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A great ded of knowledge bas been acquired conceming the dMng behavior of 

various air-breathing vertebrates, but iittIe bas been accomplislred to mcorporate all of this 

information mto general models that will explain and predict how this group of animais 

interact with thei. environment. There are three explmations for this shortcoming: 1) 

although d i . g  data have been collected on many dïfEerent species, very few works have 

attempted to summarize these hdings and all of these had a fairy limited range of species, 2) 

methods for andyzing large data sets of multivariate behavioral observations have not yet 

been clearly dehed, and 3) methods and techniques for analyzing dMng behavior are highly 

variable rnalcing hterspecific comparisons difEcult or impossible. In this the&, these three 

problems are addressed. 

Maximm dive depth and duration fiom 129 species of air-breathing vertebrates were 

examined in relation to body mass. These comparisons showed that there were arong 

allometic relationships between diving capacity and size and that alcids, penguins, and phocid 

se& are all exceptional divers relative to their masses while mysticete cetaceans dive to 

shallower depths and for shorter periods than wodd be predicted fiom their size. Cetaceans, 

as weii as  some other groups, are probably moa  greatiy affected by their feeding ecology 

rather than by thei physiological Limitations. 

Next, to address the problem of how to analyze large behaviord data sets, a series of 

techniques for analyzing these sorts of data were tested and compared. These included k- 

means and fùzzy c-means clustering techniques fkom the field of statiçtics, and Kohonen self- 

organizing map (SOM) and fuay adaptive resonance theory (ART) fiom the field of artscia1 

neural networks. A senes of nmulations were performed in order to test the performance of 

these techniques under various conditions. As weil, real data fiom severd species were 

clasdied to fùrther assess the suitability of the various techniques. K-means, fùzzy c-means, 

and SOM all performed equally weli on the artificialiy generated data while fùzzy ART had 



error rates that were twice as hi&. When clustering the real data, ody  k-means cIa&ed 

observations mto groups that appeared biologically valid and consequentiy was determined to 

be best niited to analyze divmg behavior. 

Lady, using quantitative analyses, dive data fiom 12 species of air-breathing 

vertebrates were classifïed, using the same technique and protocoi, and hterspecific 

cornparisons were made. The behavior was classified mto a series of dive shapes (depth 

versus tirne: square, V, skewed-ri& and skewed-lefi) with a shape fitthg dgonthm and 

possïïle h c t i o n s  of the dive shapes were proposed. These were pelagic foraging, benthic 

foraging, exploration, travelling, resting, and food and waste processhg. The observed dive 

patterns varied across species wÏth body size, ecological feedhg niche, and conditions of the 

studies nom which the data came. Larger species dived deeper and longer than smder 

species, as was expected, although there were a few exceptions. Also, benthic foragers 

usually had more square dives as weU as higher proportions of bottom t h e  during these dives 

than pelagic foragers. Despite these merences, strong çimilanties m dive shapes the 

abundance of square dives, and the proportion of bottom time during square dives suggest 

that diving animals exploit the aquatic environment in a similar way. 
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CHAPTER 1 

General Introduction 

Many terrestrial vertebrates, including hundreds of species of birds, mrmmals, and 

reptiles, have re-invaded aquatic habitats. These animais have a unique and hdamental 

problem in bat, even though much of what they do needs to be done under the water surface 

(e.g. fora@@, they are acutely and constantly dependent on a compound that can only be 

acquired above the surface, air. This makes for a serious dilemma for these animais, needmg 

to spend as much t h e  as possiile under the surface, but being continuously dependent on 

returning to the suroice to replenish their oxygen stores. To sohe this problem, temporary, 

relatively short, excursions below the water nirface are taken which are calIed dives. 

The types of dives and overd  dMng behavior pefiormed by the various diving animals 

is highly variable and dependent on two main factors: ecology (e.g. location of prey and 

foraging efficiency) and physiology (e.g. oqgen stores and metabolic rate). In this thesis 

general trends seen in observed diving behavior are presented, specinc methods for andyzing 

a commonly coilected type of dive data are proposed, and a series of analyses are performed 

on dive data f?om several species of diving animals. The following paragraphs present 1) a 

bnef history of the çtudy of diving behavior, 2) the methods and devices, as well as means of 

attachrnent for the devices, used for recording this behavior, 3) a detailed description of the 

data provided by time-depth recorders (TDRs), currently the most commonly used device, and 

lady, 4) the purpose and objectives of this thesis. 

Brief history 

Dives and diving behavior have been studied in one foxm or another, directiy or 

indirectly, for the paa 150 years. Although, it is likely that for many hundreds or even 

thousands of years, people have noticed and observed that aquatic, air-breathing animals were 

1 



spending tirne under the water surface. Even the Greek philosopher, Aristotle, realized that 

dolphms needed to corne to the surfice to breathe air 2300 years ago (in lit.). As time went 

on, several reports of diving capacity were documented m the late 1800s and the early 1900s 

(reviewed in Dewar 1924; Irving 1939; Scholander 1940). Many of these were simple 

observations made usbg a watch to measure how long animais stayed below the çurface, 

while others were estimates derived fiom the whaling industry where dive depths and 

durations were estimated fiom haxpooned whales. 

More recently, in the late 193 0s and 1940s, experimental studies were conducted that 

provided many msights into the diving capacities of air-breathing animals and how they are 

able accomplish these feats (living 1939; Scholander 1940). These experiments were 

generdy performed on restrained animais that were forcibly submerged for a period of tirne. 

The r e d t s  were highly artincial, but they did provide some of the first insights into the 

physiological limits of these animals and how they attain these capacities. Some 

determinations of maximum diving depths were also accomplished using capülary tubes (see 

below), although these were also conducted under highly a f i c i a l  conditions (e.g. attached to 

a harpooned whale or attached to animals dong with a long Iine and a float: Scholander 

1940). Experiments iike these were conducted for the next several decades until the focus 

shifted to tiymg to determine dMng behavior and capacities under more naturd conditions. 

Some of the first work to be conducted under relatively natural conditions was 

perfonned on WeddelI seals (Kooyman 1968, 1981). These sorts of studies were 

accomplished by attachhg a device to the animal and releasing it to dive under relatively 

natural conditions. The conditions were not entirely natural in Kooyman's original work since 

seals were relocated to isolated breathmg holes (holes that were far enough away fkom any 

other breathing holes to insure that the seai would return to the same hole) so that devices 

couid be recovered. Capillary tubes were used for this work as well as newly developed tirne- 

depth recorders (TDRs). This sort of work has expanded and diversified rapidly over the last 



30 years and diving studies have now been done on numerous species under a number of 

different conditions. Additional devices and methods have also been developed to record 

addaional variables that help m descr i ig  and mterpreting the dMng behavior observed- 

A4eth& ancf devices 

A number of different methods and devices have been used to record dMng behavior 

(Table 1.1). Starting with the most simple and obvious, the duration that an animal stays 

under the d a c e  can be determined by sbply timing how long the animal is not seen (Dewar 

1924). The length of time an animal can stay under the surface cm also be determined 

experimentdy in the laboratory by forced submersions ( M g  L939; Scholander 1940) and 

over long distances using radio tags (Wanless et ai. 1988). However, none of these methods 

provide any mforrnation about what the animal is domg while it is underwater. The next 

logical step was to try to determine how deep the animais dive. Depth can be estimated when 

animals are ha~pooned by determining the amount of line let out and allowing for the angle of 

descent (Scholander 1940); kom animals caught in traps, nets, or lines (Dewar 1924); fmm 

rare direct underwater observations (e.g. submarine: Landis 1965); nom animals thought to be 

dMng to the bottom in water of known depth (Dewar 1924); and f?om trained animals taught 

to dive to a specifïc depth (Bower and Henderson 1972). Maximum depth or at least mean 

depths c m  also be indirectly inferred fkom known prey depths (Fitch and Brownell 1968). 

However, ali of these methods only give a very limited number of observations and are subject 

to considerable risk of error. 

Sound produced by animals can &O be used to calculate depth by triangulating the 

location of the sound source (Liechty 1993). However, this method can only be used on 

animals that produce sound underwater. Active sound or SONAR c m  be used to track ail 

animals (Watkins et al. 1993), but both methods have d.i£Ecullty in identi@i.ng individuals, let 

alone whether the signal being received is fiom the study animal or something else such as a 



school of fi&. Sonic tags and transponders sobe this problem (Thompson et al. 1991). A 

sonic tag, with a pressure transducer that controls the pulse rate, attached to an animal saids 

infiormation to a hydrophone about a specific mdividual's general location and depth. 

Transponders c m  also be attached to animals and can be mterrogated by sound nom an 

extemal sound source (SONAR). These devices retum mfonnation about which individual is 

being observed and at what depth it is located (WatkÎns et ai. 1993). For a sound signal to be 

received or echoed, however, it mua reach the desired object without bemg blocked and have 

enough energy to retum to the receiver. For example, if a whale with an implanted 

transponder descends below the vertical migrating layer, it may be diflïcult to locate because 

most of the sound wiU bounce off of the layer and will not reach the whale. &O, ifsound 

does reach the &ale, but at an intensity that is too low, the echo produced wiU attenuate and 

fail to reach the hydrophone at the çurface. AU of the above methods utiliPng sound have 

these sorts of limitations, 

Other devices have been developed that can be attached to animals and remotely 

record behavior. Capillary tubes are the simplea form of this sort of device. They are glass 

or plastic tubes, closed at one end, with an interior dusted with a water-soluble dye 

(Scholander 1940; Burger and Wilson 1988). As an animal descends, hydrostatic pressure 

forces water into the tube d i s s o h g  the dye. Malamum depth is recorded by a ring lefk inside 

the tube at the point of maximum compression. By measuring the distance to the ring and 

ushg pre-determined calibrations, depth can be calculated. This device is especially useful 

because of its simplicity and light weight, but it only records the deepest depth reached by the 

animal while it wears the device. 

The n e a  development in recording devices was the TDR which is still the most 

common and rigorous device for recording diving behavior. The first TDRs used glass disks 

and subsequently film that was moved past a light exnithg diode (LED) that was coupled to a 

timing circuit and a pressure transducer (Kooyman 1965; Kooyman et a l  1983a). The LED 



marked the film at a distance dong the film width that was determined by the pressure 

tranxlucer. Caliiration of this distance and the rate at which the film moved dowed depths 

withm a dive to be recorded, as weii as when the depths occurred. This mfomation gave the 

kst glimpses of not only how deep animals diveci, but what they did M e  they were W g .  

As technology advanced, TDRs became microprocessor controiled with mcreased memory 

using micro-chips. This has permitted data on dishg behavior to be coUected over long 

periods of h e  (up to eight months continuous~y on a single individual: Testa 1994). The 

limiting factors for use of TDRs are mernos? power, and recoverability. Therefore, when 

using a TDR, a samphg time interval must be used that is short enough to record the 

quickest events, yet long enough such that the memory and power last for the desired period 

of recording. 

Another problem with TDRs, at least onginally, was their large size. This is an 

important problem when studying small marine mammals (e-g. sea otters and smali fiu seals) 

and dMng birds (e-g. penguins cormorants, and alcids). This is becoming less of a problem 

recently because of the miniaturizations of computer hardware that are taking place. In the 

pan, depth histogram recorders (DHRs) were created for use with very small animals to solve 

the size problem DHRs are tirne-depth recorders that count dives within a depth range, 

maead of recordmg every depth of every dive (Kooyman et al 1983a). This saves a 

considerable amomt of memory space and therefore the units can be rnuch smailer. The unit 

contains a number of counters which increment one count when a dive is made to the specific 

pressure to which it has been preset. RecentIy, TDRs and DHRs have been linked to satellites 

(SLTDRs) and provide not only depth and duration, but ako location infionnation (Testa 

1994). The fiequency of the signal sent nom the SLTDR is shified as the satellite moves 

toward or away nom the source (Doppler a), dowing location to be determined. Also, 

some or all of the information recorded by the device is transmitted to the satellite, and 

remotely reaches the researcher. This means that the animal does not have to be recaptured in 



order to collect the data. 

Knowmg an animai's vertical or horizontal location is pa part of the infiormation 

needed to study dMng behavior. Stomach contents and scat samples provide insight mto 

what animals are feeding on whüe divmg (Fitch and BrowneIl 1968), but not what they are 

domg to get prey items during specific dives. Other devices have been created for this 

purpose including senors that detect jaw movernents (Bomemann et al. 1992) and çtomach 

and esophagus temperature (Ancel et aL 1997) which c a .  used to determine when and 

potentially how much an animal is feedmg. Velocity sensors (Le Boeuf et al. 1992) and 

triangulation with depth-sonic tags (Kelly and Wartzok 1995) cm determine the speed at 

which an animal is swimming. This sort of information can be used to determine the animal's 

activity level and provide a more accurate image of the dive profile (3 dimensions vernis 1 or 

4 dimensions versus 2 when cons ide~g  tirne). 

In addition to understanding what these animals are doing while below the surface, it is 

also of considerable interest to understand how they perforrn the observed behavior. In order 

to solve various questions in this realm of study, several methods and devices have been 

developed that measure physiological aspects of divmg performance. Meaniring 

intramuscdar temperature and heart rate c m  d e t e d e  the animal's actMty Ievel and potential 

physiologicd means by which dive duration c m  be extended (e-g. lower body temperature and 

bradycardia: Kooyman et al. 1992b; Ponganis et al. 1993b). Some of these physiological 

mechanisms can be fiuther assessed by coIlecting blood during a dive to determine 

cardiovascular reflexes and blood gas chemistry (Hill 1986; Qvist et al. 1986). By collectitg 

blood before and d e r  a dive3 the type of metabolism used (aerobic or anaerobic) can be 

determined via meanirement of plasma lactate concentrations (Kooyman et aL 1980). 

A ttachnrerzt nrethods 

Many diaèrent attachent methods have been used to deploy the above mentioned 



devices. Attachent methodology is an imposant aspect of the study of dÏving behavior 

because it can aEect the d e t y  of the animal and the quai.@ of the data obtained. Anytime a 

device is attached to an animal that is set fiee, there is a decent chance that it wîii never be 

seen again. Also, ifthe device or attachment methods strongly affect the a n i d s  behavior, 

the idionnation recorded by the device will not reflect natural a-. Idedy, attachment 

syaems should be temporary and have W e  or no effect on the animal's behavior. Orighally, 

devices were attached to an ankle strap or a hamess which was attached to the animal 

(Scholander 1940; Kooyman 1968, 1981). The problem with these methods was that ifthe 

animal got away, it had to Wear the unit for He. Lesions caused by the straps could get 

mfeaed and lead to death. To soive this problem, hamesses were attached with buckles that 

rusted easily and therefore would eventuaiiy release. Also, straps were attached to seais' 

backs with hog-rings (Kooyman 1968) which allowed the seal to remove the unit m time. For 

pinnipeds and seabirds, the current method of choice is to glue the device to the animal's fur 

or feathers (e.g. Chappeil et aL 1993a; Testa 1994; Schreer and Testa 1996). This works well 

because when the animal molts, the device fds off. For large marine mammals that cannot be 

captured (Le. whales) or do not have a thick hair coat (e-g. wahses and whales), other 

methods of attachent must be used. TDRs have been attached to walrus on the side of their 

tusks with aainless steel bands (Wüg et ai. 1993). TDRs are attached to the dorsal ndge of 

Beluga whales by attaching a saddle that is held on by nylon pins (Martin and Smith 1992). 

These pins migrate out of the flesh in a few weeks or months, releasing the unit. Larger 

whales are very difficult or impossible to handle, so the devices must be attached at a distance. 

Transponders have been implanted on the dorsal surfàce of spexms whales (Watkins and 

Tyack 1991; Watkins et ai. 1993) using a shodder launcher at a distance of up to 50 m. 

These tags migrate out of the tissue over time. 



TDR data 

TDR data have been coilected on a broad range of animals over the last 15 years. 

GeneraUy, these devices record an animal's location in the water colutnn at pre-deteded 

time intervals. For many studies these time mtervals are set for only one or a few seconds. 

Therefore, m the case of the one second time mtervai, 60 observations are recorded every 

minute, 3600 observations in an hour, and 86,400 observations are recorded in one day. Even 

at much larger sampkg mtervals, an enormous number of observations are collected m a very 

short amount of time. To analjze these data, obsexvations need to be organized mto a smailer 

number of more manageable and understandable groups. 

The fkst aep in this process is to organize depth readings into dives, a series of depth 

readings starting and ending with a depth equd to zero. Dives are a convenient and well- 

dehed unit of behavior in which the animal makes an excursion below the surface. Even 

once this has been accomplished, there are d l  an enormous number of dives. Therefore, 

more organktion needs to be penormed. One method is to simply i d e n e  maximums in the 

dMng behavior recorded. The maximum depth and duration for a senes of dives can be 

deteminecl, but this only utilizes a small fiaction of the data (one depth reading and one dive 

duration for the entire data set). Next, dives cm be organized according to the maximum 

depth and duration for each dive. This method obviously utilizes much more of the data (one 

depth readhg and the dive duration for each dive) than jus taking overail maximums. Here, 

mean maximum depths and durations for ail dives can be determined and dives can be 

organized into diEerent groups based on their maximum depth and duration. However, even 

with these methods, only one depth reading is used per dive which is still only utilking a small 

fiaction of the overd  data. 

To use more of the data, each depth within a dive can be anaiyzed to generate a dive 

profile (depth versus time). This technique has only recently been widely utilized and several 

methods have been used to organize dives into different shapes (Le Boeuf et al. 1988, 1992; 



HmdeiI et aL 199lb; Bengson and Stewart 1992; Schreer and Testa 1993, 1995, 1996; 

Jonker and Bester 1994; Brilhger et aL 1995; Campagna et aL 1995; Schreer et aL 1995; 

BnTLHiger and Stewart 1997; Burns et aL in press). These methods have varied considerably, 

ranghg fiom completely subjective, visual comparisons to automated, shape-fitthg 

algonthms. DifEerences in individual classification protocols restrict mterstudy comparisons. 

Determinmg a soIution to this probIem is a major driving force behind this thesis. 

Pwpose and objectives 

Although a great deal of work has been conducted on the dMng behavior of various 

air-breathing vertebrates, Little has been accomplished to incorporate ail of tbis information 

into general models that will explain and predict how thiç group of animals interact with their 

environment. There are three explmations for this shortcoming: 1) although dMng data have 

been collected on many different species, very few works have attempted to summarize these 

findings and alI of these had a fairly Iimited range of species, 2) methods for analyzing large 

data sets of mdtivariate behavioral observations have not yet been clearly defined, and 3) 

methods and techniques for analyzing diving behavior are highly variable making interspecific 

comparisons difficult or impossible. In this thesis, these three problems are addressed. 

In Chapter 2, dMng capacity (mal8mum depth and duration) is examined in relation to 

body mass across a wide range of air-breathing vertebrates. Maximum depth and duration 

were utilYled because these data are the most Eequently reported and ailowed for the broadest 

interspecific cornparison. In Chapter 3, four different algorithms firom the fields of statistics 

and artificial neural networks were tested and compared to determine their suitabüity for 

analyzing TDR data. Chapter 4 presents dive analyses on 12 species of diving animais using 

quantitative techniques. The data from each species were classined according to dive shape 

and the results were compared within and across species. Possible behavioral fùnctions for 

the resdting dive types were also proposed. 



Table 1.1. Some methods and devices for recording diving behavior. 
- - 

Methodl Device Data recordeci Time Source' 

Watcb 

Water depth 

Harpoon line 

Caughf tangled, or hooked on 
lines, nets, or traps 

Forced submersion 

Stomach contents, scat samples, 
or feeding patterns 

Directly observed (e-g. 
submarine) 

Trained 

Video camera 

Passive sound recording 
(hydrop hone) 

Active sound (SONAR) 

W/ transponders 

Sonic tags with pressure 
transducer 

W/ triangulation 

Capillary tubes 

Radio tag 

Depth-histogram recorder 
@W 
The-depth recorder (TDR) 

Satellite link (SLTDR) 

Velocity sensor 

External temperature sensor 

Light sensor 

Stomach and esophagus 
temperakue sensor 

htramuscular temperature 
sensor 

Jaw movement sensor 

Duration, d a c e  intervals 

Max. depth 

Max. depth 

Max. depth 

Duration, heart rate, 
metabolic rate 

H e a ~  rate, metaboiic rate, 
swim speed, duration 

Max., mean depth 

Max. depth 

Max., mean depth, duration 

Body movements, feedulg, 
immediate surroundings 

Depths, duration 

Depths, duration 

identification 

Depths, duration 

3D location, swim speed 

Max. depth 

Duration 

Max. depth 

Depths, duration 

Location 

Swimrning speed 

Water temperature, 
location 

Location 

Feeding 

Muscle temperature, 
activity 

Feeding 

hours 

hours 

one value 

one value 

ho urs 

hours 

one value 

one value 

one value 

hours 

hours-day s 

hours-days 

hours-days 

hours-days 

hours-days 

one value 

hours-days 

months 

mon& 

months 

months 

months 

months 

days 

days 

days 

Dewar 1924 

Dewar 1924 

Scholander 1940 

Dewar 1924 

Scholander 1940 

Kooyman and Ponganis 
1994 

Fitch and BrowneU 1968 

Landis 1965 

Bower and Henderson 
1972 

Davis et al. 1993 

Liechty 1993 

Watkins et al. 1993 

Watkins et al. 1993 

Thompson et ai. 199 1 

KeUy and Wartzok 1995 

Burger and Wilson 1 9SS 

Wanless et al. 1988 

Kooyrnan et al. 1983a 

Kooyman et al. 1983a 

Testa 1994 

Le Boeuf et al. 1992 

Hindeli et al. 199 l a  

Hill 1994 

Ancel et al. 1997 

Ponganis et al. 1993b 

Bornemann et al. 1992 



Table 1 .l (contimed). 

Methodl Device Data recordai Tïe  Source' 
p e n d  

Heart rate tag Heart rate, metabolic rate, days Kooyman et al. 1992b 
activity 

Labeled water 

Thennodilution 

At sea metabolic rate  da^^- Costa and Gentry 1986 
months 

Cardiac output, stroke min-hours Kooyman et al. 1992b 
volume 

Blood extraction, during the dive Various blood parameters min.-howç Hiil 1986 

Blood extraction, pre- and post- Vanous blood parameters &-hours Kooyman et aL 1980 
dive 

a Example of a source that utilized or descxibed the methodldevice. 



CHAPTER 2 

AUometry of diving capacity in air-breathing vertebrates 

Abstract 

Maximum dMng depths and durations were examined m relation to body mass for 

birds, marine mrmmrla, and marine tuales. There were strong dometnc relationships 

between these parameters (log,,-transformed) among air-breatbg vertebrates (r = 0.7 1, n = 

1 1 1 for depth; r = 0.84, n = 12 1 for duration), although there was considerable scatter around 

the regression hes .  Many of the smaiIer taxonomic groups ako had strong allometric 

relationships between divmg capacity (maximum depth and duration) and body mass. Notable 

exceptions were mysticete cetaceans and diving/fiying birdq which displayed no relationship 

between maximum diving depth and body mass, and otariid se& which showed no 

relationship between maximum dMng depth or duration and body mass. W i t b  diving/flyÏng 

birds, only alcids had a significant relationship (r = 0.81, n = 9 for depth). The diving 

capackies of penguins had the highest correlations to body mass (r = 0.8 1, n = 11 for depth; r 

= 0.93, n = 9 for duration), foiiowed by odontocete cetaceans (r = 0.75, n = 2 1 for depth; r = 

0.84, n = 22 for duration) and phocid seals (r = 0.70, n = 15 for depth; r = 0.59, n = 16 for 

duration). Mysticete cetaceans had a strong relationship between maximum duration and 

body mass (r = 0.84, n = 9). Comparisons across the various groups indicated that alcids, 

penguins, and phocids are ail exceptional divers relative to their masses and that mysticete 

cetaceans dive to shdower depths and for shorter periods than would be predicted fiom their 

size. DifEereaces among groups, as well as the lack of relationships withm some groups, 

could ofien be explained by factors such as the vanous ecological feeding niches these gmups 

exploit or variations m the methods used to record their behavior. 



Introduction 

Body size is one of the most miportant factors influencing how animais interact with 

their environments and it has been shown to be an excenent predictive tool in ecology (Peters 

1983; Schmidt-Nielsen 1984). Many H e  history traits, as well as morphological and 

physiological traits of animals, have been compared to body size mcluding metabolic rate 

(Kieiber 1961), brain size (Stahl 1965; Jerison 1970), and the coa  of locomotion (Brett 1965; 

Tucker 1973 ; Greenewait 1975). DMng behavior in air-breathmg vertebrates is highly 

variable and is dependent on many physiologicd constraints such as metabolic rate 

(Scholander 1940; Butler and Jones 1982), oqgen stores (Scholander 1940; Butler and Jones 

1982; Snyder 1983), and the ability to metabolize anaerobically (Hochachka and Somero 

1984). Smce =y of these factors have been associated with body size, divmg behavior 

should also be related to animal Ne. This has been shown to be the case in interspecific 

analyses of diving among alcids and penguins (Piatt and Nettleship 1985; Prince and Harris 

1988; Burger 1991) and cormorants (Cooper 1986), and hypothesized or shown in single 

species by numerous studies (e.g. [Mng 1939; Gentry et al. 1986b; Costa 1993; Le Boeuf 

1994). Diving air-breatbg vertebrates represent an interesthg set of organimis for 

allometnc analyses because of their enormous variation in mass, ranging f?om as small as the 

0.09 kg diving petrels, Pelecarioides georgiczcî, (Prince and Jones 1992) to the 145,000 kg 

blue whab, Balaenopteru ni us ru lu.^, (Jefferson et al. 1993) which encompasses more than a 

million fold Werence. 

The study of diving behavior has evolved dramatically over the last 30 years. 

Onginally, the study of dMng simply involved obsexving the behavior. In the 1930s several 

experimental studies were conducted that provided many insights into how air-breathing 

animals dive (e.g. Irving 1939; Scholander 1940). More recently, with remote sensing and 

recording methods such as sonar (Thompson et ai. 199 1; Watkms and Tyack 1991; Watkins et 

ai. 1993, Kelly and Wartzok 1996), capillary tubes (Burger and Wilson 1988), and micro- 



processor controUed timedepth recorders (TDRs) and satellite-linked tirne-depth recorders 

(SLTDRs) (Kooyman 198 1; Kooyman et al 1983a; Stewart et al 1989; W ~ ~ e  Computers, 

WoodenviiIe, WA, USA), the study of cüving has rapidly expanded and divergfied These 

newer methods have enabled more accurate and rigorous estimates of divmg behavior to be 

made on a broad array of divmg animais. The abundance of recent diving research indicated a 

need for a current review that could address issues such as the comparative divmg behavior of 

various animals and the limitations of d -e ren t  methods used to colIect the data. 

This paper reviews available data on observed dMng capacity ( m a ~ u m  dMng depth 

and duration) for divmglflying birds (alcids, cormorants, ducks, grebes, loons, and petrels), 

penguins, cetaceans (odontocetes and mysticetes), pinnipeds (phocids, otariîds, and 

odobenids), sirenians (manatees and dugongs), sea otters, and marine hirtles, and compares 

these values to body mass. AUometric equations were derived for maximum depth and 

duration versus body mass within and across the major groups mentioned above. The mtent 

of this work was to examine the degree to which diving capacÏty and body size are related and 

to explain observed discrepancies fiom a general pattern. It was expected that the various 

ecological niches exploited by dMng air-breathing vertebrates and the methods used to collect 

the data would introduce real and artificial variances, respectively. This paper was also 

intended to be a !wnnmy of the available iiterature and will hopefûlly serve as a catalyst to 

direct research toward species where there is little, outdated, or no dMng information. 

Methods 

Data were collected fiom the iiterature on body mass (kg), maximum dMng depth 

(m), maximum dMng duration (min), and methods used for data collection. Original sources 

of information were used whenever possible. For mass, mean values were used when they 

were available, but sometimes midpoints of ranges or maximum values were utilized ifthese 

were the only measurements presented. For sexualiy dimorphic species, the mass of the 



gender for wtiich divïng behavior was recorded was used ifthis was available. Ifdiving data 

were reported for both sexes within a species and their masses were considerably Merent, the 

two genders were treated as separate observations. Maximum dMng depth and duration were 

utilized because means were often not presented and were more higldy dependent on the 

methods used to colIect the data and the location and timing of the study. 

AUometric relationships were fitted using linear least squares regression of log,,- 

transfoxmed data for both maximum diving depth and duration against log,o-mass (SYSTAT 

1992). Equations were first &ed to the entire data set. The data were subsequently split into 

two major groups, marine mammals and birds, and new equations were derived for these 

groups. Subsets of the marine m a d  data were then analyzed for mysticetes, odontocetes, 

phocids, and otariids. Birds were fïrst subdMded into penguins and fIyhg birds. Differences 

within the bird group were then M e r  teaed by dividing the flying birds mto those groups 

that had nifncient data to allow compansons (Le. alcids, cormorants, and ducks). However, 

these specific bird groups (except for penguins) were not used within the main cornparison of 

al dMng vertebrates because of the data's high variability and small sample sizes. Allometric 

relationships could not be derived for ozrine tuales as an independent group because there 

were too Little data on too few species, although this wodd be warranted taxonomically. 

Tbe various equations were compared by testing for homogeneity of slopes and 

subsequently, if appropriate, by analysis of covariance (ANCOVA: SYSTAT 1992) to test 

for merences m the adjusted means (specifically ciifferences in the means for a fixed log,, 

mass: Sokal and Rohlf 1995). Signincance was assumed at = = 0.05. It must be stressed that 

the si@cance test for a regression h e  does not determine whether a h e  can be drawn 

through the data points, but rather whether the slope of that h e  is significantly different than 

O. Therefore, even non-signincant regression lines can be compared (Sokal and Rohlf 1995). 

Lady, hypothetical aerobic dive limits (ADLs), defined as the maximum duration of a 

breath-hold without any increase in plasma lactate levels above resting during or foilowing a 
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dive (Kooyman 1989), and maximum diving depths were calculated as a hc t i on  of body 

mass for phocids, birds, otariids and cetaceans. Redicted standard metaboiic rates (SMR) 

for birds were calculated using SMR = 1 3 . 0 ~ ~ ~ "  (Aschoff and Pohl 1970; Kooyman 1989) 

and for marine mammalç (once thought to have higher metaboiic rates than terrestrial 

mammnls, but recently found not to be significantly different: Lavigne et al. 1986) using SMR 

= 10. I M , ~ "  meiber 1961), where M, equals body mass (kg) and SMRis m ml of 0,min-'. 

SMR was then divided by body mass to scale it to a unit mass. Diving metabolic rates were 

only available for phocids (e.g. Kooyman et al. 1973 ; Castehi  et aL 1992b), so for the other 

groups, swimming or at sea metaboiic rates were used. Diving metabolic rates were assumed 

to be approxhmtely 2 x SMR for al l  groups (Eiiassen 1960; Kooyman et aL 1973; Baudinette 

and Gill 1985; Gentry et al. 1986b; Feldkamp et ai. 1989; Kooyman 1989; Kooyman and 

Ponganis 1990; Burger 199 1; Castellini et al. 1992b; Costa 1993; Williams et al. 1993), 

although a second mode1 for otarüds was also derived with a higher diving metabolic rate (5 x 

S a )  as suggested by Kooyman (1988b) and Costa (1993). Severai of the above studies 

suggested that swimming metaboiic rate was 2.5 x SllilR; however, in agreement with 

Feldkamp et aL (1989), it was thought that upon submergence, changes occur (e-g. lower 

heart rate and decreased peripheral blood flow: Castellini 1991) that lower this value. Oxygen 

consumption for swimming cetaceans (specificdy bottlenose dolphhs, Tursiops tmncatus) 

was found to be near resting levels; however, the resting levels were found to be 2.5 times 

predicted SMR (Williams et ai. 1993). 

ADL (min) was calculated as mass specific oxygen stores (ml 0, kg-') + mass specific 

diving metabolic rate (ml O* kg-' min-'). Calcuiated avaiiable oxygen stores (ml 4 kg-') for 

the various groups were 58 for birds (specifically measured for king penguins, Apterzocjltes 

patagonicur), 60 for phocids (WeddeU seals Leptoizychotes weddellii), 40 for otarüds 

(northem fur seals, C~C~orhi~ius wsinur), and 35 for cetaceans (bottienose dolphins), taken 

nom Kooyman (1989). The resulting equations were AD4,, = 2.97MCz, ADLmk = 
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1 . ~?Mb0 .~~ ,  ADL- = 1.73M:.U, ADL, = 2.23M,02", md ADLOtaradixSMRl = O.79McB. 

Maximum diving depths (m) were calculated as 0.5 x (ADL x cniising-swim speed) 

where cruking-swim speed was assumed to be 1.5 m s*' for aIl groups (Kooyman 1989). The 

predicted relationships for ADL and maximum dR.mg depth were compared to observed 

diving capacities. 

Results 

The data base compiled for divïng air-breathing vertebrates is @en m Table 2.1. AU 

available diving data were used to calculate regression equations regardless of the method of 

collection. The original intent was to use only data collected by TDRs and maximum depth 

gauges (MDGs), but this would have eliminated more than haffof the data, preventing most 

intergroup comparisons. Also, eliminating the non-TDRIMDG data did not markedly change 

the correlations or slopes for depth or duration versus mass (Table 2.2), although there was a 

considerable increase in the Y-intercepts. Maximum depth and duration were sipificantly 

correlated with mass for the entire data set of air-breathmg vertebrates (Figure 2.1, Table 2.2). 

Maximum depth and duration were also signincantly correlated with mass for many of the 

srnalier taxonomie groups, except for depth in mysticetes, otariids, and flying birds and 

duration in otariids. Within the bird group, penguins and dcids had si&cant correlations 

between m a k u m  depth and mass, and only penguins had a si@cant correlation between 

maximum dwation and mass (Figure 2.2, Table 2.3). 

Figure 2.3 shows the regression lines nom observed data, depicted in Figure 2.1, dong 

with the predicted relationships calculated for maximum duration (approximated using ADL) 

and maximum depth. Phocids had the highest predicted diving capacities relative to mass 

followed by birds, otariids (2 x SMR), and cetaceans. If 5 x SMR was used for otariids, 

however, this group would have had the lowest predicted diving capacities. The various 

predicted lines generally overlapped with the overall vertebrate Lines, however, the rates at 
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which predicted divmg capacities increased with mass were generdy lower than for those 

calculated u h g  the observed data. The small graph on the bottom right of Figure 2.3 is 

predicted ADL on a linear scale showing how predicted diving capacity increases at a slower 

rate with increasing mass It also shows that the idluence of mass on ADL is smaller for 

animak having higher metabolic rates and lower oxygen stores. 

Cornparisons among the vaxious groups were compromised by d and unequal 

sample sizes and the large variabilîty of the observations withm groups; however, several 

significant merences were fourid. The overd tests mdicated that the slopes of the regression 

h e s  for depth vernis mass were homogeneous whüe the slopes of the lines for duration 

versus mass were significantly different @ = 0.038, n = 114). Subsequent overd comparisons 

of mass adjusted depths indicated that these values were significantly different across groups 

@ < 0.001, n = 106). Individual comparisons demonstrated several significant merences. 

The regression lines for mysticetes, odontocetes, phocids, and otariids were significantly 

diEerent across many of these groups. Phocids dived signiscantIy deeper and longer than 

mysticetes @ = 0.00 1, n = 2 1 for mass adjuaed depth; p = 0.00 1, n = 25 for mass adjusted 

duration) and odontocetes @ = 0.003, n = 36 for mass adjusted depth; p < 0.00 1, n = 38 for 

mass adjusted duration), and significantly longer than otariids (p = 0.002. n = 29 for mass 

adjusted duration). Odontocetes dived sigdicantly deeper and longer than mysticetes @ < 

0.00 1, n = 27 for mass adjusted depth; p < 0.00 1, n = 3 1 for mass adjusted duration), and 

significantly shorter than otarüds @ = 0.007, n = 35 for mass adjusted duration). Mysticetes 

had a significantly larger slope for duration versus mass than otariids @ = 0.04 1, II = 22). 

Penguhs dived signiscantly deeper (mass adjusted depth) than mysticetes @ = 0.028, n = 

17), odontocetes @ = 0.006, n = 32), otariids @ = 0.018, n = 24), and ffying birds @ = 0.0 18, 

n = 5 1), and nearly significantly deeper than phocids @ = 0.063, n = 26). Penguins ais0 dived 

siiificantly longer (mass adjusted duration) than mysticetes @ < 0.00 1, n = 18) and 

odontocetes @ = 0.001, n = 3 l), and had a significantly larger slope for duration versus mass 
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than otanids @ = 0.003, n = 22) and flying birds @ = 0.006, n = 54). The flying birds had 

significantly shorter dives (mass adjusted duration) than phocids @ = 0.00 1, n = 6 1) and 

otariids @ = 0.004, n = 58), and a significantly smaller dope for duration versus mass than 

odontocetes @ = 0.020, n = 67). 

Merences within the bird group were seldom significant, which may be due m part to 

the smalI sample sizes. Overall tests indicated that the slopes of a l l  of the regression lines 

were homogeneous whüe mass adjusted means were Sgnificantly different (both p's c 0.00 1, 

nw, = 42. nmon = 44). IndÏvidual comparisons demonstrated that alcids dived significantly 

deeper and longer than cormorants (p = 0.005, n = 16 for mass adjusted depth; p = 0.027, n = 

2 1 for mass adjusted duration) and ducks @ < 0.00 1, n = 24 for mass adjusted depth; p = 

0.0 14, n = 23 for mass adjusted duration), and sipifïcantly deeper than penguins @ = 0.005, n 

= 20 for m a s  adjusted depth). Neither penguins nor cormorants dived sigmficantly deeper 

than ducks @ = 0.050, n = 26 and p = 0.071, n = 22 for mass adjusted depth, respectively), 

although the ciifferences were nearly sigdicant. 

Comparisons of birds and mammals showed that the slopes of the depth and duration 

versus mass lines for ail marine mammnla were significantly smaller than those for birds @ = 

0.002, n = 108 for depth; p = 0.0 18, n = 1 18 for duration). However, when mysticete 

cetaceans were removed from the relationship, no significant differences were observed. 

Eiscussion 

DRring capacity increased with body mass in broad mterspecific comparisons as was 

expected Kowever, this relationship was not significant for some of the smaller taxonomic 

groups analyzed. The most obvious Limitation to an air-breathmg animal's dMng capacity is 

its ability to store oxygen and to effectively utilize this Iimited oxygen supply (Scholander 

1949; Butler and Jones 1982; Kooyman 1989; Schmidt-Nielsen 1990). The maximum 

duration for which an animal can stay submerged is directly related to oxygen storage, rate of 



oxygen utilïzation (Le. metabolic rate and con of transport), and its anaerobic capacity. The 

maximum depth to which an animal can dive is ody  mdirectly related to oxygen because t 

takes tirne to dive and consequently the deeper an animal dives the longer it has to stay 

submerged. Speed of locomotion M e  dRring will of course influence this relationship to 

some degree, although diving depth and duration have been shown to be strongly inter- 

correlated (e.g. Gentry et al 1986b; Castellini et aL 1992a; Croll et a l  1992; Bengtson et aL 

1993). Larger anirnals generdy have more blood since blood volume (V,) increases linearly 

with body mass (M,,), Vb = M,,'.' (Peters 1983; Schmidt-Nielsen 1984). Consequently, they 

will be able to store more oxygen, although many diving species have been shown to have 

elevated total oxygen stores (Butler and Jones 1982; Kooyman 1989). Also, larger animals 

have a metabolic advantage in that metabolic rate (MR) increases only 0.75 times as fast as 

body mass, MR = M,a" (Kleiber 1 96 1 ), and therefore larger animals have lower mass sp e d ï c  

metabolic rates than their smaller counterparts. A lower metabolic rate requires less energy 

expendmire and therefore a slower utilization of oxygen stores. Since diving capacity is 

related to the need for oxygen and larger animals need less oxygen per unit mass, it wouid be 

expected that larger animals should be able to dive longer and consequentiy deeper than 

smaller animnls. This is substantiated in that the ADL increases with mass (Hochachka and 

Somero 1984; Gentry et aL 1986b; Kooyman 1989; Costa 1993; Figure 2.3 - this stuc&). 

Another factor that influences an animal's diving performance is its ability to function 

beyond its ADL (ie. anaerobically). The ciifEcuity here is to deal with the end products of 

anaerobic metabolism (e.g. lactic acid). Some anirnals have a high tolerance for these end 

products while others are able to recycle or clear the waste products (Hochachka and Somero 

1984). It has been shown that an ïncrease m size also mcreases an animal's ability to fùnction 

anaerobically and hence, increases potential maximum diving time (Hochachka and Somero 

1984; Hudson and Jones 1986). Anaerobic metabolism may be fàirly unimportant when 

considering "normal" or mean diving behavior since it is considerably less efficient than 
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aerobic metabolism (Kooyman et aL 1983b; Kooyman 1989). The lactic acid produced as a 

result of anaerobic metabolism is cleared very slowly, therefore anaerobic dives require longer 

wface time than completely aerobic dives. However, this less efficient metabolism becomes 

quite important when considering potentid or maximum capacity. 

Fmaliy, a direct limitation to the depth to which an animal can dive is hydrostatic 

pressure. Complications due to pressure mclude decompression sickness (the bends), hi& 

pressure nervous syndrome (HPNS), mechanical effects of pressure on gas Wed spaces, and 

problems associated with gases at high pressures (e-g. nitrogen narcosis and oqgen toxicity). 

Several reviews on this subject have been presented so Ï t  will only be mentioned briefiy here 

(e.g. Ridgway 1986; Kooyman 1988a, 1989; Cas tehi  199 1). Some ariimals have an 

unlimited capacity to tolerate the mechanical distortions caused by compression (Kooyman 

1988a). In seals, lung and chest cornpliance are unlimited (Kooyman 1988a). This elimmates 

the need for mtrathoracic pooling of blood to compensate for changes in volume, as would be 

the case for humans. Problems with gases (e.g. the bends and nitrogen narcosis) are avoided 

by a great reduction in gas exchange between the Iungs and blood (Kooyman 1988a, 1989). 

How other problems, such as HPNS, are dealt with remains a mystery (Kooyman 1989; 

Castelhi 199 1). Research has revealed that pressure limitations are not a major factor 

controhg the dRring depths attained by some deep dMng seals (Castellini 199 1) which is 

indicated by the incrediile depths attained by many of these animals. Much of this work has 

been pefiormed on marine rnammals and considerably less is known for birds and reptiles. 

Overail 

The diving depths and durations attained by diving vertebrates are related to body 

mass. F i  per cent of the variability (3) observed m depth and 7 1% of the variation m 

duration was attniuted to mass. However, there was considerable scatter of depth and 

duration values around the regression iines (Figure 2.1) indicating that factors other than mass 
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also affect the dishg capacities of these animalsanimals DMng capacities recorded for cetaceans and 

flying birds were highly variable. For both cetacean suborders, this may reflect the range of 

different methods of data collection. Variabüity among flying birds may represent the 

inappropriateness of lumpmg several different bird famües mto one group, as well as 

merences in feeding ecology, methods of data collection, and locations of çtudy sites. 

Cornparisons of dMng capacity versus mass for marine mnmmalP and birds indicated 

that maximum diving depth and duration in birds increased fàster with an mcrease m mass than 

for marine mammals. However, d e n  the shailow and short diving mysticete cetaceans were 

excluded fiom the comparisons, there were no discernable merences in the diving capacities 

of these two groups relative to mas. This suggests that s i d a r  physiological and ecological 

factors are affectmg the diving behavior of these two groups. 

The relationçhips between diving capacity and mass found here were generally in 

agreement with uiterspecïfïc comparisons previously conducted. Burger ( 199 1) found a 

similar relationship in that larger alcids and penguins had deeper m a h u m  diving depths than 

smaller species. This was not nirpnsing, as that study and this work used much of the same 

data. The relationship between diviog duration and mass for cormorants in Cooper's study 

(Cooper 1986) was stronger than that found here (for birds M g  in water greater than 2 m). 

However, Cooper had much larger samples sizes, having used values recorded for the same 

species at different locations as separate observations. Irving ( 193 9) suggested that the 

exceptional diving capacities of large whales may be due to their large çize, but his 

comparative analysis showed a different result. Unlike the results here, lMog fouod that 

breath-hold endurance results acquired experimentally f?om dMng animais ranging m size 

fiom 0.6 kg muskrats, Ondaha zzbethim, to 100 kg seals demonstrated no relationship 

between endurance and size. However, IrvEig's duration values were usually recorded nom 

forced submersions which cm often be considerably different fiom those naturdy observed. 



Predicted versus observed 

The various predicted relationships generally overlapped with the overd  observed 

lines for vertebrates (Figure 2.3); however, the rates at which predicted dMng capacity 

mcreased with mass were generally lower than for those calnilated fiom the observed data. 

This may be due to underestimation of many of the flying birds' observed diving capacities, 

causing the slopes of the overd h e s  to be steeper. It may also be due to an overestimation 

of the swimming speeds of smder divers (e-g. birds). Smaller divers would not be expected 

to swim as fast as larger ones because drag mcreases with surfàce area (L2), whiie power 

mcreases with muscle volume (L3). This c m  be seen in little penguins, Eudjyphrla mirror, 

(Baudinette and Gill 1985) and pochard, Aythya ferim, and tufted ducks, Aythyafuligda, 

(Carbone 1 995 ; C. Carbone persotial conzmunicatiotz) which have estimated cruïsing-swim 

speeds of 0.7 to 0.8 m s-'. If the d e r  divers swim slower, their predicted maximum depths 

would be shaUower and consequently the dope of the predicted relationship would be greater 

(i-e. more similar to the observed relationship). Lady, since the predictnre models developed 

here only incorporated aerobic metabolism and not anaerobic metabolism (which is important 

when considering maximum capacities), the rates of hcrease rnay have been underestimated. 

This is substantiated by the renilts of Hudson and Jones (1986) and the calculations of 

Hochachka and Somero (1984) who found that during forced submersions in ducks, the rate 

of mcrease in maximum diving t h e  relative to mass is higher when considering anaerobic + 

aerobic metabolism as compared to just aerobic modes. 

Not having incorporated anaerobic metaboüsm mto the predictive models may also 

explain why many of the observed capacities (at lead for duration) were above predicted 

levels for the correspondmg groups. Mysticete cetaceans and fiying birds were exceptions, 

probably as a result of the methods used to record their behavior, the locations of the studies, 

or the ecological niches occupied by these animals. For depth, observed relationships 

generally feu close to predicted values. However, had anaerobic rnetaboliçm been included in 



the models, most of the observed values would have fidien below predicted relationships. This 

would be expected since the observed relationships O* represent minimum dising capacities. 

Fmally, it mua be noted that these predictive models are quite cmde and rely on many 

assumptions. Ifany of the parameters (dishg metabolic rate, oxygen stores, or cruising 

speed) were changed, the relationships would change markedly (e.g the difference between 

otariid diving capacity calculated with dMng MR equal to 2 or 5xSMR). Many studies have 

found considerably higher eçtimates for swimmmg MRs, ranging fiom 4 to IOxSMR (e-g. 

Nagy et aL 1984; Chappell et ai. L993a, b; Costa 1993) and others have estimated much 

slower cniiçing-swim speeds, 0.7 to 0.8 m s" (e-g. Baudbette and Gill 1985; Carbone 1995). 

Ce taceans 

Cetaceans range dramatically in size fiom d river dolphins (e-g. Franciscana, 

Poiitoporia b[aimiIIei, weighïng 34 kg) to the largest animais to have ever lived (ie. blue 

whaie weighing 145,000 kg and up to 33 mm length) (Jefferson et aL 1993). Mysticetes had 

the largest'mean body mass in this study (5 5,000 kg), followed by odontocetes (3,200 kg), 

phocids (6 10 kg), marine tudes  (140 kg), otanids (94 kg), penguins (6.1 kg), and flying birds 

(1.3 kg). On the basis of body size it would be expected that mysticete and odontocete 

cetaceans should be able to dive longer and deeper than d other groups because they can 

store more oxygen and have lower mass spenfic metabolic rates. Even though the sperm 

whale, Physerer cntodon, is one of the longest and deepest divers in this study (1 38 xnin and 

3000 m: Clarke 1976; Watkins et al. 1985), as weil as being one of the largest animais ( 5  1,700 

kg: Jefferson et aL 1993), both odontocete and mysticete cetaceans were surpassed by the 

considerably smaiier phocids in average dMng capacity. Further, the plots of duration and 

depth versus mass showed that mysticetes always feii below the overaii regression h e s  for 

both maximum duration and depth. These plots and the regression cornparisons also suggest 

that ifpenguins were as large as mysticetes or even odontocetes, they wodd dive much longer 



and deeper. The plots for predicted divmg capacity (Figure 2.3) also support this suggestion. 

It is interesting to note that an 80 kg human (holding their breath) fits weil withm the overall 

regression lines, with a maximum depth of 125 m ushg a weighted sled (Matthews 1996) and 

a duration of 13.5 min anchored m a pool after hyperventiiating with oxygen (McFarlan and 

McWhirter 1990). The duration record without supplementary oxygen was 5.5 minutes 

(Lavigne and Kovacs 1988). However, these amazÏng feats were accomplished under highly 

artificial conditions. 

There are three possible reasons why cetaceans do not dive as long and as deep as 

would be expected: 1) this Order may have physiological and morphological limitations 

relative to some of the other groups, 2) the rnethods used to measure their diving behavior 

may underestimate their capacity, or 3) cetaceans may exploit resources that are Located at 

shallower depuis than some of the other groups and therefore may not need to dive as deep or 

for as long. The £ha point seems uniikeIy since several cetaceans have exceptional dMng 

capacities ( e g  spem whales and bottlenose whales, Hyperoodon sp.). However, considering 

total body oxygen stores, cetaceans have considerably less oxygen available per unit mass than 

either penguins or phocids (Kooyman 1989), which would limit their potential divmg capacity 

(see Figure 2.3 for a schematic representation of this concept). 

Some of the cetaceans, specificaily the mysticetes, seem to have even more limaed 

dMng capacities than would be predkted fiom ovgen stores. This is perhaps where data 

coilection methods and feeding ecology greatly affect observed dMng capacity. Unlike most 

of the pinniped and penguin diving data, which have been measured with modem deptû and 

duration recorders, much of the cetacean data were inferred &om feeding ecology or simply 

observed directiy. Although these methods have provided much insight into the behavior of 

cetaceans and other groups, they are far less accurate. Depth and duration recorders d o w  

thousands of dives (> 50,000 dives: Hindeil et ai. 199 1b; Schreer and Testa 1995, 1996) for 

individual species to be recorded over extended periods of time (> 8 months: Testa 1994; 
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Schreer and Testa 1996), whüe much of the cetacean data were single records or just a few 

observations coilected on one or a few occasions. Also, although probable feeding depths 

give a potentid maximum depth for an animai, these values are probably better estimates of 

mean d i h g  depth. In many studies ushg depth recorders, it has been found that a species has 

preferred depths that are associated with preferred prey, but that the maximum depths reached 

by the species fàr exceed these depths (e-g. Hindell et ai. 199 lb; Prince and Jones 1992; 

Schreer and Testa 1996). Therefore, many of the values representing cetacean diving capacdy 

are probably underestimates. 

The shallow maximum depths and short maximum durations obsewed among the 

mysticetes may also be an accurate reflection of their feeding ecology. Many of the largest 

animak in this study (e.g. blue, bowhead - Balaena nzysticetus, fin - Balae~zopoptera physalur, 

and nght whales - Eubaiaerm sp.) feed plimarily on planktonic or micronektonic crustaceans 

or small pelagic fish (Gaskin 1982) usually found between 100 and 500 m (Parsons et a l  

1984). The relatively shallow depths of the mysticete's prey eliminates their need to dive to 

great depths. Also, since it takes less time to reach these depths, durations do not need to be 

as long to forage efficiently (ie. net energy gain). However, since d a c i n g  takes away nom 

foragiog time, dMng duration should be ma>cimized for mcreased efficiency. This may explai. 

why marcimum duration is more highly correlated with mass than maximum depth in 

mysticetes (r = 0.84 versus 0.07). It must be noted that this argument is only valid when dives 

are shorter than the ADL so as not to cause an increase in plasma lactate concentrations and 

consequent increase in surfàce clearance tirne. To compücate this issue even M e r ,  Kramer 

(1988) and Houston and Carbone (1992) argue that surface time mcreases with diving t h e  

even before reaching the ADL because of d b h k h h g  retums in oxygen loading (Le. it takes 

1 onger to load the last few ml of oxygen prior to achieving maximum loading) and that this 

also influences the duration of dives. 

Marked ciifferences in feeding ecology may also explain the differences in observed 



diving capacity for the two cetacean groups. That is, mysticetes feed on relativeiy M o w  

prey while odontocetes feed on prey such as fish and squid which live at greater depths 

( G a s b  1982). 

Pimzipe& 

DivEig behavior of pinnipeds as a group could be predicted with reasonable accuracy 

based on body mass, although there were some differences displayed between Families. 

Phocid diving capacity was significantly correlated with m a s  while otariid dMng was not. 

Additionally, phocid observations generaily fell above the overali vertebrate line while otariids 

generally fell nearer to this line indicating that phocids dive deeper and longer relative to body 

mass compared to otariids. The mass adjuned mean durations for these two groups also 

support this conclusion with phocids dMng significandy longer. Phocids are generally larger 

than otariids so it would be expected that they would dive deeper and longer. However, they 

seem to excel fiutber in diving cap acity than expected based solely on this criterion. Phocids 

have larger blood volumes, higher concentrations of hemoglobin for a given blood volume, 

and more myoglobin per unit of muscle than otariids which ailows them to store more oxygen 

and hence dive deeper and longer (Snyder 1983; Kooyman 1989; Reed et al. 1994). Phocids 

also have lower metabolic rates while dMng due in part to slower swim speeds (Kooyman 

1988b, Costa 19931, which decreases their rate of oxygen consumption. This can be seen in 

Figure 2.3 with phocids (2 x SMR) having considerably higher predicted dMng capacities 

relative to mass than otariids (5 x SMR). 

The cornparisons of observed data are preliminary in that the available data does not 

iuclude large otariids. Most studies of otariid dMng behavior have focused on females ( e g  

Gentry and Kooyman 1986) which are considerably smaller than males. The inclusion of 

males may increase the observed simiiarity between otariids and phocids. This suggestion is 

subaantiated by the depth values fiom the larger species (e.g. California - Zalophm 



califmiam caiiforniams, Hooker's - Phmarctas hookeri, and Stener sea lions - 
Eumetopias jubatus), dl of which fit well with the lower end of the phocid he. 

The otariid duration data are a bit more diBEicdt to interpret. Perhaps their higher 

swim speeds allow them to reach depths comparable to the d e r  phocids, but their 

physiological limitations (less oxygen and higher metabolic rates) prevent them fiom staying 

submerged as long. It bas also been suggested that the disbi'bution of prey (Feldkamp et al 

1989) and foraging economics (Gentry et aL 1986b) may be primary factors determining 

obsenred divmg capacity m otariids. That is, the observed maximums do not reflect tme 

capacity. Their smaller size and physiological limitations relative to phocids, rnay make it 

more economical for them to forage on smaller, shallower, and perhaps easier to catch prey 

while phocids can exploit larger, deeper, and more energy rich prey. This would explain their 

more limited observed diving capacity relative to phocids, as weU as the lack of any 

relationship between diving capacity and mas .  

The walrus, Odobenzis rosrnarus, is a good example of how ecology can strongly 

affect dMng behavior. It is the third largea pinniped in this study, but one of the shallowest 

and shortest divers. It is thought that wahses  may be able to dive to greater depths than the 

maximums recorded, but have littie reason to do so because of the abundance of their benthic 

prey in shallow waters (Fay and B u s  1988). 

Birds 

Penguins dive deeper than flying birds (when pooling all flying bùds mto one group) 

and their d i d g  duration increases more rapidly with increasing mass as compared to fiying 

birds (ie. deeper mass adjusted depth and larger slope for duration versus mass). However, 

the penguh equations were strongly affected by the exceptional depths and durations 

recorded for ernperor, Aptertudytesrforsteri, and king penguùis. Penguin diving capacities had 

the highest correlations to mass of aU the groups examhed, indicating that mass is an excellent 



predictive tool for penguh divmg behavior. Some of the differences m diving capacity 

between penguins and fiying birds are Wrely due to data collection methods. Like the cetacea 

data, much of the flying bird data were manually observed over shoa periods of t h e  while 

most of the penguin data were coiiected by depth or duration recorders, providïng more 

accwate estimates. Also, l q i n g  aIl flying birds mto one group is perhaps inappropriate and 

may be a primary reason for the weak and non-significant relationships. 

The separate analysis of just the bird data provided more msight mto avian d i - g  

capacities. Ducks appear to be relatively poor divers, but this may simply be due to the 

methods of data collection or the shallow mshore water depths of many of the study sites 

resulting in shorter, shallower dives (e.g. Dewar 1924). Alcids, unlike the other flying bird 

families, had a strong correlation between maximum depth and mass. The r e d t s  also 

hdicated that not only do alcids dive deeper and longer than connorants and ducks, but in 

agreement with Burger (199 1), ifthey were as big as penguins, they would be able to dive 

deeper. This is surprishg as it would be expected that penguins would be more capable divers 

than flying bùds because of the i  more highly evolved "aquatic" body morphology and 

concomitant loss of £iight. If the exceptional depths of common and thick-biiled murres are 

excluded, most of the alcid depth values fit weIl with the extension of the p e n m  depth Iine. 

It has been suggested that large wing-propelled dMng/flying birds (Le. larger alcids) may be 

approaching the threshold at which a M e r  increase m size wouid result in a flightless 

condition (Stonehouse 1975; Piatt and Nettleship 1985). Stonehouse (1975) estimated that 

wing-propelled dÏving birds can retain the ability to fly oniy ifthey weigh less than 1 kg. Since 

some alcids may be nearing this condition, it would be expected that their dMng capacities 

would be similar to those of smaller penguins. This can be seen by splitting the birds mto 

predominantly wing-propelled (alcids, penguins, and petrels) and predominantly foot- 

propeiled (ducks, comorants, grebes, and loons) categories The values for wing-propelled 

diving birds are located almost entirely above the overail bird lines fsr depth and duration 
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versus mass whiie almost aIl of the values for foot-propelled birds lie below these lines. This 

codd indicate that whgpropulsion is a more highly wohred or adaptive characteristic for an 

aquatic Ne style, aIthough the deep depths achieved by several of the foot-propelled 

cornorants chdenge this conclusion. 

Marine iurtles 

Although there were too few turtle observations to calculate allometric equations, it is 

obvious that these animais are exceptional divers. Other reptiles or amphiiians were not 

included m this çhidy because many of these animals can reduce thei. metabolic rates to such 

low levels that they can stay submerged for days, weeks, and even longer (Butler and Jones 

1982). The temperature and oxygen tension of the water also affects the ability of these 

animals to stay submerged (Butler and Jones 1982). Therefore, mass specific relationships 

comparable to mammals and birds, which have much higher metabolic rates, even when at 

rest, would not be expected. Marine turtles were mcluded in this study for the sake of interest 

and because they have maximum depth and duration values within the ranges of those found 

for rnammals and birds. However, shce these animais also have the ability to undergo 

extended submergences at low temperature (e.g. many weeks for green turtles, ChelotNa 

nrydas, and loggerhead turtles, Caretta carettu, during winter: Butler and Jones 1982), 

comparisons must be very tentative. Like most marine msmmals, marine turtles are able to 

lower their metabolic rate (within certain organs) d e n  dMng (Hochachka and Somero 1984) 

decreasing oxygen utilkation and increashg potential diving duration. In marine mammnlk 

this r e d t s  in hypometabolism in comparison to exercising levels, but still represents metabolic 

rates above those for resting. However, turtles can lower their overaii metabolism below 

resring levels, in part because of lower body temperatures (Hochachka and Somero 1984; 

Kooyman 1989). Additionally, marine turtles excel in their abiiity to metabolw anaerobically 

(Hochachka and Somero 1984; Kooyman 1989). Marine turtles have large glycogen stores in 
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their tissues as well as having efficient fermentation pathways (Hochachka and Somero 1984) 

which increases their potential for long duration dives and therefore, deep depths. Along witb 

these adaptations, marine tuales may have an wolutionary advantage for divmg m that they 

have relatively smaller and less complex brains than mammals (Robin 1973). The smaller 

brain sîze decreases oxygen utilization, and the lack of comple>city may allow marine tudes to 

tolerate longer periods of anoxia (Robin 1973; Hochachka and Somero 1984). Both of these 

characteristics would increase p otential diving cap acity. 

Conclusions 

InterspecificalIy, the diving capacities of air-breathing vertebrates were strongly 

iduenced by body rnass, although this relationship was not always present when d e r  

taxonomic groups were anaiyzed. Merences among groups, as welI as the lack of 

relationships in some groups, could often be explained by factors such as the various 

ecological niches these groups exploit or the methods used to record their behavior. The 

addition of data fiom work currentiy being conducted and fùture work on diving behavior of 

air-breathing vertebrates will undoubtedly irnprove our understanding of the relationships 

explored in a preliminary fashion in this paper. Better comparative data bases are Iürely to 

provide stronger relationships arnong some groups of dMng vertebrates and provide clearer 

explanations of observed variance in others. AIso, additional data may d o w  interspecifïc 

allometnc analyses to be conducted with mean div8ig values or perhaps dive shapes (e-g. 

Hîndell et al. 199 1b; Schreer and Testa 1995, 1996; Chapter 3; Chapter 4) which may befier 

represent the natural divmg behavior of air-breathing vertebrates. 
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Table 2.1. Diving data and masses for air-breathing vertebrates. Adult body mas ,  maximum diving depth, 
- - 

maximum divina duration, number of observations, and methods used for data coiiection. 

M a s  Depth Duration 
Common name' Sciwtificname (kg) (ut) (min) nb Methods' S o u r d  

Males ,  Dolphins, 
and Porpoises 

Balken 

Blue whale 

Right whale 

Bowhead wbale 
Fin whale 

Gray whale 
Humpback whale 

Sei whale 

Bryde's whale 
Minke whaIe 

Toothed 
Sperrn whale (8) 

Killer whale (cT) 
Arnoux's bea ked 
whale 
Bottlenose whaIe 
Cuvier's beaked 
whale 
Pilot whale (4 
False killer whale 
Narwhal 
Beluga whale 

Bottlenose dolphin 
Pygmy spenn whaIe 
Fraser's dolphin 
Dwarf spenn whale 
Dall's porpoise 
Irrawaddy dolphui 
Baiji 
P a c s c  white-sided 
dolp hin 
Rough-toothed 
dolphin 

Order Cetacea 

Suborder Mysticeti 
Balaenoprera 
m lliculzls 
Eubalaena sp. 

Balaena mysricefus 
Balaenop fera 
physalw 
&chrichrius robusrus 

'Wegaptera 
novaeangliae 
Balaenop tera 
borealïr 
B. cdeni 
B. acutorostrata 
Suborder Odontoceti 
Physetcr catodon 

Orcinus orca 

Berardius arnmii 

ffyperoodon sp. 
Zip hius cavirosta 

Glo h iccp hala sp. 

Pseudorca crass idem 

Monodon monoceros 
Delphinaptenu 
leucas 
Tursiops truncarus 
Kogia brcviceps 
Lagenodeiphis hosei 
h'ogia simus 
Phocoenoides dalli 
Orcaella b revirostris 

Lipotes vexill fer 

Lagenorhynchus 
obliquidens 
Steno bredanemis 

Feeding; Line 

Sonar, - 

RT; - 
Line; - 
TDR; RT 
Sonar, Obs. 

Obs. 

Obs. 
Net 

Feeding; Sonar 

Trained; - 
Obs. 

Line; - 
- 

Trained; - 
- 
TDR 
TDR 

Trained; Obs. 
RT 
Feeding 

Feeding 
Feeding 

Obs. 
Obs. 
Trained 

Line-hp; Obs. 



Table 2.1 (conrinuedl 

Mass Depth Dwation 
Common name' Scientifïc name (kg) (m) (min) nb Methods' Sourcesd 

Atlantic spotted 
dolphin 
Common dolphin 
Pantropical spotted 
dolp hin 
Southem right whale 
dolphin 
Northem nght whale 
dolphin 
Ganges River dolphin 
Spinner dolphin 

Harbor porpoise 

Seals, fur seals, sea 
lions, and walrrises 

True seals 

Southem elephant 
seal (8) 

Northem elephant 
seal (3) 
Northern elephant 
seal (9) 
Southem elephant 
seal ( 9) 
WeddeU seal ( 9 )  

Bearded seal ( 9 )  
Hooded seal (@ 

Bearded seal (8) 

Crabeater seal 

Grey seal (d') 
Hooded seal (9) 
Harp seal ( 8) 
Spotted seal 
Harbor seal 

Baikal seal 
Ringed seal 

Eared seuk 

Steller sea Lion (9) 

Stenella fiontalis 

Delphinus delphis 
Srenella artenuata 

Lirsodelphis peronii 

Platanista gangerica 
Stenella longircwtris 

P hocoena phocoena 

P. sinus 
Suborder Pinnipedia 

Family Phocidae 
Mrounga leonina 

Lepronychores 
weddcllii 
Erknathw barbatu 

Cystophora cristara 

Eripathw barba rur 

Lobodon 
carcinop hagus 
Halichoem grypus 

Cystophora crisrata 

Phoca poenlandica 

P. laqha 
P. vit ulina 

P. sibirica 
P. hispida 

Family Otariidae 
Eumetopias jubatus 

- TDR 
- TDR 

- Feedbg Obs. 

- Obs. 
-; 500 Feeding; Obs. 

25000 TDR 

35000 TDR 

20000 TDR 

25000 TDR 

TDR 
TDR 
TDR 

TDR 

TDR - 
TDR 

TDR; - 
TDR 
TDR; Exp. 

Exp. 
Sonic tram. 

100000 TDR 



Table 2.1 (continue&. 
- 

Mass Depth Duration 
Common name' ScientSc name (kg) (m) (min) nb Methodse Sourcesd 

Hookeis sea Lon ( 9 )  
South Amencan sea 

lion (9) 
California sea lion 

(9)  

Australian sea lion 
(9)  
Galapagos sea lion 
($1 
South AEcan fw 
seal (9)  
Northern fiu seal (9) 
Guadalupe fur seal 
( $1 
South American fur 
seal ( 8) 
New Zealand fur seaI 
(9)  
Antarctic h r  seal (9)  
Galapagos fiir seal 
($1 

Wahuses 

W a h  (d3 

Sirenians 
West indian Manatee 
Dugong 
Sea otters 
Sea otter 

Marine Turtles 

Leatherback 

Loggerhead 
Kemp's ridIey 
Olive ndley' 

Birds 
Penguiits 

Emperor 

King 

Phocarcta hooken 
Ofaria byronia 

Zdop hus 
cal if0 rnianur 
californianus 
Neop hoca cinerea 

2. cali/orniantrs 
wollebaeki 
Arctocep halus 
pusillus 
Callorhinus un in= 
.4 rctocephaltrs 
tomendi  
.4. austral& 

Family Odobenidae 
Odobenus rosmam 

Order Sirenia 
Tnchechus manatus 
Dugong dugon 
Famïiy Mustelidae 
Enhydra lutris 
Families Cheloniidae 
and Dermochelyidae 
(Leatherbacks) 

Dermochelys 
coriacea 
Caretta caretta 
Lep idoche lys kempii 
L. olivacca 
Class Aves 
FamiIy Sp heniscidae 
Aptenodytes forsteri 
A. patagonicus 

20000; - TDR 
7000 TDR 

- TDR 

3000 TDR 

1000 TDR 

2000 TDR 
>IO00 TDR 

1000 TDR 

700 TDR 

60000 TDR 
3000 TDR 

-; 1500 Feeding; TDR 

- Net; Obs. 

5000 TDR 

- RT 
500 RT 

1 Sub. 

16000 TDR 
>10000 TDR 



Table 2.1 (conrinued). 
--- 

M a s  Depth Duration 
Common namea Scientinc name 0%) (ml (min) nb Methods' S o u r d  

Megadptes 
antipodes 

MDG 

Gentoo 

Adélie 

Macaroni 

PVgacelrS papua 
P. adeliae 
Eudyptes 
chrysolophw 
Sp henircus hum boldti 

TDR 
MDG, TDR 
TDR 

HumboIdt 

Mageiianic 
Chinstrap 

Jackas 

Galapagos 

LittIe 

Loons 
White-billed 

Common 

MDG, Obs. 

MDG 
TDR 
MDG, Obs. 

Obs. 

MDG 

S. magelZanicur 
Pygoscelh antarc f ica 

S. mendiculw 
Eudyptula minor 
Family Gaviidae 

Gavia adamsii 
G. immer 

Net; Obs. 

Net; Obs. 

Black-throated 

Red- throated 
Cormoranis 

G. arctica 
G. srellata 
Farnily 
Phalacrocoracidae 

Phalacrocorax carbo 
lucidus 

P. capillarus 
P. carbo 

Obs. 

Obs. 

Japanese 

Great 

B lue-eyed 

Pelagic 
Shag 

Bank 
Guanay 
Red-legged 

Cape 

C rowned 

PYPY 
Reed 

Ducks 
Common eider 

King eider 

Goosander 

Velvet sco ter 

Tufted 
Canvasback 

TDR 
Net; Obs. 

MDG; TDR 
Obs. 

Net; Obs. 

MDG; Obs. 

Obs. 

Obs. 

MDG 
MDG, Obs. 

Obs. 

Obs. 

P. neglecrus 
P. bougainvillii 
P. gairnardi 
P. capenris 
P. coronatm 
P. pygmaeus 
P. afrianrcs 
Farnily Anatidae 

Somateria mollhs ima 
S. spectabilis 

Net; Obs. 

Feeding Obs. 

Obs. 

Obs. 

Net; Obs. 

Obs. 



Ta bIe 2.1 (continues). 

Common namea ScientSc name (kg) (ml (min) nb Methods' Sourcesd 

Scaup 

Red-breasted 
merganser 
Common scoter 

Pochard 

Surf scoter 

Common goldeneye 

White- headed 
Smew 

Long- tailed 

Grebes 
Red-nec ked 

Great crested 

Western 

Horned 
Black-necked 
Little 

Aicids 
Common murre 

ïhick-billed murre 

Razorbill 

Rhhoceros auklet 

Atlantic p u 5  
Pigeon guiliemot 

Black guiliemot 

Cassin's auklet 

Dovekie 

Diving-Peîreis 

South Georgia 

Melanitta nipa 
-4ythya ferina 
MeIanitta 
persp icillata 
Bucephala clangda 

Family Podicipedidae 
Podiceps griregena 
holboellii 
P. crïrtattts 
Aechrnop horus 
occidenta lis 
Podiceps auriru 
P. nigricollis 
Tachybaptus 
ru/co l h  
Family Akidae 
Uria aalgc 

Alca roda 
Cerorhinca 
monocerata 
Frarercula arctica 
Cepp hm colum ba 
C. g ylle 
Ptychoramphus 
aleuticus 
Alle aile 
Faxnily 
Pelecanoididae 

150; - Obs. 

8; - Obs. 

- Obs. 

100;- Obs, 

-; 20 Obs. 

- Obs. 

>50 Obs. 

60; - Obs. 
- Net  Obs. 

- Obs. 

160;- NetObs. 

70 Obs. 

150; - Obs. 
- Obs. 

100 Obs. 

12000; Net; RT 
250 

3.7 60; 1000 MDG.TDR 
0.9 1: 450 Sub.; Obs. 

1.1 15; 3 MDG, Exp. 

1.9 10;450 MDG;RT 
1.1 2; 4 MDG; Exp. 
1.3 40; - Net; Obs. 

2.0 20; 10 MDG, Obs. 

6 MDG 

Gender indicated in parentheses where appropriate. 
Appmwimate numba of observations. mahy dives (depth and duration. respectively). A dash represents 

that the number of observations was not reported or that depth was estimated fiom feeding. For MD&, each 
observation represents many dives. A single vaIue is listed if n was equal for both depth and duration, or ifonly one 
parameter was reported 



Table 2.1 (continued). 

' Meîhods for masurhg depth and duration are iisted, respectively. if the methods for measuring depth and 
duration are the same, oaly one method is Listed Exp., forced dives, usuaiiy restrained in various types of tanks used 
for di- w simulating dnring; Feeding, estimated fkom known prey depths; Line, estimated fiom amount of rope let 
out, aIlowing for angle of descent; Line-hp, Line with hydrophone attache& MDG, maximum depth gauge (e.g. 
capiiiary tubes); Net, caught or tmgied in nef trap, or on hook; Obs., direct obsexvations (e.g timed with watch); RT, 
radio tag, Sonar, echo sounding; Sonic tram., sonic transmitter, Sub., observed fiom submarine; TDR, the-depth 
recorder or satefite-linked tirne-depth recordw, Trained, trained fke-swunming diveq -, not reported 

Sources for m a s  foiiowed by diving capacity are üsted If sources for depth and duration are dsérent, 
sources for mas, then depth, then duration are Listed 1) Baker 1981; 2) Bengtson and Stewart 1992; 3)Bengtson et 
al. 1993; 4) Benjaminsen and Christensen 1979; 5) Boersma 1976; 6) Bower and Henderson 1972; 7) Boyd and 
Croxaii 1992; 8) Burger 1991; 9) Burger and Powell 1990; 10) Burger and Simpson 1986; 1 1) Carbone et aL 1996; 
12) Casteilhi et aL 1992a; 13) Clarke 1976; 14) Cody 1973; 15) Cooper 1985; 16) Cooper 1986; 17) Costa et d 
1989; 18) Cramp and Simmons 1977; 19) Croll et ai. 1992; 20) Croxall et al. 1991; 21) Croxaii et aL 1993; 22) 
Cruickshank and Brown 198 1; 23) Cummings 1985; 24) dei Hoyo et al. 1992 25) DeLong and Stewart 199 1; 26) 
Dewar 1924; 27) Dolphin 1988; 28) Dow 1964, 29) Du@ 1983; 30) Eckert et al. 1989; 3 1) Evans 197 1; 32) Evans 
1974; 33) Fay and Bums 1988; 34) Fitch and Brownell 1968; 35) Fokow and B k  1995; 36) Forbes and Sealy 1988; 
37) Frost et al. 1993; 38) Gales and Mattiin 1995; 39) GabReynoso et ai. 1995; 40) GambeU1985; 41) Gentry et 
al, 1 9 8 6 ~  42) Gentry et al. 1987; 43) 1. Gjertz pemonal communicafion; 44 ) Goodyear 1995; 45) Guyot 1988; 46) 
Hall 1970; 47) HanuniIl et aI. 1993; 48) Harrison and Kooyman 1971; 49) Harvey and Mate 1984; 50) Heide- 
Jmgensen and Dietz 1995; 5 1) Heyning 1989; 52) Hindell et al. 1991b; 53) Hobson and Martin 1996; 54) Hohn et 
aL 1995; 55) Irving 1939; 56) Jefferson et al. 1993; 57) Johnsgard 1987; 58) Jury 1986; 59 ) Katona et a l  1993: 60) 
KeUy and Wartzok 199% 61) Kenyon 198 1; 62) Kooyman 1989; 63) Kooyman and Gentry 1986; 64) Kooyman and 
Kooyman 1995; 65) Kooyman and Tntlmich 1 9 8 6 ~  66) Kooyman and Triiimich l986b; 67) Kooyman et aL I992a; 
68) Kmtzikowsky and Mate 1995; 69) Landis 1965; 70) Lavigne and Kovacs 1988; 71) Leatherwood and Waker 
1979; 72) Le Boeuf et al. 1989; 73) Lumsden and Haddow 1946; 74) AR Martin personal communication; 75) 
Marsh et al. 1989; 76) Matth 1993; 77) Medonca and Pritchard 1986; 78) Meiin et al. 1993; 79) Miyazaki and Perrin 
1994; 8 0 )  Montague 1985; 81) Morejohn 1979; 82) Naito et al. 1990; 83) Newby 1975; 84) Nilsson 1972; 8 5 )  
Nishiwaki and Marsh 1985; 86) ES. NordierypcrsonuIcornmunicarion; 87) N o r w  et aL 1995; 88) Orr and Aurioles- 
Gamboa 1995; 89) Pashikhov 196% 90) Peixun 1989; 91) Piatt and NettIeship 1985; 92) Prince and Harris 1988; 93) 
Prince and Jones 1992; 94) Pritchard 1979; 95) Reeves and Brownell 1989; 96) Ridgway 1986; 97) Robinson and 
Craddock 1983; 98) Sage 1971; 99) Scholander 1940; 100) Schorgef 1947; 10 1) Scolaro and Suburo 199 1; 102) Scott 
et al. 1993; 103) Seddon and van Heezik 1990; 104) Soma 1985; 105) U. Swain personal cornmunicarion; 106) Testa 
1994; 107) Tinker 1985; 108) Trihich et al. 1986; 109) Waaless et al. 1988; 1 10) Watanuki et al. 1996; 1 1 1) 
Watkins et al. 1985; 1 12) Watkins et al. 1987; 1 13) Wemer and Campagna 1993; 113) Westgate et aL 1995; 115) 
Whitehead 1989; 116) Wug et al. 1993; 117) Williams and Cooper 1983; 1 18) Williams et al. 1992; 1 19) Whon  
1985; 120) Wilson and Wilson 1990; 121) Worthy and Davis 1995; 122) Wiirsig et al. 1994. 

' Water depth where diving occurred. Animal assumed to have be diving to the bottom. 
' Mass estimated fiom the Iength. 

Depth limited by the depth range of the pressure sensor. 
Depth limited by water depth. 

' Incorrectly identified and reported as a green turtle in Landis (1965) according to Eckert et al. (1986). 
Estimated £?om mean + 2 x SD. 



Table 22. Aüomeirïc relationships between log,, d+g capacity (maximum depth, in m, and duration, in min) and 
log,,, body m a s  (MW in kg) for various groups of air-breathing vertebrates- 

Group na Regression equationb f 3 P 

AU 

Al1 O R  or MDG) 

Marine mammak 

Marine mammals without 
my sticetes 

B irds 

Pinnipeds 

Cetaceans 

Odontocetes 

Mysticetes 

Phocids 

Otarüds 

Penguins 

Flying birds 

Max depth = 36.3 1 M:" 

Max duration = 1.62 M:" 

Max depth = 68.23 Ka"' 
Max duration = 234 M>n 

Max depth = 13 1.83 h/Ib0.I3 

Max duration = 3.63 MCa 

Max depth = 34.67 M y  

Max dwation = 1.78 M,0-39 

Max depth = 28.84 Mt6'' 

Max duration = 1.35 Mcs0 

Max depth = 33.88 M y 3  

Max duration = 1.70 M y 8  

Max depth = 120.23 M:" 

Max duration = 1.38 M:* 

Max depth = 22.9 1 M2" 

Max duration = 0.5 1 M:" 

Max depth = 89.13 Mc0' 

Max duration = 0.04 M:61 

Max depth = 25.70 Mc5' 

Max duration = 3.39 M2" 
Max depth = 27.23 M,0..46 

Max duration = 6.22 M2'O 

Max depth = 4266 Mt7'  

Max duration = 0.98 M,0.90 

Max depth = 23.99 Mc2' 

Max duration = 1.26 M>= 

a n = number of maximum depth or duration observations. 
Y-intercepts for diving capa&ty were calculated for a mass of 1 since log,, of 1 = 0. 
' r = Pearson correlation coefficient 



Table 23, AUmetric relationships between log,, diving capacity (maximum depth, in m, and duration, in min) and 
log,o body mass (M, in kg) for various Families of diving birds. 

-- 

Group na Regression equationb f 8 P 

All 51 Max depth = 28.84 0.48 0.23 <O.OO 1 

54 Max duration = 1.35 NaJO 0.69 0.48 <O.OO 1 

Penguins I l  Max depth = 4266 McÏ1 0.81 0.66 0.003 

9 Max duration = 0.98 M,,0.90 0.93 0.86 c0.00 1 

Alcids 9 Max depth = 158-49 Mbl-W 0.81 0.66 0.008 

9 Max duration = 2 14 Mcn 0.40 O. 16 0.283 

Cormorants 7 Max depth = 30.90 M,aq9 0.53 0.28 0.223 

12 Max duration = 0.98 M,0.59 0.56 0.31 0.059 

Ducks 15 Max depth = 10.72 M,'.4' 0.45 0.20 0.093 

14 Max duration = 1.10 0.41 0.17 O. 143 

" n = number of maximum de@ or duration observations. 
Y-intercepts for diving capacity were calculated for a mass of 1 since log,, of 1 = 0. 

. - 

' r = ~earsck correlation coefficient 
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Figure 2.1. Relationships between log,, diving capacity (maximum depth and duration) and log,, body vqrz for 
mysticete cetaceans, odontocete cetaceans, flying birds, peuguius, otariid seals, nad phocid seals (soiid Lines denote 
significant results and broken h e s  denote oonsigdïcant results). The thickest liaes represent the relationships for 
the entire data set These h e s  include values for sea ottm, walnises, sirenians, and marine turtIes in addition to 
the taxonomie groups listed above. e, otariid; i flying bird; m, mysticete; mu, sea otter, O, odontocete; p, penguin, 
s, phocid; si, sirenian; t, turtle; w, wairus, 



1 

Mass (kg) 

Figure 22. Relationships between log,, diving capacity (maximum depth and duration) and log,, body mass for 
alcids, connorants, ducks, and penguins (soiid lines denote significant results and broken lines denote 
nonsignifïcant results). The thickest h e s  represent the relationships for the entire bird data set These lines 
hclude values for grebes, loons, and petrels in addition to the taxonomie gmups üsted above. a, alcid; c, 
cormorant; 4 duck; g, grebe; L, loow p, penguin, pet, petrel. 
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Figure 23. Relationships between log,, predicted diving capacity (maximum depth and duration) and log,, body 
mass for birds, phocids, otariids, and cetaceans overlaid upon the regession lines calculated for observed data 
fiom Figure 2 1 (solid lines denote si@cant results and broken lines denote n o n s i ~ c a n t  results). Predicted 
maximum diving duratioo w u  approxirnated by the calculated ADL. The lines with symbois represent predicted 
diving capacities. Diving metaboiic rates were assumeci to be 2 x SMR for aU groups. The large dotted lines 
represent a second set of predicted diving capacities for otarüds using diving metabolic rates equal to 5 x SMR 
The smaii graph at the bottom right shows the various predicted lines on a h e a r  scaIe. 



Classification of dive profides: a cornparison of statistical clustering techniques and 

unsupervised artSicial neural networks 

Abstract 

Recent advances in technology for sampling di-g behavior of anmials have enabled 

enonnous data sets to be collected on a variety of diving animals. Methods used to anaiyze 

these data vaiy considerably across studies, compiicating interspedlc comparisons. The 

primary problem is that methods for analyzing large, multivariate dive-data sets have not been 

clearly defined This study examines and tests various algorithms for analyPng multivariate 

observations and assesses their suitability for cIass@hg divïng data. These include k-means 

and fuzry c-means clustering techniques fiom the field of statisticç, and Kohonen seK- 

organizing map (SOM) and fiuzy adaptive resonance theory (ART) nom the field of artificial 

neural networks. A Monte Car10 simulation was performed on adicially generated data, with 

h o w n  solutions, to test clustering performance under various conditions (Le. well d e h e d  or 

overlapping groups, varying numbers of atüïibutes, varying numbers of groups, and auto- 

correlated attributes). As well, performance was tested on real data sets fiom Adélie penguins 

(Pygmcelis adeliae), southem elephant seals (Mirmnga leunirla), and Weddell seds 

(Leptonychotes iveukiellii). K-means, funy orneans, and SOM all performed equally well on 

the axtifïcially generated data whiîe fiizzy ART had e m r  rates that were twice as high- AU 

techniques showed decreasing performance with increasing overlap among groups and 

increasing numbers of groups, but increasing performance with increashg numbers of 

attriiutes. Fiizzy ART was the most sensitive to the varying simulation parameters. When 

clustering red data, both c-means and SOM classified observations into clusters that were 

closer together (relative to k-means) and hence had less distinct boundaries separahg the 

clusters. K-means performed as well as c-means and SOM, but its classilication of real data 

was more logical when compared to the actual dive profiles. K-means is also readily available 

on most statistical software packages. Considering all of these factors, k-means clustering 

appears to be the best method among those exarnined for grouping multivariate dMng data. 



tntroduction 

The recent widespread use of telemetric devices (e.g. time-depth recorders (TDRs), 

satellite-ünked the-depth recorders, heart rate monitors, and global positionhg coilars) has 

provided new msight hto  the physiology, behavior, and ecology of many organisns (e.g. Le 

Boeuf 1988, 1992; Hïndell et ai. 1991b; Boyd and Croxall1992; Mede 1983; Rodgers and 

Anson 1994; Testa 1994; Kooyman and Kooyman 1995; Schreer and Testa 1996). However, 

methods for analyzing the enormous data sets recorded by these devices have not yet been 

clearly defined. A good starting point for these types of analyses is to reduce the 

dimensionality of the data by organizïng the observations mto more manageable and 

understandable groups. This can be accomplished via supeMsed or unsupervûed leaming 

methods, using either traditional statisùcal techniques or analytical tools fiom the recently 

expanding discipline of artificial neural networks (ANNs). 

Several sources have provided reviews on ANNs (e.g. Rogers 199 1; Lau 1992; 

Vemuri 1992; GaJlant 1993; Ripley 1993, 1994; Cheng and Titterington 1994; Elmasry 1994; 

Sade 1994). Bnefly, ANNs typicauy conskt of a set of Ïntercomected computational units 

that attempt to mimic biological W e m .  They use large numbers of individually functioning 

neurons (simple computing elements) to collectively perfonn tasks that elrceed the abiüties of 

even the fastest computers. Unlike the serial or Von Neumann computer, ANNs process 

information in a parailel manner and can leam through training. 

In supervised lea-g, the preferred output (e-g. the number and types of groups) is 

hown for the data and a mathematical mode1 must be trained in order to group new 

unclassifïed observations. For this type of leaming to occur, the data structure must be well 

understood and many preconceptions must be applied to new data. Examples of supervised 

ANNs are back-propagation (Rumelhart and McClelland 1986) and counter-propagation 

(Hecht-Nieken 1987). Regession, analysis of variance, and discriminant fûnction analysis 

(Dillon and Goldstein 1984; Sokal and Rohif 1995 j are examples of statistical techniques that 
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employ supervised learning. However, offen Little is known about the structure of the data 

and consequentiy, projecting preconceived ideas ont0 the data introduces subjective bias. 

In unsupervised learning, the classincation Y Unjcnown and the data must be clustered 

mto simüanty groupmgs. The structure of the data is analyzed and data are grouped such that 

observations within a group are more amilar to each other than they are to observations in 

other groups. There are several types of  ANNs usefid for clustering. Two of these are self- 

organizing maps (SOM: Kohonen 1982, 1989, 1990) and adaptive resonance theory (ART: 

Grossberg 1976; Carpenter and Grossberg 1987a, b, 1988; Carpenter et aL 1991). Statistical 

analogies are principal component analysis (Pearson 190 1 ; H o t e h g  193 3), k-means 

clustering (MacQueen 1967), and fuzzy c-means clustering (Dunn 1973; Bezdek 198 1, 1987). 

For recent reviews of these statistical procedures see Dillon and Goldstem (1984), Iain and 

Dubes (1988), AfX and Clarke (1990), and Eventt (1993). 

Until recently, statistical techniques would have been the obvious choice for analyzing 

dive data, but with the recent advances in the area of ANNs, additional techniques are now 

available. Many of these newer techniques have not been weU tested or compared to the 

older, more traditional statistical methods. As well, many of the ANN techniques remah 

unknown to much of the scientific community. ANNs classi@ observations m a manner that is 

fhdamentdy Merent from statistical techniques. Instead of studying the m c t u r e  of all of 

the data simultaneously, each observation is coosidered in turn and parameters are adjusted if 

the observation is misclassined (Fukunaga and Young 199 1). Some cornparisons between 

these two difEerent approaches have been made (Balakrishnan et al. 1994; Sade 1994), but 

new algorithms also need to be tested for characteristics such as complexity, convergence, 

performance, robustness, and aability (Bezdek 199 1). 

This work is part of a larger, quantitative study of the dMng behavior of air-breathing 

vertebrates. Since moa recent analyses of diving behavior have utilized data collected via 

TDRs (Chapter 2), it was necessary to determine possible methods for analyzing data fiom 



these instruments These devices are attached to an animal and record their depth in the water 

c o l m  (via a pressure sensor) at pre-deterrnined time mtervals A typical data record (Le. al l  

data conected on a single individual) consists of a series of depth values that can be 

partitioned into dives. These dives, which are a series of depths over time starhg and ending 

with depth equal to zero, can be perceived as two dimensional shapes, depth versus tirne. 

Smce TDRs can record millions of observations, representing tens of  thousands of dives on a 

single individual, analytical methods are needed to objectively and automaticdy categorize the 

data mto meaningfùl, behavioral groupings. 

Most studies of diveig behavior, utilizing TDRs, have primarily group ed dives 

subjectively according to perceived similarities in maximum depth and duration (e.g. Kooyrnan 

1968; Croxall et aL 199 1; Goebel et aL 199 1; Wadess et al, 1992; Williams et aL 1992; 

Chappell et a l  1993a). It is perhaps inappropriate to solely include maximum depth and 

duration into classification analyses because both of these vaxiables may display strong die1 

variation (e-g. Bengtson and Stewart 1992; Castellini et aL 1992a; Boyd et a l  1994; Schreer 

and Testa 1996) that c m  obscure the determination ofbehavioral groupings. Also, using only 

the maximum depth and duration of a dive excludes most of the observations coilected (i-e. 

the rest of the depth readings). Therefore, to sohre these two shortcomings, several studies 

have utilized the two dimensional shape of the dive, the dive profile, to clasnfi diving 

behavior (Le Boeufet aL 1988, 1992; HindeU et aL 1991b; Bengtson and Stewart 1992; 

Schreer and Testa 1993, 1995, 1996; Jonker and Bester 1994; Brillinger et al. 1995; 

Campagna et al. 1995; Schreer et aL 1995; Brillinger and Stewart 1997; B m s  et ai. in press, 

Chapter 4). Many of these works, however, have relied solely or primarily on subjective 

comparisons of the dive profdes. This introduces human bias and prevents mterstudy 

compaxisons due to individual classification protocols. A few studies have attempted 

quantitative classification of diving patterns (Nindeii et al 193 lb; Schreer and Testa 1993, 

1995, 1996; Boyd et al. 1994; BriIiinger et aL 1995; Schreer et ai. 1995; Brillinger and 
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Stewart 1997; Burns et al in press, Chap ter 4). However, the mdhidual classification 

protocols for these analyses have also varied considerably (e-g. principal component analysis, 

cluster aoaiysis (various algonthms), shape W g  algorithms, as well as combmations some 

of which mcluded 113a)cimu.m depth and duration) and their performances have usually not been 

tested. 

In this paper, the capabilities of several statistical techniques (k-means and fiw c- 

means clustering) and ANNs (Kohonen self-organizing map (SOM) and adaptive resonance 

theory (ART)) capable of unsupervised learning are compared. First, performance of the 

techniques was assessed by determinhg the number of misclassined points when clustering 

aitificially generated data with independent variables and with known cluster solutions. Next, 

the performance of the techniques was tested on data artificially generated to simulate 

characteristics of diving data (Le. specific dive shapes with auto-correlated depths). Lady, a 

series of subsampled red diving data fkom three species of air-breathhg vertebrates were 

clustered to m e r  test the performance of the various techniques and to assess their 

suitabüity for analyzbg real data. 

Methods 

The aIgorithnts 

A common statistical clustering technique, k-means, a non-disjoint statistical clustering 

technique rehted to k-means, f h y  c-means, and two types of unsupewised neural networks, 

SOM and ART, were chosen for study and cornparison. K-meanq SOM, and ART were 

chosen because of their availabilrty in numerous software packages (e-g. SAS, SPSS, 

SYSTAT, NeuralWorks Professional II Plus) aiid because of their abundant use. F m  c- 

means was chosen because it has characteristics (fuzzy clustering and cluster memberships, 

see below) that are potentiaIIy useful for clustering the relatively continuous data observed for 

dMng behavior. 



K-rneam - K-means is a non-hierarchical clustering procedure that uses Euclidean 

distances to divide observations mto disjomt clusters. Observations are assigned to the cluster 

which has the closest center. The k-means algorithm was perfomed using PROC 

FASTCLUS m SAS (SAS I n h t e  Inc. 1990). Initial cluster seeds are the first n 

observations, where n equals the number of clusters. Ushg the MAXITER option m 

FASTCLUS, cluster seeds are replaced by cluster means foiiowing each iteration. This is 

continued until the changes m cluster seeds become small or zero. The number of clusters 

desired is set prior to the analysis. 

C-meam - In fùzzy c-means, data are pamfoned so that each observation is assigned a 

degree of membership to each cluster rather than assip.hg it to only one cluster as is the case 

for "hard" clustering (e-g. k-means). The fùzzy c-means algorithm was perfomed using a 

modified FORTRAN program created by Kamel and Selim (1994). This program also uses 

Euclidean distances between observations to &de data into clusters. However, these 

clusters are not disjoint since an observation can beiong to more thm one cluster. In fact, 

after each iteration, cluster seeds are nat replaced by the means of the observations in that 

group, but instead are replaced by the means of aii of the observations, with each observation 

bemg weighted by its membership to that cluster. Initial cluster seeds are randomly selected 

from the data and the number of cluaers desired is set pnor to the analysis. Cluster 

membership (M), as outlined by Kamel and Selim (1994), is calculated by 
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Ir du > O, b' ij, where c = the number of clusters, rn is the fùzziness parameter (m > 1), and d, 

is the Euclidean distance between the ith observation vector and thejth cluster center vector. 

Ifdu=O thenM,= 1 andM,=Oforj + 1. 

Artificial neural networks are typicaily organized into Iayers (Figure 3.1). At the 



bottom, there is an mput layer that contains nodes through which data are @ut. The top is an 

output layer that generates the output interpreted by the user. Between these two layers, 

there can be one or more layers cded  hidden layers. The output of each layer is input mto the 

next layer until the signal finally reaches the output layer which then generates the observable 

output. For our purposes, each input node represents a variable and each node m the output 

layer represents a cluster. Artificial neural networks cluster observations m two main stages, a 

training or leaming stage and a recaff stage (NeuraIWare Inc. 199 1). In the fïrst stage, a 

leamhg d e  is used to hoirz the network for a specific data set. Following this trainhg stage, 

the second or recall stage actualLy classifies the observations. 

SOM - Kohonen SOM is a topology-presenring map motivated by the structure of the 

mammalian brain where sensory inputs are mapped into a number of "sheets" of ce& 

(Kohonen 1982, 1989, 1990; Gallant 1993). Topology is preserved m that nmilar sensory 

inputs (Le. stimulation of two parts of the body that are near each other) will cause groups of 

brain cells near each other to fie. In the ANN situation, simüar inputs Iead to output nodes 

being activated that are close together. In Figure 3.1 for example, a data set with ten variables 

is input h t o  the network. Then nodes of the hidden layer compete to produce an output (one 

of fÏve clusters), and the output layer mdicates which node has won. The Wmner is 

determined by having the minimum Euclidean distance between the vector of  the hidden node 

(a cluster center) and the input vector (an observation). The hidden nodes are organized so 

that nodes representing similar cluster vectors will be near each other. This is m contrast to 

statistical clustering where clusters are ordered randomly or ART where clusters are ordered 

relative to the order of the input vectors. To accomplish this topology preservhg property, a 

"conscience" mechanism is used to prevent a particular output node fiom representing the 

entire data set (DeSieno 1988; Balakrishnan et ai. 1994). This mechanism ensures that, dong 

with the whmhg node, some of the nodes nearest to this wsining node also update their 

weights. For these networks, one node on either side of the winning node was dso updated. 



5 1 

The networks were created within the NeuraIWorks Professional n/Plus package, 

Version 5.2 (Neuranivare Inc., Pittsburgh, PA, USA). Networks were created so that the 

number of nodes in the mput layer was equal to the number of variables m the data set, and 

the number of nodes in the hidden layer and output layer was equal to the number of clusters. 

The data were randomized before training and networks were trained for 30 iterations as 

recommended by Neuralworks. 

ART - There are two main groupmgs of ART for non-hierarchical clustering: ARTl 

for binary input patterns (Carpenter and Grossberg 1987a) and ART2 for analog or 

continuous input patterns (Carpenter and Grossberg 198%). In this study, a version of ART, 

cded  fitav ART, was used. This algonthm mcorporates computations fiom fuay set theory 

into the ARTl neural network, allowing analog input patterns to be analyzed (Carpenter et al- 

199 1). In ART the number of clusters is not set, but rather clusters are created as needed. 

Clusters are then modified only ifthe cluster center is sufEciently close to the training 

observation, otherwise a new cluster is formed. A parameter called vigilance controls cluster 

granularity. Vigilance basically represents the maximal allowable size (in the multidirnençional 

space) of the cluster. A high vigilance tolerates oniy slight mismatches between the cluster 

center and the input observation causing large numbers of clusters to be foiind. The converse 

is true for low vigilance. Figure 3.2 is a schematic of the general ART architecture. A 

multivariate observation (F,) k input into the network and fed into the F, layer where a 

nonnalization occurs The vector f?om F, is fed to the F, layer where the nodes compete to 

produce an output. The winuer is determined by havhg the minimum Euclidea. distance 

between the vector of the F, node and the vector of the F, layer. The vector fkom the winning 

node is then compared to the input observation to see if it is d c i e n t l y  close as determined 

by the vigilance. Ifthe merence is greater than that set by the vigilance, the w h e r  is tumed 

off and a new node (cluster center) is created. Ifthe Merence is less, the vector of the 

winnmg node is updated appropriately. The last sep  is for al1 the nodes to be re-enabled to 



d o w  the next mput to be processed. 

The networks were created within the NeuraIWorks Professional II/Plus package, 

Version 5.2 (Neurafware Inc., Pittsburgh, PA USA) by mo-g a fiuzy ARTMAP 

network The output nodes were deleted so that the network could function without 

supervision and the activity (Le. the membershïps to the various clusters) of the F, nodes was 

monitored through the committed node mstmment (see frcay ARTMAP, NeuraiWorks 

Professional II Plus, Version 5.2). Two types of fùzzy ART networks were created, one for 

the aitincially generated data with known cluster solutions and a second type for clustering 

real dive data. The first type of network was created so that the number of nodes in the mput 

Iayer (F,) was equal to the number of variables in the data, and the number of F, nodes was set 

equal to the number of clusters desired. Since ART h d s  clusters as needed, the vigilance 

parameter was raised und the desired number of clusters was found (Le. each F, node was 

activated). Once this level of vigilance was deter-ed, the Mgilance level was raised by 0.0 1 

increments for a total of 10 separate runs for each data set. The output fiom aIl of these nuis 

was then analyzed and the output with the fewest misclassifications was selected to represent 

the performance for that particuIar data set. For clustering of the real data, for which cluster 

solutions were unlmown. a second type of network was created with the number of F2 nodes 

set to be > 10. Vigilance was lowered until only 2 clusters were found and was then raised by 

0.0 1 increments mtil3 clusters were found. This was continued until9 output data sets were 

generated with 2- 10 clusters. The networks were trained for 30 iterations. 

Data generation 

Three types of data were used to test the performance and applicabüity of the various 

algonthms. First, data sets with lmown cluster solutions were artificially generated with 100 

observations per data set and an equal number of observations per cluster group. N o d y  

disaiiuted data were generated with each variable being independent (Introduction to 



Clustering Procedures SAS Institute Inc. 1990). Various data sets were generated wiih 

varying numbers of clusters (2,3,4, and 5), varying numbers of mdependent variables or 

attriiutes (4, 6, 8, and IO), and varying amounts of cluster overlap (low, medium, and high). 

A total of 144 data sets (3 data sets per level) were created. 

The second type of data consisted of 5 shapes (descnied by 10 depths) commonly 

observed as dive profiles for the species mcluded m this study. These data were artScialIy 

generated as multivariate normal with auto-correlated depths M a r  to that observed fiom 

real data. Using k-means clustering (PROC FASTCLUS, SAS Instïtute Inc. 1990), cluster 

solutions (cluster means and correIation structures) were determtned for dive data fiom 

WeddeU seals (Leptonychotes weddellii) (data fiom Testa 1994; Schreer and Testa 1995, 

1996). Fiive distinct cluster means (ie. shapes) were observed: 1) soft-square, 2) "V", 3) 

skewed-right, 4) skewed-left, and 5) bard-square (e-g. cluster level5 m Figure 3.3). Next, a 

covariance structure was determined for each dive shape so that the auto-correlation between 

the 10 depths codd be calcdated. Three data sets, with 1000 observations each, were 

generated for the simulations. Numbers of observations per cluster group were approximated 

nom the natural cluster solutions: 37 % soit-square, 20 % "V", 13 % skewed-right, 13 % 

skewed-le&, and 17 % hard-square. 

The third and last type of data consisted of a senes of subsamples fiom real dMng data 

(depth versus time) nom Adélie p enguins (Pygmcelis adeliae) (data fiom Chap p eli et al. 

1993a), southem elephant se& (Mirounga leonina) (data eom Hmdeil et aL 1991b), and 

Weddell seals (data fiom Testa 1994; Schreer and Testa 1995, 1996). Tbree data sets, each 

containhg a subsaqle of 3,000 dives, were taken f b m  the dive data recorded for each of the 

dBerent species. Before sampling the data, some short, shallow dives were excluded fiom the 

data sets. Any dive with a maximum depth less than or equal to 2 times the depth resolution 

of the TDR was excluded due to erroneous drift of the zero depth in the TDR and possible 

effects of wave action. Also, since this work involves the determination and cornparison of 
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dive shape, only dives with at least 5 depth readings were analyzed. This was decided upon 

since fewer than 5 depth readings for wen simple geometric shapes resulted in considerable 

degradation of  the shape pattern. 

Depth values for each dive were mterpolated so that the dive was represented by 100 

depths, allowing correspondmg depths among all dives to be compared (Schreer and Testa 

1995). Dives were then standardized such that the maximum depth of each dive was equal to  

1, and the rest of the depths scaled less than 1. The means for every 10 depths, for a total of 

10 means, were calculated for data reduction and to smooth the dive profiles. Ten 

standardized depths for each dive enabled all dives to be compared regardes of their 

malcimum depth or duration, ailowing comparison of the dive shapes. 

Amlj~sis 

Much of this work folowed Balakrishnan et al. (1994) m which k-means clustering 

was compared to several types of Kohonen ANNs (e.g. SOM) using artificidy generated 

data. Here, the cornparisons were expanded to include other types of unsupe~sed leaming 

(fWzy c-means and filw ART) and these techniques were also applied to real data. Using 

data fkom the two types of artificiaüy generated data sets  the performance of the four 

algorithms was compared in temis of the number of observations misclassified. For the fkst 

type of artifïcially generated data, square-root transformed misclassification rates were 

analyzed using a factorial analysis of variance to determine the effect of the simulation 

parameters on the clustering results. 

Lady, using real observations nom the animals mentioned above, the data were 

grouped by the various techniques compared across techniques and compared to the original 

categorizations suggested by the authors who o@nally collected and classifïed the data. Our 

original intention was to determine the number of groups (clusters) within a data set by 

comparing R' values and Pseudo F statistics (Calinski and Harabasz 1974; Miliiga. and 



Cooper 1985; Roc  CLUSTER and Proc FASTCLUS, SAS Institute Inc. 1990) over the 

number of clusters following Schreer and Testa (1995) (e-g. upper right graph m Figure 3.3). 

The formulas, as outlined by Proc CLUSTER and Pioc FASTCLUS (SAS Institute Inc. 

1990), are as foJlows: 

and 

Pseudo F = 
R 2 ~ ( ~ -  1) 

where n is the number of observations, c is the number of clusters, 4 is the Euclidean distance 

between the ith observation vector and the@ cluster center veaor, and di is the Euclidean 

distance between the ith observation vector and the overall sample mean vector. However, 

this technique was found to be unstable for the fairy continuous data observed for the dMng 

behavior used in this study. When clustering subsamples of various data sets, different 

numbers of clusters were suggested by the R* values and Pseudo F statistics for different 

subsamples. These mdicators, however, are good starthg points when groupmg data because 

ifvery strong cluster boundarïes exist, a good indication of the correct number of groups can 

be determined This was not the case here, so an ad hoc method for determinmg a suitable 

number of clusters for a data set was also used (Figure 3.3). Each data set was clustered mto 

2 through 10 groups and the cluster means were plotted. The number of suitable clusters was 

determined as the level of clustering after which a l i  additional clustering 1) generated no 

additional, novel clusters but instead, divided pre-existing clusters into a contmuum of slightly 



Merent groups (e-g. several skewed shapes with different amounts of skevmess) or 2) 

created unstable clusters (ie. cluster means that occur at one leveI, but either change 

drasticdy or do not occur at subsequent levels). This procedure was performed on three 

subsamples of a particular data set to insure that the r e d t s  were consistent. 

Clustering results were then compared to actual dive profiles to assess the validity of 

the various clustering solutions. Merences among clustering r e d t s  were compared by 

calculating the mean Euclidean distance between each cluster center and t s  nearest cluster 

neighbor for each data set This procedure was conducted on analyses set to produce five 

clusters to aNow direct comparisons. 

Results 

Artz~îcial &a 

The performance of the vanous dgonthms were very M a r  except for Fuzzy ART 

which dways performed considerably worse than the other methods (Table 3.1). The main 

effects were sigdicant across aii techniques as shown in Table 3.2. An increase in the 

number of clusters caused a small but significant increase in the misclassification for a.U 

techniques except for Fulzy ART in which the increase in misclassification was considerably 

higher. An increase in cluster overlap also caused an increase in miscIassifïcation across ali 

techniques with Fuzzy ART again being the most sensitive. An mcrease in the number of 

variables caused the misclassification error to decrease in aU techniques. There were also a 

few signincant mteractions, although these were all relatively weak 

The analysis using five dive shapes with auto-correlated depths produced similar 

r e d t s  to those presented above, with alI algonthms perforrning simüarly except for fûzzy 

ART which, again, performed considerably worse. The mean misclassification rate was 12 % 

for k-means and fiiny c-means, 11 % for SOM, and 24 % for fuzzy ART. For k-means, 

fiizzy c-means, and SOM, moa of the misclassification occurred when soft-square shapes 



were classified as hard-square shapes (6- 18 % of the sofi-square dives were misclassified, 

accountmg for 23-49 % of the total misclassification) and when "Vu shapes were misclassined 

as sofi-square shapes (5- 17 % of the "V" shapes were misclassified, accountmg for 9-24 % of 

the total misclassification). F u z y  ART had higher misclassification rates across the groups 

and in two mstances, misclassified aimost the entire group. Seventy-one percent of the hard- 

square shapes were mûclsssifïed as sofbsquare, accounting for 47 % of the total 

misclassification in one data set. Another data set had 80 % of the "V" shspes misclassified as 

soft-square, accounting for 64 % of the total misclassification. 

Real data 

Dives shapes and their relative proportions determnied for Weddell seals, southem 

elephant seals, and AdéIie penguins by the various algonthms are shown in Table 3 .3,3.4, and 

3.5. Weddell seals had five distinct dive types as compared to four for both southem elephant 

seals and Adélie penguins. Fuzzy c-means and SOM had the leaa variability in proportions 

across the various dive shapes (coefficient of variation (CV) averaged over the three 

subsamples and the three species was 30 % for c-means and 29 % for SOM) and had results 

which were very similar to each other. These two algonthms were also the most consistent 

across the three subsamples within a species. That is, the mean dive shapes and fiequemies 

for the 2 through 10 cluaer groupings were very nmilar across the samples (a, b, and c). 

Relative to c-means and SOM, k-means had more variability in dive shape fiequencies (CV = 

65 %) while f k z y  ART had the moa variability (CV = 136 %) with some groups including as 

much as 86 % or as Little as 1 % of the data. For both the Weddell seal and Adélie penguin 

data, f h y  ART often did not discriminate between two groupmgs found by all of the other 

algorithms (e-g. no separation of "Vu and soft-square dive shapes). 

Cornparisons of the clustering r e d t s  to actual dive profles indicated that dives within 

the diEerent groups determined by hzzy c-means and SOM were more difncult to 



discriminate fiom each other than those determined by k-means. That is, some dives withm 

one group had shapes that appeared to be more suded to a different group. Dives withm the 

different groups detemiined by k-means were considerably easier to discrimmate fiom each 

other whüe dives wirhm the fiizzy ART groupings were eaher easy or difncult to discriminate 

dependmg on the group. This was seen quantitatively by the degree of sepration between the 

various cluster means among techniques (performed on analyses produchg fwe clusters). 

Except for funy ART, k-means had the largest mean distances (MD, averaged for the three 

subsamples) between cluster centers and their nearest cluster neighbors (MD,,, = 0.564, 

MDaq,, = 0.384, MDAdac = 0.353). Mean distances for c-means (JMDw,, = 0.533, 

MDEIqhari, = 0.304, M D A ~ =  = 0.3 12) and SOM (MD,,, = 0.532, MDBq, = 0.338, hDAda, 

= 0.323) were smaller. Fuzzy ART had mean distances that were considerably larger than 

those found for the other techniques (MDw- = 0.703, MDaq,, = 0.577, MDAd&c = 0.548). 

However, these mean distances were highly variable, indicating that while certain cluster 

means were fàr from their neighbors, others were very close. 

Discussion 

This work teaed and compared several possible methods for analyzhg the enormous 

data sets recorded by modem telemetric devices AU of the methods improve the level of 

objectMty compared to manual grouping of the behaviors. As weU, the methods expedite 

analyses due to their relatively automated nature. However, there were considerable 

diEerences across the methods in misclassification performance with the artificially generated 

data, and across the sixdarity groupings determined for the real data, that mdicated the 

b e n e h  of certain algorithms for these soas of analyses. 

Cornparisons a c r m  algorithm 

AU of the algorithms had low misclassification rates when grouping. the artifïcially 



59 

generated data, except for f k q  ART which had error rates that were twice as high as the 

other methods. The perfomiance of the various methods was more variable when grouping 

the real data. This part of the cornparison was considerably more subjective since there were 

no "correct" solutions and the performance was generally deterrnined by how weil the cluster 

means represented the dive shapes withm a group and whether there were any obvious 

biological explanations for the groupings. The fouowing four subsections will present a 

discussion of the results fiom each of the four algorithms and will be ordered fiom "worst" to 

%est" in p erformance/suit abilify- 

ART - Fuzzy ART had many interesting qualities, but its performance was the p oorest 

of ali the algonthms examined The various ART algorithms are said to be "stable" for a 

specific data set in that the final clusters WU not change with additional iterations (Carpenter 

and Grossberg 1987a; Gallant 1993). However, the order m which the trainhg data are input 

into the network may duence  the final cluster means and fiequemies (Gallant 1993; M. 

Gjaja personal comnrunicatiotz; p e r s o d  observation). In the networks used here, the 

training data were randomized before each iteration. Therefore, each time the same data set 

was mput into the network, the order of the data was different. However, even though ART 

was "stable" withm a singe training session, it was unstable across sessions. That is, if the 

same data sample was clustered by ART three separate times (including a retraining of the 

network), the cluster solutions would be diEerent each time (e.g. different cluster means, 

fiequencies, or number of clusters: unpublished &a). Regardes of how many iterations of 

the data were used to train the network, ART was not stable across separate sessions 

indicating that the order of the training data was afEecting the results. In contrast, SOM, as 

well as k- and c-means always produced the same r e d t s  each time the same data set was 

analyzed. 

Another characteristic of ART is of considerable mterest and is another potential cause 

of its poorer performance. Of ail the algorithms examined here, ART is the closea to being 



truly unsupervised With the other algorithms7 the number of clusters desired must be 

provided beforehand. Oniy a vigilance level needs to be provided for ART. The network then 

clusters the data mto Logical groupmgs accordmg to the maximum dowable size (m space) of 

the clusters as set by the vigilance. If a new observation is too different fiom pre-e+g 

clusters, as dete-ed by vigilance, a new cluster is created However, this characteristic 

which Carpenter and Grossberg (1987a) suggest sohres the stabilitppZarticity dilemma (ie. 

lets the network adapt, but prevents new mputs fiom destroying past training), allows the 

system to be too plastic for some applications. That is, dependhg on the vigilance lwel and 

the order of the input data, not oniy will solutions with different numbers of clusters be found, 

but even solutions with the same number of clusters may have different clusters sizes (Le. the 

number of observations within the clusters) and means This plasticity may prevent ART fiom 

having performance equal to the other algonthms, but it does show potential for ds use in 

vuly unsupervised situations like remote applications (e-g. classifications on-board a 

t elemetric device). 

SOM- SOM had excellent performance, equal to the statistical methods. In tact, 

SOM had nearly identical performance rates to k- and c-means when clustering the artificially 

generated data, and had çimilar results to c-means when clustering real data. This is in 

contras to the results of Balakrishnan et al. (1994) where SOM performed consicierably 

worse than k-means SOMs poorer performance in the work of Balakrishnan et aL (1994) 

was probably due to the larger number of nodes in their hidden layers which allowed more 

topology-preserving properties, but poorer performance. In the SOM networks used here, 

there were fewer nodes in the hidden layers. Ifeach node has no other neighbors, then the 

topology-preseming properties are Lost and SOM is very similar to k-means (Gallant 1993). 

Smce the SOM networks used here had so few nodes m the hidden layer, they probably 

tùnctioned similar to k-means. This is substantiated by their simila. performances. The 

conscience mechanism which allowed the few nodes surrounding the winning node to be 



updated, as weli as the winning node, may have made SOM fùnction m a fashion more similar 

to c-means. This is substantiated by the simüar r e d t s  produced by these two algorithms 

when clustering the red data. SOMs characteristic of updating cluster centers near the 

wiming center enables t to cluster data in a fuPy sense, like c-means. ln Gct, the 

performance of these two algorithms was so simiIar that they were generally considered to be 

tied for their overd performance/suitability. C-means was ranked slightly higher because of 

ts additional characteristic of assigning a membership coefficient to each observation. The 

fhq updating of both SOM and c-means is mon Iikely useful d e n  considering outliers, but 

may have the negative side effet of produchg clusters that are too similar to each other. This 

point will be expanded on in the discussion below on c-means. 

C-meam - Fuay c-means clustering had veiy good performance that was similar to 

that of k-means and SOM. Its performance when clustering the artificially generated data and 

its clustering solutions for the real data were very similar to k-means which was expected 

since they are closely related. However, its even stronger similarity to SOM was surprising. 

It suggeas that a SOM network with few nodes in the hidden layer and a conscience 

mechanism hc t ions  much the same as c-means. Originaliy, it was thought that c-means 

would have the best performance and would be the best suited for groupmg the dive data. 

Smce every observation belongs to every cluster, outliers would have less of an effect on the 

cluster centers because their impact would be çpread out over aIi of the clusters. Ako, this 

fiizy quality allowed each observation to be evaiuated on how weli t a s  within a cluster. 

That is, obsewations with high cluster memberships could be considered to be good 

representatives of that pdcu la r  group while observations with low cluster memberships in 

~ W O  or more clusters could be considered to be hybrids (having characteristics of more than 

one group). It was hoped that this characteristic would be usefiil for the relatively contmuous 

data recorded for divmg behavior. Observations with high cluster memberships would be 

used as representatives of a dive type and subsequentiy compared using additional variables 
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like maximum depth, duration, time, and location. The hybrids could either be excluded nom 

the subsequent analyses or combined into one or more hybrid groups. This would create 

larger boundaries between the dive types and potentially provide a more usew picture for 

discriminating difFierent diving behaviors. However, the fiizzv classification used by both c- 

means and SOM (Le. updating neighboring cluster centers m addition to the winnmg cluster 

center) decreases the separation between each cluster *ch creates less distinct boundaries 

between these chsters. Therefore, there was considerably more overlap across clusters, and 

physicd and biological distinctions between dive shapes fiom different groups were more 

diEcult to d e t e d e .  This could also be seen m that the variability m group sizes (numbers 

per group) was relatively srnall, suggesting that cluster coverage was equally spread over the 

data space. 

K-meam - K-means clustering performed as wen as c-means and SOM, but its 

classification of the real data was more logical (Le. dive shapes within a group generally had 

characteristics that made it obvious why it was classified in that group and not another). K- 

means' ability to classiS. observations mto more distinct groups than the other methods 

suggests that it is the moa suited for analyzing the relatively contmuous data recorded for 

behavioral observations. The characteristic of fÛzzy c-means that allows hybrids and cluner 

representatives @igh ciuster membership) to be identined can also be duplicated by k-means. 

By monitoring the Euclidean distance between an observation and t s  cluster center, hybrids 

could be identi6ed as those observations with two or more distances that are nearly equal 

between hiro or more clusters. Cluster representatives and outliers could be identified as 

observations that are very near to or fa nom their corresponding cluster center, respectively. 

These qualities suggest that, of al l  the algorithms e d e d  here, k-means has the most 

promise as a tool for analyzing behavioral observations. 



CImszjkation of real diving ahta 

These analyses suggesîed that fixe distinct dive shapes represent the divmg behavior of 

WeddeU se& whüe only four were indicated for both southem elephant seais and Adélie 

penguhs. The shapes were simiiar across species with two square dive types (sofi and hard), 

a "V" shaped dive type, and two skewed dive types Only Weddell seals had both skewed- 

right and skewed-left dive types while southem elephant seals had only the skewed-left and 

Adélie penguins had only the skewed-right. Possible fùnctions for these various dive shapes 

are: 1) foraging for hard- and soft-square shaped dives (Le Boeuf et aL 1988; Hindell et aL 

199 Lb; Chappell et al. 1993 a; Schreer and Testa 1996), 2) predator avoidance (Hindell et aL 

199 1b) or exploration/search (Hmdell et aL 199 Lb; Chappell et aL 1993 a; Schreer and Testa 

1996) for "V" shaped dives, 3) sleepmg/resthg/processing (Hmdell et al. 199 1b; Le Boeuf et 

aL 1992), exploration (Schreer and Testa 1996), foraging (Chappell et aL 1993a), or 

bathymetrically constrained (Le. following the bottom dom:  Schreer and Testa 1996) for 

skewed-lefi shaped dives, and 4) foraging (Chappell et al. 1993a), exploration, bathyrnetncally 

constrained (ie. following the bottom up), or processing (Schreer and Testa 1996) for 

skewed-right shaped dives. A dive shape found by previous midies on southem elephant seals 

and Adélie penguins, but not found here was parabolic shaped dives. It has been suggeaed 

that this type of dive may represent travelling (Hindeil et al. 199 lb; Chappell et aL 1993 a). 

However, the difference between "Vu and parabolic shaped dives is srnail. Also, two types of 

square dives reported previously for Weddell and elephant seals were also not discriminated 

here because only shapes were compared regardless of actual depth or duration. These were 

very long and deep h t  bottorned dives thought to represent benthic foraging m Weddell and 

elephant seals (Hindell et ai. 199 lb; Le Boeuf et aL 1992; Schreer and Testa 1996) and very 

long and shallow dives thought to represent traveiling in Weddell seals (Schreer and Testa 

1996). 

The dive shapes found here for Adélie peupins, elephant seals, and WeddeU seals 



were generalIy similar to the types reported previoudy (Hmdell et aL 199 lb; ChappeU et al 

1993a; Schreer and Testa 1995, 1996). However, ChappeU et aL (1993 a) reported only three 

primary types of dives (shallow-parabolic, shallow-square, and deep-square) for Adélie 

penguins and these were prjmariiy dimiminated subjectively using nmximum depth. ChappeIl 

et aL (1993a) did d u d e  to three variants of these primary patterns (V, and two types of 

foraging dives that could be hterpreted as skewed-nght and skewed-left) indicatmg more 

similarity with the results found here. Southem elephant seal dive shapes have been classined 

by several authors (HÏadeU et aL 199 1b; bnker and Bester 1994; Campagna et aL 1995) and 

the results are generaliy simüar to those found here. Exceptions were a flat bottomed square 

dive type @indeil et aL 199 1b; Campagna et al 1995) (see above), a parabolic dive type 

(Hindell et aL 1991b) (see above), and a skewed-right dive qye  (Jonker and Bester 1994), 

although this last type of dive was only suggested by one shidy and its occurrence was 

relatively rare. The dive types origindy reported by Schreer and Testa (1995) for Weddeil 

seals were very similar to those found here. Although, this was not surprishg since Schreer 

and Testa (1995) used a k-means clustering algorithm to group their observations and much 

of the same data are used here. For both southem elephant se& and Adélie penguins, more 

subjective analyses were conducted ushg dive shape> maximum depth, and duration, although 

Hindell et aL ( 199 lb) did find two preliminary groups using principd component analysis. 

Most of the merences between the results found here and those reported previously were 

due to additional idonnation bemg used for the classification (maximum depth and duration) 

and subjective bias. 

Conclusions 

AU of the algorithms examined show potential for classifjing multivariate observations 

into more understandable groups. K-means, fllzzy c-means, and SOM all had low 

misclassification rates when classifying artincially generated data while fuzzy ART had error 
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rates that were twice as hi&. Therefore, basing a cornparison of these algorithms onjua the 

results fiom the classification of artificidy generated data indicates that alI the methods, 

excludhg fhny ART, shodd perform equ* wen for classiQing observations. When the 

performance of the methods was tested ushg real diving data, however, both c-means and 

SOM classified observations m a way that created clusters that were closer together (relative 

to k-means) and hence had poorer boundaries separating the clusters. K-means performed as 

well as c-means and SOY but its classification of  the real data was more logical when 

comparing the results to actual dive profiles. K-means is also readily available on most 

statistical software packages. Considering al l  of these factors for the algorithms examhed in 

this study, k-means clustering appears to be the most suited for groupmg multivariate diving 

data. 

Acknowledgements 

We thank Marin Gjaja, Mohamed S. Kamel and Robert McKim for access to program 

codes and software packages for fuzzy clustering and simulating amficial neural networks; 

Gasser Auda, Marin Gjaja, and Mohamed S. Karnel for vahable discussions on artificial 

neural networks and their implementation; and Mark A Chappe& Mark k Hindell, and J. 

Ward Testa for access to raw divmg data fkom Adélie penguins, southern elephant seals, and 

Weddell seals, respectbely. Various versions and sections of the manuscript benefitred f?om 

reviews by Gasser Auda, Marin Gjaja, and W.G.S. Hines. This work was supported by the 

Natural Sciences and Research Council of Canada, the Ontario Graduate Scholarship 

Program, and the University of Waterloo Graduate Scholarrhip Program. 



Table 3.1. Mean misclassincation rate (%) of observations by the various simulation parameters. 

Variable Level k-Means c-Means SOM Fuzzv ART 

Number of 
clustets 

Number of 
variables 

4 

5 

4 

6 

8 

10 

Overlap Low 

Medium 



Table 3.2. Siguiticance levels (F-ratios and (p-values)) by the various simulation parameters for the square-mot 
of misclassification rate. 

Variable Hard k-means Fuzzy c-means Kohonen SOM Fuzzy ART 

Number of clusters 14.24 (0.00) 14.22 (0.00) 14.08 (0.00) 103.21 (0.00) 

Number of variables 88.95 (0.00) 108.33 (0.00) 81.47 (0.00) 120.90 (0.00) 

Overlap 197.95 (0.00) 241.10 (0.00) 187.15 (0.00) 589.76 (0.00) 

Number of clusters x 1-58 (O. 13) 1.70 (O. 10) 1.30 (0.25) 1-15 (0.33) 
Number of variables 

Number of clusters x 237 (0.04) 1.82 (0.10) 1.51 (0.18) 1232 (0.00) 
Overlap 

Number of variables x 1.30 (0.27) 2.02 (0.07) 1.22 (0.3 1) 268 (0.02) 
OverIap 

Number of clusters x 0.98 (0.49) 0.83 (0.66) 0.74 (0.76) 2.95 (0.00) 
Number of variables x 
Overlav 



Table 33- Proportions of representative dive shapes determined by the various algorithnu for WeddeU seal diving 
behavioi- 

Dive shape 

k-means 

SOM 

Fuzzy ART 

a Data fiom Testa (1994) and Schreer and Testa (1995, 1996). 
a, b, and c are three subsamples. 
' Numbers in parentheses are means excluding dive types with O % of the data. 
* Dives of this type clustered into the soft-square group. 



Table 3.4. Proportions of representative d ~ e  shapes determineci by the various algorithms for southem 
elep haut seal diving behavior". 

Dive shape 

SOM 

Fwzy ART 

" Data fkom HindeU et al. (199 lb). 
a, b, and c are three subsamples. 
' Two similar groups combineci. A novel cluster mean occuned at a level after which a pre- 

existing cluster mean had aiready begun to be partitioned into a continuum of similar groups. Therefore, 
data within groups in the continuum were combineci. 
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Table 35. Proportions of represwtative dive shapes detennined by the various algorithms for Adélie 

Dive shape 

Clustering Meîhod 

SOM 

Fuzzy ART 

Data fiom Chappeli et al. (1993a). 
a, b, and c are three subsamples. 
Numbers in parentheses are means excluding dive types with O % of the data 

* Dives of this type cIustered into the sofi-square group. 



Output layer 

# of nodes = # of clusters 

@ 

Hidden layer 
( e g  SOM layer 
with conscience) 

Input layer 

# of nodes = # of variables 

Figure 3.1. General schematic of an artüicial neural network and the Kohonen self-organipog map (SOM) used 
for this work. 



Gain 1 

Gain 2 

# of F, nodes = # of clusters 

# of F, nodes = # of variables 

Figure 32. General schematic of an adaptive resonance (ART) network and the network used for this work 



1 Soft-Sq V S-R S-L Hard-Sa 1 

0.2 4 Pseudo F 

I I I I l l I l I  

2 3 4 5 6 7 8 9 1 0  

Clusters 

Figure 33. Example of the ad hoc procedure for deteminhg a suitable number of clusîers for a data set Each 
row of shapes is the cluster solution for that paiticular number of c l w t m  in this example, the data were a subset 
of Weddeli seal dives (data h m  Testa 1994; Schreer and Testa 1995, 1996). The cluster soIutions, which were 
calculated ushg k-means clustering, indicated that 5 cluters was a suitable numba for the data set The graph on 
the upper right shows R2 and Pseudo F Statistic values which also suggest that 5 clustm is a suitable nurnber. Sq, 
square; S-R, skewed-right; S-L, skewed lefk 



Comparative diving patterns of pinnipeds and seabirds 

Abstract 

More than 230,000 dives from 12 species were anaiyzed and approxhately 150,000 of 

these dives were classified according to dive shape. The species mcluded one cormorant, 3 

penguins, 2 eared se&, 5 true se&, and a waJrus Dive profiles (scaled to equivaient depth and 

duration) could generaily be characterized as one of four shapes: square, V, skewed-nght, or 

skewed-lefi. Comparative analyses across these dive types and the different species, revealed 

that square dives were aiways, and by fàr, the most abundant dive type, usudy followed by V 

dives, and then the skewed dives. The proportion of time the animals spent at the bottom of 

square dives was also quite uniform across species (-50%) indicating that smilar foraging 

patterns were bemg used, at least relative to the shapes of dives. Observed Merences across 

species revealed that, as expected, larger divers generaiiy dived deeper and longer than d e r  

ones, although fur seals and the walrus were exceptions with more limited diving capacities than 

expected based on body size. Also, smaller divers had a tighter coupling between dive depth 

and duration than larger ones. Surprismgly, however, few other dive variables (e.g. the rate at 

which dive duration increases with depth, the proportion of square dives, and the proportion of 

bottom time during square dives) were afEected by body size, but maead physical (water depth) 

and ecological (type of prey) constraints played major roles Analyses usEg estimated ADL 

mdicated that better estimates of ADL are needed. However, even using cmde estimators, 

cornparisons of ADL across dive types indicated that square dives moa ofien exceeded the 

estimated ADL. This is expected since square dives likely represent foraging and divers would 

be expected to pu& their limits most during this advity. Functional analyses of the determined 

dive types were m general agreement with those fiom previous work indicating that the various 

dive types have foraging (benthic and pelagic), travelüng, exploring, resting, and processing 

hctions. However, for most specieq skewed dives were rare and are likely to be of little 

importance to these animals' diving regimes. Overall similanties m the dive patterns of the 

various species suggest that these animals exploit the aquatic environment in a similar way. 



Introduction 

Most studies of diving behavior, u W g  tirne-depth recorders (TDRs), have prgnarüy 

grouped dives subjectively according to perceived smiüarities m maximum depth and duration 

(e.g. Kooyman 1968; C r o d  et aL 199 1; Goebel et al 1991; Wanless et al. 1992; Wüliams et 

aL 1992; Chappeil et al 1993a). It is perhaps mappropriate to mclude solely maxîmumdepth 

and duration mto classification analyses because both of these variables may display strong 

die1 variation (e-g. Bengtson and Stewart 1992; Castellini et al 1992a; Boyd et aL 1994; 

Schreer and Testa 1996) that can obscure the determination of behavioral groupings. For 

example, an animal may perform similar behaviors at diBerent times of day (e.g. foraging). If 

its prey verticdy migrate, the animal under study will forage at different depths throughout 

the day dependmg on the location of its prey. Therefore, even though the shape of a dive 

(depth versus thne) may remah simüar (due to optimizing time at the prey patch) and mdicate 

c o q  arable behavior, depth and duration could Vary drasticaily. 

Recently, several midies have included dive shape as  a means of grouping dMng 

behavior (Le Boeuf et al. 1988, 1992; Hindell et al. 199 lb; Bengtson and Stewart 1992; 

Schreer and Testa 1993, 1995, 1996; Jonker and Bester 1994; Brillinger et aL 1995; 

Campagna et al 1995; Schreer et al 1995; Brülinger and Stewart 1997; Burns et al. in press: 

Chapter 3). Many of these works have relied solely or primarily on subjective comparisons of 

dive profiles. This introduces human bias and prevents mterstudy comparisons due to 

mdividuai classification protocols. A few studies have attempted quantitative classification of 

diving patterns (Hindell et al 1991b; Schreer and Testa 1993, 1995, 1996; Boyd et a l  1994; 

Brillinger et aL 1995; Schreer et aL 1995; Brillinger and Stewart 1997; Bums et al. in press; 

Chapter 3), although the mdividual classification protocols for these analyses have also varied 

considerably (e.g. principal component analysis, cluster anaiysis (various algorithms), shape 

fitting algorithrns, as well as cornbinations, some of which included maximum depth and 

duration). In short, the methods for classifjhg dMng patterns have varied considerably 



makhg hterspecific comparisons &fEcuEt. 

This work hvohres cla-g diving data f?om 12 Merent species of divmg air- 

breathing vertebrates (Le. pmnipeds and seabirds), comparing the results across species, and 

proposhg behavioral fùnctions for the dive types observed The same methods are used on ail 

species to dow more direct comparisons. It is hoped that observing patterns among many 

species will result m a better understanding of the fimctions of various dive types. As well, 

merences and similarities within and across species wili shed more light on how these 

animais exploit the marine environment. 

Methods 

Reviously acquired TDR data sets were compiled for this study (Table 4.1). These 

included 12 dinerent species: bluaeyed shags (PhaIacrocorm atriceps), Adélie penguins 

(Pygascelis adeliae), royal p enguins ( E u e  tes schlegeli), gentoo p enguins (Pygoscelis 

papua), Galapagos fur seals (Arctocephalus ga~upaguemis), Antarctic fiir seals 

(Arctocephalus gazella), harp seals (Phoca groenlandica), grey seals (Halichoerur grypus), 

hooded se& (Cystophora cristafa), WeddeU seals (Leptonychotes weddellii), southem 

elephant seals (Mirounga leonina), and walrus (Odobemis rmmaw).  Table 4.1 cm be 

consulted for direction to specsc methods of device attachment and deployment. 

A dive was deked  as a series of depths over time stalting and ending with depth equal 

to zero. Due to erroneous drift of the zero depth m TDRs and possible effects of wave action, 

a depth of 2 times the resolution of the TDR was considered to be representative of the 

çurface. Only dives with a maximum depth greater than this depth were analyzed. Also, since 

this work invohres the determination of a dive shape (depth versus time), only dives with at 

least 5 depth readings were analyzed for shape because fewer readmgs r e d t  in considerable 

degradation of the precision of even simple geometric shapes (unpublished data). 
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Classz~cation 

Dives fiom each species were ciassified followhg Schreer and Testa (1995, 1996) and 

Chapter 3. Briefly, depth values for each dive were mterpolated so that each dive was 

represented by 100 depths. Each dive was then scaied to equivdent depth and duration and 

smoothed by taking the mean of every ten depths. K-means clustering (Proc FASTCLUS, 

SAS [nstmite Inc. 1990) was used to fhd groups or types of dives. To determine a suitable 

number of clusters for each data set, R2 and Pseudo F Statistic values versus the number of 

cluaers were plotted and visually mspected for any idiections that might hdicate an 

appropriate stoppmg point fiom M e r  clustering (Calinski and Harabasz 1974; MiIligan and 

Cooper 1985; Roc  CLUSTER and Proc FASTCLUS, SAS Instmite Inc. 1990; Schreer and 

Testa 1995; Chapter 3). However, as indicated in Chapter 3, this method was somewhat 

unstable across subsamples. Therefore, a more robust, ad hoc procedure developed in 

Chapter 3 was also used. For this procedure, the mean dive shapes for 2-10 clusters were 

plotted and visually mspected. A suitable number of clusters was determined as the point at 

which any additional clustering only created redundant or unstable dive types (Le. two or 

more groups with sïmilar shapes, or groups that occur at one clustering level, but not at 

absequent IeveIs). 

Havhg performed these analyses on aii 12 species, simiiarities in the dive patterns 

were found across the species that indicated the need for a M e d  method for classiijhg and 

comparing dive profiles. Additional variables (e.g. swim velocity, stomach temperature, jaw 

movements and heart rate), that have only recendy begun to be rneasured, may d o w  dive 

pattems within and across species to be better discriminated with clustering techniques. 

However, with only depth and tirne being measured, as is the case for the data presented in 

this study, dives wiil generaiiy fd into one of four shapes (Square, V ,  Shed-Right, and 

Shed-Lep) and cluaer analyses of dive data across species will generaiiy show similar 

pattems. Therefore, to aiiow more direct cornparisons across species, a method fira 



presented by Schreer and Testa (1996) and fiirther developed here was used This method 

compares each dive to four simple geometric shapes (Square, K, Shed-Right and Skaved- 

Left) that have been adjusted to reflect realistic dive profiles (Figure 4.1 and see Schreer and 

Testa 1996). For example, a "square me" shape with bottom time equal to half of the dive 

duration was used as opposed to a t d y  square shape that wodd have an animal diMig fiom 

the surface to the maximum depth of the dive in O time. 

Using this procedure, m addition to fuzzy clustekg theory developed by Bezdek 

( 198 1), summarized m Kamel and Selim (1 994), and explored as a dive analysis tool m 

Chapter 3, a new shape fitting protocol was developed. Dive profiles, scaled to equivalent 

depth, were compared to the four shapes as  in Schreer and Testa (1996). For each dive, four 

shapes were generated with the nurnber of depth values equal to that of the dive. The 

similanty of each shape to the dive was determined by calcdating the Euclidean distance 

between the dive and the generated shape. Then to d e t e d e  which shape was most similar 

to the dive, a group membership (M), as outlined in Kamel and Selim (1994) and descriied m 

Chapter 3, was calcuiated by 

for du > O, V i, j, where c = 4 (the number geometric shapes), m is the m e s s  parameter (m 

> l), and dg is the Euclidean distance between the ith dive pattern vector and thejth geometric 

shape vector. Ifd, = O then Mu = 1 and M, = O fo r j  t I. This results m four "probabilities" 

(one for the simüarity of the ciive profile to each shape) that nun to one. 

Dives fiom each individual within each species were chssified with this method and 

were subsequently pooled for each species. It has been shown that the diving behavior among 

hdividuals within a species can have considerable variation (Hindell et ai. 1991b; Testa 1994, 

B m s  et ai. it~ press). However, within this worlc, small numbers of individu& and the lack 



of additional distmguishg parameters (e.g. physiological measures such as hematocnt, 

hemoglobin concentration, plasma lactate concentration, etc.: Bums et aL in press) made any 

explanation of indMdual variability dficult. Therefore, data nom mdividuals wahm a species 

were pooled The only exception was that southem elephant seals were split into male and 

female samples because of their exceptional sexual, size dimorphism 

M e r  preliminary classifications of data fiom difEerent species, Ït was realized that the 

sampling mterval for which the data were recorded would affect the resuits. This type of 

problem for interspecific cornparisons of dive patterns was k s t  discussed by Boyd (1 993). 

He found that as the sampling interval increased (using data resampled at difEerent sampling 

mtervals fiom the same oxiginal data set), mean maxhnum depth, duration, and post-dive 

surface interval also increased, while the number of dives detected decreased. Here, a similar 

trend was found when resampling two data sets (Adélie penguins and Gaiapagos fur seals: 

Table 4.2). Samphg mterval was also found to affect a dive shape and hence the proportion 

of dives classified within each shape category. As the samphg ÏntervaI mcreased, the 

proportion of Square dives decreased while the proportion of V, Shed-Right, and S h e d -  

Left dives increased (Table 4.2). The reduction in the number of depth readmgs per dive 

(increased sampling intewd) would miss true bflection pomts at the bottom of Square dives 

making them appear more triangdar shaped. Hence, less Square dives and more V, S h e d -  

Right, and Shed-Le# dives would be detected. To correct for these Merences, a similar 

sampling interval was used for each data set. More importantly, a M a r  number of 

observations per the patterns to be analyzed (ie. a dive) was used. Smce the shape of the dive 

profile was the pattern being anaiyzed, each data set was resampled so that, on average, dives 

within each species had a similar number of depth readings per dive. 

Dive comporisom 

Once all dives were classified into the four dive shapes, dive variables generated here 



and by pre-packaged dive andysis software (Table 4.3) were compared within and across 

species. The original intent was to compare proportions of dive types with Chi-square tests 

and Werences m mean dive variables with 2-way factorial ANOVA (shape by species). 

However, due to the large sample s h s ,  these tests nearly dways found significant merences 

(even when differences were considerably srnaller than what would have been considered 

biologically significant) while any non-si@cant clifferences were more due to small sample 

sizes than actual similanties among groups. Therefore, differences in these patterns were 

visudy analyzed Additional cornparisons were performed on just Square dives u h g  bottom 

time (BT), BT + duration (%BT), wiggle count (WC), WC + BT, average wiggle distance 

(AVWD), AVWD + depth, and the standard deviation (STD) and coefficient of variation 

(CV: 100 x STD + mean) for the depth readmgs during BT. Die1 patterns within dive types 

were also visuaily analyzed and compared w i t h  and across species For alI of these analyses, 

oniy dive types with >30 observations per group were used. The only exception to this was 

for hooded se&, which had dive types represented by less than 30 dives but still a relatively 

large proportion of aii their dives (due to the small number of hooded seal dives m the total 

sample). 

Prior to these analyses, group memberships were used to determine which dives had 

shapes that were intermediate to two or more geometric shapes. This was done since hybrzds 

would Iürely display characteristics of more than one dive type and would blur differences 

between the types. The elimination of hybrids was accomplished by comparing the fist and 

second highest group memberships for each dive. If the highest group membersliip was not at 

least 25% higher tha. the second highea group membership, the dive was considered to be 

hybnd and not used in the comparative analyses of dive shape. 

Hierarchical classzflcatiom 

Several dive variables were also used to determine ifany m e r  divisions were 



warranted withm a dive type, in addition to being used for comparisons. Variables were 

decided upon that could potentially divide dives of Smilar shape Ïnto groups representing dive 

fiinctions suggested previously in the iiterature. For example, it has been suggested that 

S-e dives represent pelagic and benthic foraging (e-g. HmdeU et al. 199Ib; Le Boeuf et aL 

1988, 1992; Schreer and Testa 1996). Therefore, several variables that descnbe the variability 

m depth during the BT were analyzed with histograms to determine ifany multimodality 

emsted. The presence of strong mdtimodality wouid suggest that more than one type of 

behavior was occurrhg. A possible merence in the variability of depth values during BT 

could mdicate pelagic or benthic foraging (high variability: pelagic, low variabüity: benthic). 

Variables used for this stage of the analysis were maximum depth + duration (Q), average rate 

of depth change (R), BT, %BT, post-dive d a c e  interval (SI), SI + duration, WC, WC + BT, 

AVWD, AVWD + depth, Sn>, and CV (Table 4.3). STD and CV were used in addition to 

the variables provided by the pre-packaged software because they were thought to reflect the 

appearance of the dive pattern during bottom t h e  more accurately. For example, a square 

shaped dive with a somewhat U shaped bottom may not have any wiggles, but would be 

unlikely to represent benthic foraghg. CV was subsequently excluded fiom these analyses 

since it detected d y  Merences in maximum depth. 

A erobic dive Iirnit 

Dive durations withm each dive type were compared to the estimated aerobic dive 

limit (ADL), defined as the maximum duration of a breath-hold without any mcrease in plasma 

lactate levels above resting during or following a dive (Kooyman et aL 1980; 1983b; 

Kooyman 1989), for that species. There has been considerable spenilation regardhg the 

calculation of ADL and direct post-dive lactate levels have only been coilected on one species, 

Weddell seals (Kooyman et aL 1980, 1983b). In this species it has been shown that ADL can 

be accurately estimated nom calculations of total body oxygen stores (TBO,) and the h g  
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metabolic rate (Dm) (Kooyman et aL 1980, 1983b). This technicpe has been used by many 

researchers to estimate ADL for a wîde vari* of species without nirther calîîration (cg. 

Gentry et ai. 1988; Feldkamp et aL 1989; Hhdell et aL 1992; Chappeil et aL 1993% Wig et 

aL 1993; Boyd and Croxd 1996; Chapter 2). In addition to this shortcoming, the variables 

needed to calculate ADL are rarely directly measured, bemg estimated instead. TBO,s have 

been measured for a few species (Kooyman 1989), but are unially only estimated when 

calculatmg ADL. As is the case for ADL, DMRs have only been directly measured on 

Weddell seais, and they have been found to Vary with dive type and duration (Kooyman et al. 

1973, 1980, 1983b; Castelhi et aL 1992b; Ponganis et aL 1993a). Metabolic rates during a 

dive have never been measured under naturd conditions (Boyd 1997). DMR is of 

considerable concem since these values have varied considerably m the literature (e.g. 2 to 10 

x standard metabolic rate (SMR): Kooyman et aL 1973; Nagy et al. 1984; Kooyman and 

Ponganis 1990; Burger 1991; Castellini et al. 1992b; Chappell et al. 1993a, b; Costa 1993) 

and have a direct effect on the estimate of ADL. For example, if a DMR of 4 x SMR is used 

instead of 2 x SMR, the estimated ADL is habed. 

Because of these many complications, ADLs were calculated nom the generalized 

equations derived in Chapter 2, where DMR was assumed to be 2 x SMR for all phocids and 

seabirds, and 2 or 5 x SMR for otariids and the walnis. Two times SMR was used to estimate 

D m  even though several researchers have suggested that swimmmg MR is considerably 

higher (Nagy et aL 1984; Chappell et aL 1 993a, b; Costa 1993, Boyd and Croxall 1996), 

because, m agreement with Feldkamp et aL (1989), it was thought that upon submergence, 

changes occur (e.g- lower heart rate and decreased peripheral blood flow: Castellini 199 1) that 

lower this value. Five times SMR was also used for otariids since there is strong aiidence that 

otanids have DMRs that are considerably higher than phocids (Kooyman 1988b; Costa 1993; 

Boyd et aL 1995). These equations are undoubtedly overly *le, but they are an attempt to 

aiiow for more meaningfùl interspecinc comparisons. 



Functioml analyses 

Ushg the above analyses (ie. mterspecinc similarities and differences) and comparing 

these results to previous studies on pmnipeds and seabirds, possible hct ions  were proposed 

for the various dive types. In addition to this, life history mformation (mass, reproductive 

status, etc.) for the various species and conditions and locations of the studies were &O used 

to propose possible fûnctions of the dive types and to compare diving patterns across species. 

Results 

The species included in this study varied considerably in mass (2 to 2000 kg) and life 

stage (Iactating females, gestating females, reproducing d e s ,  etc.: Table 4.4). As we4 

recordmg protocols and length of coverage varied considerably across species (Figure 4.2, 

Table 4.5). Analyzing the depth records for the 12 species resulted in 230,992 dives, of which 

169,77 1 had 5 or more depth readuigs. When several of the data sets were resampled at 

larger sampling mtervals this number decreased to 148,247 . Excluding hybrids fiom the 

resampled data reduced the number of dives to 13 5,072. This was approximately 9 1 % of the 

data classified according to dive shape. 

Dive comparisom 

Square dives were invariably, and markedly, the most abundant dive type (Figure 

4.3& for specific vahies see Table 4.6). V dives were usually the next most abundant, 

followed by the skewed dives, although this trend was not always consistent for aU of the 

species. Proportions of dive types did not appear to be infiuenced by body Sze, but rather by 

water depth and preferred prey. That is, lixnited water depth and possible benthic foraging 

increased the proportion of Squore dives (e-g. blue-eyed shags, grey seals, and walruses: also 

see Table 4.4). The proportion of dive types changed when data fiom several of the species 



were resampled at larger samphg intervals (Figure 4.3A versus B, for s p d c  values see 

Table 4.6). This confimis that a nmilar number of readings per dive is needed for mterspeçific 

comp arisons. 

Mean maxi~um dive depth and duration generally increased with body mass within 

pmnipeds and seabirds (Figure 4.3C and D, for specific values see Table 4.4 and 4.6). The 

trend for both groups combmed was very weak for maximum depth, but could dl be seen for 

duration. The w h s  was an exception with very shallow, short dives for its mass. The type 

of behavior thought to be performed and the water depth also seemed to be of considerable 

importance in affectmg mean maximum depth and duration (also see Table 4.4). Maximum 

depth and duration patterns across dive types hdicated that V shaped dives were usuaiiy the 

deepest, Skewed-Left dives were the sballowest, and both of these types of dive were 

relatively short. The rate at which duration changed with depth (slope, Figure 4.4A) did not 

appear to be affiected by body size, but divers that were limited by water depth or those that 

dived to the bottom (benthic foragers) (ie. blue-eyed shags, walnis, and harp, grey, and 

hooded seals) increased dive duration more rapidly with an mcrease m maximum depth than 

did the other species. The amount of variability in duration due to changes m maximum depth 

(8, Figure 4.4B) was afEected by body size and decreased with increasing body size m a fairly 

regular pattern for all dives combined. This pattern was also seen for Square dives, but was 

weaker or not apparent for the other dive types (probably due to srna11 sample sizes). 

Comparing R across species revealed a weak trend towards higher rates for smaller divers 

(Figure 4.4C). 

SI generally mcreased with increasiug body Sze similar to duration, although when SI 

was scaled to equivaient duration (SI + duration), it generally decreased with mcreasing size 

(Figure 4.5A and B). This trend, however, was not apparent for all dive types and no obvious 

trend was observed across dive types. Increasing dive duration generally did not affect SI for 

most species (Figure 4.5C and D), although a weak pattern could be seen across species 



mdicating that smalIer divers mcreased SI more rapidly with hcreasing duration than larger 

ones Also, blue-eyed shags and Antarctic fiir se& showed a relatively rapid mcrease m SI 

with increasbg duration, aIthough only blue-eyed shags had a strong relationship between 

these variables. SimiIar trends were ako seen when SI and duration were plotted dong with a 

LOWESS smoother (SYSTAT 1992). AU species generally showed a weak mcrease m SI 

with increasing duration (Figure 4.6), although there was considerable scatter around the 

cuves. As mdicated by the linear regession results above, blue-eyed shags and Antarctic fur 

seals showed the strongest mcreases, although Weddell seals also showed a fkky strong 

increase. Several of the species had infiections at certam durations, although except for blue- 

eyed shags, these were quite weak. 

The amount of BT for Square dives generdy increased with mass m a simiIar pattern 

to duration. However, wtien BT was scded to equivdent duration, it was surprisingly similar 

across species (4 1 to 74 %, 4 1 to 53 % when excluding the 4 highest values), but was higher 

for benthic foragers @lue-eyed shags, grey seals, and walnis: Figure 4.7A and B, dso see 

Table 4.4). Cornparison of dive variables descniing the bottom of Sqwire dives indicated no 

obvious trends except for STD, which generaIly Bicreased wÏth mass, considering seabirds and 

pmnipeds separateiy, similar to ma>cimum depth (Figure 4.7: C, D, and E). 

Del  patterns 

AU species exhiited some sort of die1 pattern, although these pattems varied 

considerabiy across species (Figure 4.8A and B). Patterns withm a species were generally 

consistent across dive types, although there were several exceptions. Al1 species dived more 

at certain times of the day, but there were no consistent trends across all species. Some 

subgroups, however, showed some simüar patterns with all seabirds diving almost exclusively 

during the day and both fur seals div8ig almost entirely at night. Species thought to be pelagic 

foragers generally dived deeper and longer d u h g  the day (Le. WeddeIl sealq fernale southem 
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elephant seals, and royal, Adélie, and gentoo pengugis), while bentbic foragers (obligate or 

Lcultative: Le. blue-eyed shags, male southem elephant seals, walms, and grey seals) or 

species pediormsig behaviors other than foraging (Le. grey, harp, and hooded seals) generally 

had no or weak diel patterns m ma><innun depth and duration (see also Table 4.4). These 

patterns were dificult to mterpret for the fur se& since they dived almost exclusiveh, at night. 

However, Antarctic fur seals showed a tendency towards deeper, longer dives during the day, 

dawn, and dusk whüe Galapagos fiir seals tended to mcrease dive depth and duration as they 

increased dive fkequency during the night. It needs to be noted that some of these 

interpretations are very limited due to s m d  number of dives during certain times of day for 

several species. 

Hierarehical cIass~j?eatims 

Five of the species had suffiCient multimodaiity m one or more dive variables to 

warrant subdivisions of dive types (Figure 4.9). Walrus Square dives were divided into three 

groups based on R (cO.6m S-', 20.6 but <1.0m s", and 2 1.0m sa'). Male southem elephant 

seai Square dives and Antarctic fur seal V dives were each divided mto two groups based on 

R (elephant seal: < 1 m s-' and 2 1 m s-', Antarctic fin seal: CO. 8 and 20.8 m 5'). Harp seal 

Square and V dives were each dMded into two groups based on R (Square: €0.5 and 20.5 m 

s-', V: <0.48 and 20.48 m d). Weddell sealsquare dives were dived into two groups based 

on Q (<4 and 24). 

Relevant dive variables for the hierarchical groups mdicated some clifferences between 

dive types (Table 4.7). Dives with high values for R (Antarctic fùr seals, harp seals, waùus, 

and male southem elephant seals) were deeper, longer (except for male southem elephant 

seals), and had longer BTS and %BTS than dives with low values for R These dives also had 

more wiggles (WC) (except for the w h s )  and greater variab- in depth during BT (STD). 

Dives with high values for Q (Weddeil se&) were deeper and longer than dives with low 



values for Q, had more and larger wiggles, had more variability in depth during BT, but had 

similar %BTS. 

Die1 patterns for these dive type subdivisions showed a general trend towards deeper 

and longer dives for higher vahies of R and Q (Figure 4.8A and B). For male southem 

elephant se& and harp se&, less did variation in maximum depth was observed for higher 

values of R For Weddell seals, less die1 variation m maximum depth was observed for lower 

values of Q. Die1 patterns for the two groups of V dives for Antarctic fur seals are not show 

because there were too few dives to show patterns adequately for maximum depth and 

duration. 

Aerobic dive limit 

Estimated ADLs for the various species are presented in Table 4.8. Using these 

estimates, seabirds and fur seals (ADL estimated with DMR = 2 x SMR) rarely exceeded their 

ADL while some phocids exceeded their ADL for a majority of their dives. &O, among all 

of the large data sets (ie. Adélie penguins, Galapagos fur seals, Weddell seals, and female and 

male southern elephant seals), only phocids had large propodons of dives that exceeded their 

estimated ADL. When DMR = 5 x SMR was used to calculate ADL for the two fùr seals and 

the walrus, a majority of the dives exceeded the enimated ADL for both Galapagos fur seais 

and the w h s ,  but Antarctic fllr seal dives stili rareIy exceeded their estimated ADL. W'rthin 

the dive types, Square dives generdy had the largest proportion of dives greater than their 

estimated ADL. However, for two of the seabirds (royai and gentoo penguins) and for 

Antarctic fur seals (DMR = 5 x SMR), V dives had the highest proportions of dives that 

exceeded the estimated ADLs. 

Discussion 

There were several strong similaxities in diving patterns across very different species 
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mdicating the use of Smilar behavioral pattems. Dive profiles (scaled to eqykalent depth and 

duration) couid generdy be characterkd as one of four shapes: Square, V ,  Shed-Right, 

and Skewed-Leeft In addition, Square dives were aiways, and by fk, the most abundant dive 

type. V dives were usually the next most abundant dive type followed by the skewed dives. 

Dive type finctiom 

DiscussÎng generd trends m dive type fiinctions across species is veiy diflicult because 

fiinctions of dive types may not be consistent from one species to another. In any regard, 

most probable h c t i o n s  of the dive types wiiI be proposed and possible variants will be noted 

Square dives - ALmost all of the midies that have grouped divhg behavior according 

to shape have niggested that some of the profiles had some sort of square rhape (e.g. Le 

Boeuf et aL 1988, 1992; Hïndeil et aL 199 lb; Bengtson and Stewart 1992; Boyd and Croxail 

1992; Chappeli et aL 1993a; Jonker and Bester 1994; Campagna et aL 1995; Schreer and 

Testa 1995, 1996; Burns et ai. in press; Chapter 3). Squore dives have been suggested to 

represent foraging since they are very abundaut, occur in bouts or series, generaliy have a 

uniform depth within a bout, and often exhibit diel variation in maximum depth (Le Boeuf et 

aL 1988; 1992; Hindell et al. 199 1b; Bengtson and Stewart 1992; Chappell et aL 1993a; 

Jonker and Bester 1994; Campagna et aL 1995; Schreer and Testa 1996). h o ,  the mere 

shape of a Square dive niggests that it may have a foraging fùnction since the animai is 

maximizing the proportion of the time spent at a particular depth (Le. the bottom of the dive 

where the prey may reside) and is descendhg rapidly and directly to this depth. Squore dives 

for the species observed here were always, and by fm, the rnost abundant dive type, often 

occurred in bouts (personal observation), had uniform depths within a bout (personol 

observation), and exhiiited die1 variation in maximum depth (within several of the species: 

royal penguïns, Galapagos fbr seais, Antarctic fur se&, southem elephant seals, and Weddeil 

seals) which substantiates a foraging fimction. Die1 patterns may not have been observed for 



Square dives m the other species because 1) the sample sizes were too s m d  (blue-eyed shags 

and hooded se&), 2) these dives may have represented a myriad of fiinctions for species that 

were not primarily foraging (grey, harp, and hooded se&), or 3) the species primarily feed on 

benthic prey and therefore would not exhibit die1 variation m rmxhmm depth since their prey 

do not verticdy migrate (blue-eyed shags, grey seals, wahs, Square dives with R H  for male 

southern elephant se&: see below). 

Other functions suggested for Square dives are specificdy benthic or pelagic foraging 

(Le Boeuf et al 1988; 1992, HindelI et ai. 199 Lb; Schreer and Testa 1996), explorhg, or 

travelling (Kooyman 1968; Schreer and Testa 1996). Dives thought to be benthic unially 

have fewer wiggles than pelagic dives and exhibit weaker or no die1 variation m maximum 

depth. This would be expected since benthic prey have a much more limited vertical range. 

Wairus, grey seals, and blue-eyed shags are aII thought to be benthic foragers (Fay and Burns 

1988; Croxd et al. 199 1; del Hoyo et aL 1992; Jefferson et al. 1993; Wiig et aL 1993; Bevan 

et al. 1997) and d of these species had ver- few and small wiggles and no die1 pattern 

towards deeper dives during the day. Male southem elephant seals have also been thought to 

pedonn some benthic foraging. Square dives for this species had fewer and smaIler wiggles 

than their female counterparts. As welI, when male southem elephant seal S p r e  dives were 

subdivided based on R, dives with higher values for R had less diel variation in maximum 

depth, which codd hdicate that these were benthic dives Square dives for the other species 

p robably represented p elagic foraging with higher numbers of wiggles and stronger die1 

variation m maximum depth. 

Square dives thought to have an exploratory or travelling fùnction have been proposed 

for Weddell seals (Kooyman 1968; Schreer and Testa 1996) and were also seen in this study 

for this species. These were dives that had long durations relative to ma>Bmum depth 

(rectangular: Square dives with Q < 4). Schreer and Testa ( 1996) proposed that these dives 

would be useful for travelling since the seal spent a large amount of thne below the surfàce 
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(reducbg drag: Williams and Kooyman 1985) and travelling potentiaIly m a horizontal 

direction (ahhough a horizontal h e  withm a profile of depth versus tïme indicates only that 

the animai is not moving up or down for a penod of time and not necessarüy that t is moving 

horizontally). These dives had little or no die1 variation m maximum depth (compared to 

deeper Square dives) suggesthg that foraging is not likely (Schreer and Testa 1996). 

Howwer, shdow-benthic foraging can not be ruled out. 

Vdives - Most studies of dive profiles have also mdicated that some of the dives had a 

V or spiked shape (e-g. Hmdeli et al. 199 1b; Bengtson and Stewart 1992; Jonker and Bester 

1994; Campagna et aL 1995; Schreer and Testa 1995, 1996; Burns et aL in press; Chapter 3). 

These dives have been thought to represent predator avoidance (HhdeU et al. 1991b), travel 

(Hïndeli et al. 199 1b; Le Boeuf et aL 1992; Campagna et aL 1995), or exploration (HindeU et 

aL 199 lb; Bengtson and Stewart 1992; Schreer and Testa 1996). In any event, the animal 

dives deep below the surface, following a direct path, to avoid predators, to search for a prey 

patch, or to get a better acoustical or visual image of its surroundhgs. The relative deepness 

of the V dives found for moa species in this work is consistent with these suggestions. Also, 

the relatively short durations for these dives is consistent with rna>cimipng depth wfüle staying 

within duration liniits (preventing extended penods of surface time while exploring). 

However, the V dives for several species may also have a foragïng fiinction which 6as 

been suggested by Boyd and Croxall(1992) and B m s  et al. (in press). The relatively large 

proportion of V dives performed by some of the species (royal and gentoo penguins) and 

strong die1 variation m maximum depth and duration (stronger than that for Square dives: 

Adélie, royal, and gentoo penguins) suppoas this conclusion. AIL of these species are 

relatively small and would be more duration limited than the larger species. Therefore, when 

perfomhg foraging dives to relatively deep depths, bottom tirne may have to be sacdiced in 

order to remah within aerobic ümits causing these dive to have more of a V shape. Weddell 

seals and femde southem elephant seals ako showed strong die1 variation in maximum depth 



and duration for V dives, but imlike Adélie and royal penpins *ch had longer mean 

durations for V dives relative to Squme dives, their V shaped dives had relatively shorter 

durations *ch suggests a more exploratory funciion. 

Skaved--Rigt dives - Skaued-Righf dives have been suggested as a dive type in fk 

fewer studies than Squme or V dives (Kooyman and Gentry 1986; Chappell et al. 1993a; 

Jonker and Bester 1994; Schreer and Testa 1995; 1996; Burns et al. in press; Chapter 3) and 

not surprûmgly were nearly absent for several of the species here @lue-eyed shags, gentoo 

penguins, grey seals, and wairus: c2% of aII dives). These dives have been suggested to have 

an exploratory fùnction (Kooyrnan and Gentry 1986; Jonker and Bester 1994), a travebg 

fbction (Jonker and Bester 1994), a processing fùnction (Schreer and Testa 1996), a fo raag  

function where prey were pursued vertically as well as horizontally (Chappell et aL 1993a), or 

they may simply be a resuit of the animal following the bottom back to a haul-out site (Schreer 

and Testa 1996). In any event, these dives are relative1y rare and they exceed 10% of ai l  &es 

in oniy three species (harp, hooded, and Weddell seals). This suggests that Shed-Rght  

dives may not be a temily important componeut of most of the species dMng regimes and are 

siniply hybrid dives (e-g. an aborted Square foraging dive that has become an exploratory 

dive) or random dives with no specific function. Harp and hooded seah were in reiativeiy 

shdow water for ail of their dives reported in this study, so a bathymetric limitation seems 

plausible for this dive type for these animals. Dive records for Weddell seah lasted more than 

6 months covering by fm the longest portion of an animai's annual cycle in this study, so it is 

possible that a dive type observed for Weddeil seals would not be observed in other species 

because of the limited duration of theu dive records. For Weddeil seals, it has been suggested 

that these dives, which were most common farthest fiom the initial haul-out sites (Schreer and 

Testa 1996), may d o w  the seal to process food d e n  hauling out is uniikely. 

Skewed-Left dives - Skewed-Lefl dives are ako fâirJy rare in shidies of dive shape (Le 

Boeufet ai. 1988, 1992; HhdeU et al. 1991b; Jonker and Bester 1994; Schreer and Testa 
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1995, 1996; B u s  et aL in press; Chapter 3) and, smilar to Skewed-Right dives, are neariy 

absent for many of the species examined here (blueeyed shags, Adélie penguins (consistent 

with cluster analyses fkom Chapter 3), royal penguins, gentoo penguins, Antarctic fiir seals, 

grey seals, walnis, and male southem elephant seals: <2% of ail dives). The ranty of this dive 

type suggests that it may be fair& imintportant to most species (as for Shed-Rght  dives). 

However, these dives have been suggested to have a seemingly important fiuiction for 

northem and southem elephant se&, despte their low proportions. Several studies have 

suggested that these dives represent resting, sleeping, or processing of food or anaerobic 

metabolites underwater (Hindell et al. 199 lb, Le Boeuf et aL 1992). It is thought that the 

period of slow descent represents when a seal stops swimming and slowly sinks. This 

suggestion has been substantiated by swim velocity profiles which have shown very slow 

velocities during part of the descent phase of these dives (Le Boeuf et al 1992; Hmdell and 

Burton 1993). It seems plausible that these dives do in fàct represent resting m elephant seals 

since this species dives nearly contmuously for several months (Le Boeuf et al. 1988, 1989, 

Hindell et aL 199 lb). For the other species, however, this function seems unlikely. Many of 

the species @lue-eyed shags, Adélie penguins, royal penguins, gentoo penguhs, Galapagos fur 

seals, Antarctic fùr se&) generally dived contmuously for less than 24 h and therefore could 

either rest at the surface or when hauled out. 

An additional explmation, as for Skmued-R@ht dives, is simple bathymetric Limitation 

(Schreer and Testa 1996). The two species with the highest proportions of these dives @axp 

and hooded seals) spent ail of their recorded time in shaliow waters and therefore may have 

been followhg the bottom down. 

Cornparisons acrars species 

Comparing the diving patterns among species must be tentative in this study because 

of differences in sampling regimes, life stage, number of individuals and dives, and length of 



coverage. Differences m sampling mtervals could be adjusted for by resampling. Howwer, 

merences m Life stage, number of individuals (1 to 36 ), total number of dives (366 to 

83,404), and length of coverage (2 to 195 days) remain. These sorts of problems exist for aU 

mterspecific, mterstudy comparisons and, short of collecting equal amounts of data under 

simüar conditions for ail species (usualty logistically and hanciaüy impossible), must simply 

be considered and addressed when makmg comparisons. 

Diving capacity - The body size of the species had an impact on dnimg patterns as 

expected. This has also been shown for larger interspecifïc comparisons ushg maximum 

depth and duration (Piatt and Nettleship 1985; Cooper 1986; Prince and Harris 1988; Burger 

1991; Boyd and Croxall 1996; Chapter 2). Larger animais would be expected to be able to 

dive longer and hence deeper since they can store more oxygen (more blood) and use this 

oxygen more slowly (lower mass specinc metabolic rate) (see Chapter 2 for a discussion of 

these concepts). Wahm the two main groups, seabirds and pinnipeds, this relationçhip is fairly 

clear with larger seabirds and pinnipeds diving deeper and longer than d e r  ones. This 

trend can also be seen over all 13 groups, but the relationship is considerably weaker. Fur 

seals, which are considerably larger than penguuis, do not dive deeper or longer than the 

larger penguins. This was also observed for maximum depth and duration in Chapter 2. 

ûtariids, which often prey on food items that are similar to those of penguins, such as krill and 

cephalopods, may not need to dive deeper or longer than penguins since their prey occur at 

nmilar depths. In contrast, ifotariids do have higher DMRs and l e s  TBO,s than phocids and 

seabirds their shorter and shallower div8ig patterns may be due to physiological limitations. 

This can be seen in Table 4.8 with fur seals having only slightly longer ADLs than penguins 

when DMR = 2 x S m  and the lowest ADLs of ail species when DMR = 5 x SMR m e r  

species that would be expected to dive deeper and longer based on their body size are walrus 

and grey, harp, and hooded seals. In the case of the seals, these animals are ail known to dive 

considerably deeper than the dives andyzed here (Lavigne and Kovacs 1988; Hammill et ai. 



1993; Folkow and B k  1995; E.S. Nor- p e r s o d  communication) and their performances 

reported m this shidy are alrnost certainly due to limited water depth. The lirnited observed 

diving ability of the w a h s  is Iürely to be real and may be due to physiological lEnas iftheir 

DMR is 5 x SMR, remking m an ADL of only 4.9 min. However, it would be unexpected for 

a benthic forager that feeds on non-motile prey to have such high DMRs. A more plausible 

explanation is that they may be able to dive to greater depths and for longer durations than 

have been recorded, but have IittIe reason to do so because of the abundance of their benthic 

prey m shallow waters (Fay and B m s  1988). 

Dive s h q e  - The proportion of dives within each dive type across species were 

surprisin& similar, with Squnre dives bemg always, and by fàr, the most abundant, V dives 

being the next most abundant dive type, and the skewed dives being the least abundant. Even 

more surprishg was that the %BTS among Square dives was extremely consistent across 

species. The only explanations for the differences observed m proportions and %BTS of 

Square dives was the type of foraging performed, water depth, and Me stage (e.g. the main 

activity during the recordmg penods). The species with the three highest proportions and 

%BTS of Square dives @lue-eyed shags, grey se&, and walrus) were all benthic foragers. 

Also, male southem elephant seals, which are also thought to perform some benthic foraging, 

had the fourth highest proportion of Sguare dives. Additionally, when Square dives for male 

southem elephant seals were çplit using R, dives with higher values (suspected to be benthic 

dives because of the lack of die1 variation m mrVamum depth) had higher %BTS. This 

suggests that d e n  an animal is able to dive to the bottom depth, which is considerably 

shallower than its physiological depth limit (due to limited travel time to and fiom the bottom 

depth, and not a direct limit due to hydrostatic pressure), it can spend more time at the bottom 

of the dive (ie. higher %BTS). These higher values would make dive profiles appear more 

"square" and hence more Squclre dives would be detected. Also, since these animals are 

diving to non-moving benthic sites, less time would be needed for exploratory dives (Le. 



searching for prey sites). This is substantiated by very low numbers of V shaped dives for the 

four above mentioned species. 

Contrary to the high proportions mentioned above, hooded seals had the fewest 

Square dives and the smallest %BTS among ali dives combmed. This was the one species that 

was suspected not to forage during the measurement period (Kovacs et aL 1996), which 

would be consistent with the low proportion of Squnre dives and %BTS Weddell se& also 

had low proportions of Square dives and %BTS, but were observed for more than 6 months 

during the oveminter, gestation penod, which would indicate that foragïng must have been of 

primary miportance. Howwer, the length of these records may explah the lower proportions 

observed. Since the long recording periods sampled so much of these animais' behavior, it is 

possible that behavior recorded for Weddell se& was Smply missed for other species due to 

their relatively short lengths of coverage. Also, unWEe the penguins and f '  seals that forage 

for only hours or days at a tirne, the Weddeil seal spends months in the open ocean and 

therefore may need more t h e  for exploring (Le. more V dives), resting, or other non-foraging 

activities. 

Depth versur duration - The rate at which duration changes with depth (slope) did 

not appear to be affected by body size, but divers that were Limited by water depth or dived to 

the bottom (ie. blue-eyed shags, w h s ,  and harp, grey, and hooded se&) mcreased dive 

duration more rapidiy with an mcrease m maximum depth than did the other species. The 

amount of variability in duration due to changes m maximum depth (3) was affected by body 

size and decreased with mcreashg body size in a fairly regular pattem for aU dives. This 

pattern was also seen for Square dives, but was weaker or not apparent for the other dive 

types, probably due to smali sample sizes. Boyd and Arnbom (199 1) have shown that for 

southem elephant se&, dive duration increases rapidiy with hcreasmg depth to a pomt when 

the rate of increase becomes much slower. Ifthis applies to ail divers, those that are limited 

by depth (Le. benthic foragers and those in relative1y shailow water) would only be using the 



fkst part of the m e  where duration mcreases rapidly wah mcreashg depth (Le. large slopes 

for duration versus depth). Divers that are M g  to aiI depths wahm their abüities (Le. 

peLagic foragers) would follow the entire cwve shown m Boyd and Ambom (199 1) and 

therefore wodd, on average, mcrease duration more slowly wah depth (smaller slopes). 

Depth and duration are more tightly coupled in smaller divers because these animals 

may be mme duration and velocity timited than larger ones. Figure 4.4C shows that d e r  

divers have equal or greater Rs than larger ones. However, smaIIer divers would not be 

expected to swim as fàst as larger ones because drag increases with d a c e  area (LZ), w13e 

power mcreases with muscle volume c3). h o ,  smder divers have less oxygen stores and 

higher mass specïfïc metabolic rates so they cannot stay submerged as long. Considering 

these two factors, duration and depth should be more tightly coupled for smaller divers. 

Larger divers have more time during the dive cycle (longer durations) to make adjustments m 

swimming velocity (specifically, the rate of depth change) to mcrease or decrease the resulting 

maximum depth. Also, since these species have the potential to swim faster because oflarger 

muscle volume to surfàce area ratios, and swim at equal or slower rates than smaller species, 

larger divers have more potential for making adjustments m swim velocity to change resulting 

maximum depths. The duration limitation of smaller divers is not corroborated by estimates 

of ADL in this study (see below), where smaller divers exceeded their ADL less ofken than 

larger divers. However, ifthe slopes of SI versus duation (Figure 4.SC) and previous work 

on ADL (Boyd and Croxall 1996) are considered (showing a weak trend toward a more rapid 

mcrease m SI with mcreasing duration for smaller divers and suggesting that smaller seabirds 

exceed their estimated ADL more often than larger pmnipeds, respectively) a stronger 

duration Iimit is indicated for smaller divers. 

ADL - Comparison of ADLs and the proportion of the divmg behavior that exceed 

these vaiues must be tentative because, as mentioned in the methods section, many 

assumptions and estimates need to be made in order to calculate ADL. From the calculations 



performed here, the four largest divers (WeddeIl seals, female southem elephant seais, watnis 

(DMR = 5 x Sm), and male çouthem elephant seals) made the highest proportion of dives 

that exceeded their estimated ADLs. The trend for the smaller species was less clear, but 

most rarely exceeded their estimated ADL. This ditfierence in the proportion of dives that 

exceed the estimated ADL made by smd and large divers may be real or may simply mdicate 

that the ontplified models used here do not accurately estimate ADL, that calculated ADLs do 

not accurately reflect actual observed ADLs, or that there is no one specific ADL for a dÏving 

animal, but instead a varysig limit that changes with dive type and duration. 

It is likely that the r ed t s  found here are due to sweral of these factors. Other work 

on this topic has shown the opposite trend to that found here, with seabirds exceeding their 

estimated ADLs more often than the larger pinnipeds (Boyd and Croxall 1996). However, 

Boyd and Croxall use a DMR of 4 x SMR in their calculations of ADL. Also, closer 

examination of their work shows that the largest divers, and only phocid species ex-ed 

(fernale southem elephant seais), exceeded their eçtimated ADL for more than 90% of their 

dives whiie the one otariid species studied (male and female Antarctic fur seals) almost never 

exceeded their estimated ADL. Both of these results are similar to what was found here and 

the varyhg conclusions may merely reflect differences m the anirnals studied. h o ,  there is 

evidence that estimated ADLs often do not reflect the actual ADL (Burns and Castehi  1996; 

Boyd 1997) which may indicate that it is inappropriate to make these sorts of comparisons. If 

the resuhs here for Weddell seals are compared to the only study that has measured the actual 

ADL in an adult (Kooyrnan et aL 1980), the estimates made here grossly underestimate ADL 

(13 versus 20 to 25 min). The methods of Boyd and Croxall(1996) wouid have 

uoderestimated the ADL of WeddeU seais by an wen larger margin. It is likely that there is no 

one method for estimating ADL and its components, TBO, and DMR. Moreover, it is 

probably time to measure TBO, D m  and ADL directly m more species so that better 

models can be developed. 
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The esthates produced m this study likely overestimate ADL for smaller divers and 

underestimate ADL for larger dives. These errors are probably m a d y  due to errors in the 

estimates for DMR Ifthe ADL results produced here are compared to SI versus duration 

(Figure 4.5C and Figure 4.6) to determine if a behavioral ADL exists (Burns and Castellini 

1996), it mdicates that these e s b t e d  ADLs are not renected behaviorally. Looking at the 

relationships between SI and duration mdicates that for ail species, except perhaps blue-eyed 

shags and Antarctic fhr seais, the duration of the dive had linle or no effect on the subsequent 

SL This lack of relation&@ has been observed by others (Boyd and Croxall 1996; Boyd 

1997) and suggests that most species rarely exceed their actuai ADL. When lookmg at SI 

versus duration smoothed with the LOWESS method (Figure 4.6), several species exhibit an 

mcrease m SI with an mcrease in dive duration. However, except for bluaeyed shags, 

Antarctic fiu seals, and perhaps Weddell seals, the mcrease is very smd and innections are 

very weak. It is clear that different methods for estimating ADL cm drastically inauence 

conclusions drawn fiom the results and that one must be very tentative when &g 

conclusions based on uncorroborated ADL measurements. 

The trend across dive types may stilI be usefùl, however, since the differences are 

relative and should be consistent within a species. The hding that Square dives most often 

exceed the estimated ADL is probably realistic. Square dives are likely to represent foraging 

and a diver would be expected to maximke the length of these dives even at a cost. Also, 

consistent with the suggestion that some of the W e r  divers may also forage when 

performing V dives and that foraging dives may appear more V shaped d e n  pushmg duration 

limits, gentoo p e n d s  and Antarctic fur seals exceed their estimated ADLs most oft en when 

perfiorming these dives. 

Comporsons with previous work 

For all of the species midied here, except royal penguins, previous work had been 



conducted on either the same data sets used here or Merent data. Many of these works 

invohred some sort of dive classification using maximum depth, duration, or the shape of the 

dive profile (Table 4.9). Dives fiom royal penguins, Galapagos fk seals, grey se&, hooded 

seals, and walrus have not been previoudy clasdied (Kooyman and TriIlmich 1986a; Fay and 

Bums 1988; Wüg et ai. 1993; Lydersen et aL 1994; Folkow a n d B k  1995). Dives fiommoa 

of the other species (bhe-eyed shags, Adélie penguins, gentoo penguhs, Antarctic nir se&, 

and harp se&) were classified ushg prima@ maMmum depth and dwation and do not allow 

for reasonable cornparisons with this work (Croxall et a l  199 1; Boyd and Croxail 1992; 

Wanless et aL 1992; Williams et aL 1992; ChappeU et. al. 1993a; Boyd et aL 1994; Lydersen 

and Kovacs 1996; Bevan et aL 1997). However, some of these works did address dive shape 

at least peripherdy. ChappeIl et ai. (1993a) found dives with all of the same basic shapes 

defmed here for Adelie penguins but considered both skewed dive shapes to be a type of 

foraging where prey were pürsued vertically as welI as horizontdy. There is no concrete 

evidence to contradict this here, but the lack of die1 variation in maximum depth for both 

skewed dive shapes suggests that they may not have a foraging function (aithough Adelie 

penguin Square dives aiso showed veiy M e  die1 variation in maximum depth). For Antarctic 

fur seals, m contrast to the 8 1 % Square dives found here, Boyd and C r o d  (1992) found 

that most Antarctic fur seal dives had a V shape whüe Square dives were rare. This is 

surprishg since even visual inspection of Antarctic fur seal dive profiles in thiç çhidy indicate 

that moQ dives have a square shape. However, the work done by Boyd and C r o d  (1992) 

and that conducted here utilized cliffereut data sets and therefore these conflicting 

determinations may be reaL 

For only two of the species studied here (Weddell seais and southem elephant seals), 

had previous work been conducted to classi@ dive patterns using the shape of the dive profile 

(Hindell et al. 1991b; Jonker and Bester 1994; Campagna et aL 1995; Schreer and Testa 1995, 

1996; Bums et aL in press). However, work condücted on northem elephant seah (Le Boeuf 
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females and the separation of male Squme ches into pehgic and benthic dives was done on 

the basis of  R, not the number or size of wiggles during bottom time- The iack of a benthic 

Square dive for females may be realistic since other work has also found that this sort of dive 

was not present m femde records (Hindeli et aL 1991b; Jonker and Bester 1994) or t was 

very rare (Campagna et aL 1995). As for the subdivision of Square dives made by males, 

there was no evidence found here to separate these dives based on the number and size of 

wiggîes (unpubiished &a), although the separation based on R may have redted in a similar 

subdivision. In generai, previous classifications of elephant seal data (primarily subjective, but 

representing the largest body of literature on shape clasnfication for a single genus of two 

closely related species) have strong simüanties to the quantitative classifications performed 

here. This is encouraging and suggests that these sons of quantitative classifications are 

dividing the data mto potentially biologicaliy meanin@ groupings. 

UtiIity of quantitative shape anabsis 

It has been shown here and by many other works ( e g  Le Boeuf et al. 1988, 1992; 

Kindell et al. 199 1b; Bengtson and Stewart 1992; Schreer and Testa 1996) that dives 

classined on the basis of çbape may represent meanhgful behaviorai groupings. However, this 

type of classification may not be applicable to all species. Three species in this study (blue- 

eyed shags, grey se&, and walrus) basically had only one dive type that represented more 

than 97 % of all their dives. For these species it was useful to leam that aimost alI of their 

dives had a square shape, although this was probab1y already known by siniply lookmg at the 

dive profiles. Therefore, either these species only perfom one type of divgig behavior or 

other criteria are needed for dive classification. It shodd be noted, however, that m ail  three 

species, a small number of dives (<2000), fiom few individuals (<6), over a shoa time range 

(cl4 days), were recorded which undoubtediy presents a liniited view of their overd dMng 

patterns and abilities. 
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Another limitation of the shape classification is that it only uses two variables, depth 

and tirne. Dive types and fùnctions are inferred fkom two dimensional pattems d e n  the 

actual three dimensional activity during these dives is tmhown. In generaI, shape 

classincation is the logical next step, after simply Iooking for patterns in depth and duration, 

for groupmg dive pattems measured as time versus depth. These sorts of anaiyses have &en 

us a glinrpse of not only how deep and long animals dive, but what they do during the dives. 

Additional variables (e.g. velocity, stomach temperature, and jaw movements) will give more 

information about what an animal is doing while diving and v d i  undoubtediy help m 

determinhg more representative dive Spes and more accurate fîmctions for these types. 

However, the quantitative techniques presented here should &O be usefiil for anaiytical 

intexpretations of these additional data. 

Conclusions 

There were several strong similarities in dMng pattems across different species 

indicating the utility of a unified classification approach and that these species appear to utilize 

simüar behaviord pattems. Dive profiles (scaled to equivalent depth and duration) could 

generally be characterized as one of four shapes: Square, Y, Shed-Right, and Shed-Lef l .  

Variation in diving patterns across species could be attri'buted to four main fictors: 1) body 

size, 2) water depth, 3) foraging ecology, and 4) life stage. As expected, larger divers dived 

deeper and longer than d e r  ones, although foraging ecology and water depth ako had a 

large impact. Surprisin&, body size had no disceniable effect on other divmg pattems (e.g. 

proportions of dive types, the proportion of a dive that was considered bottom t h e ,  and the 

rate at which duration increased with depth) which were m d y  affected by foraging ecology 

and water depth. Two strong s i . e s  across species were that Square dives were always, 

and by Eu; the most abundant dive types and that approxhately 50% of the duration of these 

dives was spent near the maximum depth (although smali differences in these two factors 
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could be attributed to foraging ecology and water depth). Functional analyses mdicated 

similar funaons for dive types to those previousiy reported However, as m most prwious 

work, behavioral de teda t ions  of dive types were highIy spedative and indirectly Hiferred 

Additional information such as velocity, stomach temperature, and heart rate wili permit more 

credible assessments of dive hc t i ons  as well as more meaningfbl groupings of observed dive 

patterns, 
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Table 4.1. Sources of raw TDR dive data 

Species' Source ResuIting or relevant publications 

Blue-eyed shag LL. Boyd Bevan et al. 1997 

Adélie penguin M A  Chappeli Chappe11 et ai. 1993a, b 

Royal penguinb MA. HindeU Hindeli et al. 1996 

Gent00 penguinb LL. Boyd - 
Galapagos fur seal 

Antarctic fur sealb 

M. Homing 

LL. Boyd 

Homing 1992, Horning and 
Tr ih ich  1997 

Boyd and Croxali 1992; Boyd et 
aL 1994 

Harp seal C. Lydersen and K.M. Kovacs Lydersen and Kovacs 1993,I 996 

Grey seal C. Lydersen and K.M Kovacs Lydersen et al. 1994 

Hooded seal K.M. Kovacs and C. Lydersen Kovacs et aL 1996 

LW. Testa and J.F. Schreer Testa 1994; Schreer and Testa 
1995,1996 

Southern elahant seal MA Hindeli Hindell et aI. 199 l a  b: 1992 
-- -- - pp -- - 

' Scientïfïc names: Adélie penguin (p~soscelis adeliae), Antarctic fur seal ( ~ r c t o c e ~ h 7 m  gazeIIa), Galapagos fur 
seal (Arctocephalu galapagoensir), gentoo penguin (Pygoscelis papua), grey seal (Halichoem mur), harp 
seal (Phoca groenlandica), hooded seal (Cystophora cristata), royal penguin (Eudyptes schlegeli), blue-eyed shag 
(Phalacrocorax atriceps), southern elephant seal (Mirounga leontna), walm (Odobenur ramarus), and Weddell 
seal (Leptonychotes weddellii). 
Data not previously published 





Table 43. Dive variables used for cornparisons across species and to detennine dive-type subdivisions 

Dive variable Dennition Source 

Maximum depth (m) 

Duration (min) 

The maximum depth reading during the dive 

The duration between the fïrst and last reading of 
the dive, plus one sampling interval 

Q (m min-') 

Slope 

3 

Maximum depth + duration Schreer and Testa 1995 

- The rate at which one variable changes with 
another 

The amount of variability in one variable 
accounted for by another (Le. how tightly the two 
variables are coupleci) 

The time iaterval between the nrst and last depths 
equal to or greater than 80% of the dive's 
maximum depth 

Dive Analysis" Bottom time (BT, in 
min) and BT + duration 
(%BT) 

Wiggle count (WC) and 
WC + BT ber min) 

The number of ascent-to-descent occurrences that 
occur during bottom time and d z e r  by more than 
2 times the resolution of the TDR 

Dive Analysis" 

The average depth differwce between the deepest 
and shallowest points of a wiggle 

Average wiggIe 
distance (AVWD, in m) 
and AVWD + Depth 

Dive AnaIysisa 

Average descent rate 
(m S-') 

The rate of travel between the start of the dive and 
the beghnhg of bottom time 

Dive Analysis' 

Dive Analysis" 

This study 

- 

The rate of travel between the end of bottom tune 
and the end of the dive 

Average ascent rate 
(m s*') 

Average rate of depth 
change (R, in m s") 

The average rate of depth change: (descent rate + 
ascent rate) + 2 

Post-dive surface 
interval (SI, in min) 
and SI + duration 

The time between the end of a dive and the 
beginning of the subsequent dive 

The standard deviation or variabiiity of depth 
readings during BT 

The coefficient of variation: 100 x (STD + mead This studv " 

' Dive Analysis manual (Version 4.0) and program (Version 4-08), Wildlife Cornputers, Woodinville, WA, USA 



Table 4.4. Life history information on the various species relevant to the interpretation of their diving records in this study. 

Species Mass (kg) Primary prey Distribution Relevant details Source 

(ender) Lit m i s  study 

Adélie penguin 
($9 9.) 

Royal penguin 
0) 

Gentoo 
penguin (?) 

Galapagos fur 
seal (3) 

Antarctic fur 
seal ( q )  

Harp seal (9) 

2.42 Benîhic fish 
k0.23 

3.8 Krill 
*O. 3 

5.3b Krill and 
amphipods 

5.5b Krill and fish 

29.0 Cephalopods 
k3.2 and fish 

34.4 Krill and fish 
k2.9 

138.2 Pelagiç fis11 
I6.7 and 

crustaceans, 
bottom fish 

Southern S. 
America 

Circumpolar 
(S) 

Macquarie Is, 
(S. of New 
Zealand) 

Subantarctic 

Galapagos 1s. 

Antarctic 
convergence 

Arctio and N. 
Atlantic Ocean 

Foot-propelled pursuit-diver 

At-sea periods lasting up to 26 h. Ten min to 5 h to begin 
foraging. Not limited by water depth. 

Sometimes considered a subspecies of Macaroni penguin, 
Offshore pelagic feeder. 

At-sea periods last -14 h. lnshore feeder that may forage 
for benthic prey. 

Continuous swimming and diving while at sea for -16 h 
(7.6-27). Diving bouts start and end -2 h before and after 
being ashore. -1 9 km (4,7065) to foraging areas. Depart 
just before dark and retum swn after daylight, 

Lactating females taking foraging trips of approximately 3- 
5 days. 

Pupping in drifting pack-ice. Record from within 12 day 
lactation period (day 1-day 1 1). Mean at-sea period is 3.9 
h, Water depth of -63 m, but to at teast 106 m (deepest 
dive), 

Burger 1991; del Hoyo 
et al. 1992; Bevan et al. 
1997 

Burger 199 1 ; Chappe11 
et al. 1993a 

del Hoyo et al. 1992 

Burger 1991; Williams 
et al. 1992; Robinson 
and Hindell 1996 

Kooyman and TriIlmich 
1986a; Jefferson et al. 
1993 

Jefferson et al. 1993; 
Boyd and Croxall1992; 
I.L. Boyd personal 
communlcalion 

Jefferson et al. 1993; 
Lydersen and Kovaos 
1993,1996 



Table 4.4 (continued). 

Species Mass (kg) Primary prey Distribution Relevant details 

@ender) Lit This study 

Source 

Grey Seal (9) 

Weddell seal 
(9) 

Southem 
elephant seal 

(9)  

W a h s  (63 

Southem 
elephant seal 
(d3 

240 20 1.6 Benthic fish 
A29.9 and 

invertebrates, 
pelagio fish 

350 353.5 Cephalopods 
k51.6 andfish 

425 339.2 Fish 
k42.8' 

600 394.0 Cephalopods 
k65.1 and fish 

1900 1500 Benthic 
invertebrates 

4000 2272.5 Cephalopods 
*909.0a andfish 

Subarotic 
temperate in 
N. Atlantic 

Arctio and N. 
Atlantic Ocean 

Circumpolar 
(SI 

Circumpolar 
(SI 

Circumpolar 
(NI 

Circumpolar 
(SI 

Lactating, ice-breeding females. No correlation beiween 
female mass loss and pup mass gain, therefore females are 
likely to be feeding. 44.8-99.6%of time hauled-out. Max 
depth of water was 19 m. Often benthio feeders. Spcnt 
73% of the t h e  in water at the surface. Nurse every 2-3 h. 

During breeding season spending -85% of their tirne 
hauled out. Dived for a few hours at a time (otherwise 
spending days at a t h e  on the ice surface), Most lost 
weight. Shallow water depth (50-70 m). Seals that spent 
more tirne in the water lost more weight than those 
spending shorter amounts of time, Thercfore, wlikely that 
they were feeding, but instead perfonning energy 
ex pensive activity. 

Gestating females diving within pack-ice. Movements of 
up to 1500 km (in total). 

Most seals used foraging groutlds more than 1000 km fiom 
the 1s. and took 2-4 weeks to get there. Most females 
thought to perfonn only pelagio dives, 

Water depth of less than 100 m, 30 m in vicinity of the 
tagging site. 

Same as female southem elephant seah except that males 
thought to perform both pelagio and benthic dives, 

Jefferson et al. 1993; 
Lydersen et al. 1994 

Jefferson ct al. 1993; 
Kovacs et al, 1996 

Jefferson et al. 1993; 
Testa 1994 

Hindell et al. 199 1 b; 
Jefferson et al. 1993; 

Jefferson et al. 1993; 
Fay and Burns 1988; 
Gjertz and Wiig 1992; 
Wiig et al. 1993 

Hindell et al. 199 1 b; 
Jefferson et al. 1993; 

~~~~~ 

' Mass estimated fiom interspecific length versus mass regression. 
Mass taken fiom the published literature, 



Table 4.5. Recordhg and processing information for each species. Species with a second set of results fiom data 
sarnpled at a slower samphg interval were resampled so that the number o f  observations per dive was 
approximateiy equal for aU species. 

Species n Samphg Average # of  n 
intewal observations 

Individuals Days (sec) per dive AU dives r 5 obs. excluding 
=dive hvbrids 

Blue-eyed shag 

Adélie penguin 

Royal penguin 

Geatoo penguin 

Galapagos fùr seal 

Antarctic fw seal 

Harp seal 

Grey seal 

Hooded seal 

Southern elephant 
seal 9 

Southem elephant 
seal 8 



Table 4.6. Dive statistics (meanits.d.): maximum depth (m) and duration (min). Al1 dives r 5 depth readings per dive. Hybrid dives are excluded for shape 
classification. Species with a second set of results fioin data sampled at a slower sampling interval were resampled so that the number of observations per dive was 
approximately equal for al1 species. Obs. per dive, average number of observations per dive. 

! 
Species Obs. Al1 n, Square V 

per n Max. depth Durition m"US n (%) Max. depth Duration n (%) Max. depth Duration 
dive hvbrids 

Blue-eyed shag 74 588 
16 489 

Adhlie penguin 60; 12 22897 

Royal penguin 

Gentoo penguin 

Galapagos fur 
seal 

Antarctic fbr 
seal 
Harp seal 

Grey seal 
Hooded seal 

Weddell seal 
Southern 
elephant seal 9 

Souihem 
elephant seal d 
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Table 4.7. Dive statistics (mean*s.d.) for dive types resulting 6om a hierarchical classification. R, average rate of depth change (m S.'); Q, maximum depth + 
duration (m min"); BT, bottom tirne; %BT, bottom time + duration; WC, wiggle count, AVWD, average wiggle distance, STD, standard deviation of the mean BT 
depth. 

Species Dive Criteria n % Max. Depth Duration BT(min) %BT WC AVWD (m) STD (m) 
tY Pe (ml (min) 

Antarctic fur 
seal 

Harp seal 

Weddell seul 

W a h s  

Southem 

V RCO. 8 110 24 

Rr0.8 348 76 

Square RC0.5 425 14 

Rr O. 5 2539 86 

V Rc0.48 222 47 

Rr 0.48 255 53 

Square 4 4  1947 12 

Qr4 14814 88 

Square RC0.6 519 41 

0.6rR<1.0 494 38 

Rr 1.0 276 21 

Square RC1.0 3250 30 
elephant seal 8 Rr 1.0 7735 70 476.281,4 26.52I5.05 I5.25I4.59 56.7k8.6 0.74k0.86 6.6e12.11 46.59i30.64 



Table 4s. Estimated aerobic dive limits (ADLs) and the proportion of dives that exceed these values. Sq, 
Sauaw. SR Skewed-Ri& SL. Sked- lef i .  

Lit' =studyb 
(meankd)  

AU All Sq V SR SL 
2 5 
obs. 

Blue-eyed shag 

Adélie penguin 

Royal penguin 

Gentoo Penguin 

Galapagos 
fir seaI 

Grey Seal 

Hooded sea1 

Weddeli seal 

Southem elephant 
seal ( Q) 

Southeru eiep hant 

' Sources for mas: Burger 1 99 1, del Hoyo et al. 1992, and Jefferson et aL 1993. 
M a s  used to calculate ADL. 
' Diving metabolic rate @MIR) (ml 0, min-') is assumeci to be 2 x standard metabolic rate (SMR) for aii species 
except for the two fix seals where DMR is assumed to be either 2 or 5 x SMR SMR for the seabirds was 
calculated using SMR = 13.0I'~&'.~ (Aschoff and Pohi 1970; Kooyman 1989) and for marine marnmals using 
SMR= 10. (Kieiber 1961). where M, equak body mass (kg) and SMRis in ml of 4 min-'. S M R  and DMR 
were divided my mass to scale them to a unit mass (ml O, min" kg-'). 
dCaIculated available mass specifïc 0, stores (ml Oz kg-') for the various groups was 58 for birds, 60 for phocids, 
and 40 for otariids (Kooyman 1989). 
' ADL (min) = m a s  specific O, stores + m a s  specific DMR with these resulting equations: AD&,, = 
297M,,a*, ADLOrrnvl = 1.98waz, ADL,*-) = 0.79M,,az, and A D L ,  = 2.23pvIbat7'. 
'Mas  estimated fiom mterspecifïc lwgth versus m a s  regression. 
Masses taken fiom lit 
Numbers in italics are for DMR = 5 x S M R  
The w a h  ADL was calculated using the otariid equations. 



Table 49. Previous dive classifïcatioos. Dives fiom royal penguins, Galapagos fur seals, grey seais, hoodeci 
seals, and w a h  have not been previousiy classifieci 

Species Classification criteria Sources 

B lue-eyed 
shag 

Adélie 
penguin 

Gentoo 
Penguin 

Antarctic 
fur seal 

Harp seal 

WeddeIi 
seaI 

Southern 
elep hant 
seai (9) 

Southern 
elephant 
seal (8) 

1) short and shallow (r  2 min. and < 20 m) 
2) long and deep (>2 min and > 35 m) 

CroxaU et al. 1991; Wanless et 
al. 1992; Bevan et a l  1997 

1) short (4.33 min or no abrupt infiecrions in descent and Chappeii et aL 1993a 
asceat rate) 
2) long and deep (r 20 m, 2 1 min, or abrupt infiedons in 
descent and ascent rate): 2a) mean depth 13-15 m, 2b) mean 
depth 34-46 rn 

Square, V, skewed-right, and skewed-Ieft shapes. 

Dive ~Iassification 
1) V shaped 
2) square shaped 

Bout class rjkafion 
1) short (17 min) 
2) long (80 min) 
3) shailow (12 min, near surface) 
4) deep (19 min, 40-50 m) 

1) shaiiow, short (means of 5 m and 0.5 min) 
2) intermediate (means of 49 m and 4.6 min) 
3) deep, long (means of 63 m and 7.2 min) 

Or?ginal classification (1 968) 
1) short, shallow ( 4 0 0  m and 5 min) 
2) long (c200 m and >20 min) 
3) deep (>200 rn and 8- 15 min) 

Shape clmsi/ication ( 1 995,1996) 
1) square shaped 

la) many wiggles during bottom time 
lb) no or few wiggles during bottom time 
lc) rectangular (iong and shaiiow) 

2) V shaped 
3) skewed-rîght shaped 
4) skewed-left shaped 

Boyd and Croxaii 1992; Boyd et 
al, 1994 

Lydersen and Kovacs 1996 

Kooyman 1968; Schreer and 
Testa 1995; 1996 

1) square Hindell et al. 199 1 b; Jonker and 
la) many wiggles during bottom t h e  Bester 1994; Campagna et al. 
lb) no or few wiggles during botîom tirne (rare) 1995. Also see Le Boeuf et aL 

2) parabolic shaped, V shaped 1988,1992 for s i d a r  
3) skewed-right shaped classification of the closely 
4) skewed-lefi shaped relatai northern elephant seal 
5) short, shdow ( 4 . 5  min) (Miro unga angus f i m  tris) 
6) hybrids 

similar to femaIes except that lb (square dives with no or HindeIi et aI. 1 99 1 b 
few wiggles during bottom time) were much more cornmon 
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Figure 42. Annual coverage for the various species. 
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Figure 4.4. Maximum depth versus duration and meaa rate of depth change. A) Slope and B) 8 for maximum 
depth versus duration, C) Mean rate of depth change (R in m). Species are organized h m  srnailest (iefi) to largest 
(right). Shag, blue-eyed shag GFS, Galapagos fur seal; AFS. Antarctic fur seal; SES-F, femik southem elephant 
seal; SES-M, male southem elephant seaL 



B. Surface interval / duration 

Figure 45. Post-dive surface intewal and post-dive surface intemal vernis duration A) Mean post-dive surface 
interval (min), B) Mean post-dive surface interval + duration, C) Slope and D) 8 for post-dive surface interval 
vernir duration. Species are organized fiom srnailest (left) to largest (right). Shag, blue-eyed shag GFS, 
Galapagos ib seal; AFS, Antarctic fur seak SES-F, fanile southern elephant seal; SES-M male southcm elephant 
seal. 
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Figure 4.6. Post-dive surface interval versus dive duration 
smoothed by the LOWESS method For Adélie penguins, 
GaIapagos fiu seais, WeddeU seals, and female and male 
southeni elephant seais, a subsample of approximately 5500 
dives was used 
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Figure 4.7. Statistics for the bottom time of Square dives. Mean A) Bottom time (BT in min), B) Bottom time '- 
duration (YiT), C) Wiggle count (WC) and WC + BT, D) Average wiggle distance (AVWD in m) and AVWD + 

maximum depth, E) Standard deviation (Sn> in m) and coefficient of variation (CV) for depth during BT. Spaies 
are organized fkom smallest (lefi) to Iargest (right). Shag, blue-eyed shag GFS, Galapagos fur seal; AFS, 
Antarctic fur seal; SES-F, female southeni elephant seal: SES-M, male southeni elephant seai. 
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Figure 4%A. Die1 variation in percent dive fiequency, standardid maximum depth (me- se.), and 
standardized duration (me- se.) for blue-eyed shag, grey seal, hooded seal, Galapagos fiir seal, Antarctic fiir 
=al, gentoo penguin, walrus, and harp seal. Pattems are shown for each dive type (Square, i?, Skawd-Right, and 
Skewed-LeB) and for any additional dive types that resulted fiom the hierarchical classifications. Dive types with 
too few observations to show patterns adequately or with very similar patterns to previously displayed types are 
not shown. Maximum depth and duration were standardized for each species with the mean equal to 0.5 and one 
standard deviation equal to 0.25. R, average rate of depth change. 
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Figure 4.ûB. Die1 variation in percent dive fiequency, standardized maximum depth (me- se.), and 
standardized duration (me- se.) for fmale and male southem elephant seal, royal penguin, Weddeli seal and 
Adélie penguin. Patterns are shown for each dive type (Square, V, Skaved-Righr, and Skewed-Lefi) and for any 
additional dive types resulting fiom the hierarchical ~Iassincations. Dive types with too few observations to show 
patterns adequately or with very similar patterns to previously disptayed types are not shown. Maximum depth 
and duration were standardid for each species with the mem equal to 0.5 and one standard deviation equal to 
0.25. R, average rate of depth change (m s"); Q, maximum depth + duration (m min"). 
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CHAPTER 5 

Generai Conciusions 

In this thesis, general patterns m the reported diving capacities of ne* all groups of 

air-breathing vertebrates were exsmined, various algorithms for anaIyzÎng and classifymg 

timedepth recorder (TDR) data were presented, tested, and compared, and diving behavior 

fiom 12 species of pinnipeds and seabirds were clasgfied and compared. 

In the most geuerai sense, this work has shown that body size has a considerable eEect 

on an animal's divmg behavior, although foraging ecology and factors surroundmg the 

collection of the data are also of considerable importance. Interspecificaliy, the maximum 

depths and durations attained by air-breathhg vertebrates mcrease with increasing body mass, 

although this relationship was not aiways present when smder taxonomic groups were 

analyzed (Chapter 2). This has been show praioudy for vanous seabirds (alcids, 

cormorants, and penguins: Piatt and Nettleship 1985; Cooper 1986; Rmce and Hams 1988; 

Burger 1991), although this work and the concment work done by Boyd and C r o d  (1996) 

were the first to quant@ this relationship for pmnipeds. This work was also the first to show 

this relationship for cetaceans, to mciude reported vaiues for nearly ail dMng animals, and to 

compare these rehtionships across all major taxa of diving animals. 

In these cornparisons it was shown that most of the srnailer taxonomic groups also had 

strong allometric relationships between diving capacity (maximum depth and duration) and 

body mass. Notable exceptions were mysticete cetaceans and dMng/flying birds, which 

displayed no relationship between maximum diving depth and body mass, and otariid seals, 

which had no relationship between maximum diving depth or duration and body mass. Withm 

dMng/flying birds, only alcids had a si@cant relationship (for depth). The d i h g  capacities 

of penguins had the highest correlations to body mas,  foilowed by odontocete cetaceans and 

phocid seals. Mysticete cetaceans had a strong relationship between only maximum duration 

125 



and body rnass. Cornparisons across the va15ous groups hdicated that alcids, penguins, and 

phocids are a l i  exceptional divers relative to their masses and that mysticete cetaceans dive to 

shallower depths and for shorter periods than would be predicted f?om their ske. A b ,  m 

agreement with Burger (199 l), dcids dive deeper than penguins relative to their ske, and m 

agreement with Boyd and C r o d  (1996), seabirds generally have p a t e r  m a s  specific divmg 

capacities than pinnipeds. LastJy, at the end of Chapter 2, it was suggested that using mean 

values and dive shape wodd be usefùl for comparing dRrSig patterns across species because 

they may better reflect natural divmg behavior as opposed to the rarely penormed maximums. 

Calculating mean values for diving behavior is a relatively easy process, but organimig 

diving behavior mto different groups is a fjir more difEcult problem Most studies that have 

attempted to organize diving behavior have p r i m .  grouped dives subjectively according to 

perceived simüarities in maximum depth and duration (e.g. Kooyman 1968; Croxall et al. 

199 1; Goebel et ai. 199 1; Wanless et al. 1992; Williams et al. 1992; Chappell et al. 1993a). It 

is perhaps inappropriate to include solely maximum depth and duration mto classification 

analyses because both of these variables may display strong die1 variation (e.g. Bengtson and 

Stewart 1992; CasteIlini et a l  1992a; Boyd et ai. 1944; Schreer and Testa 1996) that c a .  

obscure the determination of behaviord groupings. For example, an animal may perform 

nmilar behaviors at different times of day (e.g. foraging). However, ifits prey vertically 

migrate, the animal under study will forage at different depths throughout the day dependmg 

on the location of t s  prey. Therefore, wen though the shape of a dive (depth versus tirne) 

may remain similar (due to optimimig time at the prey patch) and indicate comparable 

behavior, depth and duration codd Vary drastically. 

Recentiy, several studies have mcluded dive shape as a means of grouping divEg 

behavior (Le Boeufet al. 1988, 1992; Hmdeii et al. 1991b; Bengtson and Stewart 1992; 

Schreer and Testa 1993, 1995, 1996; Jonker and Bester 1994; BrilIinger et aL 1995; 

Campagna et aL 1995; Schreer et ai. 1995; Brillinger and Stewart 1997; Burns et aL in press). 



Many of these works relied solely or primariIy on subjective comparisons of dive profiles. 

This mtroduces human bias and prwents cross-study comparisons due to individuai 

classification protocols. A few studies have attempted quantitative classification of divhg 

patterns (EudeIl et a l  1991b; Schreer and Testa 1993, 1995, 1996; Boyd et aL 1994; 

Brillinger et al. 1995; Schreer et ai. 1995; Brülinger and Stewart 1997; Bums et aL in press), 

although the mdividuai classification protocols for these analyses have also varied 

considerably- Ih short, the methods for class@Ïng diving patterns have varied considerably, 

obscuring mterspecific comparisons. 

Therefore, to determine a suitable method for clasçifiling dive profiles that could be 

applied to all sorts of dMng behavior, four techniques for groupmg multivariate observations 

were tested and compared (Chapter 3). These included k-means and f Ù z q  c-means clustering 

techniques nom the field of statistics, and Kohonen self-organimig map (SOM) and f b q  

adaptive resonance theory (ART) fiom the field of artificial neural networks. A Monte Car10 

simulation was performed on araficially generated data, with known solutions, to test 

clustering perfiormance under various conditions (Le. well defmed or overlapping groups, 

varying numbers of attri'butes, varying numbers of groups, and auto-correlated attributes). As 

weli, perfoxmance was tested on real data sets nom Adélie penguins (Pygmcelis adeliue), 

southern elephant seals (Mirou~zga Ieonina), and WeddeIl se& (Lepio~zychoies weddellii). K- 

means, fuPy c-means, and SOM all performed equally well on the d c i a l l y  generated data 

wlde fiuzy ART had error rates that were twice as high. AU techniques showed decreasing 

performance with increasing overlap among groups and mcreasing numbers of groups, but 

mcreashg performance with mcreasing numbers of attributes. Fuzzy ART was the most 

sensitive to the varying simulation parameters. When clustering real data, both c-means and 

SOM classined observations mto chisters that were closer together (relative to k-means) and 

hence had less distinct boundaries separating the clusters. K-means performed as well as c- 

means and SOM, but its classification of real data was more logical when compared to the 



actual dive profiles. K-means is also readily avaüable on most statiseica.1 software packages. 

Considering ail of these factors, k-means clustering appears to be the best method, arnong 

those exa-ed, for groupmg muftivariate diving data. As a side note, however, several of the 

other methods showed much promise for certain situations For example, group memberdips 

obtained wIim ushg fûzzy c-means would be usenil for identifjing hybrids (an observation 

with characteristics of more than one group). Also, even though tiizy ART had the poorest 

pefiorrnance of ali methods examine& its characteristic of behg able to group observations m 

an almost entirely unsupervised way (e.g. without having to mput the number of groups 

beforehand) shows much potential for remote applications (e.g. "on board" processing). 

Therefore, improvements in all of these methods (specificaüy the neural network methods 

which are cmently evolving rapidly) should be monitored for their applicability for analyzhg 

behaviord data. 

Now that a suitable technique for organimig diving behavior had been found, this 

technique was then applied to dive data nom several Merent species (Chapter 4). The 

species mcluded one cormorant, 3 peoguins, 2 otariids (eared seals), 5 phocids ( m e  seals), 

and a walnis. However, after c l a s s ~ g  dive data from the different species, dive shapes 

observed were so simüar that it seemed appropriate to use a more unified and simple 

approach. Therefore, dives were cornpared to simple geometric shapes and classified as the 

type of shape to which it was most similar. This method was relatively genenc, automate4 

and dowed more direct cornparisons across species. More than 230,000 dives from 12 

species were analyzed and a p p r o h t e l y  150,000 were classified accordmg to dive shape. 

Dive profiles (scaled to equivalent depth and duration) could generally be characterhed as one 

of four shapes: square, V, skewed-right, and skewed-Ieft. Comparative analyses across these 

dive types and the Merent species, rwealed that square dives were ahvays, and by fàr, the 

most abundant dive type, usually followed by V dives, and then the skewed dives. Also, the 

proportion of time the animals spent at the bottom of square dives was quite d o m  across 
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species (-50%) indicatmg that simüar foraging strategies were being used, at least relative to 

the shapes of dives. Observed Merences across species rwealed that, as expected, larger 

anmials generdly dived deeper and longer than smaller ones, although fûr seals and the w a h  

were exceptions wah more limited dMng capacities than expected based on their body Sze. 

Also, smder divers had a tighter coupling between dive depth and duration than Iarger ones. 

Surprismgiy, few other dive variables (e-g. the rate at whicb dive duration mcreases with 

depth, the proportion of square dives, and the proportion of bottom time during square dives) 

were Sected by body size. It appears, instead, that physical (water depth) and ecological 

(type of prey) constrahts were prevaient in the observed patterns. 

Analyses using estimated ADL hdicated that this was not a good estimate of actual 

ADL. However, comparisons of ADL across dive types, which may stiu be valid since the 

Werences are relative and should be consistent within a species, indicated that square dives 

moa offen exceeded the estimated ADL. This was to be expected because square dives likeIy 

represent foragïng and diving animals may push their Limits most during these types of dives. 

Lady, h c t i o n d  analyses of the determined ciive types were m generai agreement with those 

fiom previous work mdicating that the vanous dive types have foraging (bathic and pelagic), 

travelling, exploration, resting, and processing functions. However, for most species, skewed 

dives were exceptiondy rare and are Iikely to be of little importance to many of the animals' 

diving regimes. 

Having summarized the major findings fiom this thesis, some limitations mua be 

p omted out. Cornparisons of maximum depth and duration are usefùl for large mterspecific 

comparisons, however, mean or normal values can be considerably different (Hhdell et aL 

199 1b; Prince and Jones 1992; Schreer and Testa 1996). Therefore, even though maximum 

values may shed light on merences between groups of divers, mean values may be more 

useful in representing naturai behavior. In addition, many of the values reported on diving 

behavior were acquired under highly artScid conditions, were a result of very small sample 



130 

sizes, or were mdirectiy mferred. At this tirne, there are too few studies that do not have one 

or more of these shortcomings and therefore it would be impossible to perfiorm broad 

interspecific cornparisons utilking o d y  the more rigorous data. However, as more studies are 

conducted, and more data are collected, these limitations will be eli-ted, allowing more 

rigorous mt ersp ecific comp arisons. 

These same sorts of limitations also aec ted  the classincation, comparative, and 

fimctionai analyses. Depth and time arejust two variables that c m  be measured on diving 

behavior. Much of our understanding of the diving behavior of animak has been acquired 

with these variables. However, when considering the shape of a dive or the physical location 

of an animal throughout a dive, the image cm present a misleading picture. Lines within a 

dive profile c m  be misinterpreted as movement when in fàct they çimply represent an animal's 

vertical position over tirne. For example, a flat bottomed dive may look Wre the anmial 

descended to the maximum depth of the dive, moved horizontally, and then retumed to the 

surface. In actuality, the animal may have remained m one location at the bottom of the dive. 

To get a more accurate image of the animal's position and movement during a dive, 

information on the horizontal position is also needed (Le. a 3D image or 4D when includmg 

tirne). This sort of data has been collected for ringed seals, Phma hispidu, although no 

reports have been made on how these dive promes m e r  fiom traditional two-dimensional 

(depth versus t h e )  profiles (Kelly and Wartzok 1995, 1996). Another way to determine the 

actuai actMty during a dive is to record swim velocity m addition to depth and t h e .  This sort 

of data has been collected on several species recently (e.g. Castellini et aL 1992b; Le Boeuf 

1992; Hindell and Burton 1993), and has helped m interpethg the h c t i o n s  of dives types 

determined using jua depth and the .  Velocicy has been used to substantiate that skewed-left 

shaped dives m elephant seals may have a sleeping or resting fùnction because the seais stop 

swhmbg and çmk for part of the descent phase of the dive (Le Boeuf 1992; Hindell and 

Burton 1993). This information, as well as three-dimensional location, would also be usefiil 



to determine if dives thought to represent travelling actudy had considerable horizontal 

movement. 

Ln addition to these phyçical variables, physiological measurements are also needed to 

better organize dives mto different behavioral groupmgs For example, dives that have been 

suggested to represent foraging could be validated ifthe animal was known to be opening it's 

mouth during these dives (Bornemann et aL 1992) or ifstornach temperature had dropped due 

to an influ.~ of cold water and prey (Ancel et ai. 1997). However, unsuccesstiil foraging 

attempts where the animal was unable to catch prey could not be distinguished with these 

data. Parameters such as heart rate, cardiac output, metabolic rate, and body temperature 

(Kooyman et al. 1992b; Ponga.uk et al 1993b; Kooyman and Ponganis 1994) wodd d o w  an 

animal's actMty lwel during a dive to be determined and would be usefiil in classifying dives. 

However, many of these variables cannot yet be measured on fiee-dMng rnimala and to date, 

no work has been done to use any of these additional variables to clas* dives. 

The analyses performed m this thesis have constituted several steps towards a better 

understanding of the way m which air-breathmg vertebrates exploit their aquatic habitat. 

Examination of diving capacity has shown that larger animak cm generalIy dive deeper and 

longer than smaller ones, but that ecological niches or preferences are also of considerable 

importance. Cornparison of possible ciassification procedures and ciassification resuits have 

mdicated that a statistical technique, the k-means clustering algonthm, is a good method for 

groupmg observations and that strong similarities m the types of dive profiles exists across 

species. Fuither comparisons of dive shape patterns across species have shown additional 

nmilanties in the proportions of the dive types and the proportion of bottom t h e  within the 

square, potentially foraghg, dive type. Merences observed m these patterns were u d y  

due to foraging ecology and water depth. Additional variables and mfomation collected on 

divmg animals will corroborate or refkte some of these conclusions, but hopefuy., m concert 

with the work done here, will iniprove our understanding of how this diverse group of air- 

breathmg animais exploit the aquatic environment. 



REFERENCES 

AfX, AA, and Clark, V. 1990. Computer-aided dt ivariate  a n W .  2nd Edition. Van 

Nostrand, Remhold- 

Ancei, A, Hornhg, M, and Kooyman, G.L. 1997. Rey ingestion revealed by oesophagus and 

stomach temperature recordings in cormorants. Journal of Experirnentai Biology 200: 

149- 154. 

Aschoff, S., and Pohl, H. 1 970. Rhythmic variation m energy met ab o h  Federation 

Proceedmgs 29: 1541- 1552. 

Baker, AN. 198 1. The southem right whde dolphin, Lissodelphis peronii (Lacépède) m 

Australian waters. National Museum of New Z e h d  Records 2: 17-34. 

Balakrishnan, P.V., Cooper, M.C., Jacob, V.S., and Lewis, P.A 1994. A study of the 

classification of neural networks using unsupe~sed  learning: a cornparison with k- 

means clustering. Psychometrika 59: 509-525. 

Baudinette, RV., and Gill, P. 1985. The energetics o f  'flying' and paddling' in water: 

locomotion m penguins and ducks. Journal of Comparative Physiology B 155: 373- 

3 80. 

Bengtson, J.L., and Stewart, B.S. 1992. Diving and haulout behavior of crabeater seals m the 

Weddell Sea, Antarctica, during March 1986. Pola. Biology 12: 635-644. 

Bengtson, IL., Croll, D A ,  and Goebei, M.E. 1993. DivHig behaviour of chinstrap penguins 

at Seal Island. Antarctic Science 5: 9- 15. 

B enjanhsen, T., and Christensen, 1. 1979. The natural history of the bottlenose whale, 

Hyperdon  ampuiiatus (Forster). In Behavior of Marine Mammals, Volume 3. 

Cetaceans. Edited by RE. Winn and B.L. Oh. Plenum Press, New York pp. 143- 

164. 

Bevan, RM., Boyd, I.L., Butler, P.J., Reid, K., Woakes AJ., CroxaiI, J.P. 1997. Heart rates 

and abdominal temperatures of fiee-ranging South Georgian shags, Phalacrocormc 

132 



133 

Ge~r~QrncS. Journal of Experimental Biology 200: 66 1-675. 

Bezdek, J.C. 1981. Pattern recognition with fÛzzy objective hc t i on  algorithmsrithms Plenum, 

New York 

Bezdek, J-C. 1987. Anaiysis of fiizzy information. Volume 3. CRC Press, Boca Raton. 

Bezdek I.C. 1991. Pattern recognition, neural networks, and amficial intelligence. In 

Applications of ar t i f id  intelligence. Volume 9. Edited by M-M. Trivedi. SPIE 1468: 

924-93 5. 

Boersrna, P.D. 1976. An ecological and behavioral study of the Galapagos penguin. Living 

Bird 15: 43-93. 

Bomemann, H, Mohr, E., Plotz, J. 1992. Monitoring the feeding behaviour on fkeely diving 

Weddell se& (Leptonychotes weddeIIi). Journal of Veterinary Medicine A 39: 228- 

235. 

Bower, C.A, and Henderson, RS. 1972. Project deep ops: deep object recovery with pilot 

and m e r  whales. Naval Undersea Center Technical Pap er No. 3 06. San Diego. 

Boyd, 1-L. 1993. Selecting çampling fiequency for measuring dishg behavior. Marine 

Mammal Science 9: 424-430. 

Boyd, LL. 1997. The behavioural and physiological ecology of diving. Trends in Ecology and 

Evolution 12: 213-217. 

Boyd, I.L., and Arnbom, T. 199 1. M g  behaviour in relation to water temperature in the 

southem elephant seal: foraging implications. Polar BioIogy 11 : 25 9-266. 

Boyd, LL., and CroxaJl, J.P. 1992. D-g behaviour oflactahg Antarctic fin seais Canadian 

Journal of Zoology 70: 9 19-928. 

Boyd. LL., and CroxaJl, J.P. 1996. Dive durations m pinnipeds and seabirds. Canadian Journal 

of Zoology 74: 1696- 1705. 

Boyd, I.L., Reid, K, and Bevan, R U  1995. Swimming speed and ailocation oftime during 

the dive cycles in Antarctic fùr seais. Animal Behaviour 50: 769-784. 



134 

Boyd, I.L., Axnould, J.P.Y., Barton, T., and CroxalI, J.P. 1994. Foraging behaviour of 

Antarctic fbr seals during periods of contrastmg prey abundance. Journal of Animal 

Ecology 63: 703-7 13. 

Brett, J.R 1965. The relation of size to rate of oxygen consumption and sustained swimming 

speed of sockeye salmon (Oncor@nchus nerka). JoumaL Fisheries Research Board of 

Canada 22: 149 1- 1497. 

BrilliBger, D.R, and Stewart, B.S. 1997. Elephant seal movements: dive types and their 

sequemes. In Modelling longitudinal and spatially correlated data: methods, 

applications, and future directions. Edïted by T.G. Gregoire et aL Lecture Notes in 

Statistics, Volume 122. Springer, New York 

Brülinger, D., Stewart, B.S., and Wang, A. 1995. Computer-asshed, automatic evahation of 

two-dimensional profiles (tirne v s  depth) of time-series data for divsig marine 

mammals. Itz Abstracts f?om the Eleventh Biennial Conference on the Biology of 

Marine Mammals, Orlando, FL, December 14-18, 1995. p. 4 1. 

Burger, AE. 199 1. Maximum diving d q t h  and undenvater foraging m alcids and penguhs. In 

Studies of hi&-latitude seabirds. 1. Behavioural, energetic? and oceanographic aspects 

of seabird feedmg ecology. Edited by W.A.. Montevecchi and AS. Gaston. Canadian 

Wildlife Service, Occasional Paper, No. 68. pp. 9- 15. 

Burger, A.E., and Powell, D.W. 1990. D i h g  depths and diet of Cassin's auklet at Reef 

Island, British Columbia. Canadian Journal of Zoology 68: 1572- 1577. 

Burger, AE., and Simpson, M. 1986. Diving depths of Atlantic p 6 s  and common m u e s .  

Auk 103: 828-830. 

Burger, AE., and W i n ,  RP. 1988. Capillary-tube depth gauges for dMng animals: an 

assessrnent of their accuracy and applicability. Journal of Field Omithology 59: 345- 

3 54. 

Bums, J.M., and Castellini, M.A. 1996. Physiological and behaviorai determinants of the 

aerobic dive limit in Weddell seal (Leptonychotes weddelii) pups. Journal of 



Comparative Physioiogy B 166: 474-483. 

Bums, J.M., Scbreer, J.F., and Castelhi, M.A in press. Physiological effects on mdMdual 

dive patterns and foraging çtrategies m yearling Weddeil seals. Canadian Journal of 

Zoology. 

Butler, P.J., and Jones, D.R 1982. The comparative phy9010gy of dMng m vertebrates. In 

Advances m comparative physiology and biochemistry. Edited by O. Lowenstem. 

Academic Press, New York. pp. 179-364. 

Calinski, T. and Harabasz, J. 1974. A dendrite method for ciuster analysis. Communications 

in Statistics 3: 1-27. 

Campagna, C., Le B o e ~  B. J., Blackwell, S.B., Crocker, D.E., and Quintana, F. 1995. Dnimg 

behaviour and foraging location of female southem elephant seals from Patagonia. 

Journal of Zoology, London 236: 55-7 1. 

Carbone, C. 1995. Guidelines for estimating the feedmg performance of divmg birds. 

Wildfowl46: 1 19- 128. 

Carbone, C., de Leeuw, J.I., and Houston, AI. 1996. Adjuments in the d h k g  tirne budgets 

of tufted duck and pochard: is there evidence for a mix of metabolic pathways? Animal 

Behaviour 51: 125% 1268. 

Carpenter, G A ,  and Grossberg, S. 1987a. A massively parallel architecture for a seif- 

organiPng neural pattern recognition machine. Compter Vision, Graphies, and Image 

Processing 37: 54- 1 15. 

Carpenter, G-A, and Grossberg, S. 1987b. ART 2: self-organization of stable category 

recognition codes for analog input pattems. Applied Optics 26: 49 19-4930. 

Carpenter, GA, and Grossberg, S. 1988. The ART of adaptive pattern recognition by a self- 

organizing neural network Cornputer 21: 77-88. 

Carpenter, GA,  Grossberg, S., and Rosen, D.B. 199 1. F u z y  ART: fast stable learning and 

categorization of analog patterns by an adaptive resonance system Neural Networks 



4: 759-77 1. 

Castelhi, M.A 199 1. The biology of diving mnmmala: behavioral, physiological, and 

biochemical l i e s .  In Advances m comparative and environmental physiology, Vohune 

8. Edited by R m e s .  Springer-Verlag, Berlin pp. 105- 134. 

Castelhi, M A ,  Davis, RW., and Kooyman, G.L. 1992a. Annual cycles of divmg behavior 

and ecology of the WeddeIl seaL Bulleth of the Scripps Institution of Oceanography. 

VOL 28. Unkersity of California Press, Berkeley. 

Caaeilini, UA, Kooyman, G.L., and Ponganis, P.J. 1992b. Metabolic rates of fieely diving 

Weddell se&: correlations with oxygen stores, swim velocity and dÎving duration. 

Journal of Exp erimental Biology 165: 18 1- 194. 

Chappeli, M.A., Shoemaker, V.H, Janes, D.N., Bucher, TH, and Maloney, S.K. 1993a. 

Diving behavior during foraging in breeding Adélie penguhs. Ecology 74: 1204- 12 15. 

Chappe& M A ,  Shoemaker, V.K, Janes, D.N., Maloney, S.K, and Bucher, T.L. 1993b. 

Energetics of fora& m breeding Adélie penguins. Ecology 74: 2450-2461. 

Cheng, B., and Titterington, D.M. 1994. Neural networks: a review nom a statistical 

perspective. Statistical Science 9: 2-54. 

Clarke, M.R 1976. Observations on sperm d a l e  div8ig. Sounid Marine Biological 

Association, United Kingdom 56: 809-8 10. 

Cody, ML. 1973. Coexistance, coevolution and convergent evolution in seabird cornmunities. 

Ecology 54: 3 1-44. 

Cooper, J. 1985. Biology of the bank cornorant, Part 3. Foraging behaviour. Ostrich 56: 86- 

95. 

Cooper, J. 1986. DRring patterns of cornorants Phalacrocoracidae. Ibis 128: 562-570. 

Costa, D.P., and Gentry, RL. 1986. Free-ranging energetics of northem fur seais. In Fur 

se&: Matemal strategies on land and at sea. Edited by RL. Gentry and G.L. 

Kooyman. Princeton University Press, Princeton. pp. 6 1-78. 



137 

Costa, D.P. 1993. The relationship between reproductive and foraging energetics and the 

evolution of the Pinnipedia. Symposia. Zoologicd Society of London, No. 

66: 293-3 14. 

Costa, D.P., Thorson, P.H, and Kretmm, M. 1989. Diving and foraging energetics of the 

Australkm sea lion, Neophoca cinem. American Zoologkt 29: 7 1 k  

Cramp, S., and Simmons, KE.L. 1977. Handbook of Europe, the Middle East and North 

e c a :  the birds of the Western Palearctic. Volume 1. M o r d  University Press, 

M o r d .  

Croll, D.A, Gaston, A.J., Burger, AE., and KonnofS D. 1992. ForagHig behavior and 

physiologicd adaptation for diving in thick-billed munes. Ecology 73: 344-356. 

Croxall, J.P., Naito, Y., Kato, A, Rothery, P., and Bnggs, D.R 1991. Diving patterns and 

performance m the Antarctic blue-eyed shag Phdacrocorax atriceps. Journal of 

Zoology, London 225: 171- 199. 

Croxall, J.P., Briggs, D.R, Kato, A., Naito, Y., Watanuki, Y., and Williams, T.D. 1993. 

DMng pattern and performance in the macaroni penguin Eudyptes chrysoloplnr. 

Journal of Zoology, London 230: 3 1-47. 

CniicMank, RA, and Brown, S.G.. 1981. Recent observations and some historical records 

of southem right-whale dolphins Lissodelphis peronzz. Fishery Bulletin. South Afiica 

15: 109-121. 

Cummkgs, W.C. 1985. Bryde's whale - Balamoptera edeni Anderson, 1878. In Handbook of 

marine mammala. Volume 3: The Sirenians and baleen wtiales. Edited by S.H. 

Ridgway and S.R Hanison. Academic Ress, London. pp. 137- 154. 

Davis, RW., Le BoeuS B.J., Marshall, G., Crocker, D., and Wiams, J. 1993. Obsenhg the 

underwater behavior of elephant se& at sea by attaching a srnall video camera to their 

backs. In Abstracts fiom the Tenth Biennid Conference on the Biology of Marine 

Mammals, Galveston, TX, November 1 1- 15, 1993. p. 40. 



138 

del Hoyo, J., Elliot, A, and Sargatal, J. 1992. Handbook of the birds of the World Volume 1. 

Lynx Edicions, Barcelona. 

DeLong, RL., and Stewart, B.S. 199 1. Divmg patterns of northern elephant seal bulls. Marine 

M a d  Science 7: 369-384. 

DeSieno, D. 1988. Addmg a conscience to cornpetitive learnhg. Proceeding of the 

International Conference on Neural Networks. IEEE Society. San Diego. pp . 1 17- 124. 
Dewar, J.M. 1924. The bird as a diver. Witherby, London. 

Dillon, W.R, and Goldstein, M- 1984. Multivariate analysis: methods and applications, John 

Wiley and Sons, New York 

Dolphin, W.F. 1988. Foraghg dive patterns of humpback whales, Megaptera novaeongliae, 

in southeast Alaska: a cost-benefit analysis. Canadian Journal of Zoology 66: 2432- 

2441. 

Dow, D.D. 1964. Divmg times of wintering water birds. Auk 81: 556-558. 

Dufnl, D.C. 1983. The foragbg ecology of Peruvian seabirds. Auk 100: 800-810. 

Dunn, J-C. 1973. A fùzzy relative of the ISODATA process and its use m detecting compact 

well-separated cluners. Joumal of Cybernetics 3: 32-57. 

Eckert, S.A.., Eckert, KL., Ponganis, P., and Kooyman, G.L. 1989. DÎvïng and foraging 

b ehavior of leatherb ack sea turtles (DemocheZys coriaces). Canadian Journal of 

Zoology 67: 2834-2840. 

Eckert, SA, Nellis, D.W., Eckert, KL., and Kooyman, G.L. 1986. M g  patterns oftwo 

leatherback sea M e s  (Dermochelys coriocea) during mtemestmg intemals at Sandy 

Point, St. Crobq US. V i  Islands. Herpetologica 42: 38 1-3 88. 

Eliassen, E. 1960. Cardiovascdar responses to submersion asphyxia m avian divers. Acta 

Universitatis Bergensis. Series Mathematica. Rerumque Naturalium 2: 1- IOO. 

Elmasry, M. 1. 1994. VLSI artincial neural networks engineering. Kluwer Academic 

Publishers, Boston. 



139 

Evans, W.E. 197 1. Orientation behavior of delphinids: radio telemetric studies Annals of the 

New York Academy of Science 188: 142- 160. 

Evans, W.E. 1974. Telemetering of temperature and depth data nom a fiee ranging yearling 

California gray whale, fichrichtiw robwtus- MarBie Fishexies Review 36: 52-58. 

Everitt, B.S. 1993. Cluster analysis. 3rd Edition. Edward Arnold, London. 

Fay, F.H., and Burns, J.J. 1988. Maximum feedmg depth of walxuses. Arctic 41: 239-240. 

Feldkamp, S.D., DeLong, RL., and Autonelis, G.A 1989. Dniing patterns of California sea 

lions, Z a l o p h  caIfomiamcs Canadian Journal of ZooIogy 67: 872-883. 

Fitch, J.E., and Brownell Jr., RL. 1968. Fi& otoliths in cetacean stomachs and their 

importance m mterpreting feedmg habits. Journal. Fkhenes Research Board of Canada 

25: 2561-2574. 

Folkow, L.P., and B k  AS. 1995. Distribution and divmg behaviour of hooded seals. Itz 

Whales, seals, fi&, and man: Proceedings of the International Symposium on the 

Biology of Marine Mammals in the North East Atlantic, Tromsnr7 Norway, November 

29 - Decernber 1, 1994. Edited by A S. Blix, L. W&e, and 0. Zllltang. Elsevier, 

Amsterdam pp. 193-202. 

Forbes, L. S. and Sealy, S.G. 1988. DMng behaviour of male and fernale western grebes. 

Canadian Journal of Zoology 66: 2695-2698. 

Frost, K J., Lowry, L.F., Davis, R, and Suydam, R S. 1993. Movements and behavior of 

satellite tagged spotted se& m the Berhg and Chukchi Seas. In Abstracts nom the 

Tenth Biennial Conference on the Biology of Marine M d 7  Galveston, TX, 

November 11-15, 1993. p. 50. 

F h a g a ,  K, and Young, J.A. 199 1. Pattern recognition and neural engineering. In Neural 

networks: concepts, applications, and implementations. Volume 1. Edited by P. 

Antognetti and V. Milutinovif. Prentice Hall, Englewood C W .  pp. 10-32. 

Gales, N.J. and Matilin, RH 1995. S u m e r  W g  behaviour of f e d e  New Zealand sed 



140 

lions: the deepest div8ig otariïd. In Abstracts nom the Eleveath Biennial Conference 

on the Biology of Marine Ma&, Orlando, FL, December 14- 18, 1995. p. 41. 

Gallant, S.I. 1993. Neural network leamhg and expert systems. MIT Press, Cambridge. 

Mo-Reynoso, J.P., Le B o e d  B. J., and Figueroa, AL. 1995. T'rack, location, duration and 

dniing behavior during foraging trips of Guadalupe fbr seal fernales. In Abstracts fiom 

the Eleventh Biennial Conference on the Biology of Marine Mammak, Orlando, FL, 

December 14-18, 1995. p. 41. 

Gambell, R 1985. Sei whale - Maenoptera borealis Lesson, 1828 . In Handbook of marine 

xnammals. Volume 3: The Sirenians and baleen whales. Edited by S.H Ridgway and 

S.R Hanison. Academic Press, London. pp. 155- 170. 

Gaskin, D.E. 1982. The ecology of whales and dolphms. Hememann, London. 

Gentry, RL., and Kooyman, G.L. 1986. Fur seals. Matemal strategies on land and at sea. 

Princeton Universiîy Press, Princeton. 

Gentry, RL., Kooyman, G.L., and GoebeL M.E. 1986a. Feeding and divgig behavior of 

northem fur seais. III Fur seals: Maternal strategies on land and at sea. Edired by RL. 

Gentry and G.L. Kooyman. Princeton University Press, Princeton. pp. 6 1-78. 

Gentry, RL., Roberts, W.E., and Cawthorn, M.W. 1987. Divmg behavior of the Hookefs sea 

lion. In Abstracts f?om the Seventh Biennial Conference on the Biology of Marine 

Marnmals, Miami, R, December 5-9, 1987. p. 10. 

Gentry, RL-, Costa, D.P., Croxall, J.P. David, J-HM., Davis, RW., Kooyman, G.L., MajluÇ 

P., McCann, T. S., and Trilitnich, F. 19 86b. Synthesis and conclusions. In Fur se&: 

Maternai strategies on land and at sea. Ediled by RL. Gentry and G-L. Kooyman. 

Princeton University Press, Rniceton. pp. 220-264. 

Gjertz, I., and Wig, 0. 1992. Feeding of walms Odoberrus rosmam m Svalbard Polar 

Record 28: 57-59. 

GoebeI, M.E., J.L. Beagtson, RL. DeLong, RL. Gentry and T.R Loughlin. 199 1. Diving 



14 1 

patterns and foragmg locations of female northem fùr seals. Fishery Bulletin, United 

States 89: 17 1- 179. 

Goodyear, J.D. 1995. Dive behavior, and the question of food limitation in nght whales. 

In Abstracts fiom the Eleventh Biennial Conference on the Biology of Marine 

Mammals, Orlando, FL, December 14-18, 1995. p. 46. 

Greenewak, C.H. 1975. The flight of birds. The signiticant dimensions, their departure from 

the requirements of dimensional simüantyy and the effect on fiight aerodynamics of 

that departue. Transactions. Amencan Philosop hical Society 65: 1-67. 

Grossbergy S. 1976. Adaptive pattern classification and universal recoding. II. Feedback, 

expectation, olfàction, and inusions. Biological Cybemetics 23: 187-202. 

Guyot, 1. 1988. Relationships between the shag feeding areas and human fishmg actMties in 

Corsica (Meditemanean Sea). In Seabird food and feedmg ecology. Edited by M.L. 

Tasker. Roceedings of the 3rd International Conference of the Seabiid Group. Royal 

Society for the Protection of Birds, Sandy, Bedfordshire, England pp. 22-23. 

Hall, J.D. 1970. Conditioning Pacinc white-sided dolphins, Lagenorhynchtcs obliquidem, for 

open ocean release. Naval Undersea Technical Publication 200. San Diego. 

Ham.tnüi, M.O., Kovacs, K., and Lydersen, C. 1993. Postbreeding movements of Western 

Atlantic grey seals as revealed by satellite telemetry. In Abstracts nom the Tenth 

BiennLzl Conference on the Biology of Marine M d ,  Galveaon, TX, November 

11- 15, 1993. p. 57. 

Hanison, RJ., and Kooyman, G.L. 1971. Divmg in Marine Mammals. In M o r d  Biology 

Readers No. 6. Edited by J.J. Head. Carolina Biological Supply Company, Burhgton. 

pp. 1-16. 

Harvey, KT., and Mate, B.R 1984. Dive characteristics and movements of radio-tagged gray 

whales m Sm Ignacio Lagoon, Baja California Sur, Mexico. In The Gray Whaie. 

Edited by M.L. Jones, S.L. Swartz, and S. Leathenvood. Academic Press, Orlando. 



pp. 561-575. 

Hecht-Nielsen, R 1987. Counter-propagation networks. IEEE First International 

Conference on Neural Networks Volume 2. pp. 19-32. 

Heide-Jmgensen, MP., and Dietz, R 1995. Some characteristics of narwtial, Monodon 

monoceras, diving behaviour m BafEn Bay. In Abstracts fiom the Eleventh Biennial 

Conference on the Biology of Marine Mammals, Orlando, FL, December 14-18, 1995. 

p- 52. 

Heyning, J.E. 1989. Cuvier's beaked whales - Ziphim cavirmtris G. Cwier, 1823. In 

Handbook of marine d a  Volume 4: River dolphins and the larger toothed 

whales. Edifed by S.H Ridgway and S.R Harrison. Acadernic Press, London. pp. 

289-308. 

Hill, RD. 1986. Microcornputer monitor and blood sampler for fiee-divmg Weddell seal. 

Joumal of Applied Physiology 61: 1570- 1576. 

Hill, RD. 1994. Theory of geolocation by light levels. In Elephant se&: population ecology, 

behavior, and physiology. Edited by B.J. Le Boeuf and RM. Laws. University of 

California Press, Berkeley. pp. 227-236. 

Hindell, U A  and Burton, KR 1993. Swimmmg speed and diving behaviour of adult female 

southem elephant se&. In Abstracts fiom the Tenth Biennial Conference on the 

Biology of Marine Mammals, W e a o n ,  TX, November 11- 15, 1993. p. 6 1. 

Hmdell, UA, Burton, HR, and Slip, D.J. 199 la. Foraging areas of the southem elephant 

seal, Mirmnga leonina, as inferred nom water temperature data. Aumalian Journal 

Marine and Freshwater Research 42: 1 15- 128. 

Hindell, UA, Lea, MA., and Hull, C.L. 1996. The effects of flipper bands on addt SUViVal 

rate and reproduction in the royal penguîn, Eudyptes schlegek Ibis. 138: 557-560. 

Hindell, M.A, Slip, D.J., and Burton, KR 1991b. The W g  behaviour of adult male and 

female southem elephant seals, Miroinga leorzina (Pinnip edia: Pho cidae). Austratian 



Journal of Zoology 39: 595-6 19. 

HBideIl, M-A, Slip, D.J., Burton, KR, and Bryden, M.M. 1992. Physiologicd implications of 

continuous, prolonged, and deep dives of the southem elephant seal (Mimnga 

leonim). Canadian Joumal of Zoology 70: 3 70-3 79. 

Hobson, RP., and Martin, AR 1996. Behaviour and dive times of Arnouds beaked whaIes, 

Berardius arnaïi, at narrow leads m fast ice. Canadian Journal of Zoology 74: 388- 

393. 

Hochachka, P.W., and Somero, G.N. 1984. Biochemicai adaptation. Princeton Univer* 

Press, Princeton. 

Hohn, A., Scott, M., Westgate, A, Nicolas, J., and Whitaker, B. 1995. Radiotracking of a 

rehabilitated pygmy spem whale. In Abstracts fiom the Eleventh Bienaial Conference 

on the Biology of Marine Mammals, Orlando, FL, December 14- 18, 1995. p. 5 5. 

Homing, M. 1992. Die ontogenese des tauchverhakens beim Gdapagos seebihen 

Arctocephalus galapagoemis (Heller 1904). Ph.D. thesis. UniversMt Bielefeld, 

Germany. 

Horn& M., and Trillmich, F. 1997. Development of hemoglobin, hematocnt, and 

erythrocyte values in GaLapagos fur seals. Marine Marnmal Science 13: 100- 1 13. 

Hotelhg, H. 1933. Analysis of a complex of statistical variables mto principal components. 

Journal of Educational Psychology 2 7  4 17-44 1,498-520. 

Houston, AI., and Carbone, C. 1992. The optimal allocation of tirne during the divïng cycle. 

Behavioral Ecology 3: 255-265. 

Hudson, D.M., and Jones, D.R 1986. The hüuence ofbody mass on the endurance to 

restrained submergence m the Pekin duck. Journal of Experimental Biology 120: 35 1- 

367. 

Irving, L. 1939. Respiration in divEig mammala. Physiologicd ReMews 19: 1 12- 134. 

Jah, kK, and Dubes, RC. 1988. Algorithms for clustering data. Rentice-Hal., Englewood 



cm. 
Jefferson, T A ,  Leatherwood, S., and Webber, MA 1993. FA0 species identification guide: 

Marine mammals of the world Food and Agriculture Organization, Rome. 

lerison, K J. 1970. G r o s  brain mdices and the analysis of fossil endocasts. In Advances m 

primatology, Volume 1 : The primate brah Edied by C.R Noback and W. Montagna. 

Appleton-Centuxy-Cro& New York. pp. 225-244. 

Johnsgard, P.A 1987. Diving Birds of North Anmica. University of Nebraska Press, Lmcoln. 

Jonker, F.C., and Bester M.N. 1994. The diving behaviour of aduit southern elephant seai, 

Mirounga leoitina, cows fiom Marion Island. South Afiican Journal of Antarctic 

Research 24: 75-93, 

Jury, J.A 1986. Razorbill swimming at depth of 140 m British Birds 79: 339. 

Kamel, M.S., and Selim, S.Z. 1994. New algonthms for s o h g  the fùzzy clustering 

problem Pattern Recognition 27: 42 1-428. 

Katona, S.K, Rough, V., and Richardson, D.T. 1993. A field guide to whales, porpoises, and 

seals fiom Cape Cod to Newfomdland Fourth Edition. Smithsonian Institution Press, 

Washington. 

KeUy, B.P., and Warttok, D. 1995. Under-ice behavior of ringed seals during the breeding 

season. In Abstracts nom the Eleventh Biennial Conference on the Biology of Marine 

Mammals, Orlando, FL, December 14- 18, 1995. p. 6 1. 

Kelly, B.P., and Wartzok, D. 1996. Ringed seal diving behavior m the breeding season. 

Canadian Joumal of Zoology 74: L 547- 1 555. 

Kenyon, KW. 198 1. Sea otter Enhydra l u ~ ~ z s -  In Handbook of Marine M d .  Volume 1 : 

The wahses, sea lions, fur se& and sea otter. Academic Ress, New York. pp. 209- 

223. 

Kleiber, M. 196 1. The fke of He. An introduction to animal energetics. Wiey, New York 

Kohonen, T. 1982. Self-organized formation of topologicaily correct feature maps. 



Biological Cybemetics 43: 59-69. 

Kohonm T. 1989. Selforganization and associative memory. 3rd Edition. Springer-Verlag, 

New York 

Kohoneq T. 1990. The self-organizing map. Proceedings of the lEEE 78: 14641480. 

Kooyman, G.L. 1965. Techniques used m measuring diving capacities of Weddell seals. Polar 

Record 12: 39 1-394. 

Kooyman, G.L. 1968. An analysis of some behavioral and physiological characteristics 

related to divmg m the Weddeli seal. In Biology of the Antarctic Seas. Antarctic 

Research Senes. Volume 3. Edited by G.A LIano and W.L. Schmitt. American 

Geophysical Union, Washington, D.C. pp. 227-26 1. 

Kooyman, G.L. 198 1. Weddeil seal: consummate diver. Cambridge University Press, New 

York 

Kooyman, G.L. 1988a. Pressure and the cher. Canadian Joumal of Zoology 66: 84-88. 

Kooyman, G.L. 1988b. Divmg physiology. Marine mnmmals Ir2 Comparative pulmonary 

physiology: curent concepts. Edited by S.F. Woods. Marcel Dekker, New York. pp. 

72 1-734. 

Kooyman, G.L. 19 89. Diverse divers: p hysiology and behavior. Springer-Verlag, Berlin. 

Kooyman, G.L., and Gentry, RL. 1986. Diving behavior of South Anican fùr seals. In Fur 

seals: Matemal strategies on land and at sea. EdM by RL. Gentry and G.L. 

Kooyman. Princeton University Press, Rinceton. pp. 142- 152. 

Kooyman, G.L., and Kooyman, T.G. 1995. DivBig behavior of emperor penguins numuing 

chicks at Coulman Island, Antarctica. Condor 97: 536-549. 

Kooyman, G.L., and Ponganis, P.J. IWO. Behavior and physiology of divmg m emperor and 

king penguins. h i  Penguin biology. Edifed by L.S. Davis and J.T. Darby. Academic 

Press, San Diego, CA. 

Kooyman, G.L., and Ponganis, P.J. 1994. Emperor penguin oxygen consumption, heart rate 



146 

and plasma lactate lwels during graded swimming exercise. Journal of Experimental 

Biology 195: 199-209. 

Kooyman, G.L., and Trillmich, F. 1986a. D i h g  behavior of Gaiapagos fk se&. In Fur 

seals: Matemal strategies on land and at sea. Edited by RL. Gentry and G.L. 

Kooyman. Princeton University Press, Princeton. pp. 186- 195. 

Kooyman, G.L., and Trillmich, F. 1986b. Divmg behavior of Gaiapagos sea lions. In Fur 

se&. Matemal strategies on land and at sea. Editedby RL. Gentry and G.L. 

Kooyman- Princeton Univer* Press, Princeton. pp. 209-2 19. 

Kooyman, G.L., BiUups J.O., and FameIl, W.D. 1983a. Two recently developed recorders 

for monitoring diving actMty of marine birds and memmals. In Experimental biology 

at sea. Edited by AG. MacDonald and I.G. Priede. Academic Press, London. pp. 197- 

2 14. 

Kooyman, G.L., Castelhi, UA, Davis, RW., and Maue, RE. 1983b. Aerobic divmg lllnits 

of immature Weddell se& Journal of Comparative Physiology B. 151: 171-174. 

Kooyman, G.L., Kerem, D.H, Campbell, W.B., and Wright, 1.1. 1973. Pulmonary gas 

exchange in fieely diving Weddeil seals. Respiration Physiology 17: 283-290. 

Kooyman, G.L., Wahrenbrock, E.A., Castehi, M A ,  Davis, RW.? and Sinnett: E.E. 1980. 

Aerobic and anaerobic metabolism during voluntary diving m Weddeil seals: evidence 

of preferred pathways fiom blood chemistry and behavior. Journal of Comparative 

Physiology B. 138: 335-346. 

Kooyman, G.L., Cherel, Y., Le Maho, Y., Croxall, J.P., Thorson, P.EL, Ridowr, V., and 

Kooyman, C.A 1992a. Diving behavior and energetics during foraging cycles m h g  

penguins. Ecological Monographs 62: 143- 163. 

Kooyman, G.L., Ponganis, P.J., Castellini, M A ,  Ponganis, E.P., Ponganis, KV., Thorson, 

P-H, Eckert, S A ,  and LeMaha, Y. 1992b. Heart rates and swim speeds of emperor 

p enguins divmg under sea ice. Joumal of Exp erimental Biology 165: 16 1- 180. 



147 

Kovacs, KM., Lydersen, C., Hammill, M., and Lavigne, D.M. 1996. Reproductive effort of 

male hooded se& (Cystophora cristata): estimates fiom m a s  10 ss. Canadian Journal 

of Zoology 74: 1521- 1530. 

Kramer, D.L. 1988. The behavioral ecology of air breathing by aquatic animals. Canadian 

Journal of Zoology 66: 89-94. 

Kmtzikowsky, GK, and Mate, B.R 1995. DNe behavior of mdividual bowhead whales 

(Balaena rnysticetus) monitored by satellite radio-telemetry. In Abstracts fkom the 

Eleventh Biennial Conference on the Biology of Marine Mammals, Orlando, FL, 

December 14- 18, 1995. p. 64. 

Landis, C. J. 1965. New hi& pressure research animai? Undersea Technology 6: 2 1. 

Lau, C. 1992. Neural networks: theoretical foundations and analysis. IEEE Press, New 

York 

Lavigne, D.M,, Innes, S., Worthy, G A  J., Kovacs, KM., Schmitz, O. J., and Hickie, J.P. 

1986. Metabolic rates of seals and whales. Canadian Journal of Zoology 64: 279-284. 

Lavigne, D.M., and Kovacs, KM. 1988. Harps and Hoods. University of Waterloo Press, 

Waterloo, 

Leatherwood, S., and Walker, W.k 1979. The northem right whale dolphin Lissodelphis 

borealis Peale m the eastern North Pacific. In Behavior of marine animais. VoIume 3: 

Cetaceans. Edited by HE. W b  and B.L. Olla. Plenum Press, New York pp. 85- 141. 

Le Boeuf, B .I. 1994. Variation in the d i h g  pattern of northem elephant seals with age, mass, 

sex, and reproductive condition. In Elephant se&: population ecology, behavior, and 

physiology. Edited by B.J. Le Boeuf and RM. Laws. University of California Press, 

Berkeley. pp. 237-252. 

Le BoeuS B. J., Costa, D.P., H d e y ,  AC., and Feldkamp, S.D. 1988. Continuous deep 

diving m female northem elephant se&, Mirmnga angustirostris. Canadian Journal of 

Zoology 66: 446-458. 



148 

Le B o e d  B. J., Naito, Y ., Himtley, k C., and Asaga, T. 1989. Rolonged, continuous, deep 

diving by northem elephant seals. Canadian Jounial of Zoology 67: 25 14-25 19. 

Le B o e d  B.J., Y. Naito, T. Asaga, D. Crocker, and D.P. Costa. 1992. Swim speed in a 

female northern elephant seal: metabolic and foraging implications. Canadian Journal 

of Zooiogy 70: 786-795. 

Liechty, J.D. 1993. Monitoring marine msmmala ushg the U. S. Naws integrated undersea 

surveiUance system (IUSS). In Abstracts nom the Tenth Biennial Confierence on the 

Biology of Marine Mammals, Gahreston, TX, November 1 1- 15, 1993. p. 3. 

Lumsden, W.H.R, and Haddow, AJ. 1946. The food of the shag (Phalacrocorax arzstotelis) 

m the Clyde Sea area. Journal of Animal Ecology 15: 3 5-42. 

Lydersen, C., and Kovacs KM. 1993. D i h g  behaviour of lactating m harp seai, Phoca 

groenlandica, females fiom the Gulfof St. Lawrence, Canada. Animal Behaviour 46: 

1213-1221. 

Lydersen, C., and Kovacs, KM. 1996. Energetics of lactation in harp se& (Phoca 

groenIandica) fkom the Gulf of St. Lawrence, Canada. Journal of Comparative 

Physiology B 166: 295-304. 

Lydersen, C., HarnmiU, M.O., and Kovacs, KM. 1994. Activity of lactating ice-breeding grey 

se&, Halichoem grpus, fiom the Gulf of St. Lawrence, Canada. h i m a l  Behaviour 

48: 1417-1425. 

MacQueen, J.B. 1967. Some methods for classification and analysis of multivariate 

observations. Proceeding of the Fifth Berkeley Symposium on Mathematical Statistics 

and Robability 1: 28 1-297. 

Marsh, H., Lloze, R, Hemsohn, G.E., and Kasuya, T. 1989. Irrawaddy dolphin - Orcaellu 

brevirmfris (Gray, 1 866). In Handbook of marine mrmmala. Volume 4: River 

dolphms and the larger toothed whales. EdM by S.K Ridgway and S.R Hamson. 

Academic Press, London. pp. 10 1- 1 18. 



149 

Martin, AR, and Smith, T.G. 1992. Deep divmg in wiid, free-ranghg beluga whales, 

De@hirzaperus leucas. Canadian Journal of Fkheries and Aquatic Science 49: 462- 

466. 

Matthews, P. 1996. The Guiness book of records. Guiness Publishing Ltd., Middlesex 

Manlin, RH 1993. Seasonal divmg behaviour of the New Zeahnd fur seal, Arctocephalm 

forsteri. In Abstracts fiom the Tenth Biennid Conference on the Biology of Marine 

Mammals, Weston ,  TX, November 1 1- 15, 1993. p. 74. 

McFarIan, D., and McWhirter, N.D. 1990. Giriness book of world records. Bantam Books. 

New York 

Medonca, M.T., and Pritchard, P.C.H. 1986. Offshore movements of post-nesting Kemp's 

ridley sea turtles (Lepidochelys kempi). Herpetologica 42: 373-3 8 1. 

Melin, S.R, De Long, RL., 'Inornason, J.R, and Vdesquez, D.E. 1993. Foraging behavior of 

female California sea lions at San Miguel Island, California: winter 1992 and 1993. 

112 Abstracts fiom the Tenth Biennial Conference on the Biology of Marine Mammals, 

Meston,  TX, November 11-15, 1993. p. 76. 

Müligan, G.W., and Cooper, M.C. 1985. An examination of procedures for deteminhg the 

number of clusters in a data set. Psychometrika 50: 1 59- 179. 

Miyazaki, N., and Perrin, W.F. 1994. Rough-toothed dolphin Steno breknemis (Lesson, 

1828). In Handbook of marine mammals. Volume 5: The first book of dolphins. 

Edited by S.H. Ridgway and S.R Harrison. Academic Press, San Diego. pp. 1-2 1. 

Montague, T.L. 1985. A maximum dive recorder for iittle penguins. Emu 85: 264-267. 

Morejohn, G.V. 1979. The natural history of Dall's porpoise m the Noah Pacifie Ocean. In 

Behavior of Marine Mammals- Volume 3. Cetaceans. Edited by JXE. W Ï  and B.L. 

Olla. Plenum Press, New York pp. 45-83. 

Nagy, KA, Siegfried, W.R, and Wilson, RP. 1984. Energy utilkation by fkee-ranghg 

jackass penguins, Spheniscus demersus. Ecology 65: 1648- 1655. 



150 

Naito, Y., Asaga, T., and Ohyama, Y. 1990. Divmg behavior of Adélie pengpins determined 

by time-depth recorder. Condor 92: 5 82-5 86. 

NeuraIWare Inc. 199 1. Neural computing. NeuralWorks Professional IZlPlus and 

NeuraIWorks Explorer. Technical Publication Group, NeuraIWare Inc., Pittsburgh, 

PA. 

Newby, T.C. 1975. A sea otter ( E n h y h  lutris) food dive record MurreIet 56: 7. 

N' ion ,  L. 1972. Habitat seledon, food choice, and feeding habits of divmg ducks in coastal 

waters of south Sweden during the non-breeding season. Omis Scandinavica 3: 55-78. 

Nishiwaki, M., and Marsh, K 1985. Dugong - Dugong dugon. In Himdbook of marine 

mammals. Volume 3: The Sirenians and baleen whales. Edited by S.H Ridgway and 

S.R Harrison. Academic Press, London. pp. 1-3 1. 

Nor-, E. S., Folkow, L., and Blix, AS. 1995. Distribution and diving behaviour of crabeater 

seals (Lobodon carcinophagzls) off Queen Maud Land. Polar Biology 15: 26 1-268. 

Orr, T., and Aurioles-Gamboa, D. 1995. Foraghg characteristics and actMty patterns of 

California sea lions (Zalophus califmianus) on Los Islotes, Bay of La P q  B.C. S., 

Mexico. Abstracts fiom the Eleventh Biennial Conference on the Biology of Marine 

M d .  Orlando. p. 85. 

Parsons, T.R , TakahaShi, M., and Hargrave, B. 19 84. Biological oceanograp hic processes. 

3rd Edition. Pergamon Press, Elmsford, New York. 

Pastukhov, V.D. 1969. Some resuhs of observations on the Baikai seal under eqerimental 

conditions. Morskie Mlekopitaiushchie 1: 105- 1 10. Translateci by the National Marine 

Fisheries Service, U.S., No. 3544. 

Pearson, K 190 1. On lines and planes of closest fit to systems of points m space. 

Philosophical Magazine 6: 5 5 9- 5 72. 

Peixun, C. 1989. Baiji - Lipotes vexillifer Miller, 19 18. In Handbook o f  marine mammals. 

Volume 4: River dolphins and the larger toothed whales. Edited by S.H. Ridgway and 



S.R Hanison Academic Press, London. pp. 25-43. 

Peters, RH 1983. The ecological miplications of body size- Cambridge Univer* Ress, 

New York. 

Piatî, J.F., and Nettleship, D.N. 1985. Divbg depths of four alcids. Auk 102: 293-297. 

Ponganis, P.J., Kooyman, G.L., and Casteiüni, M.A 1993a. Deter-ants of the aerobic dive 

limit of Weddell seals: analysis of divmg metabolic rates, poadive and tidal PO,s, and 

blood and muscle oxygen stores. Physiological Zoology 66: 732-749. 

Ponganis, P.J., Kooyman, G-La, Castehi, UA, Ponganls, E.P., and Ponganis, KV. 1993b. 

Muscle temperature and swim velocity profiles during divmg m a Weddell seal, 

Leptorrychotes wedfelfii. Journal of Experimental Biology 183: 34 1-348. 

Priede, IG. 1983. Heart rate telemetry fkom fi& in the natural environment. Comparative 

Biochemiçtry and Physiology 76A: 5 15-524. 

Prince, P.A., and Harris, M.P. 1988. Food and feeding ecology of breeding Atlantic alcids and 

penguins. Proceedings. International Ornithological Congress 19: 1 195- 1204. 

Prince, P A ,  and Jones, M. 1992. M h u m  dive depths attained by South Georgia divnig 

petrel Pelecanoides g e ~ r ~ c t c s  at Bird Island, South Georgia- Antarctic Science 

4: 433-434. 

Pritchard, P. C.H. 1 979. Encyclop edia of Turtles. T.F.H. Publications, Neptune. 

Qvist, J., Hill, RD., Schneider, RC., Falke, KJ., Liggins, G C ,  Guppy, M., Elliot, RL., 

Hochachka, P. W., and Zapol W.M. 1986. Hemoglobm concentrations and blood gas 

tensions of eee-diving WeddeII seals. Journal of Applied Physiology 61: 1560- 1569. 

Reed, J.Z., Butler, P.& and Fedak, M.A. 2994. The metaboIic characteristics of the 

locomotory muscles of grey seal (Halichoerur grypus), harbour seals (Phma vifutim) 

and Antarctic fiu seals (Artmephalus gazella). Journal of Experimental Biology 194: 

33-46. 

Reeves, RR, and Browneli Jr., RL. 1989. Susu - Platanista gangetica (Roxburgh, 180 1 )  



152 

and Platmista minor Owen, 1853. In Handbook of marine mammaln. Volume 4: River 

dolphins and the larger toothed whales. Edited by S.H Ridgway and S.R Harrison. 

Academic Press, London. pp. 69-99. 

Ridgway, S.H. 1986. Divmg by cetaceans. In Divmg m animals and man Edited by AO. 

Brubakk, J.W. Kanwisher, and G. Simdness. The Royal Norwegian Society of Science 

and Letters, Trondheim. pp. 33-62, 

Ripley, B.D. 1993. Statistical aspects of neural networks In Networks and Chaos: Statistical 

and Robabilistic Aspects. Edied &y O.E. BarndosNielsen, J.L. Jensen, and W. S. 

Kendall. Chapman and HaIl, London. pp. 40- 123. 

Ripiey, B.D. 1994. Neural networks and related methods for classification. Journal of the 

Royal Statistical Society 56B: 409-456. 

Robin, E.D. 1973. The evolutionary advantages of being stupid. Perspectives in Biology and 

Medicine 16: 369-3 80. 

Robmson, B., and Craddock, J. 1983. Mesopelagic m e s  eaten by Fraser's dolphin, 

Lagenode/phis horsei. Fishery Bulletin 81: 283-289. 

Robinson, S.A., and Hindeil, UA 1996. Foraging ecology of gentoo penguins Pygmcelis 

papua at Macquarie Island during the penod of chick care. Ibis 138: 722-73 1. 

Rodgers, AR, and Anson, P. 1994. News and applications of the global positionhg systern 

GPS World Juiy: 20-32. 

Rogers, S.K 199 1. An introduction to biological and amficial neural networks for pattern 

recognition. SPIE Optical Engineering Press, Behgharn 

Rumeniart, D.E., and McClehd, J.L. 1986. Paraile1 dinnbuted processing: explorations in 

the microstructure of cognition. Vohune 1. Foundations. ha Press, Cambridge. 

Sage, B .L- 1 97 1. A study of white-büled divers m Arctic Alaska. British Birds 64: 5 19-528. 

Sarle, W.S. 1994. Neural networks and statistical models. Proceedings of the 19th Annual 

SAS Users Group International Conference. Cary, NC. pp. 1- 13. 



153 

SAS Instmite Inc. 1990. SAS/STAT users guide. Version 6.4th Edition. Vohune 1 and 2. 

SAS h s b t e  Inc-, Cary, NC. 

Schmidt-Me- K 1984. Scaling: Why is animal ske so important? Cambridge University 

Press, New York. 

Schmidt-Nielsen, K 1990. Animal physiology: adaptation and environment. Cambridge 

UniverSty Press, New York 

Schohder, P.F. 1940. Experirnental investigations on the respiratory h c t i o n  in diving 

m d  and birds. Hvalriidets S M e r  22: 1- 13 1. 

Schorger, kW. 1947. The deep diving of the loon and the old-squaw and its mechanism 

Wilson Bulletin 59: 15 1- 159. 

Schreer, J.F., and Kovacs, KM. 1997. AUometry of divïng cap acity m air-breathing 

vertebrates. C h p t e r  2 and Canadian Journal of Zoology 75: 339-358. 

Schreer, J.F., and Testa, J. W. 1993. Statisticai classification of diving behavior: quantitative 

analyses of Weddeii sed diving. Abstracts of the Tenth Biennial Conference on the 

Biology of Marine Mammals. Gabeston, TX p. 96. 

Schreer, J.F., and Testa, J.W. 1995. Statistical classification of divmg behavior. Marine 

Mammal Science 11: 85-93. 

Schreer, J.F., and Testa, J. W. 1996. Classification of Weddell seal divmg behavior. Marine 

Mammal Science 12: 227-250. 

Schreer, J.F., Kovacs, KM., and OWara Hines, R J. 1995. Quantitative analyses of marine 

mammai divmg behavior. Abstracts of the Eleventh Biennial Conference on the 

Biology of Marine M d .  Orlando, FL p. 102. 

Schreer, J.F., Kovacs KM., and O'Hara Hines, R J. 1997. Comparative diving patterns of 

pmnipeds and seabirds. Chapter 4. 

Schreer, J.F., O'Hara %es, RJ., and Kovacq KM. 1997. Classification of dive profiles: 

a cornparison of statisticd clustering techniques and unnipemised d c i a l  neural 



154 

networks. Chapter 3 and submitted to The Journal of Agriculturd, Biological, and 

Environmental Statistics. 

Scohro, J.A., and Suburo, AM. 199 1. Maximum diving depths of the Magelianic penguin. 

Journal of Field Omithology 62: 204-2 10. 

Scott, M.D., Chivers, S.J., Olson, RI., and Lindsay, RJ. 1993. Radiotracking of spotted 

dolphins associated with hina in the eastem tropical pacific. In Abstracts fiom the 

Tenth Biennial Conference on the Biology of Marine M d ,  Gaiveston, TX, 

November 11-15, 1993. p. 97. 

Seddon, P.J., and van Heezik, Y. 1990. Diving depths of the YelIow-eyed penguin 

Megadjptes antipodes. Emu 90: 53-57. 

Snyder, G.K 1983. Respiratory adaptations m diving mammals. Respiration Physiology 54: 

269-294. 

SokaI, RR, and P.ou  F.J. 1995. Biometqc the principles and practice of aatistics m 

biological research. 3rd Ed. W.K Freeman and Company, New York 

Soma, M. 1985. Radio biotelemetry system applied to migratory study of M e .  Journal. 

F a d t y  of Marine Science and Technology, Tokai University 21: 47-56. 

Stahl, W.R 1965. Organ weights m primates and other mnmmnia. Science 150: 103 9- 1042. 

Stewaut, B. S., Leathenvood, S., and Y ochem, P.K 1989. Harbor seai tracking and telemetry 

by satellite. Marine Mammal Science 5: 3 6 1-3 75. 

Stonehouse, B. 1975. Introduction: the Spheniscidae. In The biology of peng-S. Edited by 

B. Stonehouse. MacMiiian Press, London. pp. 1- 15. 

SYSTAT. 1992. SYSTAT for Windows: Statistics. Volume 5. SYSTAT Inc. Evanston, IL. 

Testa, LW. 1994. Ovenivinter movements and diving behavior of female Weddell seals 

(Leptonychotes weddeliii) m the SW Ross Sea, Antarctica. Canadian Journal of 

Z O O ~ O ~ Y  72: 1700- 17 10. 

Thompson, D., Hammond, P. S., Nicholas, KS., and Fedak, M A  199 1. Movements, divsig 



155 

and foraghg behaviour of grey seals (HaIichoem grpus). Journal of Zoology, 

London 224: 223-232. 

Tinker, S.W. 1988. Whales of the world E. J. Brill, Leiden. 

TrillmXch, F., Kooyman, GL., Majw P., and Sanchez-Grman, M 1986. Attendance and 

dMng behavior of South American fÙr  seah during El Nmo in 1983. In Fur se&: 

Maternid strategies on land and at sea. Edited 6y RL. Gentry and G.L. Kooyman. 

Princeton University Press, Rincetoe pp. 153- 167. 

Tucker, V.A 1973. Bird metabolism durmg flight: evaluation of a theory. Joumal of 

Experimental Biology 58: 689-709. 

Vernuri, V.R 1992. Ar t i f id  neural networks. concepts and control applications. IEEE 

Computer Society Press, Los Alamitos. 

Wanless S., Mon-is, I.A., and Harris, M.P. 1988. DivEig behaviour of guülemot Uria aalge, 

pufnn Fratercula arctica and razorbill Alca torda as shown by radio-telemetry. 

Journal of Zoology, London 216: 73-8 1. 

Wanless, S., Harris, M.P., and Monis, J.A. 1992. Diving behaviour and diet of the blue-eyed 

shag at South Georgia. Polar Biology 12: 7 13-7 19. 

Watan- Y., Kato, A. and Naito, Y. 1996. Diving performance of male and female Japanese 

cormorants. Canadian Journal of Zoology 74: 1098- 1 109. 

Watkins W.A, and Tyack, P. 1991. Reaction of sperm whdes (Physeter catadon) to tagging 

with implanted sonar transponder and radio tags. Marine Mammal Science 7: 409-413. 

Waths ,  W.A, Moore, KE., and Tyack, P. 1985. Investigations of spem whale acoustic 

behaviors in the southeast Canbbean. Cetology 49: 1- 15. 

Watkms, W.A., Tyack, P., Moore, K, and Notarbartolo-di-Sciara, G. 1987. Steno 

bredanerrsis m the Mediterranean Sea. Marine Mammal Science 3: 78-82. 

Watkms, W.&, Daher, UA, Fristmp, KM., Howald, T.J., and di Sciara, G.N. 1993. Spenn 

whales tagged with transponders and tracked underwater by sonar. Marine Mammal 



Science 9: 55-67. 

Werner, R, and Campagna, C. 1993. DRring behavior o f  souhem sea lions m Patagonia. 

In Abstracts ftom the Tenth Biennid Conference on the Biology of Marine Ma&, 

Gaheston, TX, November 11- 15, 1993, p. 112. 

Westgate, AI., Read, A. J., Berggren, P., Koopman, EN., and Gaskin, D.E. 1995. Diving 

behaviour of harbour porpoises, Phocoena phocoena. Canadian Journal of Fisheries 

and Aquatic Saence 52: 1064 1073. 

Whitehead, M.D. 1989. Maximum divhg depths of the Adelie penguin, Pygmceiis adeliae, 

during the chick rearing penod, in Prydz Bay, Antarctica. Polar Biology 9: 329-332. 

Wig, O., Gjertz, L, GrifEths, D., and Lydersen, C. 1993. Diving patterns of an Atlantic 

w a h s  Odobemrs rosmam rmrnam near Svalbard. Polar Biology 13: 7 1-72. 

WilIiams, AJ., and Cooper, J. 1983. The crowned connorant: breeding biology, diet and 

ofEpring-reduction strategy. Ostrich 54: 2 13-2 19. 

WiIliams, T.D., Bnggs, DR, Croxall, J.P., Naito, Y., and Kato, A 1992. Diving patterns and 

performance m relation to foraging ecology in the gentoo p e n m  Pygaceiis papua. 

Joumal of Zoology, London 227: 2 1 1-230. 

W ' i ,  T.M. and G.L. Kooyman. 1985. Swimming performance and hydrodynamic 

characteristics of harbor se& P h  vitdi-. Physiologicd Zoology 5 8: 5 76- 5 89. 

Williams, T.M., Friedl, W-A,  and Haun, J.E. 1993. The physiology of bottlenose dolphins 

(Tursiops tnrncatur): heart rate, metabolic rate and plasma lactate concentration 

during exercise. Journal of Experimental Biology 179: 3 1-46. 

Wilson, RP. 1985. The Jackass penguin (Spheniscus demersus) as a pelagic predator. Marine 

Ecology. Rogress Series 25: 2 19-227. 

Wilson, RP., and Wilson, M.-P.T. 1990. Foraging ecology of breeding Spheniscus penguins. 

In Penguin biology. Edited by L-S. Davis and J.T. Darby. Academic Press, San Diego. 

pp. 181-206. 



157 

Worthy, G-AJ., and Davis, RW. 1995. Diving behavior and movement patterns of an Atlantic 

spotted dolphin ( S ~ e l l a ~ o n t ~ i i s )  obtahed by sateIlite telemetry- In Abstracts fiom 

the Eleventh Biennial Conference on the Biology of Marine Mammals, Orlando, FL., 

December 14-18, 1995. p. 124. 

Wiirsig, B., Wells, R S., Nonis, K S., and Würsig, M. 1994. A spinner dolphin's Day. In The 

Hawaiiau SpiMer Dolphin. Edited by KS. Norris, B. Wiirsig, RS. WeIls, and M. 

Würsig. University of California Press, Berkeley. pp. 65- 102. 



BIOGRAPKtCAL INFORMATION 

Name of Author 

Place of Birth 

Date of Bïrth 

Citizenship 

Education 

Jason F. Schreer 

Aibany, New York USA 

USA and Permanent Resident of Canada (1996) 

Ph.D. in Biology, 1997, University of Waterloo, Ontario, 
Canada - Defense, 3 September, 1997 

M-S. m Marine Biology, 1994, University of Alaska Fairbanks, 
Alaska, USA - Defense, 13 April 1994 

B.S. (Magna Cum Laude) m Biology, 199 1, State University of 
New York at Stony Brook, New York, USA 

Secondary, 1987, Niskayuna High School, New York, USA 

Resear ch Experience 

Pm? Doctoral, Waterloo Biotelemetry Institute, Department of Biology, University of 
Waterloo, Ontario, Canada (19970). Examination of the effects of physical and chemical 
stressors on the physiology of Salmonid fish. Experimental analysis using Doppler flow 
probes to directly meanire cardiac output. Expenence with surgical procedures for attaching 
probes and wÎth Blazka swim speed chambers for determining swim performance and pressure 
effects. Field work with AtIantic Salmon (Salmo salar) [Grand Falls - Windsor, 
Newfoundland, Canada]. 

PhB., Department ofBiology, Univer- ofwaterloo, Ontario, Canada (19941997). Study 
of the divgig behavior of air-breatbmg vertebrates. Field work with grey (Haiichoem 
grpus) [Amet Island, Nova Scotia, Canada], harp (Phoca groenIandicu) magdalen Islands, 
Québec, Canada], and harbor (Phoca vituiim) se& Mont Joli, Queaec, Canada] mvohring 
behavioral studies, attachment and retrieval of time-depth recorders (TDRs) and satellite- 
Lmked timedepth recorders (SLTDRs), and biologicd samphg (blubber biopsies, kcisor 
extraction, and blood, mük, hak, vibrissae, and urine samples). Use of several statistical 
packages (SAS, SY STAT, Resampling Stats and p ersonal program codes), programming 
languages (CH,  Fortran, Basic, and Pascal), and neural network simulators (NeuraIWorks 
Professional II/PIus, Stuttgart Neural Network Simulator, and personal program codes). 

M X ,  Institute of Marine Science, University of Alaska Fairbanks, Alaska, USA (199 1-1994). 
Study of the diving behavior and population dynamics of the Weddell seal (Leptonychotes 



wedelliz). Field work m the Antarctic WcMurdo Station] mvohring tagging and surveying, 
as weli as retrieval of SLTDRs. Use of severd mdtivariate statistical techniques through 
packages inchidhg SAS, SPSS, and SYSTAT. 

B.& State University of New York at Stony Brook, New York, USA (1988- 199 1). 
Examination of ecological parameters (critical thermal minimrim and nmcbmm, fecunday, 
connimption rate, and growth rate using otolith aoaiysis) of the Atlantic siberside (Menida 
menidia) and general field surveys [Great South Bay and Long Island Sound. Long IsIand, 
New York, USA]. 

Teaching Experience 

Imtructor, Department of Biology, University of Waterloo, Ontario, Canada ( 1 997-). 
Lecture and Laboratory course: Behavioural Ecology. 

Teaching Assistant, Department of Biology, Univer* of Waterloo, Ontario, Canada ( 1994- 
1997). Laboratory courses: Behavioural Ecology, Comparative Animal Physiology, and 
Inaoduct ory Vertebrate Zo ology. Lecture courses: Evolution, Ecology, and htro ductory 
Biology. Field courses: Biology of Marine Mammals and Experimental Studies m Marine 
Biology. 

Teaching Assistant, State University of New York at Stony Brook, New York (1990). 
Lecture course: Cybernetics. 

Academic Awards 

- Nominated for the W.B. Pearson Medal in recognition of creative research as presented m 
the Ph.D. thesis (1997) 

- University of Waterloo Graduate Scholarship (1994, 1996 - 1997) 
- Ontario Graduate Scholarship (1995 - 1996) 
- University of Waterloo travel grant (1995) 
- University of Waterloo International Student Fee Waiver (1994 - 1996) 
- Univer* of Alaska travel grant (1993) 
- Phi Beta Kappa National Honor Society (199 1) 
- Golden Key National Honor Society (1 99 1) 
- Sigma Beta Honor Society, SUNY Stony Brook (1990) 
- Dean's Iist, SUNY Stony Brook (1987 - 199 1) 

Professional Miliation 

Society for Marine Mammalogy 



Publications and Presentations 

Schreer, J.F. 1997. DMng behavior of air-breathing vertebrates: allometry, classification, and 
Ïrïterspecifïc comparisons. Ph-D. Thesis. Dep artment of Biology, University of 
Waterloo, Waterloo, Ontario, Canada. 

Schreer, J-F., Kovacs, KM., and 0-a Hines, RJ. 1997. Comparative diving patterns of 
pmnipeds and seabirds. In Prep. 

Sckeer, J.F., O+Hara mes, R J., and Kovacs, KM 1997. Classification of dive profles: a 
cornparison of statistical clustering techniques and unsupervised &cial neural 
networks. Submitted to The Journal of Agricultural, Biologicai, and Environmental 
Statistics (June 1997). 

Bums, J M ,  Schreer, J.F., and Castehi, U A  1997. Physiological effects on mdividual 
dive patterns and foraghg strategies m yearling Weddeli seais. Canadian Journal of 
Zoology. In Press. 

Schreer, J.F., and Kovacs KM. 1996. Allometry of divmg cap acity in air-breathing 
vertebrates. Canadian Journal of Zoology. 75: 3 3 9-3 5 8. 

Schreer, J.F., Hastings, KK, and Testa, J.W. 1996. Reweaning mortality of Weddell seal 
pups. Canadian Journal of Zoology. 74: 1775-1778. 

Schreer, J.F., and Testa, J.W. 1996. Classification of Weddell seal &g behavior. Marine 
Mammal Science. 12(2): 227-250. 

Schreer, J.F. 1996. AUometry and clasdication of diving behaviom fiom selected air- 
breathing vertebrates. Abstracts of the Annuai Graduate Symposium Department of 
Biology, University of Waterloo, Waterloo, Ontario, Canada. p. 25. 

Schreer, J.F., Kovacs KM., and O'Hara Hines, R J. 1995. Quantitative analyses of marine 
rnammal diving behavior. Abstracts of the EIeventh Bienniai Conference on the 
BioIogy of Marine Mammals. Orlando, Florida, USA p. 102. 

Schreer, J.F., and Testa, J. W. 1995. Statistical classification of dMng behavior. Marine 
Mammal Science. 1 l(1): 85-93. 

Schreer, J.F. 1994. Multiple techniques for classifyhg M g  behavior: analyses of Weddell 
seal di-g. M.S. thesis. Institute of Marine Science, University of Alaska Fairbanks, 
Fairbanks, Alaska, USA 

Schreer, J.F., and Testa, J.W. 1993. Statistical classification of diving behavior: quantitative 
analyses of Weddell seal diving. Abstracts of the Tenth Biennial Conference on the 
Biology of Marine Marnrnals. Gaiveston, Texas, USA. p. 96. 

Schreer, J.F., and Testa, LW. 1992. Population ecology of Weddell seais m McMurdo 
Sound. Antarctic Joumal of the U.S. 27(5): 152. 




