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Abstract

In the past decade, relativistic quantum information (RQI) has presented itself as a
promising avenue for examining the interaction between relativistic and quantum effects.
This is most commonly achieved by coupling Unruh-DeWitt detectors to quantum fields
in curved spacetime, or by applying quantum properties to otherwise relativistic systems.
A lot of attention is placed on what information we can extract from the vacuum state of
a quantum field and what can that tell us about the underlying spacetime.

While there has been a lot of theoretical progress made within the field, its experimental
applications remain rather scarce. Relativistic quantum metrology (RQM), which concerns
itself with the precision of measurements within systems that have both relativistic and
quantum effects, is an example of an experimental flavour that RQI can take. One of the
metrics of particular importance within RQM is the Fisher information. This form of ‘in-
formation’ quantifies the knowledge that can be extracted about an underlying parameter
based on the measurement of a dependent observable parameter.

In this thesis, we consider the thermal Fisher information extracted by a UDW detector
in (2+1)-dimensional spacetimes, including the first Fisher information analysis of a black
hole spacetime. We provide a detailed analysis of the Fisher information for the BTZ
black hole including the identification of the true black hole effects by contrasting our
black hole results against those in anti-de Sitter (AdS) spacetime. We further characterize
its dependence on various black hole and detector parameters, in addition to describe how
the Fisher information might be used as a black hole probe.

We find that the Fisher information is sensitive to the black hole parameters of mass
and rotation. So much so in the case of the mass that based on the Fisher information for
a given set up, we can identify the mass of the black hole. We also identify novel Fisher
information behaviours unique to the BTZ black hole by contrasting these with AdS and
previous results (which we actually correct). Beyond acting as a spacetime probe, the
Fisher information analysis in this thesis can also enable the improvement of the estimation
of the KMS temperature by a UDW detector.

The majority of the work in this thesis can be found on the arXiv in a publicly accessible
manuscript [1], and a second manuscript is in progress covering the remainder of the work
presented here.
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Chapter 1

Introduction

1.1 Motivation and Context

While it is often said that what sets humans apart from other terrestrial lifeforms is their
self-awareness, this deep-seated curiosity extends well beyond oneself. For millennia, hu-
mans have sought to understand and explain the strange universe which we inhabit. While
there are written accounts dating as far back as the Greco-Roman period addressing ques-
tions about the fundamental components of nature and the far-flung reaches of the cosmos,
our understanding of the very big and very small components of our universe have grown
through the ages as rigorous science and physics became increasingly developed.

As with many things, this progress has compounded on itself over the years leading to
rapid growth since the renaissance. And while our understanding of the world around us
has never been as complete as it is today, neither have we been so aware of the shortcomings
of our theories.

Two of the most successful physical theories of the 20th century are that of quantum
mechanics and of general relativity. Developed in the early part of the 20th century to
address long standing issues within previous classical theories, these two theories effectively
revolutionized the field of physics setting the stage for much of the research that is done
today.

Some might peg the year 1905 as the start of this revolution during Einstein’s Annus
Mirabilis which set the stage for quantum and relativity with the explanation of the pho-
toelectric effect and the description of special relativity. A decade later, Einstein proposed
the more complete theory of general relativity, which at its core describes gravity as being
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the curvature of spacetime. In addition to this new gravitational perspective, relativity
redefined our understanding of time and simultaneity to being observer-dependent, rather
than a fixed global property of our universe [2].

Meanwhile, in the 1920s, Schroedinger and Heisenberg indepedently developed equiv-
alent theories of quantum mechanics. Schroedinger’s picture describes the time evolution
of quantum states acted upon by time-independent operators, while Heinsenberg’s picture
describes a stationary state that is acted upon by time-dependent operators. Besides the
idea of energy being discrete rather than continuous, quantum theory also ushered a shift
from deterministic to probabilistic theories [3].

Quantum mechanics has since led to quantum field theory (QFT) and the Standard
Model which effectively describe all non-gravitational physics. In particular, QFT does
successfully incorporate special relativity with quantum mechanics by describing particles
as excitations of their underlying quantum field. And while there remain a lot of questions
that are not answered by QFT, within its regime of validity it is a remarkably successful
theory. The most notable example of this is quantum electrodynamics (QED), in which
the experimentally determined anomalous magnetic dipole moment of the electron agrees
with the calculations to nine orders of precision [4].

Likewise, there have been many developments in the field of relativity in the past
century. These include higher curvature theories, gravitational waves, and black holes,
with the latter two leading to Nobel and Breakthrough Prizes in the last decade [5, 6, 7, 8].

However, for all their success, quantum mechanics and general relativity are funda-
mentally at odds with each other. Quantum mechanics is a probabilistic theory with
inescapable uncertainty which best describes small-scale systems. Whereas general relativ-
ity is a deterministic theory that addresses either very massive (and often large) systems
and those that move at high velocities. There have been many attempts to reconcile these
juggernauts of modern physics [9], though two of the most recent paradigms (string [10]
and loop theories [11]) have seemingly stalled.

In their wake a new approach towards a theory of quantum gravity has emerged in
Relativistic Quantum Information (RQI) [12], which seeks to consider both the effects of
relativity on quantum information protocols and how quantum information tools can help
us describe and probe relativistic systems. RQI relies heavily on QFT in curved space
[13], and while not claiming to be a full theory of quantum gravity, it does allow for the
interaction between quantum and relativistic effects in new and instructive ways. One
of the best probes for such interactions is the two-level quantum detector called Unruh-
DeWitt (UDW) detector [14, 15]. Locally coupling these UDW detectors to the quantum
vacuum that permeates space allows us to glean insight into the structure of spacetime by
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comparing the behaviour of the detector in different spacetimes. In particular, there has
been significant interest within the field to try to extract information from the quantum
vacuum using UDW detectors through methods such as entanglement harvesting [16, 17].

There is also the sub-field of Relativistic Quantum Metrology (RQM) which osten-
sibly concerns itself with the precision of measurements within systems that have both
relativistic and quantum contributions [18, 19]. While standard quantum metrology has
been around for some time now [20, 21, 22], incorporating relativistic effects is a more
recent development. RQM is not only crucial to the experimental implementation of many
new quantum technologies, it also offers a new theoretical perspective into the interaction
between the quantum and relativistic theories [23, 24, 25].

Previous work along this vein has used a measure called the Fisher information (FI)
as a framework to infer information about the spacetime’s underlying structure. This
approach has been used to estimate the expansion rate of the universe [18, 26], to explore
time dilation of quantum clocks [27, 28] and the Unruh effect [29], and to make progress
towards quantum communication technologies [30]. More recently, UDW detectors and FI
applied to a thermal parameter has been used to uncover structure within de Sitter (dS)
and anti-de Sitter (AdS) spacetimes in 3+1 dimensions [31].

In this thesis, we are interested in probing the intersection of relativistic and quantum
theories. To do this, we will apply tools from RQI and RQM to the task of probing
black holes, which owing to their small size and large mass are widely seen as a possible
window into relativistic quantum effects. In particular, we will consider the thermal Fisher
information extracted from the vacuum state of black hole spacetimes in 2+1 dimensions
via UDW detectors.

1.2 Outline

This thesis is organized as follows. In Chapter 2, we will present the theoretical framework
upon which the work is done. This will include an introduction to the Fisher information,
to UDW detectors, and to the spacetimes under consideration.

Having done this, we will present the derivations that were required to obtain our results
in Chapter 3. This chapter covers the high-level steps of the response rate derivations,
while the details are left to Appendix A. It is also here that we will outline our estimation
protocol.

Next, we will proceed to Chapter 4, where we present our analysis of the Fisher infor-
mation in black hole spacetimes. This Chapter features many insightful plots to assist in
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our description of the Fisher information and its behaviours.

Finally, we will conclude in Chapter 5 with a summary of the work contained in this
thesis followed by future directions.
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Chapter 2

Theory

Before we delve into the results and derivations of this paper, let us first present the
theoretical foundations of this work.

2.1 Fisher information

A crucial element of the scientific method is the ability to test a theory or a hypothesis
against real-world evidence. This back-and-forth between theorists and experimentalists
dates back to the very inception of the scientific method, with many of its pioneers donning
both hats. These early scientists sought to test the theories they developed with experi-
mental set ups while also explaining what they observed in the world around them with
powerful theories.

While many theorists do have an interest in experiments and vice versa, the last century
has seen the discipline branch into two increasingly distinct fields of theoretical and exper-
imental physics. The motivations for both lie in the realm of the other, but the challenges
within each separate field are such that scientists tend to specialize in order to be able to
contribute to new and exciting results.

Once upon a time, it was sufficient to take a ruler and measure the distance travelled
by a moving object, or to use a stopwatch to record the time elapsed between two events.
Notwithstanding the relativistic effects that are present in certain systems, we were able
to measure pretty much anything we wanted using an appropriately calibrated instrument
associated to a well-defined unit for the quantity being measured. Even the once-popular
liquid mercury thermometers fit this model.
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However, at the frontiers of physics, where we seek to measure very minute effects
with great confidence, we require more than tangible tools. Once we have optimized our
measurement device to reduce the systematic errors, we are able to further improve the
accuracy and precision of our results by applying statistical tools to the raw data.

Great examples of this in contemporary physics are the Canadian Hydrogen Intensity
Mapping Experiment (CHIME) which is radio telescope designed for the detection of fast
radio bursts, pulsars, and eventually the expansion of the Universe via hydrogen mapping
[32] and the Event Horizon Telescope (EHT) which makes use of eight telescopes located
in six different places across the globe to effectively serve as a single telescope with an
Earth-sized aperture [8]. Both of these use relatively simple physical telescopes enhanced
by exceptional data analysis to produce meaningful results, not evident from the naked
data.

In particular, there are times when the value we seek to observe is not directly visible
to us. This is not uncommon in quantum mechanics, where not every parameter of interest
corresponds to a quantum observable. In these cases we must exploit correlations between
underlying unknown parameters and observable parameters. The most popular way of
quantifying this correlation is by making use of what is known as the Fisher information.
This sort of information rigorously quantifies the knowledge of an underlying parameter
that can be estimated from the measurement of a dependent observable parameter.

Suppose an observable parameter x ∈ X has a dependence on an underlying parameter
ξ ∈ Ξ that is characterized by the probability distribution p(x|ξ), where (X,Ξ) represents
the set of possible observable and underlying parameters respectively.

If ξ̂ is the estimator, ξ̂ : Xn → Ξ, which given a sample of n observed parameters
x returns the underlying parameter ξ, and this estimator is unbiased (i.e., it returns the
actual value of ξ), then the Fisher information, I(ξ), is defined to be

I(ξ) =
∫
p(x|ξ)

(
∂ ln p(x|ξ)

∂ξ

)2

dx =

∫
1

p(x|ξ)

(
∂p(x|ξ)
∂ξ

)2

dx. (2.1)

This is an integral(sum) over all possible observable values, weighted by the probability
distribution p(x|ξ), of the square of the logarithmic derivative of this probability with
respect to the underlying parameter.

The primary value of the Fisher information to most experimentalists arises from a
property stating that it provides a lower bound on the possible variance of the estimator.
In particular, the Cramér-Rao bound [33, 34]

var(ξ̂) ≥ 1

nI(ξ)
, (2.2)
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imposes a lower bound on the variance of the estimator that is inversely proportional to
the Fisher information. Thus, if we have little Fisher information, the lower bound on the
variance of the estimator will be large, limiting our ability to extract the desired information
about the underlying parameter. Conversely, if the Fisher information is large, then its
inverse is small, which results in a smaller lower bound on the variance. This means that
there exists some estimator that can better predict the value of the underlying variable.

We note that number of observable parameter measurements, n, is also inversely propor-
tional to the theoretically optimal variance. This is not surprising as we might expect that
the more measurements that are applied, the more ‘information’ we can gather; though we
note that n does not contribute to our definition of Fisher information, but rather comes
into play in its application to the Cramer-Rao bound.

2.2 Unruh-DeWitt detectors

Quantum field theory is a language that we can use to describe all things quantum. In
this theory, quantum fields permeate spacetime and excitations within the field correspond
to particles in emergent theories. While the definition of a particle can become somewhat
murky in these waters, we will adhere to Unruh’s maxim that “a particle is what a particle
detector detect” [35]. Such systems can be used to extract information about the global
state of the quantum field by measuring a particle detector that is locally coupled to the
field.

Among such detectors, the most prevalent in the literature today is the Unruh-De
Witt (UDW) particle detector, which is a simple two-level quantum system that effectively
models the light matter interaction without exchange of angular momentum. This model
has seen widespread use in entanglement harvesting [17, 36, 16], as well as the detection
of novel effects such as the anti-Unruh effect [37, 38].

The ground state, |0D⟩, and excited state, |1D⟩, of our detector are separated by some
energy gap, Ω. The proper time of the detector, τ , is used to parameterize its trajectory,
x(τ). The detector is coupled to a massless scalar field with the coupling described by the
interaction Hamiltonian

HI = λχ(τ)
(
eiΩτσ+ + e−iΩτσ−)⊗ ϕ[x(τ)], (2.3)

where λ is the coupling constant, σ+ = |1D⟩ ⟨0D| and σ− = |0D⟩ ⟨1D| are ladder operators.
Working in the perturbative regime, where the coupling constant, λ, is small, we can

define the response function, F (related to the transition probability), which quantifies
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the likelihood of the detector being found in the excited or ground state. This response
function can be expressed as

F (Ω) =

∫ ∞

−∞
dτ

∫ ∞

−∞
dτ ′ e−iΩ(τ−τ ′)W (x(τ), x(τ ′)), (2.4)

where W (x(τ), x(τ ′)) is the Wightman function. The Wightman function, which is depen-
dent on the underlying spacetime, quantifies the correlation between two points x and x′

within the field parameterized by the proper time of the detector at those points. This
function, sometimes aptly referred to as the two-point correlation function is given by

W (x(τ), x(τ ′)) = ⟨0| ϕ̂(x(τ))ϕ̂(x(τ ′)) |0⟩ . (2.5)

In the special case that our detector is on a stationary trajectory (i.e., one that has
fixed spatial coordinates, but changing time coordinate), then the Wightman function is
entirely defined by the change in time ∆τ = τ ′−τ . Given such a trajectory, we are capable
of defining the response per unit time, also called the response rate [39, 40]. This can be
thought of as the derivative of the response function with respect to time and is given by

F(Ω) =

∫ ∞

−∞
d∆τ e−iΩ∆τ W (∆τ). (2.6)

This response rate has important applications to UDW detectors in open quantum system
frameworks.

We will be specifically interested in the ability of a UDW detector to measure the
temperature of the spacetime and its ability to discriminate between spacetimes [41, 42,
43, 44, 45]. We observe thermal states in expanding dS spacetime [13, 46], for uniform
detector acceleration, or more generally whenever there is an event horizon [47]. It is well
known that a UDW detector near a black hole will experience thermal radiation [48], but
it is also the case that such a detector will experience thermal radiation in AdS provided
that it has a sufficiently large acceleration [49, 50]. As such it is clear that thermal states
are an important part of a given spacetime.

2.3 Spacetimes

While we ultimately want to consider what the thermal Fisher information of a UDW
detector can tell us about black hole spacetimes, it will be useful for us to first consider
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this Fisher information for a constantly accelerating detector in AdS spacetime. Not only
will the AdS spacetime allow us to produce a quotient space construction of our black hole
spacetime using an image sum, but it will also provide a non-black hole spacetime against
which to compare our new results.

By considering (2+1)-dimensional spacetime, we will be able to construct the simple
BTZ black hole solutions to Einstein equations via AdS3.

2.3.1 AdS-Rindler

Anti-de Sitter space is the simplest maximally symmetric solution to the Einstein equations
that has constant negative spacetime curvature (equivalent to a negative cosmological
constant). In (2+1)-dimensional spacetime, AdS with cosmological constant Λ = −1/ℓ2,
where ℓ > 0 is known as the AdS length, can be expressed as the hyperboloid

X2
1 +X2

2 − T 2
1 − T 2

2 = −ℓ2, (2.7)

embedded in (2 + 2)-dimensional flat spacetime with ‘position’ coordinates X1, X2, ‘time’
coordinates T1, T2, and the metric

ds2 = dX2
1 + dX2

2 − dT 2
1 − dT 2

2 . (2.8)

Since we will be specifically interested in detectors that can thermalize, we require that
our detector trajectories have super-critical constant acceleration, a ≥ 1/ℓ [39]. When
working with constantly accelerating trajectories in AdS, one can opt to work in what are
known as Rindler coordinates.

We can thus make our lives easier by working with the AdS-Rindler metric

ds2 = −
(
r2

ℓ2
− 1

)
dt2 +

(
r2

ℓ2
− 1

)−1

dr2 + r2dϕ2, (2.9)

which can be obtained from the standard AdS metric by applying the coordinate transfor-
mations

T1 = ℓ

√
r2

ℓ2
coshϕ , X1 = ℓ

√
r2

ℓ2
sinhϕ ,

T2 = ℓ

√
r2

ℓ2
− 1 sinh

t

ℓ
, X2 = ℓ

√
r2

ℓ2
− 1 cosh

t

ℓ
, (2.10)
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where the time parameter, t, can take on any real value, the radial parameter, r, must be
a non-negative real number, the ϕ parameter is also free to take any real value, and ℓ is
the AdS length. Note that when r = ℓ we encounter an acceleration horizon.

The Wightman function (for a conformally coupled massless scalar field) in (2+1)-
dimensional AdS [51, 52] is given by

WAdS(x, x
′) =

1

4π
√
2ℓ

(
1√

σ(x, x′)
− ζ√

σ(x, x′) + 2

)
, (2.11)

where

σ(x, x′) =
1

2ℓ2

[
(X1 −X ′

1)
2 − (T1 − T ′

1)
2
+ (X2 −X ′

2)
2 − (T2 − T ′

2)
2
]
, (2.12)

is the squared geodesic distance between the points x and x′. The parameter ζ ∈ {0, 1,−1}
specifies the boundary conditions to be satisfied at spatial infinity, with its possible values
corresponding to what are commonly referred to as the transparent (ζ = 0), Dirichlet
(ζ = 1), and Neumann (ζ = −1) boundary conditions.

In AdS-Rindler, the squared distance can be shown to be

σ(x, x′) = −1 +
rr′

ℓ2
cosh(∆ϕ)−

√
(r2 − ℓ2)(r′2 − ℓ2)

ℓ2
cosh

(
∆t

ℓ

)
, (2.13)

where ∆ϕ = ϕ− ϕ′ and ∆t = t− t′. Details for this calculation can be found in Appendix
A.

2.3.2 Static BTZ Black Hole

Starting from the hyperboloid embedding described in the previous section, we can obtain
the static BTZ black hole metric

ds2 = −
(
r2

ℓ2
−M

)
dt2 +

(
r2

ℓ2
−M

)−1

dr2 + r2dϕ2, (2.14)

by applying the following transformations

T1 = ℓ

√
r2

Mℓ2
cosh(

√
Mϕ) , X1 = ℓ

√
r2

Mℓ2
sinh(

√
Mϕ) ,

T2 = ℓ

√
r2

Mℓ2
− 1 sinh

√
Mt

ℓ
, X2 = ℓ

√
r2

Mℓ2
− 1 cosh

√
Mt

ℓ
. (2.15)
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followed by the identification Γ : ϕ→ ϕ+ 2π.

Noting the similarities between these transformations and those from the section above,
we can obtain the BTZ Wightman function for the Hartle-Hawking vacuum from the AdS
Wightman function by using the method of images [53]:

WBTZ(x, x
′) =

∞∑
n=−∞

WAdS(x,Γ
nx′) (2.16)

where WAdS(x, x
′) is the vacuum Wightman function defined in Equation (2.11) associ-

ated with a massless conformally coupled scalar field, and Γnx′ denotes the action of the
identification on the spacetime point x′.

Applying Equations (2.11) and (2.12), this works out to be

WBTZ(x, x
′) =

1

4π
√
2ℓ

∞∑
n=−∞

[
1

√
σn

− ζ√
σn + 2

]
, (2.17)

where

σn(x, x
′) := −1 +

rr′

r2h
cosh

[rh
ℓ
(∆ϕ− 2πn)

]
−
√

(r2 − r2h)(r
′2 − r2h)

r2h
cosh

[rh
ℓ2
∆t
]
. (2.18)

Note that the black hole radius, rh, is related to the black hole mass by rh =
√
Mℓ. We

will express all of our final results in terms of the mass, but we perform a number of our
derivations in terms of the radius.

2.3.3 Rotating BTZ Black Hole

Our approach to characterizing the rotating counterpart of our (2+1)-dimensional black
hole spacetime is more direct.

The line element of the rotating BTZ black hole in “Schwarzschild” coordinates [54, 51]
is given by

ds2 = −
(
N⊥)2 dt2 + f−2dr2 +

(
dϕ+Nϕdt

)2
, (2.19)

where, N⊥ = f =
√

−M + r2

ℓ2
+ J2

4r2
and Nϕ = − J

2r2
, with M =

r2++r2−
ℓ2

, the mass of the

black hole, and J = 2r+r−
ℓ

, the angular momentum of the black hole. The inner and outer
radii are r− and r+, while ℓ remains the AdS length.
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It is worth noting that |J | ≤ Mℓ, with equality corresponding to extremal rotation,
when r+ = r−. Further note that if J = 0 (or equivalently r− = 0), then we are indeed left
with the static BTZ spacetime with r+ = rh.

While we will use the mass M and angular momentum J to ultimately describe the
black hole, our algebraic manipulations will be performed in terms of r±, where

r2± =
Mℓ

2

[
1±

√
1−

(
J

Mℓ

)]
. (2.20)

The metric can be expressed in terms of these radii by substituting them directly into
Equation (2.19). Alternatively, it can also be obtained from the embedded hyperboloid of
Equation (2.7) and the associated metric from Equation (2.8) via the transformations

T1 = ℓ
√
α cosh

(r+
ℓ
ϕ− r−

ℓ2
t
)
, X1 = ℓ

√
α sinh

(r+
ℓ
ϕ− r−

ℓ2
t
)
,

T2 = ℓ
√
α− 1 cosh

(r+
ℓ2
t− r−

ℓ
ϕ
)
, X2 = ℓ

√
α− 1 cosh

(r+
ℓ2
t− r−

ℓ
ϕ
)
. (2.21)

followed by the identification Γ : ϕ→ ϕ+ 2π, and where

α(r) =
r2 − r2−
r2+ − r2−

. (2.22)

The form of the Wightman function for the rotating and static BTZ spacetimes has
the same general form

WBTZ(x, x
′) =

1

4π
√
2ℓ

∞∑
n=−∞

[
1

√
σn

− ζ√
σn + 2

]
, (2.23)

although the squared distance is slightly more involved owing to the presence of the inner
radius r− [52]. It is thus given by

σn(x, x
′) =− 1 +

√
α(r)α(r′) cosh

[r+
ℓ
(∆ϕ− 2πn)− r−

ℓ2
(∆t)

]
−
√

(α(r)− 1)(α(r′)− 1) cosh
[r+
ℓ2

(∆t)− r−
ℓ
(∆ϕ− 2πn)

]
, (2.24)

where ∆t = t− t′ and ∆ϕ = ϕ− ϕ′.
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Chapter 3

Derivations

In this chapter, we will be presenting the specific systems, with particular detector and
spacetime set ups, that we will be examining in this thesis and some of the key steps
towards obtaining these results.

3.1 Computing Response Rates

In order to compute the response rate of our detector, which we will eventually require to
compute the Fisher information, it is important that we specify the trajectory along which
the detector will be travelling.

Within each spacetime under consideration, namely AdS, the static BTZ black hole,
and the rotating BTZ black hole, there are a number of possible detector trajectories that
each possess particular behaviours. These trajectories can often be characterized by their
symmetries, which in turn can help provide a better intuition into the structure of the
spacetime.

Since we are looking to elicit a thermal response in our detector, we limit ourselves de-
tectors in AdS with super-critical accelerations, a > 1/ℓ. This corresponds to a stationary
detector in the coordinates of the previously defined AdS-Rindler spacetime.

In the case of the static BTZ black hole, we will also choose a stationary trajectory
for our detector. In addition to being the simplest trajectory that we can choose, the
stationary trajectory will mimic the experience of the constantly accelerating detector in
AdS. This will allow us to compare and contrast the two spacetimes in order to identify
what behaviours can truly be attributed to the black hole nature of the BTZ spacetime.
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Finally, for the rotating BTZ black hole, we will consider our detector to be moving
along a co-rotating trajectory. That is to say, our detector will rotate about the black hole
with the same angular velocity as the black hole itself. This trajectory similarly mimics the
stationary detector and static black hole combination, allowing us to isolate the rotational
contributions to the Fisher information.

3.1.1 Accelerated detector in AdS

A constantly accelerating detector in AdS is represented as a stationary detector in AdS-
Rindler. Such a detector has a trajectory defined by

xD(τ) := {t = τ√
f(RD)

, r = RD, ϕ = ΦD}, (3.1)

where the proper time of the detector, τ , can be related to the coordinate time by the
red-shift factor γD = dτ

dt
=
√
f(RD), where f(r) = r2/ℓ2 − 1. This trajectory is dubbed

stationary because the detector remains at a fixed radial and angular position. Thus the
only motion is forward in time.

Recall that to compute the response rate, we require the Wighman function, which
in turn requires us to first compute the squared geodesic distance, σ(x, x′), between two
points x and x′ along our trajectory.

We begin substituting the stationary trajectory coordinates into Equation (2.13)’s def-
inition of the squared distance. Noting that r = r′ = RD and ϕ = ϕ′ = ΦD, we find
that

σ(x, x′) = −2f(RD) sinh
2

(
∆τ

2ℓ
√
f(RD)

)
. (3.2)

Plugging this into the AdS Wightman function from Equation (2.11), we get that
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WAdS(x, x
′) =

1

8πℓ
√
f(RD)

 1√
− sinh2(∆τ/(2

√
f(RD)ℓ))

− ζ√
1/f(RD)− sinh2(∆τ/(2

√
f(RD)ℓ))

 (3.3)

=
T

4

 1√
− sinh2(∆τπT )

− ζ√
4π2ℓ2T 2 − sinh2(∆τπT )

 , (3.4)

where we have made use of the relation between the KMS temperature, T , and the radial
position of the detector, RD,

T =

√
a2ℓ2 − 1

2πℓ
=

1

2πℓ

1√
f(RD)

, (3.5)

where the inverse KMS temperature, β = 1/T , is defined to be the imaginary period of
the Wightman function for a field satisfying the KMS [55, 56] condition

W (τ − iβ, τ ′) = W (τ ′, τ). (3.6)

Finally, to compute the response rate from Equation (2.6) with this Wightman function,
we find that the response rate of a uniformly accelerating detector in (2 + 1)-dimensional
AdS is [50]

FAdS =
1

4
− i

4π
PV

∫ ∞

−∞
dz
e−iΩz/(πT )

sinh z
− ζ

2π
√
2
Re

∫ ∞

0

dz
e−iΩz/(2πT )

√
1 + 8π2ℓ2T 2 − cosh z

, (3.7)

where we applied the substitution z = πT∆τ , PV is the Cauchy principle value, and Re
represents the real part. A more detailed derivation can be found in Appendix A, though
this result can also be obtained by dividing the infinite interaction time limit of the response
function by

√
π.

Performing the integrals, we find that the response rate can be explicitly written as

FAdS =
1

4

[
1− tanh

(
Ω

2T

)]
×
{
1− ζP− 1

2
+ iΩ

2πT

(
1 + 8π2ℓ2T 2

)}
, (3.8)

where Pν is the associated Legendre function of the first kind, satisfying P−1/2+iλ =
P−1/2−iλ.
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3.1.2 Stationary detector in static BTZ

Much like the stationary detector in AdS-Rindler, the trajectory of a stationary detector
in BTZ spacetime can be parametrized by

xD(τ) := {t = τ/γD, r = RD, ϕ = ΦD}, (3.9)

where the proper time of the director, τ , is related to the coordinate time, t, by the red-shift
factor of

γD =

√
R2

D

ℓ2
−M. (3.10)

Sometimes this redshift factor is expressed in terms of the black hole radius, rh =
√
Mℓ,

rather than the black hole mass.

Given the stationary trajectory of our detector, we can update the squared distance
formula from Equation (2.18) to be expressed as

σn(x, x
′) = −1 + (

γ2D
M

+ 1) cosh
[
2πn

√
M
]
− γ2D
M

cosh

[√
M∆τ

γDℓ

]
, (3.11)

which then allows us to rewrite the BTZ Wightman function from Equation (2.17) in the
specific case of our trajectory as

WBTZ(x, x
′) =

1

4
√
2πℓ

∞∑
n=−∞

 1√
−1 + (

γ2
D

M
+ 1) cosh

[
2πn

√
M
]
− γ2

D

M
cosh

[√
M∆τ
γDℓ

]

− ζ√
1 + (

γ2
D

M
+ 1) cosh

[
2πn

√
M
]
− γ2

D

M
cosh

[√
M∆τ
γDℓ

]
 (3.12)

=
T

2
√
2

∞∑
n=−∞

[
1√

α−
n − cosh[2πT∆τ ]

− ζ√
α+
n − cosh[2πT∆τ ]

]
, (3.13)

where
α±
n = ±4π2ℓ2T 2 + (1 + 4π2ℓ2T 2) cosh

[
2πn

√
M
]
. (3.14)
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The KMS temperature at a radius RD from the BTZ black hole has a very similar
expression to that of AdS, except that in addition to the redshift factor there is also some
mass dependence as seen in

T =
1

2πℓ

√
M

γD
. (3.15)

Having found a trajectory-specific description for the Wightman function, we are now
in a position to compute the response rate from Equation (2.6) for our stationary detector
in BTZ spacetime. Applying the substitution z = 2πT∆τ , we obtain

FBTZ = FAdS+
1√
2π

∞∑
n=1

{∫ ∞

0

dz Re

[
exp

(
− iΩz/(2πT )

)√
α−
n − cosh(z)

]

− ζ

∫ ∞

0

dz Re

[
exp

(
− iΩz/(2πT )

)√
α+
n − cosh(z)

]}
. (3.16)

Computing the integrals, we can compactly write the response rate as

FBTZ =
1

4

[
1− tanh

(
Ω

2T

)] n=∞∑
n=−∞

[
P− 1

2
+ iΩ

2πT

(
α−
n

)
− ζP− 1

2
+ iΩ

2πT

(
α+
n

)]
. (3.17)

Note that we recover the AdS response rate when we restrict ourselves to the n=0 term.

3.1.3 Co-rotating detector in rotating BTZ

For the rotating BTZ spacetime, we will choose to have our detector follow a co-rotating
trajectory. This trajectory, for which we can imagine our detector orbiting the black hole
with the same angular velocity in the plane of motion, can be parameterized by

xD(τ) := {t = ℓτ/γD, r = RD, ϕ = r−τ/(r+γD)}, (3.18)

where r− and r+ are the inner and outer radii of the black hole.

In the co-rotating frame, the redshift factor is γD =
√
(r2 − r2+)(r

2
+ − r2−)/r+. We thus

have

t =
ℓτ

γD
=

ℓr+τ√
(r2 − r2+)(r

2
+ − r2−)

(3.19)
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and
ϕ =

r−
r+

τ

γD
=

r−τ√
(r2 − r2+)(r

2
+ − r2−)

. (3.20)

We can thus relate the angular and time coordinates by ϕ = r−
ℓr+
t and express the squared

geodesic distance from Equation (2.24) along our particular trajectory as

σn(x, x
′) =− 1 + α(RD) cosh

[
2πnr+
ℓ

]
− (α(RD)− 1) cosh

[
2πnr−
ℓ

+
∆τ√

α(RD)− 1ℓ

]
,

(3.21)

where α(r) =
r2−r2−
r2+−r2−

.

Making use of the KMS temperature’s relation to the radius of the detector’s trajectory,

T =
1

2πℓ

√
α(RD)− 1, (3.22)

we can rewrite any expression in RD in terms of T via α(RD) − 1 = (4π2T 2ℓ2)−1. Doing
so and plugging the resulting squared distance into the Wightman function formula, we
obtain

WRBTZ(x, x
′) =

T

2
√
2

∞∑
n=−∞

 1√
α−
n − cosh

[
2πnr−

ℓ
+ 2πT∆τ

] − ζ√
α+
n − cosh

[
2πnr−

ℓ
+ 2πT∆τ

]
 ,

(3.23)

where

α±
n =

(
1 + 4π2ℓ2T 2

)
cosh(2πnr+/ℓ)± 4π2ℓ2T 2 . (3.24)

By performing the substitution ∆τ = 1
2πT

(z − 2πnr−/ℓ), we can rewrite the response
rate as

FRBTZ =
1

4π
√
2

∞∑
n=−∞

ηn
∫ ∞

−∞
dz

[
e−

iΩ
2πT

(z− 2πnr−
ℓ

)√
α−
n − cosh(z)

− ζ
e−

iΩ
2πT

(z− 2πnr−
ℓ

)√
α+
n − cosh(z)

]
.

Computing the integrals, we can rewrite the response rate as

FRBTZ =
1

4

[
1− tanh

(
Ω

2T

)] n=∞∑
n=−∞

e
iΩnr−

ℓT

[
P− 1

2
+ iΩ

2πT

(
α−
n

)
− ζP− 1

2
+ iΩ

2πT

(
α+
n

)]
. (3.25)

Note that we recover the static BTZ response rate when we have a vanishing inner
radius, r− = 0. The larger 0 < r− ≤ r+ is, the greater the angular momentum of the black
hole (and of the co-rotating detector).
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3.2 Applying Open Quantum Systems

To compute the thermal Fisher information of our detector, we will make use of an open
quantum systems framework applied to UDW detectors [57, 31, 26, 58]. Open quantum
system evolutions allow for the interaction of a quantum system of interest, the UDW
detector in our case, with an external system which we can then trace out to obtain the
state of our system of interest.

Here, we couple our UDW detector to the vacuum state of the field before tracing
the field states out. Employing the appropriate assumptions, we find ourselves capable of
isolating the evolution of our detector.

Let us first define the total Hamiltonian of the joint system. This can be expressed
as the sum of the interaction Hamiltonian along with the free Hamiltonian of both the
detector and the scalar field:

H = HD +Hϕ +HI , (3.26)

where HD = 1
2
Ωa†DaD = 1

2
Ω(|0D⟩ ⟨0D| − |1D⟩ ⟨1D|) is the free Hamiltonian of the detector

with energy gap Ω, Hϕ = dt
dτ

∑
k ωka

†
kak is the free Hamiltonian of the scalar field evolving

along the proper time of the detector, τ , and HI is the interaction Hamiltonian described
in Equation (2.3).

The time evolution (with respect to the proper time of the detector) is described by
the von Neumann equation

∂ρtot
∂τ

= −i[H, ρtot], (3.27)

where ρtot is the density matrix of the joint system. This joint system is initialized in the
state ρtot(0) = ρD(0)⊗ |0ϕ⟩ ⟨0ϕ|, where ρD(0) is the initial state of the detector and |0ϕ⟩ is
the conformal vacuum of the massless scalar field ϕ(x). To obtain the state of the detector,
one must take the partial trace over the field of the joint density matrix, ρD = Trϕ ρtot.

Assuming weak coupling (λ ≪ 1) with field correlations decaying sufficiently fast for
large time separations, then the time evolution of the detector’s density matrix can be
expressed by the master equation of Kossakowski-Lindblad form [57]. This describes the
most general Markovian time evolution of a quantum system [59], and is given by

∂ρD(τ)

∂τ
= −i[Heff, ρD(τ)] + L[ρD(τ)], (3.28)
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where Heff = 1
2
Ω̃(|0D⟩ ⟨0D| − |1D⟩ ⟨1D|) is the effective Hamiltonian, and

L[ρ] =
1

2

3∑
i,j=1

Cij (2σjρσi − σiσjρ− ρσiσj) , (3.29)

is a dissipation term in which the σi are the Pauli matrices. The quantity Ω̃ is a renormal-
ized gap given by

Ω̃ = Ω + i [K(−Ω)−K(Ω)] , (3.30)

where K(Ω) is the Hilbert transform of the response per unit time F(ω) defined by

K(Ω) =
1

iπ
PV

∫ ∞

−∞
dω

F(ω)

ω − Ω
, (3.31)

with PV denoting the Cauchy principal value. Cij is called the Kossakowski matrix, and
is also completely determined by the response rate F(Ω):

Cij =

A −iB 0
iB A 0
0 0 A+ C

 , (3.32)

where

A =
1

2
[F(Ω) + F(−Ω)] (3.33)

B =
1

2
[F(Ω)−F(−Ω)] (3.34)

C = F(0)− A (3.35)

With this set up, the KL equation can be solved analytically. If we initialize our
detector in the general pure state |ψD⟩ = cos θ

2
|0D⟩+ sin θ

2
|1D⟩, its density matrix at time

τ is specified by the Bloch vector a = (a1, a2, a3) such that

ρ(τ) =
1

2
(I + a(τ) · σ) , (3.36)

where σ = (σ1, σ2, σ3) are the Pauli matrices, and the Bloch vector components are given
by

a1(τ) = e−Aτ/2 sin θ cos Ω̃τ, (3.37)

a2(τ) = e−Aτ/2 sin θ sin Ω̃τ, (3.38)
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a3(τ) = −e−Aτ cos θ −R(1− e−Aτ ). (3.39)

where R = B/A is a ratio of Kossakowski matrix elements. We note that A is the even
part of the response rate with respect to the energy gap, Ω, while B isolates the odd part
of the response rate. Interstingly, we will note that their ratio, R = − tanh( Ω

2T
), is the

same across all spacetimes considered in this thesis as well as for the (3+1)-dimensional
spacetimes considered in [31]. This form can be intuited from a more detailed expression
of R.

We note that in general the Bloch vector need not be a unit vector. In the case where
|a| < 1 we are left with a non-unitary evolution.

Now that we have identified our state of interest and its time evolution dynamics, we
are in a position to compute the Fisher information for estimating the KMS temperature in
AdS-Rindler along with the static and rotating BTZ black hole by using a UDW detector.
The estimation strategy that we will employ consists of first letting the detector interact
with the massless scalar field vacuum state in the appropriate spacetime background before
making a projective measurement of the detector’s state after some time τ in the detector’s
reference frame.

Since the UDW detector with which we are working is a two-level quantum state, it
follows that every measurement of the state must have two possible outcomes. While
our definition of the Fisher information in Equation (2.1) was expressed in terms of a
continuous probability distribution, the definition is equally valid for a discrete probability
distribution in which the integral becomes a sum.

Given that our system lives in a two-dimensional Hilbert space, this sum will have two
terms with probabilities p and 1− p. The Fisher information can thus be expressed as

I(ξ) = 1

p

(
∂p

∂ξ

)2

+
1

1− p

(
−∂p
∂ξ

)2

=
1

p(1− p)

(
∂p

∂ξ

)2

. (3.40)

Measuring a state in the computational basis, {|0D⟩ , |1D⟩}, results in the probability,
p, of finding the detector in the state |0D⟩ to be a function of its Bloch vector. More
explicitly, we have that

p = Tr(ρ |0D⟩ ⟨0D|) =
1

2
(1 + a3), (3.41)

while the probability of finding the detector in the state |1D⟩ is 1− p = 1
2
(1− a3).

The Fisher information is thus given by

I(ξ) = (∂ξa3)
2

1− a23
, (3.42)
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where we can clearly see that it is only dependent on the third Bloch vector component,
a3, defined in Equation (3.39).

Since we are interested in examining the thermal Fisher information, we will set the
underlying parameter ξ to be the KMS temperature T . We can thus express the thermal
Fisher information as

I(T ) = (∂Ta3)
2

1− a23
. (3.43)

We will further rescale I(T ) by T 2 in order to make it easier to compare values for
varying T . We will denote this rescaled value simply by I (i.e., I = I(T )T 2) and we will
henceforth refer to this simply as the Fisher information. Note that this rescaling also
results in the Fisher information being unitless.

Before moving on to our results section, we will identify all of the parameters that will
be featured in our analysis. Note that we will be expressing all parameters in terms of the
AdS length, ℓ.

The first parameters worth noting are the detector energy gap, Ω, and the KMS tem-
perature, T . These both have units of inverse length so we will multiply them by the AdS
length to make them unitless. They will thus be labelled in plots as Ωℓ and Tℓ. It is also
worth noting that the energy gap only ever appears in the response rate as a ratio with
the temperature Ω/T ; thus their relative values will be of interest to us. We will refer to
set ups as being ‘hot’ if T > Ω and ‘cold’ if T < Ω.

We also note that while we have accelerations, a, and radial positions, RD, in our
derivations, these are always related to the temperature and the BTZ mass, M . As such,
acceleration and radial position will not be featured prominently in our analysis, since we
are more interested in understanding how our results pertain to the KMS temperature and
the BTZ mass.

The remaining general parameters are the initial state of the detector, θ, which we will
often fix to one of {0, π/2, π}, the detector interaction time, τ , which we will scale by the
AdS length as τ/ℓ, and the spacetime boundary condition, parametrized by ζ, which can
be one of {0, 1,−1} corresponding to the transparent, Dirichlet, and Neumann boundary
conditions respectively.

In the BTZ spacetimes, the dimensionless BTZ mass M will be a very important
variable, while in the rotating BTZ spacetime we will also consider the angular momentum,
J , which we will express in terms of Mℓ. Note that one can equivalently describe BTZ
black holes in terms of the inner and outer radii, r− and r+, but we find this perspective less
informative and opt to describe the black hole in terms of its mass and angular momentum
instead.
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Chapter 4

Results

In this chapter, we will present the results of our Fisher information analysis of black hole
spacetimes. To do this, we will first present our analysis of the thermal Fisher information
in (2+1)-dimensional AdS spacetime. This will not only set the scene for our black hole
analysis by providing us a background against which we will be able to highlight genuine
black hole effects, but it will also allow us to compare our results to those obtained in
(3+1)-dimensional spacetime [31]. In so doing, we will note that the Fisher information of
AdS space was not quite as exciting as it was previously purported to be.

Having set the stage, we will then proceed to the real meat of this thesis: the first
Fisher information analysis of a black hole spacetime. We will first consider the static
(2+1)-dimensional black hole, allowing us to consider the role that the BTZ mass plays
in the Fisher information, before considering the angular momentum contribution to the
Fisher information for rotating BTZ black holes.

Our analysis of the Fisher information here will be largely qualitatively driven. This is
in part owing to the fact that the analytic expressions for the response rate (and ultimately
the Fisher information) are dependent on Legendre polynomials with complex indices for
which we have limited intuition. Our analysis does however accomplish two goals.

First, given a specific spacetime and some known detector parameters (e.g., intial state,
energy gap), we can identify the time at which we should perform the measurement to
obtain the best estimate of the temperature. Second, we want to be able to use the
Fisher information as a probe of the underlying spacetime. By this we mean to ask,
given a particular Fisher information behaviour, can we discriminate between the possible
background spacetimes? We find that we are indeed able to distinguish between spacetimes,
with particular success when it comes to identifying the black hole mass.
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4.1 Anti-de Sitter Spacetime

We will begin our analysis by considering the Fisher information of a constantly accelerating
detector in AdS spacetime, or equivalently a stationary detector in AdS-Rindler. Since we
are considering a supercritical acceleration, there will always be a thermal response and
non-zero response rate.

As a first step, we will consider the possible qualitative behaviours that the temporal
Fisher information, i.e., the (thermal) Fisher information as a function of time τ , might
have. In Figure 4.1, we observe at first glance nine qualitatively distinct behaviours. While
these alleged nine behaviours were previously identified by Du and Mann [31], there remain
a few noteworthy observations.

Most importantly, we note that there are not in fact nine qualitatively distinct be-
haviours as was previously claimed, but only eight. If we number the plots in the grid 1
through 9 as on a telephone number pad, we can see that behaviours 3 and 4 are quali-
tatively identical. They both begin at zero, then smoothly increase into and decrease out
of a global maximum, before asymptoting to some positive value. Since this asymptotic
behaviour was not clear in our behaviour 4 plot, we included an inset image to show that
the asymptotic behaviour is non-zero. We were also able to show this in (3+1)-dimensional
AdS, resulting in a slight correction to previous results.

While one might suspect that the Fisher information is never zero after this observation,
we were able to verify that the minima in behaviours 5 and 6 do indeed attain 0, at least
to high numerical certainty, as shown by the inset in behaviour 6.

This does raise some interesting questions. It is clear that the Fisher information cannot
take on negative values; this can be realised mathematically due to the prominent presence
of terms being squared in the definition, or physically by noting that the Fisher information
quantifies the knowledge we might be able to extract about the temperature from the
measurement of the state of our detector. Clearly, one could not have negative information
about this; the worst one could do is to have no information about the underlying parameter
gleaned from the observable measurement.

It does seem peculiar however that at a certain time τ ̸= 0 the Fisher information is 0
when it is non-zero on either side of this time. What is it about that particular time that
results in a total loss of information? It is interesting to note here that the only difference
between the parameters for behaviours 3 and 6 is the initial state of the detector.

To further delve into the possible qualitative behaviours, we note that they always
start at the origin. This is sensible because we do not expect our detector to have any
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information about the temperature until it begins its evolution coupled to the vacuum
state of the field. It is also unsurprising to see that the Fisher information plateaus to
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Boundary condition: Transparent Dirichlet Neumann

Figure 4.1: This grid plot of the temporal Fisher information displays all the distinct be-
haviours observed for our detector in AdS Rindler. From left-to-right and top-to-bottom,
we label these as behaviours 1 through 9. There are eight distinct behaviours, with be-
haviours 3 and 4 being the same qualitatively. We note that while both the Dirichlet and
Neumann boundary conditions (ζ = 1 and ζ = −1 respectively) can be used to obtain all
nine behaviours, only the first two can be obtained from the more fundamental transparent
boundary condition (ζ = 0). To highlight this fact, we have plotted the first two behaviours
using the transparent boundary condition (in black), while the remaining six qualitatively
distinct behaviours were plotted using the Dirichlet boundary condition (in blue).
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some positive value at sufficiently large times. This can be understood as corresponding to
the thermalization of the detector after which there is no further information to be gleaned
from the field.

What is more interesting, and thus harder to explain, is the behaviour between these
start and end points. While the Fisher information obviously needs to increase to reach
its plateau from the origin, it is not required to do so monotonically. There appears to
at most two inflection points between the origin and the plateau. This allows for either a
single (global) maximum from which the Fisher information decreases with time to reach
its asymptotic value, or it can have both a maximum and minimum before reaching its
asymptotic value. This latter case corresponds to four of the possible behaviours (the
maximum can either be above or below the asymptotic value and the minimum can either
zero or non-zero).

The last thing to note about the plots in Figure 4.1 is the colour of the Fisher infor-
mation curves. The first two behaviours are depicted with a black curve corresponding
to the transparent boundary condition (ζ = 0). We consider this to be the ‘most basic’
boundary condition in a sense because it completely eliminates a term from our response
rate in Equation (3.8). As such, we expect it to convey the most fundamental behaviours
of our system. In (2+1)-dimensional AdS, it is only these two most basic behaviours that
are achievable using the transparent boundary condition. The remaining six behaviours
cannot be obtained with the transparent boundary condition, though they can be achieved
with either Dirichlet (ζ = 1) or Neumann (ζ = −1) boundary conditions. (We have chosen
to use the Dirichlet boundary conditions here for no particular reason.)

While the number of distinct qualitative behaviours remains the same between (3+1)-
and (2+1)-dimensional AdS, behaviours 1 through 6 can all be achieved using the trans-
parent boundary condition in 3+1 dimensions. In this sense, there is some loss of generality
when we reduce the number of spacetime dimensions in which our detector is operating.

Having identified the set of possible behaviours, let us now hone in on what characterizes
these behaviours. We have already noted that the sole difference between behaviours 3 and
6 in Figure 4.1 is the state in which the detector was initialized. In Figure 4.2, we display
the Fisher information for a subset of the parameter space of our system, such that each
plot specifies a particular set of initial conditions. We attempt to lay these plots out in
such a way as to convey the most relational information. This is primarily encoded across
rows and across columns.

The first thing to note is that the value of the asymptotic Fisher information is not
dependent on the choice of boundary condition, since the asymptotic value in any given
plot is the same. Furthermore, we can note that the asymptotic value is not dependent on
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Boundary condition: Transparent Dirichlet Neumann

Figure 4.2: This grid plot displays the temporal Fisher information in AdS for all boundary
conditions for various parameter choices. Each row of this grid plot fixes a pair of energy
gap and temperature parameters, (Ωℓ, T ℓ), while each column fixes an initial state of the
detector, θ. Across all plots the colour of the curves represent the boundary condition.
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the initial state of the detector (which varies across columns) since the asymptotic value
is fixed for every row. We thus expect the asymptotic value to be dependent only on the
temperature, T , and the energy gap of the detector, Ω.

In fact, it is straightforward to show that the asymptotic Fisher information only de-
pends on the Kossakowski ratio, R, and the KMS temperature, T . To see this, we note
that limτ→∞ a3 = −R. We can then show that

lim
τ→∞

I = lim
τ→∞

(∂Ta3)
2

1− a23
T 2 =

(∂TR)
2

1−R2
T 2, (4.1)

where the Kossakowski ratio is R = − tanh(Ω/2T ).

Computing this explicitly, we find that the asymptotic Fisher information is given by

Iasym =
Ω2

2T 2
sech2

(
Ω

2T

)
, (4.2)

which is dependent only on the ratio Ω/T . This dependence on the ratio of the energy
gap to the temperature, rather than on their independent values can be seen by comparing
the first and last rows of Figure 4.2, where the ratios are the same despite the parameter
values being distinct.

From this, one can see that there is an optimal ratio Ω/T that results in the largest
asymptotic Fisher information. This ratio is given by Ω/T = 2x0, where x0 ≈ 1.2 is the
solution to x0 tanhx0 = 1.

The final observation that we are capable of making from Figure 4.2 is that while all
three boundary conditions approach the same asymptotic value, the Neumann and Dirichlet
boundary conditions appear to sandwich the transparent boundary condition from above
and from below respectively. This agrees with the intuition provided by Avis, Isham,
and Storey whereby the transparent boundary condition is a superposition of sorts of the
Neumann and Dirichlet boundary conditions [60].

4.2 Static BTZ Spacetime

As we progress to analysing the Fisher information of a stationary UDW detector outside
a static BTZ black hole, we recall that the n = 0 term from the response rate’s image
sum in Equation (3.17) corresponds to the AdS response rate for a BTZ mass of M = 1.
We will thus begin this section by restricting ourselves to the case in which the mass is
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unity in order to identify what Fisher information behaviours can truly be attributed to
the presence of the black hole. From there, we will proceed to examine what effects varying
the mass has on the Fisher information, which we find to be rather interesting.

4.2.1 Fisher information analysis for M = 1
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Boundary condition: Transparent Dirichlet Neumann

Figure 4.3: All previously identified qualitative behaviours can be reproduced in the BTZ
spacetime. All of the behaviours displayed here were obtained using only the transparent
boundary condition (in black). Each can also be achieved using either Dirichlet or Neumann
boundary conditions.

We summarize the possible qualitative behaviours that the Fisher information can
take on from our stationary detector in BTZ spacetime in Figure 4.3. Unsurprisingly,
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we are able to recover all of the distinct qualitative behaviours identified in Figure 4.1,
though we are able to obtain all of them using the transparent boundary condition, in
addition to the Dirichlet and Neumann boundary conditions. This is the first way in which
we find that we are able to distinguish between spacetimes based solely on the Fisher
information from our detector. Stated more explicitly, it is clear that if we observe any of
the qualitative behaviours 3 through 9 in a (2+1)-dimensional spacetime with transparent
boundary conditions, we can state with certainty that we are not in AdS and thus intuit
that we are in the presence of a black hole.

While we did choose mass values that were different than one for our displays of be-
haviours 5 and 6, these behaviours were present for a unit mass, though they were less
clear than for our choice of parameters. Besides allowing for the discrimination between
spacetimes, the presence of more complicated Fisher information behaviours in the BTZ
spacetime for even the transparent boundary condition is indicative of the added complex-
ity of the BTZ spacetime, even for unit mass.

Having the range of possible behaviours being maximal in the sense that it is as large as
possible (there are no more possible behaviours, and all behaviours can be observed for all
boundary conditions), let us compare the behaviours in the BTZ spacetime directly from
those observed in AdS for specific choices of parameters. In particular, it is possible that
while the span of possible behaviours is similar overall, that their manifestations given a
certain set of parameters is dramatically distinct.

In order to perform this analysis, we turn to Figure 4.4 where we display the Fisher
information for the BTZ spacetime across the same subset of phase space as we had pre-
viously considered for AdS. We plot solid lines representing the BTZ Fisher information
atop of the dotted lines representing the AdS Fisher information to allow us to observe
any changes between the two. Throughout this plot we restrict the BTZ mass to M = 1
in order to isolate the most basic black hole perturbations.

It becomes apparent that when the energy gap is equal to the temperature there is
almost no difference between the Fisher information for the AdS and BTZ spacetimes.
Since this behaviour is present across the entirety of the first and fourth row, it is clear
that the initial state of the detector is not at play. If these were perfectly equal, then it
would mean that the P− 1

2
+ iΩ

2πT
(α±

n ) terms are either zero or they must cancel themselves.

If these terms were to cancel out, it would have to be with respect to the n parameter
since the behaviour holds for all ζ. It is straightforward to see that α±

−i = α±
i by virtue of

the hyperbolic cosine being an even function. We thus conclude that it is likely that the
Legendre polynomial and ensuing terms converge quite quickly to zero. This can indeed
be verified numerically.
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Figure 4.4: Here we directly compare the Fisher information in BTZ (solid lines) with the
Fisher information in AdS (dashed lines) that was previously presented in Figure 4.2. The
layout and choice of parameters is the same: the initial state of the detector, θ, varies
across columns, while the temperature, Tℓ, and energy gap, Ωℓ, vary from row to row.
The mass parameter for the BTZ spacetime is set to M = 1 throughout this grid.
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We also note that for n ≥ 1, we have that α+
n ≈ α−

n since the cosh term dominates each
expression. This means that for Dirichlet boundary condition (ζ = 1), there is minimal
change between the AdS and BTZ spacetimes, since the Legendre polynomial terms cancel
each other.

As such, while the transparent boundary condition allows for definitive spacetime dis-
crimination based on the qualitative behaviour of the Fisher information, provided the
proper energy gap to temperature ratio, this is distinctly impossible for the Dirichlet
boundary condition (provided a BTZ mass of unity).

Lastly, we draw attention to the Neumann boundary condition (ζ = −1). In general, the
Fisher information associated to the Neumann boundary condition sees a sizable increase.
It is curious to note that in the ‘cold’ set up, the initial peak in the Fisher information
occurring at early times appears to be suppressed by the initial state of the detector, with
no visible peak for any boundary condition, in any spacetime, for θ = π.

4.2.2 Fisher information analysis for varied M

Having characterized the Fisher information behaviour across phase space and having
compared it with the analogous behaviours from AdS, we now delve into an analysis of
the parameter that is not present in AdS: the mass. In order to do this, we have limited
ourselves to masses varying between M = 0.01 and M = 1.5. Conceptually, we find that
this range encompasses the behaviours of the mass well enough, with rapid convergence of
behaviours for large masses (M > 1), while we notice a fair bit of exciting behaviour for the
small masses (M < 1). Pragmatically, computing the response rate (and thus the Fisher
information) for small masses requires a large number of terms in the image sum to be
confident about the convergence. This results in longer run times for the computer. On the
other end, for large masses, we must use fewer terms in our sum or else our approximation
in Mathematica returns an “Indeterminate” value owing to the large term in the Legendre
polynomial (this goes to zero) So we can preserve convergence, but it means that we cannot
use a single function across any mass and have consistently accurate results.

To do this we have plotted the Fisher information for masses varying betweenM = 0.01
and M = 1.5, noting that for large masses (above M = 1) there is little to no change in in
the Fisher information.

We begin our analysis of the Fisher information for varying mass by considering a
subset of phase space for which Ω = T . In particular, for Figure 4.5 we set both the energy
gap and the temperature to be 0.1, though the trends observed generalize to other values
so long as their ratio remains unity.
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Figure 4.5: This grid of plots depicts the effect of the BTZ mass, M , on the Fisher
information. Increasing mass corresponds to progressing along the colours of the rainbow
(ROYGBV), ranging from M = 0.01 to M = 1.5. The energy gap, temperature, are fixed
and equal throughout the grid. Each column represents a different initial state of the
detector, while each row represents a different boundary condition for the spacetime. We
note that for Ωℓ = Tℓ = 0.1 a variation of the mass parameter does not seem to have a
substantial effect on the Fisher information. Increasing mass seems to delay the increase in
Fisher information, with a slight increase in the maximum value for the Dirichlet boundary
condition.
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To make our comments on the grid plot in Figure 4.5 more digestible, we note that
the columns still correspond to the initial state of the detector θ = {0, π/2, π}, but we
have now fixed the values of Ω and T throughout the entirety of the grid plot and we have
instead varied the boundary condition from row to row. The first row corresponds to the
transparent (ζ = 0) boundary condition, followed by the Neumann (ζ = −1) boundary
condition and finally the Dirichlet (ζ = 1) boundary condition. The colour of the curves
represent the value of the mass parameter, with M increasing from 0.01 to 1.5 along the
colours of the rainbow (ROYGBV).

Following the colours of the rainbow, it is easy for us to see that there is a smooth,
monotonic shift in the Fisher information as we increase the mass parameter by two orders
of magnitude. This shift delays the arrival of the maximal Fisher information across the
board and even results in a slight increase of it for the Dirichlet boundary condition.
There is no change in the Fisher information’s qualitative behaviour when varying M for
Ωℓ = Tℓ = 0.1.

We note that these trends were consistent when we considered other values of Ω = T .
We thus conclude that once again there are special patterns in the Fisher information
behaviour when Ω = T . Determining how special these trends are requires us to examines
what happens when Ω ̸= T .

When we move away from the equilibrium ratio between the energy gap and the tem-
perature, we notice that we lose any semblance of monotonicity as seen in Figure 4.6. While
one may look at the Fisher information for this ‘cold’ set up and initially think that there
is some degree of smoothness, this notion is quickly dispelled upon closer examination.

If we track the change in mass in any one of the plots in Figure 4.6 by following the
colours of the rainbow, we note that between M = 0.01 and M = 0.1 there appears to
be some degree of monotonicity. However, this trend is abruptly halted by the increase
in the Fisher information between M = 0.1 and M = 0.5, in contrast with the previous
decreasing trend. Beyond this reversal, the direction in which the Fisher information is
evolving is changes twice more before reaching a final value for M = 1.5.

Across a given row (i.e., for a fixed ζ) in Figure 4.6, we notice the previously observed
trend in the cold set up (from Figure 4.4) of the Fisher information’s local maximum
decreasing as the initial state of the detector goes from θ = 0 to θ = π. This trend persists
across all mass values and appear to occur at a proportional rate, i.e., the maximal Fisher
information is reduced by a fixed proportion based solely on the initial state of the detector
independent of the mass.

Upon closer examination of the mass-induced Fisher information variations in the cold
set up, we find that the increases and decreases in the Fisher information’s value resemble
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Figure 4.6: We consider the effect of a variation in mass parameter, M , on the Fisher
information given our ‘cold’ set-up where Ωℓ = 1 and Tℓ = 0.1. This grid is set-up
much like that displayed in Figure 4.5, except that Ω ̸= T . This leads to non-monotonic
behaviour when varying M . In particular, for θ = 0 and ζ = 0 we see a smooth evolution
from the red curve to the yellow one, but there is a change of direction as the Fisher
information jumps back up from yellow to green. It then continues along its path down to
the blue curve before jumping up once more to the purple curve. When considering the
effect of the mass parameter more closely, we see that the Fisher information does indeed
experience these two jumps. In fact, while these seem to be the only jumps, they are even
more extreme than what is made visible here. Note that the I-axis in the rightmost column
(corresponding to θ = π) has been rescaled by one to three orders of magnitude relative
to the other two columns to highlight the behaviour of the Fisher information before it
asymptotes.
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a damped oscillation of sorts.
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Figure 4.7: Delving into the mass dependence of the Fisher information for varied energy
gap to temperature ratios, we contrast the first plots from Figures 4.5 and 4.6. For a fixed
time, τ/ℓ = 10, we can see that when Ω = T the Fisher information is monotonically
decreasing with increasing mass, while it oscillates rather dramatically when Ωℓ = 1 and
Tℓ = 0.1.

We have fixed the time parameter in Figure 4.7 in order to hone in on a more smooth
depiction of the mass variation on the Fisher information. We see that is indeed smooth
and monotonically decreasing in the case of Ω = T , whereas is oscillatory for Ω ̸= T . In
fact, these peaks and troughs go much beyond what was initially depicted in Figure 4.6.
So much so that they allow for a rather successful identification of the BTZ mass, provided
we know the other variables. In particular, if the Fisher information is zero, then it must
be in one of the troughs corresponding to particular masses. Similarly, if we have a large
Fisher information we can narrow down the mass of our black hole to one of the peaks.
The larger the Fisher information, the fewer eligible peaks and the more restrictive within
these we can be.

We have made it clear in the previous three figures that the ratio between the energy
gap and the temperature is a key factor in determining the effect that the BTZ mass has
on the Fisher information; much more so than either initial state of the detector or the
boundary condition of the spacetime. But we might still wonder how does this ratio affect
the mass variation in general? Is it not possible that we simply chose two particular values
that displayed very distinct behaviours?

To answer this question, we will turn to a series of density plots for which we fix the
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Figure 4.8: We plot the Fisher information with respect to the energy gap, Ωℓ, and the
mass, M . Held constant across these plots are Tℓ = 0.1, θ = 0, ζ = 0, and τ/ℓ = 10.
Note that these are the same values as in Figure 4.7 and that these density plots can
actually be seen as an extension of this previous figure. In the top-left plot, we have
simply extrapolated the Fisher information for varying Ωℓ between the curves depicted
in Figure 4.7. In the top-right plot, we have extend these result for larger energy gaps,
up until Ωℓ = 3. The bottom two plots depict the same data, but have different colour
gradients that draw our attention to different parts of the plots. In the bottom row, we
have extended the results up until M = 2.
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time and temperature while varying the energy gap and mass. In the top-left plot of
Figure 4.8, we extrapolate between the two curves depicted in Figure 4.7, plotting the
Fisher information for 0.01 ≤M ≤ 1.5 and 0.1 ≤ Ωℓ ≤ 1. We notice an interesting ‘wave’
pattern that does extend beyond the case where Ωℓ = 1, Tℓ = 0.1. In the top-right plot of
Figure 4.8, we have simply increased the range of values Ωℓ can take up to 3. Doing so, we
see that the ‘wave’ pattern extends into phase space, with the maximal Fisher information
increasing along with the energy gap. We also note that for a fixed Ω, the number of
oscillations in the Fisher information from M = 0.01 to M = 1.5 increases.

The two plots in the bottom half of Figure 4.8 both represent the same data, but we have
reduced the number of image sum terms in our numerical representation of Equation (3.17)
from 11 terms (corresponding to n = ±5) to 7 terms (corresponding to n = ±3) in order to
examine masses up to M = 2. Doing so does however reduce the convergence of the Fisher
information for small masses (hence the increase in the maximal Fisher information from
the top-right to the bottom-left plots of Figure 4.8). The qualitative behaviour appears to
have remained unchanged though. To better see the wave pattern in the bottom row, we
have modified the colour scale to focus on where the Fisher information is relatively small.
In so doing, we note that the wave pattern does indeed extend into the phase space for
larger masses, though its effects are dampened.

These density plots seem to suggest that the case where Ω = T is indeed special in
the sense that it does not have any oscillations. In contrast, the ‘colder’ our set up (i.e.,
the larger Ω is relative to T ), the more extreme the oscillations in both frequency and
magnitude.

The wave pattern seen in Figure 4.8 can be exploited to help identify the BTZ mass of
an otherwise known set-up by looking at where the peaks and troughs occur. It also shows
the importance of tuning the detector’s energy gap relative to the temperature in order to
maximise the Fisher information and how this is very much mass-dependent.

4.3 Rotating BTZ Spacetime

Having shown in the previous section the effect of the black hole mass on the Fisher
information, and how the Fisher information can tell us about what mass might be present,
we will now turn our attention to another key parameter of a black hole spacetime: its
angular momentum.

It is known that the angular momentum of a black hole can have significant impact
on the properties of the quantum vacuum as perceived by a coupled UDW detector. In

38



particular, the entanglement(concurrence) between two detectors can be dramatically in-
creased, with a more pronounced effect for near-extremal rotating black holes [16], while
rotation also amplifies or dampens the anti-Hawking effect for small mass black holes [61].

Here we find that the Fisher information increases most between J = 0.5Mℓ and
J = 0.95Mℓ. This is in line with results for the transition probability, while the concurrence
increases most for J ≥ 0.99Mℓ [16].

In our analysis of the rotating BTZ black hole, we were able to recover all of the
qualitative behaviours described in Figure 4.3, and we were unable to identify any new
behaviours. Since we can always recover the results from the stationary detector near a
static black hole by setting the angular momentum, J , (or equivalently, the inner radius,
r−) equal to zero, we will not bother duplicating Figure 4.3. The fact that we were unable to
identify any new qualitative behaviours suggests that there are at most one local maximum
and minimum per behaviour, though there is no clear physical intuition into this constraint.

In order to perform a sufficiently thorough analysis of the angular momentum’s effect
on the Fisher information as succinctly as possible, we will limit ourselves to the cases
where the BTZ mass is either unity or small at M = 0.01.

Beginning with the more simple case for which M = 1, we found that there was
significant variance in the effect of rotation on the Fisher information depending on the
ratio between the energy gap of the detector and the temperature, as well as depending
on the boundary condition at infinity. While there was some variance with respect to the
initial state of the detector, this was expected based on previous variations with respect to
θ, so this will not be a focus of our analysis in this section. In particular, we will assume
that our detector is initialized in the ground state for the rest of this section.

We summarize the effects of rotational variance on the Fisher information for M = 1
in Figure 4.9. Since we are no longer varying the initial state of the detector, we have
chosen to vary the ratio Ω/T within a given grid plot in addition to varying the boundary
condition. Here, we have encoded the Ω/T ratio within the rows, since the ratio defines
a fixed asymptotic value for the Fisher information, while we have encoded the boundary
conditions, ζ = {0,−1, 1}, across the columns. The mass, M = 1, and initial state, θ = 0,
are both fixed throughout the grid.

Moving across either rows or columns, we can identify some interesting patterns. If we
first restrict ourselves to the change in behaviour from column to column, corresponding
to different boundary conditions, we can see the previously noted point that the trans-
parent and Neumann boundary conditions, corresponding to the first and second column
respectively, are quite similar in many respects, whereas the Dirichlet boundary condition
in the third column displays entirely different qualitative behaviours. The most glaring
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Figure 4.9: We examine the effect that a change in the angular momentum, J , has on the
Fisher information. The colours of the rainbow correspond to increasing angular momen-
tum ranging from the static case, to a near-extremal J/Mℓ = 0.999999 case. Throughout
the plot, the mass, M , and the initial state, θ, are fixed, while the boundary condition,
ζ, is fixed in each column, and the ratio Ω/T is fixed in each row. We note that there
is significant amplification of the Fisher information occurring in the ‘cold’ set up, except
for the Dirichlet (ζ = 1) boundary condition, where there a suppression effect instead.
We further note that the Dirichlet boundary condition seems to have the opposite effect
relative to the other boundary conditions when it comes to varying J , while there is almost
no effect when Ω = T .

of these is the reversal of the effect that increasing the angular momentum of the black
hole has on the Fisher information. An increase in J/Mℓ may lead to an increase of the
Fisher information for the transparent and Neumann boundary conditions, but leads to a
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decrease in the Fisher information in the Dirichlet boundary condition, and vice versa.

If we instead turn our attention to the change in behaviour from row to row, corre-
sponding to a change in the Ω/T ratio, we notice from the first row that when Ω = T the
change in J/Mℓ leads to only a very minute variation in the Fisher information. This is
somewhat reminiscent of the results from AdS and the static BTZ spacetimes in which a
ratio of unity also led to the Fisher information being almost fixed under most variations.

On the other hand, when Ω ̸= T we are treated to quite interesting results. In the
‘cold’ case (middle row of Figure 4.9), where Ωℓ = 1 and Tℓ = 0.1, we observe as much
as a 60-fold increase in the Fisher information with transparent boundary conditions as a
result of an increase in the angular momentum of the black hole. Most excitingly, while
this behaviour appears to be monotonic, there is actually no increase (and even a slight
decrease) from J/Mℓ = 0 to J/Mℓ = 0.5 with the most dramatic increase in the Fisher
information arise between J/Mℓ = 0.5 and J/Mℓ = 0.95, followed by another smaller boost
between J/Mℓ = 0.99 and J/Mℓ = 0.9999. This suggests that a moderate increase in the
angular momentum reduces the Fisher information, though further increasing the angular
momentum beyond J/Mℓ = 0.5 leads to a dramatic increase in the Fisher information.
This increase in the Fisher information is present for both the transparent and Neumann
boundary conditions.

However, for the Dirichlet boundary conditions we actually see the opposite effect.
When ζ = 1, an increase in the angular momentum results in a (small) decrease of the
maximal Fisher information!

When considering the ‘hot’ set up (bottom row of Figure 4.9), we see a similar be-
haviour, though the increase for the transparent and Neumann boundary conditions and
the decrease for the Dirichlet boundary condition are indeed monotonic, though at most
by a factor of two. This goes to show the relevance of both the energy gap to temperature
ratio and the boundary condition when it comes to the relation between the black hole’s
angular momentum and the Fisher information. In particular, these parameters form the
difference between the a greater angular momentum having no effect, an enhancing effect,
or a suppressing effect.

If we now turn our attention to the effect of a variation in J/Mℓ for a small mass of
M = 0.01, we notice from Figure 4.10 some very different behaviours. The most striking of
these is that in the ‘cold’ set up, we observe the opposite trend from what had been seen for
the M = 1 case: an increase in the angular momentum leads to a dramatic decrease in the
Fisher information for the transparent and Neumann boundary conditions, but an increase
for Dirichlet boundary conditions. In particular, the Fisher information can decrease by a
whole order of magnitude for Neumann boundary conditions, while it increases by a factor
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Figure 4.10: Here we depict the effect of varying the angular momentum, J , for a small BTZ
mass of M = 0.01. While we retain some trends from the M = 1 case depicted in Figure
4.9, such as not much change when Ω = T , and the Dirichlet (ζ = 1) boundary condition
having distinct behaviours compared to the other boundary condition, there are also some
new effects. Most notably, for the ‘cold’ set up, the Fisher information is now suppressed for
increasing angular momentum in the transparent (ζ = 0) and Neumann (ζ = −1) boundary
condition, while there is a significant increase for the Dirichlet boundary condition.

of four for the Dirichlet boundary condition.

Interestingly, in the ‘hot’ set up forM = 0.01 (bottom row of Figure 4.10), we notice an
ever so slight increase and shift of the Fisher information for increasing angular momentum.
While this shift may appear more important for the Dirichlet boundary condition, we note
that in this case the range of the Fisher information is so small that even small changes
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appear significant. Here, the effect of the angular momentum seems to affect the Fisher
information in a very similar fashion regardless of the boundary condition, more so than
for any of the conditions for M = 1 outlined in Figure 4.9.

For Ω = T (top row of Figure 4.10), we see a very slight horizontal shift for the
transparent and Neumann boundary conditions, suggesting that the Fisher information
remains insensitive to rotation here. However, the Dirichlet boundary condition bucks the
trend of the Ω = T cases being left unaffected by rotation. There is a clear (albeit not
large) amplification effect.

While there remains an overall trend of the Dirichlet boundary condition leading to
different effects than the transparent and Neumann boundary conditions, for M = 0.01
the similarities lie in the ‘hot’ set up rather than in the Ω = T set up like for M = 1.
It is also worth noting that while the transparent and Neumann boundary conditions
displayed the same qualitative behaviour with respect ot the varying angular momentum
for M = 1 in Figure 4.9, in the ‘cold’ set up for M = 0.01, there is a slight increase in the
Fisher information for the transparent boundary condition from J/Mℓ = 0 to J/Mℓ = 0.5
before the decreasing trend, while the Neumann boundary condition appears to decrease
monotonically.

Overall, the most dramatic effect to be depicted in Figure 4.10 remains the significant
amplification and suppression present for the ‘cold’ set-up. But what makes these results
even more dramatic is that this is a full reversal of the behaviours relative to those for
M = 1 depicted in Figure 4.9. This clearly points towards a more complex interplay
between the variance in mass and the variance in the angular momentum.

In particular, it is not unreasonable to imagine that there exists some mass parameter
between M = 0.01 and M = 1 for which there is neither amplification nor suppression of
the Fisher information. Having said this, the fluctuations of the Fisher information with
respect to mass are quite dramatic in this ‘cold’ set up, and J/Mℓ obviously has some
dependence on M , so it might well be tricky to disentangle the two. We would certainly
expect the presence of some oscillatory effect to arise from the mass variation, so it is not
clear how this would overlap with the rotational effects seen here. Computing this will
likely provide a challenge as it is the primarily the mass that dictates the number of terms
required in the sum of Equation (3.25), but we separately require the mass in plotting
the angular momentum effect. One should try to be clever in running the code to ensure
convergence of the terms of interest, while not requiring too much computational effort.

Regardless, there are some clearly interesting behaviours of the Fisher that arise as
a result of rotation in the BTZ spacetime. These are highly dependent on each of the
mass, the Ω/T ratio, and the boundary condition at spatial infinity. It will be particularly
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interesting to see how the mass and angular momentum interact in more detail, though
this may take significant computational efforts.
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Chapter 5

Conclusion

In this thesis, we set out to identify and describe the Fisher information of a black hole
spacetime for the first time. In particular, we considered the thermal Fisher information
from a UDW detector conformally coupled to a massless scalar field in 2+1 dimensions.
We analysed the behaviour of the Fisher information with respect to time for AdS, BTZ,
and rotating BTZ spacetimes in order to understand the effect of the black hole on this
quantity. The motivation for this work was two-fold.

First, we sought to provide a better understanding of the Fisher information in black
hole spacetimes in order to facilitate the implementation of optimal estimation strategies of
the KMS temperature using quantum detectors. The thermalization of quantum detectors
is an important feature of QFT in curved spacetime, with the (anti-) Hawking and (anti-)
Unruh effects being examples of features that can be identified by a thermalized detector
[50, 38, 25].

Second, we wanted to further see if the Fisher information could serve as a black hole
probe by telling us something about the spacetime, based solely on the Fisher information.
For all the recent advancements in our understanding of black holes, they remain a deeply
mysterious object with profound implications for fundamental physics. As such, it is always
helpful to have a new stick with which to prod them and the Fisher information offers a
slightly different paradigm with which to consider the effects of black holes on the quantum
vacuum.

We found that the presence of black holes resulted in significant changes to the Fisher
information. The mere presence of a black hole enabled the identification of new Fisher
information behaviours not observed until now. This provided us with the most clear-cut
way to identify the presence of a black hole based on the Fisher information.
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Having identified a discriminator between the BTZ black hole and AdS space, we were
then able to turn our attention to the effect of mass on the Fisher information. We found
that there is a very important effect that is most pronounced as the energy gap of the
detector grows larger than the KMS temperature. This effect is an oscillatory effect that
can either amplify or diminish the Fisher information depending on the mass of the black
hole. Thus, we can identify the mass of the black hole from the Fisher information, given
the other parameters of our system.

Lastly, while considering the rotating BTZ black hole, we found that the angular mo-
mentum led to both amplification and suppression of the Fisher information. This was most
pronounced for near-extremal black holes. These consisted of both significant increases and
decreases in the Fisher information depending on the mass and other parameters.

It should be noted that while we may not get to choose the black hole mass, angular
momentum, or the boundary condition in an ‘experimental’ setting, we can conceivably
have some say on the energy gap of our detector. Tuning this parameter, especially with
respect to the KMS temperature, can significantly improve or worsen a given estimation
protocol. We might gather even more information about our system by considering an array
of detectors with various energy gaps from which we could cross-reference the behaviours.

With these first results about the Fisher information of black holes in hand, we can
now consider what may be the next steps in this work.

Having found informative results about the Fisher information in black hole space-
times, it would be interesting to further this line of inquiry by analysing the behaviour of
the quantum Fisher information (QFI) [62]. This measure is known to better exploit the
quantum nature of a physical system [22], offering not only the possibility of refining pre-
vious results, but also yielding novel insight into relativistic quantum interactions. Beyond
the natural extension to our current results, QFI has been shown to be an effective tool
for detecting curvature [63] and it may offer a new perspective into interesting properties
of the BTZ black hole vacuum [50].

Otherwise, we might consider extending the analysis of the Fisher information to more
physically relevant black hole spacetimes in 3+1 dimensions. These include the standard
Schwarzschild and Kerr black holes along with constant curvature topological black holes
[64, 65]. While the BTZ spacetime is frequently used as a first step in black hole spacetime
analyses due to its simpler structure that preserves the key features of black holes, it is
important to understand whether or not the novel results found in 2+1 dimensions are also
present in 3+1 dimensions.

This Fisher information analysis of (2+1)-dimensional spacetimes, including a first such
analysis of a black hole spacetimes, provides us with a better understanding of the Fisher
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information, both as it pertains to RQM and parameter estimation and as a probe of the
underlying spacetime. However, we hope that this thesis also serves as a stepping stone
towards a better understanding of the quantum structure of black holes and spacetime on
both the theoretical and experimental fronts.
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Appendix A

Detailed Derivation of Response
Rates

In this appendix, we will present a more detailed derivation of the response rates described
by Equations 3.8, 3.17, and 3.25.

A.1 Detailed Derivations in AdS

We will recall our formula for the response rate of a detector along a stationary trajectory
to be

F(Ω) =

∫ ∞

−∞
d∆τe−iΩ∆τW(∆τ), (A.1)

whereW (∆τ) is the Wightman function for a stationary trajectory. In general, the Wight-
man function is given by

WAdS(x, x
′) =

1

4
√
2πℓ

[
1√

σ(x, x′)
− ζ√

σ(x, x′) + 2

]
, (A.2)

where σ(x, x′) is the squared geodesic distance

σ(x, x′) =
1

2ℓ2
[
(X1 −X ′

1)
2 − (T1 − T ′

1)
2 + (X2 −X ′

2)
2 − (T2 − T ′

2)
2
]
. (A.3)

We note that Subsections A.1.3 and A.1.4 were inspired by notes shared by L.J. Henderson
addressing the work in [50].
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A.1.1 Computing the squared distance

We can explicitly compute this squared geodesic distance in terms of our metric coordinates
by applying the coordinate transforms mentioned previously. Doing so, we find that

(X1 −X ′
1)

2 − (T1 − T ′
1)

2 =(r sinhϕ− r′ sinhϕ′)
2 − (r coshϕ− r′ coshϕ′)

2

=r2 sinh2 ϕ− 2rr′ sinhϕ sinhϕ′ + r′2 sinh2 ϕ′

− r2 cosh2 ϕ+ 2rr′ coshϕ coshϕ′ − r′2 cosh2 ϕ′

=− r2(cosh2 ϕ− sinh2 ϕ)− r′2(cosh2 ϕ′ − sinh2 ϕ′)

+ 2rr′(coshϕ coshϕ′ − sinhϕ sinhϕ′)

=− r2 − r′2 + 2rr′(coshϕ coshϕ′ − sinhϕ sinhϕ′)

=− r2 − r′2 + 2rr′ cosh(ϕ− ϕ′), (A.4)

while

(X2 −X ′
2)

2 − (T2 − T ′
2)

2 =+

(√
r2 − ℓ2 cosh

t

ℓ
−
√
r′2 − ℓ2 cosh

t′

ℓ

)2

−
(√

r2 − ℓ2 sinh
t

ℓ
−
√
r′2 − ℓ2 sinh

t′

ℓ

)2

=(r2 − ℓ2) cosh2 t

ℓ
− 2
√

(r2 − ℓ2)(r′2 − ℓ2) cosh
t

ℓ
cosh

t′

ℓ

+ (r′2 − ℓ2) cosh2 t
′

ℓ
− (r2 − ℓ2) sinh2 t

ℓ

+ 2
√
(r2 − ℓ2)(r′2 − ℓ2) sinh

t

ℓ
sinh

t′

ℓ
− (r′2 − ℓ2) sinh2 t

′

ℓ
=(r2 − ℓ2) + (r′2 − ℓ2)

− 2
√

(r2 − ℓ2)(r′2 − ℓ2)

(
cosh

t

ℓ
cosh

t′

ℓ
− sinh

t

ℓ
sinh

t′

ℓ

)
=r2 + r′2 − 2ℓ2 − 2

√
(r2 − ℓ2)(r′2 − ℓ2) cosh

(
t− t′

ℓ

)
(A.5)
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So,

σ(x, x′) =
1

2ℓ2

[
(X1 −X ′

1)
2 − (T1 − T ′

1)
2
+ (X2 −X ′

2)
2 − (T2 − T ′

2)
2
]

=
1

2ℓ2
[
−r2 − r′2 + 2rr′ cosh(ϕ− ϕ′)

+r2 + r′2 − 2ℓ2 − 2
√
(r2 − ℓ2)(r′2 − ℓ2) cosh

(
t− t′

ℓ

)]
=

1

2ℓ2

[
−2ℓ2 + 2rr′ cosh(ϕ− ϕ′)− 2

√
(r2 − ℓ2)(r′2 − ℓ2) cosh

(
t− t′

ℓ

)]
=− 1 +

rr′

ℓ2
cosh(∆ϕ)−

√
(r2 − ℓ2)(r′2 − ℓ2)

ℓ2
cosh

(
∆t

ℓ

)
(A.6)

In AdS spacetime, we consider a detector travelling a constantly accelerating trajectory,
or equivalently in AdS-Rindler coordinates, the detector would travel along a stationary
trajectory. Recall that this trajectory, originally defined in Equation (3.1) is given by

xD(τ) := {t = τ√
f(RD)

, r = RD, ϕ = ΦD}. (A.7)

The squared distance in AdS along this trajectory can thus be expressed as

σ(x, x′) = −1 +
R2

D

ℓ2
cosh(0)−

√
(R2

D − ℓ2)(R2
D − ℓ2)

ℓ2
cosh

(
∆τ

ℓ
√
f(RD)

)

= −1 +
R2

D

ℓ2
− R2

D − ℓ2

ℓ2
cosh

(
∆τ

ℓ
√
f(RD)

)

=
R2

D − ℓ2

ℓ2
− R2

D − ℓ2

ℓ2
cosh

(
∆τ

ℓ
√
f(RD)

)

=
R2

D − ℓ2

ℓ2

[
1− cosh

(
∆τ

ℓ
√
f(RD)

)]

= f(RD)

[
1− cosh

(
∆τ

ℓ
√
f(RD)

)]
. (A.8)

Applying the hyperbolic double angle identity, we can rewrite σ(x, x′) as

σ(x, x′) = −2f(RD)

[
sinh2

(
∆τ

2ℓ
√
f(RD)

)]
(A.9)
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A.1.2 Computing the Wightman function

Turning our attention to the Wightman function, we can now write in terms of our AdS-
Rindler coordinates by inserting the expression found for σ(x, x′) in Equation (A.9). Doing
so, we have

WAdS(x, x
′) =

1

4
√
2πℓ

(
1√

σ(x, x′)
− ζ√

σ(x, x′) + 2

)

=
1

4
√
2πℓ

 1√
−2f(RD) sinh

2

(
∆τ

2ℓ
√

f(RD)

) − ζ√
−2f(RD) sinh

2

(
∆τ

2ℓ
√

f(RD)

)
+ 2


=

1

8πℓ
√
f(RD)

 1√
− sinh2(∆τ/(2

√
f(RD)ℓ))

− ζ√
1/f(RD)− sinh2(∆τ/(2

√
f(RD)ℓ))

 . (A.10)

Rewriting the Wightman function in terms of the KMS temperature [50] by using√
f(RD) =

1

2πℓT
, (A.11)

we obtain

WAdS(x, x
′) =

2πℓT

8πℓ

 1√
− sinh2(∆τ2πℓT/(2ℓ))

− ζ√
4π2ℓ2T 2 − sinh2(∆τ2πℓT/(2ℓ))


=
T

4

 1√
− sinh2(∆τπT )

− ζ√
4π2ℓ2T 2 − sinh2(∆τπT )

 . (A.12)

A.1.3 Response rate

The final, but also most involved step in our derivation will be to compute the response
rate per se.
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Substituting the Wightman function from Equation (A.12) into Equation (A.1), we
obtain

FAdS =
T

4

∫ ∞

−∞
d∆τ e−iΩ∆τ

 1√
− sinh2(∆τπT)

− ζ√
4π2ℓ2T2 − sinh2(∆τπT)

 . (A.13)

Let z = πT∆τ , then dz = πTd∆τ . We can thus rewrite response rate as

FAdS =
1

4π

∫ ∞

−∞
dz e

−iΩz
πT

 1√
− sinh2(z)

− ζ√
4π2ℓ2T2 − sinh2(z)

 , (A.14)

We will now simplify the expressions following the integral sign by considering the two
terms separately (with the second containing the boundary condition ζ).

To solve the first term, we first add a regulator in the denominator to avoid the branch
cut

F (1)
AdS =

1

4π

∫ ∞

−∞
dz

e
−iΩz
πT√

− sinh2(z− iϵ)
. (A.15)

There is a simple pole at z = 0, so it cannot be directly integrated. However one can

show that
√

− sinh2(z − iϵ) ≈ i sinh(z) + ϵ, ∀z. Thus

F (1)
AdS =

1

4π

1

i

∫ ∞

−∞
dz

e
−iΩz
πT

sinh(z)− iϵ
. (A.16)

Letting h(z) = e
−iΩz
πT and g(z) = sinh(z), we can then invoke Sokhotski’s theorem:

lim
ϵ→0

∫ ∞

−∞
dz

h(z)

g(z)± iϵ
= ∓iπ

∫ ∞

−∞
dz h(z)δ(g(z)) + PV

∫ ∞

−∞
dz

h(z)

g(z)
. (A.17)

Since g(z) = sinh(z) which has a zero at z1 = 0, we have that

δ(g(z)) =
∑
i

δ(z − zi)

|g′(zi)|
=

δ(z)

cosh(0)
= δ(z). (A.18)
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Thus,

F (1)
AdS =

−i
4π

(
iπ

∫ ∞

−∞
dz e

−iΩz
πT δ(z) + PV

∫ ∞

−∞
dz

e
−iΩz
πT

sinh(z)

)

=
1

4
e0 − i

4π
PV

∫ ∞

−∞
dz

e
−iΩz
πT

sinh(z)

=
1

4
− i

4π
PV

∫ ∞

−∞
dz

e
−iΩz
πT

sinh(z)
. (A.19)

Turning our attention to the second term, we have

F (2)
AdS =

−ζ
4π

∫ ∞

−∞
dz

e
−iΩz
πT√

4π2ℓ2T2 − sinh2(z)
. (A.20)

To solve this one, we will invoke the hyperbolic double angle identity and rescale z →
z/2 in order to write it as

F (2)
AdS =

−ζ
4
√
2π

∫ ∞

−∞
dz

e
−iΩz
2πT√

1 + 8π2ℓ2T2 − cosh(z)
. (A.21)

Breaking this into parts, then substituting z′ = −z, and finally making use of complex
conjugates, we have that

F (2)
AdS =

−ζ
4
√
2π

[∫ 0

−∞
dz

e
−iΩz
2πT√

1 + 8π2ℓ2T2 − cosh(z)
+

∫ ∞

0

dz
e

−iΩz
2πT√

1 + 8π2ℓ2T2 − cosh(z)

]

=
−ζ

4
√
2π

[
−
∫ 0

∞
dz′

e
iΩz′
2πT√

1 + 8π2ℓ2T2 − cosh(−z′)
+

∫ ∞

0

dz
e

−iΩz
2πT√

1 + 8π2ℓ2T2 − cosh(z)

]

=
−ζ

4
√
2π

[∫ ∞

0

dz′
e

iΩz′
2πT√

1 + 8π2ℓ2T2 − cosh(z′)
+

∫ ∞

0

dz
e

−iΩz
2πT√

1 + 8π2ℓ2T2 − cosh(z)

]

=
−ζ

4
√
2π

[(∫ ∞

0

dz
e

−iΩz
2πT√

1 + 8π2ℓ2T2 − cosh(z)

)∗

+

∫ ∞

0

dz
e

−iΩz
2πT√

1 + 8π2ℓ2T2 − cosh(z)

]

=
−ζ

2
√
2π

Re

[∫ ∞

0

dz
e

−iΩz
2πT√

1 + 8π2ℓ2T2 − cosh(z)

]
(A.22)
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Putting it all back together, we find that the response rate for our detector following a
constantly accelerating trajectory in AdS is given by

FAdS =
1

4
− i

4π
PV

∫ ∞

−∞
dz
e−iΩz/(πT )

sinh z
− ζ

2π
√
2
Re

∫ ∞

0

dz
e−iΩz/(2πT )

√
1 + 8π2ℓ2T 2 − cosh z

. (A.23)

A.1.4 Performing the integrals

Computing the first integral by applying the Cauchy principle value, we find that

F (1)
AdS =

1

4
− i

4π
PV

∫ ∞

−∞
dz
e−iΩz/(πT )

sinh z

=
1

4
− i

4π

[
−iπ tanh

(
π(Ω/(πT ))

2

)]
=
1

4

[
1− tanh

(
Ω

2T

)]
(A.24)

The second term must be expressed in terms of Legendre polynomials and is of the
form

F (2)
AdS =

ζ

4

[
1− tanh

(
Ω

2T

)]
P− 1

2
+ iΩ

2πT
(1 + 8π2ℓ2T 2). (A.25)

Ultimately, we are left with

FAdS =
1

4

[
1− tanh

(
Ω

2T

)]
×
{
1− ζP− 1

2
+ iΩ

2πT

(
1 + 8π2ℓ2T 2

)}
, (A.26)

A.2 Derivations for BTZ spacetimes

Given the significant similarities between the AdS-Rindler and BTZ spacetimes, we are
able to recover the results for our detector in BTZ spacetimes in much the same as was
done in AdS.

More specifically, we need to account for the identification Γ : ϕ → ϕ + 2π and the
image sum that arises from the Wightman function. Neither of these significantly alters
the mathematics involved. In fact, while the BTZ cases are undoubtedly more tedious
owing to their larger terms, the mathematics are actually more simple since we do not
need to invoke Sokhotski’s theorem.
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Appendix B

Mathematica Code and Other
Miscellaneous Materials

In this appendix, we will discuss a little bit about how we used Mathematica code to
compute and plot many of the results in this thesis. First, we will highlight one operation
performed by Mathematica when attempting to simplify our equations. Second, we will
include some of our code to give flavour as to how this work was produced.

B.1 Legendre Polynomial to Hypergeometric Func-

tion

We noticed that when we employed the FullSimplify command in Mathematica, it con-
verted our Legendre polynomials, LegendreP, into hypergeometric functions, Hypergeometric2F1,
which are presumably more basic within the language, or easier to compute.

We found that both Abromowitz and Stegun [66] and the National Institute for Stan-
dards and Technology’s (NIST) Digital Library of Mathematical Functions (DLMF) [67]
had identities relating Legendre polynomials to hypergeometric functions.

In [66]’s Equation 22.5.49, found on p.779, we have that

Pn(x) = 2F1

(
−n, n+ 1; 1;

1− x

2

)
. (B.1)
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When comparing the arguments of our input Legendre polynomial against the output of
Mathematica’s hypergeometric function, we find that this does indeed seem to be how
Mathematica is performing the transformation.

A similar, more general identity is offered by [67]’s Section 14: Legendre and related
functions’ Equation 14.3.1

P µ
ν (x) =

(
1 + x

1− x

)µ
2

F

(
ν + 1,−ν; 1− µ;

1

2
− 1

2
x

)
, (B.2)

where the Ferrer’s function of the first kind, F, appears to be the same as Mathematica
and [66]’s 2F1 hypergeometric function. However, we are restricting ourselves to the case
in which the general order, µ, is zero.

To illustrate the value of this transformation in our code, consider the rotating BTZ
case. Here, we noticed that simply computing the response rate followed by Mathematica’s
FullSimplify had a long time (likely due to all of the image sum terms requiring a
conversion of the Legendre polynomials). So we considered hard coding these in terms of
the hypergeometric function, simplifying the terms in the image sum as follows:

exp

(
inr−Ω

ℓT

)(
PΩ′(α−

n )− ζPΩ′(α+
n )
)

(B.3)

=
1

4
e−

Ω
2T sech

(
Ω

2T

)[
2 cos

(
nr−Ω

lT

)(
2F1

(
−Ω′, 1 + Ω′; 1;−

(
4l2π2T 2 + 1

)
sinh2

(nπr+
l

))
(B.4)

−ζ 2F1

(
−Ω′, 1− Ω′; 1;

1

2

(
1− 4l2π2T 2 −

(
4l2π2T 2 + 1

)
cosh

(
2nπr+
l

))))]
(B.5)

where Ω′ = −1
2
+ iΩ

2πT
.

B.1.1 Hypergeometric function derivative

When computing the Fisher information, we find ourselves computing the derivative of
the Legendre polynomial from the response rate. The form of these derivatives is messy
and rather uninformative, whereas derivatives of the hypergeometric function are easier to
comprehend.
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If our hypergeometric function was only being differentiated with respect to the last
term, then the derivative would be given by Equation 15.5.1 from [67]:

d

dz
F (a, b; c; z) =

ab

c
F (a+ 1, b+ 1; c+ 1; z). (B.6)

However, we are taking the derivative with respect to the KMS temperature which is
found in the first, second, and last term of our hypergeometric function. Mathematica
computes the more general derivative as:

d

dx
F (f(x), g(x); 1;h(x)) = f(x)g(x)h′(x)F (f(x), g(x); 1;h(x)) (B.7)

+ g′(x)F (0,1,0,0)(f(x), g(x); 1;h(x)) (B.8)

+ f ′(x)F (1,0,0,0)(f(x), g(x); 1;h(x)) (B.9)

though we are not provided with analytic expressions for F (1,0,0,0) and F (0,1,0,0). We presume
these are symmetric to some degree due to the symmetry of the hypergeometric function
between the first two arguments.

B.2 Actual Mathematica Code

Below, we have include an instance of the actual code used in Mathematica for this project.
All of the code included here is for the AdS case as it is the shortest and simplest, though
the structure of the code is very similar for the BTZ cases.

B.2.1 Set-up

The first part of our code defines the response rate before performing the various operations
required to obtain the Fisher information. We have included some of the original comments
demonstrating that the outputs were initially displayed and compared. Since many of these
outputs are quite long, we have since decided to suppress them. We have kept the comments
to remind us what we might expect to receive as output given various modifications of the
code.

AdS Set-up
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We first define the response rate of our detector in (3-dimensional) AdS.

In[9]:= RRAdS[\[CapitalOmega]_] =

1/4 (1 - Tanh[\[CapitalOmega]/(

2 T)]) (1 - \[Zeta] LegendreP[-(1/2) + (I \[CapitalOmega])/(2 \[Pi] T),

1 + 8 \[Pi]^2 l^2 T^2]);

The coefficients of the Kossakowski matrix are then given by:

In[10]:= KossAAdS = (RRAdS[\[CapitalOmega]] + RRAdS[-\[CapitalOmega]])/

2; // FullSimplify

KossBAdS = (RRAdS[\[CapitalOmega]] - RRAdS[-\[CapitalOmega]])/

2; // FullSimplify

KossCAdS = RRAdS[0] - KossAAdS; // FullSimplify

From this we can in turn compute what I will call the "Kossakowski ratio".

It is interesting to note that in all of our physical set ups, this value

is the same and equal to R=-Tan[\[CapitalOmega]/(2T)]:

In[13]:= RAdS = KossBAdS/KossAAdS; // FullSimplify

The third component of the Bloch vector of the detector’s final state is

then given by:

In[14]:= (* FullSimplify runs fast and reduces this expression to a very

clean form \

(4->1 lines, courtesy of LegendreP->Hypergeometric2F1). *)

azAdS = -Exp[-KossAAdS \[Tau]] Cos[\[Theta]] -

RAdS (1 - Exp[-KossAAdS \[Tau]]) // FullSimplify

Out[14]= Tanh[\[CapitalOmega]/(2 T)] -

E^(1/4 \[Tau] (-1 + \[Zeta] Hypergeometric2F1[

1/2 - (I \[CapitalOmega])/(2 \[Pi] T),

1/2 + (I \[CapitalOmega])/(2 \[Pi] T),

1, -4 l^2 \[Pi]^2 T^2])) (Cos[\[Theta]] + Tanh[\[CapitalOmega]/(2 T)])

From this, we can now determine the Fisher information (Scaled by T^2):
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In[15]:= (* Applying FullSimplify to this is taking 30+ min to run when a_z

hasn’t been simplified. Without this it was 25 lines long on my home monitor

at 100% magnification.

Update: With a_z simplified, it runs fast and produces 4 lines, and \

FullSimplify does almost nothing more, except run for 5 min. *)

FAdS = D[azAdS, T]^2/(1 - azAdS^2) T^2 ;

Finally, we define the boundary conditions where \[Zeta]=0,1,-1

corresponds to Transparent, Dirichlet, and Neumann boundary conditions

respectively:

In[16]:= \[Zeta]s = {0, 1, -1};

B.2.2 Plotting

Here, we have included the code used to generate Figure 4.1. We first “plot” all of the
sub-images, including the inset images, but we suppress their output. Then we compile
them all into a final grid plot, which we do make visible. This grid plot was then saved as
a pdf which was inserted into this document.

Subscript[AdS, 3] Grid Plot - 8 distinct qualitative behaviours

adsBehaviour1 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 2, T -> 0.5, \[Theta] -> \[Pi],

l -> 1, \[Zeta] -> 0} & /@ \[Zeta]s]], {\[Tau], 0, 100},

PlotRange -> {0, 0.5},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {Black}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (2, \

0.5, \[Pi])", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400]

adsBehaviour2 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 2, T -> 0.5, \[Theta] -> \[Pi]/2,
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l -> 1, \[Zeta] -> 0}]], {\[Tau], 0, 100},

PlotRange -> {0, 0.5},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {Black}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (2, \

0.5, \[Pi]/2)", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400]

adsBehaviour3 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 0.1, T -> 0.2, \[Theta] -> \[Pi],

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 200},

PlotRange -> {0, 0.5},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (0.1, \

0.2, \[Pi])", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400]

adsBehaviour4Inset =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 0.01, T -> 0.2, \[Theta] -> \[Pi],

l -> 1, \[Zeta] -> 1}]], {\[Tau], 50, 200},

PlotRange -> {0, 0.01}, Frame -> True, PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 8],

ImageSize ->

250]; (* Would be nice to reduce the number of ticks along the \

axes, just to remove some of the clutter *)

adsBehaviour4PlusInset =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 0.01, T -> 0.2, \[Theta] -> \[Pi],

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 200},

PlotRange -> {0, 0.5},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},
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PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = \

(0.01, 0.2, \[Pi])", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400,

Epilog -> Inset[adsBehaviour4Inset, {133, 0.33}]];

(* No need to load. Kept for posterity *)

adsBehaviour4 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 0.01, T -> 0.2, \[Theta] -> \[Pi],

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 200},

PlotRange -> {0, 0.5},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = \

(0.01, 0.2, \[Pi])", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize ->

400]; (*n note: this is the fake behaviour; actually the same as \

3 *)

adsBehaviour5 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 0.2, T -> 0.2, \[Theta] -> 0,

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 200},

PlotRange -> {0, 0.5},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (0.2, \

0.2, 0)", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400];

adsBehaviour6Inset =
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Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 0.1, T -> 0.2, \[Theta] -> 0,

l -> 1, \[Zeta] -> 1}]], {\[Tau], 51, 52.5},

PlotRange -> {-0.00001, 0.00005}, Frame -> True, PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 8],

ImageSize -> 250];

adsBehaviour6PlusInset =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 0.1, T -> 0.2, \[Theta] -> 0,

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 200},

PlotRange -> {0, 0.5},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (0.1, \

0.2, 0)", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400,

Epilog -> Inset[adsBehaviour6Inset, {133, 0.33}]];

adsBehaviour6 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 0.1, T -> 0.2, \[Theta] -> 0,

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 200},

PlotRange -> {0, 0.5},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (0.1, \

0.2, 0)", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400];

adsBehaviour7 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 1, T -> 0.16, \[Theta] -> 0,

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 100},
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PlotRange -> {0, 0.1},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (1, \

0.16, 0)", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400];

adsBehaviour8 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 1.4, T -> 0.2, \[Theta] -> \[Pi]/2,

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 100},

PlotRange -> {0, 0.05},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (1.4, \

0.2, \[Pi]/2)", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400];

adsBehaviour9 =

Plot[Evaluate[

Re[FAdS /. {\[CapitalOmega] -> 1.5, T -> 0.2, \[Theta] -> 0,

l -> 1, \[Zeta] -> 1}]], {\[Tau], 0, 100},

PlotRange -> {0, 0.06},

AxesLabel -> {Style[\[Tau]/\[ScriptL], 16], Style[F, 16]},

PlotStyle -> {

RGBColor[0.08, 0.43, 0.85]}, TicksStyle -> Directive["Label", 12],

PlotLabel ->

Style["(\[CapitalOmega]\[ScriptL], T\[ScriptL], \[Theta]) = (1.5, \

0.2, 0)", Italic, 18, Black, FontFamily -> "Cambria"],

ImageSize -> 400];

adsGridPlotQualBehaviour =

Legended[Grid[{{adsBehaviour1, adsBehaviour2,

adsBehaviour3}, {adsBehaviour4PlusInset, adsBehaviour5,
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adsBehaviour6PlusInset}, {adsBehaviour7, adsBehaviour8,

adsBehaviour9}}, Frame -> All, FrameStyle -> Gray],

Placed[LineLegend[{Black, RGBColor[0.08, 0.43, 0.85], RGBColor[

0.9400000000000001, 0.25, 0.19]}, {"Transparent", "Dirichlet",

"Neumann"},

LegendLabel ->

Placed[Style["Boundary condition:", Black, 16], Left],

LabelStyle -> 16, LegendLayout -> "Row"], Bottom]]
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