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Abstract

This thesis considers scaling permissioned blockchains via sharding techniques. Tradi-
tional distributed systems, such as those used in banking and real estate, require a trusted
third party to operate and maintain them, which is highly dependent on the reliability
of the operator. Since Bitcoin was introduced by Nakamoto in 2008, blockchain technol-
ogy has been considered a promising solution to the trust issue raised by the traditional
centralized approach. Blockchain is now used by most cryptocurrencies and has meaning-
ful applications in other areas, such as logistics and supply chain management. However,
scalability remains a major limitation. Various techniques are being investigated to tackle
the scalability issue. Sharding is an intuitive approach to improving the scalability of
blockchain systems.

First of all, two techniques are examined for interleaving the shards of permissioned
blockchains, which are referred to as strong temporal coupling and weak temporal cou-
pling. The analysis and experiment results show that strong coupling loses performance
when different shards grow unevenly, but outperforms weak coupling in a wide-area envi-
ronment due to its inherent efficiency. Weak coupling, in contrast, deals naturally with
load imbalance across shards and in fact tolerates shard failures without any additional
effort, but loses performance when running on a high-latency network due to the additional
coordination performed.

Second, we propose Antipaxos, a leaderless consensus protocol that reaches agreement
on multiple proposals with a fast path solution in the failure-free case and falls back on
a slow path to handle other cases. A new agreement problem, termed as k-Interactive
Consistency is formalized first. Then, two algorithms to solve this problem are proposed
under the crash failure model and Byzantine failure model, respectively. We prove the
safety and liveness of the proposed algorithms and present an experimental evaluation of
their performance in the Amazon cloud. Both the crash-tolerant and Byzantine-tolerant
designs reach agreement on n batches of proposals with Θ(n2) messages. This leads to
the linear complexity of each batch in one consensus cycle, rather than a single batch of
proposals per cycle in conventional solutions. The experiments show that our algorithms
achieve not only lower execution latency but also higher peak throughput in the failure-free
case when deployed in a geo-distributed environment.

Lastly, we introduce a full sharding protocol, Geochain, for permissioned blockchains.
The transaction latency is minimized by clustering participants using their geographical
properties, locality. In addition, the locality is also being used to decide the transaction
placement which results in a low ratio of cross-shard transactions for applications, such

v



as everyday banking, retail payments, and electric vehicle charging. We also propose a
client-driven efficient mechanism to handle cross-shard transactions and present analysis.
This enables clients to manage their assets across different shards directly. A prototype
is implemented on top of Hyperlegder Fabric v2.3 and evaluated on Amazon EC2. The
experiments show that our protocol doubles the peak throughput, even with a high ratio
of cross-shard transactions, while minimizing the transaction latency.
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Chapter 1

Introduction

Distributed systems are widely used in the modern world, such as the Internet, cloud
computing, and distributed databases. In computer science, a distributed system is a
system that consists of a set of computing components working coherently as a single
system to its users. The components are located in different places, running concurrently
and coordinated by passing messages [101]. Traditional distributed systems, such as those
used in banking and real estate, are essentially centralized, which requires a trusted third
party to operate and maintain the system. However, if the system operator is hacked,
then the system would become unreliable. Since Bitcoin was introduced by Nakamoto
in 2008 [77], blockchain technology has been considered a promising solution to the trust
issue raised by the traditional centralized trust approach. Due to its decentralized essence,
a trusted third party is no longer needed since every peer in the system can monitor
and verify the validity of each transaction. The distinguishing feature of a blockchain, as
compared to a conventional decentralized database, is the use of cryptographic hashes to
link together batches of transactions (called blocks) in a tamper-resistant manner. This
fundamental security feature is vital in cryptocurrencies as it prevents double-spending,
and has meaningful applications in other areas of commerce including logistics and supply
chain management.

1.1 Blockchain

Blockchain is a decentralized distributed system where each peer maintains the same chain
of blocks, which is also called a ledger. Each block contains multiple transactions and links
to its previous block using hashing. As a result, if someone wants to change a block after
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it is committed, all the blocks after that block have to be updated accordingly and agreed
upon by all the participants. Due to this mechanism, blockchain is considered a promising
technology for solving the trust issue of traditional distributed systems. Blockchain can
be categorized into permissionless blockchain and permissioned blockchain. In brief, per-
missionless blockchain means that the blockchain system does not have any access control,
anyone can join and contribute to the system operation and maintenance, such as Bitcoin
[77], Ethereum [18]. A permissionless blockchain is also termed as a public blockchain.
In contrast, only a set of approved participants can access the system in a permissioned
blockchain, such as Red Belly [23, 22], Hyperledger Fabric [5]. Permissioned blockchain
can be further categorized into private blockchain and consortium blockchain. A private
blockchain is fully controlled by a party and has limited access permission. Consortium
blockchain, instead of a party full control, has multiple parties govern the system corpo-
rately.

A technical survey of Bitcoin technology is given by Tschorsch and Scheuermann [99].
They discuss different Proof of X schemes as well as alternative currencies to Bitcoin, which
are termed as altcoins. A comprehensive introduction to Bitcoin and cryptocurrency from
a technical point of view is given in [78] which explains the details of how Bitcoin works
and presents several alter technologies. Crosby [24] gives an introduction to blockchain
technology. It briefly describes the history and how blockchain works. It also summarizes
the risks for adoption as well as corporate funding and interest. Gosele and Sandner [37]
introduce various criteria for the evaluation of blockchain suitability. It not only analyzes
several mobility sector use cases with the introduced criteria but also presents challenges
of blockchain technology.

1.2 Blockchain Applications

Because of the advantages of blockchain in solving the trust issue, it is considered to be a
promising technology in the coming decades. More and more blockchain-based applications
are being developed that spread in different areas. The most famous one is Bitcoin [77]
in cryptocurrency, which opens the door to blockchain development. But there are some
other excellent applications.

The internet blockchain [40] proposes to secure the Internet Border Gateway Protocol
(BGP) and Domain Name System (DNS) infrastructure with the help of blockchain tech-
nology. It introduces a tamper-proof internet resource management without depending on
Public Key Infrastructure (PKI) or the root of trust. Storj [106] proposes a blockchain-
based decentralized cloud storage solution that enables a user to transfer and share data
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without reliance on a trusted third party. ByzCoin [50] is a scalable algorithm that uses
Byzantine Fault Tolerance (BFT) protocol and collected signing to increase the security
and performance of the Bitcoin system. It claimed that it can be applied in any blockchain-
based system. The Tangle [87] is a cryptocurrency for the Internet of Things. The main dif-
ference of Tangle in comparison with other cryptocurrency systems is that it employs a di-
rected acyclic graph instead of a chain of blocks for storing transactions. Pegged Sidechains
[7] is a new technology that enables transfers between Bitcoins and other blockchain sys-
tems. It can make current cryptocurrency more easily to interoperate. bloXroute [49]
is a blockchain distribution network (BDN) that utilizes a new set of servers to provide
high-speed transactions and block propagation. It operates underneath the blockchain at
the network layer and can boost transactions and blocks propagation speed. The lightning
network [85] is an off-chain application that aims to process Bitcoin micro-payment. It
can scale Bitcoin. xCurrent [86] is a blockchain-based software developed by Ripple for
cross-border payment. It can confirm the transaction in a very short time compared to
the present traditional methods. Smart Grid [72] presents a proof-of-concept of the local
energy market trading model which is based on a private blockchain. It also evaluates the
economic effects by showing the prospect of cost reduction.

In brief, blockchain attracts more and more industrial interests and will have a huge
impact on the future world.

1.3 Motivation

As stated above, blockchains are divided into permissionless blockchains and permissioned
blockchains. Permissionless means that the blockchain system does not have any access
control, anyone can join and contribute to the system operation and maintenance. To
ensure a consistent view, permissionless blockchains are mainly relying on the Proof of Work
(PoW) scheme to reach agreement on the sequence of blocks. However, PoW consumes a
large amount of energy as every participant has to repeat the same computing process. In
addition, the smaller the time interval between every two consecutive blocks, the higher the
throughput, and the greater the possibility of a block being revoked. As a result, Bitcoin
merely validates 6-7 txns/sec, while Ethereum does 20-30 txns/sec. Proof of Stake (PoS)
based blockchain, such as Algorand [35], outperforms Bitcoin by assigning decision-making
power to participants based on their stake in the digital asset (e.g., cryptocurrency), and
assuming that high-stake players cooperate honestly without explicit economic incentives.
Algorand achieves about 1,000 txns/sec. In contrast, only a set of approved participants can
access the system in a permissioned blockchain. Permissioned blockchains mostly employ
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classical Byzantine fault tolerance (BFT) [57] consensus protocols in ordering the blocks.
However, classical BFT protocols, such as PBFT [19], are running within a small quorum,
with several to tens of participants. If the quorum size expands to hundreds or thousands,
which is normal to have more than a thousand participants in blockchain systems, the
performance degrades significantly [98, 19]. Various BFT protocols are proposed that target
high performance in blockchain systems, such as SBFT [39], DBFT [21], and MirBFT [98].
Red Belly [23] demonstrates its performance with about 30,000 txns/sec throughput and
3-second latency using 1,000 virtual machines deployed in 14 geo-distributed datacenters.
Although there are some works, scalability is still one of the major challenges.

This thesis shows how to scale permissioned blockchains via sharding. Sharding is
arguably the dominant technique for improving scalability in distributed systems. It has
been applied in various ways to both permissionless [51, 61, 108, 33, 80] and permissioned
[23, 22, 100, 25] blockchain systems. Although sharding can yield nearly linear scalability in
simple distributed key-value storage systems, its efficacy in scaling blockchains is less well
understood as the shards cannot operate completely independently due to tighter security
requirements. Notably, blocks of transactions must be hash-chained for tamper resistance,
which requires inter-shard coordination.

In addition, recent research investigates leaderless [75, 28, 74, 21, 23] and multi-leader [9,
98] designs to increase scalability, which essentially reaches agreement on multiple proposals
from different proposers in every consensus cycle. In the leaderless approach, every process
is a proposer. In contrast, only designated leaders can be the proposers in the multi-leader
approach. EPaxos [75] allows all replicas to propose requests concurrently. While non-
conflicting proposals can be committed on the fast path, concurrent conflicting proposals
have to be committed on the slow path and executed with the help of a dependency list.
Canopus [89] and RCanopus [48] divide the replicas into multiple groups, where each group
proposes a batch of requests in one consensus cycle. The final consensus is achieved by
interleaving the requests from each group in round-robin order. Moreover, Mir-BFT [98]
uses multiple instances of PBFT [19] to reach agreement on multiple proposals. The major
challenge of these approaches is how to handle the failure or asynchrony of one or more
proposers while achieving high performance.

Partial sharding and full sharding are the two state-of-the-art approaches that perform
blockchain sharding in the modern world. Table 1.1 summarizes the main properties of
those two approaches. Partial sharding distributes the transactions into different shards
and interleaves the shards to form a consistent final ledger [61]. By applying this approach,
the computation and communication, such as signature verification, and smart contract
execution, are distributed to different shards, but extra storage and transaction validation
are required. In contrast, full sharding records each transaction in some specific shard only
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Partial Sharding Full Sharding
Properties Each shard maintains a subset of

transactions;
Each shard maintains a subset of
transactions;

Partially sharding computation
and communication;

Sharding computation, communi-
cation, and storage;

The main ledger is required to
validate all the transactions;

Cross-shard transaction handling
techniques are required;

Examples Red Belly, Elastico OmniLedger, RapidChain

Table 1.1: Comparison of Partial Sharding and Full Sharding

but requires a special protocol for cross-shard transactions. OmniLedger [51], RapidChain
[108], and the trusted-hardware-based sharding protocol (THS) [25] are permissionless full
shard protocols while SharPer [4] and Channels [6] are permissioned full sharding protocols.

Thus, my research is mainly focusing on scaling the permissioned blockchain systems
via sharding compared to the state-of-the-art technologies.

1.4 Contributions

This thesis includes material from previous publications [67, 68, 66, 64]. First of all,
we conduct a comparison of two partial sharding techniques, strong coupling and weak
coupling [68]. Although strong coupling does not require a consensus protocol to do the
interleaving, which can achieve much better performance in a wide-area deployment, the
shard growing rate plays a key role in the strong coupling that may make weak coupling
achieve similar peak throughput compared to strong coupling in low latency network.
Based on the analysis of strong coupling, a new agreement problem called k-interactive
consistency (k-IC ) is formalized in both the crash failure model and the Byzantine failure
model. Then, a solution to k-IC, Antipaxos [66], is proposed and evaluated. At last, we
propose a locality-based full sharding protocol, GeoChain [65], that achieves high scalability
of permissioned blockchain systems. The main idea is to assemble the shard by the locality
of the processes. We also propose an efficient client-driven protocol to handle cross-shard
transactions.
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1.4.1 Performance and Fault Tolerance Trade-offs in Sharded
Permissioned Blockchains

In chapter 3, we clarify and present state-of-the-art techniques in sharded blockchain in-
terleaving, which we call strong temporal coupling (STC) and weak temporal coupling
(WTC) [67, 68]. We analyze the two techniques informally. The analysis predicts that
STC and WTC can in principle achieve similar transaction throughput, while WTC ex-
periences higher latency due to an additional layer of coordination. However, if different
shards do not grow uniformly, then WTC can outperform STC in terms of throughput.
On the other hand, STC can outperform WTC in a geo-distributed deployment as the
high latency of network links amplifies coordination overhead. To verify the predictions of
the model, a unified software platform is implemented that support different interleaving
protocols. The platform uses the efficient EPaxos [75] consensus protocol, which helps us
expose performance bottlenecks in other layers of the system. The experimental results
show that WTC achieves slightly better scalability than STC in a single datacenter de-
ployment due to non-uniform shard growth. However, STC performs much better than
WTC in a geo-distributed setting. Both results corroborate the predictions of our analysis
and continue to hold even after we augment STC with a mechanism for tolerating shard
failures.

1.4.2 Antipaxos: Taking Interactive Consistency to the Next
Level

In chapter 4, we formalize a new agreement problem called k-interactive consistency (k-
IC ), in both the crash failure model and the Byzantine failure model. k-IC combines
Interactive Consistency [83] and Vector Consensus [29] with a parameterized number of
values that suits different synchrony situations in one system. Compared to traditional
agreement problems, k-IC requires processes to agree on an ordered collection of values
instead of a single value in each consensus cycle. We present Antipaxos (AP) [66], a solution
to k-IC. Conceptually, AP takes the fast path concept to the next level by using a simple
and efficient all-to-all broadcast as the primary means to disseminate multiple proposals
concurrently, and resorting to a more complex mechanism only as the slow path to deal
with failures and asynchrony. More importantly, when a failure or asynchrony causes some
processes to perform fast path execution while others do not, AP still ensures a consistent
view. AP solves the k-IC problem for two distinct k values under different conditions. We
establish the safety and liveness properties of AP and conduct experiments in the Amazon
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cloud to evaluate the performance. Antipaxos achieves high performance in its fast-path
execution compared to state-of-the-art algorithms.

1.4.3 GeoChain: A Locality-Based Sharding Protocol for Per-
missioned Blockchains

In chapter 5, we review the state-of-the-art sharding protocols and related backgrounds
first [64]. Then the design of the GeoChain protocol, a locality-based sharding protocol, is
presented. We use the geographical property to not only form the shard but also distribute
the transactions, which not only maximizes the performance of the consensus protocols
but also leads to a low ratio of cross-shard transactions in some applications. Then, we
propose a client-driven efficient cross-shard transaction processing protocol. Safety and
liveness are also discussed. In addition, we discuss the ACID properties of the sharded
blockchain. The protocol prototype is implemented on top of Hyperledger Fabric [5] v2.3.
We conduct experiments in the geo-distributed Amazon cloud to evaluate the performance
of the prototype. The results show that GeoChain achieves high throughput with sub-
second latency.
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Chapter 2

Background

2.1 How a Blockchain works

Blockchain is a distributed ledger where every participant agrees on the order of transac-
tions. The transactions are packed in blocks, each block is connected to the previous block
by its hash value. Due to the uniqueness of the hash value of each block, if anyone wants
to change any transaction in any intermediate block, it has to change all the subsequent
blocks and ask everyone else to accept the new sequence of blocks. As a result, double-
spending, one digital asset spend more than once, cannot be made easily, which makes
the blockchain secure. Some key techniques are introduced in the following paragraphs in
order to help understand the concept of blockchain.

2.1.1 Hash function

First of all, the hash value is a numerical value produced by a hash function. In mathe-
matics, a function is a mapping f from one set X to another set Y , where each element x
in X has a mapping of y in Y . It can be expressed as:

y = f(x) where x ∈ X and y ∈ Y .

A hash function is a function h that can map a larger data set U into a fixed-size data
set T . Typically, the size of T is much less than the size of U [20].

One problem with hashing is that multiple keys may have the same hash value, which
is called a collision. Since |U | > |T |, there are at least two elements that map to the same
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slot. A good hash function has to minimize collisions. If we assume that each element
of the input set U has the same probability to be hashed to an element of the output set
T , where |U | is n and |T | is m, independently of any other element. Then it is expected
that there are ⌈n/m⌉ elements that have the same hash. This is a basic assumption called
simple uniform hashing, which is used for analyzing the hash function. A hash function
that can satisfy the simple uniform hashing is considered a good hash function. However,
in most cases, we do not know the distribution of the keys.

Due to the randomness of the input set, designing a good hash function is difficult. But
if we know the keys already, then we can carefully design a hash function with excellent
worst-case complexity. Perfect hashing is the hashing technique that can achieve O(1)
memory accesses of a search in the worst case when implementing a hash table [20].

In cryptography, the hash function should be a one-way function, which means in
practice the function is infeasible to invert. In addition, it should be easy to compute.
Also, with a given output, it should be extremely hard to derive the input that can result
in this output. Moreover, with a given input, it should be infeasible to find another input
that can result in the same output. In further, it should be highly unlikely to find two
distinct inputs that can result in the same output. A family of cryptographic hash functions
was published by the National Institute of Standards and Technology (NIST), called secure
hash algorithms (SHA) [71].

A blockchain system uses the hash value of each block to identify the sequence of the
blocks. For example, in Bitcoin, the hash value must have a system-defined number of
leading zeros. To achieve this, the hash value is computed by double hashing the block
header with the SHA256 algorithm. SHA256 is a hashing algorithm of the SHA family
that generates a 256-bit hash for any bit-length input data. The block header is a data
structure that has 6 fields, which are a version number, the previous block hash, the Merkle
[73] root of all the transactions that will be included in this block (Bitcoin employs Merkle
tree data structure to verify the integrity of the transactions), a timestamp, a difficulty
target, and a 32-bit number called the nonce. In each block cycle, every miner tries to find
the nonce that can result in a valid hash value for its proposed block. The miner who finds
such a nonce first will be the unique valid proposer for that block cycle and wins some
Bitcoins as a reward.

2.1.2 Transaction

In computer science, a transaction is a data unit that consists of a collection of operations
[93]. For example, if A wants to transfer $100 to B, then this transaction includes two
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operations: debit $100 from A’s account and credit $100 to B’s account. A transaction in
Bitcoin [77] is a transfer of Bitcoins from one to some others which contain the meta-data,
inputs, and outputs. A transaction in Ethereum [18] is a transfer of Ether from one account
to another account. The consensus on the order of the transactions is achieved by proof of
work (PoW). The transactions will be recorded in a block data structure.

In a traditional database system, a transaction is required to satisfy ACID properties
[93]. ACID represents atomicity, consistency, isolation, and durability. Atomicity means
that all the operations of the transaction must be either executed, or none of them is
executed. The transaction cannot be left in a partially executed state even if a failure
occurs. Consistency means that if the database starts from a valid state, then after the
execution of the transaction, the system will result in a valid state. A valid state is defined
by the system. For example, if account A transfers x money to account B, before and
after the transaction execution, the total amount of accounts A and B must remain the
same. Isolation means that all the transactions will be executed as if only one transaction
is being executed at a time. Even if two transactions execute concurrently, one of them
will appear in the system either before the execution of another transaction started or after
the execution of another transaction is finished. The widely adopted technical definition of
this property is serializability [82]. Durability means that if a transaction is being executed
successfully, the database will persist the update even if the system fails. ACID fits the
transactions of private blockchains. But it does not fit the transactions of Bitcoin-like
public blockchains. Bitcoin system can ensure atomicity, consistency, and isolation. But if
an adversary has more than half of the computation power, the durability can be broken.

2.1.3 Fault Tolerance

In a system, if it cannot provide some services as its promises, then we say this system
fails [101]. An error is a condition that at least one state is incorrect, and this may lead to
failure. A fault is the cause of an error. There are generally three classes of faults, which
are transient faults, intermittent faults, and permanent faults. Failures can be modelled
as crash failure, omission failure, timing failure, response failure, and Byzantine failure.

In a traditional distributed system, due to the existence of a trusted thirty party, only
crash failure should be handled. Crash failure means that a process fails by halting, but
it is working correctly before the halt. However, because of the decentralized essence, a
blockchain system has to deal with Byzantine failures. Byzantine failure means that a
process can crash, delay sending messages, or send arbitrary messages, which means the
Byzantine process can have arbitrary behaviours. For example, the Bitcoin system may
fail if the majority of hash power is controlled by malicious nodes.
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2.1.4 CAP

CAP theorem was first proposed by Eric Brewer at PODC 2000 [16] and then proved by
Seth Gilbert and Nancy Lynch in 2002 [36]. It states that any networked shared-data
system can have at most two out of three of the following properties:

*Consistency(C): the system has a unique updated copy of the data at a time.

*Availability(A): every node in the system must be able to respond eventually.

*Partition tolerance(P): the system will still function when a network partition occurs.

Bitcoin is an AP system. Even if there is a network partition, the system is still available
and keeps processing the transactions. However, the miners in different partitions will have
a different view of the main chain. Thus the main chain may be different for different
partitions which violates the consistency property.

2.1.5 Consensus

The core of blockchain systems is a consensus protocol [8]. Consensus is a fundamental
problem in distributed systems [53] where each process has an input value and multiple
remote processes must agree on a value as the output. Consensus [53] has been used
extensively to implement state machine replication [92], including in several Blockchain
systems [5] [35] [23]. The classical consensus problem is that a set of processes agree on a
single proposal among multiple proposals, despite the possibility of failure.

Formally, consensus under crash failure has three properties:

Agreement: Every pair of processes never decides different values.

Validity: If a process decides on a value, then the value must be proposed by one of
the processes.

Liveness: Every process eventually decides a value.

Consensus under Byzantine failure also has three properties:

Agreement: Every pair of non-faulty processes never decides different values.

Validity: If all non-faulty processes propose the same value, then all non-faulty processes
agree on that value.

Liveness: Every non-faulty process eventually decides a value.
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If the processes and the communication network are working without failures, the prob-
lem can be solved easily. However, a real system cannot be always dependable. FLP im-
possibility [34] states that consensus cannot be achieved in an asynchronous environment
with crash failures, which means that agreement cannot be made among processes if there
is no upper bound on the time of process may take to respond to a protocol message. Nev-
ertheless, Ben-Or [10], as well as Bracha and Toueg [15], introduce randomization to solve
consensus in the asynchronous environment. In addition, if the asynchronous condition
can be changed to partial synchrony, then consensus can be solved [30]. In a blockchain
system, to make everyone agree on the same consequence of blocks, a consensus must be
achieved among all the participants in each block cycle even if a failure occurs.

Although there exist many consensus protocols, most of them are primarily concerned
with handling failures and competing proposals instead of scalability. This is accomplished
through complex message passing and processing, which imposes overhead. Notably, the
problem is traditionally solved using single-leader quorum-based techniques, such as vari-
ations of Lamport’s Paxos protocol [55]. In such protocols, the leader plays a central
role and limits scalability. Using these protocols to implement a replicated state machine
(RSM) is inherently costly as every batch of state transitions has to be proposed by the
leader and requires at least one dedicated consensus cycle.

To relieve the bottleneck of the leader, some protocols incorporate a fast path mech-
anism that improves common-case performance, and a slow path to handle other cases,
such as failures. For example, Fast Paxos [56] uses an enlarged quorum to bypass the
Paxos leader in the absence of competing proposals, though suffers a performance penalty
when it falls back to its slow path. The Byzantine-tolerant Bosco protocol [96] and Hot-
Stuff [107] similarly use single-leader schemes. Other performance optimizations include
rotating the leader [9], as well as computing decisions hierarchically [3]. Some other works
involve different types of hardware optimizations [45, 105, 84]. Zyzzyva [52] additionally
offloads processing to clients. Furthermore, batching [91] and pipelining [89, 48, 58] are two
general techniques to increase consensus efficiency. However, most of the above techniques
still suffer from the limitation of the single-leader approach, and scalability remains a weak
point when implementing an RSM.

Safety and liveness are the two properties that are commonly used to evaluate a con-
sensus protocol. Lamport first introduced safety and liveness properties in 1977 to prove
the correctness of multiprocess programs [54]. Safety means “bad things will never hap-
pen”. In other words, if the program operates with the correct input, it will never give
incorrect output. Liveness means “good things must happen eventually”. Alternatively, if
the program operates with the correct input, it will always terminate.
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The most famous consensus protocol is Paxos [55], which was proposed by Leslie Lam-
port. It can guarantee the safety property, but the liveness is conditioned on the proposer of
the protocol. However, it is a crash fault-tolerant protocol that can tolerate f crash failure
out of 2f + 1 nodes [15]. In a blockchain system, since there does not exist trusted oper-
ator, crash fault tolerance is not enough. Instead, Byzantine failure has to be considered
in system design. In present blockchain systems, Proof of X based and traditional Byzan-
tine Fault Tolerant (BFT) based protocols are the main blockchain consensus mechanisms
[104]. Most of the permissionless blockchains employ Proof of X as their consensus scheme.
While traditional BFT protocol is mainly used in permissioned blockchains. It is because
the traditional BFT protocol requires pre-agreement on the set of participants, which fits
the permissioned blockchain. But recent research also tries to apply BFT protocols in
permissionless blockchains. Both methods will be explained in the next section.

2.2 PoX and Traditional BFT protocols

2.2.1 Proof of X

The most well-known prominent technique in the Proof of X family is proof of work (PoW),
which is also called the Nakamoto consensus. PoW was first introduced in the Bitcoin
whitepaper [77]. In comparison to the traditional consensus where the processes have to
select one from multiple proposals as the decision, PoW is used to decide who can be the
transaction proposer in a block cycle. Both Bitcoin [77] and Ethereum [18] employ PoW
to build the blockchain. For a better understanding of the protocol, how PoW works in
Bitcoin will be explained as an example. But the concept is the same in any PoW-based
blockchain system.

The core of PoW is a mathematical puzzle whose difficulty can be tuned precisely, and
whose solution leads to an economic reward for the winner. Specifically, every miner in the
Bitcoin system tries to compute a hash puzzle in each block cycle. A miner is a server that
participates in the PoW consensus. As explained in the section on the hash function, the
puzzle is to find a hash value with a system-defined number of leading zeros by computing
a nonce, a bit string, together with the transactions and block metadata. Whoever solves
this puzzle will broadcast its result as a block to its neighbours, and its neighbours will
disseminate the block to their neighbours. As a result, the block will be transmitted to
all the participants in the system. Due to the difficulty of solving this puzzle, everyone
should decide on the block only according to the first valid block in that block cycle, and
append the block to the main chain. The system uses the longest chain rule to decide
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the main chain. It assumes that the longest chain in the system will be treated as the
main chain. Thus, every miner can propose transactions to commit, but only transactions
proposed by the one who wins the computation competition will be decided to commit. If
a winner occurs, every other just follows the decision. Thus the decision process of PoW
is essentially decentralized. And as an incentive, the winner will be rewarded with some
coins for their contribution.

The advantage of PoW is that if an attacker wants to change a block, it has to redo
all the PoW on and after that block and then catch up to beat the honest miners. In
this sense, as long as the majority of CPU power is controlled by honest miners, PoW
can guarantee no double-spending and all transactions are correct. Considering the safety
and liveness of PoW, safety is not guaranteed, since if there is enough hashing power, a
longer chain can be created to replace the current agreed chain. Thus the block finality,
the affirmation that the block will not be revoked, is not guaranteed. But, the longer the
time after the block is committed, the lower the probability the block will be revoked.
In Bitcoin, this waiting time is about 60 minutes. In contrast, the liveness property can
be guaranteed as the system will always produce a new block in roughly the same time
interval. The main drawback of PoW is that the computational cost of the puzzle limits
scalability. For instance, Bitcoin sets the expected time to solve the puzzle at 10 minutes,
while Ethereum sets it to roughly every 12 seconds with a security tradeoff. This means
that Bitcoin can only process a few txns/sec, while Ethereum can process around a few
tens of txns/sec. Also, to make sure the transaction will not be reverted, clients have to
wait for multiple blocks to confirm the transactions. Normally, in Bitcoin, each transaction
has to wait for 6 blocks to confirm the validity with a high probability that the transaction
cannot be double-spending.

Proof of Stake (PoS) is regarded as an improvement over PoW, where multiple servers
make redundant efforts to solve the same puzzle. Compared to PoW, PoS assigns decision-
making power to servers based on their stake in the digital asset (e.g., cryptocurrency),
and assumes that high-stake players will cooperate honestly without explicit economic
incentives. PoS is being considered in the next evolution of Ethereum, and in several other
systems including Algorand [35], which can outperform Bitcoin by a factor of more than
100. Even this level of performance, however, is inferior to the VISA credit card system,
which can scale to 24,000 txns/sec [102].

Besides PoW and PoS, there are some other proof of X schemes, like proof of ownership,
proof of consensus, proof of activity, etc. But those techniques are not sophisticated enough
to be widely deployed. Proof of X scheme is mainly employed by permissionless blockchains.
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2.2.2 Traditional BFT Protocols

Another approach to solving the consensus of blockchain is traditional BFT protocols.
BFT protocols have been long discussed in academia since the PBFT [19] in 1999. How-
ever, in a traditional distributed system, where there is a trusted third party, a malicious
attack is not considered in the consensus design. Nevertheless, because of the research
and development of blockchain technology, BFT protocols are being adopted to solve the
consensus of blockchain systems. Hyperledger Fabric [5] is developing its second software
version based on the BFT protocol. The core of Tendermint [17] and Red Belly [23] are
also BFT protocols.

A BFT protocol is a consensus protocol that can tolerate Byzantine failure. The most
famous BFT protocol is PBFT [19]. In each consensus cycle, one of the replicas is selected
as the primary replica, all the others are the backup replicas. In normal-case operations,
when a primary replica receives a request from a client, it starts a three-phase protocol. In
the pre-prepare phase, the primary replica atomically multicast the request with a sequence
number as the pre-prepare message to other backup replicas. If a backup replica accepts the
pre-prepare message, it enters the prepare phase by broadcasting a prepare message to all
other replicas. If a replica (including the primary) accepts enough valid prepare messages,
it adds the request to its log and replies to the client, which is the commit phase. When
a client receives enough valid replies from different replicas, it can ensure that the request
has been committed by the non-faulty replicas.

In blockchain systems, BFT protocol is always coupled with state machine replication
(SMR) in achieving consensus. This makes a big difference compared to PoW. The safety
property of PoW is conditioned on the 51% computation power, but liveness is guaranteed
in any situation. In contrast, the BFT protocols always guarantee safety, but the liveness
property is conditioned on the number of Byzantine nodes. The upper bound number of
faulty nodes for BFT consensus to ensure the liveness is (n − 1)/3 in an asynchronous
network where n is the total number of nodes in the protocol [15]. This number can be
relaxed to (n− 1)/2 in a synchronous environment [1]. As a result, BFT-based blockchain
can ensure security by design without worry about the 51% attack.

Previous BFT-SMRs, like PBFT[19], are mostly used in small-scale systems, with only
a handful number of replicas. This is because the traditional distributed system does not
require large-scale replication on one hand. On the other hand, the intensive communica-
tion complexity of the BFT protocol limits the scalability of the system. This is the same
even for crash fault-tolerant protocol, which tends to send fewer messages than BFT proto-
cols, such as Paxos [55] and Raft [81]. Whereas the blockchain system requires large-scale
deployment, more than hundreds or thousands of nodes, many researchers are investigating
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new BFT protocols that target the blockchain application.

Zyzzyva [52, 38, 95] uses clients to speculate the order of the requests to reduce the cost
and simplify the design of BFT SMR. It improves the performance of existing BFT services
and achieves performance levels near theoretical lower bounds on both throughput and
latency. FastBFT [59] proposes a novel message aggregation technique based on hardware
trusted execution environments to reduce message complexity. It is a fast and scalable
BFT protocol in comparison to several existing BFT variants. Honey Badger BFT [74]
claimed to be the first practical asynchronous BFT protocol with an atomic broadcast
protocol to provide optimal asymptotic efficiency in the asynchronous setting. Stellar
consensus protocol (SCP) [60] is a federated Byzantine agreement protocol that uses a
quorum slice with an intersection to reach consensus. Nomination from different quorum
slices may produce multiple candidates, so SCP requires the application layer to supply
some method for combining candidates into a single one. SBFT [39] is a new BFT protocol
which is an improvement of PBFT for world-scale deployment. It uses collectors to reduce
the communication complexity to linear if the messages are cryptographically signed by
threshold signature. Also, an optimistic fast path reduces client communication. RCanopus
[48] is an innovative BFT protocol that employs a leaf-only tree structure like Canopus [89]
to separate the whole sequence of requests into super-leaves as the first layer. Each super-
leaf works as a shard that processes part of the requests. On top of the super-leaf, a
Byzantine group is constructed as the second layer to counter Byzantine failures with the
help of a Byzantine consensus protocol. And then, the requests are ordered as a whole by
combining the results of all the Byzantine groups as the top layer.

2.3 Scalability of Present Blockchains

From the previous section, we can see that consensus protocols play an important role in
the Blockchain system. But before we go through the analysis, let us define the meaning
of scalability. Scalability is one of the most important design goals of distributed systems
[53]. In general, it spans three dimensions, size scalability, geographical scalability, and
administrative scalability. Size scalability means the system can scale with respect to its
size without huge performance reduction. Geographical scalability means the impact of
the distance of the users is not noticeable. Administrative scalability means the system
can be easily managed by multiple organizations.

Throughput and latency are the two key factors used to evaluate the scalability in most
distributed systems. Blockchain uses them as well. Throughput describes the quantity
of requests that a system can process in a fixed time slot. It is usually measured as
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transactions per second in blockchain systems. Latency is the time needed to process one
specific request. In a blockchain system, confirmation latency is mostly used to measure
the time interval from the time that the system receives the transaction to the time that the
transaction is appended. For example, the throughput of Bitcoin is roughly 6-7 transactions
per second, and the latency is about 10 minutes. This performance is regardless of the size
of the system. As a result, Bitcoin is not a scalable system due to its low throughput and
high latency.

Now, going deep into why scalability is a problem of Blockchain systems. As intro-
duced before, consensus is the core of Blockchain systems. Proof of X and traditional
BFT consensus are the two strategies to achieve consensus [104]. The two most mature
blockchain systems, Bitcoin and Ethereum, employ proof of work (PoW) associated with
the longest chain rule to achieve consensus. The core of PoW is a hash puzzle that should
be calculated in every block cycle. The expected time to solve the puzzle is set accord-
ing to the overall computation power. In most PoW systems, the number of transactions
contained in a block is limited by the block size which is a constant. The expected time
to solve the puzzle is also configured as a constant regardless of the total computation
power. As a result, the throughput and the latency of PoW-based blockchain systems can
be formulated as:

latency = time to solve hash puzzle (2.1)

throughput = number of transactions in a block/latency (2.2)

From equations 2.1 and 2.2, to increase the system performance, either increase the
number of transactions in a block or reduce the time to solve the hash puzzle or both. Since
PoW based blockchain system is a peer-to-peer system, and each peer only broadcasts to
its neighbours, more transactions in a block will result in a larger block which will put
pressure on the network and peers. The Minimum recommended system requirements of
Bitcoin are 500 MB/day download and 5 GB/day upload. Thus to maintain a good network
communication environment, the block size should be limited. Bitcoin set the block size
at 1 MB maximum. Another approach is to reduce the expected time to solve the hash
puzzle. The time to solve the hash puzzle is bounded by the total computational power
of the system, thus the theoretical upper and lower bounds vary according to the system.
Bitcoin set the expected time to solve a block to around 10 minutes, while Ethereum set
the expected time to around 12 seconds. By doing this, the puzzle can be computed in a
shorter time. However, this will increase the probability that more than one peer solves
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it at roughly the same time. In Bitcoin and Ethereum, when more than one peer solves
a puzzle in the same block cycle at the same time, all of them are treated as valid. The
other peers can select any of them as the successful miner in that cycle and append its
block to the main chain of their view. This will result in forks for different peers. This
is the reason for the longest chain rule where the system defines the main chain as the
longest chain among all the forks. Although fork chains exist, only the longest chain will
be accepted as the main one. If the forks do not appear frequently, then after several block
cycles, the forks will be ignored since honest peers only append the block to the longest
chain. However, if forks appear frequently, it will take more block cycles to converge to
a single longest chain. In the worst case, all the forks grow at the same rate, then peers
cannot distinguish which one is the correct main chain. Thus, reducing the time to solve
the hash puzzle is not a straightforward approach considering the longest chain rule.

Because of the poor scalability of PoW, PoS is being proposed to replace PoW. The
idea is, instead of using the hash puzzle to decide who can propose a block in a block cycle,
a quorum of peers is selected as a committee to represent all the peers. The committee
runs a BFT consensus protocol to decide which block can be appended to the main chain.
The longest chain rule is no longer a requirement. This can remove the redundant puzzle
computation performed by every peer. However, PoS is still not mature enough, Algorand
[35] is a developing PoS-based blockchain system. One of the difficulties is how to properly
select the committee. Another difficulty is how the committee achieves consensus efficiently
under Byzantine failure. Other proof of X schemes are also under investigation.

Proof of X schemes are mainly used for permissionless blockchains because of the open
membership, although there are some for permissioned blockchains like proof of authority.
The consensus should take the peer joining and leaving into consideration. For permis-
sioned blockchains, since there is access control to the membership of the system, peers
cannot join and leave arbitrarily. Thus, traditional BFT consensus protocols are considered
to implement the system. Compared to proof of X schemes, traditional BFT protocols have
much better performance, high throughput, and low latency. However, scalability is also a
major drawback of traditional BFT protocols. Most of the traditional BFT protocols are
running within a small quorum, several to tens of nodes. If the quorum size expands to
thousands, the performance degrades significantly. In contrast, the performance of PoW
is not correlated to the number of peers as long as the network is not saturated. On the
other side, traditional BFT protocols assume an upper bound on the ratio of Byzantine
peers, < 1/3 in an asynchronous environment, < 1/2 in a synchronous environment [15].
If the ratio exceeds the bound, consensus cannot be achieved. The PoW-based systems as-
sume that the majority of computation power is controlled by honest peers. Nevertheless,
PoW-based systems have thousands of peers. Both Bitcoin and Ethereum have around
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4000 peers. However, traditional BFT protocols only have tens of peers which are easy to
attack. As a result, researchers are working on designing large-scale BFT protocols that
can be applied to blockchain systems.

2.4 Blockchain Benchmarking

To benchmark a blockchain system, the most two frequently used metrics are throughput,
measured in transactions per second, and transaction confirmation latency, measured in
seconds. These two dimensions are measured across different network and fault tolerance
conditions. Due to the success of Bitcoin, the unspent transaction output (UTXO) trans-
action model is widely used in benchmarking. As the name indicates, the UTXO is a
set of outputs of unspent transactions. An unspent transaction is a transaction, like a
coin, that can be spent once by its owner. A valid transaction includes some inputs and
some outputs. The input of any new transaction should use at least one of the unspent
transactions in this set and generate a new unspent transaction as the output. Otherwise,
the transaction will not be valid. The UTXO set is derived from the chain of blocks and
updated for every new block. Another transaction model is the account-based transaction
model. In contrast to the UTXO model, every user in the account-based model has a
balance on their account. And a transaction is a transfer of balance from some accounts
to some other accounts, like the bank system.

Although there exist lots of different blockchain systems, there does not exist any system
that can perform a unified comparison among them. The difficulty is that each system
has its own specified transaction data structure and system workflow. Blockbench [27] is
the first framework proposed in 2017 to evaluate private blockchains. But it only supports
Ethereum [18], Parity [32] and Hyperledger Fabric [5]. Caliper [44] is another tool designed
for measuring blockchain performance, led by Linux Foundation. It can be used to test
several Hyperledger projects, such as Hyperledger Fabric and Hyperledger Sawtooth, etc.
However, most of the blockchain systems are only running their own tests and comparing
the transaction throughput and latency reported by other systems.

2.5 Major Blockchains

As stated in Chapter 1, the blockchain system can be categorized into permissionless
blockchain and permissioned blockchain. Permission means the authority to participate

19



in the system. This section will introduce several well-known blockchain systems in each
category.

2.5.1 Permissionless Blockchains

Bitcoin [77] is the first well-known permissionless blockchain-based cryptocurrency. It was
developed by Satoshi Nakamoto in 2008. An interesting fact is that no one knows whether
Satoshi Nakamoto represents a person, a group of people, or an organization. It is a
fully decentralized ledger that operates by all the miners in the system. The coin is only
generated by the system as an incentive to the peer who wins the competition in each block
cycle according to a protocol called Proof of Work (PoW). Each transaction of the coin is
stored in a chain of blocks connected by the block hash. And this chain is replicated by
every miner. Instead of the traditional account-based ledger, Bitcoin is a transaction-based
ledger where each transaction records the sender and receiver and saves this information in
the ledger. As a result, if anyone wants to modify a transaction in a block, all the blocks
on and after that block have to be changed accordingly. However, due to the computation
complexity of PoW, it is almost impossible to do that as long as more than 50% of the
computation power is controlled by honest miners. Thus, Bitcoin is treated as a secure
system by design. Nevertheless, also because of the computation complexity of PoW, the
power consumption to maintain the system is extreme. Bitcoin is estimated to cost about
73 TWh per year on average. Moreover, the system can merely process around 7 txns/sec
to ensure security and lower the risk of chain forks. Around December 2023, each Bitcoin
was worth more than 17,000 US dollars.

Due to the success of the Bitcoin system, more and more people are investigating
blockchain technology. Ethereum is another famous permissionless blockchain system that
was proposed by Vitalik Buterin [18]. The value of an Ether, which is the digital coin in
the Ethereum system, was about 160 US dollars on March 18, 2020. In comparison to
the Bitcoin system, its innovation is the smart contract system [26] that works on top of
the blockchain. The transaction in the Bitcoin system involves a stack-based script. But
due to its simplicity, it can only perform limited operations. However, a smart contract
is a Turing complete program that runs on Ethereum virtual machine (EVM). This gives
the system more functionality instead of just being a cryptocurrency like Bitcoin. Also,
Ethereum employs account based ledger in comparison to the transaction-based ledger in
Bitcoin. Another feature of Ethereum is that it can also be deployed as a permissioned
blockchain. Ethereum switched from PoW to PoS in 2022.

Algorand is an under-development permissionless blockchain that leading by a Turing
award recipient, Dr. Silvio Micali, from MIT [35]. It is the first PoS-based blockchain
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system. Algorand proposes a novel Byzantine agreement protocol to reach consensus on
the transactions. This can make the system process 1000 transactions per second and
confirm a transaction in seconds, which outperforms Bitcoin by a factor of more than 100.

2.5.2 Permissioned Blockchains

Hyperledger Fabric [5] is a permissioned blockchain system and one of the Hyperledger
projects of the Linux Foundation. It is a modular open-source system that follows an
execute-order-validate working flow which is different from others. All the other blockchains
follow the order-execute architecture, which means transactions are being ordered first in
a consensus setup and then executed sequentially in the same order in all peers. This will
limit the throughput of the system due to the sequential execution. But execute-order
architecture can execute transactions in parallel and as a result, increase the throughput.
Another limitation of order-execute architecture is that some of the smart contracts need
confidentiality of execution. As a result, Hyperledger Fabric proposed execute-order archi-
tecture. Moreover, Hyperledger Fabric also makes the consensus as a pluggable module.
The lifecycle of the Fabric can be divided into three phases which are the execution phase,
the order phase, and the validate phase. By using this infrastructure, the Hyperledger
Fabric can achieve over 3560 [5] transactions per second. However, a major drawback of
Fabric is that it currently uses Raft [81] consensus for ordering service, which is a crash
fault-tolerant protocol. However, the development team of Hyperledger Fabric is working
on a BFT-based ordering service for the next version.

Red Belly Blockchain [23] is a permissioned blockchain system supported by the Univer-
sity of Sydney and the Australian research council. It has the highest reported throughput,
more than 600,000 transactions per second in one datacenter. Red Belly uses DBFT [21]
to achieve consensus. DBFT is an efficient Byzantine consensus protocol using a weak
coordinator to obtain excellent performance. Another feature of Red Belly is the sharded
verification. Instead of verifying all the transactions in every participant, Red Belly only
requires a subset of participants to perform the verification. This can optimize the usage
of computational resources.

BoscoChain [100] is a developing permissioned blockchain based on the Bosco consen-
sus protocol. Bosco is a one-step Byzantine fault-tolerant consensus protocol. It is easy
to understand with a simple proof of correctness as well as high throughput and low la-
tency. BoscoChain is also a sharded blockchain. A master ledger is in charge of not only
maintaining the membership but also interleaving and integrating the participant ledgers.
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2.6 Sharding

Besides the consensus of the system, sharding [41] is another intuitive approach to improve
the scalability of the blockchain. Although sharding is a conventional technique to achieve
high scalability in database systems, the effect of sharding in blockchain systems is not well
understood. In a sharded blockchain, transactions are partitioned into multiple shards, and
each shard builds a blockchain on its chunk of transactions. A sharded blockchain would
ideally scale linearly with the number of shards in terms of throughput. However, if the
shards are built with full sharding, which means a transaction is only recorded in one
shard, as in Rapidchain [108], then cross-shard transactions need to be handled between
shards. If not, as in BoscoChain [100], the shards must be interleaved to form a consistent
final ledger. My research is focusing on sharding techniques in permissioned blockchains
to increase system scalability.

In conventional blockchain systems, the server gathers transactions into a block and
assembles the blocks as a single chain that is connected by the block hash. This entails
reaching a consensus on the order of blocks. As explained before, the usage of a consensus
protocol in this context limits scalability, and this observation has triggered a search for
alternative designs that harness together multiple instances of a consensus protocol to
increase transaction throughput. In particular, there is growing interest in sharding – a
technique that distributes the storage, communication, and computation workload across
multiple partitions (shards).

Sharding is a commonly used technique in traditional database systems where data are
partitioned into multiple shards. Each shard is maintained on a separate server. By doing
this, the load of the requests can be spread and balanced across all shards. Each shard
represents a subset of data. For example, the data can be partitioned by the keys in the
key-value store database. Each shard contains a subset of the key-value pairs. Different
key-value pairs read and write can be operated concurrently in different shards without
interference. However, the data in blockchain systems is a unique chain of blocks, where
each block is interconnected with the hash of its previous block. Thus, how to partition the
data remains the core problem of blockchain sharding. A major challenge is how to deal
with cross-shard transactions, a transaction that the inputs and outputs locate in different
shards.
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Chapter 3

Performance and Fault Tolerance
Trade-offs in Sharded Permissioned
Blockchains

In this work, we illuminate some of the design trade-offs in sharded permissioned blockchains
by examining the scalability of two methods for interleaving shards, which we refer to as
strong temporal coupling (STC) and weak temporal coupling (WTC). STC and WTC in
blockchains are introduced in our poster paper [67] at ICBC 2020. Nguyen’s thesis [79]
compares STC and WTC through experiments in a simulated environment and AWS EC2
in North American (NA) region. Beyond her thesis [79], since the naive STC cannot tol-
erate any failure, I implement and evaluate the performance of STC with a mechanism,
called convergence module, for tolerating failures. The convergence module is first in-
troduced in RCanopus [48] to tolerate network partitions. However, detailed algorithm
design and evaluation are missing. In addition, I introduce a model to qualitatively ana-
lyze the performance of STC and WTC and conduct experiments in both single datacenter
and globally distributed multiple datacenters. The results of the experiments match the
prediction of the analysis.

3.1 Background and Related Work

In conventional blockchain systems, servers gather transactions into a block and assemble
blocks into a single chain connected in a tamper-proof manner by the block hash. This

23



entails reaching consensus on the order of blocks, and thus deciding the predecessor of
each block in the chain of hashes. The application of consensus in this context limits
scalability, and this observation has triggered a search for alternative designs that harness
together multiple instances of a consensus protocol to increase transaction throughput. In
particular, there is growing interest in sharding – a technique that distributes the storage,
communication, and computation workload across multiple partitions (shards).

Since blockchain systems process transactions in multiple stages, such as validation and
ordering, sharding can be implemented in a variety of ways. OmniLedger [51], Elastico [61]
and RapidChain [108] divide participants into committees, each comprising a subset of
participants that work as a shard to process a subset of transactions. Committees are fixed
for a period of time called an epoch and may be reconfigured at epoch boundaries. A special
inter-shard commitment protocol is used to handle cross-shard transactions, which can be
numerous due to hash-based transaction placement. OptChain proposes an algorithm that
increases the performance of sharding via optimizing the placement of transactions into
shards. BoscoChain [100] shards only transaction ordering and interleaves transactions
explicitly into a master ledger to ensure that transactions are valid across different shards.
Transactions can be validated partially by the shards, as in [23], but a global view of the
master ledger is required to detect cross-shard inconsistencies such as double-spending.
The master ledger is used to keep track of transactions to maintain the security of the
system.

In general, sharding mitigates the scalability bottleneck of transaction ordering but
complicates transaction validation. It can also weaken the resilience of a blockchain sys-
tem to server failures by reducing redundancy, for example, the replication factor of trans-
action storage. Keeping the latter concern in mind, this work focus on the category of
systems where designated participants merge transactions from all the shards to construct
an explicit master ledger (e.g., [23, 100]).

The use of sharding to improve scalability in consensus protocols predates the rise of
blockchains. Steward [3] is a Byzantine consensus protocol with a hierarchical structure,
and uses a Paxos-like [55] leader-based consensus protocol to reach agreement across shards.
BoscoChain [100] is a permissioned blockchain based on a similar structure and uses the
leaderless Bosco [96] one-step Byzantine consensus protocol. Similarly to Steward, separate
layers of consensus are used to order transactions first within each shard, and then globally.
RCanopus [48] is a Byzantine hierarchical coordination protocol based on an earlier crash-
tolerant system called Canopus [89]. Compared to Steward and BoscoChain, it dispenses
with the top layer of consensus, opting instead for a simpler and more direct all-to-all
broadcast. Blocks of transactions from different shards are interleaved implicitly in this
approach, which requires that all shards produce blocks at roughly the same rate. If a
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shard fails or is cut off by a network partition, liveness is restored by reconfiguring the set
of shards carefully.

EPaxos [75] is a crash-tolerant consensus protocol that belongs to the Paxos family
[55, 42], and can be used to order individual transactions or transaction blocks. In the
crash failure model, consensus can be achieved with a majority of non-faulty nodes as long
as the environment is sufficiently synchronous. In Paxos, commands must be handled by
a leader in each cycle. If there are multiple leaders, the protocol may not make progress.
Also, if the leader fails, the system needs to wait until a new leader is selected. Besides, the
single leader limits scalability when there is a large volume of commands sent to the leader
for processing. In contrast, EPaxos is leaderless, meaning that clients can send commands
to any replica. This can relieve the high load on a single leader and thus achieve high
throughput, especially in a geo-distributed environment. Due to its high performance and
open-source implementation, we choose EPaxos for our prototypes to build shards as well
as to interleave blocks. EPaxos source code in Golang is available to the public on GitHub
[76].

3.2 Methods of Block Interleaving

From a high-level point of view, interleaving in sharded blockchain systems means com-
bining multiple sequences of blocks into a unique global sequence of blocks (i.e., main
chain), and ensuring that each transaction remains valid in this global sequence. From this
global view, validity is ensured straightforwardly by checking signatures and transaction
inputs/outputs. The unique order of blocks must be computed either explicitly using an
additional consensus protocol, or implicitly, for example by drawing blocks from different
shards in round-robin order. An additional round of validation is then carried out, above
and beyond the validation done by each shard, to counter malicious behaviours such as
cross-shard double-spending. For example, in a cryptocurrency application, the system
must prevent cross-shard double-spending (i.e., spending a coin more than once) and fake
spending (i.e., spending a non-existent coin). This section explains two techniques used in
recent research to implement the interleaving phase specifically. We refer to these as strong
temporal coupling (STC) and weak temporal coupling (WTC) throughout the paper.

3.2.1 Strong Temporal Coupling

In the STC approach, blocks from different shards are interleaved based on a static ordering
of the shards (e.g., in round-robin order), without explicit coordination. It is the simplest
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Figure 3.1: Two methods of interleaving shards in a blockchain.
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interleaving strategy. Figure 3.1(a) gives an example of how two blockchain shards can be
processed using STC. The order of blocks within each shard has already been decided, and
now the two shards must be interleaved into the main blockchain. This is accomplished
incrementally by processing blocks in consensus cycles. The advantage of this method is
that each peer can do the interleaving independently without communicating with other
peers, and still guarantee consistency if there is no Byzantine failure. The principal draw-
back of this method is that when one shard becomes unavailable (e.g., during a network
partition), the entire system stalls. Multiple remedies to this problem are proposed in [48],
all requiring that transaction commitment be delayed by one or more consensus cycles – a
hazard to latency. Sacrificing fault tolerance for simplicity in the absence of failures, STC
has the potential to outperform WTC in the common case, provided that transactions are
distributed evenly across shards.

Since the simple design of STC cannot tolerate any shard failures, RCanopus [48]
proposes a convergence module (CM) service to cope with network partitions. The CM acts
similarly to an external group membership service that decides which shards participate
in different consensus cycles, except that shards bypass the CM entirely in the absence of
failures and compute the group membership implicitly by exchanging failure meta-data. A
subtle mechanism is then used to synchronize implicit membership tracking in the failure-
free case with explicit membership polling during network partitions and shard failures.
This mechanism relies crucially on delaying transaction commitment by one consensus
cycle, which increases latency but does not jeopardize throughput. Details are described
in [48].

To enable a fair comparison with WTC, we consider two implementations of STC.
The first implementation is naive in the sense that the system stalls when a shard fails.
The second implementation is more elaborate and includes a portion of the Convergence
Module service needed for our (failure-free) scalability experiments. We refer to these two
implementations as STC-naive, and STC-CM, respectively.

In the naive implementation, an interleaving server requests ordered blocks from each
shard, and then verifies the blocks sequentially according to the shard number, as shown in
Figure 3.1(a). Algorithm 1 presents the pseudo-code for this implementation. In each cycle,
each interleaving server waits for all shards to produce a new block (line 10). Sj[cycle] is
the block of shard j in a given cycle. Then, it appends the blocks in this cycle from every
shard in the same order as line 11, which involves the procedure of appending the block
to the main chain. The order must be fixed ahead of time and must be consistent across
all the processes executing the procedure. Blocks are appended to the main chain in the
same order, provided that they pass the final validity check (lines 2–4).
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Algorithm 1: Strong Coupling

1 Procedure AppendBlock(block)
2 if verify(block) then
3 mainChain.append(block)

4 end

5 end
6 Procedure Interleave
7 cycle = 1
8 while True do
9 for each shard Sj do // fixed order according to the shard number

10 wait until Sj[cycle] is known
11 AppendBlock(Sj[cycle])

12 end
13 cycle++

14 end

15 end

The more elaborate Convergence Module-based implementation is presented as Algo-
rithm 2 and 3 and illustrates how shards exchange failure meta-data. First, the interleaving
server generates a liveness report of each shard based on the cycle number at lines 19–26.
The report records whether a shard appears alive or failed in that cycle. Next, the liveness
reports are processed for each cycle at lines 30–51. In the failure-free case, the interleaving
server receives reports from all shards indicating that an all-to-all broadcast was success-
fully completed in that cycle, and the interleaving server marks the corresponding blocks
at lines 35–37 as the decision for that cycle. Otherwise, the interleaving server proceeds to
lines 39–47, where it requests assistance from the CM for that cycle. The CM replies with
the set S of shards that participated in that cycle. Finally, the corresponding blocks are
interleaved at lines 56–58. The AppendBlock procedure is the same as Algorithm 1.

From Algorithm 1, we can see that there are two stages of processing in the naive
implementation:

(1) extracting a new block from each shard, which can be considered transaction or-
dering, and

(2) validating and appending the block to the main chain, which can be considered
transaction execution.

In comparison, Algorithm 2 and 3 introduce an additional stage to handle the liveness
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Algorithm 2: Strong Coupling with CM

16 Procedure BroadcastReports
17 cycle = 1
18 while True do
19 for each shard Sj do
20 if Sj[cycle] received before timeout then
21 report[cycle][Sj] = True
22 else
23 report[cycle][Sj] = False
24 end

25 end
26 broadcast report[cycle] to all interleaving servers
27 cycle++

28 end

29 end
30 Procedure ProcessReports
31 cycle = 1
32 while True do
33 wait for report[cycle] from each interleaving server until a timeout
34 if received report[cycle] from every interleaving server and each report

contains only True values then
35 for each shard Sj do
36 state[cycle][Sj] = Sj[cycle]

37 end

38 else
39 request assistance from CM for cycle
40 retrieve missing blocks of cycle from shards set S decided by CM
41 for each shard Sj do
42 if shard Sj is in S then
43 state[cycle][Sj] = Sj[cycle]
44 else
45 state[cycle][Sj] = ∅
46 end

47 end

48 end
49 cycle++

50 end

51 end

29



Algorithm 3: Strong Coupling with CM

52 Procedure Interleave
53 cycle = 1
54 while True do
55 wait until state[cycle] has been computed by procedure ProcessReports
56 for each shard Sj do // fixed order according to the shard number

57 AppendBlock(state[cycle][Sj])

58 end
59 cycle++

60 end

61 end

reports and, if needed, interact with the Convergence Module. According to the algorithms,
the transaction throughput and latency can be qualitatively captured as:

lSC = trec max + nshard × ntxn × texc (3.1)

lSC CM = lSC + treport (3.2)

tptSC = min{nshard × ntxn

trec max

,
nshard × ntxn

nshard × ntxn × texc
} (3.3)

tptSC CM = min{tptSC ,
nshard × ntxn

treport
} (3.4)

The notation used in the equations is explained in Table 3.1.

From equations 3.1 and 3.2, we see that the more elaborate CM-based implementation
incurs a longer latency. Similarly, under the same allocation of resources, the CM-based
implementation may exhibit lower peak throughput due to the additional cost of liveness
report processing. However, the throughput of both implementations can also be limited
equally by the transaction execution stage.
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Notations Description
lSC transaction confirmation latency of SC
lSC CM transaction confirmation latency of SC CM
tptSC throughput of SC
tptSC CM throughput of SC CM
trec max waiting time for a new block from the slowest shard in a cycle
nshard number of shards
ntxn number of transactions in a block
texc time to verify one transaction
treport time to broadcast and process the liveness reports

Table 3.1: strong coupling notations

3.2.2 Weak Temporal Coupling

In contrast to STC, WTC interleaves shards explicitly using another layer of consensus.
Specifically, this is accomplished using a replicated state machine (RSM) that records
a sequence of shard and block IDs, indicating the interleaving order. The procedure is
illustrated in Figure 3.1(b). In the first consensus cycle, either block A or block D can be
proposed, and the illustration shows that block A is decided. In the second consensus cycle,
either block B or block D can be proposed, and block D is decided. The remaining blocks
are ordered, validated, and appended accordingly, as shown in the illustration. WTC does
not require all shards to grow uniformly or to participate in interleaving for that matter,
but it does have to draw blocks from all available shards fairly to prevent starvation. Shard
failure does not block the interleaving process.

Algorithm 4 is the pseudo-code of WTC. There is a dedicated thread running at each
interleaving server that reads blocks from the shard it was assigned. The block is ordered
through the consensus protocol at line 64, and the consensus protocol batches blocks in-
ternally for efficiency. Then, the block is stored along with its order in a data structure of
pending blocks (line 65). The procedure Interleave executes transactions similarly to
STC at lines 71–72. The transaction throughput and latency of WTC can be formalized
as:

lWC = trec min + tconsensus + ntxn × texc (3.5)

tptWC = min{ ntxn

trec min

, tptconsensus × ntxn,
ntxn

ntxn × texc
} (3.6)
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Algorithm 4: Weak Coupling

62 Procedure Ordering
63 for each block do
64 cycle = Consensus(block)
65 pendingblocks[cycle] = block

66 end

67 end
68 Procedure Interleave
69 cycle = 1
70 while True do
71 wait until pendingblocks[cycle] is set
72 AppendBlock(pendingblocks[cycle])
73 cycle++

74 end

75 end

The notation used in the equations is described in Table 3.2.

Compared to the two variations of STC, WTC is more sensitive to the performance
of the consensus protocol because a single instance of this protocol is accessed at line 64,
irrespective of the number of shards. This consensus protocol can potentially dominate the
latency of WTC and limit throughput, making it inferior to STC. Aside from the consensus
and transaction verification, the fundamental difference between STC and WTC is that
the performance of WTC is determined by the aggregate shard growth rate, while STC is
limited by the slowest shard. As the number of shards increases, the divergence in shard
growth rate tends to increase as well, which could potentially give WTC an advantage over
STC. Thus, although WTC requires an additional consensus stage, if a high-performance
consensus protocol is used, WTC can potentially outperform STC even in the absence of
failures, which is unexpected based on first impressions.

3.3 Prototype Implementation

Blockchain is a peer-to-peer ledger that is implemented following the established client-
server model. In general, clients are processes that propose transactions to the servers,
while servers are responsible for validating and storing the transactions in a chain of blocks.
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Notation Description
lWC transaction confirmation latency of weak coupling;
trec min time to extract a new block from any shard, which means the wait-

ing time to read a new block from any shard;
tconsensus time for ordering the block through the consensus protocol;
ntxn number of transactions in a block;
texc time for transaction verification, as in SC and SC CM;
tptWC throughput of weak coupling, which is the minimum of overall shard

growing speed, the throughput of the consensus, and transaction
validation speed.

Table 3.2: weak coupling notations

A server is a peer that carries out functions to process the transaction. Clients can commu-
nicate with any server without regard to the actual location of the data. Servers coordinate
using a combination of state machine replication to record transactions in a fault-tolerant
manner, and a broadcast protocol to disseminate blocks. Transactions are split into shards,
and the shards are interleaved to compute a consistent ledger in all servers. In addition,
in blockchain systems, digital signatures are used to validate transactions. This limits the
power of a Byzantine peer to corrupt the system, and behaviors such as double-spending
can be detected in the validating process.

A permissioned blockchain platform is implemented in Golang to compare the per-
formance of STC-naive, STC-CM, and WTC. This section provides an overview of the
prototype’s system architecture, which is presented in Figure 3.2. Clients are at the top
layer, which proposes transactions to the front end (FE) servers. Clients can only com-
municate with FE servers. The FE servers in the middle layer are used for coordinating
between clients and shards, and also work as interleaving servers. These servers carry out
three functions:

(1) collecting transactions from clients,

(2) verifying the signature and the existence of the received transactions, and

(3) gathering the transactions into blocks and distributing the blocks to shards.

Also, FE servers continuously extract blocks from each shard and interleave them into
the final ledger through either strong coupling or weak coupling. The interleaving process
involves the validation of double-spending against the interleaved blockchain. At last, each
front end server stores a full copy of the interleaved final ledger, which is called a full node
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Figure 3.2: System architecture.

in Bitcoin. The bottom layer consists of back end (BE) servers, which are arranged into
multiple shards. The main function of the BE servers is collecting blocks from FE servers
and arranging them into a consistent chain of blocks as a shard, which involves consensus.

According to the architecture, the system is implemented with a high-performance
crash-tolerant consensus protocol, EPaxos [75, 76]. Since the work is concentrated on
the fundamental impacts of coupling methods, the high-performance consensus protocol
lessens the impact of consensus on interleaving and shard building. Due to the popularity
of the unspent transaction output (UTXO) model of Bitcoin, the workload of the system
follows the UTXO model without scripts. Also, each transaction is merely a transfer of one
or more unspent transactions from one use to another. A transaction is a data structure
that includes a transaction id, the public key of the sender, a signature signed by the
sender with its private key, an input, and an output. The input contains the hash of a
previous unspent transaction and the sender address, which is the hash of the sender’s
public key. The output only contains the receiver’s address. Moreover, each block includes
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multiple transactions for better performance. And each block is connected by the hash of
its previous block. We use the ECDSA algorithm as the signature scheme.

A sample workflow of a normal transaction is presented in Figure 3.3. The transaction
starts with a user, Bob, who wants to send a coin to another user, Alice. Bob first
proposes the transaction and then waits for the system to confirm the transaction. The
FE server of the system is responsible for gathering the transaction and including it in the
next proposed block. The FE server keeps proposing a new block to a shard for further
processing. Meanwhile, the FE server extracts new blocks from the shards and interleaves
all the new blocks into the main ledger with either strong coupling or weak coupling as
introduced in the previous sections. After the FE server confirms that the transaction sent
by Bob has been added to the main ledger, it informs Bob with a confirmation message.
After this point, Bob can inform Alice regarding this transaction, and Alice can use this
transaction as his coin in the future.

3.4 Evaluation and Discussion

The experiments are conducted in the Amazon EC2 environment to evaluate the relative
performance of different block interleaving methods. Each process uses an m4.xlarge in-
stance with four 2.4GHz Intel Xeon E5-2676 cores and 16GB of RAM, running Amazon
Linux and Golang v1.13.6.

In each experiment, both the number of clients and the number of FE servers are equal
to the number of shards, and each shard comprises 3 EPaxos replicas. Each FE server
receives transactions from one client process and distributes blocks to one shard. Each
client process runs multiple threads to mimic multiple users who propose transactions
concurrently, where each thread represents an individual user of the system with a distinct
key pair. We use closed-loop clients where each thread issues requests sequentially using
synchronous calls. Throughput is controlled indirectly by varying the number of threads of
each client. We measure the latency at the client on an end-to-end basis as the time from
when a user submits a transaction to the time when that user receives a reply confirming
whether or not the transaction is appended to the blockchain.

Prior to each experimental run, every user is assigned a wallet with some unspent
coinbase transactions. These transactions are all valid coinbase transactions and are stored
in their wallets. During workload execution, each user proposes a transaction by picking
one coin from their wallet and sends it to a randomly chosen user simulated in the same
client process. After the transaction is confirmed, the sender removes the input coin from
its wallet and informs the receiver.
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Figure 3.3: Transaction workflow.

In each experimental run, we allow the system to warm up for 5s, then start the
measurement, and then keep the system running for another 5s after the measurement.
For each run, we compute the median latency and the number of confirmed transactions
per second (i.e., throughput) over a 20s measurement window. We repeat each experiment
3 times and plot the sample average as the data point in our graphs.

3.4.1 Single Datacenter Experiments

The entire system runs in the US-EAST (Ohio) region, where the network latency is less
than 1 ms. This configuration minimizes the overhead of the consensus protocol and allows
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Figure 3.4: Performance of one shard with different block sizes.

us to examine other performance-limiting factors.

Prototype Fundamental Performance. In the first experiment, we establish a perfor-
mance baseline by evaluating a single shard. This case yields a baseline where no inter-
leaving is performed; WTC and STC collapse to a single protocol. Since the size of the
block is a factor that affects latency and throughput, we investigate the impact of this
parameter. In general, larger blocks tend to increase the transaction latency, while small
blocks tend to limit the system throughput.

In the experiment, we vary the number of transactions in a block to determine a good
block size. From Figure 3.4, we see that peak throughput varies between 6,500 txns/s
and 9,000 txns/s. Throughput improves initially as the block size increases from 1 to
10-50. As the block size increases from 50 to 200, peak throughput remains steady but
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Figure 3.5: Batching time.

latency increases. Thus, a block size of 10-50 yields the best latency-throughput trade-off
in this experiment. We adopt a block size of 50 for subsequent experiments and accordingly
consider 9,000 txns/s an approximate upper limit on the throughput of one shard.

Our second experiment in one shard case measures the batching time, which we define
as the time required to fill a block of constant size. This is an important metric since the
batching time affects the shard growth rate in both STC and WTC. From Figure 3.5, we
can see that the batching time (red) decreases as throughput increases, which is expected.
However, the variation in the batching time (blue) increases sharply. This indicates that,
even with constant block size, the time to obtain a new block exhibits substantial variation
at high levels of throughput. This occurs due to competition for resources as we approach
the system’s performance envelope. In the worst case observed in this experiment, the
standard deviation of the batching time approaches 10ms, which exceeds the single data-
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Throughput(txn/sec) Latency(ms) Notes
Estimated 193.42 5.17

Block size=1
1 client sends transactions continuously.

Measured 193.4 5.06
Error <1% 2%
Estimated 4432.6 11.28

Block size=50
50 clients send transactions concurrently.

Measured 4432.5 9.94
Error <1% 12%

Table 3.3: Accuracy

center network latency of around 5ms. Thus, under high throughput, the system inherently
exhibits divergence of the shard growth rate.

To examine how accurate the model of both the throughput and latency is, I conduct
an experiment in a 1-shard case to compare the measured values to the estimated values
as Table 3.3. Since the model requires that each stage is running with dedicated resources,
I measure the performance under low throughput where the resource is enough for each
stage. Under high throughput conditions, each stage is competing CPU and network
resources. The estimated throughput and latency are calculated by measuring the average
time interval of each block and the average time to execute a transaction according to
equations 3.1 and 3.3. I compare the results under two cases, one is that each block only
includes 1 transaction, and only 1 client sequentially sends transactions. In this case, both
the estimated throughput and latency are almost the same as the measured throughput
and latency. When I increase the block size to 50 and require 50 clients to send transactions
concurrently. The error of the throughput is still less than 1%. But the latency includes
overhead coming from the clients (preparing the transactions) and the servers (collecting
transactions into a block). In summary, the model can accurately estimate the throughput
while the latency may suffer overheads.

Scalability. In this experiment, I investigate scalability by measuring the through-
put and latency of three and five shards and comparing them against the earlier one-
shard experiment. From Figure 3.6, STC-naive and WTC achieve similar peak throughput
and latency with three shards, while STC-CM has slightly higher latency and lower peak
throughput. Error bars indicate the sample standard deviation, which is only visible at
high throughput. This observation reflects the fact that STC-CM requires additional time
to receive and process liveness reports, and also indicates that the additional layer of con-
sensus in WTC is not a performance limiting factor in a single datacenter. However, when
the number of shards increases to five, we see a small separation between STC-naive and
WTC, the latter taking the lead. This corroborates our earlier prediction that WTC can
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outperform STC when shards grow unevenly – an effect whose intensity is amplified as we
increase the number of shards.

Since we observe substantial gains in throughput with the addition of shards, the scal-
ability experiment also proves that the system is not bottlenecked by the final transaction
validation phase, where blocks are checked sequentially after being ordered by the shards
and then interleaved by the front-end servers.

Our overall conclusion from the single datacenter experiments is that the interleaving
approach to sharding a blockchain is scalable, though sub-linearly. The peak throughput
increases from roughly 9,000 txns/s at one shard, to more than 20,000 txns/s at three
shards, and more than 30,000 txns/s at five shards. In a system with three shards and no
interleaving, the ideal peak performance should be 9,000 × 3 = 27,000 txns/s. Similarly, at
five shards we expect roughly 9,000 × 5 = 45,000 txns/s. Thus, the overhead of interleaving
in terms of throughput is approximately 25% at three shards and 30% at five shards.
Additionally, we observe that STC-CM suffers a substantial latency overhead. As a result,
the interleaving approach – strongly or weakly coupled – impacts scalability noticeably.
Based on the algorithm analysis, the overhead comes from the additional consensus in
WTC, as well as the final transaction validation performed in the interleaving servers.

3.4.2 Multi-Datacenter Experiments

In this suite of experiments, the system is deployed across multiple AWS EC2 datacenters
located on different continents: Ohio (OH), São Paulo (SP), Frankfurt (FR), Oregon (OR),
and Tokyo (TO). The network latency among these datacenters is quantified in Table 3.4,
averaging approximately 150ms. We run the experiments using three and five shards to
evaluate how the high latency of the wide-area network affects the performance of different
interleaving methods. Each datacenter hosts one shard and one FE server, as well as
one client process. The client only proposes transactions to the FE server in the same
datacenter. Three-shard experiments use the OH, SP, and FR datacenters, whereas all five
regions are used for five shards.

Figure 3.7 presents the scalability of the system with three and five shards. We observe
a clearer separation in terms of throughput and latency between STC-naive, STC-CM,
and WTC. STC-naive achieves the highest peak throughput and lowest latency. Although
its latency increases several-fold as compared to the single datacenter experiments (i.e.,
100-150ms vs. 15-20ms at low-to-mid throughput), peak throughput declines only by
roughly 10% at five shards. This is because the performance of STC-naive and STC-
CM is limited by the CPU instead of the network. In addition, STC-CM suffers from the
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Figure 3.6: Scalability using a single datacenter.

overhead of broadcasting and processing liveness reports, which adds 100-200ms of latency,
or the equivalent of one network single trip. Thus, STC-CM performs noticeably worse
than STC-naive, but is still much better than WTC, which not only exhibits much higher
latency but also lower peak throughput. WTC incurs the largest penalty in the multi-
datacenter scenario as compared to a single datacenter because the additional layer of
consensus used to interleave blocks from different shards operates across datacenters, and
is affected heavily by the wide-area network latency. This is in contrast to the consensus
used to record blocks in each shard, which is deployed over multiple servers in the same
datacenter. As a result, consensus becomes a bottleneck in WTC, which lags noticeably
behind STC despite uneven shard growth.
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Figure 3.7: Scalability using multiple datacenters.

3.4.3 Discussion

The experiments demonstrate that when operating over a low-latency network, WTC can
outperform STC-naive despite doing additional work to interleave blocks from different
shards. This is a somewhat surprising outcome given the large discrepancy between these
two designs in terms of tolerating network partitions and shard failures, where WTC is
far more robust than STC-naive. One way to interpret this result is that WTC is ro-
bust not only to failures but also to stragglers that arise from uneven shard growth even
during failure-free operation. We also compared WTC against the more elaborate STC-
CM implementation, which tolerates network partitions at the cost of delaying transaction
commitment. Such a comparison levels the playing field between strong and weak coupling
and captures more precisely the cost of interleaving transactions from different shards. The
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Latency (ms) OH SP FR OR TO
OH -
SP 123 -
FR 99 200 -
OR 48 170 140 -
TO 156 251 267 101 -

Table 3.4: Round-trip network latency between datacenters.

single datacenter experiments show similar throughput between STC-naive and STC-CM,
where STC-naive achieves lower latency, and neither variation of STC beats WTC for
throughput. However, in a multi-datacenter deployment, both variations of STC outper-
form WTC, which is hampered by the overhead of consensus across a wide area network.

Regarding fault tolerance, STC-naive cannot tolerate the loss of even one shard, for
example, due to correlated crash failures or a network partition. If any shard becomes
unavailable, STC-naive stalls entirely until this shard become responsive once again. As
a result, the STC-naive is not a practical approach to be used independently. However,
STC can be a good strategy if used in tandem with other techniques, like the Convergence
Module in RCanopus [48]. In contrast, WTC deals with both failures and stragglers nat-
urally by using consensus to decide which shard contributes the block for a given position
in the main chain.

3.5 Conclusion

In this work, we compared two methods for interleaving transactions from different data
partitions, or shards, in permissioned blockchains. We refer to these as strong temporal
coupling and weak temporal coupling, reflecting the restriction they impose on the rate of
progress at different shards. We clarified these methods and presented an analysis of each
approach. Our experimental results prove that weak coupling achieves better scalability
than strong coupling in a single datacenter, while strong coupling performs much better
in a geo-distributed multi-datacenter environment, in accordance with our earlier analysis
and prior work [79]. On the other hand, the strong coupling is inherently less robust
against network partitions and shard failure, where the weak coupling is able to maintain
progress naturally. This drawback can be mitigated by introducing an optimization, the
CM [48], that sacrifices some of the peak throughput and latency while maintaining a lead
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over weak coupling in the geo-distributed case.

Due to the superiority of STC with CM in shard interleaving, we elaborate on it in
solving the consensus problem in the next chapter. We first formalize the consensus prob-
lem and then use the idea of STC with CM to develop the algorithms to solve the problem
under the crash failure model and Byzantine failure model, respectively.
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Chapter 4

Antipaxos: Taking Interactive
Consistency to the Next Level

Although there exist many consensus protocols, most of them are primarily concerned
with handling failures and competing proposals instead of scalability. This is accomplished
through complex message passing and processing, which imposes overhead. Notably, the
problem is traditionally solved using single-leader quorum-based techniques, such as vari-
ations of Lamport’s Paxos protocol [55]. In such protocols, the leader plays a central
role and limits scalability. Using these protocols to implement a replicated state machine
(RSM) is inherently costly as every batch of state transitions has to be proposed by the
leader and requires at least one dedicated consensus cycle.

We first define k-IC, a multi-value consensus problem. And then we propose Antipaxos
(AP), a novel mechanism for reaching agreement efficiently on a collection of proposals to
solve k-IC problem under failure-free execution, that resorts to classical consensus only
when a failure occurs. The key idea is to broadcast a liveness report to everyone to decide
whether a failure has occurred. If a failure occurs, an assisting system, Decision Module
(DM), is introduced to handle the failure cases. AP elaborates on the design of STC with
CM in the previous chapter in making consensus. We extend the CM as DM to tolerate
crash failure and Byzantine failure in making consensus, respectively. The original design
[48] requires the CM nodes to actively request reports from the RCanopus system. AP
eliminates this without compromising the safety and liveness properties. In addition, the
original design of CM requires delaying the report multiple cycles which incurs latency
overhead. We decouple the reports by using an independent message to reduce latency.
The drawback is to handle more smaller messages. We also prove the safety and liveness
properties. In the common case, Antipaxos is able to commit n batches of proposals in each
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consensus cycle using Θ(n2) messages, where n is the number of replicas. Furthermore,
there is no single designated leader that synchronizes the protocol. In addition, consensus
cycles can be pipelined for higher throughput in a wide-area network (WAN).

4.1 Model

To achieve k-IC, we need a message-passing system for a set of processes to reach agreement
on a list of values. We assume a reliable point-to-point network that connects any pair
of processes through separate channels to send and receive messages. The channel cannot
lose, corrupt, duplicate, or reorder messages. Regarding synchrony, the practical environ-
ment may behave differently in different time periods. To best fit the environment, we
assume that the environment has two modes: synchronous mode and asynchronous mode.
Normally, all the processes and the network operate in the synchronous mode, in which
there is a known upper bound on the message and processing delay. If the delay exceeds
the upper bound either due to asynchrony or process failure, the environment turns to
the asynchronous mode. Since the consensus problem may not be solvable in a fully asyn-
chronous environment in case of a failure, we assume the existence of a classical consensus
protocol that guarantees safety while the liveness is maintained under sufficient synchrony
assumption. This protocol is used to implement a crucial building block of Antipaxos,
which not only handles failure cases but also ensures a consistent view of the protocol
across synchronous mode and asynchronous mode. Considering fault tolerance, our model
assumes a bounded number of faulty processes, which may experience either crash failures
or Byzantine failures, as explained in Section 4.3 and Section 4.4, respectively.

4.2 k-Interactive Consistency

Classical consensus reach agreement on a single proposal at a time, which limits scalability.
If an RSM is implemented with this kind of consensus protocol, every state transition would
require at least one distinct consensus cycle to reach agreement. Each consensus cycle is a
complete round of consensus. To achieve high scalability in a wide-area network (WAN),
we introduce “k-interactive consistency” which aims to reach agreement on an ordered list
of proposals from different processes within a single consensus cycle. A solution to this
problem can be used to implement a scalable RSM in the WAN. k-IC is a combination
of Interactive Consistency (IC) [83] and Vector Consensus (VC) [29], which has a parame-
terized number of proposals in different situations. IC was first proposed to tackle certain
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problems in synchronized fault-tolerant systems where failure can be detected easily, such
as synchronization of clocks and stabilization of input from sensors. Due to the synchro-
nized environment, IC guarantees to reach agreement on at least n − f values, where n
is the total number of processes and f is the number of faulty processes. VC proposes to
reach agreement on a vector of values in an asynchronous setting and assures there are
at least f + 1 non-null values in the vector that corresponds to non-faulty processes. To
fit different synchronization situations in one environment, we propose k-IC. Optimally-
resilient IC protocols [11] solve the IC problem by running multiple instances of consensus
protocols and selecting one as the final decision. Asynchronous IC is achieved in [63].

We now present the definition of k-IC. To simplify the description, we assume that
each proposal is a value. Instead of agreeing on a single value, we modify the classical
consensus problem so that a set of n processes, P = {P1, ..., Pn}, agrees on an ordered list
of n values, V , which tries to include the proposal value vi of each process Pi but may
also return null. The order of these values is predetermined, such as ordered numerically
by the process ID, V = [v1, ..., vn]. A null value of process Pi indicates that Pi may
have failed. Crash failure and Byzantine failure are two failure models when designing
a consensus protocol [101]. Crash failure means that a process fails by halting, but it
is working correctly before the halt. Byzantine failure means that a process can crash,
delay sending messages, or send arbitrary messages, which means the Byzantine process
can have arbitrary behaviours. A solution to the k-IC problem in the crash failure model
must satisfy the following properties:

Validity (Safety 1): If a process decides a non-null value vi in V , then vi was proposed
by process Pi.

Agreement (Safety 2): No pair of processes ever decides different V .

k-Completeness (Safety 3): The number of null values in V is no greater than the
non-negative integer k.

Termination (Liveness): Every non-faulty process eventually decides a V .

The problem specification under Byzantine failures shares the same k-Completeness
and Termination properties as above, but has different validity and agreement:

Validity (Safety 1): If a non-faulty process decides a non-null value vi in V and process
Pi is not faulty, then vi was proposed by process Pi.

Agreement (Safety 2): No pair of non-faulty processes ever decides different V .

The k-Completeness is a parameterized property which rules out the trivial case where
the decision values are all null. Without this property, a list of n null values would also
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satisfy the requirements of k-IC. Note that a system may satisfy k-Completeness with
different k in different situations, including k = 0 under favourable conditions.

By rotating the proposers (e.g., in round-robin order of the processes), if the proposer
does not fail and proceeds in time, the classical consensus protocol can reach k-IC in
multiple rounds of consensus by agreeing on one value per round. Otherwise, the solution
becomes complex, and additional mechanisms have to be carried out to handle the failure
or asynchrony of the proposers.

4.3 Crash Fault-Tolerant Design

In this section, we introduce the design of AP under the crash failure model. A crash
failure means that a process halts and no longer processes or replies to messages. We use
message and process delay as unreliable failure detectors. This means that if a timeout
occurs either due to a process crash or asynchrony, one process suspects that the other
process has failed.

Suppose there are 2f + 1 processes that would like to reach k-IC, where at most f
processes may crash at any time. We assume that if a process crashes, it will not be able
to recover until the end of the consensus cycle. If there is no timeout, the consensus must
include one non-null value from every process. Note that empty is a special non-null value,
indicating that no value was received from the client process. The order of these values
is predetermined in a round-robin order of the processes. The goal is to solve k-IC with
a fast path solution in the absence of failure and asynchrony, falling back on a slow path
to handle other cases. In addition, it is important to ensure consistency between the fast
path and the slow path.

4.3.1 Overview

The design involves three stages: propose value, broadcast report, and commit. Figure 4.1
illustrates the message flow of the crash failure design. The first two stages require each
process to send a message to all other processes. In the absence of a timeout, the commit
phase does not require any extra communication, and each process proceeds to commit and
execute the decision by itself. As a result, AP realizes consensus on a collection of n values
using Θ(n2) messages in one network round trip. If a failure or asynchrony occurs, leading
to a timeout, the affected processes seek assistance from the Decision Module (DM), which
is a fall-back RSM implemented with a conventional consensus protocol, as the slow path
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Figure 4.1: Example of AP Message Flow.

in the commit phase. More importantly, some processes may proceed on the fast path, but
others proceed on the slow path. Thanks to the design of the report, the DM determines
the same result as the processes in the fast path, thus the algorithm ensures a consistent
view under this situation as well.

4.3.2 Algorithm

Algorithm 5 is the main procedure running in each process. As mentioned earlier, the
protocol is divided into three stages. In the propose value stage, each process Pj sends
its proposed value vj to all other processes. Each process must wait for at least f + 1
values (including its own) before proceeding to the next stage, since that many processes
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are guaranteed to be non-faulty, and waits for f additional values until a timeout occurs.
Since there are at most f out of 2f + 1 processes that may fail, it can be guaranteed that
at least f +1 processes successfully send the proposed value. Then, in the broadcast report
stage, each process Pj prepares and sends a liveness report repj to all processes to indicate
the status of other processes according to whether the value has been successfully received
at lines 82 to 88. If process Pj receives a non-null value vi from process Pi, the report
records the value repj.v[i] of Pi as vi. Otherwise, the report marks the value of Pi as null
which means process Pj did not receive a value from process Pi before the timeout and so
Pj suspects that Pi has failed. Before continuing to process the reports, each process waits
until it receives at least f + 1 rep before the commit stage (includes itself), and f more
until a timeout occurs. From line 94 to 104, the process derives V , which is the outcome of
k-IC, according to the received reports. In the common case, each process receives 2f + 1
reports without any null value, which indicates that all processes are alive and working
normally. As a result, the result contains the values proposed by all processes. At this
point, k-IC is achieved, and every process agrees on the same list of values.

However, if any timeout occurs, we use another mechanism called the Decision Module
(DM) to reach the k-IC. The DM is a set of DM nodes, where each node is co-located with
an RSM replica for fault-tolerant distributed coordination. State changes are achieved by
submitting requests from the DM nodes to its co-located RSM replica. The RSM makes
at most one state change in one consensus cycle. By using this design, we ensure that any
two processes determine the same list of values, which we prove in section 4.3.4.

Algorithm 6 describes the procedure running in each DM node. If an AP process Pj

receives any rep from any process that reports a failure, then Pj sends its report repj to
the DM and request assistance. Upon receiving enough reports from the AP processes, the
DM produces a final report final rep according to the received reports. The final report
is derived as follows: if all the reports until a timeout state that process Pi has failed, then
the final report uses null as the value of the process Pi. Otherwise, the value of process
Pi is marked with its true value vi. Next, the DM sends the final rep to RSM to record
the decision. The Execute function in Algorithm 6 is the state transition procedure of
the RSM. If the RSM is constructed using a single leader consensus protocol, the leader
responds to handling the final rep. Otherwise, every DM node must produce and suggest
a final rep to tolerate DM node failure. For each consensus cycle, the RSM has to only
record the first final rep as the decision and ignore the others, where Dec is the decision
in the RSM. This ensures that all processes receive the same decision from the DM. Finally,
the DM replies the decision to the AP processes.

To summarize, Antipaxos uses communication success to determine the set of processes
that are considered alive. It broadcasts this information to all processes, and then each
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Algorithm 5: Design under crash failure

76 Procedure AP Propose Pj(vj)
77 send vj to all the processes
78 end
79 Procedure AP Report Pj(vj)
80 wait for at least f + 1 proposed values
81 wait for f more values until a timeout
82 for each process Pi do
83 if vi received then
84 repj.v[i] = vi
85 else
86 repj.v[i] = null
87 end

88 end
89 send repj to all the processes

90 end
91 Procedure AP Commit Pj(vj)
92 wait for f + 1 rep
93 wait for f more rep until a timeout
94 if 2f + 1 reports were received and they all indicate the same non-null value for

each process then
95 for each process Pi do
96 V [i] = vi
97 end

98 else
99 send repj to DM and request assistance

100 wait for the decision Dec from DM
101 for each process Pi do
102 V [i] = Dec.v[i]

103 end

104 end

105 end
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Algorithm 6: DM main loop under crash failure

106 Procedure DM Pm

107 wait until the first rep received
108 wait for more rep until a timeout occurs
109 if received some rep with null value then
110 wait until at least f + 1 reports
111 wait for f more rep received until a timeout

112 end
113 for each process Pi do
114 if at least one report repx state repx.v[i] = vi then
115 final rep.v[i] = vi
116 else
117 final rep.v[i] = null
118 end

119 end
120 send final rep to RSM
121 read decision Dec from RSM
122 send Dec back to the processes who requests assistance

123 end
124 Procedure Execute Pm(final rep)
125 if Dec is not decided yet then
126 Dec = final rep
127 end

128 end
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process excludes the proposed values from any processes that the DM has identified as
having failed. In the common case, k-IC is achieved with 2n2 messages, which amounts
to 2n messages per value. This is less than Paxos [55] and even the fast path of EPaxos
[75]. Regarding the latency, AP in the case of the fast path only requires one round-trip
of network delay, while the other cases require two round-trips plus the processing time of
the DM.

4.3.3 Running Examples

As a running example, consider the case of three processes: P1, P2, and P3, which propose
values v1, v2, and v3, respectively. In this example, f = 1 and there are 2f + 1 = 3
processes.

Case 1: Suppose that P1 receives inputs v2 and v3 from P2 and P3, respectively.
Similarly, both P2 and P3 receive inputs from other processes. Then the following reports
are produced by each process:

P1 : {P1 : v1, P2 : v2, P3 : v3}
P2 : {P1 : v1, P2 : v2, P3 : v3}
P3 : {P1 : v1, P2 : v2, P3 : v3}
If all the processes receive these reports, they determine the list of values {v1, v2, v3}

without seeking assistance from the DM as line 95 to 97.

Case 2: If P2 fails with respect to both P1 and P3, the reports become:

P1 : {P1 : v1, P2 : null, P3 : v3}
P2 : Failed

P3 : {P1 : v1, P2 : null, P3 : v3}
P1 and P3 seek assistance from DM by sending its report. As DM detects that P2 has

failed, the non-faulty set of processes becomes P = {P1 : v1, P3 : v3}.

Case 3: However, if P2 fails with respect to P3 only, the reports become:

P1 : {P1 : v1, P2 : v2, P3 : v3}
P2 : Failed

P3 : {P1 : v1, P2 : null, P3 : v3}
Then, upon receiving the reports, both P1 and P3 send their report to the DM and

wait for the decision as line 99 to 103. Since there is one report indicating that P2
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has value v2, the DM still considers P2 as alive and replies to the set of processes as
P = {P1 : v1, P2 : v2. P3 : v3}. Then both P1 and P3 decides the list as {v1, v2, v3}
directly.

4.3.4 Safety and Liveness

This section proves the safety and liveness of the protocol.

Lemma 1. For each consensus cycle, there is exactly one decision made by the DM if at
least one AP process seeks assistance.

Proof. If at least one AP process submits an assistance request, the DM processes the
report according to Algorithm 6 and sends the final rep to the RSM. If the RSM has
already recorded a decision, no more decisions are made. If a decision has not been made,
then it makes a decision based on this request.

Theorem 1. Validity: If a process decides a non-null value vi in V , then vi must be
proposed by the process Pi.

Proof. There are two cases that a process determines the list of values V .

Case 1: No timeout occurred. All reports state the same non-null value vi for process
Pi.

According to the Algorithm 5 line 94, the value vi must be sent by process Pi.

Case 2: Decision V is made by DM.

According to Lemma 1, there is only one decision V . If vi is being included in V , it
must be included in the report submitted by process Px of AP. If Px includes vi in its
report, it must receive vi from process Pi.

As a result, in both cases, validity follows.

Theorem 2. Agreement: If any two processes determine a list of values, then both deter-
mine the same list of values.

Proof. If any process determines a list of values, the outcome belongs to exactly one of the
following two cases:

Case 1: The process receives 2f + 1 reports, and none of them contain a null value.
The outcome is the list without null value.
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Case 2: The process either receives a report indicating certain null values of some
processes, or it has not received 2f +1 reports before the timeout. Then, the process sends
a request to the DM and determines the outcome according to the decision made by the
DM.

Therefore, if the outcomes of any two processes belong to Case 1, then each outcome
is the list without null values, which is the same. If the outcomes of any two processes
belong to Case 2, due to Lemma 1, the outcomes of these two processes are the same as
well. Last but not least situation is that one outcome belongs to Case 1 and the other
outcome belongs to Case 2.

Suppose that process P1 determines the outcome as Case 1, which is the list without
null value, and another process P2 determines the outcome as Case 2. Then, the outcome
of Case 2 is also the list without null value. To prove this, suppose for contradiction that
the outcome of Case 2 includes at least one null value.

Since P1 determines the outcome as Case 1, it must receive 2f + 1 reports, and none
of them have a null value. Now, consider how the DM makes a decision with null values.
If the DM decides a process has failed, it must receive at least f + 1 reports so that each
report contains a null value of the failed process. However, P1 did receive 2f + 1 reports,
which indicated that there are no malfunctions. Since there are at most 2f + 1 reports,
this is a contradiction. As a result, if P1 determines the outcome as Case 1, the DM must
determine a list without null values. Any process seeking DM assistance must reach the
same outcome. Any process that does not need assistance from the DM determines the
list without null value as well. Then the safety is proven.

Theorem 3. k-Completeness: The number of null values in V is not greater than 0 in
the absence of failure and asynchrony. Otherwise, the number of null values is not greater
than f .

Proof. Similarly to Validity, there are two cases where a non-faulty process determines the
list of values V .

Case 1: There is no message timeout. In this case, all reports state the same non-null
value vi for process Pi. As a result, there is no null value in V , which is 0-Completeness.

Case 2: Decision V is made by the DM.

The decision of the DM depends on the report submitted by each process. If any report
contains a non-null vi of Pi, then the decision value of Pi must be vi as Algorithm 6 line
113 to 119. Since each report includes at least f + 1 non-null values out of total 2f + 1
values, the total number of null values cannot exceed f , which is f -Completeness.

55



Lemma 2. If any process produces a report with at least one null value and seeks assis-
tance from the DM, then at least f other processes also submit their reports and assistance
requests to the DM.

Proof. There are 2f + 1 processes in total. Suppose that process P1 produces a report
indicating that P2 has failed. Then, P2 either crashes when proposing a value and fails
to submit a report, or it is merely slow and triggers the timeout when P1 collects the
proposed value. Since at most f processes may fail, there are at least f non-faulty processes
in addition to P1. According to the Algorithm 5 line 94, if these f non-faulty processes
determine that there is no failure and do not seek assistance from the DM, they must have
received a report from P1 indicating no failure. Since P1 does produce a report with a
failure, then all these f non-faulty processes cannot decide that no failure occurs. If these
f non-faulty processes detect failures from the report of P1, they have to submit their
reports to the DM and request assistance. As a result, at least f processes in addition to
P1 submit a report and an assistance request to DM.

Theorem 4. Termination: Suppose that the RSM of the DM maintains both safety and
liveness, then eventually every AP process comes to a decision on the list of values, or
crashes.

Proof. The algorithm begins with each process collecting inputs from other processes. Ev-
ery non-faulty process is able to receive such inputs from at least f+1 processes eventually,
and then either receives inputs from or times out on every other process.

Case 1: If a process Pi receives inputs from all processes, then it proceeds with an
all-alive report repi. Otherwise, the report repi indicates which process may have failed
by setting the value of that process to null. If all reports state all-alive, the process agrees
on the list without null value as the decision, and the theorem holds.

Case 2: If any report indicates one or more null values, then the process Pi requests
the decision from the DM by sending its report repi. According to Lemma 2, at least
f + 1 processes have to send the reports. At this point, DM starts to assist in making the
decision. After the DM receives reports from these f + 1 processes, and either receives
reports or times out on every other process, the DM computes a final report and sends it
to RSM. Finally, the RSM records the first final report as the decision in each consensus
cycle. As long as a decision is made, the DM sends the unified decision to the processes
that request assistance. Then, the processes agree on the list of values decided by the DM,
and the theorem holds.

Case 3: If a process or set of processes P does receive 2f +1 reports before the timeout,
but another process or set of processes R does not receive 2f + 1 failure-free reports before
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timeout, then the process in P must decide in the fast path. However, the processes in R
have to send those failure-free reports to the DM. Since no failure occurs according to the
received reports, the DM will time out on report collection, and send a failure-free final
report to the RSM. The RSM records the decision as no failure then. The DM sends the
decision back to the processes that request assistance.

Then the theorem holds.

Since AP relies on timeout to detect failure, a slow process may trigger timeout and lead
the system to a slow path. Under asynchronous mode, a slow process may keep pushing the
protocol to a slow path as there is no known upper bound on the message and processing
delay. When the system turns to synchronous mode, processes may start the same cycle at
very different times. Although the DM in the slow path handles failures, we want to assure
that AP runs in the fast path eventually when the system is under synchronous mode if
free of failure.

Theorem 5. Eventual synchronicity: All processes eventually run in fast path if the system
runs in the absence of failure and asynchrony starting from a certain cycle.

Proof. Assume that there is a known upper bound, D, on the message processing and
network delay under the synchronous mode. This means that the time to broadcast pro-
posals or reports does not exceed time D. Also, when a process completes or times out on
proposals or reports waiting, it takes at most time D to transition to the next step.

When the system turns to synchronous mode, the processes may start the same consen-
sus cycle at a very different time due to the slow path and asynchrony of previous cycles.
Assume that cycle x is a such cycle that the system runs in synchronous mode and in the
absence of failure from the beginning of the cycle. There may be two cases:

Case 1: no process times out on waiting for proposals according to line 81. Suppose that
time t is the time that the last process receives all the proposals. Thus, all the processes
should receive 2f + 1 proposals within the time period [t−D, t]. Then, failure-free reports
are generated and broadcast within the time period [t−D, t+D]. As a result, failure-free
reports should be received between time t−D and time t+2D. To enable all the processes
to run in a fast path, we just need to set the timeout T greater than (t+2D)−(t−D) = 3D.

Case 2: at least one process times out on waiting for proposals according to line 81.
Thus, there is at least one failure report which forces all the processes to slow path according
to line 94. Then, all processes wait for the decision of cycle x from DM. There are two
sub-cases under this situation:
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Sub-case 1: all processes request assistance from DM before DM makes a decision of
cycle x. Then, once the decision is made, all the processes should receive the decision
according to line 100 and line 122. Suppose the first DM node sends the decision back to
the processes at time k. Thus, all the processes receive the decision no later than k + D.
As a result, the processes re-synchronize and start cycle x + 1 within the time interval
[k, k + 2D]. If the timeout T is set greater than 3D, no process times out on waiting for
proposals, which follows case 1 in cycle x + 1. As a result, all the processes run the fast
path in cycle x + 1.

Sub-case 2: At least f + 1 fast processes request assistance from the DM before the
DM makes a decision of cycle x while at most f slow processes after. As otherwise, DM
cannot make a decision according to line 109. Suppose that the maximum time difference
between the fast processes and the slow processes regarding requesting assistance is R, and
the DM takes time L to process the reports. This means that the fast processes have to
wait at least time L to get the decision while the slow processes get the decision without
waiting. Thus, the time difference R is shortened by at least time L in cycle x + 1. If the
processes follow either case 1 or sub-case 1 in cycle x + 1, all the processes run the fast
path in cycle x+ 1 or x+ 2, respectively. If the processes follow sub-case 2 repeatedly, the
processes are converged to sub-case 1 due to the shortened time L in each cycle and run
in the fast path eventually.

In summary, when T > 3D, all the processes eventually run in the fast path.

4.4 Byzantine Fault-Tolerant Design

In order to tolerate Byzantine failures, we give each process a unique key pair to sign and
verify messages. Therefore, the liveness report must include the proposed values associated
with the proposer’s signature. This is used to prevent a Byzantine process from forging the
proposed values of other processes. In addition, we require an acknowledgment signature
of each message to eliminate equivocation from a Byzantine process. Equivocation means
that a process sends different messages to different processes. There are two types of
acknowledgment signatures. One is the value acknowledgment signature which is used
to acknowledge the proposed values. The other is the report acknowledgement signature
which is used to acknowledge the liveness reports.

Suppose there are 3f + 1 processes, and each non-faulty process proposes a value.
There are at most f processes that may suffer Byzantine failure. Suppose further there
are 3m + 1 DM nodes where at most m nodes may suffer Byzantine failure. We assume
that a Byzantine process cannot forge the signature of any other process.
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4.4.1 Algorithm

Algorithm 7 is the mechanism under the Byzantine failure model. Compared to the crash-
tolerant Algorithm 5, instead of using a single value to indicate the liveness of each process
in the report, Algorithm 7 uses the value vx and the proposer’s signature sigx(vx) to
construct the liveness report rep. Also, we require that the report repx of a process Px

include the value acknowledgment signatures, such as line 132. This is used to ensure the
integrity of the proposed value, which means that a process Px sends the same value vx to
every other process. In the pseudo-code, sigx(vj) denotes a signature that the value vj is
signed by process Px. As a result, each report contains up to 3f + 1 proposers’ signatures
and 3f value acknowledgment signatures. Line 138 records the signatures in a set. In
addition, line 146 requires the report acknowledgement signatures sig(repx). Since there
are a total of 3f + 1 processes, there should be 3f + 1 reports at maximum. Therefore, in
the normal case, all the signatures in these 3f +1 reports are valid, which means that each
value in the report is correctly signed by the sender and acknowledged by all the receivers.
Moreover, the proposed value rep.v[j] of the process Pj recorded in those 3f + 1 reports
should be the same. Thus, all processes reach agreement on the same list of values.

If any process detects a failure, it must send an assistance request to the DM. We
require that the request not only includes its report rep, but also the acknowledgment
signatures of the report. An acknowledgment signature of a report repx is a signature
signed by another process Pi as sigi(repx). These acknowledgment signatures are used to
ensure the integrity of the report. This means that the report has been broadcast to other
processes already. The procedure is presented as Algorithm 8. Each DM node has to derive
a final report final rep as follows: if at least one report contains one non-null value vj,
then final rep.v[j] = vj; otherwise, final rep.v[j] = null.

The final report also records the signatures included in the assistance request to ensure
that a Byzantine DM node cannot forge the final report. Lastly, the final report is sent
to the BFT RSM. The BFT RSM picks the first valid final report as the DM decision. A
valid report represents a report with valid signatures. As long as the DM node receives
the decision from the BFT RSM, it responds to the process that submits the assistance
request. The process then determines the list of values based on the decision received.

Compared to the AP under the crash failure model, the AP under the Byzantine fail-
ure model employs cryptographic signatures to tolerate Byzantine failures and ensure the
integrity of the proposed value as well as the liveness report. Furthermore, the DM uses a
BFT RSM instead of a crash fault-tolerant RSM, such as the RSM implemented by PBFT
[19] or Mir-BFT [98, 97]. Therefore, on the basis of communication success, we introduce
cryptographic signatures to achieve k-IC. The Byzantine design requires 4n2 messages per
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Algorithm 7: Design under Byzantine failure

129 Procedure AP Propose Px(vx)
130 broadcast {vx}
131 for each process Pi do
132 request {vi, sigi(vx)} from Pi

133 end

134 end
135 Procedure AP Report Px(vx)
136 wait for 2f + 1 value and valid signature pairs
137 wait for f more pairs until a timeout
138 repx.v[x] = vx and repx.sig[x] = {sigi(vx)| for each replied process Pi}
139 for each process Pi other than Px do
140 if vi received from Pi then
141 repx.v[i] = vi and repx.sig[i] = sigi(vi)
142 else
143 repx.v[i] = null and repx.sig[i] = {}
144 end

145 end
146 broadcast repx and request at least 2f + 1 acknowledgement signatures

sig(repx)
147 end
148 Procedure AP Commit Px(vx)
149 wait for 2f + 1 rep with valid signatures
150 wait for f more until a timeout
151 if 3f + 1 valid reports were received and they all indicate the same non-null

value vi for each process Pi then
152 for each process Pi do
153 V [i] = vi
154 end

155 else
156 send report repx and the acknowledgment signatures of the report to DM
157 wait for the decision Dec
158 for each process Pi do
159 V [i] = Dec.v[i]

160 end

161 end

162 end
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Algorithm 8: DM main loop under Byzantine failure

163 Procedure DM Pm

164 wait until the first rep with at least 2f + 1 valid report acknowledgment
signatures

165 wait for more rep until a timeout occurs
166 if received some valid rep with null value then
167 wait for at least f + 1 reports
168 wait for 2f additional rep received or a timeout occurs

169 end
170 for each process Pj do
171 if at least one rep state rep.v[j] = vj where vj ̸= null then
172 final rep.v[j] = vj
173 final rep.sig[j] = sigj(vj)

174 else
175 final rep.v[j] = null
176 final rep.sig[j] = {rep, sig(rep)|for every received report}
177 end

178 end
179 send the final rep to BFT RSM
180 read decision Dec from BFT RSM
181 send Dec back to the processes who requested assistance

182 end
183 Procedure Execute Pm(final rep)
184 if Dec is not decided yet and final rep is valid then
185 Dec = final rep
186 end

187 end
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n values in the failure-free case. Due to the requirement of the acknowledgment signatures,
the latency is two round trips in the common case, and three round trips plus the processing
time of the DM in other cases. In addition to the messages, the Byzantine design requires
up to 3n−2 signatures per liveness report, which result in at most 3n2−2n signatures per
consensus cycle. This design uses cryptographic signatures to eliminate the equivocation
of the proposed values and the reports. Therefore, the behaviour of a Byzantine process is
restricted.

4.4.2 Running Examples

As a running example, consider the case of four processes: P1, P2, P3, P4 propose values
v1, v2, v3, and v4, respectively. We omit the acknowledgment signatures of each report to
improve the readability.

Case 1: Suppose that P1 receives inputs v2, v3 and v4 from P2, P3 and P4, respectively.
Similarly, P2, P3 and P4 receive all the inputs from other processes. The following reports
are produced by each process:

P1 : {P1 : {v1, sigP1(v1)}, P2 : {v2, sigP2(v2)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}
P2 : {P1 : {v1, sigP1(v1)}, P2 : {v2, sigP2(v2)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}
P3 : {P1 : {v1, sigP1(v1)}, P2 : {v2, sigP2(v2)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}
P4 : {P1 : {v1, sigP1(v1)}, P2 : {v2, sigP2(v2)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}
If all the above reports send to every process successfully, then every process can decide

that the list is {v1, v2, v3, v4} without seeking assistance from the DM as line 152 to 154.
This is termed DM-unassisted.

Case 2: However, if P2 fails with respect to P3, the reports become:

P1 : {P1 : {v1, sigP1(v1)}, P2 : {v2, sigP2(v2)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}
P2 : Failed

P3 : {P1 : {v1, sigP1(v1)}, P2 : {null}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}
P4 : {P1 : {v1, sigP1(v1)}, P2 : {v2, sigP2(v2)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}
Since there are only f + 1 processes, which is 2, that state the same value, all the

processes should seek assistance from the DM. And the decision should be {v1, v2, v3, v4}
according to the report of P1 and P4 that includes all the values.

Case 3: However, if P2 sends different values, v2′, v2′′ and v2′′′, to different processes,
the reports become:
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P1 : {P1 : {v1, sigP1(v1)}, P2 : {v2′, sigP2(v2′)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}

P2 : Failed

P3 : {P1 : {v1, sigP1(v1)}, P2 : {v2′′, sigP2(v2′′)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}

P4 : {P1 : {v1, sigP1(v1)}, P2 : {v2′′′, sigP2(v2′′′)}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}

Since there are not enough processes that state the same value of P2, P1, P3, and
P4 observe that P2 has failed, then send its report to the DM and wait for the decision
at line 156 to 160. Since DM detects three values of P2, it sets the value of P2 to null,
the decision process set becomes P = {P1, P3, P4}. And the decision values become
{v1, v3, v4}. P2 is suffering Byzantine failure.

Case 4: However, if P2 fails with respect to all P1, P3, and P4, the reports become:

P1 : {P1 : {v1, sigP1(v1)}, P2 : {null}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}

P2 : Failed

P3 : {P1 : {v1, sigP1(v1)}, P2 : {null}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}

P4 : {P1 : {v1, sigP1(v1)}, P2 : {null}, P3 : {v3, sigP3(v3)}, P4 : {v4, sigP4(v4)}}

Then, upon receiving the reports, P1, P3 and P4 should send their report to the DM
and wait for the decision from the DM as line 156 to 160. As DM detects that three out
of four processes report P2 fails, the decision set becomes P = {P1, P3, P4}. And the
decision values become {v1, v3, v4}. P2 is suffering Byzantine failure and the behaviour
is not considered. Cases 2, 3, and 4 are termed as DM-assisted.

4.4.3 Safety and Liveness

This section proves the safety and liveness of the protocol under Byzantine failures. A
non-faulty process means a process that does not suffer any failure. A Byzantine process
means a process that suffers a Byzantine failure.

Lemma 3. If every non-faulty process does not receive a proposed value from process Pi,
every non-faulty process must decide to seek assistance from the DM.

Proof. Suppose for contradiction that a non-faulty process Pj makes the decision without
assistance from the DM. Then Pj must receive a value proposed by Pi at line 151. This
comes to a contradicting observation.
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Lemma 4. If any non-faulty process receives a non-null value from Pi, there is at most
one valid such value.

Proof. Suppose that a process set Q receives v1 from Pi and another process set R receives
v2 from Pi (line 137), respectively. Q and R are two disjoint, non-empty set of non-faulty
processes. Thus, processes in Q should receive at least 2f + 1 value acknowledgment
signatures of v1, while processes in R should receive at least 2f + 1 value acknowledgment
signatures of v2. As a result, 4f + 2 signatures are generated in total for Pi’s proposal
value. However, there are only 3f +1 processes, and only f of them can sign twice because
they are Byzantine, which means the maximum number of signatures possible is 4f + 1,
which is less than 4f + 2. This comes to a contradiction.

Lemma 5. If there is a non-null value vx of a process Px and a valid signature sigx(vx)
in a report repy produced by process Py, the value must come from process Px.

Proof. Suppose a report repy that is produced by process Py includes a non-null value vx
of a process Px and a signature sigx(vx). If Px = Py, then the value is proposed by Px.
If not, since a process cannot forge the signature of any other process, thus if sigx(vx) is
valid, then the value vx must come from process Px.

Lemma 6. There is at most one valid report of each process that does not contain null
value.

Proof. Suppose process Pi produces two reports repi1 and repi2 that there is no null value
inside both reports. Suppose repi1 contains value v1 and signature sigj(v1) proposed by
Pj, while repi2 contains value v2 and signature sigj(v2) proposed by Pj as well. Since each
non-faulty process signs only one value from every other process, and a Byzantine process
cannot forge the signature of any other process, it must be that Pi produces two different
reports by including the different proposed values of Pi itself, which means Pi = Pj. To
make the reports valid, Pi should propose v1 and v2 at line 130 to different processes to
collect at least 2f +1 signatures on each value at line 132. As a result, according to Lemma
4, it is impossible to have such a situation.

Lemma 7. There is exactly one decision made by the DM if any process sends an assistance
request to the DM.

Proof. Similar to the proof under crash failure, if any process submits a request, either the
non-faulty process or Byzantine process, the DM can process the reports and send a decision
request to the BFT RSM . If a decision has already been made by the BFT RSM , no more

64



decision will be made by the BFT RSM . If there is no decision made when the BFT RSM
processes the request, then a decision will be made according to the request.

Lemma 8. If a non-faulty process sends a valid report with null value to the DM, and
request assistance, there must be at least f + 1 non-faulty processes sending their reports
to the DM and requesting assistance.

Proof. According to Algorithm 7 line 146, if a report is valid, it must include at least 2f +1
acknowledgment signatures. This indicates that at least 2f + 1 processes receive a report
with a null value. According to the algorithm, if a process receives a report with a null
value, then it cannot decide the outcome without seeking assistance from the DM. Since
there are at most f Byzantine processes, as a result, at least f + 1 non-faulty processes
send their reports to the DM and request assistance.

Theorem 6. Validity: If a non-faulty process decides a non-null value vi in V and process
Pi is not faulty, then vi must be proposed by process Pi.

Proof. There are two cases that a non-faulty process decides the list of values V .

Case 1: No failure and no timeout occurs as line 152, all reports state the same non-null
value vi for process Pi.

According to the algorithm, all the processes have to choose vi as the decided value of
Pi in V .

Case 2: The decision V is made by the DM.

According to Lemma 7, there is only one decision V . Since Pi is non-faulty, all the
reports must contain either null or vi as the proposed value of Pi. According to the
decision process of DM, Algorithm 7 line 170 to line 178, vi must be chosen as the decided
value of Pi in V if no null value in any report. Otherwise, the AP has to wait for at least
f + 1 reports. If there is at least one report with vi of Pi from a non-faulty process, then,
the AP has to use vi as the proposed value of Pi in V . If all received reports record null
of Pi, the decided value of Pi can only be null.

As a result, in both cases, the validity was proved.

Theorem 7. Agreement: No pair of non-faulty processes ever decides different V .

Proof. It is similar to the proof under crash failure except that the property merely restricts
non-faulty processes since the Byzantine process can behave arbitrarily.
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If any non-faulty process decides the outcome of the list of values, the outcome must
belong to exactly one of the following two cases:

Case 1: The process receives 3f + 1 valid reports that every report includes the same
non-null value and a valid signature of each process, then the outcome is the whole list of
the values without seeking assistance from the DM.

Case 2: The process either receives a report includes null value, or does not receive
3f + 1 reports before the timeout, then the process should send an assistance request to
the DM, and decide the outcome according to the decision made by the DM.

Thus, if the outcomes of any two non-faulty processes belong to case 1, then the outcome
will be the whole list of values. According to Lemma 3 and 4, each non-faulty process
must only propose exactly one value in case 1. Thus, there is one unique list of values that
contains all the proposed values from each process.

If the outcomes of any two non-faulty processes belong to case 2, due to Lemma 7, the
outcomes of these two processes are the same as well.

Now, consider the last situation, some non-faulty processes decide the outcomes as case
1, and some non-faulty processes decide the outcomes as case 2. Suppose, processes in
the non-faulty process set Q decide that no need to seek assistance from the DM, while
processes in the non-faulty process set R decide to seek assistance from the DM. Q and
R are disjoint, non-empty non-faulty processes set. According to the algorithm, processes
in Q must have received 3f + 1 valid reports without a null value of any process. This
means that the reports produced by the non-faulty processes in R are all valid and contain
non-null value only. However, a Byzantine process in R can send the same valid report
as it sends to the processes in Q, or a valid report with null values of some processes,
or nothing, to the other processes in R. Due to Lemma 6, the Byzantine process cannot
send a different valid report without a null value. Thus, the non-faulty processes in R
either miss some reports or received some reports with a null value. But the report of the
non-faulty process itself must be valid and not include any null value. To guarantee safety,
the DM must also decide the same list of values as the processes in Q. This leads to two
sub-cases.

Sub-case 1: The DM only receives valid reports without a null value until timeout in
line 165.

Sub-case 2: The DM receives some valid reports with a null value before timeout in
line 168. The DM should wait for at least f + 1 reports before making the decision.

Under sub-case 1, according to the analysis above, the reports must be the same as the
non-faulty processes in Q received. Thus, the DM must decide the same list of values as
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the processes in Q decided. As a result, the non-faulty processes in R receive the same list
of values as the non-faulty processes decided in Q.

Consider sub-case 2, some reports with one or more null values, termed as Byzantine
reports here. As the DM requires that each report should include at least 2f + 1 valid
acknowledgment signatures from other processes, and there are at most f Byzantine pro-
cesses, at least f + 1 non-faulty processes receive a Byzantine report or receives less than
3f + 1 reports. As a result, at least f + 1 processes seek assistance from the DM. The re-
ports from these f + 1 non-faulty processes in R are valid without a null value. Otherwise,
the processes in Q cannot proceed to line 152. Since the non-faulty processes in R seek
assistance with valid reports without null value, the DM should receive at least f + 1 valid
report without a null value before making the decision. Then according to line 170 to line
178, the decision of the DM must be the same as the valid report, which is also the same
as the outcome of the non-faulty processes in Q made. Thus, the non-faulty processes in
R can receive the same value set as the processes in Q. Then the theorem holds.

Theorem 8. k-Completeness: If the protocol can tolerate up to f Byzantine failures out
of total 3f + 1 processes, then the number of null values in V is no greater than 0 if there
is no failure and asynchrony. Otherwise, the number of null values is no greater than 2f .

Proof. Similar to Validity, there are two cases that a non-faulty process decides the list of
values V .

Case 1: No failure and no timeout occurs. All reports state the same non-null value vi
for process Pi of all the processes. As a result, no null value in V , which is 0-Completeness.

Case 2: The decision V is made by the DM.

The decision of the DM is according to the reports submitted by each process, and if
any report includes a non-null vi of Pi, then the decision value of Pi can be either vi if
at least one report state vi, or null otherwise. Since each report includes at least 2f + 1
non-null values out of total 3f +1 values, and there are at most f Byzantine values within
these 2f + 1 values. As a result, the total number of null values cannot exceed f , which is
f -Completeness.

Theorem 9. Termination: Suppose that the DM maintains safety and liveness, then even-
tually every non-faulty process comes to a decision of the list values.

Proof. The algorithm begins with each process collecting inputs, a value and a signature
pair, from all the other processes. Every non-faulty process is able to receive such inputs
from at least 2f + 1 processes eventually, and then either receives inputs from or times
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out on every other process. If the process receives inputs from all the processes then it
proceeds with a report rep that includes a value and signature pair. Otherwise, the report
rep indicates which process may fail by setting the value of that process as null. Then
each process proceeds to collect reports, at least 2f + 1 reports. If all 3f + 1 reports state
the same value for each process, then the process agrees on the whole set of values as the
decision, and the theorem holds. On the other hand, if there do not exist enough reports
stating the same value of a process, or receive less than 3f + 1 reports until the timeout,
then the process requests assistance from the DM by sending its report rep to the DM.
This comes to two different cases:

Case 1: All non-faulty processes seek assistance from the DM.

Case 2: Only some of the non-faulty processes, equal to or greater than one but not
all, seek assistance from the DM.

Considering case 1, all non-faulty processes send their reports to the DM and request
assistance. Since there are at most f Byzantine processes, the DM can receive at least
f + 1 valid reports from non-faulty processes. Thus a DM node can proceed to derive a
final report and send the report to the BFT RSM .

Under case 2, there must be at least one non-faulty process making a decision without
the help of the DM. Then when a process sends its report to the DM, if the process is
non-faulty, it must send a valid report without a null value. This is because there is at
least one process that receives all the failure-free reports and does not seek assistance from
the DM. If the process is a Byzantine process, according to Lemma 4 and 6, it can only
either send a valid report without null value as it sends to every other process, or send a
valid report with a null value. Thus, if the DM only receives valid reports without a null
value, each DM node does not need to wait for enough reports and can proceed to make
the decision (line 166). If the DM receives some valid reports with null values, because of
Lemma 8, the DM can expect at least f + 1 reports from different processes. Thus, each
DM node can proceed to make the decision. As long as the decision is made, the DM sends
the decision back to the processes that request assistance. Then the non-faulty processes
can agree with the list of values decided by the DM, and the theorem holds.

Theorem 10. Eventual synchronicity: All processes eventually run in the fast path if the
system turns to synchronous mode and is free of failure starting from a certain cycle.

Proof. Similar to crash fault-tolerant design, assume that there is a known upper bound,
D, on the message processing and network delay under the synchronous mode. This means
that the time to broadcast proposals or reports does not exceed D. Also, when a process
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complete or timeout on proposals or reports waiting, it takes at most time D to transition
to the next step.

When the system turns to synchronous mode, the processes may start the same consen-
sus cycle at a very different time due to the slow path and asynchrony of previous cycles.
Assume that cycle x is a such cycle that the system runs in synchronous mode and in the
absence of failure from the beginning of the cycle. There may be two cases:

Case 1: no process times out on waiting for proposals according to line 137. Suppose
that time t is the time that the last process receives all the proposals and signature pairs.
Thus, all the processes should receive 3f+1 valid proposals within the time period [t−D, t].
Then, failure-free reports are generated within the time t−D, t+D and broadcast within
the time period [t−D, t+ 2D]. As a result, failure-free reports should be received between
time t−D and time t+ 3D. To enable all the processes run in the fast path, we just need
to set the timeout T greater than (t + 3D) − (t−D) = 4D.

Case 2: at least one process times out on waiting for proposals according to line 137.
Thus, there is at least one failure report which forces all the processes to slow path according
to line 151. Then, all processes wait for the decision of cycle x from DM. There are two
sub-cases under this situation:

Sub-case 1: all processes request assistance from DM before DM makes a decision of
cycle x. Then, once the decision is made, all the processes should receive the decision
according to line 157 and line 181. Suppose the first DM node sends the decision back to
the processes at time k. Thus, all the processes receive the decision no later than k + D.
As a result, the processes re-synchronize and start cycle x + 1 within the time interval
[k, k + 2D]. If the timeout T is set greater than 3D, no process timeout on waiting for
proposals which follow case 1 in cycle x+ 1. As a result, all the processes run the fast path
in cycle x + 1.

Sub-case 2: at least 2f+1 fast processes request assistance from the DM before the DM
makes a decision of cycle x while at most f slow processes after. Otherwise, DM cannot
make a decision according to line 166. Suppose that the maximum time difference between
the fast processes and the slow processes regarding requesting assistance is R. And the
DM takes time L to process the reports. This means that the fast processes have to wait at
least time L to get the decision while the slow processes get the decision without waiting.
Thus, the time difference R is shortened by at least time L in cycle x+ 1. If the processes
follow either case 1 or sub-case 1 in cycle x+ 1, all the processes run the fast path in cycle
x+ 1 or x+ 2, respectively. If the processes follow sub-case 2 repeatedly, the processes are
converged to either case 1 or sub-case 1 due to the shortened time L in each cycle and run
in the fast path eventually.
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In summary, when T > 4D, all the processes eventually run in a fast path.

4.5 Implementation

We implement prototypes of Antipaxos under the crash failure model (APCFT) and under
the Byzantine failure model (APBFT) in Golang, respectively.

4.5.1 Crash Fault-Tolerant Implementation

In APCFT implementation, we use it to build a replicated key-value store. Each process
runs APCFT and executes requests in cycles. To optimize the throughput, the processes
reach agreement on an ordered list of batched requests in each cycle. The cycle number is
increasing monotonically. Since there is no guarantee that all the processes run the same
cycle and process the requests at the same speed, we introduce pipelined cycles to reduce
the impact of asynchrony. Normally, a new cycle starts if the request batching time is up.
But to offset the impact of asynchrony, if a process receives a proposal of a cycle whose
cycle number is greater than the max cycle number it is running, then the process has
to start a new cycle immediately even if there is no client request. The stages of the AP
can be pipelined to allow multiple cycles to run concurrently, as shown in Figure 4.2. The
algorithm is divided into 5 steps. The first step is to collect and batch client requests into a
proposal. Then each replica broadcasts its proposal associated with a unique cycle number
to every other replica. Next, every replica either receives all the proposals of a cycle or a
timeout occurs of that cycle. A report is produced consequently to indicate whether the
proposals are successfully received from every other replica. Then, the report should be
broadcast to other replicas. Next, the cycle is committed according to the reports. In the
end, each replica can execute the committed requests in each cycle with a predetermined
order, e.g., in round-robin order. Since the execution is based on the cycle numbers only,
each consensus cycle is independent and can be run concurrently. The design of pipelined
cycles also makes the APCFT efficient in a WAN.

Additionally, to reduce the size of a report, we require each report to include only the
liveness status instead of the original requests. As a result, a report uses a Boolean value
to indicate whether a process is alive or may have failed. If there is a report for each
process and there are no failures in these reports, the processes proceed in the fast path.
Otherwise, the processes have to retrieve the lost requests by querying other non-faulty
processes.
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Figure 4.2: Pipelined Antipaxos

Failure handling is a key feature of a consensus protocol. When a process fails, APCFT
reacts by contacting the DM for assistance in each affected consensus cycle. DM is im-
plemented using EPaxos. Although this prevents the protocol from stalling, it also leads
to high latency. To reduce this overhead, when a process is unavailable for many consec-
utive cycles, we automatically exclude the unresponsive process from the computation for
a number of additional cycles, which amortizes the disruption over many cycles. As a last
resort, a process that is suspected to have failed permanently can be removed from the
protocol by updating the group membership, with the option of rejoining later under a
new identity. The membership reconfiguration is out of the scope of this paper. In another
case, when a process merely runs slow, other processes suspect that the process has failed
and seek assistance from the DM. In other consensus protocols, such as Paxos [55] and
PBFT [19], if the slow process is the leader, they have to run a view-change protocol to
select a new leader after a timeout. If the slow process is not the leader, prior protocols
either treat the slow process as a failure and ignore it, or halt and keep waiting for a reply.
In our implementation, a slow process should catch up because of the design of pipelined
cycles. However, if it still falls behind, the DM treats the slow process as a failure and
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handles it with the above failure procedure. This essentially avoids the asynchrony that
keeps pushing the consensus to the slow path. We examine different strategies for dealing
with failed processes in the next section.

4.5.2 Byzantine Fault-Tolerant Implementation

Similar to APCFT implementation, APBFT enables request batching and pipelined cycles
to improve performance. However, instead of a replicated key-value store, APBFT uses a
typical workload consisting of 500-byte requests, which is approximately the average size
of a Bitcoin transaction [103]. Since the report of APBFT has to carry signatures for fault
tolerance, each process is uniquely identified by an ECDSA [46] key pair. The private key is
used to sign the proposals and reports while the public key is used to verify the signatures.
To reduce the size of a report, we require each report to include only the SHA256 [71]
hash of the original requests. Two special hashes are used to indicate empty requests and
processes may have failed, respectively. If no failure occurs, the processes proceed on the
fast path. Otherwise, the processes have to seek assistance from the DM and retrieve the
missing requests that match the hash in the decision from other non-faulty processes.

DM under APBFT is implemented using PBFT [19]. We leverage the implementation
of MirBFT [98] to emulate PBFT. We use the same approach as APCFT to handle faulty
processes. When a failure first occurs, the processes contact DM for help to solve the
failures. If the failure occurs for a number of additional and consecutive cycles, APBFT
excludes and ignores the failed processes from the consensus. This is to ensure that most
cycles proceed on the fast path. Our experiments evaluate different strategies for fault
handling.

Latency (ms) USE SAE EUC APN USW APS CAC
USE -
SAE 123 -
EUC 99 200 -
APN 156 251 267 -
USW 48 170 140 101 -
APS 198 303 130 124 212 -
CAC 24 124 90 141 63 188 -

Table 4.1: Round-trip network latency (ms)
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Figure 4.3: APCFT Throughput-latency in a single datacenter.

4.6 Evaluation

We evaluate our prototype on Amazon EC2. Each process runs in a c4.xlarge instance
(4 cores, 2.9GHz Intel Xeon E5-2666 v3 processor, 7.5GB memory). Each instance runs
Amazon Linux 2 and uses Golang version 1.13.6. Each process runs on a dedicated instance.

To evaluate the performance, we deploy the AP system in both a single datacenter
and multiple datacenters. A client process runs multiple threads to imitate different users
sending requests concurrently. Each user sends only one request at a time and sends
requests sequentially, which means closed-loop users. The throughput is controlled by
increasing the number of concurrent users. The execution waiting time of each request is
the time from when the user sends the request to the process to when the user receives
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Figure 4.4: APCFT Throughput-latency in multiple datacenters.

the reply from the process. The process only replies after executing the request. We use
two different settings to measure the performance of AP, one using pipelined cycles, and
the other without pipelining. We run each experiment for a total of 30s, but only measure
the throughput and latency in the middle 20s to capture the steady-state performance.
We calculate the throughput as the number of transactions per second (txns/sec) and the
average latency of all executed requests in the 20s interval.

4.6.1 APCFT Experiments

Under the CFT setting, we compare against a high-performance and open-source protocol,
EPaxos. The workload is a 17-Byte key-value write command (1 Byte write operation, 8
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Bytes key, and 8 Bytes value). Also, each process batches up to 1000 commands every
5ms.

In the first experiment, we deploy the system in a datacenter located in US-EAST
(Ohio). This configuration minimizes the impact of network delays. We measure the
throughput and latency of 3 replicas and 5 replicas, respectively. Figure 4.3 shows the
results of this single datacenter experiment. In a low latency network, AP achieves similar
peak throughput and latency to EPaxos. Compared to 3 replicas, 5 replicas provide better
peak throughput. Thus, the system can scale according to the number of replicas in a
low-latency network. This is because AP and EPaxos have the same message complexity,
which is O(n) per consensus cycle where n is the number of replicas. Noteworthy, the
pipelined design in the low-latency network does not have an appreciable impact on the
performance. This is because the time consumed in each cycle is very short.

The second experiment is deployed in a wide-area environment. We choose 5 dif-
ferent AWS EC2 datacenters in the following regions: US-east2(USE), SA-east1(SAE),
EU-central1(EUC), AP-northeast1(APN) AND US-west2(USW). The network latency be-
tween these datacenters is listed in Table 4.1, and the average latency is about 150ms. The
3 replicas experiment uses the first three datacenters, and the 5 replicas experiment uses all
five datacenters. Figure 4.4 shows that even without pipelining, AP achieves 2x the peak
throughput compared to EPaxos. This is because of the lower execution latency, as shown
in the figure. In the common case, AP only requires one round-trip. But, EPaxos requires
one and a half round-trips in its fast path, and more round-trips plus dependency check in
its slow path. When the consensus cycle is pipelined, the peak throughput increases to 3x
that of EPaxos. This is because the pipelined implementation efficiently uses the network
bandwidth without having to wait for a reply from the previous cycle in the WAN.

In the last experiment, we measure the performance in a failure case. Our DM system
comprises 3 replicas. Each DM node runs in an EC2 instance. We deploy 3 replicas and
one client in the US-EAST region. The DM system is also deployed in the same region. In
order to have a stable sending rate, the client sends requests in an open loop to a non-faulty
replica, issuing new commands at 10,000 requests per second without waiting for the replies
of the old commands over the testing period. We measure the execution latency of each
command and calculate the throughput every 0.2s. One of the replicas crashed after about
5s into the experiment. We implement three strategies to deal with the failed replica. The
first one (S1) is that when the system detects a failure, it immediately excludes the replica
from the computation. The timeout of each step is set to a small value, which is 10ms.
The second strategy (S2) is to exclude the failed replica if the system detects a failure for
multiple (100 in this setting) consecutive cycles. The timeout of each step is still 10ms.
In the last strategy (S3), the system excludes the failed replica immediately if a failure is
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Max batch size 2MB
Max batches ephemeral epoch 256
Bucket rotation period 256
Buckets per leader 2
Checkpoint period 128
Watermark window size 256

Table 4.2: MirBFT configuration

detected. But the timeout is set to a larger value, 100ms.

Figure 4.5 shows the results of three different strategies. We can see that S1 almost
handles the failure without interrupting system performance. S2 reduces throughput by
about half and significantly increases latency. Finally, for S3, there is a noticeable fluctua-
tion in both the throughput and latency. The design of these three strategies is related to
the likelihood of false-positive failure. This is because a slow replica may push the system
to the slow path. Longer timeout, more consecutive failure cycles, or both, resulting in a
lower likelihood of false-positive failure detection. But the trade-off is performance degra-
dation. Although S1 gives the best performance in handling the failure, a short timeout
may keep excluding non-faulty but slow processes from the computation, which jeopar-
dizes the system fault tolerance. S2 shows us that continuously running at a slow path
has a significant impact on performance. To best use AP, we recommend S3, which has a
reasonable timeout compared to the network latency. In summary, if we can estimate the
upper bound of the message and process delay, the system runs in the fast path most of the
time, which provides high performance. If a timeout occurs, either due to process failure
or asynchrony, the DM temporarily excludes the process from the computation. When a
process is recognized as a failure multiple times in succession, DM permanently removes
it from the system. When the failed replica recovers, it has to either catch up with the
computation or rejoin the execution by applying for a system reconfiguration.

4.6.2 APBFT Experiments

Under the BFT setting, we compare against MirBFT [98], a multi-leader BFT protocol
implemented in Golang. The workload is a 500-Byte request. Each process batches up to
2MB requests.

The first experiment is conducted in a single datacenter, US-EAST (Ohio). Each cycle
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batches 100ms in both APBFT and MirBFT. Other parameters of MirBFT follows Table
4.2 which is proposed in [98]. Under this setting, the network latency is minimized. We
measure the throughput and latency of 4 replicas and 7 replicas, respectively. The results
are shown in Figure 4.6. When the network latency is low, APBFT shows much higher peak
throughput than MirBFT. This is because MirBFT multiplex PBFT to achieve multiple
instances of consensus concurrently while APBFT merely requires two rounds of all-to-all
messages in its fast path. Regarding the scalability, 7 replicas show better peak throughput.
In addition, due to the signature verification, pipelined design in the low-latency network
shows higher peak throughput.

The second experiment is deployed in multiple geo-distributed datacenters, which are
US-east2(USE), SA-east1(SAE), EU-central1(EUC), AP-northeast1(APN), US-west2(USW),
AP-south (APS), and CA-central(CAC). Each cycle batches 200ms in both APBFT and
MirBFT. The network latency between these dataecnters is shown in Table 4.1, and the
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average latency is about 150ms. The 4 replicas experiment is deployed in the first four
datacenters, and the 7 replicas experiment is deployed in all sever datacenters. The results
are shown in Figure 4.7. Without pipelining, APBFT is slightly inferior to MirBFT. This
is because that APBFT is dominated by the slowest replica due to the all-to-all commu-
nication whereas MirBFT relies on PBFT which only requires a quorum. However, when
we enable pipelining, APBFT outperforms MirBFT by more than 3 times and 2 times in 4
and 7 replicas, respectively. The pipelined implementation process proposals and reports
efficiently without waiting for the previous cycle in the WAN.

The last experiment is to measure the performance in a failure case. Both APBFT
replicas and DM nodes are deployed in the same datacenter in the US-EAST region. We
deploy 4 APBFT replicas, 4 DM nodes, and 1 client. Similar to the APCFT fault tolerance
experiment, we use an open-loop client to send requests at a constant speed, 10,000 requests
per second, to a non-fault APBFT replica. We measure the execution latency of each
request and calculate the throughput every 0.2s. We simulate a replica crash by killing a
replica after about 5s into the experiments. Three different strategies are applied to handle
the failure. Strategy 1 (S1) excludes the failed replica from the computation if DM detects
a single failure in any consensus cycle. The timeout of each step is set to 100ms. Strategy
2 (S2) excludes the failed replica if a failure occurs for a consecutive 20 cycles. The timeout
of each step is still 100ms. The last strategy, strategy 3 (S3), excludes the failed replica
immediately if a failure is detected as strategy 1, but the timeout is set to a larger value,
200ms. We would like to use these different strategies to show the sensitivity of APBFT
with a different configuration.

We show the results in Figure 4.8. There is a fluctuation in all three strategies when
a failure occurs. The throughput decreases and the latency increase significantly when
a failure occurs at about 5s, but the system is still alive. This throughput decrease and
latency increase are due to the mechanism of DM. When an AP replica detects a failure,
it has to report to DM and waits for the decision from the DM. The requests cannot be
executed before the decision is received. S1 takes the least time to recover to normal as it
excludes the failure replica from the computation immediately when the failure is detected.
S2 takes a longer time to recover due to multiple assistance cycles. S3 performs better than
S2 but worse than S1 which is because of a longer timeout. Similar to APCFT, the design
of failure handing depends on the likelihood of false-positive failure which is because of the
slow replica. For practical applications, to make AP runs in the fast path in most cycles,
a good approach is to measure and estimate the upper bound of the message and process
delay. If a timeout occurs, either due to process failure or asynchrony, the system excludes
the process from the computation. When a process is recognized as a failure multiple
times in succession, DM permanently removes it from the system. The failed replica has
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to either catch up with the computation or rejoin the execution by applying for a system
reconfiguration after recovery.

4.7 Related Work

Paxos [55] is a well-known crash-tolerant consensus protocol. A process is selected as
the proposer to lead the consensus protocol and communicates with a majority quorum of
acceptors. The acceptors are the processes to maintain fault-tolerant memory. The learners
are the processes to execute the requests. A process can take any or all the roles in the
protocol. At the beginning of the protocol, a leader sends a message to all the acceptors
in the first phase and waits for enough reply messages. Then the leader sends the accept
message to all the acceptors which include the proposed value in phase two. Then all the
correct acceptors accept the proposed value and broadcast the success message to both the
leader and all the learners to finish the consensus. Paxos can guarantee safety. Liveness is
conditioned on that there are at most f acceptors out of total 2f + 1 acceptors that may
suffer crash failure, and a message cannot be infinitely delayed. Besides, if multiple leaders
are competing with each other, the protocol may also be stuck.

Due to the reliance on a single proposer, the performance of Paxos is limited. Many
variants of Paxos [88] have been proposed to improve the performance. For example, Fast
Paxos [56] reduces the agreement time by having proposers send directly to an increased
number of acceptors. Mencius [9] increases the throughput by rotating the leaders across
different consensus cycles. Besides Paxos family, Raft [81] has similar fault-tolerance and
performance compared to Paxos. But it is designed to be more understandable than Paxos.
Zab [47] is an atomic broadcast protocol employed by Zookeeper [43]

EPaxos [75] is an improvement on Paxos where every replica handles requests from the
clients. When a replica receives a request from a client, the replica becomes the request
leader and forwards the request to at least a fast-path quorum of replicas. If the request
leader receives enough replies where all the replies have the same attributes. Then, the
request can be committed in a fast path. Otherwise, the request has to commit through
a slow path which is based on Paxos. If the request leader commits a request, it simply
broadcasts this request to everyone else to execute. In the fast path, EPaxos only requires
one round-trip communication latency to commit a non-interfering request. EPaxos also
employs batching techniques to increase throughput. However, each EPaxos replica runs
consensus one cycle at a time, which limits its throughput in WANs. Furthermore, concur-
rent conflicting commands, which are common when commands are batched, always fall
to the slow path. Compared to EPaxos, Altas [31] improves the performance by using a
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minimized quorum for its fast path. Canopus [89] is a consensus protocol with a hierarchi-
cal tree architecture. The top layer of this hierarchy uses an efficient all-to-all broadcast,
similar to Antipaxos, which allows Canopus to outperform EPaxos in terms of throughput
for read-heavy workloads. Nevertheless, Canopus lacks the ability to tolerate a network
partition or failures of an entire subtree of the hierarchy.

Apart from crash fault-tolerant consensus protocols, some other protocols have been
proposed to tolerate Byzantine failures [57]. PBFT [19] is the most widely used single-
leader Byzantine fault-tolerant consensus protocol as we introduced in 2. FastBFT [59]
proposes a novel message aggregation technique based on hardware-based trusted execution
environments to reduce message complexity. Gosig [58] supports multiple proposers, but
only one of the proposals can be selected in each cycle. There are a number of other
single-leader BFT protocols such as SBFT [39], HotStuff [107], Zyzzyva [52], Aliph[38],
etc.

Considering the leaderless and the multi-leader approaches, set-union consensus [28]
proposes that a set of processes reach agreement on a set of values instead of a single value
in a consensus cycle, which is similar to k-IC. Set-union consensus requires that there is
no conflict or invalid element in the decision set. The definition of a conflict or invalid is
application-specific. Also, pipelining was not considered in the set-union consensus. There
are some other variants of leaderless approach consensus protocols, such as Honey Badger
[74], DBFT [21], Red Belly [23], etc.

Mir-BFT [98] is a multi-leader approach consensus protocol where each leader runs
an instance of PBFT. It splits the consensus into epochs. In each epoch, each leader is
assigned a fixed number of buckets. Requests are matching to the buckets using their hash.
Buckets are rotated across different epochs. Finally, requests are interleaved in a unique
sequence according to the order of the buckets. MirBFT can emulate PBFT by setting
only one leader and making every epoch stable. However, there is no mechanism for a slow
leader to catch up. As a result, the slow leader dominates the performance. In addition,
MirBFT requires O(n3) message complexity if all the nodes are leaders.

In addition, Steward [3] and RCanopus [48] are Byzantine consensus protocols that im-
prove performance by using a hierarchical architecture. They comprise multiple sites, each
using Byzantine consensus internally to reach local decisions and certify them. Agreement
across sites is achieved using a Paxos-like single-leader consensus protocol in Steward. In
contrast, RCanopus uses an all-to-all broadcast to synchronize sites, similar to Canopus
[89]. Fault tolerance is limited, as in Canopus, since the protocol stalls when a site becomes
unavailable. AP is an elaboration of the convergence module (CM) in RCanopus [48]. The
CM is introduced to make RCanopus resilient against network partitions and site failures.
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4.8 Conclusion

In this paper, we first formalize the k-IC problem. Then we propose Antipaxos, a scalable
leaderless protocol, to solve this problem. In the absence of failures and asynchrony, the
system bypasses classical consensus protocols and reach agreement efficiently using all-to-
all broadcast. Otherwise, the algorithm still maintains safety and liveness with the help of
the DM. It achieves this by sending liveness reports and using communication success as
a failure detector in the crash failure model and adds cryptographic signatures to tolerate
Byzantine failures. In addition, proposal batching and pipelined consensus cycle allow AP
to reduce the impact of asynchrony and achieve high scalability in WANs. We implement
system prototypes under crash failure and Byzantine failure. And we conduct experiments
on Amazon to demonstrate the performance. In our WAN experiments, AP shows 3x
higher peak throughput in both the CFT and BFT comparison, respectively.
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Chapter 5

GeoChain: A Locality-Based
Sharding Protocol for Permissioned
Blockchains

This work proposes a locality-based full sharding protocol, GeoChain, designed for permis-
sioned blockchains. Incorporating geographical property in blockchain sharding not only
improves the performance of every single shard but also reduces the ratio of cross-shard
transactions in some applications. Both of these improve the scalability of the system. In
addition, we propose a client-driven cross-shard transaction processing protocol which is
coordinated by the client. We conduct experiments on geo-distributed Amazon cloud to
demonstrate the performance.

5.1 Preliminaries

5.1.1 Sharding

Sharding is a technique that tries to distribute storage, computation, and communication
to improve scalability. A shard is a ledger that records and processes a subset of all the
transactions. Recent research explores full sharding to improve scalability. How to form
the shards, distribute transactions, and process cross-shard transactions, remains at the
heart of this approach.
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Shard formation means assigning participants to shard committees. A typical approach
is to randomly assign participants into shard committees [51, 108, 25]. The security of the
system largely depends on the size of the committee and the random function it uses.
Also, the shard committees have to be reassigned periodically to ensure safety. This is
because participants in permissionless blockchains may join and leave at any time. This
complicates the process of shard formation. Another approach forms the shards by taking
advantage of network proximity [4, 62, 90]. This inspires the design of our GeoChain shard
formation.

Transaction placement is another key factor. In partial sharding, transactions can be
distributed to any shard as there is a master ledger that handles the cross-shard trans-
actions. A cross-shard transaction is a transaction that involves multiple operations in
different shards. But there is no such master ledger in full sharding. Thus, if transactions
are randomly distributed, there is a high probability of cross-shard transactions, which
limits the scalability of the system. This has been observed in both Omniledger [51] and
RapidChain [108]. They use the transaction hash to decide the transaction placement
which is essentially a random process. This results in a high rate of cross-shard transac-
tions. RapidChain [108] reports that, for a 500-node network, if the system splits into 3
shards, and the total number of inputs and outputs in a transaction is 3, then 96.3% trans-
actions are cross-shard transactions, while for a 4000-nodes network, if the system splits
into 16 shards, then 99.98% transactions are expected to be the cross-shard transactions.
These high rates of cross-shard transactions limit performance. OptChain [80] proposes a
smart transaction placement strategy to reduce the amount of cross-shard transactions: it
puts well-connected transactions into the same shard. Specifically, it constructs a graph,
termed Transactions as Nodes (TaN), by abstracting each transaction as a node. A directed
edge is added to the graph if a transaction uses another transaction as an input. Then
it requires the client to calculate a Temporal fitness to decide which shard a transaction
should be sent to. The Temporal fitness score consists of two parts, Transaction-to-Shard
score and Latency-to-Shard score. The former is used to determine the probability of plac-
ing a transaction into a shard without causing future cross-shard transactions. The latter
is used to estimate the processing delay from a transaction to a shard.

The performance of blockchain sharding is highly related to how cross-shard transac-
tions are being processed. OmniLedger [51] proposes an atomic commit protocol, Atomix
(Figure 5.1), to handle cross-shard transactions. Suppose that a cross-shard transaction
has two inputs, one in shard 1 and one in shard 2, while its output is in shard 3. This
is because OmniLedger decides the distribution of a transaction by its hash. In the first
step, the client has to verify and lock both inputs from its input shards. If all input shards
respond with proof of acceptance, the client commits the transaction by sending the proofs
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and commit messages to the input and output shards concurrently. Otherwise, the client
has to abort the transaction and unlock the inputs. This requires the client to actively
coordinate the process, which involves acquiring proofs and sending commit or abort mes-
sages. In addition, the client has to validate the proof. A Byzantine client may lock the
inputs forever. THS [25] and Channels [6] propose similar approaches by replacing the
client with a reference committee and a trusted channel, respectively. RapidChain [108]
proposes a protocol that splits a cross-shard transaction into multiple transactions but re-
quires an inter-shard communication protocol to transfer the inputs from the input shards
to the output shard (Figure 5.2). A transaction spends 2 inputs, I1 and I2, one from shard
1 and one from shard 2, while the output O belongs to shard 3. Upon receiving the trans-
action from the client, shard 3 splits the transaction tx = {(I1, I2), O} into tx1 = {I1, I ′1},
tx2 = {I2, I ′2}, and tx3 = {(I ′1, I

′
2), O}, where I ′1 and I ′2 are the output of tx1 and tx2,

respectively, and the inputs of tx3. Next, shard 3 sends tx1 to shard 1 and tx2 to shard
2. If both transactions are processed successfully, shard 3 proceeds to process tx3. Other-
wise, tx is aborted. The main idea is to transfer the inputs from the input shards to the
output shard. SharPer [4] also uses a shard as the coordinator to process the cross-shard
transaction. But it relies on an all-to-all multicast approach. THS [25] uses a reference
committee to handle the cross-shard transactions, which requires an extra effort to form
and maintain the reference committee. The reference committee has to make agreement
on the transactions which uses another layer of consensus. This hurts the performance.
With the high probability of cross-shard transactions in those protocols, the clients suffer
a long latency on average. Moreover, clients cannot control the position of the transaction
inputs and outputs. This complicates the processing of cross-shard transactions.

5.1.2 Permissioned Blockchain

In contrast to the permissionless blockchain, participants in permissioned blockchains have
to establish their identities and be acknowledged by the system administrators. Permis-
sioned blockchains mostly employ classical fault tolerance consensus protocols in ordering
the blocks. Hyperledger Fabric (HF) [5] is one of the most popular permissioned blockchain
systems that enable smart contract execution. HF has been widely used in logistics, iden-
tity management, and the banking industry. Instead of the order-execute-commit pattern,
HF introduces execute-order-validate design to improve the system performance. This ar-
chitecture not only enables parallel executions but also uses a predefined policy to validate
the transactions. Specifically, transactions are first simulated according to the world state
to determine the data to be written in the ledger. This is used to verify the correctness of
the transactions, which means endorsing. Each result is an endorsement of the transaction.
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Figure 5.1: Atomix – OmniLedger Cross-Shard Protocol.

Then the transactions are ordered by an independent ordering service. A transaction can
be ordered only if it has sufficient endorsements according to an endorsement policy. In
the end, the transactions have to be validated and committed in the ledger to resolve race
conditions. The whole process is achieved by using different types of nodes that have an
assigned role. To achieve this, HF has three different node types, which are peer, endorser,
and orderer. Since it is a permissioned network, all nodes have to be acknowledged by a
membership service provider (MSP). MSP is a component of HF that governs the identities
and associated operations. Otherwise, they will not be recognized by the system. Peers are
used for executing and validating transactions. Each honest peer maintains a world state
of the ledger, which must be consistent with other peers. A smart contract, which is called
a chaincode in HF, is installed on certain peers that are used for executing transactions.
The results of the contract are called endorsements. Such peers are also called endorsers.
An endorsement policy is used to define which peers have to endorse a transaction. In
addition, peers are also responsible for validating the transactions before committing them
to the ledger but after ordering. Orderer nodes are used only for ordering transactions.
They collectively form an ordering service by running a consensus protocol. It is used
to ensure the unique order of the transactions. The orderer nodes collect transactions
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Figure 5.2: RapidChain Cross-Shard Protocol.

associated with endorsements and order them without any knowledge of the ledger state.
This allows the ordering service to be independent of peers. Also, the consensus protocol
of the ordering service is easy to replace. As a result, HF enables a pluggable consensus
mechanism. A transaction is processed at a specific set of peers and orderers that maintain
a consistent ledger. Channel [6] is the way of sharding in HF, but all the channels still
share the same ordering service. In addition, it requires a trusted channel or Atomix [51]
to handle cross-shard transactions.

The transaction workflow follows Figure 5.3. A client proposes a transaction to a
sufficient number of endorsers, which are endorsers 1, 2, and 3 in the figure, according to
an endorsement policy. The endorsement policy is defined as a logical expression, such as
“two out of three”. The endorsers simulate the transaction regarding the world state and
respond with an endorsement if the simulation succeeds. The client broadcasts the results
to the ordering service only after it has collected enough endorsements (at least two out
of three). The ordering service is responsible for gathering transactions into blocks and
ordering the blocks into a sequence. In the next step, the ordering service delivers the
ordered blocks to all peers for final validation. Only valid transactions are committed on
the ledger and updated to the world state. The other transactions are aborted.
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Figure 5.3: Hyperledger Fabric Transaction Flow.

5.1.3 System Model

We rely on the partially synchronous [30] network where there is an unknown upper bound
on the message delay. In addition, we assume reliable point-to-point communication chan-
nels that cannot lose, corrupt, duplicate, or reorder messages. Furthermore, we are target-
ing a permissioned network where the identities of the participants, and the servers that
maintain the blockchain, have been established already. Overall, there are at least 2f + 1
participants under the crash failure model (CFT) and 3f +1 participants under the Byzan-
tine failure model (BFT), where at most f of them may be faulty. Each client may suffer
either crash failure or Byzantine failure. Each client coordinates its own transactions. The
transaction follows the UTXO model. UTXO is a typical transaction model in blockchain
networks [77, 108, 51]. Each UTXO is uniquely identified by its hash. Each UTXO can
only be used once as one of the inputs of another UTXO transaction. Each new block
includes multiple UTXO transactions and is recorded in the blockchain. GeoChain ensures
safety and liveness.
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5.2 Locality Based Sharding Design

This section presents how GeoChain achieves full sharding. The locality information is
derived from the established identities of the users.

5.2.1 Shard Formation

For a blockchain without sharding, participants are distributed around the world and work
together to build a unified ledger. A major drawback of this approach is that the network
latency among the participants may range from less than 1 ms to more than 200 ms. Such
200ms latency drastically degrades the performance of the system. Both Mir-BFT [98]
and Red Belly [23] show better performance in the local area network (LAN) than in the
wide area network (WAN). In addition, the consensus protocols under a large number of
participants suffer weak scalability. The evaluation of MirBFT [98] shows that performance
degrades while the number of participants increases in protocols PBFT [19], HoneyBadger
[74], and itself. When sharding is introduced, each shard achieves consensus independently
with a reduced number of participants which alleviates the scalability bottleneck.

Bearing the above in mind, we incorporate the geographical property, namely locality,
in the sharding of permissioned blockchains, which takes advantage of network proximity
[4, 90, 62]. The system administrators can perform the configuration and the clustering
steps as in other systems [5, 108, 51]. Specifically, each shard is formed based on a regional
code that indicates the geographical position of the participants. A regional code is de-
fined as a cluster classifier. Geographically close participants are assigned the same regional
code. Example factors to decide the classification are IP address and peer-to-peer network
latency. In other words, participants are clustered into shards according to their relative
network proximity. This is done by the system administrators when the participants es-
tablish their identities. For instance, participants in North America with less than 50ms
peer-to-peer network latency are assigned to the same shard. This minimizes the impact
of the network latency within each shard which leads to better intra-shard performance.
The trade-off is fault tolerance where each shard has to assure intra-shard safety on top
of system-wide safety. SharPer [4] introduces this approach and assumes pre-determined
fault-tolerant clusters where at most f faulty nodes out of 2f +1 nodes in the crash failure
model and 3f + 1 nodes in the Byzantine failure model. As a result, the fault tolerance
depends on the size of the shard committee. Other sharding protocols [51, 108] enforce
system-wide fault tolerance and target a high probability of intra-shard safety.
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Inputs A collection of transaction inputs
Outputs A collection of transaction outputs
Shard Which shard this transaction belongs to

Table 5.1: Transaction data structure

5.2.2 Transaction Placement

As we stated in Section 5.1, randomized transaction placement [51, 108] leads to a high ratio
of cross-shard transactions, which degrades the performance. Considering some practical
applications, like banking systems, retail payments, and electric vehicle charging, human
activities are mostly restricted by geographic location. Thus, most transactions of such
applications are conducted in the same geographical region. McKinsey reports that, on
average, merely 11% of global payments revenue came from cross-border transactions in
2020-21 [69]. Bearing this in mind, we propose a locality-based transaction placement
strategy that intuitively incurs a low probability of cross-shard transactions. Specifically,
we require that each transaction includes shard information, namely the regional code of
a shard, which states its placement. Such a transaction can be only processed by the
designated shard. Table 5.1 shows the data structure which comprises not only UTXO
inputs and outputs but also the shard information the transaction belongs to. The shard
information is used to decide which shard handles this transaction. A requirement of such
a transaction is that the inputs and the transaction have to belong to the designated shard.
Otherwise, the shard cannot verify the transaction. For example, Alice owns a coin with
regional code A in one shard, such as shard 1, and transfers this coin to Bob. At the end of
the transaction, Bob owns the coin with regional code A in shard 1. However, we may ask
what if Bob needs the coin from a shard other than shard 1, which means a transaction
from a different shard. Thus, a major challenge of our transaction placement strategy is
how to enable and handle cross-shard transactions.

5.3 Cross-shard Transactions

We propose a client-driven efficient protocol to deal with cross-shard transactions. The
idea is to give clients flexibility to manipulate their transactions. Each UTXO is assigned
the regional code of the shard to which it belongs. We assume that the UTXOs have equal
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Algorithm 9: IOCC Client

188 Procedure Transfer (input, shard x)
189 Propose input to input.shard
190 for each non-faulty node Pi in input.shard do
191 certi = ExecutePi

(input, x)
192 end
193 Wait for valid cert from nodes
194 return {cert0, cert1, cert2, ...}
195 end
196 Procedure Main (inputs = {input0, input1, ...}, outputs, destination shard x)
197 for each inputi in inputs do
198 if inputi.shard is not shard x then
199 proofi = Transfer(inputi, x)
200 if proofi is invalid then
201 return null
202 end

203 else
204 proofi = null
205 end

206 end
207 tx = {{(input0, proof0), ...}, outputs, x}
208 Propose tx to shard x
209 for each non-faulty node Pi in shard x do
210 certi=ExecutePi

(tx, x)
211 end
212 Wait for valid cert from nodes
213 return {cert0, cert1, cert2, ...}
214 end

93



value across different shards1. Notice that, the whole system is still geo-distributed, but
each shard is not. We require each client to know where its transactions belong. Thus, if
a client wants to propose a transaction to shard x, it has to follow 2 steps as Algorithms
9 and 10.

Step 1. A client first gathers inputs and proposes a transfer transaction for each input
in the shard other than shard x. And it requires a proof from those shards as line 197
to 206. A transfer transaction is defined as a transaction to transfer a UTXO from one
shard to another shard. A proof is a quorum certificate from the input shard which can
be verified by the destination shard. The quorum certificate is a collection of transaction
commitments from the participants of the input shard such as line 194. A proof has to
have certificates from at least a majority of shard participants. A majority is f + 1 out of
2f + 1 under the crash failure model and 2f + 1 out of 3f + 1 under the Byzantine failure
model. The proof is used to establish that a UTXO has been transferred from the input
shard to the destination shard. Once a valid proof is generated, the UTXO in the input
shard is marked as transferred and cannot be rolled back.

Step 2. The client appends the proofs to the original inputs and forms a new transaction
such as line 207. Then, the transaction is proposed to and processed by the destination
shard. By using this approach, a transaction input in the destination shard must be either
a valid UTXO in the same shard or valid proof of UTXO transferred from the input shard
to the destination shard as shown in Algorithm 10.

Algorithm 10: IOCC Node in Shard y

215 Procedure Execute (tx, x)
216 if tx.shard is not shard y then
217 return null
218 end
219 if tx is valid then
220 Commit and mark that tx has been transferred to shard x
221 return Commitment of tx

222 else
223 return null
224 end

225 end

1It is possible that the UTXOs in different shards have different values. Then, the system requires an
extra mechanism to decide the exchange policy among the shards which is out of the scope of this paper.

94



Steps 1 and 2 are two related transactions that must be performed in sequence but
not necessarily consecutively. The client is only used for assembling and proposing the
transactions. As long as the input shards commit the transfer transactions, the proofs are
available at any later time. Figure 5.4 shows a concrete example of the above process. A
client, who has UTXOs in shard 1 and shard 2, wants to make a transaction to shard 3.
The client first sends tx1 and tx2 to shard 1 and shard 2, respectively. tx1 and tx2 are
used to transfer the UTXOs from shard 1 and shard 2 to shard 3. If both shard 1 and
shard 2 commit the transaction and provide proofs, tx1′ and tx2′, which is case 1 in the
figure, the client may submit these proofs at any later time in shard 3. Once the proofs
are generated, the UTXOs in shard 1 and shard 2 are treated as transferred implicitly and
cannot roll back. After that, the client proposes a new transaction that appends the proofs
to the original inputs and sends the transaction to shard 3. In case 2, if tx1′ aborts, the
cross-shard transaction aborts as well. But tx2 has been transferred from shard 2 to shard
3 as tx2′. The client can hold the proof of tx2′ and decide at any later time when to deposit
tx2′ to shard 3. In another case, if the client crashes in the middle of the protocol, Atomix
[51] may lock the inputs forever. However, in our protocol, even if the client crashes before
shard 3 receives tx1′ and tx2′, the proofs are still valid and available in shard 1 and shard
2. When the client recovers, it may extract the proofs again and proceed as usual. At this
point, shard 3 verifies the proofs without communicating to any other shards and confirms
the validity of the transaction. As the protocol is essentially moving a UTXO from input
shards to the output shard, the protocol is termed as inputs to output cross-shard commit
(IOCC).

Double-spending is invalid in IOCC. Within a shard, a block only includes non-conflict
transactions, and blocks are chained in a unique sequence. A pair of conflict transactions
means that the transactions include at least one identical UTXO in inputs, or an output of
a transaction is an input of the other transaction. For cross-shard transactions, a UTXO
is either spent in the same shard or transferred to another specific shard. If the UTXO is
transferred, the original shard has to provide a proof as a commitment that the UTXO
has been transferred. The proof can only be deposited once in the destination shard. As
a result, IOCC ensures no double-spending.

To further optimize the performance, if a client wants to make multiple transfers that
use the inputs from the same shard, the transfer transactions can be put into a batched
transaction. For example, this happens when a client moves or travels from one country
to some other countries (the frequency may vary from daily to yearly). The client batches
multiple cross-shard transactions from the input shard to the output shard, and puts these
transactions into a single batched cross-shard transaction. This batched transaction is
sent to the input shard as a single transaction. The input shard verifies the batched inputs
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Figure 5.4: IOCC – GeoChain Cross-Shard Protocol.

and returns a batched proof to be used in the output shard. As a result, multiple cross-
shard transactions are converted to a single transfer transaction and multiple intra-shard
transactions, which leads to higher throughput.

Note that IOCC is designed for the UTXO transaction model. However, we can adopt
IOCC to the account model by recording one account in multiple shards. This means that
each account holder owns multiple accounts located in different shards. Thus, a cross-shard
transaction can transfer values among these accounts. Aborting a cross-shard transaction
does not roll back the account operations but transfers the value to the account in the
destination shard. The trade-off of this is that multiple accounts may be created for the
same owner in different shards.

In summary, IOCC splits a cross-shard transaction into multiple intra-shard transac-
tions that are managed by the client directly. First of all, there is no direct inter-shard
communication, which reduces the protocol complexity. Also, the client is able to batch
cross-shard transactions and assist in achieving high performance. This gives the clients
flexibility in assets management which is not possible in RapidChain [25]. Moreover, the
double-spending problem is avoided as each UTXO can either be used once in an intra-
shard transaction or transferred to another shard. The IOCC protocol also guarantees that
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each proof can only be successfully deposited once.

5.3.1 Safety and Liveness

GeoChain forms the shard committee using geographical property. Due to the nature of
the permissioned network, the identities of the participants are known to the network. We
assume that there are at least 2f + 1 participants under the crash failure model (CFT)
and 3f + 1 participants under the Byzantine failure model (BFT) in each shard, where at
most f of them may be faulty. This means that each shard must have at least a certain
number of participants to achieve consensus. The fault tolerance depends on the size of
the shard committee. Also, different shards may have different numbers of participants. In
addition, the client cannot crash forever (e.g. restarting after a crash) and is responsible
for completing its own transactions. This means a client is able to deliver the messages
eventually. We ensure that:

Theorem 11. Safety: No invalid transaction is ever decided if each shard achieves shard
safety.

Proof. There exists a consensus protocol that always validates and makes agreement on the
order of proposals. Each shard runs such a protocol to process transactions and commits
transactions with a consistent order where each transaction is proposed by a client and
validated by the non-faulty shard participants. As a result, each shard achieves shard
safety.

Suppose each shard achieves the above shard safety, then each shard merely processes
two types of transactions: intra-shard transaction and transfer transaction. Since intra-
shard transactions do not require any participation of other shards, intra-shard transactions
are always safe because of the shard safety. There are two cases of a cross-shard transaction,

Case 1: A transfer transaction moves the UTXO out of the shard. In this case, the
shard committee responds with a proof if the transaction is valid. Otherwise, the shard
committee aborts the transfer transaction. As long as the transaction is committed, the
proof is always valid due to the shard safety. Even if the client crashes or suffers Byzantine
failure after proposing the transaction, the proof is still generated and can be extracted
after the client is restored.

Case 2: A transfer transaction moves a UTXO in from another shard. Then, the
transaction has to include a proof from another shard which can be validated. The proof
defines the source shard and the destination shard. The transaction succeeds if the proof
is valid, aborts otherwise.

97



Thus, cross-shard transactions are always safe as well. As a result, safety is ensured.

Theorem 12. Termination: Every transaction is either committed or aborted eventually
if a client is able to deliver the messages eventually.

Proof. Suppose there are fewer than 1/2 faulty participants under the crash failure model
and 1/3 faulty participants under the Byzantine failure model of a shard committee and
there is an unknown upper bound on the message delay, then there exists a consensus
protocol [81, 19] that terminates eventually. If every shard runs such a protocol, both the
intra-shard transaction and the transfer transaction are committed or aborted eventually.
In addition, if a client is able to deliver the messages eventually, a cross-shard transaction
is committed or aborted eventually.

Note that, according to the analysis in the previous section, even if a Byzantine or
crashed forever client may partially complete a cross-shard transaction, safety is still as-
sured.

5.4 ACID properties

In the context of a traditional database system, a transaction is a collection of read/write
operations that access and possibly modify the data in the system. ACID [13] describes
four required properties of transactions, which are atomicity, consistency, isolation, and
durability.

Atomicity: all the operations within a transaction are either performed completely or
not at all.

Consistency: the state of the system must be consistent and valid before and after the
transaction.

Isolation: the result of processing multiple transactions concurrently is the same as
if the system processes the transactions one by one in some order. The widely adopted
technical definition of this property is serializability [82].

Durability: once a transaction completes, the changes to the system persist and cannot
be revoked, even in the case of system failure.

In a database system, ACID properties refer to the transactions in the logical layer
where the logical schema defines the logical relationships and constraints over the tables.
For example, a transaction of transferring $100 from Alice to Bob involves two operations,
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debit $100 from Alice’s account and credit $100 to Bob’s account. After processing the
transaction, there are two possible outcomes. If the transaction is fully committed, then
all the changes to the state of the database, Alice pays $100 to Bob, have been recorded.
If a transaction is aborted, the state of the database, the account balance of Alice and
Bob, does not change. This means that the system either moves to a new state or remains
in the old state, which ensures atomicity. Note that the state above refers to the logical
state which describes the logical relationships of the transactions. In contrast, the physical
state, the actual data stored, may change even if the transaction is aborted since ACID
properties do not restrict how the database physically records transactions. Normally, a
logical schema can be implemented with different physical schema in traditional database
systems.

A blockchain is an append-only ledger system where a new block contains multiple
transactions appended to the end of the ledger. A transaction within a block is a collection
of data that describes one or more application-specific operations, such as transferring
ownership, recording originality, and authorizing accessibility. A blockchain enforces a
specific physical schema, the block data structure, to implement different logical schema.

Considering the ACID properties in a non-sharded blockchain system, the atomicity is
guaranteed as each valid transaction is either fully committed and appended to the system,
or not at all. In addition, since a blockchain system appends blocks one at a time, and
all the transactions within a block are executed sequentially, then the transactions are
serializable, which ensures isolation. Consistency is ensured because valid transactions are
appended in a unique order. For durability, consensus protocols are used to ensure that
an appended block is persisted in a tamper-resistant manner.

When considering a sharded blockchain system, there is no difference in durability,
as each shard chain follows the rule of only appending a sequence of blocks to its shard.
However, atomicity, isolation and consistency are not that straightforward because the
system maintains multiple chains of blocks, where transaction execution is no longer serial.
Specifically, a cross-shard transaction involves multiple intra-shard transactions in different
shards. The transactions in one shard may rely on some other transactions in other shards.
Thus, we must also consider the cross-shard transactions when discussing atomicity and
isolation. Consistency is guaranteed if atomicity and serializable isolation are achieved.
This is because the committed transactions are valid and serializable.

Let’s first introduce the UTXO transaction model in the GeoChain protocol. The logical
schema is that each client owns some UTXO assets. There are three states for each UTXO,
which are Non-existent, Unspent, and Spent. Each intra-shard transaction logically includes
a pair of read and write operations for each input and one write operation for its output.
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These operations are used to update the physical state of the committed transactions. If
two operations access the same UTXO, and at least one of the operations is write, then
these two operations are called conflicting operations. A cross-shard transaction consists
of multiple intra-shard transactions in different shards. Initially, the system issues some
genesis UTXOs. Then, an input of a transaction is either another UTXO in the same
shard or a proof of another UTXO in a different shard. The output of the transaction is
itself. For example, Table 5.2 shows an initial physical state of the system where Alice
owns an unspent UTXOA in shard 1. If Alice wants to transfer UTXOA to Bob in shard
2, the cross-shard transaction is abstracted as two intra-shard transactions that execute
in sequence, which are [read(UTXOA), write(UTXOA), write(UTXOB)] in shard 1, and
[read(UTXOB), write(UTXOB), write(UTXOC )] in shard 2. In the first transaction, if
UTXOA exists and is Unspent in shard 1, then the state of UTXOA is updated as Spent.
Next, UTXOB is inserted as the proof that UTXOA has been transferred from shard 1
to shard 2. We mark the state of UTXOB in shard 1 as Spent to indicate that UTXOB
cannot be spent in shard 1 anymore. Then, shard 2 has to first verify that UTXOB does
not exist. This is to ensure that UTXOB can only be deposited once in shard 2. No other
shards can deposit UTXOB as it is designed as a transfer from shard 1 to shard 2. After
that, UTXOB is verified and marked as spent in shard 2. As a consequence, UTXOC is
created and given to Bob, such as Table 5.3. To avoid double-spending, we mark the state
of UTXOB as Spent in shard 2. Note that UTXOB is the output of the transaction in
shard 1 but the input of the transaction in shard 2.

Asset State Owner Shard
UTXOA Unspent Alice 1

Table 5.2: Initial physical state

Asset State Owner Shard
UTXOA Spent Alice 1
UTXOB Spent Alice 1
UTXOB Spent Alice 2
UTXOC Unspent Bob 2

Table 5.3: Physical state after a transaction

In sharded blockchains, transactions may be placed in multiple shards. When processing
a cross-shard transaction, if the transaction is committed, the system moves to a new logical
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state as normal. But if the transaction is aborted, the physical state may still change. The
logical state describes the application-specific logical relationship of the transactions. For
example, initially, Alice owns a coin C while Bob owns nothing. The logical schema here
is how many coins own by Alice and Bob, respectively. Then, Alice wants to transfer the
coin C from shard A to Bob in shard B. If this transaction is committed, C is recorded as
C ′ in shard B that belongs to Bob. C and C ′ are coins in different states, both logical and
physical. However, if the transaction is aborted, there may be two outcomes: 1) Nothing
changes, C is still in shard A and belongs to Alice. 2) C has been transferred to shard
B as C ′′ but still belongs to Alice. In the first case, nothing changes to either the logical
state or the physical state. But, in case 2, C (before the transaction) and C ′′ (after the
transaction) are coins in different physical states but equal logical states. This is because
C still belongs to Alice but shard B records it as a new coin, C ′′, instead of C in shard
A. As a result, Alice either owns C as case 1 or owns C ′′ as case 2. And Bob still has no
coins. The logical schema does not change. Then, we say that these two cases both satisfy
the atomicity property.

In a non-sharded blockchain, serializability is guaranteed by appending valid trans-
actions in a single chain of blocks. However, in sharded blockchain systems, concurrent
transactions happen in different shards. Serializability has to consider not only intra-shard
transactions but also cross-shard transactions. According to [94], we want to prove that
the schedule of a set of committed transactions is conflict serializable. A schedule is a
sequence of read/write operations of the transactions. A schedule is conflict serializable
iff its precedence graph is acyclic. The precedence graph is derived from the schedule.
It contains a node for each committed transaction and a directed edge for each pair of
conflicting operations in the schedule.

According to the algorithm described in Section 5.3, IOCC ensures that:

Theorem 13. Atomicity: A transaction is either fully committed or not at all.

Proof. Intra-shard transactions are either committed or aborted as a whole. Thus the
atomicity is ensured.

A cross-shard transaction, which involves multiple shards, is split into multiple transfer
transactions in the input shards and one intra-shard transaction in the output shard. A
cross-shard transaction fully commits only if all mentioned transactions commit. If any
transfer transaction aborts, the intra-shard transaction aborts as well as the cross-shard
transaction. However, in this situation, some transfer transactions may still commit. The
UTXOs of these transactions are transferred to the output shard without changing the
logical schema. In another case, if only the intra-shard transaction aborts, the cross-shard

101



transaction aborts. However, the transfer transactions commit and the UTXOs have been
transferred to the output shard without changing the logical schema. Thus, the cross-shard
transaction aborts as if the transaction was not processed.

Thus, the atomicity is ensured.

For example, in Figure 5.4, if either tx1 or tx2 fails, like in case 2, the cross-shard
transaction aborts. But tx2′ or tx1′ can still be used in any other transaction that belongs
to shard 3. The atomicity is ensured as the client owns either tx1′ or tx2′ as a replacement
of tx1 or tx2. If both tx1 and tx2 fail, nothing happens to any shard.

Theorem 14. Serializability: For any set of committed transactions, the schedule of these
transactions is conflict serializable.

Proof. According to [94], we want to prove that the precedence graph of the schedule of
these committed transactions is acyclic. A precedence graph contains a node for each
committed transaction in the schedule, and a directed edge is added for each pair of
conflicting operations. Here we prove that this graph is acyclic, which implies serializability.

Suppose a precedence graph G derived from a schedule of committed transactions
T1, T2, ..., Tn has a cycle, and the cycle is
T1 → ... → Tk → ... → T1. For any pair of transactions, Ti → Tj, in the cycle, where →
means that an operation of Ti precedes and conflicts with an operation of Tj, there are
four cases as follows:

1. Ti and Tj conflict on the same transaction input. Then the double-spending problem
occurs, which is impossible by design.

2. Ti and Tj conflict on the same transaction output. This means that Ti and Tj have
the same output and are the same transaction. This is a contradiction since Ti and Tj are
distinct.

3. Ti and Tj conflict on X where X is an input of Ti and the output of Tj. This means
Tj finishes before Ti reads its input. This contradicts Ti → Tj.

4. Ti and Tj conflict on Y where Y is the output of Ti and an input of Tj. This means
Ti finishes before Tj reads its input, and before Tj finishes. Since this is the only case that
does not lead to a contradiction, Ti → Tj, in general, implies that Ti finishes before Tj

finishes, and hence it is a transitive relation of transactions in the cycle. Thus it follows
from T1 → ... → Tk → ... → T1, that T1 → T1, meaning that T1 finishes before itself, which
is a contradiction.

Therefore, the precedence graph is acyclic, and conflict serializability is achieved.
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Considering the example in Figure 5.4, if another transaction tx2′′ wants to transfer
the same UTXOs as tx2 in shard 2 concurrently, and if both tx2 and tx2′′ are valid, then
either tx2 or tx2′′ can be successfully appended. If both tx1 and tx2 succeed, then the
workflow follows case 1 in the figure but tx2′′ fails. However, if tx1 fails and tx2 succeeds
before tx2′′, the workflow follows case 2 and tx2′′ fails. This is the case where both conflict
transactions fail.

Shard Channel
Ordering Services
Peers/Endorsors

ClientA

Shard SA Shard US Shard Europe

Shard Channel
Ordering Services
Peers/Endorsors

Shard Channel
Ordering Services
Peers/Endorsors

ClientB ClientC ClientD

Figure 5.5: Example of 3 Shards GeoChain.

5.5 Evaluation

To investigate the feasibility and evaluate performance, a GeoChain prototype is developed
based on Hperledger Fabric v2.3 [5], a popular permissioned blockchain platform. Accord-
ing to the design, a node is assigned into a shard according to its geographical property.
We assign the nodes from the same datacenter into the same shard. Each shard comprises
a non-overlapping subset of peer nodes and orderer nodes. In addition, each shard runs an
independent ordering service that employs the RAFT [81] consensus protocol. The shard
ordering service consists of ordering nodes within each shard. RAFT is the consensus pro-
tocol in HF v2.3 for ordering transactions. BFT consensus protocol is under development
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Figure 5.6: Performance under different ratios of cross-shard transactions.

and not mature enough [98]. Furthermore, each shard maintains a unique channel that
builds a shard ledger. The channel-specific endorsement policy is defined as Majority which
means that at least (n+1)/2 endorsers have to correctly endorse a transaction. Each ledger
merely processes transactions that belong to its shard. A client has to figure out which
shard it has to communicate. Otherwise, the transaction is not valid. Figure 5.5 gives an
example of this architecture with 3 shards, which are shard North America (NA), shard
South America (SA), and shard Europe. Since the proposal response of HF contains the
transaction commitments from different peers which satisfies the endorsement policy, it is
being adopted as the proof for the cross-shard transaction, as we described in Section 5.2.
This proof can be verified by any shard, but can only be applied in a specific shard to claim
the UTXO transfer. We develop a chaincode that mimics a simplified UTXO transaction.
An intra-shard transaction transfers UTXOs from one to another in the same shard, while
a cross-shard transaction transfers UTXOs from one to another in different shards.

We evaluate our protocol on Amazon EC2 using c4.xlarge instances (7.5GB memory,
4 cores, 2.9GHz Intel Xeon E5-2666 v3 CPU). The operating system in each instance is
Amazon Linux 2. We use Golang version 1.14.15, Docker version 19.03.12, docker-compose
version 1.28.6, and HF version 2.3.1. Peers and orderers are running in different instances
and deployed using Docker swarm mode. Docker is a platform for developing and running
applications. Each application is packaged in an isolated environment, called a container.
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Containers contain everything the application needs to run. Docker swarm is a cluster
management module to coordinate different docker hosts. Docker swarm simplifies the
deployment of containers in a cluster of machines. We create multiple clients to send
transactions in an open loop concurrently. Transactions are uniformly distributed to each
shard. The throughput is indirectly controlled by adjusting the transaction sending rate.
We form each transaction as an ownership transfer of a UTXO asset. The clients control
whether the input and the output of the transaction belong to the same shard. This
mimics the fundamental transfer of UTXO transaction flow. A cross-shard transaction
means that the input and the output belong to different shards. By using this approach,
we vary the ratio of cross-shard transactions. The scalability is examined by measuring the
throughput and latency with different setups. Table 5.4 lists the configuration parameters
of each shard in our GeoChain system. We use majority endorsement policy, which is 2
out of 3 organizations in each shard.

Peers per Shard 3
Orderers per Shard 3
Batching Timeout 100ms
MaxBatchCount 100
MaxBatchSize 10MB

Endorsement Policy MAJORITY
TLS Communication Enabled

Database LevelDB

Table 5.4: Configuration

In the first experiment, we deploy the network across multiple AWS EC2 datacenters
located on different continents: United States East (USE), South America East (SAE),
and Central Europe (EUC). The round-trip average network latency is quantified in Table
5.5. We conduct a set of 7 experiments and summarize the results in Figure 5.6. As
a baseline, we first measure the throughput and latency of a single-shard setup without
cross-shard transactions. The single shard system is deployed in USE datacenter only.
The peak throughput is less than 500 txns/sec [12] while the average latency is around
100ms which is mainly dominated by the batching timeout. This is because all nodes are
located in the same region where the network latency is minimized. This demonstrates the
fundamental performance of HF. Bearing this in mind, we run a network with 3 shards.
Each shard is distributed in a single datacenter which has the same locality. We measure
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the performance by varying the ratio, from 0% to 100%, of cross-shard transactions. From
figure 5.6, we can see that the peak throughput decreases as we increase the ratio of
cross-shard transactions from 0% to 100%. The peak throughput at 0% is about 1400
txns/sec, which approximates triple the throughput of the single-shard network. When all
the transactions are cross-shard transactions, the peak throughput is about 900 txns/sec
which is still approximately double the baseline throughput. The root reason for this is that
each cross-shard transaction actually involves two steps according to our design, which are
one transfer transaction in the input shard and one intra-shard transaction using the proof
in the output shard. Furthermore, the latency increases from about 100ms to 500ms as
we increase the ratio. This reflects the long waiting time for each cross-shard transaction,
which not only involves the transaction processing time but also the cross datacenters wide
area network (WAN) latency.

USE SAE EUC
USE <1ms, 870Mbps
SAE 123ms, 860Mbps <1ms, 870Mbps
EUC 99ms, 860Mbps 200ms, 830Mbps <1ms, 870Mbps

Table 5.5: Round-trip average network latency and bandwidth

Next, we compare the performance of the cross-shard transaction processing protocols
between IOCC, batched IOCC, and Atomix. In batched IOCC, we batched 10 cross-shard
transactions. We implement Atomix in HF’s chaincode as shown in Figure 5.1. It is
derived from Appendix D of Omniledger [51]. The proof is implemented using transaction
commitments of HF for committing or aborting the transaction. Other protocols either use
an extra layer of consensus [25, 6] or rely on inter-shard communication protocol [108, 4]
which makes the process more complex. Figure 5.7 plots the throughput and latency
between these three protocols under 89% and 11% cross-shard transactions, respectively.
89% is the ratio of the cross-shard transaction if the transaction is distributed using the
random approach according to RapidChain [108]. 11% is the average ratio of cross-border
payments according to the 2021 McKinsey global payments report [69]. Both results show
that IOCC outperforms Atomix with higher peak throughput. The reason is that IOCC
avoids the step “unlock to commit” as we explain in Section 5.2. IOCC achieves around
50% higher peak throughput at 89% cross-shard rate and around 20% higher at 11% cross-
shard rate than Atomix. Batched IOCC achieves even higher peak throughput and lower
latency. Specifically, batched IOCC achieves more than 2 times peak throughput compared
to Atomix at 89% cross-shard rate and about 30% at 11% cross rate. In addition, comparing
the performance between 89% and 11%, the locality-based transaction placement approach
shows both higher throughput and lower latency than the randomized approach.
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In summary, the experiments show the performance of the GeoChain protocol. How-
ever, the ratio of cross-shard transactions highly depends on the applications. In applica-
tions like retail payment and electronic vehicle charging, where the ratio should be low,
GeoChain is able to achieve near-linear scalability.

5.6 Related Works

Sharding is a promising approach to solving the scalability problem of blockchain systems.
We have reviewed some works [51, 108, 25, 6, 4, 80] in Section 5.1 on how they form
the shards, distribute and process the cross-shard transactions. There are other sharding
protocols for various blockchain applications.

RSCoin [70] is a sharding-based central bank cryptocurrency. The central bank is
a trusted entity that authorizes shard committees and audits transactions. Each shard
builds a low-level chain of blocks. After a pre-defined time interval, the lower-level blocks
are merged into a higher-level chain of blocks by the central bank. RSCoin relies on a
trusted party, the central bank, which is essentially not a decentralized system. In addition,
RSCoin uses a variation of the two-phase commit protocol to achieve consensus in each
shard, which is not Byzantine fault-tolerant and may result in a double-spending.

Elastico [61] is a secure sharding protocol for permissionless blockchains that divides
all the processors into several disjoint committees. Each committee processes a disjoint set
of transactions and runs in epochs. Each epoch makes agreement on a set of transactions.
A global random string is generated to be used in the process of PoW to determine the
committees. Then, each committee runs a consensus protocol, PBFT [19], to agree on
the set of transactions. At last, each committee broadcasts its transaction set to all the
members to achieve final consensus and record the transactions. This is achieved by simply
taking the set union of all valid transactions. However, the committee size is relatively small
which is due to the overhead of PBFT [19], and increasing the committee size also increases
the failure probability. In addition, the committees have to be rebuilt in each epoch, which
incurs a latency overhead. Also, using a master ledger to interleave transactions limits
performance in the WAN [68].

Chainspace [2] is a sharded smart contracts platform. Smart contracts are used to
assign nodes to shards. Each shard runs a BFT protocol, BFT-SMART [14], and main-
tains a subset of transactions. It introduces a complex mechanism to handle cross-shard
transactions where the shards have to coordinate the transaction processing. As a result,
Chainspace is not scalable as it can only process around 300 transactions per second in
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Figure 5.7: Comparison of cross-shard protocol between IOCC and Atomix

a 10-shard setup in its evaluation. Also, although the system ensures safety in all cases,
there is a high rate of aborted transactions under high contention.

RedBelly [23] uses DBFT [21] and shard verification to build a blockchain system.
DBFT is an efficient Byzantine consensus protocol using a weak coordinator to obtain ex-
cellent performance. To optimize the performance, it achieves set Byzantine consensus by
running multiple binary consensus instances concurrently with multiple leaders and recon-
ciling to a superblock. Another feature of RedBelly is the sharded verification. Instead of
verifying all the transactions in every participant, RedBelly only requires a subset of par-
ticipants to perform the verification which optimizes the usage of computational resources.
Red Belly achieves security, fairness, and scalability. However, a slow leader may dominate
the performance of the set Byzantine consensus. Also, the security is conditioned on the
number of required verifiers. The experiments show that the performance is limited by the
slowest node, and a higher number of verifiers reduces the throughput by half compared
to a lower number of verifiers in its single datacenter experiment.
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5.7 Conclusion

Sharding is a well-known solution to the scalability problem of blockchain systems. In
this paper, we clarify the limitations of present sharding techniques in blockchain systems.
Then, we propose a locality-based sharding protocol, GeoChain, to improve the scalability
of permissioned blockchains. We use the geographical property to form the shard and
decide the transaction placement. Also, we introduce a simple and efficient cross-shard
transaction processing mechanism. We implement a prototype based on Hyperledger Fabric
and evaluate the protocol on Amazon EC2. The experiments demonstrate the performance
of GeoChain through different ratios of cross-shard transactions. GeoChain is a promising
architecture in applications like banking and retail payments.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

Blockchain become a promising technology in the coming decades due to the success of
Bitcoin. However, scalability is one of the main challenges that limit performance. Shard-
ing technique is being investigated to improve blockchain scalability. This dissertation
is focusing on the sharding techniques in permissioned blockchains which includes three
pieces of research. Specifically, we make the following contributions:

The first part is the techniques of shard interleaving in partial sharding. We com-
pare the performance and fault tolerance trade-offs when interleaving shards. Although
strong coupling is prone to the shard growth rate, it still outperforms weak coupling in
a geo-distributed environment. This is because the high latency of the network limits
the performance of the consensus layer in weak coupling. In contrast, strong coupling
interleaves the shards directly in a round-robin manner. We implement a prototype in
Golang and conduct a set of experiments on Amazon to demonstrate our analysis. The
result holds even after we augment strong coupling with convergence module, a slow-path
mechanism to deal with shard failures. Thus, strong coupling is superior to weak coupling
in geo-distributed environments with an even shard growth rate. Strong coupling with
convergence module helps native design handle failures.

To further explore the convergence module, we propose Antipaxos to achieve consensus.
We first introduce and define k-Interactive Consistency as a new agreement problem. Then,
we present the algorithms which reach agreement in a fast path, two rounds of all-to-all
communication under the failure-free case and consult decision module to handle failures.

110



We prove the safety and liveness properties. We implement prototypes of the algorithms
and conduct experiments on the Amazon cloud to demonstrate the performance. The
results show that if the system runs on the fast path most of the time, Antipaxos achieves
high performance compared to state-of-the-art algorithms.

Due to the drawbacks of partial sharding, recent research is targeting full sharding which
tries to distribute computation, communication, and storage. In the third part, we propose
a locality-based full sharding protocol, GeoChain, in a permissioned blockchain. We lever-
age the network proximity to cluster participants in multiple shards. The network latency
in each shard is optimized by using the locality of the participants. In addition, to reduce
the probability of cross-shard transactions, we propose to include the shard information
in the transaction data. This helps in transaction placement. For some applications, this
leads to a low ratio of cross-shard transactions. To optimize the performance, we propose
a client-driven cross-shard transaction protocol, IOCC. This protocol is essentially trans-
ferring UTXO from the input shard to the output shard before making any transaction in
the output shard. We implement our GeoChain protocol on top of a popular permissioned
blockchain network, Hyperledger Fabric, and conduct experiments to demonstrate the per-
formance. The results show that GeoChain achieves high scalability for applications such
as asset transfer and retail payments.

6.2 Future Works

The research in this thesis motivates some directions for future works as follows:

1. To further compare STC and WTC, it makes sense to experiment with skewed
workloads where some shards grow faster than others.

2. Although AP is capable of handling failures, it has to seek assistance from the
DM. We propose and examine different strategies on how to handle failures. However,
we can still detect a performance gap when a failure occurs. Thus, to further optimize
the performance during a process failure, or network partition, we need to examine and
optimize how we process the decisions from the DM and how the DM handle failures.

3. GeoChain achieves high performance because of the assistance of the clients in trans-
action management and coordination. Although it makes sense to let clients manage the
transactions belonging to themselves, a better approach is to find an incentive mechanism
for the clients to participate and balance the workload. In addition, we assume that the
UTXOs in different shards have the same value which simplifies the cross-shard transac-
tions. However, it is not necessary to make such an assumption. Each shard can be built
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independently with various UTXO transactions. At this point, we need the policy to de-
fine how to transfer among different shards. Moreover, load balancing will be a potential
practical problem if more and more clients transfer on some popular shards. One approach
to solve this problem is to split one shard into multiple shards to balance the workload.
The key protocol is how and when to split the shards to lessen the effects on the clients
while still maintaining safety and liveness.
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700 BFT Protocols. In Proceedings of European Conference on Computer Systems
(EuroSys), pages 363–376, 2010.

[39] Guy Golan Gueta, Ittai Abraham, Shelly Grossman, Dahlia Malkhi, Benny Pinkas,
Michael K. Reiter, Dragos-Adrian Seredinschi, and Alin Tomescu Orr Tamir. SBFT:
A Scalable and Decentralized Trust Infrastructure. In 49th Annual IEEE/IFIP in-
ternational conference on dependable systems and networks (DSN), pages 568–580,
2019.

116



[40] Adiseshu Hari and T.V. Lakshman. The internet blockchain: A distributed, tamper-
resistant transaction framework for the internet. In 15th ACM Workshop on Hot
Topics in Networks. ACM, pages 204–210, 2016.

[41] Faiza Hashim, Khaled Shuaib, and Nazar Zaki. Sharding for scalable blockchain
networks. SN Computer Science, 4(1):1–17, 2023.

[42] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible Paxos: Quorum
Intersection Revisited. In 20th International Conference on Principles of Distributed
Systems (OPODIS), volume 70, pages 25:1–25:14, 2017.

[43] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed.
ZooKeeper: Wait-free Coordination for Internet-scale Systems. In Proceedings of
USENIX Annual Technical Conference (ATC), page 11, 2010.

[44] Hyperledger. Measuring blockchain performance with hyperledger caliper.
https://www.hyperledger.org/blog/2018/03/19/measuring-blockchain-performance-
with-hyperledger-caliper, 2018.

[45] Zsolt István, David Sidler, Gustavo Alonso, and Marko Vukolic. Consensus in a Box:
Inexpensive Coordination in Hardware. In Proceedings of USENIX Symposium on
Networked Systems Design and Implementation (NSDI), pages 425–438, 2016.

[46] Don Johnson, Alfred Menezes, and Scott Vanstone. The elliptic curve digital sig-
nature algorithm (ecdsa). International journal of information security, 1(1):36–63,
2001.

[47] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. Zab: High-Performance
Broadcast for Primary-Backup Systems. In Proceedings of International Conference
on Dependable Systems and Networks (DSN), pages 245–256, 2011.

[48] Srinivasan Keshav, Wojciech Golab, Bernard Wong, Sajjad Rizvi, and Sergey Gor-
bunov. RCanopus: Making Canopus Resilient to Failures and Byzantine Faults.
arXiv:1810.09300 [cs.DC], 2018.

[49] Uri Klarman, Soumya Basu, Aleksandar Kuzmanovic, and Emin Gun Sirer.
bloXroute: A Scalable Trustless Blockchain Distribution Network whitepaper v1.0.
Bloxroute Labs, Evanston, IL, USA, White Paper, Mar 2018.

[50] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus
Gasser, and Bryan Ford. Enhancing Bitcoin Security and Performance with Strong

117



Consistency via Collective Signing. In 25th USENIX Security Symposium (USENIX
Security), pages 279–296, 2016.

[51] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Linus Gasser, Nicolas Gailly, Ewa
Syta, and Bryan Ford. OmniLedger: A Secure, Scale-Out, Decentralized Ledger via
Sharding. In IEEE Symposium on Security and Privacy, pages 19–34, 2018.

[52] Ramakrishna Kotla, Lorenzo Alvisi, Mike Dahlin, Allen Clement, and Edmund
Wong. Zyzzyva: Speculative Byzantine Fault Tolerance. ACM Operating Systems
Review (SIGOPS), 41:45–58, 2007.

[53] Ajay D Kshemkalyani and Mukesh Singhal. Distributed Computing: Principles, Al-
gorithms, and Systems. Cambridge University Press, 2011.

[54] Leslie Lamport. Proving the Correctness of Multiprocess Programs. IEEE transac-
tions on software engineering, pages 125–143, 1977.

[55] Leslie Lamport. Paxos Made Simple. ACM SIGACT News, pages 51–58, 2001.

[56] Leslie Lamport. Fast Paxos. Distributed Computing, 19(2):79–103, 2006.

[57] Leslie Lamport, Robert Shostak, and Marshall Pease. The Byzantine Generals Prob-
lem. Journal of the ACM (JACM), 30(3):668–676, 1983.

[58] Peilun Li, Guosai Wang, Xiaoqi Chen, Fan Long, and Wei Xu. Gosig: A Scalable and
High-Performance Byzantine Consensus for Consortium Blockchains. In Proceedings
of ACM Symposium on Cloud Computing (SOCC), pages 223–237, 2020.

[59] Jian Liu, Wenting Li, Ghassan O. Karame, and N. Asokan. Scalable Byzantine
Consensus via Hardware-Assisted Secret Sharing. IEEE Transactions on Computers,
68(1):139–151, 2018.

[60] Marta Lokhava, Giuliano Losa, David Mazières, Graydon Hoare, Nicolas Barry, Eli
Gafni, Jonathan Jove, Rafa l Malinowsky, and Jed McCaleb. Fast and Secure Global
Payments with Stellar. In 27th ACM Symposium on Operating Systems Principles,
pages 80–96, 2019.

[61] Loi Luu, Viswesh Narayanan, Chaodong Zheng, Kunal Baweja, Seth Gilbert, and
Prateek Saxena. A Secure Sharding Protocol For Open Blockchains. In ACM
SIGSAC Conference on Computer and Communications Security (CCS), pages 17–
30, 2016.

118



[62] Sidra Malik, Salil S Kanhere, and Raja Jurdak. Productchain: Scalable Blockchain
Framework to Support Provenance in Supply Chains. In IEEE 17th International
Symposium on Network Computing and Applications (NCA), pages 1–10, 2018.

[63] Stathis Maneas, Nikos Chondros, Panos Diamantopoulos, Christos Patsonakis, and
Mema Roussopoulos. On Achieving Interactive Consistency in Real-World Dis-
tributed Systems. Journal of Parallel and Distributed Computing, 147:220–235, 2021.

[64] Chunyu Mao and Wojciech Golab. Sharding techniques in the era of blockchain. In
2021 40th International Symposium on Reliable Distributed Systems (SRDS), pages
343–344, 2021.

[65] Chunyu Mao and Wojciech Golab. Geochain: A locality-based sharding protocol for
permissioned blockchains. In 24th International Conference on Distributed Comput-
ing and Networking (ICDCN), page 70–79, 2023.

[66] Chunyu Mao, Wojciech Golab, and Bernard Wong. Antipaxos: Taking interactive
consistency to the next level. In 23rd International Conference on Distributed Com-
puting and Networking (ICDCN), pages 128–137, 2022.

[67] Chunyu Mao, Anh-Duong Nguyen, and Wojciech Golab. Performance and Fault
Tolerance Trade-offs in Sharded Permissioned Blockchains. In IEEE International
Conference on Blockchain and Cryptocurrency (ICBC) Poster session, 2020.

[68] Chunyu Mao, Anh-Duong Nguyen, and Wojciech Golab. Performance and fault toler-
ance trade-offs in sharded permissioned blockchains. In 3rd Conference on Blockchain
Research and Applications for Innovative Networks and Services (BRAINS), pages
185–192, 2021.

[69] McKinsey&Company. The 2021 McKinsey Global Payments Report.
https://www.mckinsey.com/industries/financial-services/our-insights/the-2021-
mckinsey-global-payments-report, 2021.

[70] Sarah Meiklejohn. Centrally banked cryptocurrencies. In 23rd Annual Network and
Distributed System Security Symposium (NDSS), 2016.

[71] Alfred J. Menezes, Scott A. Vanstone, and Paul C. Van Oorschot. Handbook of
Applied Cryptography. 1st edition, 1996.

[72] Esther Mengelkamp, Benedikt Notheisen, Ccarolin Beer, David Dauer, and Christof
Weinhardt. A blockchain-based smart grid: towards sustainable local energy markets.

119



Computer Science—Research and Development. Berlin, Germany: Springer, pages
1–8, August 2017.

[73] Ralph C. Merkle. Protocols for Public Key Cryptosystems. In Symposium on Security
and Privacy, pages 122–133, 1980.

[74] Andrew Miller, Yu Xia, Kyle Croman, Elaine Shi, and Dawn Song. The Honey
Badger of BFT Protocols. In ACM Conference on Computer and Communications
Security (SIGSAC), pages 31–42, 2016.

[75] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There Is More Con-
sensus in Egalitarian Parliaments. In 24th ACM Symposium on Operating Systems
Principles (SOSP), pages 358–372, 2013.

[76] Iulian Moraru, David G. Andersen, and Michael Kaminsky. EPaxos Code Base.
https://github.com/efficient/epaxos, 2015.

[77] Satoshi Nakamoto. Bitcoin: A Peer-to-Peer Electronic Cash system. 2008.

[78] Arvind Narayanan, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven
Goldfeder. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduc-
tion. Princeton University Press, Princeton, NJ, USA, 2016.

[79] Anh Duong Nguyen. Understanding scalability issues in sharded blockchains. Mas-
ter’s thesis, University of Waterloo, 2020.

[80] Lan N Nguyen, Truc DT Nguyen, Thang N Dinh, and My T Thai. Optchain: Op-
timal Transactions Placement for Scalable Blockchain Sharding. In 39th IEEE In-
ternational Conference on Distributed Computing Systems (ICDCS), pages 525–535,
2019.

[81] Diego Ongaro and John Ousterhout. In Search of an Understandable Consensus
Algorithm. In USENIX Annual Technical Conference (ATC), pages 305–319, 2014.

[82] Christos H. Papadimitriou. The Serializability of Concurrent Database Updates. J.
ACM, 26(4):631–653, oct 1979.

[83] Marshall Pease, Robert Shostak, and Leslie Lamport. Reaching Agreement in the
Presence of Faults. Journal of the ACM (JACM), 27(2):228–234, 1980.

120



[84] Marius Poke and Torsten Hoefler. Dare: High-Performance State Machine Repli-
cation on RDMA Networks. In Proceedings of International Symposium on High-
Performance Parallel and Distributed Computing (HPDC), pages 107–118, 2015.

[85] Joseph Poon and Thaddeus Dryja. The bitcoin lightning network: Scalable off-chain
instant payments. lightning.network/lightning-network-paper.pdf, 2016.

[86] Joseph Poon and Thaddeus Dryja. Product Overview. A Technical Overview of
xCurrent. https://ripple.com/files/ripple product overview.pdf, Oct 2017.

[87] Serguei Popov. The tangle. White paper, 2018.

[88] Robbert Van Renesse and Deniz Altinbuken. Paxos Made Moderately Complex.
ACM Computing Surveys (CSUR), 47(3):1–36, 2015.

[89] Sajjad Rizvi, Bernard Wong, and Srinivasan Keshav. Canopus: A Scalable and Mas-
sively Parallel Consensus Protocol. In 13th ACM International Conference on emerg-
ing Networking Experiments and Technologies (CoNEXT), pages 426–438, 2017.

[90] Hardik Ruparel, Shreyashree Chiplunkar, Shalin Shah, Madhav Goradia, and Mahesh
Shirole. GeoSharding—A Machine Learning-based Sharding Protocol. In IC-BCT
2019, pages 105–118. Springer, 2020.
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