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Abstract 

Cardiovascular Disease (CVD) is the global number one cause of death. Therefore, there 

is an acute need for constantly monitoring cardiac conditions and/or cardiac monitoring for 

extended periods. The current clinical Electrocardiogram (ECG) recording systems require 

precise placement of electrodes on the patient’s body, often performed by trained medical 

professionals. These systems also have long wires that require repeated disinfection and can 

be easily tangled and interfered with clothing and garment. These limitations have severely 

restricted the possible application scenarios of ECG systems. To overcome these limitations, 

there is a need for wearable ECG devices with minimal wires to detect possible cardiac 

abnormalities with minimal intervention from healthcare professionals. 

Previous research on this topic has focused on extracting cardiac information from the 

body surface by investigating various electrode placements and developing ECG processing 

algorithms. Building on these studies, it is possible to develop devices and algorithms that can 

extract ECG-related information without the need for precise electrode placements on the 

body's surface. The present thesis aims to extract ECG-based cardiac information using signals 

recorded from the upper arm. 

Far-field ECG is prone to contamination by artifacts such as Electromyogram (EMG), 

which greatly reduces its clinical value. The current study examines how various state-of-the-

art heartbeat detection algorithms perform in four levels of simulated EMG artifacts. The 



 

vii 

 

simulated EMG was added to Lead II from two different datasets: the MIT-BIH arrhythmia 

dataset (Dataset 1) and data we collected from 20 healthy participants (Dataset 2). Results 

show that Stationary Wavelet Transform (SWT) provided the most robust features against 

EMG intensity level increment among various algorithms. The next step involved recording 

bio-potential signals using a high-density bio-potential amplification system attached to the 

upper arm. The system used three high-density electrodes, each with 64 channels, in addition 

to the standard Lead II. Twenty participants, reported healthy, were asked to perform two tasks: 

Rest and Elbow Flexion (EF): holding three weights (C1: 1.2 kg, C2: 2.2 kg, and C3: 3.6 kg).  

The tasks were repeated 2 and 3 times, respectively.  Firstly, I identified optimal electrode 

locations on the upper arm for each task. I then generated a synthesized ECG using the selected 

electrodes with generalized weights over subjects and trials. Considering the robustness of 

SWT to EMG intensity level increment, I next focused on optimizing SWT by addressing two 

of its drawbacks: introducing phase shift and the requirement of a pre-defined mother wavelet. 

Regarding the first drawback, zero-phase wavelet (Zephlet) was implemented to replace SWT 

filters with zero-phase filters for the matter of feature extraction from the synthesized ECG. 

Next, I incorporated the synchronized extracted features with a Multiagent Detection Scheme 

(MDS) for the means of heartbeat detection. The F1-score for the heartbeat detection was 

0.94 ± 0.16, 0.86 ± 0.22, 0.79 ± 0.26, and 0.67 ± 0.31 for Rest and EF with three different 

levels of muscle contraction (C1 to C3), respectively. Changing the acceptable distance between 

the detected and actual heartbeats from 50 ms to 20 ms, the F1-score changed to 0.81 ± 0.20, 
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0.66 ± 0.26, 0.57 ± 0.26, and 0.44 ± 0.26 for Rest and C1 to C3, respectively. Regarding the 

second drawback, Lattice parametrization was used to optimize the mother wavelet for the 

means of PQRST delineation. The mother wavelet was generalized over subjects, trials, and 

tasks. The Pearson’s Correlation Coefficient (CC) between the averaged delineated PQRST 

from analyzing feature and the averaged PQRST from Lead II using this generalized mother 

wavelet was 0.88 ± 0.05 , 0.85 ± 0.08, 0.83± 0.11, and 0.81 ± 0.12  for Rest and C1 - C3 , 

respectively.  

This thesis makes several contributions to the current literature. It introduces locations 

on the upper arm that can be used to place sensors in a wearable to capture cardiac activity 

with robustness across intra-subject, inter-subject and inter-contraction variabilities. It also 

identifies a robust method against noise increment for heartbeat detection. Zephlet was 

implemented for the first time that can replace SWT in many applications in which there is a 

need for synchrony with respect to the original signal or among components. And finally, this 

thesis introduces a generalized mother wavelet that can be used to extract PQRST and enhance 

SNR in many applications, such as ECG waveform extraction, arrhythmia detection, and 

denoising. 
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Chapter 1 

Introduction 

Cardiovascular Disease (CVD) is the number one cause of death globally. 

Approximately 50 percent of these deaths are caused by lethal arrhythmias [1]. Accurate 

recording and detection of a variety of cardiac arrhythmias are essential in preventing death 

due to these conditions. Abnormal transient heart activities may not occur during an 

individual’s hospital visit. Hence, cardiac conditions need to be monitored for many people, 

preferably outside of clinical institutions and in an environment of their normal daily activities, 

either constantly or for extended periods. The COVID-19 crisis further accentuates this 

requirement. In many jurisdictions, healthcare authorities mandated that non-critical cardiac 

patients be sent home to reserve clinical resources and prevent these patients from infection by 

COVID-19. Further, more recent epidemiology studies found that people infected by COVID 

have a significantly higher risk of developing cardiovascular disease. As such, cardiologists 

need advanced tools to continuously monitor patients’ conditions so that they would be less 

vulnerable to serious and often fatal cardiac events. Ideally, abnormal cardiac events should be 

detected as quickly as possible so that proper medical attention can be provided at the earliest 

opportunity [1]. Accordingly, automatic detection of arrhythmias is required [2].  

Electrocardiogram (ECG) is the most widely adopted clinical tool that provides a 

graphical representation of the electrical activity of the heart from the body's surface. This 

electrical activity determines the rate and rhythm of the cardiac electric activities. Physicians 
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routinely use the recorded information using ECG for CVD conditions diagnoses such as 

cardiac arrhythmias, myocardial infarctions, atrial enlargements, ventricular hypertrophies, 

and bundle branch blocks. In order to provide consistent ECG signals, trained professionals 

have to precisely place the electrodes on standard positions on the chest and upper and lower 

extremities for registration of clinical-grade ECG. However, even professional nurses make 

mistakes when placing ECG electrodes, let alone laymen. Furthermore, although the ECG 

signals on the chest have sufficient amplitude to allow clinical-grade quality, the required 

electrode placements are not comfortable, especially while sweating and in long-term 

monitoring. The wires connecting the electrodes and the amplifying unit are long, 

cumbersome, hazardous, and need constant disinfection [3][4]. Therefore, current ECG 

systems suffer from inconveniency, distributed sensors, additional wires, and low wearability 

[5]. Furthermore, the clinical ECG system is not designed to be used at home, and no 

alternative ECG system is available for these patients to monitor their cardiac conditions at 

home. Some studies in the literature focus on designing ECG devices with non-standard ECG 

lead configuration to enhance the wearability, convenience, comfortability, reusability, and the 

possibility of being used for home-based measurements (see a review in [6]). Ideally, such a 

device should be able to provide continuous ECG acquisition without the supervision of a 

healthcare professional.  
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One of the most challenging aspects of using a wearable system for cardiac abnormality 

identification is precise ECG delineation from the recorded signals. The reported studies can 

be summarized as focusing on two main areas: the choice of alternative electrode placement 

and the development of ECG processing algorithms.  

In terms of alternative electrode placement, studies have investigated locations such as 

finger [7], wrist [8], [9], ear [5], and arm [5], [8], [10]–[12]. However, these positions all have 

drawbacks. For instance, registration of the ECG signals from the finger or two-wrist 

configurations requires crossing hands/wrists [12]. A device utilizing ear,  wrist, and finger 

locations may suffer from low wearability and physically separated sensors [5]. Alternatively, 

the electrode placement on the left arm does not require attaching the separate ECG electrodes 

to different body sites. This advantage is achieved by leveraging the high signal-to-noise ratio 

(SNR) and bipolar electrodes attached to different positions on the left upper arm. This 

placement also improves wearability and comfort in long-term daily applications [12]. 

However, the desired automatic mechanism of abnormality detection should be continuous and 

with minimal involvement from the user, which is missing in the related studies in the 

literature.  

In terms of the second approach, i.e., ECG processing algorithms, many studies have 

proposed different algorithms to extract electric information pertaining to cardiac activity from 

the registered signals over the body, including standard [13]–[16] and non-standard [1], 
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[17][18] electrode placements.  In far-field ECGs, the amplitude of Electromyogram (EMG) 

and other interfering sources becomes more comparable to ECG, so SNR is considerably 

lower. The interpretation enhancement and diagnosis have been explored in different aspects 

of ECG signal processing, such as denoising [17]–[19], extracting different features [20]–[23], 

investigating multi-lead ECG [24]–[27], and detecting possible arrhythmia [2], [28]–[30]. 

Among ECG waveforms, the QRS complex is the most pronounced having a significantly large 

amplitude of R-peak. Hence, the detection of QRS complexes plays a fundamental role and is 

routinely used as the first step in heartbeat detection [19]. Accurate detection of QRS 

complexes is therefore critical prior to ECG processing [20], and it can further lead to the 

identification of cardiac arrhythmias [2]. In summary, the extracted signals in most of the 

studies in the current literature are not clinical-grade ECG, or the intended applications are not 

medical applications, or they are expensive and restrictive and not available to a large 

population that would benefit from them. 

In this thesis, my goal was to extract ECG-based cardiac information from non-

conventional locations on the body’s surface to be further used in a wearable device. This 

device can address the difficulty and usage restrictions of standard ECG recording systems on 

a daily basis.  

A wearable device on the upper arm that continuously monitors cardiac activity has 

several advantages over existing devices such as ECG Holter monitors, adhesive patches, and 
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Apple Watch. ECG Holter monitors can record data for a maximum of a few days, and they 

can be uncomfortable for many users [21]. Adhesive patches can be used for short- to mid-

term monitoring applications (up to one week or intermittently over an extended period). 

Moreover, they can be uncomfortable and allergen to some users [21]. In addition, adhesive 

patches are not big enough to cover all the standard ECG leads, but it is expected for a wearable 

on the upper arm to contain that information (considering different locations). Furthermore, 

the electrode placement on the upper arm provides a higher SNR compared to other non-

conventional locations (e.g. ear or wrist) and higher wearability and comfort. In a wearable 

device on the wrist, such as the Apple Watch [18], the users need to put their fingers of the 

opposite hand on the watch, which is not possible to perform continuous recording and is also 

not feasible for all users.  

However, there are some challenges with such a device as well. Due to the distance from 

the heart and low SNR of the upper arm signals compared to conventional ECG, real-time 

extraction of cardiac information with high accuracy and minimal latency is the main 

challenge. It was crucial to design and implement automated and real-time (or with the capacity 

of performing in real-time) algorithms in this thesis with minimal or no supervision 

requirement. The study design tried to replicate a real-world scenario covering various SNR 

levels and activity intensities yet be generalized and robust. Furthermore, not only the 
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performance of the algorithms in various SNR levels was important, but also reducing the 

latency of the system was highly critical.   

There are several research questions that I address in this thesis. The main research 

question is whether it is possible to extract ECG-based cardiac information from the upper 

arm. I targeted heartbeat locations and ECG morphology as the desired cardiac information. 

The research question then expands to more detailed questions: 

▪ What locations on the upper arm are the best to place the electrodes and extract 

ECG-based cardiac information?  

▪ How can we extract robust features to get high-performing heartbeat detection 

while the signal is contaminated with muscle activity at various intensity levels? 

▪ Is it possible to detect heartbeats from the upper arm?  

▪ How can we improve the heartbeat detection performance of a robust algorithm 

against muscle activity levels? 

▪ Is it possible to delineate ECG morphology from the upper arm undergoing 

various muscle activity levels? 

▪ How can we generalize the ECG morphology delineation method across intra-

subject, inter-subject and inter-contraction variabilities? 

The current chapter provides a brief literature review and introduces the motivation of 

the thesis. The in-depth literature review and background are given in Chapter 2, including the 
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required information and preliminary knowledge about recording bio-signals from the body 

surface and some existing techniques to extract the ECG from the registered information and 

the removal of interfering signals. Chapter 3 provides a comparative study with the objective 

of identifying a high-performing and robust pipeline for heartbeat detection using different 

feature extraction methods from single-lead ECG contaminated with simulated EMG at four 

intensity levels. I tried to implement state-of-the-art and popular methodologies for feature 

extraction and then challenged them at high to very high low SNR levels. It made it difficult 

to compare the results to the existing literature because, to the best of my knowledge, studies 

do not cover those low levels of SNR while implementing heartbeat detection algorithms. 

Chapter 4 presents a novel approach to heartbeat detection from the upper arm, with the 

objective of selecting the optimized location of electrodes on the upper arm to provide the most 

information regarding ECG. This selection was made for four EMG intensity levels with 

consideration of generalization purposes. I then generated a synthesized ECG using the 

selected electrodes for further processing steps. The secondary objective was to accurately 

detect heartbeats from the synthesized ECG at each EMG intensity level. Toward this 

objective, I optimized the identified feature extraction method from chapter 3 by addressing 

one of its drawbacks. By addressing another drawback of this method, I further optimized it 

for ECG morphology delineation in Chapter 5. Chapter 6 concludes the previous chapters' 

results and discusses the challenges and future work. 
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This thesis makes several main contributions to the current literature, as follows: 

▪ Introducing optimal locations on the upper arm that can be used to place sensors 

in a wearable to capture cardiac activity with robustness across intra-subject, 

inter-subject and inter-contraction variabilities.  

▪ Identifying a robust method against noise increment for heartbeat detection. 

▪ Implementing Zephlet for the first time that can replace SWT in many 

applications in which there is a need for synchrony with respect to the original 

signal or among components.  

▪ Introducing a generalized mother wavelet (across intra-subject, inter-subject and 

inter-contraction variabilities) that can be used to extract PQRST and enhance 

SNR in many applications, such as ECG waveform extraction, arrhythmia 

detection, and denoising. 
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Chapter 2 

Background and Literature Review 

This chapter provides an introduction to ECG and other sources that are present in the 

recordings from the upper arm. Furthermore, widely used methodologies for interpreting 

information pertaining to cardiac activities from recorded signals are introduced. 

The signals that are present in a recording from the upper arm can be categorized as ECG 

(desired) and noises and artifacts (undesired). The noises and artifacts category includes 

power-line interference, electrode contact noise, baseline wanders, and EMG. More details 

about these signals are represented as follows: 

2.1 ECG 

The cardiovascular system consists of three main components, the heart, the blood 

vessels, and the blood. The heart functions as a pumping station consisting of two pumps: the 

right and the left side of the heart. Each side has one chamber for receiving the blood (atria) 

and another chamber for moving the blood away from the heart towards body organs through 

the vessels (ventricles). The pumping function is dependent mostly upon the contraction 

(systole) and relaxation (diastole) properties of the myocardium. The contraction of the 

myocardium occurs when an electrical stimulation, which is higher than a threshold, applies to 

the cell. The rapid electrical change in the cell results in the movement of ions across its plasma 
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membrane. Increasing the voltage difference between the interior of the cell and the 

extracellular fluid from approximately -90 mV to 20 mV is called depolarization. After a short 

period (<0.3s), the changes in the membrane result in repolarization, which is the restoration 

of the original ionic balance in the cells. This entire electrical event of rapid potential polarity 

change across the plasma membrane is called a cardiac action potential [22]. 

Some cardiac cells function as pacemakers by posing the property of the automaticity 

that provides spontaneous depolarization. Moreover, myocardium cells have the property of 

transmitting action potentials from one cell to adjacent cells. Therefore, when a rhythmic 

pacemaker within the heart generates an action potential, it is conducted throughout the organ 

and results in a coordinated contraction. This contraction triggers the pumping process and 

results in a mechanical heartbeat. The activation wave in the atria initiates in the Sinoatrial 

(SA) node, which results in moving blood from the right atria to the right ventricle and from 

the left atria to the left ventricle at the rate of 1 m/s. The activation wavefront then moves to 

the atrioventricular (AV) node, in which the rate slows down to 0.5 m/s to allow time for the 

ventricles to fill with the blood from the atria. After the AV node, the wavefront reaches the 

Purkinje system, which spreads very rapidly (at almost three m/s) to many cells in both 

ventricles, and simultaneous contraction of both ventricles occurs. So, the blood moves from 

the right and the left ventricles out to the pulmonary and systemic circulation, respectively 

(Figure 2-1) [22][23]. 
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The electrical activity of the cells produces an electromagnetic field that establishes a 

changing potential field on the surface of the skin that can be measured and amplified using 

suitable equipment. The resultant recording signal of these surface potentials as a function of 

 
Figure 2-1. Electrical excitation of the heart propagating from atria to ventricles which 

results in ECG pattern generation. 
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 time produces the ECG signal (Figure 2-2) [23]. The P wave represents the atrial 

depolarization, and the QRS complex represents the depolarization of the ventricles. Atrial 

repolarization is masked by ventricular depolarization, while ventricular repolarization shows 

up as the T wave, as illustrated in Figure 2-2 [22]. There are four main hypotheses about the 

source of U-wave: repolarization of the intraventricular conducting system or Purkinje fibres 

system, delayed repolarization of the papillary muscles, afterpotentials caused by 

mechanoelectrical hypothesis or mechanoelectrical feedback, and the prolonged repolarization 

in the cells of the mid-myocardium (“M-cells”) [24]. 

 

Figure 2-2. Normal features of ECG including P-wave, QRS complex, and T-wave. 
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Any disorder in the heart rate, rhythm, or morphological pattern change should be 

detected by observing ECG waveform and indicates an arrhythmia [25].  

2.2 Noises and Artifacts 

The first step for extracting reliable features from ECG is signal conditioning, which 

aims to reduce the interfering signals that are generated by sources other than the heart. These 

sources can be physiological or non-physiological, which are known as artifacts and noises, 

respectively. Encountered noises are mainly categorized as power-line interference and 

electrode contact noise, and the most significant artifacts include motion artifacts and muscle 

contractions (EMG). Moreover, the baseline wander is another interfering source, containing 

both noise and artifact components. These undesired components are described in more detail 

as follows: 

2.2.1 Power-Line Interference 

The cables carrying the recording signals are affected by the electromagnetic interference 

of power supply lines with a frequency of 50 or 60 Hz. This contamination is a significant 

source of noise for ECG signals. Although the power-line noise has a frequency of 50 or 60Hz, 

it has a finite bandwidth around the center frequency in reality [26], which is important in 

denoising. Notch filtering at 50 Hz or 60 Hz or bandpass filtering with the upper cut-off 

frequency below these values has been a common choice for reducing the power-line noise 

[27][28]. 
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2.2.2 Electrode Contact Noise  

loss of electrode contact with skin causes sudden changes in the magnitude of the 

recording signal, overwhelming any ECG components. The sudden changes induce dramatic 

transients in the baseline, which decay exponentially to the baseline values [27]. The resulting 

poor conductivity reduces the ECG amplitude and SNR and increases the possibility of 

disturbances.  

2.2.3 Baseline Wander 

A diversity of sources can cause baseline wandering, such as patient’s movement, 

breathing, movement of cables, dirty electrodes, and variation in skin-electrode impedance 

caused by electrode motion. This type of noise is more significant during exercise ECG, and 

the frequency range is typically below 1Hz. High-pass filtering [28], ICA [29], and Principal 

Component Analysis (PCA) [30] are routinely used in the literature to reduce the effects of 

these sources on ECG recordings. 

2.2.4 EMG 

The electrical signals travelling between skeletal muscles and the nervous system control 

the movement and position of limbs. The EMG is the registration and interpretation of skeletal 

muscle potentials. The EMG signal has physiological origins in individual fibres (contractile 

units within a muscle) or groups of muscle fibres and is affected by their feature variation. The 
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muscle features differ among muscles and within or among individual subjects; features such 

as muscle fibre length and fibre type composition variation, muscle partitioning, and variation 

in the distribution of sensory receptors.  

A motor unit consists of muscle fibres and the motor neuron that innervates them. It is 

the smallest independently functioning muscular system unit, and the EMG signal is the 

summation of the action potentials generated by many motor units. These potentials occur at 

random times, producing an interference pattern similar to noise [31]. Because the motor units 

act randomly and independently, the EMG can be considered a stochastic process. Contrary to 

a deterministic process, future values cannot be precisely predicted in the stochastic process. 

However, they follow a probabilistic pattern. The probability distribution is the mathematical 

description of the relative likelihood of possible EMG amplitude. Moreover, the number of 

active motor units is large, so the probability distribution of their summation, which is 

registered as the EMG, can be considered Gaussian distribution. This distribution is dependent 

on the strength of muscle contraction and is more Gaussian-shaped when the contraction 

intensity approximately equals 70% of the Maximal Voluntary Contraction (MVC) [32]. 

Moreover, the frequency range of EMG is typically between 6 and 500 Hz having the 

most power between ~20 and 150 Hz [33]. Knowledge about these characteristics of EMG 

leads to a better understanding of analyzing and filtering this type of bio-signal. 
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In contrast to other contaminating components, removing EMG from ECG presents a 

much more challenging problem since its spectral content considerably overlaps that of the 

ECG signal. In far-field ECGs (not recorded from the chest or standard leads), the amplitude 

of EMG and other interfering sources mentioned above becomes more comparable to ECG, so 

SNR is considerably lower. Subjects with tremors, kids, or those afraid of ECG recordings also 

usually have higher EMG signals. The comparison of the SNR of the best recordings from the 

chest, bipolar arm (transversal), and bipolar wrist (longitudinal) channels has distinctly shown 

this reduction, as shown in Table 1 [34].  

In the following, ECG feature extraction methods that have been used to enhance the 

SNR of recorded ECG signals and suppress undesired sources, especially EMG, are reviewed. 

.  

Table 1. SNR mean values (in dB) along chest, upper 

arm, and wrist for six recording cases 

 

Subject Chest Upper Arm Wrist 

1 20.97 1.27 0.48 

2 13.75 4.93 1.81 

3 55.29 36.86 1.85 

10 60.59 197.05 2.15 

17 37.68 1.49 0.16 

36 98.85 3.67 4.99 

Mean 47.85 40.88 1.91 
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2.3 ECG Feature Extraction Methods 

Investigating the signal conditioning techniques to reduce the noises and artifacts is a 

continuing concern within far-field ECG research. Removing EMG as the most significant 

artifact from ECG presents the most challenging problem since its spectral content (6-500 Hz) 

completely overlaps that of the ECG signal (0.5-100 Hz). In addition, when the user performs 

a physical activity and the activated muscles are in the vicinity of the ECG electrodes, the EMG 

contamination will overwhelm the ECG waveforms. Therefore, EMG can considerably affect 

the performance of heartbeat detection algorithms and subsequent identification of P-QRS-T 

complex characteristics.  

Many temporal, spectral, and spatial ECG feature extraction methods can be used to 

enhance the SNR of recorded ECG signals and extract the features which can lead to the 

detection of different ECG patterns, especially QRS complex. The most striking ECG 

waveform is the QRS complex, which plays a fundamental role in automated heart rate 

determination and abnormality identification [35].  

The most commonly used feature extraction techniques to increase the SNR in single-

channel ECG are represented as follows: 

2.3.1 Ensemble Averaging  

Since ECG is a repetitive signal, similar techniques to processing evoked potentials in 

Electroencephalogram (EEG) analysis can be applied [36]. So, ensemble averaging over beats 
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is a successful information enhancement method; however, it causes latency in the denoising 

stage as it requires several real-time beats to extract one particular PQRST morphology [8]. 

Besides, QRS timing detection as a pre-stage is a challenging concept and plays an important 

role in denoising. 

2.3.2 Algorithms based on Amplitude and its Derivatives  

Amplitude is known as the oldest feature used to detect R-peaks in ECG signals [37][38]. 

It is mostly followed by a differentiator to reduce the influence of T-wave and P-wave relative 

to R-wave [39]. First and second-derivative algorithms function as high-pass filters, which can 

be beneficial, considering the steep slope of the R wave. The researchers have implemented 

them separately [40][41], and with a linear combination [42] followed by methods such as 

thresholding for the detection stage. 

2.3.3 Filter Banks 

Considering the frequency range of EMG between 6 and 500 Hz with the most power 

between ~20 and 150 Hz, filtering some frequency components that are not of interest will 

help with achieving a cleaner ECG signal. However, the Butterworth lowpass filtering with 

cut-off frequencies such as 15 [11], 30 [7], and 35 Hz [43] is limited in EMG artifact 

suppression and considerably affects the QRS complex slopes [43].  
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2.3.4 EMD 

EMD was introduced by [44] as an adaptive and fully data-driven technique. It extracts 

oscillatory modes embedded in the data. In EMD, the basis used in the analysis is generated 

by the same analyzed signal. Therefore, there is no need to set a priori level of decomposition, 

which is an advantage over other decomposition techniques. EMD decomposes signal to a 

variable number of components or Intrinsic Mode Functions (IMFs). IMFs are dynamic and 

consist of different frequency components. The initial IMFs convey high-frequency 

information, and higher-order IMFs express low-frequency information, considering the nature 

of component extraction [45]. Among ECG waveforms, the QRS complexes have higher 

frequency content compared to P- and T-waves (3-40 Hz vs. 0.7-10 Hz). Therefore, they are 

expected to be captured in earlier IMFs compared to P- and T-wave [46][38]. For instance, 

Kozia et al. used the first three IMFs for reconstruction, which includes the frequency range of 

3-40 Hz as the components containing the QRS complex [46].  

When the ECG signal is contaminated with EMG, because EMG includes frequency 

content in the range of 6-500 Hz, the initial IMF(s) are expected to include EMG-related 

information rather than QRS complexes [47][48], and then some of the higher order IMFs 

would include QRS complexes. It needs to be mentioned that IMFs that capture QRS 

complexes will also have EMG-related information (due to frequency overlap) [49]. Removing 

unwanted sources can be done by partially reconstructing the original signal (by selecting a 
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subset of IMFs; and desired frequency range of 0.5-30 Hz) or applying post-processing 

methods such as Fast Fourier Transform (FFT) [10] or Wavelet Transform (WT) [48][50] on 

the IMFs. Furthermore, thresholding techniques applied to a subset of IMFs as a noise removal 

step are proven to effectively enhance R-peak detection for different ECG shapes [51]. 

There are also some studies that use EMD first to convert single-channel ECG into 

several components and then apply Independent Component Analysis (ICA) to enable 

heartbeats extraction from the resulting independent components [52], [53]. This way, the 

EMD algorithm first decomposes the signal into spectrally independent modes and then ICA 

extracts statistically independent sources [54]. 

Empirical Mode Decomposition (EMD) suffers from similar oscillations across different 

modes, which is called mode mixing. If the amplitudes and frequencies of the signal and noise 

do not have enough difference, mode-mixing happens. Wu et al. proposed a new method called 

Ensemble Empirical Mode Decomposition (EEMD) to overcome this issue [55]. EEMD 

applies EMD to an ensemble of white Gaussian noises added to the signal to solve the mode 

mixing problem. Although EEMD has been useful in many signal processing applications 

[56]–[58], it also suffers from some limitations. First, the ensemble averaging cannot 

completely eliminate the artificially added Gaussian noise. Furthermore, each realization can 

produce a different number of modes, which makes it difficult for the subsequent averaging 
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operation. An improved method called Complete Ensemble Empirical Mode Decomposition 

with Adaptive Noise (CEEMDAN) was proposed to resolve these limitations [59]. 

In terms of computational load, it should be considered that EMD consists of at least 

nine processing steps. The resulting computational load is more than the amplitude, derivative-

based, and filter bank techniques [60]. The computational cost of EEMD is considerably higher 

than EMD. On the other hand, CEEMDAN needs a lesser number of siftings than EEMD and 

consequently a lower computational cost, but still considerably higher than EMD. 

Furthermore, another drawback of all EMD-based methods is that there is no model to be 

trained, and the obtained components from unseen data with non-stationarity could lead to 

inconsistent results.  

2.3.5 WT 

Fourier analysis provides power decomposition with respect to each frequency 

component. However, it assumes the temporal stationarity of the signal to be analyzed and 

removes all temporal structure information within the signal, which is essential for ECG 

processing. As a compromise, the Short-Time Fourier Transform (STFT) only assumes 

stationarity within the analysis window and performs Fourier analysis on the windowed data 

segments. When the temporal structure of interest is comparable to the length of the analysis 

window, STFT can be a reasonable tool. When the temporal structure changes in the signal, 

the fixed length in the analysis windows of STFT becomes inadequate. By using a set of 



 

22 

 

analyzing functions, WT provides variable time-frequency resolution for different frequency 

bands [38]. The analyzing (basis) functions result from scaling and translating a mother 

wavelet, which has values in a certain temporal range and zeros elsewhere. As one type of WT 

methods, Continuous Wavelet Transform (CWT) projects a continuous signal to a continuous 

family of frequency bands that enables us to observe the frequency information at any given 

time. The CWT allows the scaling and translating parameters to vary continuously rather than 

discretely, which results in an overcomplete representation of the signal. The Discrete Wavelet 

Transform (DWT), on the other hand, discretizes parameters of the basis functions, which 

significantly reduces the redundancy of CWT. In DWT, the scale parameter is a power of 2, 

and the translation parameter has non-zero positive integer values. In ECG processing 

literature, there are various approaches to detect the QRS complexes from ECG through DWT. 

 Information about each ECG waveform is presented in the wavelet coefficients or the 

sub-bands containing the corresponding frequency content. Studies have used different 

decomposition levels in DWT and have assumed the QRS complex to be characterized in a 

subset of details based on their frequency content, including details 1-4 (overall frequency 

content of 11.25-180 Hz) [61], [62], 3-5 (5.75-45 Hz) [2], 4 (15.6 -31.1 Hz) [63]. 

The singularities (sharp edges or spikes) in the signal result in pairs of modulus maxima 

across several scales, as illustrated in Figure 2-3. Hence, some of the studies which use DWT 

as the feature extraction method have investigated peakiness or singularity degree calculation 
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for peak detection [64][65]. Moreover, the selection of wavelet coefficients in which the QRS 

complex is dominant provides a signal with higher SNR, which results in being more robust to 

noise [38]. 

DWT has been very popular in ECG denoising since it satisfies the energy conservation 

law and provides perfect reconstruction. The solid mathematical basis of DWT results in robust 

statistical analysis and efficiency in computational cost compared to EMD [66]. However, the 

studies that have chosen EMD over DWT for QRS detection have addressed the problem of 

 

Figure 2-3. ECG signal(a) and Corresponding wavelet coefficients in the scales 1(b) 

to 5(f). The paired modulus maxima present across all the scales synchronized with 

the QRS complex. 
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mother wavelet selection as their motivation to avoid using DWT [67][47]. Besides, deriving 

the basis functions from the signal itself results in a data-driven adaptivity, contrary to DWT, 

which uses fixed basis functions and requires a fixed number of decomposition levels in prior 

[66][47]. More recently, some studies have focused on combining DWT and EMD, providing 

complementary features [68]. 

Stationary Wavelet Transform (SWT) was further introduced to address DWT 

drawbacks, such as shift sensitivity and loss of temporal resolution at rough scales. The down-

sampling in DWT means that the length of the coefficients at level N is 2
-N

 times the length of 

the original signal, which results in losing resolution in higher scales. On the contrary, in SWT, 

the filter coefficients are up-sampled in each level of SWT. Consequently, the resulting 

coefficients have the same length as the original signal. Therefore, SWT is shift-invariant since 

its representation is redundant. Consequently, it is applicable for accurately locating an event 

of interest in a signal, such as an edge [20][69]. Furthermore, studies have represented SWT 

as a leading technique to increase SNR [70][71]. Kumar et al. have claimed SWT is the best 

available ECG denoising technique in a recent study comparing some denoising methods, 

including SWT, DWT, and EMD [71]. Furthermore, the accuracy of extracted features from 

SWT has proven to outperform those of EEMD in studies focused on EEG analysis [71]. In a 

recent study, Dwivedi et al. studied contaminated ECG signals by powerline interference (PLI) 

noise and then proposed a denoising method by combining SWT and EEMD. After applying 
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EEMD and removal of the first IMF, they used three-level SWT, selected several detail 

coefficients, and reconstructed a signal with higher SNR [71]. 

However, while SWT provides decent robustness against noise and is a relatively 

straightforward method, it has two main particular disadvantages: it alters the original signal 

phase [8] and requires a pre-defined mother wavelet [71]. The first drawback, phase shift, is 

the result of using FIR filter banks with non-zero phases in the wavelet decomposition 

schemes. As a result of this phase shift, the QRS complexes are projected in different temporal 

locations at different levels of SWT detail coefficients, all of which are different from their 

original positions. The shift is confined to milliseconds and is problematic and obviously 

undesirable in the application of QRS detection. Due to the phase shift propagating across the 

SWT scales, the shift is expected to get larger as the scale grows. Thus, the last detail and 

approximation will exhibit the greatest phase shift compared to the original input signal. 

Consequently, more information may be lost on higher scales.  

Daubechies formulated the closest to zero-phase filters that minimize this phase shift, 

which are now widely used in DWT [11]. However, these filters cannot achieve the exact zero 

phase [12]. Considering this issue, Lenis et al. presented a modified version of SWT that 

addressed the phase-free transformation property [10]. In addition to applying SWT to the 

signal, the authors reversed the signal and applied SWT to the resulting series. The transformed 

signal was reversed at each scale and added to the original transformed signal. Coefficients 
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resulting from this procedure have zero phase shift. As a result of this phase shift elimination, 

authors claimed the ability to accurately identify the beginning of the P-wave. As another 

approach, we implemented an SWT-based zero-phase filter bank in our previous study [72]. 

In this approach, the detail and approximation coefficients were reversed after each level, 

filtered again, and then reversed one more time to eliminate the phase shift. However, 

considering the loss of phase information at each scale, this filter bank does not provide the 

opportunity to reconstruct the signal. Alternatively, Percival presented an elegant solution to 

the wavelet phase shift issue by introducing a zero-phase wavelet called Zephlet transform 

[73][74]. In this method, the wavelet filters undergo additional analysis to have their phase 

equal to zero. Therefore, with the filters not generating any phase shift at each scale, all the 

resulting coefficients would have zero phase shift with respect to the original signal. 

Furthermore, this transformation provides perfect reconstruction because Zephlet filters are 

designed in a way that they satisfy the wavelet filter requirements.  

Another benefit of complete synchrony among various Zephlet scales is the opportunity 

of incorporating information from these scales. As discussed earlier, studies use different 

details with limited frequency ranges to detect the QRS complexes. However, the frequency 

range of ECG varies from 0.1 to 100 Hz, which may cover the frequency range of all or several 

details considering the sampling frequency. Therefore, the advantage of involving more scales 

could lead to a considerable increase in heartbeat detection performance. This is not possible 
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for SWT details due to the phase shift that is in the order of tens of milliseconds, while the 

length of a QRS complex is generally around 100ms.  

Non-standard positioned, e.g. upper arm electrodes introduce a more challenging 

requirement to extract ECG-related information due to EMG intensity. Therefore, the 

synchrony of features’ information with respect to ECG plays a critical role in these cases. 

With respect to the second SWT drawback, some studies have chosen alternative data-

driven methods over SWT, such as EMD or PCA, for ECG delineation to avoid a mother 

wavelet selection or an optimization problem [47], [67], [75]. Some studies, on the other hand, 

have investigated the selection of different mother wavelets, such as Haar [76], Daubechies 

[77], Mexican hat [78], Morelet [79], and Coeiflet [64], [65] for ECG delineation application. 

ECG signal includes morphological characteristics that play an important role in detecting and 

identifying CVD conditions diagnoses such as cardiac arrhythmias, myocardial infarctions, 

atrial enlargements, ventricular hypertrophies, and bundle branch blocks. An accurate 

classification becomes even more challenging in noisy environments, e.g. recordings from 

non-conventional places over the body surface, a likely scenario for many wearables. 

Therefore, algorithms that have high robustness against noise and interference are required. 

The similarity between the QRS complex and the mother wavelet is critical to consider in QRS 

detection. An optimal mother wavelet will not only produce the highest local maxima of the 

ECG signal in wavelet components [80], but it can also enhance the PQRST morphology 
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preservation. Considering the wide range of suggested mother wavelets for ECG delineation 

in the literature, the selection of an optimal mother wavelet is yet an open issue. 

Other methods have also explored ECG signal processing and feature extraction 

techniques, such as neural networks, mathematical morphology filtering, sparse filtering, 

Hilbert transform, and matched filters [60]. 

Although the extracted features play a critical role in localizing the beats by providing 

the required information, implementing effective algorithms for making a proper decision 

toward the detection of heartbeats from those features is also a challenge.  

2.3.6 Decision Making 

After extracting proper features with the aim of enhancing heartbeat detection 

performance, a decision must be made regarding the occurrence of a heartbeat or QRS 

complex. There are multiple techniques, with the most conventional and common being the 

thresholding technique: 

 

The threshold is set to a fraction of the maximum amplitude of the feature. The fraction 

0<β<1 has different values, such as 0.3 [81] and 0.4 [37] used in previous studies. Furthermore, 

the length of the signal to be processed (e.g., 33 s [82]) has been chosen experimentally. 

Xth=βmax{X[n]} 
(2-1) 
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However, this method does not guarantee a high performance, specifically in noisy 

environments. Pan and Tompkins introduced Pan-Tompkins [83] as a real-time approach in 

which the amplitude, slope, and width of the signal are analyzed. Pre-processing is also used 

to reduce false detections, which makes it a better choice for noisy environments compared to 

conventional thresholding methods. Firstly, a band-pass filter between 1-15 Hz is applied to 

the input to suppress muscle noise, baseline wander, power-line interference, and T-wave. The 

cut-off frequencies are selected based on the QRS-complex dominant frequency range. 

Secondly, signal differentiation is applied using a five-point derivative to provide the QRS-

complex slope information. Next, the resulting signal is squared point-by-point to make the 

QRS complex more pronounced by emphasizing the higher frequencies. Lastly, moving 

window integration (150 ms) is applied to obtain waveform information along with the QRS-

complex slope. The output is then used to detect the heartbeats (R-peaks) using an adaptive 

thresholding technique.  

Zero-crossing [84], neural network [85], singularity analysis [47], and matched filters 

[86] have also been applied to increase detection accuracy.  
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Chapter 3 

Heartbeat detection from single-lead ECG contaminated with 

simulated EMG at different intensity levels: a Comparative Study 

The contents provided in this chapter are parts of a journal manuscript that has been 

accepted to be published in the Biomedical Signal Processing and Control journal. N. Heydari 

Beni and N. Jiang, “Heartbeat detection from a single-lead ECG contaminated with simulated 

EMG at different intensity levels: a comparative study,” Biomed. Signal Process. Control, Jan. 

2023. 

3.1 Introduction 

In this study, we implemented five state-of-the-art pipelines and investigated their 

performance in heartbeat detection at four different noise levels. We generated these various 

noise levels by adding simulated EMG to ECG signals. These implemented algorithms were 

expected to perform differently in an environment with a specific noise level. Furthermore, their 

performance was expected to decrease when the noise level increased. But the amount of change 

could be different among these five pipelines. We considered two directions in the selection of 

a pipeline that works the best in heartbeat detection. The first direction was to compare all five 

at each noise level and select the best-performing pipeline per noise level. This way, we will 

have the chance to alter the detection algorithm as the noise level changes for a future 
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application. The next direction was to investigate the pipelines’ robustness against noise and 

select one that has the most robustness. Accordingly, we will have the option of choosing one 

particular pipeline to use for an environment with changing noise levels.   

In the next section, the dataset and methodologies used in this study are described in 

detail. In Section 3, the comparison of all the implemented pipelines’ performance at different 

contamination levels is presented. Section 4 discusses the results, and the conclusion and 

directions for future work are provided in Section 5. 

3.2 Methodology 

3.2.1 Dataset Description 

3.2.1.1 Dataset 1 

In the current study, the data from the MIT-BIH Arrhythmia Database was used as 

Dataset 1 [87]. The database consists of ECG recordings from 47 subjects studied by Beth 

Israel Hospital (BIH) Arrhythmia Laboratory between 1975 and 1979. All recordings in the 

database were sampled by 360 Hz. Two or more cardiologists independently annotated each 

record, and the resulting annotations are also included in the database. In the current study, the 

data from lead MLII (Modified Lead II) for 20 subjects (male: nine, female:11) with ages 

between 24 and 87 were selected from the database. We only focused on normal heartbeats in 

this study. Therefore, there was a need to find consecutive heartbeats annotated as normal 
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among all the participants’ data. This constraint reduced the number of subjects to 20 and the 

length of the signal to 28 sec, to be shared among all the subjects.    

3.2.1.2 Dataset 2 

We used Lead II from a dataset recorded in an experimental setup at our laboratory as 

Dataset 2 for this study. Twenty participants with no known cardiac, circulatory system, blood, 

or lung problems or allergy to adhesive or rubbing alcohol were recruited for the experiment. 

The protocol was approved by the Office of Research Ethics of the University of Waterloo 

(ORE #41252), considering all the Covid-19 safety requirements. Prior to the start of the 

experiment, each participant signed a Written Informed Consent. The participants were seated 

in a chair and relaxed. Two standard EMG electrodes were attached to the participants on the 

right arm and left leg to record Lead II. The commercial EMG device recorded the signals from 

all the electrodes. Data were recorded using the EMG-USB2+ biosignal amplifier, with a 

hardware band-pass filter from 0.3 Hz to 500 Hz. The recordings were digitized with a 

sampling frequency of 2048 samples/second. The generally acceptable frequency range of 

diagnostic ECG is from 0.05 to 100 Hz [23]. Therefore, the data was lowpass-filtered using a 

third-degree Butterworth filter with a cut-off frequency of 100 Hz. Furthermore, data were 

downsampled with the rate of eight to change the sampling frequency to 256 Hz. Five minutes 

of rest session was recorded from each participant, from which the first 28 seconds were used 

in this study to be consistent with Dataset 1Dataset 1. 
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3.2.2 Simulation of EMG Contamination  

 EMG signals, when overlaid with ECG, can considerably affect the performance of 

algorithms for heartbeat detection from ECG. Therefore, the robustness of the heartbeat 

detection algorithms with the presence of different levels of EMG artifact should be 

investigated. In the current study, four levels of simulated artifacts were generated and added 

to the ECG signals in the dataset to simulate various muscular activity levels, as shown in the 

left panel of Figure 3-1. Gaussian random noise [88]–[90] was generated first, and then anti-

aliasing filtering was applied. The cut-off frequency was selected as 100 Hz considering the 

description of both datasets. The high-pass filter was applied with the cut-off frequency of 6 

Hz to convert the white noise to a coloured noise considering the frequency content of EMG 

 

Figure 3-1. The ECG contamination representation in time (left panel) and it’s power spectrum 

(right panel). The simulated EMG with variable STD (25%, 35%, 50%, 75% of the range of 

ECG: rows 2-5) was added to the ECG signal (first row, left panel). The frequency content of 

each signal can be found in the right panel right in front of the respective signal.  
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(see Figure 3-1, right panel). Moreover, the level of muscle contraction was controlled by the 

Standard Deviation (STD) of the coloured noise. The STD was set to a fraction (0.25, 0.38, 

0.5, 0.75) of the ECG signal’s range for noise levels one (N1) to noise level four (N4). We 

calculated SNR for these contaminated ECG signals as follows: 

 
SNR = 20×log

Max (ECG) - Min (ECG)

3×STD (coloured noise)
 (3-1) 

The SNR for N1 to N4 equals 2.4 dB, -1.18 dB, -3.8 dB, and -7 dB, respectively. 

3.2.3 Feature Extraction  

We investigated five pipelines with different feature extraction approaches to detect the 

heartbeats from the contaminated ECG signal for each dataset. The schematic diagram of these 

pipelines is illustrated in Figure 3-2 and described in detail as follows. 

3.2.3.1 CEEMDAN 

Huang et al. introduced EMD as an adaptive and fully data-driven technique that 

decomposes the signal under analysis into oscillatory components or modes (IMFs). In EMD, 
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there is no need to set a priori the level of decomposition. In an iterative procedure called the 

sifting process, EMD decomposes signal into a variable number of components:  

 

 x(t) = ∑ IMFk(t)

I

k=1

 + rN(t) (3-2) 

where x is the signal to be decomposed, I is the number of iterations and rN is the residual. The 

extracted IMFs are dynamic and consist of different frequency components. Therefore, each 

IMF can be rejected or retained to partially reconstruct the signal based on the desired 

application. Because IMFs are additive, linear filtering or other linear transformation methods 

such as ICA can also be performed on the IMFs. However, when the signal and noise amplitudes 

and frequencies are not sufficiently different, mode-mixing will occur, resulting in single-tone 

 

Figure 3-2. The schematic diagram of the implemented methods. Five different pipelines were 

applied to extract features from contaminated ECG. Some of the features were manually 

selected for heartbeat detection. Pan-Tompkins was then applied to the extracted features as 

the heartbeat detection step. The pipelines are CEEMDAN (Cd), CEEMDAN-ICA (Cd-I), WT, 

CEEMDAN-WT (Cd-W), and CEEMDAN-ICA-WT (Cd-I-W) in the order of rows.  
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amplitude-modulated IMFs [55]. To overcome this issue, the EEMD has been presented. In this 

method, a number of white noise series, ni(t), are generated and added to the signal separately: 

 xi(t) = x(t) + ϵ0n
i
(t) (3-3) 

where xi(t) is the ith (i=1…, I) noisy version of the signal, ni(t) is a zero-mean, unit-variance 

white noise (N (0,1)), and ϵ0 is the STD of the added noise. The normal EMD procedure is then 

applied to each of the noisy versions, xi(t), resulting in a set of IMFs. Therefore, I different 

IMFs, IMFk
i (t), (i=1, ..., I), for the kth empirical mode will be generated. The final IMF for the 

kth mode, namely IMFk(t), is the ensemble average of the IMFk
i (t): 

 

IMFk(t) = 
1

I
∑ IMFk

i (t)

I

i = 1

 (3-4) 

EEMD suffers from some limitations, such as having some noise residue in the extracted 

IMFs and a different number of modes at different realizations. Therefore, CEEMDAN has 

been presented to overcome these issues. For the sake of simplicity, CEEMDAN will be 

referred to as Cd hereinafter. The details of Cd is presented in [7]. It is described briefly below 

for the sake of clarity: 

1. I noisy versions of the original signal are generated as xi(t) = x(t)+ ϵ0n
i
(t), the same 

of in EEMD; 

2. When k=1, IMF1(t) is obtained as in EEMD:  
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 𝐸1(xi(t)) = IMF1
i (t)  (3-5) 

 

IMF1(t) = 
1

I
∑ IMF1

i (t)

𝐼

i = 1

 (3-6) 

where Ek(.) is the empirical mode operation that produces the kth mode obtained by 

EMD. 

3. IMF1(t) is subtracted from the original signal to obtain the first residue: r1(t) = x(t) - 

IMF1(t) 

4. The second Cd mode IMF2(t) is:  

And the second residue, r2(t), will then calculates as: 

 r2(t) = r1(t) - IMF2(t) (3-8) 

5. For k = 2, ..., the kth residue is calculated as rk(t) = rk-1(t) - IMFk(t), and the (k+1)th 

mode is: 

 

IMF2(t) = 
1

I
∑ E1(r1(t) + ϵ1E1(ni(t)))

I

i = 1

 (3-7) 

 

IMFk+1(t) = 
1

I
∑ E1(rk(t) + ϵkEk(ni(t)))

I

i = 1

 (3-9) 
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6. The iterative process repeats until the obtained residue is a monotone function, and 

the final residue is: 

 

 R(t) = x(t) - ∑ IMFk(t)

K

k = 1

 (3-10) 

7. And the signal x(t) can be reconstructed as: 

 

 x(t) = R(t) + ∑ IMFk(t)

K

k=1

 (3-11) 

where K is the final number of modes.  

Considering the sampling frequency of the ECG signal is 360 Hz and 256 Hz in Datasets 

1 and 2, respectively, IMFs include frequency ranges of 0-180 Hz for Dataset 1 and 0-128 Hz 

for Dataset 2. The highest frequency content in both datasets belongs to the added simulated 

EMG with the frequency range of 6-100 Hz. Therefore, it is expected for the initial IMF(s) to 

contain EMG-related information and for QRS complex-related information to be captured in 

the higher order IMFs. In Figure 3-3, an example of ECG from Dataset 2, contaminated ECG, 

and IMFs (left panel) and their respective frequency spectrum (right panel) can be seen. As 

shown in Red colour, IMF4 and IMF5 were manually selected because they had the most 

similarity to ECG signal and the most overlap with the frequency content of QRS complexes 

(with the dominant frequency range of ~10-21 Hz). In another example in Figure 3-4 (see left 
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panel), you can see the selected IMFs are IMF3 and IMF4 with the most similarity to the ECG 

signal. In both of these examples, the initial IMFs mostly contained EMG-related information, 

and QRS complexes were captured in the higher-order IMFs.  

 

Figure 3-3 An example of the extracted components from applying CEEMDAN (left panel) 

and their respective frequency spectrum (right panel). Among the extracted IMFs, the red 

signals, IMF4 and IMF5, were selected manually because of their higher similarity to ECG. 

The frequency spectrum of the selected IMFs also has the most overlap with ECG signal. As 

shown, the first IMFs have higher frequency content overlap with contaminated ECG (or 

simulated EMG signals). 
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In the first pipeline, as shown in Figure 3-2, we used CEEMDAN for feature extraction 

and then selected the two IMFs in the feature selection phase. Then, we applied a heartbeat 

detection algorithm on the selected features separately, which will be explained in detail. For 

the sake of simplicity, this pipeline will be referred to as Cd hereinafter.  

 

Figure 3-4. Some examples of the extracted components from applying Cd (left panel) and 

Cd-I (right panel) to contaminated ECG. Left: Among the extracted IMFs, the bold red 

signals, IMFx and IMFy, were selected manually because of their higher similarity to ECG. 

Right: Resulting ICs after applying fast-ICA to the extracted IMFs achieved from Cd are 

shown. The bold red signals are the manually selected components, i.e. ICx and ICy which 

had the highest similarity to ECG. 
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3.2.3.2  CEEMDAN-ICA 

The extracted IMFs using Cd still contain both EMG- and ECG-related content. Because 

it is reasonable to assume the statistical independence between EMG and ECG, ICA (fastICA 

[91]) has been used to separate the two. In this pipeline, fast-ICA was applied to the IMFs 

obtained by Cd to further improve signal quality (the second row of Figure 3-2). Two of the 

resulting independent components were manually chosen for heartbeat detection (see the right 

panel of Figure 3-4). These selected features, i.e. ICx, ICy, shown in the second row from the 

top of Figure 3-2, were selected for subsequent heartbeat detection processing. This pipeline 

will be called as Cd-I hereinafter for simplicity.  

3.2.3.3 SWT, CEEMDAN-SWT, and CEEMDAN-ICA-SWT 

Considering the frequency range of EMG between 6 and 500 Hz with the most power 

between 20 and 150 Hz [33], compared to that of ECG mainly under 21 Hz, filtering out some 

noninterest frequency components will help with achieving a cleaner ECG signal. For this 

matter, we applied SWT at the level of six to the signal. SWT coefficients of detail components 

one to six correspond to frequency ranges of 90-180 Hz, 45-90 Hz, 22.5-45 Hz, 11.25-22.5 Hz, 

5.75-11.25 Hz, 2.875-5.75 Hz, respectively, and 0-2.875 Hz for the approximation component 

for Dataset 1. These frequency ranges change to 64-128 Hz, 32-64 Hz, 16-32 Hz, 8-16 Hz, 4-

8 Hz, and 2-4 Hz, respectively, for detail components one to six and 0-2 Hz for the 

approximation component for Dataset 2. The frequency range of QRS complexes is under 



 

42 

 

~21Hz, which has considerable overlap with EMG frequency content starting from 6 Hz. 

Therefore, to simultaneously reject components dominated by EMG and retain with QRS-

complex, d5 and d6 with the frequency content between 2.875-11.25 Hz for Dataset 1 and 2-8 

Hz for Dataset 2 were chosen in the WT pipeline (the third row from the top in Figure 3-2). 

In addition to applying SWT to the contaminated ECG signal described in this Section, 

we also applied SWT to the reconstructed signal obtained from the selected features in the first 

two pipelines, i.e. Cd and Cd-I, which yielded CEEMDAN-WT (Cd-W) and CEEMDAN-ICA-

WT (Cd-I-W). In the Cd-W pipeline, we calculated the reconstructed version from the Cd 

pipeline by summing up the two selected IMFs (IMFx and IMFy). In the Cd-I-W pipeline, we 

projected the preserved ICs from the IC space back to the IMF space. The Summation of these 

IMFs provided a reconstructed version of contaminated ECG. Details and approximation 

selection was identical to those in the WT pipeline earlier by choosing d5 and d6. 

3.2.4 Heartbeat Detection 

We used a modified version of Pan-Tompkins [83] for heartbeat detection from each 

selected feature. Pan-Tompkins includes a pre-processing phase, as described in the following 

steps. With minor changes, we first applied a band-pass filter between 1-15 Hz to the input to 

suppress muscle noise, baseline wander, 60 Hz interference, and T-wave. The cut-off 

frequencies were selected based on the QRS-complex dominant frequency range. Secondly, 

we applied signal differentiation using a five-point derivative to provide the QRS-complex 
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slope information. Next, we squared the resulting signal point-by-point to make the QRS 

complex more pronounced by emphasizing the higher frequencies. Lastly, we applied moving 

window integration (150 ms) to obtain waveform information along with the QRS-complex 

slope. We then used the output to detect the heartbeats (R-peaks) using an adaptive 

thresholding technique. We made some main changes to the original Pan-Tompkins in 

consideration of the substantially higher noise levels in the current study compared to the 

original Pan-Tompkins paper. First, we considered a fixed minimum (200 ms) and maximum 

distance between the beats. We chose the maximum distance of 1300 ms and 1100 ms for 

lower and higher heart rates, respectively. We manually determined the threshold for 

lower/higher heart rates to be 57 beats per minute. Second, instead of applying heartbeat 

detection on both the raw and pre-processed signals, we only used the pre-processed signal for 

the detection because the raw signal was too noisy to consider. Third, in the original Pan-

Tompkins method, there is a step that considers the detected heartbeats with a shorter than 

360ms distance from the previously detected heartbeat as a T-wave and ignores them. 

However, we did not implement this step in this study to reduce the possibility of losing a 

potential heartbeat in a noisy environment. 
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3.2.5  Performance Metrics and Statistical Analysis 

In order to evaluate the performance of the Pan-Tompkins detection algorithm on the 

investigated features, we calculated sensitivity (SE), positive predictive value (PPV) and the 

F1 score. 

 
Sensitivity (SE) = 

TP

TP+FN
 (3-12) 

 
Positive Predictive Value (PPV) = 

TP

TP+FP
 (3-13) 

 
𝐹1= 

2 × PPV × SE

PPV+SE
 (3-14) 

where TP or true positive refers to the number of beats that were detected within less than 150 

ms of distance from a heartbeat. The FN or false negative is the number of heartbeats that were 

not detected, and lastly, FP stands for the number of beats that were mistakenly detected. SE 

measures how well an algorithm can detect heartbeats and PPV represents how precise the 

detection is. F1 is also a measure of accuracy, which is used to compare the algorithms 

considering both the SE and PPV. 

The heartbeat detection using the selected features in each pipeline was repeated five times 

with different series of coloured noise from N1 to N4 for both datasets. Therefore, considering 

the 20 subjects, there were 100 outputs for both SE and PPV for each feature at each noise level. 

A mixed-model Analysis of Variance (ANOVA) was used to compare the algorithms. The 



 

45 

 

multiple comparison test, post hoc Bonferroni, was used to adjust the significance level for the 

fact that multiple comparisons needed to be made. At each noise level, the feature with the 

higher F1 was selected from all the pipelines. Furthermore, the selected features from the 

pipelines were compared using the post hoc Bonferroni multiple comparison test to find the best 

feature at each noise level. 

 

3.3 Results 

 

An example of detected heartbeats using Cd, WT, and Cd-I pipelines from a 

contaminated heartbeat selected from Dataset 2 with simulated EMG at the four intensity levels 

is shown in Figure 3-5. IMFx from Cd,  d6 from WT and ICx from Cd-I were used in this 

example. As shown, there is a time difference between the detected and real heartbeats, which 

in this example varies from 30 ms to 60 ms. 

3.3.1 Feature selection for each pipeline 

The SE and PPV for all the investigated pipelines averaged on 20 subjects, and five trials are 

shown in the top panel of Figure 3-6 and Figure 3-7, respectively, for Dataset 1 and Dataset 2. 

From the figures, it is evident that different pipelines and features resulted in different patterns 

of performance trajectory as the noise level increased.  
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From Dataset 1, in the Cd and Cd-I pipelines, there was a reduction in both SE and PPV 

across noise levels with both features. However, IMFy from Cd and ICx from Cd-I pipelines 

performed consistently and significantly (p < 0.05) better than IMFx and ICy, respectively. For 

 

Figure 3-5. An example of a heartbeat contaminated with four levels of EMG intensity along 

with the detected heartbeat locations from Cd, WT, and Cd-I pipelines (left) and the averaged 

normalized heartbeat over an average of 38 detected heartbeats (right). The shaded area 

around each averaged normalized heartbeat in the right panel represents the STD. The white 

rectangle at the left panel shows the acceptable distance between the detected and the real 

heartbeat. As expected, detected locations outside of this range are considered as FP as 

illustrated in the left panel.  
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WT, Cd-W, and Cd-I-W, d5 provided a superior performance compared to d6 at N1 (p < 0.01), 

 

 

Figure 3-6. First and second rows: The performance of different pipelines in terms of SE 

and PPV at various noise levels averaged on 20 subjects and five trials from Dataset 1. 

Third and fourth rows: The highest results from all pipelines at each noise level: N1: top 

left, N2: top right, N3: bottom left, N4: bottom right. The red lines indicate the highest F1 

at each noise level. The pink lines represent the not statistically different F1 compared to 

the red lines, and the blue lines represent significantly lower F1s (** p<0.01, *p<0.05). As 

expected, by increasing noise level, the highest F1 decreased. 
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however, it encountered a larger reduction in the performance trajectory from N1 to N4. 

 

 

Figure 3-7. First and second rows: The performance of different pipelines in terms of SE and 

PPV at various noise levels averaged on 20 subjects and five trials from Dataset 2. Third and 

fourth rows: The highest results from all pipelines at each noise level: N1: top left, N2: top 

right, N3: bottom left, N4: bottom right. The red lines indicate the highest F1 at each noise 

level. The pink lines represent the not statistically different F1 compared to the red lines, and 

the blue lines represent significantly lower F1s (** p<0.01). As expected, by increasing noise 

level, the highest F1 decreased. 
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Consequently, d6 attained a significantly better performance at N4 (p < 0.01) in both SE and 

PPV terms. 

From dataset 2, IMFx from Cd pipeline performed consistently and significantly better 

than IMFy (p < 0.01). ICx from Cd-I pipeline provided a better performance (p < 0.01) at N1 and 

N2. However, ICy gained the same performance as ICx at N3 and N4 (p > 0.05) in terms of both 

SE and PPV. For WT, d6 performed consistently better than d5 (p < 0.01) at noise levels N2-N4. 

For N1, d6 performed significantly better than d5 in terms of PPV (p < 0.05) but the same in 

terms of SE (p > 0.05). For Cd-W, d5 provided a better performance compared to d6 in terms 

of SE and PPV at N1 (p < 0.01). At N2, they had the same performance (p > 0.05), and then d6 

obtained a higher performance at N3 and N4 (p < 0.01). For Cd-I-W, d5 provided a superior 

performance than d6 (p < 0.01) at N1 in terms of PPV yet the same performance in terms of SE 

(p > 0.05). At N2, d6 gains superior SE (p < 0.01) and the same PPV (p > 0.05) compared to d5. 

At N3 and N4, d6 performed significantly better than d5 in terms of both SE and PPV. 

3.3.2 Feature selection for each noise level 

Considering both SE and PPV, the results for selected features in terms of F1 at each 

noise level are illustrated in the lower panel of Figure 3-6 and Figure 3-7 for Dataset 1 and 

Dataset 2, respectively. These results provide a balanced assessment of the best-performing 

feature of the pipelines at different noise levels. 
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3.3.2.1 Dataset 1 

The highest F1 scores are shown with a red line at each noise level, as illustrated in the 

second panel of Figure 3-6. The vertical lines represent the F1 score of Pan-Tompkins on the 

noisy signal without applying any feature extraction methods prior, which we call Baseline 

(BL) hereinafter. At N1, the F1 scores of IMFy (Cd), ICx (Cd-I), and d5 (Cd-I-W) were 

0.96 ± 0.05, 0.95 ± 0.07, and 0.95 ± 0.06, respectively. And post hoc Bonferroni test found no 

significant difference among them (p > 0.05). But they were significantly higher than the other 

pipelines (p < 0.05). Among these pipelines, IMFy (Cd) was significantly better than BL (p < 

0.05). At N2, the F1 score of IMFy (Cd) was 0.87 ± 0.11 and significantly higher than BL and 

the other pipelines (p < 0.01). At N3, the F1 score of d6 (WT), d6 (Cd-I-W), and IMFy (Cd) were 

0.78 ± 0.17, 0.76 ± 0.21, and 0.76 ± 0.21. The post hoc Bonfferoni test found no significant 

difference among them (p > 0.05). But they were significantly higher than BL and the other 

features (p < 0.05). At N4, the F1 score of d6 (WT) and d6 (Cd-I-W) were 0.67 ± 0.16 and 

0.65 ± 0.19  and not significantly different from each other (p > 0.05). But they were 

significantly higher than BL and the features from the other features (p < 0.01). 

Taken together, these results suggest that in less noisy environments (i.e. N1 and N2), 

IMFy (Cd) provides more accurate heartbeat detection for Dataset 1. However, d6 (WT) and d6 

(Cd-I-W) held a higher performance among the other features in environments with higher 

levels of noise (i.e. N3 and N4). 
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3.3.2.2 Dataset 2 

The highest F1 scores are shown with a red line at each noise level for Dataset 2, as 

illustrated in the second panel of Figure 3-7. The vertical lines represent the F1 score of BL. 

At N1, the F1 scores of ICx (Cd-I) was the same as BL (0.94 ± 0.06 vs. 0.95 ± 0.05; p > 0.05) 

and d6 (WT) (0.92 ± 0.16; p > 0.05) but significantly higher than the other features (p < 0.01). 

At N2, the F1 score of d6 (WT) was 0.90 ± 0.17 and significantly higher than BL and the other 

features (p < 0.01). Furthermore, d6 (WT) maintained its superiority at N3 and N4 with the F1 

score of 0.89 ± 0.15 and 0.85 ± 0.16, respectively. The post hoc Bonferroni test found its 

performance to be significantly better than BL and the other features (p < 0.01) at both N3 and 

N4 as illustrated in the second panel of Figure 3-7.  

These results suggest that d6 (WT) provides a more accurate heartbeat detection for 

Dataset 2 at N2- N4. At N1, ICx (Cd-I) provides the highest accuracy, yet not significantly better 

than d6 (WT), which makes WT pipeline the best choice for all the noise levels.  

3.3.3 Robustness to increasing noise levels 

The level of performance degradation with increasing noise levels represents the 

robustness against the noise of a processing pipeline. For Dataset 1, the reduction of SE from 

N1 to N4 was 34% and 31% for IMFy (Cd) and ICx (Cd-I), respectively. Moreover, d5 (WT), d5 

(Cd-W), and d5 (Cd-I-W) suffered a reduction of 34%, 35%, and 35%. Meanwhile, d6 (WT), d6 

(Cd-W), and d6 (Cd-I-W) only lost 17% of SE from N1 to N4. Therefore, the SE reduction of d6 
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from pipelines including SWT is considerably lower than the other pipelines. On the other 

hand, there was a more pronounced effect on PPV than SE with an increasing level of noise. It 

reduced 48% and 46% for IMFy (Cd) and ICx (Cd-I), respectively. From the pipelines including 

SWT, d5(WT), d5 (Cd-W), and d5 (Cd-I-W) suffered a reduction of 49%, 48%, and 50%, 

respectively. However, d6 (WT), d6 (Cd-W), and d6 (Cd-I-W) lost 27%, 27%, and 24% across 

noise levels. 

For Dataset 2, the reduction of SE from N1 to N4 was 37% and 43% for IMFx (Cd) and 

ICx (Cd-I), respectively. Meanwhile, d6 (WT), d6 (Cd-W), and d6 (Cd-I-W) only lost 6%, 6%, 

and 16% of SE from N1 to N4. Therefore, consistent with Dataset 1, the SE reduction of d6 from 

pipelines including SWT is considerably lower than the other pipelines. Furthermore, along 

with the results from Dataset 1, PPV suffered a more pronounced reduction with an increasing 

level of noise compared to SE. It reduced 44% and 52% for IMFx (Cd) and ICx (Cd-I), 

respectively. From the pipelines, including SWT, d6 (WT), d6 (Cd-W), and d6 (Cd-I-W) lost 

10%, 10%, and 20%, respectively, across noise levels.  

Along with the results from Dataset 1, we can emphasize the considerably positive effect 

of SWT utilization in increasing the robustness against noise. This helps explain the superiority 

of d6 (WT) in the higher noisy environments compared to the other pipelines in both datasets.  
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3.4 Discussions 

ECG-based heartbeat detection algorithms are sensitive to SNR, and their performance 

will deteriorate in noisy conditions. In an environment with a particular noise level, algorithms 

perform differently and when this noise level changes, they provide different robustness 

against noise. Currently, there are few studies in the literature focusing on the analysis of 

various ECG-based heartbeat detection algorithms under various noise levels, particularly in 

low SNR scenarios.  

We designed the present study to investigate the effect of different levels of EMG artifact 

on popular ECG-based feature extraction algorithms for heartbeat detection. We implemented 

five processing pipelines composed of state-of-the-art artifact removal methods for ECG and 

investigated them at four different SNR levels. We generated these different SNR levels by 

adding simulated EMG artifacts to ECG signals. The first objective of the study was to identify 

which method performs the best at each level of EMG artifact contamination. By comparing 

the performance of different methods at each contamination level, we could identify the best 

algorithm to use at that particular noise level. Therefore, we can later adjust our detection 

algorithm in an environment with varying noise levels for future applications. However, we 

might want to rather use a single algorithm in an environment with varying noise level. A 

method might perform very well in less noisy environments but get heavily affected when the 

noise level increases. Accordingly, we investigated the robustness of methods to artifact 
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increment to select a single algorithm for all noise levels. Hence, the second objective of this 

study sought to determine which method performs more consistently in the presence of various 

EMG levels. 

With respect to the first objective, Cd was identified as the best pipeline to detect 

heartbeats from less noisy environments (N1, N2) for Dataset 1. This finding is consistent with 

studies that have previously identified CEEMDAN as an effective algorithm for heartbeat 

detection from clean ECG signals. To name a few, Queyam et al. [92] and Hussain et al. [93] 

have achieved a SE of 98.13% and 99.96% for heartbeat detection using CEEMDAN. Escalona 

et al. also used EEMD in a wearable long-term heart rhythm monitoring system [10] to increase 

the SNR of the recorded signal. For Dataset 2, Cd-I provided the highest performance in the 

least noisy environment (N1). In noisier environments, WT and Cd-I-W pipelines from Dataset 

1 (N3, N4) and WT pipeline from Dataset 2 (N2,…, N4) provided significantly higher 

performance. It suggests that WT has consistent behaviour across datasets. In terms of 

computational cost, although CEEMDAN has a considerably reduced computational load 

compared to EEMD [45], its cost is still higher than SWT. Moreover, the combination of 

CEEMDAN with ICA in the Cd-I pipeline adds more computational overlead. Therefore, WT 

is more consistent (across datasets), more accurate, and faster pipeline for heartbeat detection 

in environments with high levels of noise.  
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Focusing on the second objective, we found that Cd-I-W (Dataset 1) and WT (Dataset 2) 

pipelines had the most consistent performance across different SNR levels (see Figure 3-6 and 

Figure 3-7). This was also noteworthy to observe that all WT, Cd-W, and Cd-I-W pipelines 

were more consistent than Cd and Cd-I pipelines across various SNR scenarios in both datasets. 

This observation suggests that SWT can considerably enhance the consistency or noise 

robustness of an ECG pipeline’s heartbeat detection. This finding is consistent with that of 

Bladazzi et al., who showed the strength of SWT as a post-processing enhancement method 

for fetal ECG (fECG) [70]. They concluded that not only SWT effectively improves SNR, but 

it also preserves QRS morphology with less distortion. Kumar et al. also represent SWT as the 

best technique in morphology preservation[71]. In a recent study by Dwivedi et al. [94], it was 

shown that EEMD, with a comparison of its combination with SWT (EEMD-SWT) increases 

the SNR of ECG signal from 42.66 dB to 51.69 dB, 41.82 dB to 50.85 dB, 42.99 dB to 52.02 

dB and 43.01 dB to 52.04 dB in four different recordings from MIT-BIH dataset. This SNR 

enhancement considerably represents the effect of applying SWT as a post-processing method 

in ECG denoising. The superiority of SWT in denoising ECG signal in a noisy environment 

also supports the finding of Kumar et al., who represents SWT as the best technique for SNR 

enhancement [71]. However, SWT has a particular disadvantage, which is having phase shifts 

with respect to the original signal [69]. This phase shift is associated with the SWT scales and 

gets cumulative as the scale increases. Having a closer look at the results of SWT  features 

from the WT pipeline from Dataset 1 in Figure 3-6, it started with d5 as the best feature at N1 
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but then switched to d6 in lower SNRs (N2, …, N4). This result is likely to be related to the 

higher phase shift of projected peaks in d6, which makes d5 provide more accurate information 

in a less noisy environment. However, in a noisy environment, sharper edges of the QRS 

complex that are better reflected in d6 get a better chance of being detected even though their 

phase shift is larger than that of d5.  

Based on these findings, the best heartbeat detection method is not consistent at different 

SNR levels, and different algorithms do not represent the same robustness to noise. Therefore, 

there is a need to estimate SNR and its expected potential change before choosing the optimal 

method for heartbeat detection. Marouf et al. have introduced an approach to estimate the EMG 

noise level approximation in ECG signals [95]. For future work, such methods can be used to 

first decide on the signal quality of an ECG interval and then choose the most appropriate 

algorithm based on the estimated SNR.  

This study has some limitations, including the manual selection of the best CEEMDAN 

and ICA components and using the simulated EMG instead of actual EMG artifacts. In future 

studies, appropriate components can be automatically selected. One possible way would be to 

apply cross-correlation between the detected heartbeats from different components and 

calculate the average cross-correlation of the detected beats. The component with the highest 

average cross-correlation would be a good candidate for further processing. An alternative is 

a multi-expert approach in which all or some candidate components are organized in a voting 
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scheme. To mention another limitation, we were restricted to 28 sec of Lead II. In future studies 

with more length of data, a continuous change in SNR level by representing an evolving noise 

can be investigated. In addition, future studies should use actual EMG signals generated by 

different levels of muscular contraction. Moreover, we considered 150 ms as an acceptable 

distance between the actual and detected heartbeats. This choice was made to compensate for 

two effects: first, the instinct of feature extraction methods that introduces phase shift with 

respect to the original signal, and second, the moving averaging that is applied by the Pan-

Tompkins algorithm (window of 150 ms), causing phase shift. This acceptable distance needs 

to be reduced in future studies. To this end, Zephlet or zero-phase wavelet introduced by 

Percival [73] would be a candidate to eliminate the phase shift problem of SWT. Another 

possible improvement on the chosen algorithms can be trying different ICA methods replacing 

fastICA to achieve higher performance. 
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Chapter 4 

Heartbeat detection from high-density EMG electrodes on the 

upper arm at different EMG intensity levels using Zephlet 

The content provided in this chapter is under revision in a peer-review journal. N. 

Heydari Beni and N. Jiang, “Heartbeat detection from high-density EMG electrodes on the 

upper arm at different EMG intensity levels using Zephlet,” SSRN Electron. J., Oct. 2022, 

Available at SSRN 4221592.  

4.1 Introduction 

This paper presents a novel approach to heartbeat detection from the upper arm. The 

electrode localization on the upper arm is subjected to high EMG intensity and a weak captured 

electric activity of the heart. We investigated the heartbeat detection performance from these 

electrodes in Rest and EF conditions introducing various EMG intensities. The primary 

objective was to select the optimized location of electrodes on the upper arm, considering their 

similarity to ECG subjected to various EMG intensities. The secondary objective was to 

accurately detect heartbeats from the selected channels at each of these EMG intensities. For 

this matter, SWT filters were replaced by the designed filters using Zephlet, and an MDS was 

also applied to incorporate information from various Zephlet coefficients. The higher the EMG 

intensity was, the more challenging heartbeat detection from the contaminated signal would 



 

59 

 

become. Detecting heartbeats using this method from the selected electrodes provided us with 

considerably high performance in terms of SE and PPV with a comparatively accurate QRS 

localization. 

In the next section, the experimental and computational methodologies are described in 

detail. Section 3 presents the results of channel selection and heartbeat detection using Zephlet 

compared to SWT incorporated with MDS. Section 4 discusses the results, limitations, and 

direction for future work, and the conclusion is provided in Section 5. 

4.2 Methods 

4.2.1  Data Acquisition 

Twenty participants with no known cardiac, circulatory system, blood, or lung problems, 

no allergy to adhesive or rubbing alcohol, and the ability to apply force with their left hand 

were recruited for the experiment. All the COVID-19 safety requirements were considered, 

and the Office of Research Ethics of the University of Waterloo approved the protocols (ORE 

#41252). Prior to the start of the experiment, each participant signed a written Informed 

Consent. The participants were seated in a chair, relaxed, and had their left hand fixed. Three 

64-channel high-density surface bioelectric electrode grids were attached around the 

participant’s left upper arm (see Figure 4-1). The 64 channels on each of the electrode grids 

were arranged in an 8x8 fashion, with an inter-electrode distance of 1 cm (from middle to the 
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middle). The reference is located on the elbow, and the ground electrode was placed on the left 

wrist. In addition, two disposable electrodes were placed on the right shoulder and the left hip, 

corresponding to the standard ECG Lead II setup.  

A commercial bioelectric signal amplifier (EMG-USB2+, OT Bioelettronica, Turin, 

Italy) was used for signal acquisition. A hardware band-pass filter was set from 0.3 Hz to 500 

Hz. The recordings were sampled at 2048 Hz and digitized with 12-bit precision. The generally 

acceptable frequency range of diagnostic ECG is from 0.05 to 100 Hz [23]. Therefore, the 

acquired data was further digitally lowpass-filtered using a third-order Butterworth filter with 

a cut-off frequency of 100 Hz and then downsampled to 256 Hz to reduce the computational 

cost.  

 

Figure 4-1. Electrode placement on the upper arm and shoulder (left) and the high-density 

grid (right). Three 64-electrode high density grids (in yellow) were placed on the left upper 

arm and their reference was placed on the left elbow. Two electrodes were placed on the 

right shoulder and left leg to capture Lead II. In addition, the system ground was placed 

on the left wrist. 
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The participants were asked to attend two different tasks: 1. Rest and 2. EF. Two five-

minute data recording runs were recorded for the Rest task while the participants remained 

relaxed with no muscular contraction. In the EF tasks, the participants were asked to hold 

different weights (3.6 kg, 2.2 kg, 1.2 kg) by their left hand to produce different levels of EMG, 

which would be considered artifacts in the context of recording the electric information of the 

heart. During the recording, the contractions were isometric and isotonic, as both the joint 

angle and the force produced remained as constant as the participant could. Furthermore, the 

weights were the same across participants, making the experiment consistent and repeatable. 

Each weight was held for a duration of one minute and repeated three times in separate trials. 

The sequence of trials for all three weights (a total of nine trials) was randomized to replicate 

a more realistic real-time situation. Participants were provided with two minutes of rest, or 

more if requested, after each trial. 

4.2.2 Channel Selection 

We first needed to decide on how many channels should be selected for further 

processing. One of the main objectives of this study is electrode localization because the 

ultimate goal is to implement the algorithm in a wearable device on the upper arm. As such, 

some important factors should be considered before the selection. First of all, considering a 

wearable device, the fewer electrodes, the more practical the system would be. In this context, 

the optimal electrode number is two. Furthermore, the location of the selected electrodes 
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should be as consistent across the participants as possible for generalization purposes. While 

increasing the number of electrodes does provide us with more spatial information, we chose 

to set the number of electrodes to two for the above reason.  

All possible pair-wise combinations from the 192 electrodes were generated, and the first 

20 seconds of data from each trial (either a five-minute Rest or one-minute EF task) were used 

for training. Multivariate Regression (MVR) was then applied to these candidate pairs to 

predict the recorded chest ECG from lead II using the training section. The purpose was to 

investigate the estimation quality of each pair in estimating the ECG signal using linear 

regression. Pearson’s Correlation Coefficient (CC) was then applied to the estimated and 

recorded ECG to evaluate the performance of each pair. There were 192*191 resulting CCs 

representing the performance of all the pairs. Finally, a 192*192 heatmap was generated to 

observe how the different pairs perform. The signal quality of the electrodes in the same pairs 

on the upper arm may change across participants, but the target was to find as consistent 

positions as possible across participants for generalization purposes. The heatmaps for all 20 

participants were generated, and their average was calculated and projected into a single 

heatmap. Choosing the pair with the highest value on the averaged heatmap provided us with 

the most consistently informative pair across all participants. Afterwards, the grant average of 

the MVR coefficients corresponding to the selected pair across all trials and all participants 
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were considered to generate a weighted sum for further processing steps. This weighted sum 

produces the synthesized ECG.  

4.2.3 Feature Extraction 

To detect the heartbeats from the contaminated ECG signal, Zephlet was applied and 

then compared with SWT. The detail of each of these two algorithms is described more in 

detail as follows. 

4.2.3.1 SWT 

Applying a five-level SWT decomposes the signals into five details and one 

approximation coefficients, as shown in Figure 4-2. The coefficients at each scale are called a 

component. Based on the sampling rate, which was changed to 256 Hz, the frequency content 

of these six components would be 64-128 Hz, 32-64 Hz, 16-32 Hz, 8-16 Hz, and 4-8 Hz for 

detail coefficients one to five, respectively, and 0-4 Hz for the approximation coefficients.  

4.2.3.2 Zephlet 

The phase shift that SWT causes is carried along with the scales and gets cumulative as 

the scale increases. Therefore, the last detail and the approximation coefficients would have 

the most phase shifts compared to the original input signal. This phase shift may cause 

progressively losing more information on higher scales. Instead, the Zephlet transform 

maintains the phase of coefficients at all the scales with respect to the original (see Figure 4-2). 
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Two black arrows in the figure represent the R- peak projections in the fourth detail (d4) for 

SWT and Zephlet. As shown, Zephlet maintains the exact temporal location of the R-peak. On 

the contrary, SWT has a cumulative phase shift as the scale increases. This synchronization of 

Zephlet provides the opportunity to elaborate on all the components to extract meaningful 

information.  

Zephlet is an orthogonal DWT based on zero-phase filters [73].  

Expanding on the properties of Wavelet filter, h, we have: 

 

Figure 4-2. The details (d1-d5) and approximation (a5) from applying SWT and Zephlet on 

the synthesized ECG. The elimination of phase shift in Zephlet compared to SWT can be 

seen in the rectangle. The black arrows represent the R- peak projections in the fourth 

detail (d4) for SWT and Zephlet. 

 



 

65 

 

1. Zero summation: 

 

 ∑ hl

L-1

l=0

= 0 (4-1) 

2. Unit energy: 

 

 ∑ hl
2

L-1

l=0

= 1 (4-2) 

3. Orthogonality to even shifts: 

 

∑ hlhl+2n

L-1

l=0

= 0, n=any nonzero integer (4-3) 

Properties 2 and 3 provide orthonormality, which is challenging to achieve. The 

orthogonality to even shifts implies that the filter should be even-length. Deriving the discrete 

Fourier transform (DFT) of the wavelet filter h we have: 

 

 H ( f )  ≡ ∑ hl e
- i2πfl

L-1

l=0

 (4-4) 

By definition: 

  ℋ ( f ) ≡ |H ( f )|2   (4-5) 
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Given the wavelet filter, h, is orthonormal, it can be shown that for all f: 

 
ℋ ( f )+ ℋ ( f +

1

2
) = 2 (4-6) 

The scaling filter, g, can be created using h as follows: 

 g
l
 ≡ ( − 1)

l+1 ℎL-1-l  (4-7) 

The scaling filter shares the orthonormality property with the wavelet filter. Therefore, 

 

∑ g
l
2

L-1

l=0

= 1 (4-8) 

 

∑ g
l
g

l+2n

L-1

l=0

= 0, n = any nonzero integer (4-9) 

And by definition: 

 𝒢 ( f ) ≡ |G ( f )|2   (4-10) 

 

The squared gain function, 𝒢(.) satisfies: 

 
𝒢 ( f ) =  ℋ ( f +

1

2
) (4-11) 

Therefore, as an equivalent to the orthonormality property, we have: 
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 𝒢 ( f ) +  ℋ ( f ) = 2 (4-12) 

Zero-phase filters should be odd-length (L=2M+1) and symmetrical to the center so that 

a-l=al for l = -M, ..., M. The phase of the wavelet filters cannot be zero considering their even 

length. Considering the importance of reducing the phase shift in these filters, Daubechies 

introduced the least asymmetric filters. Later, Percival introduced Zephlet as a possibility of 

generating zero-phase filters whose squared gain functions are consistent with Daubechies but 

have exactly zero phases as follows [73]:  

Let g̅
l
 and h̅l be inverse DFTs of the sequence 𝒢1/2(

k

N
) and ℋ1/2(

k

N
): 

 

g̅
l
 ≡ 

1

N
∑ 𝒢1/2(

k

N
)ei2πkl/N, l =  0, 1,..., N-1

N-1

k = 0

 (4-13) 

 

h̅l ≡ 
1

N
∑ ℋ1/2(

k

N
)ei2πkl/N, l =  0, 1,..., N-1

N-1

k = 0

 (4-14) 

Let the filters g̅
l
 and h̅l be related as follows: 

 g̅
l
 = ( − 1)

l
h̅l  (4-15) 

It can then be proven that the following requirement for orthonormality holds: 

 𝒢(
k

N
) + ℋ(

k

N
) = 2, for all 

k

N
 (4-16) 
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Replacing k in ℋ ( 
k

N
 )+ ℋ ( 

k

N
+

1

2
) = 2 with k + 

N

2
,  we have ℋ ( 

k

N
+1)+ ℋ ( 

k

N
+

1

2
) = 2; 

Therefore, ℋ ( 
k

N
 ) = ℋ ( 

k

N
+1), meaning that ℋ1/2 ( 

k

N
 ) is a periodic sequence with a period 

of N. Considering the assumption of ℋ ( . ) being an even function, it can be shown that h̅l is 

real-valued: 

ℎ̅𝑙
∗
= 

1

N
∑ ℋ1/2(

k

N
)ei2πkl/N

N-1

k = 0

= 
1

N
∑ ℋ1/2(-

k

N
)ei2πkl/N

N-1

k = 0

= 
1

N
∑ ℋ1/2(

k

N
)ei2πkl/N

0

k = -(N-1)

 

= 
1

N
∑ ℋ1/2(

k

N
)ei2πkl/N

N-1

k = 0

= h̅l 

Therefore, h̅l is real-valued and g̅
l
 is also real-valued with a squared function similar to 

g
l
 and zero-phase.  

The schematic diagram of Zephlet can be found in  Figure 4-3. The wavelet filters are 

driven from the least asymmetric filters, which in this paper was chosen to be Symlet6. The 

Symlet6 filters and the corresponding Zephlet filters are also shown in Figure 4-3. The 

elimination of phase shift in Zephlet compared to SWT in all the components can be seen in 

Figure 4-2.  
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4.2.4 MDS to Merge Component Information 

The dominant frequency content of the QRS complex lies under 21 Hz, and a wide range 

of studies have focused on only that frequency range for QRS detection. However, a much 

wider frequency range of 0.1-100 Hz has an important diagnostic value. Therefore, our analysis 

considered all the corresponding components to this wider frequency range. Only the last 

component from each method, which contains baseline wanders and movement artifacts, was 

discarded, and we included five components in SWT and Zephlet in the subsequent analyses.  

In order to merge information from the five components, we designed an MDS to 

increase heartbeat detection accuracy. First, the classic Pan-Tompkins algorithm with some 

adaptations [96] was applied to each of the components individually. A series of QRS 

complexes were detected from each component, respectively. Then we used a 200-ms non-

 

Figure 4-3. The schematic diagram of deriving Zephlet filters based on Wavelet filters. The 

symlet6 highpass (in blue) and lowpass (in red) filters before and after applying Zephlet are 

represented. 
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overlapping moving window for merging the detected beats from all five series. The window 

length was chosen to be 200 ms because it is physiologically impossible for two consecutive 

QRS complexes to occur within 200 ms [97]. The MDS scheme was applied, in which a 

minimum of three positively voting components (chosen empirically) would lead to a final 

positive detection for the current window. The location of the detected beat was set to be the 

average temporal location of all positive votes. This MDS scheme is illustrated in Figure 4-4. 

 

Figure 4-4. MDS. The output of Pan-Tompkins applied to different details (d1-d5) is 

illustrated. An example of the moving window is shown in grey rectangle. The blue arrows 

lie within the window and the grey ones are outside, so they are withdrawn by the MDS. In 

the first window, if we wanted to only consider either d2 or d4, we would have lost that 

heartbeat. The same logic holds for the second window with d3, and d5. But this system 

prevents such losing of information. Furthermore, the location of the MDS output, which is 

shown in the last row by red arrows is the average of all the blue arrow from the detail 

outputs.  
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After the entire trial was processed, a further refractory rejection period scheme was also 

applied to the final detected heartbeats with a temporal distance of less than 200 ms: the mid-

point of the temporal positions of two consecutive beats within 200 ms was used as the 

temporal location of the merged beat. 

4.2.5 Performance Evaluation and Statistical Analysis 

SE, PPV, and F1 score were calculated to evaluate the performance of the methods in 

heartbeat detection: 

where TP or true-positive is the number of beats that were detected within a pre-defined 

distance from an actual heartbeat (from the Lead II ECG). This tolerance was initially set to 

50 ms but then progressively reduced to 20 ms with a step of 10 ms to investigate the temporal 

accuracy of the detection. FP or false positive is the number of false detections, and FN, i.e. 

false negative, represents the number of missed heartbeats. SE determines how well an 

algorithm can detect heartbeats, and PPV demonstrates the precision of the detection. The F1 

score is used to compare the algorithms considering both the SE and PPV as a measure of 

accuracy. 

 
SE = 

TP

TP+FN
 (4-17) 

 
PPV = 

TP

TP+FP
 (4-18) 

 
𝐹1= 

2 × PPV × SE

PPV+SE
 (4-19) 
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4.3 Results 

4.3.1 Channel Selection 

The performance of different pairs in estimating ECG (in terms of CC) using MVR is 

represented as a 192*192 heatmap averaged over 20 participants and two Rest sessions, as 

shown on the left side of the first row of Figure 4-5. The pair of channels providing the highest 

and the second-highest CC values were (8, 128) with CC = 0.72 and (8, 120) with CC = 0.71. 

The neighbouring channels of 8 and 120 provided comparatively higher and more robust CC 

compared to the other pair. Therefore, choosing the pair (8, 120) for the Rest sessions would 

provide higher performance robustness in case of positional shift due to error or 

implementation limitations. The location of this pair on the upper arm is illustrated on the right 

side of the first row in Figure 4-5. Following the same analysis, the best pair for all the EF 

conditions were selected as pair (56, 120), as shown on the right side of the first row in Figure 

4-5. 

The averaged weights achieved from applying MVR on the selected two channels over 

training trials and sessions were calculated for each participant. Utilizing the resulting 

coefficients, we formed a synthesized ECG for each participant for further processing steps in 

test trials in each condition. A sample of the synthesized ECG, along with the two selected 

channels and Lead II in Rest and EF conditions, are shown in Figure 4-6.  
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Figure 4-5. The CC between the estimated ECG and chest ECG using different pairs in Rest 

and MC conditions with the respective selected locations on the upper arm. Top left: Rest; 

Top right: the respective positions of the electrodes 8, 56 and 120, on the upper arm. Bottom 

left: contraction level 1 (C1), Bottom middle: contraction level 2 (C2), Bottom right: 

contraction level 3 (C3).  
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Figure 4-6. Top: An example of the selected channels in Rest (channels 8 and 120) and EF 

(channels 56 and 120) conditions along with the resulting synthesized ECG and Lead II at 

each condition. As illustrated, the peaks are mostly not visually identifiable in the channels 

8, 56, and 120, however, they become clearly identifiable in the synthesized ECG. Bottom: 

The average normalized MVR coefficients for channels 120 and 8 in Rest and channels 56 

and 120 for EF conditions. As illustrated, these two channels behave opposite across the 

subjects and sessions. 
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4.3.2  Heartbeat detection 

The SE and PPV for Zephlet and SWT after applying MDS with various tolerance level 

(T1-T4) considerations averaged on 20 participants, two sessions, and 14 trials from the Rest 

sessions are represented in the first row of Figure 4-7. The first trial of 15 trials was eliminated 

as it was used for channel selection purposes.  Both algorithms suffered a reduction in 

performance for lower tolerances. SE reduced from 0.94 ± 0.16 to 0.81 ± 0.2 for Zephlet and 

from 0.87 ± 0.19 to 0.31 ± 0.25 for SWT at T1-T4. Meanwhile, PPV followed the same pattern 

as SE for both algorithms. It reduced from 0.94 ± 0.16 to 0.81 ± 0.2 for Zephlet, and from 

0.88 ± 0.18 to 0.31 ± 0.25 for SWT. However, it’s evident from the figure that Zephlet attained 

consistently and significantly better performance (p<0.01) compared to SWT at all the 

tolerance levels in both SE and PPV terms. Incorporating both SE and PPV, the F1 score of 

Zephlet was 0.81 ± 0.2, 0.9 ± 0.19, 0.93 ± 0.17 and 0.94 ± 0.16 respectively for T1-T4. On the 

other hand, SWT provided an F1 score of 0.31 ± 0.25 , 0.46 ± 0.25 , 0.75 ± 0.19 , and 

0.87 ± 0.18, respectively, for T1-T4, representing a significantly lower performance at all the 

levels.  

The performance of both algorithms is affected under noisy conditions, which is the EF 

sessions from level 1 to 3 (C1-C3) in this study. The comparison of Zephlet and SWT after 

applying MDS was made using the F1 score for each contraction level, and the averaged results 

over 20 participants, two sessions, and two trials were investigated and represented in the 
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second row of Figure 4-7. The first trial of 3 trials was eliminated as it was used for channel 

selection purposes. The results were also compared to the Rest condition (see the second row 

of Figure 4-7).  

 

Figure 4-7. First row: The performance of Zephlet (orange) and SWT (blue) in terms of SE, 

PPV, and F1 score from T1 to T4 in the Rest. Second row: The performance of Zephlet 

(orange) and SWT (blue) compared to synthesized ECG (black) in terms of F1 score for Rest 

and EF conditions. The performance of both the algorithms decrease as the level of 

contraction increases at all conditions. However, Zephlet was consistently and significantly 

better than SWT in terms of F1 score (T1-T4) and better than (T1-T3) or equal to (T4) 

synthesized ECG. 
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At T1, the F1 score of Zephlet was 0.66 ± 0.26, 0.57 ± 0.26, and 0.44 ± 0.26 for C1 to C3, 

respectively. According to t-test, SWT provided a significantly lower F1 score by 0.28 ± 0.16, 

0.24 ± 0.14, and 0.19 ± 0.13 for C1 to C3, respectively. At T2, the F1 score of Zephlet was 

0.77 ± 0.26, 0.69 ± 0.29, and 0.56 ± 0.31 and significantly better (p<0.01) than SWT with 

0.41 ± 0.19, 0.36 ± 0.19, and 0.28 ± 0.16 for C1 to C3, respectively. At T3, the F1 score of 

Zephlet was 0.85 ± 0.23, 0.77 ± 0.28, and 0.64 ± 0.31 for C1 to C3. On the other hand, SWT 

had a significantly lower (p<0.01) F1 score of 0.62 ± 0.2 , 0.53 ± 0.22 , and 0.42 ± 0.21 , 

respectively for C1 to C3. Finally, at T4, the F1 score of Zephlet was 0.86 ± 0.22, 0.79 ± 0.26, 

and 0.67 ± 0.31 and significantly better (p<0.01) than SWT with 0.75 ± 0.22, 0.64 ± 0.25, and 

0.50 ± 0.25  for C1 to C3, respectively. As expected, the performance of both algorithms 

reduced as the level of muscle contraction increased, and it is significantly lower than the Rest 

condition at all T1-T4, as shown in Figure 4-7. The superiority of Zephlet over SWT in all EF 

conditions confirms the results achieved in the Rest condition.  

The F1 score for both algorithms was then compared to Pan-Tompkins applied to the 

synthesized ECG without any further feature extraction. As illustrated in Figure 4-7, Pan-

Tompkins provides a significantly better F1 score than SWT (p<0.01) at all tolerance levels. 

However, Zephlet gains a significantly higher F1 score at T1-T3 (p<0.01) compared to Pan-

Tompkins. At T4, both Zephlet and Pan-Tompkins provide statistically same F1 score (p = 0.16, 

p = 0.18, p = 0.3, and p = 0.33, respectively for T1-T4). These results indicate the importance 
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of using Zephlet incorporated with MDS as an effective feature extraction method for more 

accurate detection and localization of heartbeats.  

4.3.3 Generalization of MVR Coefficients  

The averaged coefficients from applying MVR on the selected two channels over 

subjects, trials, and sessions were calculated for Rest and EF conditions. At the Rest condition, 

the average coefficients for channels 8 and 120 were 3.078 and -2.8, respectively. At C1, the 

average coefficient was 2.02 for channel 56 and -2.12 for channel 120. The coefficients 

changed to 1.46 for channel 56 and -1.55 for channel 120 at C2. Finally, at C3, the coefficients 

were 75.44 for channel 56 and -80.48 for channel 120. The normalized coefficients are 

presented in Figure 6. As illustrated, these two coefficients consistently have an opposite sign 

with highly similar values across all the conditions, meaning the two hotspots are showing an 

opposite behaviour in estimating Lead II, which indicates a difference in the phase of ECG-

related information (close to 180 degrees) at the two hotspots. Considering this, we regenerated 

the synthesized ECG using updated weights equal to 1 for channels 8 and 56 and -1 for channel 

120. This update helps with further generalization over muscle contraction intensity levels.  

All the results were repeated using these generalized coefficients, and there was no 

significant change (p>0.1 for all the tolerance levels and conditions) in either SWT or Zephlet 

results. The F1 score at Rest was 0.81 ± 0.20,  0.9 ± 0.19, 0.94 ± 0.17,  and 0.94 ± 0.16 for 

Zephlet, and 0.31 ± 0.25, 0.46 ± 0.25, 0.76 ± 0.19 and 0.88 ± 0.18, for SWT, respectively for 
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T1 – T4. Even though these results were not significantly different (p>0.1) compared to those of 

the original weights, the STDs were lower in the generalized version. At C1, the F1 score was 

0.65 ± 0.26 , 0.77 ± 0.25, 0.84 ± 0.23, and 0.86 ± 0.22  for Zephlet, and 0.28 ± 0.16 , 

0.41 ± 0.19, 0.62 ± 0.2, and 0.75 ± 0.22 for SWT, for T1 – T4, respectively. At C2, the F1 score 

was 0.56 ± 0.26 , 0.68 ± 0.29, 0.76 ± 0.28, and 0.78 ± 0.28  for Zephlet, and 0.23 ± 0.14 , 

0.36 ± 0.19, 0.53 ± 0.22 and 0.62 ± 0.26, for SWT, respectively for T1 – T4. At C3, the F1 score 

was 0.43 ± 0.26 , 0.54 ± 0.3, 0.62 ± 0.31 , and 0.66 ± 0.3  for Zephlet, and 0.18 ± 0.12 , 

0.27 ± 0.16, 0.41 ± 0.21, and 0.5 ± 0.25 for SWT, respectively for T1 – T4. 

Therefore, not only the best position of electrodes but also the weight of these electrodes 

in generating the synthesized ECG can be generalized across the participant pool in Rest and 

EF conditions. Furthermore, the generalized weights are consistent at Rest and EF conditions. 

4.4 Discussion 

Accurate identification of cardiac arrhythmias can prevent a significant number of global 

deaths related to these conditions. Such an identification can be performed using wearable 

devices that acquire cardiac electrical activity from the body surface to provide constant 

cardiac monitoring [1]. Studies that are focused on extracting cardiac information from 

electrical activity recorded from the body surface can be categorized into two main groups: the 

choice of alternative electrode placement and the development of ECG processing algorithms.  
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The present study was designed for heartbeat detection using the signals recorded from 

the upper arm. The first objective of the study was to identify the optimal electrode locations 

on the upper arm by means of high-density surface recording (a total of 192 electrodes) to 

provide the best information for cardiac activity. The second objective of this study sought to 

detect heartbeats from the selected channels using a zero-phase wavelet (Zephlet) incorporated 

with an MDS. The investigation was done under two main conditions: Rest and EF, to evaluate 

the performance of the system using contaminated signals by different EMG intensity levels. 

With respect to the first research question, we identified one pair of electrodes for Rest 

(120,8) and another pair for EF (120,56) conditions to be providing the most information 

regarding cardiac activity (see Figure 4-5). As illustrated, the location of one electrode (120) 

does not change from Rest to different muscle contraction levels. However, the location of the 

other selected electrode shifts mostly around the longitudinal axis after muscle contraction 

(from Rest to C1). This change suggests that frontal electrodes are more affected than lateral 

electrodes during muscle contraction (see Figure 4-5). However, the level of contraction (C1-

C3) does not change the location of the selected pair. Instead, the contraction only causes the 

information to concentrate more on the selected pair rather than their neighbouring area, as 

illustrated in Figure 4-5. These findings suggest that future studies consider a total of three 

electrodes while designing a wearable device on the upper arm. 
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Very little was found in the literature on the question of which locations on the upper 

arm provide more information related to ECG. Escalona et al. performed a study in which they 

investigated and compared the SNR of various bipolars composed of 10 electrodes recorded 

from the wrist, forearm, and upper arm. They identified the highest SNR related to a bipolar 

composed of the upper arm and wrist electrodes. The next best electrode pair was related to 

the combination of the upper arm and forearm electrodes, and after that, the best bipolar was 

composed of two electrodes from the upper arm. The first two options require a two-piece 

wearable or one large enough wearable to cover a significantly big portion of the arm, which 

suffers from low wearability. Therefore, the combination of upper arm channels proposed in 

the current study is comparatively more appealing. Furthermore, the rough location of these 

two electrodes on the upper arm is consistent across all conditions investigated in this study 

(Figure 4-5). The present results are promising in at least three major aspects. Firstly, the spatial 

location of selected electrodes is significantly more precise considering the large number of 

recording electrodes (192) placed on the upper arm at a distance of 1 cm from each other. 

Secondly, the selected best positions were also consistent across all 20 subjects. And lastly, 

the best pair was chosen for both Rest and EF conditions separately, including four total muscle 

contraction levels (Rest, C1-C3). Although chest ECG signals were used for identifying these 

electrode locations, they were no longer required in future studies because of the above 

consistencies. And the above properties provide inherent robustness across intra-subject, inter-
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subject and inter-contraction variabilities, all of which are highly valuable for practical 

applications. 

Focusing on the second research question, we generated a synthesized ECG using the 

selected pair for further analysis. The synthesized ECG was first estimated using a weighted 

sum of the pair of electrodes. The two electrodes within this pair consistently had opposite 

behaviour across subjects. Therefore, the synthesized ECG was later set to the subtraction of 

the two monopolar channels (see Figure 4-6). This opposite behaviour was consistent with the 

previously mentioned study by Escalona et al.[10].  

The accurate localization of QRS complexes plays an important role in estimating heart 

rate and heart rate variability. However, the reported accuracy of heartbeat detection in the 

literature is broadly lacking information regarding tolerance or the maximum accepted distance 

between the detected and actual heartbeats. Therefore, there is very limited attention given to 

reducing this tolerance further to increase the performance of the heartbeat detection 

algorithms. For instance, the phase shift between the detail coefficients and the original signal 

that is caused by the commonly used SWT (especially in higher scales) has been widely 

ignored. We applied Zephlet at the level of five to decompose the synthesized ECG to a series 

of detail and approximation coefficients that have complete synchrony with respect to the 

original signal. Furthermore, it should be considered that this phase shift causes the detail 

coefficients not to be synchronized with each other as well. Therefore, the detected heartbeats 



 

83 

 

from different detail coefficients are not aligned with each other, even though they represent a 

single heartbeat. This prevents the opportunity of incorporating the detected heartbeats from 

different detail coefficients. On the other hand, most of the studies have only focused on the 

frequency range under 50 Hz for the means of QRS detection. They have selected only several 

of the wavelet details for heartbeat detection by reconstructing the signal using the selected 

components [2], or they have only used one component for heartbeat detection [63]. However, 

the QRS complexes contain information up to 100 Hz, and if the detail coefficients are 

synchronized, combining information from all of them can be an advantage in the detection. 

In support of this, our previous study shows that all scales of the detail coefficients (2 Hz - 128 

Hz) are highly informative regarding heartbeat detection [72]. Hence, the importance of 

including all the detail coefficients and extracting meaningful information from them indicates 

another valuable aspect of eliminating this phase shift and using Zephlet instead of SWT. As 

described in the results section, the synchronization of details allowed us to incorporate Zephlet 

with an MDS and significantly increased the performance of heartbeat detection at all tolerance 

levels. Furthermore, the superiority of Zephlet compared to SWT, which gets more pronounced 

as the tolerance decreases, highlights the negative effect of SWT phase shift and importance 

of reporting the tolerance along with the accuracy in future studies (see Figure 4-7). 

This study has some limitations, including the necessity to choose a pre-defined mother 

wavelet. There is abundant room for optimizing this mother wavelet to better fit our criteria 
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which is improving the performance of heartbeat detection. Moreover, different detail 

coefficients get the same weight in voting for the presence or absence of a heartbeat in the 

current MDS. A more sophisticated weight scheme can be further developed, considering the 

possibility of a clearer QRS complex projection at some of these detail coefficient levels. And 

lastly, the heartbeat detection methodology that is used in this study is the very popular Pan-

Tompkins algorithm in the literature [83], [96]. Despite the promising results of this algorithm, 

alternative detection algorithms should be investigated in future studies.   
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Chapter 5 

ECG delineation from the upper arm using mother wavelet 

optimization incorporated with Zephlet at four EMG contamination 

levels 

The content provided in this chapter is ready to submit to a peer-review journal. N. 

Heydari Beni, N. Jiang, “ECG delineation from the upper arm using mother wavelet 

optimization incorporated with Zephlet at four EMG contamination levels.” 

5.1 Introduction 

The current study presents a novel approach to obtaining the optimal mother wavelet in 

ECG delineation in high interference and low SNR scenarios, such as signals from the upper 

arm. The exact electrode localizations on the upper arm were defined based on our previous 

study through the analysis of high-density surface recordings [98]. We applied Zephlet to 

synthesized ECG compound of these selected electrodes to extract features with the highest 

similarity of averaged PQRST to Lead II. In this study, we parametrized the Zephlet mother 

wavelet to increase the ECG delineation performance of the selected component in the Rest 

condition and EF condition with high EMG artifacts. Mother wavelet parametrization gave us 

the opportunity to generate multiple wavelet filters by changing the varying parameters. 

Following that, we selected the mother wavelet with the highest performance in PQRST 
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delineation per subject and condition. Finally, we investigated the possibility of generalizing 

the mother wavelet for ECG delineation over subjects and various EMG intensity levels.  

In the next section, the experimental and computational methodologies are described in 

detail. Section 3 presents the results of feature selection, mother wavelet optimization, and 

PQRST delineation using the optimized mother wavelet. Section 4 discusses the results, 

limitations, and direction for future work, and the conclusion is provided in Section 5. 

5.2 Methodology 

5.2.1  Data Acquisition 

Twenty participants, self-reported as healthy, were recruited for the experiment. All the 

COVID-19 safety protocols were considered and approved by the Office of Research Ethics 

of the University of Waterloo (ORE #41252). All participants signed a written Informed 

Consent prior to starting the experiment. The participants were seated in a chair, relaxed, and 

had their left hand fixed. The left upper arm of the participants was covered with three 64-

channel surface bioelectric electrode grids (shown in Figure 5-1). The 64 channels on each of 

the electrode grids were arranged in an 8x8 fashion, with an inter-electrode distance of 1 cm. 

The reference was located at the elbow. Additionally, two disposable electrodes were placed 

on the right shoulder and left hip in accordance with the standard setup for an ECG Lead II. 
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The signal acquisition was performed using OT Bioelettronica’s EMG-USB2+ 

bioelectric signal amplifier. Hardware band-pass filtering was done from 0.3 Hz to 500 Hz, 

and data were sampled at 2048 Hz and digitized with 12-bit precision. The acquired data was 

further digitally lowpass-filtered using a third-order Butterworth filter with a cut-off frequency 

of 100 Hz (considering the acceptable frequency range of diagnostic ECG from 0.5 to 100 Hz 

[23]). Finally, data were downsampled to 256 Hz to reduce the computational cost.  

The experiment included two conditions: Rest and EF. Rest condition included two five-

minute data recording runs while the participants remained relaxed with no muscular 

contraction. In the EF condition, the participant was asked to hold different weights (C1:1.2 

 

Figure 5-1 . Electrode placement on the upper arm and shoulder (left) and the selected 

positions (right). Left: three 64-electrode high density grids (in yellow) were placed on the left 

upper arm. One electrode was placed on the right shoulder having the reference on the left 

hip to capture Lead II. Right: the selected positions including electrodes 8, 56 and 120, on the 

left upper arm. Electrodes 8 and 120 were selected for Rest and electrodes 56 and 120 were 

selected for muscle contraction conditions. 
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kg, C2: 2.2 kg, C3: 3.6 kg) with the left hand,  producing different intensity levels of EMG. The 

intention of generating various intensities of EMG was to contaminate the recording cardiac 

electrical information with these artifacts, replicating real-life scenarios. Participants 

performed isometric and isotonic contractions during recording, maintaining a 90-degree 

elbow angle while the upper limb was in a natural upright position. The same weights were 

used for all participants, ensuring that the experiment could be repeated and replicated. There 

were three separate trials of each weight for a duration of one minute each. The sequence of 

trials (overall nine trials for all weights) was randomized to replicate a realistic real-life 

situation. After each trial, two minutes of rest (or more if requested) were provided to the 

participants.  

5.2.2 Feature Extraction 

From our previous study, we selected the optimal electrode positions out of 192 for each 

of the Rest (channels 8, 120) and EF (channels 56, 120) conditions [98]. The location of these 

channels on the left upper arm is illustrated in Figure 5-1. Furthermore,  we were able to 

generalize the weights of these two channels over participants, sessions, and trials [98]. 

Accordingly, the following equations hold for all the conditions and participants:  

  Synthesized ECG at Rest = Channel 8 - Channel 120 (5-1) 

 Synthesized ECG at EF = Channel 56 - Channel 120 (5-2) 
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Next, Zephlet was applied to the synthesized ECG at Rest and EF to address the SWT 

phase shift drawback. The schematic diagram of Zephlet, along with the DWT and SWT, can 

be found in the third row of Figure 5-2. In Zephlet, the phase information of the wavelet filters 

is eliminated, resulting in achieving Zephlet filters with zero phases. Applying a 5-level 

Zephlet resulted in decomposing signals into five details and one approximation coefficients. 

Based on the sampling rate, which was reduced to 256 Hz, the frequency content of these six 

components was 64-128 Hz, 32-64 Hz, 16-32 Hz, 8-16 Hz, and 4-8 Hz for detail coefficients 

one to five, respectively, and 0-4 Hz for the approximation coefficients.  

The extracted components using Zephlet have different frequency ranges, some of which 

have better coverage of the PQRST frequency content. To delineate the PQRST waveform, 

selecting the best representative detail was critical. Therefore, a training phase was required 

for which we used 3-fold cross-validation on each trial of the dataset. To identify the best 

representative feature, we first applied the Pan-Tompkins algorithm on Lead II to detect the 

location of the heartbeats. Due to the synchrony of Zephlet features with Lead II, the identified 
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locations were common between Lead II and all Zephlet features. These R-peaks were 

considered given in this study because of the purpose, which was waveform delineation rather 

than heartbeat detection. We then segmented 0.3 seconds before and 0.4 after R-peaks as the 

 

Figure 5-2. (a,b) Extracting DWT and SWT coefficients; (c) the schematic diagram of deriving 

Zephlet filters based on Wavelet filters. The symlet6 highpass (in blue) and lowpass (in red) 

filters before and after applying Zephlet are represented. 
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PQRST waveform (overall 0.7 sec). This segmentation was based on the standard length of 

waveforms known as P-wave: 0.2 sec, QRS complex: 0.1 sec, and T-wave: 0.3 sec. The 

intention was to calculate the averaged PQRST over all of the extracted heartbeat segments for 

lead II and then compare it with each Zephlet feature using CC. Two considerations were 

required before calculating the CC of the averaged PQRST of the Lead II and the components. 

First, the detected R-peaks using the Pan-Tompkins algorithm do not precisely align with the 

actual R-peak. The reasoning behind such a temporal shift is the pre-processing in the Pan-

Tompkins algorithm, which includes an integration step. To address this, we first corrected the 

detected R-peak location by searching for the maximum amplitude within 15ms before and 

after the detected location. The second consideration was the phase difference between the 

synthesized ECG and Lead II for some individual subjects. An example of this phase shift can 

be seen in the averaged PQRST of Lead II and detail 4 of subject 5, as shown in Figure 5-3. 

The rationale behind this phase difference lies in the selected pair location on the upper arm 

that was generalized over all the participants [98]. 

This phase shift is an independent factor in the mother wavelet optimization procedure. 

Therefore, instead of a simple CC, we used a cross-correlation function between -20 ms to 20 

ms with a step of 10 ms. The maximum CC among these five different phase shifts was 

considered as the performance of that specific component (second panel of Figure 5-3). 
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After the selection of the best feature, the next step was to parametrize the mother 

wavelet and choose the parameters providing the best performance in PQRST delineation.  

 

Figure 5-3. (left) Examples of the averaged heartbeats for subjects 1, 5, and 18. (right) 

averaged PQRST for ECG and detail4 from subject 5 having -20, 10, 0, 10, and 10 ms of delay 

with respect to each other. 
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5.2.3 Parametrization of the mother wavelet 

In CWT, the coefficients from each frequency band are driven using the shifts of a 

generating function on a particular scale, 𝜓, i.e., the mother wavelet following Eq. (5-3) 

So, the wavelet coefficients at scale a and shift b are calculated as in Eq.(5-4). The series 

of coefficients at each scale is called a component. The wavelet coefficient is derived from the 

convolution of the signal with a filter, h, which is a derivative of the mother wavelet as follows: 
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j
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N
 yields h[n], which is the highpass decomposition 

filter for the DWT. Based on the perfect reconstruction characteristic of wavelets, the lowpass 

filter will accordingly be: 

According to Eq. (5-5) and Eq. (5-6), the highpass filter h defines the mother wavelet ψ, 

and also can be deduced from lowpass filter g considering the orthogonality. The 
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94 

 

Multiresolution Analysis MRA framework defines the lowpass filter in a parameterized 

framework, providing an opportunity for tuning the mother wavelet based on an optimization 

criterion [99]. Therefore, by parametrization of the mother wavelet, the problem of choosing 

the mother wavelet becomes the problem of selecting a finite set of filter coefficients. The 

lattice parameterization described by Vaidyanathan [100] offers the opportunity to design g 

via unconstrained optimization [99]. 

With the filter g having the length of L, the number of constrictive conditions to satisfy 

orthogonality equals L/2+1. Therefore, there will be L/2-1 degrees of freedom remaining for 

designing the filter. The filter g is defined below using two parameters [α, β] for the length of 

L=6: 

 
 𝑖=0,1: g[i] =

 [(1+(-1)icosα+sinα)×(1-(-1)icosβ - sinβ)+(-1)i2sinβcosα]

4√2
 (5-8) 

 
𝑖=2,3: g[i] =

 [1 + cos(α - β) + (-1)isin (α - β)]

(2√2)
 (5-9) 

 
 i = 4,5: g[i] =

1

√2
 - g(i - 4) - g( i - 2) (5-10) 

Various values of [α, β] parameters in the range of -π+ π/10 to π- π/10 by the step of π/10 

were used to generate a total of 361 (19*19) mother wavelets resulting in 361 filter pairs to 

find the pair providing the highest performance in the PQRST delineation. The optimization 
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criterion was set to the functional CC of the averaged PQRST of Lead II and the selected 

Zephlet feature. 

5.2.4 Robustness of the Mother Wavelet 

The optimized mother wavelet would potentially be subject-specific. Therefore, the 

optimization procedure was first done for each subject individually. In addition, the optimally 

designed mother wavelet for Rest may not be optimal for EF conditions and vice-versa. 

Therefore, the optimization procedure was done separately for Rest and C1-C3. Further, to 

investigate the generalizing ability of a potential one-size-fits-all mother, we investigated the 

variability of the optimized mother wavelets obtained from different trials, subjects, and 

conditions and assessed the performance of a single generalized mother wavelet independent 

of the subject, trial, or noise level.  

 

Figure 5-4. Averaged PQRST over the heartbeats for d1- d5 and a5 for Rest and C1-C3 (from 

left to right). 
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5.3 Results 

5.3.1 Feature Selection 

  An example of the averaged PQRST from Lead II (in black), along with the averaged 

PQRST from different Zephlet features applied on the synthesized ECG for Rest and C1-C3 

are illustrated in Figure 5-4. The shaded area represents the STD. The average of the functional 

CC of d1-d5 and a5 across trials and subjects for Rest was 

0. 19 ± 0.09, 0.36 ± 0.07, 0.63 ± 0.07, 0.74 ± 0.04, 0.65 ± 0.07, and 0.46 ± 0.09.   Therefore, 

the component with the highest functional CC was identified as d4 for Rest, with a frequency 

range of 8-16 Hz. The same conclusion was achieved for C1-C3  by the functional CC of 

0.73 ± 0.06, 0.72 ± 0.08, and 0.70 ± 0.09 for d4. Therefore, d4 was chosen as the best feature 

for further processing steps.  

5.3.2 Mother Wavelet Optimization 

The mother wavelet with the maximum performance was identified for individual 

subjects at each condition. The corresponding zero-phased lowpass and highpass filters are 

represented in colour in Figure 5-5 for Rest and C1-C3 conditions. We used 3-fold cross-

validation to evaluate the performance of the parametrized mother wavelets and choose the 

one with the maximum performance in the training dataset. The CC between the averaged 

PQRST from Lead II and d4 using these optimized mother wavelets for individual subjects 
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(averaged over trials and folds) in the test dataset was 0.88 ± 0.05 , 

0.85 ± 0.08, 0.83 ± 0.11, and 0.81 ± 0.1 for Rest and C1-C3, respectively as shown in Figure 

5-6.   

  

 

 

Figure 5-5. The optimized highpass and howpass filters for individual subjects at rest and 

the three muscle contraction level (C1-C3). The black line for each level represents the filters 

with the highest performance averaged on the subjects. 
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The robustness of the designed mother wavelet to EMG interference is crucial in any 

 

Figure 5-6. Top: The functional CC of the averaged PQRST over the heartbeats from LeadII 

and d4 (from Zephlet) for Rest and C1-C3. As illustrated, the optimized mother wavelet 

performs better compared to all different order numbers of various conventional mother 

wavelets. The most competitive mother wavelet is bior 1.3 in Rest and C1-C3. Bottom: The 

robustness of optimized mother wavelet performance against EMG intensity level 

increment.  
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further practical applications. Therefore, the ideal case would be using one mother wavelet for 

PQRST delineation, regardless of the EMG interference levels. Therefore, we investigated the 

performance of the optimized mother wavelet from Rest for the other conditions (C1-C3). 

Compared to using the corresponding optimized mother wavelet for each condition, there was 

no significant difference in functional CC (p > 0.05). Moreover, each of the optimized mother 

wavelets from C1-C3  provided us with the same performance in other muscle contraction 

levels (p > 0.05) and Rest (p > 0.01). Therefore, not only could we generalize the mother 

wavelet across subjects, but also we generalized it across various muscle contraction levels. 

Moreover, by an insightful observation, we realized that the generalized mother wavelet for 

C2 and C3 were identical.  

5.4 Discussions 

Accurately identifying cardiac arrhythmias can prevent many deaths related to these 

conditions. Wearable devices can provide long-term continuous cardiac monitoring by 

acquiring cardiac electrical activity on the body surface from non-conventional electrode 

placement without the intervention of clinical staff. Analyzing the acquired data allows the 

identification of cardiac arrhythmias [1]. The information that is required for such 

identification includes the location of heartbeats and their morphology.  

Our previous study was designed for heartbeat detection using the signals recorded from 

the upper arm. We first identified the optimal electrode locations on the upper arm through 
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high-density surface recording  (a total of 192 electrodes) and generated a synthesized ECG 

using those. Next, we detected heartbeats from synthesized ECG using Zephlet incorporated 

with a Multiagent Detection Scheme (MDS).  

The present study was designed for ECG delineation using the signals recorded from the 

upper arm. Following our previous study, we initially generated the synthesized ECG and 

extracted a number of Zephlet features (d1-d5, a5). We first selected a Zephlet feature with the 

most similarity to PQRST. Next, we optimized the mother wavelet to further improve PQRST 

delineation performance from the selected feature, for each individual and at each muscle 

contraction level. Following that, we investigated the possibility of generalizing an optimized 

mother wavelet across all the subjects and conditions. Finally, we compared the PQRST 

delineation performance of the optimized mother wavelet to the conventional mother wavelet 

families for a better selection of a mother wavelet that works best for this criterion. 

With respect to the first question, we identified d4 (8-16 Hz) as the most informative 

Zephlet component. Many wavelet-based ECG processing studies have focused on the 

selection of a wavelet component that provides the most information. The selected details 

include 2 (31.25-62.5 Hz) [62], 3-5 (5.75-45 Hz) [2], and 4 (15.6-31.1 Hz) [63], which 

represent a higher frequency range than our selected detail.  However, it should be mentioned 

that these frequency ranges were selected for QRS detection while we were targeting PQRST 

delineation. Therefore, the inclusion of lower frequency ranges plays an important role in this 
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application. Some of the above studies have also selected details with a lower frequency range 

for P- and T-wave delineation [2][61].   

Focusing on the second research question, we parametrized the mother wavelet using the 

Lattice parametrization method introduced by Vaidyanathan [100]. Therefore, we were able to 

generate 361 different mother wavelets and select the highest-performing one for individual 

subjects in each condition. We identified a single mother wavelet from the 361 candidates for 

all subjects without a significant loss in the overall performance in each condition. Moreover, 

we investigated the possibility of further generalizing the mother wavelet over different 

conditions i.e. Rest and different levels of EF. The results led us to the most important finding 

of this study, which is achieving a generalized mother wavelet for PQRST delineation that can 

be used for all participants and conditions. 

Comparing the results of the optimized mother wavelet with the conventional wavelet 

families represents the advantage of the proposed method. Among the conventional wavelet 

families, Bior1.3 had the best performance. Although many studies have investigated the 

selection of a mother wavelet with the highest performance for QRS delineation in the 

literature, the results include a wide range of mother wavelets, including Bior 2.6 [101], Haar 

[76], Sym4 [102], and db9 [77]. The different results from the literature suggested that 

selecting an optimized mother wavelet for QRS detection, which is highly important in 

detecting arrhythmias, has remained an open issue. It is worth noting that similar to our 
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findings, Kher et al. identified Bior 3.7 as the best mother wavelet for ECG reconstruction 

during various physical activities, in which case the ECG recording had low SNR [103]. The 

generalized Zephlet mother wavelet we reported in the current study is robust to noise level 

and subject-independent. It is especially valuable in extracting vital cardiac information using 

wearable devices during daily activities of living. 

This study has some limitations. Firstly, the generalisability of the presented results is 

limited by the relatively small participant pool and the contractions of only the biceps brachii 

muscle. A natural progression of this work is to include various arm movements and activities 

and investigate the optimized mother wavelet performance over a larger number of 

participants. On the other hand, because of the different morphologies and structures of the 

heart, the ECG signal of each individual possesses a unique pattern, particularly for patients 

with cardiac conditions. Although the generalization of mother wavelet over subjects helps 

with eliminating individual-based training, the variation among subjects will be missed. The 

same holds for the heartbeat morphologies as well because of their time-varying nature. 

Moreover, despite the promising results of this algorithm, the location of heartbeats is 

considered known. The overall performance of PQRST delineation using the optimized mother 

wavelet combined with our heartbeat detection algorithm from the previous study [98] would 

be the next step of this study. Lastly, a single mother wavelet and a single Zephlet component 

(d4) were used in the delineation of all P-wave, QRS complex, and T-wave. In future 
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investigations, it would be desirable to delineate the QRS complex, P-wave and T-wave, using 

different components, as the three waves have different frequency ranges, as discussed in the 

literature [2][61]. Such a scheme can be implemented by allocating a particular waveform in 

the resulting PQRST to the one extracted from its corresponding component.   
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Chapter 6 

Conclusion 

6.1 Summary and Concluding Remarks 

Real-time cardiac activity monitoring is crucial for people with sensitive heart conditions 

such as arrhythmias. Extracting cardiac information that represents the heart activity is required 

to achieve constant cardiac monitoring. However, conventional standard chest ECG recording 

suffers from inconveniency, additional wires, and low wearability. Therefore, extracting 

cardiac information from the electrodes placed on the upper arm with higher wearability and 

comfort is an alternative approach proposed in this study. Toward this goal, an experiment was 

designed to acquire Lead II simultaneously with signals recorded from the upper arm using 

192 high-density EMG electrodes. The experiment included two conditions: Rest and EF, at 

which the participants hold different weights (C1:1.2 kg, C2: 2.2 kg, C3: 3.6 kg) that generates 

various EMG activity levels.  

The importance of this thesis lies in the precise extraction of heartbeat locations and 

delineation of ECG waveforms using the signals recorded from the upper arm. The findings 

make several contributions to the current literature. First, we identified the precise optimal 

location of a pair of electrodes on the upper arm for heartbeat detection at Rest and EF 

conditions (C1-C3). Next, we introduced consistent spatial filter weights (across subjects, 
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conditions, and trials) for these electrodes in order to generate a synthesized ECG with the 

highest similarity to Lead II, which is critical for generalization purposes. Furthermore, after 

identifying SWT as a robust algorithm against EMG increment compared to state-of-the-art 

methods, we addressed two important SWT drawbacks: phase shift and pre-defined mother 

wavelet requirement. Focusing on phase shift elimination, we used Zephlet incorporated with 

MDS for heartbeat detection and reported the results at different tolerance levels. The results 

of Zephlet were compared to SWT to emphasize the importance of eliminating the phase shift 

that SWT causes in feature extraction. Next, we designed a mother wavelet that was 

specifically optimized to delineate PQRST waveforms for each subject and EMG intensity 

level. We then went one step further and optimized a mother wavelet that can be generalized 

over subjects and EMG intensity levels. This designed mother wavelet can be further used in 

many applications that utilize WT for the extraction of ECG information. Accordingly, the 

second SWT drawback was also addressed, resulting in significantly better ECG delineation 

performance than conventional mother wavelets. The identified electrode locations, 

generalized weights, proposed heartbeat detection algorithm using Zephlet, and optimized 

mother wavelet can be further used in wearable devices for the purpose of extracting cardiac 

information.  



 

106 

 

6.2 Limitations and Future Work 

This thesis has some main limitations. Firstly, the generalisability of the presented results 

is limited by the relatively small participant pool and the contractions of only the biceps brachii 

muscle. A natural progression of this work is to include more participants and various arm 

movements and activities. Moreover, for the algorithms to be implementable in wearable 

devices, we have generalized the location and the weight of electrodes on the upper arm. 

Therefore, we are not using the most informative channels and the best weights for each 

individual. Similarly, although the generalization of mother wavelet over subjects helps with 

eliminating individual-based training, the variation among subjects will be missed. The same 

holds for the heartbeat morphologies detection using a generalized mother wavelet because of 

their time-varying nature. In addition, the optimized mother wavelet can be tailored for 

different arrhythmias, which helps with arrhythmia detection applications. And lastly, the 

heartbeat detection methodology that is used in this thesis is the popular Pan-Tompkins 

algorithm [83][96]. Despite the promising results of this algorithm, alternative detection 

algorithms should be investigated in the future.   
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