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Abstract

The prediction power of deep learning models depends on the size and quality of the
training data. Having access to large-scale datasets enables the model to more precisely
estimate the underlying distribution of the data. Deep models rely on training datasets
that are ideally aggregated from various sources. However, it may not be possible to
construct large-scale datasets in one central location in the medical domain due to pri-
vacy considerations. In centralized learning methods for medical imaging, training data
is supposed to originate from different medical centers (i.e., hospitals and clinics), and be
transferred to a centralized location, commonly called a server. However, hospitals are
generally not willing to share their medical records with other external collaborators be-
cause of privacy considerations and regulatory compliance. Therefore, the lack of publicly
available large-scale diverse datasets hinders model development in healthcare. To over-
come these challenges, decentralized learning methods are a promising scheme to preserve
data privacy while enabling training of general models using data from different sources.
Federated learning allows training on multi-site datasets without requiring direct access
to data. Federated learning has emerged as a promising solution to protect user-sensitive
data by keeping data local. It is a novel decentralized paradigm that plays a critical role
in privacy-sensitive applications, opening new horizons for secured decentralized learning
methods.

The main focus of this research is privacy-preserving federated learning. The two key
challenges in federated learning, namely privacy of the training results and fairness in ag-
gregating training results will be addressed. The first challenge is that training results are
as important as training samples as they may reveal privacy clues. To address this chal-
lenge, this thesis adopts secure multi-party computation and proposes a framework enabling
participant hospitals to maintain privacy while sharing their training results. The second
challenge is that the collaboratively learned global model is supposed to have acceptable
performance for the individual sites. However, existing methods focus on model averag-
ing, leading to a biased model that performs perfectly for some hospitals while exhibiting
undesirable performance for other sites due to non-iid data distribution among hospitals.
This challenge will be addressed by improving the model fairness among participating hos-
pitals through introduction of a novel federated learning scheme called Proportionally Fair
Federated Learning, Prop-FFL. Proportional fairness modifies the aggregation rule at the
central server to account for varying site contributions. It is based on a novel optimization
objective function to decrease the performance variation among hospitals. Experiments
have been conducted on The Cancer Genome Atlas (TCGA), a publicly available reposi-
tory. The experimental results suggest competitive performance compared to the baseline
and benchmark schemes.
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Chapter 1

Introduction

Histopathology is regarded as the gold standard for diagnosis of many diseases, among
other cancer, and determining the presence and nature of a disease. However, diagno-
sis by pathologists is subjective with high intra-and inter-observer variability. Observer
variability is defined as the variation between the diagnosis of a set of cases examined
by independent pathologists [1]. Diagnostic observer variability is inevitable due to rea-
sons such as pathologists’ educational bias, the complexity of the task, and the continuous
evolution of diagnostic criteria [2]. These factors can lead to inconsistent diagnostic in-
terpretation and hinder reaching diagnostic consensus. Over the past few years, the rapid
development of artificial intelligence and machine learning has revolutionized the research
in healthcare domain. In this regard, digital pathology has offered an excellent opportu-
nity to improve consensus and increase the precision of diagnostics through the adaptation
of machine learning techniques, especially deep learning [3]. The key enabler of digital
pathology is data. Training a generalized machine-learning model requires collecting data
from various medical institutions. However, compared to other domains, medical data is
highly sensitive, and collecting data from medical centers in one centralized location seems
to be wishful thinking at the present time. Sharing medical data with other third parties
raises privacy concerns as the training data may contain private patient information. Ad-
ditionally, centralized data may not only expose individuals to privacy risks but also faces
organizations to legal risks. There are various guidelines and regulations that prohibit
medical centers from patients’ data disclosure, such as United States Health Insurance
Portability and Accountability Act (HIPPA) [4].

Thus, it is absolutely indispensable to develop privacy-enhanced computerized ap-
proaches in the healthcare domain to protect both patients and medical organizations.
In this context, a crucial question that will be answered in this thesis is how to train a
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high-performance machine learning model on multi-institutional data without violating the
privacy of the patient’s data.

Recently the concept of “federated learning” has been introduced to enhance the privacy
aspect of machine learning methods. The initial work of federated learning has been
proposed for mobile devices. Soon after, federated learning was expanded for use in a
variety of applications. It has proven its potential not only in wireless communication,
but also in the Internet of Things (IoT), autonomous driving, and healthcare, to name a
few. Currently, federated learning is broadened to be included across organizations such
as hospitals. Federated learning is a distributed machine learning framework that allows
for collaborative model training by coordinating tasks among hospitals without sharing
actual training samples. More specifically, the central server initializes the global deep
model with random parameters first and subsequently sending those parameters to each
hospital. Then, each hospital trains the model with its local data, updating the model
parameters, and sending local updates – and not the data – to the central server. Next,
the central server combines all local model updates and constructs a new improved global
model, sharing the new model with hospitals to locally train again. This process continues
until the global model converges to a stable solution according to common learning rules.

Federated learning can also be applied without any central server, which is called “de-
centralized federated learning”. Both centralized and decentralized federated learning form
a collaborative learning environment among medical centers to facilitate privacy-protection
during model training by not revealing patients’ private data. Federated learning with its
innovative operational procedure offers not only data privacy enhancement, but also helps
to reduce the need for central storage. It enables us to benefit from diverse datasets
from various medical centers representing a much larger diversity of patient demograph-
ics. Therefore, there is a higher chance that the trained model be of higher generalization
and expectedly achieve higher accuracy, which might not be achieved by conventional
approaches with insufficient data.

This Ph.D. research is premised on the hypothesis that federated learning can poten-
tially remedy intra-and inter-observer variability and improve consensus building. In other
words, the model learned through federated learning can be used as a “second opinion”.
This can help pathologists to benefit from the collective wisdom of diagnostic patterns
of previous cases interpreted by other pathologists. However, applying federated learning
techniques to real-world data may suffer from some challenges, especially of the non-IID
nature of the real-world datasets. This thesis will address two challenges of federated
learning in the medical domain, namely secure computation and fairness.
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1.1 Motivation

The motivation for this Ph.D. research originates from data privacy and data sharing
concerns in machine learning. These concerns are more crucial in the medical domain
where medical centers and healthcare providers have restrictions around sharing patients’
data with external collaborators. At the same time, training a machine learning model for
healthcare purposes often requires comprehensive data from multiple medical institutions.
Therefore, the question that remains to be addressed is how to train machine learning
models when we might not be able to access training data. In this regard, decentralized
machine learning methods such as federated learning belong to emerging technologies.

Federated learning, as a privacy-preserving framework, involves training a model with-
out having direct access to patient-sensitive data but rather in a distributed collaborative
fashion. The federated approach relies on decentralized data distribution from various hos-
pitals and clinics. However, employing federated learning in the medical domain, e.g., for
histopathology images, may be impeded by some challenges. One challenge is how effec-
tively aggregate training results to obtain a high-performance model when data is non-IID.
The second challenge is how to create a secure communication to protect training results
from disclosure. This thesis will propose solutions to address these challenges in federated
learning.

1.2 Thesis Objectives and Contributions

The main objective of this thesis is to develop practical decentralized learning frameworks
to maintain the privacy of whole-slide images (WSIs) during the training of histopathology
data, and to create a secure communication procedure. These frameworks allow decentral-
ized model training, enabling medical centers to collaboratively learn a fair model based on
security and privacy considerations. The experiments within this research were designed
to quantify the performance of the proposed decentralized machine learning methods. To
some extent, this thesis contributes to the key challenge of data privacy in the biomedical
community, enabling machine learning techniques to be safely applied for histopathology
diagnosis of diseases, particularly cancer.

The two significant contributions of the thesis are as follows:

• In Chapter 3, this thesis introduces cluster-based secure multi-party computation
(SMC) framework to preserve privacy when participant medical centers and the cen-
tral server communicate.
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• In Chapter 4, this thesis introduces Prop-FFL, a federated learning framework that
enables hospitals to collaboratively learn a fair model across medical centers.

1.3 Thesis Organization

The thesis is organized into five Chapters which are structured as follows:

• Chapter 2 introduces the general idea of computational pathology and federated
learning. It presents the necessary definitions, concepts, and mathematical formu-
lations of federated learning. Also, the state-of-the-art benchmarks in federated
learning will be reviewed.

• Chapter 3 focuses on privacy-preserving methods in federated learning. It presents
the proposed secure multi-party computation (SMC) framework to protect privacy
in federated learning.

• Chapter 4 presents fairness in federated learning. It introduces the proposed propor-
tionally fair hospital collaboration in federated learning.

• The summary of the thesis along with a general conclusions and future works are
provided in Chapter 5

4



Chapter 2

Background

2.1 Digital Pathology

Medical practice has been revolutionized over the past few decades thanks to emerging
of new hardware and computerized technologies. The advent of digitized whole-slide
images (WSIs) is about to transform traditional histopathology into a modern field de-
scribed as “digital pathology”. A WSI is the digital output of scanning glass slides (with
mounted/fixed tissue sample) with high resolution and color depth. It is a digital repre-
sentation of a glass slide and is sometimes called a virtual microscopy image [5]. WSIs can
be saved in computer storage and viewed/processed with appropriate tools and software.
Pathologists’ main task involves diagnosing cases by accurate interpretation of inspecting
glass slides under a microscopic. With the advent of WSIs, pathologists can assess digitized
glass slides on a computer monitor instead of examining glass slides through a microscope,
i.e., digitized WSIs can fully replace light microscopy in many fileds. Today’s modern
clinical practice has started to rely on digital pathology for technological requirements in
laboratory environments [6, 7]. Digital pathology has occupied such an important place in
research of histopathology speciemens that is next to impossible to imagine a future with-
out it. WSI viewing software enables pathologists to annotate, edit, highlight, analyze, and
easily share their findings with other experts [8]. As a result, it facilitates clinical workflow
and speeds up the diagnostic process. Having everything on a computer helps patholo-
gist to access previously diagnosed cases quickly and easily. Using digital pathology, the
computational pathology can speed up the process as it automatically provides us with
quantitative analysis, such as nuclei cell and mitosis count. The benefits of using digital
pathology are broad and not limited to improving the pathologists’ workflow. For example,
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Figure 2.1: An example of WSI format in a pyramid structure. Due to their gigapixel size,
WSIs are saved in a multi-magnification structure.

it might resolve storage concerns in laboratories. Currently, medical centers must have a
physical space to keep millions of glass slides for several years before they can destroy slides
because of space limit [9]. Using WSIs not only relieves the need for physical storage space
but also keeps slides available for a longer period. Another benefit is that digital pathology
supports pathologists in difficult cases as it allows for remote consultation with internal
and external experts and specialists across the world. This would improve the quality of
diagnosis and lead to more accurate decisions. Additionally, digital pathology facilitates
the research. Having WSIs enables us to apply artificial intelligence and machine learning
analysis to histopathology images, a new horizon in computational pathology.

2.1.1 WSI Format

WSIs are extremely large images compared to other medical image modalities such as
radiology images. They are often captured in at least 20× magnification or higher, and
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can easily be more than 50, 000× 50, 000 pixels, hence the term “gigapixel” images. These
high-resolution images are in the range of 0.5−6 GB on disk [10, 11]. Unlike other medical
image modalities such as MRI and CT, common compression and storing techniques are
not applicable for WSIs due to the image size and sensitive nature of anatomic clues in
high magnification.

WSIs are stored in a layered pyramid structure, where each layer represents WSI at
a different zoom (magnification) level [10]. This helps facilitate efficient and user-friendly
WSI software tools, optimized for WSI visualization and analysis.

Figure 2.1 illustrates a WSI in three layers pyramid structure. The first layer, the base
image, has the highest resolution, while the last layer, the thumbnail, has the lowest reso-
lution [12]. Also, all the information about WSI such as resolution, size, and magnification
is encoded in its header when formats like BigTIFF or SVS are used [13].

2.2 Machine learning in Computational Pathology

Digital pathology is becoming popular with the advent of whole-slide digital scanners re-
sulting in growing availability of digitized histopathology images. Having access to WSIs
not only makes pathologists’ job easier and relieve the workload on pathologists [14] but
also allows us to apply image analysis techniques in the histopathology field. Image anal-
ysis techniques include detection, segmentation, and classification, which can be beneficial
for many clinical tasks. They can significantly reduce laborious and time-consuming tasks
as they can provide us with robust quantifications, e.g., nuclei, mitosis, and cell counting.
This quantitative analysis is important to understand the underlying reasons for diag-
nosis [15]. Additionally, sophisticated machine learning techniques can support medical
centers and pathologists to gain a second opinions in cancer classification and detection
tasks [16, 17]. Machine learning in computational pathology can be categorized into two
groups: supervised and unsupervised learning. Supervised learning approaches rely on
labeled data to infer a mapping function between inputs and labels. The main goal of
unsupervised learning methods, in contrast, is to discover hidden structures in unlabeled
data. However, applying both supervised and unsupervised techniques is not straightfor-
ward in histopathology and may require design of unique processing steps since WSIs have
unique properties [18].

There are several challenges pertinent to applying machine learning techniques to high-
resolution histopathology WSIs. However, machine learning offers many opportunities to
develop efficient and robust methods, deal with those challenges, and improve diagnostic
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interpretation in histopathology. Some of these challenges and opportunities are introduced
in the following subsections.

2.2.1 Challenges

This section will focus on four challenges concerning representation and processing of WSIs
through machine learning techniques, and identifying two opportunities of applying ma-
chine learning in histopathology [18, 19].

Large Dimensions

Many machine learning techniques have been applied to general datasets that contain nat-
ural images (animals, objects, etc.) of size 256× 256 pixels. However, WSIs are extremely
large images, which often exceed 50, 000×50, 000 pixels. These images are hard to analyze
due to their massive size. It seems to be impossible to directly feed these images into a
neural network as they can exhaust computational resources [19]. Also, Resizing WSIs to
smaller sizes would lead to loss of critical information [18]. One common approach for this
challenge is to divide WSIs into small regions called “patches”, e.g., 1000× 1000 patches.
Then, each patch may be analyzed independently [16].

Multi-Magnification

Pathologists examine glass slides or WSIs by acquiring information from various magnifi-
cation levels. They may obtain structural information at lower magnifications and detailed
cellular information at higher magnifications. Although it is more common to use WSIs
in 20x magnification for machine learning, it has been shown that combining images from
different magnifications may improve the final performance of machine learning algorithms
depending on diseases and tissue types [18, 20]. This thesis used WSIs at 20x magnification.

Lack of Diversified Datasets

The morphology of a single subtype of cancer can appear in different patterns. Morphology
variability, or polymorphism, can make learning challenging as the model have to learn all
possible patterns for each cancer type. Additionally, slide preparation, staining, and digtal
scanners are different among different medical centers. As a result, training samples need
to be gathered from multiple medical centers. This will enable the model to be more
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Figure 2.2: Patches of the same WSI at three different magnification levels. The left image
at lower magnification has more structural tissue information while the right image at
higher magnification has more detailed cellular information.

generalized by being trained with a diverse dataset [19]. In this regard, decentralized
learning allows training the model on datasets from various organizations without the
need to collect data in one central location.

Security and Privacy

Compared to data in other domains, healthcare data is highly sensitive. Medical records
can reveal intimate details about patients’ physical and mental health. Many guidelines
and regulations stress the privacy, confidentiality, and security of patients, prohibiting
medical centers from sharing data with other parties outside their organizations [21, 22].
At the same time, machine learning is inherently dependent on having data from diverse
sources to train a generalized model. Obviously, federated learning as a distributed learning
approach may be able to address this challenge. It allows multi-institutional collaboration
on decentralized data, protecting the privacy of each individual participant.

2.2.2 Opportunities

Computer-Assisted Diagnosis

The main aspect of digital pathology is the computer-assisted diagnosis (CAD), which
has the potential to revolutionize pathologists’ routine tasks [18]. CAD can facilitate,
quantitative assessment (e.g., nuclei and mitosis count), segmentation (e.g., contouring
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structures and regions), classification (e.g., benign vs. malignant and cancer grading),
and detection (e.g., detecting region of interest (ROI) such as tumor region). CAD not
only relieves the workload on pathologists and saves their time to focus on complicated
cases, but it could – when offered with well-trained models in a user-friendly fashion –
provide clinics with a computerized second opinion which can significantly reduce inter-
and intra-observer variability [15].

Distributed and Decentralized Learning

Recent advances in machine learning have opened new horizons in digital pathology. It has
removed geographical barriers, helping medical centers to benefit from the diagnosed cases
in other medical centers in a decentralized fashion. Distributed learning enables training a
machine learning model without the need to collect data in one central location. It not only
makes the process more agile and economic since it does not require centralized storage but
also helps to maintain the privacy of the medical records as the data are never touched by
off-site access in some decentralized learning methods. More details on distributed learning
will be provided in the following section.

2.3 Distributed and Private Machine Learning

The prediction power of deep models depends, among others, on the size of the training
data. Having access to large-scale datasets enables the model to more precisely estimate
the underlying distribution of the data. For example, the public availability of the Im-
ageNet dataset [23] with almost 1.2 million diverse data samples has led to considerable
advancements in computer vision. Machine learning methods, and deep models, in par-
ticular, rely on training datasets that are ideally collected and aggregated from various
sources. However, it appears currently impossible to gather large-scale datasets in one
central location in medical domain due to privacy concerns [22]. In centralized learning
methods for medical imaging, training data is from different medical centers such as hospi-
tals and clinics, which are brought together to a central location, commonly called a server.
However, hospitals are generally not willing to share their patients’ medical records with
external collaborators because of privacy considerations and regulatory compliance [24].
Therefore, the lack of large-scale diverse datasets publicly available to researchers hinders
model development in healthcare. To overcome these challenges, decentralized learning
methods appear to be a promising scheme to preserve data privacy while enabling training
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of generalizable models. Federated methods allow training on multi-institutional datasets
without requiring direct access to data.

Federated learning has emerged as a promising solution to protect user-sensitive data by
keeping data local. It is a novel decentralized paradigm that plays a critical role in privacy-
sensitive applications, opening a new horizon for secured decentralized learning methods.
Federated learning as a decentralized approach was first proposed by McMahan in 2017
[25]. The main concern of federated learning is data privacy to protect users against data
disclosures. It has become a recent active area of research because of increased concerns
for data privacy and cybersecurity [26].

Federated learning was first proposed for wireless mobile network applications to accom-
modate decentralized training [27]. It enables mobile users to keep their local data private,
training the model locally relying on their private data and sharing only the training re-
sults (not data) with the central server and hence other users. This allows the server to
train the global model relying only on the aggregated training results of decentralized data.
Although federated learning was first proposed for wireless networks, it can be applied to
other privacy-sensitive applications such as the medical domain.

2.4 Federated Learning

There are three principal challenges in histopathology image analysis, which encourage
us to employ federated learning. Firstly, histopathology image analysis is a complicated,
time-consuming task since images are large with many details relevant for diagnosis. Using
artificial-intelligent systems can reduce the workload on pathologists and facilitate diag-
nosis [15]. Secondly, studies have shown that observer variability in histopathology image
diagnosis can be significant due to specific diagnostic biases such as the pathologist’s initial
training or working environment [2]. Access to a second (computational) opinion provided
by machine learning can make pathologists more confident in their decision and comple-
ment their visual assessments. Thirdly, similar to other medical domains, histopathology
images contain critical information that hospitals may not be able to share for the sake of
patients’ privacy [22]. Also, having access to histopathology data from different medical
centers is a vital prerequisite to training a generalized model.

Federated learning seems to be a solution that can address all these challenges. It not
only trains deep models to make the diagnosis task more reliable but also can decrease
observer variability and improve consensus building by learning a collaborative model for
quantification of tissue morphology without violating patients’ privacy.
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There are two main components in federated learning, namely a central server and some
local centres [25]:

• A local center is a clinic or hospital that is willing to participate in the learning
of a global deep model but is not interested in sharing any patient data with other
organizations. The local center might also be called a participant or hospital in this
thesis. Apparently, there exists more than one local center in any federated learning
scenario.

• A central server is the main hub responsible for orchestrating decentralized learn-
ing. It facilitates the aggregation of training results from all the local centers and its
main goal is to train a global model with acceptable performance for all participants.
Therefore, it is also called an aggregation center.

Figure 2.3: Illustration of federated learning with the central server and K participants.

Federated learning is a promising framework that addresses the fundamental challenges
of privacy, ownership, and locality of data [26]. Depending on the task at hand, it enables
training machine learning models, in a collaborative fashion, over decentralized data centers
such as hospitals, relying on remote decentralized local data [25]. To learn a global model
at the aggregation center, all local data centers periodically collaborate with each other
through communication with the aggregation center. Figure 2.3 represents one possible
architecture of a federated learning scheme with the central server and k participants. As
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can be seen, each iteration of the federated learning procedure consists of three main steps
described below [28]:

1. Model distribution – The aggregation center broadcasts the global model param-
eters to each of the local centers via a secured communication link.

2. Local training – Given the global model parameters at the previous stage, each
local center trains the global model by relying on its local data, updating the model
parameters locally.

3. Global aggregation – All participating local centers send the training results back
to the aggregation server. Next, the central server processes the received updates
from local centers by updating the global model parameters. This procedure is called
global training.

These three steps are repeated until the global model training converges into a robust
model. These steps are common among almost all federated learning methods [25]. More
specifically, various federated learning methods may have different assumptions, formu-
lations, and procedures for implementing each step of the general flow of decentralized
learning.

2.4.1 Mathematical Formulation

In this section, mathematical notations and formulations are presented to explain the
formalism of federated learning [25, 29]. It is assumed that there is a fixed number of m
participant hospitals {Pi}mi=1 in our setting. Each of these participant hospitals has a fixed
local dataset, denoted by {Di}mi=1 where each has ni training samples. These m hospitals
wish to train a model with parameter w. In conventional approaches, all data {Di}mi=1

is collected at one central location to train a machine learning model where data owners
expose their data to other parties outside their hospitals. However, in federated learning
data owners collaboratively train a model with parameters w without sharing their private
data {Di}mi=1. It is assumed that all the participant hospitals take part in each round of
training. In a typical machine learning problem, model weights are adjusted using the
optimization problem

min
w∈Rd

f(w),
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where

f(w)
def
=

1

n

n∑
i=1

fi(w),

and n is the number of samples in the training dataset. Function f(w) is the loss function,
and fi(w) is defined by

fi(w) = ℓ(xi, yi;w),

which is the loss of the prediction on training sample (xi, yi) given the model parameter w.

Assuming that the dataset is partitioned into m smaller datasets, the optimization
problem above can be rewritten as follow

min
w∈Rd

f(w) =
m∑
k=1

Fk(w),

where

Fk(w) =
1

nk

∑
i∈Pk

fi(w).

In the optimization problem above, it is assumed that all those m datasets are in one
central location and accessible for training. However, federated learning collaboratively
trains a model without the need to collect and access private training samples. In the
following section, two common federated learning benchmarks will be discussed in detail.

2.4.2 Benchmarking Federated Learning Methods

There are two common benchmark methods in federated learning, namely FedSGD (Fed-
erated Stochastic Gradient Descent) and FedAvg (Federated Averaging) [25]. FedSGD
relies on stochastic gradient descent (SGD) for optimization, and FedAvg is built on top
of FedSGD.

FedSGD

Federated stochastic gradient descent, FedSGD, is one of the benchmarks for federated
learning [25]. In FedSGD, participants perform training only for one batch of data, meaning
that one single gradient calculation is done per round of communication. The central
server is the main node that can update model parameters by collecting gradients from
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all participants. This approach is computationally efficient as hospitals calculate only one
single batch gradient. However, it is expensive in terms of the number of communications
to converge.

Given the learning rate η, each client k compute single batch one step of gradient
∆Fk(wt) at current model wt, creating a new local model weight wk

t+1 as follow

wk
t+1 ← wt − η∆Fk(wt).

Then, the central server aggregates local weights, updating the model parameters as follows

wt+1 ←
m∑
k=1

nk

n
wk

t+1,

where nk is the number of samples in the kth hospital, and n is the total number of training
samples from all the participant hospitals. More detail on the FedSGD method is provided
in Algorithm 1.

Algorithm 1 FedSGD [25]. There are m local centers, T is the number of epochs, η is
learning rate, nk is # samples in kth local center, n is total # samples, and w is the global
model parameters.

Input: m,T,w0, η
Output: wT−1

1: for t = 0, . . . , T − 1 do
2: Server sends wt to all hospitals
3: for k = 1, 2, . . . ,m do
3: Given (k, wt, η), each hospital updates the model for one batch of its data and

returns wt+1
k

4: end for
5: Each hospital k sends wt

k back to the server
6: Server updates wt+1 as

wt+1 =
m∑
k=1

nk

n
wt+1

k

7: end for
8: return wT−1
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Algorithm 2 FedAvg [25]. There are m local centers, T is the number of epochs, η is
learning rate, nk is # samples in kth local center, n is total # samples, B is local minibatch
size, E is the number of local epochs, and w is the global model parameters.

Input: m,C, T, w0, η, nc

Output: wT−1

1: for t = 0, . . . , T − 1 do
2: Server sends wt to all hospitals

% Local Training
3: for k = 1, 2, . . . ,m do
4: wt+1

k ← LocalTraining(k, wt, η) % update weights
5: end for

% Global Training
6: Server updates wt+1 as

wt+1 ←
m∑
k=1

nk

n
wt+1

k

7: end for
8: return wT−1

LocalTraining(i, wt, η) :

1: B ← (split dataset of ith hospital into batches of size B)
2: for local epoch j = 1, 2, . . . , E do
3: for batch b ∈ B do
3: w ← wt − η∇Fk(wt; b) % Fk(.) is the loss function for hospital k
4: end for
5: end for
6: return w

FedAvg

Another common benchmark method for federated learning is FedAvg (federated averag-
ing). FedAvg is the expansion of FedSGD, where more computation is added to each client
by iterating the local updates. In FedAvg [25], each participating hospital trains the global
model on its local data for some number of batches and epochs. Then, the central server
aggregates the training results and simply takes the average of training results across all
hospitals. FedAvg algorithm has been provided in detail in Algorithm 2.
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Comparing FedAvg and FedSGD

Table 2.1 summarises the advantages and disadvantages of FedSGD and FedAvg ap-
proaches. Firstly, in FedSGD, hospitals need to send their training results to the central
server for every batch of their local data, which leads to high communication overhead.
However, in FedAvg, hospitals update model parameters for multiple batches and epochs,
then send training results to the central server. Therefore, FedAvg has moderate commu-
nication overhead compared to FedSGD at the expense of having computational cost in
each hospital. Secondly, FedAvg allows training to be faster compared to FedSGD since
both hospitals and central server can update the model in FedAvg. Thirdly, in FedSGD,
the central server has access to accurate gradient information and updates the model based
on those gradient, therefore, the convergence is guaranteed in this approach. However, in
FedAvg, the central server does not have access to model gradients. It just takes average
over local updates, therefore, model convergence is not guaranteed in this approach.

Table 2.1: Performance Comparison between two federated learning benchmarks, FedSGD
and FedAVG [29].

Method Advantages Disadvantages

FedSGD
Accurate gradient information High communication cost
Guaranteed convergence Slow convergence
Computationally efficient Require reliable connection

FedAvg
Faster convergence High computational cost at hospitals
Communication efficient No guarantee of convergence

2.4.3 Federated Learning in Medical Domain

Strict national and regional privacy rules, such as General Data Protection Regulation in
Europe or HIPAA in the United States, prohibit medical centers to share patients’ medical
records [30] . However, conventional machine learning methods require to access data in one
central location. To mitigate these challenges, the research community has recently started
to explore the potentials of federated learning for medical image analysis, creating multi-
center healthcare ecosystem. Federated learning has the potential to increase both the size
and diversity of training data without violating data privacy. It enables medical centers
to deploy large-scale machine learning models trained on different data centers without
sharing sensitive private data. Federated learning has been employed for classification,
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segmentation, and detection tasks applied on various types of medical images, such as CT,
MRI, microscopy images, and WSI patches.

For detection examples, authors in [31] used federated learning for abnormal detection
in COVID 19 CT images, and authors in [32] used federated learning for abnormal tissue
detection in brain MRI images. Segmentation of tumors in brain MRI images in federated
learning setting has been studied in [33]. The authors in [34] used private prostate MRI
images from three institutions and showed the superiority of federated learning in prostate
MRI segmentation. As another example of segmentation, authors in [35] employed feder-
ated learning for segmenting COVID region in chest CT images. As classification examples,
skin lesion classification in decentralized scenario has been studied in [36]. Authors in [37]
conducted a case study of federated learning on histopathology images with the focus on
differential privacy. They have also examined design factors on the classifier trained in
federated learning setting. Classification of histopathology images in federated learning
fashion have also been investigated in [38]. The main goal of the authors in [38] is to
reduce the amount of communication between the server and hospitals.

These papers mostly focus on studying the applicability of federated learning in the
medical domain. They do not address urgent challenges in applying federated learning for
medical images.

2.5 Summary

This chapter introduced the necessary definitions and concepts that readers should be
familiar with to understand the content presented in upcoming1 chapters. Recent advances
in digital pathology by enabling whole slide imaging are acting as the key enablers of
machine learning in computational pathology. Federated learning was introduced as a
promising remedy for medical data privacy concerns. Most existing works on federated
learning in the medical domain involve applying existing federated learning approaches on
medical data. They do not address the real-world challenges of federated learning methods
on medical data.

In the next two chapters of this thesis, two real-world challenges of federated learning
will be addressed. Secure communication between hospitals and the central server and
fairness in aggregation of local training results will be discussed in Chapter 3 and Chapter
4, respectively.

There are some assumptions in this thesis listed as follows
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• Data has acceptable quality such that the machine learning models can be trained
based on their content.

• Local data in each hospital is reliable and there is no malicious hospital willing to
attack learning.

• Hospitals are willing to collaborate to train a model.

• The communication link between hospitals and the central server is stable.

• In each round of training, hospitals can be synced with the central server.

The majority of the existing works in the literature implicitly consider these assumptions
without explicitly mentioning them.
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Chapter 3

Privacy in Federated Learning

Federated learning is a novel machine learning method enabling hospitals to collaboratively
learn a model without sharing private patient data for training. In federated learning,
participant hospitals periodically exchange training results rather than training samples
with a central server or other hospitals. However, having access to model parameters or
gradients can expose private training data samples. To address this challenge, this thesis
proposes to adopt secure multiparty computation (SMC) to establish a privacy-preserving
federated learning framework.

Two different SMC-based privacy-preserving framework are proposed for two differ-
ent federated learning architectures, i.e., centralized and decentralized federated learning.
These two architectures will be discussed in the following sections.

Experiments are conducted on a publicly available repository, The Cancer Genome
Atlas (TCGA) [39]. The performance of the proposed framework was compared with dif-
ferential privacy and federated averaging as the baseline. The results reveal that compared
to differential privacy, the proposed framework can achieve higher accuracy with no privacy
leakage risk at a cost of higher communication overhead.

3.1 Introduction

Federated learning enables learning a model while all participants keep data private, sharing
training results with the central server. However, authors in [40] have shown that sharing
the model’s parameters or gradients is not safe. They demonstrate that having access to the
model’s weights or gradients can expose training samples. Therefore, privacy-preserving
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methods in federated learning have recently been introduced to protect training samples
from leakage.

3.1.1 Privacy Preserving Methods

There are three different strategies for privacy-preserving federated learning in the litera-
ture to securely share the training results [41, 24].

Differential Privacy (DP)

Differential Privacy(DP) was originally developed to enhance secure analysis over sensitive
data. DP protects privacy by adding noise to the training results before sharing with the
central server [42]. Although perturbing the training results improves the privacy of the
training samples, it might adversely impact accuracy of the model.

Secure Multiparty Computation (SMC)

Secure Multiparty Computation (SMC) was first introduced as a secure two-party com-
putation, then generalized in 1986 [43]. SMC allows us to compute functions of private
input values such that each party learns only the corresponding function output value,
but not input values from other parties. Now, SMC [44] is a privacy-preserving method,
enabling hospitals to jointly compute a function on their model’s weight without revealing
the actual weights values. Unlike DP, SMC does not perturb the training results. However,
compared to DP, it has communication overhead since hospitals communicate with each
other to compute the weights average.

Homomorphic Encryption (HE)

The idea of Homomorphic Encryption (HE) was first introduced in 1978 as a solution to
perform computation over ciphertext without decrypting the ciphertext [45]. HE relies on
encoding/decoding gradients and uses encrypted data for training [46]. It allows computa-
tion on encrypted gradients and decryption of the results is equivalent to performing the
same operations on gradients without any encryption. This method is efficient in terms of
communication cost, however, it is computationally expensive.

The effectiveness of DP in decentralized learning has been investigated in the healthcare
domain [47, 37]. Authors in [47] preserve accuracy by adding Gaussian noise to the trained
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model weights, providing extensive experiments on MRI images. In [37], the authors
conduct the feasibility study of DP in federated learning. Also, the impact of the design
factors of DP in decentralized learning has been investigated on histopathology images.

SMC has played a successful role in cloud computing and the Internet of Things
(IoT) [48]. Recently, SMC has been adopted as a privacy-preserving method in feder-
ated learning. For example, authors in [49] applied chained SMC in FL to protect model
weights from disclosure. In their framework, first, the central server sends one of the par-
ticipants a random number. Then participants sequentially communicate with each other
to compute the average of the local models. This framework imposes extreme latency and
cannot be scaled since all the participant has to communicate sequentially. However, this
chapter of the thesis will propose a framework such that communications happen in parallel
within clusters. The proposed methods address the privacy challenges of federated learning
by introducing novel frameworks based on SMC. Unlike DP, SMC does not compromise
the model accuracy since it does not perturb training results.

3.2 Federated Learning Architecture

There are two common architectures for federated learning, namely centralized and de-
centralized federated learning. The key difference between these two groups is about the
existence of the central server. In this section, these two popular architectures will be
described [29].

3.2.1 Centralized Federated learning Architecture

A typical centralized architecture of federated learning is shown in Figure 3.1, which is also
called client-server architecture. In this system, participant hospitals rely on the central
server and collaboratively learn a machine learning model. In this architecture, hospitals
locally train the model, and the central server is responsible for the aggregation of local
training results.

3.2.2 Decentralized Federated learning Architecture

In addition to the client-server introduced above, another common architecture is decen-
tralized federated learning which is shown in Figure 3.1. This architecture is also called
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Figure 3.1: Two types of federated learning from networking structure perspective: cen-
tralized versus decentralized federated learning.
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peer-to-peer. Under this architecture, there is no central server or co-ordinator. As shown
in Figure 3.1, in this architecture, first participants train the model on their local data.
Then, they transfer their training results to each other. Finally, each participant updates
the model based on all the received training results from other hospitals. As there is no
central server to aggregate the training results, participants need to agree on the protocols
for sending and receiving training results in advance.

3.3 Privacy in Centralized Federated Learning

In this section, an SMC-based framework for centralized federated learning architecture will
be introduced. In the proposed method, hospitals are divided into “clusters”. Each hospital
performs model training on its own local data. After local training, each hospital splits
its model weights among other hospitals in the same cluster such that no single hospital
can retrieve other hospitals’ weights on its own. Then, all hospitals sum up the received
weights, sending the results to the central server. Finally, the central server aggregates
the results, retrieving the average of the models’ weights and updating the model without
having access to individual hospitals’ weights.

3.3.1 Method

In this section, the proposed SMC-based FL method will be introduced in detail. Fig-
ure 3.2 represents the proposed cluster-based SMC framework for centralized federated
learning. There are K hospitals, which will be equally divided into M clusters with size
N = K/M . Each hospital belongs to one cluster which is denoted by c = {1, . . . ,M}.
Hospital k in cluster c is represented by Hc

k. The set nc with length N represents indexes
of all hospitals in cluster c. Model training in the proposed approach is performed in three
steps, local training, SMC, and aggregation.

Step 1: Local Training– All participant hospitals train the model individually with
their local data, updating the model. Model parameters trained by the kth hospital is
denoted by wk.

Step 2: SMC– Hospital Hc
k generates N random numbers {βc

k,j|0 < βc
k,j < 1, j ∈ nc}

that sum up to one. ∑
j∈nc

βc
k,j = 1. (3.1)
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Algorithm 3 Proposed method for centralized federated learning. There areK hospitals,
M clusters, T is the number of epochs, E is the number of local epochs, η is learning rate,
nc index of all hospitals in cluster c.

Input: M,C, T, w0, η, nc

Output: wT−1

1: for t = 0, . . . , T − 1 do
2: Server sends wt to all hospitals

% Step1: Local Training
3: for k = 1, 2, . . . , K do
4: wt+1

k ← LocalTraining(k, wt, η) % update weights
5: end for

% SMC
Rc

k ← 0
6: for c = 1, 2, . . . ,M do
7: for k ∈ nc do
8: for i ∈ nc do
8: Rc

k+ = βc
i,kw

t
i

9: end for
10: Hospital k feedbacks Rc

k to the central server.
11: end for
12: end for

% Step3: Aggregation
13: Server updates wt+1 as

wt+1 ← 1

K

K∑
k=1

Rc
k

14: end for
15: return wT−1

LocalTraining(i, wt, η) :

1: B ← (split dataset of ith hospital into batches of size B)
2: for local epoch j = 1, 2, . . . , E do
3: for batch b ∈ B do
3: w ← wt − η∇Fk(wt; b) % Fk(.) is the loss function for hospital k
4: end for
5: end for
6: return w
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Then, each hospital k in cluster c, Hc
k, sends portions of its own locally trained model

parameters to each of N − 1 neighbours in cluster c. Mathematically, Hc
k sends βc

k,jwk to
hospital j for all j ∈ nc. In the end, the kth hospital will have some portion of its own,
and some portion of its N − 1 neighbor’s model parameters as follows:

Hc
k : R

c
k =

∑
i∈nc

βc
i,kwi. (3.2)

Step 3: Aggregation– Finally, each hospital sends Rc
k to the central server, and the

central server takes the average of Rc
k of all the hospitals in all clusters as follows:

Figure 3.2: Cluster-based SMC for centralized federated learning.
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Table 3.1: The summary of the dataset [37].

Client # Slides # Patches

C1: Int. Gen. Cons. 267 66,483
C2: Indivumed 211 52,539
C3: Asterand 207 51,543
C4: Johns Hopkins 199 49,551
C5: Christiana H. 223 55,527
C6: Roswell Park 110 27,390

w =
1

K

M∑
c=1

∑
k∈nc

Rc
k

=
1

K

M∑
c=1

∑
k∈nc

∑
i∈nc

βc
i,kwi.

(3.3)

If we exchange the position of the two summations in Eq. 3.3, we will get

w =
1

K

M∑
c=1

∑
i∈nc

∑
k∈nc

βc
i,k︸ ︷︷ ︸

1

wi

=
1

K

M∑
c=1

∑
i∈nc

wi

=
1

K

K∑
i=1

wi.

As shown above, the central server can recover the exact average of local weights without
having access to the weights of each individual hospital. These steps have been summarized
in Algorithm 3.
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Figure 3.3: Label distribution in dataset.

3.3.2 Experiments and Results

Datasets

The proposed privacy-preserving federated learning is evaluated on The Cancer Genome
Atlas (TCGA) [39, 50] dataset, the largest publicly available archive of histopathology
WSIs. This dataset has more than 30, 000 H&E stained WSIs that have been collected
from various medical centers all over the world. To validate the proposed method, TCGA
WSIs diagnosed with non-small cell lung cancer (NSCLC) were selected to construct a
dataset of multiple institutions. This cancer has two frequent subtypes, namely

• Lung Adenocarcinoma (LUAD)

• Lung Squamous Cell Carcinoma (LUSC).

This study includes hospitals that have WSIs from both LUAD and LUSC subtypes. In
TCGA, only six hospitals met this requirement. Therefore, WSIs diagnosed with NSCLC
were collected from those six hospitals to create the dataset with six participants. As
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mentioned before, WSIs are extremely large files. Therefore, they cannot directly be fed
into any neural network. The common approach to deal with these images is to divide them
into patches of smaller sizes for further analysis [51]. The selected WSIs were divided into
patches of size 1000 × 1000 pixels. In [37] more details are provided on patch extraction
and selection of the lung dataset that has been used in the experiments. The statistics of
this dataset for each hospital are presented in Table 3.1 and Figure 3.3. The dataset of
each hospital has been randomly divided into 80% and 20% groups for training and testing
purposes, respectively.

Experimental Details

Figure 3.4 illustrates WSI pre-processing as well as the model used to classify lung sam-
ples into LUAD and LUSC subtypes. As shown in this figure, for the classification of
lung histopathology WSIs, pre-trained DenseNet121 [52] was employed to extract fea-
tures of length 1024 for each patch. The pre-trained weights on the ImageNet dataset for
DenseNet121 have been used with no additional adjustment. Next, attention-gated mul-
tiple instance learning (MIL) [53] was used to combine feature vectors of patches of each
WSI, creating a feature of size 1024 for each WSI classification [53]. The reason for using
MIL is that when a WSI is divided into multiple patches, we are dealing with instances for
which only a single WSI level label, namely a primary diagnosis, is provided. Therefore,
MIL architecture is required to learn a model that can predict the WSI label given a bag of
instances (patches). The attention-based MIL architecture enables the model to combine
the features of patches to create one feature vector of length 1024 that will be used for the
classification of WSI. This architecture aggregates feature vectors of those patches such
that key patches are assigned relatively higher weights. The high-level structure of the
MIL classifier has been visualized in Figure 3.4. The MIL gated attention classifier is the
network that is learned in a decentralized federated learning fashion. More details on this
MIL network is provided in [53].

Results and Discussions

In this section, the experimental results are presented for the lung histopathology dataset.
The proposed SMC based method is compared with the baseline which is FedAVG [25]
without any privacy-preserving consideration. Also, the proposed method will be compared
with DP which has been implemented on top of FedAvg. An ideal privacy-preserving
method have to have a closed performance to the baseline while preserving privacy of
training results. The histopathology lung dataset includes data from six hospitals. Those
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K = 6 hospitals are divided into M = 2 clusters of size N = 3. DP is deployed according
to [47] with additive Gaussian noise standard deviation of 0.03. The standard deviation
has been selected to have the highest possible privacy while the classification performance
is still acceptable. For all these three methods, an Adam optimizer was used with the

Figure 3.4: The illustration of the end-to-end training procedure. First, WSIs are divided
into patches of size 1000 × 1000. Next, the features of patches are extracted using Den-
sNet121. Finally, those features are fed into a MIL gated attention classifier.
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Figure 3.5: The average testing accuracy for 300 rounds of training over all hospitals.
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Figure 3.6: The average training loss and testing accuracy for 300 rounds of training over
all hospitals for the proposed SMC framework in centralized federated learning.
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following setting: epochs=300, batch size=32, number of local epochs=1, and learning
rate=0.009.

Table 3.2 shows the performance of each method for each hospital in terms of accuracy
and F1 Score. As represented, in each hospital, the proposed method has a closed per-
formance to the baseline and outperforms DP. Additionally, the average performance of
the proposed method surpasses DP. Figure 3.5 and 3.6 compare methods in terms of the
average testing accuracy and average training loss of participant hospitals for 300 rounds
of training communication between hospitals and the central server. As can be seen, the

Table 3.2: Experimental results of the proposed SMC based method for centralized fed-
erated learning.

Client Method Accuracy F1-Score

C1: Int. Gen. Cons.
FedAvg 76.38 82.51
DP 66.12 69.89

Proposed 75.01 81.08

C2: Indivumed
FedAvg 85.46 87.63
DP 79.06 81.12

Proposed 87.20 89.03

C3: Asterand
FedAvg 81.54 80.96
DP 74.40 70.27

Proposed 80.95 80.47

C4: Johns Hopkins
FedAvg 75.01 82.74
DP 69.37 73.84

Proposed 75.62 83.12

C5: Christiana H.
FedAvg 73.33 82.31
DP 64.87 68.54

Proposed 68.88 78.58

C6: Rosewell Park
FedAvg 68.18 66.74
DP 68.18 63.34

Proposed 69.31 66.78

Avgerage
FedAvg 76.65 80.48
DP 70.33 71.16

Proposed 76.16 79.84
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proposed method performs close to the baseline, surpassing DP. To eliminate the impact of
random parameters in the experiments, all experiments has been repeated five times and
all the results have been provided by taking the average over these five runs.

3.4 Privacy in Decentralized Federated Learning

Decentralized Federated learning is a privacy-preserving machine learning approach that
allows training in a collaborative fashion. It enables training the model on data from
various medical centers without any central point that coordinates the training process be-
tween hospitals. Decentralized federated learning maintains data privacy by allowing each
hospital to train the model on its local data and exchange the training results rather than
training samples. However, it has been shown in the literature that training results are as
important as training samples since they can expose training samples. This challenge will
be addressed in decentralized federated learning by employing secure multi-party compu-
tation. The proposed framework consists of three phases, and the first two phases occur
only one time at the beginning of the training procedure. The main purpose of Phase I
and Phase II is to learn the summation of the noise that each hospital uses to protect its
training results from revealing. In Phase III, the participant hospitals train the model on
their local data, adding noise to the training results and sharing the training results with
other hospitals. Then, each hospital aggregates the training results and removes cumula-
tive noise relying on Phase I and Phase II, and updates the global model. In Phase III,
training process continues until convergence happens or reaching the maximum number of
training rounds.

3.4.1 Method

In this section, details of the proposed SMC-based framework for decentralized federated
learning will be introduced. It is assumed that there are K hospitals willing to participate
in training the global model in a decentralized fashion. The ith hospital is denoted with
Hi. Model training in the proposed method is performed in three phases. Figures 3.7, 3.8,
and 3.9 represent those phases for K = 3.

• Phase I – As shown in Figure 3.7, H1 generates two random numbers, N1 and α,
and send their summation to the next hospital, H2. Then, H2 generates a random
number N2, adds it to what has been received from H1, and sends N1+N2+α to the
next hospital H3. Finally, H3 generates random number N3, add it to its received
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number, return
∑K

k=1Nk +α to the first hospital. Since the first hospitals knows the

amount α, it can recover
∑K

k=1 Nk.

• Phase II – This phase is illustrated in Figure 3.8. As shown, the first hospital shares∑K
k=1Nk with other hospitals. Therefore, each hospital knows the accumulative of

random numbers generated by all hospitals.

• Phase III – Figure 3.9 represents Phase III of the proposed framework. In this
phase, each hospital k performs local training, adds Nk to its training results, and
shares it with all other hospitals. Denoting the training results of the kth hospital
with Gk, each hospital will have

∑K
k=1Gk +

∑K
k=1Nk. From Phase I and Phase II,

hospitals know
∑K

k=1Nk, therefore, they can recover
∑K

k=1 Gk and find the model
average. This process in Phase III is repeated until convergence or reaching the
maximum number of training rounds.

Phase I and Phase II take place only one time at the beginning of the learning procedure.
These two phases help the participant hospitals to learn

∑K
i=1Ni which will be used later

in Phase III. More detail on the proposed SMC-based approach for decentralized federated
learning is provided in Algorithm 4.

Figure 3.7: Phase I of the proposed SMC-based framework for decentralized federated
learning. This phase happens only one time at the beginning of the training.
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Algorithm 4 Proposed method for decentralized federated learning. There are K hos-
pitals, T is the number of epochs, E is the number of local epochs, η is learning rate.

Input: K,T,w0, η
Output: wT−1

1: Hospital 1 generates random number N1 and α and send N1 + α to hospital 2. % Phase I
2: for j=2, . . . , K - 1 do
3: Hospital j generates random number Ni

4: Hospital j sends
∑j

i=1Ni + α to hospital j + 1
5: end for
6: Hospital K returns

∑K
i=1Ni + α to hospital 1

7: Hospital 1 recovers
∑K

i=1Ni

% Phase II
8: for i = 2, . . . , M do
9: Hospital 1 sends

∑K
i=1Ni to hospital i

10: end for
% Phase III

11: for t = 0, . . . , T − 1 do
12: for k = 1, 2, . . . ,K do
13: wt+1

k ← LocalTraining(k,wt, η) % local updates
14: end for
15: for k = 1, . . . ,K do
16: Hospital k sends wt+1

k +Nk to all other hospitals
17: end for
18: At the end, hospital k receives Rt+1

k =
∑K

k=1w
t+1
k +

∑K
k=1Nk

% Aggregation
19: for i = 1, . . . ,K do
20: Hospital i computes

∑K
k=1w

t+1
k = Rt+1

k −
∑K

k=1Nk

21: wt+1 ← 1
K

∑K
k=1w

t+1
k

22: end for
23: end for
24: return wT−1

LocalTraining(i, wt, η) :

1: B ← (split dataset of ith hospital into batches of size B)
2: for local epoch j = 1, 2, . . . , E do
3: for batch b ∈ B do
3: w ← wt − η∇Fk(wt; b) % Fk(.) is the loss function for hospital k
4: end for
5: end for
6: return w
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3.4.2 Experiments and Results

The proposed privacy-preserving frameworks are evaluated on TCGA data. WSIs diag-
nosed with non-small cell lung cancer (NSCLC) are selected to construct a dataset of six

Figure 3.8: Phase II of the proposed SMC-based framework for decentralized federated
learning. This phase happens only one time at the beginning of the training.

Figure 3.9: Phase III of the proposed SMC-based framework for decentralized federated
learning. Unlike previous phases, Phase III runs multiple times to train the global model.
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institutions. This cancer has two sub-types, Lung Adenocarcinoma (LUAD) and Lung
Squamous Cell Carcinoma (LUSC). The dataset and classifier model that is used for this
experiment is the same as in section 3.3.2. The classifier is trained to predict NSCLC sub-
types. Table. 3.3 represents model performance in terms of accuracy and F1-Score. The
proposed method outperforms DP while having a similar performance to the baseline.

Table 3.3: Results of the proposed SMC method for decentralized federated learning.

Client Method Accuracy F1-Score

C1: Int. Gen. Cons.
FedAvg 76.91 82.06
DP 67.95 70.42

Proposed 76.82 81.81

C2: Indivumed
FedAvg 86.84 87.36
DP 81.85 82.64

Proposed 88.01 88.92

C3: Asterand
FedAvg 81.29 80.19
DP 74.95 71.49

Proposed 80.12 79.85

C4: Johns Hopkins
FedAvg 75.14 82.80
DP 71.46 74.95

Proposed 75.93 83.46

C5: Christiana H.
FedAvg 71.84 81.53
DP 66.75 70.32

Proposed 69.21 79.54

C6: Rosewell Park
FedAvg 68.93 68.72
DP 68.13 64.97

Proposed 69.94 67.23

Average
FedAvg 76.82 80.44
DP 71.84 72.46

Proposed 76.67 80.13
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3.5 Summary

This section addressed the privacy-preserving challenge of federated learning. Two SMC-
based frameworks were proposed to protect individual hospitals’ model parameters from
disclosure in both centralized and decentralized federated learning. In the proposed meth-
ods, neither participant hospitals nor the central server has access to the model weights
of individual hospitals; however, the weights average can be recovered in the aggregation
phase. The experimental results suggested that the proposed methods outperform DP in
terms of accuracy and F1 Score at the expense of more communication overhead. However,
having slight communication overhead to get higher accuracy is most likely acceptable in
the medical domain. Additionally, each hospital needs to perform pre-processing to find
suitable additive noise standard deviation in the DP method. However, the proposed
methods do not require any pre-processing since they do not have any hyperparameters.
Therefore, depending on the application, applying SMC-based frameworks for privacy-
preserving purposes might be preferable compared to other privacy-preserving methods
such as DP.
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Chapter 4

Fair Federated Learning

Medical centers and healthcare providers have concerns and hence restrictions around shar-
ing data with external collaborators outside their organizations. Federated learning, as a
privacy-preserving method, involves learning a site-independent model without having di-
rect access to patient-sensitive data in a distributed collaborative fashion. The federated
approach relies on decentralized data distribution from various hospitals and clinics. The
collaboratively learned global model is supposed to have acceptable performance for the
individual sites. However, existing methods focus on minimizing the average of the aggre-
gated loss functions, leading to a biased model that performs perfectly for some hospitals
while exhibiting undesirable performance for other sites. The main goal of this section
is to improve model “fairness” among participating hospitals by proposing a novel feder-
ated learning scheme called Proportionally Fair Federated Learning, short Prop-FFL. This
framework is based on a novel optimization objective function to decrease the performance
variations among participating hospitals. This function encourages a fair model, providing
us with more uniform performance across participating hospitals. The proposed Prop-FFL
is validated on two histopathology datasets as well as two general datasets to shed light on
its inherent capabilities. The experimental results suggest promising performance in terms
of learning speed, accuracy, and fairness.

4.1 Introduction

The main concern of this section is how to aggregate the training results at the central
server. Most existing methods train the global model by simply minimizing the average
training losses of all local centers. However, these methods do not provide a performance
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guarantee for each individual hospital since they focus on the average training results.
These methods lead to a global model that its performance varies among all the partici-
pants [26]. This problem is expected to worsen in real-world scenarios where the data from
different medical centers exhibit heterogeneity both in terms of size and distribution.

While the main goal is to cope with the data heterogeneity by modifying the aggregation
of training results at the central server, another approach that deals with highly non-
IID data distributions is personalized federated learning (PFL) [54], proposed to improve
individual performances by enabling each client to learn a customized model. However, one
major drawback of a PFL model is the loss of generalization since the ultimate goal is to
learn a separate model for each hospital. While PFL can be helpful for some personalized
health applications, it is certainly not suitable for other applications requiring a generalized
model to avoid disparity in healthcare delivery [55]. Besides, PFL requires further analysis
to adjust model parameters for each hospital, which increases the overhead. Therefore,
compared with PFL, modifying the aggregation rule at the central server can cope with
non-IID data distribution and improve generalization without extra overhead.

The proportional fair resource allocation of wireless communication systems is adopted
to introduce proportionally fair federated learning, short Prop-FFL, a novel optimization
objective in federated learning, to boost more uniform model performance across partici-
pating hospitals. The main goal of Prop-FFL is to train a fair model, which is not biased
toward any of the participating hospitals at the expense of having undesirable performance
for other local centers. To the best of the author’s knowledge, this is the first time that
proportional fairness is formulated to modify the deep learning train objective.

The related literature on fairness in federated learning is reviewed in the next section.
The intuition behind Prop-FFL is described and formulated in Section 4.3, providing a de-
tailed explanation of the proposed method. In Section 4.4, various experimental results are
provided to evaluate Prop-FFL on two histopathology datasets. Also, additional experi-
mental results are provided on two general datasets to verify the effectiveness of Prop-FFL.
Finally, the proposed method is concluded in Section 4.5.

4.2 Background: Fairness in Federated Learning

Most existing federated learning methods focus on the average performance of the global
model. However, this might lead to a highly variable performance among participant
hospitals. For example, relying on these methods make the model biased towards hospitals
with larger datasets, having undesirable performance on those hospitals that have access
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to only small datasets. Additionally, in real-world scenarios, participants may have non-
IID data such that learning hosital distributions become a challenge. In these scenarios,
focusing on the average performance will result in a model that performs well for some
hospitals while having performance degradation on other hospitals. This means that there
is no performance guarantee for individual hospitals.

To address this concern, fairness in federated learning has attracted considerable atten-
tion recently. The key point of fairness is that fair sharing is not equal sharing always [56].
As a result, one can design FL methods to ascertain that the participant hospitals for which
the trained model has unacceptable performance on their data should contribute more to
the global loss function. In this regard, q-fair federated learning has been proposed [57].
The authors introduced a set of novel optimization problems, namely q-fairness, to ap-
ply fairness in federated learning. Having the parameter q in their proposed optimization
problem enables the central server to guide the loss function more desirably. The authors
also introduce q-fairness FedSGD, or q-FedSGD, to apply fairness in FedSGD. According
to the literature review, q-fair federated learning [57] is the benchmark for fairness in fed-
erated learning, therefore, the proposed method will be compared with q-FedSGD. There
are other works that consider fairness in federated learning. For example authors in [58]
introduce a novel form of fairness in federated learning, called min-max optimization. The
authors address the fairness problem by employing min-max optimization, focusing on the
weakest participant with maximum loss. However, changing the focus of the model toward
the worse performing participant is not reasonable since it may degrade the total perfor-
mance. The authors in [59] focus on both fairness and robustness of federated learning.
They address these challenges by dynamically choosing a fraction of local centers to par-
ticipate in training. However, this approach cannot be applied in medical domain because
there are limited number of participant hospitals as oppose to wireless network applications
where there are thousands of mobile users. Authors in [60] address fairness using different
approach. They propose a novel collaborative fair federated Learning framework to enforce
participants to converge to different models.

4.3 Proportional Fairness

This section provide a detailed explanation of the proposed proportionally fair federated
learning (Prop-FFL). While the purpose of the most existing federated learning methods is
to minimize the average training loss over all participant hospitals, this aggregation might
lead to a variable performance among hospitals, having a bias toward some participants
that contributed more toward the loss function, and hence adjusting the model parameters.
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To resolve this issue, fairness should be considered during the aggregation procedure on the
central server.

Inspired by proportional fair resource allocation methods in the wireless network [61],
Prop-FFL is introduced to learn a global model that performs well for all participants, not
just some of them. The main goal of Prop-FFL is to enable all hospitals to fairly (not
necessarily equally) contribute to the training of the global model. Prop-FFL focuses on
the participants with rather poor performance, changing the network parameters to im-
prove their performance. The Prop-FFL ascertains fairness by modifying the optimization
problem at the central server. It encourages the model not to have undesirable perfor-
mance on any of hospitals while minimizing the total training loss. The proposed method
is the extension of FedSGD since it is computationally efficient for hospitals and has con-
vergence guarantee [25]. The expansion of the proposed method on FedAvg to create more
communication efficient framework will be left for future works.

4.3.1 Problem Formulation

Consider a set of hospitals M with M hospitals with privately labeled data indexed by
{1, 2, . . . ,M} ∈ M. Each hospital i ∈M has only access to its local data that is denoted
by Di. Dataset Di consists of ni training data points denoted by Di = {ai

l, b
i
l}

ni
l=1, where a

i
l

is training input and bil is its label, e.g., a primary diagnosis. The total number of samples
of all hospitals is n =

∑M
i=1 ni. As in most real-world applications, datasets Di}Mi=1 may

not have identical independent distributions (IID).

Prop-FFL applies fairness by encouraging the model to perform similarly on all M
hospitals. In Prop-FFL, the optimization objective function composes of two terms, one
to use fairness and one to reduce the training loss. The fairness term aims to adjust the
model parameters such that all M hospitals have a similar training loss. To achieve that,
the fairness term is defined as an optimization problem that maximizes the multiplication
of loss functions of all M hospitals. It will be shown that the optimal solution of the
fairness term emerges when all the M hospitals have the same training loss. The following
provide an elaboration on these two terms of the optimization objective function starting
with the fairness term. To mathematically explain, the relative training loss of the kth
hospital is defined as normalized loss and denoted by

F ′
k(w) =

Fk(w)∑M
j=1 Fj(w)

, 1 ≤ k ≤M, (4.1)
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where w is the global model parameters and Fk(w) is the training loss function of the
kth hospital. Obviously, 0 < F ′

k(w) < 1, and
∑M

k=1 F
′
k(w) = 1. Next, F (w) is defined as

the multiplication of hospitals’ relative losses given by

F (w) =
M∏
k=1

pkF
′
k(w), (4.2)

where pk is the probability associated with the number of samples of the kth hospital and

M∑
k=1

pk = 1

. pk specifies the amount of contribution of the kth hospital in loss function. In the
experiments, it is assumed that

pk =
nk

n
.

To establish fairness, it is required to maximize F (w). To make the optimization
problem more computationally convenient, one can take the log of both sides of (4.2) to
convert the multiplication to summation. Since the log function is strictly increasing, this
conversion does not change the optimal solution. Therefore, (4.2) will be rewritten as

log (F (w)) = log

(
M∏
k=1

pkF
′
k(w)

)

=
M∑
k=1

log (pkF
′
k(w)) ,

(4.3)

and the optimization problem at the central server will be

max
w

M∑
k=1

log
(
pkF

′
k(w)

)
,

s.t. F ′
k(w) =

Fk(w)∑M
j=1 Fj(w)

.

(4.4)

The maximum operator in (4.4) does not aim to increase the amount of loss func-
tions. Since

∑M
k=1 F

′
k(w) = 1, the maximization problem cannot violate this constraint
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Figure 4.1: The function plot of (4.3) when M = 2 and p1 = p2 = 0.5. The max of
log(F ′

1) + log(1 − F ′
1) happens in F ′

1 = 0.5. This means that the maximum occurs when
both hospitals achieve the same relative loss, F ′

1 = F ′
2 = 0.5.

and increase the loss functions. Instead, the maximum of F (w) occurs when all hospi-
tals approach the same relative loss while the summation of the relative losses is 1. In
other words, the optimal solution of (4.4) happens when F ′

k(w) =
1
M
. The proof for that

is provided in Appendix A. This means all M hospitals achieve the same training loss,
F1(w) = F2(w) = · · · = FM(w), which is the fairness ultimate goal of Prop-FFL.

The proportional fairness optimization problem (4.4) could be more clear by two exam-
ples. Figure. 4.1, illustrates the function plot of (4.3) whenM = 2, log (F ′

1(w))+log (F ′
2(w))

where F ′
2(w) + F ′

1(w) = 1. As can be seen, the maximum occurs when both participants
get the same portion of unit 1, meaning F ′

1(w) = F ′
2(w) = 0.5. As another example, con-

sider 4 hospitals that collaborate in the federated learning fashion. Using the proposed
proportional fairness, each of those four hospitals would fairly contribute to learning the
global model, achieving the same relative loss F ′

k(w) = 0.25, 1 ≤ k ≤ 4.
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The optimization problem in (4.4) can be simplified as

max
w

M∑
k=1

log (pkF
′
k(w))= min

w

M∑
k=1

− log(pkF
′
k(w))

= min
w

M∑
k=1

− log

(
pk

Fk(w)∑M
j=1 Fj(w)

)

= min
w

M∑
k=1

log

(
1

pk

∑M
j=1 Fj(w)

Fk(w)

)

= min
w

c+
M∑
k=1

log

(∑M
j=1 Fj(w)

Fk(w)

)
,

(4.5)

where c =
∑M

k=1 log
(

1
pk

)
is a constant. Since c is not a function of w, one can omit that

from the objective function. Therefore, the objective function is

min
w
L(w) =

M∑
k=1

log

(∑M
j=1 Fj(w)

Fk(w)

)
︸ ︷︷ ︸

Gk(w)

. (4.6)

For notation simplicity, Gk(w) is defined as

Gk(w) = log

(∑M
j=1 Fj(w)

Fk(w)

)
.

The optimization problem in (4.6), intends to apply fairness and adjust the model’s
parameter such that all the hospitals get the same relative loss. However, this objective
function does not decrease the training loss. To reduce the training loss, the objective
function Q(w) is adopted from [57]:

min
w
Q(w) =

M∑
k=1

1

q + 1
F q+1
k (w), (4.7)

where q is a constant that will be tuned in the experiments, and Fk(w) is the training
loss function of the kth hospital. The final objective function that reduces the total training
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loss while imposes fairness is a convex combination of objective functions (4.7) and (4.6)
as follows:

w∗ =argmin
w

(1− λ)
M∑
k=1

1

q + 1
F q+1
k (w)︸ ︷︷ ︸

term I:Q(w)

+ λ

M∑
k=1

log

(∑M
j=1 Fj(w)

Fk(w)

)
︸ ︷︷ ︸

term II:L(w)

.

(4.8)

The first term in (4.8), term I, aims to reduce the total loss. The second term in (4.8),
term II, applies proportional fairness among participants, forcing relative losses to be close
to each other. The hyperparameter 0 < λ < 1 adjusts the level of fairness in the objective
function.

Since term I and term II in (4.8) are differentiable and smooth, the optimization prob-
lem (4.8) can be solved by adopting the stochastic gradient decent (SGD). To apply SGD,
it is needed to compute the derivative of the objective function with respect to w. The
derivative of Q(w) with respect to w is

∇Q(w) =
M∑
k=1

F q
k (w)∇Fk(w), (4.9)

and derivative of L(w) with respect of w can be given as

∇L(w) =
M∑
k=1

∇Gk(w), (4.10)

where ∇Gk(w) is
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∇Gk(w) = ∇ log

(∑M
j=1 Fj(w)

Fk(w)

)

=

M∑
j=1

(
Fk(w)∇Fj(w)−∇Fk(w)Fj(w)

)
M∑
j=1

Fk(w)Fj(w)

.

(4.11)

Finally, given the gradients in (4.9), (4.10), and (4.11), the gradient of the objective
function (4.8) can be formulated as

∆ =
M∑
k=1

(1− λ)F q
k (w)∇Fk(w) + λ∇Gk(w). (4.12)

The gradient in (4.12) allows us to aggregate the updates from all hospitals in a proportional
fair setting using SGD, estimating the directions to update the model parameters.

4.3.2 Proportionally Fair Federated Learning: Prop-FFL

Similar to FedSGD, in Prop-FFL, participating hospitals train the global model using
one batch of their local training data. Next, each hospital feeds back the loss function
and the gradient of the loss function to the central server. Finally, relying on Prop-FFL,
the central server aggregates the training results, updating the model parameters. These
steps are repeated until convergence. More details of Prop-FFL have been provided in
Algorithm 5.

4.4 Evaluation

This section presents the experimental results of the proposed Prop-FFL. The effectiveness
of Prop-FFL has been verified on four publicly available datasets.
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Algorithm 5 Proposed Proportionally fair federated learning

Input: M,T,w0, η, λ
Output: wT−1

1: for t = 0, . . . , T − 1 do
2: Server sends wt to all hospitals
3: Each hospital k computes Fk(w

t) and ∇Fk(w
t) for one batch of data

4: Hospitals send Fk(w
t) & ∇Fk(w

t) back to server
5: Server computes ∇Gk(w

t) based on (4.11)
6: Server updates wt+1 as

∆t
k = (1− λ)F q

k (w
t)∇Fk(w

t) + λ∇Gk(w
t)

wt+1 = wt − η
M∑
k=1

∆t
k

7: end for
8: return wT−1

Table 4.1: Summary of datasets

Dataset # Participants # Samples

MNIST (non-medical) 10 60,000
FMNIST (non-medical) 10 60,000
Histopathology-Kidney 4 642,277
Histopathology-Lung 6 303,033

4.4.1 Image Datasets

This section provides detailed explanations on the datasets that have been used in the
experiments. Prop-FFL will be studied on two histopathology datasets. Also, additional
experimental results will be provided on two non-medical datasets to confirm the effective-
ness of the proposed method for well-known datasets. The statistical summary of all four
datasets has been provided in Table 4.1. In all datasets, data has been divided into 60%,
20%, 20% groups, for training, validation, and testing, respectively. Additional details of
datasets and models used in the experiments are described below.
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MNIST

This dataset is a well-known and widely collection of hand-written digits. The images are
black and white of size 28 × 28 pixels [62]. To investigate the behaviour of the proposed
federated learning method, it is assumed 10 participants in MNIST with non-IID data dis-
tribution. The approach in [25] is adopted to distribute data samples between participants
in a non-IID fashion. First, data samples are sorted based on the digit labels, dividing it
into 20 shards of size 3,000 samples each, and then randomly assign 2 shards to each of 10
participants. This partitioning provides us with non-IID data distribution as participants
mostly have two digits. For the classification model, a convolutional neural network (CNN)
is considered with two 5×5 convolution layers, each followed with 2×2 max pooling and
ReLu activation function. Then, two fully connected layers were used with the first one
being followed by the ReLu activation and the second one by a softmax output layer.

FMNIST

This dataset comprises of size 28× 28 images from fashion products. They are gray scale
and from 10 fashion categories [63]. To study the federated learning on FMNIST, 10
participants are considered. The data distribution approach is exactly the same as what
has been established for MNIST previously. The classifier is also the same as what have
been used for MNIST.

Histopathology Datasets

For final experiments, The Cancer Genome Atlas (TCGA) [39, 50], the largest public
archive of histopathology whole-slide images (WSIs), will be used. TCGA provides re-
searchers with more than 30, 000 H&E stained histopathology WSIs prepared by various
medical centers. In TCGA, the variation between hospitals’ data occurs in many different
aspects. Figure 4.2 and 4.3 represent sample patches from four different hospitals of kidney
dataset [64] and six different hospitals of lung histopathology dataset [37] respectively. As
can be seen, staining can differ significantly among hospitals depending on staining pro-
tocols. Additionally, images from different hospitals can have various artifacts that might
be characteristic for each hospital. For example, as Figure 4.2c shows there is a blue ink
in the image. Other hospitals might have other artifacts, such as blur, tissue-fold, tears
depending on their tissue preparations, imaging protocols, and scanners. While common
artifacts are unavoidable during histopathology slide preparation, It is assumed that each
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(a) MD Anderson. (b) MSKCC.

(c) Int. Genomics Consortium. (d) NCI Urologic Oncology.

Figure 4.2: Histopathology patch samples from each of the four hospitals in kidney datasets.

hospital has a quality control unit and the images have an acceptable quality level that ma-
chine learning models can access. This assumption is not specific to the proposed method.
It is a very general assumption in machine learning that data is reliable with acceptable
quality for learning tasks. Only a few studies have looked at the behavior of a deep model
in presence of artifacts. However, the laboratory practice at different sites may make the
quality control a more urgent need [65, 66, 67] Those artifacts, as well as different tissue
preparation protocols, stain variation, label distribution variability across sites, and using
different scanners and protocols may cause non-IID data distribution among hospitals. As
recent investigations have reported ‘normalization and augmentation do not prevent mod-
els from learning site-specific characteristics’, which cause non-IID challenges, although
stain normalization may help increase the accuracy [68].Our proposed solution copes with
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(a) MD Anderson. (b) MSKCC.

(c) Int. Genomics Consortium. (d) NCI Urologic Oncology.

(e) NCI Urologic Oncology. (f) NCI Urologic Oncology.

Figure 4.3: Histopathology patch samples from each of the four hospitals in lung datasets.
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Table 4.2: The summary of kidney histopathology dataset [64]

.

Client # Slides # Patches

C1: MD Anderson Cancer Center 95 138,986
C2: International Genomics Consortium 87 60,149
C3: MSKCC 198 245,041
C4: NCI Urologic Oncology Branch 44 198,101

non-IID data distribution of participant hospitals in a federated learning scenario. The
performance of Prop-FFL will be validated for the classification of histopathology images
of different hospitals using two histopathology datasets, kidney and lung histopathology
datasets. Both lung and kidney datasets are publicly available in TCGA resposiytory with
assigned primary diagnoses as labels for the entire image [39].

• Kidney Datase [64]. The WSIs diagnosed with kidney cancer have been selected from
TCGA to construct a dataset of several institutions. The kidney cancer includes three
most frequent subtypes, namely

– Clear cell renal cell carcinomas (ccRCC),

– Papillary renal cell carcinomas (pRCC),

– Chromophobe renal cell carcinomas (crRCC).

Only diagnostic WSIs scanned at a magnification of 40x have been considered from
TCGA. This study included hospitals that had a sufficient number of WSIs spanning
across all three subtypes (ccRCC, pRCC, crRCC). Only four hospitals met this re-
quirement in TCGA, namely NCI Urologic Center, International Genomics Center,
MSKCC, and MD Anderson. Since WSIs are extremely large with high magnifica-
tion, they have been divided into small patches for further analysis [51]. Readers are
referred to [64] for more details on how patches have been extracted from WSIs in
this dataset. Table. 4.2 represents the number of WSIs and patches of each hospi-
tal in kidney histopathology dataset and Figure.4.5 shows the distribution of kidney
cancer sub-types in each hospital. For the kidney histopathology image classification
model, first pretrained DenseNet121 [52] is employed to extract image features of
length 1,024. Next, a fully connected layer followed by ReLu activation function is
used. Then, three fully connected layers are followed by the softmax output layer.

• Lung Dataset [37]. This dataset includes TCGA WSIs diagnosed with non-small cell
lung cancer (NSCLC) which has two frequent subtypes, namely
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Table 4.3: The summary of lung histopathology dataset [37].

Client # Slides # Patches

C1: International Genomics Consortium 267 66,483
C2: Indivumed 211 52,539
C3: Asterand 207 51,543
C4: Johns Hopkins 199 49,551
C5: Christiana Healthcare 223 55,527
C6: Roswell Park 110 27,390

– Lung Adenocarcinoma (LUAD)

– Lung Squamous Cell Carcinoma (LUSC).

In TCGA, there are only six hospitals that have a sufficient number of WSIs from
both LUAD and LUSC subtypes. The statistics of this dataset for each hospital are
presented in Table. 4.3 and Figure. 4.4. WSIs have been divided into patches of size
1000×1000 pixels. More details on patch extraction and selection are provided in [37].
For the classification of lung histopathology WSIs, first pretrained DenseNet121 [52]
is employed to extract image features of length 1,024. Next, attention gated multiple
instance learning (MIL) is used to effectively combine the patch feature vectors of
each WSI and create a feature of size 1024 for each WSI [53]. More details about this
MIL network is provided in [53]. Next, a fully connected layer is used followed by
ReLu activation function. Finally, three fully connected layers are applied followed
by softmax output layer.

Patch-level diagnosis is used for the kidney dataset and slide-level diagnosis for the
lung dataset. There are two reasons why patch-level for one and slide-level for the
other was used. First, datasets introduced in the literature and a similar classifier for
each were employed. For example, many authors use a MIL classifier for the kidney
dataset that trains the network based on the slide-level annotation. However, some
authors have used another classifier for the lung dataset, which trains the classifier
on patch bases. The second reason is that the number of slides in the fourth hospital
in the kidney dataset is insufficient to perform the slide-level evaluation. However,
there are enough lung slides in each hospital to report slide-level performance.
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Figure 4.4: The distribution of the classes in lung dataset.
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Table 4.4: The accuracy of each hospital in each method for kidney dataset.

Hospitals FedSGD q-FedSGD Prop-FFL
Hos1 71.23± 0.12 76.94± 0.56 78.84± 0.83
Hos2 72.01± 0.04 75.78± 0.63 77.12± 0.58
Hos3 66.87± 0.11 75.94± 0.71 76.21± 0.56
Hos4 82.41± 0.08 83.89± 0.45 84.36± 0.35
Var 32.54 11.22 10.00

4.4.2 Impact of λ

The final loss function is a convex combination of two loss functions in (4.8), one to reduce
the loss and the other one to apply fairness. The parameter 0 < λ < 1 in (4.8) determines
the weight of each of those two loss functions. It is needed to investigate the impact of
λ on the performance. Figure 4.6 depicts the training loss and testing accuracy vs. λ
using training and validation datasets, respectively. The results are obtained after 100
epochs of training. The learning rate and q in (4.8) have been tuned for each dataset to
gain the highest accuracy on the validation dataset. This study provides us with insight
into the behaviour of Prop-FFL as well as with the default value of λ in order to enable
full automation. According to Figure 4.6, λ = 0.6 has an acceptable performance on all
datasets. Therefore, λ = 0.6 is considered as the default value for all experiments in the
next section. λ = 0.6 means that more focus is on part of the loss function that applies
fairness. λ = 0.6 means that more focus is on the part of the loss function that applies
fairness. However, since the nature of the data, data distribution, the number of clients, etc
are different between datasets, to gain the best possible performance this parameter were
also specifically tuned for each dataset, which will result in better performance compared
to the default value.

According to Figure 4.6, as expected, large λ values (λ→ 1) degrades the performance.
The reason is that λ → 1 diminishes term I in (4.8), leaving us only with term II as the
objective function. Since term II in (4.8) applies only proportional fairness and cannot
guarantee the decrease of the training loss, the results for λ → 1 are rather undesirable.
For small λ values (λ → 0) the performance is better than large λ values. The reason
is that λ → 0 reduces the objective function in (4.8) to term I which decreases training
loss. Therefore, since it guarantees the training loss reduction, its performance is more
acceptable compared to λ→ 1.
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Figure 4.6: Impact of λ on training loss and accuracy.

Table 4.5: The accuracy of each hospital in each method for lung dataset.

Hospitals FedSGD q-FedSGD Prop-FFL
Hos1 66.22± 0.02 66.68± 1.49 72.23± 1.27
Hos2 58.06± 0.01 73.16± 1.52 76.81± 0.59
Hos3 50.14± 0.01 62.74± 1.57 74.57± 1.41
Hos4 74.19± 0.01 72.64± 1.95 74.50± 0.93
Hos5 71.20± 0.02 70.96± 1.62 76.44± 1.28
Hos6 40.13± 0.001 52.10± 2.08 60.81± 1.82
Var 143.54 53.89 29.84
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4.4.3 Experiments and Results

Without loss of generality, it is assumed that all hospitals/users can participate in learning
the global model without having any delay and network issue. According to the study
in Section 4.4.2, λ = 0.6 provides us with acceptable performance on all four datasets
(medical and non-medical). Therefore, all results for Prop-FFL have been reported for
λ = 0.6 as well as for the best performing λ in each case. The latter requires additional
computational overhead to identify the best lambda value for each dataset. Prop-FFL will
be compared with two other benchmark methods, FedSGD and q-FedSGD [57]. Learning
rate and parameter q have also been fine tuned to get the best performance for each method.
In the experiments, 10−10 was added to the input of the log function to prevent occurrence
of undefined value in logarithmic function.

As shown in Figure 4.7 and 4.9, the training has converged for the general datasets,
MNIST and FMNIST, as the training loss and testing accuracy have reached stable be-
havior. Proposed method could gain better final accuracy as well as a faster convergence
rate compared to other methods. For histopathology datasets, proposed method exhibits
faster convergence, although due to time considerations, the training was stopped after
300 rounds of weight adjustments. In Figure 4.7 and 4.8, the performance of Prop-FFL
is evaluated on MNIST dataset. These figures demonstrate the performance in terms of
training loss and testing accuracy. The batch of size 1024 is used. λ = 0.7 was the best
value for MNIST dataset. Therefore, the results are represented for both λ = 0.7 and
the default value λ = 0.6. Figure 4.7a and 4.7b represent the average training loss and
the worst training loss of ten participants, respectively. Both q-FedSGD and Prop-FFL
outperform FedSGD in these two figures. Prop-FFL performs better than q-FedSGD spe-
cially in Figure 4.7b. The standard deviation of training loss of all ten participants has
been shown in Figure 4.7c. As can be seen, Prop-FFL and q-FedSGD perform close and
better than FedSGD. Figure 4.8a and 4.8b depicts the average testing accuracy and the
worst testing accuracy of all ten participants, respectively. As can be seen, Prop-FFL
outperforms q-FedSGD. They both surpass FedSGD. Figure 4.8c represents the standard
deviation of testing accuracy of all users. As can be seen, Prop-FFL is slightly better than
q-FedSGD and both outperform FedSGD. Figure 4.9 and 4.10 represent the performance
of Prop-FFL on FMNIST dataset. All experimental considerations are similar to what
have been done for MNIST. For FMNIST dataset, Prop-FFL has its best performance for
λ = 0.8. Therefore, the results have been depicted for both λ = 0.6, 0.8.

Figure 4.11, 4.12 depict the performance evaluation on histopathology-kidney dataset.
The best performing λ on this dataset is λ = 0.1. Therefore, the results have been provided
for λ = 0.1, 0.6. The batch of size 1024 is used for this dataset. Figure 4.11a represents the
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average training loss of all four hospitals, and Figure 4.12a represents the average testing
accuracy of all four hospitals. As can be seen, Prop-FFL and q-FedSGD outperform
FedSGD. The reason is that both Prop-FFL and q-FedSGD have modified the objective
function, providing them with a more generalized global model that is not biased toward
any hospital. Figure 4.11b and 4.12b represent the training loss and testing accuracy
of the worst performing hospital, respectively. As illustrated, Prop-FFL outperforms q-
FedSGD, and q-FedSGD performance exceeds FedSGD. The reason is that the objective
function does not allow poor performance for any hospitals. Figure 4.11c and 4.12c depict
the standard deviation of training loss and testing accuracy of all hospitals, respectively.
As illustrated, the standard deviation of Prop-FFL is smaller than q-FedSGD, and both
smaller than FedSGD. The reason is that q-FedSGD and Prop-FFL have modified the
objective function, encouraging a fair model to decrease the performance variation across
hospitals. Figure 4.13, 4.14 shows the performance on histopathology-lung dataset. The
best performing λ on this dataset is same as the default value for λ. Therefore, the
results have been depicted for only λ = 0.6. The batch size of 72 is used for this dataset.
As shown, the performance of Prop-FFL is better than q-FedSGD and FedSGD by large
margin in this dataset compared to histopathology-kidney dataset. Also, FedSGD have
poor performance on this dataset. One possible reason for that might be the number of
hospitals which is larger in lung dataset. Table 4.4 and 4.5 represent the test accuracy
per hospital for kidney and lung datasets, respectively. The results have been provided by
taking an average over five independent experiments. As can be seen, Prop-FFL provides
us with more uniform testing accuracy over participant hospitals as the variance of the
testing accuracy of hospitals in Prop-FFL is less than the other two methods.

The communication overhead of Prop-FFL and q-FedSGD is the same as FedSGD
since both have been built on top of the FedSGD. The only difference between these
three methods is the aggregation rule at the central server, which does not impact the
communication overhead. Prop-FFL was applied on FedAvg. The results are presented
in Appendix B. As can be seen, the concept of fairness does not change the FedAvg
performance. This result was expected as averaging moves toward the same results for
all hospitals, whereas fairness does emphasize individual contributions. Although FedAvg
can improve communication overhead as hospitals do not need to communicate with the
central server for each batch of data, FedSGD approach has moderate communication
costs in some situations where participant hospitals have small datasets. The reason is
that the communication cost of FedSGD is proportional to the number of batches of local
datasets. As the total number of batches is small when local datasets are small, FedSGD is
more communication efficient. Having small datasets is quite common in medical domain.
Therefore, Prop-FFL can provide us with fairness at tolerable communication costs.
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Figure 4.7: Evaluation on MNIST dataset with Non IID data distribution. The results for
Prop-FFL have been provided for λ = 0.6 and the best λ. (TL= training loss, TL=average
training loss), TA= testing accuracy, TA=average testing accuracy)
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(b) TA of the worst user.
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Figure 4.8: Evaluation on MNIST dataset with Non IID data distribution. The results for
Prop-FFL have been provided for λ = 0.6 and the best λ. (TL= training loss, TL=average
training loss), TA= testing accuracy, TA=average testing accuracy)
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Figure 4.9: Evaluation on FMNIST dataset with Non IID data distribution. The re-
sults for Prop-FFL have been provided for λ = 0.6 and the best λ. (TL= training loss,
TL=average training loss), TA= testing accuracy, TA=average testing accuracy)
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Figure 4.10: Evaluation on FMNIST dataset with Non IID data distribution. The re-
sults for Prop-FFL have been provided for λ = 0.6 and the best λ. (TL= training loss,
TL=average training loss), TA= testing accuracy, TA=average testing accuracy)
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Figure 4.11: Evaluation on Histopathology-Kidney dataset. The results for Prop-FFL
have been provided for λ = 0.6 and the best λ. (TL= training loss, TL=average training
loss), TA= testing accuracy, TA=average testing accuracy)
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Figure 4.12: Evaluation on Histopathology-Kidney dataset. The results for Prop-FFL
have been provided for λ = 0.6 and the best λ. (TL= training loss, TL=average training
loss), TA= testing accuracy, TA=average testing accuracy)
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Figure 4.13: Evaluation on Histopathology-Lung dataset. The results for Prop-FFL
have been provided for λ = 0.6 which is the best λ. (TL= training loss, TL=average
training loss), TA= testing accuracy, TA=average testing accuracy)
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Figure 4.14: Evaluation on Histopathology-Lung dataset. The results for Prop-FFL
have been provided for λ = 0.6 which is the best λ. (TL= training loss, TL=average
training loss), TA= testing accuracy, TA=average testing accuracy)
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4.5 Summary

In this chapter, the fairness aspect of federated learning among participants was addressed.
Proportionally fair federated learning, or Prop-FFL, was proposed to allow all hospitals to
fairly contribute to the training of a global model. The intuition behind the proposed idea
was explained and mathematical formulations of Prop-FFL were provided. The effective-
ness of Prop-FFL has been demonstrated on two histopathology datasets as well as two
non-medical datasets to gain insight into its behavior. The experimental results revealed
that the proposed method outperforms other federated approaches. In Prop-FFL, simi-
lar to FedSGD, hospitals do not need to update model parameters. In future works, one
may modify Prop-FFL such that hospitals would be able to update the model parameters,
similar to FedAvg, creating more communication efficient framework. Additionally, the
fixed step size η was used to update model weights. Employing the second-order SGD to
estimate the best step size in each iteration would perhaps improve the convergence.
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Chapter 5

Summary and Conclusions

The adoption of digital pathology is expected to revolutionize healthcare systems over
the next few years thanks to the advent of digital scanners and the availability of whole
slide images (WSIs). Digital pathology may not only help medical centers to improve
routine workload and relieve pathologists of laborious and time-consuming tasks but also
can enable the research community to apply artificial intelligence to complex diagnostic,
prognostic and predictive tasks in medicine. Sophisticated machine learning techniques
have the potential to create a second opinion system that facilitates consensuses building
to improve diagnosis.

The key enabler of machine learning techniques is large and diverse medical data.
However, collecting a massive amount of patients’ records from various medical centers in
one central location for machine training purposes is prohibitive due to privacy concerns
and regulatory restrictions. To address this challenge, federated learning, an emerging
technology, may enable a novel collaborative distributed learning paradigm in healthcare.
It has opened a new horizons in machine learning for data-sensitive domains, such as
healthcare.

Federated learning allows hospitals to keep their data local and perform model training
without touching onsite data. Under this framework, hospitals perform training on their
local data and share the training results with other hospitals or the central server to
collaboratively learn a single machine learning model. In federated learning, data is always
local never leaving hospitals.

Federated learning adoption in real-world scenarios, however, exhibits many challenges
that need to be addressed. This thesis focused on two challenges of federated learning
in healthcare. Two frameworks are proposed to enable hospitals, and the central server
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to communicate securely. Additionally, a novel optimization objective problem was intro-
duced to address the non-IID challenge across hospitals. The proposed method modifies
the aggregation rule at the central server, improving fairness. The effectiveness of the
proposed methods was validated by conducting experiments on WSIs obtained from public
TCGA dataset and comparing the performance of the proposed method with baselines
from literature.

5.1 Highlights of Thesis Contributions

The main contributions of this thesis can be summarized as follows:

• SMC-based privacy preserving federated learning frameworks. One of the
main challenges in federated learning is that training results may expose information
about training samples. Chapter 3 addressed this privacy concern of the training
results by proposing two different SMC-based frameworks to create secure commu-
nication for sharing training results. The first method is proposed for centralized
federated learning architecture. In this method, hospitals are divided into small clus-
ters. Hospitals within each cluster collaborate to learn the summation of the local
training results without having access to each other’s training. The second method
is proposed for decentralized federated learning where there is no central server to
coordinate training. In this method, training consists of three phases. The first
two phases are performed only once at the beginning of the training while the last
phase is repeated until either converging or reaching the end of training epochs. The
proposed frameworks have been evaluated on kidney slides from the TCGA dataset.
The experimental results showed that the proposed methods outperform differential
privacy approach.

• Proportional fair federated learning. Chapter 4 discussed a novel method, called
proportional fair federated learning (Prop-FFL), that resolves the challenge of non-
IID data distribution among hospitals. The intuition behind the idea is that hos-
pitals cannot equally contribute to the model learning. Hence, their contributions
should be fairly weighted. The proposed method modifies the optimization objective
function at the central server, prevents the model from being biased toward any hos-
pital. Therefore, it encourages the model to have more uniform performance across
hospitals. Performance of the proposed method was evaluated on lung and kidney
histopathology slides. The experiment results suggested competitive performance
with other state-of-the-art methods.
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5.1.1 Limitations

The experimental results demonstrated that SMC-based frameworks address the secure
communication concern and the proposed fair federated learning encourages uniform per-
formance across hospitals. However, there are some limitations inherent in these methods
which should be considered.

• SMC-based privacy preserving frameworks. One of the major limitations of
the proposed privacy-preserving methods is their communication cost. They maintain
privacy, enabling hospitals to gain superior testing accuracy compared to differential
privacy at the cost of “communication overhead”. However, the medical field is
a sensitive domain where stakeholders might be willing to pay reasonable costs in
exchange to gain more reliable results.

• Prop-FFL The work focused on applying fairness among hospitals in the FedSGD
scenario. In this scenario, hospitals need to collaborate with the central server for
every batch of data, which leads to communication overhead. However, when par-
ticipant hospitals have a small dataset, the proposed method would have moderate
communication overhead. Small datasets are quite common in the medical data
domain as data annotation is expensive and time-consuming. Therefore, when lo-
cal datasets are small, Prop-FFL can apply fairness among hospitals at acceptable
communication costs.

5.2 Future Work

The proposed methods in this thesis open new directions for future work. The main topics
will be describe in the following.

5.2.1 Personalized Federated Learning

All frameworks proposed in Chapter 3 and Chapter 4 focus on learning “one single model”
for all hospitals. However, in federated learning, each participant might have a different
objective. Therefore, allowing each participant to have a private model with any archi-
tecture, called model heterogeneity, would be beneficial in many applications. Recently,
personalized federated learning has gained considerable attention [54, 69]. It may be worth
exploring how to apply fairness in personalized federated learning.
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5.2.2 Threats and Attacks to Federated Learning

In this thesis, it was assumed that all hospitals collaborate in good faith. However, federated
learning in a real-world scenario has to be able to detect and confront malicious partici-
pants. The participant hospitals might not have malicious intent, however, their local data
annotations might be corrupted (or become dorrupted through cyberattacks), comprising
the model’s performance for others. Various kinds of attacks in federated learning are
under-explored in research [70, 71, 72]. A future direction would be to extend Prop-FFL
to be stable against attacks.
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Appendix A

Proportional Fairness

Proof. The optimization problem (4.4) is concave with a closed form optimal solution [124].
Using product rule of logarithms, we can simplify (4.4) to following

max
w

M∑
k=1

log
(
pk
)
+ log

(
F ′
k(w)

)
,

s.t. F ′
k(w) =

Fk(w)∑M
j=1 Fj(w)

.

Since pk is not a function of w, we can remove it from the objective function. Also, we
replace the constraint above with the hidden constraint

∑M
k=1 F

′
k(w) = 1. Therefore, the

optimization problem will simplified to

max
w

M∑
k=1

log
(
F ′
k(w)

)
, s.t.

M∑
k=1

F ′
k(w) = 1.

We solve this optimization problem by employing Lagrangian approach. Let µ be the
Lagrangian multiplier. Then, we can convert the optimization problem to

min
w,µ
−

M∑
k=1

log
(
F ′
k(w)

)
+ µ
( M∑

k=1

F ′
k(w)− 1

)
.

Using first order stationary condition, we get 1
F ′
k
∗(w)

= µ and
∑M

k=1 F
′
k
∗(w) = 1. This gives

µ = M and F ′
k
∗(w) = 1

M
, which is an optimal solution that satisfies all constraints and

KKT conditions.
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Appendix B

Expansion of Prop-FFL on FedAvg

In this section, we validate the performance of the proposed approach on top of the Fe-
dAVG. It means we allow hospitals to train the model on their local data multiple times,
updating the model repeatedly before sending training results to the central server. The
model parameters including λ, q, and learning rate have been tuned for each dataset to get
the best possible performance in each of those three methods. The experimental results
have been presented for both histopathology datasets in Fig. B.1 and B.2. As can be seen
in these figures, the results of Prop-FFL are not promising compared to the other two
methods. This happens because the fairness loss term is only considered in the central
server aggregation and its impact is considerably reduced in FedAVG. However, we believe
that modifying local training at each hospital by changing the local loss function can make
Prop-FFL suitable for the FedAVG scenario too. This will be left for the future works.
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(a) TL over all hospitals (b) TL of the worst hospital

(c) TA of all hospitals (d) TA of the worst hospital

Figure B.1: Evaluation in FedAvg scenario on Histopathology-Kidney dataset. The re-
sults for Prop-FFL have been provided for default λ = 0.6. (TL= training loss, TL=average
training loss), TA= testing accuracy, TA=average testing accuracy)

.
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(a) TL over all hospitals (b) TL of the worst hospital

(c) TA of all hospitals (d) TA of the worst hospital

Figure B.2: Evaluation in FedAvg scenario onHistopathology Lung dataset. The results
for Prop-FFL have been provided for default λ = 0.6. (TL= training loss, TL=average
training loss), TA= testing accuracy, TA=average testing accuracy)
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