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Abstract 

Within a physiologically based pharmacokinetic (PBPK) model framework, virtual children are built 

based on known trajectories of anatomy and physiology across age and a compounds transfer within 

the body is defined by physicochemical and biochemical properties. Pediatric PBPK models have 

been used to derive doses for pediatric clinical trials and to assess risk of exposure to environmental 

chemicals. The identification of critical system- and compound-specific input parameters for pediatric 

PBPK modeling is crucial to applying this approach where pharmacokinetic (PK) data are limited. 

The objective of this study is to suggest a framework for the development of effective pediatric PBPK 

models by (i) identifying the most critical input parameters affecting the model precision as a means 

of targeting experimentation and by (ii) developing a workflow that combines available in silico 

prediction methods to estimate PK parameters in children. It is hypothesized that the framework for 

pediatric PBPK modeling will decrease the uncertainty associated with human health risk assessment 

in children.  

Pediatric PBPK models for 10 hepatically metabolized compounds were developed and their 

predictive performance was evaluated by comparing the predicted and observed PK values in 

children. Resonable prediction accuracy was demonstrated such that eighty-one percent of the 

comparisons between simulated and observed clearance values were within two-fold error. Through 

sensitivity analyses, the most important parameters for pediatric PBPK modeling were identified.  It 

was found that protein binding and clearance parameters were important for pediatric PBPK models. 

In light of these findings, prediction methods of plasma protein binding and clearance in children 

were chosen as the main topics of this dissertation.  

When experimentally determined plasma protein binding information is not available, quantitative 

structure–property relationship (QSPR) models can be used to predict fraction unbound in plasma 

(fup) in humans. Three available QSPR models were evaluated. The most important chemical 

descriptors for predicting fup were lipophilicity, positive polar surface area, and the number of basic 

functional groups. It was found that the prediction of fup was the most uncertain for highly bound 

compounds. The next step was to evaluate adult-to-children scaling algorithms (ontogeny models) for 

fup. The predictive performance of 4 ontogeny models for albumin and 5 ontogeny models for 

alpha1-acid glycoprotein (AAG) were evaluated. Plasma protein concentrations vs. age profiles 
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derived from non-linear equations (PK-Sim and Johnson et al.) were more in agreement with the 

observed levels than other models. Prediction accuracy of the ontogeny model depended on the 

appropriateness of the protein concentration vs. age profiles of ontogeny models particularly for 

highly bound compounds.  

For environmentally relevant compounds which are data-poor (e.g. information on physicochemical, 

toxicokinetic, and toxicological properties is not available), the prediction accuracy for fup prediction 

in children (fupchild) can be different than pharmaceuticals where experimental data such as fup in 

adults (fupadult) is often available. The prediction of fupchild for data-limited scenarios were evaluated 

with data-rich compounds such as pharmaceuticals as fupchild values are often available for those 

compounds. When QSPR-predicted fup in adult values were used as an input for predicting fupchild, 

over-predictions were observed for acids and neutrals with an average fold error (AFE) up to 8. The 

results indicated that an experimental determination of fup in adults was crucial.  

Two methods were proposed for predicting clearance (CL) in children from compound structure. The 

workflow utilizes QSPR models, protein binding ontogeny models and virtual pediatric individuals. 

Hepatic intrinsic CL, renal CL and fup in adults were estimated from a compound structure based on 

QSPR methods. Appropriate scaling methods were used to estimate CL in children. The QSPR-

predicted CL values showed an over-prediction with geometric mean fold error values ranging from 

1.9 to 3.29. When a predominant clearance pathway (e.g. hepatic metabolism or renal excretion) was 

predicted based on physicochemical properties of compounds and this information was used for CL 

prediction in children, the prediction accuracy was improved. The proposed workflow is considered 

to provide a reasonable estimation of clearance in pediatric population for human health risk 

assessment for data-sparse compounds. 

Prediction of dermal absorption in children is an important aspect in human health risk assessment. A 

pediatric dermal absorption model was developed by incorporating maturation functions into a MoBi 

implementation of the Dancik et al. 2013 skin permeation model. 

Adult models were first developed by optimizing key chemical specific parameters using the 

observed dermal absorption data in adults (e.g. in vitro permeation testing experimentation). For 

predicting dermal absorption in children, chemical-specific parameters in the model remained the 

same as in the adult model and age-dependent components of dermal absorption (e.g., skin layer 
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thickness and hydration) were scaled as a function of age. This model can be used to predict dermal 

absorption in children by taking into account the physicochemical properties of the drug and the 

maturation of skin physiology and anatomy. In order to incorporate the information on the maturation 

of skin physiology and anatomy, extensive literature search was conducted.  The predictive 

performance of the model was evaluated by comparing predicted and observed rate of dermal 

absorption for three compounds where IVPT data were available for neonates. The model described 

the trend of increased flux in neonates compared to adults. The predicted flux values were similar to 

the observed and predicted mean flux in neonates generally fell within the 90 percent prediction 

intervals.  More IVPT data in children are required for model evaluation, however, the preliminary 

assessment with the limited set of data demonstrated favourable outcome.  

The studies in this dissertation evaluated computational methods that can be used to estimate pediatric 

PK for data-sparse compounds (e.g. environmentally relevant compounds). The proposed workflows 

and developed models for estimating important PK parameters in children in this dissertation are 

considered to be useful in decreasing uncertainties associated with PK in children estimation from 

compound structure for environmentally relevant compounds. Furthermore, the proposed models are 

physiologically relevant and these models will help risk assessors to make informed decisions for 

human health risk assessment in children.  
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Chapter 1: Introduction and Background 

1.1 Physiology Based Pharmacokinetic (PBPK) modeling in Human health risk 

assessment  

 

Human Health Risk Assessment  
Human health risk assessment is a process to estimate a health risk in human or 
(sub-)population, following an exposure to a compound, by accounting for the inherent 
characteristics of the compound and the specific target system [1]. In risk assessment, a 
potential hazard is identified and the associated risks are estimated [2]. In human health risk 
assessment, the mode of action and probability of adverse health effects are evaluated in 
humans who are exposed to environmental toxicants. As a result, risk managers can use the 
results of the risk assessment and design and implement risk management approaches.  
 

For human health risk assessment, in order to estimate an acceptable chemical exposure limit 
or an allowable dose for humans, a dose-response relationship must be derived. This usually 
entails experimentation in animals where the dose-response relationship is evaluated and a 
point of departure (POD) for human extrapolation is determined such as a no-observed-
adverse-effect level (NOAEL), or a lowest-observed-adverse-effect level (LOAEL) (Figure 
1.1). In non-cancer risk assessment, the POD, as determined in animal experiments, is divided 
by an uncertainty factor (e.g. chemical specific adjustment factor (CSAF)) to derive an 
acceptable daily intake (ADI), reference dose (RfD), reference concentration (RfC), or 
tolerable daily intake (TDI) for humans [2-5]. For the protection of both healthy and 
susceptible human populations, the POD of interest is divided by a default uncertainty factor 
of 10 in order to address variations in interspecies (animal to human) and inter-individual 
(human to human) variations in toxicokinetics (TK)  or toxicodynamics (TD) [5-7]. The 10-
fold uncertainty factor for interspecies differences is subdivided into 4 (i.e. 100.6) for 
toxicokinetics and 2.5 (i.e. 100.4) for toxicodynamics. Whereas the 10-fold uncertainty factor 
for human variability is subdivided to 3.16 (i.e. 100.5)-fold subfactors for each of toxicokinetics 
and toxicodynamics (Figure 1.2) [8-10].  
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Figure 1.1 An example of dose-response curve and point of departures of LOAEL and NOAEL  

 
 
Although the default value of 3.16 has been approved by regulatory agencies, this value may 
not address the extent of human variability. The International Programme on Chemical Safety 
[11] provided a method to replace default uncertainty factors with CSAFs so that the 
uncertainty factor of 3.16 can be replaced when sufficient toxicokinetic and/or 
pharmacokinetic data are available in various populations [10, 12]. The CSAF is obtained by 
the ratio between the upper percentile value of a pharmacokinetic parameter and the median 
values in a population [10, 13].  In terms of the CSAF for susceptible populations, CSAF can 
be obtained by the ratio between the upper percentile value of a pharmacokinetic parameter in 
a susceptible subpopulation and the median value in the healthy population [13, 14]. For 
example, Ginsberg et al. [15] showed that the range of the half-life ratios between neonate and 
adults for 26 test compounds was 2 to 4 indicating that the TK ratio of some compounds 
exceeded the uncertainty factor of 3.16. In this case, the CSAF values derived from adult and 
neonate PK data can be used for risk assessment to account for internal exposure [11].  
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Figure 1.2 The derivation of CSAF via subdivision of uncertainty factors into TK and TD 

subfactors (Adapted from Meek et al. 2002 and Bhat et al. [6, 13])  

 
Physiologically based pharmacokinetic/toxicokinetic (PBPK/PBTK) models 
PBPK models are composed of integrative mathematical equations that quantitatively describe 
the processes of absorption, distribution, metabolism and elimination (ADME) of a compound 
in a biological system. The structure of a PBPK model represents an organism by defining 
compartments that correspond to different tissues such as heart, liver, kidney, bone, muscle, 
and spleen, etc (Figure 1.3). The organs are connected through the circulatory system and each 
compartment is defined by system-specific (e.g. volume, blood flow rate) or compound-
specific (e.g. plasma-to-tissue partition coefficient) parameters. Chemical movement between 
organs or organ compartments (e.g. vascular space, interstitial space) is represented with a 
mass-balance ordinary differential equation that describes changes in chemical concentration 
over time. The chemicals are subject to processes including the distribution into a compartment 
and the clearance from the compartment through processes such as metabolism or elimination.   
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Figure 1.3 An example of model structure of a PBPK model  

 
Application of PBPK models in human health risk assessment  
PBPK models are used to predict tissue and plasma concentrations of a substance for dose-
response analysis in animal toxicity or human toxicity studies [4]. Furthermore, PBPK models 
can facilitate many more applications in human risk assessment such as (i) interspecies 
extrapolation of equivalent doses, (ii) route-to-route extrapolation (iii) high-to-low dose 
extrapolation (iv) estimation of a tissue dosimetry from multi-route exposure and (v) screening 
and prioritization of chemicals [16-18].  
One of the main applications of PBPK models in risk assessment is in interspecies 
extrapolation. PBPK models can inform the determination of the CSAF for interspecies 
differences in toxicokinetics such that toxicokinetic data that is determined in animal species 
can be used for predicting toxicokinetic profiles in humans by accounting for chemical specific 
data and species-specific anatomy and physiology [17, 19]. PBPK models can also be used to 
predict toxicokinetically equivalent doses in animals and humans. An animal PBPK model is 
first constructed to estimate the internal exposure given an external dose of a POD in the 
animal. The internal exposure in humans is estimated in human PBPK models using human 
equivalent doses that are estimated from animal doses. As stated previously, interspecies 
differences are taken into account by system-specific physiologic parameters, therefore, no 
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additional TK adjustment factors are necessary if a PBPK model is used for extrapolation of a 
dose metric value [6]. 
 
Pharmacokinetic and toxicokinetic differences in the pediatric population 
As a result of the different rates of anatomic and physiological maturation or growth, ADME 
in children can be different from adults and harder to predict due to higher inter-individual 
variabilities [20, 21]. The metabolism, detoxification and excretion capacity in a system relies 
on the maturity of metabolizing enzymes and the function of a relevant organ [21]. For 
example, the activity of metabolic enzymes (e.g. cytochrome P450) and the renal elimination 
capacity is lower in neonates and infants [22] [23, 24]. The degree of protein binding to plasma 
proteins (e.g. human serum albumin) can differ in children as compared to adults. For example, 
plasma protein levels are lower in neonate leading to a higher unbound fraction in plasma than 
in adults. This can alter both the distribution and clearance processes [25]. In terms of the age-
dependence of absorption, a higher skin surface area per body weight in children and the 
prematurity of skin in neonates can cause a higher vulnerability to environmental toxicants 
[20]. Further, with respect to oral absorption  transit times [26, 27]  and solubility [28] may 
differ from those in adults. When children are exposed to chemicals, immaturity can lead to 
higher blood concentration levels and a longer duration in the body as compared to adults.  
 
By understanding the anatomy and physiology of children, the PBPK model can be used to 
integrate the interplay of numerous factors that are derived from growth and maturation. In 
drug development, PK data in children is often available whereas pediatric TK data is not 
available for human health risk assessment. Therefore, the use of pediatric PK data as derived 
in drug development allows for determination of process maturation that is responsible for 
compound disposition [25, 29, 30] and the use of those data to derive such age-related 
relationships benefits the development of virtual children that can be used in prediction of TK.     
 

Applications of PBPK models in the pharmaceutical sector 

In drug development, PBPK modeling can be used in multiple applications including (i) 
prediction of drug-drug interactions, (ii) initial dose selection in first-in-pediatric trials, (iii) 
initial dose selection in first-in-human trials, (iv) evaluation of formulation effects and (v) 
evaluation of the effects of disease (e.g. renal or hepatic impairment) [17, 31-36]  

Furthermore, PBPK models in pharmaceutical studies will advance with technology and the 
improvement in predictive algorithms that describe various biological processes. For example, 
in order to improve the limitation in describing inter-individual variability for advanced 
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parameter identification in PBPK modeling, a new approach [37-39] was developed by 
applying the Markov-chain Monte-Carlo algorithm (MCMC) [40]. The MCMC algorithm 
allows for the estimation of posterior distributions of individual specific PBPK parameters (i.e. 
both physiologic and compound specific parameters). By using clinical PK data and the 
explicit definition of physiological parameters as defined in PBPK models, virtual organisms 
will continue to better represent real organisms thus improving model confidence.  

  

A traditional method for predicting pediatric PK  

From a regulatory perspective, it is a challenge to plan and conduct pediatric PK/PD studies 
using a safe and therapeutically effective dose in these populations [41]. The design of the 
initial PK studies in children has been derived from PK properties in adults and adolescents 
using allometry [41, 42]. Allometric scaling describes the age-dependent difference in PK 
using by accounting for body size and metabolic rate. However, the low hepatic metabolic 
capacity in pediatrics is not taken into account [43]. Furthermore, allometric scaling is derived 
from interspecies analysis from adult animals, therefore, it may not be sufficient to describe 
age-specific differences [16]. It has been shown that PBPK results yielded a better prediction 
of clearance in children than the results estimated from allometry [44]. 

Pediatric PBPK/TK model  

From a regulatory perspective, a first-in-children dose selection for initial clinical studies are 
based on limited clinical data, therefore they can rely heavily on a pediatric PBPK model. As 
most pediatric PBPK models are developed using adult PK data [45-47] (Figure 1.3), the 
evaluation of adequate parameterization of variables that are related to growth and maturation 
is of most importance [5, 45, 48]  

The assumptions of pediatric PBPK models are (i) the clearance pathway(s) is/are the same in 
both adults and children, and (ii) the disease pathophysiology and progression are similar in 
adults and children and (iii) the disease state does not affect the maturation process as 
compared to healthy children [49]. Pediatric PBPK/TK models can facilitate (i) dose selections 
in first in children clinical studies, (ii) PK-safety assessment, (iii) drug-drug interaction 
prediction and (iv) the effect of diseases [45, 50]. PBTK models for environmental toxicants 
have been widely used in human risk assessment for pediatrics (e.g. BPA [51], isopranolol and 
vinyl chloride [12]) 
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Figure 1.4 Model building workflow for a pediatric PBPK model (Adapted from Edginton and 

Maharaj [47]) 

 

 

PK-Sim® 

PK-sim (Open Systems Pharmacology Suite)  [52] is a whole body PBPK modelling software 
that has a graphical user interface. PK-Sim includes the database of anatomical and 
physiological parameters of humans and laboratory animals [53]. A whole body model in PK-
Sim consists of 17 tissues that are composed of compartments including: plasma, red blood 
cells, interstitial as well as cellular space in a tissue. The PBPK model also takes into account 
different administration routes (e.g. subcutaneous or intravenous) and formulations (e.g. 
suspension or tablet) of a drug. Using the PK-Sim software for a pediatric model, the major 
maturation dependent processes such as metabolism (e.g. ontogeny of metabolizing enzymes) 
and excretion (renal clearance) are scaled to children [44, 45]. PK-Sim is an open-source 
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software (open-systems-pharmacology.com) that can facilitate many applications of PBPK 
modeling used in pharmaceutical studies and risk assessment.   

PBPK modelling platform evaluation in predictive performance  

As a PBPK model describes a complex biological system, it can have innate errors such as 
model structure errors and parameter uncertainties. Therefore, a model qualification should be 
performed for the intended use to increase the confidence in the model outcome. In terms of 
evaluating a PBPK model, (1) model structure, (2) mathematical representation of the 
biological processes (3) compound- and/or system- specific parameter estimation can be 
assessed for model qualification [16, 17]. The model adequacy of those components can be 
evaluated by comparing the model outputs (e.g. AUC) with the observed data. As a part of this 
study, model adequacy and predictive performance of PK-Sim for pediatric models will be 
investigated.  

Sensitivity analysis 

A PBPK model is mechanistic in nature with a set of equations that consists of numerous 
physiological and compound specific input parameters. In PBPK modeling, a sensitivity 
analysis can elucidate the relative contribution of single or multiple parameters (e.g. hepatic 
parameters or glomerular filtration rate) to a model output (predicted plasma concentration of 
a parent compound). Local sensitivity analysis measures how the model output changes by 
varying one parameter while keeping all other parameters constant. The sensitivity of the 
model output to the varied input parameter is calculated as the ratio of the relative change of 
that model output and the relative variation of the input parameter (Equation 1),  

Eqn (1) 𝑆௜௝ =
∆ಲೆ಴

ಲೆ಴
∆೛

೛

 

where Sij is a sensitivity coefficient, p is a parameter.  For example, a 20% change of a 
parameter results in a 20% change in a model output, then the resulting sensitivity coefficient 
is 1. Accordingly, the effect of an input parameter on a model output is regarded insignificant 
if the sensitivity coefficient is less than 0.1 [54]. In terms of global sensitivity analysis, all the 
input parameters are varied concurrently [55]. An example of a global sensitivity analysis on 
a PBPK model can be found in Malik et al. [56].  

Sensitivity analysis of a PBPK model can be used to inform human health risk assessment. For 
example, McLanahan et al. [57] developed the PBPK model that predicted inhibition of 
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thyroidal radioactive iodine uptake by an environment contaminant perchlorate for different 
age groups at the POD (7 µg/kg-day). The researchers determined through sensitivity analysis 
that the near-term fetus (40 gestational weeks) is the most sensitive to perchlorate as compared 
to other age groups.  

Limitations to the use of PBPK in drug development and in human health risk assessment 

Challenges in both drug development and human risk assessment are the prediction of human 
PK/TK profiles from animal data and adults to children extrapolation. The availability of the 
required input parameters for a PBPK model can be a barrier as those input parameters are 
often not available, especially during the risk assessment process. Therefore, the identification 
of the critical input parameters will target limited resources and lessen the burden of 
experiments allowing efficient PBPK modeling in those applications.  

 
 
 

1.2 Objectives 

Pediatric PBPK modeling can be used to simulate various exposure scenarios to environmental 

toxicants in children. It can also suggest a safe and therapeutic dose for pediatric clinical studies 

in drug development. Due to ethical constraints, the experimental determination of TK 

parameters in children is not possible. Therefore, pediatric PBPK modeling plays an important 

role to utilize the most of the limited data and to help make informed decisions for risk 

assessors. The hypothesis of this study is that identifying input parameters, within the PBPK 

structure, that are important to PK outcomes enables us to decide where resources need to be 

directed in pursuit of having high confidence in pediatric PBPK model outcomes. The 

objective of this study is to suggest a framework for the development of effective pediatric 

PBPK models by (i) identifying the most critical input parameters affecting the model precision 
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as a means of targeting experimentation and by (ii) developing a workflow that combines 

available in silico prediction methods to estimate PK parameters in children. It is hypothesized 

that the resulting framework for pediatric PBPK modeling will decrease the uncertainty 

associated with human health risk assessment in children.  

Chapter 2:  Model qualification of the PK-Sim® pediatric module for 

pediatric exposure assessment of CYP450 metabolized compounds 

2.1 Introduction 

In human health risk assessment (HHRA), uncertainty factors (UF) are applied to a point of departure 

(POD) such as a no-observed-adverse-effect level (NOAEL), or a lowest-observed-adverse-effect 

level (LOAEL) to derive relevant toxicological indices  such as tolerable daily intake (TDI) and 

average daily intake (ADI) [2, 11].  These factors serve a purpose of protecting healthy and 

potentially susceptible populations from exposure to contaminants such as children. The default 

uncertainty factor (UF) of 3.16 is used to address the toxicokinetic (TK) variability between adults 

and children [15, 17, 58]. However, this value might  be too low or high depending upon the 

properties of a chemical and/or the characteristics of individuals who are exposed to the chemicals 

[59], hence, the default factor may not be adequate or may be overly protective of a subpopulation. 

To improve this limitation and account for chemical-specific data, the default UF  may be replaced 

with a chemical-specific adjustment factor (CSAF) [10, 11]. A human kinetic adjustment factor 

(HKAF) is obtained by a ratio between the upper percentile (e.g. 95th) value of a pharmacokinetic 

parameter in a susceptible subpopulation and median value in the healthy population [13, 14]. As 

human TK data are scarce, physiologically based pharmacokinetic (PBPK) models might facilitate the 

estimation of a PK parameter in a population of interest such as infants or children and support 

determination of the HKAF. Examples of PBPK-based-HKAF include styrene [60], chloroform [61], 

toluene [62] and 1-4 dioxane [10].  

      PBPK models are composed of mathematical equations that quantitatively describe the processes 

of absorption, distribution, metabolism and excretion (ADME) of a compound in a biological system 
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[63]. The structure of a PBPK model represents an organism by defining compartments that 

correspond to different tissues such as heart, liver, kidneys, bone, muscle, and spleen. The organs are 

connected through the circulatory system and each compartment is defined by system-specific (e.g. 

volume, blood flow rate) or compound-specific (e.g. plasma-to-tissue partition coefficient) 

parameters. Chemical movement between organs or organ compartments (e.g. vascular space, 

interstitial space) is represented with a mass-balance ordinary differential equation that describes 

changes in chemical concentration over time. The chemicals are subject to processes including the 

distribution into a compartment and the clearance from the compartment through processes such as 

metabolism or elimination.   

One of the advantages of using PBPK to define the dose-exposure relationship is its ability for 

extrapolation, for example between adults and children [64]. By understanding the anatomy and 

physiology of children, the PBPK model may be used to integrate the interplay of numerous factors 

that are derived from growth and maturation. The metabolism and excretion capacity of a system 

relies on the maturity of metabolizing enzymes and the function of a relevant organ [21]. For 

example, the activity of metabolic enzymes (e.g. cytochrome P450 (CYP)) and the renal elimination 

capacity is lower in neonates and infants [22, 23, 65]. The degree of protein binding to plasma 

proteins (e.g. human serum albumin) can be different in children compared to adults. For example, 

plasma protein levels are lower in neonates leading to a higher unbound fraction in plasma than 

adults. This may  alter both  distribution and clearance processes [25]. In terms of the age-dependence 

of absorption, a higher skin surface area per body weight in children and the prematurity of skin in 

neonates might result in higher vulnerability to environmental toxicants [20, 58]. Further, with respect 

to oral absorption, solubility may differ from those in adults due to developmental changes in 

gastrointestinal fluid composition [28, 66]. When children are exposed to chemicals, immaturity 

might lead to higher blood concentrations and a longer half-life in the body compared to adults.  

When building PBPK models applicable to children, little, if any, information is usually available to 

evaluate the model outcomes. The process of model qualification aims to demonstrate that the model 

inputs (e.g. organ volumes, enzyme concentrations) are reasonable representations of reality that will 

ideally lead to a reasonable prediction accuracy of the model for an intended use, such as predicting 

pediatric systemic exposure. As pediatric PBPK models play a key role in decision making for 
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regulatory purposes in both the pharmaceutical sector (e.g. first-in-children dose recommendation 

[36, 67]) and human health risk assessment (e.g. PBPK-based-CSAF determination [10]), model 

qualification has become a topic of intense discussion [34, 68]. Model qualification is prominently 

featured in the European Medicines Agency guideline on the reporting of PBPK model and 

simulation with special attention paid to model qualification for pediatric PBPK models based upon a 

regulatory impact. In light of this, many academic and industry groups have made an effort to 

demonstrate the predictive performance for adult-to-children PK extrapolation [69-71].  

PK-Sim is an open-source PBPK modeling tool within the Open Systems Pharmacology Suite (open-

systems-pharmacology.org). While historically this software was a commercial product of Bayer Inc., 

as of 2017, it has been made freely available. There is significant  push from within Bayer and 

throughout the community to qualify the platform [68, 72]  and therefore increase certainty in the 

model structure and parameters contained therein.  

        Prediction of PK in children may be dependent upon a PBPK model’s integrity to describe the 

effects of maturation and growth by combining relevant anatomic, biochemical and physiologic 

parameters at specific age stages with compound-specific parameters. The aim of this study was (i) to 

determine the appropriateness of the virtual individual creating algorithm in PK-Sim® in predicting 

PK parameters and their variability in children by comparing a model output, clearance, to observed 

data and (ii) to identify critical system-specific input parameters within a pediatric PBPK model 

structure for estimating exposure in children via a sensitivity analysis. 

 

2.2 Methods  

2.2.1 Compound selection and data collection  

Compounds that are mainly metabolized by hepatic CYP enzymes were included in this study. 

Because the predictive capability of the platform was assessed by generating pediatric PK outputs, a 

full set of input data was required. The required data for building and evaluating a pediatric PBPK 

model included: 

physicochemical data (e.g. lipophilicity (LogP), acid-base properties (pKa), water solubility) 
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fraction unbound in plasma in adults (fup) 

plasma concentration vs. time profiles in adults  

fraction excreted unchanged in urine (fe) 

metabolism information (fraction metabolized, contributions of each metabolism process, enzymes 

involved)  

         The input parameters for each compound-specific pediatric PBPK model are listed in Table 2.1. 

All included compounds were pharmaceuticals. For these compounds, all required inputs listed above 

were available. Table 2.2 presents clinical studies that provided PK data for model development and 

evaluation. The collected compound-specific data and adult data was used for model development 

and the pediatric data was used for model evaluation. Pediatric data are categorized based upon age as 

follows:  neonates or newborns are from 0 to <1 month, infants are 1 month to <2 years, children are 

from 2 years to <12 years and adolescents are 12 years to <18 years. PK profiles following 

intravenous (IV) administration were used with priority in order to accurately characterize 

distribution volume and clearance. When only pediatric PK profiles following an oral administration 

(PO) were available in the literature, both observed IV and PO profiles were used to characterize PK 

properties in adults. The simulation of PO profiles from the same formulation was employed in both 

adults and children. The numerical values of plasma concentration-time profiles in adults from the 

literature were obtained by using PlotDigitizer [73]. The mean and standard deviation of clearance 

values in pediatric clinical studies were obtained from the literature. When only a range was 

available, a standard deviation was estimated from the range based on an estimating equation 

(Supplementary Material Table S1.) in Hozo et al. [74].  
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Table 2.1 Compound-specific input parameters for PBPK model development 

Compound LogP  

(reported a / 

optimized) b 

Molecular 

Weight 

(g/mol) a 

pKa a fup Water 

solubility a 

Specific 

clearance 

(min-1) b,c 

ADME  

 

Refer

ence 

Alfentanil 2.16 /1.69 416.5 7.5 0.1 34.60 mg/L CYP3A4 0.47  [75, 

76] 

Diclofenac 1.90 /1.35 296.1 4.0 (acid) 0.003 2.37 mg/L CYP2C9 460.0  [77-

79] 

Esomeprazole 0.6/ 1.34 345.4 9.68 

(acid)/ 

4.77 

(base) 

0.03 0.353 

mg/mL 

CYP2C19 5.6  

CYP3A4  

0.5  

CYP2C19 inhibition  

Ki b, c 7.5µmol/L 

[80] 
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Itraconazole 5.66/ 4.80 705.6 3.7  0.006 

 

9.64 mg/L  CYP3A4   

90.6 

 

 

 

Ki b of  itraconazole and 

hydroxy- itraconazole on 

CYP3A4 were 0.35 and 0.38 

  nmol/L, respectively 

 

[81] 

 

Lansoprazole 1.9 / 1.0 369.4 8.84 

(acid), 

4.15 

(base) 

0.03 0.97 mg/L CYP2C19 5.1  

CYP3A4  

0.5 

 [82, 

83] 

Midazolam 3.33/ 3.03 325.8 6.15 

(base) 

0.02 49 mg/L CYP3A4 3.9  [84, 

85] 

Ondansetron 2.4 / 1.59  293.4 7.34 

(base) 

0.27 0.36 mg/L CYP3A4 0.02  

CYP1A2 0.13 

Fe d < 5% [86, 

87] 

Sufentanil 3.95 / 2.56 386.6 8.01 

(base) 

0.12 76 mg/L CYP3A4 4.57   [81, 

88-90] 
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Lipophilicity (LogP), Molecular weight, pKa and solubility values taken from Drugbank [96]. 

LogP, specific clearance and Ki parameters were optimized based on plasma concentrations vs. time profiles in adults and used for pediatric model 

development.  

Fraction metabolized values from Zhou et al. were applied [70].   Specific clearance is the internal clearance unit of PK-Sim (Specific clearance = 

intrinsic CL / (liver volume * fraction intracellular))  

Ki: dissociation constant of the enzyme-substrate-inhibitor complex  

Fe: Fraction excreted unchanged in urine.  

  

Theophylline -0.02 / 1.23 180.1 8.81 (acid) 0.4 7360 mg/L CYP1A2 0.03 

CYP2E1 0.002 

Fe 0.25  [91-

93] 

Tramadol 2.4 / 1.90 263.4 9.41 0.8 0.75 

mg/mL 

CYP2D6 0.31 

CYP3A4 

0.03 

CYP2B6 

0.02 

 [94, 

95] 
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Table 2.2 Clinical study data that were used for PBPK model development and evaluation  

Compound  Age Group Age  

Mean ± SD 

[range] 

Weight (Kg) Number of 

subjects  

Administration 

protocol  

Reference 

Alfentanil Adults 28.5 ± 4.8 yr  

 

83.5 ± 11.2 10 IV infusion over 10 

min, 15 mg 

[97] 

 Adults 45 ± 13 yr 59 ± 14 10 IV bolus, 50µg/kg [98] 

 Adults 31.3 ± 3.8 yr 

 

 

NA 5 IV bolus, 20µg/kg 

 

[99] 

 

 Adults 38.2 [18-62] yr  61.3 ± 8.1  6 IV bolus, 50µg/kg [76] 

 Children 5.4 ± 1.1 yr 

  

21 ± 3  8 IV bolus 20µg/kg [99] 
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 Infants 0.73 ± 0.29 yr 6.12 ± 1.48 6 IV bolus 20µg/kg 

followed by 

1µg/kg/min  

[100] 

 Children 4.05 ± 2.83 yr 15.81 ± 6.85  6 IV bolus 20µg/kg 

followed by 

1µg/kg/min 

[100] 

 Infants 0.74 ± 0.51 yr 8.08 ± 2.58 7 IV infusion for 0.5 min, 

50 µg/kg 

[101] 

 Children  6.7 ± 4.28 yr 23.58 ± 

11.08  

6 IV infusion for 0.5 min, 

50 µg/kg 

[101] 

 

Diclofenac  Adults  [20-22] yr NA 7 IV, 50mg   [102] 

Adults  ≥ 18 yr NA 22 IV infusion for 30min, 

75 mg 

[103] 

Children 5.4 ± 0.6 yr 19.6 ±1.1 5 IV infusion for 5 min  [104] 

Children 5.1 ± 1.0  19.8 ± 1.1  5 IV infusion for 15 min  [104] 
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Esomeprazole 

Adults NA NA 32 IV infusion over 30 

min, PO, 20 or 40mg  

[105] 

 

Adults [20-39] yr NA 24 IV infusion over 3 ~30 

min, 20 or 40 mg 

[106] 

 Adults NA NA 8 PO 40mg  [80] 

 Newborn 1 mo 3 ± 0.6 6 IV, 0.5mg/kg [107] 

 Infants [1-11] mo 6.1 ± 1.1 6 IV, 1 mg/kg  [107] 

 Young Children [1-5] yr 15.3 ± 5 7 IV, 10 mg [107] 

 Children [6-11] yr 33.1 ± 9.8 8 IV, 10 mg [107] 

 Children [6-11] yr 34.4 ± 15.6 8 IV, 20 mg [107] 

 Adolescents [12-17] yr 57.6 ± 12.1 6 IV, 20 mg [107] 

 Adolescents [12-17] yr 52.2 ± 4.9 6 IV, 40 mg [107] 

Itraconazole 

Adults 43.2 ± 6.7 yr 

 

NA 18 IV infusion over 1 hr,     

50, 100, 200 mg  

[108] 
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Adults NA NA 6 IV infusion over 1 hour, 

100 mg  

[109] 

 

Infants [0.7-2.0] yr 9.1 

 

6 IV infusion over 1 hr, 

2.5 mg/kg  

[110] 

 

Children [2.2-5.6] yr 18.2 9 IV infusion over 1 hr, 

2.5 mg/kg  

[110] 

 

Children [8.0-11.0] yr  28.8 7 IV infusion over 1 hr, 

2.5 mg/kg  

[110] 

 

Adolescents [12.3-16.9] yr  55.1 11 IV infusion over 1 hr, 

2.5 mg/kg  

[110] 

Lansoprazole 

Adults [26-48] yr  NA 12 IV infusion over 10 

min, 15 mg 

PO 15 or 30 mg.  

[111] 

 Adults [19-53] yr NA 36 PO 15 or 30 mg  [112] 

 Adults [29-54] yr NA 12 PO 15 or 30 mg [113] 
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 Neonates  [1-19] wk 3.0 ± 0.89 24 PO 0.5, 1.0  mg/kg [114] 

 Infants  [6-54] wk 6.4± 1.5 24 PO 1.0, 2.0 mg/kg [114] 

 Children [0.21-13.54] yr NA  18 PO 17 mg/m2  [115] 

Midazolam Adults [22-27] yr 55-77 6 IV bolus 0.15 mg/kg [116] 

 Adults [21-22] yr 66-78 6 IV 5mg  [117] 

 

Young Children 2.5  

[1.75-4] yr 

 

14.6  

[11-17] 

6 IV bolus 0.2mg/kg [118] 

 Infants [0.5-2] yr NA 5 IV bolus 0.15 mg/kg [119] 

 Children [2-12] yr NA 14 IV bolus 0.15 mg/kg [119] 

 Children [12-16] yr NA 2 IV bolus 0.15 mg/kg [119] 

 Children 5.52 ± 1.87 yr 17.3 ±4.43 8 IV bolus 0.15 mg/kg  [120] 

Ondansetron Adults [20-69] yr 
NA 

6 
IV infusion over 5 min, 

8mg 
[121] 
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Adults NA NA 12 IV infusion over 20 

min, 24mg  

[122] 

 

Adults [18-40] yr  NA 16 IV infusion over 15 

min, 8mg 

[123] 

 

Infants [1-24] mo 7.1 a [3.3 -

12]  

50  IV infusion over 0.5 

min, 0.1 or 0.2 mg/kg 

[124] 

 

Children [3-7] yr 20.4 a [15.2-

26.0]  

 

10 IV infusion over 5min, 

2mg  

[125] 

 

Children [7-11] yr 37.1a 

[20.3-51.2] 

 

11 IV infusion over 5min, 

4mg 

[125] 

Sufentanil Adults [22-64] yr NA 10 IV bolus 5 µg/kg [126] 

 

Adults 58 ± 13.9 yr 

 

NA 10 IV bolus 150 µg [127] 
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Adults [27-45] yr NA 6 IV bolus injection 3 

µg/kg 

[128] 

 

Infants 5.2 ± 2.1 mo 5.3 ± 1.1 7 IV infusion for 1 min, 

15 µg/kg 

[129] 

 

Infants 15.5 ± 5.2 mo 8.9 ± 1.6  6 IV infusion for 1 min, 

15 µg/kg 

[129] 

 Neonates 1 mo 3.2 ± 0.36 9 IV bolus, 10 - 15 µg/kg [130] 

 Infants [1 – 23] mo 8.7± 3.1  7 IV bolus, 10 - 15 µg/kg [130] 

 Children [2-11] yr 21 ± 6.71 7 IV bolus, 10 - 15 µg/kg [130] 

 Adolescence [13-18] yr 58.4 ± 9.50 5 IV bolus, 10 - 15 µg/kg [130] 

 Children [2 – 9] yr 19.1 ± 5.2    20 IV bolus, 1 – 3 µg/kg [131] 

Theophylline Adults [19-35] yr 
NA 

16 
IV infusion over 30min, 

4.5 mg/kg 
[132] 

 

Adults [24-33] yr NA 12 IV infusion over 8 

hours, 506 mg 

[133] 
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Infants [3-23] mo NA 

 

15 IV infusion over 20min, 

7mg/kg 

[134] 

 

Infants- Children [1.3 – 4.4] yr 12.5 ± 2.1  10 IV infusion over 5min, 

3.2mg/kg 

[135] 

 

Children [7-12] yr NA 8 IV infusion over 5min, 

2-4 mg/kg 

[136] 

Tramadol 

Adults 30.1 ± 7.3 71.9 ± 11.8 12 IV infusion over 30 

min, 50  mg  

[137] 

 

Adults [23-40] yr NA 12 IV infusion over 30 

min, 50 mg 

[138]  

 

Infants [1.1-6.58] yr 13.3 ± 5.2 9 IV bolus, 2mg/kg  [139]  

 

Yr: year, mo: month, wk: week, NA: Not available, IV: intravenous, PO: oral 

a median   
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2.2.2 Model development  

The established workflow for development of a pediatric PBPK model is described in Maharaj and 

Edginton [47] and Maharaj, Barrett [46].  Adult models were first developed based upon compound-

specific physicochemical data and in vitro observations such as plasma protein binding and 

metabolism/excretion. Using observed PK results from clinical studies, key compound-specific 

parameters that were influential to the PK profile and deemed uncertain, such as lipophilicity (i.e. 

LogP) and specific clearance, were numerically optimized in PK-Sim (version 7.3). For a better 

characterization of clearance and distribution, a plasma concentration vs. time profile following a 

single IV dose was preferably used over PO. When only pediatric PK findings following an oral 

administration were available, adult IV data was first used for optimization of systemic parameters. 

Second, an adult PO model was created by adjusting parameters only related to the absorption process 

(e.g. intestinal permeability and dissolution time). The parameters of adult PO models were used for 

PK prediction in children following an oral administration. For the prediction of tissue: plasma 

partition coefficients, a major predictor of distribution,  Rodgers and Rowland [140]  and  Rodgers et 

al. [141]  method was used.  

 The goodness of fit of adult models were first assessed via visual inspection of superimposing 

observed and simulated plasma concentration time profiles. The two profiles were compared by 

examining similarity in maximum concentration (Cmax), time to reach Cmax (for PO), and slope of 

the curve in the elimination phase. Second, concordance correlation coefficients were calculated 

[142] to assess an agreement between observed and simulated plasma concentration vs. time profiles 

in adults.  

 The drug-specific properties, as defined in the adult model, were directly used in the pediatric 

models. In these models, the dose and route of administration employed for simulation were similar to   

the clinical study design as presented in Table 2.2. To simulate the dose-exposure relationship in 

children, virtual pediatric individuals (n=100) were created by setting the same ranges of age, body 

weight and height (if available) of the children in the available pediatric clinical studies. When ranges 

of age, weight and height of a desired population are provided, virtual individuals are created with 

varying physiological parameters such as organ volumes, blood flows and organ volume fractions of 

protein, water and lipids based upon the underlying database (e.g. International Commission on 
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Radiological Protection (ICRP) [143] study [144]. The algorithm for development of virtual 

populations, as implemented in PK-Sim, is described in principle in Willmann et al. [144]. The age 

dependence of physiological and anatomical parameters for pediatric individuals is presented  in 

Edginton et al. [45]. For each created virtual individual, PK parameters such as volume of 

distribution, AUCinf, Cmax, time to reach Cmax (Tmax), Half-life (t1/2) and clearance were output. 

 In this study, 10 drug-specific PBPK models were developed and several assumptions are 

listed below.    

The clearance pathway(s) was/were the same in both adults and children and the main driver of the 

metabolism of compounds were CYP enzyme mediated as listed in Table 2.1. In other words, the 

effect of other possible metabolizing enzymes (e.g. monoamine oxidases) were deemed negligible 

[145, 146] due to a broad substrate specificity.   

The effects of a disease state did not markedly alter PK properties in children. In contrast to adult 

studies, pediatric investigations are often conducted in pediatric patients, therefore, a disease state 

might alter the PK properties in children. For example, during infectious disease, inflammation is 

associated with down-regulation of CYP enzymes [147]. Regardless, the influence of a disease on 

CYP enzyme mediated metabolism was not taken into account.   

Genetic variations (polymorphism) were not taken into account. Due to point mutations or genetic 

alterations, enzyme functionality  varies  [148, 149]. In this study, it was assumed that genetic 

variation was not significant to alter PK properties in either adults or children. 

2.2.3 Model qualification strategies  

2.2.3.1 Evaluation of predictive performance and model precision  

In order to assess the appropriateness of the virtual individual creating algorithm in PK-Sim for 

predicting PK parameters and their variability in children, 100 virtual individuals with similar ranges 

of age, weight and height were created and their predicted PK parameters compared to the observed 

data. The calculated PK parameters and characteristics of virtual individuals including age and body 

weight were exported from PK-Sim. One-hundred bootstrap replicates [150] using the 100 virtual 

individuals were created with the same sample size of the clinical study (n = 5 ~12). The calculation 
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of mean and standard deviation values of bootstrap samples of PK parameters from the virtual 

population were processed in R [151]. The mean and standard deviation of clearance values of all 

bootstrap replicates were then compared to those of the observed data and the ratio of predicted CL to 

observed CL calculated. An example of the comparison of CL between the bootstrap replicates and 

observed data are presented in Figure 2.1. The mean fold error (MFE) of predicted to observed CL 

values was calculated for each bootstrap replicate using equation 1: 

 

Eqn. (1) 𝑀𝐹𝐸 =
ଵ

௡
∑

௣௥௘ௗ೔

௢௕௦
௡
ଵ   

 

where predi is a predicted CL value in i-th bootstrap replicate and obs is an observed mean CL value. 

The mean of bootstrap means is the same as the sample mean. MFE values within a 2-fold error range 

(i.e. 0.5 ≤ MFE ≤2) were regarded to be a reasonable prediction. 

 In a second instance, the %   bootstrap replicates with a ratio of mean CL values within 2-fold 

error of deviation (% within 2-fold) was calculated such that, among 100 comparisons, the number of 

events that the ratio of mean CL values of each replicate and the observed value was within the range 

of 0.5 to 2 was counted and expressed as % (For example, predicted mean values within the dotted 

lines in Figure 2.1).  

  



 

28 

 

 

 

Figure 2.1 An example of a comparison between arithmetic means and SDs of CL values of the 

observed data and 100 bootstrap replicates. Dots indicate arithmetic means and solid vertical 

lines represents SDs. The blue dotted lines are the range of 2 fold error of deviation. Diclofenac 

data was presented. The observed data in children (CL: 7.8 ± 1.5 ml/min/kg) was obtained from 

Korpela and Olkkola (1990).  

 

 Third, as an additional measure to evaluate the predictive performance of pediatric PBPK 

models in CL prediction, a two sample Student’s T-test was performed to compare the mean CL 

values of the bootstrap replicates to a mean observed CL value from clinical study data. This was 

assessed if the two populations (i.e. virtual vs. real pediatric individuals) exhibited an equal mean for 

CL given the same sample size. Among 100 comparisons, the number of events that a mean CL value 

of each replicate and an observed value were not statistically different at the significance level of α = 
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0.05 was counted and converted to %.  This metric reflects the probability of predicting a reasonable 

PK parameter value for compounds that are metabolized by CYP enzymes in a certain pediatric age 

group using PK-Sim. When observed SDs of CL values were unavailable, this analysis was not 

applicable.  

 Fourth, in order to assess if the PBPK approach could capture CL variability, the observed 

(Eqn. 2) and predicted (Eqn. 3) coefficient of variation (CV) was calculated. The median and range of 

CVpred from the bootstrap was also obtained.  When CVobs was within the range of CVpred,i, CL 

variability was deemed reasonably predicted. This comparison was only applicable in cases where 

observed mean and standard deviation (or the range of CL values) were available. 

 

Eqn. (2) 𝐶𝑉௢௕௦ =  
௦௧௔௡ௗ௔௥ௗ ௗ௘௩௜௔௧௜௢௡ ௢௙ ௢௕௦௘௥௩௘ௗ ஼௅ ௩௔௟௨௘௦ 

௠௘௔௡ ௢௙௢௕௦௘௥௩௘ௗ ஼௅ ௩௔௟௨௘௦ 
 

 

Eqn. (3) 𝐶𝑉௣௥௘ௗ,௜ =  
௦௧௔௡ௗ௔௥ௗ ௗ௘௩௜௔௧௜௢௡ ௢௙ ௣௥௘ௗ௜௖௧௘ௗ ஼௅ ௩௔௟௨௘௦ ௜௡  ௜೟೓ ௕௢௢௧௦௧௥௔௣ ௥௘௣௟௜௖௔௧௘

௠௘௔௡ ௢௙ ௣௥௘ௗ௜௖௧௘ௗ ஼௅ ௩௔௟௨௘௦ ௜௡ ௜೟೓ ௕௢௢௧௦௧௥௔௣ ௥௘௣௟௜௖௔௧௘
  

 

 

2.2.3.2  Critical Parameter Identification [Sensitivity analysis] 

In order to identify the most critical parameters for accurately predicting the PK parameters in both 

pediatric and adult PBPK models, virtual newborn (1-month-old), infant (2-year-old) and adult (30-

year-old) individuals were created. A simulation was performed separately for these individuals for 

each compound with the same administration protocol (1 mg, iv infusion of 5 min). When only PO 

models were available, the dosing was set at 1 mg and the same formulation setting was maintained  

as used in the model. The local sensitivity analysis was carried out using PK-Sim. To calculate the 

sensitivity of a model output of interest, an input parameter was altered ± 10 % [152, 153]. With the 

altered input parameter, simulation was conducted while all other parameters in the model remained 

unchanged. The sensitivity of the model output to the varied input parameter was calculated as the 

ratio of the relative change of that model output and relative variation of the input parameter (Eqn. 4).  
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Eqn. (4) Sensitivity coefficient (SC) =
∆ು಼ ೛ೌೝೌ೘೐೟೐ೝ

ು಼ ೛ೌೝೌ೘೐೟೐ೝ

∆೔೙೛ೠ೟ ೛ೌೝೌ೘೐೟೐ೝ

೔೙೛ೠ೟ ೛ೌೝೌ೘೐೟೐ೝ

 

The input parameters were ranked based upon the resulting sensitivity coefficient values. Critical 

input parameters were identified by following criteria: 

(i)  parameters with SC values higher than 0.45 in newborn, infant and adult models were considered 

critical for   PK parameter of interest for the compound.  

(ii)  parameters that were differentially sensitive with respect to age were identified by comparing the 

sensitivity coefficient values of infant or newborn to that of an adult (i.e. the sensitivity coefficient of 

a newborn or an infant is 30% higher than that of an adult).  

The outcome of this analysis provided an understanding of the most critical and/or age-sensitive 

model parameters for the simulated compounds. 

 

2.2.3.3  Evaluation of characteristics of virtual pediatric individuals 

Ten thousand virtual pediatric individuals  aged between 0 and 18 years (only criteria used) were 

created and based upon the ICRP [143] population. The mean and standard deviation of weight, 

height and age of children in the clinical studies were obtained as listed in Table 2.2 and compared to 

the virtual population. The observed data for liver volume in children were taken from Johnson et al. 

[154]. A visual inspection was performed to compare the observed liver volume in children and 

simulated values in virtual individuals.  

2.3 Results  

2.3.1 Predictive performance of pediatric PBPK models  

Pediatric PBPK models were developed for 10 compounds that are primarily metabolized by CYP 

enzymes. These models were based upon an adult PBPK model for each compound (Supplemental 

Material Figure S1). The obtained input data from literature and optimized parameters from the adult 

model development process are summarized in Table 2.1. The goodness of fit was assessed based on 

graphical comparison between observed and simulated PK profiles. In addition, the simulated plasma 
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concentration vs. time profiles in adults were in a good agreement with the observed data with 

concordance correlation coefficients ranging from 0.75 to 0.98 (Supplementary Material Table S2).   

 The predictive performance of the models was determined by comparing the model output 

(i.e. CL) to the observed data from pediatric clinical investigations (Table 2.2). The calculated metrics 

(e.g. MFE, % within 2-fold error of deviation) for assessing the performance of pediatric PBPK 

models with respect to age groups are summarized in Table 2.3. Overall, 81% of 43 comparisons 

between simulated and observed CL were within 2-fold error of deviation and 56% of 40 comparisons 

of predicted vs. observed mean CL were not markedly different according to the Student’s T-test at 

the significance level of α=0.05.   

Table 2.3 Predictive performances of pediatric PBPK models  

Compound Age Group Mean Fold error 

(MFE) 

% Within 2 fold 

error 

% Equal means 

via  

T-test (α =0.05) 

Alfentanil Infants 0.6 78 30 

Alfentanil Children 1 99 74 

Diclofenac Children 1.2 100 90 

Esomeprazol

e 

Neonates 

1.7 87 67 

Esomeprazol

e 

Infants 

1.1 100 100 

Esomeprazol

e 

Children 

1.8 54.7 47.7 

Esomeprazol

e 

Adolescent

s 1.6 95.5 22 
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Itraconazole Infants 0.4 10 4 

Itraconazole Children 0.5 61.5 69.5 

Itraconazole Adolescent

s 0.3 0 0 

Lansoprazole Neonates 2.4 9.5 5.5 

Lansoprazole Infants 0.6 68 47.7 

Lansoprazole Children 0.8 100 66 

Midazolam Infants 0.6 95 100 

Midazolam Children 0.8 99.5 85.5 

Ondansetron Infants 0.7 100 N/A 

Ondansetron Children 1.2 100 N/A 

Sufentanil Neonates 0.7 100 100 

Sufentanil Infants 0.7 72 43 

Sufentanil Children 0.8 100 32.7 

Sufentanil Adolescent

s 0.9 100 100 

Theophylline Infants 1 100 99 

Theophylline Children 0.7 100 58 

Tramadol Children 1.6 95 26 

N/A: Not applicable as observed standard deviation values were not available. 
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 To assess predictive accuracy as a function of age group, studies were sub-divided. In this 

investigation, observed CL data from 4 groups of adolescents, 23 groups of children, 12 groups of 

infants, 4 groups of neonates were compared to simulated CL values (Figure 2.2). The mean fold 

error of deviation by age group was 1.1, 1, 0.7 and 1.8 in adolescents, children, infants and neonates, 

respectively (Figure 2.3). Overall, pediatric PBPK models constructed in PK-Sim resulted in CL 

values within 2-fold error of deviation for adolescents, children and infants, with a few exceptions. In 

the case of alfentanil, diclofenac, midazolam, sufentanil, ondansetron, theophylline and tramadol, 

pediatric PBPK models reasonably predicted CL values with MFE within 2 fold error and % within 2-

fold error higher than 70% (Table 2.3). Notably, % equal means were lower than % within 2-fold 

error in most cases. The MFE values are categorized by primary CYP enzyme and presented in Figure 

2.4. For the compounds that are metabolized by CYP 1A2, 2D6, 2C8, 2C9 and 3A4, the clearance 

values were in concordance with the observed data with MFE values within the 2-fold range. The 

compounds that are metabolized by CYP2C19 and CYP3A4 showed high variability in terms of CL 

prediction accuracy.  
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Figure 2.2 Comparison between predicted CL values from virtual pediatric individuals and 

observed data from clinical studies. The symbols represent means and the lines are standard 

deviations.  

  

 

  

 

Figure 2.3  Mean fold error (MFE) for clearance in different age groups. Each black letter is a 

MFE value that indicates a comparison of CL between a pediatric study as defined in Table 2.2 

and a virtual study created in PK-Sim. The red dot is the mean of the MFE values in each age 

group and the red line is the range.  The grey horizontal line shows the range of a 2-fold error.  
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Figure 2.4 Mean fold error (MFE) for clearance stratified by the major metabolizing CYP 

enzyme.   Each colored letter is a MFE value that indicates a comparison of CL between a 

pediatric study as defined in Table 2.2 and a virtual study created in PK-Sim. The MFE value 

was labeled with different color and letters such that pink letters are adolescents, green letters 

are children, blue letters are infants, and purple letters are neonates. The red symbols are the 

mean of the MFE values in each group and the red line is the range. The grey horizontal line 

shows the range of a 2-fold error.  

 

 

A comparison between observed and predicted CL variabilities is presented in Figure 2.5. Observed 

standard deviations of CL values were not available for ondansetron. For 28 of 40 (70%) 

comparisons, CVobs was within the range of CVpred. For 11 out of 40 comparisons, CVobs was 

larger than CVpred and for 1 out of 40 comparisons, CL variability was over-estimated when 

compared to observed CL variability. 
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Figure 2.5 Age and drug-specific coefficients of variation for CL.  The symbols represent observed (circles) and predicted (triangles) 

coefficients of variation. The lines are the range of CV values from the bootstrap samples of virtual individuals and the triangle is the 

median CV. 
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2.3.2 Sensitivity analysis  

 The sensitivity analysis was performed for all constant input parameters (i.e. not derived by 

equations such as tissue: plasma partition coefficients). The focus of this analysis was to evaluate the 

sensitivity of the area under the plasma concentration vs. time profile from 0 to infinity (AUCinf) to 

model parameters (Appendix 1). AUCinf is the critical exposure metric.  

Parameters with high sensitivity coefficients in all age groups (absolute SC ≥ 0.45)  

In terms of AUCinf prediction, the most important parameters were fraction unbound in plasma and 

liver volume. Further important inputs also related to CYP enzyme mediated metabolism-related 

parameters such as specific clearance, reference concentration, and relative expression in the liver in 

the midazolam model.  

2.3.3 Age sensitive parameters  

For alfentanil, sufentanil, lansoprazole, ondansetron and theophylline, CYP enzyme mediated 

metabolism-related parameters showed age-dependent importance in terms of AUC prediction. For 

alfentanil and sufentanil, CYP 3A4 metabolism-related parameters such as specific clearance, 

reference concentration, and relative expression in the liver were more influential in a newborn with 

higher absolute sensitivity coefficients when compared to those in an infant and adult.  

For lansoprazole (metabolized by CYP2C19 and CYP3A4), CYP2C19 metabolism-related 

parameters such as specific clearance, reference concentration, and relative expression in the liver 

exhibited higher absolute sensitivity coefficients in a newborn compared to those in an infant and an 

adult.  

For ondansetron and theophylline, lower absolute sensitivity coefficients for CYP1A2 related 

parameters and higher absolute sensitivity coefficients for kidney volume and glomerular filtration 

rate (GFR) fraction were observed in a newborn. 

2.3.4  Evaluation of characteristics of virtual pediatric individuals 

 Figure 2.6 presents a comparison between weight, height and liver volume of the virtual 

population compared to children participating in each clinical study. The weight-for-age and height-

for-age relationships were in a reliable agreement with the pediatric patient data whose clearance 
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values were employed in assessing predictive performance of PK-Sim (Table 2.2). The liver volume 

values of virtual individuals in relation to age were also in agreement with the observed data [154].  

 

 

Figure 2.6  Visual comparisons of (a) weight, (b) height and (c) the liver volume in relation to 

age between the virtual pediatric individuals (n=10,000) and observed data. Grey dots are 

virtual individual data. The ellipses represent the observed means and standard deviations of 

the x and y variables. For example, in the case of (a), the center of an ellipse is the mean of 

weight and the mean of age of observed data. The halves of vertical and horizontal widths of an 

ellipse are standard deviations of weight and age of observed data, respectively. 
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 In addition, input parameters that may contribute to inter-individual variability to CL in the 

virtual population were illustrated in Figure 2.7. Examples of input parameters of PK-Sim virtual 

pediatric population in an anthropometric level such as body mass index (BMI) (A), physiologic and 

anatomical level (B-C) such as liver volume and liver blood flow and biochemical level such as 

ontogeny of plasma proteins (D-E) and CYP enzyme (F) are presented. The sources of CL variability 

are summarized in Table 2.4.  

Table 2.4 Sources of CL variabilities in a virtual pediatric population  

 Parameter Is this critical 

parameter according to 

the sensitivity analysis?  

Is this parameter 

varied in a virtual 

pediatric population?  

1st tier: 

anthropometr

ic variabilities 

Weight N/A  

Height N/A  

Body mass index (BMI) N/A  

2nd tier:  

anatomic and 

physiologic 

parameters  

Organ weight   

Cardiac output   

Organ volume   

Organ blood flow rate   

3rd tier: 

biochemical 

parameters  

Intrinsic clearance per 

gram tissue weight 

  

Relative expression level 

of a metabolizing enzyme 

in liver 

  

Ontogeny of metabolizing 

enzymes (e.g. CYP, UGT) 

  
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Ontogeny of plasma 

proteins (e.g. albumin, 

alpha-acid glycoproteins) 

  

Reference concentration of 

metabolizing enzymes  

 

  

N/A = not applicable as these define the 2nd tier parameters  

 

 

 

Figure 2.7 Visualization of example parameters that contribute to CL variabilities in virtual 

pediatric population created by PK-Sim (age 0 to 18, n=10,000) As an example of 

anthropometric characteristics, BMI was shown in (A). Examples anatomic and physiologic 

parameters such as liver volume and liver blood flow were presented in (B) and (C), 
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respectively. Biochemical parameters such as ontogeny factors of plasma proteins and a CYP 

enzyme were presented in (D) to (F). 

 

2.4 Discussion  

 Chemical specific adjustment factors (CSAF) are determined to protect a susceptible 

population in human risk assessment [6, 155]. As compound-specific data are taken into account in 

the derivation of CSAF, these results are more evidence based than empirically derived default UF  

[9, 155-157]. Further, CSAF are context specific in that these factors  can be determined as a function 

of exposure duration (e.g. acute, chronic), route (e.g. inhalation or oral) [158] and relevant dose 

metrics (e.g. Cmax, AUC or CL). Despite the superior characteristics of CSAF over UF, PBPK-

derived-CSAF are not adopted in many cases by regulatory agencies mainly due to the lack of human 

data to support the model quality [6, 159]. Model qualification of PBPK models might improve 

reliability in model results by (1) clarifying model adequacy for an intended purpose, (2) identifying 

critical factors and (3) evaluating characteristics of virtual individuals.  

 Model qualification can be performed for types of compounds that undergo the same 

elimination pathway [67]. In this study, compounds that are primarily metabolized by CYP enzymes 

were selected. CYP enzymes are responsible for metabolizing exogenous compounds such as 

environmental toxicants as well as therapeutic compounds. As human TK data are limited, 

pharmaceutical data were utilized to determine the predictive performance and model adequacy of 

adult-to-children PK extrapolation using a PBPK modeling approach. This assessment is specific to 

the evaluation of the way virtual children are defined and, because an ‘optimal’ adult model was 

initially employed where chemical-specific inputs were used and assessed, this evaluation may not be 

used to assess the validity of experimental, in vitro chemical-specific inputs. In summary, this 

determination isolates one component of the PBPK modeling process in HHRA, that of virtual 

children development for the most important CYPs.  

The accurate prediction of PK in pediatric individuals is dependent upon [17]:  

Model structure: the series of equations that describe mass transfer of drug from one compartment to 

another in a physiologically relevant manner  
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Model parameterization: anatomical, physiological and biochemical parameter values relevant for the 

modelled organism (e.g. adult, children) 

 Because the model first assessed adults, it was assumed that item (i) above is a reasonable 

representation of reality and therefore there was focus on item (ii). Since all parameters (i.e. 

anatomical, physiological, biochemical) affect PK outcomes in an integrated manner, evaluation of 

virtual children depended upon comparison of predicted to observed PK outcomes in children. As 

concentration-time profiles in children are often not available, model adequacy was determined by 

comparing the most important exposure metric, CL, to the observed data. Clearance is one of the most 

important PK parameters with respect to both drug development for safety and optimal dosing and 

HHRA for estimating differential dosimetry of chemicals.  

 The sample size of pediatric clinical investigations is relatively small (n<30) (e.g. Table 2.2, 

Number of subjects). For a more fair comparison, a bootstrap sampling method [150] was adopted. 

Among the comparisons between predicted and observed mean CL values with clinical study data, 

81% of 43 comparisons were within 2-fold error of deviation and 56% of 40 comparisons resulted in 

equal means. A  2-fold error  was  considered a reasonable prediction according to the WHO/IPCS 

guideline [6, 17]. With respect to CL variability, 70% of observed CL CVs were well described by 

the models with bias towards underprediction in the additional 30%. Underprediction of variability is 

somewhat expected in PBPK outcomes as protocol aberrations (e.g. vomiting after oral dosing), 

experimental (e.g. sample timing not at nominal times but recorded as such) and assay imprecision 

are not included [160]    

 An over prediction of lansoprazole CL/F in neonates was observed (metabolized by both 

CYP2C19 and CYP3A4) with a 2.4 -fold error (Figure 2.3-2.4). This may be due to the lack of a 

model component that explains potential disease effects on absorption. In the comparative  study 

[114], CL/F was determined in neonates with gastroesophageal reflux disease (GERD). It is 

speculated that a significantly  lower level of CL/F in neonates compared to older children may be 

due to disease effects such as varying stomach pH in newborn patients with GERD [114, 161]. 

Disease effects may affect bioavailability (F) and, therefore, exert influence on CL/F. In the case of 

another proton pump inhibitor agent, esomeprazole (metabolized by CYP2C19 and CYP3A4), 

following iv administration in neonates with GERD, PBPK-predicted CL was within 2-fold of 
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observed values (MFE = 1.7). Considering the CL predictions of compounds that are primarily 

metabolized by CYP3A4 were fairly reasonable (Figure 2.4), and CL prediction of those with 

CYP2C19 metabolism were also within 2-fold, the weight placed on lansoprazole to detect potential 

CYP2C19 ontogeny misspecification in neonates is limited; especially when masked by 

bioavailability. 

 For itraconazole, an underprediction of CL in adolescents (age 12.3 - 16.9 years) was 

observed with an MFE value of 0.33 (Figure 2.3 and 2.4). The observed weight-normalized CL in this 

cohort of 12.95 ml/min/kg was 2.5 higher than the reported adult CL value of 5.1 ml/min/kg [109] 

following iv  administration, which is not unique to this adult study. It is expected that the weight-

normalized CL is equivalent between adolescents and adults as maturation is complete  [162, 163] 

and size is similar to adults. The PBPK-predicted CL value in adolescents was 4.38 ml/min/kg, which 

was similar to the reported adult value. In other pediatric clinical investigation [164], itraconazole CL 

in a group including children and adolescents (age 9.5 – 14.4 years) was approximately 2.2 ml/min/kg 

(3.8 ± 1.6 L/hr). Values indicate a high inter-individual variability or inter-study variability.  

Isoherranen, Kunze [165] suggested that this is probably due to complex PK  behavior of this drug 

with  inhibition effects of both parent and metabolite molecules on the metabolizing enzyme 

CYP3A4. The PK-Sim under-prediction of CL noted by Abdel-Rahman, Jacobs [110] was maintained  

in the assessment for transparency although it is clear that a virtual population of adolescents may not  

be  able to recapitulate this study based upon the adult base model.  

 Identifying those input parameters, within the PBPK structure, that are important to PK 

outcomes enables us to decide where resources need to be directed in pursuit of having high 

confidence in PBPK model outcomes. Within this pediatric PBPK system, input parameters that were 

deemed, based upon sensitivity coefficient cut-offs, to  markedly influence CL prediction for hepatic 

CYP enzyme-metabolized compounds, and therefore the exposure metric of AUC, were CYP enzyme 

reference concentration, CYP intrinsic clearance, CYP protein relative expression in the liver, CYP 

enzyme ontogeny, protein binding (fraction unbound in plasma), plasma protein ontogeny (e.g. 

ontogeny factor for albumin or alpha acid glycoprotein), liver volume and liver blood flow. 

Depending upon the molecule, factors that relate to the blood-to-plasma ratio related parameters such 

as red blood cell pH were also important.  
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 With respect to CYP enzyme-mediated clearance, within the model structure assuming linear 

processes, hepatic intrinsic clearance (CLH) is calculated by the following equation.  

Eqn. (5) CLH = ∑ CL௦௣௘௖,௜  ∙  [CYP]୰ୣ୤,୧  ∙  relative expression୧  ∙  ontogeny factor୧  ∙  f୧୬୲୰ୟୡୣ୪୪୳୪ୟ୰  ∙௡
ଵ

 Liver volume (∙ fm୧)  

 

CLspec is specific clearance which is the internal clearance unit in PK-Sim (min-1) and n denotes the 

number of CYP enzymes if multiple enzymes were involved. [CYP]ref is a reference concentration of 

a CYP enzyme in liver (µmol CYP/L liver tissue) in an adult and relative expression is a parameter to 

account for the protein expression in an organ relative to the expression in the organ with the highest 

concentration of the enzyme (for example, the relative concentration of CYP3A4 in the liver is 

100%). fintracellular is a fraction of intracellular space in liver. CYP enzyme ontogeny factors in PK-

Sim are based upon age-specific enzyme activity [44, 166]. From equation 5, it is noted that the 

critical inputs to define CL are all multiplied in the equation which indicates that   all are individually 

important.  

 As defined from the sensitivity analysis, unbound fraction in plasma was a key input 

parameter. This is the case especially for compounds with a low to moderate extraction ratio where, 

according to the venous equilibrium model (or well stirred model) [25, 167, 168], a hepatic extraction 

ratio (EH) can be expressed as.  

Eqn (6)  𝐸ு =
௙௨್஼௅಺೙೟

ொಹା௙௨್ ஼௅಺೙೟
   

QH: hepatic blood flow, CLInt: intrinsic clearance and fub: fraction unbound in blood where, 

𝐸𝑞𝑛 (7) 𝑓𝑢௕ =
௙௨೛஼೛

 ஼್
=  

௙௨೛

஻:௉
    

fup: fraction unbound in plasma, Cp: concentration in plasma, Cb: concentration in blood, B:P: 

blood-to-plasma ratio. 

 For low EH compounds, hepatic clearance approximates fub ∙ CLint. This was corroborated 

with the sensitivity analysis results such that for low extraction ratio compounds in liver (e.g. 
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lansoprazole [169]) fup resulted in a high absolute SC value whereas a compound with a high hepatic 

extraction ratio (e.g. sufentanil [170]), fup was not a critical parameter.   

 The sensitivity of CL-related parameters is predicted to be a function of age in some, but not 

all cases (Appendix 1). Parameters that exhibited age-dependent importance in CL predictions were 

CYP enzyme metabolism-related parameters. When there are multiple processes involved (e.g. a 

compound metabolized by multiple CYP enzymes), the sensitivity of each process was dependent on 

(i) importance of each process to the total clearance (e.g. fraction metabolized) and (ii) its maturation 

profile (e.g. ontogeny of a CYP enzyme). The importance of each process is proportional to its 

fraction metabolized value. For instance, in adults, lansoprazole is metabolized by both CYP2C19 

(fm: 70%) and CYP3A4 (fm: 30%)[70] and absolute sensitivity coefficient values of CYP2C19 

related parameters were higher than those of CYP3A4 related parameters.   

 Age-dependent sensitivity was noted when ontogeny was a rate-limiting process. For 

example, with theophylline, lower absolute sensitivity coefficients in CYP related parameters and 

higher absolute SC values in renal clearance related parameters were observed in a 1-month-old 

virtual individual as compared to the adult. This was the result of a low concentration of CYP1A2 as 

compared to adults, with a higher subsequent reliance on renal rather than hepatic clearance. CYP1A2 

is one of slowest maturing enzymes [171]. The sensitivity analysis finding is in agreement with the 

reported observations of an inability to metabolize CYP1A2 substrates such as caffeine in young 

children  [172, 173]).  

 From a HHRA perspective, it is necessary to capture inter-individual variability in PK/TK for 

a group of pediatric individuals. CSAFs are defined by using the upper (e.g. 95th) percentiles of PK 

parameters [13] and these might be derived through  development of virtual individuals. When 

creating virtual pediatric populations, one needs to (i) account for growth and maturation of relevant 

parameters and (ii) incorporate reasonable inter-individual variability in anatomical and physiological 

inputs.  

 For a virtual pediatric population created using PK-Sim, inter-individual variability in 

clearance is introduced at three different levels (Table 2.4). The first tier is variability in 

anthropometric input of weight and height. In this study, virtual children were created by setting the 

same range of age, height and weight as in the clinical study design. In a HHRA scenario, the virtual 
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population is most likely to be created by setting only the age range of the population of interest such 

as age 1 month to 2 years for infants with or without restricting height, weight or BMI ranges. When 

only the age range was input to create virtual individuals, there was reasonable concordance between 

observed (Table 2.2) and simulated weights and heights confirming that these were reasonably 

assigned for virtual children. BMI is a function of weight and height. Data  also showed that BMI of 

virtual individuals were in a reliable agreement with World Health Organization (e.g. 3rd to 97th 

percentiles of a 2-year-old-boy: 11.3 – 16.1 kg/m2, 3rd to 97th percentiles of a 18-year-old boy: 17.3 

– 28.4 kg/m2) growth charts [174, 175]. Weight is important in that this parameter   defines absolute 

dose in clinical settings and in HHRA, the TDI is expressed as a weight normalized value [2] (e.g. 

TDI for bisphenol A is 0.05 mg /kg body water [176]).  

 The second tier of deriving CL variability originates from anatomic and physiologic 

parameters such as organ volume and organ blood flow rate, which are predominantly dependent 

upon first tier variabilities but display additional variability assigned to ensure that not every virtual 

person with the same height and weight possess the equal organ weights and blood flows. The 

appropriate assignment of primarily height but also weight leads to parametrization of eliminating 

organ weight and their associated blood flow rates using scaling methods of Willmann et al. [144]. 

Liver volume, being a critical input identified in the sensitivity analysis, appears well defined in PK-

Sim (Figure 2.6).  

 The third tier is the variabilities in biochemical inputs such as the ontogeny of metabolizing 

enzymes including CYP or uridine 5'-diphospho-glucuronosyltransferase (UGT) and the variability in 

organ enzyme concentrations and plasma protein levels including albumin and alpha-acid 

glycoprotein (AAG). Variability resulting from ontogeny and enzyme concentration are combined in 

PK-Sim where one function, with associated variability, is used to define both of these components 

since  variability in enzyme concentration cannot be uniquely identified from varying rates of 

maturation [166]. Based upon Figure 2.1 and Figure 2.5, CL variability was reasonably predicted 

although, as illustrated in Figure 2.1, variability in the context of a small number of participants is 

heavily dependent upon which children are selected.  

 PK-Sim is an open-source software within the Open Systems Pharmacology Suite (open-

systems-pharmacology.com) and is actively developed, moderated and versioned with use in the 



 

48 

 

pharmaceutical industry for regulatory filings. One of advantages of using PK-Sim is in its flexibility 

to incorporate the latest information.  T’Jollyn et al. [177] derived an ontogeny profile for CYP2B6 

from experimental data of Pearce et al. [178] and incorporated this user-defined CYP2B6 maturation 

profile into their pediatric PBPK model for tramadol. T’Jollyn et al. [177] compared the predictive  

accuracy with other commercially available PBPK platforms and found that PK-Sim resulted in the 

best predictive performance across ages; not solely a function of ontogeny but also  anatomical and 

physiology inputs.  As data are generated from various groups, once verified, may be implemented in 

an official PK-Sim version. Feedback from the community that revolves around an open forum in 

GitHub is already a place for open science and collaboration in this space.  

2.5 Conclusion 

 The objective of this investigation was to assess the virtual population generation algorithm 

for children in PK-Sim. To isolate this, rich data were used from adults to define chemical-specific 

inputs and assessed, assuming accurate chemical-specific inputs, as to what is the accuracy of 

exposure predictions when utilizing PK-Sim to create virtual children. Of course, in HHRA, this 

scenario is not possible as PK data in adults and the plethora of in vitro observations to generate 

mechanistic understanding of drug ADME are usually not available. However, this is a necessary 

component to define which workflow steps in development of a pediatric PBPK model are most 

prone to error and therefore in greatest need of refinement. In conclusion, adequate estimation of 

systems-specific parameters based on age will increase the confidence in the use of PK-Sim to create 

virtual pediatric populations and to perform PK/TK predictions in children for human health risk 

assessment. 
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Chapter 3: Evaluation of Quantitative Structure Property 

Relationship Algorithms for Predicting Plasma Protein Binding in 

Humans  

3.1 Introduction 

Many endogenous and exogenous substances reversibly bind to plasma proteins such as albumin, 

alpha1-acid glycoprotein (AAG) and lipoproteins. The extent of binding, often expressed as a fraction 

unbound in plasma (fup), is a function of protein concentration and protein binding affinity as well as, 

to a lesser degree, a displacement by other molecules [179]. The extent of plasma protein binding is an 

important compound-specific property as it affects a compound’s distribution, metabolism and 

elimination processes. Therefore, the characterization of protein binding is critical to the prediction of 

the pharmacokinetics (PK) of a compound and essential within a physiologically-based toxicokinetic 

(PBTK) modeling framework [180] to the estimation of human exposure to environmental toxicants.  

Experimental determination of fraction unbound in plasma can be done by, for example, ultrafiltration 

or equilibrium dialysis methods [181-184]. When experimentally determined protein binding 

information is not available, in silico methods, such as predictive quantitative structure-property 

relationship (QSPR) modeling, can be used. QSPR models identify relationships between chemical 

structure and a chemical property, such as the degree of protein binding in plasma [185]. Chemical 

descriptors that capture structural properties and characteristics of compounds are used as predictors, 

while protein binding information is used as a response variable. The learned relationship between 

protein binding and chemical descriptors can provide an estimation of a fup for a new compound.  

In one of the recently developed QSPR models, Ingle et al. [186] included both pharmaceutical and 

environmentally relevant compounds (ERC) in their training and test sets. For the pharmaceuticals, 

previously curated data from the literature [187-190] was included. In terms of ERCs, experimentally 

derived protein binding data of ToxCast compounds from Wetmore et al. [191, 192] were included and 

used as a test set. The data from ToxCast, implemented by the US Environmental Protection Agency 

(EPA), included in vitro assessment of fup for pesticides, food additives, consumer products, and 

industrial products [193]. Molecular Operating Environment (MOE, Chemical Computing group) was 

used to calculate the input chemical descriptors. To construct a predictive model, several machine 
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learning techniques such as k-nearest neighbours, support vector machines and random forest were 

employed. A consensus model resulted in the best predictive performance with mean absolute error 

(MAE) values of 0.15 and 0.11 for pharmaceuticals and ERCs, respectively. 

Watanabe et al. [194] developed two kinds of predictive models using machine learning techniques. 

For the first model, a classification function was used to predict whether a new compound will have 

high or low protein binding separated by a fup value of 0.05 for binary classifiers (i.e. high or low) and 

by fup values of 0.05 and 0.2 for three-class (i.e. high, moderate and low) classifiers. For the second 

model, a regression function of machine learning methods was used to predict fup. For chemical 

descriptors, Mordred [195]  and Padel [196] programs were used. The training set included 2192 

compounds from the ChEMBL [197] and PharmaPendium [198] databases. The test set included 546 

compounds from KEGG DRUG [199-201]. The classifier resulted in a true positive rate of 0.83 for the 

low fup class. Predictive performance was compared with the results of the S+PrUnbnd model from 

ADMET Predictor 8.1 (Simulation Plus, Inc.). The Watanabe et al. [194] model (MAE: 0.32) resulted 

in higher predictive accuracy as compared to the S+PrUnbnd model (MAE: 0.43) [194]. The online 

calculator provides both a fup estimate based on the regression algorithm and a compound’s degree of 

binding classification based on the multi-state classifier. 

The predictive performances of different QSPR models have been evaluated using a relatively small 

set of data, not fully encompassing the structural diversity of compounds. The QSPR models have not 

been evaluated with the same dataset. Therefore, the prediction accuracy that was determined in the 

QSPR studies is not comparatively informative. Furthermore, available QSPR models have been 

developed based on training sets containing pharmaceutical compounds. It is necessary, therefore, to 

compare the prediction accuracy of the QSPR models for both environmentally relevant (ERC) and 

pharmaceutical compounds.  

In this study, (i) we will evaluate the predictive performance of QSPR models for predicting fup values 

in humans for ERCs and pharmaceuticals. The prediction accuracy of QSPR models, Ingle et al. [186] 

and Watanabe et al. [194], will be compared to that of a commercially available program ADMET 

Predictor. (ii) We will identify the most critical chemical characteristics that influence the predictive 

performance of each QSPR model. (iii) We will identify the chemical space that is different between 

QSPR training sets and ERCs.   
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3.2 Materials and Methods 

3.2.1  Construction of the test dataset  

Fup values in humans were obtained from the literature [186, 194, 202-205].  The workflow for the 

construction of the test set is illustrated in Figure 3.1. The training and test sets of Ingle et al. [186] and 

Watanabe et al. [194] were obtained from the respective supplemental materials. As each dataset 

included different chemical identifiers, the different chemical identifiers were then translated to the 

same type of identifier, PubChem ID (CID) using the PubChem Identifier Exchange Service 

(https://pubchem.ncbi.nlm.nih.gov/idexchange/idexchange.cgi) [206]. The test sets of Watanabe et al. 

[194] and Ingle et al. [186] were then combined with the literature data [202-205] that were not included 

in these datasets (Figure 3.1A). All the data sets were merged using R (version 3.6). To prevent overlap 

in compounds between the training and test sets, the compounds that were used for training sets for 

either Ingle et al. [186] or Watanabe et al. [194] were removed from the test set. Using the obtained 

PubChem IDs as input, 2-dimensional structure-data file (SDF) files were downloaded using the 

PubChem Download Service (https://pubchem.ncbi.nlm.nih.gov/pc_fetch/pc_fetch.cgi). In order to 

ensure the ID conversion process was properly done, the simplified molecular-input line-entry system 

(SMILES) identifiers in the original data set were visually compared to the PubChem canonical 

SMILES by using the SMILES checker 

(http://www.cheminfo.org/flavor/malaria/Utilities/SMILES_generator___checker/index.html). For 

consistency, PubChem canonical SMILES and SDF files were used as inputs for the QSPR models and 

for the calculation of fup values.  
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Figure 3.1 A workflow of the construction of the test dataset  

 

3.2.2 Selection criteria for non-commercial QSPR models for predicting fup  

Among the many available QSPR models, non-commercial models were selected for this study. The 

selection was based on the following criteria: (i) the training dataset used to build the QSPR model 

includes structurally diverse compounds (i.e. the training set included more than 1000 compounds), and 

(ii) either a freely available calculator or the source code for the model was available online. Selected 

non-commercial QSPR models were compared for prediction accuracy amongst themselves as well as 

against the commercial software, ADMET Predictor (Simulation Plus®).  
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3.2.3 Calculation of fupadult based on QSPR methods  

With the constructed test set, fup values were calculated (Figure 3.1B). For the ADMET Predictor, SDF 

files were imported into the program, and human fup values were calculated using the ADMET predict 

function (ADMET Predictor™ software provided by Simulations Plus, Inc., Lancaster, California, 

USA). For fup calculation using Watanabe et al. [194], SDF files that were obtained from PubChem 

were used as input in the online fup calculator (https://drumap.nibiohn.go.jp/fup/). For the fup 

calculation using Ingle et al. [186], using SMILES as an input, chemical descriptors that were required 

to predict a fup were calculated using MOE. The consensus model output was evaluated for the 

prediction accuracy. The calculated fup values based on each method were gathered and imported into 

R (version 3.6) for further analysis.  

3.2.4 Predictive performance of QSPR models  

In order to assess the predictive performance of the QSPR models, prediction error (Eqn. 1), relative 

prediction error (Eqn. 2), average absolute relative prediction error (Eqn 3), mean absolute error (Eqn 

4), root mean squared error (Eqn 5) and correlation of determination (r2, Eqn 6) were calculated. 

Scatterplots of prediction errors and fup values were created using the “ggplot” package in the software 

R. Prediction error is the difference between the predicted and observed fup (Eqn 1).  Relative 

prediction error (RPE) indicates the relative magnitude of a prediction error (Eqn 2). Mean absolute 

RPE indicates overall relative prediction deviation regardless of under- or over-prediction (Eqn 3).  

Mean absolute error indicates the average of prediction deviation from the observed value. An observed 

fup value of 0 was assumed to be 0.001. The evaluation metrics were calculated for compounds with 

observed fup values ranging from 0.01 to 1. Due to the uncertainty associated with experimental 

measurements of protein binding for highly bound compounds [207], compounds with fup less than 

0.01 (fup < 0.01) were excluded for evaluating the prediction performance of QSPR models.  

In order to evaluate the predictive performances of the QSPR models based on the types of compounds, 

the test set was subdivided by three categories, such as (i) highly binding (i.e. 0.01≤ fupobs ≤ 0.25) or 

low-to-moderately binding compounds (i.e. fupobs > 0.25), (ii) pharmaceuticals and ERCs, and (iii) 

acid-base properties. For acid-base classification, the same criteria used in Ingle et al. [186] were 

applied to determine acid, base, neutral and zwitterion.  
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Eqn 1. Prediction error = fuppred – fupobs where fuppred and fupobs are predicted and observed fup 

values, respectively. 

Eqn 2. Relative prediction error (RPE) = 
௙௨௣೛ೝ೐೏ି ௙௨௣೚್ೞ

௙௨௣೚್ೞ
∙ 100 (%) 

Eqn 3. Mean absolute RPE =
∑ |ோ௉ா೔|೙

భ

௡
 

Eqn 4. Mean absolute error (MAE) =
ଵ

௡
∑ ห𝑓𝑢𝑝௣௥௘ௗ,௜ −  𝑓𝑢𝑝௢௕௦,௜ห௡

௜ୀଵ ∙ 100 (%) 

Eqn 5. Root mean squared error (RMSE) = ට
ଵ

௡
∑ (𝑓𝑢𝑝௣௥௘ௗ,௜ −  𝑓𝑢𝑝௢௕௦,௜)ଶ௡

௜ୀଵ  

Eqn 6. Coefficient of determination (r2) = ቎
൫∑ ௙௨௣೛ೝ೐೏,೔∙ ௙௨௣೚್ೞ,೔

೙
భ ൯ି௡௙௨௣೛ೝ೐೏

തതതതതതതതതതതത∙ ௙௨ ೚್ೞ
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቏
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3.2.5 Identification of important chemical descriptors on QSPR model prediction 

performance  

Using PubChem 2D and 3D SDF files as inputs, chemical descriptors were obtained using the PaDel 

Descriptor program (version 2.21) [196] (Figure 3.1C).  The total of 1045 2D chemical descriptors and 

431 3D chemical descriptors were generated for the test set. Additional chemical information such as 

lipophilicity and polar surface area was obtained from the PubChem SDF files. The chemical 

descriptors with near zero variance (i.e. descriptor with one unique value or relative small number of 

unique values compared to the size of the sample) were removed using nearZeroVar function of Caret 

package in R [208]. The chemical descriptors were standardized for a statistical test (Eqn 7). The 

Pearson’s correlation test was performed between the logarithm of RPE for each QSPR method and 

each chemical descriptor. The logarithm transformation of RPE was done because of the skewed 

distribution of RPE values. The correlation coefficients (r) and significance level (i.e. p-value < 0.05) 

were obtained for each chemical descriptor. The chemical descriptors with a p-value exceeding 0.05 

were removed. The remaining descriptors were then ranked based on Pearson’s correlation coefficients 

in order to identify the most correlated chemical descriptors with RPE values of each model.  



 

55 

 

Eqn 7.  𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝑖𝑧𝑒𝑑 (𝑋௜) =  
௑೔ି୫ୣ  (௑)

ௌ஽(௑)
   

3.2.6 Comparison of chemical structures between training sets of QSPR models and 

environmentally relevant compounds 

For training sets of Ingle et al. [186] and Watanabe et al. [194], 2- and 3- dimensional chemical 

descriptors were calculated using Padel. Chemical descriptors of compounds in those training sets were 

those of environmentally relevant compounds in the test set of this study. Each chemical descriptor in 

each training set and test set were subjected to Two-sample Student’s T test (i.e. Welch’s T test) to 

identify statistically different chemical descriptors. The significantly different chemical descriptors 

with p-value less than 0.05 between a training set and the test set of ERC compounds were then ranked 

based on p-values.   

3.3 Results  

3.3.1 Prediction performance of QSPR models for estimating fup 

Data from a total of 1026 compounds was gathered. Among 208 compounds with observed fup values 

less than 0.01, only 0 %, 8.2 % and 1.4 % of fup values were calculated within the range of 0.001– 0.01 

by ADMET Predictor, Watanabe et al. [194], and Ingle et al. [186], respectively (Figure S1). The test 

set for evaluating the predictive performance of QSPR models included a total of 818 compounds with 

fup values ranging from 0.01 to 1 of which 69% were pharmaceutical and 31% were environmentally 

relevant. The predicted fup values based on QSPR models were compared to the observed data.  

Overall, the three QSPR models resulted in over-prediction of fup for highly binding compounds and 

under-prediction for low or moderately binding compounds (Figure 3.2 A-B). All QSPR models 

resulted in higher relative prediction error for highly binding compounds (i.e. observed fup ranging 

from 0.01 to 0.25) (Figure 3.3 A-C). The highly deviating predictions by all QSPR models were 

observed for both types of compounds, namely pharmaceutical and environmentally relevant 

compounds (Figure 3.3D).  
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Figure 3.2 Predicted fup values versus the observed values in (A) linear and (B) logarithmic 

scale. Colored points are fup values. The lines represent the conditional means based on the 

locally estimated scatterplot smoothing (LOESS) method.  The grey line is the line of unity. 
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Figure 3.3 Relative prediction error of (A) ADMET predictor, (B) Watanabe et al. and (C) Ingle 

et al. (D) Relative prediction error of each QSPR model with respect to compound types, 

pharmaceutical and environmentally relevant compounds. The boxes represent the range of 

25th and 75th percentiles. The line within a box indicates a median.  
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In terms of the overall predictive performance for both ERC and pharmaceuticals, ADMET Predictor 

and Watanabe et al. [194] resulted in the better predictive performance with lower mean absolute RPE, 

lower MAE and RMSE values than those of Ingle et al. [186] (Table 3.1). For highly binding 

compounds (i.e. 0.01 ≤ fup ≤ 0.25), Watanabe et al. [194] performed better with a lower MAE of 6.7% 

and a lower mean absolute RPE of 171.7 % than other QSPR methods.  For low or moderately binding 

compounds (fup > 0.25), both Ingle et al. [186] and ADMET Predictor performed better than Watanabe 

et al. [194] with superior MAE and mean absolute RPE values. For both pharmaceuticals and ERCs, 

ADMET Predictor and Watanabe et al. [194] performed better than Ingle et al. [186] with lower MAE 

and mean absolute RPE values. For all QSPR models, higher RPEs were observed for acids compared 

to those of other types of compounds. Based on RPE values, Watanabe et al. [194] performed better for 

bases, neutrals and zwitterions.  

 

Table 3.1 Prediction performance of QSPR models for predicting fraction unbound in plasma  

 ADMET Predictor Watanabe et al.  Ingle et al.  

All compounds (n=818) 

RMSE 0.21 0.22 0.24 

R2 0.52 0.48 0.37 

Mean absolute error 12.6 14.3 15.9 

Mean absolute RPE 149.3 131.4 243.9 

Median absolute error 6.5 7.2 9.5 

Median absolute RPE 58.2 55.3 67.1 

Highly binding compounds (0.01 ≤ fup ≤ 0.25, n=552) 

Mean absolute error 7 6.7 12 
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Mean absolute RPE 202.1 171.7 341.6 

Median absolute error 4.9 4 6.4 

Median absolute RPE 95.3 64 116.4 

Lowly or moderately binding compounds (fup > 0.25, n=266) 

Mean absolute error 24.3 30 24 

Mean absolute RPE 39.6 47.8 41.1 

Median absolute error 17.5 26.5 18.6 

Median absolute RPE 36.6 49.2 36.2 

Pharmaceuticals (n=565) 

Mean absolute error 13 13.2 16.7 

Mean absolute RPE 146.3 109 269.9 

Median absolute error 6.6 6.1 10.1 

Median absolute RPE 60 51.4 71.4 

Environmentally relevant compounds (n=253) 

Mean absolute error 11.8 16.6 14.1 

Mean absolute RPE 155.9 181.5 185.9 

Median absolute error 6.5 10.2 8.2 

Median absolute RPE 56.1 65 53.1 

Acids (n=177) 

Mean absolute error 12.5 14.4 16.9 

Mean absolute RPE 174.5 213.6 364.4 
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Median absolute error 6.2 7.8 11 

Median absolute RPE 77.2 64 99.7 

Bases (n=221) 

Mean absolute error 13.1 14.4 18.3 

Mean absolute RPE 150.2 91.3 277.5 

Median absolute error 8.1 7.7 11.5 

Median absolute RPE 52.8 49.6 62.3 

Neutrals (n=397) 

Mean absolute error 12 13.3 13.9 

Mean absolute RPE 139.7 120 177.4 

Median absolute error 5.7 6.2 7.2 

Median absolute RPE 57.3 57.4 62.5 

Zwitterions (n=23) 

Mean absolute error 20.1 29.5 21.6 

Mean absolute RPE 111.6 82.7 142.4 

Median absolute error 12.3 28.8 15.4 

Median absolute RPE 49 62.8 38 

 

 

3.3.2 Prediction accuracy as a function of chemical structure  

Chemical descriptors that exhibited a significant correlation with RPE (p-values < 0.05) based on the 

Pearson correlation test were ranked. For ADMET Predictor, the number of basic functional groups, 
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the fraction of charged weighted partial positive surface area and lipophilicity were most correlated 

with the RPE (Figure 3.4 A-B).  For Watanabe et al. [194] and Ingle et al. [186], the partial positive 

surface area, the number of basic functional groups and lipophilicity were the most important 

parameters (Figure 3.4 C-F). Taken together, for all three QSPR models, the positive polar surface area, 

the number of basic functional groups and lipophilicity were the most important chemical descriptors 

for predicting fup. Highly hydrophobic compounds with fewer basic functional groups were found to 

have high RPEs (>200%) or below the prediction limit (fup < 0.01). On the other hand, the QSPR 

models showed relatively low prediction error (RPE < 200%) for hydrophilic compounds with basic 

functional groups.  
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Figure 3.4 Relative prediction error of each QSAR models as a function of chemical descriptors. 

The triangular and circular points represent pharmaceuticals and environmentally relevant 

compounds data. The colors indicate a degree of relative prediction error of a QSPR method 

such that compounds with >200 % RPE and < 200 % RPEs are in red and green, respectively. 

Compounds that were below prediction limit of fup <0.01 are in orange. 

 

3.3.3 Identification of significantly different chemical characteristics between ERCs and QSPR training 

set compounds  

Environmentally relevant compounds were more lipophilic than the QSPR training set compounds 

(Figure 3.5A). Structurally, ERC contained a lower number of rings and a lower number of basic 
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functional groups and a higher number of halogens than those of compounds in the training sets (Figure 

3.5 B-D). In terms of 3D chemical descriptors, partial positive surface areas of ERC compounds (i.e. 

the sum of surface area on an electropositive portion of a molecule, PPSA-2) were significantly lower 

than those in the QSPR training sets (Figure 3.5 E). The ERC compounds were smaller in size with 

significantly smaller geometrical radii (Figure 3.5 F) and geometrical diameters. 
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Figure 3.5 Significantly different chemical descriptors between compounds in the training sets 

of QSPR methods and environmentally relevant compounds.   

 

 

3.4 Discussion 

The degree of plasma protein binding is an important property of a compound influencing 

toxicokinetics (TK) and is a key parameter in PBTK modeling. Volume of distribution that affects the 

maximum concentration and the half-life, is directly proportional to fup. Further, the freely available 

portion of compounds elicit pharmacological/toxicological response [179]. Clearance reflects overall 

exposure (i.e. area under the curve (AUC)) and is almost proportional to fup for compounds with a low 

hepatic extraction ratio (EH). Its importance in in vitro-in vivo extrapolation (IVIVE) has been 

demonstrated with Trichloroethylene [209] where in vitro CLH is measured with a hepatocyte uptake 

assay using isolated hepatocytes in a medium in the absence of plasma proteins and fup is applied as in 

equation 8. The determined CLH information can be incorporated into a PBPK model.  

Eqn. 8 𝐶𝐿ு =
ொ∙ோಳು∙௙௨௣∙஼௅೔೙೟,೔೙ ೡ೔೟ೝ೚∙ௌி

ொାோಳು∙௙௨௣∙஼௅೔೙೟,೔೙ ೡ೔೟ೝ೚∙ௌி
 

Q: blood flow, RBP: blood-to-plasma ratio, CLint: in vitro intrinsic clearance, SF: scaling factor for 20 

g liver/kg and 45 mg protein g/liver in humans [210].  

An accurate determination of a fup is needed for use in PBTK models for human health risk assessment 

such that fup levels in potentially sensitive populations such as diseased, pediatric or elderly can be 

extrapolated by adjusting altered plasma protein concentrations [25, 211]. In a PBTK model, virtual 

individuals are built based on known trajectories of anatomy, biochemistry and physiology across age, 

and compounds are defined by physicochemical properties [45, 212]. Sensitivity analyses found that 

fup is one of the most critical input parameters for PBPK model outputs [70, 180] and when 

extrapolating across age or disease state, the reference value of fup defines the extrapolated fup. For 

example, Yun and Edginton [180] found that from 10 pediatric PBPK models that were extrapolated 

from adult models, the sensitivity coefficients of fup were high for compounds with low EH in 
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predicting AUC, compared to compounds with high EH. Therefore, in many cases, the precision of 

fupadult must be ensured if there is to be confidence in the pediatric model outcomes. 

In this study, we evaluated the performance of QSPR models for predicting protein binding as well as 

the chemical descriptors that were most associated with the resulting prediction errors. In terms of the 

overall predictive performance for all compounds, the RMSE and MAE values were the lowest for 

ADMET Predictor although Watanabe et al. [194] provided similar metrics. A clear distinguishing 

feature was that there was increased predictive performance for compounds having a fup >0.25 

regardless of the model used. 

In terms of extremely highly binding compounds (i.e. observed fup < 0.01), only a small fraction of fup 

values were predicted below fup of 0.01 indicating that the QSPR models may not be suitable for 

predicting fup values for extremely highly binding compounds. The reason for this is that during the 

data curation and the training set development, when a compound was stated to have protein binding 

higher than 99%, the fup value for the compound was assumed to be 0.01 [194]. This assumption is in 

line with U.S. Food Drug Administration guidelines that states when an experimentally determined 

value of fup is less than 0.01, the fup is then set to 0.01 due to uncertainties in the protein binding 

measurements [207]. However, this limitation makes the QSPR model inherently incapable of 

predicting a high degree of protein binding.  

In terms of important chemical descriptors that were associated with the prediction errors of QSPR 

models, the commonly observed chemical characteristics of highly binding compounds were also 

correlated with a high prediction error. Lipophilicity was a critical chemical characteristic that was 

positively correlated with RPEs such that the compounds that had a high prediction error or below the 

limit of prediction (fup <0.01) tended to be highly lipophilic. This was expected because the 

lipophilicity of a compound is known to have a high correlation with plasma protein binding [213] and 

QSPR models, in general, resulted in poor prediction performance for highly binding compounds. In 

contrast, the number of basic functional groups and positive partial surface area were negatively 

correlated with RPEs. 

The negative correlation between the chemical characteristics of positively charged states and the 

prediction error is in line with the albumin binding sites findings. There are three drug-like molecule 

binding sites in albumin, namely, warfarin (Site I), benzodiazepine (Site II), and digitoxin [179, 214-
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218]. An affinity of a compound to each binding site depends on the functional groups of that 

compound. The binding site II of the major carrier protein albumin has positively charged groups on 

the surface of its’ binding site [219]. The cationic center of binding sites and the positively charged 

portion of compounds are likely to have an electropositive repulsion. This is in accordance with an 

earlier finding that the presence of positive charges in a compound precludes binding to binding site II 

[219].  

For the most part, QSPR models are built based on pharmaceutical compounds as a training set 

primarily due to the availability of experimental fup for these compounds as compared to ERCs. 

Therefore, it is necessary to evaluate the predictive performance of QSPR models for non-

pharmaceutical compounds.  For all evaluated QSPR models, the prediction accuracy was lower for 

ERCs than for pharmaceuticals. This suggested that the structural difference between the two types of 

compounds may have contributed to the discrepancy in the prediction accuracy of QSPR models. The 

ERCs were more lipophilic and smaller in size, furthermore, there were a lower number of basic 

functional groups and rings in ERCs compared to the training set compounds (Figure 3.5). These 

tendencies of ERCs lead to high binding affinity towards plasma proteins. This suggest that QSPR 

models are less equipped to predict ERCs that have the chemical characteristics listed above. 

Some of the ERCs were highly halogenated compared to the QSPR training set compounds (Figure 

3.5D). The highly halogenated compounds included organochlorines, pyrethroids, perfluoroalkyl and 

polyfluoroalkyl substances. The presence of halogens increases binding affinity to proteins through 

halogen bonding (e.g.  halothane [220]). The majority (18 of 28 compounds) of highly halogenated 

compounds (i.e. the number of halogens > 5) were highly protein binding with the observed fup values 

less than 0.01. The absence of highly halogenated compounds in the QSPR training sets implies that 

the relationship between high halogenation and protein binding may not be well captured. This suggests 

that QSPR models may not be suitable to make predictions for the highly halogenated ERCs.  

As regression models, QSPR models are suitable for predicting the target property within or near the 

chemical space of a training set [221].  For the predictions outside the intended chemical space, Tan et 

al. [221] suggested re-parameterizing or creating a new model. In the previous findings of Yin et al. 

[222] and Ingle et al. [186], the chemical spaces of pharmaceutical and ToxCast compounds [192, 223] 

overlap and the application domain [224] of the Ingle et al. [186] model covered the chemical properties 
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of ERCs with a few exceptions. This leveraged the use of pharmaceutical data to predict fup values for 

ERCs. However, our study identified several chemical descriptors that were significantly different 

between ERC and pharmaceuticals (Figure 3.5). It is thought that expanding a training set to include 

ERC data may improve the prediction performance of a QSPR model. In addition, different sets of 

chemical descriptors and different machine learning techniques may result in different prediction 

performance [225]. With this in mind, multiple alternative QSPR models can be developed and 

consensus prediction can be applied [225, 226]. When predictions from multiple QSPR models 

converge, the confidence of an output increases and moving forward, this multiple model prediction 

approach should be considered. 

A critical concern in the use of PBTK modeling for human health risk assessment is the availability of 

input parameters [212]. When an experimentally determined fup is not available, the use of QSPR 

models for predicting fup seems the most viable option and has been accepted as a de facto standard 

[221, 227]. This study suggests that the use of QSPR models for fup prediction in human and for further 

extrapolations using PBTK modeling or IVIVE may not be an optimal choice especially for highly 

binding ERCs. To improve prediction of fup, better mechanistic understanding is needed between the 

protein binding properties and chemical structure. Also, the uncertainty associated with experimental 

determination for highly binding compounds should be improved [228] as this uncertainty is carried 

forward into the QSPR models. Prediction of fup values using the QSPR approach is an alternative to 

experiments; however, if certainty is required, experimental determination is required.  
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Chapter 4: Evaluation of models for predicting pediatric fraction 

unbound in plasma for human health risk assessment 

4.1 Introduction 

Pediatric physiologically based pharmacokinetic (PBPK) models mathematically describe a 

compound’s absorption, distribution, metabolism and excretion processes by taking into account age-

dependent changes in a child’s anatomy, biochemistry and physiology along with physicochemical 

properties of a compound [17, 44, 45, 47]. These models inform human health risk assessment by 

providing a justifiable estimation of chemical-specific adjustment factors (CSAF) [11, 61, 229] that 

rely on reasonable estimation of PK inter-individual variability. This is achieved through the creation 

of virtual pediatric populations that allow for PK parameter distributions to be delineated. The human 

kinetic adjustment factor (HKAF) uses the PK parameter distribution differences between adults and 

children such that the HKAF ratio is the 95th percentile PK parameter in a pediatric group to the 

median in an adult population [6, 12, 13]. Similar adult and pediatric distributions bring confidence 

that the adult variability is a good surrogate for children and divergent distributions reflect that 

children (or some children) may not be covered if only adults are considered during human health risk 

assessment.  

To instill confidence in PBPK model outputs, an accurate determination of the fraction unbound in 

plasma (fup) is essential and has been identified as one of the most important inputs driving pediatric 

PBPK model outputs [180]. Among the sixty plasma proteins in humans, albumin, alpha acid 

glycoprotein (AAG), and lipoproteins meaningfully bind to exogenous compounds [179, 230]. While 

the acid-base properties of a compound generally determine which plasma protein it preferentially 

binds this assumption is not always valid. Neutral and acidic compounds tend to bind to albumin, and 

basic compounds tend to bind to AAG and lipoproteins [179]. The physiological roles of these plasma 

proteins are manifold, in that they serve as both a transporter and a storage depot for endogenous and 

exogenous substances [231]. Albumin maintains the osmotic pressure in the bloodstream and 

transports endogenous molecules such as bilirubin and fatty acids [232]. AAG is an acute-phase 

reactant; when presented with injury and inflammation, plasma AAG levels increase [233]. A 

decreased AAG level is associated with severe liver diseases (e.g. cirrhosis [233, 234]).  AAG serves 
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as a carrier of exogenous substances. Lipoproteins transport lipid molecules or lipid-soluble 

compounds [235].  

The degree of protein binding can differ between children and adults due to the effects of growth and 

maturation [24]. Neonates and young infants have a lower degree of protein binding compared to that 

of adults due to a lower plasma protein concentration level than adults [24, 236]. In the case of 

albumin, adult concentrations are reached in 10 - 12 months. Preterm neonates have a lower level of 

albumin than term neonates [237]. In terms of AAG, the adult level is reached in 12 months [238] and 

concerning low-density lipoproteins (LDL), there is a sharp increase in the level of LDL particles 

during the first week of life and is maintained in the neonatal phase, 1 month after birth [239].  

A lower degree of protein binding, i.e. a high unbound fraction, may impose a greater health risk to 

children especially for infants and neonates compared to adults. For example, the study of Sethi et al. 

[205], highlighted the potential health risk for neonates when exposed to a pyrethroid insecticide due 

to low protein binding. Pharmaceutical agents may also be associated with adverse effects in neonates 

due to low protein binding. For example, fentanyl can result in respiratory depression even at a low 

dose in neonates [240-242].  

The age-dependent changes in protein binding to albumin [25, 166, 211, 243] and AAG [25, 166, 

211, 243, 244] can be predicted by several methods. These ontogeny models estimate the fraction 

unbound in plasma in children (fupchild) as a function of the concentration of a plasma protein at a 

specific age and a fup value in adults (fupadult). In these models, the binding affinity of a compound to 

albumin is assumed to be the same in both adults and children. When an experimentally determined 

fupadult value is not available, an in silico method, quantitative structure -property relationship (QSPR) 

model, can be used [185, 186, 194]. QSPR models predict fup in human based on the learned 

relationships between chemical structure and the degree of protein binding in plasma. As fupadult for 

environmentally relevant compounds is often not available, the overall uncertainty of using both 

QSPR approach for predicting fupadult from compound structure and an ontogeny model for predicting 

a fupchild need to be assessed. 

The objectives of this study are (i) to evaluate the protein concentration vs. age profile derived from 

various ontogeny models by comparison to observed concentrations, (ii) to assess the predictive 

performances of the ontogeny models by comparing predicted fupchild values to observed values, and 
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(iii) to evaluate the overall uncertainty in fupchild prediction resulting from a combination of QSPR 

models and ontogeny models.  

4.2 Methods 

4.2.1 Data collection 

Plasma protein concentration data for children (age 0 – 12 years) was obtained from literature to 

evaluate the appropriateness of the ontogeny models in predicting age-dependent changes in albumin 

(Johnson et al. [243], McNamara and Alcorn [25], McNamara and Meiman [211], PK-Sim [166])  

and AAG (Johnson et al.[243], Maharaj et al. [244], McNamara and Alcorn [25], McNamara and 

Meiman [211]) plasma concentrations. The observed values were obtained from MEDLINE database 

by searching keywords, for example, ‘plasma protein concentrations’, ‘protein binding’, and ‘infant 

or newborn’. Arithmetic mean and standard deviation (SD) of plasma (or serum) protein 

concentrations vs. age were gathered. When a range was reported, the mean and SD were calculated 

based on equations in Hozo et al. [74]. The pediatric data was categorized based on age such that 

neonates were 0 to ≤1 month, infants were 1 month to ≤2 years, children were 2 years to ≤12 years 

and adolescents were 12 years to ≤18 years. Any age that was expressed in years or months was 

converted to postnatal age (PNA) in days. Graphically presented data was digitized using Plot-

digitizer [73]. Data from individuals with reported disease was not included, for example, albumin 

levels in critically ill patients in the intensive care unit were not included (e.g. [245]). 

To evaluate the predictive performance of ontogeny models for the prediction of unbound fraction in 

plasma, the fraction unbound in plasma data in both children and adults were obtained from literature. 

The arithmetic mean and SD of fup values vs. age was obtained. Relevant information such as disease 

status (i.e. healthy or patients) and binding partner (i.e. albumin or AAG) were also collected.  

4.2.2 Models for predicting fupchild  

Fupchild values were calculated by using the following equations (Eqn 1) [25]. According to 

McNamara and Alcorn [25] method, the ratio of protein concentrations in children relative to adult is 

determined by using linear equations (Eqn. 2-3):  
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Eqn 1. 𝑓𝑢𝑝௖௛௜௟ௗ =  
ଵ

ଵା
[ು]೎೓೔೗೏
[ು]ೌ೏ೠ೗೟

∙
(భష೑ೠ೛ೌ೏ೠ೗೟)

೑ೠ೛ೌ೏ೠ೗೟

 

Eqn 2. 
[஺௅஻]೎೓೔೗೏

[஺௅஻]ೌ೏ೠ೗೟
(%) = 0.005627 ∙ 𝐷𝑎𝑦𝑠 ∙ 76.7 

Eqn 3. 
[஺஺ீ]೎೓೔೗೏

[஺஺ீ]ೌ೏ೠ೗೟
(%) = 0.01137 ∙ 𝐷𝑎𝑦𝑠 ∙ 53.4 

[P], [ALB], [AAG] are the concentrations of protein, albumin and alpha1-acid glycoprotein, 

respectively.  

According to Johnson et al. [243], albumin and AAG concentrations in children are calculated by 

following equations: 

Eqn 4. [ALB] (g/L) = 1.1287 ∙ ln(Days) + 33.746 

Eqn 5. [AAG] (g/L) = 
଴.଼଼଻ ∙஽௔௬௦బ.యఴ

଼.଼ଽబ.యఴା஽௔௬௦బ.యఴ 

Maharaj et al. [244] provided the AAG ontogeny models for both healthy children and pediatric 

patients who were diagnosed or suspected of having an infection. Age-dependent changes in AAG 

concentrations can be estimated by using the following equation:  

Eqn 6. [AAG] (mg/dL) = 
஺஺ ೘ೌೣ∙஺௚௘ು

்ெು
ఱబା஽௔௬௦బ.యఴ =  

ଽଷ.ଵ଻∙஽௔௬௦బ.రవఴ

଻.଻଺బ.రవఴା஽௔௬௦బ.రవఴ 

AAGmax: maximum plasma AAG concentration (mg/dL), TM50: age at 50% AAGmax, P: Hill 

coefficient 

In terms of PK-Sim [166], the ratio of albumin concentrations in children relative to adult is 

determined by using a following equation: 

Eqn 7.   
[஺௅஻]೎೓೔೗೏

[஺௅஻]ೌ೏ೠ೗೟
=  

௉ெ஺ೖ

(஺బ.ఱ
ೖା ௉ெ஺ೖ)

  

PMA: postmenstrual age, A0.5: PMA at 50% level compared to adults (21.533), k: Hill coefficient 

(3.240).   

In terms of the AAG ontogeny model incorporated in PK-Sim [166], the ratio of AAG concentrations 

in children relative to adults was determined by using the Markov Chain Monte Carlo (MCMC) 
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approach and the age-dependent changes in the ontogeny factors were described in detail in Mayer et 

al. [246] and listed in the PK-Sim Ontogeny Database version 7.3 [166]. 

According to McNamara and Meiman [211], the ratios of albumin concentrations in children relative 

to adults for neonates, infants and children are 0.777 ± 0.025, 0.899 ± 0.028 and 0.853 ± 0.037, 

respectively. For AAG, the ratios of concentrations in children relative to adults for neonates, infants 

and children are 0.456 ± 0.053, 0.814 ± 0.067 and 1.12 ± 0.084, respectively.   

The calculation of fupchild was carried out under the following assumptions. (i) An equilibrium affinity 

constant of a compound to plasma proteins was the same in children and adults. (ii) The equilibrium 

dissociation constant was less than the plasma concentrations of a compound, therefore, the degree of 

protein binding was independent of compound concentrations in plasma.  

4.2.3 Evaluation of the appropriateness of protein concentration vs. age profile for 

each model  

Using the ontogeny factors (i.e. the ratio of protein concentrations in children relative to adults) 

calculated from each model, plasma protein concentration vs. age profiles were calculated. For PK-

Sim, PMA (in weeks) was converted to PNA (in days) using the following relationship: PMA= 

postnatal age + gestational age. For full-term neonates, the gestational age of 40 weeks was assumed.  

The estimated albumin concentration vs. age profiles were obtained by multiplying the ontogeny 

factors by the reference albumin concentration in adults of 4.5 g/dL [25]. These concentrations were 

then compared to the observed albumin concentration data in children. To note, PK-Sim [166], 

McNamara and Alcorn [25] and McNamara and Meiman [211] do not use the adult reference albumin 

concentration because these models directly estimate ontogeny factors. The reference protein 

concentration in adults was applied only for comparison purposes.  

In terms of AAG adult reference concentrations, the values of each model were different. The AAG 

adult reference concentrations were 0.60 g/L, 0.83g/L, 0.93 g/L, 0.70 g/L and 0.77 g/L for McNamara 

and Alcorn [25], Johnson et al. [243], Maharaj et al. [244], McNamara and Meiman [211] and PK-

Sim [166], respectively. The AAG adult reference concentrations were obtained from the text or 

digitized from the graphs using the Plot-digitizer [73].  
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4.2.4 Evaluating the divergence of ontogeny models as a function of age 

By examining the consensus or the discrepancy in ontogeny factors produced by each model as a 

function of age, the uncertainty surrounding the choice of an ontogeny model was examined. The 

maximal difference in ontogeny factors between models was attained by subtracting the minimum 

possible ontogeny factor from the maximum possible ontogeny factors over the pediatric period. The 

minimum, maximum and differential ontogeny factors vs. age profiles were plotted for visual 

comparison. 

To evaluate the conditions in which ontogeny model choice affects the outcome of fupchild, the 

combinatorial effects of the differences in the ontogeny factors of the models and a compound’s 

degree of protein binding on fupchild predictions, the ratio of fupchild to fupadult (fupchild / fupadult) 

values, were simulated. The fupchild, maxOF and fupchild, minOF estimates were calculated by using 

the maximum and minimum possible ontogeny factor (OF) at a specific age, respectively (Eqn 8-9). 

Fupadult values of 0.01, 0.1, 0.5 and 0.9 were used in the calculations.  

Eqn 8. 𝑓𝑢𝑝௖௛௜௟ ,୫ୟ୶୓୊ =  
ଵ

ଵା൬
[ು]೎೓೔೗೏,೘ೌೣ

[ು]ೌ೏ೠ೗೟
൰∙

(భష೑ೠ೛ೌ೏ೠ೗೟)

೑ೠ ೌ೏ೠ೗೟

 

Eqn 9. 𝑓𝑢𝑝௖௛௜ ,୫୧୬୓୊ =  
ଵ

ଵା൬
[ು]೎೓೔೗೏,೘೔೙

[ು]ೌ೏ೠ೗೟
൰∙

(భష೑ೠ೛ೌ೏ೠ೗೟)

೑ೠ ೌ೏ೠ೗೟

 

4.2.5 Evaluation of the overall uncertainty of using QSPR predicted fup values for 

predicting fupchild 

Fup values for all compounds were calculated based on a QSPR approach using ADMET Predictor 

(Simulations Plus, ver. 9.5). Two-dimensional structural data files (2D-SDF) for each compound were 

obtained using PubChem [206]. Human fup values were calculated using the ADMET predict 

function. It was assumed that a QSAR-predicted fup value in humans was equivalent to the fup value 

in adults. As ADMET Predictor does not provide information on whether a compound primarily 

binds to albumin or AAG, the binding partner information of a compound was obtained from 

literature. Fupchild was calculated with each ontogeny model using the QSPR-predicted-fupadult as an 

input. For albumin binding compounds, albumin ontogeny models were applied in order to calculate 

QSPR-predicted fupchild. For AAG binding compounds, AAG ontogeny models were applied. QSPR-
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predicted fupchild were then compared to observed fupchild. QSPR-predicted fupchild were then 

compared to observed fupchild. The overall uncertainty of the combined use of the QSPR method to 

predict a degree of protein binding in humans and the ontogeny models that predict the fupchild was 

evaluated. 

4.2.6 Evaluation of the predictive performance of QSPR and ontogeny models  

To assess the predictive performance of models, the average fold error (AFE) (Eqn 10), absolute 

average fold error (AAFE) (Eqn 11), relative prediction error (Eqn 12), mean absolute relative 

prediction error (Eqn 13), mean absolute error (Eqn 14), root mean squared error (RMSE) (Eqn 15) 

and coefficient of determination (r2) (Eqn 16) were calculated.  

AFE >1 and AFE<1 indicate over-and under-predictions, respectively. AAFE indicates an overall 

magnitude of errors. The higher AAFE values indicate the lower overall prediction accuracy. RPE 

indicates relative magnitude of prediction error with respect to the observed value. MAE will indicate 

an average of prediction errors. For example, if MAE is 0.3, then predicted fup values deviate on 

average by 0.3. RMSE and coefficient of determination are the metrics that are commonly used for 

measuring the difference between predicted and observed values. 

Eqn 10. Average fold error (AFE) = 10
భ

೙
∑ ୪୭୥ ൬

೑ೠ ೛ೝ೐೏

೑ೠ ೚್ೞ
൰
 where fuppred and fupobs are predicted and 

observed fup values, respectively. 

Eqn 11. Absolute average fold error (AAFE) = 10
భ

೙
∑ฬ୪୭୥ ൬

೑ೠ ೛ೝ೐೏

೑ೠ೛೚್ೞ
൰ฬ

 

Eqn 12. Relative prediction error (RPE) = 
௙௨௣೛ೝ೐೏ି ௙௨௣೚್ೞ

௙௨ ೚್ೞ
∙ 100 (%) 

Eqn 13. Mean absolute RPE =
∑ |ோ௉ ೔|೙

భ

௡
 ∙ 100 (%) 

Eqn 14. Mean absolute error (MAE) =
ଵ

௡
∑ ห𝑓𝑢𝑝௣௥௘ௗ,௜ −  𝑓𝑢𝑝௢௕௦,௜ห௡

௜ୀଵ ∙ 100 (%) 

Eqn 15. Root mean squared error (RMSE) = ට
ଵ

௡
∑ (𝑓𝑢𝑝௣௥௘ௗ,௜ −  𝑓𝑢𝑝௢௕௦,௜)ଶ௡

௜ୀଵ  
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Eqn 16. Coefficient of determination (r2) = ቎
൫∑ ௙௨௣೛ೝ೐೏,೔∙ ௙௨ ೚್ೞ,೔

೙
భ ൯ି௡௙௨௣೛ೝ೐೏

തതതതതതതതതതതത∙ ௙௨௣೚್ೞ
തതതതതതതതതത

ටቀ∑ ௙௨ ೛ೝ ,೔
మି௡௙௨௣೛ೝ೐೏

തതതതതതതതതതതതమ೙
భ ቁቀ∑ ௙௨ ೚್ೞ,೔

మି௡௙௨௣೚್ೞ
തതതതതതതതതതమ೙

భ ቁ

቏

ଶ

 

4.3 Results 

4.3.1 Evaluation of the appropriateness of protein concentration vs. age profile for 

each model  

The estimated albumin ontogeny factors at birth were similar across models and ranged from 74 % ~ 

88 % (Table 4.1, Figure 4.1). In the case of McNamara and Alcorn [25] and Johnson et al. [243], the 

albumin concentration level at 2 years reached 81 % and 92 % of the adult level, respectively. The 

adult plasma albumin concentrations were reached at 11.3, 17.2 and 1.4 years according to 

McNamara and Alcorn [25], Johnson et al.[243] and PK-Sim [166], respectively (Table 4.2).   

 

Figure 4.1 Calculated ratios of albumin concentration in children relative to an adult level as a 

function of age of each models were presented in (A) logarithm and (B) linear scales.  

 

Table 4.1 Albumin concentration ratios of ontogeny models  



 

78 

 

 At birth  

(Full term neonate; 

Gestational age of 40 weeks 

was assumed) 

Age at which the adult level is 

reached 

McNamara and Alcorn (2002) 77% 11.3 years 

Johnson et al. (2006) 74% 17.2 years 

McNamara and Meiman 

(2019) 

77.7% N/Aa 

PK-Sim 88% 17 months  

a N/A: not applicable  

 

Table 4.2 AAG concentration ratios of ontogeny models  

 At birth  

(Full term neonate; 

Gestational age of 40 weeks 

was assumed) 

Age at which the adult level is 

reached 

McNamara and Alcorn (2002) 53.4% 9.3 years 

Johnson et al. (2006) 28.9% Reaches 88% by 17.7 years 

Maharaj et al. (2018) 26.4% Reaches 92% by 3 years  

McNamara and Meiman 

(2019) 

45.6% 2 years 

PK-Sim 28.8% 11.4 years 

Reaches 99% by 3 years 
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A comparison between the albumin concentration vs. age profiles derived from the models (Figure 

4.2) revealed that the models with non-linear equations, PK-Sim [166] and Johnson et al. [243], were 

more in agreement with the observed albumin concentrations (Table S1)  than those derived from 

McNamara and Alcorn [25] and McNamara and Meiman [211].  

 

Figure 4.2 Estimated albumin concentrations vs. age profiles (coloured lines) were compared to 

the observed albumin concentrations in children in (A) logarithm and (B) linear scales. Points 

are observed mean or median values and vertical lines represent standard deviations. The adult 

reference concentration of 4.5 g/dL was assumed for all models. 

 

The estimated AAG ontogeny factors at birth ranged from 28 ~ 53% (Figure 4.3). The Johnson et al. 

[243], Maharaj et al. [244] and PK-Sim [166] models showed similar profiles with low starting 

ontogeny factors in neonates and a rapid increase up to an adult level in the neonatal or infant periods. 

For both the Maharaj et al. [244] and the PK-Sim [166] models, the ratio reaches 90% by 2-year of 

age. Whereas for Johnson et al. [243], the ratio was 80% for a 2-year old and slowly increased to 88% 

in adolescents.  
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Figure 4.3 Calculated ratios of AAG concentration in children relative to an adult level as a 

function of age of each models were presented in logarithm and linear scales. 

 

The comparison between the AAG concentration vs. age profiles derived from the models (Figure 

4.4) showed that the models with non-linear equations, PK-Sim [166], Johnson et al. [243] and 

Maharaj et al. [244], were more in line with the observed AAG concentrations (Table S2) than those 

of McNamara and Alcorn [25] and McNamara and Meiman [211].  
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Figure 4.4 Estimated AAG concentrations vs. age profiles (coloured lines) were compared to the 

observe AAG concentrations in children in (A) logarithm and (B) linear scales. Points are 

observed mean or median values and vertical lines represent standard deviations. The adult 

reference concentrations were assumed for all models.   

 

4.3.2 Evaluating the divergence of ontogeny models as a function of age 

The differences in ontogeny factors at specific ages were calculated (Figure 4.5). These calculations 

were used to identify which age groups fupchild estimates would be most affected by choice of 

ontogeny model. For albumin, the difference in the ratio ranged from 3 to ~20 %, depending on the 

compared models. These differences were highest in infants and young children (age 3 months - 3 

years).  

In terms of the AAG ontogeny models, the difference in the ontogeny factors ranged from 8 to 48 % 

(Figure 4.6). Ontogeny factor differences were more prominent in neonates, infants and young 

children (i.e. age 0 to 6 years). The prediction of fupchild is a function of the ontogeny factor and also 

the degree of binding of a compound to plasma proteins which is reflected by the fupadult. In this 

section, we evaluated how the choice of ontogeny model influences the fupchild estimates for high and 
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low binding compounds. Fupchild values were simulated based on the maximum and minimum 

ontogeny factor vs. age profiles plus the fupadult values (Figure 4.7 - 4.8).  

 

 

Figure 4.5 Differential ontogeny factors as a function of age between ontogeny models in (A) 

logarithmic and (B) linear scales. Green and blue dots represent the maximum and minimum 

ratio differences at a specific age, respectively. The red dots are the differences between the 

maximum and the minimum ratio differences. The schematic (B) presents the differences 

between the maximum and the minimum ratios vs. age (in years) profile.   

 

 

Figure 4.6 Differential ontogeny factors as a function of age between ontogeny models in 

logarithmic scales. Green and blue dots represent the maximum and minimum ratio differences 

at a specific age, respectively. The red dots are the differences between the maximum and the 

minimum ratio differences. The schematic (B) presents the differences between the maximum 

and the minimum ratios vs. age (in years) profile.   
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Figure 4.7 Simulated fupchild values based on the maximum or the minimum possible albumin 

concentration ratios (i.e. [ALB]child/[ALB]adult) of models. The simulated fupchild normalized by 

fupadult values of 0.01, 0.1, 0.5 and 0.9. The blue triangles are the simulated fupchild values with 

the possible minimum albumin ontogeny factors as a function of age. The green circles are the 

simulated fupchild values with the possible maximum albumin ontogeny factors as a function of 

age.  
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Figure 4.8 Simulated fupchild values based on the maximum or the minimum possible AAG 

concentration ratios (i.e. [AAG]child/[AAG]adult) of models. The simulated fupchild normalized by 

fupadult values of 0.01, 0.1, 0.5 and 0.9. The blue triangles are the simulated fupchild values with 

the possible minimum AAG ontogeny factors as a function of age. The green circles are the 

simulated fupchild values with the possible maximum AAG ontogeny factors as a function of age.  

 

In the case of high binding compounds where fupadult values were 0.01 and 0.1, the deviation between 

the fup ratios (i.e. fupchild/fupadult) calculated using the maximum and the minimum ontogeny factors 

were larger as compared to low-to-moderate binding compounds with fupadult values of 0.5 and 0.9. 

The deviations in the fup ratios decreased as age increased. For AAG, the deviation in the fup ratio 

resulting from the wide differences in the ontogeny factors between models was larger than that of 

albumin. When a compound is highly bound with fupadult of 0.01, the simulated fup ratios in all ages 

ranged from 1 to 3.7 for AAG models whereas the fup ratios for albumin models ranged from 1.1 to 

1.3.   
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4.3.3 Predictive performance of ontogeny models  

In order to evaluate predictive performances of ontogeny models, a total of 61 compounds data was 

gathered. The summary of chemical properties was listed in Supplementary materials (Table S3, 

Figure S1). In this data set, there were 24 acids, 24 bases and 13 neutrals. The mean and standard 

deviation values of lipophilicity (LogP) and molecular weight were 2.2 ± 1.6 and 385.6 ± 223.3 da, 

respectively.  

The fupchild predictions for compounds bound to albumin based on four ontogeny models were 

comparable with similar AFE values across age groups (Table 4.3). For the majority of compounds, 

the fupchild values were under-predicted (Figure 4.9A) with AFE values ranging from 0.79 ~ 0.81. The 

fup values were under-predicted in neonates, and a higher variability in the prediction errors in 

neonates was also observed as compared to other age groups (Figure 4.9B).  
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Table 4.3 Predictive performance of albumin ontogeny models in predicting fupchild 

 data 

McNamar

a & 

Alcorn 

2002 

Johnson et 

al. 2006 

McNamar

a & 

Meiman 

2019 

PK-Sim Average 

RMSE All 0.07 0.07 0.07 0.08 0.07 

R2 All 97.9 97.9 97.9 97.8 95.8 

MAE (%) All 4.5 4.6 4.5 5.5 4.8 

mean 

absolute 

RPE (%) 

All 23.1 23.2 23.8 26.8 24.2 

AFE All 0.81 0.79 0.81 0.73 0.79 

AAFE All 1.32 1.34 1.34 1.42 1.36 

AFE 

Highly 

binding 

compounds 

0.79 0.76 0.79 0.69 - 

AAFE 

Highly 

binding 

compounds 

1.39 1.41 1.41 1.5 - 

AFE 

Low to 

moderately 

binding 

compounds 

0.87 0.86 0.88 0.82 - 

AAFE 
Low to 

moderately 
1.16 1.17 1.16 1.22 - 
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binding 

compounds 

AFE 
Healthy 

subjects 
0.87 0.85 0.86 0.78 - 

AAFE 
Healthy 

subjects 
1.25 1.24 1.25 1.33 - 

AFE Patients 0.7 0.66 0.7 0.62 - 

AAFE Patients 1.53 1.58 1.57 1.66 - 

R2 (%) 

QSPR- 

predicted 

fupadult as 

input 

58.6 59.3 59 58.6 58.9 

MAE (%) 

QSPR- 

predicted 

fupadult as 

input 

12.4 12.2 12.3 12.3 12.3 

AFE 

QSPR- 

predicted 

fupadult as 

input 

1.35 1.3 1.34 1.2 1.3 

AAFE 

QSPR- 

predicted 

fupadult as 

input 

2.24 2.22 2.23 2.2 2.22 
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Figure 4.9 (A) Comparison of predicted and the observed fupchild values for albumin binding 

compounds. Dots are fupchild values calculated using different ontogeny models and the line is 

the line of unity. (B) Comparison of fold error values with respect to age groups.  

 

 

 

Figure 4.10 (A) Comparison of predicted and the observed fupchild values for AAG binding 

compounds.  Dots are fupchild values calculated using different ontogeny models and the line is 

the line of unity. (B) Comparison of fold error values with respect to age groups.   
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For compounds bound to AAG, the fupchild values were under-predicted with AFE values ranging 

from 0.77 ~ 0.97 (Table 4.4, Figure 4.10). Overall, PK-Sim [166], Johnson et al. [243] and Maharaj et 

al. [244] resulted in similar predictive performances with similar RMSE, R2, AFE and AAFE values 

(n=29). Highly bound compounds (i.e. 0.01 <fupadult ≤ 0.2) had lower AFE and higher AAFE as 

compared to low-to-moderate binding compounds (i.e. 0.2 <fupadult).  
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Table 4.4 Predictive performance of AAG ontogeny models in predicting fupchild 

 Data type 

McNamar

a & 

Alcorn 

2002 

Johnson 

et al. 

2006 

McNamar

a & 

Meiman 

2019 

PK-Sim 

Maharaj 

et al. 

2018 

Average 

RMSE All 0.12 0.09 0.11 0.09 0.09 0.1 

R2 (%) All 78.1 84.8 83.1 84.6 84.8 83.1 

MAE (%) All 9.7 7.1 8.4 7.6 7.7 8.1 

mean 

absolute 

RPE (%) 

All 26.9 20.5 23.7 22.5 23 23.3 

AFE All 0.78 0.89 0.77 0.92 0.97 0.87 

AAFE All 1.38 1.26 1.34 1.29 1.28 1.31 

AFE 

Highly 

binding 

compoun

ds 

0.74 0.82 0.7 0.84 0.9 - 

AAFE 

Highly 

binding 

compoun

ds 

1.48 1.33 1.46 1.36 1.34 - 

AFE 

Low to 

moderate

ly binding 

0.85 1.02 0.9 1.06 1.09 - 
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compoun

ds 

AAFE 

Low to 

moderate

ly binding 

compoun

ds 

1.23 1.16 1.18 1.18 1.19 - 

AFE 
Healthy 

subjects 
0.75 0.96 0.8 1.01 1.06 - 

AAFE 
Healthy 

subjects 
1.41 1.22 1.31 1.23 1.24 - 

AFE Patients 0.87 0.71 0.69 0.67 0.72 - 

AAFE Patients 1.28 1.41 1.46 1.49 1.42 - 

R2 

QSPR- 

predicted 

fupadult as 

input 

47.9 63.4 59.4 65.5 65.5 60.3 

MAE (%) 

QSPR- 

predicted 

fupadult as 

input 

12.6 10.9 10.5 11.4 12.2 11.5 

AFE 

QSPR- 

predicted 

fupadult as 

input 

0.98 1.11 0.97 1.15 1.2 1.08 
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AAFE 

QSPR- 

predicted 

fupadult as 

input 

1.56 1.37 1.41 1.37 1.39 1.42 

 

4.3.4 Evaluation of the overall uncertainty of using QSPR predicted fup values for 

predicting fupchild 

When QSPR-predicted fupadult values were compared to the observed fupadult values, the MAEs were 

10.4 % and 13.4 % for albumin and AAG binding compounds, respectively (Table 4.5). Although 

both under- and over-predictions were observed (Figure 4.11), over-predictions were prominent with 

the AFE values of 1.44 and 1.25 for albumin and AAG bound compounds, respectively. The AAFE 

values were 2.04 and 1.93 for albumin and AAG binding compounds, respectively.  

Table 4.5 Predictive performance of QSPR model in predicting fupadult 

 Evaluation metric value 

Albumin binding compounds (n=51) RMSE 0.15 

R2 0.58 

MAE(%) 10.4 

mean absolute RPE (%) 126.5 

AFE 1.44 

AAFE 2.04 

AAG binding compounds (n=24) RMSE 0.17 

R2 0.34 

MAE(%) 13.4 
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mean absolute RPE (%) 88.2 

AFE 1.25 

AAFE 1.93 

 

 

 

Figure 4.11 Comparison of QSPR-predicted and the observed fupadult values for (A) albumin 

and (B) AAG binding compounds. Dots are fupadult values and the line is the line of unity. 

Assuming a human fup is equivalent to that of a fupadult, the fupchild values were calculated using the 

ontogeny models with QSPR-predicted-fupadult values as inputs. In order to evaluate the overall 

uncertainty of using QSPR-predicted fupadult values as inputs, the average values of evaluation metrics 

(i.e. R2, MAE, AFE and AAFE) of models was compared when observed fupadult vs. when QSPR-

predicted fupadult were used to calculate fupchild (Table 4.3). For compounds bound to albumin, on 

average, the coefficient of determination between predicted vs. observed fupchild values was decreased 

by 37% when QSPR-predicted fupadult was used. MAE increased by 7.5%. AFE on average increased 

by 0.51 indicating that QSPR-predicted fupchild values were over-predicted (AFE: 1.2 ~ 1.35) 

compared to the fupchild that was derived from the observed fupadult (AFE: 0.79 ~ 0.81). 

For compounds bound to AAG, on average, the MAE value increased by 3.4 %, the AAFE increased 

by 0.11 and coefficient of determination decreased by 23 % (Table 4.4). AFE was increased by 0.2 
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indicating that QSPR-predicted fupchild values (AFE: 0.77 ~ 0.97) were on average over-predicted by 

20% when compared to the observed fupadult values that were used as inputs (AFE: 0.98~1.2).  

4.4 Discussion 

Ontogeny models describing plasma protein concentrations as a function of age are a critical 

component in pediatric PBPK modeling as they provide an estimate of fupchild. According to the 

established workflow in Maharaj and Edginton [47], pediatric PBPK models are extrapolated from 

the PBPK model in adults. The fupadult is subjected to the ontogeny equations to estimate fupchild. The 

results of a sensitivity analysis within pediatric PBPK models revealed that fup was one of the most 

important input parameters, with importance to systemic distribution and clearance for low to 

moderately extracted compounds [70, 180]. This indicates that the confidence in the pediatric PBPK 

model outputs are dependent on the accuracy of fupchild. In light of this, we evaluated the 

appropriateness of the concentrations of albumin and AAG vs. age profiles and predictive 

performance of ontogeny models. In addition, we examined an overall uncertainty of the combined 

use of QSPR approach and ontogeny model in predicting fupchild. 

These ontogeny models for albumin or AAG binding compounds are largely different in their 

mathematical structures. Johnson et al. [243] and PK-Sim [166] both adopted non-linear equations 

assuming that the predicted protein concentrations increase steeply during the neonatal and infant 

periods. In contrast, McNamara and Alcorn [25] employed a linear equation to describe age-

dependent changes in protein concentrations and McNamara and Meiman [211] used a fixed 

concentration ratio for each age group. The observed protein concentration data shown in Figure 4.2 

and 4.4, Table S1 and S2 was used in at least one model development process except for that of 

Weaving et al. [247], which presented albumin concentration data at 1 year and above. These plasma 

protein concentration data was used as a means to assess the appropriateness of a curve shape (i.e. 

continuous vs. discontinuous, linear vs. non-linear) and physiological relevance of the predicted 

protein concentration vs. age profiles.  

Albumin plasma concentrations at birth (i.e. full-term neonate), depending on the model, are between 

74% to 88% of those in adults, which is similar to observed values (i.e. measured in cord plasma or 

serum of neonates) of 80 ~ 81% [25, 248]. In terms of infants and children, both the albumin 

concentration vs. age profiles of PK-Sim [166] and Johnson et al. [243] were in line with the observed 
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concentration data. However, the projection of albumin concentration vs. age for PK-Sim [166] was 

slightly higher than in the other models, especially in neonates. In the case of both the McNamara and 

Alcorn [25] and the McNamara and Meiman [211]  models, the predicted albumin concentrations in 

the neonate and infant period (i.e. age 0 -2) were in agreement with the observed data. However, 

predicted albumin concentrations in children were lower than observed.  

AAG plasma concentrations at birth are relatively immature with, depending on the model, between 

28 to 53% of those in adults. This is in line with observed ratios of AAG plasma concentrations in 

neonates at birth relative to adults of 33 to 46 % [25, 242, 249]. In terms of the McNamara and 

Alcorn [25] and the McNamara and Neiman [211]  models, the predicted AAG concentration ratios in 

neonates were higher than those of the other models (Figure 4.3). This over-estimation in the 

concentration ratios resulted in an under-prediction in neonate fup values (Figure 4.10). On the other 

hand, throughout the pediatric period, the predicted AAG concentrations derived from PK-Sim [166], 

Johnson et al. [243] and Maharaj et al. [244] were in line with the observed data. This indicates that 

those models are physiologically relevant and can reasonably describe the age-dependent maturation 

of the AAG levels. This agreement in turn contributed to a better overall prediction performance with 

AAFE values ranging from 1.26 to 1.29 compared to AAFE values of 1.34 and 1.38 in the other 

models.  

Depending on the ontogeny model used, the predicted fup in neonates can differ from fupadult values 

up to 1.3 fold for albumin (Figure 4.7) and 3.7-fold for AAG (Figure 4.8). The discrepancy between 

the AAG ontogeny models was more prominent than the albumin models with the difference of the 

ontogeny factors ranging from 20 to 48 % in the neonate and infant periods (Figure 4.6). The large 

deviation between AAG concentrations vs. age profiles of each model is attributed to the lower AAG 

levels of the McNamara and Alcorn [25] model compared to the non-linear models such as the 

Johnson et al. [243], Maharaj et al. [244] and PK-Sim [166]. Furthermore, the discrepancy between 

models is greatest when fupadult is low with little difference when fupadult is high. As such, it is 

expected that the choice of ontogeny model is most important to the confidence in pediatric PBPK 

model outputs when the compound is bound to AAG, the child is a neonate and the compound is 

highly bound. The choice of model is much less important, regardless of age, if the compound is 

albumin bound and/or has low binding to either AAG or albumin. 
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Based on the test set of compound data obtained from the literature, it was found that the ontogeny 

models under-predicted fupchild with the average AFE values of 0.79 and 0.87 for albumin and AAG 

ontogeny models, respectively. According to Figure 4.9B, albumin ontogeny models under-predicted 

fupchild for neonate and infants compared to children and adolescent groups. Possible reasons for this 

under-estimation of fupchild are manifold. First, fetal albumin has a lower binding affinity for weakly 

acidic compounds, therefore the presence of fetal albumin in neonates may lower the degree of 

protein binding [24, 250]. Fetal albumin is replaced by albumin at 3-4 weeks of age. Second, the 

binding capacity of plasma proteins is reduced in neonates. It was suggested that endogenous 

molecules such as non-esterified fatty acids may lower the binding capacity of albumin [179, 251-

253]. Furthermore, high concentrations of other blood constituents such as bilirubin and free fatty 

acids may displace a compound from albumin [24, 252, 254]. These qualitative differences in protein 

binding may violate the assumptions of ontogeny models and subsequently lead to less accurate 

fupchild prediction. More research is needed to elucidate how the levels of impeding endogenous 

substances affect protein binding in neonates.   

In addition, we evaluated the predictive performance of the models using fupchild data of patients 

requiring a drug administration for treatment purposes in clinical studies. The identification of disease 

status of the patients and how it may alter the plasma protein concentration levels was beyond the 

scope of our investigation. However, we could not rule out that the underlying physiological 

condition of the subjects may have influenced the protein concentrations, thereby affecting fupchild 

values. In the case of McNamara and Alcorn [25], for the period of infants, children and adolescents, 

both predicted albumin and AAG concentration levels were lower than the rest of the models. The 

prediction error was low for patients (Table 4.3-4.4) compared to other models with the AAFE values 

of 1.53 and 1.28 for both the albumin and AAG models, respectively. This implied that the altered 

protein concentration levels due to a possible disease effect in patients better matched with the protein 

concentration vs. age profiles of McNamara and Alcorn [25].   

Currently available protein ontogeny models predict fupchild based on age-dependent maturation of 

albumin or AAG concentrations in children, however, some compounds bind preferentially to other 

proteins. For example, lipophilic bases and neutrals such as probucol bind extensively to lipoproteins 

[235, 255]. Many environmental contaminants such as polychlorinated biphenyl (PCB), 
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Dichlorodiphenyltrichloroethane (DDT), benzo-a-pyrene (BAP) bind to both albumin and 

lipoproteins [256-258].  

Lipoproteins are heterogeneous, vary in size and in lipophilic contents [259]. The concentration of 

lipoproteins is smaller than that of albumin [low density lipoprotein (LDL, 0.23-0.35 g/dL), high 

density lipoprotein (HDL, 0.1-0.2 g/dL) and very-low density lipoprotein (VLDL, <0.05 g/dL), 

albumin (3.5 – 5.5 g/dL)] [179, 233, 259, 260]. Incorporation of lipoprotein binding may help 

improve fupchild prediction for those compounds that preferentially bind to lipoproteins, however, 

observed fupchild for compounds preferentially bind to lipoproteins are not available.   

The ontogeny models are thought to be crucial for human health risk assessment applications. The 

accuracy of these models is of the utmost importance because they contribute to the evaluation of 

pharmacokinetic variability in the health risk assessment for children. The use of an under-estimated 

fupchild in PBPK modeling would result in an under-estimation of clearance for low-to-moderately 

extracted compounds and volume of distribution. This would then lead to an over-estimation of the 

area under the curve of the plasma concentration vs. time profile (AUC). These inaccurate PK 

predictions would then lead to an inadequate determination of a toxicology index such as tolerable 

daily intake (TDI) in the human health risk assessment for children.  

Due to the scarcity of the observed fupchild data, the results of prediction performance on this data set 

should be interpreted with caution as another test set of compounds may result in a different 

prediction performance depending on the chemical properties of the compounds being used. 

Furthermore, evaluating the appropriateness of the protein concentrations vs. age profile is more 

important than comparing the models’ predictive performances alone. Compared to the albumin data, 

the availability of AAG concentration data and observed fupchild for AAG binding compounds were 

limited. It is thought that more observed AAG concentrations and fupchild data in heathy individuals 

will help in evaluating the appropriateness of the AAG concentration vs. age profile and the 

prediction accuracy of the AAG ontogeny models.  

The findings of this study provide sufficient evidence that albumin ontogeny models are 

physiologically relevant and are likely to result in consensus estimation with a reasonable prediction 

accuracy when fupadult is available. Even though AAG models presented a larger model discrepancy in 

predicting protein concentration ratios (i.e. [AAG]child/[AAG]adult), the non-linear models of PK-Sim 
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[166], Johnson et al. [243] and Maharaj et al. [244] were expected to produce consensus fupchild 

estimation. Overall, the use of QSPR-predicted fupadult as an input decreased prediction accuracy, 

indicating that an experimental determination of fup in adults is, at minimum, required for PK 

prediction in children. The prediction of fupchild for highly binding compounds can be more sensitive 

to the appropriateness of the projected protein concentration vs. age profiles, especially in the neonate 

and young infant periods. Therefore, for these compounds and scenarios, experimental determination 

of fupchild for inclusion into a pediatric PBPK model is necessary to have confidence in PBPK model 

outputs.  

 

 



99 

 

 

Chapter 5: Prediction of Fraction Unbound in Plasma in Children in 

Data-limited Scenarios for Human Health Risk Assessment 

5.1 Introduction  

Exposure of children to environmental chemicals is an active area of research in human health risk 

assessment. The characterization of toxicokinetic (TK) behavior in humans, such as absorption, 

distribution, metabolism and excretion (ADME) of environmentally relevant compounds, is ethically 

restricted in vulnerable populations. When children are exposed to environmental toxicants, their 

immaturity in anatomy and physiology can lead to higher blood concentration levels and a longer 

duration of the toxicant in the body compared to adults [20, 261]. Regulatory agencies face challenges 

in identifying associated human health risks [262] and there are only a fraction of compounds with 

well-characterized chemical safety profiles  [262, 263]. In most cases, human exposure data to 

environmental chemicals is not available [264]. Furthermore, limited data availability (i.e. data-poor 

compounds) can hinder prompt response for appropriate and timely regulatory decisions.  

In order to overcome the challenge, regulatory agencies such as US Environmental Protection Agency 

(EPA) and European Commission’s Joint Research Centre have adopted and utilized computational 

toxicology to make the most of the best available science to protect the environment and human 

health. The computational toxicology initiative proposed by these agencies is described in review 

articles [262, 265, 266]. Briefly, the Joint Research Centre encourages developing, evaluating and 

implementing computational methods for regulatory assessment. Actions involve (i) developing 

publically available computational programs to evaluate chemical toxicity based on chemical 

properties and (ii) constructing regulatory guidance on the use of those programs [265]. In light of 

EPA’s mandate to apply the best available science to human health risk assessment, computational 

toxicology (CompTox) research program and Toxicity Forecaster (ToxCast) project were developed. 

The agency’s missions through these initiatives involve interdisciplinary integration of sciences to 

evaluate chemical safety in efficient and economical manner [262].  

One important quantitative computational toxicology tool is the use of physiologically based 

pharmacokinetic (PBPK) modeling. In children, PBPK models can facilitate the prediction of PK 

parameters under specific exposure conditions [45, 51, 58]. In human health risk assessment, PBPK 
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modeling has been used to indicate chemical-specific human toxicokinetic adjustment factors 

(HKAF) [10]. Pediatric PBPK models provide an estimation of the pharmacokinetic inter-individual 

variability in children as well as predicting the HKAF. The HKAF is a ratio of the 95th percentile PK 

parameter in a pediatric group and 50th percentile PK parameter in an adult population [6, 13].  

From a previous study of pediatric PBPK model qualification for cytochrome P450 (CYP) 

metabolized compounds [180], the fraction unbound in plasma value (fup) in children was one of the 

most critical input parameters for the estimation of exposure. This indicates that an accurate 

determination of fup in children (fupchild) is critical for predicting the PK in children. When an 

experimentally determined fup in adult (fupadult) of a compound is available, the precision of the 

fupchild estimate will depend on the predictive performance of the ontogeny model (adult to child 

scaling model). This ontogeny model is a function of the plasma albumin or alpha-acid glycoproteins 

(AAG) concentrations at a specific age and fupadult [25, 211, 243, 244]. Ontogeny models were 

developed based on the correlation between the increase in plasma albumin and AAG levels with age 

and fup values [25, 267].  In fupchild prediction, the protein maturation in protein binding levels is 

taken into account by applying the ratio of protein concentrations at a specific age and the ratio of 

protein concentrations vs. age profiles determine the prediction accuracy of the protein binding 

ontogeny models.   

When the experimentally determined value of the fraction unbound in plasma in adults is not 

available, the input parameter can be estimated using a computational method which is known as 

predictive quantitative structure-property relationship (QSPR) modeling. Recent QSPR models [186, 

194] employ machine learning techniques to predict the fup from chemical structures and properties. 

For this, various software (e.g. PaDel [196], Molecular Operating Environment (MOE, Chemical 

Computing Group)) is available to determine chemical descriptors and physicochemical properties. 

For data-poor chemicals, the use of predicted chemical properties from a compound structure such as 

lipophilicity, ionization state at physiological pH as well as fup can aid in the prediction of children 

PK. It was found from the previous investigation [268] that currently available QSPR models for 

predicting fup resulted in comparable prediction performances with mean absolute error values 

ranging from 12.6 ~15.9 %. The commercially available ADMET Predictor resulted in a slightly 

better prediction performance and, therefore, was chosen for evaluation in this study.  
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In this study, we will focus on the evaluation of the prediction of plasma protein binding in children 

for data-limited applications with data-rich compounds. The objectives of this study are (i) to evaluate 

the uncertainty of the ontogeny models in different data availability scenarios and (ii) to evaluate how 

these different data availabilities can impact the over-all prediction accuracy of protein binding 

estimates in children. In addition, the prediction error due to ontogeny model misspecification will 

also be assessed. This data availability scenario-based evaluation will provide an understanding of 

what chemical-specific information is necessary to reduce uncertainty in pediatric PK prediction.  

5.2 Methods  

5.2.1 Data collection 

The observed fupchild and fupadult values were obtained from MEDLINE database by searching 

relevant keywords, e.g. ‘fraction unbound in plasma in infants’ and ‘protein binding in children’. 

Pediatric data was classified into four age groups such that neonates were 0 to ≤1 month, infants were 

1 month to ≤2 years, children were 2 years to ≤12 years and adolescents were 12 years to ≤18 years. 

Age in years or months was converted to postnatal age (PNA) in days. The data presented in graphs 

was obtained by digitizing data points using the Plot-digitizer (ver 2.6.8). Relative differences 

between observed fupchild and fupadult values were calculated by using the following equation (Eqn 1).  

Eqn 1. 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
௙௨௣೎೓೔೗೏ି௙௨௣ೌ೏ೠ೗೟

௙௨௣ೌ೏ೠ೗೟
∙ 100 (%)  

Human fup values were calculated using the ADMET predict function (ADMET Predictor™, 

Simulations Plus, Inc., Lancaster, California, USA). The estimated fup value in human value was 

assumed to be equivalent to fupadult. The input of 2-dimensional structural data files were obtained 

from PubChem [206]. Along with human fup values, chemical descriptors such as lipophilicity, the 

fraction of anion, and the fraction of cation were calculated by using the ADMET Predictor.  

Acid-base properties were then obtained by using the same criteria described in Ingle et al. [186] and 

were applied to determine acid, base, neutral and zwitterion. Briefly, the ionization state at a 

physiological pH of 7.4 was calculated by using the ADMET Predictor. When fractions of anion or 

cation of a compound exceeded 10 %, they were classified as an acid or a base, respectively. When a 

fraction of anion and cation of a compound was less than 10%, it was classified as a neutral 
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compound and when both a fraction of anion and a fraction of cation exceeded 10%, it was classified 

as a zwitterion.  

5.2.2 Calculation of fupchild values  

Fupchild values were calculated as a function of fupadult and the protein concentration ratios between 

adults and children by using the following equations (Eqn 2) [25]. [P] is the concentrations of protein.  

Eqn 2. 𝑓𝑢𝑝௖௛௜௟ௗ =  
ଵ

ଵା
[ು]೎೓೔೗೏
[ು]ೌ೏ೠ೗೟

∙
(భష೑ೠ೛ೌ೏ೠ೗೟)

೑ೠ ೌ೏ೠ೗೟

 

The protein concentration ratio between children and adults (
[௉]೎೓೔೗೏

[௉]ೌ೏ೠ೗೟
) can be determined with respect 

to the plasma protein to which a compound primarily binds. The protein concentration ratios vs. age 

profiles that were derived from albumin and AAG ontogeny models were plotted for comparison. 

With the albumin models, the albumin level in neonates was 75 ~88% of the adult level (Figure 5.1). 

The ratio of albumin incrementally increased throughout the pediatric period (i.e. age from birth to 18 

years). The AAG ontogeny models projected the AAG level in neonates to be 25% of the adult level. 

There was a steep increase in the AAG level in the first year of life and it then reaches the plateau in 

older children and the adolescent periods (age from 10 to 18 years). 

 

Figure 5.1 The protein concentration ratios between children and adults vs. age profiles derived 

from ontogeny models in logarithmic scale.  ALB and AAG refer to albumin and alpha-acid 

glycoprotein ontogeny models, respectively.  
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Bases preferentially bind to AAG, and acids and neutrals bind to albumin [179, 233, 269]. When the 

protein binding partner information is not available, an AAG ontogeny model was used for bases and 

an albumin ontogeny model was used for acids and neutrals. In terms of the input fupadult, either an 

observed fupadult value from literature or a QSPR-predicted fup in human value was used. Fupchild 

values were calculated using Johnson et al. [243] and PK-Sim ontogeny models [166] according to 

the following scenarios listed below (Method 1-6, Table 5.1). These ontogeny models were selected 

because, in our previous investigation [270], these models [166, 243] showed more physiologically 

relevant plasma protein concentrations vs. age profiles compared to other models [25, 211].  

Table 5.1 Fupchild predictions in data availability specific scenarios  

Available data Ontogeny models  Inputs for ontogeny models  

Specific binding protein 

information 

ALB ontogeny models for ALB 

binding compounds 

AAG ontogeny models for AAG 

binding compounds   

Observed fupadult 

QSPR-predicted fupadult 

Acid-base properties  ALB ontogeny models for acids and 

neutrals 

AAG ontogeny models for bases 

Observed fupadult 

QSPR-predicted fupadult 

 

Method 1. 
[௉]೎೓೔೗೏

[௉]ೌ೏ೠ೗೟
 was estimated based on albumin concentrations using albumin ontogeny models for 

all compounds. For fupchild calculation, observed fupadult was used.   

Method 2. 
[௉]೎೓೔೗೏

[௉]ೌ೏ೠ೗೟
 was estimated based on AAG concentrations using AAG ontogeny models for all 

compounds. For fupchild calculation, observed fupadult was used.   

Method 3. For 
[௉]೎೓೔೗೏

[௉]ೌ೏ೠ೗೟
 estimation, the albumin ontogeny models were used for acids and neutrals and 

AAG ontogeny models were used for bases. For fupchild calculation, observed fupadult was used.  
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Method 4. For 
[௉]೎೓೔೗

[௉]ೌ೏ೠ೗೟
 estimation, the albumin ontogeny models were used for acids and neutrals and 

AAG ontogeny models were used for bases. For fupchild calculation, QSPR-predicted fupadult was used.  

Method 5. For 
[௉]೎೓೔೗೏

[௉]ೌ೏ೠ೗೟
 estimation, the albumin ontogeny models were used for albumin binding 

compounds and AAG ontogeny models were used for AAG binding compounds. For fupchild 

calculation, observed fupadult was used.  

Method 6. For 
[௉]೎೓೔೗೏

[௉]ೌ೏ೠ೗೟
 estimation, the albumin ontogeny models were used for albumin binding 

compounds and AAG ontogeny models were used for AAG binding compounds. For fupchild 

calculation, QSPR-predicted fupadult was used.  

Method 1 and 2 will show the prediction error associated with the misspecification of ontogeny 

models with respect to a lack of binding partner information. Method 5 shows the prediction error of 

ontogeny models when ontogeny models are applied based on known binding partner information and 

the experimentally determined fupadult is used as an input. The comparison between Method 3 and 5 

will indicate the prediction error associated with calculating fupchild based on the assumption that 

acids and neutrals bind to albumin and bases bind to AAG, when experimentally determined fupadult is 

used as an input. The comparison between Method 5 and 6 will show the prediction error associated 

with calculating fupchild when QSPR-predicted fupadult values are used for ontogeny model input.  

5.2.3 Evaluation of predictive performance of the model  

The predicted fupadult and fupchild values according to the 6 scenarios listed above were then compared 

to the observed values. The equations for evaluation metrics for assessing the predictive performance 

of the model are listed below.  

Eqn 3. Prediction error = fuppred – fupobs where fuppred and fupobs are predicted and observed fup 

values, respectively. 

Eqn 4. Relative prediction error (RPE) = 
௙௨ ೛ೝ೐೏ି ௙௨௣೚್ೞ

௙௨௣೚್ೞ
∙ 100 (%) 

Eqn 5. Mean absolute RPE =
∑ |ோ௉ா೔|೙

భ

௡
 

Eqn 6. Mean absolute error (MAE) =
ଵ

௡
∑ ห𝑓𝑢𝑝௣௥௘ௗ,௜ −  𝑓𝑢𝑝௢௕௦,௜ห௡

௜ୀଵ ∙ 100 (%) 
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5.3 Results 

5.3.1 Comparison of the observed fupchild and fupadult values based on chemical 

properties  

From literature, 139 fupchild values were obtained from a total of 61 compounds [25, 211, 236, 242, 

248, 258, 271-285]. When individual fupchild values were reported (e.g. [272]), mean fupchild values 

were used for the analysis in this study. The relationship between fupadult and fupchild is mostly linear 

for acids and neutrals. For all compounds, fupchild values were higher than fupadult. This trend was 

expected because the protein concentration in children is lower than in adults (Figure 5.1) and, 

therefore, children tended to have a higher fup value than the adults. Acids and neutrals tended to be 

highly binding to plasma proteins compared to bases such that both fupadult and fupchild were less than 

0.1 for 32.8% of acids, 51.1% of neutrals and 5.9% of bases (Figure 5.2A). Albumin binding 

compounds revealed a higher degree of protein binding compared to the AAG binding compounds 

(Figure 5.2B).  

For moderately lipophilic compounds (0<logP<3), the relative differences of fup between adults and 

children were higher than those of acids and neutrals with higher median values in all age groups 

(Figure 5.3). For highly lipophilic compounds (LogP > 3), relative differences of bases and neutrals 

were higher than the acids. Hydrophilic compounds (LogP <0) tended to have higher relative 

differences in all age groups. 
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Figure 5.2 The relationship between observed fupchild and fupadult on log-linear scale. Fup values 

were labeled based on (A) acid base properties and (B) specific binding protein.  The line is the 

line of unity.  

 

 

Figure 5.3 Comparison of relative differences between fupchild and fupadult values as a function of 

chemical properties such as lipophilicity and acid-base properties.  



 

107 

 

 

Figure 5.4 Comparison between observed fupchild values and QSPR-based fupchild calculated 

using PK-Sim according to different data-availability scenarios.  
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Figure 5.5 Comparison of predictive performance of protein binding ontogeny models as a 

function of (A) acid-base properties, (B) age group, and (C) lipophilicity.  

 

5.3.2 Evaluation of the predictive performance of the model  

When the albumin ontogeny equation was applied to calculate fupchild for all compounds (Method 1), 

fupchild values were under-predicted compared to observed fupchild with an AFE value of 0.68 for 

Johnson et al. [243] and an AFE value of 0.74 for PK-Sim [166] (Table 5.2 and 5.3, Figure 5.4A, 

Figure S1A). Fupchild values were slightly under-predicted for bases (Figure 5.5A). 

When the AAG model was used to predict fupchild values for all compounds using fupadult values as an 

input (Method 2, Figure 5.4B), a lesser degree of bias was observed with most fup values centered 

around the line of unity compared to the cases seen using the albumin models where the majority of 
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data points fell below the line of unity (Method 1, Figure 5.4A). Fupchild values were over-predicted 

especially for acids and neutrals with a fold error up to 4 (Figure 5.5A). In terms of Method 1 and 2, 

the degree of bias was greater in neonates than any other age group such that fupchild estimates were 

under-predicted with Method 1 and over-predicted with Method 2 (Figure 5.5B).  

When the binding partner was assumed based on acid-base properties and the corresponding 

equations were applied to calculate fupchild using observed fupadult as an input (Method 5.3, Figure 

5.4C), the prediction accuracy was similar to the cases where fupchild values were calculated based on 

known binding partner information (Method 5.5, Figure 5.4E).  

When QSPR-predicted fupadult values were used as an input (Method 4 and 6), substantial over-

prediction was observed for acids and neutrals up to an 8-fold of deviation from the observed values 

(Figure 5.4D, 5.4F, 5.5A). However, the degree of the over-prediction for bases was not as severe 

compared to the other groups of compounds. Lipophilic compounds tended to have a higher over-

prediction in QSPR-predicted fupchild values than hydrophilic compounds (Figure 5.5C).  

Table 5.2 Predictive accuracy according to different calculation methods for PK-Sim.  

data 
n 

Evaluatio

n metrics 

Metho

d 1 

Metho

d 2 

Metho

d 3 

Method 

4 

Method 

5 
Method 6 

Total 139 RMSE 0.11 0.09 0.08 0.17 0.08 0.17 

139 R2 (%) 90 90.6 92.1 57 92.1 52.9 

139 MAE (%) 7.7 7 5.9 11.7 5.9 12.1 

139 mean 

absolute 

RPE (%) 

30.1 47.6 25.8 106.8 25.8 107.2 

139 AFE 0.68 1.18 0.76 1.2 0.76 1.19 

139 AAFE 1.5 1.46 1.39 1.98 1.39 1.99 

110 AFE 0.73 1.26 0.73 1.22 0.73 1.2 
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Albumin 

binding 

compoun

ds 

110 AAFE 1.42 1.52 1.42 2.16 1.42 2.2 

AAG 

binding 

compoun

ds 

29 AFE 0.54 0.92 0.9 1.11 0.92 1.15 

29 AAFE 1.85 1.29 1.3 1.42 1.29 1.37 

Acids 58 AFE 0.71 1.36 0.71 1.27 0.71 1.27 

58 AAFE 1.46 1.56 1.46 2.12 1.46 2.12 

Bases 34 AFE 0.58 0.92 0.92 1.05 0.89 0.99 

34 AAFE 1.73 1.27 1.27 1.41 1.27 1.48 

Neutral 47 AFE 0.73 1.19 0.73 1.23 0.74 1.25 

47 AAFE 1.41 1.51 1.41 2.33 1.41 2.28 

Modately 

lipophlic 

compoun

ds 

101 AFE 0.7 1.24 0.77 1.22 0.76 1.2 

101 AAFE 1.44 1.45 1.35 1.86 1.35 1.9 

highly-

lipophlic 

compoun

ds 

32 AFE 0.68 1.14 0.82 1.15 0.84 1.19 

32 AAFE 1.6 1.49 1.44 2.6 1.43 2.52 

Hydrophili

c 

6 AFE 0.48 0.63 0.48 1.02 0.48 1.02 

6 AAFE 2.1 1.6 2.1 1.29 2.1 1.29 
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compoun

ds 

 

Table 5.3 Predictive accuracy according to different calculation methods for Johnson et al.  

data 
n 

Evaluatio

n metrics 

Metho

d 1 

Metho

d 2 

Metho

d 3 

Method 

4 

Method 

5 
Method 6 

Total 139 RMSE 0.10 0.08 0.07 0.16 0.07 0.17 

139 R2 (%) 90.8 91.5 93.5 58.4 93.7 55.2 

139 MAE (%) 6.7 6.1 5.2 11.6 5.1 11.9 

139 mean 

absolute 

RPE (%) 

26.4 37.3 22.7 115.8 22.6 116.1 

139 AFE 0.74 1.1 0.81 1.27 0.81 1.26 

139 AAFE 1.41 1.39 1.33 2 1.33 2.01 

Albumin 

binding 

compoun

ds 

110 AFE 0.79 1.17 0.79 1.32 0.79 1.3 

110 AAFE 

1.34 1.42 1.34 2.19 1.34 2.22 

AAG 

binding 

compoun

ds 

29 AFE 0.59 0.89 0.87 1.09 0.89 1.11 

29 AAFE 
1.71 1.26 1.27 1.41 1.26 1.37 

Acids 58 AFE 0.78 1.25 0.78 1.39 0.78 1.39 

58 AAFE 1.36 1.45 1.36 2.13 1.36 2.13 
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Bases 34 AFE 0.63 0.9 0.9 1.02 0.88 0.98 

34 AAFE 1.61 1.25 1.25 1.41 1.25 1.47 

Neutral 47 AFE 0.78 1.1 0.78 1.31 0.79 1.34 

47 AAFE 1.35 1.42 1.35 2.38 1.34 2.34 

Modately 

lipophlic 

compoun

ds 

101 AFE 0.76 1.16 0.82 1.3 0.81 1.28 

101 AAFE 

1.35 1.36 1.28 1.88 1.28 1.91 

highly-

lipophlic 

compoun

ds 

32 AFE 0.73 1.07 0.85 1.2 0.87 1.23 

32 AAFE 

1.54 1.43 1.39 2.64 1.38 2.58 

Hydrophili

c 

compoun

ds 

6 AFE 0.5 0.61 0.5 1.07 0.5 1.07 

6 AAFE 

2 1.66 2 1.26 2 1.26 

 

5.4 Discussion 

Due to the difficulties in obtaining toxicology-relevant data in pediatric populations, in silico 

approaches such as QSPR or PBPK models can be a valuable aid in addressing the knowledge gaps 

by applying the best available science. These models are most needed for evaluating the health risk in 

children by predicting the dose-response relationships under various exposure scenarios. This is 

achieved by integrating age-specific physiological and anatomical parameters and chemical properties 

into the model (e.g. pediatric PBPK model of bisphenol A [51]) [12, 20]. When using computational 

toxicology methods for human health risk assessment purposes, it is important to characterize the 
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level of uncertainty and strength of these models based on the input data-availability. In this study, 

fupchild prediction in data-availability-specific scenarios was carried out for data-rich compounds. This 

was performed in order to identify the data-availability-specific uncertainty associated with the 

combined use of QSPR (i.e. predicting a degree of plasma protein binding from chemical structure) 

and ontogeny models (i.e. adult-to-children scaling).  

Traditional plasma protein binding measurement methods include equilibrium dialysis, ultrafiltration 

and ultracentrifugation [179, 182]. These methods measure the overall degree of binding of 

compounds to plasma proteins and do not provide information about which plasma protein a 

compound preferentially binds to. In order to determine which protein a compound primarily binds 

(e.g. albumin binding or AAG binding), analyses such as affinity chromatography [183] and circular 

dichroism spectroscopy [286] are used and provide information on ligand-protein interactions and the 

compound binding to specific binding sites of albumin and AAG. These in vitro experimental 

analysis can be time-consuming and resource-intensive.  

When experimental determination is not readily available, calculating the ionization state using 

chemical structural information can help to predict the primary binding partner as well as help to 

choose the right ontogeny model. Due to the microenvironment of binding sites of albumin and AAG, 

electrostatic interactions play a key role in compound binding. The binding site I and II of albumin 

are hydrophobic clefts and the hydrophobic force drives the binding of compounds to these sites [269, 

287]. However, in terms of binding site II, there are positively charged residues at the entrance of the 

binding site which allow attractive electrostatic interactions with anionic compounds while 

contributing to repulsive interactions with cationic compounds [219]. In terms of AAG, there is one 

high-affinity binding site that is clinically relevant and six low-affinity binding sites [179, 233]. The 

binding sites of AAG have both  polar (lobe I) and negatively charged residues (lobe II and III) [288]. 

In addition, the negatively charged carbohydrate and sialic acid portions of AAG contribute to 

attracting cationic compounds [233, 289].  Therefore, both electrostatic and hydrophobic interactions 

play a role in the binding of compounds to AAG. The similar prediction accuracies of calculation 

Method 3 and 5 indicate that choosing an ontogeny model based on acid-base property that is 

predicted from chemical structure is a reasonable alternative to experimental determination.  
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According to the previous investigation [270], the non-linear equations of Johnson et al. [243] and 

PK-Sim [166] were physiologically more relevant compared to the linear models of McNamara and 

Alcorn [25]. These non-linear equations are incorporated in the available PBPK modeling platforms 

such as PK-Sim. The results of this study indicated that these ontogeny models would provide a 

reasonable prediction of fupchild values as long as the fupadult values were accurate (i.e. experimentally 

determined rather than computationally predicted).  

Accurate determination of fupadult is highly important to fupchild prediction. The use of QSPR-

predicted fupadult resulted in a larger deviation in fupchild estimates from the observed values compared 

to the cases where the ontogeny model was misspecified. In other words, the prediction accuracy of 

fupadult is much more influential in fupchild estimates than the ontogeny model misspecification (e.g. 

using AAG equation for an albumin binding compound).   

When QSPR-predicted fupadult was used for acids and neutrals, the prediction errors were relatively 

higher compared to bases (Figure 5.5A, Method 4 and 6). The reason for this might be that in our test 

set, fupadult values of acids and neutrals tend to be lower than that of bases. This was in line with the 

tendency presented by multiple researchers [187, 213, 290] that stated that compounds that are 

anionic and neutral at pH 7.4 showed higher protein binding compared to bases.  

For bases, fupchild prediction via the combined use of the QSPR method and ontogeny model results 

were associated with the smallest error compared to the other classes of compounds. However, 

considering the over-prediction in fupadult estimate with AFE of 1.32, the experimental determination 

fupadult is still required to be confident in the PK prediction in children.  

The European Medical Agency (EMA) advises determining free concentrations in neonates for highly 

binding compounds [291, 292]. Also, the US Food and Drug Administration (FDA) suggests 

characterizing the protein binding for highly binding compounds in neonates and to evaluate the 

potential impact on PK in neonates by applying modeling and simulation approaches such as PBPK 

modeling [293]. These guidelines are applicable to medicinal products. However, it is thought that the 

same should be applied for human health risk assessment purposes to appropriately protect this 

vulnerable population.  
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QSPR prediction of fupadult is not optimal to use for PK prediction in children when precision is 

required [268, 270]. The results of this study demonstrated that an additional experimental step of 

assessing the primary plasma protein binding partner may not be necessary and prediction of acidic or 

basic ionization status at pH 7.4 was sufficient to select the most appropriate ontogeny model that 

could predict fupchild from fupadult.  
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Chapter 6: Development of a Framework for Predicting Clearance 

in Children Using QSPR Models and Virtual Children in PBPK 

modeling 

6.1 Introduction 

In human health risk assessment, clearance (CL) is one of the crucial pharmacokinetic parameters as it 

a significant predictor of a compound’s exposure in a system. As such, the prediction of clearance is 

important to characterize dose-response relationships.  

Some methods for predicting human CL are interspecies scaling and in-vitro in-vivo extrapolation. In 

terms of interspecies scaling, human CL values can be estimated using in vivo experimental 

determination in preclinical species and human CL values can be extrapolated based on allometry. This 

interspecies extrapolation requires experimental determination in animals, which can be resource-

intensive and time-consuming. Several equations are available to extrapolate human CL from animal 

CL values [294-296]. This approach assumes that clearance is a function of size or body weight. 

Allometric scaling of clearance can be useful in the situations where (i) compound disposition follows 

linear kinetics and (ii) the degree of plasma protein binding is similar in different species [297], and 

(iii) drug elimination is primarily via either the renal route or through metabolism [298].   

Characterizing clearance of an environmentally relevant chemical in children is important for human 

health risk assessment [20, 299]. Children are a vulnerable population who often have a higher exposure 

compared to adults because of lower CL in the immature stages of life. The use of adult exposure 

estimates for children may result in under-estimating the risk associated with exposure to 

environmentally relevant chemicals [299]. Therefore, the reasonable estimation of CL in children is 

crucial for a successful human health risk assessment for children.  

Clearance in children is predicted based on information of CL from adults as well as knowledge of CL 

mechanisms (e.g. major clearance pathway such as renal or hepatic). The information of a major 

clearance pathway is important because each clearance pathway matures at a different rate [171, 300].  

This adult information on intrinsic clearances of each pathway can come from various sources. First, 

in vitro intrinsic hepatic clearance can be measured using hepatocytes or liver microsomes that are 
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obtained from human donors. This approach assumes that the rate of compound disappearance from 

the incubation medium is correlated with in vivo metabolic clearance. The in vivo hepatic intrinsic 

clearance can be then calculated from the in vitro hepatic clearance by applying appropriate scaling 

factors [301]. With the well-stirred model [167, 168], hepatic clearance can be calculated by inputting 

the in vivo hepatic intrinsic clearance and other physiological parameters in humans such as fraction 

unbound in plasma and hepatic blood flow. Second, when plasma and/or renal CL from an adult PK 

study is available, one can partition CL into different mechanisms. Subsequently, Well-stirred model 

can be used to calculate intrinsic clearance.  

Once intrinsic CL for each pathway in adults is known, each intrinsic CL in children can be scaled by 

using ontogeny factors for metabolizing enzymes (e.g. PK-Sim® Ontogeny Database [166]) or by using 

the equation to estimate renal glomerular filtration maturation (e.g. Rhodin et al. [302] ). For 

compounds that undergo cytochrome P450 (CYP) metabolism, the CYP specific ontogeny factors are 

determined based on age-dependent enzyme activity or relevant biomarker levels such as mRNA or 

protein concentrations levels [166, 243, 303, 304]. When multiple CYP enzymes are involved for 

hepatic metabolism, the intrinsic clearance in adults is multiplied by each CYP enzyme ontogeny factor. 

The sum of CYP specific intrinsic clearance is then converted to plasma clearance in children by using 

physiological parameters in children (e.g. hepatic blood flow, body weight). Alternatively, an 

allometric method can be used in order to scale plasma clearance in adults to plasma clearance in 

children by accounting for body weight differences [305]. 

The allometric method has been widely utilized in pediatric PK community and its precision has been 

demonstrated in numerous investigations[42, 306-309].   Unlike the physiologically relevant methods 

described above, the allometric method does not partition out clearance pathways (e.g. hepatic or renal).  

Pediatric PBPK modeling can also provide the estimation of CL in children [44, 47, 58, 180]. According 

to the established workflow of pediatric PBPK modeling by Maharaj and Edginton [47], plasma 

concentration vs. time profiles in adults are used to predict intrinsic clearance. Based on CYP specific 

ontogeny models [166], age-dependent enzyme activity is taken into account along with the 

physiological and anatomical parameters. Yun and Edginton 2019 [180] demonstrated that CL 

prediction in children using pediatric PBPK platform PK-Sim (Open Systems Pharmacology) produce 

a reasonable prediction accuracy of the mean and variability of CL in children. However, for 
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environmentally relevant compounds, in vitro or PK data in adults is often unavailable and in silico 

methods are required. 

The in silico prediction of pediatric CL requires numerous steps. Beyond the knowledge of how body 

weight and physiological changes change with age, to predict CL requires knowledge of a compound’s 

primary clearance mechanism (e.g. hepatic metabolism or renal excretion).Varma et al. (2015) [310] 

developed an Extended Clearance Classification System (ECCS) that predicts the predominant 

clearance mechanism (e.g. renal or hepatic) based on a compound’s physicochemical properties such 

as lipophilicity, permeability, ionization state and polarity. This classification method predicted the 

predominant clearance mechanism for 92% of the evaluated compounds (n=307). 

Quantitative structural-property relationship (QSPR) models are built based on the relationship of a 

compounds’ structural information and physiological properties. Many QSPR methods are available to 

predict a compound’s clearance in a system. Several QSPR models  predict CYP enzyme-mediated 

metabolism by identifying a potential metabolic site (e.g. [311-313]). Another type of QSPR model 

provides the prediction of the rate of hepatic intrinsic clearance (e.g. in vitro CLint in hepatocyte or 

human liver microsomes) (e.g. [314-317]) based on chemical descriptors. The model performance had 

a coefficient of determination (R2) range from 0.30 to 0.79. Watanabe et al. [318] developed an in silico 

method for predicting renal clearance using chemical descriptors and a combination of a regression 

model and a classification algorithm. For renal clearance values higher than 1.02 ml/min/kg, 78.6% of 

compounds fell within two-fold error of deviation.  

In addition, several research groups (e.g. Ingle et al.[186] and Watanabe et al. [194] ) developed QSPR 

methods using machine learning algorithms to predict fraction unbound in plasma in human. The 

predictive performances of these algorithms for predicting human fups for environmentally relevant 

compound was evaluated in our previous investigation [268].   

The in silico prediction of pediatric CL is a function of multiple pieces of information and algorithms, 

which have not been assessed in an entire workflow. The objectives of this study are (i) to establish a 

workflow of prediction of PK in children using in silico based clearance and fup estimates calculated 

from a chemical structure and (ii) to evaluate its predictive performance.  
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6.2 Methods 

6.2.1 Data collection 

For this study, clearance values in adults and children that were determined following an intravenous 

administration were gathered from the literature. CL values following IV administration were included 

in order to ensure CL values were not confounded by absorption. Age (postnatal age) was collected 

from the same source. When available, standard deviation values of CL were also obtained to estimate 

coefficient of variation (%).   

For each molecule where both adult and pediatric CL were available, a database of the chemical 

descriptors was generated. Chemical specific data such as primary protein binding partner (i.e. albumin 

or alpha acid glycoprotein) and observed fup in adults was collected from the literature. The observed 

clearance and fup values were obtained from MEDLINE database by searching relevant keywords, e.g. 

‘clearance in pediatrics’. 

6.2.2 Physiological data obtained from virtual individuals  

To obtain relevant physiological parameters that are necessary for CL prediction in children and adults, 

a virtual population (n=1200, age range from 0 to 30, uniform age distribution) was created using PK-

Sim ver. 9 (Open Systems Pharmacology). In PK-Sim®, when an age range is given, virtual individuals 

are created with varying system-specific parameters such as height, weight, organ volumes, organ-

specific blood flows, maturation factors (e.g. plasma protein levels or enzyme concentration levels) and 

fractions of protein, water and lipids based on the underlying database (e.g. ICRP study [48]). Details 

of system specific parameters of virtual individuals can be found in Willmann et al 2007 [144].    

The population was split into groups as listed in Table 6.1.  For infants, virtual individuals were grouped 

with 3-month intervals. This was because anatomical, biochemical and physiological maturation takes 

place during infancy and therefore CL prediction can be sensitive to age-dependent parameters. 

For the observed CL values in children, the mean of age was obtained from the same source. When the 

mean of age in the subjects who CL values were determined was within the age range of a group of 

virtual individuals, the predicted CL values were compared to the observed CL value. For example, if 

an observed CL value was determined in subjects with the mean postnatal age of 7 months, the predicted 
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CL values of the group pop 03 was compared to the observed CL value. The observed CLchild values 

were assumed to represent CL values in each groups of virtual children. 

Table 6.1 Groups of virtual individuals  

Group  Postnatal age  Number of virtual 

individuals 

Age group 

pop 01 0 – 3 months 100 Neonates/infants 

pop 02 3 – 6 months 100 Infants 

pop 03 6 – 9 months 100 

pop 04 9 – 12 months 100 

pop 05 12 – 15 months 100 

pop 06  15 – 18 months 100 

pop 07  18 - 21 months 100 

pop 08  21 – 24 months  100 

pop 09 2 – 6 years 100 Children 

pop 10 6 – 12 years 100 

pop 11  12 – 18 years 100 Adolescents 

pop 12 18 – 30 years  100 Adults 

 

6.2.3 QSPR based CLchild calculation  

For each compound, the two-dimensional structure-data file (SDF) was downloaded from PubChem 

[319]. Three methods to generate pediatric CL values were compared.  

Method 1 
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In Method 1, hepatic CLint and CLr in adults were predicted based on QSPR approaches, respectively. 

The hepatic CLint and CLr in adults were then scaled to hepatic CLint and CLr in children using 

appropriate scaling methods. The calculation steps are as following. 

1. Adult CL calculation  

1.1. Hepatic CL prediction in adults  

1.1.1. Metabolizing enzyme classification  

The Substrate Classification Model in the ADMET Predictor (ADMET Predictor™ software provided 

by Simulations Plus, Inc., Lancaster, California, USA v9.5) was used. This model predicted the 

potential metabolizing enzymes (9 CYP isoforms and 9 UGT isoforms) for a compound. When 

confidence of the prediction was high (e.g. ≥ 75%), it was assumed that the compound was a substrate 

of the predicted enzyme and the enzyme (e.g. CYP3A4) was the primary enzyme that is responsible for 

hepatic metabolism.  If a compound is predicted to be a substrate with a confidence higher than 75% 

for two enzymes, a fraction metabolized value of 50% was applied. This step was important because 

the matching CYP enzyme specific intrinsic clearance and ontogeny factor were applied to calculate 

CLchild. Once potential metabolizing enzyme(s) for a compound were identified, the next step was to 

predict a rate of the metabolic reaction (e.g. kinetic parameter).  

1.1.2. Hepatic intrinsic clearance calculation  

The ADMET Predictor provided an estimate of specific intrinsic clearance for five CYP enzymes 

(CYP1A2, CYP2D6, CYP3A4, CYP2C9, CYP2C19, µL/min/mg HLM protein for CYP enzyme 

mediated oxidation). When metabolizing enzyme specific intrinsic clearance was not available (e.g. 

CYP2E1), intrinsic clearance in human liver microsome (µL/min/mg HLM protein, unbound form) was 

used instead. The QSPR predicted intrinsic clearance was used to estimate in vivo intrinsic clearance 

(CLint, in vivo). The extrapolation of QSPR-predicted CLint to in vivo intrinsic hepatic clearance 

(CLint) in adults was done based on the following equation. QSPR-predicted hepatic intrinsic clearance 

was assumed to represent a mean value in the adult population.  

𝐶𝐿𝑖𝑛𝑡, 𝑖𝑛 𝑣𝑖𝑣𝑜 (𝑚𝐿/𝑚𝑖𝑛)  

=  
𝑄𝑆𝑃𝑅 𝐶𝐿𝑖𝑛𝑡, 𝑢 

𝑓𝑢௠௜௖
 ∗  𝑚𝑖𝑐𝑟𝑜𝑠𝑜𝑚𝑎𝑙 𝑝𝑟𝑜𝑡𝑒𝑖𝑛 ∗  𝑙𝑖𝑣𝑒𝑟 𝑤𝑒𝑖𝑔ℎ𝑡 ∗  70 𝑘𝑔 ∗  0.001 
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fumic: QSPR predicted fraction unbound in human liver microsomes (fumic), Microsomal protein: 52.5 

mg protein/ g liver [320], Liver weight: 1800 g liver or 25.7 g liver/kg body weight [321]. An average 

adult human body weight was assumed to be 70 kg.    

 

1.2. Renal clearance prediction in adults  

For renal clearance prediction, each SDF file obtained from PubChem [319] was input to Renal-ex 

Predictor [318] (https://adme.nibiohn.go.jp/renal_ex). QSPR-predicted renal clearance in human was 

assumed to be equivalent to renal clearance values in adults. QSPR-predicted renal clearance values 

were assumed to represent a mean value in adult population.  

 

2. Scale Pathway-specific Adult CL to Children 

Scaling Adult CL to children requires two steps. First, protein binding must be scaled by taking into 

account the maturation of plasma protein concentrations. Second, respective clearance process (hepatic 

or renal) must be scaled by considering maturation.  

2.1 Scaling fraction unbound in plasma  

Human fup values were calculated using the ADMET predictor. The estimated human fup value was 

assumed to be equivalent to adult fup. Acid-base properties were predicted based on the method 

described in Ingle et al. [186]. Based on the ionization properties, acid-base properties were determined. 

It was assumed that acids and neutrals bind to albumin and bases bind to AAG. A more detailed 

description of this approach can be found in Yun and Edginton [322]. Fup in children was estimated by 

applying the ontogeny factors of virtual individuals created from PK-Sim as shown below.  

𝐹𝑜𝑟 𝑎𝑐𝑖𝑑𝑠 𝑎𝑛𝑑 𝑛𝑒𝑢𝑡𝑟𝑎𝑙𝑠: 𝑓𝑢𝑝௖௛௜௟ௗ,௜ = 𝑓𝑢𝑝௔ௗ௨௟௧ ∙ 𝑎𝑙𝑏𝑢𝑚𝑖𝑛 𝑜𝑛𝑡𝑜𝑔𝑒𝑛𝑦 𝑓𝑎𝑐𝑡𝑜𝑟௜ 

𝐹𝑜𝑟 𝑏𝑎𝑠𝑒𝑠: 𝑓𝑢𝑝௖௛௜௟ௗ,௜ = 𝑓𝑢𝑝௔ௗ௨௟௧ ∙ 𝐴𝐴𝐺 𝑜𝑛𝑡𝑜𝑔𝑒𝑛𝑦 𝑓𝑎𝑐𝑡𝑜𝑟௜  

Fupchild,i denotes an estimated fup value in ith virtual individual. Albumin ontogeny factori
 and AAG 

ontogeny factori: Albumin or AAG ontogeny factor for ith virtual individual.   
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2.2 Scaling hepatic clearance  

QSPR-predicted hepatic intrinsic clearance values were used to scale clearance for virtual children in 

each group (Pop01 ~ Pop11). First, ontogeny factors of each pediatric individual were used. By using 

substrate classification information described in the previous step (section 1.1.1), hepatic intrinsic 

clearance in adult was multiplied by the corresponding ontogeny factor for the predicted enzyme to 

estimate intrinsic clearance in children (CLint,child). For this calculation, the following equation was used. 

As mentioned, fraction metabolized of a CYP enzyme was assumed to be 1 when a compound was 

predicted to be a substrate of a single metabolizing enzyme. Fraction metabolized of a CYP enzyme of 

0.5 was applied when a compound was predicted to be a substrate of two metabolizing enzymes.  

𝐶𝐿௜௡௧,௖௛௜௟ௗ = 𝐶𝐿௜௡௧,௔ௗ௨௟௧ ∙ 𝑜𝑛𝑡𝑜𝑔𝑒𝑛𝑦 𝑓𝑎𝑐𝑡𝑜𝑟௘௡௭ or  

𝐶𝐿௜௡௧,௖௛௜௟ௗ = 𝐶𝐿௜௡௧,௔ௗ௨௟௧ ∙ 0.5 ∙ 𝑜𝑛𝑡𝑜𝑔𝑒𝑛𝑦 𝑓𝑎𝑐𝑡𝑜𝑟௘௡௭ଵ +  𝐶𝐿௜௡௧,௔ௗ௨௟௧ ∙ 0.5 ∙ 𝑜𝑛𝑡𝑜𝑔𝑒𝑛𝑦 𝑓𝑎𝑐𝑡𝑜𝑟௘௡௭ଶ

  

ontogeny factorenz(1 or 2): ontogeny factor of a metabolizing enzyme (e.g. CYP3A4 or CYP1A2), 

CLint,adult: intrinsic clearance in adults  

 

Hepatic clearance in children (CLh,child) values were calculated by using the well-stirred model [167, 

168]. For the calculation of fubchild, 𝑓𝑢𝑝௖௛௜௟ௗ,௜ was divided by blood to plasma ratio (B:P). For B:P 

calculation, the following equation was used [323].  

𝐶𝐿௛,௖௛௜௟ =  
𝑄ு𝑓𝑢𝑏௖௛௜௟ௗ ∙ 𝐶𝐿௜௡௧,௖௛௜௟ௗ

𝑄ு + 𝑓𝑢𝑏௖௛௜௟ௗ ∙ 𝐶𝐿௜௡௧,௖௛௜௟ௗ
 

Log (B:P) = -0.004282 + 0.067028 LogP + 0. 214590 Log (fup) 

QH: hepatic blood flow, fub: fraction unbound in blood,  B:P: blood to plasma ratio 

 

 

2.3 Scaling renal clearance  
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Renal clearance in children values (CLr,child) were predicted using the following equation. For renal 

clearance, the QSPR-predicted CLr was assumed to be CLr in adults (CLr, adult). GFR in child was 

calculated by using the GFR estimation equation from Rhodin et al. [302].  

𝐶𝐿௥,௖௛௜௟ௗ =  
𝐺𝐹𝑅௖௛௜௟ௗ ∙ 𝑓𝑢𝑝௖௛௜௟ௗ

𝐺𝐹𝑅௖௛௜௟ௗ ∙ 𝑓𝑢𝑝௔ௗ௨௟௧
∙ 𝐶𝐿௥,௔ௗ௨௟௧ 

 

 

 

3. Estimation of Total Plasma CL in Children 

QSPR-predicted hepatic and renal clearance (CLh and CLr) values in each pediatric individual were 

added to calculate plasma clearance in children.  

𝐶𝐿௣,௖௛௜௟ௗ = 𝐶𝐿௛,௖௛௜௟ௗ + 𝐶𝐿௥,௖௛௜௟ௗ 

 

Method 2  

In Method 2, a predominant route of elimination (e.g. hepatic metabolism or renal excretion) was 

predicted based on physicochemical properties of compounds. For compounds hepatically metabolized, 

QSPR methods for hepatic CL prediction was used to estimate hepatic CL in adults. Subsequently, 

hepatic CL in adults was scaled to hepatic CL in children by taking into account maturation of 

metabolizing enzymes and plasma protein levels. For renally cleared compounds, renal clearance in 

adults were predicted based on a QSPR method. The renal clearance value in adults were then scaled 

to renal clearance in children by taking into account the maturation of glomerular filtration rate and 

plasma protein levels. A QSPR-predicted CL value of the predominant route of elimination (e.g. 

CLh,child or CLr,child) was assumed to approximate plasma clearance in virtual individuals.  

 

1. Identification of predominant route of elimination – ECCS  
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Clearance classification system was used to predict a predominant route of elimination (e.g. metabolism 

or renal excretion). This classification method was based on Varma et al. [310]. Using ADMET 

predictor, clearance mechanisms were predicted based on compound structure.  

Class 1A and 2: Metabolism 

Class 3A and 4: Renal CL 

Class 1B: Hepatic uptake 

Class 3B: Renal CL or Hepatic uptake 

 

2. Clearance prediction for ECCS Class 1A and 2 compounds 

2.1 Metabolizing enzyme classification  

The same steps were taken as described in the Section 1.1.1 in Method 1 

2.2 Prediction of hepatic intrinsic clearance in adults  

The same steps were taken as described in the Section 1.1.2 in Method 1 

2.3 Scaling fraction unbound in plasma  

The same steps were taken as described in the Section 2.1 in Method 1 

2.4 Scaling hepatic clearance  

The same steps were taken as described in the Section 2.2 in Method 1 

 

2.5 Estimation of Plasma CL in Children 

Hepatic clearance in children (CLh,child) values were calculated by using the well-strirred model. For 

hepatically metabolized compounds (ECCS Class 1A and 2), the QSPR-calculated CLh,child values were 

assumed to be equivalent to CLp,child. This approach was employed based on the results of a preliminary 

analysis of Method 1. The errors due to the use of hepatic CLint prediction for renally excreted 

compounds (e.g. misspecification) were high.  
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𝐶𝐿௛,௖௛௜௟ௗ =  
𝑄ு𝑓𝑢𝑏௖௛௜௟ௗ ∙ 𝐶𝐿௜௡௧,௖௛௜௟ௗ

𝑄ு + 𝑓𝑢𝑏௖௛௜௟ௗ ∙ 𝐶𝐿௜௡௧,௖௛௜௟ௗ
 

𝐶𝐿௣,௖௛௜௟ௗ ≈ 𝐶𝐿௛,௖௛௜௟ௗ 

 

3. Clearance prediction for ECCS Class 3A, 3B and 4 compounds 

3.1 Renal clearance prediction in adults  

For renal clearance prediction, each SDF file obtained from PubChem [319] was input to Renal-ex 

Predictor [318] (https://adme.nibiohn.go.jp/renal_ex). QSPR-predicted renal clearance in human was 

assumed to be equivalent to renal clearance values in adults. QSPR-predicted renal clearance values 

were assumed to represent a mean value in adult population.  

3.2 Scaling renal clearance  

Renal clearance in children values (CLr,child) were predicted using the following equation. GFR in 

children was calculated by using the GFR estimation equation from Rhodin et al. [302]. Fraction 

unbound in plasma values in children were scaled from adults values as described in the section 2.3.  

 

𝐶𝐿௥,௖௛௜௟ௗ =  
𝐺𝐹𝑅௖௛௜௟ௗ ∙ 𝑓𝑢𝑝௖௛௜௟ௗ

𝐺𝐹𝑅௖௛௜௟ௗ ∙ 𝑓𝑢𝑝௔ௗ௨௟௧
∙ 𝐶𝐿௥,௔ௗ௨௟௧ 

 

3.3 Estimation of Total Plasma CL in Children 

For mainly renally cleared compounds (i.e. Class 3A and 4), the QSPR calculated CLr,child values were 

assumed equivalent to CLp,child. This approach was employed based on the results of a preliminary 

analysis of Method 1. The errors due to the use of hepatic CLint prediction for renally excreted 

compounds (e.g. misspecification) were high.  

𝐶𝐿௣,௖௛௜௟ௗ ≈ 𝐶𝐿௥,௖௛௜௟  
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Method 3  

Observed CLadult was scaled to CLchild using allometry. The weight of a virtual individual was used for 

calculation. As observed systemic clearance in adults is not readily available for environmentally 

relevant compounds, this calculation method was used in this study only for comparative purposes to 

compare predictive performance of Method 3 to that of Methods 1 and 2.    

𝐶𝐿௖௛௜௟ௗ,௜ = 𝐶𝐿௔ௗ௨௟௧ ∙ ൬
𝑤𝑒𝑖𝑔ℎ𝑡௜

70 𝑘𝑔
൰

଴.଻ହ

 

 

6.2.4 Model evaluation  

6.2.4.1 Predictive performance for CLp,child to compare Methods 1-3 

In order to evaluate the prediction accuracy, the predicted CLp,child values were compared to the 

observed values that were obtained from literature. The equations for evaluation metrics for assessing 

the predictive performance of the model are listed below. GMFE and AAFE indicates the degree of 

deviation between observed and predicted values. Geometric coefficient of variation These metrics 

were used to compare predictive performances of Methods 1-3.  

𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑚𝑒𝑎𝑛 𝑓𝑜𝑙𝑑 𝑒𝑟𝑟𝑜𝑟 = 10
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𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑜𝑓 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛 =  ට𝑒𝑥𝑝ீௌ஽మ
− 1 ∙ 100% 

CLp,child,pred,i: predicted plasma clearance in ith child, CLp,child,obs,i: observed plasma clearance in ith child, 

GSD: geometric standard deviation of fold error (CLp,child,pred/CLp,child,obs). 
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6.2.4.2 Evaluation of the predictive performance of the ECCS classification system 

To evaluate the predictive performance of the ECCS classification system, the predicted and the 

observed clearance mechanism was compared. For the observed data, if a compound has ≥ 60% hepatic 

(e.g. CYP fraction metabolized) or renal (e.g. fraction excreted unchanged in urine) contributions to 

systemic clearance, the primary route of elimination was labeled as hepatic or renal, respectively. For 

the ECCS classification results, the Class 1A, 2A and 2B compounds Class 1A, 2A and 2B were labeled 

as hepatic, and Class 3A, 3B and 4 compounds were labeled as renal.  

 

6.2.4.3 Evaluation of predictive performance for QSPR-predicted fup in adults and its impact 

on CLp,child prediction  

To evaluate the predictive performance for QSPR-predicted fup in adults, the observed fup values in 

adults and QSPR predicted fup values were compared. As mentioned previously, QSPR-predicted fup 

in human was assumed to be equivalent to fup in adults. For evaluating the predictive performance, 

absolute error and absolute relative prediction error (RPE) values were calculated. These evaluation 

metrics were previously used in Yun and Edginton [270]. In order to evaluate if prediction errors for 

fup and CLp,child were correlated, the evaluation metrics for fup (i.e. absolute error and absolute RPE) 

were then compared to AAFE values for CLp,child prediction.  

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 =  ห𝑓𝑢𝑝௣௥௘ௗ − 𝑓𝑢𝑝௢௕௦ห ∙ 100(%)  

𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑟𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =  ቚ
௙௨௣೛ೝ೐೏ି௙௨௣೚್ೞ

௙௨௣೚್ೞ
ቚ ∙ 100(%)  
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6.3 Results  

6.3.1 Data  

A total of 71 observed CLchild and 25 observed CLadult values were obtained from literature [44, 100, 

102, 104, 122, 124, 125, 128-131, 133-139, 171, 300, 304, 324-337]. Each virtual individual in each 

group were assigned with age, weight, ontogeny factors (which are necessary for CL predictions). For 

each individual and each drug, CLp,child values were calculated based on Method 1-3.  

6.3.2 Contributions of Inter-individuality in CLchild Prediction  

For CLp,child prediction, several system-specific parameters were involved and those were obtained from 

virtual individuals (Table 6.1). Key system-specific parameters used for adult-to-children scaling of CL 

were weight, CYP ontogeny factors, GFR ratios, and hepatic blood flow. As CLp,child was estimated for 

virtual individuals in each group, the distribution and mean of those parameters that contribute to inter-

individual variability of CLp,child were visualized in Figure S1.  

6.3.3 ECCS classification results 

Among 71 predicted CLchild values, the majority were Class 2, 3A or 4. This indicates that 61% and 

35% of CLchild was predicted by assuming the compounds’ main route of elimination is hepatic 

metabolism and renal excretion, respectively. The predicted and the observed primary route of 

elimination matched 100% indicating that the ECCS classification reasonably predicted the 

predominant route of elimination.  
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Figure 6.1 The distribution of ECCS classes.   

  

 

6.3.4 Evaluation of the predictive performance  

The predicted CLchild values were compared to the observed values. The QSPR-based methods 

(Methods 1 and 2) showed over-prediction with GMFE values of 3.29 and 1.90 (Table 6.2). The GMFE 

and AAFE values of Class 3 and 4 of Method 1 were higher than those values of Class 3 and 4 of 

Method 2. This indicates that the over-prediction was more prominent when QSPR based hepatic CLint 

was used for CLp prediction for renally excreted compounds.   

For renally cleared compounds (i.e. Class 3A and 4), when the QSPR calculated CLr,child values were 

assumed to approximate CLp,child (Method 2), the predictive performance was improved with GMFE of 

1.06 and AAFE of 2.01 compared to those of  Method 1. This indicated that ECCS classification 

informed prediction of CLp,child resulted in a better prediction accuracy (Figure 6.2).  

 

Table 6.2 Predictive performance according to different calculation methods 

ECCS Class Evaluation 

metric 

Method 1 Method 2  Method 3 

Class 1 and 2  GMFE 2.50 2.42 1.34 
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Class 1 and 2 AAFE 2.11 2.19 1.59 

Class 3 and 4  GMFE 4.59 1.06 1.16 

Class 3 and 4 AAFE 3.48 2.01 1.63 

All  GMFE 3.29 1.90 1.27 

All  AAFE 2.55 2.13 1.61 

All Geometric CV 30.1% 33.9% 9.34% 
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Figure 6.2 The geometric mean fold difference according to the calculation methods 1- 3. The 

colors represent age group.  

 

 

 

6.3.5 Evaluation of inter-individual variability of the predicted CLp,child values in each 

pediatric group  

In each pediatric group, the each virtual individual (n=100) had a unique predicted-CLp,child value due 

to the virtual individuals’ unique anatomical, biochemical and physiological parameters. The variation 

of CLp,child values within each group (n=100) was quantified by calculating geometric coefficient of 

variation. For each group, geometric coefficient of variation of CLp,child values predicted using each 

method (i.e. Method 1, Method 2, Method 3) and compared. The QSPR-based methods showed similar 

variability in predicted CLp,child with geometric coefficient of variation of 30.1% and 33.9% for Method 

1 and Method 2, respectively. Method 3 resulted in smaller variability (CV: 9.34%) than QSPR-based 

methods (Table 6.2).     

Not all the pediatric studies reported coefficient of variation or standard deviation values. When 

available variability information were gathered, observed coefficient of variation on average was 

33.8%. This indicates that estimated variability in CL based on Method 1 and Method 2 may be more 

relevant compared to estimated variability in CL based on Method 3. However, due to the limited 

sample size in pediatric clinical studies, this observed coefficient variation may not reflect a true degree 

of inter-individual variability in a pediatric population. This comparison was therefore needs to be 

interpreted with caution.  
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6.3.6 Evaluation of predictive performance for QSPR-predicted fup in adults and its 

impact on CLp,child prediction  

The comparison between the observed fup in adults and QSPR-predicted fup in adults was shown in 

Figure 6.3. Median and mean absolute error values were 11.6% and 18.2%, respectively. Median and 

mean of absolute RPE values were 37.0 % and 105.9% respectively. The next step was to evaluate if 

the prediction errors for fup in adults prediction was correlated with the prediction error for CLp,child. 

For this, absolute error and absolute RPE values for fup adults and AAFE values for CLp,child was 

compared. The pearson correlation test showed that correlation between these prediction error values 

was not statistically significant with p-value > 0.05 except one case. When Absolute error for fup vs. 

AAFE for Method 2 CLp,child, the correlation was statistically significant with p-value less than 0.05 and 

r value of 0.25. This indicated that the precision of QSPR-predicted fup in adults affects the prediction 

accuracy of CLp,child when Method 2 (ECCS classficiation informed CLpchild prediction) was used 

(Figure 6.4). Overall, there was a weak correlation between prediction errors for fup and clearance 

based on QSPR approach. This suggested that prediction accuracy of QSPR predicted fup value was 

not the only contributing factor for prediction accuracy of CLp,child. This  suggested that the precision 

of QSPR methods for predicting both clearance and protein binding are important for a reasonable 

prediction of CLp,child. 
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Figure 6.3 Comparison between observed fup in adults and QSPR-predicted fup values in 

adults.  

  

Figure 6.4 Comparison between absolute error values for QSPR predicted fup in adults and 

AAFE values for CLp,child calculated by Method 2.  



 

136 

 

6.4 Discussion  

In human health risk assessment (HHRA), uncertainty factors (UF) are applied to a point of departure 

(POD) such as a no-observed-adverse-effect level (NOAEL) to estimate toxicological indices (e.g. 

tolerable daily intake (TDI) and average daily intake (ADI) (International Programme on Chemical 

Safety 2003; 2001)). The default uncertainty factor of 3.16 is applied to address the toxicokinetic (TK) 

variability between pediatrics and adults (World Health Organization 2010, Ginsberg et al. 2002, 

2004b). This UF of 3.16 can be replaced with a human kinetic adjustment factor (HKAF) - a ratio 

between the upper percentile (e.g. 95th) value of a toxicokinetic parameter in a susceptible 

subpopulation such as children and median value in a reference population (e.g. healthy adults) (Meek 

et al. 2002, Price et al. 1999).  

Physiologically based pharmacokinetic (PBPK) models can be used to estimate a HKAF by predicting 

the 95th percentile and median PK values in both children and adult populations [6]. Pediatric PBPK 

modeling requires many system-specific inputs and in vitro data for a reliable model output. Prediction 

of HKAF using a PBPK model can be challenging for environmentally relevant compounds because 

experimental determination of system-specific input parameters (e.g. fraction unbound in plasma) are 

not readily available [212]. Furthermore, many chemicals are screened for potential toxicity often with 

a high throughput screening (HTS) approach [223, 299, 338-340].  

For example, as an extension of the Toxicology in the 21st Century (Tox21) federal collaboration, US 

EPA recently developed a high-throughput risk assessment framework utilizing both in silico- and in 

vitro- derived PK data [338]. This framework provides an estimation of likelihood of human in vivo 

chemical biological interactions. A ratio of Cmax to half maximal effective concentration (AC50) was 

used to evaluate this likelihood. This ratio is similar to Cmax/Ki used in evaluation of drug-drug 

interaction. Due to computational complexity and requirement of many system-specific input 

parameter, pediatric PBPK model may not be easily integrated into toxicity testing with HTS approach.  

 

This study presents a framework for CL prediction in children for environmentally relevant compounds, 

that can be integrated to the high-throughput risk assessment. This framework utilized (i) virtual 

pediatric populations that were generated from open-source PBPK modeling software, PK-Sim, and 
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(ii) various QSPR-based methods for predicting clearance mechanisms, hepatic intrinsic clearance, 

renal clearance and fraction unbound in plasma in human from chemical structures.  

In Method 1, hepatic CLint and CLr in adults were estimated from a compound structure based on 

QSPR methods. By using appropriate scaling methods, the hepatic CLint and CLr in adults were then 

scaled to hepatic CLint and CLr in children. In Method 2, a predominant route of clearance pathway 

(e.g. hepatic metabolism or renal excretion) was predicted based on physicochemical properties of 

compounds. The same steps were taken as in the Method 1 for calculating hepatic CL and renal CL in 

children. For estimating plasma CL in children, a QSPR-predicted CL value of the predominant route 

of elimination was assumed to approximate plasma clearance in virtual individuals. For Method 3, 

observed CLadult was scaled to CLchild using allometry based on weight of a virtual individual. This 

method was used only for comparative purposes to compare predictive performance of Method 3 to 

that of Methods 1 and 2.    

 The predictive performances of those methods were evaluated by comparing the predicted CL values 

in children to the observed values. The QSPR-predicted CL values based on Methods 1 and 2 showed 

an over-prediction with geometric mean fold error values of 3.29 and 1.90, respectively. The deviation 

from the observe value was lower for Method 2 compared to Method 1 indicating that ECCS 

classification informed prediction of CLp,child resulted in a better predictive performance.  

 

The system-specific parameters that are necessary for predicting children CL includes fup, hepatic 

blood flow, liver weight, body weight, CYP ontogeny factor. These parameters contribute inter-

individual variability of CL values in children, that can be crucial for HKAF determination. In our 

previous investigation [180], the virtual pediatric individuals were created by setting the same ranges 

of age and body weight of the children in the available clinical investigations. This was to evaluate the 

predictive performance of pediatric PBPK model.  In this study, groups of virtual children were created 

based on a broader range of age (Table 6.1) to evaluate the predictive performance in the relevant 

pediatric populations. This method was adopted in order to apply this framework for HTS-based human 

health risk assessment for children. The observed CLchild values were assumed to represent CL values 

in each groups of virtual children. As the ranges of age and weight of the virtual children were not 

matched to those ranges of clinical studies, slight deviations (e.g, GMFE 1.9~3.29) were expected.   
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Allometric scaling with exponent of 0.75 on clearance assumes that clearance increases less than 

proportionally to weight increase [42]. The inter-individual variability of CLchild prediction based on 

allometry (Method 3) was largely attributed to weight (inter-individuality of weight in each group of 

virtual children). Method 3 is likely to under-estimate the variability of CL in a pediatric population as 

it is assumed that the individuals with same weight have the same systemic clearance values. On the 

other hand, using virtual children (Method 1 and 2) takes into account inter-individuality in anatomical, 

biochemical and physiological parameters (as shown in the Figure 6.2) in estimating CLchild.  

In terms of hepatic CLint, a use case for QSPR-predicted can be found in Sipes et al. [338]. For input 

to High-Throughput Toxicokinetic (HTTK) package [341] developed by EPA researchers, CLint was 

calculated by aggregating CLint predictions of the five metabolizing enzymes CYP1A2, CYP2C9, 

CYP2C19, CYP2D6, and CYP3A4 [338]. In this study, a different approach was undertaken by 

utilizing structure-based prediction of a metabolizing enzyme. We used the predicted information that 

a compound is a substrate for a specific enzyme and if the predicted CYP CLint is available, specific 

CYP enzyme CLint was preferably used. This was because a virtual individual’s specific CYP ontogeny 

factors are used for CLchild prediction. It was considered that, for applying CYP ontogeny factors, CYP 

enzyme specific CLint is most physiologically relevant. When a specific CYP enzyme CLint value was 

not available, in vivo CLint was estimated by using QSPR predicted CLint in human liver microsome.  

 

This study presents a framework for predicting CL in children using QSPR-based PK predictions and 

virtual children. This combined approach will be useful especially for data-poor compounds. The 

comparison between predicted and observed CL values in children indicated a reasonable prediction 

accuracy with geometric mean fold error of 1.6 – 2.1. This framework can inform human health risk 

assessment for children by providing an in silico estimation of CLchild and its inter-individual 

variability within children population.  
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Chapter 7: Development and Evaluation of an In Silico Dermal 

Absorption Model Relevant for Children 

7.1 Introduction 

Mathematical in silico models of skin permeation simulate the dermal permeation and systemic 

exposure of a chemical through human skin. Given the limited availability of human and animal skin 

samples for permeability experiments and the differences between human and animal skin, in silico 

models can be used in lieu of experimental studies to estimate dermal exposure to chemicals and 

drugs and to predict systemic exposure under various dosing conditions and exposure scenarios [342]. 

This is especially valuable in pediatric patients where skin samples for in vitro studies are even more 

limited. 

The mechanistic dermal absorption model by Dancik et al. [343] integrates a series of 

pharmacokinetic models, as previously described [344-350], that represent the penetration pathways 

of a chemical through skin. The components of the model were derived using data gathered from in 

vitro studies of chemical permeation in animal models and adult human skin samples [342]. The 

model also incorporates structural and physiological properties of adult human skin, which have been 

extensively described in detail [345, 351-356]. The model can generate longitudinal estimates of the 

flux (e.g., µm/cm2/h) and accumulation (e.g., µm/cm2) of small molecule compounds in the various 

skin layers under both in vitro and in vivo conditions. In the in vivo context, the model can 

additionally generate estimates of the bioavailability of dermally absorbed chemicals. 

Pediatric exposure to environmental chemicals is an important component of human health risk 

assessment. Although rare, cases of chemical poisoning through skin exposure have been reported in 

pediatric patients under 17 years of age [357]. This is especially concerning given the presence, in 

children’s bath products, of chemicals such as 1,4-dioxane and formaldehyde, which have been 

classified as carcinogens by the US Environmental Protection Agency (EPA) [358]. Moreover, the 

French Agency for Food, Environmental and Occupational Health and Safety has reported the 

identification of 60 hazardous chemicals in infant disposable diapers [359]. An increase in skin 

exposure to harmful chemicals may be a serious health risk in children, given the higher skin surface 

area to body weight ratio and the prematurity of skin in neonates [20]. Accounting for the anatomical 
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and physiological changes in skin associated with age using the Dancik et al. model [343] may 

therefore help to guide the risk assessment of chemicals and pharmaceutical products in children. 

Skin development and maturation begins in utero, and a full-term infant’s skin is histologically 

similar to adult skin, as it has a well-defined stratum corneum in addition to the other epidermal 

layers [360, 361]. However, in vivo studies using confocal laser scanning microscopy in the last 20 

years have shown that differences in skin anatomy and physiology do exist as a function of age 

following birth, which was not previously well-captured in light microscopy and chemically fixed 

skin samples in infants. Physiological and structural skin features that differ between infants and 

adults, which were identified from the analysis of non-invasive in vivo measurements, have been 

previously reviewed [362]. These variations in pediatric skin anatomy and physiology with respect to 

adults can induce differences in the dermal absorption of a given chemical between the two 

populations. As a result, in silico predictions generated by dermal models tailored to adult skin may 

fail to correctly predict exposure in the pediatric population. The objectives of this study were 

therefore: (i) to provide a comprehensive review of the anatomical and physiological changes 

associated with the skin of children and (ii) to construct and evaluate a pediatric dermal absorption 

model that accounts for skin maturation with age. 

7.2 Materials and Methods 

7.2.1 Dermal Absorption Modeling Preliminaries 

The Dancik et al. [343] skin permeation model has previously been programmed into MoBi (Open 

Systems Pharmacology v.8.21) and is currently available on GitHub (https://github.com/Open-

Systems-Pharmacology/Skin-permeation-model, last accessed on 01 November 2021). The predictive 

accuracy of this model for the case of volatile vehicles was evaluated in Hamadeh et al. [363] with 

respect to in vitro skin permeation data reported in Hewitt et al. [364]. The model assumes that skin 

sections are composed of three stacked compartments that correspond to the stratum corneum (SC), 

the epidermis (ED) and the dermis (DE) (Figure 7.1), which have the respective thicknesses ℎ௦௖, 

ℎ௘ௗ , and  ℎௗ௘. The permeating compound is applied via a vehicle to the surface of the SC. The 

applied permeant is assumed to subsequently diffuse into the skin according to Fick’s law of diffusion 

[346] as detailed in Dancik et al. [343]. The permeant in each compartment can partition into sub-
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compartments that represent different phases within the skin sublayers, such as the lipid, protein or 

aqueous phases. The aggregate, layer-specific, diffusivity and partitioning processes in each skin 

layer are quantified by the diffusion coefficients (𝐷௦௖, 𝐷௘ௗ, 𝐷ௗ௘) and the partitioning coefficients 

(𝐾௦௖/௪, 𝐾௘ௗ/௪, 𝐾ௗ௘/௪), respectively. These aggregate coefficients can be decomposed into diffusion 

and partition coefficients specific to each phase, as detailed in Dancik et al. [343]. These more 

fundamental coefficients can, furthermore, be decomposed into quantitative structure property 

relationships (QSPRs) that are functions of the physical/chemical properties of the permeant. The 

permeant concentration at depth 𝑥, as measured from the top of the SC, at time 𝑡, can be expressed as 

𝑐(𝑥, 𝑡). The complete partial differential equation model (PDE) describing permeant diffusion and 

clearance from the skin can be found in [343, 365]. 

 

Figure 7.1 Structure of skin in the dermal absorption model. 

7.2.2 Physiological and Anatomical Changes in Skin as a Function of Age 

A comprehensive literature review was conducted of the anatomical and physiological properties of 

skin that impact dermal absorption according to the Dancik et al. [343] model. Skin-specific 

parameters of this model include the stratum corneum thickness, the thickness of the viable 

epidermis, dermis thickness, stratum corneum hydration, lipid, and protein fraction of the stratum 

corneum, skin surface pH, corneocyte size and volume fraction of the stratum corneum, follicle size 

and density, albumin concentration in skin, and skin blood flow. Each parameter was searched on 

MEDLINE and EMBASE or PUBMED to identify articles that reported quantifiable data in healthy 



 

142 

 

full-term infants and children up to 18 years of age (Tables S1-S6). The search strategy for each 

parameter is displayed in the Supplementary Materials (Tables S7–S14). The results were limited to 

the English language and human studies. Child and adult estimates were obtained for the stratum 

corneum thickness, epidermis thickness, dermis thickness, and skin hydration. 

7.2.3 Development of an Age-Dependent Dermal Absorption Model 

7.2.3.1 Development of Model Structure 

We generalized the dermal absorption model in [343, 365] to include the effect of subject postnatal 

age (𝐴𝑔𝑒). This model can be expressed using the following shorthand representation: 

PDE 
𝜕𝑐

𝜕𝑡
= 𝑓 ቆ𝑡, 𝑐,

𝜕𝑐

𝜕𝑥
,
𝜕ଶ𝑐

𝜕𝑥ଶ
, 𝑃, 𝑃஺(𝐴𝑔𝑒)ቇ (1) 

Initial conditions 𝑐(0) = 𝑐଴(𝑃, 𝑃஺(𝐴𝑔𝑒)) (2) 

Boundary conditions ℎ ൬𝑐,
𝜕𝑐

𝜕𝑥
, 𝑃, 𝑃஺(𝐴𝑔𝑒)൰ = 0 (3) 

Model outputs 𝑦(𝑡) = 𝑔(𝑡, 𝑃, 𝑃஺(𝐴𝑔𝑒)) (4) 

The model represented by (1)–(4) is assumed to have the same structure as the model in [343, 365]; 

however, we allowed for some of the parameters in the original model to vary with postnatal age. 

Model parameters that do not change with postnatal age were grouped into the parameter set 𝑃, while 

postnatal age-dependent parameters were grouped into the set 𝑃஺(𝐴𝑔𝑒). The skin layer thicknesses 

(ℎ௦௖, ℎ௘ௗ ,  ℎௗ௘), permeant diffusivities (𝐷௦௖, 𝐷௘ௗ, 𝐷ௗ௘) and partitioning coefficients (𝐾௦௖/௪, 𝐾௘ௗ/௪, 

𝐾ௗ௘/௪) can be expressed as lump parameters that are functions of the parameters in the sets 𝑃 and 

𝑃஺(𝐴𝑔𝑒). 

For the purposes of this study, the model outputs 𝑦(𝑡) were limited to estimates of two in vitro skin 

permeation test (IVPT) observations: (1) the permeant flux from the dermis into receptor fluid 

(𝑦௃(𝑡)), and (2) the permeant accumulation in receptor fluid (𝑦ொ(𝑡)). Assuming receptor fluid 



 

143 

 

conditions that replicate permeant solubility and diffusivity in the dermis, these estimates can be 

derived from Fick’s law as models (5) and (6): 

𝑦௃(𝑡) = 𝐷ௗ௘

𝜕𝑐(𝑥, 𝑡)

𝜕𝑥 |௫ୀ௛ೞ೎ା௛೐೏ା௛೏೐ 
 (5) 

𝑦ொ(𝑡) = න 𝐷ௗ௘

𝜕𝑐(𝑥, 𝜏)

𝜕𝑥 |௫ୀ௛ೞ೎ା௛೐೏ା௛೏೐ 

ఛୀ௧

ఛୀ ଴

𝑑𝜏 (6) 

7.2.3.2 Maturation Models for Age-Dependent Model Parameters 

Candidate models of postnatal age-dependence for each parameter within the set 𝑃஺ were developed 

as functions of postnatal age (in days) from birth to adulthood. Each such parameter was assumed to 

be expressible as a scaling with respect to a reference adult value 𝑃௔ௗ௨௟௧ that depends on postnatal age 

(𝐴𝑔𝑒). The 𝑖௧௛ postnatal age-dependent parameter, 𝑃஺೔
(𝐴𝑔𝑒), was assumed, a priori, to have one of 

three candidate functional forms with respect to 𝐴𝑔𝑒: 

Sigmoid equation 
𝑃஺௜(𝐴𝑔𝑒)

𝑃௔ௗ௨௟௧
=

𝑎 ∙  𝐴𝑔𝑒

𝑏 +  𝐴𝑔𝑒
+ 𝑐 (5) 

Hill equation 
𝑃஺೔

(𝐴𝑔𝑒)

𝑃௔ௗ௨௟௧
=

𝑎 ∙  𝐴𝑔𝑒௡

𝑏௡  + 𝐴𝑔𝑒௡
+ 𝑐 (6) 

Polynomial equation 
𝑃஺೔

(𝐴𝑔𝑒)

𝑃௔ௗ௨௟௧
= 𝑎 ∙  𝐴𝑔𝑒௡ + 𝑏 ∙ 𝐴𝑔𝑒௠ + 𝑐 (7) 

The nlstools R package (R version: 3.6.1, nlstools version: 1.0-2) [151, 366] was used to fit each of 

the models (5)–(7) for each postnatal age-dependent parameter to the literature-sourced data collected 

through the literature review. To evaluate the test error rate of the models, leave-one-out cross 

validation (LOOCV) [367] was carried out. For each parameter, the functional form with the lowest 

LOOCV test error was selected as the final model. 

For each 
௉ಲ೔(஺௚௘)

௉ೌ೏ೠ೗೟
 ratio used in model optimization, the values of 𝑃஺೔

(𝐴𝑔𝑒) and 𝑃௔ௗ௨௟௧ were sourced, 

where possible, from the same study from the literature. Mean levels in adults of the SC, ED and DE 

thicknesses (ℎ௦௖, ℎ௘ௗ ,  ℎௗ௘) were collected, and the geometric mean of those mean values was 
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calculated as a reference level in adults. When the adult level was not reported in the same study as 

the child level, a reference level in adults was used for 𝑃௔ௗ௨௟௧. This reference level was estimated as 

the mean of all adult values collected in the literature. 

7.2.4 Age-Dependent Dermal Absorption Model Optimization and Evaluation 

The MoBi dermal absorption model was updated with the optimized maturation functions 𝑃஺(𝐴𝑔𝑒) to 

form an integrated, postnatal age-dependent, dermal absorption model. The ability of the integrated 

model to capture changes in dermal absorption across postnatal age was evaluated using literature-

sourced data on the skin permeation by three compounds: buprenorphine, diamorphine, and 

phenobarbital. These three compounds were selected based on the availability of experimental in vitro 

skin penetration data in adults and infants within the same study [368-370]. To assess the predictive 

performance of the model, the difference between observed and predicted flux values (fold error) was 

calculated by using Equation (10). 

𝑓𝑜𝑙𝑑 𝑒𝑟𝑟𝑜𝑟 =
𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 𝑓𝑙𝑢𝑥 (𝑦௃)

𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝑓𝑙𝑢𝑥
 (10) 

7.2.4.1 Dermal Absorption Model Sensitivity Analysis and Parameter Uncertainty 

A local sensitivity analysis was conducted on the adult (𝐴𝑔𝑒 = 30 years) models (1)–(4) for each of 

the three compounds to identify the uncertain model parameters that strongly impact estimates of the 

outputs 𝑦௃ and 𝑦ொ. For each of buprenorphine, diamorphine, and phenobarbital, these sensitivities 

were evaluated after updating the model with the compound’s corresponding parameters in Table 7.1 

and Table 7.2. The uncertain model parameters to which the outputs 𝑦௃ and 𝑦ொ are sensitive were 

classified into two sets: those that vary with postnatal age (denoted 𝑃஺
∗) and those that are independent 

of postnatal age (denoted 𝑃∗). 

A probability distribution for parameters 𝑃஺
∗ for adults was obtained from the literature. Parameters 𝑃஺

∗ 

for different ages were assumed to be distributed according to a corresponding probability distribution 

that is conditional on postnatal age, 𝑝(𝑃஺
∗|𝐴𝑔𝑒). A sample from this conditional distribution is 

obtained, first, by sampling the adult distribution for parameters 𝑃஺
∗, and then scaling the sample 

according to the optimized maturation model. 
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Table 7.1 Compound-specific model input parameters. 

Property Buprenorphine Diamorphine Phenobarbital 

Molecular formula C29H41NO4 C21H23NO5 C12H12N2O3 

Molecular weight (g/mol) 467.6 369.4 232.2 

Lipophilicity (Log P) 4 1.5 1.47 

Boiling point (°C) 578.7 272  

Melting point (°C) 217 173 174 

Water Solubility (mg/L) 16.8 600 1110 

Solubility in ethanol (mg/mL) N/A N/A 100 

pKa 8.65 (basic) 7.83 (basic) 7.3 (acidic) 

Vapor pressure (mmHg) N/A N/A 1.4 × 10−11 

N/A: not available. 

Table 7.2 Experimental conditions and observed permeant flux values in adults. 

Compound 

(Reference) 

Dose 

(µg/cm2) 

Experiment 

Duration (h) 
Solvent 

Observed Steady-State 

Flux 

(µg/cm2/h) 

Final Receptor 

Fluid 

Accumulation 

(µg/cm2) 

Buprenorphine 

(Barret et al., 1994) 
2656 72 

0.1 M acetate 

buffer, pH 4 

0.08 ± 0.02 

(mean ± SD) 
5.54 

Diamorphine 

(Barret et al., 1993) 
53,100 72 

0.1 M acetate 

buffer, pH 4 
0.07 2.59 
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Phenobarbital 

(Bonina et al., 1993)
78 12 Ethanol 0.1 ± 0.02 0.91 

 

7.2.4.2 Model Optimization and Evaluation 

For each compound, the model evaluation consisted of the following steps: 

The models (1)–(4) were updated with the compound-specific parameters from Table 7.1 and age-

dependent parameters corresponding to adult skin (in which parameter 𝐴𝑔𝑒 = 30 years) gathered 

from the PubChem database [206]. 

The uncertain age-independent parameters 𝑃∗, to which the model outputs (5) and (6) are sensitive, 

were estimated by fitting outputs 𝑦௃ and 𝑦ொ from the adult model generated in step 0 to the observed 

adult flux and receptor fluid accumulation in Table 7.2. Model fitting was performed via the Monte 

Carlo parameter identification algorithm in MoBi (Open Systems Pharmacology v.9.1), initiated from 

10 randomly selected initial values. 

Infant skin permeation by the compound was simulated assuming the experimental conditions and 

skin ages in Table 7.3 using the optimized parameter values 𝑃∗obtained in step 0. A total of 100 

simulations of the model were run for each infant skin 𝐴𝑔𝑒 on which the compound was 

experimentally tested. Each such simulation was run after updating the model with a new sample 

from the distribution of age-dependent parameters 𝑝(𝑃஺
∗|𝐴𝑔𝑒). For each experiment, the mean and 

95% confidence intervals of the simulated permeant flux 𝑦௃ were evaluated and compared with the 

corresponding observed flux in Table 7.3. 

Table 7.3 Experimental conditions and observed permeant flux values in infants. 

Compound 

(Reference) 

Gestational Age 

(Postnatal Age) 

Dose 

(µg/cm2) 

Experiment  

Duration (h) 
Solvent 

Observed 

Steady-State 

Flux  

(µg/cm2/h) 



 

147 

 

Buprenorphine 

(Barret et al., 1994) 

38w (1d) 

2656 72 

0.1 M acetate 

buffer 

pH 4 

0.01 

40w (7h) 0.36 

37w (1d) 0.08 

37w (1d) 0.11 

Diamorphine 

(Barret et al., 1993) 

38w (26d) 

53,100 72 

0.1 M acetate 

buffer 

pH 4 

0.23 

40w (7d) 0.08 

36w (3d) 0.18 

Phenobarbital 

(Bonina et al., 1993) 

38w (2d) 

78 12 Ethanol 

0.11 

40w (5d) 0.14 

37w (5d) 0.11 

35w (2d) 0.24 

Neonates who were born before a gestational age (GA) of 37 weeks were considered to be preterm, 

whereas infants who were born after 37 weeks (i.e., GA ≥ 37 weeks) were classified as full-term 

[371]. The observed data for full-term and late preterm neonates with a gestational age from 35 to 40 

weeks were included in this study. The review of skin anatomy and physiology did not focus on pre-

term neonates, and this evaluation was for preliminary assessment only. 

7.2.5 Identification of Critical Input Parameter 

To assess which parameters were both important to the outcome of flux and had an importance that 

differed between adults and children, a post hoc sensitivity analysis was performed. The age of adults 

was set to 30 years and the age of children was set to the same age in the corresponding studies. 

Parameters that were differentially sensitive with respect to age were identified by calculating the 

absolute difference in sensitivity coefficients between children and adults. If the difference was equal 

to or greater than 15% (Equation (11)), the parameter was considered to be age-sensitive. 

|𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑛 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 − 𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 𝑖𝑛 𝑎𝑑𝑢𝑙𝑡𝑠|  ≥ 15% (11) 
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7.3 Results 

7.3.1 Physiological and Anatomical Changes in Skin as a Function of Age 

7.3.1.1 Differences in Stratum Corneum Thickness 

The geometrical properties of the stratum corneum (SC) are critical parameters used to determine the 

steady state permeation, lag time, and the flux of a substance transiting intercellularly through the SC 

[372]. Thus, studies investigating SC thickness in children were reviewed and quantifiable data were 

collected to determine whether SC thickness changed as a function of age. 

A total of 43 relevant articles were identified in PUBMED, and 17 were identified as containing 

child-specific epidermis thickness data compared to adult epidermis thickness data (Supplementary 

Tables S1 and S7). It is important to note that the epidermis consists of the SC and the viable 

epidermis. The viable epidermis is distinct from the SC, as it contains nucleated keratinocytes, 

melanocytes, Langerhans cells, and Merkel cells [373]. Some investigations of epidermis thickness in 

children include SC thickness and identify it as the supra-papillary epidermis or epidermis thickness 

[374-376]. Of the 17 articles, only eight specifically measured SC thickness in children compared to 

adults. The body areas in which SC thickness was most often measured in children were the forearms, 

upper arm, and abdomen [361, 374-378], although data from other body areas such as the buttocks 

and thighs have also been collected [374-376, 378]. Measurements of histological skin samples ex 

vivo and confocal microscopy in vivo were the most common methods used to measure skin 

thickness. 

Earlier studies measuring SC thickness using histological methods did not identify a significant 

distinct difference in the thickness of the SC between infants and adults  [361, 377, 379, 380]. This 

was unlike in vivo SC measurements using confocal microscopy and confocal Raman spectroscopy, 

which revealed that infant SC is thinner than adult SC [36,37,43]. Stamatas et al. [374] found that the 

SC thickness of lower thigh skin from 20 infants from 3 months to 2 years old was on average 30% 

thinner than adults (7.3 ± 1.1 µm versus 10.5 ± 2.1 µm). Similarly, Liu et al. [375] also recorded that 

52 infants and children of the same age range had a 34% thinner SC in the lower thigh compared to 

adults. In the same study, SC thickness measurements at the upper inner arm also revealed a thinner 
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SC in children compared to adults, although the magnitude of the difference was smaller, at only 18% 

thinner (5.3 ± 1.4 µm vs 7.9 ± 1.8 µm) [375]. 

Another investigation by Walters et al. [381] aimed to more closely identify the relationship between 

SC thickness and age by grouping infants and children 3 months old to 5 years old into different age 

bins. The SC thickness of the upper inner arm and dorsal forearm increased from 8 µm at 3 months of 

age to 14 µm at 4 years of age, at which point it became similar to adult (25–40 years old, average: 32 

years) SC thickness, which ranged from 13 to 14 µm in this study. The SC thickness of dorsal 

forearm and inner arms were also similar in thickness in this study. Only one study was retrieved that 

measured SC thickness in neonates and infants less than 3 months of age [376]. This study pooled SC 

measurements of neonates aged 4–7 days old and compared this thickness to measurements taken at 

1, 3 and 6 months after birth in the same infants. Measurements were taken from the buttock, thigh, 

and forearm skin. Unlike the previous studies, Miyauchi et al. [376] found that the SC was thicker at 

4–7 days of age compared to 3 months of age at all three measured sites. 

The ratio of child SC thickness to adult SC thickness was plotted as a function of postnatal age 

(Figure 7.2A). Overall, SC thickness approaches adult values at around 4 years of age. 

7.3.1.2 Differences in the Thickness of the Viable Epidermis between Children and Adults 

After diffusion through the SC, a chemical next permeates through the viable epidermis. Like SC 

thickness, the thickness of the viable dermis is important for calculating diffusion and permeability 

rates. A total of nine publications investigating epidermal thickness in children were identified 

(Supplementary Tables S2 and S8). 

Measurements of abdominal viable epidermis thickness were first recorded by Evans and Rutter 

(1986). They measured the viable epidermal thickness of post-mortem infant skin samples ex vivo 

and identified that it increased linearly with postnatal age up to 16 weeks of life [361]. Moreover, 

they also recorded that the distinct undulating nature of the epidermis develops after birth and 

becomes more distinct with age. Similar findings were recorded by de Viragh et al. [382] a few years 

later in scalp skin isolated from biopsy specimens [382]. However, a distinction between maximum 

epidermis thickness and minimal epidermis thickness was identified. The maximum epidermis was 

defined as the distance from the start of the viable epidermis to the most prominent projection of the 
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collagen fibers, which identifies the border between the epidermal and dermis skin layers. The 

maximum epidermis thickness increased with age, unlike the minimal epidermis thickness, which did 

not vary. This was similar to the study by Evans et al. (1986) [361], which identified an increase in 

the undulating nature of the epidermis. 

Similarly, more recent studies measuring epidermal thickness in vivo also concluded that infants have 

a thinner epidermis than adults. Stamatas et al. [374] and Liu et al. [375], both found that pooled 

epidermis thickness values of thigh skin in infants aged 3–24 months were 20% and 8% lower, 

respectively, than adult values. Liu et al. [375] also measured a 22% thinner inner arm epidermis in 

children compared to adults. The changes in epidermis thickness in neonates was also more closely 

identified by Miyauchi et al. [376], where epidermal thickness was measured in four day old infants 

until they were 6 months of age. Given the undulating nature of the epidermis, two thickness values 

were measured, which corresponded with the top of the dermal papillae and the bottom of the rete 

ridges (i.e., bottom of dermal papillae). The epidermis thickness increased with age until one month 

of age, where it reached a thickness of 25 and 58 µm in minimal and maximal epidermis thickness, 

respectively [376]. At this time point, the maximal epidermis thickness was similar to adult maximal 

epidermis thickness (60 µm) [376]. A final study measuring epidermal thickness in children aged six 

months to three years of age also concluded that epidermal thickness is thinner in children compared 

to adults, but did not show the data for this [383]. 

The viable epidermis in children was thinner than the adult epidermis. Since the data collected from 

Evans et al. [361], de Viragh et al. [382], Miyauchi et al. [376], and Mogensen et al. [383] included 

thickness values stratified by age group, the ratio of child epidermis thickness to adult epidermis 

thickness was plotted as a function of postnatal age (Figure 7.2B). In terms of de Viragh et al. [382], 

as the minimum and maximum values were reported, the averages of the minimum and the maximum 

values were used. These data outline that the epidermis thickness in the first week of life is thinner 

than in adults, and remains relatively similar until 10 days postnatal age, at which point the epidermal 

thickness increases rapidly until four months of age, where it reaches adult values. 

7.3.1.3  Differences in the Dermal Thickness between Children and Adults 

The dermis layer of the skin is the thickest layer, and although it contributes to a significant amount 

of variability for in vitro experiments [384], this layer is important when predicting systemic drug 
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delivery through the transdermal route [385]. As such, differences in dermis thickness (ℎௗ௘) between 

children and adults were investigated. A total of four relevant articles were identified as having 

quantifiable data of dermis thickness values in children (Supplementary Tables S3 and S9). It is 

important to note that of the four articles, one was grey literature and the data were not extracted 

[386]. 

As with the epidermal layer, the dermis layer also has an undulating structure because of the dermal 

papillae. Additionally, it is made up of two layers: the papillary and reticular dermis. As such, 

thickness values were measured in a different way in each publication. Dermis thickness values from 

children aged one week to three years old were attained [382, 387], in addition to children aged 18 

years [388]. Scalp dermis thickness data sourced from De Viragh et al. [382] identified an increase in 

maximal dermis thickness as a function of age from 1125 µm at 2 weeks old to 1500 µm at 21 years 

of age. The minimal dermis thickness in this study also increased from 850 µm at 2 weeks old to 2200 

µm at 21 years of age. Marcos et al. [388] also found a similar trend in skin samples obtained from 5-

month-old infants up to 95 years of age. They found a thickness of 1603.88 µm at birth and 3236.18 

µm in adults at 50 years of age. Finally, Hughes et al. [387] more closely identified the relationship 

between age and dermis thickness in infants that were 1 week old up to 3 years old. However, the 

bounds of the dermis that were measured to gather thickness values were not clear in this study. They 

found dermal thickness in the forearm to be highest at 1 week of age (1200 µm), which decreased to 

1100 µm at 4 weeks of age and then was similar from 6 to 36 months of age at a thickness of 1050 

µm. 

The ratio of child dermis thickness to adult dermis thickness measured by de Viragh et al. [382], 

Marcos et al. [388], and Hughes et al. [387] was plotted as a function of postnatal age (Figure 7.2C). 

In terms of de Viragh et al. [382], as the minimum and maximum values were reported, the average of 

the minimum and the maximum values were used. The dermis thickness in children does not change 

and remains at around 40% of adult thickness until around 2 years of age (730 days postnatal), where 

the dermis thickness increases rapidly into adulthood and continues to increase until 27 years of age. 
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Figure 7.2 Maturation ratios vs. age profiles of (A) stratum corneum thickness (SC maturation 

model 2), (B) epidermis thickness, (C) dermis thickness, and (D) skin hydration. The model 

structures and coefficients are listed in Table 7.4. For the stratum corneum thickness model, 

Miyauchi 2016 data and Holbrook 1982 preterm data were not included in the development of 

SC maturation model 2. 
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7.3.1.4  Difference in Skin Hydration of Child and Adult Epidermal Barrier 

The level of hydration of the skin and stratum corneum plays a role in permeability and chemical 

penetration. An increase in water content results in an increase in skin permeability, since the stratum 

corneum can act as a reservoir to promote percutaneous absorption [349, 389]. Therefore, differences 

in surface skin hydration as a function of age in children were investigated. Skin hydration in the 

stratum corneum can be measured indirectly using a corneometer. The corneometer measures skin 

capacitance, which is related to the dielectric properties of the skin and is proportional to the water 

content in the skin [390]. A total of 16 publications measured surface skin hydration indirectly via 

skin capacitance (Supplementary Tables S4 and S10). 

Several investigations have identified that newborns in the first 2 weeks of life have lower skin 

hydration than adults [391-399]. Chittock et al. [391] found that infants <72 h old had skin 

capacitance of 17.66 ± 4.55 relative capacitance units (RCU), which was lower than adults at 31.47 ± 

6.9 RCU. Similar trends were identified by Bartels et al. [393]. Additionally, a study by Yosipovitch 

et al. [399] also suggests that skin hydration begins significantly increasing in the first 24 hours of life 

[399]. As the neonate grows, skin hydration increases rapidly. The study by Bartels et al. [393] found 

that the highest increase in skin capacitance was by 7 arbitrary units (AU) in the abdomen from 2–7 

days of age. Moreover, Visscher et al. [398] found that skin hydration continues to increase until 2 

weeks of life then plateaus. However, several other investigations have found that the rapid increase 

in skin hydration in infants continues until approximately one month of age [393, 395-397]. 

At the 1 month mark, the skin capacitance in the infant is higher than adults [396]. Visscher et al. 

[398] and Fluhr et al. [392] also identified similar trends. The study by Fluhr et al. (2012) [392] 

suggests that the hydration remains high above adult values until 6 months of age (41.5 AU) and 

decreases to adult values (30 AU) in the first 1–2 years of life. At 6 months to 1 year of age, several 

investigators have found that skin hydration in children is not significantly different than in adults 

[392, 400, 401]. 

The change in skin hydration as a function of postnatal age is shown in Figure 7.2D. Skin capacitance 

values from Chittock et al. [391], Fluhr et al. [392], Hoeger and Enzmann [395], Minami-Hori et al. 

[396], and Visscher et al. [398] were used to calculate a ratio of children’s skin hydration to adult skin 
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hydration. These ratios are plotted as a function of postnatal age. As previously described, skin 

hydration increases until 1 month of age, then decreases to adult values. 

7.3.1.5 Differences in the Corneocyte Volume Fraction 

The corneocyte phase of the SC is involved in model calculations that determine partition coefficients 

and saturation concentration of a substance in the SC [343]. The literature search identified four 

relevant articles related to differences in corneocyte size, shape, volume in the stratum corneum in 

children compared to adults (Supplementary Tables S5 and S11). Changes in cell density, cluster 

formation, cell shape, thickness, and adhesion in corneocytes of the stratum corneum exist in infants 

and children until 5 years of age, with the most drastic changes occurring during the first two years of 

life [343, 344]. Corneocytes in the stratum corneum of infants from 6 to 24 months old were smaller 

than adult corneocytes, which was attributed to a higher proliferation rate of corneocytes in infants 

[346]. During infancy and into adulthood, corneocytes became larger and flatter and assumed a 

greater surface area, which was correlated with a decrease in proliferation rate [2,3,5]. Since the 

relationship between these data and the effect on the volume of corneocytes in the SC are unknown, 

the corneocyte phase volume fraction in children was kept the same as in adults in the model. 

7.3.1.6 Differences in the Lipid/Protein Ratio 

Since the lipid contents in the SC, viable epidermis, and dermis affect the permeability of a substance 

through the corresponding layers, quantitative data regarding differences in lipid mass or volume 

between children and adults were investigated. Of the nine relevant articles identified looking at lipid 

composition in children, only two conference abstract articles from the same research group 

specifically measured whole lipid contents in infant skin compared to adults [402, 403] 

(Supplementary Table S12). Stamatas et al. [402, 403] measured the lipid content in the SC of the 

volar forearm of infants aged 3–24 months and their respective mothers. Similar amounts of urea, 

lipids (cholesterol and ceramides), and keratin (protein) were found in infants and adults. As a result, 

the same parameter values were used in adults and child simulations for the following parameters in 

the model: the protein phase volume fraction of the stratum corneum, the mass of proteins in 

relationship to the dry weight of the SC, and the mass of lipids in relation to the dry weight of the SC. 
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7.3.1.7 Differences in Albumin Concentration 

The albumin content in the skin affects chemical or drug protein binding in the skin and therefore 

unbound and bound concentrations within the dermis [343]. There are limited data regarding albumin 

content in full term infant skin, and a search only revealed one article that quantified albumin content 

in newborn skin [404] (Supplementary Table S14). From this article, it was evident that albumin 

concentration in premature infants is greater than adults and full-term newborns. However, the 

albumin content in adults and newborn skin were similar, both within 2.5–5 ng/µg of protein. As 

such, the parameter value of the fraction of aqueous phase accessible to albumin was kept the same 

between children and adults. 

7.3.1.8 Differences in Skin Blood Flow in Children 

Skin blood flow is an important limiting parameter that helps to predict systemic drug clearance from 

the skin in vivo. In the Dancik et al. model [343], capillary clearance can be used to predict systemic 

clearance using the capillary surface area and estimated blood flow limited clearance. The modeling 

of dermal capillary clearance was reviewed by Kretsos and Kasting (2004) [405], who described 

several parameters such as geometry, vessel size, and surface area that affect capillary clearance. 

They also proposed a new microscopic model for the dermal capillary clearance process based on the 

physiologic capillary structure [406]. In infants, the microvascular structure is disorganized after birth 

and matures over the first 4–5 weeks post birth, when the papillary loops are seen as in adult skin 

[407]. More recently, Miyauchi et al. [376] also observed capillary loop formation in infants at 1 to 3 

months of age. The relationship between vessel geometry and blood flow is complex, and several 

models are available with an aim to capture capillary transport [405]. An early study by Poschl et al. 

[408] identified that the skin blood flow in full-term and preterm neonates changes in the first week of 

life. In full-term neonates, the blood flow oscillations reached the lower range of the adult value 

within the 4 to 5 days of life [408]. The relationship between skin blood blow changes and 

microvessel structural changes in infant skin are not known and need to be further studied for future 

model development. Skin blood flow is not included in the Dancik et al. model [343]; however, the 

maturation of skin blood flow data will be useful in the in vivo prediction of dermal absorption. 
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7.3.1.9 Differences in Surface Skin pH and Follicle Density/Size of Children and Adults 

The skin pH is a crucial element of skin barrier function as it affects enzymatic activity in the skin 

and lipid processing [409]. Although surface skin pH is not an input parameter in the Dancik et al. 

model [343], the pH of newborn skin is near neutral, unlike in adults [410]. The differences between 

adult and child skin pH have been extensively and recently reviewed [409, 410]. In short, skin surface 

pH in infants immediately after birth is higher and less acidic around 6.5 [398] than the pH in adult 

skin [409], which ranges from 4–6 [411]. The pH then decreases within 7–14 days and can normalize 

by 6 months [412]. Moreover, it appears similar to adults [400, 412] in later infancy. While skin pH is 

not currently in the model, this review provides information that may be used in future. 

Similarly, the transfollicular shunt route is another parameter not currently included in the Dancik 

model [343]. Given the importance of the transfollicular shunt route of drug permeation through the 

skin, differences in follicle size or density between children and adults were also investigated for 

future model development. The literature search on EMBASE and MEDLINE identified two articles 

with quantifiable data regarding follicle density, length, or diameter (Supplementary Tables S6 and 

S13). Marchini et al. [413] identified that the number of visible hair structures per mm2 in infants 1–2 

days of age was approximately 10 times greater than in adults. Additionally, a grey literature source 

suggested that there may also be a relationship between hair follicle dimensions and age [414]. 

7.3.2 Development of an Age-Dependent Dermal Absorption Model 

7.3.2.1 Maturation Models for Age-Dependent Model Parameters 

Based on the pediatric dermal data collated from literature, a predictive maturation model was 

developed for the stratum corneum thickness, epidermis thickness, dermis thickness, and stratum 

corneum hydration. Among the three tested models for each parameter, the model that resulted in the 

lowest test error value was selected as a final model. The final model equations and coefficients are 

listed in Table 7.4. For the SC thickness, a preliminary maturation (SC Maturation Model 1 in Table 

7.4) was constructed based on a dataset that includes measurements reported by Miyauchi et al., 2016 

[376]. However, these data report SC thickness values in neonates that exceed values reported in 

adults (Appendix Figure A1), in contradiction to previous literature findings. An alternate model, SC 

Maturation Model 2 in Table 7.4, was therefore developed based on a dataset that excludes 
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measurements from Miyauchi et al., 2016 [376]. The alternative model (SC Maturation Model 2) was 

chosen as the final model. 

Table 7.4 Maturation ratio estimating equations. 

Parameter Equation Coefficients 

Stratum corneum thickness (𝑃஺భ
) 

SC Maturation Model 1 

௉ಲభ(஺௚௘)

௉ೌ೏ೠ೗೟
= 𝑎 ∙  𝐴𝑔𝑒௕ + 𝑐 ∙ 𝐴𝑔𝑒ௗ + 𝑒 for 𝐴𝑔𝑒 ≤ 1510 days 

௉ಲభ(஺௚௘)

௉ೌ೏ೠ೗೟
= 1 for age > 1510 days 

𝑎 = 2.401 × 10−7 

𝑏 = 2.000 

𝑐 = −99.43 

𝑑 = 2.071 × 10−3 

𝑒 = 101.4 

SC Maturation Model 2 

௉ಲభ(஺௚௘)

௉ೌ೏ೠ೗೟
= 𝑎 ∙  𝐴𝑔𝑒௕ + 𝑐 for 𝐴𝑔𝑒 ≤ 1604 days 

௉ಲభ(஺௚௘)

௉ೌ೏ೠ೗೟
= 1 for 𝐴𝑔𝑒 > 1604 days 

𝑎 = 2.662 × 10−7 

𝑏 = 1.878 

𝑐 = 0.724 

Epidermis thickness (𝑃஺మ
) ௉ಲమ(஺௚௘)

௉ೌ೏ೠ೗೟
=

(ଵି௖)∙ ஺௚௘೙

௕೙ ା ஺௚௘೙ + 𝑐  

𝑏 = 18.702 

𝑐 = 0.634 

𝑛 = 5.363 

Dermis thickness (𝑃஺య
) 

௉ಲయ(஺௚௘)

௉ೌ೏ೠ೗೟
=

(ଵ.ହି௖) ∙ ஺௚௘

௕ ା ஺௚௘
+ 𝑐 for 𝐴𝑔𝑒 ≤ 9883 days  

௉ಲయ(஺௚௘)

௉ೌ೏ೠ೗೟
= 1 for 𝐴𝑔𝑒 > 9883 days 

𝑏 = 8.974 × 103 

𝑐 = 0.407 

Stratum corneum hydration (𝑃஺ర
) 

௉ಲర(஺௚௘)

௉ೌ೏ೠ೗೟
= 𝑎 ∙  𝐴𝑔𝑒௡ + 𝑏 ∙ 𝐴𝑔𝑒௠ + 𝑐 for 𝐴𝑔𝑒 ≤ 1182 days 

௉ಲర(஺௚௘)

௉ೌ೏ೠ೗೟
= 1 for 𝐴𝑔𝑒 > 1182 days  

𝑎 = −0.344 

𝑏 = −17.585 

𝑐 = 18.530 
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𝑛 = 0.245 

𝑚 = −0.0171 

7.3.3 Age-Dependent Dermal Absorption Model Optimization and Evaluation 

7.3.3.1 Dermal Absorption Model Sensitivity Analysis and Parameter Uncertainty 

Local sensitivity analysis was conducted on the dermal absorption models (1)–(4) for adults for each 

of buprenorphine, diamorphine, and phenobarbital. This analysis assessed the impact on model 

outputs 𝑦௃ and 𝑦ொ of local changes in the diffusion coefficients (𝐷௦௖, 𝐷௘ௗ, 𝐷ௗ௘), partition coefficients 

(𝐾௦௖/௪, 𝐾௘ௗ/௪, 𝐾ௗ௘/௪) and skin layer thicknesses (ℎ௦௖, ℎ௘ௗ ,  ℎௗ௘). The results of the sensitivity 

analysis are shown in Figure 7.3. For all three compounds, sensitivity was highest with respect to the 

stratum corneum parameters (𝐷௦௖, 𝐾௦௖/௪, ℎ௦௖). 

 

Figure 7.3 Local sensitivity analysis of the outputs 𝒚𝑱 and 𝒚𝑸 of the dermal absorption models 

(1)–(4). 

The SC diffusivity and partitioning coefficients, Dୱୡ and Kୱୡ/୵, are functions of three uncertain 

quantitative structure property relationships (QSPR): 1) the permeant trans-lipid bilayer permeability, 

denoted as logଵ଴ k୲୰ୟ୬ୱ [415]; 2) the permeant’s SC lipid phase/water partition coefficient, K୪୧୮/୵ 

[416]; and 3) the permeant’s SC protein phase/water partition coefficient, PC୮୰୭/୵ [417]. Nominal 

values and uncertainties in these QSPRs are summarized in Table 7.5. These three parameters were 

taken to be the set P∗ of uncertain, age-independent model parameters. 
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Table 7.5 Nominal values and uncertainties in stratum corneum parameters. 

Parameter (units) Nominal value (Uncertainty range) Source 

logଵ଴ 𝑘௧௥௔௡௦ (cm/s) 
Nominal value = −0.570 − 0.840𝑀𝑊

భ

య 

Uncertainty range = Nominal value ± 1.26 
Wang et al., 2006 [415] 

logଵ଴ 𝑃𝐶௣௥௢/௪ 
Nominal value = 0.27 logଵ଴ 𝐾௢/௪ + logଵ଴ 5.4 

Uncertainty range = Nominal value ± 0.32 
Anderson and Raykar 1989 [416] 

logଵ଴ 𝐾௟௜௣/௪  
Nominal value = 0.81 logଵ଴ 𝐾௢/௪ + logଵ଴ 0.43 

Uncertainty range = Nominal value ± 0.434 
Nitsche et al., 2006 [417] 

The SC thickness, hୱୡ, constitutes the set P୅
∗ of age-dependent, uncertain parameters of the model.  

This quantity varies with the degree of SC hydration [343]. In the case of in vitro diffusion 

experiments, the SC is assumed to be fully hydrated, with a nominal thickness of 43 µm (Nitsche et 

al., 2006 [417]). The uncertainty in this model parameter for the case of adult skin, under in vitro 

(hydrated) conditions, was derived from literature-sourced measurements of the thickness of the 

partially hydrated SC at various anatomical sites, which are summarized in Table 7.6. First, the 

coefficient of variation in these measurements was estimated, under the assumption that they are log-

normally distributed, to be 0.43. The fully hydrated SC thickness was similarly assumed to be log-

normally distributed with a mean of 43 µm and a coefficient of variation equal to that of the partially 

hydrated SC measurements. From these estimates, the distribution in the fully hydrated hୱୡ for adults 

was approximated by Lognormal (μ = 3.68, σଶ =  0.17), which is taken to be the distribution 

p(P୅
∗|Age) for Age values representing adults. 

Table 7.6 Stratum corneum thickness measurements collected from the literature. 

Mean (SD) SC Thickness (µm) Skin Anatomical Site Reference 

13.2 (2.3) Abdomen Khiao In et al., 2019 [418] 

21 (2.3) Forearm Choe et al., 2018 [419] 
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19 (1.3) Forearm 

10.4 (3.2) Forearm 
Sauermann et al., 2002 [420] 

11.2 (1.9) Forearm 

13.3 Buttock Therkildsen et al., 1998 [421] 

18.3 (4.9) Dorsal forearm 

Sandby-Møller et al., 2003 [422] 11 (2.2) Shoulder 

14.9 (3.4) Buttock 

9.3 Back of hand 

Robertson and Rees 2010 [423] 

8.7 Centre of calf 

10.9 Outer forearm 

6.2 Inner forearm 

6.4 Inner upper arm 

8.4 Upper back 

6.5 Chest 

6.3 Abdomen 

5.8 Corner of eye 

6.3 Temple 

 

 

7.3.3.2 Model Optimization and Evaluation 

The model optimization and evaluation steps 0–0 in Methods were implemented for each of 

buprenorphine, diamorphine, and phenobarbital. Figure 7.4 shows the step 0 fits of the adult dermal 

absorption model (where parameter Age = 30 years) to the three compounds’ flux and receptor fluid 
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measurements in Table 7.2. Figure 7.5 shows the predictive performance of the fitted model for each 

compound with respect to permeant flux across neonate and preterm infant skin, as generated by step 

0. The pediatric dermal models described the general observed trends of higher dermal absorption 

(i.e., higher flux) in younger infants. For diamorphine and phenobarbital (Figure 7.5 B,C), the dermal 

model provided reasonable predictions with most simulation outputs within the 95% confidence 

intervals. The fold error values of flux in neonates for diamorphine ranged from 0.55 to 1.4 (Table 

7.7). For phenobarbital, the fold error values of flux rate in neonates ranged from 0.96 to 1.26. In 

terms of prediction for preterm neonates, the predicted flux was in good agreement with the observed 

data with fold error values of 1.2 and 0.93 for diamorphine and phenobarbital, respectively. For 

buprenorphine (Figure 7.5A), the model could not describe the inter-individual variability observed in 

full-term neonates (gestational ages of 38 and 40 weeks). The model predicted reasonably for an early 

term neonate (gestational age of 37 week) with 1–1.37 -fold error. 

  

(A) (B) 

Figure 7.4 Observations and fitted dermal model simulations of flux (A) and receptor fluid 

accumulation (B). Error bars represent the mean observations ± one standard deviation. 
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(A) (B) (C) 

Figure 7.5 Observed and predicted (mean, 95% CI) flux for adults and newborns for (A) 

buprenorphine, (B) diamorphine, and (C) phenobarbital. 

Table 7.7 Observed and predicted flux values in adults and infants. 

Compound 

(Reference) 

Gestational 

Age (Postnatal 

Age) 

Observed Steady-State 

Flux 

(µg/cm2/h) 

Predicted Terminal Flux  

(µm/cm2/h) 

Predicted 

Geometric 

Mean/Observed 

Flux Ratio (Fold 

Error) 

Geometric 

Mean 
95% CI 

Buprenorphine 

(Barret et al., 1994) 

38w (1d) 0.01 0.13 0.06–0.26 12.8 

40w (7h) 0.36 0.12 0.06–0.31 0.35 

37w (1d) 0.08 0.11 0.05–0.21 1.37 

37w (1d) 0.11 0.11 0.05–0.21 1.0 

Diamorphine 

(Barret et al., 1993) 

38w (26d) 0.23 0.13 0.04–0.35 0.55 

40w (7d) 0.08 0.11 0.04–0.25 1.4 

36w (3d) 0.18 0.22 0.08–0.47 1.2 



 

164 

 

Phenobarbital 

(Bonina et al., 1993) 

38w (2d) 0.11 0.13 0.07–0.3 1.22 

40w (5d) 0.14 0.13 0.05–0.27 0.96 

37w (5d) 0.11 0.14 0.07–0.26 1.26 

35w (2d) 0.24 0.22 0.1–0.45 0.93 

h: hours, d: days, w: weeks. 

7.3.4 Sensitivity Analysis 

Post hoc sensitivity analysis was carried out to identify age-dependent parameters for which the 

outcomes were sensitive. The flux prediction showed age-dependent sensitivity to the SC thickness 

and a permeability-related parameter (i.e., logଵ଴ 𝑘௧௥௔௡௦), such that the absolute sensitivity coefficients 

of these parameters were higher in neonates than those seen in adults. 

7.4 Discussion 

In this study, the previously published dermal absorption model of Dancik et al. [343] was adapted to 

incorporate the maturation of skin anatomy and physiology in children. Through a literature review of 

physiological and anatomical skin parameters, it was found that that all skin layer thicknesses and the 

skin hydration state of the stratum corneum were age-dependent. Based on literature data, maturation 

equations were developed and incorporated into the model. 

Adult-to-children PK extrapolation was performed using pediatric physiologically based 

pharmacokinetic modeling (e.g., [45, 180]). In this workflow, adult models were first constructed by 

optimizing key chemical specific parameters using the observed PK data in adults. Then, the age-

dependent components of the model such as hepatic clearance and protein binding are scaled for 

children. In light of the established workflow of pediatric physiologically based pharmacokinetic 

(PBPK) modeling, the same steps were followed in this study. The adult model was optimized using 

the observed data in adults (e.g., flux and cumulative amount) obtained from IVPT experimentation. 

While chemical-specific parameters in the model remained unchanged, age-dependent components of 

dermal absorption (e.g., skin layer thickness and SC hydration) were parameterized as a function of 

age in children. 
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The model adequately described the relative difference in dermal absorption between adults and 

infants that were observed in in vitro experiments. In general, infants tended to have a higher 

absorption rate with higher flux rates (J) compared to that of the adults for buprenorphine, 

diamorphine, and phenobarbital. In other words, the model successfully predicted the relative 

differences in dermal absorption between adults and children by taking into account the maturation of 

skin layer thicknesses and skin hydration. 

The predicted flux values agreed with the observed values in neonates for diamorphine and 

phenobarbital. In the case of buprenorphine, a high inter-individual variability was observed in 

experimental results between the 40 week-7 h child and the 38 week-1 day child. The 30-fold 

difference in flux values between these two skin samples could not be captured by the model and this 

discrepancy is thought to be due to an experimental error. The improbable values could have been due 

to the handling of the skin samples before the experiment, such as the freezing, thawing and treating 

the samples with water for rehydration [368], causing the neonatal skin to become damaged. 

Pre-term infants with a lower gestational age exhibited higher absorption rates compared to full-term 

neonates [368-370, 424]. These trends were captured by the developed dermal absorption model 

accounting only for SC thickness being the difference between pre-term and term neonates. This 

speaks to the importance of SC thickness in driving flux rate in the model. The model could 

reasonably describe the flux rate in preterm neonates (i.e., GA: 35–36 weeks), with fold error values 

ranging from 0.93 to 1.2. 

Clearly, these results provide only a small amount of evidence that the anatomy and physiology 

changes in the model are correct. This study as a whole is limited by the amount of in vitro skin 

penetration data available for this age group. However, the limited data that were found could 

generally be recapitulated by the model, although further experimentation would strengthen the basis 

to say that the model is predictive of age-related changes in dermal absorption. 

The prediction of dermal absorption in children is critical for pediatric clinical applications. 

Transdermal drug delivery in neonates is advantageous because it can replace an invasive procedure 

of an intravenous line or an oral administration [425]. The smaller dose requirements and high 

permeability in neonates makes transdermal drug delivery more plausible [426]. This form of delivery 
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has already been used in children—for example, fentanyl, tulobuterol and lindocaine:prilocaine 

(EMLA) [425]. 

Topical bioavailability can be determined by the physicochemical properties of a drug and the 

vehicle, such as: temperature, skin anatomy and physiology, skin hydration and metabolism in dermis 

and epidermis [427]. The stratum corneum plays an important role in dermal absorption as a skin 

barrier [361, 425, 428]. The lipid composition and integrity of the SC are important components in 

the regulation of skin permeability [346, 429]. Therefore, the maturation of the SC determines the 

extent and the rate of dermal absorption in children [425]. The post hoc sensitivity analysis indicated 

that the flux rate prediction was the most sensitive to the SC thickness, indicating that the pediatric 

model appropriately reflected these literature findings. This was also corroborated in the flux 

prediction for preterm infants. 

Compound-specific parameters of logଵ଴ 𝑘௧௥௔௡௦ , 𝐾௟௜௣/௪  𝑎𝑛𝑑 𝑃𝐶௣௥௢/௪ were optimized based on the 

available dermal absorption data in adults (e.g., flux, cumulated amounts), and these parameters were 

kept the same in both adult and children models. According to the post hoc sensitivity analysis, the 

parameters that were the most important in predicting the relative difference of dermal absorption 

between adults and children was the SC thickness and logଵ଴ 𝑘௧௥௔௡௦. The satisfactory prediction 

accuracy of the model output indicated that the most important age-related parameters were 

appropriately parameterized in the model. 

According to Code of Federal Regulations Title 21 Part 320 (§320.23) [430], it was stated that “For 

drug products that are not intended to be absorbed into the bloodstream, bioavailability may be 

assessed by measurements intended to reflect the rate and extent to which the active ingredient or 

moiety becomes available at the site of action”. In vitro permeation testing is an important tool for 

evaluating the permeation amount and the rate of active compounds with the use of excised human 

skin [431]. It is required to characterize the rate and extent of drug delivery via transdermal or topical 

routes to demonstrate bioequivalence [432]. The relative difference in dermal absorption between 

adults and children can be predicted by taking into account the physicochemical properties of the drug 

and the maturation of skin physiology and anatomy. With the available in vitro permeation test data in 

adults, this dermal model in children can provide an estimation of a rate of absorption (flux 𝑦௃) 

following topical exposure. 



 

167 

 

Supplementary Materials: The following are available online at 

https://www.mdpi.com/article/10.3390/pharmaceutics14010172/s1, Table S1. Stratum corneum (SC) 

thickness in infants and children, Table S2. Thickness of the viable epidermis in infants and children, 

Table S3. Thickness of the dermis in infants and children, Table S4. Stratum corneum (SC) hydration 

in infants and children, Table S5. Corneocyte volume fraction, Table S6. Follicle size and Volume, 

Table S7. Stratum corneum thickness literature review and search strategy, Table S8. Epidermis 

thickness literature review and search strategy, Table S9. Dermis thickness literature review and 

search strategy, Table S10. Stratum corneum hydration literature review and search strategy, Table 

S11. Corneocyte volume fraction literature review and search strategy, Table S12. Lipid and protein 

ratio literature review and search strategy, Table S13. Follicle size, density, volume literature review 

and search strategy, Table S14. Albumin concentration literature review and search strategy. 
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Appendix A. Alternative Maturation Model 

 

Figure A1. Alternative maturation model for stratum corneum thickness. 
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Chapter 8: Discussion, Future directions and Conclusions 

8.1 Discussion  

The main objective of this dissertation was to develop a framework for effective pediatric PBPK 

modeling to inform human health risk assessment for children. Pediatric toxicokinetics refers to 

absorption, distribution, metabolism and excretion of environmental toxicants in children. The 

objective of toxicological and pharmacological assessments can differ [433]. In pharmacology, 

following a therapeutic drug administerationd to children, pharmacokinetics and pharmacodynamics 

are characterized to evaluate the drug’s dose-exposure and exposure-therapeutic effect, respectively. 

In toxicology, following an environmental exposure to a toxicant, toxicokinetics can be characterized 

to evaluate the dose-exposure profile with extrapolation to health risk. With the lack of pediatric 

toxicokinetic studies due to ethical reasons, relatively rich pediatric pharmacokinetic data has been 

utilized for health risk characterization of environmental chemicals in children [434].  

In Chapter 2, pediatric PBPK models for 10 hepatically metabolized compounds were developed and 

qualified. Through sensitivity analyses of these models, the most important parameters for pediatric 

PBPK modeling were identified.  It was found that protein binding and clearance parameters were 

important for pediatric PBPK model outcome. In light of these findings, prediction methods of 

plasma protein binding and clearance in children were chosen as the topics of next chapters of this 

thesis. Chapters 3, 4 and 5 pertain to prediction methods for protein binding in children, and Chapter 

6 pertain to development of a framework to predict clearance in children for data-sparse compounds.  

In Chapter 3, quantitative structure–property relationship (QSPR) models predicting fraction unbound 

in plasma in humans were evaluated.  For human health risk assessment in children, fupchild or fupadult 

for environmentally relevant compounds may not be readily available. This study was undertaken in 

order to investigate the available models that predict fup values in humans from chemical structures 

of compounds. Predictive performances of Watanabe et al. [194] and Ingle et al. [186] were compared 

to that of a commercial software ADMET predictor. The test set was comprised of 818 

pharmaceutical and environmentally relevant compounds with fup values ranging from 0.01 to 1. For 

predicting human fup from chemical structures, the positive polar surface area, the number of basic 

functional groups and lipophilicity were the most important chemical descriptors. This study found 
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that that the fup prediction can be uncertain for highly binding compounds (i.e.  0.01 ≤ fup ≤ 0.25). 

This result suggested that, when high prediction accuracy is required, an experimental determination 

of fup is needed.  

In Chapter 4, an evaluation of predictive performance of adult-to-children scaling algorithms 

(ontogeny models) for fup was undertaken.  The ontogeny models describe the plasma protein 

concentrations (i.e. albumin or AAG) as a function of age. These ontogeny models are important 

because those models provide an estimate of fupchild for pediatric PBPK modeling. Although many 

ontogeny models were available (4 ontogeny models for albumin and 5 ontogeny models for AAG), 

the predictive performance of the model had not been evaluated with the same test dataset. In this 

study, in order to evaluate of the appropriateness of protein concentration vs. age profile for each 

model, the predicted plasma protein concentrations were compared to the observed values obtained 

from the literature. Plasma protein concentrations vs. age profiles derived from non-linear equations 

(e.g. PK-Sim and Johnson et al. [243]) were more in agreement with the observed levels than other 

models (e.g. McNamara et al.[211], Alcorn and McNamara [25]). The findings were in line with the 

results from the Chapter 3 such that highly binding compounds were more sensitive to the 

appropriateness of the protein concentration vs. age profiles of ontogeny models. For prediction 

accuracy, the choice of ontogeny model was more important for AAG, highly bound compounds and 

infants.  

In Chapter 5, the prediction methods evaluated in Chapters 3 and 4 were combined. This study was 

conducted in order to evaluate the overall uncertainty when both QSPR models for predicting human 

fup and protein binding ontogeny models are used to predict fupchild from a chemical structure.  These 

models are most needed especially for evaluating the health risk in children for environmentally 

relevant compounds because fup values in children are not readily available due to ethical reasons. 

The protein binding information – whether a compound primarily binds to either albumin or AAG is 

also not readily available for environmentally relevant compounds. In this study, the impact of data 

availability for predicting protein binding in children using the ontogeny models was investigated.  

The use of QSPR-predicted fupadult for fupchild prediction resulted in over-predictions for acids and 

neutrals indicating that an experimental determination of fupadult is required when high precision is 

needed. In addition, it was found that chemical ionization information derived from a compound’s 



 

171 

 

structural data can help to select the most appropriate ontogeny model for predicting protein binding 

in children.  

From Chapter 2, it was discovered that parameters related clearance and fup are crucial for pediatric 

PBPK modeling. Following the extensive investigation on the topic of prediction of protein binding 

in children, the next topic was about a prediction of clearance in children. In chapter 6, all of the 

findings from Chapter 2 to 5 were amalgamated in order to develop a framework for predicting 

clearance in children for human health risk assessment. This workflow utilizes QSPR models, protein 

binding ontogeny models and virtual pediatric individuals. In order to predict pediatric CL values 

from a compound structure, many steps are required. Compound-specific input parameters include 

rate of clearance (e.g. hepatic intrinsic clearance, renal clearance), route of predominant clearance 

pathway, acid-base properties, plasma protein binding, metabolizing enzymes. For these compound-

specific input parameters various QSPR methods were used. System-specific input parameters 

include ontogeny factors of metabolizing enzyme and protein binding, anatomical, biochemical and 

physiological parameters of a child at a specific age. These system-specific input parameters were 

obtained from virtual pediatric population created from PK-Sim.  

Two QSPR approach based methods for predicting CL in children were proposed. The two methods 

(Method 1 and Method 2) share the same steps but the last step of estimating plasma CL in children 

was different. Briefly, hepatic CLint and CLr in adults were predicted from a compound structure 

using QSPR methods. By using appropriate scaling methods, the hepatic CLint and CLr in adults 

were scaled to hepatic CLint and CLr in children. For Method 1, plasma CL in children was 

calculated by adding predicted hepatic CL and CLr in children. For Method 2, a predominant route of 

clearance pathway (e.g. hepatic metabolism or renal excretion) was predicted based on 

physicochemical properties of compounds. For estimating plasma CL in children, a QSPR-predicted 

CL value of the predominant route of elimination was assumed to approximate plasma clearance in 

virtual individuals.  

When the predicted predominant route of clearance pathway information was used (e.g. Method 2), 

the predictive accuracy was better than the case where the predominant route of clearance pathway 

information was not used (Method 1). This indicates that determination of the predominant route of 
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clearance pathway from compound structure can improve a prediction accuracy for estimating plasma 

CL in child for data-sparse compounds.  

Another important aspect of this study was to estimate an inter-individual variability in pediatric CL 

values. The weight based allometry of Method 3 resulted in a smaller inter-individual variability (CV 

9.34 %) compared to that in Method 1 (30.1%) and Method 2 (33.9%). This was because the method 

3 only accounts for the variability of weight of virtual individuals. Method 1 and Method 2 were 

considered more physiologically relevant as those methods take into account variabilities in 

biochemical and physiological parameters (e.g. GFR, ontogeny factors CYP enzymes and plasma 

protein binding). The proposed workflow is thought to provide a reasonable estimation of clearance in 

pediatric population for human health risk assessment for data-sparse compounds.  

In the next chapter, a predictive model for dermal absorption in children which is another important 

aspect of pediatric pharmacokinetics was developed. For important model parameters that are age-

dependent (e.g. skin layer thicknesses and the skin hydration state of the stratum corneum), 

maturation equations were generated based on observed data in literature. A pediatric dermal 

absorption model was developed by updating a MoBi implementation of the Dancik et al. 2013 [343] 

skin permeation model. This model provides prediction of the relative difference in dermal absorption 

between adults and children by taking into account the physicochemical properties of the drug and the 

maturation of skin physiology and anatomy. Key chemical specific parameters in adult models were 

optimized by using the observed dermal absorption data in adults (e.g. in vitro permeation testing 

experimentation). For predicting dermal absorption in children, chemical-specific parameters in the 

model remained the same as in the adult model and age-dependent components of dermal absorption 

(e.g., skin layer thickness and hydration) were scaled as a function of age. 

Due to sparsity in the observed dermal absorption data in children, the predictive performance of this 

model was evaluated using a limited set of compounds. The prediction accuracy of this model was 

reasonable for most comparisons between the predicted and observed flux values except one case 

where an experimental error was suspected (e.g. damaging of a neonatal skin sample when freezing 

and thawing). Dermal absorption prediction in children is an important aspect in human health risk 

assessment. This model is considered useful in predicting dermal absorption for environmentally 

relevant compounds and product chemicals (e.g. sunscreen [435]).  
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In drug development, observed PK data in children are often available and helpful for determining an 

appropriate dosing regimen. However, for human health risk assessment, PK data in pediatrics are not 

readily available. When the critical PK parameters are not available, various computational methods 

can be used. The studies in this dissertation evaluated computational methods that can be used to 

estimate pediatric PK for data-sparse compounds (e.g. environmentally relevant compounds).  

In this dissertation, two types of models were investigated. First, predictive performances of QSPR 

models that predict PK values in human from compound structures were evaluated in Chapters 3 and 

6. Second, predictive performances of adult to children scaling methods were evaluated in Chapters 2 

and 4. In Chapter 5, theoverall uncertainty when QSPR methods for fup prediction in human and 

ontogeny model are combined to predict fup in children was assessed. In Chapter 6, overall 

uncertainty when QSPR methods and ontogeny models for both fup and CL were combined to predict 

CL in children were evaluated. These studies evaluated model appropriateness (e.g. observed vs. 

predicted protein concentrations in children for ontogeny models) and predictive performances of the 

workflows. The evaluations shed light on whether these computational methods provide reasonable 

estimation in children PK. The evaluations also identified areas of uncertainty.  

In human health risk assessment, scaling of PK is often conducted by using simplified approaches 

such as applying HKAF or allometry scaling. In order to account relative difference in PK between 

adult and children population, HKAF of 3.16 can be applied to toxicological index [6]. On the other 

hand, scaling based on allometry assumes that relative difference in PK between adults and children 

is a function of weight or size. These simplified methods do not fully consider maturation and inter-

individual variabilities in anatomical, biochemical and physiological aspects of children. 

Physiologically based estimation methods are considered more relevant as the models take into 

account for those aspects. The evaluations in Chapters 2 and 5 demonstrated that adult-to-children 

scaling of protein binding and clearance showed reasonable predictions (physiologically relevant 

methods). However, the predictive performance of the QSPR methods to estimate protein binding and 

clearance from structural data requires improvement. 

CL prediction in children is more complicated than the prediction of plasma protein binding in 

children. For predicting fup in children, adult fup values are predicted using QSPR methods and 

plasma protein ontogeny models were used to scale adult value (human value predicted from QSPR 
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method was assumed to equivalent to adult values) to fup in children value. On the other hand, CL 

prediction in children required many compound-specific and system-specific parameters and also 

predicted fupchild. The prediction accuracy of fupchild depended on the prediction accuracy of two 

models – QSPR model and ontogeny model. The prediction accuracy of CLchild depended on 

prediction performances of numerous models including the fupchild prediction models. The predictive 

performance of QSPR methods can be improved by (i) using more advanced technique such as deep 

learning for model development and (ii) expanding the chemical space of training set.  

One of advantages of QSPR models is that those models can be incorporated into High Through-put 

Screening (HTS) projects. HTS of environmental toxicants is fast and easy compared to traditional 

toxicological studies that can be expensive and time-consuming. Sipes et al. [338] presents estimated 

daily exposure of 56 compounds that can possibly elicit human in vivo interaction. Unlike higher 

dose amounts that are usually administered to elicit therapeutic effect of drugs (e.g. 1~100 

mg/kg/day), the magnitude of doses eliciting a ‘possible’ human in vivo interaction can be small for 

environmental chemicals (e.g. 10-6 ~ 0.1 mg/kg/day) [338]. Considering the low exposure levels of 

environmental chemicals compared to pharmaceuticals, the high precision of QSPR models that 

would be required for pharmaceutical applications may not be necessary. This is because these 

models are used in the context of HTS. These models can be useful for risk assessors to prioritize 

compounds and identify potential health risks.  

 

8.2 Future directions and Limitations  

One of challenges for evaluating the available QSPR models or ontogeny models for predicting 

pediatric PK was the sparsity of observed PK data in children. More observed data in children is 

needed to evaluate the predictive performance of the available models and to improve a framework of 

predicting PK in children. For example, more observed CL and dermal absorption data in both adults 

and children is needed to evaluate the presented models.  

In addition, clearance prediction in children is focused on well-studied metabolizing enzymes such as 

CYPs or UGTs. However, there are compounds that are mainly metabolized by less known enzymes 

such as hydrolases (e.g. carboxyesterase) and flavin-containing monooxygenase (FMO).  A possible 
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ontogeny effect of these enzyme needs to be studied and incorporated into in silico systems to better 

estimate clearance in children.  

One of limitations of this study is that pharmacogenomic effects (e.g. CYP2C19 poor metabolizer, 

CYP2C19 rapid metabolizer) on clearance and racial effects on PK were not taken into account. 

Incorporation of those system-specific factors in PK prediction in children can help risk assessors to 

identify a vulnerable subgroup in children.  

 

 

8.3 Conclusions 

The proposed workflows and developed models for predicting important PK parameters in children in 

this dissertation are considered to be useful in decreasing uncertainties associated with PK in children 

estimation from compound structure for environmentally relevant compounds. Furthermore, the 

proposed models are physiologically relevant and these models will help risk assessors to make 

informed decisions for human health risk assessment in children.  
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Appendices 

Appendix for Chapter 2  

Appendix 1. Sensitivity analysis results presenting input parameters that exhibited high (absolute SC 

≥ 40%) or age-dependent (∆(SCadult - SCchild) ≥ 30%)) sensitivity for the prediction of AUCinf in a 

newborn, an infant and an adult.  
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Figure S1. Predicted and observed plasma concentrations vs. time profiles of 10 compounds in adults. 

Solid lines represent the predicted plasma concentrations by PBPK modeling. Dots represent 

observed data from clinical studies. Administration protocols were listed in Table 2.2.  
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Table S1. Estimation equations for a standard deviation. 

Standard deviation for the 

case where median and 

range were available. 

Eqn (8) 𝑆 ≈ ට
ଵ

ଵଶ
ቂ

(௠௜௡ିଶ∗௠௘ௗ௜௔௡ା௠௔௫)మ

ସ
+ (𝑚𝑎𝑥 − 𝑚𝑖𝑛)ଶቃ 

 

Where S is a standard deviation, min is minimum, max is maximum.  

 

This equation was taken from Hozo et al. This equation was used 

when observed SDs were not available in the data source.  

Of note, this equation was used for estimating SD from the 

reported CL range for esomeprazole data taken from Sandstrom et 

al. 2012. In the calculation, the reported geometric mean was 

assumed to be equivalent to median.  

Standard deviation of each 

bootstrap replicate  
 Eqn (9) 𝑠௜ =  ට

∑ (௫ೕି௫̅೔)మ೙
ೕసభ

௡ିଵ
 

 

Where si is a standard deviation of ith bootstrap replicates. Xj is a 

CL value (jth) of a virtual individual and 𝑥̅௜ is an arithmetic mean in 

an ith bootstrap replicate. n is the sample size of an ith  bootstrap 

replicate.  

 

The SD values calculated by this equation were used in Figure 1 and 

in the calculation of t-test and CVpred,i. 

Standard deviation of 

means of bootstrap 

replicates  

 Eqn (10) 𝑠 =  ට
∑ (௠ೖି௠ഥ )మభబబ

ೖసభ

ଵ଴଴ିଵ
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 Where s is a standard deviation of means of bootstrap replicates. 

mk is an arithmetic mean of kth bootstrap replicate and 𝑚ഥ  is an 

arithmetic mean of 100 bootstrap replicates’ means.  

 

This SD was used in Figure 2.  
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Table S2. Concordance correlation coefficients (௖) for plasma concentration vs. time profiles in 

adults.  

compound ௖  

Alfentanil 0.98 

Diclofenac 0.91 

Esomeprazole 0.87 

Itraconazole 0.75 

Lansoprazole 0.78 

Midazolam 0.91 

Ondansetron 0.94 

Sufentanil 0.84 

Theophylline 0.97 

Tramadol 0.95 
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Supplementary Materials for Chapter 3 

 

Figure S1. The distributions of the observed fup values and the predicted values according to each 

QSPR model.  
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Supplementary Materials for Chapter 4  

Table S1. Observed albumin concentrations obtained from literature  

PNA (days) PNA SD Albumin conc. (g/dL) Albumin conc. SD Reference 

1 - 2.9 0.4 [277] 

2 - 3 0.5 [277] 

4 - 3.4 0.4 [277] 

6 - 3.4 0.4 [277] 

1 - 3.5 0.4 [249] 

30 - 3.6 0.3 [249] 

90 - 4 0.3 [249] 

180 - 4 0.2 [249] 

1 - 3.9 0.1 [436] 

90 - 4.3 0.1 [436] 

180 - 4.3 0.1 [436] 

270 - 4.4 0.1 [436] 

360 - 4.5 0.1 [436] 

450 - 4.5 0.1 [436] 

540 - 4.5 0.1 [436] 

1 - 3.7 0.2 [236] 

1 - 3.7 0.2 [236] 
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1 - 3.7 0.2 [236] 

1 - 3.7 0.2 [236] 

1 - 3.7 0.2 [236] 

1 - 3.8 0.3 [437] 

1 - 3.9 0.3 [438] 

1 - 4.2 0.1 [273] 

5110 - 4.6 0.3 [439] 

365 - 4.3 - [247] 

730 - 4.3 - [247] 

1095 - 4.3 - [247] 

1460 - 4.3 - [247] 

1825 - 4.3 - [247] 

2190 - 4.4 - [247] 

2555 - 4.4 - [247] 

2920 - 4.4 - [247] 

3285 - 4.5 - [247] 

3650 - 4.5 - [247] 

4015 - 4.4 - [247] 

4380 - 4.2 - [247] 

4745 - 4.4 - [247] 

5110 - 4.5 - [247] 
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5475 - 4.4 - [247] 

5840 - 4.4 - [247] 

6205 - 4.4 - [247] 

6570 - 4.4 - [247] 

6935 - 4.4 - [247] 

7300 - 4.3 - [247] 

365 - 4.2 - [247] 

730 - 4.2 - [247] 

1095 - 4.3 - [247] 

1460 - 4.3 - [247] 

1825 - 4.3 - [247] 

2190 - 4.3 - [247] 

2555 - 4.3 - [247] 

2920 - 4.3 - [247] 

3285 - 4.4 - [247] 

3650 - 4.4 - [247] 

4015 - 4.4 - [247] 

4380 - 4.3 - [247] 

4745 - 4.4 - [247] 

5110 - 4.4 - [247] 

5475 - 4.5 - [247] 
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5840 - 4.5 - [247] 

6205 - 4.6 - [247] 

6570 - 4.6 - [247] 

6935 - 4.5 - [247] 

7300 - 4.6 - [247] 

1 - 3 0.2 [440] 

3 1 3.2 0.3 [440] 

7 - 3.4 0.2 [440] 

14 - 3.4 0.3 [440] 

28 - 3.6 0.3 [440] 

56 - 3.2 0.2 [440] 

80.5 14.8 3.6 0.2 [440] 

1 - 3.5 - [260] 

109.5 - 3.8 - [260] 

365 - 4.2 - [260] 

1825 - 4.6 - [260] 

3650 - 4.5 - [260] 

4745 - 4.3 - [260] 

PNA: post natal age, SD: standard deviation, conc.: concentration, - : not available  
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Table S2. Observed AAG concentrations data in children  

PNA (days) PNA SD AAG conc. g/L AAG conc. SD Reference 

1 - 0.1 0.2 [441] 

1 - 0.3 0.1 [242] 

180 120 0.6 0.1 [242] 

2482 1095 0.7 0.2 [242] 

1 - 0.2 - [442] 

1 - 0.2 0.1 [271] 

1 - 0.1 0.1 [284] 

1 - 0.2 0.1 [438] 

15.5 7.3 0.6 0.3 [248] 

380.5 174.8 0.8 0.5 [248] 

3285.5 1277.3 0.9 0.6 [248] 

1 - 0.3 0.1 [249] 

30 - 0.5 0.2 [249] 

90 - 0.7 0.1 [249] 

180 - 0.7 0.3 [249] 

1 - 0.2 0.05 [443] 

168 83.8 0.5 0.1 [443] 

103.1 51.7 0.3 0.1 [444] 

66 - 0.4 2.7 [445] 
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1 - 0.2 0.05 [282] 

SD: standard deviation, - : not available   

 

  



 

228 

 

Table S3. Summary of chemical properties of the data set  

Data type N  

Total data set  61 

Albumin binding compounds 41 

AAG binding compounds 20 

Acids 24 

Bases 24 

Neutrals 13 

 

 

 

Figure S1. Histograms of key chemical properties of the dataset   
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Supplementary Materials for Chapter 5 
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Figure S1. Comparison between observed fupchild values and QSPR-based fupchild calculated using 

Johnson et al.  according to different data-availability scenarios. 

Supplementary Materials for Chapter 6 
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Figure S1. System-specific parameters that contribute to the inter-individual variability of CLchild. 
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Supplemental Materials for Chapter 7  

Table S1. Stratum corneum (SC) thickness in infants and children. 

Measurement 
Type 

In vivo/ in vitro/ 
ex vivo & Room 

conditions 
Body Area  Age Notes Trend Reference 

Hematoxylin 
and Eosin 

(H&E) 
Ex vivo  Abdomen 

Child (n=30): 
average=28 months/3.9 

years (3 months – 11 
years) 

Infant <3 months 
(n=10): average = 17.1 

days 

Adult (n=10): 
average=26 years (17-

46 years) 

Values don’t represent 
an absolute value for 
SC thickness, values 

are just used for 
relative comparison 

No significant differences in SC 
thickness between any of the groups 

Adult SC = 35.4 µm, SD = 6.4 

Child 3mo – 11 years. = 28.8 µm, SD = 
10.6 

Infant SC= 35.4 µm, SD=11.3 

[446] 

Confocal laser 
scanning 

microscopy  

In vivo 

22-28°C, 63-85% 
relative humidity 

Buttock 

Upper thigh 

Ventral forearm 

Full-term neonates 
(n=15) 

Measurements (4 times 
per site) at 4-7 days, 

1,3,6 months after birth 

Mothers of infants 
n=15 (only measured 

ventral forearm) 

 

Significant decrease in forearm skin 
observed from 4-7 days(~22µm) to 3 

months of age (~10 µm). Similar 
changes in buttock and thigh skin but 

degree of decrease was relatively 
lower.  

SC thickness was almost the same as 
adults from 1 month of age in 

forearm skin.  

After 4-7 days SC thickness from all 
sites ranged from ~10-15 µm. 

[376] 

Modified 
starrett gauge, 

dry thickness of 
stratum 
corneum 

Ex vivo Hip 

8 years – 65 years, n=10 
donors total (3 

females, 7 males) 

one section from each 
donor 

Focus was to obtain 
reproducible results 

from single donor not 
the accuracy of 
measurement.  

Cell layers were 
counted on at least 6 

locations and averaged 

SC thickness for the only 8 years old: 
8.1 µm  

30-45 years old SC thickness ranged 
from: 6.2 – 19.1 µm 

Sc thickness positively correlated 
with dry mass (r=0.93). 

[379]  
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to determine purity of 
stratum corneum 

isolation. 

 

Can’t correlate thickness with age 
given only one donor <30 years and 

one > 45 years 

Reflectance 
Confocal 

Microscopy 

In vivo 

No topical 
products and 

cosmetics for at 
least 24 h prior to 

study 

44 adults (25-40 
years): 

Caucasian 
Fitzpatrick skin 

type I–III (n = 25) 
and African 

American (n = 
19) 

Infants (3-49 
months old) 

Upper inner arm 
(n=142) 

Dorsal forearm (n=151) 

  

Children were 
grouped into 7 age 

bins (average n=11 per 
age bin): 

All 44 adults (average 
age 32 years) were 

placed into one age bin 

SC thickness increases until 4 years of 
age from ~8 to 14µm, where it 

becomes similar to adult SC thickness 
(~13-14 µm) 

SC thickness of dorsal forearm and 
inner arms are similar in thickness 

  

[381] 

Reflectance 
Confocal 

Microscopy 
In vivo 

Infants: 6-24 
months 

Mothers: 25-46 
years old 

N=20 per group 

Lower thigh 

SC thickness was 
calculated from top of 

corneocyte layer to 
where granular cells 

can be detected 

Infant SC thickness was on average 
30% lower than that of adult:  

Infant: 7.3 ± 1.1 µm 

Adult: 10.5 ± 2.1 µm 

[374] 

Reflectance 
Confocal 

Microscopy 

In vivo 

Avoid skin care 
products for 24 

hours 

20–25°C 

40-60% humidity 

Infants: 3-24 
months (n=52) 

 

Adult mothers: 
20-40 years 

(n=27) 

 

Asian Descent 

Upper inner arm  

Lower thigh 

SC thickness is 
measured from top of 

corneocyte layer to 
granular cells 

On average SC thickness was lower 
than adults. 

Upper inner arm: infant SC was ~ 
18% thinner than adults (5.3±1.4µm 

vs 7.9±1.8µm) 

Thigh: 34% thinner SC in infants 

These thickness values are thinner 
than Caucasian counterparts found in 

[374] 

No significant differences between 
male and female infants  

[375] 

Optical 
Coherence 

Tomography 
In vivo 

Healthy female 
Japanese 

volunteers (n= 
116) 

Forehead  

Cheek 

Note: Quantitative 
values were thinner 

than reported in 
conventional textbooks 

Thickest SC: back of hand  

Thinnest SC: shin 
[378] 
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Age: teens (14-17 
years old) to 

sixties 

Inner side of upper 
arm 

Inner side of forearm 

Outer side of forearm 
Back of hand  

Abdomen 

Back  

Inner side of femur 

Inner side of leg  

Shin 

SC thickness showed no correlation 
to aging (unlike epidermal thickness). 

No trend was observed in SC 
thickness as aging occurs. 

Only cheek SC thickness became 
significantly less in the forties but  in 
the sixties it returned to almost the 
same level as that in the twenties. 

Back of hand also seems to increase 
with age, but not stat significant. 

Histological 
sections, light 
microscopy 

Ex vivo 

Post-mortem 
skin samples 

Infants (n=169)  

Gestation: 24-40 
weeks 

3 groups: 

36-40 weeks 
(n=88) 

31-35 (n=22) 

<31 (n=59) 

Upper abdominal 
margin of the midline 

SC thickness was 
measured based on a 

scoring system:  

Barely visible (0)  

Thin layer (1) 

Medium layer (2) 

Thick layer (3) 

SC thickness increases with 
gestational age, SC is very thin or 

barely there until 34 weeks 
gestational age.  

After 34 weeks gestation, SC forms 
and most have medium to thick SC 

layer. 

SC thickness in term babies doesn’t 
increase over 16 weeks.  

More infants have SC in the thick or 
medium layer category after 6 weeks 
of age, but many also have the same 
scoring from 0-4 weeks of age. Very 
few full term babies have thin SC. 

Histologically, the SC thickness also 
showed similar structure and 

thickness in term baby at 1 day old 
and 4 months (16 weeks) old 

[361]  

Table S2. Thickness of viable epidermis in infants and children. 

Measurement 
Type 

In vivo/ in vitro/ 
ex vivo & room 

conditions 
Body Area Age  Notes Trend Reference 
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Holtain Skin 
Caliper In vivo Dorsal forearm 

Age: 8-89 years old 
(n=145) 

No skin disorders 

 

Measured whole skin thickness. 

Thickness: bell curve distribution 
with peak at 25 years old for 

women and 45 years old for men. 

Women’s skin was always thinner 
than men skin after the peak of 
thickness for women at 25 years 

old. 

[447] 

Reflectance 
Confocal 

microscopy 
In vivo Lower thigh 

Infants 6-24 months 
old (n=20) 

Infant Mothers: 25-
46 years old (n=20) 

Epidermal thickness 
calculated from the top 

corneocyte layer 
(thickness includes 

Stratum Corneum) to the 
top of the dermal papilla 

 

Infant supra-papillary epidermis 
was on average 20% thinner than 
that of adults (29.7±3.4 µm versus 

36.2±5.2 µm) 

Differences between child and 
adult were statistically significant 

[374] 

Histology, 
paraffin, 

hematoxylin 
and eosin 

Skin biopsies  

ex vivo 

Capillitium 

Forehead  

Cheeks 

Anterior neck 

Thorax 

Axilla 

Abdomen 

Back 

Gluteus 

Anterior arm 

Anterior forearm  

Palm 

Anterior leg, 

Anterior lower leg 

Sole 

Divided into age 
groups: 

full term to 1 years 

1-12 years 

13-22 years 

23-55 years 

56-73 years 

10 donors per age 
group, N=750 skin 

biopsies 

Open-source journal 

No stat analysis shown. Appears 
total skin thickness increases with 

age.  

Epidermis thickens from 0-1 years 
old to adulthood (23-53 years old) 

in forehead, palm, and sole.  

For covered skin areas the 
epidermis thickness stays relatively 

constant from 0-1 years old.  

Epidermis thickness decreases from 
1 to 12 years and reaches similar 

thickness to adults 

[386] 



 

236 

 

Histology, 
paraffin, 

hematoxylin 
and eosin 

Skin biopsies of 
healthy human 
skin at autopsy, 

ex vivo 

Capitillium 
(epidermis and 

corium aka 
dermis) 

Neonate: full term 
to 1 years 

Childhood: 1-12 
years 

Puberty/adolescenc
e: 13-22 years 

Adult: 23-55 years 

Elderly: 56-73 years 

N=60 biopsy 
specimens, 12 

samples per age 
groups 

Open-source journal 

 

Epidermal thickness was higher in 
infants less than 1years old (160.8 
µm) then decreased in children 
aged 1-12 years old (98.3 µm).  

From then epidermal thickness 
increased into adulthood (158.7-

174.6 µm), then decreased after 56 
years old (112 µm). 

Percentage of each epidermal layer 
in whole epidermis also changes 

with age.  

[414]  

Reflectance 
confocal laser 

scanning 
microscopy 

In vivo 

20–25°C  

40-60% humidity 

Upper inner arm  

Lower thigh 

Infants: 3-24 months 
(n=52) 

 

Infant mothers: 20-
40 years (n=27) 

 

Thickness of the 
suprapapillary epidermis 
(SPE) was measured from 
the top corneocyte layer to 

the top of the dermal 
papilla (epidermal 

thickness includes Stratum 
corneum thickness) 

On average infant SPE thickness 
was lower than adults. 

Upper inner arm: infant SPE ~ 22% 
thinner 

Thigh: Infant SPE 8% thinner  

These thickness values are thinner 
than Caucasian counterparts found 

in [374]. 

[375] 

Histology, 
light 

microscopy 
In vitro  

Human foreskin 

 

 

Newborn: 2-5 days 
old 

Child: 3-11 years 
Old 

Adult: 17-58 years 
old 

Two different donors for 
each age category: 

Newborn- 2 and 3 day old 

Child- 4 and 10 years old 

Adult- 15 and 26 years. old 

 

After 1 week of submerged culture, 
epidermal thickness decreased with 
age. Adult keratinocytes formed 1-

2 cell layer thick epidermis. 

Newborn epidermis was 6-8 cell 
layers thick 

Child epidermis was 4-5 cell layers 
thick.  

The same was seen when cultured 
at air-liquid interface. 

[448] 

Confocal laser 
scanning 

microscopy 

In vivo 

22-28°C 

Full-term neonates 
(n=15) 

Buttock 

Upper thigh 

Epidermal thickness 
determined in two ways: 

Dermal papilla not observed up to 
4-7 days post birth but gradually 
observed up to 3 months of age.  

[376] 
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63-85% humidity Measurements at 
4-7 days, 1,3,6 

months after birth 

Infant Mothers: 
n=15 (only ventral 
forearm measured)

Ventral forearm 1. Skin surface to 
top of dermal area (dermal 

papillae) 
2. Skin surface to 
the bottom of epidermal 

layer (rete ridges) 
Epidermis thickness 

includes SC thickness 

 

Dermal papilla increases in size 
and number up to 6 months of age, 
but the most drastic changes occur 

in the first 3 months. 

Skin surface to top of dermal area: 
Increase in epidermal thickness at 

each site from 4-7 days old to 1 
month old. After 1 month, 

thickness was mostly the same as in 
adults (21 µm ±3): 

Ventral forearm: ~20 µm to 25 µm 

Buttock: ~21 µm to 26 µm 

Thigh: similar thickness from 4-
7days to 1 month 

Epidermal thickness from skin 
surface to bottom of the epidermal 

layer, increased significantly 
between 4 to 7 days and 1 month of 

age in all areas. This change with 
growth after birth almost stopped 
before 1 month of age, and from 1 
month of age, epidermal thickness 
from the skin surface to the bottom 
of the epidermal layer was mostly 

the same as in adults (ventral 
forearm only: ~60µm). 

Ventral forearm: ~25µm at 4-7 days 
to 55µm at 1 month old 

Histological 
sections, light 
microscopy 

Ex vivo 
Upper abdominal 

margin of the 
midline 

Gestation at birth 
ranged from 24-40 

weeks 

3 groups: 

36-40 weeks (n=88) 

31-35 (n=22) 

<31 (n=59) 

 

Epidermal thickness increases with 
increasing gestational age 

Epidermis  increases with 
increasing postnatal age. The 

increase in epidermal thickness 
stops after 16 wks. of age  

[361] 
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The undulation of the epidermis 
also increases with increased age 

post birth. 

Premature babies develop 
epidermis in 2 weeks of life with 
increase thickness and cell layers. 
However, the undulation of the 

epidermis does not develop during 
this time.  

Histology 
sections Biopsy specimens Parietal scalp 

Age: 2 weeks – 21 
years (n=100) 

62 males, 38 females 

 

Minimum and maximum 
epidermis thickness was 

measured 

 

Minimum epidermis thickness did 
not appear to vary with age 

(25µm).  But maximal epidermal 
thickness increased slightly with 

age (80 µm at birth to 160 µm at 21 
years old): 

Linear regression: 80.5 + 3.0y 

R=0.5, p<0.0001  Units in µm 

[382]  
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Table S3. Thickness of Dermis in infants and children. 

Method of 
measurement  

In vivo/ in vitro/ 
ex vivo & room 

conditions 
Body Area Age  Notes Trend Reference 

Histology 
sections Biopsy specimens 

Parietal scalp 

 

Post-natal Age: 
2 weeks – 21 
years (n=100) 

62 males, 38 
females 

 

Dermis measured from 
dermal papilla to least 
and most prominent 
projection of collagen 

fibres. Adventitial 
dermis not considered 

Both the minimum and maximum 
dermis thickness values increased with 

age (y=years) in parallel (units = µm) 

Minimum Dermis:  

<1-year-old: 850 µm 

21 years old: 1500 µm 

Maximum Dermis: 

<1-year-old: 1125 µm 

21 years old: 2200 µm 

Regression Lines: 

Min dermis:  

777.5 + 32.9y  

(r=0.64, p<0.0001) 

Max dermis: 

1143.1 + 34.2y 

(r=0.53, p<0.0001) 

[382] 

Histology, 
paraffin, 

hematoxylin 
and eosin 

Skin biopsies  

Capillitium 

Forehead  

Cheeks  

Anterior neck 
Thorax  

Axilla  

Abdomen 

Back  

Divided into 
age groups: 

full term to 1 
year 

1-12 years 

13-22 years 

23-55 years 

56-73 years 

Open-source journal  

No in-text references 

No stat analysis shown. Appears total 
skin thickness increases with age.  

Dermis thickness is higher in the 1-12 
age group compared to the 0-1 year old 

age group at all regions measured 
except capillitium (scalp).  

Dermis also is higher in the 13-22 age 
groups compared to the 1-12 age group 

After this age, unsure whether it stays 
the same given no statistical analysis. 

[386] 
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Gluteus  

Anterior arm  

Anterior forearm  

Palm  

Anterior leg 
Anterior lower leg 

Sole 

N=10 per age 
group 

 

20 MHz 
sonography 

(allows 
depiction of the 
dermis, but not 

separate 
resolution of 

the epidermis) 

In vivo 

Cheek 

Volar forearm 

Thigh 

Calf 

N=310 

7 age groups 
(n=21-24 per 

group): 

1wk ±5 days 
old 

4weeks± 7 days 
old 

6 months ± 20 
days old 

9months ± 20 
days old 

12 months ± 20 
days old 

24 months ± 84 
days old 

36months ± 84 
days old 

Did not mention the 
bounds of the dermis 
that were measured to 
get thickness values. 

Measured total skin thickness.  

Dermal thickness at cheek appears 
highest at 1 week of age (1200µm) then 

slightly decreases at 4 weeks of age 
(1100µm), where it is similar from 6- 36 

months of age (1000µm). 

Dermal thickness at forearm appears 
highest at 1 week of age (1200µm) then 

slightly decreases at 4 weeks of age 
(1100µm), where it is similar from 6- 36 

months of age (1050µm) 

[387] 

Histology and 
microscopy Ex vivo  

Abdominal skin: 
periumbilical 

region adjacent to 
the midline. 

 

N=45 

Age 5 months 
old to 95 years 

Old 

 

Thickness of papillary dermis 
increases with age.  

It followed a linear regression model in 
a statistically significant way (P < 

0.0001, R2 = 0.26): 

[388]  
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Area assumed to 
be protected from 

sun exposure  

Average age: 
57.02 ± 27.68 

years  

from 63.24-µm-thick in the moment of 
birth until 100 µm at 100 years old 

(predicted). 

Reticular dermis thickness followed a 
quadratic function:  

P = 0.011, R2 = 0.193 

The thickness was minimum in the first 
and last stages of life, with values of 

1603.88 µm at the moment of birth and 
1303.48 µm predicted for 100-year-olds, 

and maximum values in adult skin, 
reaching a thickness of 3236.18 µm at 50 

years of age. 

Table S4. Stratum corneum (SC) hydration in infants and children. 

Method of 
measurement  

In vivo/ in vitro/ ex 
vivo & room 
conditions 

Body Area  Age Trend Reference 

Corneometer 

 

24°C 

50% humidity 

In vivo 

Cheek  

Forearm 

10-14 years old (N=32) 

Mothers: 40±4 years old 

 

Skin hydration is lower in children compared to 
adults. 

Cheek Summer (AU): 

Children:  45.7±8.4  

Adult: 56.3±8.8 P<0.0001 

Cheek Winter (AU):  

Children: 31.8±11.2  

Adult: 49.2±9.9 P<0.0001 

Forearm Summer 

Children: 30.7±3.3  

Adult: 37.2±5.0 P<0.0001 

Forearm Winter  

Children: 27.7±3.2  

[449] 
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Adult: 31.2±5.0 P=0.0026 

Capacitance 

20.6±0.62°C35.71±6.51
% humidity 

In vivo 

Forearm 

Thigh 

Birth (<72h old)- 4 weeks 
old (N=39) 

Compared to unrelated 
adults (N=20) 

Skin hydration increases significantly from birth 

Birth: 17·66 ± 4·55 relative capacitance units 
(RCU) 

Early infancy (4 weeks): 41·79 ± 9·65 RCU 

Newborn infant skin was dryer than adults 

17.66 RCU (infants) vs 31.47± 6.9 RCU (adults) 

[391] 

Capacitance In vivo Forearm 
6.4 ± 0.31 years old  

Eczema versus no eczema 
Skin hydration measured as 62.29 ± 6.34 AU [450] 

Corneometer 

20 ± 2 °C 

50 ± 10% humidity 

In vivo 

Forearm  

Age groups (n=18 per 
group): 

1-15 days old 

5-6 weeks old 

6± 1 months Old 

1-2 years old 

4-5 years old 

Adult: 20-35 years 

Mean skin hydration value for newborns 1-15 
days old (17.4AU) was significantly lower 

compared with older age groups.  

The 5-6 week old (41.2AU) and the 6 month old 
age group (41.5AU) had higher skin hydration 

compared to the other age groups. 

[392] 

Corneometer 

21-25°C 

Mean 
Humidity=43.6%  

Range humidity=33-
55% humidity 

In vivo 

Forearm 

1-6 years old (n=44) 

Compared to adult parent 
21-44 years old (n=44) 

Skin hydration not significantly different 
between children and adults. 

Child: 75.4 ± 11.4 AU 

Adult: 76.1 ± 8.4 AU 

[451] 

Corneometer 

22-26°C 

40-60% humidity 

In vivo 

Upper arm 

Thigh 

Buttock 

 

6-24 months of age (n=60) No significant differences in skin hydration at 
any site from 6 months to 24 months of age. [452] 
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Corneometer In vivo 

Forehead 

Abdomen 

Upper leg 

Buttock 

Newborns ≤48h old 
followed to 8 weeks of age 

(n=64) 

Hydration increased with age at all four sites.  

Hydration in 2-day old neonate was ~25 AU and 
increased to ~55AU at 8 weeks of age. 

[394] 

Corneometer 

21.6 ±1 .5°C 

46.4 ± 7.45% 
humidity 

In vivo 

Forehead 

Cheek 

Forearm 

Gluteal surface 

3 days old newborns 
(n=202) 

Followed up at 4 and 12 
weeks 

Mothers: 18-40 years old  

Hydration increased significantly at all tested 
sites during the neonatal period then remained 

stable after 30 days post birth. 
[395] 

Corneometer In vivo 

Forehead 

Abdomen 

Upper leg 

Buttock 

Neonates ≤48h old 
followed until 4 weeks old. 

 

Product applied after 7 
days 

Hydration significantly increased from day 2 -7 
post birth.  

The highest increase in hydration was in the 
abdomen, which increased by 7 AU. 

An overall increase in hydration is also seen from 
age 2 days to 28 days old in the control group 

bathed with water and the group bathed with a 
washcloth and water. 

[393] 

Corneometer 

22–24°C 

45–55% Humidity 

In vivo 

Forehead 

Forearm 

0.5 - 94 years of age 

N=713 

Skin hydration increases to age 40-50 years then 
decreases [453] 

Corneometer 

25°C 

40% Humidity 

In vivo 

Upper thigh 

Diaper covered 
buttock 

Neonates 3 days old 
followed up to 1 year old 

(n=19) 

Mothers (n=5) 

Skin hydration is lower than adults in the thigh 
and buttock, then increases rapidly until 1 month 
of age and remains higher than adult hydration 

throughout the first year of life.   

[396] 

High frequency 
conductance 

22-26°C 

40-53% Humidity 

In vivo 

Forearm 

Newborn infants 0-5 days 
old (n=46) 

Children 1-5 years old 
(n=16) 

Adults 22-47 years old 
(n=10) 

Newborns had lower conductance than adults. 

Conductance was higher in 1 month and 2-
month-old infants compared to newborns. 

[397] 
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Dermal Phase 
Meter In vivo 

Non-diapered skin 
above waistband 

 

Forearm (mother) 

Newborn infants (n=31) 

Followed from one day old 
to 28 days of age 

 

Mothers 

Skin surface hydration of non-diapered region 
increases in the first 2 postnatal weeks then 

plateaus.  

Adult value (4.76 Log capacitive reactance) was 
higher than value in the first week of life but 

lower than value at one month of age.  

[398] 

Corneometer 

22°C to 24°C  

50% humidity  

In vivo 

Forehead 

Upper black 

Forearm 

Palm 

Abdomen 

Inguinal region 

Soles 

Newborns (n=44) 

5-10 hours post-partum 
and followed until 24 hours 

post-partum 

 

Adults: mean age of 24 
(n=20) 

Hydration was significantly lower in neonates 
compared with adults in forehead, back, 

abdomen. 

Hydration was significantly higher in neonates 
than adults in forearm and palms. 

[399] 

Corneometer 

24–26°C 

40–60% humidity 

In vivo 

Inner upper arm 

Buttock 

Cheek 

Infants 2-24 months old 
(n=63) 

Mothers (n=60) 

Water content decreased in an age-dependent 
manner:  

Infants 2-12 months old had highest capacitance 

13–24-month-old group:  

Buttock: higher water content than mothers  

Upper arms and cheeks: significantly lower 
water content than mothers  

[454] 

Corneometer 

16–20°C 

44–47% humidity 

In vivo 

Dorsal Hand 

Forehead 

Canthus 

0.15 -79-year-old 
volunteers (n=633) 

125 volunteers aged 0-10 
years old 

Increased hydration from the first decade of life 
to ~40 years, then decreases. [455] 

AU: arbitrary units; RCU: relative capacitance units. 

Table S5. Corneocyte Volume Fraction. 

Method of 
measurement  

In vivo/ in vitro/ 
ex vivo & room 

conditions 
Body Area Age Notes Trend Reference 
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Scanning 
Electron 

Microscopy 

Adhesive disc to 
isolate and analyze 
surface of Stratum 

Corneum 

20 ± 2 °C  

50 ± 10% relative 
humidity 

Volar 
forearm 

1 day old to 5 years old 

Adult patients were 
parents of children 
whenever possible. 

6 age groups created (n=6 
or 5 per group): 

(i) full term 
newborns (1–15 days; 

mean 0·3 months),  
(ii) young babies (5–

6 weeks old; mean 1·5 
months),  

(iii) older babies (6 ± 
1 months old; mean 6·2 

months),  
(iv) young children 

(2 years old; mean 22·7 
months),  

(v) older children 
(4–5 years old; mean 50·4 

months),  
(vi) adults (20–35 
years old; mean 336·0 

months) 

Not a direct measure of 
corneocyte volume 

fraction of SC. 

1-2 year old age group 
was analysed 

separately given larger 
age gap in enrolled 

individuals 

Developed isotropy 
score based on SEM 

images.  

Score parameters: (i) 
cell density (× 30 

magnification); (ii) 
cluster formation (× 30 
magnification); (iii) cell 
shape and adhesion (× 

500 magnification); and 
(iv) resolution (× 500 

magnification) 

Score from 0-3 points 
per parameter (12 max 
per sample), total score 

divided into 3 
categories: 

anisotropy(immature), 
intermediate isotropy, 
good isotropy (mature) 

 

Correlation: Younger age group had 
lower score. Child 6 months to 4-5 
years had lower scores than adults 

too. 

Under age 2, change in score was 
very fast, then the rate increased at a 

slower rate to adult hood. 

Irregular corneocyte distribution 
was observed under age 1, and the 

projected area showed a progressive 
age dependent increase.  

Overall: Skin matured quickly until 
age 2 years old, then slows until 

adulthood in the morphology of the 
corneocytes.  

[456] 

Atomic Force 
Microscopy 

In vitro 

Tape striped 
corneocyte from 
surface of skin 

Indoor ordinary 
environment 

Cheek 

Flexor 
surface of 
upper arm 

N=12 females 

Age: 1 -82 years old 

 

7 participants were < 20 
years old: 

1 years old: n=1 

2D and 3D parameters 
of corneocytes were 

measured:  

Average thickness 

Projected cell surface 
area (as it increases, cell 

turnover decreases) 

Average corneocyte thickness was 
greater in the upper arm than the 

cheek regardless of age. 

Corneocyte thickness decreased 
with age for the upper arm but not 

for the cheek due to too much 
individual variation. 

[457]  
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2 years old: n=2 

4 years old: n=1 

9 years old: n=2 

16 years old: n=1 

Real surface area 

Volume 

Flatness Index 
(projected area/average 

thickness X 10-3) 

Projected surface area of 
corneocytes in the flexor upper arm 
increased with age (relationship was 

not as prominent in the cheek). 
Corneocytes from forearm were 

larger than the cheek. 

Flatness index of forearm 
corneocytes also increased with age 

(as age increases, corneocytes 
become bigger and flatter). This was 
not observed for cheek corneocytes. 

Reflectance 
Confocal 

Microscopy 

In vivo  

One tape strip of 
surface 

corneocytes 

Infants 6-
24 months 

Mothers 
25-46 years 

old 

N=20 per 
group 

Upper inner arm 

Dorsal forearm  

Lower thigh area 

 

Size of infant corneocytes was 
smaller than adult corneocytes at all 

sites.  

The size of corneocytes between the 
different sites were not significantly 

different in adults or children. 

Corneocyte size (µm2): 

Upper inner arm:  

Infant: 949.9 ± 19.1  

Adult: 1077.6 ± 26.9 

Dorsal forearm:  

Infant: 907.3 ± 23.4  

Adult: 1071.0 ± 25.7 

Thigh: 

Infant: 953.0 ± 23.8  

Adult: 1154.4 ± 33.7 

Smaller size of corneocytes was 
attributed to higher cell 

proliferation rate. 

[374]  
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Volume of corneocytes from the 
upper arm were higher than the 

cheek corneocytes.  

No clear correlation between the 
volume of corneocytes and the age 

of the participants in cheek or upper 
arm samples due to large individual 

variations at both sites. 

Several In vivo 
8 years old 
– 89 years 

old 
Ventral side of arm 

The main focus is older 
age. 

Measured number of 
corneocytes and surface 

area 

Corneocyte count increases linearly 
with age. Number of corneocytes 

increase very sharply after 60 years 
of age. 

Projected surface area of 
corneocytes increases with age.  

[447] 

Table S6. Follicle Size and Volume. 

Method 
In vivo/ in vitro/ ex 

vivo & room 
conditions 

Body Area  Age Notes Trend  Ref. 

Transmission 
Electron 

Microscopy 

Scanning 
Electron 

Microscopy 

3mm Punch biopsies 
for only 6 infants 

without Erythema 
toxicum 

Lower leg 

Infants: 

1 day old (≥24h 
<48h) (n=69) 

Adults: n=4 

 

None of 
the babies 

were 
bathed 
before 
sample 

collection 

The number of visible hair structures/mm2 was 3.5 ± 
0.08 in infants (n =2) and 0.3 ± 0.15 (mean ± SD) in 

adults (n =4) 

Newborn infants have ~10 times more hair follicles 
than adults (comes from a textbook stating that 

newborns have approximately 5 million hair follicles 
on their body but no reference to this number [458]) 

[413] 

Histology, 
hematoxylin and 

eosin 
Ex vivo  

Neonatal full-term 
infants to elderly 
up to 73 years old 

Unpublish
ed data 

Length and width of hair follicles changes with age 

Follicle diameter increases from 0.13mm to 0.558 in 
elderly. In newborns the length of longitudinal 

follicle is 1.113 and increases up to 4.5mm in 
adolescence 

[414] 

Table S7. Stratum Corneum Thickness Literature Review and Search Strategy. 
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The following search strategy was inputted into PubMed to identify publications that contained quantitative 
stratum corneum thickness measurements in infants and children. 

Input Results 

“stratum corneum” AND (thick* OR thickness OR depth OR deep OR width OR thin*) 
AND (development OR develop* OR time OR life OR growth OR progress OR change 

OR age OR maturation) 
1191 

English language and full text filters 1039 

Exclude review articles 980 

Human only filter 609 

Relevant articles 43 

Final Selected 17 
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Table S8. Epidermis Thickness Literature Review and Search Strategy. 

The following search strategy was inputted into PubMed to identify publications that contained quantitative 
epidermis thickness measurements in infants and children.  

Input Filters Results 

(Epidermis [mesh] OR “Epidermal cells” OR epidermal) AND (Thick* OR 
thickness OR depth OR deep OR width OR thin*) AND (Development [tiab] OR 

develop*[tiab] OR time OR life OR growth OR progress OR change [tiab] OR 
maturation [tiab] OR matur*) NOT “stem cell” NOT “growth factor” NOT burn 

NOT graft NOT Langerhans NOT review [pt] NOT treatment [tiab] 

English 

Human 

Full-
Text 

1262 

Relevant articles  27 

Final Selected  9 

Table S9. Dermis Thickness Literature Review and Search Strategy. 

The following search strategy was inputted into PubMed to identify publications that contained quantitative 
dermis thickness measurements in infants and children.  

Input Filters Results 

(Dermis [mesh] OR papillary dermis) AND (Thick* OR thickness OR width 
OR depth[tiab] OR thin*) AND (Development [tiab] OR develop*[tiab] OR 
time [tiab] OR “early life” OR growth [tiab] OR progress* OR change [tiab] 

OR age OR maturation [tiab]) 

English 

Human 

Full-Text 

509 

Relevant articles  7 

Final Selected  4 

Table S10. Stratum Corneum Hydration Literature Review and Search Strategy. 

The following search strategy was used to search MEDLINE and EMBASE using OVID to identify publications 
that quantitatively measured the water content or fraction in the stratum corneum of infants or children. 

Number Searches EMBASE 
Results 

MEDLINE 
Results 

1 horny layer.mp. [mp=title, abstract, heading word, drug 
trade name, original title, device manufacturer, drug 

838 697 
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manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

2 

cornified cell envelope.mp. [mp=title, abstract, heading 
word, drug trade name, original title, device manufacturer, 
drug manufacturer, device trade name, keyword, floating 

subheading word, candidate term word] 

267 219 

3 exp stratum corneum/ 11603 0 

4 

stratum corneum.mp. [mp=title, abstract, heading word, 
drug trade name, original title, device manufacturer, drug 

manufacturer, device trade name, keyword, floating 
subheading word, candidate term word] 

15894 9335 

5 hydration.mp. or exp hydration/ or exp skin hydration 
meter/ 

54620 36122 

6 
chemical composition/ or exp lipid composition/ or exp 

tissue water/ or exp water content/ 
123638 0 

7 

(water adj4 (content or fraction or percent*)).mp. [mp=title, 
abstract, heading word, drug trade name, original title, 
device manufacturer, drug manufacturer, device trade 

name, keyword, floating subheading word, candidate term 
word] 

46162 33771 

8 exp infant/ 985694 1139847 

9 

(infant* or newborn* or full term or neonat* or child or 
children).mp. [mp=title, abstract, heading word, drug trade 

name, original title, device manufacturer, drug 
manufacturer, device trade name, keyword, floating 

subheading word, candidate term word] 

3279134 3096201 

10 1 or 2 or 3 or 4 16569 10068 

11 5 or 6 or 7 203833 68485 

12 8 or 9 3283560 3096201 

13 10 and 11 and 12 219 134 
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14 limit 13 to (human and english language) 171 101 

Duplicates 82 

Final Selection 15 

Table S11. Corneocyte Volume Fraction Literature Review and Search Strategy. 

The following search strategy was used to search MEDLINE and EMBASE using OVID to identify publications 
that quantitatively measured size, volume, or surface area of corneocytes in the stratum corneum of infants or children. 

Number Searches EMBASE 
Results 

MEDLINE 
Results 

1 
horny layer.mp. [mp=title, abstract, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

838 697 

2 
cornified cell envelope.mp. [mp=title, abstract, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

267 
219 

 

3 exp stratum corneum/ 11603 0 

4 
stratum corneum.mp. [mp=title, abstract, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

15892 9334 

5 
corneocyte.mp. [mp=title, abstract, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

639 
416 

  

6 
(corneocyte adj3 size).mp. [mp=title, abstract, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

36 

25 

 

 

 

7 
(corneocyte adj6 volume).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

4 1 
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8 
(corneocyte adj6 phase).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

11 9 

9 
(corneocyte adj6 fraction).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 
candidate term word] 

1 1 

10 *infant/ or *Infant, Newborn/ 43411 18885 

11 
(full term or neonat* or child).mp. [mp=title, abstract, heading word, drug trade name, original title, 
device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, 

candidate term word] 
2580392 2371036 

12 1 or 2 or 3 or 4 16567 10067 

13 5 or 6 or 7 or 8 or 9 639 416 

14 10 or 11 2599884 2379691 

15 12 and 13 and 14 21 20 

 Duplicates 14 

 Total Selected 26 

 Final Selection 4 
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Table S12. Lipid and Protein Ratio Literature Review and Search Strategy. 

The following search strategy was used to search EMBASE and MEDLINE using OVID to identify publications 
that quantitatively measured the lipid and protein quantities in the stratum corneum of infants or children. 

Number Search Results 

1 exp lipid/ or exp lipid bilayer/ or exp skin lipid/ 1548059 

2  
(content* or fraction or amount).mp. [mp=title, abstract, heading word, drug trade name, original title, device 
manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term 

word] 
1980619 

3 *stratum corneum/ 2843 

4 
(horny layer or cornified envelope).mp. [mp=title, abstract, heading word, drug trade name, original title, 

device manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate 
term word] 

1661 

5 
(infant* or neonat* or child*).mp. [mp=title, abstract, heading word, drug trade name, original title, device 

manufacturer, drug manufacturer, device trade name, keyword, floating subheading word, candidate term 
word] 

3213267 

6 exp pediatrics/ 106644 

7 3 or 4 4338 

8 5 or 6 3237629 

9 exp phospholipid/ 191370 

10 free fatty acid.mp. or fatty acid/ 113305 

11 
lipid matrix.mp. [mp=title, abstract, heading word, drug trade name, original title, device manufacturer, drug 

manufacturer, device trade name, keyword, floating subheading word, candidate term word] 1305 

12 1 or 9 or 10 or 11 1550458 

13 2 and 7 and 8 and 12 22 

Final  
Selection 2 

*Medline: no results for final search. 
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Table S13. Follicle Size, Density, Volume Literature Review and Search Strategy. 

The following search strategy was used to search MEDLINE and EMBASE using OVID to identify publications 
that quantitatively measured follicle physical properties in the skin of infants or children. 

Number Searches 
EMBASE 

Results 

MEDLINE 

Results 

1  exp Infant/  985694 1138991  

2  
(neonat* or newborn* or child or children or infant* or preschool age or school 

age).mp.  
3274956 3089674  

3  exp Hair Follicle/  14897 6400  

4  (hair? adj3 (follicle? or appendage? or structure?)).mp. 20705 14465 

5  (count or counted or number or microscopy).mp.  3880791 2945093  

6  exp Microscopy/  824006 549293  

7  1 or 2  3279469 3089674  

8  3 or 4  20705 18177  

9  5 or 6  3893008 2955727  

10  7 and 8 and 9  496 327  

11  limit 10 to (english language and humans)  313 190 

 Duplicates 117  

 Final selection 2  
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Table S14. Albumin Concentration Literature Review and Search Strategy.  

The following search strategy was used to search MEDLINE and EMBASE using OVID to identify publications that quantitatively 
measured albumin content or fraction in the epidermis of infants or children. 

Number Searches EMBASE 
Results 

MEDLINE 
Results 

1 exp albumin/ or exp albumin level/ 131881 0 

2 exp epidermis/ 159372 27270 

3 
exp infant/ 

 
946163 1151595 

4 
newborn*.mp. [mp=title, abstract, heading word, drug trade name, original title, 
device manufacturer, drug manufacturer, device trade name, keyword, floating 

subheading word, candidate term word] 
614911 768034 

5 
(full term or neonat* or child or children).mp. [mp=title, abstract, heading word, drug 

trade name, original title, device manufacturer, drug manufacturer, device trade 
name, keyword, floating subheading word, candidate term word] 

2728408 2613394 

6 
3 or 4 or 5 

 
3089382 3050030 

7 
1 and 2 and 6 

 
39 0 

Final 
Selection  1 

 


