΓJ =
⋃

J :I⊆J

ΓJ

So, | ∩i∈I ci| = |
⋃

J :I⊆J ΓJ | =
∑

J :I⊆J γJ . Since all ci are r−sets, their intersection is an
r−set if, and only if, they are all equal.
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4.4.2 The general Γ-quotient graph

In light of Proposition 4.4.2, Γ is an equitable partition (e.g., see Godsil & Royle, 2001;
Lerner, 2005) – the number of neighbours in ΓH of vertex u ∈ ΓJ depends only on the
choice of H and J . In fact, Γ is an orbit partition induced by a group of automorphisms
of H.

Proposition 4.4.5. The partition (Γ)∅≠J⊆[m] is an orbit partition.

Proof. For a nonempty J ⊆ [m], let πJ be any permutation of the elements of ΓJ . Let
π : V → V be the extension of the πJ to V , where π(i) = i for all i ̸∈ J . It immediately
follows that the orbits of π are the cells of Γ and, by Proposition 4.4.2, that π is an
automorphism of V .

Each ΓJ cell has an n× 1 characteristic vector cJ having value 1 in row i if vertex i is
in ΓJ , and 0 otherwise, so that cJ

TcJ = γJ . The characteristic matrix C is formed with
columns cJ placed in order of the ΓJs of the partition Γ. If A is the adjacency matrix
of the graph union, G, the matrix B = (CTC)

−1
CTAC determines the structure of the

quotient graph of G modulo Γ (e.g., see Godsil & Royle, 2001, Lemma 9.3.1, p. 196).

4.4.3 Type equivalent graphs

For the example of Figure 4.3, Section 4.3.2, introduced the type of a subgraph H of
the graph union of C = {c1, . . . , cm} associated with its Γ-partition and identified by a
signature, namely, the tuple of the counts of nodes from H appearing in each cell of the
partition. In this section, these ideas are formalized to provide a more nuanced sense of
equivalent graphs in the context of a Γ-partition of the graph union G = ∪m

j=1cj.

For subgraph H of G, the signature of H defined by the Γ-partition of C is the function
fH : P([m]) → N0 defined as fH(J) = |H ∩ ΓJ | for all J ⊆ [m]. Note that this is defined
for any subgraph H, not necessarily only cliques H. Two subgraphs H1 and H2 are said to
be of the same type, or to be type-isomorphic, if, and only if, they have identical signatures
(i.e., fH1 = fH2). Finally, the support of H (or of fH) is the set of all subsets J of [m] for
which fH(J) > 0; we write the support as Supp(H) = {J : J ⊆ [m] and fH(J) > 0}, or as
Supp(fH) when emphasizing the signature. Note also that all of these are predicated on
the particular clique collection C and its associated Γ-partition.

For example, consider the clique collection of Figure 4.3 and the subgraphs H1 =
{1, 2, 3, 4}, H2 = {1, 2, 3, 5}, H3 = {1, 2, 3, 6}, and H4 = {1, 2, 3, 5, 6}. The first three are
graph isomorphic to each other and the complete graph, K4 while H4 is isomorphic to
K5. In contrast only H2 and H3 are type isomorphic; H1 has a different signature (and
support), while H4 shares the same support as H2 and H3 but is of a different type.

Because it differs from the usual graph equivalence, the notion of type could be of
interest whenever the node labels, or the cliques defining the collection, carry additional
meaning.

73



Γ-signatures

This section develops a number of counting results pertaining types of subgraphs (as defined
by signature) from any specific clique collection.

The number of different types of induced subgraphs is easily captured by the cell sizes
of the partition:

Proposition 4.4.6. The number of distinct signatures for the Γ-partition of a collection
of m cliques is ∏

J∈P([m])

(γJ + 1).

Proof. A function f : P([m]) → N0 is a signature if, and only if, |f(J)| ≤ γJ . Thus, there
are γJ + 1 choices for every J ∈ P([m]).

Proposition 4.4.7. For any signature fH , the number of signatures having the same
support, Supp(H), is ∏

J∈Supp(H)

γJ .

Proof. For signatures fH1 and fH2 to have the same support, they must have the same
Γ-cells, ΓJ for J ∈ Supp(H1) = Supp(H2), and each signature can have values 1, . . . , γJ
for the Jth cell. The total possible is therefore

∏
J∈Supp(H) γJ .

Proposition 4.4.8. Let f : P([m]) → N0. The number of induced subgraphs having
signature f in the graph union of the clique collection {c1, . . . cm} is∏

J∈Supp(f)

(
γJ
f(J)

)
.

Proof. The signature is invariant to the choice of nodes within each Γ-cell – provided the
same number of nodes from each cell is chosen, the signature is the same. Each cell has γj
nodes giving ∏

J∈Supp(f)

(
γJ
f(J)

)
choices for type-isomorphic induced subgraphs.

Connected subgraphs

The Γ-signature of an induced graph also tells whether it is connected. This is captured
by the notion of a path-intersecting collection of sets defined in Section 4.3.4.

Proposition 4.4.9. A subgraph H of the graph union over a clique collection is connected
if, and only if, its support is path-intersecting.
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Proof. Since, fH is defined by the Γ-partition of C, every node must appear in exactly
one set J of Supp(H). Moreover, any pair of nodes u, v ∈ H appearing in the same set
J ∈ Supp(H) are connected by construction of the partition. So, we need only consider
nodes u and v which lie in different sets of the support.

Suppose Supp(H) is path-intersecting. Then for any pair of nodes u, v ∈ H, which
appear in different subsets Ju, Jv ∈ Supp(H), a sequence of sets Jw1 , Jw2 , . . . , Jwℓ

can be
found in Supp(H) such that Ju = Jw1 , Jv = Jwℓ

, and Jwi
∩Jwi+1

̸= ∅ for all i = 1, . . . , (ℓ−1).
From Proposition 4.4.2 wi ∼ wi+1 for all i = 1, . . . , (ℓ− 1), u = w1 → w2 → · · · → wℓ = v,
is a path from u to v in H, and so the subgraph H is connected.

Conversely, suppose H is connected. Every pair of nodes u, v appearing in separate
sets Ju and Jv of Supp(H) have a path connecting them in H. By the construction of Γ,
this path can be chosen to be u = w1 → w2 → · · · → wℓ = v such that each wi comes from
a different Ji in Supp(H). Again, by Proposition 4.4.2, wi ∼ wi+1 implies Ji ∩ Ji+1 ̸= ∅,
and hence that {J1, . . . , Jℓ} is path-intersecting. This holds for any u, v ∈ H and hence
any Ju, Jv ∈ Supp(H), implying that it holds for the whole of Supp(H). It follows that
Supp(H) is path-intersecting.

Proposition 4.4.10. Let IP be the set of all path-intersecting collections of non-empty
cells from the Γ-partition of a clique collection C. The number of distinct signatures that
induce a connected subgraph in the graph union over C is∑

F∈IP

∏
J∈F

γJ .

Proof. Proposition 4.4.9 states that for a subgraph H to be connected, its support must be
path-intersecting; Proposition 4.4.9 determines the number of distinct signatures having
the same support. Together they give the result.

It follows that the number of induced disconnected subgraphs is∏
J∈P([m])

(γJ + 1)−
∑
F∈IP

∏
J∈F

γJ

where IP denotes the set of all path-intersecting collections of non-empty cells from Γ.

Proposition 4.4.11. Let IP be the set of all path-intersecting collections of non-empty cells
from the Γ-partition of a clique collection C. The number of induced connected subgraphs
of size k in the graph union over C is the k-th coefficient of the generating series∑

F∈IP

∏
J∈F

[(1 + x)γJ − 1] .

Proof. By Proposition 4.4.9, every induced connected subgraph H is contained in some
path-intersecting family. In fact, there exists a unique smallest path-intersecting family
FH := Supp(H) containing it. Clearly, the contribution of H to the generating function∑

H′

x|V (H′)|
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is xk, where |V (H)| = k, and the sum is over all H ′ induced connected subgraphs whose
support is FH .

Conversely, given a path-intersecting family F , the induced connected subgraphs whose
support is F are constructed uniquely by choosing αJ ≥ 1 nodes from ΓJ for every J ∈ F .
The generating series corresponding to this is∏

J∈F

[(1 + x)γJ − 1] .

Γ-support and cliques

The support of a subgraph H provides information on whether H is a clique and whether
it is maximal.

Proposition 4.4.12. For any clique collection C = {c1, . . . , cm}, the subgraph induced by
H on the graph union

⋃m
j=1 cm, is a clique, if, and only if, is support, Supp(H) = {J : J ⊆

[m] and ΓJ ∩H ̸= ∅} is an intersecting family.

Proof. Suppose the induced graph on H is a clique. Fix two distinct sets J1, J2 ∈ Supp(H).
Let u1 ∈ ΓJ1 ∩ H and u2 ∈ ΓJ2 ∩ H. Since u1 ∼ u2, it must be that u1, u2 ∈ cj for some
j ∈ [m]. Therefore, it follows that j ∈ J1 and j ∈ J2, by the definition of the partition
(ΓJ)J⊆[m]. Thus, |J1 ∩ J2| ≥ 1 and Supp(H) is an intersecting family.

On the other hand, suppose that Supp(H) is an intersecting family. Fix u, v ∈ H and
suppose that u ∈ ΓJu and v ∈ ΓJv . Since Supp(H) is an intersecting family, |Ju ∩ Jv| ≥ 1
and there exists some j ∈ [m] with j ∈ Ju ∩ Jv. Thus, we have that u, v ∈ cj and since cj
is a clique, u ∼ v.

So a subgraph H is connected if, and only if, its support is path-intersecting (Prop.
4.4.9) and is a clique if, and only if, its support is an intersecting family (Prop. 4.4.12).
Theorem 4.4.13 gives necessary and sufficient conditions for H to be a maximal clique.

Theorem 4.4.13. For any clique collection C = {c1, . . . , cm}, a clique induced by H on
the graph union

⋃m
j=1 cm, is maximal, if, and only if, for any J ⊆ [m],

1. J ∈ Supp(H) =⇒ |ΓJ ∩H| = γJ , and

2. J ̸∈ Supp(H) =⇒ either ΓJ = ∅ or ΓJ ̸= ∅ and {J}∪Supp(H) is not an intersecting
family.

Proof. First, to prove necessity, assume H is a maximal clique. For any J ∈ Supp(H),
at least one node in ΓJ is in H, and, so, connected to all other nodes in H. It follows
from Proposition 4.4.2 that every node of ΓJ is also in H and hence |ΓJ ∩H| = γJ for
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all J ∈ Supp(H). To show statement 2 holds, suppose now that J ̸∈ Supp(H). Further,
suppose that {J} ∪ Supp(H) is an intersecting family and so, by Proposition 4.4.12, that
ΓJ ∪ J is a clique. Since J ̸∈ Supp(H), ΓJ ∩ H = ∅ and, since H is maximal, it follows
that ΓJ = ∅.

To prove sufficiency, assume H is a clique and that both statements 1 and 2 hold. By
statement 1, all nodes in ΓJ for J ∈ Supp(H) are in H and no nodes remain in ΓJ to
increase H. Statement 2 ensures that no nodes exist in any ΓJ with J ̸∈ Supp(H) that
could enlarge H and still be a clique. Hence, H is maximal.

Statement 2 of Theorem 4.4.13 shows that, not only does a maximal clique have an
intersecting family as its support (like all cliques), but that its intersecting family can only
be expanded by sets J ̸∈ Supp(H) having no nodes in ΓJ .

The Γ-quotient graph and maximal cliques

Theorem 4.4.13 suggests that instead of considering intersecting families that are subsets
of the entire power set, P([m]), we need only those that are subsets of the support of the
graph union G = ∪m

j=1cj, namely, Supp(G) = {J : J ⊆ [m] and ΓJ ̸= ∅} ⊆ P([m]).

This effectively ignores empty cells of the Γ partition to focus on intersecting families
formed from the index sets that define the nodes of the quotient graph G/Γ. The relevant
families are intrinsic to the quotient graph. For example,

• any path on G/Γ corresponds to a path-intersecting set (Prop. 4.4.9),

• any clique on G/Γ determines an intersecting family and hence a clique on G, and

• any maximal clique on G/Γ gives a maximal intersecting family and, so, a maximal
clique on G.

The last two points are proved below in Proposition 4.4.14.

Proposition 4.4.14. If F is a nonempty intersecting family on Supp(G), then the graph
HF induced by {ΓJ : J ∈ F} is a clique. Furthermore, F is a maximal intersecting family
on Supp(G) if, and only if, HF is a maximal clique.

Proof. The fact that HF is a clique follows immediately from Proposition 4.4.2.

Suppose F is a maximal intersecting family on Supp(G) and HF is not a maximal clique.
Then there exists some u ∈ V (G) with u adjacent to all nodes in HF . Suppose u ∈ ΓJu ,
then ΓJu is nonempty and by Proposition 4.4.2, ΓJu ∩ J ̸= ∅ for all J ∈ F . Therefore,
either F is not a maximal intersecting family or HF was not the subgraph induced by F
– a contradiction.

The proof of the converse is almost identical.
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Corollary 4.4.15. If ΓJ ̸= ∅ for all ∅ ̸= J ⊆ [m], then every maximal intersecting family
on P([m]) induces a unique maximal clique in G.

Proof. Suppose ΓJ ̸= ∅ for all ∅ ≠ J ⊆ [m]. Then Supp(G) is the set of all nonempty
subsets of P([m]). Therefore, by Proposition 4.4.14, each maximal intersecting family gives
to a unique maximal clique.

This means that the number of maximal cliques, M(C), in G is equal to the number of
maximal intersecting families on Supp(G) which in turn is bounded above by the number
of maximal intersecting families on [m].

Corollary 4.4.16. The number, M(C), of maximal cliques in the graph union of C =
{c1, . . . , cm} is bounded above by λ(m), the number of maximal intersecting families on
[m].

Proof. By Theorem 4.4.13, each maximal intersecting family would correspond to at most
one maximal clique in the graph union of the collection {c1, . . . , cm}. Thus, λ(m) is an
upperbound for M(C).

Corollary 4.4.17. The clique number of the graph union of the collection of cliques
{c1, . . . , cm} is

max
F∈M

∑
J∈F

γJ ,

where M is the set of all maximal intersecting families on [m].

Proof. By Theorem 4.4.13, a clique H is maximal if, and only if, its corresponding inter-
secting family FH is only extendible by trivial elements and H uses all of the vertices in the
cells ΓJ that contain members from H. Therefore, for every maximal intersecting family
F , there is a corresponding unique maximal clique H contained within the union of the
cells {ΓJ : J ∈ F}.

Since the clique number is the maximum of the size of all maximal cliques in a graph,
and each maximal clique has the form

∑
J∈F γJ for some maximal intersecting family F ,

the proof follows.

To summarize, an intersecting family on Supp(G) identifies a clique (Prop 4.4.12) and
that clique is maximal if, and only if, its corresponding intersecting family is also maximal
(Prop. 4.4.14). Whether an intersecting family, F , is maximally intersecting can be deter-
mined from its cardinality, namely an intersecting F ⊂ [m] is a maximal intersecting family
if, and only if, |F| = 2m−1 (e.g., Meyerowitz, 1995, Lemma 2.1); note that the intersecting
family corresponding to an identified clique might have to be extended by adding subsets
J ∈ [m] having ΓJ = ∅ to achieve this cardinality (Thm. 4.4.13). Every such maximal
intersecting family produces a unique maximal clique (Cor. 5.3.3). The number of such
maximal cliques is bounded above by λ(m), the number of maximally intersecting families
on [m] (Cor. 4.4.16). Unfortunately, λ(m) is typically computationally intractable (e.g.,
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see Brouwer et al., 2013) though is presently feasible on today’s laptops for m ≤ 10, for
example. In the special case where γJ > 0 for all J ⊆ [m], every maximal intersecting fam-
ily induces precisely one maximal clique so that the upper bound (Cor. 4.4.16) is achieved
and M(C) = λ(m).

4.5 Counting cliques

For a family of sets F , let N(F) :=
∑

J∈F γJ denote the number of nodes in the sets
contained in the family.

Given the collection of all maximal intersecting families on the support of G, we can
apply the principle of inclusion and exclusion in the following manner.

Proposition 4.5.1. Let H be a clique in the graph union of {c1, . . . , cm} and let FH denote
its support. Let MH be the set of all maximal intersecting families F on Supp(G) that
extend FH . The number of cliques that contain H in the graph union of {c1, . . . , cm} is

1 +
∑

J⊆MH

(−1)|J |+1
(
2N(

⋂
F∈J F)−|H| − 1

)
.

Proof. Any clique that contains H would be a subclique of one of the maximal cliques
that contain H. Therefore, by Theorem 4.4.13, it suffices to examine the collection MH of
maximal intersecting families that generate a unique maximal clique in the graph union of
{c1, . . . , cm}. If F ∈ MH corresponds to a maximal clique with N(F) total nodes, then the
selection of a nonempty subset from (∪J∈FΓJ) \ H corresponds to a clique that properly
contains H. This can be done in (

2N(F)−|H| − 1
)

ways.

Since some cliques are subgraphs of several different maximal cliques, we use the prin-
ciple of inclusion and exclusion and obtain∑

J⊆MH

(−1)|J |+1
(
2N(

⋂
F∈J F)−|H| − 1

)
cliques. However, this count does not include the clique H on its own and hence we add a
1.

The proof of Proposition 4.5.1 relies on the fact that every clique is contained in some
maximal clique. This observation can also be used to enumerate the total number of
r−cliques in the graph union, by considering the collection of maximal cliques.

For instance, suppose we are interested in the number of triangles in the clique union
from Figure 4.3. There are only three maximal cliques in this graph union, each of size 5.
To enumerate the triangles in the graph union, then, simply count the triangles in each
maximal clique, subtract the number of triangles common to the each of the intersections
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of maximal cliques, and finally, add the number of triangles common to all three maximal
cliques. This yields(

5

3

)
+

(
5

3

)
+

(
5

3

)
−
(
2

3

)
−
(
3

3

)
−
(
3

3

)
+

(
2

3

)
= 28

triangles.

The following proposition follows the same logic to generalize to counting the number
of cliques of any size r for any graph union of cliques. Reminiscent of Proposition 4.2.1,
an advantage here is that the number of maximal cliques in the graph induced by the
collection can be smaller than the number of cliques in the initial collection.

Proposition 4.5.2. The number of r−cliques induced by the graph union of the cliques
{c1, . . . , cm} is ∑

J⊆M

(−1)|J |+1

(
N(∩F∈JF)

r

)
,

where M is the collection of all maximal intersecting families F with γJ > 0 for all J ∈ F .

Proof. As every clique is a subclique of a maximal clique, the induced graph by the maximal
collection of cliques is the same as the induced graph by the collection {c1, . . . , cm}. Thus,
the proof is exactly as in Proposition 4.2.1.

A more subtle expression for clique counts is had by considering their signatures.

Theorem 4.5.3. The generating function for clique counts induced by a collection {c1, . . . , cm}
is

Φ(x) =
∑
F∈Im

∏
J∈F

[(1 + xJ)
γJ − 1] ,

where I is the set of all intersecting families on P([m]), and x is the vector (xJ : J ∈ P([m])).

Proof. A clique H is determined uniquely by its signature and the node labels. By Propo-
sition 4.4.12, the support must be an intersecting family on on Supp(G), and hence it is
also an intersecting family on P([m]).

For a cell J to contribute αJ ≥ 1 nodes to H is accomplished in
(
γJ
αJ

)
ways, which

corresponds to the coefficient of xαJ
J in the generating series

[(1 + xJ)
γJ − 1] ,

and the result follows.

Extracting the coefficient of xr in the generating function Φ(xJ → x) in Theorem 4.5.3
yields the number of r−cliques as given in Corollary 4.5.4:
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Corollary 4.5.4. The number of r−cliques in the graph union of the clique collection
{c1, . . . cm} is

r∑
ℓ=1

∑
(α1,...,αℓ)

∑
(J1,...,Jℓ)

ℓ∏
i=1

(
γJi
αi

)
where (J1, . . . , Jℓ) is an intersecting family on Supp(G) of size ℓ with signature (α1, . . . , αℓ)
being an integer composition of r having 1 ≤ αi ≤ γi.

A third expression for the total number of cliques of any size, induced by the collection,
can also be had by substituting xJ = 1 in the generating series in Theorem 4.5.3. The
expression is given as Corollary 4.5.5:

Corollary 4.5.5. The total number of cliques of size at least 1 induced by a collection
{c1, . . . , cm} is ∑

F∈Im

∏
J∈F

[2γJ − 1] ,

where Im is the set of all intersecting families on P([m]).

When r = 2, the interesting special case of the edge count is obtained (e.g., essential to
edge count distributions for many random graph models, such as the Erdős-Rényi model):

Corollary 4.5.6. The number of edges induced by the collection of r-cliques {c1, . . . , cm}
is

∑
J⊆[m]

(
γJ
2

)
+

1

2

∑
J⊆[m]

γJ
∑

I ̸=J : |I∩J |≥1

γI .

Alternatively, edges can also be enumerated via the degree sequences of the vertices in
the various cells ΓJ . For every J ⊆ [m], any two nodes within ΓJ have the same degree.
For instance, if u ∈ Γ{k} for some k ∈ [m], then it must be that deg(u) = r − 1 because
u ∈ ck and u ̸∈ cj for all j ̸= k by the definition of Γ{k}. On the other extreme, if u ∈ Γ[m],
then u ∈ cj for all j ∈ [m] and hence u must be adjacent to all other nodes in G which are
in at least one of the {c1, . . . , cm}. Therefore,

deg(u) = n− γ∅ − 1 = n− 1,

The “handshaking lemma” immediately gives the number of edges induced by the collection
as below:

Proposition 4.5.7. The number of edges induced by the collection of cliques {c1, . . . , cm}
is

1

2

∑
J :∅≠J⊆[m]

γJ

 ∑
I: |I∩J |≥1

γI − 1

 .

Proof. Follows immediately from Proposition 4.4.3 and the fact that number of edges in
the graph is half the sum of the degrees in the graph.
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4.6 Discussion

In this chapter, connections were established and exploited between several graph-theoretic
properties of clique covers, and notions of intersecting families on a special partition, the
Γ-partition, of a graph G = ∪m

i=1ci formed from a collection of C = {c1, . . . , cm} of m cliques
ci.

The partition was formed using elements J of the power set P([m]) from the m clique
indices. The support of G is a subset of the power set, Supp(G) ⊆ P([m]), and induces
the partition Γ of [n], which partitions the set of n distinct nodes in G. This Γ-partition
frames the unique contributions to G from the various cliques of {c1, . . . , cm} via sets from
the power set of [m].

The quotient graph, G/Γ, induced by the Γ-partition succinctly captures the informa-
tion provided by the collection of cliques. This description serves as a dictionary between
graph-theoretic traits, such as cliques, maximal cliques, and connected induced subgraphs,
and their extremal set theory counterparts (viz., intersecting families, maximal intersect-
ing families and path-intersecting families, respectively). The natural connection between
these objects facilitates determination of expressions for several classes of counting prob-
lems arising from clique covers.

Of course, the Γ-partition and quotient graph are determined by the particular cliques
given as elements of the collection. Coarser partitions (those which produce fewer ΓJ cells)
are preferred – ideally, the collection will consist of a minimal number of unique maximal
cliques.

The techniques enabled by this partition approach may be adapted to enumerating
graph components other than cliques (e.g., spanning trees or cycles). The methods also
show promise in stochastic settings (e.g., since probability of particular graph configura-
tions in Erdős-Rényi models is a function of edge counts, one can obtain the moments of
clique counts on homogeneous Erdős-Rényi graphs using the techniques above). In fact,
Chapter 6 revisits the expressions here to obtain the moments of clique counts in Erdős-
Rényi random graphs by considering the edge counts induced by a collection of cliques.

Finally, from a topological standpoint, we note that, since the number of (r+1)−cliques
in a graph is corresponds to the number of r-faces in the clique complex of the graph, these
results can be extended to study the bounds on the number of generators in the r−th
homology class of the clique complex (e.g., Kahle, 2009).
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5
Johnson graphs
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Our motivation for studying Johnson graphs originates with the problem of visual
exploration of high dimensional data. If there are N observations on n variables in a
statistical data set, then the data can be thought of as a set of N points in n dimensional
real space. Such data are most naturally viewed in 2 and 3 dimensional scatterplots.

Hurley & Oldford (2011b) suggest interpreting a Jn(2, 1) Johnson graph as having 2-
dimensional spaces as its nodes (defined by the indices of the variables) and, as its edges,
3-dimensional spaces defined by the union of the variables defining the adjacent nodes
(e.g., see Figure 5.1(a) for n = 4). The Johnson graph provides a “navigation graph” for
exploring high dimensional point clouds along lower dimensional trajectories. Following a
path along the graph traverses from one 2d-space to another along 3d-transitions. Dynamic
3d-scatterplot rotations from one 2d-space to another have been used effectively in data
analysis (e.g., see Oldford & Waddell, 2011; Waddell & Oldford, 2022), as have static
displays of large numbers of 2d-scatterplots laid out by following paths in the Jn(2, 1)
with neighbouring scatterplots sharing a common axis (e.g., see Hofert & Oldford, 2017).
Hurley & Oldford (2011b) also consider using paths along Jn(m,m − 1) Johnson graphs
in conjunction with more complex visualizations to perceive structure in point clouds of
dimension m ≥ 3. Understanding the clique structure of the Jn(m,m− 1) for arbitrary m
will help data analysts better understand, and make use of, lower dimensional regions of
the full n-dimensional space of the data.

In what follows, we present novel, elementary proofs of the characterization of the
structure of cliques, particularly maximal cliques in the Jn(m,m−1) Johnson graph, which
were previously alluded to without proof by Brouwer et al. (1989, p. 256) and Godsil &
Meagher (2016, p. 113). Section 5.1 begins with some preliminary results for the Jn(2, 1)
Johnson graph of interest in our motivating example. This section illustrates the logic, and
provides the base case, for many of the more general results developed in Section 5.2 for
the Jn(m,m − 1) Johnson graph. Results in both sections are derived without reference
to the motivating example. These include the characterization of maximal cliques (there
are only two types) of a Jn(m,m− 1), from which follows the clique number. Section 5.3
characterizes the nature of any r-clique, from which the clique partition number follows in
Section 5.3.1.

Johnson “graphs are important because they enable us to translate many combinatorial
problems about sets into graph theory” (Godsil & Royle, 2001, p. 9). Section 5.4 discusses
the results of earlier sections in the context of the intersecting families of sets from extremal
set theory (Gerbner & Patkós, 2018). Chapter 4 illustrated how intersecting families of sets
can also be related to cliques in a clique cover. The last section ends with some discussion
on the implications of the results in the context of the motivating example of statistical
data analysis.

5.1 On the clique structure of Jn(2, 1)

Figure 5.1 shows two examples of Jn(m,m − 1) graphs for (a) n = 4, m = 2, and (b)
n = 5, m = 3. Identifying the nodes of J4, (2, 1) as v1, . . . , v6 in counter-clockwise order
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(a) J4(2, 1) (b) J5(3, 2)

Figure 5.1: Two separate Johnson Jn(m,m− 1) graphs with label sets ν(v) shown on each
node v. Nodes are identified as v1, v2, . . . , beginning from the right most node in each
graph and from there in counter-clockwise order. Two maximal cliques are marked on each.

beginning from the rightmost node of Figure 5.1(a) gives ν(v1) = {1, 2}, ν(v2) = {1, 3}, . . . ,
ν(v6) = {3, 4}. Similarly, beginning from the rightmost node of Figure 5.1(b), and moving
counter-clockwise, yields label sets ν(v1) = {1, 2, 3}, ν(v2) = {1, 2, 4}, . . . , ν(v10) = {3, 4, 5}
for J5(3, 2).

For any subgraph H ⊆ G, the intersection of H will refer to the set

S = ∩v∈V (H) ν(v) or, simply, S = ∩v∈H ν(v),

the intersection of the label sets for the nodes V (H) of H. For example, in the J4(2, 1)
Johnson graph of Figure 5.1(a), consider the subgraphs H1, H2, and H3 induced by vertex
sets V (H1) = {v1, v2, v3} (shown with thick edges in Fig. 5.1(a)), V (H2) = {v4, v5, v6}
(shown with thick dotted edges in Fig. 5.1(a)), and V (H3) = {v2, v3, v5, v6} (not shown),
respectively. The intersection

• of H1 is S1 = ∩v∈H1 ν(v) = {1},

• of H2 is S2 = ∩v∈H2 ν(v) = ∅, and

• of H3 is S3 = ∩v∈H3 ν(v) = ∅.

Of special interest is the relationship between this intersection set and cliques, H of G
(e.g., H1 and H2 above; not H3). For example, for a clique H to be maximal (i.e., no larger
clique contains H) in a Jn(2, 1) graph, it is easy to see that the size of its intersection set
is either 1 (e.g., |S1| = 1) or 0 (e.g., |S2| = 0), as shown below in Lemma 5.1.1.

Lemma 5.1.1. For G = Jn(2, 1), the size of the intersection of node label sets on any
maximal clique in G is at most 1.
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Proof. Let H be a maximal clique in G = Jn(2, 1) and S = ∩v∈Hν(v). Since every node
label set has 2 elements, and any two nodes intersect in exactly one element, it follows that
|S| ≤ 1.

Both 0 and 1 are possible sizes for the intersection set S of a maximal clique in G =
Jn(2, 1). Moreover, maximal cliques in Jn(2, 1) are only of two possible sizes according to
the size of their intersection set H. This is shown in Lemma 5.1.2 below.

Lemma 5.1.2. For any maximal clique H of G = Jn(2, 1), with intersection set S, for
n ≥ 3

|H| =


3 ⇐⇒ |S| = 0

(n− 1) ⇐⇒ |S| = 1

Proof. Begin with the smallest non-trivial clique H ⊂ G = Jn(2, 1) of size two with vertex
label sets ν(v1) = {a, b} and ν(v2) = {b, c}, for distinct numbers a, b, c ∈ [n]. H is not
maximal for it can be extended by a single node v3 in one of only two possible ways, as
shown below

for a fourth distinct number d ∈ [n].

Consider first the leftmost triangle. Its intersection set S = {a, b} ∩ {b, c} ∩ {a, c} = ∅
and |S| = 0. No fourth node, v4, can be added and the clique maintained, so this triangle
is also a maximal clique. To see this, recall that any node v adjacent to both v1 and v2
must have label set of either {a, c} or {b, d}, as shown above. But the first is already in
the triangle and the second has no intersection with {a, c} = ν(v3), meaning v4 cannot be
adjacent to v3. So, this triangle, with |S| = 0, cannot be extended into a larger clique and,
hence, must be maximal of size 3.

Now consider the rightmost triangle. This clique has intersection S = {b} giving
|S| = 1, but the clique is maximal only when n = 3. For n > 4, any node v with label
ν(v) = {b, e}, where e ∈ [n] is distinct from a, b, c, and d, will be adjacent to all nodes in
the triangle. There are exactly (n − 4) such choices remaining in [n] to be paired with b
in a label set. The clique can therefore grow maximally to size (n− 4) + 3 = (n− 1) with
intersection set S = {b} of size |S| = 1.
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Together, Lemmas 5.1.1 and 5.1.2 yield the clique number, the size of the maximum
clique in G = Jn(2, 1), denoted ω(Jn(2, 1)), as follows:

Corollary 5.1.3. The clique number of G = Jn(2, 1), for n ≥ 3, is

ω(Jn(2, 1)) = max{n− 1, 3}.

According to Lemma 5.1.2, there are two different types of maximal cliques in Jn(2, 1).
One set, say Mmin, contains maximal cliques H ⊂ Jn(2, 1) having minimal intersection
set of size |S| = 0 (with each |H| = 3 for H ∈ Mmin); the other, say Mmax, contains those
maximal cliques having maximal intersection set of size |S| = 1 (with each |H| = n − 1
when n ≥ 4 for every H ∈ Mmax). The number of maximal cliques of each type is
|Mmin| =

(
n
3

)
and |Mmax| =

(
n
1

)
.

Figure 5.1(b) suggests that similar results could exist for the Johnson graph Jn(m,m−1)
more generally. There, two different types of maximal cliques are shown for G = J5(3, 2).
One, shown with dotted line edges, is a 4-clique with intersection set S = {1, 2, 3} ∩
{1, 2, 5}∩{1, 3, 5}∩{2, 3, 5} = ∅ of size |S| = 0 is in keeping with Lemma 5.1.2 identifying
a maximal clique seemingly in Mmin for a J5(3, 2). Another, shown by thick solid line
edges, is of size three and has intersection set S = {1, 3, 4}∩ {2, 3, 4}∩ {3, 4, 5} = {3, 4} of
size |S| = 2 which is like Mmax in that its intersection set also appears to be of maximum
size, though this time 2 instead of 1. More generally, it turns out that maximal cliques
in any Johnson graph G = Jn(m,m − 1) either have an intersection set of size |S| = 0 or
|S| = m− 1. This is proved as Theorem 5.2.4 in the next section.

5.2 General results

As with Lemma 5.1.1, the size of an intersection set for any maximal clique of a Johnson
graph G = Jn(m,m−1) cannot be larger than m−1, given that is the size of the intersection
of node label sets for a single edge. The main result of this section, analogous to Lemma
5.1.2, proves that this maximum size, m− 1, and the minimum size, 0, are the only values
possible for the size of the intersection set of a maximal clique in Jn(m,m− 1).

In Lemma 5.1.2, the types of maximal cliques for the simplest case of Jn(2, 1) were
found by beginning with a clique of size two and seeing how it might be expanded by
adding nodes. There were only two possible ways to do this, each leading to a different
type of maximal clique. Here, we follow the same reasoning, but for vertices and edges
from a Jn(m,m − 1) graph. The figure and proof of Lemma 5.1.2 guide the intuition in
this more general case.

We begin with the case corresponding to the left most diagram of Lemma 5.1.2. There, a
third node, v3, was added by selecting the elements for its label set, ν(v3) = {a, c} from the
union of the label sets of the first two vertices v1 and v2, that is ν(v3) ⊂ B = ν(v1)∪ν(v2).
This choice had repercussions in Lemma 5.1.2 in that the intersection set was null for
Jn(2, 1) and the clique could not be enlarged past size 3 as in the dotted clique of Figure
5.1 (a). For the dotted clique of Figure 5.1 (b), however, the set B for two vertices from
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a Jn(3, 2) is larger so that the clique can be enlarged to include a fourth node. In both
dotted clique examples of Figure 5.1 the intersection of the label sets is null.

The next proposition characterizes the intersection sets for maximal cliques, H, formed
in this way from a Johnson graph G = Jn(m.m− 1).

Proposition 5.2.1. Let G = Jn(m,m− 1) be a Johnson graph with n ≥ m+ 1 and let H
be a maximal clique in G. If B denotes the union

B :=
⋃
v∈H

ν(v),

then
⋂

v∈V (H) ν(v) = ∅ if, and only if, ν(v1) ∪ ν(v2) = B for any v1, v2 distinct in V (H).

Proof. Suppose that for any distinct v1, v2 ∈ V (H), ν(v1) ∪ ν(v2) = B. It follows that for
any node v ∈ V (H), ν(v) is an m−subset of the (m + 1)−set B. Moreover, since every
m−subset of B corresponds to a node adjacent to every node in H, it follows that

ν(V (H)) = {A : A ⊂ B, |A| = m}.

For any i ∈ B, the node with label {j ∈ B : j ̸= i} eliminates i from the intersection⋂
v∈V (H) ν(v). Thus, the intersection

⋂
v∈V (H) ν(v) must be empty.

Conversely, suppose that
⋂

v∈V (H) ν(v) = ∅. If ν(v1)∪ν(v2) ̸= B for some v1, v2 ∈ V (H),
then there exists some v3 ∈ V (H) such that x3 ∈ ν(v3) and x3 ̸∈ ν(v1) ∪ ν(v2). It follows
that v3 satisfies

ν(v3) = (ν(v1) ∩ ν(v2)) ∪ {x3}.
Thus, v1, v2 and v3 satisfy the hypothesis of Proposition 5.2.2 and it follows that ∩v∈V (H)ν(v)
is a set of size m− 1, a contradiction.

It would appear, then, that, if we build up a maximal clique in this way, we end with one
whose intersection set S = ∅ is of size zero. This being the smallest possible intersection
set, Mmin could again denote the set of such maximal cliques in Jn(m,m− 1).

Returning to the intuition followed in the figure of Lemma 5.1.2, consider how vertices
were added when taking the righthand choice. The label set of any third vertex would be
formed from the intersection ν(v1)∩ν(v2), necessarily of size m−1 in Jn(m,m−1), joined
by any element of [n] not already appearing in the union ν(v1)∪ν(v2). Following the same
logic, vertices could be added providing the intersection set remained of size m−1 until all
remaining elements of [n] were exhausted, that is, until ν(v1)∪ν(v2)∪· · ·∪ν(vr) = [n]. For
a Johnson Jn(m,m− 1), the number of vertices for such a clique would be r = n− (m− 1)
(e.g., the thick solid line maximal cliques shown in Figures 5.1). Cliques formed in this
fashion, would have largest possible intersection set of size m − 1 and so could, again, be
denoted Mmax.

The next proposition shows that building a maximal clique H of a Johnson graph
G = Jn(m.m − 1) in this way can only lead to one having largest intersection set of size
m− 1 and, hence, to H ∈ Mmax.
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Proposition 5.2.2. Let H be a maximal clique in G = Jn(m,m− 1). If |ν(v1) ∩ ν(v2) ∩
ν(v3)| = m− 1 for some distinct nodes v1, v2, v3 ∈ V (H), then⋂

v∈V (H)

ν(v) = ν(v1) ∩ ν(v2).

Proof. Suppose that I := ν(v1) ∩ ν(v2) ∩ ν(v3) for some distinct nodes v1, v2 and v3 in H,
and write ν(vj) in the form {xj} ∪ I for j = 1, 2, 3. If

⋂
v∈V (H) ν(v) ̸= I, then there must

be some i ∈ I for which i ̸∈ ν(ui) for some ui ∈ V (H).

Then since ui ∈ V (H) and H is a clique, ui ∼ v1, v2, v3. Therefore, ν(ui) must contain
xj and an (m− 2)−subset Ij from I, for j = 1, 2, 3. In other words,

ν(ui) = I1 ∪ I2 ∪ I3 ∪ {x1, x2, x3}.

Since I is disjoint from {x1, x2, x3}, so are the I1, I2, I3. Since the nodes v1, v2, v3 are
distinct, the variables x1, x2, x3 are distinct. Consequently,

|ν(ui)| = |I1 ∪ I2 ∪ I3|+ 3 ≥ m− 2 + 3 = m+ 1,

and such a node cannot exist in Jn(m,m− 1).

Should a maximal clique H ∈ Jn(m,m− 1) belong to one of the two classes Mmin and
Mmax, Propositions 5.2.1 and 5.2.2 provide information about H which is summarized in
the following remark.

Remark 5.2.3. Maximal cliques H ∈ Jn(m,m − 1) have the following characteristics
unique to which class, Mmin or Mmax, they belong.

• H ∈ Mmin:

– The intersection set S = ∩v∈V (H)ν(v) = ∅ with |S| = 0.

– Node labels of all vertices vj ∈ V (H) are distinct and of the form ν(vj) = B\{xj}
for some B ⊂ [n] of size |B| = m+ 1 and all xj ∈ B.

– The size of the maximal clique H is |H| = |B| = m+ 1.

– For any distinct vi, vj in V (H), ν(vi) ∪ ν(vj) = B.

– The number of distinct maximal cliques in Mmin is
(

n
|B|

)
=
(

n
m+1

)
.

• H ∈ Mmax:

– The intersection set S = ∩v∈V (H)ν(v) has size |S| = m− 1.

– Node labels of all vertices vj ∈ V (H) are distinct and of the form ν(vj) =
A ∪ {xj} for some A ⊂ [n] of size |A| = m− 1 and all xj ∈ [n] \ A.

– The size of the maximal clique H is |H| = |[n]| − |A| = n−m+ 1.

– For any distinct vi, vj in V (H), ν(vi) ∩ ν(vj) = A = S.
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– The number of distinct maximal cliques in Mmax is
(

n
|A|

)
=
(

n
m−1

)
.

Following the logic of Lemma 5.1.2, Propositions 5.2.1 and 5.2.2 demonstrate at least
two distinct classes of maximal cliques exist in Jn(m,m−1), Mmin and Mmax. That these
are the only types of maximal cliques in a Johnson graph G = Jn(m,m − 1) is proved in
Theorem 5.2.4 (by induction on m, with Lemma 5.1.2 providing the initial case).

Theorem 5.2.4. Let H be a maximal clique in the Johnson graph G = Jn(m,m− 1) for
n > m ≥ 2 and let S = ∩v∈Hν(v) be the intersection set of the node labels of H. Then,
|S| ∈ {0, (m− 1)}.

Proof. The proof proceeds by induction on m.

Suppose, that there exists m0 ≥ 2 such that, for all n0 > m0, any maximal clique H0 in
Jn0(m0,m0 − 1) with intersection set S0 = ∩v∈H0ν(v) has |S0| ∈ {0,m0 − 1}. For a proof
by induction, we need to show that this implies that for m1 = m0 +1, any maximal clique
H1 in Jn1(m1,m1−1), for all n1 > m1, must have intersection set of size |S1| ∈ {0,m1−1}.

The inductive step is proved by contradiction. The size of the intersection set of a
maximal clique H1 in Jn1(m1,m1 − 1) is at most m1 − 1, so we assume the intersection
set size |S1| = s with 0 < s < m1 − 1 = m0. Without loss of generality, we may take the
intersection S1 to be

S1 = {(n1 − s+ 1), (n1 − s+ 2), . . . , n1} .

Knowing that the node label sets of H1 have intersection S1 of size s and that H1

induces a maximal clique in Jn1(m1,m1 − 1), the label set for any vertex vi ∈ H1 can be
expressed as ν(vi) = Ii ∪ S1 where Ii ⊂ [n1] with Ii ∩ S1 = ∅ and |Ii ∩ Ij| = m1 − 1− s for
i ̸= j and vi, vj ∈ H1.

This knowledge allows us to construct vertices v−j ∈ Jn1−1(m1−1,m1−2) = Jn0(m0,m0−
1) with n0 = n1−1 > m1−1 = m0 by simply removing n1 ∈ S1 from the node label sets of
all vertices in H1. That is, for every vi ∈ V (H1), define v−i ∈ V (Jn0(m0,m0 − 1)) to have
node label set ν(v−i ) = ν(vi) \ {n1}.

Now consider the graph, H0, induced in Jn0(m0,m0 − 1) by the vertices v−i , so defined.
It is easy to see that H0 is a clique in Jn0(m0,m0 − 1) – the label sets of its vertices are
ν(v−i ) = Ii ∪ S1 \ {n1} with ν(v−i ) ∩ ν(v−j ) = (Ii ∩ Ij) ∪ S1 \ {n1} yielding cardinalities of
(m1−s)+(s−1) = m1−1 = m0 and (m1−s−1)+(s−1) = m1−2 = m0−1, respectively.

To see that H0 is also maximal, suppose that it is not. Then, there is some vertex
v ∈ Jn0(m0,m0 − 1) which is not in H0 but is adjacent to every vertex v−i ∈ H0. This
adjacency implies

|ν(v) ∩ (Ii ∪ S1 \ {n1})| = m0 − 1

for all v−i ∈ H0.

We construct a vertex v+ ∈ Jn1(m1,m1 − 1) having label set ν(v+) = ν(v) ∪ {n1}.
Since v is adjacent to every v−i ∈ H0, its intersection with each is of size m0 − 1 =
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|ν(v) ∩ (Ii ∪ S1 \ {n1})|. It follows that for vi ∈ H1,

ν(v+)
⋂

ν(vi) = ν(v+)
⋂

(Ii ∪ S1)

= ν(v+)
⋂

[(Ii ∪ (S1 \ {n1}))
⋃

{n1}]

= [ν(v+)
⋂

(Ii ∪ (S1 \ {n1}))]
⋃

[ν(v+) ∩ {n1}]

= [ν(v+)
⋂

(Ii ∪ (S1 \ {n1}))]
⋃

[{n1}]

= [(ν(v) ∪ {n1})
⋂

(Ii ∪ (S1 \ {n1}))]
⋃

{n1}

= [(ν(v)
⋂

(Ii ∪ (S1 \ {n1})))
⋃

({n1}
⋂

(Ii ∪ (S1 \ {n1})))]
⋃

{n1}

= [(ν(v)
⋂

(Ii ∪ (S1 \ {n1})))
⋃

∅]
⋃

{n1}

= [ν(v)
⋂

(Ii ∪ (S1 \ {n1}))]
⋃

{n1}.

Now, in square brackets, the left set of the union does not contain n1 and is of known
cardinality m0 − 1. It follows, then, that∣∣∣ν(v+) ⋂ ν(vi)

∣∣∣ = ∣∣∣ν(v) ⋂ (Ii ∪ (S1 \ {n1}))
∣∣∣ + |{n1}| = (m0 − 1) + 1 = m1 − 1.

Hence, v+ is adjacent to every vertex vi ∈ H1, and H1 can be extended to a larger clique in
Jn1(m1,m1 − 1) – a contradiction since H1 was assumed to be maximal. It follows, then,
that no such node, v ∈ Jn0(m0,m0 − 1), exists which extends the clique H0 and, hence,
that H0 must be maximal.

By construction, the intersection set of H0 is S0 = S1 \ {n1} and is of size |S0| = s− 1.
And, because H0 is a maximal clique in Jn0(m0,m0 − 1), by the inductive hypothesis |S0|
is either 0 or m0 − 1. If the latter, then s = m0 is outside the bounds assumed and we
have a contradiction. If the former, then, s = 1 and, by Proposition 5.2.1, H0 ∈ Mmin so
S0 = ∅ and |S0| = 0 – again, a contradiction.

It follows that intersecting sets of a maximal clique H1 ∈ Jn(m1,m1 − 1) with m1 =
m0+1 must have size 0 or m1−1, if it is the case that intersecting sets of a maximal clique
H0 ∈ Jn(m0,m0 − 1) must be of size 0 or m0 − 1. The proof by induction is complete by
noting that, by Lemma 5.1.2, the inductive hypothesis holds for m0 = 2.

Theorem 5.2.4 proved that every maximal clique H ∈ Jn(m,m − 1) has either the
minimal or maximal intersection set possible. That is, either H ∈ Mmin, or H ∈ Mmax.
If the former, then |H| = m + 1; if the latter, then |H| = n −m + 1 (see Remark 5.2.3).
As a consequence, we obtain the clique number of Jn(m,m− 1) for all n ≥ m+ 1.

Corollary 5.2.5. The clique number ω(Jn(m,m− 1)) of the Johnson graph Jn(m,m− 1)
is given by

max(m+ 1, n−m+ 1),
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whenever n ≥ m+ 1.

Rewriting, it follows from Corollary 5.2.5, that the clique number is

ω(Jn(m,m− 1)) =


m+ 1 if m+ 1 ≤ n ≤ 2m

n−m+ 1 if 2m ≤ n

and is undefined otherwise.

5.3 Extending an r-clique

Given some clique Cr ⊂ Jn(m,m−1) of size |Cr| = r, what can be said about the maximal
cliques H ⊂ Jn(m,m− 1) that contain it?

We begin with edges (r = 2). As the figure in the proof of Lemma 5.1.2 suggests, every
edge in Jn(m,m−1) can appear in one clique from Mmin and one from Mmax. Proposition
5.3.1 shows that each edge can appear in only one maximal clique in each of Mmin and
Mmax.

Proposition 5.3.1. Each edge of Jn(m,m−1) will belong to precisely one maximal clique
Hmin ∈ Mmin and to precisely one maximal clique Hmax ∈ Mmax.

Proof. Select any edge eij connecting vertices vi and vj and let A = ν(vi) ∩ ν(vj) denote
the intersection of their node label sets and B = ν(vi) ∪ ν(vj) their union.

Define Hmax to be the subgraph of Jn(m,m− 1) induced by the vertex set

V (Hmax) = {v ∈ V (Jn(m,m− 1)) : A ⊂ ν(v)}

and Hmin that induced by the vertex set

V (Hmin) = {v ∈ V (Jn(m,m− 1)) : ν(v) ⊂ B} .

Vertices vi and vj belong to both sets, so eij ∈ Hmax and eij ∈ Hmin.

By construction, Hmax ∈ Mmax and, by Proposition 5.2.2, there can be no other
maximal clique in Mmax containing both vi and vj.

Similarly, Hmin ∈ Mmin and, by Proposition 5.2.1, any maximal clique in Mmin con-
taining both vi and vj must consist of precisely all of the m−subsets surrounding the union
of the label sets B = ν(vi) ∪ ν(vj). Again there is no other such maximal clique in Mmin.

Theorem 5.2.4 completes the proof by guaranteeing that there are no other possible
maximal cliques containing both vertices.

Although every edge, or 2-clique, appears in one maximal clique from each of Mmin

and Mmax, this is not the case for any other clique of size r > 2. Proposition 5.3.2 shows
that any r-clique, for r > 2, can only appear in one maximal clique, which can only be
from one of Mmin or Mmax.
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Proposition 5.3.2. Let Cr ⊂ Jn(m,m− 1) be a clique of size r ≥ 2 with Cr ⊂ H and H
a maximal clique in Jn(m,m− 1). Then,

• H ∈ Mmin only if
∣∣∣⋃v∈V (Cr)

ν(v)
∣∣∣ = m+ 1 and

∣∣∣⋂v∈V (Cr)
ν(v)

∣∣∣ = m+ 1− r.

• H ∈ Mmax only if
∣∣∣⋃v∈V (Cr)

ν(v)
∣∣∣ = m− 1 + r and

∣∣∣⋂v∈V (Cr)
ν(v)

∣∣∣ = m− 1.

Proof. Note that every r-clique, Cr, in a graph G is extendible to a maximal clique H ⊆ G.
When G = Jn(m,m − 1), Theorem 5.2.4 shows that either, H ∈ Mmin, or, H ∈ Mmax –
there are no other possibilities.

Each has implications for the labels on the nodes in Cr. Without loss of generality,
take V (Cr) = {v1, . . . , vr} as the vertices of Cr.

First, consider the case that H ∈ Mmin. In Remark 5.2.3, we note that every node
vj ∈ V (H) has node label of the form ν(vj) = B \ {xj} for some set B ⊂ [n], xj ∈ B, and
|B| = m+ 1. Further, B = ν(vi) ∪ ν(vj) for every pair of distinct nodes vi, vj ∈ V (H). In
particular, if Cr extends to H ∈ Mmin, then∣∣∣∣∣∣

⋃
v∈V (Cr)

ν(v)

∣∣∣∣∣∣ = |B| = m+ 1

and, for some x1, . . . , xr ∈ B (xj peculiar to the node label set of each vj ∈ V (Cr)),∣∣∣∣∣∣
⋂

v∈V (Cr)

ν(v)

∣∣∣∣∣∣ =
∣∣∣∣∣

r⋂
j=1

(B \ {xj})

∣∣∣∣∣ =
∣∣∣∣∣B \ (

r⋃
j=1

{xj})

∣∣∣∣∣ = m+ 1− r,

characterize the union and intersection sizes of the label sets for nodes in V (Cr) when it
is extendible to a maximal clique H ∈ Mmin.

Similarly, from Remark 5.2.3, if Cr extends to H ∈ Mmax, then∣∣∣∣∣∣
⋃

v∈V (Cr)

ν(v)

∣∣∣∣∣∣ =
∣∣∣∣∣

r⋃
j=1

(A ∪ {xj})

∣∣∣∣∣ =
∣∣∣∣∣A ∪

(
r⋃

j=1

{xj}

)∣∣∣∣∣ = m− 1 + r

for some set A ⊂ [n], xj ∈ [n] \ A (xj peculiar to the node label set of each vj ∈ V (Cr)),
and ∣∣∣∣∣∣

⋂
v∈V (Cr)

ν(v)

∣∣∣∣∣∣ = |A| = m− 1.
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When r = 2, Cr is an edge and, by Proposition 5.3.1, there is both a maximal clique in
Mmin and one in Mmax which extend Cr. This is corroborated by the matching set union
sizes (m+ 1) and set intersection sizes (m− 1) in Proposition 5.3.2 when r = 2. However,
when r > 2 these sizes cannot match, and proving that for r > 2 any r-clique Cr extends
to a unique maximal clique in Jn(m,m − 1) which must be a member of one of Mmin or
Mmax.

Corollary 5.3.3. Let Cr ⊂ Jn(m,m−1) be a clique of size r > 2, then Cr can be extended
to only one maximal clique H ⊂ Jn(m,m− 1).

Proof. By Proposition 5.3.2, Cr satisfies either
∣∣∣⋃v∈V (Cr)

ν(v)
∣∣∣ = m+1 or

∣∣∣⋂v∈V (Cr)
ν(v)

∣∣∣ =
m− 1, but not both. Thus, there is at least one maximal clique H which extends Cr.

If H is in Mmax, then by Proposition 5.2.2, the intersection of H must be the intersec-
tion of Cr. Similarly, if H is in Mmin, then by Proposition 5.2.1, the union of H must be
the union of Cr.

In either case, the intersection and union of labels determine the maximal clique H
uniquely.

Corollary 5.3.3 shows that any clique Cr of size r > 2 can be extended to a maximal
clique belonging to only one of Mmin or Mmax. Proposition 5.3.2 provides the means for
telling which one by examining the size of the intersection or of the union of the node
labels of Cr.

5.3.1 The clique partition number

Should interest lie in the minimum number of cliques needed to partition the edges of
Jn(m,m − 1), that is, its clique partition number cp(Jn(m,m − 1) (Erdős et al., 1988),
then the maximal cliques produced by the edges in Jn(m,m− 1) provide the solution.

Proposition 5.3.1 showed that each edge in Jn(m,m − 1) led to a unique maximum
clique in each of Mmin and Mmax. That each edge will appear in only one element of
each set and that the elements are maximal cliques, means that the cliques in either set
partition the edges and that they are the fewest possible of that type. It remains only
to determine which set, Mmin or Mmax, is smaller – its size will be the clique partition
number. Proposition 5.3.1 thus yields the following corollary.

Corollary 5.3.4. The clique partition number of Jn(m,m− 1) is given by

cp(Jn(m,m− 1)) = min{|Mmin|, |Mmax|}.

Or, to be precise, referring to the sizes of these sets in Remark 5.2.3, with minimal rewriting,
exact expressions may be had as follows.
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Corollary 5.3.5. The clique partition number of Jn(m,m− 1) is given by

cp(Jn(m,m− 1)) =



(
n

m− 1

)
n < 2m

(
n

m+ 1

)
n ≥ 2m

5.4 Discussion

While the results obtained above apply directly to the cliques and maximal cliques of a
Johnson graph, Jn(m,m−1), they may also be expressed in terms of families of intersecting
subsets of [n] – an intersecting family, F , is a subset of the power set, P(n), whose elements
are pairwise non-disjoint, that is, A∩B ̸= ∅ for every A,B ∈ F (e.g., see Erdős & Kleitman,
1974).

Numerous results have been found for intersection families (e.g., see Gerbner & Patkós,
2018), including the celebrated Erdős-Ko-Rado (EKR) theorem Erdős et al. (1961) which
showed that any intersecting family having elements of size k ≤ m ≤ 1

2
n, and having no

element contained in another (i.e., is an antichain, or Sperner family), had size at most(
n−1
m−1

)
. The EKR bound is attained by the trivially intersecting family F ⊂

(
[n]
m

)
defined

by F = {A ∈
(
[n]
m

)
: x ∈ A ∈ [n]} for some choice of x. Similarly, Hilton & Milner (1967)

showed that when F ⊂
(
[n]
m

)
is further restricted to have non-null intersection, ∩A∈FA ̸= ∅,

across all sets in F , for 2 ≤ m ≤ 1
2
n, there exists another class of maximal intersecting

families within
(
[n]
m

)
whose size is bounded above by

(
n−1
m−1

)
−
(
n−m−1
m−1

)
+ 1.

The results of the present chapter are restricted to intersecting families Fn,m,m−1 ⊂
(
[n]
m

)
having |A ∩B| = m − 1 for distinct A,B ∈ Fn,m,m−1. The set of node label sets of the
vertices from any maximal clique in Jn(m,m− 1) corresponds to a maximally intersecting
family F ⊂ Fn,m,m−1.

Theorem 5.2.4 shows that there are only two possible types of such maximal intersecting
families, say Fmin, Fmax ⊂ Fn,m,m−1, corresponding to the two types of maximal cliques,
Mmin, Mmax ⊂ Jn(m,m− 1). Expressing Remark 5.2.3 in terms of intersecting families,
there are exactly

(
n

m+1

)
distinct families F ∈ Fmin and the following hold for each family

F :

• |∩A∈FA| = 0,

• ∃B ⊂ [n] of size m+ 1 with every A ∈ F having the form B \ {x} for all x ∈ B,

• Ai ∪ Aj = B for all Ai, Aj ∈ F , i ̸= j, and

• there are m+ 1 elements in F ,

and there are
(

n
m−1

)
distinct families F ∈ Fmax for each of which the following hold:

95



• |∩A∈FA| = m− 1,

• ∃B ⊂ [n] of size m− 1 with every A ∈ F having the form B ∪{x} for all x ∈ [n] \B,

• Ai ∩ Aj = ∩A∈FA for all Ai, Aj ∈ F , i ̸= j, and

• there are n−m+ 1 elements in F .

Corollary 5.2.5 gives the size of the maximal intersecting F ⊂
(
[n]
m

)
restricted to every pair

intersection being of size m− 1.

Similarly, Proposition 5.3.2 gives conditions on the size of the union and intersection
of sets in a family Fr ⊂ Fn,m,m−1 of size r ≥ 2 for Fr to be extended to a maximally
intersecting family of type Fmin or Fmax – only one of which is possible for r > 2.

We again note that Chapter 4 showed how intersecting families of sets are related to
the partition of a set of cliques defining a clique cover for any graph.

Consider again the problem of visualizing high dimensional statistical data which served
as our initial motivation. The Johnson graph Jn(2, 1) has been used successfully in visual
data analysis as shown by Oldford & Waddell (2011) and Hofert & Oldford (2017).

For a Jn(2, 1) graph, the maximal cliques are either a triangle representing a 3d-space
defined by the three variables in the union of the node labels (Mmin)(e.g., see Hurley &
Oldford, 2011b, Figs. 2a and 3), or, an (n− 1)-clique representing an n-dimensional space
which privileges one of the n variables to appear in every 2d node (subspace) and swaps
one of the remaining variables for another whenever an edge is followed (Mmax). The
latter is natural in statistics, for example, when the privileged variable might be regressed
upon the second variable at each node (or vice versa).

More generally, for Jn(m,m−1), traversing maximal cliques in Mmin is an exploration
of an m + 1 dimensional space via swapping one of the variables for another with every
movement along an edge. Cliques in Mmax now privilege m−1 variables (e.g. as regressors)
while exploring the effect of changing one variable with another (e.g. as response variables
in a regression model) for the remaining n −m + 1 variables with every movement along
an edge.
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6
Variable graphs, random graphs and

navigation graphs
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Under some assumptions, the variable graphs from Chapter 2 behave like Erdős-Rényi
random graphs. By carefully examining how cliques arise from the line graph operator,
we can specialize the theory developed in Chapters 3, 4 and 5 to the clique centric study
of navigation graphs. In addition to obtaining closed-form expressions for the moments
of clique counts, we analyze the asymptotic nature of cliques in Johnson graphs and the
potential implications for navigation graphs.

6.1 On variable graphs and random graphs

We begin by outlining the assumptions we make regarding the collection of random vari-
ables and the measure of interest w. Recall that V is the collection of random variables
representing the underlying distributions of the data observed. Let w :

(V
2

)
→ R be the

function quantifying the peculiarity of a space according to a predetermined measure of
interest.

Let G be the simple, weighted complete variable graph on V , where E(G) =
(V
2

)
consists

of all 2-spaces of interest, where an edge between X and Y is weighted by w({X, Y }). Upon
choosing one of the two mechanisms for pruning the navigation graph, the analyst obtains
a subgraph of the complete variable graph.

We make the following simplifying assumptions regarding the joint distribution of the
random variables w({X, Y }):

A1 The random variables w({X, Y }) are all independent, identically distributed random
variables with some known distribution F .

A2 The random variables w({X, Y }) and W ({X,Z}) are independent for all X, Y, Z ∈ V .

While the distribution and independence assumptions are unrealistic in practice, they
allow for a rough model of the behaviour of the variable graphs, and enable us to apply
the insights and tools we have obtained in Chapters 3, 4 and 5. More broadly, since the
Bernoulli sums framework of Chapter 3 applies to indicator variables with any form of
dependence structure, we remark that expressions for the clique count moments may still
be derived if provided with the joint distribution of (w({X, Y } : {X, Y } ∈

(V
2

)
).

Now, we recall on M1 from Section 1.1.1 in the case where m = 2, k = 1:

M1 Fix a cutoff value t. Let G be the induced navigation subgraph produced by keeping
the nodes {X, Y } with w({X, Y }) > t.

M2 Fix a proportion q ∈ (0, 1). Let G be the induced navigation subgraph produced by
keeping the nodes {X, Y } with w({X, Y }) > tq, where tq is the q−th quantile of the
empirical distribution of w: i.e., the value x satisfying that the proportion of spaces
{X, Y } in V with w({X, Y }) < x is q.
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Methods M1 and M2 can be restated completely in terms of the pruning of the under-
lying complete variable graph. In the case of M1, an edge e remains whenever w(e) > t.
Similarly, under M2, an edge e remains if its weight is in the top q-th percentile of edge
weights with respect to w.

Proposition 6.1.1. Let V be the underlying variable graph V produced by method M1 with
fixed cutoff t and weight function w. If w satisfies A1 and A2, then V is an Erdős-Rényi
random graph with parameters G(n, Pr(F > t)).

Proof. We demonstrate that the edge inclusion probabilities are independent and iden-
tically distributed Bernoulli random variables. Without loss of generality, suppose that
V was generated by Method M1. Let e = {X, Y } be an edge in G and consider the
probability Pr(w(e) > t) of e remaining after pruning:

Pr(w({X, Y }) > t) = Pr(F > t) := pt,

where the equality follows from A1. Similarly, by A1 and A2,

Pr(w({X1, Y1}) > t,w({X2, Y2}) > t) = Pr(w({X1, Y1}) > t)Pr(w({X2, Y2}) > t)

holds for all distinct 2-subsets {X1, Y1}, {X2, Y2} in
(V
2

)
.

We note that if the cutoff value t is selected such that Pr(F > t) = p, the resulting
graph is an Erdős-Rényi random graph G(n, p).

We note that under M2, the number of edges maintained in the variable graph is
constant. In other words, if the proportion q ∈ (0, 1) is fixed, the number of edges remaining
in the complete variable graph after pruning is always ⌈q

(
n
2

)
⌉. On the other hand, under

the fixed cutoff method M1, the number of edges remaining is a random variable as
independent, identically distributed realizations of the same dataset could produce different
scores on the scagnostics.

The fact that all realizations of variable graphs under M2 have the same number of
edges and each realization is independent and identically distributed according to A1 and
A2 immediately proves the following result.

Proposition 6.1.2. Let V be the underlying variable graph V produced by method M2
with fixed proportion q and weight function w. If w satisfies A1 and A2, then V is an
Erdős-Rényi random graph with parameters G(n,M = ⌈q

(
n
2

)
⌉).

By viewing navigation graphs as realizations of line graphs of a subgraph of a com-
plete variable graph, we can exploit the clique structure of random graphs under suitable
assumptions.
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6.1.1 Cliques and the line graph operator

Proposition 6.1.1 states that under special circumstances, we can model a pruned vari-
able graph as an Erdős-Rényi random graph G(n, p). The following Proposition describes
precisely when a subgraph of a graph becomes a clique under the line graph operator.

Proposition 6.1.3. Let G be a graph and let H be a subgraph of L(G). Then L(H) is a
clique in L(G) if and only if H is K3 or H is a star.

Proof. We first show that the star K1,n becomes a clique under the line graph operator.

If H is the star K1,n, it is easy to show that every edge in H has the form {x, y} where
x is the vertex of degree n in K1,n and y is one of the n vertices of degree 1. Therefore,
image of H under the line graph operator would result in nodes of the form {x, y} and
since the corresponding edges are incident in H, the nodes are pairwise adjacent in L(H).
Thus, L(H) is a clique.

If H is the complete graph K3 with the node set {x, y, z}, then the line graph operator
applied to H produces the nodes {x, y}, {x, z}, {y, z}, all of which are pairwise adjacent in
L(G) because their corresponding edges incident in G. Therefore, L(H) is a clique.

Now, suppose L(H) is a clique in L(G). Then L(H) ≃ Kr for some r ≥ 1. If r ̸= 3,
by Whitney’s graph isomorphism theorem (Theorem 2.1.3), since L(H) is connected and
isomorphic to L(K1,n), H and K1,n must be isomorphic.

On the other hand, if r = 3, then either H is either K1,3 or K3.

It immediately follows that the maximal cliques of L(G) are categorized into those
induced by triangles and those induced by maximal stars.

Corollary 6.1.4. Let G be a graph. Every maximal clique H of L(G) correspond to either
a triangle in G or a vertex of degree at least 3 in G.

Therefore, to capture the moments of the r−clique counts in navigation graphs under
the proposed model, we need to know the distribution of star counts, and in the special
case when r = 3, we need to also know the distribution of triangles.

The distribution of r−stars in G(n, p) is a challenging problem because of the depen-
dence structure among node degrees. Even though edge inclusions are pairwise independent
under our model assumptions, the presence of large degree nodes make it increasingly likely
for other high degree nodes to be present. For instance, it is impossible for G ∼ G(n, p) to
have a node of degree n− 1 and a node of degree 0.

In the following section, we derive the joint distribution of the degrees of vertices in
G(n, p). We use this in tandem with our previous results to approximate the distribution
of counts of nodes in G(n, p) of a particular, fixed degree.
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6.1.2 Degree counts in G(n, p)

Let Di denote the degree of vertex i in a realization of G(n, p). Since all vertices have
the same degree distribution, without loss of generality we consider the distribution of the
first m vertices {1, 2, . . . ,m} when deriving the joint distribution of any m nodes. Before
describing the joint degree distribution of any number of nodes, we examine a simpler case:
the bivariate degree distribution of two vertices.

The following illustrates that the degree of one vertex is independent of the degree of
another, given their adjacency.

Proposition 6.1.5. Suppose that n ≥ 2 and G = G(n, p). Then

P (D1|E12, D2) = P (D1|E12).

Proof.

P (D1 = d1|D2 = d2, E12 = e) =
P (D1 = d1, E12 = e,D2 = d2)

P (D2 = d2, E12 = e, )

=
P (
∑

j ̸=1,2Ej1 = d1 − e,
∑

j ̸=1,2Ej2 = d2 − e, E12 = e)

P (
∑

j ̸=1,2Ej2 = d2 − e, E12 = e)

=

(
n−2
d1−e

)
pd1−e(1− p)n−2−(d1−e)

(
n−2
d2−e

)
pd2−e(1− p)n−2−(d2−e)(

n−2
d2−e

)
pd2−e(1− p)n−2−(d2−e)

=

(
n− 2

d1 − e

)
pd1−e(1− p)n−2−(d1−e)

=
P (
∑

j ̸=1,2Ej1 = d1 − e, E12 = e)

P (E12 = e)

= P (D1 = d1|E12 = e).

Using Proposition 6.1.5, we derive the bivariate degree distribution of an Erdős-Rényi
graph.

Proposition 6.1.6. The joint distribution (D1, D2) of G = G(n, p) is given by([
n− 1− d1

n− 1

](
n− 2

d2

)
pd2(1− p)n−2−d2 +

[
d1

n− 1

](
n− 2

d2 − 1

)
pd2−1(1− p)n−2−d2+1

)
×
(
n− 1

d1

)
pd1(1− p)n−1−d1 .
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Proof.

P (D2 = d2|D1 = d1) =
∑

e∈{0,1}

P (D2 = d2, E12 = e|D1 = d1)

=
∑

e∈{0,1}

P (D2 = d2, E12 = e,D1 = d1)

P (D1 = d1)

=
∑

e∈{0,1}

P (D2 = d2|E12 = e,D1 = d1)P (E12 = e,D1 = d1)

P (D1 = d1)

=
∑

e∈{0,1}

P (D2 = d2|E12 = e)P (E12 = e,D1 = d1)

P (D1 = d1)
,

by Proposition 6.1.5. Now,

P (E12 = e,D1 = d1)

P (D1 = d1)
=

pe(1− p)1−e
(
n−2
d1−e

)
pd1−e(1− p)n−2−(d1−e)(

n−1
d1

)
pd1(1− p)n−1−d1

=

(
n−2
d1−e

)
pd1(1− p)n−1−d1(

n−1
d1

)
pd1(1− p)n−1−d1

= I[e=0]

[
n− 1− d1

n− 1

]
+ I[e=1]

[
d1

n− 1

]
.

Moreover,

P (D2 = d2|D1 = d1) =
∑

e∈{0,1}

(
n− 2

d2 − e

)
pd2−e(1− p)n−2−(d2−e)

(
I[e=0]

[
n− 1− d1

n− 1

]

+

[
I[e=1]

d1
n− 1

])
=

[
n− 1− d1

n− 1

](
n− 2

d2

)
pd2(1− p)n−2−d2

+

[
d1

n− 1

](
n− 2

d2 − 1

)
pd2−1(1− p)n−2−d2+1.

Therefore, the joint is given by

(
n− 1

d1

)
pd1(1− p)n−1−d1

([
n− 1− d1

n− 1

](
n− 2

d2

)
pd2(1− p)n−2−d2 +[

d1
n− 1

](
n− 2

d2 − 1

)
pd2−1(1− p)n−2−d2+1)

)

To derive a similar expression in more generality for the joint distribution of node
degrees, we first generalize Proposition 6.1.5.
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Proposition 6.1.7. Let I be a collection of vertices in G(n, p) and let D := {Di : i ∈ I}.
If j ̸∈ I and Ej is the random vector recording the edges between j and I then

P (Dj|Ej,D) = P (Dj|Ej).

Proof.

P (Dj = dj|Ej = ej,D = d) =
P (Dj = dj,Ej = ej,D = d)

P (Ej = ej,D = d)

=
P
(∑

ℓ̸=j Eℓj = dj −
∑

i∈I eij,Ej = ej

)
P
(
Ej = ej,

[∑
k ̸=i Eki = di − eij : i ∈ I

])
,

where the event in the numerator is within the set
[∑

k ̸=iEki = di − eij : i ∈ I
]

and there-
fore the ratio is equal to

P

(∑
ℓ ̸=j

Eℓj = dj −
∑
i∈I

eij

)
×

P
(
Ej = ej,

[∑
k ̸=i Eki = di − eij : i ∈ I

])
P
(
Ej = ej,

[∑
k ̸=iEki = di − eij : i ∈ I

])
= P (Dj|Ej).

Next, we obtain an expression for the joint distribution of the degrees any number of
nodes in G(n, p).

Theorem 6.1.8. Let G = G(n, p) and fix m ≤ n. If

En = {e : e = (eij){i,j}⊂[n], eij ∈ {0, 1}},

the joint distribution of (D1, D2, . . . Dm) = (d1, . . . , dm) is∑
e∈Em

p|e|(1− p)(
m
2 )−|e|

m∏
i=1

(
n−m

di −
∑

j∈[n]\{i}eij

)
pdi−

∑
j∈[n]\{i} eij(1− p)n−m−di+

∑
j∈[n]\i eij ,

where
|e| =

∑
{i,j}⊂[n]

ei,j.

Proof. We proceed by induction on m, the number of node degrees in the random vector.

The base case is m = 2. Proposition 6.1.6 shows that P (D1 = d1, D2 = d2) is([
n− 1− d1

n− 1

](
n− 2

d2

)
pd2(1− p)n−2−d2 +

[
d1

n− 1

](
n− 2

d2 − 1

)
pd2−1(1− p)n−2−d2+1

)
×
(
n− 1

d1

)
pd1(1− p)n−1−d1 .

(6.1)
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Our goal is to demonstrate that this distribution is equal to

(1− p)

[(
n− 2

d1

)
pd1(1− p)n−2−d1

(
n− 2

d2

)
pd2(1− p)n−2−d2

]
+ p

[(
n− 2

d1 − 1

)
pd1−1(1− p)n−1−d1

(
n− 2

d2 − 1

)
pd2−1(1− p)n−1−d2

]
. (6.2)

Dividing Equation 6.1 by P (D1 = d1) =
(
n−1
d1

)
pd1(1− p)n−1−d1 yields

(∗) =
(
n−2
d1

)(
n−1
d1

)pd1−d1(1− p)n−1−d1−(n−1−d1)P (D2 = d2, E12 = 0)

+

(
n−2
d1−1

)(
n−1
d1

) pd1−d1(1− p)n−1−d1−(n−1−d1)P (D2 = d2, E12 = 1)

=
n− 1− d1

n− 1

(
n− 2

d2

)
pd2(1− p)n−2−d2 +

d1
n− 1

(
n− 2

d2 − 1

)
pd2−1(1− p)n−1−d2 ,

which agrees with Proposition 6.1.6 after dividing by P (D1 = d1). This shows the state-
ment is true in the base case m = 2 .

Now, suppose that the claim holds for some m ≥ 2. Recall that Proposition 6.1.7 states
that

P (Dj|Ej,D) = P (Dj|Ej),

where j ∈ [n] is a node and D is the random vector recording the degrees of all vertices i
in some set of vertices I. Thus,

P ([Di = di, 1 ≤ i ≤ m+ 1]) =
∑
em+1

P ([Di = di, 1 ≤ i ≤ m+ 1],Em+1 = em+1)

=
∑
em+1

P (Dm+1 = dm+1|Em+1 = em+1, [Di = di, 1 ≤ i ≤ m])

× P (Em+1 = em+1, [Di = di, 1 ≤ i ≤ m]))

=
∑
em+1

P (Dm+1 = dm+1|Em+1 = em+1)

× P (Em+1 = em+1, [Di = di, 1 ≤ i ≤ m])).

Simplifying terms we have

P (Dm+1 = dm+1|Em+1 = em+1) =

(
n− (m+ 1)

dm+1 − |em+1|

)
pdm+1−|em+1|(1− p)n−(m+1)−(dm+1−|em+1|).
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Now, by the inductive hypothesis

P (Em+1 = em+1, [Di = di, 1 ≤ i ≤ m])) = P (Em+1 = em+1, [Di = di − ei,m+1, 1 ≤ i ≤ m]

in G \ {m+ 1})
= p|em+1|(1− p)m+1−|em+1|

×
∑
e∈Em

m∏
i=1

p|e|(1− p)(
m
2 )−|e|

×
(

n− 1−m

di − ei,m+1 −
∑

j ̸={i,m+1} eij

)
× (1− p)n−m−1−di+ei,m+1+

∑
j ̸={i,m+1} eij

× pdi−ei,m+1−
∑

j ̸={i,m+1} eij .

Thus,

P ([Di = di, 1 ≤ i ≤ m+ 1]) =
∑
em+1

(
n− (m+ 1)

dm+1 − |em+1|

)
pdm+1−|em+1|(1− p)n−(m+1)−(dm+1−|em+1|)

× p|em+1|(1− p)m+1−|em+1|
∑
e∈Em

p|e|(1− p)(
m
2 )−|e|

×
m∏
i=1

(
n− 1−m

di − ei,m+1 −
∑

j ̸={i,m+1} eij

)
× pdi−ei,m+1−

∑
j ̸={i,m+1} eij

× (1− p)n−m−1−di+ei,m+1+
∑

j ̸={i,m+1} eij ,

which can be further simplified into

=
∑

em+1,e

p|e|+|em+1|(1− p)m+1+(m2 )−|em+1|−|e|
(

n−m− 1

dm+1 −
∑

i ̸=m+1 ei,m+1

)
pdm+1−

∑
i ̸=m+1 ei,m+1

×(1− p)n−(m+1)−(dm+1−
∑

i ̸=m+1 ei,m+1)

m∏
i=1

(
n− 1−m

di − ei,m+1 −
∑

j ̸={i,m+1} eij

)
×pdi−ei,m+1−

∑
j ̸={i,m+1} eij(1− p)n−m−1−di+ei,m+1+

∑
j ̸={i,m+1} eij

=
∑

f=(e,em+1)∈Em+1

p|f |(1− p)(
m+1

2 )−|f |
m+1∏
i=1

(
n− 1−m

di −
∑

j∈[n]\{i}fij

)
×pdi−

∑
j∈[n]\{i} fij(1− p)n−(m+1)−di+

∑
j∈[n]\i fij ,

as claimed. Therefore, by induction, the joint distribution of (D1, . . . , Dm) is given by∑
e∈Em

p|e|(1− p)(
m
2 )−|e|

m∏
i=1

(
n−m

di −
∑

j∈[n]\{i} eij

)
pdi−

∑
j∈[n]\{i} eij(1− p)n−m−di+

∑
j∈[n]\i eij ,
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Recall that our goal lies in approximating the distribution of vertices of degree exactly
ℓ in G(n, p). Let Zℓ denote the total count and Y

(ℓ)
i be the indicator random variable

recording if vertex i has degree ℓ. Therefore, Y (ℓ)
i is Bernoulli(

(
n−1
k

)
pℓ(1− p)n−1−ℓ) and Zℓ

is a Bernoulli sum.

Proposition 6.1.9. The k−th moment of Zℓ is

E(Zk
ℓ ) =

k∑
m=1

(
k

m

)
S(k,m)

∑
e∈Em

p|e|(1− p)(
m
2 )−|e|×

m∏
i=1

(
n−m

ℓ−
∑

j∈[n]\{i} eij

)
pℓ−

∑
j∈[n]\{i} eij(1− p)n−m−ℓ+

∑
j∈[n]\i eij .

Proof. By Proposition 3.2.1,

E(Zk
ℓ ) =

k∑
m=1

∑
i1 ̸=···̸=im

S(k,m)P (Y
(ℓ)
i1

= 1, · · · , Y (ℓ)
im

= 1)

Since P (Y
(ℓ)
i1

= 1, · · · , Y (ℓ)
im

= 1) = P (Di1 = ℓ, . . . , Dim = ℓ),

E(Zk
ℓ ) =

k∑
m=1

(
k

m

)
S(k,m)

∑
e∈Em

p|e|(1− p)(
m
2 )−|e|×

m∏
i=1

(
n−m

ℓ−
∑

j∈[n]\{i}eij

)
pℓ−

∑
j∈[n]\{i} eij(1− p)n−m−ℓ+

∑
j∈[n]\i eij ,

by Theorem 6.1.8.

Specializing to k = 1, 2, we obtain the first two moments.

Proposition 6.1.10. The mean and the variance of Zℓ are given by

E(Zℓ) = n

(
n− 1

ℓ

)
pℓ(1− p)n−1−ℓ,

and

V (Zℓ) = n

(
n− 1

ℓ

)
pℓ(1− p)n−1−ℓ + 2!

(
n

2

)[(
(n− 1− ℓ)

(
n− 2

ℓ

)
p+ ℓ

(
n− 2

ℓ− 1

)
(1− p)

)
×

pℓ−2(1− p)n−2−ℓ

n− 1

](
n− 1

ℓ

)
pℓ(1− p)n−1−ℓ −

[
n

(
n− 1

ℓ

)
pℓ−1(1− p)n−1−ℓ

]2
Proof. Follows immediately from Proposition 3.2.1 and 6.1.6.

This result allows us to capture the moments of cliques induced by a single variable
from V – a special case of the Mmax cliques we examined in Chapter 5, where m = 2, k = 1.
We now turn our attention to the other class of cliques a navigation subgraph and how
they arise: triangles in G(n, p).
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6.1.3 Clique counts in G(n, p)

As discussed throughout this work, closed-form expressions for r−clique distributions for
random graphs where r ≥ 3 thus far have been elusive. In this section, we achieve our
initial objective that led to the work in Chapters 3 and 4: we derive expressions for the
moments of cliques in random graphs.

Proposition 6.1.11. Let Xr denote the number of cliques of size r in G ∼ G(n, p), and
let Ir be the set of all r−subsets of [n]. For every r−subset of [n], let Yi be the indicator
variable recording whether the r−subset i forms an r−clique in G. Then the raw, central
and factorial moments of Xr are

E(Xk
r ) =

k∑
m=1

∑
{i1,··· ,im}⊆Ir

S(k,m)pe(i1,...,im),

E
(
(Xr − µr)

k
)
= (−µr)

k +
k∑

ℓ=1

(
k

ℓ

)
(−µr)

k−ℓ
ℓ∑

m=1

S(ℓ,m)
∑

{i1,...,im}⊆Ir

pe(i1,...,im),

E([Xr]k) = k!
∑

{i1,...,im}⊆Ir

pe(i1,...,im),

where µr =
(
n
r

)
p(

r
2) and e(i1, · · · , im) is the number of edges induced by the collection of

cliques {i1, . . . , im}.

Proof. As Xr records the number of r−cliques, Xr =
∑

i∈Ir Yi and

Xr =
∑
i∈Ir

Yi

by Proposition 3.2.1. By Corollary 4.5.6, the number of edges induced by the collection of
r−cliques with the underlying node labels given by the collection of r−sets {i1, i2, . . . , im}
is

e(i1, . . . , im) =
∑
J⊆[m]

(
γJ
2

)
+

1

2

∑
J⊆[m]

γJ
∑

I ̸=J : |I∩J |≥1

γI ,

where γJ is the cardinality of ΓJ =
⋂

j∈J ij \
(⋃

j∈J ij

)
, as defined in Proposition 4.4.1.

Since G is a homogeneous Erdős-Rényi random graph, E(Yi1 · · ·Yim) = pe(i1,...,im) and the
claims follow.

Proposition 6.1.11 readily specializes to the work of Bollobas & Erdős (1976) when
r = 1, 2. For instance, the variance is evaluated as follows.

Corollary 6.1.12. The variance V (Xr) of the number of cliques of size r ≥ 3 in G(n, p)
is

V (Xr) =

(
n

r

)
p(

r
2)
[
1−

(
n

r

)
p(

r
2)
]
+

r−1∑
s=0

(
n

s

)(
n− s

r − s

)(
n− r

r − s

)
p2(

r
2)−(

s
2).
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Proof. By Proposition 6.1.11, we have

V (Xr) = E((Xr − µr))
2)

= (−µr)
2 +

2∑
ℓ=1

(
2

ℓ

)
(−µr)

2−ℓ
ℓ∑

m=1

S(ℓ,m)
∑

{i1,...,im}⊆I

pe(i1,...,im).

When ℓ = 1, the summation is

−
(
2

1

)(
n

r

)
p(

r
2)S(1, 1)

[∑
i1∈Ir

pν(v1)

]
= −2

(
n

r

)2

p2(
r
2).

When ℓ = 2, the summation is(
n

r

)
p(

r
2) +

r−1∑
s=0

(
n

s

)(
n− s

r − s

)(
n− r

r − s

)
p2(

r
2)−(

s
2),

where we note that
(
n
s

)(
n−s
r−s

)(
n−r
r−s

)
is the number of ways to construct an ordered pair (i1, i2)

of distinct r−sets with intersection size s. Therefore, the variance is

V (X) =

(
n

r

)
p(

r
2) +

r−1∑
s=0

(
n

s

)(
n− s

r − s

)(
n− r

r − s

)
p2(

r
2)−(

s
2) −

(
n

r

)2

p2(
r
2).

We note that here that the first two moments of clique counts allow the application of
the Lindeberg-Levy Central Limit Theorem to approximate the distribution of the average
number of clique counts in a (large) sequence of Erdős-Rényi graphs. More generally, it
has been shown (Erdős & Rényi, 1960) that if H is a subgraph of Kn and Yn(H) is the
random variable counting the number of isomorphic copies of H appearing in a realization
of G(n, p), then Yn is asymptotically normal. The original proof relies on the method of
moments: if a distribution is uniquely determined by its moments, then the convergence of
random variables to the moments of the distribution implies convergence in distribution.

Other researchers have shown several similar results, each with a unique approach
to bounding the asymptotic error in the normal approximation. For example, Gilmer
& Kopparty (2016) used bounds on the characteristic function of the triangle counts to
derive a local limit theorem. More recently, Temcinas et al. (2021, Section 6) present a
more nuanced result by using U−statistics in tandem with Stein’s method to derive a limit
theorem that asymptotically bounds the error of their approximation.
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For our purposes, the normal approximation N(µt, σ
2
t ) suffices, where

µt =

(
n

3

)
p3

σ2
t =

(
n

3

)
p(

3
2)
[
1−

(
n

3

)
p(

3
2)
]
+

3−1∑
s=0

(
n

s

)(
n− s

3− s

)(
n− r

3− s

)
p2(

3
2)−(

s
2)

=

(
n

3

)
p3
[
1−

(
n

3

)
p3
]
+

2∑
s=0

(
n

s

)(
n− s

3− s

)(
n− 3

3− s

)
p6−(

s
2)

=

(
n

3

)
p3
[
1−

(
n

3

)
p3
]
+

(
n

0

)(
n

3

)(
n− 3

3

)
p6 +

(
n

1

)(
n− 1

2

)(
n− 3

2

)
p6+(

n

2

)(
n− 2

1

)(
n− 3

1

)
p5.

Clearly, the approximation is more accurate if there are more variables present in the
dataset.

6.1.4 Clique counts in navigation subgraphs

In this section, we combine the results of the preceding sections to derive closed-form
expressions for cliques in navigation subgraphs under Model M1 and assumptions A1, A2
on the measure of interest w.

Theorem 6.1.13. Let G be the complete variable graph obtained from model M1 under
the assumptions A1 and A2, where the cutoff value is chosen so that Pr(F > t) = p. Let
H be the corresponding navigation subgraph. Let Cr, Xr, Zr be the random variables where

1. Cr is recording the number of maximal r−cliques in H,

2. Xr is recording the number of r−cliques in G(n, p), and

3. Zr is recording the number of nodes with degree exactly r in G.

Then the moments of Cr are given by

E(Ck
r ) =

{
E(Zk

r ), r ≥ 4

E((Z3 +X3)
k), r = 3

,

where the expressions for Zr and X3 are as in Propositions 6.1.10 and 6.1.11.

Proof. Since H is the line graph of G, by Whitney’s isomorphism theorem (Theorem 2.1.3),
maximal cliques in H correspond to exactly one of two cases: either they are induced by
a star K1,r from H (hence, a vertex of degree exactly r) or r = 3 and they are induced by
a triangle in H.
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The results of this section shed light on the moments and behaviour of cliques in
navigation subgraphs under some assumptions, and in particular, they demonstrate that
maximal cliques arise as a result of one of two occurrences in the variable graph: the
existence of a triangle or the existence of a node with nonzero degree. In the following
section, we see the ramifications of the results of Chapter 5 in the context of cliques in
navigation graphs that do not require the assumptions of pruning or the distribution of
the measure of interest w, assumptions A1 and A2.

6.2 On the clique structure of Johnson graphs

In this section, we explore the consequences of Chapter 5 for the study of cliques in Johnson
graphs. In particular, we derive the asymptotic distribution of cliques in a Johnson graph
and illustrate that for large values of n, almost all cliques are of type Mmax. We identify
the condition for equality of clique counts of the two types of cliques and discuss two
different mechanisms for sampling cliques from a Johnson graph.

We begin with a straightforward result that shows that for m ∈ N and r ≥ 3 fixed,
almost all r−cliques in Jn(m,m− 1) are of type Mmax, as n → ∞.

Proposition 6.2.1. Fix m ∈ N, and r ≥ 3. Then the number of r−cliques in Jn(m,m−1)
is dominated by cliques of type Mmax. That is,(

n
m−1

)(
n−m+1

r

)(
n

m+1

)(
m+1
r

)
+
(

n
m−1

)(
n−m+1

r

) → 1,

as n → ∞.

Proof. First, we note that

1 ≥
(

n
m−1

)(
n−m+1

r

)(
n

m+1

)(
m+1
r

)
+
(

n
m−1

)(
n−m+1

r

)
and (

n
m−1

)(
n−m+1

r

)(
n

m+1

)(
m+1
r

)
+
(

n
m−1

)(
n−m+1

r

) = 1−
(

n
m+1

)(
m+1
r

)(
n

m+1

)(
m+1
r

)
+
(

n
m−1

)(
n−m+1

r

)
≥ 1−

(
n

m+1

)(
m+1
r

)(
n

m−1

)(
n−m+1

r

) .
Therefore, it suffices to show that (

n
m+1

)(
m+1
r

)(
n

m−1

)(
n−m+1

r

) = o(1).
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Recall that for k ≤ n fixed, we have (
n

k

)
= Θ(nk)

and so (
n

m+1

)(
m+1
r

)(
n

m−1

)(
n−m+1

r

) =
Θ(nm+1)Θ(1)

Θ(nm−1)Θ(nr)
= Θ(n2−r) = O(n−1) = o(1),

as claimed above.

Proposition 6.2.1 shows that as the size of a base set grows, Mmax cliques will constitute
the majority of cliques in Jn(m,m − 1). This leads to a related question: when are the
distributions of Mmax and Mmin cliques equal? In other words, for which values of n and
m are the counts of Mmin and Mmax cliques equal? We begin by solving a related but
easier problem which will motivate our technique for finding the solution to this problem.

Proposition 6.2.2. The only solution to the system(
n

m− 1

)(
n−m+ 1

r

)
=

(
n

m+ 1

)(
m+ 1

r

)
(6.3)

for r ≥ 0 is given by n = 2m.

Proof. Let Fmax(q) and Fmin(q) denote the generating series for the left and right hand sides
of Equation 6.3, respectively. By Theorem 2.3.3, these generating series can be written
compactly as follows

Fmax(q) =

(
n

m− 1

) ∞∑
r=0

(
n−m+ 1

r

)
qr

=

(
n

m− 1

)
(1 + q)n−m+1,

Fmin(q) =

(
n

m− 1

) ∞∑
r=0

(
m+ 1

r

)
qr

=

(
n

m− 1

)
(1 + q)m+1.

Therefore, the ratio of the two series is

Fmax(q)

Fmin(q)
=

(
n

m−1

)(
n

m+1

)(1 + q)n−2m.

For this ratio to equal to 1, it must be that [qs]Fmax(q)
Fmin(q)

= 0 for all s > 0. If n > 2m, then
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(1 + q)n−2m =
n−2m∑
r=0

(
n− 2m

r

)
qr,

and at least one positive power of q has a non zero coefficient since

[q1](1 + q)n−2m =

(
n

m−1

)(
n

m+1

)(n− 2m

1

)
> 0,

whenever n > 2m. On the other hand, if n < 2m, we set ℓ = 2m − n and note that by
Theorem 2.3.3,

(1 + q)n−2m =
1

(1 + q)ℓ
=
∑
r≥0

(
r + ℓ− 1

r

)
(−1)rqr.

Since ℓ is an integer and ℓ > 0, we see that(
r + ℓ− 1

r

)
̸= 0,

for all r ≥ 0. Therefore,

Fmax(q)

Fmin(q)
=
∑
r≥0

(
r + ℓ− 1

r

)
(−1)rqr,

has a non-zero coefficient for all qs with s ≥ 0. If ℓ > 1, then

[qs]
Fmax(q)

Fmin(q)
=

(
n

m−1

)(
n

m+1

)(s+ ℓ− 1

s

)
(−1)s ̸= 0,

and thus the ratio cannot be equal to 1. So, we can conclude that the only candidate for
which we may see equality in the generating series is when n = 2m.

Next, we prove that n = 2m ensures for equality of the two generating series.

If n = 2m, then since 2m− (m+ 1) = m− 1, we have that
(

n
m−1

)
=
(

n
m+1

)
and

Fmax(q)

Fmin(q)
=

(
n

m−1

)(
n

m+1

)(1 + q)2m−2m = (1 + q)0 = 1,

as needed.

Corollary 6.2.3. Let G = Jn(m,m − 1). The distribution of cliques in G of type Mmax

is equal to the distribution of type Mmin if and only if n = 2m.

Proof. We remark that in order to solve the system(
n

m− 1

)(
n−m+ 1

r

)
=

(
n

m+ 1

)(
m+ 1

r

)
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for all r ≥ 3, it is sufficient to solve the system(
n

m− 1

)(
n−m+ 1

r

)
r(r − 1)(r − 2) =

(
n

m+ 1

)(
m+ 1

r

)
r(r − 1)(r − 2), (6.4)

for all r ≥ 3. The advantage of the latter system is that it has a generating function
with a factorization as a product of generating series, as we show below.

Let Fmax(q) and Fmin(q) be as in the proof of 6.2.2. Let fmax(q) and fmin(q) be the
generating series defined by

fmax(q) = q3
∂3

∂q3
Fmax(q)

= q3(n−m+ 1)(n−m)(n−m− 1)

(
n

m− 1

)
(1 + q)n−m−2

=

(
n

m− 1

) ∞∑
r=3

(
n−m+ 1

r

)
r(r − 1)(r − 2)qr,

fmin(q) = q3
∂3

∂q3
Fmin(q)

= q3(m+ 1)m(m− 1)

(
n

m+ 1

)
(1 + q)m−2

=

(
n

m+ 1

) ∞∑
r=3

(
m+ 1

r

)
r(r − 1)(r − 2)qr,

We note that n and m are solutions to system (6.4) if and only if fmax(q) = fmin(q).
So, dividing fmax(q) by fmin(q) and examining the conditions under which this generating
series equals 1 we see that

fmax(q)

fmin(q)
=

q3(n−m+ 1)(n−m)(n−m− 1)
(

n
m−1

)
(1 + q)n−m−2

q3(m+ 1)m(m− 1)
(

n
m+1

)
(1 + q)m−2

=
(n−m+ 1)(n−m)(n−m− 1)

(
n

m−1

)
(1 + q)n−2m

(m+ 1)m(m− 1)
(

n
m+1

)
We may reuse the argument from Proposition 6.2.2 and note that since [qs]

fmax(q)

fmin(q)
= 0, it

must be that (1 + q)n−2m = 1 and n = 2m.

It is straightforward to verify that the other terms yield the proper cancellation when
n = 2m.

Additionally, when the distribution of Mmin and Mmax cliques are identical, we are
immediately able to both identify the count and the size of the most common class of
clique.
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Proposition 6.2.4. Let G = J2m(m,m − 1). Then the largest count of r−cliques occurs
when r = m+1

2
, for m odd and for m even, the mode

r =

{
m+1
2

When m is odd.
⌈m+1

2
⌉, ⌊m+1

2
⌋, Else

Proof. Since n = 2m, the count of cliques of size r is given by

2

(
2m

m+ 1

)(
m+ 1

r

)
.

This is maximized when
(
m+1
r

)
is maximized which occurs at r = m+1

2
for m odd and

m
2
, m

2
+ 1, for m even.

This section illustrates that as the number of variables in a dataset grows and the
dimension of projection is held fixed, the underlying unfiltered navigation graph would
consist of almost entirely Mmax cliques. Thus, for example, if m = 2, the majority of cliques
one would encounter on the graph would have an intersection of size 1, hence highlighting
a particular variable. On the other hand, if n is fixed and the larger the dimension of
projection, the larger of a proportion of cliques encountered are Mmin cliques. Thus,
cliques would typically highlight m + 1 collections of variables from the dataset. Finally,
when n = 2m, the clique counts for all sizes of nontrivial cliques (r ≥ 3) would be equal
among the two clique types.

6.3 Discussion

This chapter has examined the nature of cliques under M1 and M2 of generating subgraphs
of navigation graphs. In particular, when the navigation graph has nodes of dimension
m = 2 and edges correspond to nodes sharing one variable in common, i.e. the navigation
graph is isomorphic to the Johnson graph Jn(2, 1), we captured closed-form expressions
for moments of clique counts under construction of M1 and assumptions A1 - A2. More
generally, we illustrated that whenever m = k+1, cliques appearing in subgraphs generated
by either M1 or M2 can only have one of two types: the Mmin type or Mmax type.

In the case when m = k+1, the connection established between subgraphs of the com-
plete graph and navigation graphs indicates that cliques are either induced by a collection
of k variables (as is the case for Mmax cliques) or are generated by a collection of k+1 vari-
ables that pairwise possess a relationship of interest (as is the case for Mmin cliques). In
the former case, we speculate that the analyst should investigate the collection of variables
in the intersection of the Mmax clique. In the latter case, the collection of the variables
in the union is of interest and should be examined closely. This intuition stems from our
understanding of how cliques in navigation graphs form as a result of two structures in the
variable graph: a star and a triangle.
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Moreover, we saw that as m is held fixed and n tends to infinity, the proportion of cliques
of type Mmax in Jn(m,m− 1) tends to 1. On the other hand, if n = 2m, the distribution
of cliques in a Johnson graph is balanced: there are equal number of r−cliques of each type
for every size r ≥ 3. While the asymptotic nature of the two clique types is interesting
from a mathematical perspective, applying it to navigation graphs remains a challenge. It
seems unclear why an analyst may choose to sample cliques uniformly at random from a
navigation graph – one of the obvious settings in which these results could be interpreted
for the purposes of data exploration.

6.3.1 Limitations

Finally, a number of limitations to this work should to be mentioned. These can be
summarized as follows:

1. Generalizability to other parameter families of navigation graphs;

2. Computational considerations;

3. The assumptions underlying the measure of interest w;

4. The clique structure of navigation graphs under M2; and,

5. The interpretability of the significance of cliques.

First, the clique count moment expressions derived for navigation subgraphs where
m = 2, k = 1 under M1 and assumptions A1 and A2 rely on the fact that the only
subgraph that are mapped to cliques the line graph operator are the triangles and stars.
A natural progression for this work is to examine clique count distributions for navigation
graphs with m = k+1 and more generally, to generalized Johnson graphs Jn(m, k) (where
no additional assumptions on m and k are assumed). While we have made some progress on
this problem in Section 7.1.2, deriving clique the moments of clique counts in this general
case remains elusive. Thus, the following question arises:

Problem 6.3.1. What is the distribution of clique counts for M1 under assumptions A1
and A2 where m ≥ k are arbitrary?

Second, while we derived closed-form expressions for the moments of r−clique counts
and nodes of degree ℓ, these are computationally challenging in most practical cases. For
instance, the expression in Proposition 6.1.8 has k summands adding up to

∑k
ℓ=0 2

ℓ =
2k+1 − 1 terms. Therefore, there is an impetus to conduct research on how the expressions
can be either simplified or approximated to develop reliable computational methods for
quantifying the outlying nature of the cliques, either by size of clique or by quantity.

Problem 6.3.2. How can the clique count moment expressions from Theorem 6.1.13 be
simplified or approximated?
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Third, the assumptions we made regarding the metric of ‘interestingness’ in Assump-
tions A1 and A2 are strong. It appears to be unknown if such a measure exists. Nonethe-
less, the work here serves as a building block for future research on the models of graphs
appropriate for various mechanisms of generating navigation subgraphs.

Problem 6.3.3. Are there measures of interest satisfying A1 and A2? If not, what are
some reasonable assumptions that can be made regarding a measure of interest and what is
the resulting distribution of the underlying navigation subgraph obtained from M1 or M2?

Fourth, Proposition 6.1.2 asserts that M2 follows the G(n,M) model of random graphs.
However, there appears to be very little in the literature regarding cliques in the G(n,M)
model. We summarize the challenge here as follows:

Problem 6.3.4. What is the clique count distribution of G(n,M) the Erdős-Rényi random
graph model with fixed number of edges? What are other possible models for navigation
subgraphs arising from M2 and what assumptions do they require?

Next, further studies into the significance behind the variables appearing in cliques
would be worthwhile. For example, in the case of m = 2, k = 1, we have shown there is
a single variable Y in the intersection of a Mmax clique – one might wonder under what
circumstances and measures of interest could this be indicative of that Y would be suited
to be modelled as a variable dependent on the other variables appearing in the clique.

As another example, what do the different types of cliques indicate when taking into
account the measure of interest? Consider the monotonic measure of interest, where the
square of the correlation indicates how interesting a relationship between two variates
is. It is clear that highly correlated variables should form cliques in the variable graph
under method M1. Therefore, collections of highly correlated variables will partition the
navigation graph according to their respective classes.

Problem 6.3.5. Given a measure of interest w, what specifically does the presence of
different types of cliques indicate regarding the underlying variables?
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7
Related problems
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This chapter describes problems related to our investigation and progress we have
made in attacking them. The emphasis of this chapter is on interesting problems arising
on Johnson graphs and network theory that are tangential to the aims of this thesis. The
chapter concludes with a reflection on the past and future of this work.

7.1 Johnson graphs

In this thesis, we investigated the structure of cliques in the Johnson family of graphs
Jn(m, k), where n ≥ m = k+1 and the relationship between variable graphs and Johnson
graphs. Now, there are a few remaining open problems regarding the clique structure of
generalized Johnson graphs and how larger Johnson graphs could be iteratively constructed
from smaller ones.

In the first section, we discuss an approach we used to investigate the clique structure
of generalized Johnson graphs using algebraic combinatorics. We introduce MacMaho-
nian operators and describe their utility in tackling enumeration problems by filtering out
objects which fail to satisfy desired constraints. In conjunction with the ideas revolving
intersecting set families from Chapter 4, we explain how MacMahonian operators and a fur-
ther development of Andrews et al.’s (2001) could lead to a solution to Godsil & Meagher’s
(2016) Johnson coclique problem as well as other related clique problems.

Next, we present progress made towards addressing remarks made by Hurley & Oldford
(2011a) regarding a construction of Johnson graphs with line graph operators. We demon-
strate that after applying a natural projection, the line graph of a generalized Johnson
graph becomes the graph sum of smaller generalized Johnson graphs. This result is is then
used to illustrate that the Johnson family of graphs can be obtained by iteratively applying
the aforementioned projection and the line graph operators.

7.1.1 MacMahon operators and the generalized Johnson clique
structure

Let A denote the set of functions∑
s1∈Z

· · ·
∑
sr∈Z

As1,...,srλ
s1
1 · · ·λsr

r ,

with absolutely convergent multisum expansions in an open neighbourhood of the complex
circles |λi| = 1. The Omega operators Ω

=
and Ω

⩾
are operators on A which were popularized

by Andrews et al. (2001) and are based on MacMahon1’s partition analysis.
The action of the operator Ω

⩾
on members of A is given by

Ω
⩾

∑
s1∈Z

· · ·
∑
sr∈Z

As1,...,srλ
s1
1 · · ·λsr

r =
∑
s1≥0

· · ·
∑
sr≥0

As1,...,sr .

1Percy A. MacMahon (1854 – 1929) was an influential British combinatoralist who made significant
contributions to the study of integer partitions and symmetric functions MacMahon (2001)
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Thus, Ω
⩾

sends all λsi
i with a negative power to 0 and then evaluates the λsi

i with a non-
negative power to 1. The action of the operator Ω

=
on A is given by

Ω
=

∑
s1∈Z

· · ·
∑
sr∈Z

As1,...,srλ
s1
1 · · ·λsr

r = A0,...,0.

Example 7.1.1. Consider the problem of finding nonnegative integer solutions (a1, a2, a3)
to the system

a1 + a2 + a3 = k

a1 + a2 − a3 ≥ 0,

for some k ≥ 0 fixed. One approach to enumerating all such solutions (a1, a2, a3) is by
identifying the generating series of all tuples (a1, a2, a3) which records both the sum a1 +
a2 + a3 and the constraint a1 + a2 − a3.

Let F (x, y, z, λ) denote the generating series for all integer three tuples (a1, a2, a3) which
records the difference a1 + a2 − a3 ≥ 0. Then

F (x, y, z, λ) =
∑

a1,a2,a3≥0

xa1ya2za3λa1+a2−a3 .

Upon simplifying,

F (x, y, z, λ) =
∑

a1,a2,a3≥0

xa1ya2za3λa1+a2−a3

=
∑
a1≥0

(λx)a1
∑
a2≥0

(λy)a2
∑
a3≥0

(λ−1z)a3

=
1

1− xλ

1

1− yλ

1

1− z
λ

.

Let f(x, y, z) denote the generating series

f(x, y, z) =
∑

a1,a2,a3≥0
a1+a2−a3≥0

xa1ya2za3 ,

and hence
f(x, y, z) = Ω

⩾
F (x, y, z, λ) = Ω

⩾

1

1− xλ

1

1− yλ

1

1− z
λ

.

By Theorem 2.1 (Andrews et al., 2001), when n = 2,m = 1, a = 0:

f(x, y, z) = Ω
⩾

1

1− xλ

1

1− yλ

1

1− z
λ

=
1− xyz

(1− x)(1− y)(1− xz)(1− yz)
.

Finally, we find that the number of integer solutions to a1 + a2 + a3 = k for a fixed
k ≥ 0 where a1 + a2 ≥ a3 is given by
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[qn]f(q, q, q) = [qk]
1− q3

(1− q)2(1− q2)2
= [qk]

1− q3

(1− q − q2 + q3)2
.

The result from the example above is a specialization of one of the major contributions
of Andrews et al.’s (2001) work:

Theorem 7.1.2. For any integer a,

Ω
⩾

λa

(1− x1λ)(1− x2λ) · · · (1− xnλ)
=

{
1

(1−x1)(1−x2)···(1−xn)
, a ≥ 0

1
(1−x1)(1−x2)···(1−xn)

−
∑−a−1

j=0 hj(x1, . . . , xn), a < 0
,

where hj(x1, . . . , xn) is the j−th complete homogeneous symmetric function and Ω
⩾

is the

corresponding MacMahon operator (Andrews et al., 2001).

Informally, this is an algebraic description of the simple idea that to solve a problem of
interest, we can lump together all feasible configurations of a desired object and then filter
out those that do not meet our constraint. Since generating functions can be viewed as the
discrete analogues to parameterizations of polynomial systems, the Ω

⩾
operators provide

another tool for finding integer solutions to complicated systems of equations. Generating
series that contain all possible configurations prior to refinement, such as the generating
series on the left handside of the equality in Theorem 7.1.2 are known as crude generating
series. Upon the application of the MacMahon operators, the generating series obtained
are often called the refined generating series (Xin, 2004).

This has been used to solve complicated constrained integer composition enumeration
problems with wide areas of application including discrete geometry (Beck et al., 2013),
polyhedral combinatorics (Breuer & Zafeirakopoulos, 2017), diophantine systems of equa-
tions (Garsia et al., 2009) and even ODE’s and matrix analysis (Neto, 2020).

Currently, the theory is limited to iterative eliminations of constraints; we only elimi-
nate a single constraint at a time in our march towards a general solution. Although this
is sufficient for the purposes of solving single constraint problems and verifying solutions
in higher dimensional settings, this approach is insufficient in terms of generalization. It
would be beneficial to extend the theory from the single constraint case to solve mul-
tiple constraints simultaneously by exploring the symmetric functions that appear when
evaluating expressions of the form

Ω
⩾

λa1
1 · · ·λak

k

(1− x1λi1 · · ·λim1
) · · · (1− xnλi1 · · ·λimn

)
.

This would allow for simpler expressions of many problems, and perhaps could lead to
a complete solution to open problems such as Godsil’s Johnson coclique problem (Godsil
& Meagher, 2016):

[Johnson coclique problem] What is the size of the largest coclique in the Johnson
graph Jn(k, k − 1) for all n and k?
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Our proposed approach for attacking this open problem is as follows. First, we gener-
alize the notion of type of clique from Chapter 5, where there are only two types of cliques
(those with maximal intersection and those with maximal union). More generally, the no-
tion of type of clique is captured by the sizes of all of its possible intersections, an idea akin
to signatures from Chapter 4. Since intersections are encapsulated through the partition
discussed in Proposition 4.4.1, the following proposition follows the same argument as the
one after Proposition 4.4.3.

Proposition 7.1.3. Fix r ∈ N, then the type of an r−clique corresponds to a unique
solution to the system ∑

J⊆[r]

γJ = n (7.1)

∑
i∈J⊆[r]

γJ = m, ∀i (7.2)

∑
i,j∈J⊆[r]

γJ = k, ∀i ̸= j, (7.3)

where γJ ≥ 0 for all J ⊆ [r].

Equation 7.1 ensures that each of the n variables in [n] is present either in the r−clique
or outside of it, and hence the base set n constraint is met. Equation 7.2 ensures that each
node has size m while Equation 7.3 ensures that every two nodes in the clique have inter-
section k. To summarize, each of the three parameters (n,m, k) that appear in Jn(m, k)
has a corresponding linear diophantine equation which must be satisfied in order for a
clique to be formed.

Proposition 7.1.3 allows us to write down the following expression for the crude, type
generating series of all possible configurations of types for all parameters n,m, k and clique
size r.

Theorem 7.1.4. The crude generating series for all clique types in all generalized Johnson
graphs and generalized Kneser graphs is given by

Φ(w,x,y,λ, ε) =
∑
r≥0

wr

(
1

1− y1y2
∏r

i=1 λi

∏
i,j∈[r]i ̸=j εi,j

)(
1

1− y1
∏r

i=1 λi

)

∏
J⊆[r]

 1

1− xJ∏
i∈J λi

∏
i,j∈J ;i ̸=j εi,j

 ,

where y1 records the node size, y2 records the intersection size constraint and w records
the clique size of interest, λ tracks the node size feasibility constraint and ε tracks the
intersection constraint size feasibility constraint.
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We describe the two challenges remaining with this approach.

First, we would like to apply Ω
=ε

◦Ω
=λ

to Φ(w,x,y,λ, ε). For if we had a closed form
expression for

ϕJ(w,x,y) := Ω
=
ε

Ω
=
λ

Φ(w,x,y,λ, ε),

then [qnym1 y
k
2 ]ϕJ(w,x|x=q,y) is a finite degree polynomial in w. In particular, the degree

of the polynomial corresponds to the clique number of Jn(m, k), by construction. To our
knowledge, closed-form expressions of the clique number of a generalized Johnson graph
have yet to be discovered. Second, we would like to apply Ω

⩾ε
◦Ω

=λ
to Φ(w,x,y,λ, ε) since

this refined generating series would hold the clique number of generalized Kneser graph
KGn(m, k). In particular, let ϕK denote the series

ϕK(w,x,y) := Ω
⩾
ε

Ω
=
λ

Φ(w,x,y,λ, ε),

then the term [qnym1 y
k
2 ]ϕK(w,x|x=q,y) is a finite degree polynomial in w whose degree is

the clique number of KGn,m. We now explain how the clique number of KGn,m solves the
Johnson coclique number problem.

Two vertices x, y in Jn(m,m − 1) are adjacent if and only if |ν(x)
⋂

ν(y)| = m− 1.
Therefore, x and y are not adjacent in Jn(m,m− 1) if and only if |ν(x)

⋂
ν(y)| ≤ m− 2.

Thus, the complement of Jn(m,m−1) is KGn(m,m−2). So, if H is coclique in the graph
Jn(m,m − 1) if and only if H is a clique in KGn(m,m − 2) and the coclique number of
Jn(m,m− 1) is equal to the clique number of KGn(m,m− 2).

7.1.2 Line graphs of Johnson graphs

Hurley & Oldford (2011a) investigated the graphs produced by applying the line graph
operator (and a suitable projection) on Johnson graphs. After noting that Jn(3, 2) is
isomorphic to a graph obtained by deleting repeated elements from L(L(Kn)), the authors
wrote:

Many interesting graphs seem to be built up from a completre graph through
the three operators L(·), R(·) and complement. It would be of interest to know
what graph properties, if any, are preserved and/or created by these operations,
singly and in composition.

In this section, we extend their findings by showing that after applying a suitable projection,
the line graph of a generalized Johnson graph can be decomposed into a graph sum of
(m− k − 1) generalized Johnson graphs on the system of all (2m− k)-subsets of n.

Recall that we call a tuple (A, fA) a multiset if A is a set and fA : A → N is a function
recording the number of times an element appears in A. We say that (A, fA) is finite if A
is a finite set. Throughout this section, we denote a finite multiset A using the notation

{an1
1 , . . . , anr

r },
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where ni is f(ai) the number of times ai appears in the multiset A. We note that like
a set, the order in which a multiset’s elements are presented does not matter. Unlike a
set, however, elements may appear multiple times. We say that two multisets (A, fA) and
(B, fB) are equal if and only if for every i ∈ A ∪B, fA(i) = fB(i).

For instance, consider the multisets

• (A, fA) where A = {1, 2, 3}, fA(1) = 1, fA(2) = 4, fA(3) = 2; and,

• (B, fB) where B = {1, 2, 3}, fB(1) = 2, fB(2) = 2, fB(3) = 3.

Although A and B are equal as sets, the two multisets (A, fA) and (B, fB) are not equal.

Definition 7.1.5. Let R denote the projection operator from the set of all multisets of [n]
onto the set of all subsets of [n] which acts on a multiset by replacing multiplicities greater
than 1 with 1. That is,

R({i(ℓ1)1 , i
(ℓ2)
2 , . . . , i(ℓr)r }) = {i1, i2, . . . , ir}.

This operator induces an action on a graph G by contracting vertices. That is, suppose
one has a collection of vertices of the form

{ {i(ℓ1)1 , . . . , i(ℓr)r } : ℓj ≥ 1,∀j = 1, . . . , r} },

then all such sets would contract into a single vertex corresponding to the m−set {i1, i2, . . . , ir}.
Moreover, two vertices {i1, i2, . . . , ir} and {j1, j2, . . . , jm} are adjacent in the R(G) if there
are two vertices

v1 = {i(ℓ1)1 , . . . , i(ℓr)r } : ℓj ≥ 1,∀j = 1, . . . , r}

and
v2 = {j(s1)1 , j

(s2)
2 , . . . , j(sm)

m : sj ≥ 1,∀j = 1, . . . ,m}

in G for which v1 ∼ v2.

We note that while the line graph operator does not take into account any additional
structure on the nodes, the reduction operator first reduces nodes down to their class rep-
resentatives and then considers if any classes are adjacent. We investigate the application
of these two operators in tandem to see how one may construct new Johnson graphs from
old ones.

The following theorem describes the action of the line graph and projection operators
as they apply unto generalized Johnson graphs and generalizes the remarks of Section 3.5
of Hurley & Oldford (2011a).

Theorem 7.1.6. For all n > m > k positive integers,

R(L(Jn(m, k)) ∼= Jn(2m− k,m)
⋃

Jn(2m− k,m+ 1)
⋃

· · ·
⋃

Jn(2m− k, 2m− k − 1)

∼= KGn(2m− k, 2m− k − 1)
⋂

KGn(2m− k,m− 1).
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Proof. Let H denote the graph L(Jn(m, k)). To prove the claim, we must show that R(H)
consists of all of the (2m− k)−subsets of [n] and that two nodes are adjacent if and only
if the two corresponding sets have an intersection of size m.

First, we show that R(H) consists of nodes of the form A ∪ e ∪B, where e is a subset
of [n] of size k and A,B ⊂ [n] \ e are disjoint sets of size m− k. To this end, fix e ⊆ [n] of
size k let A,B be two disjoint sets A,B ⊂ [n] \ e of size m − k. Then ν(v1) = A ∪ e and
ν(v2) = B ∪ e are two adjacent nodes in Jn(m, k). Applying the line graph operation to
this edge produces a node in H which has the form

ν(v) = {x(1) : x ∈ A} ∪ {y(1) : y ∈ B} ∪ {i(2) : i ∈ e}.

Applying the reduction operator R, we find

R(ν(v)) = A ∪ e ∪B.

Since every node in R(H) is constructed through identifying it with an edge in Jn(m, k),
the first claim follows:

|ν(v)| = |A ∪ e ∪B| = |A|+ |B|+ |e| = 2(m− k) + k = 2m− k,

for all v ∈ V (R(H)).

Next, we must show that v1 and v2 are adjacent in R(H) if and only if they intersect
in at least m elements.

Suppose that |ν(v1) ∩ ν(v2)| ≥ m. Fix e ⊂ ν(v1) ∩ ν(v2) of size m and suppose that
v1 = A1 ∪ e, v2 = A2 ∪ e, where Ai is the complement of e in ν(vi), i = 1, 2 and hence has
cardinality m − k. Fix f ⊂ e of size (m − k). Since e is of size m, it corresponds to a
unique node in Jn(m, k). Now, consider the set u1 = (e \ f) ∪ A1. This is a set of size m
and hence also a node in Jn(m, k). Since |e \ f | = k and A1 is disjoint from e, we know
that the two nodes corresponding to e and u1 are adjacent in Jn(m, k). Similarly, the two
nodes corresponding to e and u2 = (e \ f) ∪ A2 are adjacent in Jn(m, k). Therefore, the
two edges that connect e with u1 and e with u2 must be adjacent in H. However, these
edges are precisely v1 and v2 after applying the projection operator R.

Conversely, suppose that v1, v2 are adjacent in R(H). Then there exists x, y, z some
m−subsets of [n] for which x ∼ y, x ∼ z in Jn(m, k) and ν(v1) = x∪y, ν(v2) = x∪ z. Now,
we claim that |ν(v1) ∩ ν(v2)| ≥ m. Clearly, x ⊆ (x ∪ y)

⋂
(x ∪ z) and |x| = m and hence

we are done.

Example 7.1.7. Starting with J4(2, 1), we can apply to the line graph operation to trans-
form edges into vertices. Since the labels of the resulting vertices have variables that appear
multiple times, we apply the reduction operator R to produce a Johnson graph. In this
case, since each node has a single variable appearing twice and two variables appearing
once, applying R would convert labels into ones with exactly three variables. Moreover,
as we will see in Corollary 7.1.8, two nodes in the resulting graph are adjacent if and only
if they intersect in two variables. Thus, R(L(J4(2, 1)) = J4(3, 2).
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A consequence of Theorem 7.1.6 is that the projection of the line graph of a Johnson
graph is a Johnson graph with the set size and intersection parameters incremented by 1.

Corollary 7.1.8. For all positive integers n > m,

R(L(Jn(m,m− 1))) = Jn(m+ 1,m),

where we use the convention that Jn(n, n − 1) is the graph with a single node [n] and no
edges.

Proof. Follows immediately from Theorem 7.1.6 as when k = m − 1, the right handside
becomes

Jn(2m− (m− 1),m) = Jn(m+ 1,m).

Corollary 7.1.8 implies that starting from Kn, by applying R◦L iteratively, we obtain
a chain of all the Johnson graphs that exist on [n].

Kn
R◦L−→ Jn(2, 1)

R◦L−→ Jn(3, 2)
R◦L−→ · · · R◦L−→ Jn(n− 1, n− 2)

R◦L−→ K1

Figure 7.1: A chain of R ◦ L operations on the complete graph Kn.

This raises a natural question about cliques: how does the structure and count of cliques
change as we apply the R ◦ L operators?

Moreover, it would be interesting to investigate how clique count changes when we
consider a chain of graphs of the form (G0 := G,G1, G2, . . . , Gℓ) where Gi = R(L(Gi−1))
and G is any graph. Even a mild modification to the original graph G0 poses a challenge in
tracking how the clique counts evolve through iterative applications of the reduction and
line graph operators.

Another interesting thread that came from the work above was due to Theorem 7.1.6.
In order to find what chains of iterative applications of R◦L produce, it appears that one
must investigate the action of the line graph operator on union of graphs. We believe this
is tractable and intend to investigate the line graph of unions of graphs in the future.

7.2 Network theory and related problems

In this section, we suggest directions for future research related to the foundations laid
out in Chapters 3 and 4. This thesis focused on cliques as proxies for the presence of
interesting relationships between variables in data. Here, we propose other candidates for
the subgraph structure of interest, describe a gap in the random graph with community
structure literature which could be addressed by Bernoulli sums framework and advocate
for the use of combinatorial methods in network theory.
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First, as we noted in Chapter 2, the clique structure is rather restrictive and therefore,
it is natural to wonder how our theory can be generalized to other structures. Thus, we
discuss some of the graphic structures which generalize the notion of cliques in graphs
which could capture other notions of community.

Next, we describe the connections between cycles in random graphs and pseudorandom
graphs and motivate why capturing cycles through the methods of Chapter 4 is difficult.

Additionally, we propose two generalizations to our work which involve relaxation of
the underlying graph assumptions. In the former, we turn to directed graphs and provide
an overview of the opportunity for generalizing our methods to directed network motifs.
In the latter, we discuss some of the success our Bernoulli sums framework has had in the
random graphs with community structure setting.

Finally, we suggest broad directions for the application of combinatorial methods in the
study of networks.

7.2.1 Generalizations of the notion of the clique

A natural avenue for future research is the choice of subgraph used for detecting interesting
patterns. Although cliques exemplify the concept of a cohesive group, they are overly
stringent in practical scenarios. In other words, one might not need all connections to exist
between every pair of elements to determine that a group of nodes is cohesive.

Since Harary & Ross’s (1957) work, other graph-theoretic notions have been introduced
to address the rigidity of the clique model. For instance, Alba (1973) studied the notion of
a sociometric clique of diameter n, which today is sometimes referred to as an n−clique,
a subgraph of size n of the network where every pair of nodes are at most distance n
from one another in G. Mokken et al. (1979) examined n-clans: sets of vertices in G that
induce an n−clique in G. In other words, the clan members must satisfy the shortest path
condition in the n−clique definition. As another example, Kitsak et al. (2010) studied k-
cores on complex networks: maximal connected subgraphs of the network where all nodes
have degree at least k – a form of a relaxation of the clique model. Surprisingly, Kitsak
et al. (2010) illustrated the nodes with the most ‘efficient’ spreading capacity (for example,
such as the spread of ideas or infectious disease) are not necessarily those with the highest
connectivity, but rather those located within one of the k-cores of a network.

All of the aforementioned clique generalizations could lead to insights about the vari-
ables that they enclose. Thus, one direction of future research would be to examine the
distributions of k−cliques, k−clans and k−cores in navigation graphs as well as what their
members might suggest about the data.

7.2.2 Cycles and pseudorandom graphs

More broadly, there are other graphic structures that would be interesting to study us-
ing the ideas we developed in this work. In particular, we believe that extending of the
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disentanglement idea from Chapter 4 to cycles in random graphs is compelling for several
reasons. From an enumerative combinatorial point of view, there is a formidable challenge
in the derivation of expressions for the number of edges present in a collection of cycles.
The challenge is due to the encoding of a cycle, where unlike with the encoding of cliques,
the order in which vertices appear matters. For graph and network theorists, this problem
is intriguing due to the relationship between pseudographs and random graphs.

As mentioned in Chapter 2 and illustrated throughout this work, random graphs have
received a lot of attention due to their simplicity in assumptions, the utility of their mod-
elling applications and the alluring difficulty in solving seemingly simple problems regarding
their structure. The ubiquity of random graphs motivates the following question: what
are the essential properties of a random graph and how can we tell when a given graph
appears to be pseudorandom? This is akin to the statistical problem of evaluating the
‘randomness’ of a random number generator.

In graph theory, a graph is called pseudorandom if it obeys certain properties that
random graphs have with high probability. One of these properties is the number of 4-
cycles in the graph (Chung et al., 1989). Thus, understanding the distribution of cycles
on a random graph would shed light on when a graph is pseudorandom. Moreover, since
cycles lie in the kernel of the boundary map ∂ of the graph chain complex, this problem is
also interesting from a topological point of view (Carlsson & Vejdemo-Johansson, 2021).

7.2.3 Directed networks motifs

The idea of examining a particular subgraph structure, such as the clique in our investiga-
tion of random graphs, navigation graphs and Johnson graphs, is sometimes referred to in
the literature by the name network motif (Alon, 2007). As touched upon in the previous
sections, there are other intriguing candidates for network motifs, especially in the case
where the simple graph assumption is relaxed.

In this thesis, we studied the distribution of cliques in the Erdős-Rényi random graph
G(n, p), we used two tools: Bernoulli sums framework (Chapter 3), and a carefully con-
structed partition that captures the clique intersections (Chapter 4). While the Bernoulli
sums framework applies regardless of the assumptions made regarding the graph theoretic
structure, the disentanglement idea from Chapter 4 implicitly relies on all edges being
indistinguishable from one another. Therefore, to examine more nuanced network motifs,
such as the different triad isomorphism classes, further research is needed to describe how
collections of motifs overlap.
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Figure 7.2: The 15 non-trivial triad network motifs.

To the best of our knowledge, the only nontrivial isomorphism classes with fully derived
first and second order moments are the directed 3-cliques (Wasserman, 1977). Thus, the
nature of even relatively simple motifs in directed graphs remains unknown.

The interpretation of the various subgraphs that could appear in navigation graphs that
have a directed structure could be reminiscent of the one from graphical models, where
graph-based representations are used to capture the conditional dependencies between
random variables.

7.2.4 Random graphs with community structure

The framework from Chapter 3 appears to be a viable tool for attacking many problems
on random graphs. For instance, in networks where nodes are classified according to a
community structure, one might be interested in measuring the connectedness of nodes
within the same class.

The dyadicity DA of a class A in a network is a measure of the connectedness of nodes
within the same class compared to what it should be in a random configuration of the
network (that is, the average connectedness I would expect to see in a random graph
generated from G(n,NE)). So, if Yij records the adjacency of i and j, the dyadicity of A is

DA =

∑
{i,j}⊂A Yij(|A|

2

)
c

,

c is the network connectedness of G.

We derived the following expression for the first moment of edge dyadicity using the
tools we developed in Chapter 3.
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Theorem 7.2.1. Suppose that G is an inhomogeneous Erdős-Rényi graph on n nodes with
independent edge inclusions and where edge e is included in G with probability pe. Let
NE denote the total number of edges in G. Suppose that the nodes are partitioned into
communities A and B according to some sets A ̸= ∅ ≠ B. The expected dyadicity of A is

E(DA) =

(
n
2

)(|A|
2

) [P (
∑

{i,j}⊂A Yij = 0)P (
∑

{i,j}̸⊂A Yij = 0) +

∑
(m,ℓ)∈I

ℓ
m+ℓ

P (
∑

{i,j}⊂A Yij = ℓ) P (
∑

{i,j}̸⊂A Yij = m)
]
,

where I = {(m, ℓ) : m, ℓ ≥ 0, ℓ ≤
(|A|

2

)
,m+ ℓ ≤

(
n
2

)
, (m, ℓ) ̸= (0, 0)}.

Results of this nature indicate the expected behaviour of complex models for networks.
Deviations from the expected behaviour could be examined to detect anomalies in networks
using classic statistical inference.

Since homogeneous Erdős-Rényi graphs are a special case of inhomogeneous Erdős-
Rényi graphs, this result readily specializes. Moreover, as this only assumes two possible
classes for the group membership of the nodes, another direction for extending this result
is generalizing the number of classes to any finite number k. Lastly, there are many other
statistics of interest on these graphs, such as hetrophilicity and homophily and higher order
moments that appear to be tractable for derivation.

7.2.5 Algebraic combinatorics, networks, and infectious disease
modelling

There are many problems on random graphs that seem amenable to algebraic combinatorics
approaches. For instance, consider the seminal work of Newman et al. (2001) on the
probability generating series corresponding to various statistics on random graphs. By
using Lagrange’s celebrated implicit function theorem (Goulden & Jackson, 1983, Section
1.2), we overcame a computational challenge for the authors described below Equation (27)
Newman et al. (2001). Subsequently, we discovered new expressions for the corresponding
component size generating series of a network. We have since learned that this challenge
had been addressed by Newman using complex analysis (Newman, 2007) .

Nevertheless, we believe there is opportunity for further extensions. For instance, one
could examine these generating series through the lens of operations on probability gener-
ating functions as described by Miller (2018). This could lead to an algebraic approach for
the investigation of the spread of infectious diseases on networks with prescribed degree
distributions. In fact, this appears promising for practical applications due to the empirical
probability generating function’s flexibility as a tool for statistical inference of count data
Nakamura & Pérez-Abreu (1993).

Additionally, it would be interesting to identify other network structures that can be
uncovered by combinatorial decompositions. There are numerous combinatorial operations
on generating functions developed by classic combinatorics (Flajolet & Sedgewick, 2009;
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Goulden & Jackson, 1983) and the combinatorial theory of species (Bergeron et al., 1998)
that have been applied to graph theory. To the best of our knowledge, the approaches have
not yet been applied extensively to network theory.

7.3 Reflection

The research that motivated this dissertation began by experimenting with community
detection methods and their potential applications to navigation graphs. However, we re-
alized that the output of community detection algorithms could be too restrictive to identify
interesting, possibly unanticipated patterns in data. Community detection methods sepa-
rate variables into groups that can obfuscate patterns that may exist on overlapping cells
of nodes.

Thus, we investigated the graph theoretic archetype of a community: a clique. Despite
their simplicity, there are gaps in the research literature on their prevalence in random
graphs as well as their behaviour in generalized Johnson graphs. Nonetheless, the relation-
ships between variable graphs, Johnson graphs and certain models of navigation graphs
were amenable to an algebraic combinatorial investigation of cliques. The simplicity of
cliques and the relationship between navigation graphs and Johnson graphs led to several
discoveries, all of which were facilitated through algebraic combinatorial techniques.

Our investigation shows that navigation graphs arising under the Johnson graph model,
where m = k+1, have only two types of cliques and provide closed-form expressions for the
moments of clique counts in special cases. Moreover, this research presents a framework
for capturing the moments of count random variables, establishes a connection between
clique covers and intersecting families of sets and provides a characterization of the clique
structure of Johnson graphs.

In this research, we discovered connections between ostensibly different areas of math-
ematics. Statistics, algebraic combinatorics, graph theory, probability, and extremal set
theory are all a part of the unifying shape of the mosaic of this work. The problems, and at
times the tools, from these fields guided our investigation in a non-linear fashion, despite
the efforts undertaken here to tell a linear story.

We hope that the tools and problems discussed in this work inspire other researchers
to examine the wide variety of compelling problems in this rich area of research.
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