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Abstract

Information access, which enables people to identify, retrieve, and use information freely
and effectively, has attracted interest from academia and industry. Systems for document
retrieval and question answering have helped people access information in powerful and
useful ways. Recently, natural language technologies based on neural network have been
applied to various tasks for information access. Specifically, transformer-based pre-trained
models have pushed tasks such as document and passage retrieval to new state-of-the-art
effectiveness. (1) Most of the research has focused on helping people access passages and
documents on the web. However, there is abundant information stored in other formats
such as semi-structured tables and domain-specific relational databases in companies. De-
velopment of the models and frameworks that support access information from these data
formats is also essential. (2) Moreover, most of the advances in information access re-
search are based on English, leaving other languages less explored. It is insufficient and
inequitable in our globalized and connected world to serve only speakers of English.

In this thesis, we explore and develop models and frameworks that could alleviate
the aforementioned challenges. This dissertation consists of three parts. We begin with a
discussion on developing models designed for accessing data in formats other than passages
and documents. We mainly focus on two data formats, namely semi-structured tables and
relational databases. In the second part, we discuss methods that can enhance the user
experience for non-English speakers when using information access systems. Specifically,
we first introduce model development for multilingual knowledge graph integration, which
can benefit many information access applications such as cross-lingual question answering
systems and other knowledge-driven cross-lingual NLP applications. We further focus on
multilingual document dense retrieval and reranking that boost the effectiveness of search
engines for non-English information access. Last but not least, we take a step further
based on the aforementioned two parts by investigating models and frameworks that can
facilitate non-English speakers to access structured data. In detail, we present cross-lingual
Text-to-SQL semantic parsing systems that enable non-English speakers to query relational
databases with queries in their languages.
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Chapter 1

Introduction

In this era of “information explosion”,1 the amount of data is increasing rapidly. By July
2022, the indexed Web contains at least 4.77 billion pages.2 This large amount of data can
provide knowledge and information in all aspects, benefiting people’s daily life, from travel
planning to business decision-making. However, finding useful and relevant information in
the middle of so much data becomes challenging. To help users access the information and
data they require, various research efforts have been undertaken to make the access process
simple and effective, referred to as information access. Formally, based on the definition
of Wikipedia, information access refers to the freedom or ability to identify, obtain and
make use of databases or information effectively.3 Information access systems are expected
to understand the information needs of users, fetch relevant data from heterogeneous data
sources, and display the data to users in a user-friendly way.

1.1 Challenges

Recently, the state-of-the-art natural language technologies have enabled many people to
access information in powerful and useful ways, especially in document retrieval and open-
domain question answering. However, there are still challenges in information access re-
search, including the dataset construction, domain generalization, support for low-resource
languages, etc. In this thesis, we discuss the following two challenges in information access
research.

1https://en.wikipedia.org/wiki/Information_explosion
2https://www.worldwidewebsize.com
3https://en.wikipedia.org/wiki/Information_access
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Figure 1.1: The number of public datasets in each language (Top 10 non-English languages)
based on the statistics from PaperWithCode website by January 2023.

.

Data are heterogeneous. Knowledge and information can be stored in different for-
mats, such as documents, semi-structured tables, structured databases, images, speech,
and videos. However, a large portion of research in information access, such as text re-
trieval, focuses on fetching relevant passages or documents based on user queries. The
models for accessing heterogeneous data sources such as semi-structured tables and struc-
tured databases are impotent compared to the ones for passages and documents.4 More-
over, most of these data sources are private and domain-specific, the public search engines
can not build indexes over them. To this end, it is vital to further improve the models that
are tailed for these data sources, helping users to access these heterogeneous data when
powerful commercial search engines are not applicable.

Support for non-English speakers. Recent years have witnessed advances in dataset
and model development for information access applications. However, a large portion of
these works are based on English, without further exploring other languages [460, 370].
For example, in academia, more human efforts are committed to building a large number
of English datasets than those in other languages. Figure 1.1 shows the number of datasets
in the top 10 languages (non-English) based on the statistics from PaperWithCode.5 The
number of datasets in English (2072 datasets) far exceeds that of datasets in these non-
English languages. Systematic surveys and analysis were also conducted in [201] and [547].
Specifically, [201] classified languages into six classes, as shown in Table 1.1. They found

4In this thesis, heterogeneous data refers to data in different formats instead of in different languages.
5https://paperswithcode.com/datasets
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Class Examples of Languages # Languages # Speakers % of Total Languages

0 Dahalo, Warlpiri 2191 1.2B 88.38%
1 Cherokee, Fijian 222 30M 5.49%
2 Zulu, Konkani 19 5.7M 0.36%
3 Indonesian, Ukranian 28 1.8B 4.42%
4 Russian, Vietnamese 18 2.2B 1.07%
5 English, Spanish 7 2.5B 0.28%

Table 1.1: Statistics of six classes of languages are shown in the table. The statistics include
the number of languages, the number of speakers, and the percentage of total languages
for each language class. The table is adopted from [201].

that Class 6 languages, especially English, have much more resources than other classes
based on the dataset counts on LDC catalog,6 ELRA Map,7 and Web (Refer to Figure
3 in [201] for more details.) We can also observe that Class 0 has the largest percentage
of languages and represents 15% of all speakers. It is insufficient and inequitable in our
globalized and connected world for these to serve only speakers of English. For fulfilling the
demand for information access technologies that serve diverse populations, it is essential to
improve the model effectiveness in many languages, particularly in non-English scenarios.
For example, an effective cross-lingual semantic parser can help people all over the world
to access the US government’s open data with questions in different languages.

1.2 Thesis Overview

In general, research on information access covers broad topics, such as retrieval and rerank-
ing for documents, tables, and passages [521, 167], question answering for documents [370,
235], tables [338], and knowledge graphs [298], semantic parsing for databases [542], doc-
ument summarization [269], fact verification [448, 63], etc. In this thesis, we discussed the
frameworks and models for alleviating the aforementioned two challenges with some of the
information access applications, such as document retrieval and semantic parsing. Overall,
the thesis consists of three parts.

In the first part, we explore information access applications for seeking knowledge
from heterogeneous data, including web tables, and structured databases. The systems

6https://catalog.ldc.upenn.edu/
7https://catalog.elra.info/en-us/
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for these applications are required to model the interactions between user utterances and
data sources, such as semi-structured tables and database schema.8 We first explore table-
based question answering systems that can generate free-form answers for questions which
require explanations with pre-trained sequence-to-sequence models. However, these pre-
trained models are optimized based on long documents, leading to weaker modeling ability
for the interaction of user utterances and tables; tabular data have their own structures
to express the semantics, which are usually not captured by these pre-trained models. In
this thesis, we demonstrate that intermediate-pretraining over large-scale tables from the
web and synthesized user utterances can mitigate the aforementioned issue by enhancing
encoding ability over structured data input (Chapter 3). We also explore the application
of Text-to-SQL semantic parsing, which can help users to access databases with natural
language questions. With a transformer-based model, we conduct pre-training for learning
the joint representations of user utterance and database schema; the model is also trained
with large-scale tables from the web and synthesized user utterances. The model can
implicitly capture the interaction between the utterances and database schema, leading to
better query understanding ability (Chapter 4).

In the second part, we explore methods and frameworks to facilitate information access
systems for non-English languages. Concretely, we first investigate the application of cross-
lingual entity alignment. The target of this task is to match entities in a source language
with their counterparts in target languages. For example, the entity University of Toronto

in an English knowledge graph is matched with entity トロント大学 in a Japanese knowl-
edge graph. To solve this problem, we combine the Graph Neural Network and BERT-based
model to encode the entities by integrating their context, such as topological connections,
relation types, attributes, and literal descriptions expressed in different languages (Chap-
ter 5), leading to better matching effectiveness. This is a component in information access
systems that eases the multilingual information seeking process by interconnecting data
from different languages. The integrated data can benefit cross-lingual information access
models such as multilingual question answering over knowledge graphs. We also explore
document retrievers that enable searching information from multilingual document collec-
tions. We start with dense retriever that represents the user queries and documents as dense
vectors, and conduct the matching in dense vector space. We compare the effectiveness of
several training strategies for adapting English dense retrieval models to non-English lan-
guages, known as cross-lingual training strategies. Similarly, we also investigate different
cross-lingual training strategies for document reranking models (Chapter 6).

In the third part, we delve deeper by exploring models and frameworks that support

8In this thesis, utterance and user query are used interchangeably.
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non-English speakers to access structured data such as relational databases. We propose a
framework to improve parsing effectiveness by integrating the signals provided by the exter-
nal translation systems. In detail, we manage to leverage the information from translations
and reduce the negative influence of noisy translations at the same time (Chapter 7). More
recently, in-context learning with large language models (LLMs), such as GPT-3 [42] and
Codex [55], has become a new learning paradigm. Recent papers have also shown promis-
ing results of in-context learning on Text-to-SQL for English utterances. However, their
parsing ability for non-English utterances remains unknown; in this thesis, we examine the
parsing effectiveness of these large LLMs for non-English user queries. To further boost
their performance, we explore a retrieval-reranker pipeline to obtain better exemplars for
few-shot learning (Chapter 8).

1.3 Contributions

Overall, the contributions of this thesis are summarized as follows:

We improve the information access to heterogeneous data.

• We propose novel training objectives for adapting pre-trained language models to
have better structured knowledge (tables or database schema) encoding abilities,
achieving state-of-the-art performance on the table-based free-form question answer-
ing and Text-to-SQL semantic parsing benchmarks (Chapter 3 and Chapter 4).

• We propose to use generation models and synchronous context-free grammar to over-
come the pre-training data challenges (Chapter 3 and Chapter 4). To the best of our
knowledge, we are the first to use both crawled SQL and crawled tables to boost the
performance of Text-to-SQL semantic parsers (Chapter 4).

We facilitate the development of information access systems for non-English
speakers

• We present a BERT-based bi-encoder architecture for cross-lingual entity alignment
by leveraging the literal descriptions of entities (Chapter 5). To the best of our
knowledge, this is one of the earliest BERT-based bi-encoder architectures for the
matching task.

• Our work is one of the earliest studies that apply multilingual BERT on non-English
document reranking (Chapter 6).
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We advance research that enables non-English speakers to access structured
data.

• We propose a novel framework that reduces the influence of noise in machine transla-
tion, leading to state-of-the-art performance on cross-lingual Text-to-SQL semantic
parsing benchmarks (Chapter 7).

• We propose a novel retrieval-reranking framework to improve the example selection
process for in-context learning for cross-lingual semantic parsing. To the best of our
knowledge, we are the first to explore the effectiveness of large pre-trained language
models for cross-lingual Text-to-SQL semantic parsing (Chapter 8).

• We construct two new benchmarks for facilitating the cross-lingual evaluation of the
Text-to-SQL semantic parsing (Chapter 8).
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Chapter 2

Background

In this chapter, we provide a short introduction to the applications we explore in this thesis,
including dense retrieval and reranking, question answering, semantic parsing, and cross-
lingual entity matching. We also give an overview of multilingual training and cross-lingual
training.

2.1 Dense Retrieval and Reranking

The goal of dense retrieval and reranking is to retrieve relevant information based on
keyword queries or natural language queries to fulfill the information needs of users.

Traditional document retrieval and passage retrieval rely greatly on the term-based
matching signal between the queries and documents, where the Okapi BM25 [84, 386, 387]
and TF-IDF models are usually applied. However, these traditional sparse vector space
models suffer from the vocabulary mismatch issue between the queries and documents, or
not well representing the semantics of texts. Furthermore, these methods are unsuper-
vised and hardly improved by leveraging more human-annotated data (neural weighting
schemes [143, 566, 325] is one possible direction for improving sparse retrieval with anno-
tation).

As the development of neural models, an alternative method is to translate the query
and passages into dense vector space, and conduct the search by matching the embeddings
with predefined distance functions, such as L1 distance or cosine similarity. These methods
are denoted as dense retrieval. The dense retrieval models are usually implemented with
dual-encoder architecture (denoted as query encoder and passage encoder depending on
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their model inputs), which encode the query and passage independently. This architecture
is also called “Siamese” network [41]. To train the encoders, large-scale human-annotated
datasets, such as passage retrieval datasets [318, 83], question answering datasets [370, 219,
200], etc., are leveraged to obtain these high-quality encoders. Compared to classical term-
based retrieval models, dense retrieval models generally have a superior ability to capture
the semantics of text. Recent advances in contextual pre-trained models also improve the
quality of encoders significantly [208, 131, 46, 255, 443]. One example is the Dense Passage
Retrieval [205], which leveraged the pre-trained language model BERT [103] as the text
encoder to embed the queries and passages into dense vector space for retrieval, improving
over BM25 baselines by a large margin.

After the first stage retrieval, a subsequent procedure of reranking is widely adopted
to further improve the retrieval results by incorporating a reranker. Instead of using a bi-
encoder architecture that is used in dense retrieval, cross-encoder architecture is leveraged
for modeling the query-candidate interaction in token level [144, 283, 176, 323, 324]. This
retrieve-and-rerank fashion obtains state-of-the-art performance on various datasets [384,
423].

2.2 Question Answering

The goal of question answering is to produce answers to natural language questions based
on various knowledge sources.

Question answering systems try to handle numerous question types such as factoid
question [370, 200, 219], choice questions [75], why-question [331, 184], etc. Based on the
different types of knowledge sources, the task of question answering can be categorized into
Text-based (answer questions based on the unstructured texts) [53], Table-based (answer
questions based on semi-structure tables) [167], KG-based (answer questions based on the
knowledge graph) [298] and hybrid (combination of different sources) [61].

With given or retrieved knowledge sources, there are two popular architectures for
producing the answer: extraction-based architecture and generation-based architecture.
The extraction-based architecture is now built upon on bidirectional pre-trained language
model, such as BERT [103] and Roberta [273], where the answer span is predicted based
on the representation of tokens. This architecture is intuitive for entity-centric factoid
questions, while it is inadequate for free-form based questions.1 More recently, sequence-

1Free-form based questions require the systems to generate sentence-length or paragraph-length answers
that provide sufficient explanations.
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to-sequence pre-trained language models such as BART [233] and T5 [366] advance the
effectiveness of question answering with the generation-based architecture. This architec-
ture unifies answers, either entity or free-form sentences, as target sequence, and the model
is trained end-to-end to learn to generate answers in any format, obtaining state-of-the-art
performance on different types of QA datasets [497, 191].

2.3 Semantic Parsing

The goal of semantic parsing is to interpret the natural language utterance into a formal
meaning representation.

Based on the types of formal meaning representations, the semantic parsing task can
be categorized into general-purpose semantic parsing (transducing natural language ut-
terances into logical forms such as abstract meaning representation) [214, 561], and task-
oriented semantic parsing (transducing natural language utterances into logical forms such
as SQL) [542]; The latter is our focus. These logical forms can be further executed against
databases or knowledge graphs, enabling users to access databases or knowledge graphs
with natural language interfaces. This technique empowers some of the most popular
commercial AI products, such as Apple Siri, Google Assistant, and Amazon Alexa.

Advances in neural networks enable the simple modeling of semantic parsing, by formu-
lating it as a sequence-to-sequence problem [110, 111]. The simplest form of such models
is the standard attention-based sequence-to-sequence LSTM model [173, 23]. The later
work mainly focused on improving the encoder and decoder networks. More recently, the
large-scale pre-trained language models have achieved significant improvements in many
NLP tasks; the semantic parsing task also benefits from them. Instead of using word em-
beddings, integrating the contextual embeddings into sequence-to-sequence architectures
significantly boost the model effectiveness [147, 463]; this falls in the category that improves
the encoder networks. More recently, the sequence-to-sequence pre-trained language model
T5 are applied on this task, achieving state-of-the-art performance on single-turn and con-
versational Text-to-SQL tasks [397]; both the encoder and decoder are upgraded with
pre-trained language models.

2.4 Cross-lingual Entity Matching

The goal of cross-lingual entity matching is to align entities in the source language with
the corresponding counterparts in target languages.
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Embedding-based alignment has become the mainstream as the development of deep
learning technologies. To match the entities, efforts have been committed to leverage the
graph structures such as knowledge graph embedding models [58, 575, 438, 341], and graph
neural networks [500, 491, 492, 439, 475]. Using side information has also been investi-
gated in recent years. For example, [56] leveraged both multilingual entity and description
embeddings for entity alignment. [447] also utilized the entity name and description for
enhancing representation learning.

2.5 Multilingual Training

The multilingual training technique is commonly used in multilingual translation, where the
model is trained with a mixed dataset from multiple languages [198], for example, many-to-
one translation (e.g., translate Chinese, French, and German into English with one single
model). When annotations are available in multiple languages, this joint training method
can perform better than single model training, especially for low resource languages [241,
405].

This technique is also used for learning multilingual word representation [35, 220],
contextual representation [103, 77, 272, 509], and sentence representation [519, 122]. One
representative example is the large-scale pre-trained language models that use multilingual
texts from over 100 languages to learn contextual representations, such as mBERT [103],
XLM-Roberta [77], mBART [272], and mT5 [509]. These pre-trained language models
achieved impressive performance on various cross-lingual transfer settings, e.g., zero-shot
cross-lingual transfer [489].

A common problem with multilingual training is that the data from different languages
are both heterogeneous (different languages may exhibit very different properties) and
imbalanced (there may be wildly varying amounts of training data for each language).
Thus, while low-resource languages will often benefit from transfer from other languages,
for languages where sufficient monolingual data exists, performance will often decrease due
to interference from the heterogeneous nature of the data. How to balance the training
process becomes an open question [471, 574].
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2.6 Cross-Lingual Transfer

2.6.1 Zero-shot Transfer

Zero-shot transfer means that the models work for a language without annotated data in
that language. To achieve this, the models are allowed to leverage the unannotated mono-
lingual data in that language (target language) or annotated data in other languages (source
language). Using document retrieval as an example and considering English as source lan-
guage while Hindi as target language, pairs of user queries and documents in Hindi without
relevance labels are regarded as unannotated monolingual data. On the other hand, query-
document-label triples in English are regarded as annotated data in source language. As
we discussed in Section 2.5, the multilingual large-scale pre-trained language models be-
come the backbone of zero-shot transfer technique. Based on these, several techniques are
proposed to improve the model effectiveness.

Multilingual Representation Alignment. The goal of multilingual representation
alignment is to constrain the embedding space of different languages into a unified space.
This was originally studied for word vectors with the goal of enabling cross-lingual transfer,
where the embeddings for two languages are in alignment if word translations, e.g. cat and
Katze, have similar representations [292, 424]. For the contextual representation produced
by pre-trained language models, [220] proposed a cross-lingual pre-training objective that
uses parallel data, and inspired following work [70, 71, 47, 380], leading to improved down-
stream cross-lingual transfer. Adversarial training is also widely adopted to filter away
language-related information and align the representation of tokens or sentences in differ-
ent languages [494, 495, 65]. More specifically, a discriminator is trained to distinguish
the language of the hidden states they represent, while the encoder is trained to fool the
discriminator, by unifying the embedding space of different languages.

Teacher-student approach and Distillation. Teacher-student approach is related to
“knowledge distillation” [171], where a student classifier is trained using the predictions of
a teacher classifier. [505] applied knowledge distillation for cross-lingual text classification
but required expensive parallel corpora. Instead of using expensive parallel corpora, the
following work tried to use minimal resources to achieve knowledge distillation, e.g., seed
word translation [204], or without any extra resources [488].

There are some other methods that pseudo training data is synthesized for the target
language in zero-shot manner. We also regard these techniques as zero-shot transfer; we
discussed these in Section 2.6.2.
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2.6.2 Target Language Fine-tuning

Fine-tuning on target language to bridge the language gap is the most direct way for cross-
lingual transfer. Pre-trained language models also achieved impressive performance in this
setting. However, to make this setting possible, we need to focus on the following two
issues.

How to obtain the target language data annotations automatically? One common
method is “translate train”, where the source language text is translated into the target
language, and the labels are also required to be projected to the target language. The label
transfer is easy for classification tasks such as sentence/document classification; it is more
challenging for structure prediction tasks such as part of speech (POS) tagging, named
entity recognition (NER), dependency parsing, and semantic role labeling (SRL), where
the token alignment is hard to obtain with translators [193, 333]. Another common method
is to generate labels from unlabeled data via automatic labeling functions. The automatic
labeling function can be obtained via “translate train” or zero-shot manner. For example,
[230] used neural machine translators to translate reading comprehension training data in
the source language to the target language, and trained a question generator with these
data in the target language as the automatic labeling function. [403] leverage cross-lingual
question generators to generate questions for passages in the target language in zero-shot
manner, producing the training corpus for multilingual reading comprehension task.

How to select training examples for language transfer? Two cases are considered
for this issue. In the case where the training examples are synthesized automatically,
researchers tend to select high-quality examples, via uncertainty estimation [504], back-
translation [172], scoring function [230], etc. If training examples are obtained via human
annotation, how to select representative data points for annotating to save budgets is the
problem that requires investigation [50], especially for the tasks that need annotations from
domain experts.

2.7 Terminology Note

In the methodology perspective, adjective cross-lingual indicates that the task is solved
with cross-lingual learning/transfer. In the task definition perspective, cross-lingual indi-
cates that the models are required to process the inputs that are composed of different
languages, e,g, cross-lingual information retrieval where the query is in one language while
the document is in another language, or cross-lingual semantic parsing where the query is
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in one language while the schema is in another language. On the other hand, for informa-
tion retrieval, if the query and document are in the same language, we call it mono-lingual
information retrieval. Multilingual is often used for systems that can deal with multiple
languages. Some authors also use the term polyglot to refer to models that are trained
multilingually [307].
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Chapter 3

Free-form Question Answering over
Table

In this chapter, we discuss an information access application that has received little at-
tention: free-form question answering over table. Question answering over semi-structured
tables has attracted significant attention in the NLP community. However, most of the
existing work focus on questions that can be answered with short-form answer, i.e. the
answer is often a table cell or aggregation of multiple cells. This can mismatch with the
intents of users who want to ask more complex questions that require free-form answers
such as explanations. To bridge the gap, most recently, pre-trained sequence-to-sequence
language models such as T5 are used for generating free-form answers based on the ques-
tion and table inputs. However, these pre-trained language models have weaker encoding
abilities over table cells and schema. We propose an intermediate pre-training framework,
Generation-focused Table-based Intermediate Pre-training (GenTaP), that jointly learns
representations of natural language questions and tables. GenTaP learns to generate via
two training objectives to enhance the question understanding and table representation
abilities for complex questions. Based on experimental results, models that leverage Gen-
TaP framework outperform the existing baselines on FeTaQA benchmark. This work is
based on:

• Peng Shi, Patrick Ng, Feng Nan, Henghui Zhu, Jun Wang, Jiarong Jiang, Alexan-
der Hanbo Li, Rishav Chakravarti, Donald Weidner, Bing Xiang, Zhiguo Wang.
Generation-focused Table-based Intermediate Pre-training for Free-form Question
Answering. In Proceedings of AAAI (Thirty-Fifth AAAI Conference on Artificial
Intelligence), February 2022.
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3.1 Introduction

Question Answering (QA) [370, 217] is an important natural language processing task that
enables the interactions between the users and large-scale knowledge sources. Based on the
different forms of the knowledge sources, the QA task is categorized into different sub-tasks,
such as Text-based QA that answer questions based on the unstructured texts, Table-
based QA where semi-structure tables are the knowledge source, and Semantic Parsing
where logic-form is generated to answer question from structured knowledge graphs and
databases.

For Text-based QA and Table-based QA, existing work primarily focused on extracting
relevant portion of the text/table to answer the question, which are usually short-form
facts or entities [370, 338, 189]. However, these QA systems may not meet the needs of
the users, who tend to ask more complex questions that require free-form answers (e.g.
explanations) rather than short entities.1

Efforts have been made in addressing the shortcoming of the QA systems. For the
Text-based QA, [215, 118, 217] proposed to leveraged sequence-to-sequence architectures
to generate free-form answers based on the retrieved documents. However, the free-form
Table-based QA remains largely unexplored. More recently, [308] used pre-trained language
model T5 [366] — a sequence-to-sequence architecture — to generate long form answers
from the table knowledge source.

However, the sequence-to-sequence pre-trained language models, such as BART [233] or
T5 [366], have weaker encoding ability over table cells and schema. These language mod-
els usually employ long documents as the training corpus, obtaining impressive encoding
ability over unstructured text. On the other hand, tabular data have their own structures
to express the semantics, which are usually not captured by these language models.

Recently, several solutions are proposed for alleviating the aforementioned issue by
introducing pre-training or intermediate training strategies for tables. For example, [168]
proposed TAPAS that used Masked Language Model (MLM) as pre-training objective for
improving the contextual representation of BERT [103] over table inputs. They showed
the pre-trained model obtained state-of-the-art performance for Table-based QA where
entities are extracted from the table. They achieved large improvements over the table
entailment task. Albeit the improvements, these pre-training models were designed and
evaluated for the short-form answer, where the answer is often a table cell or aggregation
of multiple cells. Thus pre-training strategies to solve complex questions that require
long-form answers remain unexplored.

1Complex question in our work refers to the question that requires long-form explanation to answer.
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In this chapter, we present an intermediate language model pre-training framework,
Generation-focused Table-based Intermediate Pre-training (GenTaP), that exploits dif-
ferent learning strategies, including short-form entities and long-form explanations. We
demonstrate that our learning strategies enhance question understanding and table rep-
resentation abilities of the pre-trained language models for complex questions. Instead of
using a bidirectional contextual encoder such as BERT to exploit the potential of the text
generation task, our framework is based on the BART [233] encoder-decoder architecture,
which was trained with denoising training objectives. Specifically, our two different learn-
ing targets are designed for improving different aspects of the pre-trained language model,
including, but not limited to, long-form answer generation augmentation (LongAug) and
factual accurate answer generation augmentation (ShortAug). LongAug leverages table
knowledge enriched long sentence as the learning target. ShortAug uses short entities that
precisely answer the corresponding question as the target; this learning target is to im-
prove the model’s accuracy in generating key facts based on the knowledge contained in
the table.

One key challenge of employing the aforementioned intermediate pre-training tasks is
the training data. Although it is easy to obtain large-scale tables from web sources such
as Wikipedia Tables, it is difficult to obtain the questions and answers (long form or short
form) pairs that are interrelated with the tables. Recent work used the surrounding text
of the tables as a proxy for related natural language utterances [168, 528]. However, this
causes a mismatch between the intermediate pre-training and downstream tasks where
questions are one essential component of the tasks. More recently, [415] confirmed that
the surrounding text is far from optimal because those texts are dissimilar to the natural
language questions in terms of text length, composition and content. The surrounding
text of the tables can be quite noisy and may be irrelevant to the tables. In this work,
following [415] and [116], we leverage both sequence-to-sequence generation model and
synchronous context-free grammar to generate the question-answer pairs for intermediate
pre-training.

The outcome of the GenTaP is a sequence-to-sequence pre-trained model that has
the enhanced ability of generating long-form answers for complex questions from tabular
knowledge sources. The experimental results show that the models outperform the state-of-
the-art models on FeTaQA dataset. We also find that our models have transfer ability for
the few-shot data-to-text generation task by outperforming existing baselines. In summary,
our work shows the following contributions:

• We propose a new framework for table-based long-form answer generation that ex-
ploits two different learning targets with synthetic data.
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• We leverage a novel strategy to overcome pre-training data challenges by leveraging a
generation model and synchronous context-free grammar to generate synthetic data
for learning joint representations of textual data and tables.

• Our pre-trained model obtains state-of-the-art performance on the table-based free-
form question answering dataset FeTaQA .

• Our pre-trained model demonstrates good transfer ability by achieving better effec-
tiveness than baselines on few-shot data-to-text (FSD2T) generation task .

3.2 Related Work

Table-based Pre-training. Recently, table-based pre-training received a lot of atten-
tion [168, 116, 415, 100, 528, 537, 183, 270]. Large scale crawled tables are used for
pre-training to enhance the table representation ability of language models. Different from
these work, we focus on the pre-training for free-form question answering, by leveraging
the context-table alignments and question generation model.

Generation-based Question Answering. By leveraging the powerful sequence-to-
sequence pre-trained language model, several question answering tasks are formulated as
the generation problem [233, 366, 404, 295, 191, 132, 236]. Free-form question answering
have also been received increasing attention [118, 217, 308] as it can handle more complex
questions. More recently, [497] unified structured knowledge based tasks (e.g. table-based
question answering, semantic parsing, data-to-text generation) with sequence-to-sequence
models.

Data-to-Text. Data-to-Text generation requires the model to produce precise and fluent
description given the structured data input, such as tables [225, 337], triples [133, 326, 309],
or logic forms [93, 501, 422]. Recently, large scale pre-trained models are actively applied
on these tasks, obtaining new state of the art [385, 62, 244].

3.3 Models

3.3.1 Baseline Models

To answer complex questions based on tabular content, one of the two methods is usually
exploited: pipeline model and end-to-end model. For the pipeline model, a semantic parser
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Sequence-to-Sequence Transformers

What is the latest population 
estimate for Pekalongan

Regency?

It covers an area of 836.13 km2 and had a population of 838,621 at the 
2010 Census; the latest official estimate (as at mid 2019) is 897,711. 897,711

What is the area when Pop’n Census 
2010 is smaller than 40,000?

Crawled Tables

SCFG

Data Generation

Crawled Context

the latest official estimate (as at mid 
2019) is 897,711.

Context-to-Question

What is the latest population 
estimate for Pekalongan Regency?

Intermediate Pre-training

Figure 3.1: GenTaP Framework. The left figure shows our Intermediate Pre-training
stages: LongAug and ShortAug. The right figure shows our synthetic training data gener-
ation methods: Context-to-Question for LongAug, and SCFG for ShortAug.

is first leveraged to generate denotations (which are usually entities from the table), and
then a data-to-text generation model is used to compose a coherent and fluent sentence
from the table schema and denotations. This pipeline model relies heavily on the semantic
parser to produce accurate denotations; otherwise error propagation may lead to poor
performance. The second method, an end-to-end model, is formulated as a sequence-to-
sequence learning problem where free-form answers are directly generated conditioned on
the question and table input, without producing intermediate results. [308] showed the
latter approach yielded significantly better performance.

Thus, in this work, we use the BART sequence-to-sequence pre-trained language model
as our baseline architecture, by leveraging its potential on text generation. More specifi-
cally, the table is linearized into a sequence T by separating the rows with special token
[ROW] and separating cell values with vertical bar. This linearized table is appended to
the question tokens q with [SEP] in between. In addition, we provide the positional em-
beddings for each token, including the segment embedding (for question segment and table
segment), row embedding and column embedding [168]. These embeddings are added on
top of the token embeddings as model inputs and optimized during the training. The free-
form answer is regarded as target sequence. The Data-to-Text generation task is similar
to the Free-form Question Answering, just without the prepended question. The input
of the sequence-to-sequence model is the linearized table and the learning target is the
table summary. We can regard a hidden question “What is the summary of the table?” is
prepended.
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3.3.2 Intermediate Pre-training

For the pre-training model, we use a similar architecture as the baseline systems. The
questions and tables are fed into the transformer encoder; the tables are linearized with
same strategy as the baseline systems.

Two types of augmentations are employed in the intermediate pre-training stages: Lon-
gAug and ShortAug. In the LongAug, table-enriched sentences are regarded as our learning
target, where the sentences express some facts that are based on some parts of the table.
This learning target is expected to improve (include but not limit to) the natural sen-
tence generation ability in the context of table-based question answering scenario. In the
ShortAug, short entities are the learning target. If multiple entities are generated, they
are separated with vertical bars. This learning target is expected to help the model to
improve the factual accuracy of the pre-trained models. Because the essential component
in the long-form answer is still the key entities that answer the questions. In terms of
model architecture, we use same architecture as the baseline model, a positional embed-
ding augmented sequence-to-sequence model. Note that during pre-training, we use two
separate decoders for these two learning targets, and the model is trained with multitask
learning fashion. Our preliminary experimental results show that two separate decoders
outperformed unified decoder.

3.3.3 Pre-training Data Synthesis

Data is one key part in this intermediate pre-training. As discussed, the question-answer (long
or short form) pairs are expected in our pre-training stage, while they are not available in
large scale for representation learning. In this work, we exploit two methods for synthesiz-
ing the pairs from large scale tables from Wikipedia: Context-to-Question Generation and
Synchronous Context-free Grammar.

LongAug Synthetic Data: The target of Context-to-Question Generation is to syn-
thesize (Question, Long-form Answer) pairs for intermediate pre-training stage LongAug.
For each table we crawled from the Wikipedia page, we retrieve the statements that are
relevant to the specific table from Wikipedia articles. We note these statements as table
knowledge enriched sentences and these sentences are used as the proxy for long-form an-
swers. Because the relevant statements usually come from the same article as the table
appears in, we only consider each sentence in the specific Wikipedia page, without examin-
ing other articles. We compute the relevance level for each sentence and the table, by using
the lexical matching strategy: if there are several cell values in the table appearing in the
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[question] Ñ What is [select] when [where] |

What is [select]

[select] Ñ the [column] |

the [aggregation] of the [column]

[where] Ñ [column] [comparison] [value] |

[where] and [where]

[aggregation] Ñ smallest | largest | sum | average

[comparison] Ñ is | is smaller than | is larger than

Figure 3.2: The SCFG for ShortAug Data Sampling.

sentence (more than the threshold), we regard it as a relevant statement candidate. We
note these overlapped entities as key entities. For each key entity, we generate a question
for it by leveraging a context-to-question generator.

In particular, the input of the generator is the table knowledge enriched sentence and
the key entity; the output of the generator is the corresponding question — see Figure 3.4
for an example. We use the BART model as the generator. To train the generator, we use
the SQUAD [370] dataset. The SQUAD dataset is designed for reading comprehension
task where (question, paragraph, short-form answer) triples are provided. We adapt the
SQUAD dataset for our purpose: for each example, we first identify the sentence from
the paragraph where the short-form answer is found; the input to train the generator is
the concatenation of the article title, the identified sentence and short-form answer; the
training target is the question. In this way, we generate large scale (question, table, long-
form answer) triples by leveraging the alignment between the table and the context and
context-to-question generator, without using extra table-based QA datasets.

ShortAug Synthetic Data: Similar to [116], we build table-dependent question that are
SQL-like. We define a synchronous context-free grammar (SCFG) as shown in Figure 3.2
and questions are sampled from it. The corresponding answers can be easily obtained
during the sampling process. These answers are all cell values from the table, or the
numerical aggregation results such as SUM, MAX and MIN. As the example shown in right side
of data generation in Figure 3.1, a question “What is the [area] when [Pop’n Census 2010]
is smaller than 40,000” can be composed based on the table. In this way, we synthesize
large scale (question, table, short-form answer) triples for the intermediate pre-training
stage ShortAug.
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Model BLEU ROUGE-1 ROUGE-2 ROUGE-L METEOR

TAPAS + T5-large 11.00 0.40 0.22 0.35 0.24

T5-small (fine-tuned by [308]) 21.60 0.55 0.33 0.47 0.40
T5-base (fine-tuned by [308]) 28.14 0.61 0.39 0.51 0.47
T5-large (fine-tuned by [308]) 30.54 0.63 0.41 0.53 0.49
BART (fine-tuned by us) 32.14 0.658 0.432 0.551 0.512

Zero-shot (ours) 27.12 0.566 0.351 0.469 0.422
GenTaP (ours) 36.74 0.689 0.476 0.587 0.545
- ShortAug 36.07 0.683 0.470 0.582 0.541
- LongAug & ShortAug 33.87 0.668 0.443 0.563 0.520

Table 3.1: Results on the test split of FeTaQA dataset.

3.4 Experimental Setup

For all experiments, we train our GenTaP model with underlying transformers initialized
with BART-large model [233]. 250K LongAug examples are generated via Context-to-
Question Generation and 250K ShortAug examples are generated via SCFG. The tables
that are used in the downstream tasks are removed in the pre-training stage.

3.4.1 Data Preprocessing

We leverage several heuristics to collect the tables and the contexts pairs. More specifically,
for each sentence in the same page of the table, if one of the conditions is satisfied, then it
is a valid (table, context) pair. A sentence is valid 1) if it has tokens matching at least 3
key entities from the same row of the table. 2) if it has tokens matching with 2 key entities
from the same row of the table for more than two times (two different rows).

3.4.2 Training Details

For intermediate pre-training, we use 8 Tesla V100 GPUs to train at most 100K steps with
initial learning rate of 2e-5 and batch size of 64. For FeTaQA dataset finetuning, 4 Tesla
V100 GPUs are used to train the model, with initial learning rate of 1e-5 and batch size of
32. For FSD2T dataset finetuning, 1 Tesla V100 GPU is used to train with initial learning
rate of 1e-5 and batch size of 8.
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Figure 3.3: Low-data regimes. We finetuned GenTaP on 50, 100, 300, 500, 1000 and 2000
sampled training examples.

Model Precision Recall

T5-small -2.8093 -2.3946
T5-base -2.4989 -2.2686
T5-large -2.3428 -2.1451

Zero-shot -2.8333 -2.3555
GenTaP -2.0627 -1.8609
- ShortAug -2.0801 -1.8932
- LongAug & ShortAug -2.1482 -1.9941

Table 3.2: BARTScore results on FeTaQA test split. Scores are shown in log probability.
Higher is better.

3.4.3 Tasks, Datasets and Baselines.

We evaluate our model on the FeTaQA [308] dataset. FeTaQA is a table-based free-form
question answering dataset that contains large scale (question, table, long-form answer,
supporting table cells) pairs. Compared with WikiSQL [570] or WTQ [338], the questions
in FeTaQA are more complex — requiring elaborations and explanations. The state-of-
the-art systems on FeTaQA are based on the T5 models end-to-end models that generate
answers directly from the question and table inputs. We also compare our models with
pipeline baselines that first leverage state-of-the-art weakly supervised parser TAPAS [168]
to generate denotations, and then leverage the T5-large as data-to-text generator.

We also evaluate transfer ability of our model by testing it on the few-shot Data-to-Text
generation task. That is, we examine if our pre-training model is helpful on the related task
of generating natural sentences based on the knowledge of table. We evaluate our model
on Data-to-Text generation Dataset (FSD2T) [68]. The FSD2T includes data in three

22



different domains, including the Humans, Books and Songs. We experiment on different
training size, including 50, 100, 200 and 500 training examples in each domain. The models
are chosen based on the performance of the development set with 1000 examples. Test sets
for Humans, Books and Songs consist of 13587, 5252, and 11879 examples. We compared
our models with Base [68], Base+Switch+LM [68], and TableGPT [139] that are all
based on GPT2 [364].

In the ablation study, the –ShortAug denotes the intermediate pre-training without
ShortAug. The –LongAug & ShortAug denotes the baseline model without intermediate
pre-training — note that this model does include the positional, segment, column and row
embeddings.2

3.5 Results

3.5.1 FeTaQA Main Results.

The main results of FeTaQA dataset are shown in Table 3.1. We evaluate the models with
unsupervised matching in the discrete string space [548], such as BLEU, ROUGE-{1,2,L}
and METEOR. The previous state-of-the-art performance (before the paper submission)
is obtained by T5-large with 770M parameters, which achieves 30.54 BLEU score, out-
performing other variants of T5 such as T5-base (220M parameters) and T5-small (60M
parameters). For ROUGE-1, ROUGE-2, ROUGE-L and METEOR, the T5-large achieves
0.63, 0.41, 0.53 and 0.49 respectively. More recently (after paper submission), [497] ob-
tained 33.44 BLUE score with T5-3B (3B parameters). For the baseline that leverages
the table-based pre-trained model such as TAPAS, the experimental results are obtained
with the TAPAS + T5-large architecture. TAPAS + T5-large is a pipeline architecture
that leverages the state-of-the-art models in two worlds: the weakly semantic parsing and
the data-to-text generation. The model firstly extracts denotations (key entities) based on
the questions and tables input. Then a trained T5-large model performs the data-to-text
generation based on the produced denotations, together with other meta information of
the tables. This baseline only obtains 11.00 BLEU score, due to imperfect parsing system
and error propagation issue.

Our framework is based on the BART architecture with 406M parameters, that is
smaller than the T5-large architecture. We finetune the BART model on the dataset,
obtaining 32.14 BLEU score, exceeding the state-of-the-art T5-large model [308] of 30.54

2BART (fine-tuned by us) in Table 3.1 and 3.3 do not leverage segment, column and row embeddings.
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Model Lexical level F1 Tuple level F1

T5-large 0.722 0.509
BART fine-tuned 0.725 0.515

GenTaP 0.767 0.558
- ShortAug 0.755 0.554
- LongAug & ShortAug 0.746 0.538

Table 3.3: Factual Consistency Evaluation.

BLEU score and comparable with more recent version finetuned by [497] of 32.45 BLEU
score. For other metrics, our finetuned BART model also achieves new state-of-the-art
performance. Augmenting with our pre-trained GenTaP model, the performance is further
improved by large margins on different evaluate metrics, reaching 36.74 BLEU score, and
0.689, 0.476, 0.587, 0.545 on the ROUGE-{1,2,L} and METEOR, respectively.

3.5.2 Zero-shot and Few-shot FeTaQA Results.

Based on our intermediate pre-training objectives, our trained models already have the
ability of answering the questions with free-form statements. Therefore, it is interesting
to evaluate the zero-shot performance of the pre-trained models. Without finetuning, we
directly feed the FeTaQA test set into the model and produce the answers. The results are
shown in Zero-shot entry in Table 3.1, with 27.12 BLEU score and 0.566, 0.351, 0.469, 0.422
on the metrics of ROUGE-{1,2,L} and METEOR, respectively. Hence, the performance is
on par with fully supervised T5-small model.

Through experiments in low-data regimes, we find that our pre-trained GenTaP model
is an efficient learner. We finetuned GenTaP on 50, 100, 300, 500, 1000 and 2000 sampled
training examples. Experimental results are shown in Figure 3.3. Using just 100-300 train-
ing examples, the model can achieve comparable performance against the T5-base model;
while with 1000-2000 training examples, the model can obtain the similar effectiveness
against the supervised BART baseline.

3.5.3 Model-based Evaluation.

Leveraging large scale pre-trained language model to evaluate the performance of gener-
ation models has become popular as its metric has been shown to have high correlation
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Domain Humans Books Songs

# of training instances 50 100 200 500 50 100 200 500 50 100 200 500

GPT (Switch + LM) 25.7 29.5 36.1 41.7 34.3 36.2 37.9 40.3 36.1 37.2 39.4 42.2
Table-GPT 29.8 34.5 40.6 45.6 35.1 37.3 38.5 41.6 36.7 37.8 39.3 42.3
GenTaP (ours) 39.4 45.9 47.4 50.8 39.8 41.6 43.1 46.7 38.3 42.0 44.0 45.1
- LongAug & ShortAug 37.5 44.1 46.5 50.1 37.9 40.8 40.4 46.6 36.7 40.7 42.7 43.6

Table 3.4: Few-Shot Data-to-Text Generation results on different domains.

with human judgement. In this work, we further evaluate the models with the recent work,
BARTScore [548]. Instead of relying on token-level matching on the discrete string space,
the BARTScore formulates evaluating generated text as a text generation task from pre-
trained language models. The log probability of BART generator is used to evaluate the
quality of hypothesises (h) based on the references (r). Based on different input-output
pairs, the following metrics can be evaluated by using the BARTScore. 1) Precision:
The encoder input is the reference text and the decoder input is the generated text. The
P ph|rq is calculated and it accesses how likely the hypothesis can be generated based on
the reference input. 2) Recall: The encoder input is the generated text and the decoder
input is the reference text. The P pr|hq is evaluated and it calculates how many semantic
content units are covered by the hypothesis. We use the BART finetuned on ParaBank2
as the evaluation checkpoint.3

We evaluate the predictionsof T5 models and compared against our models.4 As shown
in the top section of Table 3.2, the T5-large obtains -2.3428 precision and -2.1451 recall.
With FeTaQA dataset finetuning, our model obtains the best performance with -2.0627
precision and -1.8609 recall. Unsurprisingly, it also outperforms the zero-shot evaluation
significantly, where the precision and recall scores are -2.8333 and -2.3555, respectively.

3.5.4 Human Evaluation.

To further evaluate the quality of the answers generated by the models, we conducted
human evaluation based on the following criteria. We asked internal annotators to evaluate
50 samples of FeTaQA instances on a 1-5 scale. The average score of the answers is 3.84,
with 32 out of 50 answers obtaining 4 or 5, which is higher than –ShortAug with score of
3.70 and –LongAug & ShortAug with score of 3.42.

3https://github.com/neulab/BARTScore
4https://github.com/Yale-LILY/FeTaQA
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Example 1
Question: What films did Kevin James star in between Barnyard and Grown Ups?
Reference: James starred in I Now Pronounce You Chuck and Larry (2007) and Paul
Blart: Mall Cop (2009) between Barnyard and Grown Ups.
Baseline: In 2006, Kevin James starred in Barnyard, and wrote, directed and starred in
Grown Ups.
Our Model: Kevin James starred in Barnyard (2006) and I Now Pronounce You Chuck &
Larry (2007).

Example 2
Question: Which animated characters were designed by Glen Keane in 1989 and 1990?
Reference: Glen Keane designed and animated the character of Ariel in the film The
Little Mermaid (1989) and Marahute in The Rescuers Down Under (1990).
Baseline: Glen Keane designed the characters for The Little Mermaid (1989) and The
Rescuers Down Under (1990).
Our Model: Glen Keane designed Ariel in The Little Mermaid (1989) and Marahute in
The Rescuers Down Under (1990).

Table 3.5: Selected Examples for FeTaQA. Our Model refers to GenTaP while the Baseline
refers to positional embedding augmented BART model without pre-training.

Few-Shot FSD2T Main Results.

The results of few-shot data-to-text generation task are shown in Table 3.4. We can observe
that our baseline models already achieve the state-of-the-art BLEU score all three domains
under different training settings. For our GenTaP models, even it is not pre-trained for the
question answering purpose, the models showed good transfer ability by further improving
the performance. By comparing the different training size, we can observe that with fewer
training examples, such as 50 or 100, the model has larger improvement margins. When
the training size is larger such as 500, the improvements are less significant.

3.6 Discussion and Analysis

3.6.1 Are the generated free-form answers factually consistent?

While metrics such as BLEU and ROUGE often serve as the primary metrics for assessing
the quality of generated text, these metrics have been shown to be sometimes poorly
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correlated with answer correctness [106]. As a result, we leverage an alternate evaluation
criteria which leverages the highlighted cells from the FeTaQA dataset’s annotations.
The highlighted cells are intended to capture key entities that the free-form answer should
ideally make use of. So we measure the precision and recall of these key entities in the
generated answer text. More specifically, we regard the highlighted cells that appear in the
references as reference entity set; we extract the key entities from the generated text with
string matching, denoted as hypothesis entity set. The precision, recall and F1 scores based
on these two sets can be calculated; we call these scores are in lexical level. We can further
regard the key entities that are from the same table row as a tuple; a tuple is correct only
when all entities in the tuple are correct. Thus we can evaluate the tuple level precision,
recall and F1 score. This is stricter evaluation for the models. These results are shown in
Table 3.3 and demonstrate an improvement when GenTaP is used for pre-training. Our
GenTaP obtains the 0.767 on the lexical level F1 score and 0.558 on the tuple level F1
score, outperforming the state-of-the-art T5-large model by large margin.

3.6.2 Error analysis.

To further understand the performance and behaviors of the models, we investigated the
errors the models made. We classify the errors into the following types: lookup error and
aggregation error. For the lookup error, the models fail to retrieve relevant rows/columns
based on the header mentions or conditions. As shown in the Table 4.6, the two examples
belong to this category. The question in the Example 1 requires the model to understand
the condition “between Barnyard and Grown Ups” and retrieve the relevant rows in between
from the table. The baseline model fails to understand the question and just extracts the
information of movie “Barnyard” and “Grown Ups”. Our GenTaP model is partially
correct based on the answer it generates. It retrieves the movie “I Now Pronounce You
Chuck & Larry” that is after the “Barnyard” but misses the other one. The question in the
Example 2 asks the model to provide the information about the “animated characters”.
Our GenTaP model provides the corresponding information “Ariel” and “Marahute”,
however, the baseline does not answer with these key entities. On the other hand, the
aggregation type questions are hard for the models. For example, the question “How much
overall damage did the German submarine U-438 cause?” required the model to calculate
the sum of the tonnage of the submarines and all the models failed. Further improving
this type of questions is left for future work.
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Table

Context
The final running of the Standard Stakes took place 
on June 9, 1908 and was won for the second 
straight time by owner James R. Keene.

Zhang transferred to Chinese Super League side 
Jiangsu Suning on 28 February 2018.

… Kajen, which is located in the middle of the regency, 
about 25 km south of Pekalongan City.

Generation In what year did Keene win for the second time? What league did Jiangsu Suning join? About how many kilometers away from Pekalongan city 
is Kajen?

Year Winner ... Owner

1908 Ballot ... James R. Keene
1907 Peter Pan ... James R. Keene
... ... ... ...
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Club Season Division ...

Jiangsu Suning
2018

Chinese Super League
...

2019 ...
2020 ...
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Name Area in km2 ... No. of vill.

Kajen 75.15 ... 25
... ... ... ...
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Figure 3.4: Examples of our LongAug synthetic data. The Generated Questions were
synthesized using our Context-to-Question method.

3.6.3 Ablation Study for Pre-training

Data Synthesis Quality.

The LongAug synthetic data generator — Context-to-Question Generation — obtains 21.52
BLEU score on the SQUAD validation set. To assess the quality of the pre-training data,
we further sampled 50 examples from the generated (question, table, context) triples and
ask graduate students and practitioners who are working on NLP for judgement. We eval-
uate the data in the following aspects: 1) Alignment: whether the context is supported
by the facts from the table. Because the contexts are aligned with tables automatically,
false positive error will be introduced. 2) Correctness: whether the generated question
is correct based on the context and sampled answer span. This evaluates the correctness
aspect of the question generator. Out of 50 examples, there are 18.5 (averagely) context
sentences aligning with the table. This indicates that the automatic alignment strategy
imperfectly introduces errors for the data generation stage and can be further improved
in the future work. For the Context-to-Question generator, 30.5 (averagely) out of 50
questions are in high quality based on the contexts and selected key entities. More align-
ment and generation examples are shown in Figure 3.4. First row shows a high-quality
(Question, Table, Context) pair. For the second one, the generator makes mistakes with
the subject, being confused “Zhang” with “Jiangsu Suning”. For the third one, the error
happens on the automatic alignment where the distance “25” in the context is matched
with the number of village “25” in the table.

How does LongAug synthetic data size affect model performance?

For LongAug, we analyze the effectiveness of the generation-based training data in terms
of the scale. The Table 3.6 shows the performance of FeTaQA with different scales of
pre-training corpus.

28



Training Size 10K 50K 100k 250K

BLEU 34.58 35.01 35.49 36.07

Table 3.6: Results on different LongAug synthetic data sizes

Training Task Design.

In this section, we show the ablation study of the training targets. Based on the automatic
evaluation metrics, the LongAug improve the BLEU score from 33.87 to 36.07 by large
margin. The ShortAug can further improve the metric to 36.74. The effectiveness of the
LongAug and ShortAug is also shown from the BARTScore, Lexical level F1, Tuple Level
F1 and the human evaluation.

Instead of using the generated questions as the text for the model input in our proposed
GenTaP framework, we also explored design choices for pre-training: 1) Random Token
Masking, and 2) Key Entity Masking. Random Token Masking (RTM) is analogous
to the Masked Language Model and we randomly mask the token in the context as the
model input. We keep the table unchanged and use the original context as the learning
target. We expect the model to capture the alignments between the context and table
by learning to recover the incomplete context. Key Entity Masking (KEM): Instead
of masking random tokens which may be unimportant, we try to mask the key entities.
More specifically, based on the context-table alignment aforementioned, we masked the
co-occurrent entities in the context, making it a proxy of natural questions. Again, we use
the unmasked context as the training target. In this way, we can enforce the model to learn
to capture more alignments between context and table by recovering the context, because
all missing tokens come from the table content. We pre-train the models in the same way
as the GenTaP with the (context, table) pairs. We use BLEU score to evaluate the model
performance. RTM obtains 34.26 BLEU score while KEM obtains 34.85 BLEU score.
Based on the results, we find that using the generated question as text input is a better
choice than these two proposals, thus we did not use them in our main experiments.

3.7 Summary

In this chapter, we present an intermediate pre-training framework, GenTaP, that im-
proves the joint encoding ability of question and table for pre-trained sequence-to-sequence
language model. With two augmentation strategies, our models achieve state-of-the-
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art performance on the free-form table-based question answering task. Also, the Gen-
TaP models show good transfer ability to the few-shot data-to-text generation task, by
outperforming existing models on FSD2T dataset in various domains.
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Chapter 4

Learning Contextual Representation
for Semantic Parsing with
Generation-Augmented Pre-training

Most recently, there has been significant interest in learning contextual representations for
various NLP tasks, by leveraging large-scale text corpora to train large neural language
models with self-supervised learning objectives, such as Masked Language Model (MLM).
However, based on a pilot study, we observe three issues of existing general-purpose lan-
guage models when they are applied to text-to-SQL semantic parsers: fail to detect column
mentions in the utterances, fail to infer column mentions from cell values, and fail to com-
pose complex SQL queries. To mitigate these issues, we present a model pre-training
framework, Generation-Augmented Pre-training (GAP), that jointly learns representa-
tions of natural language utterances and table schemas by leveraging generation models to
generate pre-train data. GAP Model is trained on 2M utterance-schema pairs and 30K
utterance-schema-SQL triples, whose utterances are produced by generative models. Based
on experimental results, neural semantic parsers that leverage GAP Model as a repre-
sentation encoder obtain new state-of-the-art results on both SPIDER and CRITERIA-
TO-SQL benchmarks. This work is presented in:

• Peng Shi, Patrick Ng, Zhiguo Wang, Henghui Zhu, Alexander Hanbo Li, Jun Wang,
Cicero Nogueira dos Santos, Bing Xiang. Learning Contextual Representations for
Semantic Parsing with Generation-Augmented Pre-Training. In Proceedings of AAAI
(Thirty-Fifth AAAI Conference on Artificial Intelligence), February 2021.

31



Pain Point 1: Fail to match and detect the column mentions.
Utterance: Which professionals live in a city containing the substring ’West’? List his or her
role, street, city and state.
Prediction: SELECT role code, street, state FROM Professionals WHERE city LIKE

’%West%’

Error: Missing column city in SELECT clause.

Pain Point 2: Fail to infer columns based on cell values.
Utterance: Give the average life expectancy for countries in Africa which are republics?
Prediction: SELECT Avg(LifeExpectancy) FROM country WHERE Continent = ’Africa’

Error: Missing GovernmentForm = ’Republic’.

Pain Point 3: Fail to compose complex target SQL.
Utterance: Which semesters do not have any student enrolled? List the semester name.
Prediction: SELECT semester name FROM Semesters WHERE semester id NOT IN (SELECT

semester name FROM Student Enrolment)

Error: Should use semester id in nested SQL to align with the column in WHERE clause.

Table 4.1: Error examples collected from the Spider development set based on the RAT-
SQL + BERT [463].

4.1 Introduction

Recently, deep contextual language models [103, 273, 233, 113, 366] have shown their ef-
fective modeling ability for text, achieving state-of-the-art results in series of NLP tasks.
These models capture the syntactic and semantic information of the input text, generating
fine-grained contextual embeddings, which can be easily applied to downstream models.
Despite the success of large scale pre-trained language models on various tasks, it is less
clear how to extend them to semantic parsing tasks such as text-to-SQL [477, 355, 354, 245],
which requires joint reasoning of the natural language utterance and structured database
schema information. Recent work [147, 463, 34, 33] shows that with more powerful pre-
trained language models, the highly domain-specific semantic parsers can be further im-
proved, even though these language models are trained for pure text encoding.

However, based on error analysis on the output of neural language model-based text-to-
SQL systems, we observe that these models can be further enhanced if we could mitigate
the following three pain points, which are also illustrated in Table 7.8. (1) The model
is ineffective to match and detect column names in utterances. The model should learn
to detect column names mentioned in utterances by matching utterance tokens with the
schema, and use the matched columns in the generated SQL. The error analysis indicates
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that, in some cases, models miss some columns when synthesizing the target SQL, while the
column is mentioned explicitly in the utterance. (2) The model fails to infer the columns
implicitly from cell values. This problem is trickier than the first one, because the model is
expected to infer the column name based on some cell values mentioned in the utterance,
instead of just matching the utterance tokens with the schema. This requires the model to
have more domain knowledge. For example, as presented in the second section of Table 7.8,
the model should know republics is a GovernmentForm. (3) The model should learn to
compose complex queries. Besides the column selection, to generate a correct SQL, the
model should learn to attach the selected columns to the correct clauses. This is a non-
trivial task, especially when the target SQL is complex, e.g., when the query is nested. As
shown in the last section of Table 7.8, the model should learn to use the corresponding
column semester id in the nested SQL, instead of using column semester name.

Recent work has demonstrated that jointly pre-training on utterances and table contents
(e.g., column names and cell values) can benefit downstream tasks such as table parsing
and semantic parsing [528, 168]. These models are pre-trained using the Masked Language
Modeling (MLM) task by either masking tokens from the utterance input or tokens from
the schema input. However, this learning objective can only model the alignment between
the utterance and schema implicitly. We hypothesize that, in order to cope with the three
pain points previously listed, it is necessary to use pre-training objectives that enforce the
learning of contextual representations that better capture the alignment between utterances
and schema/table contents.

In this chapter, we present a language model pre-training framework, Generation-
Augmented Pre-training (GAP), that exploits multiple learning objectives (pre-training
tasks) and synthetic data generation to jointly learn contextual representations of natu-
ral language utterances and table schema. We propose the following three new learning
objectives that not only enforce joint learning but also improve the ability of the model
to grasp more domain knowledge, which is helpful in cross-domain scenarios: (1) column
prediction task, which is a pre-training task that consists in giving a label for each column
in the input schema to decide whether it is used in the input utterance or not. This task
is designed to improve the column detection ability of the model. (2) column recovery
task, which consists in randomly replacing some of the column names with one of their
cell values and asking the model to recover the original column name either based on the
cell value itself or based on the contextual information of the utterance when the column
is explicitly mentioned in the utterance. This learning objective is meant to enhance the
column inferring ability of the model. (3) SQL generation, which consists in generating
SQL queries given utterances and schema. This task can boost the ability of the model to
compose complex queries by leveraging large scale SQL datasets from the Web.
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A key challenge to use the proposed pre-training tasks is training data. Although it
is easy to obtain large scale datasets of crawled tables and SQL queries, it is difficult
to obtain high-quality utterances interrelated with the tables or logically consistent with
crawled SQL queries. Recent work used the surrounding text of tables as a proxy of natural
language utterances [528, 168]. However, this option is far from optimal because those
texts are dissimilar to user utterances in terms of text length, composition and content.
The surrounding text of a table is usually a paragraph, while natural language utterances
in the downstream task are short sentences. Furthermore, the content of surrounding
text of tables can be quite noisy because the text may be irrelevant to the table. In
GAP , we overcome the pre-training data challenge through the use of synthetic data. We
propose two sequence-to-sequence (seq2seq) generative models, SQL-to-text and table-to-
text, that can produce large scale datasets with enough quality for pre-training. We train
our generative models by finetuning BART [233], a state-of-the-art pre-trained language
model. Concurrently, [537] and [99] utilized synthetic data generated from synchronized
context-free grammar and existing data-to-text datasets [337] for pre-training, respectively,
which requires extra crowd and expert annotation efforts.

The outcome of GAP is a pre-trained model that can be plugged into neural seman-
tic parsers to compute contextual representations of utterances and schema. We apply
GAP to text-to-SQL semantic parsing datasets, and experimental results show that sys-
tems augmented with GAP outperform state-of-the-art semantic parsers on Spider and
Criteria-to-SQL datasets. In summary, our work presents the following main contri-
butions: 1) Based on an error analysis, we spot three main issues in pre-trained LM-based
text-to-SQL semantic parsers. 2) We propose a new framework for pre-training semantic
parsers that exploits multiple pre-training tasks and synthetic data. 3) We present three
novel learning objectives that alleviate the three main issues spotted with pre-trained
LMs for semantic parsing. 4) We propose a novel strategy to overcome pre-training data
challenges by leveraging SQL-to-Text and Table-to-Text generative models to generate
synthetic data for learning joint representations of textual data and table schema. 5) To
the best of our knowledge, this is the first work to effectively use both crawled SQL and
crawled tables to enhance the text-to-SQL semantic parsing task.

4.2 Related Work

Semantic Parsing: The semantic parsing task is framed as mapping the natural language
utterances to meaning representations. The meaning representations can be executed in a
variety of environments such as data analysis by translating the natural language queries

34



into database queries. Based on different meaning representations, the semantic parsing
task can be classified into three regimes [203]: logic based formalism such as λ-DCS [248],
graph based formalism such as AMR [25] and UCCA [3], and programming languages
such as Python and SQL. Recently, more interests are concentrated on the SQL-based
semantic parsing, and most of the work try to solve the problem with general encoder-
decoder architecture. Overall, they enhance the models based on following aspects: (1)
Improving the decoding mechanism [525, 111, 390]; (2) Improving the decoding target [147];
(3) Improving the model encoding ability [463, 33, 528, 396, 280, 99, 537]; (4) Reranking
over the generated candidates to improve parses quality [206, 527]. GAP advances the
line of (3) by leveraging generation models and three novel learning objectives to enhance
the utterance-schema representations.

Question Generation and Table-to-Text Generation: The question generation task
is to generate grammatically and semantically correct questions. The generated questions
are usually used for enhancing the question answering models [114, 142, 532, 569]. The
table-to-text generation task is to generate declarative sentences that describe the informa-
tion provided by the table [271, 138, 337, 362]. Our Table-to-Text model is a combination
of these two directions, focusing on generating questions from table, i.e., composing ques-
tions based on the sampled columns and cell values, without providing detailed information
about “what to ask”.

Pre-training Models: Recent pre-training techniques exploit external knowledge (e.g.
entity-level information, commonsense knowledge, knowledge graph) into large-scale pre-
trained language models [499, 470, 346, 388]. More recently, [528], [168], leverage the
semi-structured table data to enhance the representation ability of language models. Con-
currently, [537] and [99] leveraged synchronous context-free grammar to generate synthetic
data and utilized existing high-quality data-to-text dataset for pre-training, respectively.
Different from these work, we explore the direction of utilizing the generators to enhance
the joint utterances and structured schema encoding ability of the pre-trained models.

4.3 Models

We first present the architecture of the semantic parsers, and then introduce the pre-
training model in the GAP framework. Lastly, we describe how to obtain the synthetic
pre-training data with generative models.
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What is the earliest year 
in which a film has result 
"nominated" at the Oscars?"

Find the employees whose 
salary is higher than the 

salary of the employee with 
first name 'Blake'.

SELECT * FROM Employees 
WHERE salary > (SELECT 

salary FROM Employees WHERE 
first_name = 'Blake')

Year Category Film Result

1997 … … Nominated

1999 … … Won

(Utterance, Schema, SQL) triples (Utterance, Table) pair

Crawled SQL Crawled Tables

SQL-to-Text

Table-to-Text

Data Generation

Find the <mask> whose salary is 
higher than the <mask> of the 

employee with first name 'Blake'.

<col> employee_id <col> hire_date 
<col> salary <col> <mask> <col> 

last_name <col> manager

Transformer Encoder

Transformer Decoder

SQL Generation

Column Recovery

Masked LM

Column 
Prediction

SELECT * FROM Employees WHERE salary > (SELECT 
salary FROM Employees WHERE first_name = 'Blake')

salaryhire_date… …

not_used

Find the employees whose 
salary is higher than the 
salary of the employee 

with first name 'Blake'.

<col> employee_id <col> 
hire_date <col> salary 
<col> first_name <col> 
last_name <col> job

used

first_nameemployee_id

not_used used

Pretraining

<s> None </s> Film </s> Result | 
Nominated </s> Year | MIN </s>

Figure 4.1: Building blocks of GAP framework. On the left side, we illustrate our proposed
pre-training tasks. On the right side, we depict our proposed data generation strategies.

4.3.1 Text-to-SQL Semantic Parser

The Text-to-SQL semantic parser translates natural language utterances to SQL queries.
The semantic parsers in our experiments are based on the encoder-decoder architecture.
Given an utterance U = tx1, x2, ..., xnu and a schema S consisting of tables T “ tt1, t2, ..., t|T |u

and columns C “ tc1, c2, ..., c|C|u, we leverage the contextual encoder to obtain the rep-
resentations of utterance tokens and schema. The decoder is required to compute a dis-
tribution P pY |X,Sq over SQL programs. Based on different model designs, the decoder
learning target Y can be raw SQL tokens [560] or other intermediate representations such
as SemQL [147] or AST tree [34, 528].

4.3.2 Pre-training Model

The left part of Figure 8.1 presents an overview of GAP in the pre-training stage. Given
an utterance U and schema S, GAP Model takes as input the concatenation of U and
the column names c in S in the following format X “ {<s> U <col> c1 <col> c2 ...

<col> c|C| </s>}, where ci denotes the i-th column in schema S. With the 12-layer trans-
formers, each token in the input can be encoded as contextual representations, denoted as h.
For different learning objectives, the representations are utilized by different decoders. To
jointly learn contextual representations for utterances and schemas and mitigate the three
pain points discussed in the intro, we leverage four learning objectives in the pre-training:
Besides the Masked Language Model (MLM), we propose learning objectives including
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Column Prediction (CPred), Column Recovery (CRec), and SQL Generation (GenSQL).
Multi-task learning is leveraged for these learning objectives,

Column Prediction (CPred): The Column Prediction learning objective encourages
the model to capture the alignment signals between the utterance and schema, by pre-
dicting whether a column is used in the utterance or not. An illustration is shown in the
pink component of Figure 8.1. Specifically, based on the representations obtained from
the transformer encoder, a two-layer MLP is applied on each column representation gcol,
which is obtained from the output of an average pooling layer that aggregates all sub-
tokens of the corresponding column. Afterward, a sigmoid activation function is applied to
obtain the probability that the corresponding column is mentioned in the utterance. The
GAP Model maximizes PθencpYc|Xq where Yc is a 0/1 label for a column and X is in its
unmasked version.

Column Recovery (CRec): The Column Recovery learning objective strengthens the
model’s ability to discover the connections between the cell values and the column names,
by recovering the column name based on a sampled cell value. For example, as shown
in the left yellow part of Figure 8.1, the model recovers the column name job from cell
value manager. Generally, the transformer decoder recovers column names based on two
information sources: one is the actual cell value, and the other one is the column name
mention in the utterance. We design the following rules for the value replacement:

• If a column is not mentioned in the utterance, we will replace the column name with
its cell value with a probability of 0.5. In this case, the column name will be recovered
from cell value without other contextual information.

• If a column is mentioned, we will directly replace the column name with its cell value.
In this case, the model can leverage the contextual information from the utterance
and the cell value to recover the column name.

SQL Generation (GenSQL): This learning objective is directly related to the down-
stream task. Based on the representation from the transformer encoder, the GAP Model de-
coder maximizes pdecpysql|hq. This learning target encourages the model to learn to compose
complex SQL that requires logical reasoning, considering that there are a large number of
sophisticated SQLs in crawled data. For example, the GAP Model decoder needs to gen-
erate the column in the appropriate position such as in the ORDER BY clause or WHERE clause,
instead of just predicting the column is used or not. Specifically, the GAP Model decoder
emits the target SQL token by token with a close vocabulary set, which is composed of the
SQL keywords vocabulary and column names. The embeddings of the SQL keywords are
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randomly initialized and trained during the pre-training phase. The column representa-
tions are obtained in the same way as the one used in Column Prediction learning objective,
by averaging the column’s sub-tokens representations. At each decoding step, the decoder
generates a hidden vector and then a dot-product operation is applied to it and the target
vocabulary representations, yielding a probability distribution over the vocabulary set.

Masked Language Model(MLM): We use the standard MLM objective, with a masking
rate of 35% sub-tokens in the whole input sequence, including the utterance and schema.
Based on the representation from transformer encoder, GAP Model employs a trans-
former decoder to maximize pθpx|xmq on large-scale utterance-schema pairs, where xm is
the masked version of x.

4.3.3 Pre-training Data Generation

As discussed, previous pre-training approaches such as TaBERT [528] and TAPAS [168]
use the surrounding texts of the tables as a proxy of natural language utterance. However,
those texts are noisy and sometimes are not directly related to the table contents. In the
downstream task, the input texts are usually utterances/user queries, which are short and
highly dependent on the schema and contents of the structured data. In order to minimize
the gap between pre-training and downstream tasks, we adopt a state-of-the-art pre-trained
sequence-to-sequence model, such as BART, to generate high-quality utterances based on
crawled SQLs or structured tables.

As shown in the right part of Figure 8.1, we design two different models, namely
SQL-to-Text generation model and Table-to-Text generation model, for handling the two
different inputs. Specifically, the SQL-to-text generation model takes the SQL as input
and generates the utterance that explains the query intent. The other model, the Table-to-
Text generation model, generates utterances based on a set of sampled column names and
cell values from tables. In this way, we can generate utterances interrelated with tables
without composing queries that might be suspicious.

SQL-to-Text Generation: We crawl 30K SQLs from GitHub.1 To generate utterances
for these SQL queries, we train a SQL-to-Text model on the Spider dataset. The input
is the original SQL and it is directly tokenized by the BART tokenizer without additional
pre-processing. After finetuning BART, the model can generate high-quality utterances
logically consistent with the input SQL, achieving a 0.1934 BLEU score on the development
set. Then we use the model to generate utterances for crawled SQLs. We further extract

1https://github.com
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columns and tables in each SQL as positive schema candidates, denoted as schemapos.
We also sample columns and tables from the pool which are extracted from other SQLs
as negative candidates, denoted as schemaneg. The final schema is composed of these
two parts. The utterance-schema-SQL triples are then collected for the GenSQL learning
objective in the pre-training phase.

Table-to-Text Generation: Generating utterances from tables is different because query
intents are not given. Instead of synthesizing noisy SQLs and then translating into nat-
ural language utterances, we propose a Table-to-Text generation model that can directly
transform a set of column names and cell values into user queries without query intent
constraints. Specifically, we sample column names and cell values (both are referred to as
candidates) from tables. For example, based on the table in the right part of Figure 8.1,
we can sample columns Year, Film and Result, and a cell value Nominated. We then lin-
earize the sampled candidates into {column name | associated cell value list} and
concatenate them into a sequence, separated by <sep> token. Furthermore, to control the
complexity and diversity of the generated text, we integrate three types of control codes
into the model input:

• Aggregator-based control code: Including COUNT, MAX, MIN, AVG, and SUM. For the
first two sampled columns, we randomly sample an aggregator for each with the
probability γ1 (we use γ1 as 0.5) if the column type matches with the selected aggre-
gator, e.g., aggregator SUM should be applied on the numerical type column. If the
control codes are sampled, they will be appended to the associated cell value list of
the corresponding column.

• Structure control code: Including IN, NOT IN, INTERSECT, UNION, and EXCEPT. For
each example, with a probability of γ2 (we use γ2 as 0.35), we randomly sample one
of them with uniform distribution. Otherwise, NONE is used. This control code is
used as the first item of the input sequence.

• Order-based control code: We add {LIMIT : number} as a part of the control code,
which is usually used in an ORDER BY based query. With this control code, the
generated utterances usually contain phrases that constrain the number of query
results should be returned, e.g., Show the name of aircrafts with top three lowest
speed..

We fine-tune a BART model on Spider dataset to create the generator. To align
with our designed input, we convert the SQL into the format we expected. We extract
all the columns and their associated aggregators and values from the SQL. We also obtain
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any special control codes that appear in the SQL. After fine-tuning, the model achieves
0.1821 BLEU score on the development set. Afterward, we apply the finetuned model
to the crawled tables and generate high-quality utterances. The utterance-schema pairs
are collected for the learning objectives including MLM, CPred, and CRec in pre-training
phase.

For the pre-training step, we need to decide whether a column is mentioned in the
utterance or not. To create the label for this, we directly regard all the sampled columns
to have a positive label. This is based on the assumption that the generation model uses
all the columns to synthesize the utterance, and does not have the hallucination issue that
models generate some columns names or cell values that are not presented in the input.

4.4 Experimental Setup

4.4.1 Pre-training Data

Utterance-Table Pairs: We extract the tables from English Wikipedia. We further apply
the following heuristic strategies to pre-process the extracted tables: (1) Removing tables
with less than 4 columns; (2) Removing tables with less than 3 rows; (3) Removing columns
whose names have more than 10 tokens; (4) Removing columns whose cell values have more
than 50% empty string; (5) Filtering cell values with more than 5 tokens or containing any
pre-defined non-ASCII characters. After the pre-processing, we obtain 500K tables.

For each table, we then randomly sample the column names, cell values, and control
codes as the Table-to-Text generation model input to produce the utterances. We apply
the following strategies to sample inputs: (1) We randomly generate an integer from 2 to
6, denoting the number of columns we will sample; (2) We sample the wildcard ˚ with
probability of 0.2; (3) We sample one of the structure control codes with a probability of
0.35; (4) We sample the order-based control code with a probability of 0.25; (5) For the first
two sampled columns, we randomly sample one of the aggregators with a probability of
0.5; (6) For each column without any associated aggregator-based control code, we sample
one value from that column with a probability of 0.4. We then generate 4 instances per
table and we finally obtain 2M training instances.

Utterance-Schema-SQL Triples: We crawl the SQL from GitHub repositories if the
SQL can be parsed by one of the SQL parsers: moz-sql-parser2 and sqlparse.3 We apply

2https://github.com/mozilla/moz-sql-parser
3https://github.com/andialbrecht/sqlparse

40

https://github.com/mozilla/moz-sql-parser
https://github.com/andialbrecht/sqlparse


the trained SQL-to-Text generation model to the SQL and obtain 30K utterance-SQL
pairs. To obtain the schema, for each SQL, we extract the table names and column names
from the SQL as positive candidates and randomly sample table names and column names
from other SQL as negative candidates. The combination of these two components are
regarded as the associated schema. We then obtain utterance-schema-SQL triples for
GenSQL learning objective training.

4.4.2 Training Details

In the pre-training, we train our GAP Model with the underlying transformers initialized
with BART [233] model. During the fine-tuning phase, we only leverage the encoder com-
ponent of the GAP Model with 12-layer transformers as the contextual encoder for the
semantic parsers. As discussed in the previous section, each epoch contains 2M utterance-
table pairs and 30K utterance-schema-SQL triples. We train the GAP Model with
multi-task training strategies: 30K utterance-schema-SQL triples are for GenSQL learning
objective and 2M utterance-table pairs are evenly split for the other three learning objec-
tives, including MLM, CPred and CRec. We train the model for 6 epochs with a batch
size of 64 on 4 Tesla V100 GPUs. The model is optimized with Adam optimizer [211] with
a learning rate of 1e ´ 5 and linearly decayed learning rate schedule.

4.4.3 Tasks, Datasets and Baseline Systems

For the downstream tasks, we conduct experiments on two datasets to show the effective-
ness of our framework.

Spider: Spider dataset [542] is a text-to-SQL dataset with 10,181 annotated parallel
utterance-database-SQL triples. Different from WikiSQL, the examples in the Spider
dataset is more complex, involving nested query, set operation, and multiple tables join-
ing. The exact set match accuracy is the evaluation metric. The test set is not publicly
available. For the baseline parser, we use RAT-SQL [463] model as our baseline system
to report the end-to-end performance. RAT-SQL model is the state-of-the-art parser in
the Spider dataset, which leverages the 8-layer relation-aware transformer to model the
connections among tables and utterances. To show that the GAP Model can be plugged
into different neural semantic parsers, we further use IRNet [147] model for ablation study.
IRNet semantic parser is based on SemQL grammar, which is an effective intermediate rep-
resentation for SQL. IRNet is efficient in terms of training time, which requires 1 day for
training, while RAT-SQL model requires approximately 5 days for training. We augment
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the encoder part of our GAP Model to these base parsers, by replacing their original
contextual encoders.

Criteria-to-SQL: Criteria-to-SQL is a dataset to facilitate retrieving eligible patients
for a trial from the electronic health record database. The task is to translate the eligibility
criteria to executable SQL queries. For example, a criteria statement any infection requiring
parenteral antibiotic therapy or causing fever (i.e., temperature ą 100.5f ) ď 7 days prior
to registration is required to be interpreted into SQL SELECT id FROM records WHERE

active infection = 1 AND (parenteral antibiotic therapy = 1 OR causing fever

= 1 OR temperature ą 100.5). The dataset contains 2003 annotated examples, and the
evaluation metrics are the SQL accuracy and execution accuracy. Our baseline system for
Criteria-to-SQL dataset is adopted from [546], a slot-filling based model that takes
advantage of the prior grammar knowledge to design the sketch. We denote this system as
YXJ model. The system uses the BERT-base as the contextual encoder.

4.5 Results

4.5.1 Spider Results

Table 4.2 shows the end-to-end results on Spider dataset. Based on the codebase provided
by [463],4 we replicate the RAT-SQL + BERT large model, achieving 0.665 exact set match
accuracy on the development set. This matches the RAT-SQL V2 + BERT but still worse
than its V3. By replacing the BERT-large with the encoder of BART,5 we obtain accuracy
of 0.676 on the development set and 0.651 on test set. The BART Encoder based model
achieves comparable results with RAT-SQL V3 + BERT large model on the hidden test
set with less encoder layer (BART encoder has 12-layer transformers while BERT large
model has 24-layer transformers). With our GAP Model, the RAT-SQL can be further
augmented, benefiting from enhanced contextual encoding ability. The model achieves an
accuracy of 0.718 on the development set and 0.697 on the hidden test set. This confirms
the effectiveness of the Generation-augmented pre-training. This performance achieves
the state-of-the-art performance on the hidden test set with fewer model parameters on
Spider dataset at the time of writing. Comparing scores of the development set and the
test set, we observe BART based models (+BARR Encoder or GAP Model) have better
generalization ability on the hidden test, considering that the gap between the development

4https://github.com/microsoft/rat-sql
5The encoder of BART has 12-layer transformers while BERT-large has 24-layer transformers.
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Model Dev Test

EditSQL + BERT [560] 0.576 0.534
IRNet + BERT [147] 0.619 0.547
RyanSQL V2 + BERT [72] 0.706 0.606
RAT-SQL V2 + BERT [463] 0.658 0.619
AuxNet + BART 0.700 0.619
ShadowGNN: - 64.8
YCSQL + BERT: - 65.3
RAT-SQL V3 + BERT [463] 0.697 0.656
RAT-SQL + STRUG [99] 0.727 -
RAT-SQL + GraPPa [537]: 0.734 0.696

RAT-SQL + BERT (our replicate) 0.665 -
RAT-SQL + BART Encoder (ours) 0.676 0.651
RAT-SQL + GAP Model (ours) 0.718 0.697

Table 4.2: Exact set match accuracy on the public development set and hidden test set of
Spider. † denotes that the algorithms are concurrent work and leaderboard results are
public after our paper submission.

set and test set is smaller than the model such as RAT-SQL V3 + BERT. Concurrently,
[537] used synchronized context-free grammar to generate synthetic data for pre-training;
[99] leveraged existing large-scale data-to-text dataset for enhancing the structured data
representations. Both of them achieve comparable performance as ours, but require more
model parameters (24-layer transformers in the pre-trained model) and extra crowd and
expert annotation efforts.

RAT-SQL Easy Medium Hard Extra All

+BERT 0.830 0.713 0.583 0.384 0.656
+BART Encoder 0.826 0.711 0.581 0.370 0.651
+GAP Model 0.872 0.751 0.637 0.412 0.697

Table 4.3: Breakdown results on Spider hidden test set.

Based on the complexity of the SQL, the examples in Spider are classified into four
types: Easy, Medium, Hard, and Extra Hard. Here, we provide a breakdown analysis on
the Spider test set, as shown in Table 4.3. The BERT results are adopted from [463],
which is the state-of-the-art system on Spider dataset. Comparing the RAT-SQL+BERT
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model and RAT-SQL+BART Encoder model, we can find that the performance of RAT-
SQL+BART is comparable with the state of the art, but with fewer model parameters (12-
layer transformers in BART encoder v.s. 24-layer transformers in BERT-large encoder).
We also find that the RAT-SQL+GAP Model Encoder can have significant improvement
over its baseline RAT-SQL+BART Encoder on each hardness level.

RAT-SQL Selection Inferring Composing

+BART Encoder 14 10 16
+GAP Model 5 6 7

Table 4.4: Error counts of different types for RAT-SQL+BART Encoder and RAT-
SQL+GAP Model Encoder.

For comparison, we sample 40 examples from Spider development set which the base-
line system RAT-SQL+BART Encoder fails in. Because we focus more on the following
three error types as we discussed in the introduction part: column selection error, col-
umn inferring error and SQL composing error, we ignore other error types during the
sampling. We analyze the predictions of both the RAT-SQL+BART Encoder and RAT-
SQL+GAP Model Encoder. The statistics are shown in Table 4.4. The numbers in
the Table represent the error count of each error type. Based on the analysis results, we
can find that the GAP Model Encoder can alleviate all three error types, especially the
column selection and SQL composing error.

4.5.2 Criteria-to-SQL Results

Model SQL Acc. Exec. Acc.

SQLNet 0.132 0.139
YXJ [546] 0.142 0.158

YXJ + Roberta (ours) 0.294 0.538
YXJ + BART Encoder (ours) 0.307 0.558
YXJ + GAP Model (ours) 0.327 0.594

Table 4.5: Test results of Criteria-to-SQL. The SQL accuracy and the execution accuracy
are reported.

Table 4.5 shows the test results of the Criteria-to-SQL dataset. The YXJ model [546]
is built upon BERT-base encoder and sketch-based decoder, achieving the state-of-the-art
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performance of 0.142 SQL accuracy and 0.158 execution accuracy. We use this system
as our baseline. Instead of using the BERT encoder, we augment the model with more
powerful pre-trained language models such as RoBERTa and BART. These two pre-trained
language models yield significant improvement over the BERT baseline, achieving 0.294
and 0.307 on the SQL accuracy, respectively. After executing the generated SQL queries
against the database, these two models obtain 0.538 and 0.558 execution accuracy, re-
spectively. By replacing the BART encoder with GAP Model, the parser obtains 2.0%
improvement on the SQL accuracy and 3.6% improvement on the execution accuracy,
which registers new state-of-the-art performance. This also confirms our assumption that
the parsers can benefit from better quality of contextual encoders that jointly reason over
utterances and schemas.

4.6 Discussion and Analysis

4.6.1 Analysis for Spider Dataset

We further select examples from the Spider development set, presented in Table 4.6,
to show the improved prediction of our model. The baseline system refers to RAT-
SQL+BART Encoder model and our model refers to the RAT-SQL+GAP Model En-
coder. Overall, our model achieves better column selection performance, either explicit
matching between the schema and utterance (e.g. in Example 1, how much does it weigh
should match weight instead of pet age), or implicit matching (e.g. in Example 4, ar-
riving in ASY Airport should match DestAirport instead of Airline). Furthermore, our
model can handle complex questions better (e.g. in Example 5, our model can generate
HAVING avg(LifeExpectancy) < 72 condition).

4.6.2 Impact of Learning Objectives

We investigate four different learning objectives in this work, namely Masked Language
Model (MLM), Column Prediction (CPred), Column Recovery (CRec) and SQL Genera-
tion (GenSQL). We conduct the ablation study on Spider development set to compare the
first three learning objectives under two different conditions: One is with GenSQL learning
objective and the other one is without. We use the IRNet based model in the ablation
study because it is more efficient in training than RAT-SQL based model, and it can achieve
comparable performance. We also want to show that our GAP Model is plugin-able and
can augment different semantic parsers. Table 4.7 shows the ablation results.
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Example 1
Utterance: What type of pet is the youngest animal, and how much does it weigh?
Baseline: SELECT PetType, pet age FROM Pets ORDER BY pet age ASC LIMIT 1

Our Model: SELECT PetType , weight FROM pets ORDER BY pet age ASC LIMIT 1

Example 2
Utterance: What is the average and maximum age for each pet type?
Baseline: SELECT T2.PetType, Avg(T3.Age), Max(T2.pet age) FROM Has Pet AS T1 JOIN Pets

AS T2 ON T1.pet id = T2.pet id JOIN Student AS T3 ON T1.student id = T3.student id

GROUP BY T2.PetType

Our Model: SELECT avg(pet age) , max(pet age) , pettype FROM pets GROUP BY pettype

Example 3
Utterance: What are the names of the singers who performed in a concert in 2014?
Baseline: SELECT T2.Name FROM singer in concert AS T1 JOIN singer AS T2 ON

T1.singer id = T2.singer id JOIN concert AS T3 ON T1.convert id = T3.concert id WHERE

T1.concert ID = 2014

Our Model: SELECT T2.name FROM singer in concert AS T1 JOIN singer AS T2 ON

T1.singer id = T2.singer id JOIN concert AS T3 ON T1.concert id = T3.concert id WHERE

T3.year = 2014

Example 4
Utterance: Count the number of United Airlines flights arriving in ASY Airport.
Baseline: SELECT Count(*) FROM airlines AS T1 JOIN flights AS T2 ON T2.Airline =

T1.uid WHERE T1.Airline = ’United Airlines’ AND T2.Airline = ’ASY’

Our Model: SELECT count(*) FROM AIRLINES AS T1 JOIN FLIGHTS AS T2 ON T2.Airline =

T1.uid WHERE T1.Airline = ’United Airlines’ AND T2.DestAirport = ’ASY’

Example 5
Utterance: What are the different continents and the total popuation and average life expectancy
corresponding to each, for continents that have an average life expectancy less than 72?
Baseline: SELECT Count(*), Avg(LifeExpectancy), Avg(LifeExpectancy) FROM country

WHERE LifeExpectancy < 72 GROUP BY country.Continent

Our Model: SELECT sum(Population) , avg(LifeExpectancy) , Continent FROM country

GROUP BY Continent HAVING avg(LifeExpectancy) < 72

Example 6
Utterance: Give the ids of documents that have between one and two paragraphs.
Baseline: SELECT T2.Document ID FROM Paragraphs AS T1 JOIN Documents AS T2 ON

T1.Document ID = T2.Document ID GROUP BY T1.Document ID HAVING Count(*) < 2

Our Model: SELECT Document ID FROM Paragraphs GROUP BY Document ID HAVING count(*)

BETWEEN 1 AND 2

Table 4.6: Selected Examples.
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Model Dev. Acc.

IRNet + BERT (Ours) 0.620
IRNet + TaBERT 0.652
IRNet + RoBERTa (Ours) 0.658

Learning Objectives w/o GenSQL w/ GenSQL

baseline 0.680 0.699

MLM 0.697 0.717
CPred 0.699 0.710
CRec 0.705 0.719
MLM + CPred 0.704 0.716
MLM + CRec 0.711 0.728
MLM + CPred+ CRec 0.715 0.723

Table 4.7: Ablation study on different learning objectives.

The first section of the Table 4.7 shows the results of three baseline systems that are
based on IRNet model: IRNet + BERT, IRNet + TaBERT and IRNet + RoBERTa. These
results confirm that improving the encoder quality of the semantic parser is a promising
direction to pursue.

In the second section of the Table 4.7, we present detailed ablation study results. With-
out the GenSQL learning objective, compared with baseline (IRNet + BART Encoder), the
three learning objectives (MLM, CPred, CRec) can improve the performance of the parser,
with a 1.7%, 1.9% and 2.5% increase, respectively. This indicates that these learning ob-
jectives improve the encoding quality of the transformer encoder. Based on the standard
unsupervised learning objective MLM, we observe that the CPred and CRec learning ob-
jectives are helpful, which lead the model to the accuracy of 0.704 and 0.711, respectively.
When we further combine the three learning objectives, the semantic parser’s effectiveness
is further boosted, achieving the accuracy of 0.715, a 3.5% increase over its baseline.

With the GenSQL learning objective, the comparison of these three learning objec-
tives is based on a higher baseline with the accuracy of 0.699. This indicates that the
GenSQL learning objective is valuable. Under this experimental condition, we observe
that the MLM learning objective brings consistent improvement over the baseline with
1.8% increase in accuracy. For the CPred and CRec, the accuracy is boosted by 1.1%
and 2.0%, respectively. When we combine the MLM with the CPred, we only observe
comparable results with the MLM, without further significant improvement. However, the
CRec learning objective brings the MLM a step forward, achieving 0.728 on the accuracy.
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The combination of the three learning objectives under w/ GenSQL condition improves
2.4% on accuracy over the baseline. These results show that GenSQLand CRecare two
salient learning objectives, leading the model to obtain an accuracy of more than 0.720,
registering a new state-of-the-art performance on public development set on Spider.

4.6.3 Analysis of Pre-Training Inputs

Learning Objective Dev. Acc.

baseline 0.680

MLM 0.697
MLM w/o utterance 0.678 (-1.7%)
MLM w/o schema 0.679 (-1.6%)
MLM (surrounding text) 0.679 (-1.6%)

CRev 0.705
CRev w/o utterance 0.688 (-1.7%)
CRev (surrounding text) 0.697 (-0.8%)

Table 4.8: The ablation study on different inputs for the pre-training based on the IRNet
based model.

Whether to use utterance in pre-training: To prove that the utterance is beneficial
in the pre-training, we conduct an ablation study by comparing the pre-trained models
which are trained with and without utterance. Our experiments are based on the MLM
and CRec learning objectives because the other two (CPred and GenSQL) require the
utterance as the input based on their task definitions. Similarly, we use IRNet as our base
parser.

The experimental results on Spider development set are shown in Table 4.8. As we
can see, if the GAP Model is trained with MLM learning objective without utterances
as part of the input, the semantic parser performance drops to 0.678 from 0.697, which is
lower than the baseline (0.680) by 0.2%. For the CRec learning objective, the accuracy
drops from 0.705 to 0.688, a 1.7% decrease, if the GAP is trained without utterance. Even
though, CRec learning objective trained without utterances is still helpful, which improves
the baseline model by 0.8%. This aligns with our analysis of the CRec learning objective:
model can leverage two information sources to recover the column name. If there are no
utterances, the model can only use the signals the cell values provide to recover the column
name. Furthermore, when the model can access more contextual information, which is
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provided by the utterance, the model can learn better encoding ability by learning to align
the cell values and the column names in the utterances.

Whether to use schema in pre-training: Another input choice is to only keep the
utterances in the pre-training. This experimental setting is to justify that the model’s
improvement is not solely from better utterance representation. This input strategy is
only applicable to the MLM learning objective as the schema is a necessary component
for other learning objectives. As shown in the MLM w/o schema entry in Table 4.8, the
model performance drops to 0.679, indicating that learning joint utterance and schema
representation is necessary for this task.

Whether to use the generated text or the surrounding text of the table: The
value of the generated text is already justified by the learning objectives such as CPred or
GenSQL, because the definitions of these learning objectives require the generated utter-
ances that cannot be obtained from the surrounding text of the table (denoted as surround-
ing text). Here, we further rationalize our generation-augmented framework on MLM and
CRec learning objectives by replacing the generated text with the surrounding text.

The results are presented in the entries of MLM (surrounding text) and CRec (sur-
rounding text) of Table 4.8. Overall, we can observe that the generation technique is
superior to using the surrounding text as a proxy in the MLM and CRec learning objec-
tives, considering the models drop 1.6% and 0.8% on the accuracy, respectively. We also
find that the CReclearning objective is more robust for pre-training, given that the fine-
tuned model performance gets less influence compared with the one with MLM learning
objective.

4.6.4 Analysis of Pre-trained Model

As the GAP Model provides gains on the text-to-SQL benchmarks, understanding what
they learn is important. Following previous work [268, 169, 170], we design a probing task,
Column-Value Matching (CVM), to examine the extent to which the model can align the
cell values in the utterances and the columns, i.e., the probes need to predict which column
the cell value belongs to.

Specifically, given the column spans and cell value spans (part of utterances), we can
obtain their representations with contextual encoders such as BART or GAP Model En-
coder, and an average pooling layer. We further compress the representations into another
space with linear transformation, denoted as tcju and vi, respectively. The probability of
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selecting column cj given cell value vi is determined by ppcj|viq9exppvicjq. During train-
ing, the parameters of language model encoders are fixed. Here, we conduct the probing
task training on the Spider dataset.

Note that the unavailability of span annotations of cell values in Spider dataset leads
to further data pre-processing. Since human annotation is costly, we try to annotate the
spans by automatically aligning the cell values in SQL to the utterance tokens. For a cell
value used in SQL, assuming it has n tokens, we obtain all n-grams from the utterance,
and select the best candidate based on the fuzzy matching score (determined by Leven-
shtein Distance) when the score is higher than a threshold (we use 60 in our experiment).6

For integers in the SQL, we also leverage a dictionary to map it to English words when
searching for their matches. If n-gram candidates are founded, the cell value will be used
in the probing experiment. During the training, the encoder (e.g. BART Encoder or
GAP Model Encoder) is fixed and only the parameters of probes are tune. The probes
are optimized with Adam optimizer with cross-entropy loss function. The learning rate is
1e ´ 5 and the model is trained for 100 epochs on Spider dataset with a batch size of 96.
The evaluation metric is instance-level accuracy, i.e., the prediction is correct if every cell
value used in the utterance is matched with the correct column.

Model Match Acc.

BART Encoder 23.17

GAP Model (MLM) Encoder 32.72
GAP Model (MLM + CRec) Encoder 36.78
GAP Model (MLM + CPred) Encoder 44.51

Table 4.9: Results of Value-Column Matching Probing Task.

The results are shown in Table 4.9. We report the accuracy of the BART Encoder model
as our probing baseline, which achieves the accuracy of 23.17%. With GAP Model (MLM)
Encoder, the accuracy raises to 32.72%, indicating that the model learns to align the cell
values and column names implicitly. By providing stronger supervision, the MLM+CRec
based model and MLM+CPred based models obtain higher accuracy (36.78% and 44.51%),
showing that the models capture more alignment signals, contributing to better semantic
parser performance.

6https://github.com/seatgeek/fuzzywuzzy
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4.7 Summary

In this chapter, we spot three pain points in the Text-to-SQL semantic parsing task, and
propose a generation-augmented pre-training framework to alleviate them, with four differ-
ent learning objectives. Experimental results on Spider dataset and Criteria-to-SQL
dataset show the effectiveness of this framework, which achieves state-of-the-art perfor-
mance on both datasets.
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Chapter 5

Aligning Cross-Lingual Entities with
Multi-Aspect Information

Multilingual knowledge graphs (KGs), such as YAGO and DBpedia, represent entities in
different languages. The task of cross-lingual entity alignment is to match entities in a
source language with their counterparts in target languages. In this work, we investigate
embedding-based approaches to encode entities from multilingual KGs into the same vec-
tor space, where equivalent entities are close to each other. Specifically, we apply graph
convolutional networks (GCNs) to combine multi-aspect information of entities, including
topological connections, relations, and attributes of entities, to learn entity embeddings.
To exploit the literal descriptions of entities expressed in different languages, we propose
two uses of a pre-trained multilingual BERT model to bridge cross-lingual gaps. We fur-
ther propose two strategies to integrate GCN-based and BERT-based modules to boost
performance. Extensive experiments on two benchmark datasets demonstrate that our
method significantly outperforms existing systems. This work is based on:

• Hsiu-Wei Yang*, Yanyan Zou*, Peng Shi*, Wei Lu, Jimmy Lin, Xu Sun. Aligning
Cross-Lingual Entities with Multi-Aspect Information. In Proceedings of EMNLP
(Empirical Methods in Natural Language Processing), November, 2019.

5.1 Introduction

A growing number of multilingual knowledge graphs (KGs) have been built, such as DBpe-
dia [31], YAGO [431, 378], and BabelNet [311], which typically represent real-world knowl-
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Inter-Lingual Link Missing Inter-Lingual Link

KG-English KG-Japanese

e1

e3 u2
u3

almaMater country almaMatercountry

e2

u1

English: University of Toronto Japanese: トロント大学
Attribute Value Attribute Value

Name University of Toronto 大学名 トロント大学
Type Public University 学校種別 州立
Found
Date

1827-03-15 創立年 1827

Campus Ontario キャンパ
ス

セントジョージ
（トロント）

Former
Name

King’s College 旧名 キングスカレッ
ジ

...
...

Descriptions
The University of Toronto is
a public research university in
Toronto, Ontario, Canada ¨ ¨ ¨

トロント大学 は、オンタリ
オ州、トロントに本部を置く
カナダの州立大学である ¨ ¨ ¨

Figure 5.1: An example fragment of two KGs (in English and Japanese) connected by an
inter-lingual link (ILL). In addition to the graph structures (top) consisting of entity nodes
and typed relation edges, KGs also provide attributes and literal descriptions of entities
(bottom).

edge as separately-structured monolingual KGs. Such KGs are connected via inter-lingual
links (ILLs) that align entities with their counterparts in different languages, exemplified
by Figure 5.1 (top). Highly-integrated multilingual KGs contain useful knowledge that
can benefit many knowledge-driven cross-lingual NLP tasks, such as machine translation
[302] and cross-lingual named entity recognition [94]. However, the coverage of ILLs among
existing KGs is quite low [56]: for example, less than 20% of the entities in DBpedia are
covered by ILLs. The goal of cross-lingual entity alignment is to discover entities from dif-
ferent monolingual KGs that actually refer to the same real-world entities, i.e., discovering
the missing ILLs.

Formally, in a multilingual knowledge graph G, we use L to denote the set of languages
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that G contains and Gi “ tEi, Ri, Ai, Vi, Diu to represent the language-specific knowledge
graph in language Li P L. Ei, Ri, Ai, Vi and Di are sets of entities, relations, attributes,
values of attributes, and literal descriptions, each of which portrays one aspect of an entity.
The graph Gi consists of relation triples ⟨hi, ri, ti⟩ and attribute triples ⟨hi, ai, vi⟩ such that
hi, ti P Ei, ri P Ri, ai P Ai and vi P Vi. Each entity is accompanied by a literal description
consisting of a sequence of words in language Li, e.g., ⟨hi, dh,i⟩ and ⟨ti, dt,i⟩, dh,i, dt,i P Di.

Given two knowledge graphs G1 and G2 expressed in source language L1 and target lan-
guage L2, respectively, there exists a set of pre-aligned ILLs I pG1,G2q “ tpe, uq |e P E1, u P

E2u which can be considered training data. The task of cross-lingual entity alignment is to
align entities in G1 with their cross-lingual counterparts in G2, i.e., discover missing ILLs.

Traditional methods for this task apply machine translation techniques to translate
entity labels [428]. The quality of alignments in the cross-lingual scenario heavily depends
on the quality of the adopted translation systems. In addition to entity labels, existing
KGs also provide multi-aspect information of entities, including topological connections,
relation types, attributes, and literal descriptions expressed in different languages [31, 496],
as shown in Figure 5.1 (bottom). The key challenge of addressing such a task thus is how to
better model and use provided multi-aspect information of entities to bridge cross-lingual
gaps and find more equivalent entities (i.e., ILLs).

Recently, embedding-based solutions [59, 437, 575, 475, 56] have been proposed to unify
multilingual KGs into the same low-dimensional vector space where equivalent entities are
close to each other. Such methods only make use of one or two aspects of the afore-
mentioned information. For example, [575] relied only on topological features while [437]
and [475] exploited both topological and attribute features. [56] proposed a co-training
algorithm to combine topological features and literal descriptions of entities. However,
combining these multi-aspect information of entities (i.e., topological connections, rela-
tions and attributes, as well as literal descriptions) remains under-explored.

In this work, we propose a novel approach to learn cross-lingual entity embeddings by
using all aforementioned aspects of information in KGs. To be specific, we propose two
variants of GCN-based models, namely Man and Hman, that incorporate multi-aspect
features, including topological features, relation types, and attributes into cross-lingual
entity embeddings. To capture semantic relatedness of literal descriptions, we fine-tune the
pre-trained multilingual BERT model [103] to bridge cross-lingual gaps. We design two
strategies to combine GCN-based and BERT-based modules to make alignment decisions.
Experiments show that our method achieves new state-of-the-art results on two benchmark
datasets.
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5.2 Related Work

KG Alignment. Research on KG alignment can be categorized into two groups: mono-
lingual and multilingual entity alignment. As for monolingual entity alignment, main
approaches align two entities by computing string similarity of entity labels [394, 458, 312]
or graph similarity [367, 344, 22]. Recently, [452] proposed an embedding-based model
that incorporates attribute values to learn the entity embeddings.

To match entities in different languages, [474] leveraged only language-independent
information to find possible links cross multilingual Wiki knowledge graphs. Recent studies
learned cross-lingual embeddings of entities based on TransE [36], which are then used to
align entities across languages. [56] designed a co-training algorithm to alternately learn
multilingual entity and description embeddings. [475] applied GCNs with the connectivity
matrix defined on relations to embed entities from multilingual KGs into a unified low-
dimensional space.

In this work, we also employ GCNs. However, in contrast to [475], we regard relation
features as input to our models. In addition, we investigate two different ways to capture
relation and attribute features.

Multilingual Sentence Representations. Another line of research related to this work
is aligning sentences in multiple languages. Recent works [166, 79, 117] studied cross-
lingual sentence classification via zero-shot learning. [198] proposed a sequence-to-sequence
multilingual machine translation system where the encoder can be used to produce cross-
lingual sentence embeddings [15]. Recently, BERT [103] has advanced the state-of-the-art
on multiple natural language understanding tasks. Specifically, multilingual BERT enables
learning representations of sentences under multilingual settings. We adopt BERT to
produce cross-lingual representations of entity literal descriptions to capture their semantic
relatedness, which benefits cross-lingual entity alignment.

5.3 Models

In this section, we first introduce two GCN-based models, namely Man and Hman, that
learn entity embeddings from the graph structures. Second, we discuss two uses of a mul-
tilingual pre-trained BERT model to learn cross-lingual embeddings of entity descriptions:
PointwiseBert and PairwiseBert. Finally, we investigate two strategies to integrate
the GCN-based and the BERT-based modules.
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5.3.1 Cross-Lingual Graph Embeddings

Graph convolutional networks (GCNs) [213] are variants of convolutional networks that
have proven effective in capturing information from graph structures, such as dependency
graphs [150], abstract meaning representation graphs [149], and knowledge graphs [475].
In practice, multi-layer GCNs are stacked to collect evidence from multi-hop neighbors.
Formally, the l-th GCN layer takes as input feature representations Hpl´1q and outputs
Hplq:

Hplq
“ ϕ

´

D̃´ 1
2 ÃD̃´ 1

2Hpl´1qW plq
¯

(5.1)

where Ã “ A ` I is the adjacency matrix, I is the identity matrix, D̃ is the diagonal node
degree matrix of Ã, ϕp¨q is ReLU function, and W plq represents learnable parameters in the
l-th layer. Hp0q is the initial input.

GCNs can iteratively update the representation of each entity node via a propagation
mechanism through the graph. Inspired by previous studies [565, 475], we also adopt GCNs
in this work to collect evidence from multilingual KG structures and to learn cross-lingual
embeddings of entities. The primary assumptions are: (1) equivalent entities tend to be
neighbored by equivalent entities via the same types of relations; (2) equivalent entities
tend to share similar or even the same attributes.

Multi-Aspect Entity Features. Existing KGs [31, 431, 378] provide multi-aspect in-
formation of entities. In this section, we mainly focus on the following three aspects:
topological connections, relations, and attributes. The key challenge is how to utilize the
provided features to learn better embeddings of entities. We discuss how we construct raw
features for the three aspects, which are then fed as inputs to our model. We use Xt, Xr

and Xa to denote the topological connection, relation, and attribute features, individually.

The topological features contain rich neighborhood proximity information of entities,
which can be captured by multi-layer GCNs. As in [475], we set the initial topological
features to Xt “ I, i.e., an identity matrix serving as index vectors (also known as the
featureless setting), so that the GCN can learn the representations of corresponding entities.

In addition, we also consider the relation and attribute features. As shown in Figure
5.1, the connected relations and attributes of two equivalent entities, e.g., “University of
Toronto” (English) and “トロント大学” (Japanese), have a lot of overlap, which can ben-
efit cross-lingual entity alignment. Specifically, they share the same relation types, e.g.,
“country” and “almaMater”, and some attributes, e.g., “foundDate” and “創立年”. To
capture relation information, [395] proposed RGCN with relation-wise parameters. How-
ever, with respect to this task, existing KGs typically contain thousands of relation types
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but few pre-aligned ILLs. Directly adopting RGCN may introduce too many parameters
for the limited training data and thus cause overfitting. [475] instead simply used the
unlabeled GCNs [213] with two proposed measures (i.e., functionality and inverse func-
tionality) to encode the information of relations into the adjacency matrix. They also con-
sidered attributes as input features in their architecture. However, this approach may lose
information about relation types. Therefore, we regard relations and attributes of entities
as bag-of-words features to explicitly model these two aspects. Specifically, we construct
count-based N-hot vectors Xr and Xa for these two aspects of features, respectively, where
the pi, jq entry is the count of the j-th relation (attribute) for the corresponding entity
ei. Note that we only consider the top-F most frequent relations and attributes to avoid
data sparsity issues. Thus, for each entity, both of its relation and attribute features are
F -dimensional vectors.

Man. Inspired by [475], we propose the Multi-Aspect Alignment Network (Man) to cap-
ture the three aspects of entity features. Specifically, three l-layer GCNs take as inputs the
triple-aspect features (i.e., Xt, Xr, and Xa) and produce the representations H

plq
t , H

plq
r , and

H
plq
a according to Equation 5.1, respectively. Finally, the multi-aspect entity embedding is:

Hm “ rH
plq
t ‘ Hplq

a ‘ Hplq
r s (5.2)

where ‘ denotes vector concatenation. Hm can then feed into alignment decisions.

Such fusion through concatenation is also known as Scoring Level Fusion, which has
been proven simple but effective for capturing multi-modal semantics [43, 209, 76]. It is
worth noting that the main differences between Man and the work of [475] are two fold:
First, we use the same approach as in [213] to construct the adjacency matrix, while [475]
designed a new connectivity matrix as the adjacency matrix for the GCNs. Second, Man
explicitly regards the relation type features as model input, while [475] incorporated such
relation information into the connectivity matrix.

Hman. Note that Man propagates relation and attribute information through the graph
structure. However, for aligning a pair of entities, we observe that considering the relations
and attributes of neighboring entities, besides their own ones, may introduce noise. Merely
focusing on relation and attribute features of the current entity could be a better choice.
Thus, we propose the Hybrid Multi-Aspect Alignment Network (Hman) to better model
such diverse features, shown in Figure 5.2. Similar to Man, we still leverage the l-th layer
of a GCN to obtain topological embeddings H

plq
t , but exploit feedforward neural networks

to obtain the embeddings with respect to relations and attributes. The feedforward neural
networks consist of one fully-connected (FC) layer and a highway network layer [430]. The
reason we use highway networks is consistent with the conclusions of [306], who conducted
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Figure 5.2: Architecture of Hman.

a design space exploration of neural models for entity matching and found that highway
networks are generally better than FC layers in convergence speed and effectiveness.

Formally, these feedforward neural networks are defined as:

Sf “ ϕpW
p1q

f Xf ` b
p1q

f q

Tf “ σpW t
fSf ` btf q (5.3)

Gf “ ϕpW
p2q

f Sf ` b
p2q

f q ¨ Tf ` Sf ¨ p1 ´ Tf q

where f P tr, au and Xf refer to one specific aspect (i.e., relation or attribute) and the

corresponding raw features, respectively, W
p1,2,tq
f and b

p1,2,tq
f are model parameters, ϕp¨q is

ReLU function, and σp¨q is sigmoid function. Accordingly, we obtain the hybrid multi-

aspect entity embedding Hy “ rH
plq
t ‘ Gr ‘ Gas, to which ℓ2 normalization is further

applied.

Model Objective. Given two knowledge graphs, G1 and G2, and a set of pre-aligned entity
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Figure 5.3: Architecture overview of PointwiseBert (left) and PairwiseBert (right).

pairs I pG1,G2q as training data, our model is trained in a supervised fashion. During the
training phase, the goal is to embed cross-lingual entities into the same low-dimensional
vector space where equivalent entities are close to each other. Following [475], our margin-
based ranking loss function is defined as:

J “
ÿ

pe1,e2qPI

ÿ

pe
1

1,e
1

2qPI 1

rρphe1
, he2

q ` β

´ ρphe
1

1
, he

1

2
qs` (5.4)

where rxs` “ maxt0, xu, I
1

denotes the set of negative entity alignment pairs constructed
by corrupting the gold pair pe1, e2q P I. Specifically, we replace e1 or e2 with a randomly-
chosen entity in E1 or E2. ρpx, yq is the ℓ1 distance function, and β ą 0 is the margin
hyperparameter separating positive and negative pairs.

5.3.2 Cross-Lingual Textual Embeddings

Existing multilingual KGs [31, 311, 378] also provide literal descriptions of entities ex-
pressed in different languages and contain detailed semantic information about the entities.
The key observation is that literal descriptions of equivalent entities are semantically close
to each other. However, it is non-trivial to directly measure the semantic relatedness of
two entities’ descriptions, since they are expressed in different languages.

Recently, Bidirectional Encoder Representations from Transformer (BERT) [103] has
advanced the state-of-the-art in various NLP tasks by heavily exploiting pre-training based
on language modeling. Of special interest is the multilingual variant, which was trained
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with Wikipedia dumps of 104 languages. The spirit of BERT in the multilingual scenario
is to project words or sentences from different languages into the same semantic space.
This aligns well with our objective—bridging gaps between descriptions written in dif-
ferent languages. Therefore, we propose two methods for applying multilingual BERT,
PointwiseBert and PairwiseBert, to help make alignment decisions.

PointwiseBert. A simple choice is to follow the basic design of BERT and formulate the
entity alignment task as a text matching task. For two entities e1 and e2 from two KGs
in L1 and L2, denoting source language and target language, respectively, their textual
descriptions are d1 and d2, consisting of word sequences in two languages. The model
takes as inputs [CLS] d1 [SEP] d2 [SEP], where [CLS] is the special classification token,
from which the final hidden state is used as the sequence representation, and [SEP] is the
special token for separating token sequences, and produces the probability of classifying
the pair as equivalent entities. The probability is then used to rank all candidate entity
pairs, i.e., ranking score. We denote this model as PointwiseBert, shown in Figure 5.3
(left).

This approach is computationally expensive, since for each entity we need to consider
all candidate entities in the target language. One solution, inspired by the work of [417],
is to reduce the search space for each entity with a reranking strategy (see Section 5.3.3).

PairwiseBert. Due to the heavy computational cost of PointwiseBert, semantic
matching between all entity pairs is very expensive. Instead of producing ranking scores
for description pairs, we propose PairwiseBert to encode the entity literal descriptions
as cross-lingual textual embeddings, where distances between entity pairs can be directly
measured using these embeddings.

The PairwiseBert model consists of two components, each of which takes as input
the description of one entity (from the source or target language), as depicted in Figure 5.3
(right). Specifically, the input is designed as [CLS] d1pd2q [SEP], which is then fed into
PairwiseBert for contextual encoding. We select the hidden state of [CLS] as the textual
embedding of the entity description for training and inference. To bring the textual em-
beddings of cross-lingual entity descriptions into the same vector space, a similar ranking
loss function as in Equation 5.4 is used.

5.3.3 Integration Strategy

Sections 5.3.1 and 5.3.2 introduce two modules that separately collect evidence from knowl-
edge graph structures and the literal descriptions of entities, namely graph and textual
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embeddings. In this section, we investigate two strategies to integrate these two modules
to further boost performance.

Reranking. As mentioned in Section 5.3.2, the PointwiseBert model takes as input
the concatenation of two descriptions for each candidate–entity pair, where conceptually
we must process every possible pair in the training set. Such a setting would be cost
prohibitive computationally.

One way to reduce the cost of PointwiseBert would be to ignore candidate pairs
that are unlikely to be aligned. [371] showed that uncertainty-based sampling can provide
extra improvements in ranking. Following this idea, the GCN-based models (i.e., Man and
Hman) are used to generate a candidate pool whose size is much smaller than the entire
universe of entities. Specifically, GCN-based models provide top-q candidates of target
entities for each source entity (where q is a hyperparameter). Then, the PointwiseBert
model produces a ranking score for each candidate–entity pair in the pool to further rerank
the candidates. However, the weakness of such a reranking strategy is that performance is
bounded by the quality of (potentially limited) candidates produced by Man or Hman.

Weighted Concatenation. With the textual embeddings learned by PairwiseBert
denoted as HB and graph embeddings denoted as HG, a simple way to combine the two
modules is by weighted concatenation:

HC
“ τ ¨ HG

‘ p1 ´ τq ¨ HB (5.5)

where HG is the graph embeddings learned by either Man or Hman, and τ is a factor to
balance the contribution of each source (where τ is a hyperparameter).

5.3.4 Entity Alignment

After we obtain the embeddings of entities, we leverage ℓ1 distance to measure the distance
between candidate–entity pairs. A small distance reflects a high probability for an entity
pair to be aligned as equivalent entities. To be specific, with respect to the reranking
strategy, we select the target entities that have the smallest distances to a source entity in
the vector space learned by Man or Hman as its candidates. For weighted concatenation,
we employ the ℓ1 distance of the representations of a pair derived from the concatenated
embedding, i.e., HC , as the ranking score.
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5.4 Experimental Setup

5.4.1 Datasets and Settings

We evaluate our methods over two benchmark datasets: DBP15K and DBP100K [437].
Table 5.1 outlines the statistics of both datasets, which contain 15,000 and 100,000 ILLs,
respectively. Both are divided into three subsets: Chinese-English (ZH-EN), Japanese-
English (JA-EN), and French-English (FR-EN).

Following previous work [437, 475], we adopt the same split settings in our experiments,
where 30% of the ILLs are used as training and the remaining 70% for evaluation. Hits@k
is used as the evaluation metric [36, 437, 475], which measures the proportion of correctly
aligned entities ranked in the top-k candidates, and results in both directions, e.g., ZH-EN
and EN-ZH, are reported.

In all our experiments, we employ two-layer GCNs and the top 1000 (i.e., F=1000)
most frequent relation types and attributes are included to build the N -hot feature vec-
tors. For the Man model, we set the dimensionality of topological, relation, and attribute
embeddings to 200, 100, and 100, respectively. When training Hman, the hyperparame-
ters are dependent on the dataset sizes due to GPU memory limitations. For DBP15K,
we set the dimensionality of topological embeddings, relation embeddings, and attribute
embeddings to 200, 100, and 100, respectively. For DBP100K, the dimensionalities are set
to 100, 50, and 50, respectively. We adopt SGD to update parameters and the numbers of
epochs are set to 2,000 and 50,000 for Man and Hman, respectively. The margin β in the
loss function is set to 3. The balance factor τ is determined by grid search, which shows
that the best performance lies in the range from 0.8 to 0.7. For simplicity, τ is set to 0.8
in all associated experiments. Multilingual BERT-base models with 768 hidden units are
used in PointwiseBert and PairwiseBert. We additionally append one more FC layer
to the representation of [CLS] and reduce the dimensionality to 300. Both BERT models
are fine-tuned using the Adam optimizer.

5.5 Results

5.5.1 Results on Graph Embeddings

We first compare Man and Hman against previous systems [155, 58, 437, 475]. As shown in
Table 5.2, Man and Hman consistently outperform all baselines in all scenarios, especially

62



Datasets
DBP15K

Entities Rel. Attr. Rel.triples Attr.triples

ZH-EN
Chinese 66,469 2,830 8,113 153,929 379,684
English 98,125 2,317 7,173 237,674 567,755

JA-EN
Japanese 65,744 2,043 5,882 164,373 354,619
English 95,680 2,096 6,066 233,319 497,230

FR-EN
French 66,858 1,379 4,547 192,191 528,665
English 105,889 2,209 6,422 278,590 576,543

Datasets
DBP100K

Entities Rel. Attr. Rel.triples Attr.triples

ZH-EN
Chinese 106,517 4,431 16,152 329,890 1,404,615
English 185,022 3,519 14,459 453,248 1,902,725

JA-EN
Japanese 117,836 2,888 12,305 413,558 1,474,721
English 118,570 2,631 13,238 494,087 1,738,803

FR-EN
French 105,724 1,775 8,029 409,399 1,361,509
English 107,231 2,504 13,170 513,382 1,957,813

Table 5.1: Statistics of DBP15K and DBP100K. Rel. and Attr. stand for relations and
attributes, respectively.

Hman. It is worth noting that, in this case, Man and Hman use as much information as
[475], while [437] require extra supervised information (relations and attributes of two KGs
need to be aligned in advance). The performance improvements confirm that our model
can better utilize topological, relational, and attribute information of entities provided by
KGs.

To explain why Hman achieves better results than Man, recall that Man collects
relation and attribute information by the propagation mechanism in GCNs where such
knowledge is exchanged through neighbors, while Hman uses feedforward networks to
capture expressive features directly from the input feature vectors without propagation.
As we discussed before, it is not always the case that neighbors of equivalent entities share
similar relations or attributes. Propagating such features through linked entities in GCNs
may introduce noise and thus harm performance.

Moreover, we perform ablation studies on the two proposed models to investigate the
effectiveness of each component. We alternatively remove each aspect of features (i.e.,
topological, relation, and attribute features) and the highway layer in Hman, denoted as
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Model
ZH Ñ EN ENÑ ZH JA Ñ EN ENÑ JA FR Ñ EN ENÑ FR

@1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50

DBP15K

[155] 21.2 42.7 56.7 19.5 39.3 53.2 18.9 39.9 54.2 17.8 38.4 52.4 15.3 38.8 56.5 14.6 37.2 54.0
[58] 30.8 61.4 79.1 24.7 52.4 70.4 27.8 57.4 75.9 23.7 49.9 67.9 24.4 55.5 74.4 21.2 50.6 69.9
[437] 41.1 74.4 88.9 40.1 71.0 86.1 36.2 68.5 85.3 38.3 67.2 82.6 32.3 66.6 83.1 32.9 65.9 82.3
[475] 41.2 74.3 86.2 36.4 69.9 82.4 39.9 74.4 86.1 38.4 71.8 83.7 37.2 74.4 86.7 36.7 73.0 86.3

Man 46.0 79.4 90.0 41.5 75.6 88.3 44.6 78.8 90.0 43.0 77.1 88.7 43.1 79.7 91.7 42.1 79.1 90.9
Man w/o te 21.5 55.0 79.4 20.2 53.6 78.8 15.0 44.0 69.9 14.3 44.0 70.6 10.2 34.5 59.5 10.8 35.2 60.3
Man w/o re 45.6 79.1 89.5 41.1 75.0 87.3 44.2 78.7 89.8 43.0 76.9 88.1 42.8 79.7 91.4 42.1 78.9 90.6
Man w/o ae 43.7 77.1 87.8 39.2 72.9 85.5 43.2 77.6 88.4 41.2 74.9 86.6 42.9 79.6 91.0 41.5 78.9 90.5

Hman 56.2 85.1 93.4 53.7 83.4 92.5 56.7 86.9 94.5 56.5 86.6 94.6 54.0 87.1 95.0 54.3 86.7 95.1
Hman w/o te 13.2 16.7 38.3 13.5 17.2 38.5 15.4 22.3 45.5 15.2 22.0 45.5 12.4 13.9 35.3 12.2 13.7 35.3
Hman w/o re 50.2 78.4 86.5 49.3 78.6 87.0 52.6 81.6 89.1 52.4 81.1 89.8 52.7 84.2 91.4 52.0 83.9 91.1
Hman w/o ae 49.2 81.0 89.8 48.8 80.9 90.0 52.2 83.3 91.6 51.5 83.1 91.6 52.3 85.6 93.7 52.3 85.1 93.2
Hman w/o hw 46.8 76.1 84.1 46.0 76.2 84.6 50.5 79.5 87.5 49.9 79.1 87.5 51.9 82.7 90.9 51.6 82.5 90.6

DBP100K

[155] 1-.1 16.9 1-.1 1-.1 16.6 1-.1 1-.1 21.1 1-.1 1-.1 20.9 1-.1 1-.1 22.9 1-.1 1-.1 22.6 1-.1
[58] 1-.1 34.3 1-.1 1-.1 29.1 1-.1 1-.1 33.9 1-.1 1-.1 27.2 1-.1 1-.1 44.8 1-.1 1-.1 39.1 1-.1
[437] 20.2 41.2 58.3 19.6 39.4 56.0 19.4 42.1 60.5 19.1 39.4 55.9 26.2 54.6 70.5 25.9 51.3 66.9
[475] 23.1 47.5 63.8 19.2 40.3 55.4 26.4 55.1 70.0 21.9 44.4 56.6 29.2 58.4 68.7 25.7 50.5 59.8

Man 27.2 54.2 72.8 24.7 50.2 69.0 30.0 60.4 77.3 26.6 54.4 71.2 31.6 64.0 77.3 28.8 59.3 73.4
Man w/o te 11.8 28.6 47.7 11.2 28.3 47.9 17.4 21.7 39.4 17.2 21.6 39.8 15.4 19.4 38.2 15.1 18.8 37.1
Man w/o re 26.5 53.4 72.1 23.9 49.2 67.9 29.8 60.3 77.1 26.3 53.9 70.6 31.0 63.2 76.4 28.4 58.4 72.2
Man w/o ae 25.5 51.7 70.4 22.8 47.6 66.3 29.4 59.4 76.1 25.9 52.9 69.7 30.8 62.7 75.8 28.1 57.8 71.5

Hman 29.8 54.6 69.5 28.7 53.3 69.0 34.3 63.3 76.1 33.8 63.0 76.7 37.5 67.7 77.7 37.6 68.1 78.5
Hman w/o te 16.8 20.3 39.2 17.2 21.0 39.4 13.0 11.5 27.3 13.3 11.8 28.0 10.5 13.5 11.1 10.5 13.4 11.4
Hman w/o re 28.0 50.3 62.3 28.2 50.6 62.9 30.3 54.9 64.8 30.2 55.9 66.9 32.8 60.3 69.1 33.3 60.9 69.8
Hman w/o ae 25.7 46.4 57.3 25.5 64.7 57.9 29.6 55.1 66.1 29.9 56.1 67.4 32.5 59.2 67.8 32.9 59.4 68.4
Hman w/o hw 25.2 46.0 57.9 25.2 45.9 57.9 28.6 52.6 62.2 28.5 53.0 63.0 32.8 60.9 70.0 32.9 60.2 70.3

Table 5.2: Results of using graph information on DBP15K and DBP100K. @1, @10 and
@50 refer to Hits@1, Hits@10 and Hits@50, respectively.

w/o te (re, ae, and hw). As reported in Table 5.2, we observe that after removing relation
or attribute features, the performance of Hman and Man drops across all datasets. These
figures prove that these two aspects of features are useful in making alignment decisions.
On the other hand, compared to Man, Hman shows more significant performance drops,
which also demonstrates that employing the feedforward networks can better categorize
relation and attribute features than GCNs in this scenario. Interestingly, looking at the two
variants Man w/o te and Hman w/o te, we can see the former achieves better results.
Since Man propagates relation and attribute features via graph structures, it can still
implicitly capture topological knowledge of entities even after we remove the topological
features. However, Hman loses such structure knowledge when topological features are
excluded, and thus its results are worse. From these experiments, we can conclude that
the topological information is playing an indispensable role in making alignment decisions.
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Model
ZH Ñ EN ENÑ ZH JA Ñ EN ENÑ JA FR Ñ EN ENÑ FR

@1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50 @1 .@10 @50

DBP15K

Translation˚ 55.7 67.6 74.3 40.3 54.2 62.2 74.6 84.5 89.1 61.9 72.0 77.2 1-.1 1-.1 1-.1 1-.1 1-.1 1-.1
JAPE + Translation˚ 73.0 90.4 96.6 62.7 85.2 94.2 82.8 94.6 98.3 75.9 90.7 96.0 1-.1 1-.1 1-.1 1-.1 1-.1 1-.1
PairwiseBert 74.3 94.6 98.8 74.8 94.7 99.0 78.6 95.8 98.5 78.3 95.4 98.4 95.2 99.2 99.6 94.9 99.2 99.7

Man (Rerank) 84.2 93.6 94.8 82.1 91.8 93.1 89.4 94.0 94.8 88.2 93.3 94.0 93.1 95.2 95.4 93.1 95.3 95.4
Hman (Rerank) 86.5 95.9 96.9 85.8 94.1 95.3 89.0 96.0 97.3 89.0 96.0 97.5 95.3 97.7 97.8 95.2 97.9 98.1
Man (Weighted) 85.4 98.2 99.7 83.8 97.7 99.5 90.8 98.8 99.7 89.9 98.5 99.5 96.8 99.6 99.8 96.7 99.7 99.9
Hman (Weighted) 87.1 98.7 99.8 86.4 98.5 99.8 93.5 99.4 99.9 93.3 99.3 99.9 97.3 99.8 99.9 97.3 99.8 99.9

DBP100K

PairwiseBert 65.1 85.1 92.6 66.2 85.8 92.9 67.7 86.5 93.1 67.9 86.4 93.2 93.2 97.9 98.9 93.4 98.0 98.9

Man (Rerank) 59.5 62.1 62.2 55.9 58.2 58.2 65.5 68.2 68.4 59.9 62.1 62.3 69.7 70.4 70.5 65.5 66.2 66.2
Hman (Rerank) 58.9 61.2 61.3 57.9 60.2 60.3 66.9 69.4 69.6 67.0 69.6 69.8 72.1 72.9 73.0 72.7 73.5 73.5
Man (Weighted) 81.4 94.9 98.2 80.5 94.1 97.7 84.3 95.4 98.3 81.5 94.2 97.6 96.2 99.3 99.7 95.7 99.1 99.6
Hman (Weighted) 81.1 94.3 97.8 80.3 94.5 97.9 85.2 96.1 98.4 84.6 96.1 98.5 96.5 99.4 99.7 96.5 99.5 99.8

Table 5.3: Results of using both graph and textual information on DBP15K and DBP100K.
@1, @10, and @50 refer to Hits@1, Hits@10, and Hits@50, respectively. ˚ indicates results
are taken from [437].

5.5.2 Results with Textual Embeddings

In this section, we discuss empirical results involving the addition of entity descriptions,
shown in Table 5.3. Applying literal descriptions of entities to conduct cross-lingual entity
alignment is relatively under-explored. The recent work of [56] used entity descriptions in
their model; however, we are unable to make comparisons with their work, as we do not
have access to their code and data. Since we employ BERT to learn textual embeddings of
descriptions, we consider systems that also use external resources, like Google Translate,1

as our baselines. We directly take results reported by [437], denoted as “Translation” and
“JAPE`Translation”.

The PointwiseBert model is used with GCN-based models, which largely reduces the
search space, as indicated by Man (Rerank) and Hman (Rerank), where the difference
is that the candidate pools are given by Man and Hman, respectively. For DBP15K,
we select top-200 candidate target entities as the candidate pool while for DBP100K,
top-20 candidates are selected due to its larger size. The reranking method does lead
to performance gains across all datasets, where the improvements are dependent on the
quality of the candidate pools. Hman (Rerank) generally performs better than Man
(Rerank) since Hman recommends more promising candidate pools.

The PairwiseBert model learns the textual embeddings that map cross-lingual de-

1https://cloud.google.com/translate/
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English Chinese

ILL pair Casino Royale (2006 film) (3) 007大戰皇家賭場 (3)
Features starring, starring, distributor starring, starring, language
Neighbors Daniel Craig (1), Eva Green (4),

Columbia Pictures (9)
丹尼爾克雷格 (1), 伊娃格蓮 (4), 英語 (832)

Table 5.4: Case study of the noise introduced by the propagation mechanism.

scriptions into the same space, which can be directly used to align entities. The results
are listed under PairwiseBert in Table 5.3. We can see that it achieves good results on
its own, which also shows the efficacy of using multilingual descriptions. Moreover, such
textual embeddings can be combined with graph embeddings (learned by Man or Hman)
by weighted concatenation, as discussed in Section 5.3.3. The results are reported as Man
(Weighted) and Hman (Weighted), respectively. As we can see, this simple operation
leads to significant improvements and gives excellent results across all datasets. However,
it is not always the case that KGs provide descriptions for every entity. For those entities
whose descriptions are not available, the graph embeddings would be the only source for
making alignment decisions.

5.6 Discussion and Analysis

In this section, we describe a case study to understand the performance gap between
Hman and Man. The example in Table 5.4 provides insights potentially explaining this
performance gap. We argue that Man introduces unexpected noise from heterogeneous
nodes during the GCN propagation process. We use the number in parentheses (*) after
entity names to denote the number of relation features they have.

In this particular example, the two entities “Casino Royale (2006 film)” in the source
language (English) and “007大戰皇家賭場” in the target language (Chinese) both have
three relation features. We notice that the propagation mechanism introduces some neigh-
bors which are unable to find cross-lingual counterparts from the other end, marked in red.
Considering the entity “英語” (English), a neighbor of “007大戰皇家賭場”, no counter-
parts can be found in the neighbors of “Casino Royale (2006 film)”. We also observe that
“英語” (English) is a pivot node in the Chinese KG and has 832 relations, such as “語
言” (Language), “官方語言” (Official Language), and “頻道語言” (Channel Language).
In this case, propagating features from neighbors can harm performance. In fact, the fea-
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ture sets of the ILL pair already convey information that captures their similarity (e.g.,
the “starring” marked in blue are shared twice). Therefore, by directly using feedforward
networks, Hman is able to effectively capture such knowledge.

5.7 Summary

In this work, we focus on the task of cross-lingual entity alignment, which aims to dis-
cover mappings of equivalent entities in multilingual knowledge graphs. We proposed two
GCN-based models and two uses of multilingual BERT to investigate how to better utilize
multi-aspect information of entities provided by KGs, including topological connections,
relations, attributes, and entity descriptions. Empirical results demonstrate that our best
model consistently achieves state-of-the-art performance across all datasets. In the future,
we would like to apply our methods to other multilingual datasets such as YAGO and
BabelNet. Also, since literal descriptions of entities are not always available, we will inves-
tigate alternative ways to design graph-based models that can better capture structured
knowledge for this task.
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Chapter 6

Cross-Lingual Training for Relevance
Transfer

Dense retrieval and reranking have shown great success in passage ranking in English.
However, its effectiveness in document retrieval for non-English languages remains unex-
plored due to the limitation of training resources. In this work, we explore different trans-
fer techniques for document retrieval and reranking from English annotations to multiple
non-English languages. Our experiments on the test collections in six languages (Chinese,
Arabic, French, Hindi, Bengali, and Spanish) from diverse language families reveal that
zero-shot model-based transfer improves the search quality in non-English mono-lingual
retrieval.

This chapter is presented in:

• Peng Shi, Rui Zhang, He Bai, Jimmy Lin. Cross-Lingual Training of Dense Re-
trievers for Document Retrieval. Proceedings of the 1st Workshop on Multilingual
Representation Learning, November, 2021.

• Peng Shi, He Bai, Jimmy Lin. Cross-Lingual Training of Neural Models for Docu-
ment Ranking. In Proceedings of EMNLP (Empirical Methods in Natural Language
Processing): Findings, November, 2020.

68



6.1 Introduction

Relevance matching is one core problem in information retrieval, which is to rank the
contents (document, passage, or table) by the relevance to a user’s query. Recently, the
retrieval-reranking pipeline has become a paradigm for information retrieval, where an
efficient retriever is firstly leveraged to obtain a set of candidates and then an effective
reranker is applied to those candidates to obtain better ranking results.

Traditionally, TF-IDF or BM25 are popular implementations of first-stage retriever,
where the keywords are matched with an inverted index. However, these systems suffer
from vocabulary mismatch problem [127]. Consider the question “What is the body of
water between England and Ireland?”, which can be answered by the context “Irish Sea,
arm of the North Atlantic Ocean that separates Ireland from Great Britain.”. A term
matching system fails to rank this relevant context in top positions because of the string
mismatch between the question and the context, besides the key word Ireland. A recently
proposed effective and efficient solution is the dense retriever. Dense retrieval uses dense
vector representations for semantic encoding and matching. It has shown its effectiveness
in open-domain question answering and passage ranking [325, 205]. However, the dense
passage retrievers generate the question and context embeddings independently, without
token-level interactions, which proves to be effective in the ranking task. Reranking is one
component that alleviates the issue. By modeling the token-level matching signals between
the query and context, the rerankers can push more relevant contexts in the top positions.

However, most of the existing work focus on high-resource languages such as English,
where large-scale annotations are readily accessible. Widely available large-scale datasets
such as Natural Questions (NQ) [219] and MS MARCO [318] are used for training dense
retrieval encoders or rerankers to achieve state-of-the-art performances in English. Such
data is especially hard to obtain for low-resource languages, considering that large amounts
of annotations are required for training dense retrievers and rerankers.

In this work, we first explore techniques for leveraging the relevance judgments in a
source language, usually a high-resource language such as English, to train dense retrievers
for mono-lingual document retrieval in multiple target (non-English) languages. Note that
this setting is different from cross-lingual information retrieval (CLIR), where queries and
documents are in different languages [413, 533, 197, 265, 534, 66]. Specifically, we examine
low-resource techniques including zero-shot model-based transfer and weakly-supervised
target language transfer; we also explored the technique by leveraging public translators,
such as Google Translate, to improve the language transfer of the dense retriever.

Furthermore, in this work, we also explore diverse methods to train neural document

69



reranking models cross-lingually. While we are aware of two previous papers along these
lines [413, 284], this work explores a far broader range of techniques and adds more nuance
to previous findings. Beyond the basic approach proposed by these two papers, which
we refer to as model-based transfer, we investigate additional approaches involving the
translation of the training data, the translation of documents, hybrid models, as well as
ensembles – which we broadly characterize into “high resource” and “low resource” settings.
We show that various methods alone and in combination can yield robust increases in
effectiveness across diverse languages with minimal resources, and that model-based cross-
lingual transfer isn’t the only way.

6.2 Related Work

Dense retrieval showed its superiority over the traditional term matching based methods
such as BM25 or BM25+RM3 query expansion on passage retrieval task [89, 88, 205, 559,
52, 284]. A bi-encoder architecture is used for the dense retrievers, where the queries and
documents are mapped into hidden vectors independently without any interaction between
them. Compared with term-based sparse retrieval using TF-IDF or BM25, it can capture
synonyms or paraphrases by incorporating contexts and provide additional flexibility to
learn task-specific representations [254]. Document reranking is another topic in document
retrieval. With pre-trained language models, the reranking effectiveness has been improved
significantly [323, 520]. A cross-encoder architecture is often used for document reranking,
where the tokens of query and the document can have full interactions in the encoder and
the matching signals can be easily captured by the models. The multilingual BERT [103]
has shown its language transfer abilities over different tasks [489]. [413] were the one of
the first to build IR re-rankers based on the mBERT for non-English corpus by leveraging
the relevance judgments in English. More recently, [20] and [19] leveraged mBERT and
target language annotations to train cross-lingual DPRs.

6.3 Models

6.3.1 Dense Retriever

Dense retriever uses a dense encoder EP p¨q that encodes contexts, either text or table, to
a d-dimension vectors and builds an index for collections that are used for retrieval. For
the query, a different encoder EQp¨q is used for mapping the query into d-dimension vector.
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Based on the query vector, the closest top k contexts are retrieved from the pre-built index
based on the pre-defined distance function. Following [205], we define the distance function
as simpq, pq “ EQpqqJEP ppq.

For the choice of the encoder, in principle, any neural networks can be used. By virtue
of more powerful contextual encoding ability of recent large-scale pre-trained language
models, models such as BERT and RoBERTa are popular choices of the encoder.

Here we use the BERT as an example. More specifically, the questions and contexts
are linearized into sequence of tokens and fed into BERT and the hidden states of [CLS]

are used as the representation. During inference, we apply both bag-of-words exact term
matching such as BM25 or BM25+RM3 and dense retrieval. The relevance score of each
candidate combines the term-matching scores with dense retrieval similarity Scontext “

α ¨ Sterm ` p1 ´ αq ¨ Sdense where α is tuned via cross-validation. All candidates are sorted
by the above score Scontext to produce the final output.

6.3.2 Reranker

The work on neural document ranking [521, 89] provides a general method for fine-tuning
BERT: The input to the model comprises [[CLS], Q [SEP] S [SEP]], which is the concate-
nation of the query Q and a piece of context S, with the special tokens [CLS] and [SEP].
The final hidden state of the [CLS] token is passed to a single layer neural network with
a softmax, obtaining the probability that context S is relevant to the query Q.

6.3.3 Cross-Lingual Relevance Transfer of Dense Retriever

To perform cross-lingual transfer of dense retriever from a high-resource source language to
low-resource target languages, we investigate two groups of strategies. The first strategy,
model-based transfer, directly applies the retrieving model trained on the source language
to other target languages in a zero-shot manner. The second strategy explores two data
augmentation techniques to build the training data on target languages for finetuning.

Model-based Transfer

By exploiting the zero-shot cross-lingual transfer ability of pre-trained transformers such
as mBERT [103] and XLM-Roberta [77], we train the dense retriever encoder in the source
language and apply inference directly on target languages. These pre-trained transformers
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only require raw text in different languages, e.g. Wikipedia, and are trained in a self-
supervised manner, so we characterize this approach as “low resource”.

Target Language Transfer

To bridge the language gap between the training and the inference, a direct solution is
target language data augmentation. In this work, we explore two techniques for creat-
ing a target language transfer set, including generation-based query synthesis and weakly
supervised query synthesis.

Generation-based Query Synthesis. The goal of the generation-based query synthesis
is to leverage powerful generation models to predict reasonable queries given documents
in the target language. We choose the multilingual version of BART (mBART) [272], a
pre-trained sequence-to-sequence transformers, as our query generation model. The input
of the model is the passage and its learning target is the corresponding query. We use the
translate-train technique to obtain the generation models. More specifically, we leverage
Google Translate to translate the query-document pairs in English to target languages. In
the inference stage, we use the passages in the target language collections as the input and
generate corresponding queries in the same language. In our preliminary experiments, we
also tried zero-shot transfer that model is trained on English query-document pairs and
directly applied to target languages for query inference. However, the generated queries
are of low quality, and this observation is also confirmed by [69].

Weakly-supervised Query Synthesis. Wikipedia has documents in varies languages,
and it is a good transfer set in cross-lingual training. We can automatically build the
target language transfer set without manual annotation effort, by treating the titles of
Wikipedia articles as queries and the corresponding documents as positive candidates. We
also retrieve the top 1000 documents with BM25 for each query, and the documents except
the positive candidate are labeled as negative candidates. Queries whose positive document
is not in the retrieved set are removed. In this way, we can obtain query-document pairs
in target languages.

Two-stage Training. We apply two-stage training to train the dense retriever encoders.
The dense retriever encoders are firstly trained on source language annotated data which
are available in a large scale; then the models are finetuned on the synthesized query-
document pairs in the target language.
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6.3.4 Cross-Lingual Relevance Transfer of Reranker

Our main research question is as follows: Given English (source) training data, how can we
bootstrap a good document ranking model in non-English (target) languages? We discuss
a number of approaches below, which we characterize as “high” or “low” resource in terms
of annotation effort.

Model-based Transfer

Following Wu [489], the most obvious approach is to fine-tune mBERT using data in the
source language, and apply inference directly on input in the target language. In essence,
we follow the same setup as [521], with the exception that we use mBERT instead of
(English) BERT. We characterize this approach as “low resource” given that mBERT is
pre-trained in a self-supervised manner.

Translation-based Transfer

Training data translation. Instead of relying on mBERT to transfer models of relevance
matching across languages, we can translate the English training data into the target lan-
guage, and then fine-tune mBERT with the translated data.1 At inference time, we directly
apply the model on target-language documents. We considered two translation methods:
Google Translate (MBgt) and a simple embedding-based token-by-token translation ap-
proach (MBwt). We characterize the first as “high resource” given the amount of bitext
that is typically necessary to train a high-quality translation system, whereas the second
as “low resource” since bilingual lexicons and aligned word embeddings are far easier to
create.

Our token-based translation approach is inspired by [178]. The basic idea is to find
the best token translation based on the cosine similarity between the token in the source
language and candidate tokens in the target language. Specifically, for each token in the
source language, the surface form is used for lookup in a bilingual dictionary. If the token
has a unique translation, we use the translation directly. If it has multiple translations,
we use an empirical scoring function F pw,wt,iq to select the best translation. This scoring
function calculates the cosine similarity between a candidate translation wt,i and the source

1Note that here we are using mBERT in a purely mono-lingual manner since mono-lingual BERT
models are not widely available for all target languages.
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token w based on its contextual tokens wc,j (in this work, we consider two words in the
left context and two words in the right context), as follows:

F pw,wt,iq “ γ ¨ cospEpwq,Epwt,iqq

` p1 ´ γq ¨

m
ÿ

j“1

cospEpwt,iq,Epwc,jqq

pdj ` 1q2

(6.1)

where Epwq is the bilingual embedding of the token w, dj is the positional distance between
the token w and its contextual token wc,j, and γ is a hyperparameter for balancing the
effects of the translation pair and the contextual tokens. Following previous work, we set
γ to 0.5. If the source language token has no translations, the original surface form is kept
unchanged.

Note that model-based transfer uses the same model across all languages, whereas this
approach requires a separate model for each language.

Hybrid transfer. Both approaches above can be combined in a stage-wise fashion: We
can first fine-tune mBERT on the English data, and then fine-tune again on the translated
training data (we refer to this as the enÑgt direction). Alternatively, we can switch the
order of fine-tuning (the gtÑen direction). In these experiments, we used the output of
Google Translate (and hence these are “high resource” approaches).

Document translation. Another way to leverage existing translation capabilities is to
translate the documents at search time from the target language into the source language
(English), and directly apply the mBERT model that is trained on MBen. We used Google
Translate in this method, and thus it is “high resource”.

Ensembles. Ensembles of the above approaches can exploit multiple signal and resources.
One approach is to interpolate scores from multiple sources, on a per-document basis:
Sagg “ β ¨ Smodel-transfer ` p1 ´ βq ¨ Sdoc-translation. This method is denoted ENSINT, which
combines model-based transfer and document translation (from the results, the two most
promising techniques). Alternatively, we also experimented with Reciprocal Rank Fu-
sion [81] to aggregate two separate ranked lists, which is denoted ENSRRF. These methods
are “high resource”.

For “low resource” ensembles, we aggregated signals from model-based transfer and the
token-based approach for translating training data. These signals are either combined by
per-document score interpolation or RRF, as per above.
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Doc Language Source # Topics # Docs

Chinese NTCIR 8 73 308,832
Arabic TREC 2002 50 383,872
French CLEF 2006 49 171,109
Hindi FIRE 2012 50 331,599
Bengali FIRE 2012 50 500,122
Spanish TREC 3 25 57,868

Table 6.1: Dataset statistics for test collections.

6.4 Experimental Setup

6.4.1 Experimental Setup for Dense Retrieval

We conduct experiments on six test collections in diverse languages (Chinese, Arabic,
French, Hindi, Bengali, Spanish). Data statistics are shown in Table 6.1. For the evaluation
metrics, we adopt the average precision (AP) up to rank 1000, precision at rank 20 (P@20)
and nDCG at rank 20 (nDCG), computed with the trec eval toolkit. The query was used
to retrieve the top 1000 hits from the corpus using BM25 or BM25+RM3 query expansion;
the default Anserini [516] settings were used. For the dense retrieval, the top 100 hits are
retrieved from the index and the similarity scores are combined with the term-matching
scores. For the documents that are not in the retrieved set, either from term-matching
methods or dense retrieval, 0 score is assigned. Fisher’s two-sided, paired randomization
test [425] at p ă 0.05 was applied to test for statistical significance.

For the model-based transfer, we explore two training datasets in the source language,
English in our case, including the Natural Question and MS MARCO. Note that Natural
Question is an open-domain question answering dataset, where the queries are usually
long questions instead of a bag of keywords in the document ranking datasets. This
introduces a new gap in query style besides language in the transfer process. For training
the query generator in target languages, we obtain the training data by sampling 2000
query-passage pairs from MS MARCO and translate them into target languages same as
target benchmarks. For two-stage training, we first train the dense encoders on the MS
MARCO dataset and then further tune them on the transfer set.

For dense retrieval, documents are often too long to fit into BERT models for encoding.
A common approach to address this issue is to split the long document into segments within
fixed length (e.g. 512 tokens), and build an index based on the segments. In this work, we
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segmented the documents using a sliding window of 5 sentences and a stride of 1 sentence.
For each query, the score of document Sdense is obtained by averaging the top-3 scores
of the retrieved segments. We applied five-fold cross-validation on all datasets, choosing
parameter α that yielded the highest AP.

6.4.2 Experimental Setup for Reranking

The test collections used for the reranking experiments are same as dense retrieval exper-
iments. Following standard practice in information retrieval, average precision (AP) up
to rank 1000 and precision at rank 20 (P@20) were adopted as the evaluation metrics,
computed with the trec eval tool.

For the token-based translation method, we used the MUSE bilingual dictionary [221]
and the aligned word embeddings from fastText [202]. For fine-tuning mBERT, we followed
the same experimental setup as [7]. We used data from the Microblog (MB) Tracks from
TREC 2011–2014 [251] or its translated counterparts, setting aside 75% of the total data for
training and the rest for validation, which was used for selecting the best model parameters.
We trained each model using cross-entropy loss with a batch size of 16; the Adam optimizer
was applied with an initial learning rate of 1 ˆ 10´5. During fine-tuning, the embeddings
were fixed. The model with the highest AP on the validation set was chosen. We ran all
experiments on an NVIDIA Tesla V100 16GB with PyTorch version 1.3.0. Each model was
trained for up to 15 epochs, with an average running time of approximately two hours.

For retrieval, we used the open-source Anserini IR toolkit [517] with minor modifications
based on version 0.6.0 to swap in Lucene Analyzers for different languages. Fortunately,
Lucene provides analyzers for all the languages in our test collections. The query was
used to retrieve the top 1000 hits from the corpus using BM25 or BM25+RM3 query
expansion; default Anserini settings were used in both cases. Reranking with mBERT used
the approach with higher AP (either BM25 or BM25+RM3); the top three sentences were
considered in aggregating sentence-level evidence. We applied five-fold cross-validation on
all datasets and the parameters α, the wi’s, and β were obtained by grid search, choosing
the parameters that yielded the highest AP.
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AP P@20 nDCG AP P@20 nDCG AP P@20 nDCG

Model NTCIR8-zh TREC2002-ar CLEF2006-fr

p0q BM25 0.4014 0.3849 0.4757 0.2932 0.3610 0.4056 0.3111 0.3184 0.4458
p1q BM25+RM3 0.3384 0.3616 0.4490 0.2783 0.3490 0.3969 0.3421 0.3408 0.4658

p2q NQ zero-shot 0.4221Ĳ 0.4164Ĳ 0.5235Ĳ 0.2943 0.3560 0.4012 0.3470 0.3469 0.4726
p3q MS zero-shot 0.4167Ĳ 0.4164Ĳ 0.5095Ĳ 0.3024 0.3810Ĳ 0.4285 0.3332 0.3418 0.4573

p4q MS Ñ QGen 0.4258Ĳ 0.4336Ĳ 0.5308Ĳ 0.2988 0.3800 0.4276 0.3331 0.3429 0.4564
p5q MS Ñ Wiki 0.4135 0.4123Ĳ 0.5055Ĳ 0.3060Ĳ 0.3750 0.4293 0.3456 0.3480 0.4743

FIRE2012-hi FIRE2012-bn TREC3-es

p0q BM25 0.3867 0.4470 0.5310 0.2881 0.3740 0.4261 0.4197 0.6660 0.6851
p1q +RM3 0.3660 0.4430 0.5277 0.2833 0.3830 0.4351 0.4912 0.7040 0.7079

p2q NQ zero-shot 0.3939 0.4560 0.5408 0.2898 0.3980 0.4495Ĳ 0.4910 0.6980 0.7007
p3q MS zero-shot 0.3944 0.4580 0.5461 0.2896Ĳ 0.3900 0.4449 0.4950 0.7080 0.7171

p4q MS Ñ QGen 0.3941 0.4660 0.5527 0.2887 0.3980 0.4486 0.4958Ĳ 0.7180 0.7239
p5q MS Ñ Wiki 0.3950 0.4630 0.5497 0.2898Ĳ 0.4050 0.4549 0.4972Ĳ 0.7180 0.7329

Table 6.2: Experimental results on the baselines and our cross-lingual transfer methods.
Model (0) and (1) are term matching baselines. Model (2) NQ zero-shot: zero-shot transfer
of models trained on Natural Questions. Model (3) MS zero-shot: zero-shot transfer of
models trained on MS MARCO. Model (4) MS Ñ QGen: trained on MS MARCO and then
finetuned on query generation data requiring external translators. Model (5) MS Ñ Wiki:
trained on MS MARCO and then finetuned on query synthesis data from Wikipedia. For
nDCG, we report nDCG@20. Significant gains against the baselines are denoted with Ĳ.

6.5 Results

6.5.1 Results for Dense Retrieval

Our results are shown in Table 6.3. Models (0) and Models (1) show the effectiveness of
BM25 and BM25 with RM3 query expansion. For each language, we select the higher P@20
of the two models as the term-based matching baselines. That is, for the French, Bengali
and Spanish collections, we use the BM25+RM3 as the term-based matching baseline and
for others, we use the BM25.

Finding #1: Zero-shot model-based transfer improves term-based matching.
The results of zero-shot model-based transfer are shown in Models (2) and Models (3).

77



Comparing with the corresponding baselines, we observe that the model-based transfer,
either NQ zero-shot or MS zero-shot, can improve the retrieval effectiveness on P@20
for all collections, except the NQ zero-shot on TREC3-es dataset. We do not observe a
clear winner between NQ and MS, though. For example, Models (2) perform better on
Chinese and French collections; while Models (3) yield better retrieval effectiveness on
Arabic and Spanish collections. Since mBERT is widely available, mono-lingual retrieval
improvements can be obtained ‘‘for free‘‘ with annotated data in English. These results
indicate that mBERT-based DPR effectively transfers relevance matching across languages.

Finding #2: Target language transfer benefits certain collections, and Wiki
query synthesis is better than query generation. Target language transfer results
are shown in Models (4) and Models (5). MS Ñ QGen and MS Ñ Wiki denote two-
stage training strategy with different transfer sets, where QGen denotes generation-based
query synthesis and Wiki denotes weakly supervised query synthesis from Wikipedia. By
comparing the Models (4) with Models (3), we observe the second stage training with
generation-based query-document pairs can improve the effectiveness of P@20 over the
zero-shot model-based transfer on Chinese, French, Hindi, Bengali and Spanish collections.
However, there is no difference over AP for all collections. By comparing the Models (5)
with Models (3), we find that the second stage training with weakly-supervised training
data can improve the P@20 over the zero-shot baselines on French, Hindi, Bengali and
Spanish collections.

Furthermore, by comparing these two transfer sets, we observe that, except for the Chi-
nese collection, the Wiki obtains better retrieval effectiveness than QGen, which requires
external translators and training query generators on different languages.

6.5.2 Results for Reranking

Our results are shown in Table 6.3. Models (0) and (1) show the effectiveness of BM25
and BM25 with RM3 query expansion. We see that with the exception of the French and
Spanish collections, RM3 actually decreases effectiveness. This interesting finding was not
further investigated, as our goal was simply to establish a strong baseline; however, these
results are consistent with [284]. For each language, we selected the higher of the two
models as the starting point of reranking as well as the baseline for comparisons below.
We organize results into five findings below. Unless otherwise stated, Fisher’s two-sided,
paired randomization test [425] at p ă 0.05 was applied to test for statistical significance,
with Bonferroni corrections as appropriate.
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AP P@20 AP P@20 AP P@20

Model Train Test R NTCIR8-zh TREC2002-ar CLEF2006-fr

p0q BM25 0.4014 0.3849 0.2932 0.3610 0.3111 0.3184
p1q +RM3 0.3384 0.3616 0.2783 0.3490 0.3421 0.3408

p2q mBERT MBen doc l 0.4488Ĳ 0.4507Ĳ 0.3081 0.4050Ĳ 0.3631Ĳ 0.3633Ĳ

p3q mBERT MBgt doc h 0.4618 0.4616 0.3148 0.4120 0.3596 0.3531
p4q mBERT MBwt doc l 0.4220 0.4322 0.3022 0.3950 0.3557 0.3551
p5q mBERT MBen docgt h 0.4513 0.4534 0.3272¶ 0.4020 0.3800¶ 0.3745

p6q Hybrid MBenÑgt doc h 0.4525§ 0.4534§ 0.3209§ 0.4140§ 0.3706 0.3694§

p7q Hybrid MBgtÑen doc h 0.4423§ 0.4438§ 0.3075 0.4120§ 0.3490 0.3459

p8q ENSINT MBen +docgt h 0.4561 0.4521 0.3269 0.4060 0.3818 0.3694
p9q ENSRRF MBen +docgt h 0.4582 0.4562 0.3237 0.4060 0.3767 0.3694
p10q ENSINT MBen+wt doc l 0.4490 0.4507 0.3086 0.4030 0.3628 0.3622
p11q ENSRRF MBen+wt doc l 0.4404 0.4486 0.3074 0.4010 0.3613 0.3500

FIRE2012-hi FIRE2012-bn TREC3-es

p0q BM25 0.3867 0.4470 0.2881 0.3740 0.4197 0.6660
p1q +RM3 0.3660 0.4430 0.2833 0.3830 0.4912 0.7040

p2q mBERT MBen doc l 0.4207Ĳ 0.4800Ĳ 0.3101Ĳ 0.4060Ĳ 0.5056Ĳ 0.7240
p3q mBERT MBgt doc h 0.4150 0.4710 0.2975 0.3890 0.5051 0.7400
p4q mBERT MBwt doc l 0.4289 0.4860 0.3050 0.4070 0.5032 0.7300
p5q mBERT MBen docgt h 0.4240 0.4810 0.3419¶ 0.4470 0.5238¶ 0.7700¶

p6q Hybrid MBenÑgt doc h 0.4218§ 0.4850§ 0.3078§ 0.4020 0.4996 0.7140
p7q Hybrid MBgtÑen doc h 0.4181§ 0.4780 0.3030 0.3950§ 0.5058 0.7220

p8q ENSINT MBen +docgt h 0.4320 0.4910 0.3479 0.4530 0.5215 0.7660
p9q ENSRRF MBen +docgt h 0.4283 0.4890 0.3406 0.4320 0.5209 0.7560
p10q ENSINT MBen+wt doc l 0.4377 0.4860 0.3112 0.4020 0.5077 0.7260
p11q ENSRRF MBen+wt doc l 0.4340 0.4900 0.3127 0.4090 0.5082 0.7240

Table 6.3: Ranking effectiveness of different cross-lingual training methods. “R” = Re-
source: high or low.

Finding #1: Model-based transfer, model (2), improves upon the baseline, with signifi-
cant gains (denoted by Ĳ) everywhere except for AP in Arabic and P@20 in Spanish. Since
mBERT is widely available, mono-lingual retrieval improvements can be obtained “for
free” with microblog relevance judgments in English. These results indicate that mBERT
effectively transfers relevance matching across languages. This finding confirms previous
work [413, 284], but see additional discussion below.
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Finding #2: Comparing model-based transfer and the two approaches to translating
training data, models (3) and (4), it is difficult to spot trends or reach definitive conclusions.
Model-based transfer does not consistently beat simply translating the training data. In
terms of AP, Google Translate, model (3), outperforms model-based transfer for Chinese
and Arabic; token-based translation, model (4), beats model-based transfer in Hindi and
achieves comparable scores in Arabic and Spanish. Interestingly, it is not always the
case that Google Translate (“high resource”) is better than token-based translation (“low
resource”); the latter achieves higher AP for Hindi and Bengali. A Tukey’s HSD test across
models (2–4) showed no significant differences.

These results suggest that model-based transfer is not the only effective approach, and
that simply translating the training data is at least competitive; neither [413] nor [284]
explored this obvious baseline.

Finding #3: Results show that hybrid two stage training in the enÑgt direction,
model (6), can further improve over model-based transfer alone or translating training
data with Google Translate alone, but the gains are not consistent; lower AP than either
models (2) or (3) in Chinese, Bengali, and Spanish. When compared to the baseline,
model (6) yields significant improvement on Chinese, Arabic, and Hindi (denoted by §).
In the opposite direction, gtÑen, while the hybrid model (7) significantly outperforms the
baseline in a few cases, it doesn’t seem to be consistently more effective than either models
(2) or (3). Note that both hybrid approaches are “high resource” since they require Google
Translate.

Finding #4: Document translation, model (5), generally beats model transfer, but it
requires substantial resources, such as large amounts of parallel text for training a transla-
tion system. Because all our documents are in the newswire domain, the output of Google
Translate is quite reasonable. Since this approach avoids language mismatch between train-
ing and test, it can outperform the model-based transfer approach: these improvements are
significant (denoted by ¶) for the Spanish collection on both metrics, and for the Arabic,
Bengali, and French collections on AP.

Finding #5: In general, ensembles outperform model transfer alone, with the “high
resource” approaches beating the “low resource” approaches (as expected). Comparing
the interpolation and RRF methods, we see no consistent trends. A Tukey’s HSD test
showed no significant differences between the four ensemble methods.
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Figure 6.1: AP results on TREC02-ar and FIRE12-bn.

6.6 Discussion and Analysis

Given the effectiveness of model transfer, we additionally investigated a research question
focused on model (2): How much contextual information does mBERT rely on besides
term matching?

Inspired by the query-centric assumption [487] that relevance information is localized in
the contexts around query terms, we conducted the following experiments: For each query
term, we only kept the texts around the matched tokens in each sentence within a window
size, and used only those contexts for reranking. We tried window size 1 (only the matched
query terms are kept), 3 (the matched query terms with their left and right tokens), 5, 7,
11, and “sentence” (the entire sentence is kept if at least one query token matched). If the
segments are from the same sentence, they are concatenated to form a new “sentence”.

Experimental results are shown in Figure 6.1 for two representative collections. For
comparison, we also repeat results of the baseline, either model (0) or (1), denoted bm25
in the figure, and the results of model (2), denoted full in the figure. We can see that
as the window size increases, AP tends to rise as well. This seems intuitive, as context
is needed for relevance matching. Furthermore, results show that some words critical for
determining relevance are located quite far from the query terms; these are discarded when
the window size is too small, leading to lower AP scores. However, if we only keep sentences
that have at least one query term, the ranking effectiveness is already comparable to using
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all sentences (0.3080 vs. 0.3081 in Arabic, 0.3095 vs. 0.3101 in Bengali). This simple filter
can decrease the inference time needed for ranking 60% to 80% depending on the different
characteristics of the collections.

6.7 Summary

For document dense retrieval, we investigate the effectiveness of three transfer techniques
for document ranking from English training data to low-resource target languages. Our
experiments in six languages demonstrate that zero-shot transfer of mBERT-based dense
retrieval models improves traditional term-based matching method, and finetuning on aug-
mented data in target languages can further benefit certain collections. For the document
reranking, as a high-level summary, our experiments confirm that mBERT can enable cross-
lingual training of document ranking models. However, mBERT’s “multi-lingual capacity”
for direct model-based transfer does not appear to be consistently better than other ap-
proaches of bridging language gaps. For example, simple approaches such as token-based
translation of the training data also work well. However, model-based transfer requires
only a single model, whereas the latter requires a model for each language. Overall, our
work contributes to a better understanding of how relevance judgments in high-resource
languages can be leveraged to improve search in low(er)-resources languages.

82



Chapter 7

Cross-lingual Text-to-SQL Semantic
Parsing with Representation Mixup

We focus on the cross-lingual Text-to-SQL semantic parsing task, where the parsers are
expected to generate SQL for non-English utterances based on English database schemas.
Intuitively, English translation as side information is an effective way to bridge the language
gap, but noise introduced by the translation system may affect parser effectiveness. In this
work, we propose a Representation Mixup Framework (Rex) for effectively exploiting
translations in the cross-lingual Text-to-SQL task. Particularly, it uses a general encoding
layer, a transition layer, and a target-centric layer to properly guide the information flow
of the English translation. Experimental results on CSpider and VSpider show that our
framework can benefit from cross-lingual training and improve the effectiveness of semantic
parsers, achieving state-of-the-art performance.

This work is based on:

• Peng Shi, Linfeng Song, Lifeng Jin, Haitao Mi, He Bai, Jimmy Lin and Dong Yu,
Cross-lingual Text-to-SQL Semantic Parsing with Representation Mixup. Findings
of EMNLP, 2022.

7.1 Introduction

The task of semantic parsing is to translate natural language utterances into meaning repre-
sentations, such as lambda calculus [248] or a programming language [529, 570, 542]. More

83



country
Code

Name

Continent

Region

SurfaceArea

IndepYear

Population

LifeExpectancy

GovernmentForm SELECT sum(Population), GovernmentForm
FROM country GROUP BY GovernmentForm

HAVING avg(LifeExpectancy) > 72

Cho biết những hình thức chính phủ có tuổi thọ trung 
bình của người dân cao hơn 72 và tổng số dân của mỗi 

hình thức chính phủ.

SELECT GovernmentForm, sum(Population)
FROM country WHERE LifeExpectancy > 72

GROUP BY GovernmentForm

Indicate which forms of government have a life 
expectancy of more than 72 people and the total 

population of each form of government.

Figure 7.1: An illustration of the cross-lingual Text-to-SQL task. The utterance in English:
“Find the government form name and total population for each government form whose
average life expectancy is longer than 72.”. The automatic translation fails to translate
“trung b̀ınh” in Vietnamese into “average” in English.

recently, Text-to-SQL semantic parsing, using SQL queries as the meaning representation,
has attracted increasing attention from both academia and industry researchers [570, 463,
537, 99, 415, 398].

Benefiting from recently annotated large-scale datasets [570, 542], research in Text-to-
SQL has been greatly expedited. Moreover, due to the development of encoder-decoder
pre-trained models [233, 366], semantic parsers have been improved significantly, benefiting
from contextualized representations [257, 398]. However, these advances have been achieved
mostly in English, leaving other languages underexplored. Systems that can handle non-
English inputs well are in urgent need to enhance the user experience for non-English
speakers. Nevertheless, the performance of current cross-lingual Text-to-SQL systems is
still far from satisfactory. Taking Figure 7.1 as an example, a Vietnamese question is
asked based on the English database schema, and the system is expected to generate the
corresponding SQL query.

We first define the problem of cross-lingual Text-to-SQL formally. Given an utter-
ance X “ px1, x2, ..., xnq and a database schema S, a Text-to-SQL model is expected
to translate the utterance into a valid SQL query. Our framework is based on a stan-
dard encoder-decoder architecture. For the task, we assume the existence of an interna-
tionalized database where the database schema S is in English. The natural language
queries from users are not in English; we denote these non-English languages as target
languages. Here, we denote Xt “ tx1, x2, ..., xntu as an utterance in the target language
with nt tokens. Similarly, the utterance in the source language1 with ns tokens is denoted
Xs “ tx1, x2, ..., xnsu. We assume the database schema S contains several tables T P D

1In this work, the source language refers to English.
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with column names C “ tc1, c2, ..., c|T |u, where |T | denotes the number of columns in table
T .

Because the utterances are non-English, English parsers cannot be directly applied.
For tackling the cross-lingual issue, machine translation based methods can be effective
solutions, e.g., first translating non-English utterances into English and then using English
parsers to generate SQL queries. Here we denote these as Translate-Test methods. How-
ever, translation systems may introduce noise that causes further errors from the semantic
parsers. For example, in Figure 7.1, Google Translate produces the English translation “In-
dicate which forms of government have a life expectancy of more than 72 people and the
total population of each form of government.” for the input Vietnamese utterance. One im-
portant information is missing in the translation process: “trung b̀ınh” should be translated
into “average” but Google Translate fails to do so, resulting in the wrong WHERE condi-
tion prediction: WHERE LifeExpectancy > 72 instead of HAVING avg(LifeExpectancy)

> 72.

Another direction for solving the cross-lingual Text-to-SQL problem is to build target
language annotated datasets and train a target language parser directly [294, 313]. However,
these methods fail to leverage knowledge from English parsers (learned from annotated
English data), which has the potential to benefit non-English Text-to-SQL parsing.

In this work, we propose Rex, a Representation mixup framework for cross-lingual
modeling that utilizes both the English data and the annotated data in the target language.
First, Rex adopts a two-stage training strategy where the target language models are first
initialized with the pre-trained English parser and then trained with the target language
data. Using this method, basic schema encoding ability and SQL decoding ability of the
English parsers can be reused during target language training. Second, to further make
use of English parsers’ utterance encoding ability, we use English translations as context
augmentation for bridging the cross-lingual gap and facilitating non-English model training.

Instead of simply concatenating the English translation and the target utterance, Rex
takes a general encoder, a transition layer, and a target-centric encoder to properly guide
information flow of English translations, to mitigate the aforementioned issue around noisy
translations. In detail, the general encoder generates contextual representations for bilin-
gual utterances and database schemas. The transition layer is leveraged to obtain a cross-
lingual mixup representation of the target language utterance, aiming to make the best use
of English translations while minimizing the noise introduced. Lastly, the target-centric
encoder focuses on the interaction between the target language utterance and the source
language schema, by ignoring the side effects caused by translations.

We test our Rex framework on two non-English Text-to-SQL semantic parsing datasets,
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CSpider and VSpider. Experimental results on the benchmarks show that our framework
can further improve upon simple yet effective baselines. At the time of publication, Rex
achieves state-of-the-art performance on the CSpider leaderboard based on the results on
the hidden test set.

Our contributions are summarized as follows:

• We propose the Rex framework for leveraging knowledge from English parsers and
information from machine translation by using representation mixup to reduce the
negative side effects of automatic translation.

• We conduct a detailed ablation study to show how different configurations of the
Rex framework affect parser effectiveness.

• Our framework obtains state-of-the-art performance on the CSpider and VSpider
benchmarks.

7.2 Related Work

Cross-lingual Semantic Parsing: The goal of cross-lingual semantic parsing is to pro-
cess user utterances in multiple languages and convert them into some type of logical
representation. Much research progress has been made on this task in recent years.

Dataset creation represents a fundamental contribution that is useful for benchmarking
progress [24, 241, 85, 409, 440, 453, 506]. On the other hand, for model development,
multilingual pre-trained models are widely applied to the task in a supervised fashion or
zero-shot fashion [409, 407, 241].

For example, [407] recently focused on cross-lingual transfer, where the model trained
on English data is effectively adapted to other languages. However, their work focuses
on single-database semantic parsing and the trained models do not generalize well across
different databases. Instead, we focus on cross-database semantic parsing under the super-
vised learning setting.

Representation Mixup: The term “mixup” was first introduced by [557], referring
to a data-agnostic data augmentation method for reducing the memorization issue and
improving model robustness. Follow-up work tried to mix up the hidden representa-
tions [455] instead of the input. This technique has been widely applied in different
directions [514, 120, 242]. Our approach is the first to introduce the idea of mixup to
cross-lingual Text-to-SQL semantic parsing.
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Figure 7.2: Illustration of the Rex framework. The left part is the overall framework
comprising a general encoder, a transition layer, and a target-centric encoder. The SQL
query is decoded autoregressively from the SQL decoder. The right part demonstrates one
of the implementations of the transition layer: Explicit Utterance Mixup.

7.3 Models

7.3.1 Baseline: Single-source Input

Here we introduce a sequence-to-sequence based semantic parsing model and a baseline
that leverages English translation for non-English Text-to-SQL semantic parsing.

The model for Text-to-SQL semantic parsing has been continuously improved in recent
years [525, 464, 147, 463, 390, 418, 73, 179, 358]. Specifically, [398] utilize the pre-trained
sequence-to-sequence model T5 as the parser to directly generate SQL, simplifying the
intermediate representation design for the grammar-based decoder. In detail, the model
input is the concatenation of utterance X and linearized database schema S. With a pre-
trained encoder, the contextualized utterance representation Hx and the database schema
representation Hd can be obtained. The pre-trained decoder leverages these contextual-
ized hidden states for generating SQL in an autoregressive fashion with constrained decod-
ing. This architecture obtains state-of-the-art performance on English benchmarks without
complex modeling. By replacing the T5 model with its multilingual version, mT5 [509],
the model can be applied to non-English training data, to obtain parsers that have the
ability to handle non-English utterances. We denoted this as single-source target-language
training.
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7.3.2 Representation Mixup Framework

Here, we propose a representation mixup framework for cross-lingual Text-to-SQL semantic
parsing. As shown in Figure 8.1, the encoder stacks several general encoding layers with a
transition layer, and some target-centric encoding layers.

First, utterances from the source and target languages can be encoded separately or
jointly in the general encoder layers. Then, a transition layer implements the representation
mixup between the input sequences, such as source language utterance, target language
utterance, and database schema, in a specific layer. Then, a target-centric encoding layer
will try to ignore the noise produced by machine translation systems by only focusing on
the target language utterance. Finally, a SQL decoder leverages the information from the
encoder component to generate a full SQL query.

General Encoder

The general encoder is used to generate basic representations of the utterances, includ-
ing the source language and target language, and the database schema. Here we discuss
two different methods, namely independent encoder [121] and joint encoder. The general
encoder is parameterized with m-layer transformers.

Independent General Encoder: Formally, the source and target language utterances
can be encoded with m-layer transformers to obtain hidden representation Hs and Ht:

Hm
s “ TransformersspXsq

Hm
t “ TransformerstpXtq

(7.1)

The database schema is first linearized into the token sequence S, following the method
used in [398]. An m-layer transformer is applied on the linearized database schema tokens
to obtain Hd:

Hm
d “ TransformersdpSq (7.2)

One benefit of independent encoding is that the representation of the schema can be shared
and reused for all queries to the database, speeding up model inference. Note that the m-
layer transformer parameters from different components can be either independent or tied.

Joint General Encoder: The interactions between the schema and the utterances are
vital for training an effective semantic parser. Instead of encoding the information inde-
pendently, joint encoding allows full information interaction between the utterances and
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schema. More specifically, the input of the joint encoder is the concatenation of the source
language utterance, the target language utterance, and the schema:

Hm
s , Hm

t , Hm
d “ TransformersprXs;Xt;Ssq (7.3)

where [;] denotes the concatenation operation. Compared to the independent general
encoder, this design requires re-encoding of the schema for each natural language query,
where the model can benefit from interactions between the utterances and the schema.

Transition Layer

The transition layer is used to guide the information flow among the different components
properly. The output of the transition layer is the representation of the target language
utterance and the database schema. Formally, the transition layer is denoted as follows:

Hm`1
t , Hm`1

d “ fpHm
s , Hm

t , Hm
d q. (7.4)

We discuss different transition layer designs in detail in Section §4.2.

Target-centric Encoder

Only the hidden states of the target language utterance and the schema are kept for further
modeling, eliminating the side effects of noisy translations. Formally, k-layer transformers
are applied to the concatenation of target language utterance and schema representations:

Ht, Hd “ TransformersprHm`1
t ;Hm`1

d sq (7.5)

The output of the target-centric encoder is then used in the SQL decoder.

SQL Decoder

The transformer decoder is trained to generate SQL queries token by token. The SQL
queries are directly tokenized without any preprocessing. The cross-attention of the trans-
former decoder is applied to the output of the target-centric encoder. Compared to a
grammar-based SQL decoder, SQL queries generated token by token may have syntac-
tic errors. For example, the SQL generator may hallucinate column names that are not
from the corresponding database schema. To alleviate this issue, we apply the constrained
decoding algorithm Picard [398] to improve the SQL generation quality.
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7.3.3 Design of the Transition Layer

Here we introduce the transition layer in detail. The transition layer enhances interactions
among the different components (source language utterance, target language utterance, and
database schema). The transition layer serves as an information mixer and information
flow controller, by fusing information from different components implicitly or explicitly and
feeding it to the next layer. The output of the transition layer is the hidden representation
of the utterance in the target language and the schema, ignoring the source language
information. In this way, the source language utterance only serves as context for the target
utterance and/or the schema, without interfering with the decoder behavior explicitly due
to unexpected translation noise. Here, we discuss three different transition mechanisms,
namely implicit full mixup, implicit utterance mixup, and explicit utterance mixup.

Implicit Full Mixup (IFM): For implicit full mixup, all three components are involved in
the modeling. The implicit full mixup layer is parameterized with a single layer transformer:

Hm`1
t , Hm`1

d

“ TransformerprHm
s ;Hm

t ;Hm
d sqrp : qs,

(7.6)

where rp : qs is the span of the concatenated sequence of target language utterance and
schema tokens. Note that the hidden states of the source language utterance only serve as
keys and values, while the hidden states of the target language utterance and the schema
serve as queries, keys, and values in the multi-head attention. This is different from a
vanilla transformer layer.

Implicit Utterance Mixup (IUM): The implicit utterance mixup implements the infor-
mation flow transition on the utterance part:

Hm`1
t “ TransformerprHm

s ;Hm
t sqrp : qs

Hm`1
d “ Hm

d ,
(7.7)

where rp : qs is the span of the target language utterance. For the schema representation,
skip connections are applied. Similar to implicit full mixup, the hidden states of the
utterance from the source language are specifically used as keys and values, while the
target utterance hidden states are also used for queries in multi-head attention. The
main goal is to enhance the representation of the target language utterance by integrating
information from the source language counterparts. This can further reduce the cross-
lingual representation discrepancy between the target language utterance and the source
language (English) schema.
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Explicit Utterance Mixup (EUM): Instead of using fully connected self-attention to
learn representation mixup, explicitly controlling the information flow is another strategy.
Formally, self-attention is applied independently to the source language utterance and the
target language utterance:

H
1

s “ MultiHeadpHm
s , Hm

s , Hm
s q

H
1

t “ MultiHeadpHm
t , Hm

t , Hm
t q.

(7.8)

Manifold mixup [514] provides a way to obtain intermediate representations by conducting
linear interpolation on the hidden states, leveraging a cross-attention layer:

Hm`1
t|s “ MultiHeadpH

1

t, h
1

s, h
1

sq. (7.9)

Following [514], the cross-attention layer shares parameters with the self-attention layer.
With the cross-attention layers, by using the hidden states of the target language tokens
as queries and the hidden states of the source language tokens as keys and values, the
model can extract target-related signals from the source. With the interpolation operation
controlled by a mixup ratio λ, the target representation can be enhanced:

Hm`1
t “ LayerNormpλHm`1

t|s ` p1 ´ λqHm`1
t q, (7.10)

where the mixup ratio λ is shared by each example in training and inference. Similar to
Equation 7.7, a skip connection layer is applied to the schema representations.

7.3.4 Framework Configurations

By configuring parameters such as m and k, some basic model architectures can be ob-
tained.

Multi-source Input with Concatenation: Concatenation is a simple yet effective base-
line for leveraging both the source language utterance and the target language utterance
at the same time. By setting k “ 0 and Transition Layer “ None, our framework is con-
figured as a simple concatenation model. In this case, the decoder can leverage bilingual
information to generate the SQL query.

Focused Simple Concatenation: By setting k “ 0 and Transition Layer “ Implicit

Full Mixup, our Rex framework can obtain a new architecture, denoted as focused simple
concatenation. Different from simple concatenation, the SQL decoder only focuses on
the target utterance component and the database schema, ignoring the source language
utterance. This can reduce the negative effects caused by noisy machine translations.
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7.4 Experimental Setup

Datasets: In this work, we evaluate our framework on two Text-to-SQL semantic parsing
datasets, CSpider [294] and VSpider [313], which are Chinese and Vietnamese cross-
domain Text-to-SQL datasets adapted from the Spider benchmark [542].

For CSpider, we use Exact Set Match (EM) accuracy as the evaluation metrics. For
VSpider, we use both EM accuracy and Test-suite (TS) [568] accuracy for evaluation.
For Exact Set Match accuracy, the prediction is classified as correct only if all of the
components (SELECT clause, WHERE clause, HAVING clause, etc.) are correct. The Test-suite
accuracy, which is an improved version of execution accuracy (if the execution results of
a predicted SQL query are the same as those of the ground truth SQL query, then it is
classified as correct), serves as a tight upper bound for semantic accuracy [568].

Model Training: Our Rex framework is an adapted sequence-to-sequence transformer.
Benefiting from pre-trained sequence-to-sequence language models such as BART [233] or
T5 [366], performance is significantly improved by finetuning pre-trained models. Further-
more, because our Rex framework is expected to process utterances in multiple languages,
our experiments are based on mT5-large, which has 24 layers.

To leverage English annotated data, we conduct two-stage training: We first train mT5-
large on the English dataset to obtain a trained parser checkpoint. Note that this trained
English parser is based on a standard sequence-to-sequence architecture instead of the
Rex framework. The input of the parser is the concatenation of the English utterance and
the linearized database schema. This model obtains state-of-the-art performance on the
Spider benchmark. We use the checkpoint to initialize our Rex framework and further
finetune on target language datasets. During inference, we translate the target language
utterances into English as model inputs. To fix the number of model parameters, we always
use m ` k ` 1 “ 24 in our experiments. For hyper-parameters, we follow [398] in all our
experiments. By default, we use Google Translate for all model training and inference.

7.5 Results

CSpider: We report the performance of Rex on CSpider, which can be compared with
other state-of-the-art systems on the leaderboard.2 As shown in Table 7.1, our Rex frame-
work obtains 66.1% EM accuracy on the development set and 59.7% EM accuracy on

2https://taolusi.github.io/CSpider-explorer
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Model Dev. Test

DG-SQL ([461]) 50.4 46.9
XL-SQL 54.9 47.8
RAT-SQL + GraPPa + Adv 59.7 56.2
LGESQL + ELECTRA + QT 64.5 58.1

Single-source

Target-language Training 63.7 -

Multi-source

Concatenation 65.5 -
Rex 66.1 59.7

Table 7.1: Model performance on the CSpider development set and hidden test set with
EM accuracy.

the hidden test set, exceeding the best-performing system, LGESQL+ELECTRA+QT, by
1.6% on both the development set and the test set. Our model is based on a joint general
encoder, explicit utterance mixup with 0.1 mixup ratio, and setting m “ 16 and k “ 7.
Our system achieves state-of-the-art performance on the CSpider benchmark at the time
of writing.

Comparing the multi-source models to single-source ones, we observe that the extra in-
formation can improve parser effectiveness. With multi-source concatenation, the parser is
already competitive with the state-of-the-art parser. Our Rex framework further improves
the model by 0.6% over the multi-source input with concatenation.

VSpider: Because our data split on VSpider is different from [313], our results are not
directly comparable.3

The main results for VSpider are shown in Table 7.2. As a single source baseline,
target language training obtains 64.2% EM accuracy and 59.0% TS accuracy. Multi-
source concatenation outperforms target-language training, with 1.4% improvement on
EM accuracy and 2.9% improvement on TS accuracy. Our Rex framework achieves better
effectiveness both on EM accuracy and TS accuracy, with 69.0% EM accuracy and 64.5%
TS accuracy. The model is based on a joint general encoder, explicit utterance mixup with

3[313] split the dataset into training (6831), dev (954), test (1906) sets. In order to prevent data leak
from the trained English parser, we keep our splits consistent with Spider: training set (8659) and dev
set (1034).
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Model EM TS

Single-source

Target-language Training 64.2 59.0

Multi-source

Concatenation 65.6 61.9
Rex 69.0 64.5

Table 7.2: Model performance on the VSpider development set with EM accuracy and
TS accuracy.

Model
zh vi

G. M. ∆ G. M. ∆

Concat. 65.5 61.4 4.1 65.6 63.0 2.6
Rex 66.1 65.0 1.1 69.0 66.8 2.2

Table 7.3: Robustness with respect to translation error. The performance comparison is
conducted based on parsers that use Google Translate (G.) and parsers that use Marian
Translate (M.). Concat. denotes multi-source input with the concatenation model. Marian
Translate introduces more noise than Google Translate. EM accuracy is reported.

0.3 mixup ratio, and setting m “ 12 and k “ 11.

7.6 Discussion and Analysis

To investigate issues in cross-lingual semantic parsing and to better understand our Rex
framework, we performed several ablation experiments.

7.6.1 Robustness to Translation Noise

We argue that the models with transition layers are more robust to translation noise
than the baseline model using multi-source input with concatenation. To verify this, we
conduct an ablation study by testing the models using English translations from different
translation systems: Google Translate and Marian Translate [449]. More specifically, the
models are first trained with translations obtained from Google Translate, using the simple
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Model zh vi

Target language Training 62.5 62.8
En Ñ Target language Training 63.7 64.2

Table 7.4: Ablation study of two-stage training. “Target language training” denotes using
target language labeled data to train the parser from scratch and “EnÑ Target language
Training” denotes two-stage training. EM accuracy is the evaluation metric.

concatenation model and the Rex architecture. These models are tested with different
translation systems. The results in the G. and M. columns show the performance of models
that are tested with data from Google Translate and Marian Translate, respectively. The ∆
column shows the performance gap between using Google Translate and Marian Translate.

The experimental results are shown in Table 7.3. For Chinese, the concatenation based
model is sensitive to translation noise, degrading from 65.5% to 61.4% when the translation
system is switched from Google Translate to Marian Translate. However, performance
of the Rex model only drops 1.1% on accuracy, showing better robustness towards the
translation noise. Similarly, on the VSpider benchmark, our Rex model shows better
robustness than the concatenation model or the model obtained from source-language
training.

7.6.2 Effectiveness of Two-stage Training

Here we conduct an ablation study to show that two-stage training is an effective way
to leverage annotated English data. With labeled data in the target language, we can
train the parser from scratch or apply two-stage training. Results are shown in Table 7.4.
We can observe that two-stage training can benefit the parser consistently under different
settings. For example, two-stage training can improve 1.2% EM accuracy for Chinese and
1.4% for Vietnamese. These results rationalize our design choice for the Rex framework.

7.6.3 Transition Layer Index and Design

We explore choices of transition layer index under different transition layer designs, in-
cluding implicit full mixup, implicit utterance mixup, and explicit utterance mixup. We
configure m P t4, 8, 12, 16, 20, 23u. Note that when m “ 23, the Target-centric Encoder

= None. For the explicit utterance mixup, we use a fixed ratio controller by setting λ “ 0.3
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Model 4 8 12 16 20 23

IFM 66.4 67.5 68.7 68.8 68.6 68.9
IUM 67.6 67.7 68.8 68.4 68.0 67.5
EUM 67.6 67.4 69.0 68.5 68.2 66.8

Table 7.5: Ablation study of the transition layer index on the VSpider dev set. IFM
denotes implicit full mixup; IUM denotes implicit utterance mixup; EUM denotes explicit
utterance mixup. EM accuracy is reported.

ratio Easy Med. Hard Extra All

0.1 88.3 73.1 49.4 42.2 67.8
0.2 87.1 72.6 51.7 47.0 68.5
0.3 89.1 71.7 52.9 45.2 68.5
0.4 84.7 70.0 54.6 45.2 66.9
0.5 86.3 70.9 51.7 45.8 67.3

Table 7.6: Study of the mixup ratio. Experimental results are based on the VSpider
benchmark, using EM accuracy as the evaluation metric. Accuracy on different difficulty
levels are reported.

(see study of the mixup ratio in Section §8.4). We conduct the ablation study on the
VSpider dataset and the experimental results are shown in Table 7.5.

The EM accuracy scores from the configurations shown in Table 7.5 are better than
the concatenation baseline (65.6%). For implicit full mixup, we find that the transition
layer can contribute to model effectiveness more when m ě 12. Note that when m “ 23,
the framework is configured as focused simple concatenation (see §7.3.4). For implicit
utterance mixup, when m “ 12 or m “ 16, the model can perform better. Similarly, for
explicit utterance mixup, implementing in the middle layers benefits the most. Especially
when m “ 12, the parser achieves the best EM accuracy. One possible explanation is that
utterance mixup changes the information flow more significantly than full mixup, requiring
more target-centric layers to encode the mixed information. Regarding the different settings
of transition layer design, there is no clear winner. For example, implicit full mixup usually
outperforms the others when m P t16, 20, 23u. When m P t4, 8u, implicit utterance mixup
achieves higher accuracy than full mixup.
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Model zh vi

Independent Encoder 64.1 66.2
Joint Encoder 66.1 69.0

Table 7.7: Ablation study of the general encoder. EM accuracy is reported.

7.6.4 Choice of Mixup Ratio

The mixup ratio for the explicit utterance mixup is an important hyper-parameter that
affects the information flow of English translations. Here, we conduct an analysis to see
how the ratio influences parser effectiveness. The experiments are based on the supervised
setting with the VSpider dataset, by configuring m “ 16 and λ P t0.1, 0.2, 0.3, 0.4, 0.5u.

The experimental results are shown in Table 7.6. Based on the overall results, we can
observe that the parser obtains the best overall performance when the mixup ratio is 0.2
or 0.3. For different difficulty levels,4 there is no single ratio setting that achieves the
best performance on the four difficulty levels. For example, 0.3 is the best ratio for easy
questions while 0.4 is the best for hard questions.

7.6.5 Choice of General Encoder Design

We compare different design choices for the general encoder in Table 7.7. Even though the
independent encoder has the merit of efficient inference (the hidden states of the schema
can be reused for all queries to the database), the performance drop is noticeable. The
independent encoder is similar to the local transformers proposed in the FILTER architec-
ture fang2021filter, which benefits POS tagging and multilingual QA tasks. However, we
argue that for the semantic parsing task, full interactions between different components
are more beneficial.

7.6.6 Case Studies

Here we conduct an analysis to see what cases the Rex framework can improve over the
baseline and what cases it still fails.

4The difficulty level of a query is based on the complexity of the corresponding SQL; see [542] for more
details.
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The noise introduced by translation may affect the parser performance unexpectedly
if the decoder accesses the translated English utterance representations directly, such as
with the model using multi-source input with concatenation. For example 1 in Table 7.8,
the English translation does not correctly translate 以数量升序 (“in ascending order of
the count”), which causes the concatenation based model to fail to predict the ORDER BY

clause. In contrast, our Rex framework leverages the explicit utterance mixup transition
layer and the target-centric encoder to ignore this translation noise and predict the SQL
query correctly.

For example 2, both the baseline system and Rex fail. However, comparing the Rex
prediction with the Concat. prediction, we see that the Rex output is closer to the gold
SQL query. Comparing the two, we see that the Rex query fails to join COUNTRIES with
CONTINENTS and uses CONTINENTS.Continent = "欧洲" in the WHERE clause instead of
COUNTRIES.Continent, because COUNTRIES.Continent has the ID instead of the name.
This suggests that the model can be further improved by proposing better encoding tech-
niques for the schema information.

7.7 Summary

We propose the Rex framework that effectively integrates information from English trans-
lations into the modeling of target language utterances. More specifically, we propose
three different transition layer implementations that enhance the interactions among dif-
ferent components. We further compare their effectiveness with detailed ablation studies.
Experiments show that our framework is robust to translation noise by controlling the in-
formation flow properly, outperforming existing baselines on the VSpider and CSpider
benchmarks.
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Example 1

Chinese Utterance:
请以数量升序显示管弦乐队的唱片格式。

English Translation:
Please display the orchestra record format in ascending order.

Concat. Prediction:
SELECT major record format FROM orchestra ORDER BY major record format ASC

Rex Prediction:
SELECT major record format FROM orchestra GROUP BY major record format ORDER

BY count(*) ASC

Gold:
SELECT major record format FROM orchestra GROUP BY major record format ORDER

BY count(*) ASC

Example 2

Chinese Utterance:
欧洲哪些国家至少有3家汽车制造商？

English Translation:
Which European countries have at least 3 car manufacturers?

Concat. Prediction:
SELECT Country FROM CAR MAKERS GROUP BY Country HAVING COUNT(*) >= 3

Rex Prediction:
SELECT T1.CountryName FROM COUNTRIES AS T1 JOIN CAR MAKERS AS T2 ON

T1.CountryId = T2.Country WHERE T1.Continent = "欧洲" GROUP BY T1.CountryName

HAVING COUNT(*) >= 3

Gold:
SELECT T1.CountryName FROM COUNTRIES AS T1 JOIN CONTINENTS AS T2 ON

T1.Continent = T2.ContId JOIN CAR MAKERS AS T3 ON T1.CountryId = T3.Country

WHERE T2.Continent = "欧洲" GROUP BY T1.CountryName HAVING count(*) >= 3

Table 7.8: Case studies comparing Rex and the Concatenation baseline. Examples are
selected from the CSpider dev set.
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Chapter 8

Cross-lingual Retrieval-Augmented
In-Context Learning for Cross-lingual
Text-to-SQL Semantic Parsing

In-context learning using large language models has recently shown surprising results for
semantic parsing tasks such as Text-to-SQL translation. Prompting GPT-3 or Codex using
several examples of question-SQL pairs can produce excellent results. However, existing
work primarily focuses on English datasets, and it is unknown whether large language
models can serve as competitive semantic parsers for other languages. To bridge this
gap, our work focuses on cross-lingual Text-to-SQL semantic parsing for translating non-
English utterances into SQL queries based on an English schema. We consider a zero-shot
transfer learning setting with the assumption that we do not have any labeled examples in
the target language (but have annotated examples in English). This work introduces the
XRICL framework, which learns to retrieve relevant English exemplars for a given query
to construct prompts. We also include global translation exemplars for a target language
to facilitate the translation process for large language models. To systematically evaluate
our model, we construct two new benchmark datasets, XSpider and XKaggle-dbqa,
which include questions in Chinese, Vietnamese, Farsi, and Hindi. Our experiments show
that XRICL effectively leverages large pre-trained language models to outperform existing
baselines. This work is based on:

• Peng Shi, Rui Zhang, He Bai and Jimmy Lin, XRICL: Cross-lingual Retrieval-
Augmented In-Context Learning for Cross-lingual Text-to-SQL Semantic Parsing.
Findings of EMNLP, 2022.
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8.1 Introduction

Semantic parsing is the task of translating natural language questions into meaning repre-
sentations such as Lambda CDS [248], Python code [529], and SQL [542]. More recently,
Text-to-SQL semantic parsing has attracted attention from academia and industry due to
its challenging setup and practical applications. Cross-lingual Text-to-SQL semantic pars-
ing [407, 294, 409] aims to translate non-English utterances into SQL queries based on an
English schema (assuming we have an internationalized database), enabling users to query
databases in non-English languages. For example, such a system could help people from
around the world access the US government’s open data1 with natural language questions
in different languages.

State-of-the-art approaches for Text-to-SQL semantic parsing have been greatly im-
proved by finetuning pre-trained language models as a sequence-to-sequence problem [397,
528, 168, 537, 540, 415]. More recently, in-context learning with large language mod-
els (LLMs), such as GPT-3 [42] and Codex [55], has emerged as a new learning paradigm.
This paradigm enables effective few-shot learning without model finetuning, showing its
practical and scientific value [28]. Recent papers also have shown promising results applying
in-context learning to the Text-to-SQL task. [368] studied if LLMs are already competi-
tive Text-to-SQL semantic parsers without further finetuning on task-specific training data.
Additionally, [350] and [391] investigated the exemplar retrieval problem for the semantic
parsing task.

However, previous work mostly focused on English utterances, leaving other languages
behind. It is unclear if LLMs are competitive for cross-lingual Text-to-SQL with English
exemplars using in-context learning. Even in the mono-lingual setting (where the exemplars
and the query are in the same language), many approaches are not practical beyond English
due to the paucity of target language query-SQL exemplars.

To bridge this gap, we propose XRICL, a novel framework based on LLMs with in-
context learning for cross-lingual Text-to-SQL semantic parsing. Specifically, the task
is to generate SQL queries for non-English queries based on an English schema and an
English query-SQL candidate pool. Our framework first constructs the context prompt
by retrieving the most relevant English query-SQL exemplars for each target language
query. Since we do not have any training data in the target language, we cannot train a
retriever for target queries directly. Our solution is to train an English exemplar retriever
with mT5 [509] and adopt a model-based cross-lingual transfer method for cross-lingual

1https://data.gov
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大多数犯罪发生在什么时间？

Retriever Reranker

zh

vi Generator

When do most crimes take place?
SQL: SELECT CrimeTS FROM 

GreaterManchesterCrime GROUP BY CrimeTS ORDER 
BY count(*) DESC LIMIT 1

Labeled English
Candidates

Translation-based
Candidates

Retrieved exemplars

1 2

3

4

Non-English utterance

Generated SQL

SQLite tables: …
Q: What is the most common birth place of people?
SQL: SELECT Birth_Place FROM people GROUP BY 
Birth_Place ORDER BY COUNT(*) DESC LIMIT 1

SQLite tables: …
Q: 部门中有多少人年龄大于56岁？
Translate into English: How many heads of the 
departments are older than 56 ?
SQL: SELECT count(*) FROM head WHERE age  >  56

SQLite tables:
GreaterManchesterCrime(CrimeID, CrimeTS, Location, 
LSOA, Type, Outcome)
Q: 大多数犯罪发生在什么时间？
Translate into English:

…

Translation-P

Index key Example

Translation-based Example

Figure 8.1: Overview of our proposed XRICL framework. Given a labeled English
question-SQL candidate pool and the non-English question as input, our framework uses
in-context learning with a large pre-trained language model (e.g., Codex) to generate SQL
queries in four steps: (1) Cross-lingual Exemplar Retrieval, (2) Exemplar Reranking, (3)
Prompt Construction with Translation as Chain-of-Thought, and (4) Inference.

retrieval. The English exemplar retriever is trained with feedback from the LLM itself by
distilling soft labels (likelihood).

Our framework introduces an additional exemplar into the LLM’s input context, to
instruct the model to translate the target query into English and then to translate the
English query into SQL; this approach is inspired by recent work on chain-of-thought
prompting [478, 410]. However, in our framework, this additional exemplar is identical
for all test queries, which means that we only need a single pair of translations for any
English-target language pair, requiring minimal translation effort.

During the inference process, the language model is expected to generate the English
translation first and then the SQL query. In our experiments, we find that our proposed
retriever and reranker can improve the LLMs’ cross-lingual few-shot in-context learning
performance by a large margin, and further improvements can be observed by adding an
additional translation exemplar.

We further construct two benchmarks, XSpider and XKaggle-dbqa, to systemati-
cally evaluate the proposed framework in many languages. For XSpider, besides adopting
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existing work, including CSpider [294] and VSpider [313], we further translate the Spi-
der dataset into Farsi and Hindi for evaluation. For XKaggle-dbqa, we translate the
English Kaggle-dbqa dataset into Chinese, Farsi, and Hindi. Experimental results show
that our proposed framework improves effectiveness compared to baseline systems.

Our contributions are summarized as follows: (1) We propose a novel retrieve-rerank
framework to improve the exemplar selection process for in-context learning for cross-
lingual Text-to-SQL semantic parsing. To the best of our knowledge, we are the first to
explore the effectiveness of large pre-trained language models for cross-lingual Text-to-SQL
semantic parsing. (2) We propose to use translation as a chain-of-thought prompt in the
inference process, bridging the cross-lingual gap for large language models. (3) Last, we
construct two new benchmarks, XSpider and XKaggle-dbqa, to facilitate evaluation
of cross-lingual Text-to-SQL semantic parsing.

Before introducing the model in detail, we formally define the task here. Given a
database where the schema s is in English (denoted as the source language), our task is
to translate a non-English (denoted the target language) example x (x includes utterance
u and schema s) into a SQL query a. In this work, we explore large pre-trained language
models such as Codex for this Text-to-SQL task with in-context learning. To support in-
context learning, labeled candidates of (utterance, schema, SQL) triples are required. Since
more annotated resources are available in English, we assume that the labeled candidate
set D is in English. Overall, in-context learning is an efficient method to leverage large
pre-trained language models without expensive parameter fine-tuning. Furthermore, the
candidate pool can be easily expanded for better generalization to new domains.

8.2 Related Work

In-context Learning: In-context learning is a relatively new paradigm for zero-shot and
few-shot learning with large-scale pre-trained language models, first proposed in GPT-
3 [42]. In-context learning for semantic parsing has been intensively investigated re-
cently [339, 391, 421, 368, 174, 497, 55, 350]. However, most of the work considers only En-
glish, without examining the cross-lingual ability of the proposed methods. [482] evaluated
the multilinguality of pre-trained language models on non-English multi-class classification
with in-context learning. However, their task is simpler than semantic parsing tasks such
as ours. To the best of our knowledge, we are the first to explore cross-lingual Text-to-SQL
semantic parsing under the in-context learning setting.

Cross-lingual Semantic Parsing: Cross-lingual semantic parsing aims to handle user
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utterances from multiple languages and translate them into formal representations. Recent
advances can be categorized into two threads: multilingual dataset creation and model
development.

For example, [24] adapted a Chinese dialogue parsing dataset into English. [294] and
[313] adapted the English Text-to-SQL dataset Spider [542] into Chinese and Vietnamese,
which are used in this work for evaluation. Some multilingual datasets with different formal
representations have also been created, such as SPARQL [85] and TOP [241].

In terms of model development, [405] is the most relevant to our work, which leveraged
bilingual input for the semantic parsing task. However, they used RNN models and focused
on multilingual representation alignment with pre-training. Instead, our work focuses on
representation mixup with large multilingual pre-trained models. Improving cross-lingual
zero-shot transfer is another direction [409, 407, 408].

Multilingual and Cross-lingual Retrieval: In multilingual retrieval, the task is to re-
trieve relevant documents where the user queries and the corpora are in the same language.
Recent work takes advantage of cross-language transfer using pre-trained multilingual mod-
els [411, 419, 564, 563]. For example, [419] used DPR to retrieve documents based on ad-hoc
queries in six languages. On the other hand, cross-lingual retrievers help users find relevant
documents in languages that are different from that of the queries. This task has a long
history that goes back several decades [320], but recent work includes [555, 266, 434]. For
instance, [19] created a cross-lingual open-domain question answering dataset where the
system is required to retrieve passages from different languages to answer user questions.

8.3 Models

Our XRICL framework is shown in Figure 8.1, consisting of four steps:

(1) Cross-lingual Exemplar Retrieval : Retrieve a list of N English exemplars that are
relevant to the input non-English example x.

(2) Exemplar Reranking : Rerank the retrieved N exemplars and use the top K exemplars
to construct prompts.

(3) Prompt Construction with Translation as Chain of Thought : Construct a prompt con-
sisting of the translation exemplar as a chain of thought, the selected K exemplars, and
the input example.

(4) Inference: Feed the prompt into a pre-trained language model to generate SQL.
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8.3.1 Cross-lingual Exemplar Retriever

Given a non-English question, the goal of the cross-lingual exemplar retriever is to find rele-
vant exemplars from the English candidate pool efficiently that can improve the predictions
of the generators. Considering that we use labeled examples in English (a high-resource
language) as candidates, we formulate this step as a cross-lingual retrieval problem, where
the test question is in a non-English language. In this case, traditional term matching
methods such as BM25 [386] or BM25 + RM3 query expansion [249] cannot be applied
due to token mismatch. Instead, we propose to use a bi-encoder for cross-lingual seman-
tic retrieval with model-based zero-shot transfer. We further improve the retriever with
distillation-based training.

Model. Here, we leverage the popular bi-encoder architecture known as dense passage
retriever (DPR) [205], where the query and candidates are mapped into representation
vectors independently. The retriever uses a dense encoder Eup¨q that converts an utterance
into a d-dimensional vector and builds an index over the candidate pool that is used for
retrieval.

For a test instance x, we use the same dense encoder to map the utterance into a
d-dimensional vector (denoted the query vector). Based on the query vector, the closest
top N exemplars are retrieved from the pre-built index based on the pre-defined distance
function. Following [205], we define the distance function as

simpx, zq “ Eupxq
J Eupzq (8.1)

where Z is the set of candidate exemplars and z P Z. We use a transformer as the dense
encoder, and the average of the contextual embeddings of the utterance tokens is taken as
the representation of the encoded text.

Model-based Cross-lingual Transfer. Considering that we do not have training data in
target languages, we adopt a model-based cross-lingual transfer method, where we leverage
the zero-shot cross-lingual transfer ability of multilingual pre-trained transformers such as
mBERT [103], XLM-Roberta [77], mBART [272], and mT5 [509]. Specifically, we train
the dense retriever in the source language, where both the query utterance and candidate
utterances are in English (in our case), and apply inference directly on query utterances
in the target language and retrieve English exemplars in a cross-lingual manner.

Distillation-based Training. One common practice for bi-encoder training is contrastive
learning. Given a query, positive examples and negative examples are required. The model
is optimized such that examples from the positive class have similar representations and
examples from the negative class have different representations.
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Figure 8.2: Illustration of distillation-based training. The contribution distribution is
the likelihood distribution of the top-N exemplars produced by the LLM. The relevance
distribution is the ranking score distribution produced by the retriever.

The key here is how to define positive and negative examples for the semantic parsing
task. Recently, [174] used the similarity of target meaning representations to first rank
the candidates and choose the top-k as positive examples and the bottom-k as negative
examples. Instead of using human-designed relevance metrics, [391] proposed to use a
language model to label positive and negative examples for contrastive learning; similar to
[174], hard labels are used. Another way to train the bi-encoder is to use a regression-based
loss function. [350] proposed to retrieve exemplars that have relevant program structures
(tree edit distance of SQL abstract syntax trees is used as the relevance metric) for the
test utterances and the model is optimized with mean-squared error loss for predicting the
similarity score.

As an alternative to these above approaches, we train our retriever by distilling the
LLM’s scoring function. This scoring function calculates the ground-truth SQL query’s
likelihood given an English exemplar zk and the input utterance x, which estimates the
importance of this exemplar for parsing the given input utterance. Hence, we score the
retrieved English exemplars with an LLM and optimize the KL divergence between the
LLM’s ranking scores and the retriever’s ranking scores to update the retriever, as shown in
Figure 8.2. This retriever is denoted DE-Retriever (Distillation-based Exemplar Retriever).
Intuitively, with the KL divergence loss function, the model tries to match the probability
of retrieving an exemplar zk with the contribution of that exemplar to the generated SQL
query a.

We first obtain N exemplars with the highest scores based on Equation (8.1), denoted
as Ztop´N . Our loss function is defined as:

Ldistill “ KLp SGpppzn | x, a, Ztop´N ;Gqq

} ppzn | x, Z;Eqq,
(8.2)

where SG denotes the stop gradient operation, G denotes the generator, and E denotes the
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retriever encoder. We further compute ppzn | x, a, Ztop´N ;Gq as follows:

ppzn | x, a, Ztop´Nq9

ppa | x, zn, Ztop´N ;Gq ppzn | x, Ztop´Nq
(8.3)

We approximate the posterior under the assumption that we have a uniform prior over the
set of retrieved exemplars, so ppzn | x, Ztop´Nq is approximated as 1

N
. We further compute

ppa | x, zn, Ztop´N ;Gq as:
exppppa | x, znqq

řN
j“1 exppppa | x, zjqq

(8.4)

where ppa | x, zjq is computed with the generator.

More specifically, we use example zj as the prompt and concatenate it with test instance
u and target SQL a. Then we feed it to the generator to compute the log probability of each
token logpppaiqq in the target SQL query a; ppa|x, zjq can be computed as expp

ř

logpppaiqqq.

8.3.2 Exemplar Reranking

For tasks such as information retrieval and open-domain question answering, reranking is
widely adopted to further improve retrieval results by incorporating a reranker. Such a
two-stage procedure is also useful in a variety of natural language processing tasks. In
this work, following the retrieve-and-rerank idea, we propose to incorporate an exemplar
reranker in our framework. This reranker can leverage token-level interactions between the
utterances to better rank the exemplars.

More specifically, the query utterance u and the candidate utterance uz are concate-
nated together with special tokens: [CLS] u [SEP] uz [SEP]. The tokenized input is
fed into a transformer model. An MLP with sigmoid activation is applied on top of the
contextual embedding of the [CLS] token to obtain the relevance score of the candidate
example [254]. Sigmoid cross-entropy loss is used and the model is optimized to produce a
relevance score as ppa|x, zn, Ztop´N ;Gq. This reranker is denoted DE-Reranker (Distillation-
based Exemplar Reranker).

8.3.3 Prompt Construction with Translation as Chain of Thought

From the input instance x and the list of retrieved-and-reranked exemplars Z, we construct
the augmented query by concatenating exemplars with the input instance following previ-
ous work [174, 391, 350, 267, 42, 339]. For the exemplar, we linearize the table schema, the
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question, and the SQL query. The exemplars are sorted by relevance score in descending
order. For the test instance, only the table schema and the question are linearized. We
denote this prompting approach Vanilla-P.

Translation as Chain of Thought: Recent work on chain-of-thought prompting is
designed to solve the multi-step reasoning problem by providing intermediate reasoning
steps before the final answer in the prompt [478]. Inspired by this, we use the translation
pair (from non-English to English in our case) as an intermediate step for cross-lingual
semantic parsing inference.

Specifically, a translation-based exemplar is inserted in front of Z. For example, in the
right part of Figure 8.1, the grey box contains the Chinese version of the translation as a
chain-of-thought prompt. The question in the prompt is in the target language, followed
by an instruction Translate into English and the English translation of the question.
Note that this translation-based exemplar is shared among all the test instances in that
language, as shown in the left part of Figure 8.1. The translation-based examples are
indexed by the language code, such as zh and vi. In this way, it only requires minimal
translation effort to build the global translation-based exemplar. We denote this prompting
approach Translation-P.

8.3.4 Inference

For inference, we feed the constructed prompt to a large pre-trained language model to gen-
erate the target SQL query with greedy decoding. In this work, we consider Codex (Codex-
Davinci-001) [55] because it has shown superior performance for the English Text-to-SQL
task [350].

8.4 Experimental Setup

In this section, we describe the datasets, implementation details, and baselines for our
experiments.

8.4.1 Datasets

We create two benchmarks, XSpider and XKaggle-dbqa, by translating existing En-
glish Text-to-SQL datasets into other languages and evaluate our methods on these two
benchmarks.
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Model
zh-full zh vi fa hi

EM EM TS EM TS EM TS EM TS

(1) mT5 zero-shot 39.7 47.9 48.4 42.1 40.1 41.3 39.5 41.2 39.7
(2) mUSE 38.4 43.0 46.8 31.8 33.4 28.9 31.1 22.2 23.7
(3) mSBERT 37.9 41.3 47.1 34.6 33.5 29.3 31.8 22.0 22.3

(4) mT5-encoder 44.4 48.1 51.4 41.3 39.5 38.4 38.5 28.6 27.0
(5) DE-Retriever 46.0 50.4 53.9 42.2 40.7 38.2 40.0 29.9 27.9
(6) DE-R2 46.4 52.1 55.3 44.4 41.9 40.0 40.6 30.0 28.2
(7) + Translation-P 47.4 52.7 55.7 43.7 43.6 43.2 45.1 32.6 32.4

Table 8.1: Results on the XSpider dev set. “zh-full” and “zh” are two different splits
from CSpider [294]. EM and TS are exact match accuracy and test suite accuracy,
respectively. Entry (5) is based on the DE-Retriever with Vanilla-P. Entry (6) is based on
the DE-Retriever and DE-Reranker (denoted as DE-R2) with Vanilla-P. Entry (7) is based
on DE-R2 with Translation-P.

XSpider: CSpider [294] and VSpider [313] are Chinese (zh) and Vietnamese (vi) cross-
domain Text-to-SQL datasets translated from Spider [542]. More specifically, we use
the English Spider training set as the candidate pool and training data for retriever-
reranker models. We use the development sets of CSpider and VSpider for cross-lingual
evaluation. We further translate the Spider development set into Farsi (fa) and Hindi (hi)
for a more comprehensive evaluation.

XKaggle-dbqa: This is a recently constructed dataset for more realistic and challenging
Text-to-SQL evaluation. The dataset is based on 8 databases from Kaggle. We translate
the questions into Chinese (zh), Farsi (fa), and Hindi (hi) for cross-lingual evaluation. We
use the English Spider training set as the candidate pool.

8.4.2 Experimental Details

For the exemplar retriever, we use 24-layer transformers initialized with the parameters of
the mT5 encoder that is then fine-tuned on the English Spider dataset for the Text-to-
SQL task. For the exemplar reranker, we use InfoXLM [70] as the starting point. We train
the retriever and reranker on the English Spider dataset and then apply both models to
cross-lingual retrieval and reranking in a zero-shot fashion. For the Codex configuration,
we use greedy decoding by setting the temperature to zero. We use N “ 16 and K “ 8 for
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all experiments, which means that the DE-Retriever first retrieves 16 exemplars from the
candidate pool and the DE-Reranker produces the top 8 exemplars for prompt construction.

In terms of evaluation metrics, we use Exact Match (EM) accuracy for both the XSpi-
der benchmark and the XKaggle-dbqa benchmark. Following [568], we report the
Test-suite (TS) accuracy. Only the datasets that are aligned with the Spider dev set
can be evaluated with TS accuracy, so the XKaggle-dbqa benchmark is not applicable.
Because the CSpider dev set is only partially aligned to the Spider dev set, the full
CSpider (zh-full) dev set can be only evaluated with EM accuracy. We collect a subset
of the CSpider dev set (zh) whose queries are aligned with the English Spider dev set,
and further evaluate these using TS accuracy.

8.4.3 Baselines

mT5 zero-shot transfer is a baseline model that is trained with the English Spider
training set. The model is based on the pre-trained sequence-to-sequence multilingual
language model mT5-large [509]. This model has zero-shot cross-lingual transfer ability,
with which the model can directly handle non-English utterances.

mUSE and mSBERT are baselines that use unsupervised retrievers to obtain exemplars:
multilingual Universal Sentence Encoder [519] and multilingual Sentence-BERT [382].
Prompts are then constructed for in-context learning with Codex.

8.5 Results

8.5.1 Results on XSpider

Results on XSpider are shown in Table 8.1. We report the EM and TS accuracy. For
the full CSpider dataset (zh-full), since TS Accuracy is not supported, we only report
EM accuracy. We report both TS and EM accuracy on the subset of CSpider. Entry (1)
reports the zero-shot performance of the mT5 model that is trained on the English Spider
dataset. On zh-full, vi, fa, and hi, the mT5 zero-shot method obtains on average 41.1
EM accuracy and 39.8 TS accuracy (average TS accuracy is computed without zh-full

because the metric cannot be computed on the full CSpider).

From entry (2) to entry (7), the methods are based on in-context few-shot learn-
ing. For entries (2–6), the prompting method is Vanilla-P. For entry (7), prompting with
Translation-P is applied.
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Model zh fa hi

(1) mT5 zero-shot 9.7 8.1 7.6
(2) mUSE 20.7 12.4 16.2
(3) mSBERT 14.7 13.0 11.9

(4) mT5-Encoder 22.2 16.8 16.2
(5) DE-Retriever 26.5 18.4 16.8
(6) DE-R2 27.0 18.4 17.8
(7) + Translation-P 28.1 20.0 19.5

Table 8.2: Results on the XKaggle-dbqa test set. We report exact match (EM) accuracy.

With unsupervised exemplar retrievers such as mUSE and mSBERT, shown in en-
tries (2) and (3), Codex performs worse than mT5 zero-shot transfer, especially for Farsi
(39.5Ñ31.1/31.8 on TS accuracy) and Hindi (39.7Ñ23.7/22.3 on TS accuracy). By switch-
ing the unsupervised exemplar retriever to the mT5-encoder, which is the encoder compo-
nent of the fine-tuned mT5 model, the effectiveness of Codex improves by a large margin.
For example, on the CSpider subset, TS accuracy improves to 51.4 from 47.1, outper-
forming mT5 zero-shot performance by 3 points. This indicates that the exemplar retrieval
component is essential to take advantage of the competitive performance of LLMs such as
Codex. For languages such as Vietnamese and Farsi, Codex is comparable to mT5 zero-shot
transfer, while for Hindi, there is still a large gap (39.7 vs. 27.0 on TS accuracy).

By applying our proposed distillation based retriever-reranker pipeline (denoted as DE-
R2) for retrieving exemplars, impressive improvements can be observed in all four languages
by comparing entry (6) with entry (4). Our end-to-end results are shown in entry (7), where
we see that our proposed framework achieves the best results for most of the languages
(except Vietnamese EM accuracy) in the in-context learning setting.

Comparing the best results of in-context learning with mT5 zero-shot results, we can
see that Codex can achieve better performance in Chinese, Vietnamese, and Farsi. For
example, XRICL outperforms mT5 zero-shot by 7.7 EM accuracy on the full dev set
of CSpider. One exception is Hindi, where the best in-context learning performance
cannot match mT5 zero-shot transfer. One possible explanation is that Codex has weaker
modeling ability in Hindi because less Hindi data were accessible during the training.
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8.5.2 Results on XKaggle-dbqa

There is agreement by researchers today that XKaggle-dbqa is a more realistic eval-
uation for the Text-to-SQL parsing task. The databases are real-world databases with
abbreviated column names. We use the training set of English Spider as the candidate
pool. In this case, both the model’s generalization ability and its cross-lingual transfer
capability can be tested.

The XKaggle-dbqa results are shown in Table 8.2. Entry (1) shows the zero-shot
cross-lingual cross-domain transfer performance of the mT5 model trained on the English
Spider dataset. For example, on Chinese Kaggle-dbqa, mT5 only obtains 9.7 EM
accuracy. For comparison, mT5 reach 20.0 EM accuracy on the English test set in a zero-
shot fashion, outperforming the previous state of the art obtained by RAT-SQL [463] with
18.4 EM accuracy [227] using column descriptions and model adaptation. This indicates
that the mT5 model is more robust than RAT-SQL on domain transfer. However, the
effectiveness degrades drastically when mT5 is applied to non-English languages. The
mT5 zero-shot method on average obtains only 8.5 EM accuracy in the three languages.

For the Codex-based in-context learning methods, the results are shown in entries (2–7).
With unsupervised retrieval methods such as mUSE, Codex can reach 20.7 EM accuracy in
Chinese, improving over the zero-shot mT5 baseline. Comparing entries (2) and (3), there
is no clear winner for these two unsupervised retrieval methods. Our end-to-end results are
shown in entry (7), which achieves state-of-the-art performance on the XKaggle-dbqa
benchmark, with 22.5 EM accuracy on average, which is better than the mT5 zero-shot
method. For example, on Chinese Kaggle-dbqa, our framework obtains an 18.4 point
improvement over mT5 zero-shot transfer.

8.6 Discussion and Analysis

8.6.1 Effectiveness on English Text-to-SQL

We show that our model is comparable to other in-context learning methods for English
semantic parsing. Through this comparison, we show that our framework is built on a
competitive backbone for Text-to-SQL. We use the DE-Retriever as the backbone model
in the ablation study and compare with three recent methods, described as follows: [391]
used hard labels obtained from the generator to train the retriever. [350] used the tree edit
distance of SQL queries as a similarity function: a smaller distance means better exemplar
quality for the specific test instance. The ranking model is optimized to predict the target
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Model EM EX TS

[391] (our impl.) 48.5 53.5 50.3
[350] - 60.0 -
[368] - 67.0 55.1
DE-Retriever (Ours) 53.5 60.3 56.3

Table 8.3: Results on the English Spider development set. Our system achieves results
comparable to other state-of-the-art in-context learning methods for English Text-to-SQL.
EM: Exact Match Accuracy. EX: Execution Accuracy. TS: Test-suite Accuracy [568].

SQL pair tree edit distance based on the utterance pair. [368] designed an efficient prompt
that leverages table contents for zero-shot Text-to-SQL. We refer the reader to the original
papers for more details.

Table 8.3 shows the results on the Spider development set. Our backbone system (DE-
Retriever + Codex Generator) obtains 53.5 EM accuracy and 60.3 EX accuracy, which is
comparable to the 60.0 EX accuracy reported by [350]. Comparing to [368], our system
obtains comparable TS accuracy (56.3 vs. 55.1).

8.6.2 Effectiveness of DE-R2

We analyze the effectiveness of DE-R2 on the XSpider benchmark and the XKaggle-
dbqa benchmark. By comparing entries (5) and (4) in Table 8.1 and Table 8.2, we can
observe that the DE-Retriever can improve over the mT5-encoder baseline in most of the
languages (except EM accuracy in Farsi). Comparing entries (6) and (5), we find that the
reranker can further improve the EM accuracy and the TS accuracy. This indicates that
our XRICL framework is effective in selecting good exemplars as prompts.

8.6.3 Effectiveness of Chain-of-Thought Prompt

By comparing entries (7) and (6) in Table 8.1 and Table 8.2, we find that Translation-P
can further improve the semantic parsing ability of Codex on top of DE-R2, except EM
accuracy for Vietnamese.
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Model
zh-full zh

EM EM TS

(1) DE-R2 + Translation-P 47.4 52.7 55.7
(2) T-Oracle 46.3 52.6 57.6
(3) TG-Oracle 52.5 58.0 62.2

Table 8.4: Results with oracles: T-Oracle is the Template Oracle and TG-Oracle is the
Template+Generator Oracle. EM accuracy and TS accuracy are reported.

8.6.4 Oracle Performance

It is interesting to investigate the upper bound of Codex on cross-lingual Text-to-SQL
semantic parsing. We design two pipelines to experiment with the capabilities of Codex
when an oracle is available (i.e., the target SQL query is accessible to help the retrieval
and reranking). We experiment with two different oracles:

Template Oracle: We retrieve exemplars using the gold parse. The template is extracted
from the target SQL query and only exemplars with the same SQL template are retrieved.
This is based on the assumption that utterances with the same SQL templates share the
same query intent and the generator can benefit from these exemplars.

Template Oracle + Codex LM oracle: Here we introduce an oracle from the gener-
ator (Codex) into the pipeline. More specifically, we replicate the training process in the
testing phase. The exemplars with the same SQL templates are first retrieved. For each
retrieved exemplar, we use Codex to compute its contribution to the test instance as the
reranking score. We then use the top-k as the exemplars.

The experimental results are shown in Table 8.4. Comparing entries (1) and (2), we can
observe that our XRICL framework can outperform the Template Oracle in terms of EM
accuracy on the full dataset and is comparable on the subset. Template Oracle + Codex
LM Oracle reaches 52.5 on the full dataset and 58.0 on the subset in terms of EM accuracy.
This suggests that signals from the Codex LM are useful and that there is additional room
for improvement in our framework.
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8.7 Summary

In this work, we proposed the XRICL framework that improves in-context learning for
cross-lingual Text-to-SQL semantic parsing. The retrieve-and-rerank models that we pro-
pose can learn signals from large pre-trained models (Codex) to improve the quality of
selected exemplars, which can further benefit the generator. By integrating prompts in-
spired by chain of thought, our proposed Translation-P method can bridge the cross-lingual
gap for the generator. Extensive experiments on XSpider and XKaggle-dbqa demon-
strate the effectiveness of our framework, which obtains state-of-the-art performance on
few-shot in-context learning in most of the datasets, thus unlocking the potential of Codex.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

This thesis investigates several aspects in information access research, and we summarized
our contribution as follows:

Improving the Information Access Systems for Heterogeneous Data. Information
and knowledge are residing in different formats. Some formats received more attention than
others, such as news articles, Wikipedia passages, etc. However, improving the access to
the information and knowledge that are located in other formats (e.g. tables or private
databases) is also an important research problem, which can further benefit industrial
applications. In this thesis, we present an intermediate pre-training framework that is
trained over large-scale tables and synthesized user queries can improve the table-based
free-form question answering(Chapter 3), achieving the state-of-the-art performance on
FeTaQA benchmark. For the information access over structured databases, we propose
a representation learning framework for Text-to-SQL semantic parsing that is trained on
large-scale tables and crawled SQLs from the web. The pre-trained encoder can alleviate
three pain points of existing Text-to-SQL semantic parsing models, outperforming existing
baseline systems. To the best of our knowledge, we are the first to use both crawled SQL
and crawled tables to boost the text-to-SQL semantic parsers (Chapter 4).

Facilitating the Information Access System Development for Non-English Speak-
ers. To meet the information access needs of diverse populations, in this thesis, we first
study the problem of cross-lingual entity matching (Chapter 5). This is an important
component that benefits the effectiveness and efficiency of information access systems such
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as multilingual question answering over knowledge graphs, by integrating data from dif-
ferent languages into a unified view. Specifically, we improve GCN models and leverage
pre-trained multilingual BERT model to better capture the relatedness of entities in mul-
tiple languages, by integrating multiple aspects of information from the knowledge graph,
achieving state-of-the-art performance on benchmarks such as DBP15K and DBP100k.
Also, to the best of our knowledge, the model is one of the earliest BERT-based bi-encoder
designs for the matching task. We further explored the cross-lingual training strategies for
the tasks of non-English dense retrieval and non-English document reranking. We are one
of the earliest studies that use multilingual BERT on the non-English document reranking.

Extending Structured Data Access Systems to non-English Languages. It is
received less attention from the community when it comes to the intersection of structured
data access systems and multilingual models. In this thesis, we take a step further to
explore models and frameworks that enable non-English speakers to access structured
data. To achieve this, a common practice is to leverage external translation systems to
facilitate the cross-lingual transfer. However, the noise in the translation outputs may cause
error propagation for downstream tasks. In this thesis, we propose a representation mixup
framework (Chapter 7) for Text-to-SQL semantic parsing that can guide the translation
information flow properly within the model and reduce the negative influence of the noisy
translation. As the development of large language models, in this thesis, we also evaluate
their cross-lingual ability in the task of Text-to-SQL semantic parsing with in-context
learning paradigm, when the training data in target languages are not available (Chapter 8).
To the best of our knowledge, we are the first to explore the effectiveness of large pre-trained
models for cross-lingual Text-to-SQL semantic parsing. We also construct new benchmarks
for facilitating the cross-lingual Text-to-SQL semantic parsing evaluation.

9.2 Future Work

Conversational Information Seeking. Recent years have seen a huge development
in conversational information seeking [92, 549, 256, 545]. When the information-seeking
intents are complicated, users tend to issue multiple queries to achieve the goals. This
requires the systems to handle the queries in context; for example, the models need to
learn to refer to results in previous turns. By combining conversation information seeking
with a unified framework [207, 281, 330, 497], the models need to learn to choose or combine
knowledge and information from multiple sources during the conversation. This raises more
challenges to the model development; however, this kind of system can further improve the
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user experience without composing complex queries or interacting with multiple systems
for different information sources.

Effective Information Seeking in Many Languages. In this thesis, we explore sev-
eral training techniques for transferring information access models in high-resource lan-
guages (e.g. English) to other languages (e.g. Hindi) without expensive annotations. Even
though the model effectiveness is greatly improved with the benefit of the multilingual
pre-training [509, 272], the performance is still far from perfect. It is still a challenge
for improving the information access systems for non-English languages, especially for
low-resource languages. One interesting direction to explore is to leverage multilingual
resources [434] (e.g. bilingual dictionaries) in the data acquisition process and model
training [359]. Moreover, integrating the model with the crowd-sourcing process (e.g. in-
teractive annotation process) is also worth exploring.
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[348] Matúš Pikuliak, Marián Šimko, and Maria Bielikova. Cross-lingual learning for text
processing: A survey. Expert Systems with Applications, 165:113765, 2021.

152



[349] Gabriel Poesia, Alex Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Chris Meek, and
Sumit Gulwani. Synchromesh: Reliable code generation from pre-trained language
models. 2021.

[350] Gabriel Poesia, Oleksandr Polozov, Vu Le, Ashish Tiwari, Gustavo Soares, Christo-
pher Meek, and Sumit Gulwani. Synchromesh: Reliable code generation from pre-
trained language models. arXiv preprint arXiv:2201.11227, 2022.

[351] Jay M. Ponte and W. Bruce Croft. A language modeling approach to information
retrieval. In SIGIR, pages 275–281, 1998.

[352] Hoifung Poon. Grounded unsupervised semantic parsing. In ACL, 2013.

[353] Hoifung Poon. Grounded unsupervised semantic parsing. In Proceedings of the 51st
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), pages 933–943, 2013.

[354] Ana-Maria Popescu, Alex Armanasu, Oren Etzioni, David Ko, and Alexander Yates.
Modern natural language interfaces to databases: Composing statistical parsing with
semantic tractability. In Proceedings of the 20th international conference on Compu-
tational Linguistics, page 141. Association for Computational Linguistics, 2004.

[355] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of natural
language interfaces to databases. In Proceedings of the 8th international conference
on Intelligent user interfaces, pages 149–157. ACM, 2003.

[356] Ana-Maria Popescu, Oren Etzioni, and Henry Kautz. Towards a theory of natural
language interfaces to databases. In Proceedings of the 8th International Conference
on Intelligent User Interfaces, 2003.

[357] P. J. Price. Evaluation of spoken language systems: the atis domain. In Speech and
Natural Language: Proceedings of a Workshop Held at Hidden Valley, Pennsylvania,
June 24-27,1990, pages 91–95, 1990.

[358] Jiexing Qi, Jingyao Tang, Ziwei He, Xiangpeng Wan, Chenghu Zhou, Xinbing Wang,
Quanshi Zhang, and Zhouhan Lin. RASAT: Integrating relational structures into
pretrained seq2seq model for text-to-SQL. arXiv preprint arXiv:2205.06983, 2022.

[359] Libo Qin, Minheng Ni, Yue Zhang, and Wanxiang Che. Cosda-ml: Multi-lingual
code-switching data augmentation for zero-shot cross-lingual nlp. arXiv preprint
arXiv:2006.06402, 2020.

153



[360] Chris Quirk, Raymond Mooney, and Michel Galley. Language to code: Learning se-
mantic parsers for if-this-then-that recipes. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing (Volume 1: Long Papers), volume 1,
pages 878–888, 2015.

[361] Maxim Rabinovich, Mitchell Stern, and Dan Klein. Abstract syntax networks for
code generation and semantic parsing. In ACL (1), pages 1139–1149. Association for
Computational Linguistics, 2017.

[362] Dragomir Radev, Rui Zhang, Amrit Rau, Abhinand Sivaprasad, Chiachun Hsieh,
Nazneen Fatema Rajani, Xiangru Tang, Aadit Vyas, Neha Verma, Pranav Krishna,
et al. Dart: Open-domain structured data record to text generation. arXiv preprint
arXiv:2007.02871, 2020.

[363] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving
language understanding by generative pre-training. 2018.

[364] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever,
et al. Language models are unsupervised multitask learners. OpenAI blog, 1(8):9,
2019.

[365] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer
learning with a unified text-to-text transformer. arXiv preprint arXiv:1910.10683,
2019.

[366] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael
Matena, Yanqi Zhou, Wei Li, Peter J Liu, et al. Exploring the limits of transfer
learning with a unified text-to-text transformer. J. Mach. Learn. Res., 21(140):1–67,
2020.

[367] Yves Raimond, Christopher Sutton, and Mark B. Sandler. Automatic interlinking of
music datasets on the semantic web. In Proceedings of WWW workshop on Linked
Data on the Web, 2008.

[368] Nitarshan Rajkumar, Raymond Li, and Dzmitry Bahdanau. Evaluating the text-to-
sql capabilities of large language models. arXiv preprint arXiv:2204.00498, 2022.

[369] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,
000+ questions for machine comprehension of text. CoRR, abs/1606.05250, 2016.

154



[370] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad:
100,000+ questions for machine comprehension of text. arXiv preprint
arXiv:1606.05250, 2016.

[371] Jinfeng Rao, Hua He, and Jimmy Lin. Noise-contrastive estimation for answer selec-
tion with deep neural networks. In Proceedings of CIKM, 2016.

[372] Jinfeng Rao, Hua He, and Jimmy Lin. Experiments with convolutional neural net-
work models for answer selection. In Proceedings of the 40th International ACM
SIGIR Conference on Research and Development in Information Retrieval, pages
1217–1220. ACM, 2017.

[373] Jinfeng Rao, Hua He, Haotian Zhang, Ferhan Ture, Royal Sequiera, Salman Mo-
hammed, and Jimmy Lin. Integrating lexical and temporal signals in neural ranking
models for searching social media streams. arXiv:1707.07792, 2017.

[374] Jinfeng Rao, Jimmy Lin, and Miles Efron. Reproducible experiments on lexical
and temporal feedback for tweet search. In European Conference on Information
Retrieval, pages 755–767. Springer, 2015.

[375] Jinfeng Rao, Wei Yang, Yuhao Zhang, Ferhan Ture, and Jimmy Lin. Multi-
perspective relevance matching with hierarchical ConvNets for social media search.
In AAAI, 2019.

[376] Mohammad Sadegh Rasooli and Joel R. Tetreault. Yara parser: A fast and accurate
dependency parser. Computing Research Repository, arXiv:1503.06733, 2015. version
2.

[377] Antoine Raux, Brian Langner, Dan Bohus, Alan W. Black, and Maxine Eskénazi.
Let’s go public! taking a spoken dialog system to the real world. In INTERSPEECH,
2005.

[378] Thomas Rebele, Fabian Suchanek, Johannes Hoffart, Joanna Biega, Erdal Kuzey, and
Gerhard Weikum. YAGO: A multilingual knowledge base from Wikipedia, WordNet,
and GeoNames. In Proceedings of International Semantic Web Conference, 2016.

[379] Siva Reddy, Mirella Lapata, and Mark Steedman. Large-scale semantic parsing with-
out question-answer pairs. Transactions of the Association for Computational Lin-
guistics, 2:377–392, 2014.

155



[380] Machel Reid and Mikel Artetxe. Paradise: Exploiting parallel data for multilingual
sequence-to-sequence pretraining. arXiv preprint arXiv:2108.01887, 2021.

[381] Nils Reimers and Iryna Gurevych. Reporting score distributions makes a difference:
Performance study of lstm-networks for sequence tagging. arXiv:1707.09861, 2017.

[382] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. In Proceedings of the 2019 Conference on Empirical Methods in Nat-
ural Language Processing. Association for Computational Linguistics, 11 2019.

[383] Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese
bert-networks. arXiv preprint arXiv:1908.10084, 2019.

[384] Ruiyang Ren, Yingqi Qu, Jing Liu, Wayne Xin Zhao, Qiaoqiao She, Hua Wu, Haifeng
Wang, and Ji-Rong Wen. Rocketqav2: A joint training method for dense passage
retrieval and passage re-ranking. arXiv preprint arXiv:2110.07367, 2021.

[385] Leonardo FR Ribeiro, Martin Schmitt, Hinrich Schütze, and Iryna Gurevych. In-
vestigating pretrained language models for graph-to-text generation. arXiv preprint
arXiv:2007.08426, 2020.

[386] Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework:
BM25 and beyond. Now Publishers Inc, 2009.

[387] Stephen E Robertson, Steve Walker, Susan Jones, Micheline M Hancock-Beaulieu,
Mike Gatford, et al. Okapi at trec-3. Nist Special Publication Sp, 109:109, 1995.

[388] Corby Rosset, Chenyan Xiong, Minh Phan, Xia Song, Paul Bennett, and
Saurabh Tiwary. Knowledge-aware language model pretraining. arXiv preprint
arXiv:2007.00655, 2020.

[389] Uma Roy, Noah Constant, Rami Al-Rfou, Aditya Barua, Aaron Phillips, and Yinfei
Yang. Lareqa: Language-agnostic answer retrieval from a multilingual pool. arXiv
preprint arXiv:2004.05484, 2020.

[390] Ohad Rubin and Jonathan Berant. Smbop: Semi-autoregressive bottom-up semantic
parsing. arXiv preprint arXiv:2010.12412, 2020.

[391] Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts
for in-context learning. arXiv preprint arXiv:2112.08633, 2021.

156
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